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An Asymptotic Equivalence Between
Two Frame Perturbation Theorems

B. A. Bailey

Abstract In this paper, two stability results regarding exponential frames are
compared. The theorems, (one proven herein, and the other in Sun and Zhou
(J. Math. Anal. Appl. 235:159–167, 1999)), each give a constant such that if
supn∈Z ‖εn‖∞ <C, and (ei〈·,tn〉)n∈Zd is a frame for L2[−π ,π ]d , then (ei〈·,tn+εn〉)n∈Zd is
a frame for L2[−π ,π ]d . These two constants are shown to be asymptotically equiv-
alent for large values of d.

1 The Perturbation Theorems

We define a frame for a separable Hilbert space H to be a sequence ( fn)n ⊂ H such
that for some 0 < A ≤ B,

A2‖ f‖2 ≤ ∑
n
|〈 f , fn〉|2 ≤ B2‖ f‖2, f ∈ H.

The best A2 and B2 satisfying the inequality above are said to be the frame bounds
for the frame. If (en)n is an orthonormal basis for H, the synthesis operator Len = fn

is bounded, linear, and onto, iff ( fn)n is a frame. Equivalently, ( fn)n is a frame iff
the operator L∗ is an isomorphic embedding, (see [1]). In this case, A and B are the
best constants such that

A‖ f‖ ≤ ‖L∗ f‖ ≤ B‖ f‖, f ∈ H.

The simplest stability result regarding exponential frames for L2[−π ,π ] is the
theorem below, which follows immediately from [2, Theorem 13, p 160].

B.A. Bailey
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2 B. A. Bailey

Theorem 1. Let (tn)n∈Z ⊂ R be a sequence such that (hn)n∈Z :=
(

1√
2π eitnx

)

n∈Z is a

frame for L2[−π ,π ] with frame bounds A2 and B2. If (τn)n∈Z ⊂ R and ( fn)n∈Z :=
(

1√
2π eiτnx

)

n∈Z is a sequence such that

sup
n∈Z

|τn − tn|< 1
π

ln

(

1+
A
B

)

, (1)

then the sequence ( fn)n∈Z is also a frame for L2[−π ,π ].

The following theorem is a very natural generalization of Theorem 1 to higher
dimensions.

Theorem 2. Let (tk)k∈N⊂R
d be a sequence such that (hk)k∈N :=

( 1
(2π)d/2 e〈(·),tk〉

)

k∈N
is a frame for L2[−π ,π ]d with frame bounds A2 and B2. If (τk)k∈N ⊂ R

d and
( fk)k∈N :=

(

1
(2π)d/2 ei〈(·),τk〉)

k∈N is a sequence such that

sup
k∈N

‖τk − tk‖∞ <
1

πd
ln

(

1+
A
B

)

, (2)

then the sequence ( fk)k∈N is also a frame for L2[−π ,π ]d.

The proof of Theorem 2 relies on the following lemma:

Lemma 1. Choose (tk)k∈N ⊂ R
d such that (hk)k∈N :=

(

1
(2π)d/2 e〈(·),tk〉

)

k∈N satisfies

∥

∥

∥

n

∑
k=1

akhk

∥

∥

∥

L2[−π ,π ]d
≤ B

( n

∑
k=1

|ak|2
)1/2

, for all (ak)
n
k=1 ⊂ C.

If (τk)k∈N ⊂ R
d, and ( fk)k∈N :=

( 1
(2π)d/2 ei〈(·),τk〉)

k∈N, then for all r,s ≥ 1 and any

finite sequence (ak)k, we have

	

	

	

	

	

s

∑
k=r

ak(hk − fk)

	

	

	

	

	

L2[−π,π ]d
≤ B

(

e
πd
(

sup
r≤k≤s

‖τk−tk‖∞
)

−1
)( s

∑
k=r

|ak|2
) 1

2
.

This lemma is a slight generalization of Lemma 5.3, proven in [3] using simple
estimates. Lemma 1 is proven similarly. Now for the proof of Theorem 2.

Proof. Define δ = supk∈N ‖τk − tk‖∞. Lemma 1 shows that the map L̃en = fn is
bounded and linear, and that

‖L− L̃‖ ≤ B
(

eπdδ −1
)

:= βA

for some 0 ≤ β < 1. This implies

‖L∗ f − L̃∗ f‖ ≤ βA, when ‖ f‖= 1. (3)
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Rearranging, we have

A(1−β )≤ ‖L̃∗ f‖, when ‖ f‖= 1.

By the previous remarks regarding frames, ( fk)k∈N is a frame for L2[−π ,π ]d.

Theorem 3, proven in [4], is a more delicate frame perturbation result with a
more complex proof:

Theorem 3. Let (tk)k∈N⊂R
d be a sequence such that (hk)k∈N :=

(

1
(2π)d/2 e〈(·),tk〉

)

k∈N
is a frame for L2[−π ,π ]d with frame bounds A2 and B2. For d ≥ 1, define

Dd(x) :=
(

1− cosπx+ sinπx+
sinπx

πx

)d −
(sinπx

πx

)d
,

and let xd be the unique number such that 0 < xd ≤ 1/4 and Dd(xd) =
A
B . If

(τk)k∈N ⊂ R
d and ( fk)k∈N :=

(

1
(2π)d/2 ei〈(·),τk〉)

k∈N is a sequence such that

sup
k∈N

‖τk − tk‖∞ < xd , (4)

then the sequence ( fk)k∈N is also a frame for L2[−π ,π ]d.

2 An Asymptotic Equivalence

It is natural to ask how the constants xd and 1
πd ln

(

1+ A
B

)

are related. Such a rela-
tionship is given in the following theorem.

Theorem 4. If xd is the unique number satisfying 0 < xd < 1/4 and Dd(xd) =
A
B ,

then

lim
d→∞

xd − 1
πd ln

(

1+ A
B

)

[

ln
(

1+ A
B

)]2

6π
(

1+ B
A

)

d2

= 1.

We prove the theorem with a sequence of propositions.

Proposition 1. Let d be a positive integer. If

f (x) := 1− cos(x)+ sin(x)+ sinc(x),

g(x) := sinc(x),

then

(1) f ′(x)+ g′(x)> 0, x ∈ (0,π/4),

(2) g′(x)< 0, x ∈ (0,π/4),

(3) f ′′(x)> 0, x ∈ (0,Δ) for some 0 < Δ < 1/4.
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The proof of Proposition 1 involves only elementary calculus and is omitted.

Proposition 2. The following statements hold:
(1) For d > 0, Dd(x) and D′

d(x) are positive on (0,1/4).
(2) For all d > 0, D′′

d(x) is positive on (0,Δ).

Proof. Note Dd(x) = f (πx)d −g(πx)d is positive. This expression yields

D′
d(x)/(dπ) = f (πx)d−1 f ′(πx)−g(πx)d−1g′(πx)> 0 on (0,1/4)

by Proposition 1. Differentiating again, we obtain

D′′
d(x)/(dπ2) = (d−1)

[

f (πx)d−2( f ′(πx))2 −g(πx)d−2(g′(πx))2]

+ [ f (πx)d−1 f ′′(πx)−g(πx)d−1g′′(πx)] on (0,1/4).

If g′′(πx) ≤ 0 for some x ∈ (0,1/4), then the second bracketed term is positive.
If g′′(πx) > 0 for some x ∈ (0,1/4), then the second bracketed term is positive if
f ′′(πx)− g′′(πx)> 0, but

f ′′(πx)−g′′(πx) = π2(cos(πx)− sin(πx))

is positive on (0,1/4).
To show the first bracketed term is positive, it suffices to show that

f ′(πx)2 > g′(πx)2 = ( f ′(πx)+ g′(πx))( f ′(πx)−g′(πx))> 0

on (0,Δ). Noting f ′(πx)− g′(πx) = π(cos(πx)+ sin(πx)) > 0, it suffices to show
that f ′(πx)+ g′(πx)> 0, but this is true by Proposition 1. �

Note that Proposition 2 implies xd is unique.

Corollary 1. We have limd→∞ xd = 0.

Proof. Fix n > 0 with 1/n < Δ , then limd→∞ Dd(1/n) = ∞ (since f increasing im-
plies 0 <−cos(π/n)+ sin(π/n)+ sinc(π/n)). For sufficiently large d, Dd(1/n)>
A
B . But A

B = Dd(xd)< Dd(1/n), so xd < 1/n by Proposition 2.

Proposition 3. Define ωd = 1
πd ln

(

1+ A
B

)

. We have

lim
d→∞

d
(A

B
−Dd(ωd)

)

=
A

6B

[

ln
(

1+
A
B

)]2
,

lim
d→∞

1
d

D′
d(ωd) = π

(

1+
A
B

)

,

lim
d→∞

1
d

D′
d(xd) = π

(

1+
A
B

)

.
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Proof. (1) For the first equality, note that

Dd(ωd) =
[

(1+h(x))ln(c)/x −g(x)ln(c)/x
]∣

∣

∣

x= ln(c)
d

(5)

where h(x)=−cos(x)+sin(x)+sinc(x), g(x) = sinc(x), and c= 1+ A
B . L’Hospital’s

rule implies that

lim
x→0

(1+h(x))ln(c)/x = c and lim
x→0

g(x)ln(c)/x = 1.

Looking at the first equality in the line above, another application of L’Hospital’s
rule yields

lim
x→0

(1+h(x))ln(c)/x − c
x

= c ln(c)

[ h′(x)
1+h(x) −1

x
− ln(1+h(x))− x

x2

]

. (6)

Observing that h(x) = x+ x2/3+O(x3)), we see that

lim
x→0

h′(x)
1+h(x) −1

x
=−1

3
.

L’Hospital’s rule applied to the second term on the right hand side of (6) gives

lim
x→0

(1+h(x))ln(c)/x − c
x

=
−c ln(c)

6
. (7)

In a similar fashion,

lim
x→0

g(x)ln(c)/x −1
x

= ln(c) lim
x→0

[ g′(x)
g(x)

x
− ln(g(x))

x2

]

. (8)

Observing that g(x) = 1− x2/6+O(x4), we see that

lim
x→0

g′(x)
g(x)

x
=−1

3
.

L’Hospital’s rule applied to the second term on the right hand side of (8) gives

lim
x→0

g(x)ln(c)/x −1
x

=− ln(c)
6

. (9)

Combining (5), (7), and (9), we obtain

lim
d→∞

d
(A

B
−Dd(ωd)

)

=
A
6B

[

ln
(

1+
A
B

)]2
.
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(2) For the second equality we have, (after simplification),

1
d

D′
d(ωd) = π

[

(

1+h
( ln(c)

d

)

)

(

ln(c)
)

/
(

ln(c)
d

)

1+h
(

ln(c)
d

) −
g
(

ln(c)
d

)

(

ln(c)
)

/
(

ln(c)
d

)

g
(

ln(c)
d

) g′
( ln(c)

d

)

]

.

In light of the previous work, this yields

lim
d→∞

1
d

D′
d(ωd) = π

(

1+
A
B

)

.

(3) To derive the third equality, note that (1+h(πxd))
d = A

B +g(πxd)
d yields

1
d

D′
d(xd) = π

[

A
B +g(πxd)

d

1+h(πxd)
h′(πxd)− g(πxd)

d

g(πx)
g′(πxd)

]

. (10)

Also, the first inequality in Proposition 3 yields that, for sufficiently large d (also
large enough so that xd < Δ and ωd < Δ ), that Dd(ωd)<

A
B = Dd(xd). This implies

ωd < xd since Dd is increasing on (0,1/4). But Dd is also convex on (0,Δ), so we
can conclude

D′
d(ωd)< D′

d(xd). (11)

Combining this with (10), we obtain
[

1
d

D′
d(ωd)+

πg(πxd)
d

g(πxd)
g′(πxd)

]

(1+h(πxd)

h′(πxd)

)

< π
(A

B
+g(πxd)

d
)

< π
(

1+
A
B

)

.

The limit as d → ∞ of the left hand side of the above inequality is π
(

1+ A
B

)

, so

lim
d→∞

π
(A

B
+g(πxd)

d
)

= π
(

1+
A
B

)

.

Combining this with (10), we obtain

lim
d→∞

1
d

D′
d(xd) = π

(

1+
A
B

)

.

�
Now we complete the proof of Theorem 4. For large d, the mean value theorem
implies

Dd(xd)−Dd(ωd)

xd −ωd
= D′

d(ξ ), ξ ∈ (ωd,xd),
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so that

xd −ωd =
A
B −Dd(ωd)

D′
d(ξ )

.

For large d, convexity of Dd on (0,Δ) implies

d
(

A
B −Dd(ωd)

)

1
d D′

d(xd)
< d2(xd −ωd)<

d
(

A
B −Dd(ωd)

)

1
d D′

d(ωd)
.

Applying Proposition 3 proves the theorem.
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Growth Behavior and Zero Distribution of
Maximally Convergent Rational Approximants

Hans-Peter Blatt, René Grothmann, and Ralitza K. Kovacheva

Abstract Given a compact set E in C and a function f holomorphic on E , we
investigate the distribution of zeros of rational uniform approximants {rn,mn} with
numerator degree ≤ n and denominator degree ≤ mn, where mn = o(n/ logn) as
n → ∞. We obtain a Jentzsch–Szegő type result, i.e., the zero distribution converges
weakly to the equilibrium distribution of the maximal Green domain Eρ( f ) of mero-
morphy of f if f has a singularity of multivalued character on the boundary ∂Eρ( f ).
Further, we show that any singular point of f on the boundary ∂Eρ( f ), that is not a
pole, is a limit point of zeros of the sequence {rn,mn}.

Let f (z) = ∑∞
ν=0 aνzν be a power series with radius of convergence 1; set

sn(z) :=
n

∑
ν=0

aν zν , n = 0,1,2, . . . .

The classical theorem of Jentzsch concerns the limiting behavior of the zeros of
the partial sums sn as n → ∞. Jentzsch [9] proved that each point of the unit circle
is a limit point of zeros of sn(z), n = 1,2, . . .. Later, Szegő [13] showed that there
is an infinite sequence Λ ⊂ N such that the zeros of sn, n ∈ Λ , are asymptotically
uniformly distributed in the sense of Weyl.

Since the radius of convergence equals 1,

limsup
n→∞

|an|1/n = 1.
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In the proof of Szegő’s theorem, it is shown that the asymptotic uniform distribution
for the zeros in the sense of Weyl holds for any sequence Λ that satisfies

lim
n∈Λ ,n→∞

|an|1/n = limsup
n→∞

|an|1/n = 1.

Throughout this paper, we shall consider compact sets E ⊂ C whose complements
Ω = C\E with respect to the extended complex plane C are connected. A set E is
called regular if there exists a Green function G(z) = GE(z,∞) on Ω with pole at ∞,
and G(z)→ 0 as z → ∂Ω . We define the Green domains Eρ by

Eρ := {z ∈ Ω : G(z)< logρ}∪E, ρ > 1. (1)

Since Ω is regular, the equilibrium distribution μE of E exists, as well as the equi-
librium distribution μρ for every Eρ , ρ > 1 (cf. [12] or [14]).

Given an open set B ⊂C, A (B) represents the class of functions f that are holo-
morphic (analytic and single-valued) in the set B. Further, the function f is mero-
morphic in B( f ∈ M (B)) if in any closed subdomain of B, f has no more than a
finite number of poles. We say that a function f is holomorphic (meromorphic) on
the compact set E if f is holomorphic (meromorphic) in some open set U containing
E and write f ∈ A (E) ( f ∈ M (E)). Further, f ∈ Mm(B) ( f is m-meromorphic in
B) iff f is meromorphic with no more than m poles in B. As usual, poles are counted
with respect to their multiplicities. Finally, Rn,m is the collection of all rational func-
tions {p/q : deg p ≤ n, deg q ≤ m, q �≡ 0}.

For f ∈ C(E), we introduce the radius of holomorphy ρ0( f ), resp. the radius
ρm( f ) of m-meromorphy, m ∈N0 as follows:

ρ0( f ) :=

{

1, if f �∈ A (E),
sup{ρ > 1 : f ∈ A (Eρ)}, otherwise

and, respectively,

ρm( f ) :=

{

1, if f �∈ A (E),
sup{ρ > 1 : f ∈ Mm(Eρ)}, otherwise.

Given a pair (n,m), n,m ∈ N0 := N∪{0}, let Rn,m denote a best uniform approxi-
mation to f ∈C(E) in the class Rn,m; that is,

en,m( f ) := inf
r∈Rn,m

‖ f − r‖E = ‖ f −Rn,m‖E (2)

and ‖ ·‖E denotes the max-norm (uniform norm of Chebyshev) on E. In the follow-
ing, we assume that

Rn,m = Pn,m/Qn,m,

where the polynomials Pn,m and Qn,m do not have a common factor. The starting
point of our considerations is the following theorem.
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Theorem 1 ([6]). Let E be a regular compact set in C with connected complement
and m ∈ N0 be fixed. Suppose that f ∈ A (Eo)∩C(E) and ρm( f )< ∞. Then

limsup
n→∞

e1/n
n,m = 1/ρm( f ) (3)

and f ∈ Mm(Eρm( f )).

As known, Mergelyan’s theorem says that limn→∞ en,m( f ) = 0, where m ∈ N0 is
fixed. Theorem 1 reveals the relation of the rate of decay to the analyticity of f .

Concerning the distribution of the zeros of Rn,m( f ), let us denote by νn = ν(Pn,m)
the normalized zero counting measure of Pn,m( f ), i.e.,

νn(B) =
# zeros of Pn,m in B

deg Pn,m
, B ⊂ C.

The next theorem characterizes the zero distribution of the sequence {Rn,m} as n →
∞, where m is fixed.

Theorem 2. Under the conditions of Theorem 1, suppose that f is not identically 0
on any component of E. Suppose also that ρm( f ) < ∞. Then there exists a subse-
quence Λ ⊂N such that the normalized zero counting measures νn of the numerators
of Rn,m converge weakly to the equilibrium distribution μρm( f ) of Eρm( f ).

Theorem 2 follows from results of [1, 2]. In an independent way, it was proved
in [10].

For our further purposes we use the concept of convergence in m1-measure. Let
e be a set in C. We set

m1(e) := inf(∑
ν
|Uν |),

where the infimum is taken over all countable coverings {Uν} by disks Uν , where
|Uν | denotes the radius of the disk Uν .

Let D be a domain in C and ϕ a function defined in D with values in C.
A sequence of functions {ϕn}, meromorphic in D, is said to converge to a func-
tion ϕ with respect to the m1-measure inside D if for every ε > 0 and any compact
set K ⊂ D we have

m1{z ∈ K : |(ϕ −ϕn)(z)| ≥ ε}→ 0 as n → ∞.

The sequence {ϕn} is said to converge to ϕ m1-almost locally uniformly inside D
if for any compact set K ⊂ D and any ε > 0 there exists a set Kε ⊂ K such that
m1(K \Kε) < ε and the sequence {ϕn} converges uniformly to ϕ on Kε . Hence,
the m1-almost local uniform convergence inside D implies m1-convergence inside
D [7].



12 H.-P. Blatt et al.

We recall the basic properties of the convergence in m1-measure [7]. Suppose that
{ϕn} converges in m1-measure to ϕ inside the domain D, then:

(a) If {ϕn} ∈ A (D), then {ϕn} converges locally uniformly in D. Thus, the limit
function is analytic in D.

(b) If the functions ϕn are m-meromorphic in D, where m≥ 0 is a fixed integer, then
the limit function ϕ is m1-equivalent to a function which is also m-meromorphic
in D. Hence, if ϕ has a pole of order τ at a point a ∈ D, then at least τ poles of
ϕn tend to a.

(c) If ϕ ∈ Mm(D), then all functions ϕn (for n large enough) have at least m poles
in D.

Let us return to Theorem 1. If m ∈ N is fixed and ρm( f ) > 1, then it was shown
in [6] that the best Chebyshev approximants Rn,m converge m1-almost locally uni-
formly inside the domain Eρm( f ) as n → ∞. Denote by f̃ the limit function. By
(b), f̃ is m1-equivalent to a function in Mm(Eρm( f )). Furthermore, Gončar proved a
quantitative characteristic of the convergence of the sequence {Rn,m} inside Eρm( f );
namely, for every compact set K ⊂ Eρm( f ) and ε > 0 there exists an open set Ωε with
m1(Ωε)< ε such that

limsup
n→∞

‖ f −Rn,m‖1/n
K\Ωε

≤ exp(maxKGE(z,∞))

ρm( f )

([6], p. 153, Remark 1).

We consider here the question about the rate of convergence and the distribution
of the zeros in the case of rational functions if the degrees of the denominators are
not bounded.

For f ∈C(E), let us introduce the radius of meromorphy ρ( f ) of f , that is

ρ( f ) := sup
m≥0

ρm( f ).

Our new results are concerned with a sequence {mn}∞
n=1,mn ∈ N0,n ∈N, such that

mn → ∞ and mn = o(n/ logn) as n → ∞. (4)

Assume that f ∈A (E) and ρ( f )<∞. Then for sequences as in (4), Walsh’s theorem
([15], p. 378, Theorem 3) implies that

limsup
n→∞

‖ f −Rn,mn‖1/n
E ≤ 1

ρ( f )
. (5)

In Theorem 3, we state that the uniform geometric convergence of a sequence
{rn,mn}n∈N to f on E implies the geometric convergence of this sequence to a con-
tinuous function m1-almost locally uniformly inside some domain Eτ , τ > 1.
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Theorem 3 ([5]). Let E be compact in C with regular, connected complement Ω =
C \E, {mn}∞

n=1 a sequence in N0 with mn = o(n/ logn) as n → ∞, {rn,mn}n∈N a
sequence of rational functions, rn,mn ∈ Rn,mn , such that for f ∈ M (E)

limsup
n→∞

‖ f − rn,mn‖1/n
∂E ≤ 1

τ
< 1. (6)

Then there exists an extension ˜f of f to Eτ with the following property: For any
ε > 0 there exists a subset Ω(ε)⊂C with m1(Ω(ε))< ε such that ˜f is a continuous
function on Eτ \Ω(ε) and

limsup
n→∞

‖˜f − rn,mn‖1/n
Eσ\Ω(ε) ≤

σ
τ

(7)

for any σ with 1 < σ < τ , and {rn,mn}n∈N converges m1-almost uniformly to ˜f
inside Eτ .

Remark 1. Under the conditions of Theorem 1, in particular m is fixed, the function
f can be continued to f ∈Mm(Eρm( f )). In this case, ˜f of Theorem 3 is m1-equivalent
to f in Eρm( f ). But under the conditions of Theorem 3, the sequence {mn}∞

n=1 need
not be bounded. If f can be continued to f ∈ M (Eρ), 1 < ρ , then it is an open
problem whether the continuous extension ˜f of f on Eρ \Ω(ε) is m1-equivalent to
f on (Eτ ∩Eρ)\Ω(ε), where ε > 0 is arbitrarily small and m1(Ω(ε)) < ε.

For obtaining results about the distribution of the zeros of the approximants rn,mn ,

we will assume that the continuous extension ˜f of Theorem 3 for τ ≤ ρ( f ) coincides
with the meromorphic continuation of f into Eρ( f ).

Definition 1. Let f ∈ M (E) and ρ( f ) < ∞. A sequence {rn}n∈N with rn ∈ Rn,n is
called m1-maximally convergent to f on E if

limsup
n→∞

‖ f − rn‖1/n
∂ E ≤ 1

ρ( f )
(A)

and for any ε > 0 there exists a set Ω(ε) ⊂ C with m1(Ω(ε)) < ε such that

limsup
n→∞

‖ f − rn‖1/n
Eσ\Ω(ε) ≤

σ
ρ( f )

(B)

for all σ , 1 < σ < ρ( f ).

Remark 2. As an example for such m1-maximal convergent sequence one can take
best real rational approximants of f ∈C(E), where E = [−1,1] and f is real-valued
[3]. Another example is classical Padé approximation to a function f meromorphic
in a neighborhood of 0 ([11] and [7]).

In our results for the distribution of the zeros of the rational approximants, a
special class of meromorphic functions will play an essential role.
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Definition 2. Let f ∈ M (E) with ρ( f ) < ∞. A point z0 ∈ ∂Eρ( f ) is called a
singularity of multivalued character of the function f if there exists a neighbor-
hood U of z0 such that f can be continued to any point of U \ {z0} and f is locally
holomorphic, but not single-valued.

Examples of singularities of multivalued character are branch points.

The next theorem provides for functions with a multivalued singularity an exact
estimate of the rate of approximation.

Theorem 4 ([5]). Let E be a compact, connected set in C with regular and con-
nected complement. Moreover, let {mn}∞

n=1 be a subsequence of N0 satisfying (4).
Suppose that the sequence of rational functions {rn,mn}n∈N, rn,mn ∈ Rn,mn is m1-
maximally convergent to f ∈M (E) on E with ρ( f )<∞. If there exists a singularity
of multivalued character of f on ∂Eρ( f ), then

limsup
n→∞

‖ f − rn,mn‖1/n
∂E =

1
ρ( f )

. (8)

Theorem 4 and the results of [8] are fundamental for establishing an analogue of
Szegő’s theorem for the case being considered.

Theorem 5 ([5]). Under the conditions of Theorem 4, the normalized zero counting
measures νn of rn,mn converge weakly to the equilibrium distribution of Eρ( f ), at
least for a subsequence Λ ⊂ N as n → ∞ with n ∈ Λ .

We are now interested how a singularity on the boundary ∂Eρ( f ) of Eρ( f ) impacts
the behavior of the zeros of a m1-maximally convergent sequence {rn,mn} as n → ∞.
If among the singularities on ∂Eρ( f ) there is at least one of multivalued character,
then by Theorem 5 each point on ∂Eρ( f ) is a limit point of zeros of {rn,mn} as n→∞.
Furthermore, there is a sequence Λ such that the associated zero distributions νn

converge weakly to the equilibrium measure of Eρ( f ) as n ∈ Λ , n → ∞. It is of
interest to study the case where there is no singular point of multivalued character
on ∂Eρ( f ).

Given a domain B and a function g ∈ M (B), we introduce the notation Z(g,B);
that is the number of zeros of g in B. Analogously, P(g,B) denotes the number of
poles of g in B. Recall that poles and zeros are counted with their multiplicities.

Concerning the limit distribution of the zeros and poles of a m1-maximally con-
vergent sequence of rational function, we have the following result:

Theorem 6 ([4]). Let E be a regular compact set and let f ∈ M (E). Suppose that
ρ( f ) < ∞ and assume that the point z0 ∈ ∂ Eρ( f ) is a singularity of the function
f , but neither a pole nor a removable singularity. Suppose that the sequence of
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rational functions {rn}, rn ∈ Rn,n, is m1-maximally convergent to f on E. Then for
any neighborhood U of z0 the following statements hold:

(a1) If P(rn,U) = o(n) as n → ∞, then limsupn→∞ Z(rn,U) = ∞.
(a2) If P(rn,U) = O(1) as n → ∞, then limsupn→∞ Z(rn,U)/n > 0.
(b1) If Z(rn,U) = o(n) as n → ∞, then limsupn→∞ P(rn,U) = ∞.
(b2) If Z(rn,U) = O(1) as n → ∞, then limsupn→∞ P(rn,U)/n > 0.

In the proof of Theorem 6, we essentially use that f ∈ M (E), as well as the
m1-maximal convergence of the sequence {rn} to the function f . Theorem 6 applies
to Padé approximants and to rational approximations to a real valued function on a
bounded real interval, when the degrees of the denominators satisfy the condition (4)
(see [5] and [4]).

Let a ∈ C, B ⊂ C, r a rational function, and let a(r,B) denote the number of
a-values of r in B, i.e.,

a(r,B) := #{z ∈ B : r(z) = a}.

Corollary 1. Let E and f be as in Theorem 6. Suppose that z0 ∈ ∂Eρ( f ) is a singular
point of f which is neither a pole nor a removable singularity. Suppose that {mn}n∈N
with mn = o(n) as n → ∞, and let {rn,mn}n∈N be m1-maximally convergent to f on
E. Then, for every neighborhood U of z0

limsup
n→∞

a(rn,mn ,U) = ∞, a ∈ C.

Proof. Fix a ∈ C. The proof follows from statement (a1) in Theorem 6, applied to
the functions rn,mn −a and f −a, after taking into account that mn = o(n) as n → ∞.
�

Recalling the classical theorem of Picard concerning the behavior of a holo-
morphic function in a neighborhood of an essential singularity, we can summarize
Corollary 1 by saying that a m1-maximally convergent sequence {rn,mn} with {mn}
as in (4) has an asymptotic essential singularity at each singularity of the curve of
meromorphy which is neither a pole nor a removable singularity.
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Generalization of Polynomial Interpolation
at Chebyshev Nodes

Debao Chen

Abstract Previously, we generalized the Lagrange polynomial interpolation at
Chebyshev nodes and studied the Lagrange polynomial interpolation at a special
class of sets of nodes. This special class includes some well-known sets of nodes,
such as zeros of the Chebyshev polynomials of first and second kinds, Chebyshev
extrema, and equidistant nodes. In this paper, we view our previous work from a
different perspective and further generalize and study the Lagrange polynomial in-
terpolation at a larger class of sets of nodes. In particular, the set of optimal nodes
is included in this extended class.

1 Introduction

Let X = X [n] = {x j = x[n]j : j = 0,1,2, . . . ,n} ⊂ [−1,1], n = 2,3,4, . . . be an interpo-
latory matrix such that

−1 ≤ x0 < x1 < · · ·< xn−1 < xn ≤ 1. (1)

The corresponding Lagrange interpolation polynomial of degree at most n is
defined as

Ln( f ,x) = Ln( f ,X ,x) =
n

∑
k=0

f (xk)lk(x),

where, with ωn(x) = ωn(X ,x) = ∏n
i=0(x− xi),

Debao Chen
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lk(x) = l[n]k (X ,x) =
n

∏
i=0
i�=k

x− xi

xk − xi
=

ωn(x)
ω ′

n(xk)(x− xk)
.

The corresponding Lebesgue function and Lebesgue constant are defined as

Λ(x) = Λ [n](x) = Λ [n](X ,x) =
n

∑
k=0

|lk(x)|= |ωn(x)|
n

∑
k=0

1
|ω ′

n(xk)||x− xk|

and
λn = λn(X) = ||Λ [n]||= max

x0≤x≤xn
Λ [n](x).

To standardize the problem, we always let the endpoints of the interval be nodes
of the interpolation. Contrary to the decreasing order of the nodes we used in [5], in
this paper we purposely use an increasing order for reasons explained below.

The Lebesgue function Λ [n] has one and only one relative maximum on every
interval between adjacent nodes. Let the local maxima be

λn,p = max
xp≤x≤xp+1

Λ [n](x) p = 0,1,2, . . . ,n−1.

It is well known that the minimum norm of the interpolation operator is achieved
if and only if all the local maxima are equal [1, 2, 7, 8]. It is also well known that
an affine transformation does not change the local maxima. Therefore, we view two
sets of nodes as the same, if one of them can be obtained by an affine transformation
of another one. Under such a consideration, there is one and only one set of optimal
nodes.

There have been extensive investigations of Lagrange polynomial interpolation
at some well-known sets of nodes, such as zeros of the Chebyshev polynomials
of first and second kinds, Chebyshev extrema, and equidistant nodes. In the litera-
ture, most authors studied the Lagrange polynomial interpolation at a single set of
nodes. Particularly, authors paid special attention to the polynomial interpolation at
Chebyshev nodes (zeros of the Chebyshev polynomials of first kind), since the set
of Chebyshev nodes is very close to the set of optimal nodes [3].

In a previous work [5], we generalized the Lagrange polynomial interpolation at
the Chebyshev nodes and studied the Lagrange polynomial interpolation at a special
class of sets of nodes, which is defined as follows. We take a subset of the unit
semicircle that is symmetric about the vertical axis and divide it into n equal parts
with n+1 points on this subset. Then we introduce a parameter 0 ≤ α ≤ π/n. Each
α in this range corresponds to a set of nodes. First, we let α (0 < α ≤ π/n) be the
difference between two adjacent angles. The angles of these points are

θ j = θ j(α) = π/2− (n/2− j)α, j = 0,1,2, . . . ,n. (2)

Then we project these n+ 1 points down on the horizontal axis and obtain a set of
nodes for each α ,
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x j = x j(α) = cosθ j, j = 0,1,2 . . . ,n, (3)

Xα = X [n]
α = {−1 ≤ xn(α)< xn−1(α)< · · ·< x1(α)< x0(α)≤ 1}. (4)

We emphasize that a decreasing order of the nodes is used as we did in [5]. As we
pointed out, when α = π/n,π/(n+1),π/(n+2) we obtain the Chebyshev extrema
and zeros of the Chebyshev polynomial of first and second kinds, respectively. Fur-
thermore equidistant nodes can be viewed as the limiting case as α → 0. In fact, we
may take a linear transformation for each 0 < α ≤ π/n by letting x j = (1/x0)x j,
which transforms the interval [xn(α),x0(α)] to the interval [−1,1]. When α → 0,
we have

x j(α) =
cosθ j

cosθ0
=

sin(n/2− j)α
sin(n/2)α

→ x j(0) = x j(0) =
n−2 j

n
, j = 0,1,2, . . . ,n,

(5)
which is the set of equidistant nodes. Obviously, for each j, the node x j(α) is not
continuous at α = 0, while the node x j(α) is continuous on [0,π/n]. Since a linear
transformation does not change the values of local maxima, the corresponding local
maxima as well as the Lebesgue constants are continuous functions of α on [0,π/n].
In fact, they are also infinitely differentiable functions. Therefore, it is convenient
for us to study the local maxima as well as the Lebesgue constants as functions on
the closed interval [0,π/n] by using derivatives. In [5], we initiated the study of the
derivative of the local maxima with respect to α .

We reemphasize that in the above class of sets of nodes, the order of the nodes is
decreasing as follow

−1 ≤ xn(α)< xn−1(α) < · · ·< x1(α)< x0(α)≤ 1. (6)

We notice that

x j = cosθ j = cos(π/2− (n/2− j)α) = sin(n/2− j)α, j = 0,1,2 . . . ,n. (7)

It seems that most people prefer the decreasing order of the nodes when they
study the polynomial interpolation at Chebyshev nodes. Perhaps people want to
emphasize that the Chebyshev nodes are the zeros of the Chebyshev polynomial
Tn+1(x) = cos(n+ 1)θ , with x = cosθ . We also used the decreasing order when
we study the generalization of polynomial interpolation at Chebyshev nodes in
[5]. However, it seems that the particular properties of the Chebyshev polynomi-
als cannot be further generalized when one studies the polynomial interpolation.
People attempted to find some particular polynomials (functions) and use the zeros
of such polynomials (functions) as the nodes for polynomial interpolation. We do
not think that this is a very good approach for finding the optimal nodes for poly-
nomial interpolation. Instead, one should focus more to the structures of the nodes
themselves.

In this paper, we view our previous work from a different perspective and inten-
tionally change the order of the nodes to the increasing order. In contrast with (7)



20 Debao Chen

and (5), we let, for j = 0,1, . . . ,n,

x j(α) = sin(−n/2+ j)α, 0 < α ≤ π/n, (8)

and
x j(0) = (−n+2 j)/n. (9)

Therefore, for 0 ≤ α ≤ π/n, we have

−1 ≤ x0(α)< x1(α)< · · ·< xn(α)≤ 1. (10)

The nodes in (10) are identical to the nodes in (6) except for the order of the
nodes. The node x j in (10) is equal to the node xn− j in (6). It seems that it is insignif-
icant to make such a change for studying the Lagrange polynomial interpolation at
the sets of nodes in this special class. However, after such a change, one can view
the generalization we made in our previous paper [5] from a different perspective
and make a further generalization.

First, we notice that the sine function is an infinitely differentiable, strictly in-
creasing, and odd function with a domain [−π/2,π/2] and a codomain [−1,1]. Es-
sentially, in [5] we used the sine function to define a special class of sets of nodes.
We mentioned that when α is larger than and sufficiently close to π/(n+1), which
corresponds to the set of Chebyshev nodes, the corresponding set of nodes is closer
to the optimal nodes than the set of Chebyshev nodes. However, the set of optimal
nodes is not included in this class. We will consider to extend the above class of sets
of nodes to a larger one so that it contains the set of optimal nodes.

The above observation stimulates us to use a function ϕ , instead of the sine func-
tion, to construct the following class of sets of nodes

x j(α) = ϕ((−n/2+ j)α), j = 0,1,2, . . . ,n, 0 < α ≤ π/n, (11)

where ϕ is a strictly increasing and odd function with a domain [−π/2,π/2] and a
codomain [−1,1].

An arbitrary choice for function ϕ is not very helpful. Obviously, for any set of
symmetric nodes {x j}, there exist such a function ϕ and an α such that the set of
nodes {ϕ((−n/2+ j)α)} is the same as {x j}. Instead, since the set of Chebyshev
nodes is close to the optimal one, we are thinking to use a function, which is “close”
and related to the sine function. In other words, we will choose functions which
have similar properties with the sine function.

We give an outline of this paper. In Sect. 2, we will define a class of functions
with some special properties. Then a sequence of particular functions and its limit
will be given. For each of these functions, we define a class of sets of nodes, with
a parameter α (0 ≤ α ≤ π/n), for the polynomial interpolation. These classes of
sets of nodes are the natural generalization of the special class given in our previous
paper [5]. In Sect. 3, we will give convenient formulas for Lebesgue functions of
Lagrange polynomial interpolation at the sets of nodes defined in Sect. 2. In Sect. 4,
we will give some properties of a particular pair of functions and its generalization.
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These pairs of auxiliary functions are particularly important tools for our study of
Lagrange polynomial interpolation. In Sect. 5, we will give the set of optimal nodes.

This is a very large project. Our main goal is to give the explicit formulas of
optimal nodes and optimal Lebesgue constants for the Lagrange polynomial inter-
polations. Due to the nature of these problems, the complete proofs of our results
are extremely long. To achieve our goals we must study the deep properties of the
corresponding Lebesgue functions from several aspects, including the properties of
extrama points of Lebesgue functions on each subinterval. Several dozen lemmas
are needed. Our previous paper [5] as well as this paper is an introduction and an
outline of our whole project. The complete proofs of all of our results will be given
in several upcoming papers.

2 Generalization of Chebyshev Nodes

In the previous section, we mentioned that one may use a strictly increasing and odd
function ϕ to construct a class of sets of nodes for the polynomial interpolation. For
convenience and ease of finding the optimal nodes, we require that the function ϕ
possess some special properties.

Definition 1. We say that a function ϕ has Property A if ϕ has the following prop-
erties.

1. ϕ : [−π/2,π/2]→ [−1,1].
2. ϕ is an odd function.
3. ϕ possesses a continuous second derivative.
4. ϕ ′(x)> 0 for −π/2 < x < π/2, ϕ ′(0) = 1, and ϕ ′(π/2) = 0.
5. ϕ ′′(x)< 0 for 0 < x ≤ π/2.

We make some remarks on the above definition. It is easy to verify that the sine
function has Property A. In fact, we extracted some necessary and essential proper-
ties of the sine function to make this definition, so that it will be helpful for finding
the set of optimal nodes. Since ϕ is an odd function, the first derivative ϕ ′ is an even
function and the second derivative ϕ ′′ is an odd function. Therefore, we may obtain
the corresponding properties of the functions ϕ , ϕ ′, and ϕ ′′ on the left half interval
[−π/2,0]. For example, we have that ϕ ′′(x) > 0 for −π/2 ≤ x < 0. We also have
that ϕ(0) = ϕ ′′(0) = 0.

Let
Φ = {ϕ | ϕ has Property A} and Φ = {I0}∪Φ, (12)

where I0 is the identity function such that I0(x) = x.
It is natural to consider the function ϕ = sinϕ for ϕ ∈ Φ . In fact, we have the

following lemma.

Lemma 1. If ϕ ∈ Φ , then ϕ = sinϕ ∈ Φ .
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Proof. If ϕ = I0, then ϕ(x) = sin I0(x) = sinx, which is in Φ . If ϕ ∈ Φ , then

ϕ(x) = sin ϕ(x),
ϕ ′(x) = ϕ ′(x)cosϕ(x),

ϕ ′′(x) = ϕ ′′(x)cosϕ(x)− (ϕ ′(x))2 sinϕ(x).

One can easily verify that ϕ has Property A. 	

The choice of a function ϕ ∈Φ is still somewhat arbitrary. Since the sine function

belongs to Φ , by Lemma 1, we have that sinsin ∈ Φ , sinsin sin ∈ Φ , and so on.
Therefore, we make the following definition.

Definition 2. We define Im recursively as follows:

I0(x) = x,

Im(x) = sin Im−1(x), m = 1,2,3, . . . .

By a linear transform, we also define

ρm(x) = Im(x)/Im(π/2), m = 1,2,3, . . . .

By Lemma 1 and a simple induction we have that Im ∈ Φ for m ≥ 1. However,
ρm /∈ Φ for m ≥ 2, since ρ ′

m(0) = 1/Im(π/2) > 1. Since the limit of the sequence
of the functions Im is identical to zero, we introduce the functions ρm instead. It is
obvious that ρm(π/2) = 1 for each m ≥ 1.

If ϕ is an odd and strictly increasing function, then we define a class C(ϕ) =
C[n](ϕ) of sets of symmetric nodes as following. When 0 < α ≤ π/n, we let

x j = x j(α) = x j;ϕ(α) = ϕ((−n/2+ j)α), j = 0,1,2, . . . ,n. (13)

If the function ϕ is differentiable and ϕ ′(x) > 0 for −π/2 < x < π/2, then we
can define the set of nodes for α = 0. We take a linear transformation for each
0 < α ≤ π/n by letting x j = (1/xn)x j, which transforms the interval [x0(α),xn(α)]
to the interval [−1,1]. When α → 0, we have

x j(0) = x j(0) = lim
α→0

x j(α) = lim
α→0

ϕ((−n/2+ j)α)

ϕ((n/2)α)

= lim
α→0

(−n/2+ j)ϕ ′((−n/2+ j)α)

(n/2)ϕ ′((n/2)α)
=

−n+2 j
n

, j = 0,1,2, . . . ,n. (14)

The nodes {x j} depend on a function ϕ and a parameter α ∈ [0,π/n]. We denote

this set of nodes as Xϕ ,α = X [n]
ϕ,α ∈ C(ϕ). However, for any odd function ϕ with

positive derivative, the nodes {x j(0)} are the equidistant nodes. Since I1(x) = sin(x),
the class C(I1) is the special class we defined in [5].

We are particularly interested in the classes C(Im) as well as the “limit” of these
classes as m→∞. Since limm→∞ Im(x)≡ 0, we consider limm→∞ ρm(x) instead. First,
we establish the existence of this limit.
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Lemma 2. The limit ρ(x) = limm→∞ ρm(x) exists for −π/2 ≤ x ≤ π/2. Also, ρ is a
continuous, odd, and strictly increasing function with ρ(π/2) = 1.

Proof. Since ρm are odd functions, it suffices to consider 0 ≤ x ≤ π/2 only. Since
the function f (x) = sinx/x is a strictly decreasing function for 0≤ x≤ π/2, we have

ρm+1(x)

ρm(x)
=

sin Im(x)

Im(x)

/

sin Im(π/2)
Im(π/2)

≥ 1.

The equality holds only for x = π/2. We have ρm(0) = 0 and ρm(π/2)) = 1 for all
m ≥ 1. For 0 < x < π/2 we have

0 < ρ1(x)< ρ2(x)< ρ3(x) · · ·< 1.

The sequence {ρm(x)} is increasing and bounded for each x ∈ [0,π/2]. Therefore,
the limit ρ(x) = limm→∞ ρm(x) exists. Since the functions ρm are uniformly bounded
for 0 ≤ x ≤ π/2 and m ≥ 1, the convergence is uniform. In addition, since the con-
vergence is uniform and all functions ρm are continuous, odd, and strictly increasing,
it is easy to prove that the limit function ρ is also continuous, odd, and strictly in-
creasing. 	


We mentioned that ρm /∈ Φ for m ≥ 2, since ρ ′
m(0)> 1. It is obvious that ρ /∈ Φ .

The function ρ is even not differentiable at x = 0, since limm→∞ ρ ′
m(0) = +∞. How-

ever, this fact will not affect our further investigation. Since ρ is a strictly increasing
and odd function, we have a class C(ρ) of sets of nodes. Since the linear trans-
formation does not change the local maxima of the Lebesgue functions as well as
the Lebesgue constants, we may use the sets of nodes in class C(Im) instead of
C(ρm) for polynomial interpolation. We may also study the limit of the correspond-
ing Lebesgue function, local maxima, as well as the Lebesgue constants to obtain the
properties of Lebesgue function, local maxima, as well as the Lebesgue constants
corresponding to C(ρ).

3 Lebesgue Functions

The first step in studying the Lagrange polynomial interpolation at a set of nodes is
always to find the explicit and convenient formula for the corresponding Lebesgue
function. In this section, we first discuss general formulas for the Lebesgue functions
corresponding to arbitrary symmetric nodes. Then we give explicit formulas for
Lebesgue functions corresponding to the Lagrange interpolation at Xϕ,α for a strictly
increasing and odd function ϕ . We also give another kind of useful formulas for
Lebesgue functions corresponding to the Lagrange interpolation at Xϕ,α , where ϕ =

sinϕ with ϕ ∈ Φ . These formulas are slight generalizations of the formulas given
in our previous paper [5].
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Let {x j} be a set of nodes as in (1). We always suppose that the nodes are
symmetric about the origin, that is

xn− j =−x j, j = 0,1,2, . . . ,n.

The Lebesgue function Λ is a piecewise polynomial function with nodes {x j}.
We denote the interval between adjacent nodes as I j = (x j,x j+1) and I j = [x j,x j+1],
for 0 ≤ j ≤ n− 1.

It is easy to see that Λ (x) ≥ 1 for each x ∈ [x0,xn] and Λ(x) = 1 if and only if
x = x j, for 0 ≤ j ≤ n. When x �= x j , we denote the Lebesgue function as a product
of two parts:

Λ (x) = Λ [n](x) = |ωn(x)|H(x),

where

ωn(x) = ωn(X ,x) =
n

∏
j=0

(x− x j)

and

H(x) = H [n](x) =
n

∑
j=0

1
|ω ′

n(x j)||x− x j| .

When x ∈ Ip (xp < x < xp+1), we have

Fp(x) = F [n]
p (x) = |ωn(x)|= (−1)n−pωn(x)

and

Hp(x) = H [n]
p (x) =

p

∑
j=0

1
|ω ′

n(x j)|(x− x j)
+

n

∑
j=p+1

−1
|ω ′

n(x j)|(x− x j)
.

Let

Λp(x) = Λ [n]
p (x) = Fp(x)Hp(x),

which is the polynomial coinciding with the Lebesgue function Λ on the interval I p.
In the literature, most of the authors used the above formulas when they stud-

ied the Lagrange polynomial interpolation. Starting from this formula, they gave
the specific formula of the Lebesgue function for Lagrange interpolation at a par-
ticular set of nodes. However, we found that this formula for Lebesgue function is
very inconvenient for our further study. It is well known that a set of nodes is op-
timal if and only if all the local maxima are equal. For finding the optimal nodes,
one must compare Λp+1 and Λp as well as the local maxima λn,p+1 and λn,p. If we
write Λp as a product of two parts, this comparison is inconvenient in general. Brut-
man [3] compared Λp+1 and Λp corresponding to XI1,π/(n+1) (Chebyshev nodes) and
XI1,π/n (Chebyshev extrema) and obtained very interesting results. He proved that
the local maxima corresponding to Chebyshev nodes are strictly decreasing from
the outside towards the middle of the interval, while the local maxima correspond-
ing to Chebyshev extrema are strictly increasing from the outside towards the mid-
dle of the interval. This comparison is possible because of the special structure of
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the Lebesgue functions corresponding to Chebyshev nodes and Chebyshev extrema.
We anticipate that similar results are also true for the sets of nodes XIm,π/(n+1) and
XIm,π/n with m ≥ 1. However, the direct comparison is impossible in general when
we denote the Lebesgue function as a product of two parts. Therefore, one must
give other expressions for the Lebesgue functions and seek alternative ways for the
comparison.

For a fixed n, we always let N = [n/2] and M = [(n−1)/2]. When n = 2N +
1, M = N. When n = 2N, M = N − 1. By symmetry, we have λn,n−p−1 = λn,p.
Therefore, it suffices to consider Λp for 0 ≤ p ≤ M only.

We recall that

Λ(x) =
n

∑
j=0

|l j(x)|,

where

l j(x) =
n

∏
k=0
k �= j

x− xk

x j − xk
.

When 0 ≤ p ≤ M and x ∈ Ip (xp < x < xp+1), we define

Λp, j(x) =

{

|l j(x)|+ |ln− j(x)|, if 0 ≤ j ≤ M,

|lN(x)|, if n = 2N and j = N.
(15)

Then we have

Λp(x) =
N

∑
j=0

Λp, j(x), (16)

which is the polynomial coinciding with the Lebesgue function Λ on the interval I p.
We give a formula for Λp in the following proposition.

Proposition 1. Let 0 ≤ p ≤ M and x ∈ Ip (xp < x < xp+1). Let Λp, j be defined in
(15). When 0 ≤ j ≤ M, we have

Λp, j(x) =

∣

∣

∣

∣

x
x j

∣

∣

∣

∣

εn+εp, j M

∏
k=0
k �= j

∣

∣

∣

∣

x2 − x2
k

x2
j − x2

k

∣

∣

∣

∣

, (17)

where

εn =

{

0, if n = 2N +1,

1, if n = 2N,
and εp, j =

{

0, if 0 ≤ j ≤ p,

1, if p+1 ≤ j ≤ M.
(18)

When n = 2N and p+1 ≤ j ≤ N, we have

Λp, j(x) =
N

∏
k=0
k �= j

∣

∣

∣

∣

x2 − x2
k

x2
j − x2

k

∣

∣

∣

∣

. (19)
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Proof. When 0 ≤ j ≤ M, we have

Λp, j(x) = |l j(x)|+ |ln− j(x)|=
n

∏
k=0

k �= j,n− j

∣

∣

∣

∣

x− xk

x j − xk

∣

∣

∣

∣

( |x− x j|+ |x+ x j|
2|x j|

)

.

Since

|x− x j|+ |x+ x j|
2|x j| =

{

1, when 0 ≤ j ≤ p,

|x/x j|, when p+1 ≤ j ≤ M,

we obtain (17).
When n= 2N and p+1≤ j ≤N−1, we have εn+εp, j = 2. We also have xN = 0.

The (19) can be obtained from (17).
When n = 2N and j = N, we have

Λp,N(x) = |lN(x)|=
2N

∏
k=0
k �=N

∣

∣

∣

∣

x− xk

x j − xk

∣

∣

∣

∣

=
N−1

∏
k=0

∣

∣

∣

∣

x2 − x2
k

x2
j − x2

k

∣

∣

∣

∣

.

	

In the above proof, we see that Λp, j can be expressed as either (17) or (19) when

n = 2N and p+ 1 ≤ j ≤ N − 1. Both expressions are useful and will be used in
different situations. The particular case of n = 2N and j = N is also included in
(19). This fact is very convenient for investigation of polynomial interpolation.

Instead of expressing the Lebesgue function as a product of two parts, we express
Λp as the sum of Λp, j as in (16) for each p. Each term Λp, j is expressed as a product
as in either (17) or (19).

Now we can obtain the corresponding formulas of Lebesgue functions for La-
grange polynomial interpolation at Xϕ,α , where ϕ is an odd and strictly increasing
function and 0 < α ≤ π/n. Let

η j = η j(α) = (−n/2+ j)α, j = 0,1,2, . . . ,n. (20)

Then the nodes in Xϕ ,α are

x j = x j(α) = ϕ((−n/2+ j)α) = ϕ(η j), j = 0,1,2, . . . ,n. (21)

It is obvious that every point η ∈ [ηp,ηp+1] for 0 ≤ p ≤ n− 1 can be uniquely
expressed as η = ηp + sα with 0 ≤ s ≤ 1. Therefore, every point x ∈ I p = [xp(α),
xp+1(α)] can be uniquely expressed as ϕ(ηp+sα). Here, we introduced a parameter
s (0 ≤ s ≤ 1) to indicate the relative position of the variable x in the interval I p. We
must emphasize that this parameter s (0 ≤ s ≤ 1) is the same for all functions ϕ
(which are strictly increasing and odd), all of the values of parameter α (0 < α ≤
π/n, or 0 ≤ α ≤ π/n), and all subinterval Ip (0 ≤ p ≤ n− 1). This fact will be
extremely convenient for our further study.
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By Proposition 1, the Lebesgue function for the Lagrange polynomial
interpolation at Xϕ,α can be expressed as follows. When 0 ≤ p ≤ M and x =
ϕ(ηp + sα) ∈ I p = [ϕ(ηp(α)),ϕ(ηp+1(α))],

Λp;ϕ(α,s) =
N

∑
j=0

Λp, j;ϕ(α,s). (22)

When 0 ≤ j ≤ M, we have

Λp, j;ϕ(α,s) =

∣

∣

∣

∣

ϕ(ηp + sα)

ϕ(η j)

∣

∣

∣

∣

εn+εp, j M

∏
k=0
k �= j

∣

∣

∣

∣

ϕ2(ηp + sα)−ϕ2(ηk)

ϕ2(η j)−ϕ2(ηk)

∣

∣

∣

∣

, (23)

where εn and εp, j are defined as in (18). When n = 2N and p+1 ≤ j ≤ N, we have

Λp, j;ϕ(α,s) =
N

∏
k=0
k �= j

∣

∣

∣

∣

ϕ2(ηp + sα)−ϕ2(ηk)

ϕ2(η j)−ϕ2(ηk)

∣

∣

∣

∣

. (24)

In our previous paper [5], we gave another kind of formula for the Lebesgue
function for the Lagrange polynomial interpolation at XI1,α , where I1(x) = sinx.
This kind of formulas can be extended for the set of nodes Xϕ,α , where ϕ = sinϕ
with ϕ ∈ Φ .

Since we used a decreasing order of the nodes in our previous work [5], we used
the transformation x = cosθ there. The following three propositions give the for-
mula for Lebesgue function for arbitrary symmetric nodes with the transformation
x = sinθ and x j = sinθ j . These three propositions are just slight modifications of
the corresponding propositions in [5]. We omit their proofs.

Proposition 2. Let 0 ≤ p ≤ M and x = sinθ ∈ Ip. Then

ωn(sinθ) =
n

∏
j=0

sin(θ − θ j), (25)

Fp(sinθ) = |ωn(sin θ )|= (−1)n−p
n

∏
j=0

sin(θ − θ j). (26)

Proposition 3. For j = 0,1,2, . . . ,n, we have

cosθ jω ′
n(sinθ j) =

n

∏
l=0
l �= j

sin(θ j −θl), (27)

cosθ j|ω ′
n(sinθ j)| = (−1)n− j

n

∏
l=0
l �= j

sin(θ j −θl). (28)
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Let

A j = A j(θ0,θ1, . . . ,θM) = 1/cosθ j|ω ′(sinθ j)|, j = 0,1, . . . ,n. (29)

Since the nodes are symmetric about the origin and θn− j =−θ j, A j is a function of
{θ0,θ1, . . . ,θM}. We also have An− j = A j , for 0 ≤ j ≤ n, and λn,n−1−p = λn,p, for
0 ≤ p ≤ n− 1. It suffices to consider λn,p only for 0 ≤ p ≤ M.

Proposition 4. Let 0 ≤ p ≤ M and x = sinθ ∈ Ip. Then

Hp(sinθ) =
p

∑
j=0

A j (cot(θ −θ j)− cot(θ + θ j))+
n−p−1

∑
j=p+1

A j
1

sin(θ j − θ)
. (30)

Let θ = ϕ(η) = ϕ(ηp + sα) and θ j = ϕ(η j) in the above formulas. We then ob-
tain the formulas for Fp;ϕ(α,s), A j;ϕ(α), and Hp;ϕ(α,s). In other words, we obtain
the formula of Lebesgue function Λp;ϕ(α,s) = Fp;ϕ(α,s)Hp;ϕ(α,s) for polynomial
interpolation at Xϕ ,α . The particular case for ϕ = I1, where I1(x) = sin I0(x) = sinx,
was obtained in our previous paper [5].

We expect to use these formulas for the functions ϕ = sin(Im−1) = Im with m ≥ 1
in our future study, particularly, for ϕ = I1. We give the corresponding formulas
corresponding to I1 as follows:

Fp;I1(α,s) = (−1)n−p
n

∏
j=0

sin(p+ s− j)α = (−1)n−p
p

∏
l=−(n−p)

sin(l + s)α. (31)

Hp;I1(α,s) =
p

∑
j=0

A j;I1(α) [cot(p+ s− j)α + cot(n− j− p− s)α]

+
n−p−1

∑
j=p+1

A j;I1(α)
1

sin( j− p− s)α

=
p

∑
j=0

A j;I1(α)
sin(n−2 j)α

sin(p+ s− j)α sin(n− j− p− s)α

+
N

∑
j=p+1

A j;I1(α)
2sin(n/2− p− s)α cos(n/2− j)α
sin( j− p− s)α sin(n− j− p− s)α

δ [n]
j ,

(32)

where

δ [n]
j =

{

1/2, n = 2N and j = N,

1, otherwise.
(33)

A j;I1(α) =
1

∏ j
l=1 sin lα ∏n− j

l=1 sin lα
. (34)
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We will use induction to study the Lebesgue functions, as well as local maxima
and Lebesgue constants, corresponding to Im. The Lebesgue functions correspond-
ing to I1 will serve as the basis. Therefore, we need the expressions for Λp, j;I1 , which
can be easily obtained by using (31), (32), and (34). When 0 ≤ j ≤ p, we have

Λp, j;I1(α,s) = Fp;I1(α,s)A j;I1 (α)
sin(n−2 j)α

sin(p+ s− j))α sin(n− j− p− s)α
. (35)

When p+ 1 ≤ j ≤ N, we have

Λp, j;I1(α,s) = Fp;I1(α,s)A j;I1 (α)
2sin(n/2− p− s)α cos(n/2− j)α
sin( j− p− s)α sin(n− j− p− s)α

δ [n]
j . (36)

Equations (31), (32), and (34) were given in our previous paper [5]. These equa-
tions include some particular cases of Lebesgue functions corresponding to XI1,α
for α = π/n, π/(n+1), π/(n+2), 0, which correspond to Chebyshev extrema, ze-
ros of the Chebyshev polynomials of first and second kinds, and equidistant nodes,
respectively. The Lagrange polynomial interpolation for these particular cases have
been extensively investigated by various authors. We are particularly interested in
the cases of Chebyshev nodes (α = π/(n+1)) and Chebyshev extrema (α = π/n).
Here, we list the corresponding formulas.

Λp;I1(π/(n+1),s) =
sinsπ
n+1

[

p

∑
j=0

(

cot(p+ s− j)
π

n+1
+ cot(n− j− p− s)

π
n+1

)

+
n−p−1

∑
j=p+1

1
sin[( j− p− s)π/(n+1)]

]

=
sinsπ
n+1

[

p

∑
l=0

cot(l + s)
π

n+1
−

2p+1

∑
l=p+1

cot(l + s)
π

n+1

+
n−2p−1

∑
l=1

1
sin[(l − s)π/(n+1)]

]

. (37)

Λp;I1(π/n,s) =
sinsπ

n

[

2p

∑
l=0

1
sin[(l + s)π/n]

−
n−1

∑
l=2p+1

cot[(l + s)π/n]

]

. (38)

The above formulas were first given by Brutman [3]. We express these formulas
in our terminology. Brutman investigated polynomial interpolation at the Chebyshev
nodes and Chebyshev extrema separately. We introduced a parameter α (0 ≤ α ≤
π/n) and included the Chebyshev nodes and Chebyshev extrema as particular cases.
We also introduced the same parameter s (0≤ s≤ 1) to indicate the relative positions
of the variable in the Lebesgue functions in each subinterval.

Both Λp;I1(π/(n+1),s) and Λp;I1(π/n,s) are the products of the function sin sπ
and another function of s for all p. Therefore, it is convenient to compare Λp+1;I1
and Λp;I1 in these two particular cases. For all other α , the direct comparing of
Λp+1;I1(α,s) and Λp;I1(α,s) is very difficulty. For m ≥ 2, the direct comparing of
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Λp+1;Im(α,s) and Λp;Im(α,s) is almost impossible. Therefore, one must seek an in-
direct comparing and use induction.

4 Properties of Pairs of Auxiliary Functions

In our previous paper [5], we introduced some lemmas which are very useful for
Lagrange polynomial interpolation. In particular, we gave some properties of the
auxiliary function g(x) = xcotx (−π < x < π), which are particularly important
tools for our study.

Since the function g is an even and infinitely differentiable function, it suffices to
give the properties of g on the interval [0,π). In [5], we proved that, for 0 < x < π ,
g′(x) < 0, g′′(x) < 0, and g′′′(x) < 0. We remarked that the fourth derivative g(4) is
not negative for some x on the interval (0,π). However, this remark is incorrect. In
fact, for any n ≥ 1, the nth derivative g(n) is negative on (0,π). In our future study
for the Lagrange polynomial interpolation, we will also use the properties of g(n) for
n ≥ 4. We give the proof of these inequalities in this section for the future reference.

To prove this property, we must introduce another auxiliary function h(x) =
x tanx, which is defined for −π/2 < x < π/2. This function is also even and in-
finitely differentiable. It is easy to verify that

g(x) = g(x/2)−h(x/2) (39)

for −π < x < π .

Lemma 3. Let h(x) = x tanx for 0 < x < π/2. Then h(n)(x)> 0 for n ≥ 0.

Proof. First, we have that tanx > 0 for 0 < x < π/2 and (tanx)′ = 1+ tan2 x. By a
simple induction, it is easy to verify that (tanx)(n) > 0 for 0 < x < π/2 and n ≥ 0.
Therefore,

h(n)(x) = x(tanx)(n) +n(tanx)(n−1) > 0

for n > 0. When n = 0, it is obvious that h(x) = x tan x > 0. 	

In this paper, we always let g and h denote the functions g(x) = xcotx and

h(x) = x tanx. We treat the functions g and h as a pair (g,h). There are many pairs
of functions, which have similar properties as the pair (g,h) and are also very im-
portant for our study of polynomial interpolation. Therefore, we give the following
definition.

Definition 3. We say that a pair of functions (g,h) has Property B if it has the fol-
lowing properties.

1. g : (−π ,π)→ (−∞,c], and g(0) = c.
2. h : (−π/2,π/2)→ [0,+∞), and h(0) = 0.
3. Both g and h are even and infinitely differentiable functions.
4. g(x) = g(x/2)− h(x/2) for −π < x < π .

5. h
(n)
(x)> 0 for 0 < x < π/2 and n ≥ 0.
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By (39) and Lemma 3, one can easily verify that the pair of functions (g,h)
has Property B. In general, the inequalities corresponding to h and its derivatives

h
(n)

are easy to verify. Therefore, we include these inequalities in Definition 3. The
inequalities corresponding to g(n) (n ≥ 1) can be verified. We have the following
lemma.

Lemma 4. Let the pair of functions (g,h) have Property B. Then g(n)(x) < 0 for
0 < x < π and n > 0.

Proof. By a simple induction,

g(x) = g(x/2k)−
k

∑
l=1

h(x/2l) (40)

for k ≥ 1.
Let 0 < a < π . Then for any x ∈ [0,a],

k

∑
l=1

h(x/2l) ≤
k

∑
l=1

h(a/2l) =
k

∑
l=1

[

h(a/2l)− h(0)
]

=
k

∑
l=1

(a/2l)h
′
(ξl)< ah

′
(a/2)

k

∑
l=1

(1/2l)< ah
′
(a/2).

Therefore, the sum is uniformly bounded for 0 ≤ x ≤ a and 1 ≤ k < ∞. Since a is
an arbitrary number in (0,π), for any 0 ≤ x < π , we may let k → +∞ in (40) and
obtain

g(x) = g(0)−
∞

∑
l=1

h(x/2l). (41)

Since h
(n)

are increasing functions for all n, we also have, for 0 ≤ x ≤ a < π and
n ≥ 1,

k

∑
l=1

dn

dxn h(x/2l) =
k

∑
l=1

(1/2nl)h
(n)
(x/2l)< h

(n)
(a/2)

k

∑
l=1

(1/2nl)< h
(n)

(a/2).

Therefore, we can take the nth derivative of (41) term by term to obtain

g(n)(x) =−
∞

∑
l=1

(1/2nl)h
(n)

(x/2l)< 0

for 0 < x < π and n ≥ 1. 	

In particular, since the pair of functions (g,h) has Property B, we have g(n)(x)< 0

for 0 < x < π and n = 1,2,3, . . . .



32 Debao Chen

From a given pair of functions with Property B, one can construct various new
pairs of functions which also have Property B. In particular, we have the following
lemma.

Lemma 5. Let the pair of functions (g,h) have Property B. Let gm(x) = xmg(m)(x)

and hm(x) = xmh
(m)

(x) with m ≥ 0. Then the pairs of functions (gm,hm) also have
Property B.

Lemma 5 can be easily and directly verified. In particular, the pair of functions
(gm,hm), where gm(x) = xmg(m)(x) and hm(x) = xmh(m)(x) with m ≥ 0, has Property
B. These pairs of functions will also play very important roll in our investigation for
the polynomial interpolation.

We make a very important remark. If the pair of functions (g,h) has Property B,

then the functions g(2k) and h
(2k)

are even functions, while the functions g(2k+1) and

h
(2k+1)

are odd functions. Therefore, g(2k)(x) < 0 for k ≥ 1 and −π < x < π . But
we have g(2k+1)(x) < 0 for 0 < x < π and g(2k+1)(x) > 0 for −π < x < 0. When
applying Lemma 4, one must very carefully distinguish the even and odd cases.

Sometimes we need to consider the values of g(n)(0) and h
(n)
(0). We take nth

derivatives of both sides of the equation g(x) = g(x/2)− h(x/2).

g(n)(x) = (1/2n)g(n)(x/2)− (1/2n)h
(n)
(x/2). (42)

Since both g and h are even functions, we have g(2k+1)(0) = h
(2k+1)

(0) = 0. When
n = 0, we have g(0) = c (g(0) = 1) and h(0) = 0. When n = 2k > 0, by (42), we
have

g(2k)(0) =− 1
22k −1

h
(2k)

(0). (43)

5 Optimal Nodes for Lagrange Polynomial Interpolation

In Sect. 3, we expressed Λp;ϕ , which is the polynomial coinciding with the Lebesgue
function on the interval I p, as a summation in (22). Each term Λp, j;ϕ in this summa-
tion is a product as in either (23) or (24). Our aim is to compare the local maxima
of the Lebesgue function on consecutive subintervals. Therefore, we must compare
Λp+1;ϕ and Λp;ϕ for 0 ≤ p < p+ 1 ≤ M. Since each term Λp, j;ϕ is a product, we
may use the quotients Λp+1, j;ϕ/Λp, j;ϕ to compare Λp+1, j;ϕ and Λp, j;ϕ . By compar-
ing Λp+1, j;ϕ and Λp, j;ϕ for each j, one may get much important and useful informa-
tion for comparing Λp+1;ϕ and Λp;ϕ . In order to get the set of optimal nodes, finally,
one must compare Λp+1;ϕ and Λp;ϕ , at least for certain candidate functions and for
a certain range of s, directly or indirectly.

We will use induction to study the Lebesgue functions, as well as local max-
ima, Lebesgue constants, and so on, for the corresponding functions Im. We first
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must study the base case of I1. Brutman [3] studied polynomial interpolation at the
Chebyshev nodes and Chebyshev extrema. We state his results in the following two
theorems using our terminology.

Theorem 1. Let 0 ≤ p < p+1 ≤ M and 1/2 ≤ s < 1. Then

Λp+1;I1(π/(n+1),s)< Λp;I1(π/(n+1),s). (44)

Theorem 2. Let 0 ≤ p < p+1 ≤ M and 0 < s < 1. Then

Λp+1;I1(π/n,s)> Λp;I1(π/n,s). (45)

Let λn,p;ϕ be the local maximum such that

λn,p;ϕ = λn,p;ϕ(α) = max
0≤s≤1

Λp;ϕ(α,s) = max
0≤s≤1

Λ [n]
p;ϕ(α,s). (46)

There is one and only one sp;ϕ = sp;ϕ(α) = s[n]p;ϕ(α) such that

λn,p;ϕ = λn,p;ϕ(α) = Λp;ϕ(α,sp;ϕ ). (47)

If n= 2N+1 and p=N, by symmetry it is easy to see that sN;ϕ (α) = 1/2 for any
odd and strictly increasing function ϕ and any α ( 0 ≤ α ≤ π/n or 0 < α ≤ π/n).

Brutman [3] also proved that 1/2 < sp;I1(π/(n+ 1)) < 1 for 0 ≤ p ≤ N − 1.
Therefore, by Theorems 1 and 2, he concluded that for 0 ≤ p < p+1 ≤ M,

λn,p+1;I1(π/(n+1)) < λn,p;I1(π/(n+1)), (48)

λn,p+1;I1(π/n) > λn,p;I1(π/n). (49)

In other words, he proved that the local maxima of the Lebesgue function for poly-
nomial interpolation at the Chebyshev nodes are strictly decreasing from outside
towards the middle of the interval, while the local maxima of Lebesgue function for
the polynomial interpolation at the Chebyshev extrema are strictly increasing from
outside towards the middle of the interval. A similar result for equidistant nodes
(α = 0) was found by Tietze [10] in 1917, almost one century ago.

Brutman got the above results because he very much benefited from the formulas
in (37) and (38). We introduced a parameter α (0 ≤ α ≤ π/n) and generalized
Brutman’s formulas [5]. However, for α �= 0,π/(n+1),π/n, a direct comparison of
Λp+1;I1(α,s) and Λp;I1(α,s) is difficult.

By using induction, we found that the inequalities (48) and (49) are also true for
Im (m ≥ 2). In the following, we state some of our results.

Theorem 3. Let 0 ≤ p < p+1 ≤ M and m ≥ 1. Then

λn,p+1;Im(π/(n+1))< λn,p;Im(π/(n+1)). (50)
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Theorem 4. Let 0 ≤ p < p+1 ≤ M and m ≥ 1. Then

λn,p+1;Im(π/n)> λn,p;Im(π/n). (51)

In other words, the local maxima of Lebesgue function for the polynomial inter-
polation at the set of nodes XIm,π/(n+1) are strictly decreasing from outside towards
the middle of the interval, while the local maxima of Lebesgue function for the poly-
nomial interpolation at the set of nodes XIm,π/n are strictly increasing from outside
towards the middle of the interval. These facts are true for any m ≥ 1. Due to this
fact, we are particularly interested in the outside one and middle one of the local
maxima. We compare the outside (middle) local maxima for different m, but the
same α .

Theorem 5. Let 0 < α ≤ π/n. Then

λn,M;I1 (α)< λn,M;I2(α)< λn,M;I3(α)< · · · . (52)

Theorem 6. Let 0 < α ≤ π/n. Then

λn,0;I1(α)> λn,0;I2(α)> λn,0;I3(α)> · · · . (53)

By Theorems 3, 5, and 6, we have

0 < λn,0;Im+1(π/(n+1))−λn,M;Im+1(π/(n+1))

< λn,0;Im(π/(n+1))−λn,M;Im(π/(n+1)). (54)

Therefore, the limit of
[

λn,0;Im(π/(n+ 1))− λn,M;Im(π/(n+ 1))
]

as m → ∞ exists.
In fact, this limit is zero.

Theorem 7. We have

lim
m→∞

[

λn,0;Im(π/(n+1))−λn,M;Im(π/(n+1))
]

= 0. (55)

By Theorem 7 together with Theorem 3, we immediately obtain the following
theorem.

Theorem 8. Let ρ be the function defined in Lemma 2. Then

λn,0;ρ(π/(n+1)) = λn,1;ρ(π/(n+1)) = · · ·= λn,M;ρ(π/(n+1)). (56)

Therefore, the set of nodes Xρ ,π/(n+1) is the set of optimal nodes for polynomial
interpolation.

We are also interested in the optimal Lebesgue constants. For a brief history
about the estimation of the optimal Lebesgue constants, one may refer to [4, 6, 9].
Using the optimal nodes Xρ,π/(n+1), we get the exact optimal Lebesgue constants.

Since the function ρ is defined as a limiting function of the functions ρm, we
may not be completely satisfied with the above optimal nodes. Although the set
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of optimal nodes is unique, it can be given by different functions. The finite ver-
sion (without limit) of optimal nodes are also given. For any sufficient large m, for
example m ≥ n, there is an αm (π/(n+ 1)< αm < π/n) such that the set of nodes
XIm,αm is the optimal one. We also have limm→∞ αm = π/(n+1).

To complete the proofs of the above theorems and related results, we need several
dozen lemmas. In particular, we have several important sets of lemmas about the
following topics.

1. The partial derivatives, with respect to α and s, of the functions Λp, j;ϕ ,
Λp+1, j;ϕ/Λp, j;ϕ , etc., particularly, for ϕ = I1.
2. The properties of sn,p;ϕ = sn,p;ϕ(α), particularly, for ϕ = I1.
3. The relation of various functions corresponding to ϕ and ϕ = sinϕ . This is the
foundation for induction.

We will publish these lemmas and the complete proofs of the above theorems
and related results in our upcoming papers.
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ment par ses valeurs en n+1 points du segment, Bull Acad. Sci. URSS, 1025-1050, (1931).

2. C. de Boor and A. Pinkus, Proof of the conjectures of Berstein and Erdős concerning the
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Green’s Functions: Taking Another Look
at Kernel Approximation, Radial Basis
Functions, and Splines

Gregory E. Fasshauer

Abstract The theories for radial basis functions (RBFs) as well as piecewise
polynomial splines have reached a stage of relative maturity as is demonstrated by
the recent publication of a number of monographs in either field. However, there
remain a number of issues that deserve to be investigated further. For instance, it is
well known that both splines and radial basis functions yield “optimal” interpolants,
which in the case of radial basis functions are discussed within the so-called native
space setting. It is also known that the theory of reproducing kernels provides a com-
mon framework for the interpretation of both RBFs and splines. However, the as-
sociated reproducing kernel Hilbert spaces (or native spaces) are often not that well
understood — especially in the case of radial basis functions. By linking (condition-
ally) positive definite kernels to Green’s functions of differential operators we obtain
new insights that enable us to better understand the nature of the native space as a
generalized Sobolev space. An additional feature that appears when viewing things
from this perspective is the notion of scale built into the definition of these function
spaces. Furthermore, the eigenfunction expansion of a positive definite kernel via
Mercer’s theorem provides a tool for making progress on such important questions
as stable computation with flat radial basis functions and dimension independent
error bounds.

1 Introduction

A number of monographs and survey papers dealing with splines, radial basis func-
tions and, more generally, reproducing kernels, have appeared in recent years. The
following list is representative, but certainly far from complete: [1, 3, 8, 18, 20,
29, 34, 39–41, 43]. Even though (or precisely because) there is regrettably little
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interaction between different mathematical communities, we have included
references from approximation theory as well as probability/statistics and machine
learning since reproducing kernels play a central — and perhaps increasing — role
in all of these communities.

In this paper we will address several questions that — to our knowledge — have
not been addressed sufficiently in the existing literature. The first few questions
center around the notion of an RBF native space (to be defined below). We will
recall existing interpretations and claim that most of them are not very “intuitive”.
This has, in fact, been a point of criticism of RBF methods. What are these native
spaces, and what kind of functions do they contain? How do they relate to classical
function spaces such as Sobolev spaces? We try to shed some light on this topic by
discussing recent work of [12] in Section 2.

Another set of questions is related to the role of scale. RBF practitioners have
known for a long time that the proper scaling of the basis functions plays a very im-
portant role. It might affect the accuracy of an approximation, its numerical stability
and its efficiency. Should a notion of scale be included in the definition of the native
space? Our framework of Section 2 does indeed provide a natural way of doing this.

An appropriate scaling of the kernel has been used to establish a connection
between infinitely smooth RBFs and polynomial interpolants in the literature (see
Section 3 and the references listed there). If the kernels are “flat”, we get conver-
gence of RBF interpolants to polynomial interpolants. We will report on a recent in-
vestigation [38] that reveals a similar connection between RBFs of limited smooth-
ness and piecewise polynomial splines.

Even though researchers have struggled for many years with the ill-conditioning
of RBF systems, relatively little progress has been made in this direction. For uni-
variate piecewise polynomial splines it is well known that moving from the basis
of truncated power functions to the B-spline basis provides well-conditioned, and
even banded, matrices. Aside from some scattered work on preconditioning of RBF
systems, only Bengt Fornberg together with his co-workers has tackled this problem
with some success. We are especially motivated by their RBF-QR idea [14, 15] and
will provide some of our own thoughts on this approach in Section 4.

Finally, many papers on rates of convergence of the RBF approximation method
exist in the literature. However, none of these papers address the question of
dimension-dependence of these bounds. In fact, it is quite obvious that all of the ex-
isting bounds suffer from the curse of dimensionality. In Section 5 we review recent
work [9] on dimension-independent error bounds for RBF approximation methods.

It turns out that a unifying theme underlying all of these questions is the notion
of Green’s functions and eigenfunction expansions. Therefore, these topics will be
reviewed in the next section. Connections between either splines and Green’s func-
tions or radial basis functions and Green’s functions have repeatedly been made
over the past decades (see, e.g., [4, 7, 19, 25, 27, 28, 37, 41]). However, many of the
connections presented in the following seem to go beyond the discussion in the ex-
isting literature. Throughout the paper we will use (simple) examples to illustrate
the various topics.
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2 Toward an Intuitive Interpretation of Native Spaces

2.1 What is the Current Situation?

Even though piecewise polynomial splines and radial basis functions are conceptu-
ally very similar (some people do not even distinguish between the two and use the
term spline to refer to either method), there are relatively few intersections in the
literature on these two approximation methods. Perhaps the most prominent com-
mon feature of the two methods is given by the fact that they both yield minimum
norm interpolants (see, e.g., [2, 8, 37, 43]). In fact, it is precisely this property that
led Schoenberg to refer to piecewise polynomial univariate approximating functions
as splines [36].

To begin with a specific example, we recall that the natural spline s f ,2m of order
2m provides the smoothest interpolant to data sampled from any function f in the
Sobolev space Hm(a,b) of functions whose mth derivative is square integrable on
[a,b] and whose derivatives of orders m through 2m− 2 vanish at the endpoints of
the interval [a,b], i.e.,

s f ,2m = argmin
f∈Hm(a,b)

{

∫ b

a

[

f (m)(x)
]2

dx | f (xi) = yi, i = 1, . . . ,N,

f (�)(a) = f (�)(b) = 0, �= m, . . . ,2m−2

}

.

(1)

Now let us consider the corresponding minimum norm property as it is com-
monly found for radial basis functions, or more generally reproducing kernel inter-
polants (see, e.g., [43]). The reproducing kernel interpolant s f ,K is optimal in the
sense that it is the minimum norm interpolant to data sampled from any function
f in H (K,Ω), the reproducing kernel Hilbert space (or native space) associated
with K. This can be stated as

s f ,K = argmin
f∈H (K,Ω)

{‖ f‖H (K,Ω) | s f ,K(xi) = f (xi), i = 1, . . . ,N
}

. (2)

While the function space Hm(a,b) that appears in (1) can be rather easily under-
stood in terms of the smoothness and boundary conditions imposed, the native space
H (K,Ω) in (2) looks a bit more cryptic. What is this mysterious native space and
how is its norm defined?

For a general positive definite kernel K and domain Ω ⊆ R
d the native space is

commonly defined as

H (K,Ω) = span{K(·,z) | z ∈ Ω} ,

i.e., the native space is given by all linear combinations of — often infinitely many
— “shifts” of the kernel K. This is certainly a valid definition, but what sort of
functions does H (K,Ω) contain? The literature is more specific for the case in
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which we use translation invariant (in the statistics literature also referred to as
stationary) kernels on Ω = R

d , i.e., if the kernel is really a function of one vari-
able, namely the difference of two points, or ˜K(x− z) = K(x,z). In this case, if
˜K ∈C(Rd)∩L1(R

d), then

H (˜K,Rd) =

{

f ∈ L2(R
d)∩C(Rd) | F f

√

F ˜K
∈ L2(R

d)

}

,

i.e., a function f belongs to the native space H (˜K,Rd) of the kernel ˜K if the de-
cay of its Fourier transform F f relative to that of the Fourier transform F ˜K of
the kernel is rapid enough. This characterization certainly encodes some kind of
smoothness information, but it is not very intuitive. The previous material is cov-
ered in much more detail in [43].

As mentioned above, we are not only interested in understanding the type of
functions contained in the native space, but also the norm this space is equipped
with. Since both the spline and kernel spaces are Hilbert spaces it is natural to look
at their inner products. In the natural spline case this is the standard Sobolev in-
ner product whose induced norm appears in (1). What does the native space inner
product look like?

For a general positive definite kernel K on a general domain Ω we take functions
f ,g ∈ H (K,Ω) and use the notation NK = dim(H (K,Ω)) for the dimension of
the native space (note that NK = ∞ is common). Then

〈 f ,g〉H (K,Ω) = 〈
NK

∑
j=1

c jK(·,x j),
NK

∑
k=1

dkK(·,zk)〉H (K,Ω) =
NK

∑
j=1

NK

∑
k=1

c jdkK(x j,zk).

Once again, one might wonder how to interpret this. As before, for translation invari-
ant kernels on Ω =R

d , i.e., ˜K(x− z) = K(x,z), we can employ Fourier transforms.
Then we have

〈 f ,g〉H (˜K,Rd) =
1

√

(2π)d
〈 F f
√

F ˜K
,

Fg
√

F ˜K
〉L2(Rd)

provided ˜K ∈C(Rd)∩L1(R
d) and f ,g ∈ H (˜K,Rd).

Before we begin our discussion relating kernel methods to Green’s functions
— and thereby providing an interpretation of native spaces as generalized Sobolev
spaces — we mention a few examples of kernels whose native spaces already are
known to be Sobolev spaces. Since all of these kernels are radial (or isotropic) ker-
nels we introduce the notation κ(‖x−z‖) = K(x,z). This also helps us avoid confu-
sion between a kernel K and the modified Bessel function of the second kind Km−d/2
that appears below.

Matérn kernels (sometimes also called Sobolev splines, see, e.g., [8]) are of the
form

κ(r) .
= Km−d/2(r)r

m−d/2, m >
d
2
,
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where we have used the notation
.
= to indicate that equality holds up to a

multiplicative constant. It is quite natural to use the term Sobolev splines to refer
to these functions since their native space is given by a classical Sobolev space, i.e.,
H (κ ,Rd) = Hm(Rd).

A second example is given by the entire family of Wendland’s compactly sup-
ported radial basis functions (see, e.g., [8, 43]). A popular member of this family is
of the form

κ(r) .
= (1− r)4

+(4r+1),

and its native space H (κ ,R3) is norm-equivalent to the classical Sobolev space
H3(R3) (see [42]).

The family of polyharmonic splines is another famous (albeit only conditionally
positive definite) example that fits this list. These functions are of the form

κ(r) .
=

{

r2m−d , d odd,

r2m−d logr, d even,

and the native space H (κ ,Rd) is a Beppo-Levi space of order m

BLm(R
d) =

{

f ∈C(Rd) |Dα f ∈ L2(R
d) for all |α|= m

}

.

We may consider this space as a homogeneous Sobolev space of order m (see [8]).
This latter example is also featured in the recent paper [4], and spherical versions

of the latter two examples are discussed in [25]. We became aware of both of these
papers only after the initial submission of our own paper and it is interesting to
note that they both use the connection between reproducing kernels and Green’s
functions as an essential ingredient to obtain their Lp approximation results.

2.2 Mercer’s Theorem and Eigenvalue Problems

We will limit most of our discussion to positive definite kernels. A perspective on
positive definite kernels that appears quite frequently in the literature on statistical
learning (but not so much in approximation theory) is their characterization via an
eigenfunction expansion. This fact goes back many years to the early work of James
Mercer [24]. We quote here a version of this result from [29].

Theorem 1 (Mercer’s theorem). Let (Ω ,μ) be a finite measure space and K ∈
L∞(Ω 2,μ2) be a kernel such that the integral operator TK : L2(Ω ,μ)→ L2(Ω ,μ)
defined by

(TK f )(x) =
∫

Ω
K(x,z) f (z)dμ(z)

is positive definite. Let ϕn ∈ L2(Ω ,μ) be the normalized eigenfunctions of TK asso-
ciated with the eigenvalues λn > 0. Then
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1. the eigenvalues {λn}∞
n=1 are absolutely summable,

2. K(x,z) =
∞

∑
n=1

λnϕn(x)ϕn(z) holds μ2 almost everywhere, and the series con-

verges absolutely and uniformly μ2 almost everywhere.

More generally, Hilbert-Schmidt theory ensures the existence of L2-convergent
eigenfunction expansions of compact, self-adjoint operators.

We now consider a kernel K : Ω ×Ω → R on a general domain Ω and define an
inner product with positive weight function σ (instead of using the measure theoretic
notation of the theorem) as

〈 f ,g〉=
∫

Ω
f (x)g(x)σ(x)dx.

The eigenvalue problem for the integral operator TK : f 	→ ∫

Ω K(·,z) f (z)σ(z)dz
consists of finding solutions λ and ϕ of

∫

Ω
K(x,z)ϕ(z)σ(z)dz = λ ϕ(x). (3)

This represents a homogeneous Fredholm integral equation of the 2nd kind and it is
therefore not obvious how we should go about finding the eigenvalues and eigen-
functions of TK . The idea we will pursue here is to relate the integral equation to a
differential equation which may be easier to solve.

2.3 Green’s Functions and Eigenfunction Expansions

Green’s functions (see, e.g., [6]) play a central role in the solution of differential
equations. We now consider the nonhomogeneous linear (ordinary or partial) differ-
ential equation

(Lu)(x) = f (x) on Ω ⊂ R
d

with a linear and elliptic operator L and some appropriate homogeneous boundary
conditions. We will be more specific about the boundary conditions later.

The solution of this differential equation can be written in terms of a Green’s
function G as

u(x) =
∫

Ω
f (z)G(x,z)dz, (4)

where the Green’s function satisfies the differential equation

(LG)(x,z) = δ (x− z).

Here δ denotes the standard delta function(al), and the point z denotes a fixed (and
arbitrary) “source”. The boundary conditions are the same as above.
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We now establish a connection between the integral operator eigenvalue problem
that is needed for Mercer’s series representation of a positive definite kernel dis-
cussed above and a related eigenvalue problem for a differential operator. For sim-
plicity we assume that K is a free space Green’s function for the differential operator
L, i.e., (LK)(x,z) = δ (x− z)1.

We apply the differential operator L to the integral equation (3), interchange in-
tegration and differentiation and use the definition of the Green’s function to obtain

L
∫

Ω
K(x,z)ϕ(z)σ(z)dz = Lλ ϕ(x) ⇐⇒

∫

Ω
δ (x− z)ϕ(z)σ(z)dz = λLϕ(x).

Using the definition of the delta function this gives us

Lϕ(x) =
1
λ

σ(x)ϕ(x),

which shows that the eigenvalues of the integral operator correspond to reciprocals
of eigenvalues of the differential operator, while the corresponding eigenfunctions
are the same.

We now present a simple and well-known example (on a bounded interval). The
kernel in this example is sometimes referred to as the Brownian bridge kernel (see,
e.g., [1]) since it is the covariance kernel of a Brownian motion with zero boundary
conditions at both ends of the interval, also known as a Brownian bridge.

Example 1 (Brownian bridge kernel). Consider the domain Ω = [0,1], and let

K(x,z) = min(x,z)− xz =

{

x(1− z), x ≤ z,

z(1− x), x > z.

This kernel may be obtained by integrating

− d2

dx2 K(x,z) =
1
2

δ (x− z)

twice using the boundary conditions

K(0,z) = K(1,z) = 0.

In other words, K is the Green’s function (up to a factor 2) of the differential operator
L =− d2

dx2 with corresponding boundary conditions.
We now consider the integral operator eigenvalue problem

∫

Ω
K(x,z)ϕ(z)σ(z)dz = λ ϕ(x)

1 The problem is considerably more difficult on bounded domains, i.e., for differential equations
including boundary conditions, and we do not discuss that case here.
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with σ(x) ≡ 1 and K and Ω as above. Using the piecewise definition of K this
corresponds to

∫ x

0
zϕ(z)dz+

∫ 1

x
xϕ(z)dz−

∫ 1

0
xzϕ(z)dz = λ ϕ(x).

If we apply the differential operator L = − d2

dx2 to this integral equation and use
two elementary differentiation steps we obtain

d
dx

{

xϕ(x)−
∫ x

1
ϕ(z)dz− xϕ(x)−

∫ 1

0
zϕ(z)dz

}

= λ ϕ ′′(x)

⇐⇒ −ϕ ′′(x) = 1
λ ϕ(x),

which again illustrates that the eigenvalues of the integral operator are the recipro-
cals of the eigenvalues of the differential operator. We will continue this example
below.

The second piece of the puzzle is to express the Green’s function of the differ-
ential equation in terms of the eigenvalues and eigenfunctions of a related Sturm-
Liouville eigenvalue problem. To this end we start with the generic ordinary differ-
ential equation

(LG)(x,z) = δ (x− z)

with regular Sturm-Liouville boundary conditions. The so-called Sturm-Liouville
eigenvalue problem is then given by

(Lϕ)(x) =
1
λ

σ(x)ϕ(x), (5)

where we need to add the same set of regular Sturm-Liouville boundary conditions.
Here σ is a weight function whose choice is basically free, but of course determines
the specific form of the eigenfunctions and eigenvalues by defining different inner
products. For a fixed choice of σ we can represent the Green’s function G via an
eigenfunction expansion of the form

G(x,z) =
∞

∑
n=1

cn(z)ϕn(x). (6)

We again consider z as an arbitrary, but fixed, source point and therefore the ex-
pansion coefficients (generalized Fourier coefficients) cn will depend on z. In order
to determine these coefficients we apply the differential operator L to (6) and use
linearity along with the definitions of the Green’s function and the Sturm-Liouville
eigenvalue problem to arrive at

δ (x− z) = (LG)(x,z) =
∞

∑
n=1

cn(z)(Lϕn)(x) =
∞

∑
n=1

cn(z)σ(x)ϕn(x)
λn

.
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Multiplication of this identity by ϕm(x) and integration from a to b yields

cn(z) =
λnϕn(z)

∫ b
a ϕ2

n (x)σ(x)dx
,

where we have used the orthogonality of the eigenfunctions ϕn. If we identify the
Green’s function G with the kernel K in (3) then we see that the coefficients cn(z)
are nothing but the generalized Fourier coefficients of G, i.e., the appropriately nor-
malized inner product of G(·,z) with ϕn. In particular, if the eigenfunctions are
orthonormal with respect to σ then

G(x,z) =
∞

∑
n=1

λnϕn(x)ϕn(z).

This argument works analogously in higher space dimensions.

Example 2 (More Brownian bridge). A simple exercise in standard Sturm-Liouville
theory tells us that the boundary value problem

−ϕ ′′(x) =
1
λ

ϕ(x), ϕ(0) = ϕ(1) = 0,

has eigenvalues and eigenfunctions

λn =
1

(nπ)2 , ϕn(x) = sinnπx, n = 1,2,3, . . . ,

and we can verify

G(x,z) = min(x,z)− xz =
∞

∑
n=1

cn(z)sin nπx

with

cn(z) =
∫ 1

0
(min(x,z)− xz)sinnπxdx =

sinnπz
(nπ)2 = λnϕn(z).

2.4 Generalized Sobolev Spaces

We now briefly discuss how we interpret the native space of a kernel K in terms of an
associated differential operator L. Many more details are given in [12]. A rigorous
theoretical framework supporting this interpretation for general vector distributional
operators is provided in [12]. While this paper contains the theory for generalized
Sobolev spaces on the unbounded domain R

d , we will illustrate the framework here
with some examples on bounded domains. A theoretical framework for that (more
complicated) case is the subject of [13].
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Our approach depends on the ability to identify the differential operator L that
corresponds to a given Green’s kernel K (or vice versa). Given such an L, we then
decompose it into

L = P∗T P =
J

∑
j=1

P∗
j Pj,

where the Pj are themselves differential operators and P∗
j is an appropriately defined

adjoint. For example, for the Brownian bridge kernel K(x,z) = min(x,z)− xz dis-
cussed in previous examples we have L = − d

dx2 , P = P = d
dx , and P∗ = P∗ = − d

dx ,
i.e., J = 1. We point out that the theory in [12] is not limited to finite J. In par-
ticular, the vector differential operator P corresponding to the Gaussian kernel is
infinite-dimensional.

We then define the generalized Sobolev space HP(R
d) as the set of slowly in-

creasing locally integrable functions f for which P f ∈ L2(R
d), i.e.,

HP(R
d) =

{

f ∈ Lloc
1 (Rd)∩SI | Pj f ∈ L2(R

d), j = 1, . . . ,J
}

.

The (semi-)inner product for this space is also defined in terms of P. Namely,

〈 f ,g〉HP(Rd ) =
J

∑
j=1

∫

Rd
Pj f (x)Pjg(x)dx.

For our running Brownian bridge example the reproducing kernel Hilbert space is
the standard Sobolev space

H1
0,1(0,1) = HP(0,1) =

{

P f = f ′ ∈ L2(0,1) : f (0) = f (1) = 0
}

with inner product

〈 f ,g〉HP(0,1) =

∫ 1

0
P f (x)Pg(x)dx =

∫ 1

0
f ′(x)g′(x)dx.

We then have that K(x,z) = min(x,z)− xz is the reproducing kernel of HP(0,1).
The left graph in Figure 1 shows multiple copies of the piecewise linear Brownian

bridge kernel centered at equally spaced points in the interval [0,1]. Note how this
kernel is neither radial (isotropic), nor translation invariant (stationary).

We provide two more examples that are obtained from the previous one by a
simple shift of the eigenvalues.

Example 3 (Tension spline kernel). We begin with the Sturm-Liouville ODE eigen-
value problem

ϕ ′′(x)+ (λ − ε2)ϕ(x) = 0, ϕ(0) = ϕ(1) = 0,

where ε is an additional parameter, often referred to as shape parameter or tension

parameter. This means that L = − d
dx2 + ε2I and P =

[

d
dx ,εI

]T
. Note that we now
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Fig. 1: Copies of the Brownian bridge (left), tension spline (middle) and relaxation
spline (right) kernels K(x,z) for 15 equally spaced values of z in [0,1].

indeed have a vector differential operator P. The eigenvalues and eigenfunctions can
easily be found to be

λn = n2π2 + ε2, ϕn(x) = sinnπx, n = 1,2, . . . .

The kernel (i.e., Green’s function) is given by

K(x,z) =

{

sinh(εx) sinhε(1−z)
ε sinhε , x < z,

sinh(εz) sinhε(1−x)
ε sinhε , x > z.

For this example, the reproducing kernel Hilbert space is again a standard Sobolev
space, namely

HP(0,1) =
{

f , f ′ ∈ L2(0,1) : f (0) = f (1) = 0
}

.

However, the inner product is now given by

〈 f ,g〉HP(0,1) =
2

∑
j=1

∫ 1

0
Pj f (x)Pjg(x)dx =

∫ 1

0
f ′(x)g′(x)dx+ ε

∫ 1

0
f (x)g(x)dx.

One of the most notable points here is that the so-called shape parameter ε of the
kernel is intimately related to the inner-product and therefore the norm of the func-
tion space. Through this feature, which is usually completely ignored in the discus-
sion of function spaces used in approximation theory, we are able to introduce a
more refined notion of a function space for a certain approximation problem at hand
by our ability to capture a certain length scale represented in the data. This length
scale is defined by the relative importance of function values and derivatives. There-
fore, we might want to denote this Sobolev space by H1

ε (0,1). As a consequence, the
definition of a generalized Sobolev space encodes both smoothness and “peakiness”
information of the functions it contains.
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The middle graph in Figure 1 shows multiple copies of the tension spline kernel
centered at equally spaced points in the interval [0,1]. Note how this kernel has a
certain tension specified by the choice of the shape parameter ε. For the graphs in
Figure 1 the value ε = 2 was used.

If we use the same differential operator, i.e., L = − d
dx2 + ε2I, but eliminate the

boundary conditions, then we obtain the related radial kernel

κ(r) =
1

2ε
e−εr, r = |x− z|,

(see [12]). This kernel is well-known in the literature as one of the members of the
Matérn family, or as the Ornstein-Uhlenbeck kernel. Its reproducing kernel Hilbert
space is the classical Sobolev space H1(R) (see also [1]).

Example 4 (Relaxation spline kernel). By adding the shift ε2 in the Sturm-Liouville
equation of the previous example instead of subtracting we obtain a different set of
eigenvalues and eigenfunctions, namely

λn = n2π2 − ε2, ϕn(x) = sinnπx, n = 1,2, . . . .

The kernel in this example is given by

K(x,z) =

{

sin(εx) sin ε(1−z)
ε sinε , x < z,

sin(εz) sinε(1−x)
ε sinε , x > z,

and the generalized Sobolev space and inner product are defined analogously. The
right graph in Figure 1 shows different copies of this kernel. Since the effects of the
shape parameter here amount to a relaxation instead of a tension we chose to call
this kernel a relaxation spline kernel.

More examples of reproducing kernels, their associated differential operators, as
well as eigenvalues and eigenfunctions — also in higher space dimensions — are
presented below. It should also be noted that a connection between piecewise poly-
nomial splines and Green’s functions has been mentioned in the literature before
(see, e.g., [37, 41]). However, in both instances the splines were related to Green’s
functions of initial value problems whereas our framework uses Green’s functions
of boundary value problems.

3 Flat Limits

In this section we will take a closer look at the effect of the shape parameter ε
present in the definition of some of our kernels. In particular, we are interested in
understanding the behavior of radial kernel interpolants for the limiting case of
ε → 0, i.e., flat kernels. A radial kernel is of the form κ(‖x−z‖) = K(x,z), i.e., it is
invariant under both translation and rotation. In the statistics literature such a kernel
is called stationary and isotropic.
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The results in this section specifically address the scattered data interpolation
problem. In other words, we are given data sites X = {x1, . . . ,xN} ⊂ R

d with as-
sociated data values { f (x1), . . . , f (xN)} sampled from some function f and wish to
reconstruct f by a function of the form

sε
f ,κ(x) =

N

∑
j=1

c jκ(ε‖x−x j‖), x ∈R
d,

where the coefficients c j are determined by satisfying the interpolation conditions

sε
f ,κ(xi) = f (xi), i = 1, . . . ,N.

3.1 Infinitely Smooth RBFs

In recent years so-called flat radial basis functions (RBFs) have received much
attention in the case when the kernels are infinitely smooth (see, e.g., [5, 16, 21–
23, 32, 33]). We begin by summarizing the essential insight gained in these papers,
and then present some recent results from [38] that deal with radial kernels of finite
smoothness in the next subsection.

Theorem 2. Assume the positive definite radial kernel κ has an expansion of the
form

κ(r) =
∞

∑
n=0

anr2n

into even powers of r (i.e., κ is infinitely smooth), and that the data X are unisolvent
with respect to any set of N linearly independent polynomials of degree at most m.
Then

lim
ε→0

sε
f ,κ(x) = pm, f (x), x ∈ R

d ,

where pm, f is determined as follows:

• If interpolation with polynomials of degree at most m is unique, then pm, f is that
unique polynomial interpolant.

• If interpolation with polynomials of degree at most m is not unique, then pm, f is
a polynomial interpolant whose form depends on the choice of RBF.

This theorem applies to kernels such as

κ(εr) =
1

1+ ε2r2 = 1− (εr)2 +(εr)4 − (εr)6 +(εr)8 + · · · (IQ),

κ(εr) = e−ε2r2
= 1− (εr)2 +

1
2
(εr)4 − 1

6
(εr)6 +

1
24

(εr)8 + · · · (Gaussian),

κ(εr) =
1√

1+ ε2r2
= 1− 1

2
(εr)2 +

3
8
(εr)4 − 5

16
(εr)6 ++

35
128

(εr)8 + · · · (IMQ).
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The implications of this theorem are quite deep since it essentially establishes
radial basis functions as generalizations of polynomial spectral methods. As a con-
sequence, this opens the door to the design of algorithms for function approximation
as well as the numerical solution of partial differential equations that are more ac-
curate than the standard polynomial spectral methods. Moreover, the scattered data
setting in which radial basis functions are used allows for more flexibility with re-
spect to geometry and adaptivity.

We will come back to the Gaussian kernel in the next two sections of this paper
where we address two important issues: computational stability and rates of conver-
gence.

3.2 Finitely Smooth RBFs

To our knowledge, the flat limit of RBFs with finite smoothness was not studied
until the recent paper [38] in which interpolation on R

d was investigated.
Before we explain the results obtained in [38], we look at a few finitely smooth

radial kernels as full space Green’s functions as discussed in the earlier sections.

Example 5 (Radial kernels with finite smoothness).

1. We have already mentioned the univariate C0 Matérn kernel K(x,z)
.
= e−ε|x−z|.

For this first example we remember that the differential operator L associated
with this full-space Green’s function was given by

L =− d2

dx2 + ε2I.

On the other hand, it is well-known that univariate C0 piecewise linear splines
may be expressed in terms of kernels of the form K(x,z)

.
= |x− z|. The corre-

sponding differential operator in this case is

L =− d2

dx2 .

Note that the differential operator associated with the Matérn kernel “con-
verges” to that of the piecewise linear splines as ε → 0. We also remark that
the piecewise linear Brownian bridge kernel does not fit into this discussion
since it is associated with a boundary value problem, i.e., it is not a full-space
Green’s function.

2. The univariate C2 tension spline kernel [30] K(x,z)
.
= e−ε |x−z|+ ε|x− z| is the

Green’s kernel of

L =− d4

dx4 + ε2 d2

dx2 ,



Green’s Functions and Kernel Approximation 51

while the univariate C2 cubic spline kernel K(x,z)
.
= |x− z|3 corresponds to

L =− d4

dx4 .

Again, the differential operator associated with the tension spline “converges”
to that of the cubic spline as ε → 0.

3. In [1] we find a so-called univariate Sobolev kernel of the form K(x,z)
.
=

e−ε|x−z| sin
(

ε|x− z|+ π
4

)

which is associated with

L =− d4

dx4 − ε2I.

The operator for this kernel also “converges” to the cubic spline kernel, but
the effect of the scale parameter is analogous to that of the relaxation spline of
Example 4.

4. The general multivariate Matérn kernels are of the form

K(x,z) .
= Km−d/2 (ε‖x− z‖)(ε‖x− z‖)m−d/2 , m >

d
2
,

and can be obtained as Green’s kernels of (see [12])

L =
(

ε2I −Δ
)m

, m >
d
2
.

We contrast this with the polyharmonic spline kernels

K(x,z) .
=

{

‖x− z‖2m−d, d odd,

‖x− z‖2m−d log‖x− z‖, d even,

and

L = (−1)mΔ m, m >
d
2
.

In summary, all of these examples show that the differential operators associated
with finitely smooth RBF kernels “converge” to those of a piecewise polynomial
or polyharmonic spline kernel as ε → 0. This motivates us to ask whether RBF
interpolants based on finitely smooth kernels converge to (polyharmonic) spline in-
terpolants for ε → 0 mimicking the relation between infinitely smooth radial kernels
and polynomials. As the following theorem shows, this is indeed true.

As mentioned in Theorem 2, infinitely smooth radial kernels can be expanded
into an infinite series of even powers of r. Finitely smooth radial kernels can also
be expanded into an infinite series of powers of r. However, in this case there al-
ways exists some minimal odd power of r with nonzero coefficient indicating the
smoothness of the kernel. For example, for univariate C0, C2 and C4 Matérn kernels,
respectively, we have
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ε
ε
ε

ε
ε
ε

Fig. 2: Convergence of C0 (left) and C2 (right) Matérn interpolants to piecewise
linear (left) and cubic (right) spline interpolants.

κ(εr)
.
= e−εr = 1− εr+

1
2
(εr)2 − 1

6
(εr)3 + · · · ,

κ(εr)
.
= (1+ εr)e−εr = 1− 1

2
(εr)2 +

1
3
(εr)3 − 1

8
(εr)4 + · · · ,

κ(εr)
.
=
(

3+ 3εr+(εr)2)e−εr=3− 1
2
(εr)2 +

1
8
(εr)4 − 1

15
(εr)5 +

1
48

(εr)6 + · · · .

Theorem 3 ([38]). Suppose κ is conditionally positive definite of order m ≤ n with
an expansion of the form

κ(r) = a0 +a2r2 + . . .+a2nr2n +a2n+1r2n+1 +a2n+2r2n+2 + . . . ,

where 2n+1 denotes the smallest odd power of r present in the expansion (i.e., κ is
finitely smooth). Also assume that the data X contain a unisolvent set with respect
to the space π2n(R

d) of d-variate polynomials of degree less than 2n. Then

lim
ε→0

sε
f ,κ(x) =

N

∑
j=1

c j‖x−x j‖2n+1 +
M

∑
k=1

dk pk(x), x ∈R
d ,

where {pk | k = 1, . . . ,M} denotes a basis of πn(R
d).

In other words, the “flat” limit of a piecewise smooth RBF interpolant is nothing
but a polyharmonic spline interpolant. Therefore, just as infinitely smooth RBFs
can be interpreted as generalizations of polynomials, we can view finitely smooth
RBFs as generalizations of piecewise polynomial (or more generally polyharmonic)
splines.

We point out that Theorem 3 does not cover Matérn kernels with odd-order
smoothness. However, all other examples listed above are covered by the theorem.

Figure 2 illustrates the convergence of univariate C0 and C2 Matérn interpolants
to piecewise linear and piecewise cubic spline interpolants, respectively.
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4 Stable Computation

We now look at some practical consequences of working with “flat” RBF kernels.
It is well-known that interpolation with “flat” Gaussian kernels leads to a notori-
ously ill-conditioned interpolation matrix K. This is due to the fact that the standard
set of basis functions {e−ε2(x−x j)

2), j = 1, . . . ,N} becomes numerically linearly de-
pendent. It needs to be emphasized that the resulting numerical instabilities are due
only to this “bad” choice of basis and not to the choice of function space itself. In
fact, we will discuss in the next section how well one can approximate with linear
combinations of Gaussians.

Even though Gaussian kernels are rather popular — especially in the machine
learning community, it has been widely accepted that working with Gaussians is
an ill-conditioned problem. As a result, the literature contains many references to a
so-called uncertainty or trade-off principle (see, e.g., [31] or the more recent paper
[35]). This uncertainty principle, however, is tied directly to the use of the standard
(“bad”) basis, and we demonstrate below how it can be circumvented by choosing a
better — orthonormal — basis. The following discussion is motivated by the recent
work of Bengt Fornberg and his collaborators [14,15] in which they have proposed a
so-called RBF-QR algorithm which allows for stable RBF computations. In addition
to this QR-based approach they have also proposed other stable algorithms such as
the Contour-Padé algorithm [16]. The guiding principle in this work is always the
fact that the RBF-direct algorithm (based on the use of the “bad” standard basis) is
ill-conditioned, but the RBF interpolation problem itself is not.

4.1 An Eigenfunction Expansion for Gaussians

In [29] (and already [44], albeit with incorrect normalization) one can find the fol-
lowing general eigenfunction expansion

e−b(x−z)2
=

∞

∑
n=1

λnϕn(x)ϕn(z), (7)

where the eigenfunctions ϕn are orthonormal in L2(R,ρ) with weight function

ρ(x) =
√

2a
π

e−2ax2
.

Here a and b are arbitrary positive numbers. If we let c=
√

a2 +2ab, then the eigen-
functions ϕn turn out to be

ϕn(x) =
1

√

2n−1(n−1)!
√a

c

e−(c−a)x2
Hn−1(

√
2cx), n = 1,2, . . . ,
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with Hn the classical Hermite polynomials of degree n, i.e.,

Hn(x) = (−1)nex2 dn

dxn e−x2
for all x ∈ R, n = 0,1,2, . . .

so that
∫

R

H2
n (x)e−x2

dx =
√

π 2nn! for n = 0,1,2, . . . .

The corresponding eigenvalues are

λn =

√

2a
a+b+ c

(

b
a+b+ c

)n−1

, n = 1,2, . . . .

In particular, we will want to use the Gaussian kernel in its usual form with shape
parameter ε as

K(x,z) = e−ε2(x−z)2

so that b = ε2. Moreover, we take a = 1
2 and therefore c = 1

2

√
1+4ε2 (see also [9]).

This leads to eigenvalues

λn =
1

√

1
2 (1+

√
1+4ε2)+ ε2

(

ε2

1
2 (1+

√
1+4ε2)+ ε2

)n−1

=
ε2(n−1)

(

1
2(1+

√
1+4ε2)+ ε2

)n− 1
2

, n = 1,2, . . . (8)

and eigenfunctions

ϕn(x) =

√

(1+4ε2)1/4

2n−1(n−1)!
exp

(

− ε2x2

1
2(1+

√
1+4ε2)

)

Hn−1

(

(1+4ε2)1/4x
)

. (9)

4.2 The RBF-QR Algorithm

The starting point for the bivariate Gaussian RBF-QR algorithm in [14] was an
expansion of the form

e−ε2(x−z)2
=

∞

∑
n=0

(2ε2)n

n!
xne−ε2x2

zne−ε2z2
, x,z ∈ R. (10)

However, the authors claimed that this series is not ideal since, coupled with the
RBF-QR strategy described below, it does not provide an effective reduction of the
conditioning of the RBF interpolation algorithm. Most likely, the poor conditioning
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of the new basis that results from this expansion is due to the fact that the functions
x 	→ xne−ε2x2

are not orthogonal in L2(R). Indeed, for ε → 0 these functions
converge to the standard monomial basis which is known to be ill-conditioned (cf.
Vandermonde matrices). Therefore, the authors followed up their initial expansion
with a transformation to polar coordinates and an expansion in terms of Chebyshev
polynomials. This leads to an RBF-QR algorithm for Gaussians that is indeed stable,
but limited to problems in R

2.
The following discussion based on the eigenfunction expansion (7) of the Gaus-

sian kernel will be applicable in any space dimension. Due to the product nature
of the kernel we describe only the 1D version here. A comment at the end of this
section indicates how to approach the general multivariate setting.

We will now show that if we use an expansion of the kernel in terms of orthonor-
mal (eigen-)functions, then the source of ill-conditioning of the Gaussian basis is
moved entirely into its eigenvalues. Since the eigenvalues of the Gaussian kernel
decay very quickly we are now able to directly follow the QR-based strategy sug-
gested in [14] — without the need for any additional transformation to Chebyshev
polynomials.

In particular, we use the eigenvalues (8) and eigenfunctions (9) of the Gaussian
kernel as discussed above.

The QR-based algorithm of [14] corresponds to the following. Starting with an
expansion of the basis functions centered at x j , j = 1, . . . ,N, of the form

K(x,x j) =
∞

∑
n=1

ε2(n−1)bn(x j)ϕn(x), bn(x j) := ε−2(n−1)λnϕn(x j),

i.e., a generalized Fourier expansion with x j-dependent Fourier coefficients, we
obtain

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

K(x,x1)
K(x,x2)

...

...
K(x,xN)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

· · · · ·
· · · · ·
· · B · ·
· · · · ·
· · · · ·

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ε0

ε2

. . .
ε2n

. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ϕ1(x)
ϕ2(x)

...
ϕn(x)

...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Using more compact matrix-vector notation we can denote this by

k(x) = BEφ(x), (11)

where k(x) = (K(x,x j))
N
j=1 and φ(x) = (ϕn(x))

∞
n=1 are the vectors of standard basis

functions and eigenfunctions, respectively, evaluated at x, B = (bn(x j))
N,∞
j=1,n=1, and

E= diag
(

ε0,ε2, . . . ,ε2n, . . .
)

is the diagonal matrix of increasing even powers of ε.
Note that E and φ are infinite and need to be appropriately truncated for practical
applications. The matrix B has N rows, but infinitely many columns. However, since
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we are working with an eigenfunction expansion, truncating the representation at M
terms will provide the best (in the L2-sense) M-term approximation to the full series.
Note that since

B jn =

(

2

1+
√

1+4ε2+2ε2

)n− 1
2

√

(1+4ε2)1/4

2n−1(n−1)!
e
− 2ε2x2

j

1+
√

1+4ε2 Hn−1

(

(1+4ε2)1/4x j

)

→ 1
√

2n−1(n−1)!
Hn−1(x j) as ε → 0

the matrix B remains “nice” as ε → 0. Moreover, this limiting relation is another
indication of the polynomial limit of Gaussian kernel interpolation as discussed in
the previous section.

The QR idea now consists in first computing the QR-decomposition of B, i.e.,

B= QR

with unitary matrix Q and upper triangular matrix R. Next, we multiply the relation
k(x) = BEφ(x) on both sides by the non-singular matrix E−1Q∗. The crucial obser-
vation here is that this does not change the function space spanned by the (poorly
conditioned) standard basis functions K(·,x1), . . . ,K(·,xN).

As a result, using (11), the QR-decomposition of B and the fact that Q is unitary
we obtain a new basis for the Gaussian approximation space, namely

ψ(x)=E−1Q∗k(x) = E−1Q∗QREφ(x) = E−1REφ(x),

where ψ(x) = (ψn(x))
∞
n=1. Note that the matrix E−1RE is upper triangular and due

to the scaling from the left and right should be relatively well-conditioned.
We are currently in the process of implementing this algorithm [10], and prelimi-

nary tests indicate that it is now possible to compute Gaussian RBF interpolants with
this new eigenfunction basis stably also in the “flat” limit as ε → 0. Incidentally, this
is precisely the approach taken in [15] for stable radial basis function approximation
on the sphere. It is interesting to note that traditionally there has been a much closer
connection between (zonal) kernels used on the sphere and spherical harmonics, i.e.,
the eigenfunctions of the Laplace-Beltrami operator on the sphere (see, e.g., [11]).
Furthermore, the RBF-QR approach should be successfully applicable whenever an
eigenfunction expansion of the kernel is available.

As mentioned above, for the d-variate case we can use the fact that the Gaussian
is a tensor product kernel:

K(x,z) = e−ε2
1 (x1−z1)

2−...−ε2
d (xd−zd)

2
= ∑

n∈Nd

λnϕn(x)ϕn(z),
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so that the multivariate eigenvalues and eigenvectors are simply the products of the
one-dimensional ones, i.e.,

λn =
d

∏
�=1

λn� and ϕn(x) =
d

∏
�=1

ϕn�(x�).

One of the advantages — both practical and theoretical — of this product ap-
proach is that we can take different shape parameters ε� for different dimensions,
i.e., we can employ an anisotropic kernel K. Of course, the isotropic (or radial) case
can still be recovered if we choose ε� = ε, �= 1, . . . ,d. We will exploit this ability to
generalize to anisotropic Gaussian kernels in the next section on convergence rates.

5 Dimension Independent Error Bounds

In the last section of this paper we mention some new results (see [9] for much
more details) on the rates of convergence of Gaussian kernel approximation. To be
more specific, we will address weighted L2 approximation when the data is speci-
fied either by function values of an unknown function f (from the native space of the
kernel) or with the help of arbitrary linear functionals. Our convergence results pay
special attention to the dependence of the estimates on the space dimension d. We
will see that the use of anisotropic Gaussian kernels instead of isotropic ones pro-
vides improved convergence rates. It should also be mentioned that the work in [9]
deals with linear approximation algorithms, while the recent paper [17] addresses
nonlinear Gaussian approximation.

5.1 The Current Situation

A good resource for standard RBF scattered data approximation results up to the
year 2005 is [43]. There we can find two different L∞ error bounds for isotropic
Gaussian interpolation to data sampled from a function f in the native space
H (K,Ω) of the Gaussian. Both of these results are formulated in terms of the fill
distance

hX ,Ω = sup
x∈Ω

min
1≤ j≤N

‖x−x j‖,

where X = {x1, . . . ,xN} denotes the set of data sites as before. Since the results we
mention below are in terms of N, the number of data, we will restate the error bounds
from [43] also in terms of N using the fact that for quasi-uniformly distributed data
sites we have hX ,Ω = O(N−1/d).
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If f has derivatives up to total order p and s f ,K is the interpolant based on the

Gaussian kernel K(x,z) = e−ε2‖x−z‖2
, i.e.,

s f ,K(x) =
N

∑
j=1

c jK(x,x j) such that s f ,K(xi) = f (xi), i = 1, . . . ,N,

then the first error bound is of the form

‖ f − s f ,K‖∞ ≤CdN−p/d‖ f‖H (K,Ω)

with some possibly dimension-dependent constant Cd . Therefore, infinitely smooth
functions can be approximated with order p = ∞. With some extra effort one can
also obtain the spectral estimate

‖ f − s f ,K‖∞ ≤ e−
c
d N1/d logN‖ f‖H (K,Ω).

It is apparent from both of these bounds that the rate of convergence deteriorates
as d increases. Moreover, the dependence of the constants on d is not clear. There-
fore, these kinds of error bounds — and in fact almost all error bounds in the RBF
literature — suffer from the curse of dimensionality. We will now present some
results from [9] on dimension-independent convergence rates for Gaussian kernel
approximation.

5.2 New Results on (Minimal) Worst-Case Weighted L2 Error

As already indicated above, we will make several assumptions in order to be able to
obtain dimension-independent error bounds.

We define the worst-case weighted L2,ρ error as

errwc
2,ρ = sup

‖ f‖
H (K,Rd )

≤1
‖ f − s f ,K‖2,ρ ,

where s f ,K is our kernel (minimum norm) approximation calculated in the usual
way. Therefore

‖ f − s f ,K‖2,ρ ≤ errwc
2,ρ‖ f‖H (K,Rd) for all f ∈ H (K,Rd).

The Nth minimal worst case error errwc
2,ρ(N) refers to the worst case error that

can be achieved with an optimal design, i.e., data generated by N optimally chosen
linear functionals. For function approximation this means that the data sites have to
be chosen in an optimal way. The results in [9] are non-constructive, i.e., no such
optimal design is specified. However, a Smolyak or sparse grid algorithm is a natural
candidate for such a design. If we are allowed to choose arbitrary linear functionals,
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then the optimal choice for weighted L2 approximation is known. In this case we
use generalized Fourier coefficients, i.e., the optimal linear functionals are L j =
〈·,ϕ j〉H (K,Rd ) and we obtain the truncated generalized Fourier series approximation

s f ,K(x) =
N

∑
n=1

〈 f ,ϕn〉H (K,Rd )ϕn(x) for all f ∈ H (K,Rd),

where

K(x,z) =
∞

∑
n=1

λnϕn(x)ϕn(z),
∫

Ω
K(x,z)ϕn(z)ρ(z)dz = λnϕn(x).

It is then known [26] that

errwc
2,ρ(N) =

√

λN+1,

the (N +1)st largest eigenvalue, which is easy to identify in the univariate case, but
takes some care to specify in the multivariate setting.

In [9] it is then proved that in the isotropic case, i.e., with a truly radial Gaussian
kernel of the form

K(x,z) = e−ε2‖x−z‖2

one can approximate

• function data with an Nth minimal error of the order O(N−1/4+δ ), and
• Fourier data (i.e., arbitrary linear functional data) with an Nth minimal error of

the order O(N−1/2+δ ).

Here the constants in the O-notation do not depend on the dimension d and δ is
arbitrarily small.

With anisotropic kernels, i.e.,

K(x,z) = e−ε2
1 (x1−z1)

2−...−ε2
d (xd−zd)

2

one can do much better. In this case, if the shape parameters decay like ε� = �−α ,
then one can approximate

• function data with an Nth minimal error of the order O(N−max( α2
2+α ,1/4)+δ ), and

• Fourier data (i.e., arbitrary linear functional data) with an Nth minimal error of
the order O(N−max(α ,1/2)+δ ).

Again, the constants in the O-notation do not depend on the dimension d.
In order to prove the above results it was essential to have the eigenvalues (cf. (8))

λn =
ε2(n−1)

(

1
2(1+

√
1+4ε2)+ ε2

)n− 1
2

, n = 1,2, . . . ,
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and eigenfunctions (cf. (9))

ϕn(x) =

√

(1+4ε2)1/4

2n−1(n−1)!
exp

(

− ε2x2

1
2 (1+

√
1+4ε2)

)

Hn−1

(

(1+4ε2)1/4x
)

of the univariate Gaussian kernel K(x,z) = e−ε2(x−z)2
. As mentioned in the previous

section, the multivariate (and anisotropic) case can be handled using products of
univariate eigenvalues and eigenfunctions.

Even if we do not have an eigenfunction expansion of a specific kernel available,
the work of [9] shows that for any radial (isotropic) kernel one has a dimension-
independent Monte-Carlo type convergence rate of O(N−1/2+δ ) provided arbitrary
linear functionals are allowed to generate the data. For translation-invariant (station-
ary) kernels the situation is similar. However, the constant in the O-notation depends
— in any case — on the sum of the eigenvalues of the kernel. For the radial case
this sum is simply κ(0) (independent of d), while for general translation invariant
kernels it is ˜K(0), which may depend on d.

These results show that — even though RBF methods are often advertised as
being “dimension-blind” — their rates of convergence are only excellent (i.e., spec-
tral for infinitely smooth kernels) if the dimension d is small. For large dimensions
the constants in the O-notation take over. If one, however, permits an anisotropic
scaling of the kernel (i.e., elliptical symmetry instead of strict radial symmetry) and
if those scale parameters decay rapidly with increasing dimension, then excellent
convergence rates for approximation of smooth functions can be maintained inde-
pendent of d.

6 Summary

In this paper we have attempted to shed some new light on the connections be-
tween piecewise polynomial splines and approximation methods based on repro-
ducing kernels and radial basis functions in particular. Using Mercer’s theorem and
the resulting eigenfunction expansions of positive definite kernels along with an
interpretation of these kernels as Green’s functions of appropriate differential oper-
ators we provided a new interpretation of RBF native spaces as generalized Sobolev
spaces (cf. [12, 13]). As a result we have a more intuitive interpretation of RBF
native spaces in terms of the smoothness of the functions they contain. Moreover,
special attention is paid to the native space norm and how it encodes information of
the inherent scale of the functions it contains.

Extreme scaling of kernels, i.e., “flat” limits are investigated and they provide a
new connection between finitely smooth RBF kernels and piecewise polynomial or
polyharmonic splines (see [38]). We also use the eigenfunction expansions to move
Fornberg’s RBF-QR algorithm onto a more standard theoretical foundation which
provides at the same time an algorithm for Gaussians that is applicable in any space
dimension.
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Finally, we discussed some of the results of [9] on dimension-independent
convergence rates for Gaussians. The main insight obtained from these results is that
one needs to allow for the use of an anisotropic scaling of the kernel with rapidly
decaying scale parameters in order to be able to guarantee high rates of convergence
in high space dimensions.

There is still much work to be done in the future. The theoretical framework
for Green’s functions on bounded domains needs to be completed, the new RBF-
QR algorithm for Gaussians needs to be implemented, and the hunt for kernels
with readily available or relatively easily computable eigenfunction expansions is
on. Any such kernel benefits from the ideas laid out for stable computation and
dimension-independent error bounds. There is also room to generalize the results on
flat limits of piecewise smooth RBF kernels. Finally, it is expected that the eigen-
function expansions discussed here can be exploited to obtain fast multipole-type
algorithms.
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Sparse Recovery Algorithms: Sufficient
Conditions in Terms of Restricted Isometry
Constants

Simon Foucart

Abstract We review three recovery algorithms used in Compressive Sensing for the
reconstruction s-sparse vectors x ∈C

N from the mere knowledge of linear measure-
ments y = Ax ∈ C

m, m < N. For each of the algorithms, we derive improved con-
ditions on the restricted isometry constants of the measurement matrix A that guar-
antee the success of the reconstruction. These conditions are δ2s < 0.4652 for basis
pursuit, δ3s < 0.5 and δ2s < 0.25 for iterative hard thresholding, and δ4s < 0.3843
for compressive sampling matching pursuit. The arguments also applies to almost
sparse vectors and corrupted measurements. The analysis of iterative hard thresh-
olding is surprisingly simple. The analysis of basis pursuit features a new inequality
that encompasses several inequalities encountered in Compressive Sensing.

1 Introduction

In this paper, we address the Compressive Sensing problem that consists in recon-
structing an s-sparse vector x ∈ C

N from the mere knowledge of the measurement
vector y = Ax ∈ C

m when m � N. We do not focus on the design of suitable mea-
surement matrices A ∈ C

m×N , since we take for granted the existence of matrices
having small restricted isometry constants (see Sect. 2 for the definition of these
constants). Instead, we focus on three popular reconstruction algorithms that allow
sparse recovery in a stable and robust fashion. For each algorithm, we present some
sufficient conditions in terms of restricted isometry constants that improve on the
ones currently found in the literature. The algorithms under consideration are as
follows:
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1.1 Basis Pursuit

Solve the convex optimization problem

minimize
z∈CN

‖z‖1 subject to Az = y. (BP)

1.2 Iterative Hard Thresholding

From an s-sparse vector x0 ∈C
N , iterate the single step

xn+1 = Hs(xn +A∗(y−Axn)), (IHT)

where the nonlinear operator Hs keeps s largest (in modulus) entries of a vector and
sets the other ones to zero, so that Hs(z) is a – not necessarily unique – best s-term
approximation to z ∈ C

N in �p-norm for any p ≥ 1.

1.3 Compressive Sampling Matching Pursuit

From an s-sparse vector x0 ∈C
N , iterate the following four steps

T n :=
{

indices of 2s largest (in modulus) entries of A∗(y−Axn)
}

, (CSMP1)

Un := T n ∪Sn, where Sn := supp(xn), (CSMP2)

un := argmin
{‖y−Az‖2,supp(z)⊆Un}, (CSMP3)

xn+1 := Hs(un). (CSMP4)

2 Restricted Isometry Constants

We recall the definition of restricted isometry constants introduced in [3].

Definition 1. The s-th order restricted isometry constant δs = δs(A) of a matrix A ∈
C

m×N is the smallest δ ≥ 0 such that

(1− δ )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+ δ )‖x‖2
2 for all s-sparse vectors x ∈C

N . (1)

Let us draw attention to a less common, though sometimes preferable, characteriza-
tion of restricted isometry constants. This reads

δs = max
S⊆{1,...,N},|S|≤s

‖A∗
SAS − Id‖2→2. (2)
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To justify the equivalence between the two characterizations, we start by noticing
that (1) is equivalent to
∣

∣‖ASx‖2
2 −‖x‖2

2

∣

∣≤ δ‖x‖2
2 for all S ⊆ {1, . . . ,N}, |S| ≤ s, and all x ∈ C

|S|.

We then observe that

‖ASx‖2
2 −‖x‖2

2 = 〈ASx,ASx〉− 〈x,x〉= 〈(A∗
SAS − Id)x,x〉.

Now, since the matrix (A∗
SAS − Id) is hermitian, we have

max
x∈C|S|\{0}

〈(A∗
SAS − Id)x,x〉

‖x‖2
= ‖A∗

SAS − Id‖2→2,

so that (1) is equivalent to

max
S⊆{1,...,N},|S|≤s

‖A∗
SAS − Id‖2→2 ≤ δ .

This establishes the identity (2), because δs is the smallest such δ . The expression
(2) gives, for instance, an easy explanation of

|〈Au,Av〉| ≤ δsupp(u)∪supp(v)‖u‖2‖v‖2 if u and v are disjointly supported,

a statement that can be derived in the real setting using a polarization formula, see
e.g. [2]. Indeed, with S := supp(u)∪ supp(v), we just have to write (with slightly
abusive notations)

|〈Au,Av〉| = |〈ASu,ASv〉− 〈u,v〉|= |〈(A∗
SAS − Id)u,v〉| ≤ ‖(A∗

SAS − Id)u‖2‖v‖2

≤ ‖A∗
SAS − Id‖2→2‖u‖2‖v‖2 ≤ δsupp(u)∪supp(v)‖u‖2‖v‖2.

The concept of restricted isometry constant offers an elegant way to formulate
sufficient conditions for the success of all the algorithms under consideration. In-
formally, if the restricted isometry constants are small, then all three algorithms are
guaranteed to succeed in reconstructing sparse vectors. Slightly more precisely, if
δt is small enough for some t related to s, then any s-sparse vector x ∈ C

N is re-
covered as the output of the algorithms. The object of what follows is to quantify
this statement. We note that a sufficient condition in terms of some δt can always be
imposed by a sufficient condition in terms of some other δt′ , according to the com-
parison result given in Proposition 1 below. For instance, in view of δ3s ≤ 3δ2s, the
sufficient condition δ3s < 1/2 obtained in Theorem 3 for iterative hard thresholding
can be imposed by the condition δ2s < 1/6 – which will actually be improved to
δ2s < 1/4. A heuristic way to compare such sufficient conditions is to recall that,
given a prescribed δ > 0, it is typical to have (c denoting an absolute constant)

δt ≤ δ provided m ≥ c
t

δ 2 ln(eN/t)
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for random measurement matrices. Therefore, it is desirable to make the ratio t/δ 2

as small as possible in order to minimize the necessary number of measurements.
In this sense, the sufficient condition δ3s < 1/2 is heuristically better than the con-
dition δ2s < 1/4, as 3s/(1/2)2 < 2s/(1/4)2. Let us now state the aforementioned
comparison result, which is just an extension of [7, Corollary 3.4] to the case where
t is not a multiple of s.

Proposition 1. For integers t ≥ s ≥ 1,

δs ≤ δt ≤ t −d
s

δ2s +
d
s

δs, where d := gcd(s, t).

Proof. The first inequality is clear. As for the second one, if d denotes a common
divisor of s and t, we introduce the integers k,n such that

s = kd, t = nd.

Given a t-sparse vector u ∈ C
N , we need to show that

∣

∣‖Au‖2
2 −‖u‖2

2

∣

∣≤
( t −d

s
δ2s +

d
s

δs

)

‖u‖2
2. (3)

Let T =: { j1, j2, . . . , jt} denote the support of u. We define n subsets S1,S2, . . . ,Sn

of T , each of size s, by (the indices are meant modulo t)

Si = { j(i−1)d+1, j(i−1)d+2, . . . , j(i−1)d+s}.

In this way, each j ∈ T belongs to exactly s/d = k sets Si, so that

u =
1
k ∑

1≤i≤n

uSi and ‖u‖2
2 =

1
k ∑

1≤i≤n

‖uSi‖2
2.

Inequality (3) then follows from

∣

∣‖Au‖2
2 −‖u‖2

2

∣

∣=
∣

∣〈(A∗A− Id)u,u〉∣∣≤ 1
k2 ∑

1≤i≤n
∑

1≤ j≤n

∣

∣〈(A∗A− Id)uSi ,uS j 〉
∣

∣

=
1
k2

(

∑
1≤i�= j≤n

∣

∣〈(A∗
Si∪S j

ASi∪S j − Id)uSi ,uS j 〉
∣

∣+ ∑
1≤i≤n

∣

∣〈(A∗
Si

ASi − Id)uSi ,uSi〉
∣

∣

)

≤ 1
k2

(

∑
1≤i�= j≤n

δ2s‖uSi‖2‖uS j‖2 + ∑
1≤i≤n

δs‖uSi‖2
2

)

=
δ2s

k2

(

∑
1≤i≤n

‖uSi‖2

)2

− δ2s

k2 ∑
1≤i≤n

‖uSi‖2
2 +

δs

k2 ∑
1≤i≤n

‖uSi‖2
2
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≤ δ2s n

k2 ∑
1≤i≤n

‖uSi‖2
2 −

δ2s − δs

k2 ∑
1≤i≤n

‖uSi‖2
2 =

(δ2s n

k2 − δ2s − δs

k2

)

∑
1≤i≤n

‖uSi‖2
2

=
(n

k
δ2s − 1

k
(δ2s − δs)

)

‖u‖2
2 =

( t
s

δ2s − 1
k
(δ2s −δs)

)

‖u‖2
2.

In order to make the latter as small as possible, we need to take k as small as possible,
i.e., to take d as large as possible, hence the choice d := gcd(s, t). This finishes the
proof. ��

3 Basis Pursuit

In this section, we recall that s-sparse recovery via basis pursuit succeeds as soon
as δ2s < 0.46515. Contrary to the other sections, we do not give a full proof of this
statement, as this was done in [4].

Theorem 1. Suppose that the 2s-th order restricted isometry constant of the matrix
A ∈ C

m×N satisfies

δ2s <
3

4+
√

6
≈ 0.46515.

If x∈C
N is an s-sparse vector, then it is recovered as a solution of (BP) with y= Ax.

More generally, if S denotes an index set of s largest (in modulus) entries of a vector
x ∈ C

N and if y = Ax+ e for some error term e ∈ C
m satisfying ‖e‖2 ≤ η , then a

minimizer x� of ‖z‖1 subject to ‖Az−y‖2 ≤ η approximates the vector x with error

‖x−x�‖p ≤ C

s1−1/p
‖xS‖1 +Ds1/p−1/2η, all p ∈ [1,2],

where the constants C and D depend only on δ2s.

Classical arguments leading to more demanding sufficient conditions, such as the
condition δ2s <

√
2−1 ≈ 0.4142 from [2], make use of the key inequality

‖vSk‖2 ≤ 1√
s
‖vSk−1‖1, k ≥ 1, (4)

where the sets S1,S2, . . . of s indices are ordered by nonincreasing moduli of entries
of v∈C

N . This step was refined in [1] with the introduction of the shifting inequality
due to Cai, Wang, and Xu. This inequality was also used in [4] to obtain the sufficient
condition of Theorem 1, and can more generally be used to obtain other sufficient
conditions in terms of δ3s or δ4s, say, as was done in [1]. Instead of comparing the
�2-norm of the subvector vSk with the �1-norm of the shifted subvector vSk−1 in (4),
the shifting inequality consists in reducing the size of the shift from s to roughly
s/4. Precisely, it states that
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for k ≥ s/4, if a1 ≥ ·· · ≥
︸ ︷︷ ︸

u

v
︷ ︸︸ ︷

ak+1 ≥ ·· · ≥ as ≥ ·· · ≥ ak+s ≥ 0, then

‖v‖2 ≤ 1√
s
‖u‖1.

This is in fact the particular case p = 1, q = 2, t = s, of the following result, which
generalizes the shifting inequality to other norms and to other vector sizes.

Theorem 2. If 0 < p < q and a1 ≥ ·· · ≥
︸ ︷︷ ︸

u

v
︷ ︸︸ ︷

ak+1 ≥ ·· · ≥ as ≥ ·· · ≥ ak+t ≥ 0, then

‖v‖q ≤Cp,q(k,s, t)‖u‖p,

where

Cp,q(k,s, t) = max
{ t p/q

s
,
( p

q

)p/q(

1− p
q

)1−p/q 1

k1−p/q

}1/p
. (5)

When u and v do not overlap much, the second term can be discarded, i.e.,

Cp,q(k,s, t) =
t1/q

s1/p
provided s− k ≤

( p
q

)

s. (6)

Proof. The constant Cp,q(k,s, t)q is a solution of the maximization problem

maximize aq
k+1 + · · ·+aq

k+t subject to ap
1 + · · ·+ap

s ≤ 1, a1 ≥ ·· · ≥ ak+t ≥ 0.

Thus, setting r := q/p > 1, we aim at maximizing the convex function

f (x1, . . . ,xk+t) := xr
k+1 + · · ·+ xr

k+t

over the convex polytope

C :=
{

x ∈ R
k+t : x1 + · · ·+ xs ≤ 1,x1 ≥ ·· · ≥ xk+t ≥ 0

}

.

The maximum is attained at one of the vertices of the convex polytope C . These
vertices are obtained by turning into equalities k + t of the k + t + 1 inequalities
defining C . We have to separate several cases:

• If x1 = · · ·= xk+t = 0, then

f (x1, . . . ,xk+t) = 0;

• If x1 + · · ·+ xs = 1 and x1 = · · ·= xh > xh+1 = xk+t = 0 for some 1 ≤ h ≤ k, then

f (x1, . . . ,xk+t) = 0;
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• If x1 + · · ·+ xs = 1 and x1 = · · ·= xh > xh+1 = xk+t = 0 for some k ≤ h ≤ s, then
x1 = · · ·= xh = 1/h, and

f (x1, . . . ,xk+t) =
h− k

hr ;

• If x1 + · · ·+ xs = 1 and x1 = · · · = xh > xh+1 = xk+t = 0 for some s ≤ h ≤ k+ t,
then x1 = · · ·= xh = 1/s, and

f (x1, . . . ,xk+t) =
h− k

sr .

It follows that the desired constant is

Cp,q(k,s, t)
q = max

{

max
k≤h≤s

h− k
hr , max

s≤h≤k+t

h− k
sr

}

.

Considering h as a continuous variable, we observe that the function g(h) :=
(h− k)/hr is increasing until the critical point h∗ :=

(

r/(r − 1)
)

k and decreasing
thereafter, so that the first maximum is no larger than g(h∗) =

(

(r−1)r−1/rr
)

/kr−1,
or than g(s) = (s−k)/sr if h∗ ≥ s. Now taking into account that (h−k)/sr increases
with h on [s,k+ t], we deduce

Cp,q(k,s, t)
q

⎧

⎪

⎨

⎪

⎩

≤ max
{ (r−1)r−1

rr

1
kr−1 ,

t
sr

}

,

=
t
sr if

r
r−1

k ≥ s.

We simply obtain (5) and (6) by rearranging the latter. It is worth noting that the
constants appearing in (5) and (6) cannot be improved. ��

It is interesting to point out that Theorem 2 contains two inequalities that are
classical in Approximation Theory and that are often used in Compressive Sensing.
These inequalities are, for 0 < p < q and x ∈ R

n,

σk(x)q ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

k1/p−1/q
‖x‖p,

Dp,q

k1/p−1/q
‖x‖p, Dp,q :=

1

(q/p−1)1/q
=

(

(p/q)p/q

(1− p/q)p/q

)1/p

.

This corresponds to the case s = n, t = n− k, for which we indeed have

k1−p/qCp,q(k,n,n− k)p ≤ min{1,Dp
p,q},

since the left-hand side reduces to

max
{(

1− k
n

)p/q( k
n

)1−p/q
,
( p

q

)p/q(

1− p
q

)1−p/q}

=
( p

q

)p/q(

1− p
q

)1−p/q
,

and the latter is readily seen to be bounded by min{1,Dp
p,q}.



72 Simon Foucart

4 Iterative Hard Thresholding

In this section, we study a first alternative to the basis pursuit algorithm, namely
the iterative hard thresholding algorithm. Importantly, this is an easy-to-implement
algorithm which requires only a few computational operations. We give an elegant
and surprisingly simple justification of the success of s-sparse recovery using this
algorithm as soon as δ3s < 1/2. This improves the result of [4], where the sufficient
condition δ3s < 1/

√
8 was obtained – although the main theorem was stated for

δ3s < 1/
√

32 in order to achieve a rate of convergence equal to ρ = 1/2.

Theorem 3. Suppose that the 3s-th order restricted isometry constant of the matrix
A ∈ C

m×N satisfies

δ3s <
1
2
.

If x ∈C
N is an s-sparse vector, then the sequence (xn) defined by (IHT) with y = Ax

converges to the vector x.
More generally, if S denotes an index set of s largest (in modulus) entries of a vector
x ∈ C

N and if y = Ax+ e for some error term e ∈ C
m, then

‖xn −xS‖2 ≤ ρn ‖x0 −xS‖2 + τ ‖AxS + e‖2, all n ≥ 0, (7)

where

ρ := 2δ3s < 1 and τ :=
2
√

1+ δ2s

1−2δ3s
.

Remark 1. The value τ = 6 was obtained in [4] for ρ ≤ 1/2, which was ensured by
δ3s ≤ 1/

√
32. Theorem 3 gives the value τ ≈ 4.4721 for ρ ≤ 1/2, i.e., for δ3s ≤ 1/4,

and the value τ ≈ 3.3562 for δ3s ≤ 1/
√

32.

Proof. We simply use the fact that the s-sparse vector xn+1 is a better s-term ap-
proximation to

vn := xn +A∗(y−Axn) = xn +A∗A(xS −xn)+A∗(AxS + e)

than the s-sparse vector xS to write

‖(vn −xS)+ (xS −xn+1)‖2
2 ≤ ‖vn −xS‖2

2.

Expanding the left-hand side and eliminating ‖vn −xS‖2
2 lead to, with e′ := AxS + e

and V := supp(x)∪ supp(xn)∪ supp(xn+1),

‖xn+1 − xS‖2
2 ≤ 2ℜ〈vn −xS,xn+1 −xS〉
= 2ℜ〈(Id−A∗A)(xn −xS)+A∗e′,xn+1 −xS〉
≤ 2ℜ〈(Id−A∗

V AV )(xn −xS),xn+1 −xS〉+2ℜ〈e′,A(xn+1 −xS)〉
≤ 2‖Id−A∗

V AV‖2→2‖xn−xS‖2‖xn+1 −xS‖2 +2‖e′‖2‖A(xn+1 −xS)‖2

≤ 2δ3s‖xn −xS‖2‖xn+1−xS‖2 +2‖e′‖2

√

1+ δ2s‖xn+1−xS‖2.
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Simplifying by ‖xn+1 −xS‖2, we derive

‖xn+1 −xS‖2 ≤ 2δ3s‖xn −xS‖2 +2
√

1+ δ2s‖e′‖2.

This easily implies the estimate (7). In particular, if x is an s-sparse vector (xS = 0)
and if the measurements are accurate (e = 0), then

‖xn −x‖2 ≤ ρn‖x0 −x‖,

so the sequence (xn) converges to x as soon as ρ < 1, i.e., δ3s < 1/2. ��
As already mentioned, we could call upon Proposition 1 with t = 3s to derive a
sufficient condition in terms of δ2s for the success of s-sparse recovery via iterative
hard thresholding, namely δ2s < 1/6. This condition can actually be improved using
the previous technique. For simplicity, we only state the result in the case of exactly
sparse vectors measured with perfect accuracy.

Theorem 4. Suppose that the 2s-th order restricted isometry constant of the matrix
A ∈ C

m×N satisfies

δ2s <
1
4
.

If x ∈C
N is an s-sparse vector, then the sequence (xn) defined by (IHT) with y = Ax

converges to the vector x.

Proof. We use what has been done in the proof of Theorem 3, specified to the case
e′ = 0, to write

‖xn+1 −x‖2
2 ≤ 2ℜ〈(Id−A∗A)(xn −x),xn+1−x〉.

Let us decompose supp(x)∪ supp(xn)∪ supp(xn+1) into the three disjoint sets

V1 := (supp(x)∪ supp(xn)) ∩ (supp(x)∪ supp(xn+1)),
V2 := (supp(x)∪ supp(xn)) \ (supp(x)∪ supp(xn+1)),
V3 := (supp(x)∪ supp(xn+1)) \ (supp(x)∪ supp(xn)).

Since V1 ∪V2, V2 ∪V3, and V2 ∪V3 all have size at most 2s, we have

‖xn+1−x‖2
2 = 2ℜ〈(Id−A∗A)

(

(xn −x)V1 +(xn −x)V2

)

,(xn+1−x)V1 +(xn+1−x)V3〉
= 2ℜ〈(Id−A∗A)

(

(xn −x)V1

)

,(xn+1−x)V1〉
+ 2ℜ〈(Id−A∗A)

(

(xn −x)V1

)

,(xn+1−x)V3〉
+ 2ℜ〈(Id−A∗A)

(

(xn −x)V2

)

,(xn+1−x)V1〉
+ 2ℜ〈(Id−A∗A)

(

(xn −x)V2

)

,(xn+1−x)V3〉
≤ 2δ2s

(‖(xn −x)V1‖2‖(xn+1−x)V1‖2 +‖(xn −x)V1‖2‖(xn+1−x)V3‖2

+ ‖(xn−x)V2‖2‖(xn+1−x)V1‖2 +‖(xn −x)V2‖2‖(xn+1−x)V3‖2
)

≤ 2δ2s
(‖(xn −x)V1‖2

2 +‖(xn −x)V1‖2
2 +‖(xn −x)V2‖2

2 +‖(xn −x)V2‖2
2

)1/2
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× (‖(xn+1−x)V1‖2
2 +‖(xn+1−x)V3‖2

2 +‖(xn+1−x)V1‖2
2 +‖(xn+1−x)V3‖2

2

)1/2

= 2δ2s
(

2‖xn −x‖2
2

)1/2(
2‖xn+1−x‖2

2

)1/2
= 4δ2s‖xn −x‖2‖xn+1−x‖2.

This yields, after simplification by ‖xn+1 −x‖2,

‖xn+1 −x‖2 ≤ ρ ‖xn −x‖2, ρ := 4δ2s.

Convergence of the sequence (xn) towards x is therefore guaranteed as soon as
ρ < 1, i.e., δ2s < 1/4. ��
Remark 2. The better sufficient condition δ2s < 1/3 was obtained in [6] with a slight
modification of the iterative hard thresholding algorithm, namely the iteration

xn+1 = Hs

(

xn +
3
4

A∗(y−Axn)
)

. (IHT3/4)

Note, however, that the condition δ2s < 1/3 is not heuristically better than the con-
dition δ3s < 1/2, since (2s)/(1/3)2 > (3s)/(1/2)2.

5 Compressive Sampling Matching Pursuit

In this section, we study a second alternative to the basis pursuit algorithm, namely
the compressive sampling matching pursuit algorithm. We give a proof of the suc-
cess of s-sparse recovery using this algorithm as soon as δ4s < 0.38427. This im-
proves the original condition of [7]. There, the authors targeted a rate of convergence
equal to ρ = 1/2, so that they gave the sufficient condition δ4s ≤ 0.1, but their argu-
ments actually yield ρ < 1 as soon as δ4s < 0.17157.

Theorem 5. Suppose that the 4s-th order restricted isometry constant of the matrix
A ∈ C

m×N satisfies

δ4s <

√

2

5+
√

73
≈ 0.38427.

If x ∈ C
N is an s-sparse vector, then the sequence (xn) defined by (CSMP1−4) with

y = Ax converges to the vector x.
More generally, if S denotes an index set of s largest (in modulus) entries of a vector
x ∈ C

N and if y = Ax+ e for some error term e ∈ C
m, then

‖xn −xS‖2 ≤ ρn ‖x0 −xS‖2 + τ ‖AxS + e‖2, all n ≥ 0, (8)

where the positive constants ρ < 1 and τ depend only on δ4s.

Remark 3. The explicit expressions for ρ and τ are given at the end of the proof
(the constant τ is made dependent only on δ4s by using δ3s ≤ δ4s). Note that the
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value τ = 15 was obtained in [7] for ρ ≤ 1/2, which was ensured by δ4s ≤ 0.1.
Theorem 5 gives the value τ ≈ 10.369 for ρ ≤ 1/2, i.e., for δ4s ≤ 0.22665, and the
value τ ≈ 5.6686 for δ4s ≤ 0.1.

Proof. Step (CSMP3) says that Aun is the best �2-approximation to y from the space
{Az,supp(z)⊆Un}; hence, it is characterized by

〈Aun −y,Az〉= 0 whenever supp(z)⊆Un. (9)

Setting e′ := AxS + e to have y = AxS + e′, this can be rewritten as

〈un −xS,A
∗Az〉= 〈e′,Az〉 whenever supp(z)⊆Un. (10)

This yields in particular

‖(un − xS)Un‖2
2 = 〈un −xS,(un −xS)Un〉
= 〈un −xS,(Id−A∗A)

(

(un −xS)Un
)〉+ 〈e′,A((un −xS)Un

)〉
≤ δ4s‖un −xS‖2‖(un −xS)Un‖2 +‖e′‖2

√

1+ δ3s‖(un −xS)Un‖2,

which gives, after simplification by ‖(un −xS)Un‖2,

‖(un −xS)Un‖2 ≤ δ4s‖un −xS‖2 +
√

1+ δ3s‖e′‖2. (11)

It follows that

‖un −xS‖2
2 = ‖(un −xS)Un‖2

2 +‖(un −xS)Un‖2
2

≤ ‖(un −xS
)

Un‖2
2 +
(

δ4s‖un −xS‖2 +
√

1+ δ3s‖e′‖2)
2.

This reads p(‖un −xS‖2)≤ 0 for the quadratic polynomial defined by

p(t) := (1− δ 2
4s) t2 − (2δ4s

√

1+ δ3s‖e′‖2) t − (‖(un −xS)Un‖2
2 +(1+ δ3s)‖e′‖2

2).

This proves that ‖un −xS‖2 is bounded by the largest root of p, i.e.,

‖un − xS‖2 ≤
δ4s

√
1+ δ3s‖e′‖2 +

√

(1− δ 2
4s)‖(un −xS)Un‖2

2 +(1+ δ3s)‖e′‖2
2

1− δ 2
4s

≤ 1
√

1− δ 2
4s

‖(un −xS)Un‖2 +

√

1+ δ3s

1− δ4s
‖e′‖2. (12)

We now turn to the estimate for ‖xn+1 −xS‖2. We start by writing

‖xn+1 − xS‖2
2 = ‖(un −xS)− (un −xn+1)‖2

2

= ‖un −xS‖2
2 +‖un −xn+1‖2

2 −2ℜ〈un −xS,un −xn+1〉. (13)
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Step (CSMP4) implies that xn+1 is a better s-term approximation to un than xS∩Un ,
so that

‖un −xn+1‖2 ≤ ‖(un −xS)Un‖2. (14)

We also note, in view of (10) and of supp(un −xn+1)⊆Un, that

|〈un −xS,un − xn+1〉|= |〈un −xS,(Id−A∗A)(un −xn+1)〉+ 〈e′,A(un −xn+1)〉|
≤ δ4s‖un −xS‖2‖un −xn+1‖2 +‖e′‖2

√

1+ δ3s‖un −xn+1‖2. (15)

Substituting (14) and (15) into (13), then using (11), we obtain

‖xn+1−xS‖2
2 ≤ ‖un −xS‖2

2 +‖(un −xS)Un‖2
2 +2δ4s‖un −xS‖2‖(un −xS)Un‖2

+2
√

1+ δ3s‖e′‖2‖(un −xS)Un‖2

= (1+3δ 2
4s)‖un −xS‖2

2 +6δ4s

√

1+ δ3s‖un −xS‖2‖e′‖2 +3(1+δ3s)‖e′‖2
2

≤ (1+3δ 2
4s)

(

‖un −xS‖2 +

√

3(1+ δ3s)

1+3δ 2
4s

‖e′‖2

)2

.

Combining the latter with (12), we deduce

‖xn+1−xS‖2 ≤
√

1+3δ 2
4s

1− δ 2
4s

‖(un−xS)Un‖2+

(

√

1+3δ 2
4s

1− δ4s
+
√

3

)

√

1+δ3s‖e′‖2. (16)

It remains to bound ‖(un −xS)Un‖2 in terms of ‖xn −xS‖2. For this, we notice that
un

Un = 0 = xn
Un , so that

‖(un −xS)Un‖2 = ‖(xn −xS)Un‖2 ≤ ‖(xn −xS)T n‖2 = ‖(xn −xS)(S∪Sn)\Tn‖2. (17)

Step (CSMP1) means that A∗(y−Axn)T n is a best 2s-term approximation to A∗(y−
Axn)S∪Sn∪Tn among all vectors supported on S∪Sn ∪T n. In particular,

‖A∗(y−Axn)(S∪Sn)\Tn‖2 ≤ ‖A∗(y−Axn)T n\(S∪Sn)‖2

≤ ‖A∗A(xS −xn)T n\(S∪Sn)‖2 +‖(A∗e′)T n\(S∪Sn)‖2

= ‖((A∗A− Id)(xS −xn))T n\(S∪Sn)‖2 +‖(A∗e′)T n\(S∪Sn)‖2

≤ δ4s‖xS −xn‖2 +‖(A∗e′)T n\(S∪Sn)‖2. (18)

On the other hand, we have

‖A∗(y−Axn)(S∪Sn)\T n‖2 ≥ ‖A∗A(xS −xn)(S∪Sn)\T n‖2 −‖(A∗e′)(S∪Sn)\T n‖2

≥ ‖(xS − xn)(S∪Sn)\Tn‖2 −‖((A∗A− Id)(xS −xn))(S∪Sn)\T n‖2 −‖(A∗e′)(S∪Sn)\Tn‖2

≥ ‖(xS − xn)(S∪Sn)\Tn‖2 −δ2s‖xS −xn‖2 −‖(A∗e′)(S∪Sn)\T n‖2. (19)
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From (18), (19), and (2), we derive that

‖(un −xS)Un‖2 ≤ (δ2s +δ4s)‖xS −xn‖2 +‖(A∗e′)T n\(S∪Sn)‖2 +‖(A∗e′)(S∪Sn)\Tn‖2

≤ 2δ4s‖xS −xn‖2 +
√

2‖(A∗e′)(S∪Sn)ΔTn‖2

≤ 2δ4s‖xS −xn‖2 +
√

2(1+ δ4s)‖e′‖2. (20)

Putting (16) and (20) together, we finally conclude that

‖xn+1−xS‖2 ≤ ρ ‖xn −xS‖2 +(1−ρ)τ ‖e′‖2. (21)

where

ρ :=

√

4δ 2
4s(1+3δ 2

4s)

1− δ 2
4s

,

(1−ρ)τ :=

√

2(1+3δ 2
4s)

1− δ4s
+

√

(1+3δ 2
4s)(1+ δ3s)

1− δ4s
+
√

3(1+ δ3s).

To finish, we point out that the constant ρ is less than one when

12δ 4
4s + 5δ 2

4s −1 < 0, i.e., δ4s <

√

2

5+
√

73
≈ 0.38427,

and that (21) readily implies (8). ��
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Lagrange Interpolation and New Asymptotic
Formulae for the Riemann Zeta Function

Michael I. Ganzburg

Abstract An asymptotic representation for the Riemann zeta function ζ (s) in terms
of the Lagrange interpolation error of some function fs,2N at the Chebyshev nodes
is found. The representation is based on new error formulae for the Lagrange poly-
nomial interpolation to a function of the form f (y) =

∫

R

ϕ(t)
t−iy dt. As the major ap-

plication of this result, new criteria for ζ (s) = 0 and ζ (s) �= 0 in the critical strip
0 < Res < 1 are given.

1 Introduction

The Riemann zeta function can be defined by the following integral representation
[3, Sect. 1.12]:

ζ (s) =
2s−1

(1−21−s)Γ (s)

∫ ∞

0

ts−1e−t

cosh t
dt, 0 < Re s < 1. (1)

There are several other integral representations for ζ (s) in the critical strip 0 <
Res < 1 [3, Sect. 1.12].

In this paper, we find an asymptotic representation for ζ (s) in terms of the La-
grange interpolation error of some function fs,2N at the Chebyshev nodes. This
formula is given in Sect. 4 (Corollary 9). The representation is based on new er-
ror formulae for the Lagrange polynomial interpolation to a function of the form
f (y) =

∫

R

ϕ(t)
t−iy dt. These results are discussed in Sect. 2 (Theorem 1, Corollary 3,

and Example 4). Some technical asymptotics that are needed for the proof of Corol-
lary 9 are presented in Sect. 3.

Michael I. Ganzburg
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As the major application of Corollary 9, we obtain in Sect. 5 (Corollary 14) new
criteria for ζ (s) = 0 and ζ (s) �= 0 in the critical strip. In addition, several other
asymptotic representations for ζ (s) are given in Theorem 13 and Corollaries 10 and
11. Historic remarks are given in Sect. 6.

Notation. Let R be the real axis and let C=R+ iR be the complex plane. In addition,
we use the standard notation

|| f ||Lp(−a,a) :=

(

∫ a

−a
| f (y)|pdy

)1/p

, 0 < p < ∞, 0 < a ≤ ∞.

Throughout the paper C,C1,C2, . . . are positive constants independent of essential
parameters, andC(d1, . . . ,dk),C1(d1, . . . ,dk),C2(d1, . . . ,dk), . . . denote positive con-
stants that depend only on the parameters d1, . . . ,dk. The same symbol does not
necessarily denote the same constant in different occurrences.

2 Lagrange Interpolation

Let {yk}n+1
k=1 ⊂ R be a set of distinct Lagrange interpolation nodes. Let us set

Hn+1(y) := ∏n+1
k=1(y− yk). For a continuous function f : R→ C, let

Ln(y) = Ln(y, f ,Hn+1)

be the unique Lagrange interpolation polynomial of degree n to f at the zeros of
Hn+1.

We consider a class of functions f of the form

f (y) =
∫

R

ϕ(t)
t − iy

dt, (2)

where ϕ : R→ C is a measurable function satisfying the condition
∫

R

∣

∣

∣

∣

ϕ(t)
t

∣

∣

∣

∣

dt < ∞. (3)

Note that by the Lebesgue Domination Theorem, the function f defined by (2) is
continuous on R. Then the following result holds:

Theorem 1. If a function f : R→ C given by (2) satisfies (3), then for any y ∈ R,

f (y)−Ln(y, f ,Hn+1) = Hn+1(y)
∫

R

ϕ(t)

(t − iy)Hn+1(−it)
dt. (4)

Remark 2 If 0∈ {yk}n+1
k=1, then the right-hand side of (4) can be undefined at y= 0.

In this case, identity (4) at y = 0 should be replaced with

f (0)−Ln(0) = lim
y→0

Hn+1(y)
∫

R

ϕ(t)
(t − iy)Hn+1(−it)

dt.
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Proof of Theorem 1 We first note that the Lagrange interpolation polynomial to the
function Ft(y) := (t − iy)−1, where t is a fixed number from R\ {0}, is

Ln(y,Ft ,Hn+1) =
Hn+1(−it)−Hn+1(y)
(t − iy)Hn+1(−it)

(5)

(cf. [12, Sect. 3.1]). Therefore, for all y ∈ R and for all t ∈R\ {0},

1
t − iy

−Ln(y,(t − i·)−1,Hn+1) =
Hn+1(y)

(t − iy)Hn+1(−it)
. (6)

Next, we note that the polynomial Ln defined by (5) has coefficients depending on
t. Namely, if Hn+1(z) = ∑n+1

m=0 cmzm, then it follows from (5) that

Ln(y,Ft ,Hn+1) =
n

∑
p=0

(∑n−p
k=0 ck+p+1(−it)k)yp

Hn+1(−it)
=

n

∑
p=0

(∑n−p
k=0 ck+p+1yk)(−it)p

Hn+1(−it)
. (7)

Further, for all t ∈ R and p = 0,1, . . . ,n,

|t|p
|Hn+1(−it)| ≤

{

C(p,n), if 0 /∈ {yk}n+1
k=1

C(p,n)/t, if 0 ∈ {yk}n+1
k=1.

(8)

Then multiplying both sides of (6) by ϕ(t) and integrating over R, we see that
the integral In(y) :=

∫ ∞
0 ϕ(t)Ln(y,Ft ,Hn+1)dt exists for each y ∈ R, if 0 /∈ {yk}n+1

k=1,
and it exists for each y ∈ R \ {0}, if 0 ∈ {yk}n+1

k=1, by (3), (7), and (8). Moreover,
In(y) = Ln(y, f ,Hn+1), by (2). Therefore, taking into account Remark 1 in case of
0 ∈ {yk}n

k=1, we conclude that (4) holds for all y ∈ R. �

For even or odd functions f and polynomials Hn+1, it is possible to establish more
precise representations.

Corollary 3 (a) If an even function f of the form

f (y) =
∫ ∞

0

ϕe(t)
t2 + y2 dt (9)

satisfies the condition
∫ ∞

0

|ϕe(t)|
t2 dt < ∞, (10)

then for any y ∈ R and every polynomial Hn+1(y) = ∏(n+1)/2
k=1 (y2 − y2

k) of even
degree n+ 1,

f (y)−Ln−1(y, f ,Hn+1) = Hn+1(y)
∫

R

ϕe(t)
(t2 + y2)Hn+1(it)

dt. (11)
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(b) If an even function f defined by (9) satisfies (10), then for any y ∈ R and every

polynomial Hn+1(y) = y∏n/2
k=1(y

2 − y2
k) of odd degree n+1,

f (y)−Ln(y, f ,Hn+1) = iyHn+1(y)
∫

R

ϕe(t)
t(t2 + y2)Hn+1(−it)

dt. (12)

(c) If an odd function f of the form

f (y) = y
∫ ∞

0

ϕo(t)
t2 + y2 dt (13)

satisfies the condition

∫ ∞

0

|ϕo(t)|
t2 dt < ∞, (14)

then for any y ∈ R and every polynomial Hn+1(y) = ∏(n+1)/2
k=1 (y2 − y2

k) of even
degree n+ 1,

f (y)−Ln(y, f ,Hn+1) = yHn+1(y)
∫

R

ϕo(t)
(t2 + y2)Hn+1(it)

dt. (15)

(d) If an odd function f defined by (13) satisfies (14), then for any y ∈ R and every

polynomial Hn+1(y) = y∏n/2
k=1(y

2 − y2
k) of odd degree n+1,

f (y)−Ln−1(y, f ,Hn+1) =−iHn+1(y)
∫

R

tϕo(t)
(t2 + y2)Hn+1(−it)

dt. (16)

Proof. If f given by (9) satisfies (10), then

f (y) =
1
2

∫

R

ϕe(|t|)
t(t − iy)

dt,

and using Theorem 1 for ϕ(t) = ϕe(|t|)/t, we have

f (y)−Ln(y, f ,Hn+1) =
1
2

Hn+1(y)
∫

R

ϕe(|t|)
t(t − iy)Hn+1(it)

dt

=
1
2

Hn+1(y)

(

∫

R

ϕe(|t|)
(t2 + y2)Hn+1(it)

dt + iy
∫

R

ϕe(|t|)
t(t2 + y2)Hn+1(it)

dt

)

=
1
2

Hn+1(y)
∫

R

ϕe(|t|)
(t2 + y2)Hn+1(it)

dt.

Therefore, (11) holds. Identities (12), (15), and (16) can be proved similarly. �

The following example plays an important role in finding new asymptotic relations
for ζ (s).
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Example 4 For s ∈C with Re s > 0 and μ > 0, we set

fs,μ(y) := |y|sVs+2(2μ |y|,0), y ∈ R,

where Vν(w,z) is a Lommel’s function of two variables. Using formulae in [13, Sect.
16.5], we have

fs,μ(y) = |y|s cos(μ |y|+ sπ/2)− μ−s
∞

∑
m=0

(−1)m(μy)2m

Γ (1− s+2m)
. (17)

The following integral representation for fs,μ can be found in [9, (3.389.7)]:

fs,μ(y) =− sin(sπ)
π

∫ ∞

0

ts+1e−μt

t2 + y2 dt, 0 < Re s < 1, μ > 0. (18)

Here, the function ϕ(t) := −sin(sπ)ts+1e−μt/π is continuous on R, and it satisfies
condition (10). Therefore by (12) (y ∈ R),

fs,μ(y)−Ln(y, fs,μ ,Hn+1) =
isin(sπ)yHn+1(y)

π

∫

R

tse−μt

(t2 + y2)Hn+1(−it)
dt, (19)

where n is even and Hn+1(y) = y∏n/2
k=1(y

2 − y2
k) is an odd polynomial with distinct

real zeros.

3 Asymptotic Behavior of the Interpolation Error

In this section, we find an asymptotic representation for the interpolation error in
(19) in case of μ = 2N and Hn+1(y) = yT2N(y). Here,

TM(y) := (1/2)((y+
√

y2 −1)M +(y−
√

y2 −1)M)

is the Chebyshev polynomial of the first kind of degree M. We begin with some
technical estimates.

Lemma 5 For 0 ≤ t < M < ∞,

exp(t − t3/(6M2))≤ (t/M+
√

(t/M)2 +1)M ≤ exp(t). (20)

Proof. The function sinh−1 v = log(v+
√

v2 +1) is odd, and it has the following
power series expansion for |v|< 1 (see [9, (1.641.2)]):

log(v+
√

v2 +1) = v− v3/6+3v5/40− . . .=
∞

∑
k=0

(−1)kakv2k+1, (21)
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where

ak :=
(2k)!

22k(k!)2(2k+1)
, k = 0,1, · · ·

is a decreasing sequence since ak+1/ak = (4k2 + 4k+ 1)/(4k2 + 10k+ 6)< 1, k =
0,1, . . .. Therefore, (20) follows from (21) for v = t/M ∈ [0,1). �

Lemma 6 For M = 2N, N ∈ N, and 0 ≤ t < M,

FM(t) :=

∣

∣

∣

∣

∣

(−1)M/2

TM(it/M)
− 1

cosh t

∣

∣

∣

∣

∣

≤ t3 exp(t3/(3M2))

3M2 cosh t
. (22)

Proof. Using Lemma 5, we have

FM(t) =
2|et + e−t − (t/M +

√

(t/M)2 +1)M − (t/M+
√

(t/M)2 +1)−M|
((t/M+

√

(t/M)2 +1)M +(t/M +
√

(t/M)2 +1)−M)cosh t

≤ 2(exp(t)(1− exp(−t3/(6M2)))+ exp(−t)(exp(t3/(6M2))−1))
(exp(t − t3/(6M2))+ exp(−t))cosh t

≤ exp(t3/(6M2)(exp(t)(1− exp(−t3/(6M2)))+ exp(−t)(exp(t3/(6M2))−1))

cosh2 t
(23)

Finally, applying the elementary inequalities

1− e−v < vev, ev −1 < vev, v > 0,

to the right-hand side of (23), we arrive at (22). �

Next, we find the asymptotic behavior of the integral

Is(M,y) :=
∫ ∞

0

ts−1e−Mt

(1+(t/y)2)TM(it)
dt =

1
Ms

∫ ∞

0

ts−1e−t

(1+ t2/(My)2)TM(it/M)
dt, (24)

where y ∈R, M = 2N, N ∈ N, Res > 0.
We shall approximate I(M,y) by the integral

Rs(M,y) :=
(−1)M/2

Ms

∫ ∞

0

ts−1e−t

(1+ t2/(My)2)cosh t
dt. (25)

Lemma 7 The following asymptotic holds:

Is(M,y) = Rs(M,y)+Δs(N,y), y ∈ R, M = 2N, N ∈N, Res > 0, (26)
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where
sup
y∈R

|Δs(N,y)| ≤C(s)N−Re s−2. (27)

Proof. It follows from (24) and (25) that

Δs(N,y) =
(−1)M/2

Ms

∫ ∞

0

ts−1e−t

1+ t2/(My)2

(

(−1)M/2

TM(it/M)
− 1

cosh t

)

dt

=
(−1)M/2

Ms

(

∫ M1

0
+

∫ ∞

M1

)

=
(−1)M/2

Ms (I1(M,M1,y)+ I2(M,M1,y), (28)

where M1 is any number from (0,M). Next by Lemma 6,

|I1(M,M1,y)| ≤
∫ M1

0

ts−1e−t

1+ t2/(My)2 FM(t)dt

≤ exp(M3
1/(3M2)

3M2

∫ M1

0

tRes+2e−t

cosh t
dt ≤ C1(s)exp(M3

1/(3M2))

M2 . (29)

Further,

|I2(M,M1,y)| ≤
∫ ∞

M1

tRes−1e−t

1+ t2/(My)2

(

1
|TM(it/M)| +

1
cosh t

)

dt

≤ 2
∫ ∞

M1

tRes−1e−tdt = 2Γ (Re s,M1)≤C2(s)M
Re s−1
1 e−M1 , (30)

where Γ (z,β ) is the upper incomplete gamma function. Therefore, combining rela-
tion (28) with (29) and (30), we have

sup
y∈R

|Δs(N,y)| ≤C3(s)M
−Re s(M−2 exp(M3

1/(3M2))+MRes−1
1 e−M1). (31)

Choosing M1 = M2/3, M = 2N, in (31), we obtain (27). This completes the proof of
the lemma. �

An asymptotic representation for the interpolation error is given in the following
theorem:

Theorem 8 Let N ∈N, 0 < Res < 1, and let

fs,2N(y) = |y|s cos(2N|y|+ sπ/2)− (2N)−s
∞

∑
m=0

(−1)m(2Ny)2m

Γ (1− s+2m)
(32)
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be the function from Example 4 with μ = 2N. Then for H2N+1(y) = yT2N(y) and all
y ∈ R,

fs,2N(y)−L2N(y, fs,2N ,H2N+1)

= (−1)N sinsπ
π(2N)s T2N(y)

∫ ∞

0

ts−1e−t

(1+ t2/(2Ny)2)cosh t
dt +T2N(y)Δs(N,y), (33)

where
sup
y∈R

|Δs(N,y)| ≤C(s)N−Re s−2. (34)

Proof. Setting H2N+1(y) = yT2N(y), we have from (19)

fs,2N(y)−L2N(y, fs,2N ,H2N+1) =
sinsπ

π
T2N(y)

∫ ∞

0

ts−1e−2Nt

(1+(t/y)2)T2N(it)
dt (35)

Then (33) and (34) follow from (35) and Lemma 7. �

4 Asymptotic Formulae for ζ (s)

It follows from representation (1) that the integral in (33) can be expressed in terms
of ζ (s). Namely,

∫ ∞

0

ts−1e−t

(1+ t2/(2Ny)2)cosht
dt

=

∫ ∞

0

ts−1e−t

cosht
dt − 1

(2Ny)2

∫ ∞

0

ts+1e−t

(1+ t2/(2Ny)2)cosh t
dt

=
Γ (s)(1−21−s)

2s−1 ζ (s)− 1
(2Ny)2

∫ ∞

0

ts+1e−t

(1+ t2/(2Ny)2)cosh t
dt. (36)

Therefore, the following corollary is a direct consequence of (33) and (36).

Corollary 9 For 0 < Re s < 1, H2N+1(y) = yT2N(y), and y �= 0,

ζ (s) =
π2s−1

sinsπΓ (s)(1−21−s)
(−1)N(2N)s ( fs,2N(y)−L2N(y, fs,2N ,H2N+1))

T2N(y)

+
2s−1

Γ (s)(1−21−s)(2Ny)2

∫ ∞

0

ts+1e−t

(1+ t2/(2Ny)2)cosht
dt +Δ∗

s (N,y), (37)

where
sup
y∈R

|Δ∗
s (N,y)| ≤C(s)N−2. (38)

Following is a simplified version of Corollary 9 for some subsequence N = Nk(y),
k = 1,2, . . .
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Corollary 10 Let 0 < Re s < 1 and H2N+1(y) = yT2N(y). Then for any y ∈ [−1,0)∪
(0,1], there exists a subsequence {Nk}∞

k=1 of even positive numbers such that

ζ (s) =
π2s−1

sinsπΓ (s)(1−21−s)

×(2Nk)
s( fs,2Nk(y)−L2Nk(y, fs,2Nk ,H2N+1))+O(N−2

k ), k → ∞. (39)

Proof. We first note that for any y ∈ [−1,0)∪ (0,1] there is a sequence {Nk}∞
k=1 of

even positive numbers such that

lim
k→∞

T2Nk(y) = 1 (40)

Indeed, if μ := (arccosy)/π is a rational number m/p, then setting Nk = 2pk, we
have T2Nk (y) = 1, k = 1,2, . . . If μ is irrational, then the sequence {2nμ (mod1)}∞

n=1
is dense in [0,1]. Therefore, for some sequence Nk(y) := 2nk, k = 1,2, . . ., (40) holds.
Then (39) follows from (37) and (38). �

The following corollary contains a more explicit representation for ζ (s).

Corollary 11 For 0 < Res < 1,

ζ (s) =
π2s

sinsπΓ (s)(1−21−s)

× lim
N→∞

(−1)N+1(2N)s−1
N

∑
k=1

(−1)k+1 fs,2N

(

cos
2k−1

4N
π
)

tan
2k−1

4N
π .(41)

Proof. Let {yN}∞
N=1 be a sequence of positive numbers with limN→∞ yN = ∞. Then

(37) and (38) imply the relation

ζ (s) =
π2s−1

sinsπΓ (s)(1−21−s)

× lim
N→∞

(−1)N(2N)s fs,2N(yN)−L2N(yN , fs,2N ,H2N+1)

T2N(yN)
, (42)

where H2N+1(y) = yT2N(y). Next, it follows from (18) that

sup
y∈R

| fs,2N(y)| ≤ (|sin sπ |Γ (Res)/π)(2N)−Res. (43)

Since T2N(yN)≥ (1/2)y2N
N for yN > 1, we get from (42) and (43)

ζ (s) =
π2s−1

sinsπΓ (s)(1−21−s)
lim

N→∞
(−1)N+1(2N)s L2N(yN , fs,2N ,H2N+1)

T2N(yN)
. (44)
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Further, we consider a sequence of rational functions

R2N(y) =
2N

∑
k=0

Ak,Nyk/
2N

∑
k=0

Bk,Nyk, N = 1,2, . . . ,

such that infN∈N B2N,N > 0 and limN→∞ R(y2N) exists for any sequence {yN}∞
N=1 of

positive numbers with limN→∞ yN = ∞. Then limN→∞ A2N,N/B2N,N exists and there
exists a sequence y∗N → ∞ as N → ∞, such that

lim
N→∞

R2N(y
∗
N) = lim

N→∞

A2N,N

B2N,N
. (45)

Indeed,

lim
N→∞

R2N(y2N) = lim
N→∞

A2N,N/B2N,N +∑2N−1
k=0 Ak,N/(y

2N−k
N B2N,N)

1+∑2N−1
k=0 Bk,N/(y

2N−k
N B2N,N)

. (46)

Then choosing a sequence {y∗N}∞
N=1 with limN→∞ y∗N = ∞, which satisfies the rela-

tions

lim
N→∞

2N−1

∑
k=0

Ak,N

(y∗2N−k
N B2N,N)

= lim
N→∞

2N−1

∑
k=0

Bk,N

(y∗2N−k
N B2N,N)

= 0,

we arrive at (45) from (46). Hence, using (45) for the sequence of rational functions

R2N =
(−1)N+1(2N)sL2N(yN , fs,2N ,H2N+1)

T2N(yN)

defined in the right-hand side of (44), we have

ζ (s) =
π2s

sinsπΓ (s)(1−21−s)
lim

N→∞

(−1)N+1(2N)sA2N

22N−1 , (47)

where A2N(s) is the leading coefficient of the interpolation polynomial L2N . Finally,
we compute and simplify A2N(s)/22N−1.

A2N(s)
22N−1 =

2N

∑
k=1

fs,2N(cos 2k−1
4N π)

T ′
2N(cos 2k−1

4N π)cos 2k−1
4N π

= (1/2N)
2N

∑
k=1

(−1)k+1 fs,2N

(

cos
2k−1

4N
π
)

tan
2k−1

4N
π

= (1/N)
N

∑
k=1

(−1)k+1 fs,2N

(

cos
2k−1

4N
π
)

tan
2k−1

4N
π . (48)

Therefore, (41) follows from (47) and (48). �
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5 Lp(−1,1)-Asymptotics and Criteria for ζ (s) = 0 and ζ (s) �= 0

Lp(−1,1)-asymptotic representations for |ζ (s)| are based on asymptotic (37) and
estimates for the remainder terms.

It is easy to see that for 0 < p < ∞,

||T2NΔ∗
s (N, ·)||Lp(−1,1) ≤C(s, p)N−2, (49)

where Δ∗
s (N,y) is the second remainder term in (37), satisfying (38). Next, we find

the asymptotic behavior of the first remainder term in (37). Let us set

Φs(z) :=
∫ ∞

0

ts+1e−t

(z2 + t2)cosh t
dt =

1
z2

∫ ∞

0

ts+1e−t

(1+(t/z)2)cosh t
dt, Re s > 0, z ∈ R.

Lemma 12 For Res > 0 and p ∈ (1/2,∞),

lim
N→∞

(2N)1/p||T2NΦs(2N·)||Lp(−1,1) = ||cos(·)Φs||Lp(−∞,∞) < ∞. (50)

In particular,

||T2NΦs(2N·)||Lp(−1,1) ≤C(s, p)N−1/p, N = 1,2, . . . (51)

Proof. We first note that

||cos(·)Φs||Lp(−∞,∞) < ||Φs||Lp(−∞,∞) < ∞.

Indeed, for Res > 0 and p ∈ (1/2,∞),

||Φs||pLp(−∞,∞)
= 2

(

∫ 1

0
|Φs(z)|pdz+

∫ ∞

1
|Φs(z)|pdz

)

≤ 2

((

∫ 1

0
tRes−1e−tdt

)p

+

(

∫ ∞

0
tRes+1e−tdt

)p ∫ ∞

1
z−2pdz

)

< ∞.

Next, we need the relation

lim
N→∞

(−1)NT2N(z/(2N)) = cosz (52)

uniformly on any interval [−B,B]. This relation follows from the Mehler–Heine
formula [11, 8.21] for α = −1/2, since (−1)NT2N(z/(2N)) = TN(1− z2/(2N)2)
converges to cosz uniformly on any interval [−B,B].

Let B be any number from (0,∞). Then denoting IN,p := ||T2NΦs(2N·)||pLp(−1,1)
and using (52), we have
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limsup
N→∞

2NIN,p = limsup
N→∞

∫ 2N

−2N
|T2N(z/(2N))Φs(z)|pdz

≤ limsup
N→∞

∫ B

−B
|T2N(z/(2N))Φs(z)|pdz+

∫

R\[−B,B]
|Φs(z)|pdz

=

∫ B

−B
|cos zΦs(z)|pdz+

∫

R\[−B,B]
|Φs(z)|pdz.

Next, using (52) we get

liminf
N→∞

2NIN,p = liminf
N→∞

∫ 2N

−2N
|T2N(z/(2N))Φs(z)|pdz ≥

∫ B

−B
|coszΦs(z)|pdz.

Therefore,

∫ B

−B
|coszΦs(z)|pdz ≤ liminf

N→∞
2NIN,p ≤ limsup

N→∞
2NIN,p

≤
∫ B

−B
|coszΦs(z)|pdz+

∫

R\[−B,B]
|Φs(z)|pdz. (53)

Letting B→∞ in (53), we arrive at (50). Inequality (51) follows directly from (50).�

We are now in a position to prove the following Lp(−1,1)-asymptotics for |ζ (s)|.
Theorem 13 Let Re s > 0, p ∈ (1/2,∞), and H2N+1(y) = yT2N(y).

(a) The following asymptotic relation holds

|ζ (s)| = π
(

πΓ (p+1)
2p+1Γ 2((p+1)/2)

)1/p ∣
∣

∣

∣

2s−1

sinsπ Γ (s)(1−21−s)

∣

∣

∣

∣

× lim
N→∞

(2N)Res
(

∫ 1

−1
| fs,2N(y)−L2N(y, fs,2N ,H2N+1)|pdy

)1/p

. (54)

(b) If ζ (s) = 0, then

lim
N→∞

(2N)Res+1/p
(

∫ 1

−1
| fs,2N(y)−L2N(y, fs,2N ,H2N+1)|pdy

)1/p

= (|sinsπ |/π)||cos(·)Φs||Lp(−∞,∞). (55)

Proof. We first assume that p ∈ [1,∞). Then multiplying both sides of (37) by
T2N(y) and using (49) and (51), we have
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||T2N ||Lp(−1,1)|ζ (s)| = π
∣

∣

∣

∣

2s−1

sinsπ Γ (s)(1−21−s)

∣

∣

∣

∣

×(2N)Res
(

∫ 1

−1
| fs,2N(y)−L2N(y, fs,2N ,H2N+1)|pdy

)1/p

+O(N−1/p)+O(N−2), N → ∞. (56)

A similar relation holds in case 1/2 < p < 1 as well. In this case instead of the
triangle inequality, we use the inequalities

∫ 1

−1
| f (x)|pdx−

∫ 1

−1
|g(x)|pdx ≤

∫ 1

−1
| f (x)+ g(x)|pdx

≤
∫ 1

−1
| f (x)|pdx+

∫ 1

−1
|g(x)|pdx. (57)

Using (49), (50), and (57),we have for p ∈ (1/2,1)

||T2N ||pLp(−1,1)|ζ (s)|p = π p

∣

∣

∣

∣

2s−1

sinsπ Γ (s)(1−21−s)

∣

∣

∣

∣

p

×(2N)pRes
∫ 1

−1
| fs,2N(y)−L2N(y, fs,2N ,H2N+1)|pdy

+O(N−1)+O(N−2p), N → ∞. (58)

Then it follows from (56) and (58) that (54) holds if

lim
N→∞

||T2N ||Lp(−1,1) =

(

πΓ (p+1)
2p+1Γ 2((p+1)/2)

)1/p

. (59)

Indeed, by the Fejer Lemma [4],

lim
N→∞

||T2N ||pLp(−1,1) = lim
N→∞

∫ π

0
|cos 2Nz|p sin zdz = (4/π)

∫ π/2

0
(cos z)pdz.

This implies (59) and completes the proof of statement (a) of the theorem. Statement
(b) follows directly from (37) and (50). �

As a corollary of Theorem 13, we obtain new criteria for ζ (s) = 0 and ζ (s) �= 0
in terms of the Lp-interpolation error of fs,2N .

Corollary 14 Let H2N+1(y) = yT2N(y). Then the following statements hold:

(a) ζ (s) = 0 for 0 < Res < 1 if and only if for all p ∈ (1/2,∞) and N = 1,2, . . .,

C1(s, p)N−Re s−1/p ≤
(

∫ 1

−1
| fs,2N(y)−L2N(y, fs,2N ,H2N+1)|pdy

)1/p

≤ C2(s, p)N−Re s−1/p.
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(b) ζ (s) �= 0 for 0 < Res < 1 if and only if for all p ∈ (1/2,∞) and N = 1,2, . . .,

C3(s, p)N−Re s ≤
(

∫ 1

−1
| fs,2N(y)−L2N(y, fs,2N ,H2N+1)|pdy

)1/p

≤ C4(s, p)N−Re s.

6 Remarks

Remark 1. Representation (4) is an non-analytic analog of the Hermite interpolation
error formula for analytic functions [12]. Bernstein [1] was the first author who
extended this formula to the non-analytic function f (y) = (1−y)s, s > 0 on [−1,1].
The author [5–7] discussed various versions of Bernstein’s result; in particular, an
extension of Bernstein’s formula to Re s > 0 was given in [7]. Formula (11) for
a more general class of even functions f (y) =

∫ ∞
0

dμ(t)
t2+y2 and for Hn+1 = Tn+1 was

established by Lubinsky [10].

Note that formula (4) can be extended to Hermite interpolation of functions f of the
more general form f (y) =

∫

R

dμ(t)
t−iy (see [8]).

Remark 2. Formula (37) is similar to the asymptotic representation for the Dirichlet
beta function β (s) =∑∞

n=0(−1)n(2n+1)−s, Re s> 0, in terms of the Lagrange inter-
polation error of |y|s at the Chebyshev nodes, which was found in [7] in connection
with study of pointwise rapid convergence of polynomial approximation. The case
s > 0 was discussed earlier in [5].

Remark 3. We believe that criterion (a) for ζ (s) = 0 and criterion (b) for ζ (s) �= 0 in
Corollary 14 are the first ones in terms of the Lagrange interpolation error. There are
numerous other criteria that have been developed for the last 150 years in connection
with the celebrated Riemann hypothesis (see survey [2]).

Remark 4. A more general approach to finding new asymptotic formulae for ζ (s)
and β (s) was developed in [8]. In particular, we introduce in [8] a general class of
nodes for Lagrange and Hermite interpolation that allow various asymptotic repre-
sentations like (37), (39), (41), (54), and (55).
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Active Geometric Wavelets

Itai Gershtansky and Shai Dekel

Abstract We present an algorithm for highly geometric sparse representation.
The algorithm combines the adaptive Geometric Wavelets method with the Active
Contour segmentation to overcome limitations of both algorithms. It generalizes
the Geometric Wavelets by allowing to adaptively construct wavelets supported on
curved domains. It also improves upon the Active Contour method that can only
be used to segment a limited number of objects. We show applications of this new
method in medical image segmentation.

1 Introduction

The Active Contour (Level-Set) method is a well known approach for image segmen-
tation [2, 10, 11]. It is general enough to allow definition of different cost functions,
in order to identify different types of objects in the image, but at the same time,
it is also relatively simple to implement. It is also popular because it provides ac-
tual segmentation represented by continuous curves, whereas other “edge detection”
methods only compute the probability that a pixel is an “edge” pixel or that a pixel
belongs to an “object.”

The main problem of the existing Active Contour methods is that it is limited
to segmenting out a small number of objects (see an attempt to fix this in [5]). Our
approach tries to overcome this issue, by applying local segmentations locally and
recursively. The result is a multiresolution tree structure of disjoint sub-regions over
which one may construct a highly geometric wavelet representation of the image.
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This approach generalizes the previous construction of Geometric Wavelets (GW)
[5], where the recursive subdivision was applied using only straight lines, producing
convex polygonal regions. We now recall the GW algorithm:

Given a function f : [0,1]2 → [0,1] over the unit cube, it is subdivided using a
line segment to two sub-regions Ω1,Ω2 such that

‖ f −QΩ ′‖2
L2(Ω ′) +‖ f −QΩ ′′‖2

L2(Ω ′′) , (1)

is minimized, where QΩ ′ ,QΩ ′′ are polynomials of some fixed low order. Note that
for each candidate bisection, the optimal polynomials are given by the least squares
method. This process continues recursively, until a stopping criterion is met, typi-
cally when (1) is below a given threshold. Observe that the sub-regions are always
convex polyhedral domains, which is a crucial property when approximating with
piecewise polynomials (see discussion in Sect. 2).

The result of this algorithm is a Binary Space Partition (BSP) tree P , composed
of pairs {(Ω ,QΩ )}: the sub-regions and the approximating polynomials constructed

over them. The root of the tree is
(

[0,1]2 ,Q
[0,1]2

)

, where Q
[0,1]2 is the approxima-

tion of the function over the unit cube. This tree can be used to define an adaptive
Geometric Wavelet decomposition of the function in the following way. If (Ω ,QΩ )
is the father of (Ω ′,QΩ ′), define

ψΩ ′ := ψΩ ′ ( f ) := 1Ω ′ (QΩ ′ −QΩ) , (2)

as the geometric wavelet associated with the sub-region Ω ′ and the function f . The
low resolution component, associated with the root of the BSP tree is

ψ
[0,1]2 := Q

[0,1]2 . (3)

The wavelets (2) are in fact a “local difference” components that belong to the detail
space between two levels in the BSP tree, a “low resolution” level associated with
QΩ and a “higher resolution” level associated with QΩ ′ . The GW method follows
the classical procedure of n-term wavelet approximation [4, 6]: The importance of
the wavelet is measured by its L2 norm, and so we reorder:

∥

∥

∥ψΩk1

∥

∥

∥

2
≥
∥

∥

∥ψΩk2

∥

∥

∥

2
≥
∥

∥

∥ψΩk3

∥

∥

∥

2
≥ ... (4)

Given an integer n ∈ N, we have the n-term approximation

ψ
[0,1]2 +

n

∑
i=1

ψΩki
. (5)

It can be shown that under mild condition on the BSP tree and the function f ,

f = ∑
Ω∈P

ψΩ ( f ).
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Since edge singularities in images are in general not line segments, the above
method will require bisections at several levels of the BSP tree to approximate them.
To this end, we enhance the method of [5], by using more advanced segmentation al-
gorithms at each recursive subdivision step. Instead of minimizing (1), we minimize
a Mumford–Shah type functionals such as [2]

∥

∥ f −Qin(γ)
∥

∥

2
L2(in(γ))

+
∥

∥ f −Qout(γ)
∥

∥

2
L2(out(γ)) + μ · length(γ) , (6)

where γ is a closed curve and in(γ) and out(γ) are its inside and outside domains,
respectively. The first two terms are the penalties for approximation over the two
sub-regions and the third term is the penalty for curve length. Again, for each fixed
curve, the approximation polynomials are uniquely determined by the least squares
method. There are numerous variants to (6) and numerical algorithms to compute
them. These algorithms are all iterative and most of them are highly sensitive to the
input initial curve. In our algorithm we also use a more localized level-set variation
[10] that works well if the initialization curve is “close” to the solution curve. For
some given ε > 0 and any smooth function φ , let δ (φ) be an approximation to the
“Dirac” of φ (controlled by the zero level set of φ )

δ (φ) :=

{

1
2ε

(

1+ cos
(

πφ(x)
ε

))

, 0 ≤ φ (x)≤ ε,
0, otherwise,

and denote for some pre-determined radius r

βr (x,y) :=

{

1, |x− y| ≤ r,
0, otherwise.

Then, a “local” energy functional is given by

E (φ) :=
∫

Ω
δφ (x)

∫

Ω
βr (x,y)F (I (y) ,φ (y))dydx+ μ

∫

Ω
δφ (x) |∇φ (x)|dx, (7)

where F is an “internal” energy term (see the details of [10]).
Our Active Geometric Wavelet (AGW) algorithm for sparse representation is thus

composed of 3 steps:

1. Initialization – In the first step, we try to find connected groups of pixels with
similar values. The outer boundaries of these connected groups are used as initial
guesses for the segmentation algorithm in the second step.

2. Construction of the geometric BSP tree – Since the contours computed in step 1
are expected to be close to objects in the image, the segmentation is computed
with the localized functional (7). In case this segmentation gives an error larger
than a given threshold, we switch to the functional (6) and continue the subdi-
vision process. The recursive application of these active contour segmentations
creates a geometric BSP tree structure over the image.

3. Creation of the n-term approximation – An approximating wavelet sum is created
according to (4) and (5).
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The paper is organized as follows. In Sect. 2, we provide the theoretical foundation
for the AGW method. In Sect. 3, we describe the algorithm in detail and in Sect. 4
we provide numerical examples for Computed Tomography (CT) images.

2 Theoretical Background

2.1 A Jackson Estimate for Piecewise Polynomial Approximation
Using Non-convex Domains

Let Πr−1
(

Rd
)

denote the multivariate polynomials of total degree r− 1 (order r)
in d variables. Our objective is to approximate a given function by low order poly-
nomials over a possibly non-convex sub-domains. For polynomial approximation
over a single convex domain there is a complete characterization of the degree of
approximation by smoothness measures such as the modulus of smoothness and K-
functional, where the constants are universal over all convex domains (see [5] and
references therein). However, the situation is essentially different when approximat-
ing over non-convex domains (see examples in [9]).

In the following we define the notion of an α-class that quantifies how “close” a
given domain is to being convex. We then give a Jackson estimate for an n-term ap-
proximation using piecewise polynomials over sub-domains all in the same α-class.

Definition 1. Let α ≥ 1. We say that a bounded domain Ω ⊂Rd belongs to the α-
class if there exist an ellipsoid θ , with center vθ , such that θ ⊆ Ω ⊆ θα , where θα
is the α-blowup of θ

θα := {vθ +α (x− vθ) : x ∈ θ} .
John’s Lemma [7] proves that all bounded convex domains in Rd are in the

d−class. In some sense, the notion of the α-class improves upon the “Chunkiness
Parameter” [6] which is frequently used in the Finite Element Method literature to
evaluate the shape of a given domain for the purpose of local polynomial approxima-
tion. The “Chunkiness Parameter” relates to the ratio between a minimal enclosing
ball and maximal contained ball, so in this sense using ellipsoids is better for long
and thin, but possibly non-convex domains. The following lemma is a generalization
of Lemma 2.4b from [5], where it was proved for convex domains.

Lemma 1. For any Ω that belongs to α-class, P ∈ Πr−1
(

Rd
)

and 0 < p,q ≤ ∞ we
have

‖P‖Lq(Ω) ∼ |Ω |1/q−1/p ‖P‖Lp(Ω) ,

with constants of equivalency depending on d,r,p,q and α.

Proof. By the equivalency of finite dimensional Banach spaces, we have that
‖P‖Lp(B(0,1)) ∼ ‖P‖Lq(B(0,α)), for any polynomial P ∈ Πr−1

(

Rd
)

, where B(0, l)
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= {x ∈Rn : |x| ≤ l}, with constants of equivalency depending only on p,q,d,r and
α . Since Ω is in the α-class, there exists an ellipsoid θ ⊆ Ω and an affine transfor-
mation Aθ , Aθ x = Mθ x+ vθ , satisfying Aθ (B(0,1)) = θ , for which

B(0,1)⊆ A−1
θ (Ω)⊆ B(0,α) .

Therefore,

‖P‖Lq(Ω ) = |detMθ |1/q ‖P(Aθ ·)‖Lq(A−1
θ (Ω)) ≤ |detMθ |1/q ‖P(Aθ ·)‖Lq(B(0,α))

≤ c |detMθ |1/q ‖P(Aθ ·)‖Lp(B(0,1)) ≤ c |detMθ |1/q ‖P(Aθ ·)‖Lp(A−1
θ (Ω))

≤ c |detMθ |1/q−1/p ‖P‖Lp(Ω) . ��

We can now apply the machinery introduced in [8] to obtain a Jackson estimate. The
following theorems are in fact Theorem 3.3 and Theorem 3.4 from [8], formulated
in a general enough manner that allows us to apply them for the case of piecewise
polynomial approximation over general subdomains.

Theorem 1. Suppose {Φm} is a sequence of functions in Lp
(

Rd
)

, 0< p<∞, which
satisfies the following additional properties when 1 < p < ∞

1. Φm ∈ L∞
(

Rd
)

, supp(Φm)⊂ Em with 0 < |Em|< ∞, and

‖Φm‖∞ ≤ c1 |Em|−1/p ‖Φm‖p.
2. If x ∈ Em, then

∑
x∈E j ,|E j|≥|Em|

(

|Em|
∣

∣E j
∣

∣

)1/p

≤ c1,

where the summation is over all indices j for which Ej satisfies the indicated
conditions.

Denote (formally) f := ∑m Φm and assume that for some 0 < τ < p

N ( f ) :=
(

∑m‖Φm‖τ
p

)1/τ
< ∞. (8)

Then ∑m |Φm (·)| < ∞ a.e. on Rd, and hence, f is well defined. Furthermore, if
1 ≤ p < ∞, condition (8) can be replaced by the weaker condition

N ( f ) :=
∥

∥

∥

{

‖Φm‖p

}∥

∥

∥

wlτ
< ∞, (9)

where ‖{xm}‖wlτ denotes the weak lτ -norm of the sequence {xm}:

‖{xm}‖wlτ := inf
{

M : #
{

m : |xm|> Mn−1/τ
}

< n for n = 1,2, ....
}

.
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Theorem 2. Under the hypothesis of Theorem 2.3, suppose {Φ∗
m}∞

j=1 is a
rearrangement of the sequence {Φm} such that ‖Φ∗

1‖p ≥ ‖Φ∗
2‖p ≥ .... Denote Sn

:= ∑n
j=1 Φ∗

1 . Then

‖ f −Sn‖p ≤ cn−β N ( f ) with β =1
/

τ −1
/

p, (10)

where c = 1, if 0 < p ≤ 1 and c = c(β , p,c1), if 1 < p < ∞. Furthermore, the
estimate remains valid if condition (8) can be replaced by (9) when 1 ≤ p < ∞.

We first observe that if the AGW method uses piecewise constants, then we actually
have equality in condition (1) of Theorem 1 for any type of domain. For higher order
polynomials, we need to assume that the domains are in the α-class for some fixed α
and then we obtain condition (1) by application of Lemma 1. Also, if each step of the
recursive subdivision bisects a domain into sub-domains of relatively “substantial”
area, then also condition (2) of Theorem 1 is satisfied. The quantity N ( f ) should be
considered as a “geometric sparsity gauge” for the function f . It will be typically
very small for cartoon-type images, if the domains of the Active Geometric Wavelets
are aligned with the curve singularities. In these settings, Theorem 2 says that a
“greedy” n-term approximation based on AGW performs well.

2.2 Adaptive Local Selection of the Weight μ

One of the key elements of the AGW algorithm is a correct choice of the parameter
μ in (6). A possible strategy is the following: As an initial guess, choose a large
value of the parameter, one that gives an empty segmentation, that is, a segmentation
where all the pixels are considered to be “outside.” Then, gradually, diminish the
value of μ , until some segmentation is achieved. As a motivation for this strategy
we consider minimizing the Chan–Vese functional (6) over the simple indicator
function of a circle. More formally, suppose we have an function I defined on the
cube [0,1]2. We would like to minimize

M (μ) = M (γ ,c1,c2,μ) =
∫

in(γ)
(I− c1)

2 +

∫

out(γ)
(I− c2)

2 + μ · length(γ) , (11)

where γ : [0,1]→ [0,1]2 is any closed curve. in(γ) is the region (or union of regions)
that is (are) inside γ (including the boundary of γ) and out(γ) is the complement of
in(γ) in [0,1]2. More specifically, we wish to investigate the dependence of the
solution on μ .

Theorem 3. Let I : [0,1]2 → [0,1] the characteristic function of a circle

C =
{

x ∈ [0,1]2 : |x− x0| ≤ a
}

⊂ [0,1]2, where 0 < a <
√

0.5
/

π. Then with μ0 =

0.5a
(

1−πa2
)

we have
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minM (μ) =
{

πa2
(

1−πa2
)

, μ0 ≤ μ ,
2μπa, 0 ≤ μ ≤ μ0,

(12)

argminM (μ) =
{

γ /0, μ0 ≤ μ ,
γC, 0 ≤ μ ≤ μ0,

where γ /0 is the empty curve, for which out(γ /0) = I, in (γ /0) = /0 and γC = ∂C.

Remark 1. We restrict ourselves to the case where the radius of the circle is suffi-
ciently small, i.e. 0 < a <

√

0.5
/

π, so as to keep the image boundaries far from the
object in question in order not to deal with some geometric issues that arise from
such proximity. This is not a significant restriction and allows a simpler proof.

Proof. Proof of Theorem 3. We use the following notation:

Γin (Ω) := {γ : in(γ)∩Ω ⊆ Ω} , Γout (Ω) := {γ : in(γ)∩Ω = /0} ,

for the set of all curves that are completely inside Ω , and the set of all curves that are
completely outside it, respectively. Next, we calculate the penalty for approximation
in a region where the function takes two values: an area of k1 with value a1 and an
area of k2 with value a2. The average is (k1a1 + k2a2)

/

(k1 + k2) and the penalty is

k1

(

k1a1 + k2a2

k1 + k2
−a1

)2

+ k2

(

k1a1 + k2a2

k1 + k2
−a2

)2

=
k1k2 (a1 −a2)

2

(k1 + k2)
.

Let us first find argminγ∈Γin(C) M (γ,μ). If γ ∈ Γin, then length(γ)≤ 2πa, otherwise
M (γC) < M (γ), because the penalty for length for γC is smaller than that of γ and
the sum of penalties for inner and outer approximation for γ cannot be smaller than
that of γC, which is 0. Moreover, if the considered curve, γ , is not a circle, then
according to the isoperimetric inequality, a circular curve with the same area will
give a smaller value for M, because it will have a smaller length penalty. Thus, we
may consider only the circular curves in Γin.

Denote the radius of γ as r and M becomes a function of r with 0 ≤ r ≤ a. In this
case, according to the above calculation,

M (r) =

(

1−πa2
)(

πa2 −πr2
)

1−πr2 +2πμr.

For a given μ we need to find inf
r

M (r). We compute

M′ (r) = −2πr(1−πa2)(1−πr2)+2πr(1−πa2)(πa2−πr2)

(1−πr2)
2 +2πμ

=
2πr(1−πa2)(πa2−1)

(1−πr2)
2 +2πμ = 2π

(

μ − r
(

1−πa2

1−πr2

)2
)

.
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and

M′′ (r) =−2π
(

1−πa2

1−πr2

)2(
1+3πr2

1−πr2

)

< 0.

The second derivative is always negative, which implies that the first derivative is
strictly decreasing from M′ (0) = 2πμ to M′ (a) = 2π (μ −a). If μ ≥ a, M′ is always
non-negative for 0 ≤ r ≤ a, and so M is non decreasing. Therefore, the minimum
is obtained at r = 0. Since μ0 < a ≤ μ , this agrees with the first case in (12). If
μ < a, there’s a parameter r for which M′ (r) = 0 and M has a local maximum,
since M′′ < 0. Therefore, a global minimum is achieved at one of the end points
r = 0, with M (0) = πa2

(

1−πa2
)

or r = a, with M (a) = 2μπa. If M (0)< M (a),
then πa2

(

1−πa2
)

< 2μπa which is exactly the condition μ0 < μ , and this again
agrees with the first case in (12). If M (a)≤ M (0), then μ ≤ μ0 and this agrees with
the second case in (12).

Next, we deal with the case where γ is not necessarily contained in the circle. We
now describe M as a function of three variables: p,q and l, where

p := |in(γ)∩C| , q :=
∣

∣

∣in(γ)∩
(

[0,1]2 \C
)∣

∣

∣ , l := length(γ) .

The functional (11) now take the form

M (p,q, l) =

(

1−πa2−q
)(

πa2 − p
)

1−πa2 +
pq

p+q
+ μ · l,

where we observe that not all non-negative triplets (p,q, l) are geometrically feasi-
ble. Next, we define a functional of two variables

Y (p,q) :=

(

1−πa2−q
)(

πa2 − p
)

1−πa2 +
pq

p+q
+ μ ·

√

4π (p+q).

Observe that by the isoperimetric inequality, for any curve γ , one has length(γ) ≥
√

4π (p+ q), with equality for circles, and so Y (p,q) ≤ M (γ). Observe that if it is
possible for some fixed pair p,q, to choose γ to be a circle, then this would imply
Y (p,q) = minp,q,l M (p,q, l) over feasible triplets. However, there are cases where
this is not possible, such as where γ contains C and almost all of I\C, with p = πa2

and q = 1− πa2 − ε, for some small ε. In this case, γ cannot have the shape of a
circle.

We now minimize Y over A =
[

0,πa2
]× [

0,1−πa2
]

. We compute

∂Y
∂ p =

(

q
p+q

)2 −
(

1−πa2−q
1−p−q

)2
+2πμ (4π (p+q))−

1
2 ,

∂Y
∂ q =

(

p
p+q

)2 −
(

πa2−p
1−p−q

)2
+2πμ (4π (p+q))−

1
2 ,
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and then

∂ 2Y
∂ p2 =−2q2 (p+q)−3 −2

(

1−πa2−q
)

(1− p−q)−3 −4π2μ (4π (p+q))−3/2 ,

∂ 2Y
∂q2 =−2p2 (p+q)−3 −2

(

πa2 − p
)

(1− p−q)−3 −4π2μ (4π (p+q))−3/2 .

Observe that for p > 0 and q > 0, we have that ∂ 2Y
/

∂ 2 p,∂ 2Y
/

∂ 2 p < 0. For a
point to be a minimum it is necessary that ∂ 2Y

/

∂ 2 p,∂ 2Y
/

∂ 2 p > 0, so there are no
internal minimum points. On the lines

[

0,πa2
]× (

1−πa2
)

and πa2× [

0,1−πa2
]

,
we have

∂Y
∂ p

(

p,1−πa2)> 0,
∂Y
∂q

(

πa2,q
)

> 0,

so the minimum of Y is on the union of the two lines Ain =
[

0,πa2
]×0 and Aout =

0×[

0,1−πa2
]

. Furthermore, for every point z=(0,q)∈Aout, the point z′ =(q,0)∈
Ain satisfies Y (z′)< Y (z), because

Y
(

z′
)

= πa2 −q < πa2 − πa2

1−πa2 q = Y (z) ,

where we use the condition πa2 < 0.5. The conclusion is that the minimum of Y is
attained on Ain. On this line, M and Y have the same value, so the minimizer of Y is
either (p,q) = (0,0) or (p,q) =

(

πa2,0
)

, as shown before.
Finally, the minimum of Mover A is also attained at (p,q) = (0,0) or (p,q) =

(

πa2,0
)

; otherwise, the minimum for M is attained at some point z ∈ A\Ain. De-
note by z0 the point for which Y attains its minimum on Ain (either (p,q) =
(0,0) or (p,q) =

(

πa2,0
)

), then, M (z0) = Y (z0) < Y (z) ≤ M (z), which is a
contradiction. ��

We conclude from the last result that for the simple case of a characteristic image
of a circle, the approach of taking a large value of μ , i.e. μ > μ0 (a), then reducing
it until a non-empty segmentation is achieved (μ ≤ μ0), is indeed an approach that
gives the required segmentation.

3 Overview of the AGW Algorithm

The algorithm is composed of three stages: Initialization, construction of the BSP
tree and building an approximation. In the first step, we try to find contours that will
serve as initial guesses for the segmentations. Since the level-set method is sensitive
to the initialization, starting from a good initial guess is critical to the success of
the algorithm. Therefore, we begin by searching for groups of pixels with relatively
similar grey-level and sorts these groups according to their set size. Sets with size
smaller than a threshold are discarded. The result of applying this step on standard
test images can be seen in Figs. 1 and 2 below.
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Fig. 1: Initial pixel groups for the “Peppers” image

Fig. 2: Initial pixel groups for the “Cameraman” image

In Fig. 3, we see a Computed Tomography (CT) image and the pixel groups
computed for this image. The goal in medical imaging is to segment correctly the
various internal organs and perform certain measurements and analysis. We see that
some key organs such as the kidneys and spine were not identified, since the imag-
ing characteristics of these organs have higher variability. Therefore, to correctly
identify initial pixel groups associated with these organs, we applied an anisotropic
diffusion algorithm [12] to sharpen the edges and smooth the areas between them
and then computed the pixel groups on this pre-processed image (Fig. 4).

In the second step, the algorithm builds the BSP tree. It minimizes the “local”
functional (7) with the outer contours of the pixel groups found in the first step,
starting with the largest group and continuing in a diminishing order. Each of these
iterations gives a bisection of a sub-region of the picture to an object and background
and adds two new sibling nodes to the BSP tree at an arbitrary level. If a pixel
group is segmented, but the approximation error is above some required threshold,
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Fig. 3: Initial pixel groups for a CT image

Fig. 4: CT image after anisotropic diffusion and the pixel groups computed from it

the algorithm continues to bisect it using a grid of circles as the initial guess and
minimizing the “global” functional (6).

In Fig. 5 we see on the left the initial guess for the first segmentation, obtained
from the largest pixel group and on the right, the segmentation computed from this
initial guess. We see that the segmentation did not correctly segment the liver. This
is exactly the weak point of a regular Active Contour algorithm that our method
solves, because since the approximation error in this domain is found to be large,
this domain will be further subdivided. In Fig. 6, we see on the left the grid of circles
that serves as an initialization for the active contour segmentation of the first domain
and on the right we see the correct segmentation appearing at the second level of the
BSP tree.

The minimization process is stopped when the value of the functional is fluctu-
ating about a certain value for a number of iterations. The output of this step is a
BSP tree and a corresponding set of geometric wavelets. In the final step, the Active
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Fig. 5: Initial guess for segmentation and the first level segmentation obtained
from it

Fig. 6: Initialization of second level segmentation and segmentation at second level
obtained from it

Geometric Wavelets are ordered by their norm as in (4) and an approximation is
created from the low resolution component and the largest n terms.

To summarize, this is the AGW algorithm:

1. Creation of initial pixel groups:

(a) (Optional) Create a pre-processed input image for this step by applying
anisotropic diffusion to the original image.

(b) For each pixel p in the picture
– If not part of a pixel group, create a new candidate pixel group and add p

to the group,
– For every unprocessed pixel q in group: if one of its 4-connected neigh-

bors rdoes not belong to another group and |I (r)− I (q)| < ε (for some
threshold ε), add rto the group.

(c) Sort groups according to size and discard groups whose size is smaller than
a threshold.



Active Geometric Wavelets 107

2. Initialize a BSP tree with the root
{(

I,Q
[0,1]2

)

,ψ
[0,1]2

}

.

3. For every leaf {Ω ,ψΩ} in the tree, if the approximation error is larger than a
threshold

(a) Create an initialization curve. If the domain Ω contains pixel groups from
step 1, then the initialization curve is determined from the largest such con-
tained group. Else the initialization is a grid of small circles intersected
with Ω .
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Fig. 7: Adding active geometric wavelets to the approximation of a CT image

(b) Minimize the local Active Contour functional with large μ .
(c) Repeat previous step, diminishing μ until a valid non-empty segmentation is

found.
(d) Create and add to BSP two leaves corresponding to the two sub-regions

found in step 3.c.

4. Sort the Active Geometric Wavelets according to (4): ψΩ1,ψΩ2 , . . .
5. For some given n, the output of the algorithm is the n-term approximation

ψ
[0,1]2 +

n
∑

i=1
ψΩki

.

4 Experimental Results

In Fig. 7, we show an example of medical image segmentation which is one of
the potential applications of our AGW method. On the left we see the segmen-
tation that is derived from the n-term Active Geometric Wavelet approximation
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with n increasing (for several values of n). We see that with more terms added, the
algorithm correctly adds the various organs of the body. On the right, we show the
compact support of the wavelet that is added at that particular step, i.e. the n-th term.
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Interpolating Composite Systems

Philipp Grohs

Abstract Composite systems are multiscale decompositions similar to wavelet
MRAs but with several different dilation operations. A notable example of such
a system is given by the shearlet transform. In this paper we construct interpolat-
ing wavelet-type decompositions for such systems and study their approximation
properties. As a main application we give an example of an interpolating shearlet
transform.

1 Introduction

Interpolating wavelets are a well-known construction similar to the usual L2-theory
but with L2-projectors onto the scaling spaces replaced by L∞-projectors defined
by an interpolation procedure. A remarkable result is that this much simpler trans-
form satisfies the same norm-equivalences as L2-wavelets between Besov-space (or
Triebel-Lizorskin-space) norms and discrete norms on the coefficients – provided
the space embeds into L∞, see [4]. Since the interpolating wavelet transform is
not stable in an L2-sense, and since there exist many nice and general L2 wavelet
constructions [2], usually the more complicated L2-theory is preferred (although
L2-stability is by no means necessary for many applications like for instance PDE-
solver [10]).

Nevertheless, there exist situations to which the interpolating wavelet construc-
tion can be generalized, whereas the generalization of the L2 constructions is much
more difficult or even impossible.

One such case is that of manifold-valued data where interpolating wavelets can
be defined and it can also be shown that they satisfy the same desirable properties

Philipp Grohs
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as their linear counterparts [7, 14]. On the other hand, the scope of L2-wavelet con-
structions which are amemable to generalization to manifold-valued data is very
limited, see [6].

Another such case is if the domain of the data is a manifold. Then one can first
build a hierachical triangulation of the manifold and define interpolating wavelets
in a straightforward way. By using the general method of lifting, see [15], it is then
possible to even generate L2-stable MRAs from this initial simple multiscale de-
composition.

In this paper, we study yet another such case, namely the case of composite dila-
tions [9] where there is more than one dilation involved. For this situation, there still
does not exist a satisfying construction to produce (tight) frames with nice properties
such as compact support and continuity.

A particularly relevant example of a composite dilation system is the recently
introduced shearlet system [8, 13].

Our main result here is that for a composite dilation system a natural analogue
of the interpolating wavelet construction can be defined with continuous and com-
pactly supported ‘wavelets’.

A somewhat related result can be found in [12] where a similar, albeit adaptive
construction is presented. The main difference between [12] and our work is that we
construct one system encompassing all combinations of dilation matrices simulta-
neously, while [12] constructs several different systems, one for each path in a ‘tree
of dilation matrices’.

2 Composite Dilation Systems

In this section, we collect the necessary definitions and preliminaries and assump-
tions. Our main object of interest are so-called dilation families as defined in [5].
Let us fix a spacial dimension d and a finite probability space (E,μ). A dilation
family W is per definition a mapping E → Z

d×d : e →We satisfying the following
compatibility condition:

There exists an expanding matrix W such that for every e = (e1, . . . ,e j) ∈ E j

there exists a unimodular matrix Ue ∈ GL(Z,d) such that the matrix We defined as

W(e j,e j−1,...,e1) :=WejW(e j−1,...,e1),

can be written as
We =UeW

j.

In [5], we call this the lattice compatibility condition (LCC).
The LCC ensures that for j ∈N and e ∈ E j, all the lattices W−1

e Z
d agree with the

lattice Γ j :=W− j
Z

d .
Notation. We will write elements of the product space E j in boldface. For e∈ E j

we sometimes write |e| := j. We use the symbol | · | as either the absolute value or as
the sup-norm on R

d . If it is irrelevant which norm we use, we write simply ‖·‖. The
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meaning will be clear from the context. We use the symbol A � B to indicate that
A is bounded by a constant times B, where the constant is independent of certain
parameters which will also be clear from the context.

We make another assumption ensuring that the lattices WeZ
d do not get too

warped. This is called moderation and defined by

ρ(W ) := limsup
j→∞

sup
e∈E j

∥

∥W−1
e

∥

∥

1/ j
< 1.

The goal of the present paper is to construct functions ϕ ,ψ l , l = 1, . . . ,L such
that the system Φ ∪Ψ with

Φ :=
{

ϕ(·−α) : α ∈ Z
d
}

(1)

and
Ψ :=

{

ψ l (We ·−α) : e ∈ E j, j ∈N,α ∈ Z
d , l = 1, . . . ,L

}

(2)

constitutes a set of representatives for L∞(R
d). Let us give some examples:

Example 1. The first example is when E consists of one point and we have an ex-
panding matrix W as our dilation family. Then the system Ψ is just a usual wavelet
system, see [2].

Example 2. Here, we let E = {0, . . . ,7} with uniform measure and define our dila-

tion family via the quincunx matrix W =

(

1 −1
1 1

)

and the matrices

U0 =

(

1 0
1 0

)

, U1 =

(

0 1
1 0

)

, U2 =

(−1 0
0 1

)

, U3 =

(

0 −1
1 0

)

and U3+i = −Ui, i = 1, . . . ,4, representing the symmetries of the unit square in the
plane. It is easy to see that the system Ψ now looks as follows:

Ψ =
{

ψ l (UeW
j ·−α

)

: e ∈ E, j ∈ N,α ∈ Z
d , l = 1, . . . ,L

}

.

This is the composite dilation system as introduced in [11].

Example 3. Our third example consists of the recently introduced shearlet system
[13]. We have E = {0,1} with uniform measure, W = diag(4,2), U0 = I and U1 =

U =

(

1 1
0 1

)

. A system Ψ now looks as follows:

Ψ =
{

ψ l
(

UlW j ·−α
)

: j ∈ N, 0 ≤ l < 2 j, α ∈ Z
d , l = 1, . . . ,L

}

.

In [5], it is shown that all these examples (and many more) satisfy the moderation
condition and the LCC.
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3 Interpolating Systems

In order to construct such representation systems, we follow the principle of
Multiresolution Analysis (MRA): We consider the spaces V j defined as

V j :=
{

f (We·) : f ∈Vj−1, e ∈ E
}

, V 0 = clsL∞spanΦ.

We assume that the spaces V j form a filtration, i.e. we have

V j ⊂V j+1, j ∈ N. (3)

In order to get this property we require that the function ϕ is W – refinable,
meaning that

ϕ(·) = ∑
e∈E

μ ({e}) ∑
α∈Zd

ae(α)ϕ (We ·−α) (4)

for some filter family A = (ae)e∈E , ae ∈ l0(Zd) satisfying the sum rule

∑
β∈Zd

ae (α −Weβ ) = 1 for all α ∈ Z
d , e ∈ E. (5)

We will now construct a projection operators which map a continuous function onto
the scaling spaces V j . Let us consider a bounded, continuous function f . We can
project this function onto V j via the operator P j : C(Rd)∩L∞ →V j defined by

Pj f (·) = ∑
e∈E j

μ j ({e}) ∑
α∈Zd

f
(

W−1
e α

)

ϕ (We ·−α) , j ≥ 1,

P0 f = ∑
α∈Zd

f (α)ϕ(·−α).

We further require that ϕ is cardinal, meaning that

ϕ
∣

∣

Zd = δ0,

where ϕ
∣

∣

Zd denotes the restriction of ϕ to the integer grid and δ0 denotes the Dirac
sequence. This surely is the case if the filter family A is cardinal, which means that

ae(We·) = δ0(·) for all e ∈ E.

It follows immediately for this case that P j is an interpolation operator:

Lemma 1. For a continuous function f and P j, Γ j defined as above and ϕ cardinal,
we have

Pj f |Γ j = fΓ j . (6)

Proof. The statement is trivial for j = 0. For j ≥ 0 we can decompose the function
P j f into the sum

P j f = ∑
e∈E j

μ j ({e})ge,
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where

ge := ∑
α∈Zd

f
(

W−1
e α

)

ϕ (We ·−α) .

We show that ge
∣

∣

Γ j = f
∣

∣

Γ j . Since ∑e∈E j μ j ({e}) = 1, this implies the statement.
Because of the LCC we can write for x =W− jβ , β ∈ Z

d ,

ge(x) = ∑
α∈Zd

f
(

W−1
e α

)

ϕ (Wex−α)

= ∑
α∈Zd

f
(

W− jU−1
e α

)

ϕ
(

UeW
jx−α

)

= ∑
α∈Zd

f
(

W− jα
)

ϕ (Ueβ −Ueα)

= f (W− jβ ) = f (x).

�

Now that we have defined a sequence of projection operators onto our scaling spaces
V j, we need to find a representation for the details Q j f := P j f −Pj−1 f . In order
to do this we use the cardinality of ϕ as well as (4). Let us define the subdivision
scheme [1] Se : l∞(Zd)→ l∞(Zd), e ∈ E as

Se p(·) := ∑
α∈Zd

ae(·−Weα)p(α), p ∈ l∞(Z
d).

Lemma 2. With ϕ cardinal satisfying (4), we have the following representation:

Qj f (·) = ∑
e∈E j

μ j ({e}) ∑
α∈Zd

qe( f )(α)ϕ (We ·−α) , (7)

with

q(e1,...,e j)( f )(α) := f
(

W−1
(e1,...,e j)

α
)

−Sej

(

f (W−1
(e1,...,e j−1)

β )
)

β∈Zd
(α) . (8)

If the filter family A is cardinal, then we have that

q(e1,...,e j)( f )(Wej α) = 0 for all α ∈ Z
d . (9)

Proof. In general, for any p ∈ l∞(Zd), the refinability property (4) implies that

∑
α∈Zd

p(α)ϕ(·−α) = ∑
e∈E

μ ({e}) ∑
α∈Zd

Se p(α)ϕ(We ·−α). (10)
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Hence, we can write Qj f (·) = P j f (·)−P j−1 f (·) as

Q j f (·) = ∑
e∈E j

μ j ({e}) ∑
α∈Zd

f
(

W−1
e α

)

ϕ (We ·−α)

− ∑
ẽ∈E j−1

μ j−1 ({ẽ}) ∑
e∈E

μ({e}) ∑
α∈Zd

Se f
(

W−1
ẽ ·)(α)ϕ (WeWẽ ·−α)

= ∑
e∈E j

μ j ({e}) ∑
α∈Zd

qe( f )(α)ϕ (We ·−α) .

The rest of the statement is clear. �

We now show that, provided the function f has some smoothness properties, the
coefficients |qe( f )(α)| decay exponentially in |e|. This result is crucial if we want
to use such a scheme for compression.

Theorem 1. Consider a cardinal, continuous, and compactly supported ϕ satisfy-
ing (4) with a cardinal filter family A . Assume that f is in the Lipschitz space
Lip (γ,Rd), 0 < γ < 1. Then

|qe( f )(α)| � ρ(W )γ|e|,

where the implicit constant is independent of e uniformly.

Proof. Suppose that
‖ f (·− y)− f (·)‖∞ ≤ D|y|γ .

Consider a coefficient

qe( f )(α) := f
(

W−1
(e1,...,e j)

α
)

−Sej

(

f (W−1
(e1,...,e j−1)

β )
)

β∈Zd
(α) .

Assume that all filters ae are supported in a symmetric set [−N,N]d , e ∈ E . Then we
have for ẽ = (e1, . . . ,e j−1) that

Se
(

f (W−1
ẽ β )

)

β∈Zd (α) = ∑
β∈Zd

ae (α −Weβ ) f
(

W−1
ẽ β

)

.

Using the sum rules, it follows that for any point c ∈ R
d

qe( f )(α) = f
(

W−1
(e1,...,e j)

α
)

− ∑
β∈Zd

ae j

(

α −Wej β
)

f
(

W−1
ẽ β

)

=
(

f
(

W−1
(e1,...,e j)

α
)

− c
)

+

⎛

⎝ ∑
β∈Zd

ae j

(

α −Wej β
)(

f
(

W−1
ẽ β

)− c
)

⎞

⎠ .
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It follows that

|qe( f )(α)| ≤
∣

∣

∣ f
(

W−1
(e1,...,e j)

α
)

− c
∣

∣

∣+

∣

∣

∣

∣

∣

∣

∑
β∈Zd

ae j

(

α −Wej β
)(

f
(

W−1
ẽ β

)− c
)

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣ f
(

W−1
(e1,...,e j)

α
)

− c
∣

∣

∣+‖ae‖1 sup
β∈W−1

e j (α+N)

∣

∣ f
(

W−1
ẽ β

)− c
∣

∣ .

Picking e.g. c = f
(

W−1
e α

)

we get that

|qe( f )(α)| ≤ ‖ae‖1 sup
α+N

∣

∣ f
(

W−1
e x

)− f
(

W−1
e α

)∣

∣

≤ ‖ae‖1D sup
x∈[−N,N]d

‖W−1
e x‖γ � ρ(W )γ j . (11)


�
Remark 1. The previous result also holds for γ > 0 arbitrary with only minor modi-
fications in the proof. In this case, we would have to impose higher order sum-rules
on the filter family A . We do not know if an inverse to this result holds; it would be
somewhat disappointing since it would mean that the spaces we can characterize by
the interpolating transform are just spaces that can equally well be described with
wavelets.

Theorem 1 immediately implies that the infinite series P0 f +∑ j Q j f converges uni-
formly to f if f lies in some Lipschitz space. We can also show this under weaker
assumptions:

Theorem 2. Let ϕ be as in Theorem 1 and f : Rd → R uniformly continuous. Then
∥

∥

∥

∥

∥

f −
(

P0 f +
J

∑
j=1

Q j f

)∥

∥

∥

∥

∥

∞

→ 0, for J → ∞. (12)

Proof. The statement is equivalent to the fact that

‖ f −PJ f‖∞ → 0.

Consider the modulus of continuity

ω( f ,h) := ‖ f (·+h)− f (·)‖∞.

We know that ω( f ,h)→ 0 for h → 0. Also, using standard arguments and the mod-
eration property it is not difficult to see that

ω(P j f ,h)� ω( f ,h).
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Using the fact that PJ interpolates data on Γ J , it follows that for x = W−J (α +h),
α ∈ Z

d , h ∈ [0,1]d we have

| f (x)−PJ f (x)| ≤ | f (x)− f (W−Jα)|+ |PJ f (x)−PJ(W−Jα)|
� ω( f ,λ−J)→ 0,

where λ > 1 is the smallest eigenvalue of W . This proves the statement. 
�
The previous results allow us to construct meaningful representation systems Ψ for
any moderate dilation family W satisfying the LCC. Denote by Ω ∗

e := Z
d/WeZ

d \
{0}. Then we can define ψe,ω , e ∈ E , ω ∈ Ω ∗

e via

ψe,ω(·) := ϕ (We ·−ω) . (13)

Writing L = {(e,ω) : e ∈ E, ω ∈ Ω ∗
e } and L = |L |, we now show that the system

Ψ :=
{

ψl (We ·−α) : j ∈ N, e ∈ E j, l ∈ L
}

‘spans’ the space of bounded, uniformly continuous functions. We use the notation

〈 f ,ψe,ω (We ·−α)〉 := μ |e|+1({(e,e)})q(e,e)( f )(Weα +ω) . (14)

Theorem 3. For ϕ satisfying the conditions of Theorem 1, ψ l defined as in (13), and
a bounded and uniformly continuous function f , we have

P0 f (·)+ ∑
j≥0

∑
e∈E j

∑
l∈L

∑
α∈Zd

〈 f ,ψl (We ·−α)〉ψl (We ·−α) = f (·)

in the sense that the sum on the left-hand side converges uniformly.

Proof. This is just a reformulation of Theorem 2. 
�
It is now time to ask if there actually exist functions ϕ which satisfy the assumptions
of Theorem 1. One of the main results of [5] is that the answer is yes:

Theorem 4 ([5]). For any moderate dilation family W satisfying the LCC there ex-
ists a cardinal, continuous and compactly supported function which is W refinable.

This implies that for any moderate dilation family W we can construct systems Φ ,
Ψ as in (1) and (2) such that these systems form a stable basis for L∞(R

d). As special
cases we obtain an interpolating shearlet transform and an interpolating composite
wavelet transform associated to Example 2.

4 Shearlets

Let us work out in more detail the construction for the example of the shearlet sys-
tem. Recall that we have E = {0,1} with uniform counting measure. Furthermore,
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we have

W0 =W =

(

4 0
0 2

)

, and W1 =

(

4 2
0 2

)

.

Clearly, W1 =U1W0 with

U1 =U =

(

1 1
0 1

)

being unimodular. For this case, we have a very general construction of suitable
functions ϕ . Indeed, consider the univariate filter b : Z→ R which is defined as the
filter of the Deslauriers–Dubuc scheme [3] of some arbitrary order and with dilation
factor 2. We can also define the filter b̃ via

b̃(·) := ∑
β∈Z

b(·− 2β ).

Then the filter b̃ has dilation factor 4 (see [1] for more information regarding dilation
factors). Now define

a(α) := b̃(α1)b(α2), α = (α1,α2) ∈ Z
2.

With a0(·) = a(·) and a1(·) := a0(U−1·), we can show [5] that there exists a con-
tinuous, compactly supported and cardinal function ϕ that satisfies the refinement
equation (4). Now we define

ψ l(·) := ϕ (W ·−βl) , l = 0, . . . ,6,

where

β0 = (0,1), β1 = (0,2), β2 = (0,3), β3 = (1,0), β4 = (1,1),

β5 = (1,2), β6 = (1,3).

Further define

ψ l+7(·) := ϕ
(

UW ·−Uβ l
)

, l = 0, . . . ,6.

Now, in complete analogy with the conventional case of interpolating wavelet trans-
formations we can represent a continuous function f as a superposition of sheared
and dilated translates of a finite set of functions:

f (·) = P0 f (·)+ ∑
j≥0

2 j−1

∑
k=0

13

∑
l=0

∑
α∈Zd

〈

f ,ψl

(

UkW j ·−α
)

〉

ψl

(

UkW j ·−α
)

.

This formula can be interpreted as a tight frame representation formula with an L∞
bilinear product instead of the usual L2 inner product.
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5 Conclusion

In this paper, we gave a flexible construction of interpolating multiscale transforms
for composite systems. To illustrate the usefulness of our theoretical results we gave
a construction of compactly supported interpolating shearlets. While this construc-
tion can be seen as an interpolating tight frame representation, a construction of
compactly supported shearlet-type L2 tight frames is still out of reach at the present
time.
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Wavelets and Framelets Within the Framework
of Nonhomogeneous Wavelet Systems

Bin Han

Abstract In this paper, we shall discuss recent developments in the basic theory of
wavelets and framelets within the framework of nonhomogeneous wavelet systems
in a natural and simple way. We shall see that nonhomogeneous wavelet systems
naturally link many aspects of wavelet analysis together. There are two fundamental
issues of the basic theory of wavelets and framelets: frequency-based nonhomo-
geneous dual framelets in the distribution space and stability of nonhomogeneous
wavelet systems in a general function space. For example, without any a priori con-
dition, we show that every dual framelet filter bank derived via the oblique extension
principle (OEP) always has an underlying frequency-based nonhomogeneous dual
framelet in the distribution space. We show that directional representations to cap-
ture edge singularities in high dimensions can be easily achieved by constructing
nonstationary nonhomogeneous tight framelets in L2(R

d) with the dilation matrix
2Id . Moreover, such directional tight framelets are derived from tight framelet fil-
ter banks derived via OEP. We also address the algorithmic aspects of wavelets
and framelets such as discrete wavelet/framelet transform and its basic properties
in the discrete sequence setting. We provide the reader in this paper a more or less
complete picture so far on wavelets and framelets within the framework of nonho-
mogeneous wavelet systems.

1 Introduction

As a multidisciplinary subject, wavelet analysis is a broad area including approxi-
mation schemes using shift-invariant spaces in approximation theory, characteriza-
tion of function spaces by various wavelets in harmonic analysis, curve and surface
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generation via subdivision schemes in computer graphics, wavelet-based algorithms
for numerical solutions to differential equations, discrete wavelet/framelet transform
and filter banks in engineering for signal and image processing, etc. In this paper,
we shall look at wavelets (nonredundant wavelet systems) and framelets (redundant
wavelet systems) within the framework of nonhomogeneous wavelet systems.

Let us first recall some notation. For a function f :Rd →C and a d×d real-valued
invertible matrix U , throughout the paper we shall adopt the following notation:

fU;k,n(x) := |detU |1/2e−in·Ux f (Ux− k) and fU;k := fU;k,0, x,k,n ∈ R
d , (1)

where i denotes the imaginary unit satisfying i2 =−1. Let M be a d×d real-valued
invertible matrix, and let Ψ be a subset of square integrable functions in L2(R

d).
The commonly accepted definition of a wavelet or a framelet is tightly linked to the
following homogeneous M-wavelet system

WS(Ψ ) := {ψM j ;k | j ∈ Z,k ∈ Z
d,ψ ∈Ψ}, (2)

which has been extensively studied in the function space L2(R
d) in the literature of

wavelet analysis, often with M being an integer expansive matrix. For example, see
[1–3,5–43,47–75] and many references therein. Here, we say that M is an expansive
matrix if all its eigenvalues have modulus greater see than one. If a homogeneous
wavelet system WS(Ψ) in (2) is an orthonormal basis, a Riesz basis, a tight frame,
or a frame of L2(R

d), in the literature of wavelet analysis, the generating elements
in Ψ of (2) are often called orthonormal M-wavelets, Riesz M-wavelets, tight M-
framelets, or M-framelets, respectively. In other words, a wavelet or a framelet in
almost all the literature of wavelet analysis is simply a synonym of the generators of
a homogeneous wavelet system with certain stability property in L2(R

d). However,
in this paper, we call the generating set Ψ a homogeneous orthonormal M-wavelet,
a homogeneous Riesz M-wavelet, a homogeneous tight M-framelet, or a homoge-
neous M-framelet in L2(R

d), if WS(Ψ) in (2) is an orthonormal basis, a Riesz basis,
a tight frame, or a frame of L2(R

d), respectively.
It is important to point out that in this paper the elements in a set S of generators

are not necessarily distinct, and S may be an infinite set. The notation h ∈ S in a
summation means that h visits every element (with multiplicity) in S once and only
once. For a set S, we shall use #S to denote its cardinality, counting multiplicity. For
example, for Ψ = {ψ1, . . . ,ψs}, its cardinality #Ψ is s, all the functions ψ1, . . . ,ψ s

are not necessarily distinct, and ψ ∈Ψ in (2) simply means ψ = ψ1, . . . ,ψs.
Though a homogeneous wavelet system has been the center of extensive study

for many years in the current literature of wavelet analysis [2]–[75], in this paper
we focus on another system – a nonhomogeneous wavelet system, which links many
aspects of wavelets and framelets together in a natural and simple way. For subsets
Φ and Ψ of L2(R

d), a nonhomogeneous M-wavelet system is defined to be

WSJ(Φ;Ψ ) := {φMJ ;k | k ∈ Z
d,φ ∈ Φ}∪{ψM j ;k | j � J,k ∈ Z

d ,ψ ∈Ψ}, (3)

where J is an integer representing the coarsest scale level.
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In this paper we used the words homogeneous and nonhomogeneous to
distinguish the two types of wavelet systems in (2) and (3), due to the following
considerations. Note that the scale levels j in (2) are all integers and the scale lev-
els j in (3) are only integers no less than J. First of all, it is easy to see that the
system WS(Ψ ) in (2) is invariant (that is, homogeneous of order 0) and the system
WSJ(Φ;Ψ ) in (3) is not invariant (nonhomogeneous) under the dilation operation.
More precisely,

{ fM;0 | f ∈ WS(Ψ)} = WS(Ψ)

and

{ fM;0 | f ∈ WSJ(Φ;Ψ )}= WSJ+1(Φ;Ψ ).

Secondly, the function spaces that can be characterized by the system WS(Ψ) in
(2) are homogeneous function spaces (see [69]), while the function spaces that can
be characterized by the system WSJ(Φ;Ψ ) in (3) are nonhomogeneous function
spaces (also called inhomogeneous function spaces in analysis), see [51]. Thirdly,
the dilation and shift operations are uniformly (or homogeneously) applied to all
generators of WS(Ψ) in (2), but are differently (nonhomogeneously) applied to the
two sets Φ and Ψ of generators of WSJ(Φ;Ψ ). Consequently, it seems quite natural
for us to call the system WS(Ψ) in (2) a homogeneous wavelet system, and the
system WSJ(Φ;Ψ ) in (3) a nonhomogeneous wavelet system.

For the particular function space L2(R
d), in Sect. 2 we shall show that a non-

homogeneous wavelet system WSJ(Φ;Ψ ) at a given scale level J will lead to a
sequence of nonhomogeneous wavelet systems WSJ(Φ;Ψ ) at all scale levels J with
almost all properties preserved. Moreover, as the scale level J goes to −∞, the limit
of the sequence of nonhomogeneous wavelet systems WSJ(Φ;Ψ ) is a homoge-
neous wavelet system WS(Ψ) which shares almost all the properties of the orig-
inal nonhomogeneous wavelet system. Moreover, we show in Sect. 2 that for nonre-
dundant nonhomogeneous wavelet systems, such as nonhomogeneous orthonormal
wavelets and nonhomogeneous biorthogonal wavelets, there are intrinsic connec-
tions of a nonredundant nonhomogeneous wavelet system with refinable function
vectors and multiresolution analysis. Moreover, the frame approximation property
of WSJ(Φ;Ψ ) is uniquely determined by the set Φ , and is independent of the set Ψ .

To characterize various nonhomogeneous wavelet systems, we show in Sect. 3
that it is very natural to study a frequency-based nonhomogeneous wavelet system
in the distribution space. In Sect. 3, we introduce the notion of a pair of frequency-
based nonhomogeneous dual framelets in the distribution space, for which we pro-
vide a complete characterization in Sect. 3. A similar complete characterization
is also established in [44] for a pair of frequency-based fully nonstationary dual
framelets with real-valued dilation matrices. As demonstrated in Sect. 3, nonhomo-
geneous wavelet systems have intrinsic refinable structure and are naturally con-
nected to framelet transform in the function setting. In a certain sense, the notion
of a frequency-based nonhomogeneous dual framelet in the distribution space cor-
responds to the perfect reconstruction property of a dual framelet filter bank in
the discrete sequence setting. Without any a priori condition (such as membership
in L2(R

d), smoothness and vanishing moments of the generators, approximation
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properties etc.), we prove that any dual framelet filter bank derived via the oblique
extension principle always has an underlying frequency-based nonhomogeneous
dual framelet in the distribution space. We provide a complete characterization
of nonhomogeneous tight M-framelets in L2(R

d) for any real-valued expansive
matrix M.

One of the fundamental properties of wavelets is the characterization of various
function spaces by wavelet coefficients. It turns out that this is closely related to
wavelets and framelets in a general function space. In Sect. 4, we shall introduce
the notion of wavelets and framelets in a general function space. Then we show that
there are two fundamental issues for wavelets and framelets in function spaces: one
is a frequency-based dual framelet in the distribution space, which is closely linked
to the perfect reconstruction property; the other is the stability of a nonhomogeneous
wavelet system in a given function space, which is the frame property of nonhomo-
geneous wavelet systems. The ability of wavelets and framelets for characterizing
function spaces is largely due to the fact that for a frequency-based nonhomoge-
neous dual framelet in the distribution space, the nonhomogeneous wavelet system
often has stability in many function spaces. The notion of vanishing moments will
naturally come from the renormalization of the wavelet or framelet.

In Sect. 5, we shall study wavelets and framelets that are derived from filter
banks. We provide conditions or characterizations in terms of filters for the two
fundamental issues: frequency-based nonhomogeneous dual framelets in the distri-
bution space and its stability in various function spaces such as Sobolev spaces.

In Sect. 6, we shall address the algorithmic aspects of wavelets and framelets by
discussing discrete wavelet/framelet transform with a dual framelet filter bank and
its basic properties. The properties of discrete wavelet/framelet transform with a fil-
ter bank are traditionally derived from wavelets and framelets in the function setting
via a multiresolution analysis (MRA). However, in this paper, we shall study dis-
crete wavelet/framelet transform and its properties purely in the discrete sequence
setting without any wavelets or framelets in the function setting involved. Though
this approach is very natural for algorithms, there has not been much activity in this
direction, and there are a few challenging questions to be resolved.

Finally, using the results in previous sections, in Sect. 7 we provide two exam-
ples of tight framelets in L2(R

d). The first example shows that for any real-valued
expansive matrix M, one can always construct a nonhomogeneous tight M-framelet
WSJ(Φ;Ψ ) in L2(R

d) such that each of Φ and Ψ contains only one element, which
is a C∞ function in the Schwarz class. The second example shows that the first
example can be modified by a simple splitting technique into a directional tight 2I2-
framelet in L2(R

2) so that edge singularities can be captured. Both examples have
underlying OEP-based tight framelet filter bank and therefore, it is possible to im-
plement such directional tight framelets by fast algorithms using filter banks. We
shall also discuss the projection method for constructing wavelets and framelets.

The main goal of this paper is to outline the most recent developments in the
basic theory of wavelets and framelets within the unifying framework of nonho-
mogeneous wavelet systems in a natural and simple way. Without being either too
general or too technical, we strive in this paper to provide the reader a more or less
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complete picture of this topic. Therefore, most technical proofs are removed in this
paper; instead we provide precise references in the literature for the proofs of all
the results presented in this paper. But for the convenience of the reader, we provide
detailed information for important concepts, and we devote our effort to writing this
survey article in a logically coherent way and discussing a daunting wide spectrum
of many aspects of wavelets and framelets.

Over more than 20 years, extensive research has been made by many researchers
from a wide spectrum of research areas, and many important results on wavelet
analysis have been established. However, unavoidably there exist many different
notational systems and approaches in the literature. The existence of different no-
tation, which are often inconsistent and even inconsistent within a single notational
system, makes it much more difficult for researchers to communicate and appreciate
each other’s work, since a large amount of time has to be spent on becoming familiar
with the different notational systems. Another purpose of this paper is to promote a
recently developed, relatively consistent, notational system for a wide spectrum of
wavelet analysis. Such a proposed notation system has been constantly tested and
improved over more than a year now, and appears adequate and consistent to treat
almost all aspects of wavelet analysis in the space/time domain, Fourier/frequency
domain, and Laurent/trigonometric polynomial domain (for filter bank design). The
proposed notational system is achieved by establishing a macro file (in LaTex) so
that one can simply modify the macro file to use one’s own favorite symbols eas-
ily. This paper is an example written using such a macro file and notational system.
Both the macro file and detailed instructions for using it can be freely downloaded
at http://www.ualberta.ca/∼bhan/publ.htm.

2 Nonhomogeneous Wavelet Systems in L2(R
d)

In this section, we study nonhomogeneous wavelet systems in the square integrable
function space L2(R

d). We shall see that a nonhomogeneous wavelet system in
L2(R

d) will naturally lead to a homogeneous wavelet system as its limiting system,
with almost all properties preserved. For a nonredundant nonhomogeneous wavelet
system in L2(R

d), such as a nonhomogeneous orthonormal or biorthogonal wavelet
basis of L2(R

d), we shall see that it naturally leads to a multiresolution analysis
(MRA), refinable structure, and refinable function vectors.

We first study redundant nonhomogeneous wavelet systems in L2(R
d) such as

nonhomogeneousM-framelets and nonhomogeneous dual M-framelets in L2(R
d).

For (not necessarily finite) subsets Φ and Ψ of L2(R
d) and an integer J, we say

that WSJ(Φ;Ψ ) in (3) is a nonhomogeneous M-wavelet frame of L2(R
d) if there

exist two positive constants C1 and C2 such that for all f ∈ L2(R
d),

C1‖ f‖2
L2(Rd )

� ∑
φ∈Φ

∑
k∈Zd

|〈 f ,φMJ ;k〉|2+
∞

∑
j=J

∑
ψ∈Ψ

∑
k∈Zd

|〈 f ,ψM j ;k〉|2�C2‖ f‖2
L2(Rd )

. (4)
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For the best possible constants C1 and C2 in (4), we call
√

C1 the lower frame bound
of WSJ(Φ;Ψ), and

√
C2 the upper frame bound of WSJ(Φ;Ψ ) in L2(R

d).
For nonhomogeneous M-wavelet frames in L2(R

d), we have

Proposition 1 ([44, Proposition 4]) Let M be a d×d real-valued invertible matrix.
Let Φ and Ψ be subsets of L2(R

d). Suppose that WSJ(Φ;Ψ ) is a nonhomogeneous
M-wavelet frame of L2(R

d) for some integer J satisfying (4) for some positive con-
stants C1 and C2. Then (4) holds for all integers J; that is, WSJ(Φ;Ψ ) is a nonhomo-
geneous M-wavelet frame of L2(R

d) with the same lower and upper frame bounds
for all integers J. If in addition M is an expansive matrix and ∑φ∈Φ ‖φ‖2

L2(Rd )
< ∞,

then the homogeneous M-wavelet system WS(Ψ) is a (homogeneous M-wavelet)
frame of L2(R

d) with the same lower and upper frame bounds satisfying

C1‖ f‖2
L2(Rd )

� ∑
j∈Z

∑
ψ∈Ψ

∑
k∈Zd

|〈 f ,ψM j ;k〉|2 �C2‖ f‖2
L2(Rd)

, ∀ f ∈ L2(R
d). (5)

Due to Proposition 1, if WS0(Φ;Ψ ) is a nonhomogeneous M-wavelet frame of
L2(R

d) satisfying (4) with J = 0, then we say that {Φ;Ψ} is a (nonhomogeneous)
M-framelet of L2(R

d). If WS(Ψ) satisfies (5) for some positive constants C1 and
C2, then we say that Ψ is a homogeneous M-framelet of L2(R

d).
Next, we recall the definition of a pair of nonhomogeneous dual M-wavelet

frames in L2(R
d). Let M be a d ×d real-valued invertible matrix. Let

Φ = {φ1, . . . ,φ r}, Ψ = {ψ1, . . . ,ψ s}, Φ̃ = {φ̃1, . . . , φ̃ r}, Ψ̃ = {ψ̃1, . . . , ψ̃ s} (6)

be subsets of L2(R
d), where r,s∈N∪{0,+∞}. Let WSJ(Φ;Ψ ) be defined in (3) and

WSJ(Φ̃;Ψ̃ ) be defined similarly. We say that the pair (WSJ(Φ;Ψ ),WSJ(Φ̃;Ψ̃ )) is
a pair of nonhomogeneous dual M-wavelet frames of L2(R

d) if each of WSJ(Φ;Ψ )
and WSJ(Φ̃ ;Ψ̃) is a nonhomogeneous M-wavelet frame of L2(R

d) and the follow-
ing identity holds

r

∑
�=1

∑
k∈Zd

〈 f ,φ �
MJ ;k〉〈φ̃ �

MJ ;k,g〉+
∞

∑
j=J

s

∑
�=1

∑
k∈Zd

〈 f ,ψ�
M j ;k〉〈ψ̃�

M j ;k,g〉= 〈 f ,g〉, (7)

for all f ,g ∈ L2(R
d). Note that all the series in (7) converge absolutely.

If the notation φ � (a function indexed by �) in (6) appears confusing with the
�-th power of a function φ (which is very rare in wavelet analysis), we suggest the
alternative φ [�]. Note that the subsets in (6) can have repeated elements, and the
above definition of nonhomogeneous dual framelets can be further generalized to
uncountable subsets in (6). For this purpose, we suggest the notation Φ = {φ � | �∈
ΛΦ},Ψ = {ψ� | �∈ ΛΨ} and Φ̃ = {φ̃ � | � ∈ΛΦ},Ψ̃ = {ψ̃� | � ∈ΛΨ} for general
index sets ΛΦ and ΛΨ .

For pairs of nonhomogeneous dual M-wavelet frames of L2(R
d), we have

Proposition 2 ([44, Proposition 5]) Let M be a d × d real-valued invertible ma-
trix. Let Φ,Ψ , Φ̃ ,Ψ̃ in (6) be subsets of L2(R

d). Suppose that for some integer J,
(WSJ(Φ;Ψ ),WSJ(Φ̃ ;Ψ̃ )) is a pair of nonhomogeneous dual M-wavelet frames of
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L2(R
d). Then it is a pair of nonhomogeneous dual M-wavelet frames of L2(R

d)
for all integers J. If in addition M is an expansive matrix and ∑φ∈Φ ‖φ‖2

L2(Rd)
+

∑φ̃∈Φ̃ ‖φ̃‖2
L2(Rd)

< ∞, then the pair (WS(Ψ),WS(Ψ̃)) is a pair of homogeneous

dual M-wavelet frames of L2(R
d), that is, each of WS(Ψ ) and WS(Ψ̃) is a (homo-

geneous M-wavelet) frame of L2(R
d) and the following identity holds:

∑
j∈Z

s

∑
�=1

∑
k∈Zd

〈 f ,ψ�
M j ;k〉〈ψ̃�

M j ;k,g〉= 〈 f ,g〉, ∀ f ,g ∈ L2(R
d). (8)

Due to Proposition 2, we say that ({Φ;Ψ},{Φ̃;Ψ̃}) is a (nonhomogeneous) dual
M-framelet in L2(R

d) if (WS0(Φ;Ψ ),WS0(Φ̃ ;Ψ̃ )) is a pair of nonhomogeneous
dual M-wavelet frames of L2(R

d); furthermore, {Φ;Ψ} is called a nonhomoge-
neous tight M-framelet in L2(R

d) if Φ̃ = Φ and Ψ̃ = Ψ . Similarly, we say that
(Ψ ,Ψ̃ ) is a homogeneous dual M-framelet of L2(R

d) if each of WS(Ψ) and WS(Ψ̃)
is a frame in L2(R

d) and (8) holds; furthermore, Ψ is called a homogeneous tight
M-framelet in L2(R

d) if Ψ̃ =Ψ .
Propositions 1 and 2 show that for a general redundant nonhomogeneous wavelet

system at a given scale level J, there is a sequence of similar nonhomogeneous
wavelet systems at all scale levels with almost all the properties preserved. More-
over, when the scale level goes to −∞, its limiting system is a redundant homoge-
neous wavelet system with the corresponding properties preserved.

Let (WSJ(Φ;Ψ ),WSJ(Φ̃ ;Ψ̃ )) be a pair of nonhomogeneous dual M-wavelet
frames of L2(R

d). Then it is easy to deduce (see [43, 44] and Sect. 3) that for all
j � J and f ,g ∈ L2(R

d),

r

∑
�=1

∑
k∈Zd

〈 f ,φ �
M j+1;k〉〈φ̃ �

M j+1;k,g〉

=
r

∑
�=1

∑
k∈Zd

〈 f ,φ �
M j ;k〉〈φ̃ �

M j ;k,g〉+
s

∑
�=1

∑
k∈Zd

〈 f ,ψ�
M j ;k〉〈ψ̃�

M j ;k,g〉, (9)

which is simply the framelet transform in the function setting.
In the following, let us discuss its frame approximation order in Sobolev spaces.

For τ ∈ R, we denote by Hτ(Rd) the Sobolev space consisting of all tempered dis-
tributions f such that ‖ f‖2

Hτ (Rd)
:= 〈 f , f 〉Hτ (Rd) < ∞, where the inner product on

Hτ(Rd) is defined to be

〈 f ,g〉Hτ (Rd) :=
∫

Rd
f̂ (ξ )ĝ(ξ )(1+‖ξ‖2)τ dξ , f ,g ∈ Hτ(Rd). (10)

For τ � 0, we define the semi-norm | f |2
Hτ (Rd)

:=
∫

Rd | f̂ (ξ )|2‖ξ‖2τdξ for f ∈
Hτ(Rd). Associated with (WSJ(Φ;Ψ ),WSJ(Φ̃ ;Ψ̃)) at the scale level n � J, the
truncated frame approximation/projection operator Pn : L2(R

d)→ L2(R
d) is defined

to be

Pn( f ) :=
r

∑
�=1

∑
k∈Zd

〈 f ,φ �
MJ ;k〉φ̃ �

MJ ;k+
n−1

∑
j=J

s

∑
�=1

∑
k∈Zd

〈 f ,ψ�
M j ;k〉ψ̃�

M j ;k.
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For τ � 0, we say that (WSJ(Φ;Ψ ),WSJ(Φ̃ ;Ψ̃)) has τ frame approximation order
([23]) if there exist a positive constant C and a positive integer N such that

‖Pn( f )− f‖L2(Rd ) �C|detM|−τn/d| f |Hτ (Rd), ∀ f ∈ Hτ (Rd) and n � N.

By (9), we see that

Pn( f ) = [Q( fM−n;0)]Mn;0 = [Q( f (M−n·))](Mn·), n � J, f ∈ L2(R
d),

where the quasi-interpolation operator Q : L2(R
d)→ L2(R

d) is defined to be

Q( f ) :=
r

∑
�=1

∑
k∈Zd

〈 f ,φ �(·− k)〉φ̃ �(·− k).

Therefore, for a pair (WSJ(Φ;Ψ ),WSJ(Φ̃ ;Ψ̃ )) of nonhomogeneousdualM-wavelet
frames of L2(R

d), its frame approximation order is completely determined by the
sets Φ,Φ̃ , and has nothing to do with the generating sets Ψ ,Ψ̃ . The approxima-
tion property of the quasi-interpolation operator Q is well studied in approximation
theory, for example, see [55, 66] and references therein.

Next, we discuss nonredundant nonhomogeneous wavelet systems such as non-
homogeneous Riesz M-wavelet bases and nonhomogeneousbiorthogonalM-wavelet
bases. For subsets Φ and Ψ of L2(R

d) and an integer J, we say that WSJ(Φ;Ψ ) is
a nonhomogeneous Riesz M-wavelet basis of L2(R

d) if

1. The linear span of WSJ(Φ;Ψ ) is dense in L2(R
d)

2. There exist two positive constants C3 and C4 such that

C3 ∑
h∈WSJ(Φ;Ψ)

|wh|2 �
∥

∥

∥ ∑
h∈WSJ(Φ ;Ψ)

whh
∥

∥

∥

2

L2(Rd)
�C4 ∑

h∈WSJ(Φ;Ψ )

|wh|2 (11)

for all finitely supported sequences {wh}h∈WSJ(Φ;Ψ). Note that the sequences
here are indexed by the elements of the set WSJ(Φ;Ψ ).

For the best possible constants C3 and C4 in (11), we call
√

C3 the lower Riesz
bound of WSJ(Φ;Ψ ) and

√
C4 the upper Riesz bound of WSJ(Φ;Ψ ) in L2(R

d).
The following result on the relation between a frame and a Riesz basis of L2(R

d)
is well known in functional analysis and harmonic analysis.

Lemma 1. Let Φ and Ψ be subsets of L2(R
d) and let J be an integer. Then

WSJ(Φ;Ψ ) is a Riesz basis of L2(R
d), if and only if, it is a frame of L2(R

d) and it
is l2(WSJ(Φ;Ψ ))-linearly independent, that is, if ∑h∈WSJ(Φ;Ψ ) whh = 0 in L2(R

d)
for a square summable sequence {wh}h∈WSJ(Φ;Ψ ) ∈ l2(WSJ(Φ;Ψ )), then wh = 0
for all h ∈ WSJ(Φ;Ψ ).

Proof. Though the proof can be found in standard textbooks, for the convenience
of the reader, we sketch a proof here. Define a framelet reconstruction/synthesis
operator V : l2(WSJ(Φ;Ψ )) → L2(R

d), V ({wh}h∈WSJ(Φ ;Ψ )) := ∑h∈WSJ(Φ;Ψ )whh.
By the definition of a Riesz basis, it is easy to see that WSJ(Φ;Ψ ) is a Riesz basis of
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L2(R
d) if and only if V is a well-defined bounded and invertible operator. Similarly,

by the definition of a frame in (5), WSJ(Φ;Ψ ) is a frame of L2(R
d) if and only if

V is a well-defined bounded onto operator with the range of its adjoint operator W
being closed, where W : L2(R

d)→ l2(WSJ(Φ;Ψ )),W ( f ) := {〈 f ,h〉}h∈WSJ(Φ;Ψ) is
the framelet decomposition/analysis operator. Now it is straightforward to see that
WSJ(Φ;Ψ ) is a Riesz basis of L2(R

d) if and only if it is a frame of L2(R
d) and it is

l2(WSJ(Φ;Ψ))-linearly independent, that is, V is one-to-one. ��
According to Lemma 1, a nonhomogeneous Riesz M-wavelet basis of L2(R

d) is
simply a nonredundant M-wavelet frame of L2(R

d). A nonhomogeneous orthonor-
mal M-wavelet basis is a special case of a nonhomogeneous Riesz M-wavelet basis.

For nonhomogeneous Riesz wavelet bases of L2(R
d), we have

Proposition 3 ([44, Theorem 6]) Let M be a d × d real-valued invertible matrix.
Let Φ and Ψ be subsets of L2(R

d). Suppose that WSJ(Φ;Ψ ) is a nonhomogeneous
Riesz M-wavelet basis of L2(R

d) satisfying (11) for some integer J. Then (11) holds
for all integers J and WSJ(Φ;Ψ ) is a nonhomogeneous Riesz M-wavelet basis of
L2(R

d) with the same lower and upper Riesz bounds for all integers J. If in addition
M is expansive and ∑φ∈Φ ‖φ‖2

L2(Rd )
< ∞, then WS(Ψ ) is a homogeneous Riesz M-

wavelet basis of L2(R
d) with the same lower and upper Riesz bounds, that is, the

linear span of WS(Ψ ) is dense in L2(R
d) and

C3 ∑
h∈WS(Ψ)

|wh|2 �
∥

∥

∥ ∑
h∈WS(Ψ)

whh
∥

∥

∥

2

L2(Rd)
�C4 ∑

h∈WS(Ψ)

|wh|2 (12)

for all finitely supported sequences {wh}h∈WS(Ψ).

Due to Proposition 3, we say that {Φ;Ψ} is a (nonhomogeneous Riesz) M-
wavelet in L2(R

d) if WS0(Φ;Ψ ) is a nonhomogeneous Riesz M-wavelet basis of
L2(R

d). Similarly, we say that Ψ is a homogeneous (Riesz) M-wavelet in L2(R
d) if

WS(Ψ ) is a homogeneous Riesz M-wavelet basis of L2(R
d).

Let δ denote the Dirac sequence such that δ (0) = 1 and δ (k) = 0 for all
k = 0. Let Φ,Ψ , Φ̃,Ψ̃ in (6) be subsets of L2(R

d). Let J be an integer. We say that
(WSJ(Φ;Ψ ),WSJ(Φ̃ ;Ψ̃ )) is a pair of nonhomogeneous biorthogonal M-wavelet
bases of L2(R

d) if

1. Each of WSJ(Φ;Ψ ) and WSJ(Φ̃ ;Ψ̃ ) is a Riesz M-wavelet basis of L2(R
d);

2. The following biorthogonality relations hold:

〈φ �
MJ ;k, φ̃

�′
MJ ;k′ 〉= δ (k− k′)δ (�− �′), 〈ψn

M j ;k, φ̃
�′
MJ ;k′ 〉= 0,

〈φ �
MJ ;k, ψ̃

n′
M j′ ;k′ 〉= 0, 〈ψn

M j;k, ψ̃
n′
M j′ ;k′ 〉= δ (k− k′)δ (n−n′)δ ( j− j′), (13)

for all k,k′ ∈ Z
d , j, j′ ∈ Z∩ [J,∞), �,�′ = 1, . . . ,r, and n,n′ = 1, . . . ,s.

The following is a standard result which can be easily proved using Lemma 1.
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Lemma 2. Let Φ and Ψ be subsets of L2(R
d). (WSJ(Φ;Ψ ),WSJ(Φ̃ ;Ψ̃)) is a pair

of nonhomogeneous biorthogonal M-wavelet bases of L2(R
d) if and only if it is a

pair of nonhomogeneous dual M-wavelet frames of L2(R
d) and the biorthogonality

conditions in (13) are satisfied.

For pairs of nonhomogeneous biorthogonal M-wavelet bases of L2(R
d), we have

Theorem 1. ([44, Theorem 7]) Let M be a d × d real-valued invertible matrix. Let
Φ,Ψ , Φ̃,Ψ̃ in (6) be finite subsets of L2(R

d). Suppose (WSJ(Φ;Ψ ),WSJ(Φ̃ ;Ψ̃))
is a pair of nonhomogeneous biorthogonal M-wavelet bases of L2(R

d) for some
integer J. Then it is a pair of nonhomogeneous biorthogonal M-wavelet bases of
L2(R

d) for all integers J. Moreover, there exist r× r matrices ak, ãk and s× r ma-
trices bk, b̃k,k ∈ Z

d of 2πZd-periodic functions in L2(T
d) such that for all k ∈ Z

d,

e−ik·MTξ φ̂ (MTξ ) = ak(ξ )φ̂(ξ ) and e−ik·MTξ ψ̂(MTξ ) = bk(ξ )φ̂(ξ ), (14)

e−ik·MTξ ˆ̃φ(MTξ ) = ãk(ξ ) ˆ̃φ(ξ ) and e−ik·MTξ ˆ̃ψ(MTξ ) = b̃k(ξ ) ˆ̃φ(ξ ), (15)

for almost every ξ ∈ R
d, where

φ = [φ1, . . . ,φ r]T, ψ = [ψ1, . . . ,ψ s]T, φ̃ = [φ̃1, . . . , φ̃ r]T, ψ̃ = [ψ̃1, . . . , ψ̃ s]T. (16)

If M is a d×d integer invertible matrix with dM := |detM|, then s = r(dM−1) and

P[ã0,b̃0]
(ξ )

T
P[a0,b0]

(ξ ) = IrdM , a.e.ξ ∈ R
d ,

where IrdM denotes the (rdM)× (rdM) identity matrix and

P[a0,b0]
(ξ ) :=

[

a0(ξ +2πω0) a0(ξ +2πω1) · · · a0(ξ +2πωdM−1)
b0(ξ +2πω0) b0(ξ +2πω1) · · · b0(ξ +2πωdM−1)

]

and {ω0, . . . ,ωdM−1} := [(MT)−1
Z

d]∩ [0,1)d. If M is a d×d real-valued expansive
matrix, then (WS(Ψ),WS(Ψ̃ )) is a pair of homogeneous biorthogonal M-wavelet
bases of L2(R

d), that is, each of WS(Ψ ) and WS(Ψ̃ ) is a Riesz basis of L2(R
d) and

the last identity of (13) holds for all k,k′ ∈ Z
d , j, j′ ∈ Z, and n,n′ = 1, . . . ,s.

In view of Theorem 1, we say that ({Φ;Ψ},{Φ̃;Ψ̃}) is a (nonhomogeneous)
biorthogonal M-wavelet in L2(R

d) if (WS0(Φ;Ψ ),WS0(Φ̃ ;Ψ̃)) is a pair of non-
homogeneous Riesz M-wavelet bases of L2(R

d); furthermore, {Φ;Ψ} is called a
(nonhomogeneous) orthonormalM-wavelet in L2(R

d) if Φ̃ = Φ and Ψ̃ =Ψ . We re-
fer to the relations in (14) as the refinable structure of the nonhomogeneous wavelet
system WSJ(Φ;Ψ ). When M is an integer matrix, (14) is equivalent to the following
well-known relations:

φ̂ (MTξ ) = a(ξ )φ̂(ξ ) and ψ̂(MTξ ) = b(ξ )φ̂(ξ ), (17)

where a := a0 and b := b0 in (14). Theorem 1 shows that for nonhomogeneous
biorthogonal M-wavelets, the refinable structure in (14) and (15) is intrinsically
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built into nonhomogeneous wavelet systems. Consequently, all nonhomogeneous
orthonormalM-wavelets and nonhomogeneousbiorthogonalM-wavelets must come
from the refinable structures in (14) and (15), and they are intrinsically connected to
multiresolution analysis and refinable function vectors.

A similar result is also true for nonhomogeneousM-wavelets.

Proposition 4 ([44, Theorem 8]) Let M be a d ×d integer invertible matrix. Let Φ
and Ψ in (6) be finite subsets of L2(R

d). Suppose that WSJ(Φ;Ψ ) is a nonhomo-
geneous Riesz M-wavelet basis of L2(R

d) for some integer J. Then the following
statements are equivalent to each other:

(i) there exist subsets Φ̃ andΨ̃ in (6) of L2(R
d) such that (WSJ(Φ;Ψ ),WSJ(Φ̃ ;Ψ̃))

is a pair of nonhomogeneous biorthogonal M-wavelet bases of L2(R
d);

(ii) there exist an r× r matrix a and an s× r matrix b of 2πZd-periodic measurable
functions in L2(T

d) such that (6) holds with φ and ψ being defined in (16).

In the following, we present a simple example to show that not every homoge-
neous M-wavelet has the property in item (ii) of Proposition 4. In fact, assume that
WS0(Φ;Ψ ) is a nonhomogeneous orthonormal M-wavelet basis of L2(R

d) with Φ
and Ψ in (6). For a real number ε , define

φ̊ � := φ �+ εψ�, �= 1, . . . ,r and ψ̊� := ψ�+ εψ�(M·), �= 1, . . . ,s.

Let Φ̊ := {φ̊1, . . . , φ̊ r} and Ψ̊ := {ψ̊1, . . . , ψ̊ s}. By a simple argument, for 0 < ε < 1,
WS0(Φ̊ ;Ψ̊ ) is a nonhomogeneous Riesz M-wavelet basis of L2(R

d), but item (ii) of
Proposition 4 cannot be true.

The results in this section have been initiated in [43] for dimension one, and can
be generalized to a general function space instead of L2(R

d).
For a nonhomogeneous M-wavelet system WSJ(Φ;Ψ ), the set Φ generally can-

not be the empty set and M is just a real-valued invertible matrix. However, to con-
sider the limit of WSJ(Φ;Ψ ) as J → −∞, we have to assume that M is expansive
and this is largely due to the following well-known result in the literature.

Lemma 3. (e.g. [44, Lemma 3]) Let M be a d×d real-valued expansive matrix and
Φ be a (not necessarily finite) subset of L2(R

d) such that ∑φ∈Φ ‖φ‖2
L2(Rd)

< ∞.

Suppose that there exists a positive constant C such that ∑φ∈Φ ∑k∈Zd |〈 f ,φ(· −
k)〉|2 �C‖ f‖2

L2(Rd)
for all f ∈ L2(R

d). Then

lim
j→−∞ ∑

φ∈Φ
∑
k∈Zd

|〈 f ,φM j ;k〉|2 = 0 ∀ f ∈ L2(R
d). (18)

It remains unclear whether the property in (18) will force M to be expansive in
some sense. It is also unclear to us at this moment whether there exists a nontriv-
ial non-expansive (integer) dilation matrix M such that there is a nonhomogeneous
M-wavelet system which is a tight frame or a Riesz basis of L2(R

d). As in [21],
for a nonhomogeneous framelet, it is also of interest to study the structure of the
canonical dual and its other dual systems with the wavelet structure.



132 Bin Han

3 Frequency-Based Nonhomogeneous Dual Framelets in the
Distribution Space

To characterize nonhomogeneous dual or tight framelets in L2(R
d), we shall take

a frequency-based approach by studying frequency-based (nonstationary) nonho-
mogeneous wavelet systems in the distribution space. More precisely, we shall in-
troduce and characterize a pair of frequency-based nonstationary nonhomogeneous
dual wavelet frames in the distribution space. Such a notion is closely related to the
perfect reconstruction property in the function setting of nonhomogeneous wavelet
systems. We shall see the importance of such a notion in this and later sections.

Following the standard notation, we denote by D(Rd) the linear space of all com-
pactly supported C∞ (test) functions with the usual topology, and D ′(Rd) the linear
space of all distributions, that is, D ′(Rd) is the dual space of D(Rd). By duality, it is
easy to see that translation, dilation and modulation in (1) can be naturally extended
to distributions in D ′(Rd). For a tempered distribution f , by the definition of the
notation fU;k,n in (1), we have

f̂U;k,n = e−ik·n f̂(UT)−1;−n,k and ̂fU;k = f̂(UT)−1;0,k, (19)

where the Fourier transform is defined to be f̂ (ξ ) :=
∫

Rd f (x)e−ix·ξ dx,ξ ∈ R
d for

f ∈ L1(R
d) and can be naturally extended to tempered distributions.

By Lloc
p (Rd) we denote the linear space of all measurable functions f such that

∫

K | f (x)|pdx < ∞ for every compact subset K of Rd with the usual modification for
p = ∞. Note that Lloc

1 (Rd) is just the set of all locally integrable functions that can
be globally identified as distributions, that is, Lloc

p (Rd)⊆ Lloc
1 (Rd)⊆ D ′(Rd) for all

1 � p � ∞. For f ∈ D(Rd) and ψ ∈ Lloc
1 (Rd), we shall use the following pairing

〈f,ψ〉 :=
∫

Rd
f(ξ )ψ(ξ )dξ and 〈ψ , f〉 := 〈f,ψ〉=

∫

Rd
ψ(ξ )f(ξ )dξ .

When f ∈ D(Rd) and ψ ∈ D ′(Rd), the duality pairings 〈f,ψ〉 and 〈ψ , f〉 are under-

stood as 〈f,ψ〉 := 〈ψ , f〉 := ψ(f), where here bar refers to the complex conjugate.
Let J be an integer and N be a d×d real-valued invertible matrix. Let Φ and Ψ j,

j � J be subsets of distributions. A frequency-based nonstationary nonhomogeneous
N-wavelet system is defined to be

FWSJ(Φ ;{Ψ j}∞
j=J) = {ϕNJ ;0,k | k ∈ Z

d ,ϕ ∈ Φ}∪
∞
⋃

j=J

{ψN j ;0,k | k ∈ Z
d ,ψ ∈Ψ j}. (20)

For the particular case Ψ j =Ψ for all j � J, a frequency-based nonstationary non-
homogeneous N-wavelet system in (20) becomes a frequency-based (stationary)
nonhomogeneousN-wavelet system:

FWSJ(Φ ;Ψ )={ϕNJ ;0,k | k ∈ Z
d ,ϕ ∈ Φ}∪{ψN j ;0,k | j � J,k ∈ Z

d ,ψ ∈Ψ}.
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For a nonhomogeneous M-wavelet system WSJ(Φ;Ψ ) such that all the generators
in Φ and Ψ are tempered distributions, by (19), the image of the nonhomogeneous
M-wavelet system WSJ(Φ;Ψ ) under the Fourier transform simply becomes the
frequency-based nonhomogeneous (MT)−1-wavelet system FWSJ( ̂Φ; ̂Ψ ), where
̂H := {ĥ | h ∈ H} for a subset H of tempered distributions.

For analysis of wavelets and framelets, as argued in [43, 44], it is often easier
to work with frequency-based nonhomogeneous wavelet systems FWSJ( ̂Φ ; ̂Ψ) in-
stead of space/time-based nonhomogeneous wavelet systems WSJ(Φ;Ψ ), though
both are equivalent to each other within the framework of tempered distributions.
Since we consider frequency-based nonhomogeneous wavelets and framelets in the
distribution space D ′(Rd), it is natural for us to consider FWSJ(Φ ;Ψ)⊆ D ′(Rd).

Let N be a d × d real-valued invertible matrix. Let

Φ = {ϕ1, . . . ,ϕr} and Φ̃ = {ϕ̃1, . . . , ϕ̃r} (21)

and
Ψ j = {ψ j,1, . . . ,ψ j,s j} and Ψ̃ j = {ψ̃ j,1, . . . , ψ̃ j,s j} (22)

be subsets of D ′(Rd) for j � J, where r,s j ∈ N∪{0,+∞}. Let FWSJ(Φ ;{Ψ j}∞
j=J)

be defined in (20) and FWSJ(Φ̃ ;{Ψ̃ j}∞
j=J) be defined similarly. As in [43, 44], we

say that the pair

(FWSJ(Φ ;{Ψ j}∞
j=J),FWSJ(Φ̃ ;{Ψ̃ j}∞

j=J)) (23)

is a pair of frequency-based nonstationary nonhomogeneous dual N-wavelet frames
in the distribution space D ′(Rd) if the following identity holds

r

∑
�=1

∑
k∈Zd

〈f,ϕ�
NJ ;0,k〉〈ϕ̃�

NJ ;0,k,g〉+
∞

∑
j=J

s j

∑
�=1

∑
k∈Zd

〈f,ψ j,�
N j ;0,k〉〈ψ̃

j,�
N j ;0,k,g〉=(2π)d〈f,g〉 (24)

for all f,g ∈D(Rd), where the infinite series in (24) converge in the following sense

(i) for every f,g ∈ D(Rd), all the series

r

∑
�=1

∑
k∈Zd

〈f,ϕ�
NJ ;0,k〉〈ϕ̃ �

NJ ;0,k,g〉 and
s j

∑
�=1

∑
k∈Zd

〈f,ψ j,�
N j ;0,k〉〈ψ̃

j,�
N j ;0,k,g〉 (25)

converge absolutely for all integers j � J;
(ii) for every f,g ∈ D(Rd), the following limit exists and

lim
J+→+∞

( r

∑
�=1

∑
k∈Zd

〈f,ϕ�
NJ ;0,k〉〈ϕ̃ �

NJ ;0,k,g〉

+
J+−1

∑
j=J

s j

∑
�=1

∑
k∈Zd

〈f,ψ j,�
N j ;0,k〉〈ψ̃

j,�
N j ;0,k,g〉

)

= (2π)d〈f,g〉. (26)
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As shown in [43,44], the condition in the above item (i) is automatically satisfied
if Φ ,Ψ j,Φ̃ ,Ψ̃ j are subsets of Lloc

2 (Rd) and r,s j are finite. The condition in item (ii)
is simply the perfect reconstruction property for the test function space D(Rd) of a
pair of frequency-based nonhomogeneous wavelet systems in (23).

The following result shows an intrinsic refinable structure for a pair of frequency-
based nonhomogeneous dual N-wavelet frames in the distribution space D ′(Rd).

Proposition 5 ([44, Corollary 15]) Let N be a d ×d real-valued invertible matrix.
Let Φ,Φ̃ be as in (21), and

Ψ = {ψ1, . . . ,ψ s} and Ψ̃ = {ψ̃1, . . . , ψ̃s} (27)

be subsets of distributions in D ′(Rd). Then (FWSJ(Φ ;Ψ),FWSJ(Φ̃ ;Ψ̃)) is a pair of
frequency-based nonhomogeneous dual N-wavelet frames in the distribution space
D ′(Rd) for some integer J, if and only if, for all f,g ∈ D(Rd),

lim
j→+∞

r

∑
�=1

∑
k∈Zd

〈f,ϕ�
N j ;0,k〉〈ϕ̃�

N j ;0,k,g〉= (2π)d〈f,g〉 (28)

and

r

∑
�=1

∑
k∈Zd

〈f,ϕ�
Id ;0,k〉〈ϕ̃ �

Id ;0,k,g〉 +
s

∑
�=1

∑
k∈Zd

〈f,ψ�
Id ;0,k,〉〈ψ̃ �

Id ;0,k,g〉 (29)

=
r

∑
�=1

∑
k∈Zd

〈f,ϕ�
N;0,k〉〈ϕ̃�

N;0,k,g〉.

By Proposition 5, if (FWSJ(Φ ;Ψ ),FWSJ(Φ̃ ;Ψ̃)) is a pair of frequency-based
nonhomogeneous dual N-wavelet frames in the distribution space D ′(Rd) for some
integer J, then it is true for all integers J. Consequently, we call ({Φ;Ψ},{Φ̃;Ψ̃}) a
frequency-based (nonhomogeneous) dual N-framelet in the distribution space. The
condition in (28) is just a normalization condition. The condition in (29) shares
similarity to the refinable structure in a multiresolution analysis, and implies that
for all J− � J+ and for all f,g ∈ D(Rd),

r

∑
�=1

∑
k∈Zd

〈f,ϕ�
NJ− ;0,k〉〈ϕ̃ �

NJ− ;0,k,g〉 +
J+−1

∑
j=J−

s

∑
�=1

∑
k∈Zd

〈f,ψ�
N j ;0,k〉〈ψ̃�

N j ;0,k,g〉

=
r

∑
�=1

∑
k∈Zd

〈f,ϕ�
NJ+ ;0,k〉〈ϕ̃�

NJ+ ;0,k,g〉.

The following result completely characterizes a pair of frequency-based nonsta-
tionary nonhomogeneous dual N-wavelet frames in the distribution space.

Theorem 2. ([44, Theorem 11]) Let J be an integer. Let N be a d × d real-valued
invertible matrix such that N−1 is expansive. Let Φ,Φ̃ in (21) and Ψ j,Ψ̃ j in (22)
be finite subsets of Lloc

2 (R) for all integers j � J. Then the pair in (23) is a pair
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of frequency-based nonstationary nonhomogeneous dual N-wavelet frames in the
distribution space D ′(Rd) if and only if

lim
J+→+∞

〈

I 0
Φ (NJ·)+

J+−1

∑
j=J

I 0
Ψ j

(N j·),h
〉

= 〈1,h〉 ∀ h ∈ D(Rd) (30)

and

I NJk
Φ (NJξ )+

∞

∑
j=J

I N jk
Ψ j

(N jξ ) = 0, a.e.ξ ∈ R
d ,0 = k ∈ ∪∞

j=J[N
− j
Z

d], (31)

(the infinite sums in (31) are in fact finite for ξ on any bounded set.) where

I k
Φ(ξ ) :=

r

∑
�=1

ϕ�(ξ )ϕ̃�(ξ +2πk), k ∈ Z
d and I k

Φ := 0, k ∈ R
d\Zd, (32)

I k
Ψ j

(ξ ) :=
s j

∑
�=1

ψ j,�(ξ )ψ̃ j,�(ξ +2πk), k ∈ Z
d and I k

Ψ j
:= 0, k ∈R

d\Zd . (33)

As a direct consequence of Theorem 2, we have the following result on frequency-
based nonhomogeneous dual N-wavelet frames in the distribution space.

Corollary 1 ([44, Corollary 15]) Let N be a d × d real-valued invertible matrix
such that N−1 is expansive. Let Φ,Φ̃ in (21) and Ψ ,Ψ̃ in (27) be finite subsets of
Lloc

2 (Rd). Then the following statements are equivalent:

(i) ({Φ;Ψ},{Φ̃;Ψ̃}) is a frequency-based nonhomogeneous dual N-framelet in
the distribution space D ′(Rd);

(ii) (28) and (29) are satisfied for all f,g ∈ D(Rd);
(iii) the following relations are satisfied:

lim
j→+∞

〈 r

∑
�=1

ϕ�(N j·)ϕ̃�(N j·),h
〉

= 〈1,h〉, ∀ h ∈ D(Rd); (34)

and

I k
Φ(ξ )+I k

Ψ(ξ ) = I Nk
Φ (Nξ ), a.e.ξ ∈ R

d, k ∈ Z
d ∪ [N−1

Z
d ], (35)

where I k
Φ is defined in (32) and

I k
Ψ (ξ ) :=

s

∑
�=1

ψ�(ξ )ψ̃�(ξ +2πk), k ∈ Z
d and I k

Ψ := 0, k ∈R
d\Zd . (36)

There is a more general result than Theorem 2. In fact, we have a complete char-
acterization (see [44, Theorem 11]) for a pair of frequency-based fully nonstationary
nonhomogeneous dual wavelet frames in the distribution space; that is, not only the
generating set Ψ j can depend on the scale level j, but also the dilation N j (which is
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the j-th power of N) at the scale level j could be a general arbitrary matrix N j. The
assumption that N−1 is expansive in Corollary 1 is only used for proving the equiva-
lence between (28) and (34). To appreciate the results in Theorem 2 and Corollary 1
for nonhomogeneous framelets, we shall compare them with the characterization of
homogeneous framelets in L2(R

d) at the end of this section.
In the following result and later sections, we shall see the importance of the no-

tion of a frequency-based nonhomogeneous dual framelet in the distribution space.

Theorem 3. Let M be a d×d integer expansive matrix. Define N := (MT)−1. Let a
and ã be 2πZd-periodic measurable functions such that

|1−a(ξ )|�C‖ξ‖ε , |1− ã(ξ )|� C̃‖ξ‖ε̃ , a.e. ξ ∈R
d (37)

for some positive numbers ε, ε̃,C,C̃. Define

ϕ(ξ ) :=
∞

∏
j=1

a(N jξ ) and ϕ̃(ξ ) :=
∞

∏
j=1

ã(N jξ ), ξ ∈R
d . (38)

Then ϕ and ϕ̃ are well-defined functions in Lloc
∞ (Rd) satisfying

ϕ(MTξ ) = a(ξ )ϕ(ξ ) and ϕ̃(MTξ ) = ã(ξ )ϕ̃(ξ ), a.e.ξ ∈R
d. (39)

Let θ 1, . . . ,θ r,b j,1, . . . ,b j,s j−1 , θ̃ 1, . . . , θ̃ r, b̃ j,1, . . . , b̃ j,s j−1 ,r,s j−1 ∈ N ∪ {0} and

j ∈N, be 2πZd-periodic measurable functions in Lloc
2 (Rd) (that is, in L2(T

d)). Define

ϕ�(ξ ) := θ �(ξ )ϕ(ξ ) and ϕ̃�(ξ ) := θ̃ �(ξ )ϕ̃(ξ ), �= 1, . . . ,r,

ψ j−1,�(MTξ ) := b j,�(ξ )ϕ(ξ ) and ψ̃ j−1,�(MTξ ) := b̃ j,�(ξ )ϕ̃(ξ ),

for � = 1, . . . ,s j−1 and j ∈ N. Then Φ ,Φ̃ in (21) and Ψ j,Ψ̃ j in (22) are subsets of
Lloc

2 (R) for all j ∈ N∪{0}. The pair in (23) is a pair of frequency-based nonsta-
tionary nonhomogeneous dual N-wavelet frames in the distribution space D ′(R) for
every integer J � 0, if and only if, for all j ∈N and for all ω ∈ΩN := [NZd ]∩ [0,1)d,

Θ(MTξ )a(ξ +2πω)ã(ξ )+
s j−1

∑
�=1

b j,�(ξ +2πω)b̃ j,�(ξ ) =Θ (ξ )δ (ω), (40)

for almost every ξ ∈ σϕ ∩ (σϕ̃ −2πω), and

lim
j→+∞

〈Θ(N j·),h〉= 〈1,h〉 ∀ h ∈ D(Rd) with Θ(ξ ) :=
r

∑
�=1

θ �(ξ )θ̃ �(ξ ), (41)

where σϕ := {ξ | ∑k∈Zd |ϕ(ξ +2πk)| = 0}, σϕ̃ := {ξ | ∑k∈Zd |ϕ̃(ξ +2πk)| = 0}.

If a and ã are 2πZd-periodic trigonometric polynomials satisfying a(0) = ã(0) =
1, then it is evident that (37) holds with ε = ε̃ = 1 and σϕ = σϕ̃ = R

d . Therefore,
without a priori condition, Theorem 3 shows that every dual framelet filter bank has
an underlying frequency-based dual framelet in the distribution space.
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In the rest of this section, we characterize nonhomogeneous framelets in the
function space L2(R

d). We say that the pair in (23) is a pair of frequency-based
nonstationary nonhomogeneous dual N-wavelet frames of L2(R

d) if (i) all elements
in the two systems of the pair belong to L2(R

d), (ii) each system in the pair is a
frame in L2(R

d), and (iii) (24) holds for all f,g ∈ L2(R
d) with the series converging

absolutely. By the Plancherel Theorem (2π)d〈 f ,g〉 = 〈 f̂ , ĝ〉 and (19), it is straight-
forward to see that a space/time-based pair (WSJ(Φ;Ψ ),WSJ(Φ̃;Ψ̃ )) is a pair of
nonhomogeneous dual M-wavelet frames in L2(R

d) if and only if the frequency-

based pair (FWSJ( ̂Φ ; ̂Ψ ),FWSJ(
̂Φ̃ ; ̂Ψ̃)) is a pair of frequency-based nonhomoge-

neous dual (MT)−1-wavelet frames in L2(R
d), where ̂H := {ĥ | h ∈ H} for a subset

H of tempered distributions.
The following result, which is a special case of Theorem 5, characterizes frequency-

based dual framelets in L2(R
d).

Corollary 2 ([44, Theorem 9]) Let N be a d ×d real-valued invertible matrix and
J be an integer. Let Φ,Φ̃ and Ψ j,Ψ̃ j be at most countable subsets of distribu-
tions on R

d for all integers j � J. Then the pair in (23) is a pair of frequency-
based nonstationary nonhomogeneous dual N-wavelet frames in L2(R

d) if and
only if

(i) there exists a positive constant C such that for all f,g ∈ D(Rd),

∑
ϕ∈Φ

∑
k∈Zd

|〈f,ϕNJ ;0,k〉|2 +
∞

∑
j=J

∑
ψ∈Ψ j

∑
k∈Zd

|〈f,ψN j ;0,k〉|2 �C‖f‖2
L2(Rd)

, (42)

∑
ϕ̃∈Φ̃

∑
k∈Zd

|〈g, ϕ̃NJ ;0,k〉|2 +
∞

∑
j=J

∑
ψ̃∈Ψ̃ j

∑
k∈Zd

|〈g,ψ̃N j ;0,k〉|2 �C‖g‖2
L2(Rd)

; (43)

(ii) the pair in (23) is a pair of frequency-based nonstationary nonhomogeneous
dual N-wavelet frames in the distribution space D ′(Rd).

By Lemma 2, we say that (FWSJ(Φ ;{Ψ j}∞
j=J),FWSJ(Φ̃ ;{Ψ̃ j}∞

j=J)) is a pair
of frequency-based nonstationary nonhomogeneous biorthogonal N-wavelet bases
of L2(R

d) if it is a pair of frequency-based nonstationary nonhomogeneous dual
N-wavelet frames of L2(R

d) and the frequency-based biorthogonality relations
hold:

〈ϕ�
NJ ;0,k, ϕ̃

�′
NJ ;0,k′ 〉 = δ (k− k′)δ (�− �′), 〈ψ j,n

N j ;0,k, ϕ̃
�′
NJ ;0,k′ 〉= 0, (44)

〈ϕ�
NJ ;0,k, ψ̃

j′,n′
N j′ ;0,k′

〉 = 0, 〈ψ j,n
N j ;0,k, ψ̃

j′,n′
N j′ ;0,k′

〉=(2π)dδ (k−k′)δ (n−n′)δ ( j− j′)

for all k,k′ ∈ Z
d , j, j′ ∈ Z∩ [J,+∞), �,�′ = 1, . . . ,r, and n,n′ = 1, . . . ,s. With the

frequency-based biorthogonality conditions in (44), Corollary 2 also character-
izes frequency-based nonstationary nonhomogeneous biorthogonal N-wavelets in
L2(R

d).
As a direct consequence of results in Theorem 2 and Corollary 2, we have
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Proposition 6 ([44, Corollary 17]) Let M be a d ×d real-valued expansive matrix
and define N := (MT)−1. Let J0 be an integer. Let Φ in (21) and Ψ j in (22) be finite
subsets of Lloc

2 (Rd) for all j � J0. Then the following are equivalent:

1. FWSJ(Φ ;{Ψ j}∞
j=J) is a frequency-based nonstationary nonhomogeneous tight

N-wavelet frame of L2(R
d) for every integer J � J0, that is, Φ ,Ψ j ⊆ L2(R

d) for
all j � J0, and for all J � J0 and f ∈ L2(R

d),

r

∑
�=1

∑
k∈Zd

|〈f,ϕ�
NJ ;0,k〉|2 +

∞

∑
j=J

s j

∑
�=1

∑
k∈Zd

|〈f,ψ j,�
N j ;0,k〉|2 = (2π)d‖f‖2

L2(Rd)
; (45)

2. (FWSJ(Φ ;{Ψ j}∞
j=J),FWSJ(Φ ;{Ψ j}∞

j=J)) is a pair of frequency-based non-
stationary nonhomogeneous dual N-wavelet frames in the distribution space
for every integer J � J0;

3. lim j→+∞ ∑r
�=1〈|ϕ�(N j·)|2,h〉 = 〈1,h〉 for all h ∈ D(Rd) and for all j � J0 and

almost every ξ ∈ R
d,

r

∑
�=1

ϕ�(ξ )ϕ�(ξ +2πk)+
s j

∑
�=1

ψ j,�(ξ )ψ j,�(ξ +2πk)

=
r

∑
�=1

ϕ�(Nξ )ϕ�(N(ξ +2πk)), k ∈ Z
d ∩ [N−1

Z
d ], (46)

r

∑
�=1

ϕ�(ξ )ϕ�(ξ +2πk)+
s j

∑
�=1

ψ j,�(ξ )ψ j,�(ξ +2πk) = 0, k ∈ Z
d\[N−1

Z
d ],

(47)
r

∑
�=1

ϕ�(Nξ )ϕ�(N(ξ +2πk)) = 0, k ∈ [N−1
Z

d]\Zd . (48)

Moreover, if the following additional property holds:

h(ξ )h(ξ +2πk) = 0 a.e. ξ ∈ R
d ,k ∈ Z

d\{0},h ∈ Φ ∪ (∪∞
j=J0

Ψ j),

then all the conditions in (46)–(48) are reduced to the following simple condition

r

∑
�=1

|ϕ�(ξ )|2 +
s j

∑
�=1

|ψ j,�(ξ )|2 =
r

∑
�=1

|ϕ�(Nξ )|2, a.e.ξ ∈ R
d , j � J0. (49)

To appreciate the results in Theorem 2 and Proposition 6 for nonhomogeneous
framelets, let us recall the characterization of homogeneous dual or tight framelets
in L2(R

d) in the literature. Many researchers have contributed to this problem, to
mention a few references here, see [3, 9, 20, 29–31, 72, 73] and references therein.
For the convenience of presentation, we only state the frequency-based versions
here.
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Theorem 4. ([30, Theorem 2.7], [31, Theorem 2.5], [72, Corollary 2]) Let M be
a d × d integer expansive matrix. Define N := (MT)−1. Let Ψ and Ψ̃ in (27) be
finite subsets of L2(R

d). Then (FWS(Ψ ),FWS(Ψ̃)), with FWS(Ψ ) := {ψN j ;0,k |
j ∈ Z,k ∈ Z

d,ψ ∈Ψ}, is a pair of frequency-based homogeneous dual N-wavelet
frames of L2(R

d) if and only if

(i) there exists a positive constant C such that

∑
j∈Z

s

∑
�=1

∑
k∈Zd

(

|〈f,ψ�
N j ;0,k〉|2 + |〈f, ψ̃�

N j ;0,k〉|2
)

�C‖f‖2
L2(Rd)

, ∀ f ∈ L2(R
d);

(50)
(ii) the following identities hold: for almost every ξ ∈ R

d,

∑
j∈Z

s

∑
�=1

ψ�(N jξ )ψ̃�(N jξ ) = 1, (51)

s

∑
�=1

+∞

∑
j=0

ψ�(N− jξ )ψ̃�(N− j(ξ +2πγ)) = 0, γ ∈ Z
d\[N−1

Z
d ]. (52)

The absolute convergence of all the series in (51) and (52) is implicitly guaran-
teed by item (i) of Theorem 4. For homogeneous tight framelets, we have

Corollary 3 ([30, Theorem 2.8], [31, Theorem 2.7], [73, Corollary 1.3]) Let M be a
d×d integer expansive matrix. Define N := (MT)−1. Let Ψ in (27) be a finite subset
of L2(R

d). Then FWS(Ψ ) is a frequency-based homogeneous tight N-wavelet frame
of L2(R

d), that is, ∑ j∈Z ∑s
�=1 ∑k∈Zd |〈f,ψ�

N j ;0,k〉|2 = 2π‖f‖2
L2(Rd )

for all f ∈ L2(R
d),

if and only if, (51) and (52) hold with ψ̃� := ψ�, �= 1, . . . ,s.

In fact, Theorem 4 and Corollary 3 have been established in [30,31] for homoge-
neous dual or tight framelets in general subspaces of L2(R

d) (see [31, page 381] and
[30, page 4]). Theorem 4 and Corollary 3 are consequences of general Grammian
analysis in [72, 73]. Nevertheless, comparing with the above results on homoge-
neous framelets, our results on nonhomogeneous framelets have several important
features. Firstly, only finite sums are involved in our characterizations and therefore,
there is no issue on the convergence of the series. Infinite series are unavoidable
in the characterization of homogeneous framelets in Theorem 4 and Corollary 3
and their convergence has to be guaranteed by extra conditions such as the Bessel
condition in (50). Secondly, our characterization handles any arbitrary dilation ma-
trix and fully nonstationary nonhomogeneous framelets. However, for homogeneous
framelets with a non-integer expansive matrix, it is known (for example, [9]) that the
characterization of homogeneous tight framelets even for rational dilation factor in
dimension one is extremely complicated, not to mention a general dilation matrix
in high dimensions. In fact, there are barely results in the literature on characteri-
zation of homogeneous tight framelets for a general real-valued dilation matrix and
for nonstationary homogeneous framelets. Thirdly, our characterizations do not im-
pose any extra conditions such as membership in L2(R

d), Bessel stability condition,
vanishing moments, etc.
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4 Wavelets and Framelets in Function Spaces

In this section, we shall introduce (nonhomogeneous) wavelets and framelets in a
general function space. We shall see that frequency-based nonhomogeneous dual
framelets in the distribution space play a critical role in the study of wavelets and
framelets in various function spaces.

In Sect. 2, we have discussed nonhomogeneous wavelets and framelets in the
commonly-used function space L2(R

d). We have established in Corollary 2 a char-
acterization of nonhomogeneous wavelets and framelets in L2(R

d). In this section,
we generalize the definition in the space/time domain of wavelets and framelets from
L2(R

d) to a general function space. Then we shall look at them for some particular
function spaces such as Sobolev spaces.

Let (B,‖ ·‖B) denote a (Banach) function space with (B′,‖ ·‖B′) being its dual
function space. We always assume that D(Rd)⊆ B∩B′ and (B′)′ = B. The pair-
ing between B and B′ is understood in the usual sense as 〈 f ,g〉 = ∫

Rd f (x)g(x)dx
for f ,g ∈ D(Rd). For example, if B is the Besov space Bτ

p,q(R
d) for some τ ∈ R

and 1< p,q<∞, then B′ = B−τ
p′,q′(R

d) with 1/p+1/p′= 1/q+1/q′= 1. Similarly,

if B is a Triebel–Lizorkin space Fτ
p,q(R

d), then B′ = F−τ
p′,q′(R

d).
Let Φ and Ψj, j � J be subsets of B. For a d×d real-valued invertible matrix M,

we define a nonstationary nonhomogeneousM-wavelet system in B as follows:

WSJ(Φ;{Ψj}∞
j=J) : = {φMJ ;k | k ∈ Z

d,φ ∈ Φ}
∪{ψM j ;k | j � J,k ∈ Z

d ,ψ ∈Ψj}. (53)

We assume that WSJ(Φ;{Ψj}∞
j=J) ⊆ B. For a function space B, we assume that

there exists a sequence space (bB,‖ ·‖bB
), whose sequences are indexed by the ele-

ments of WSJ(Φ;{Ψj}∞
j=J). Furthermore, we also assume the following conditions

on the sequence space (bB,‖ · ‖bB
):

1. for every h0 ∈ WSJ(Φ;{Ψj}∞
j=J), there exists a positive constant Ch0 such that

|wh0 |�Ch0‖{wh}h∈WSJ(Φ;{Ψj}∞
j=J)

‖bB
∀ {wh}h∈WSJ(Φ;{Ψj}∞

j=J)
∈ bB; (54)

2. for every finite subset K ⊂ WSJ(Φ;{Ψj}∞
j=J) and for every sequence { fn}∞

n=1

in D(Rd) such that limn→∞ fn = f in (B′,‖ · ‖B′),

‖{〈 f ,h〉}h∈K‖bB
� limsup

n→∞
‖{〈 fn,h〉}h∈K‖bB

; (55)

where {〈 f ,h〉}h∈K is a sequence by setting zero for indices outside K;
3. for every increasing sequence {Kn}∞

n=1 of finite subsets of WSJ(Φ;{Ψj}∞
j=J)

such that ∪∞
n=1Kn = WSJ(Φ;{Ψj}∞

j=J),

lim
n→∞

‖{wh}h∈WSJ(Φ ;{Ψj}∞
j=J)\Kn‖bB

= 0, ∀ {wh}h∈WSJ(Φ;{Ψj}∞
j=J)

∈ bB.

(56)
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Between the two sequence spaces (bB,‖ · ‖bB
) and (bB′ ,‖ · ‖bB′ ), we also as-

sume a natural relation which mimics the Cauchy–Schwarz inequality: there exists
a positive constant Cb such that the series ∑h∈WSJ

whw̃h converges absolutely and

∣

∣

∣ ∑
h∈WSJ

whw̃h

∣

∣

∣�Cb‖{wh}h∈WSJ‖bB
‖{w̃h}h∈WSJ‖bB′ (57)

for all {wh}h∈WSJ ∈ bB and {w̃h}h∈WSJ ∈ bB′ , where WSJ := WSJ(Φ;{Ψj}∞
j=J).

We say that WSJ(Φ;{Ψj}∞
j=J) ⊂ B is a preframe of B (or has stability in B)

with respect to bB′ if there exist positive constants C5 and C6 such that

C5‖ f‖B′ � ‖{〈 f ,h〉}h∈WSJ(Φ;{Ψj}∞
j=J)

‖bB′ �C6‖ f‖B′ , ∀ f ∈ B′. (58)

(58) indicates that up to equivalence the norm ‖ · ‖bB′ is often uniquely determined
by B′ and is independent of the actual elements of the index set WSJ(Φ;{Ψj}∞

j=J).
We say that WSJ(Φ;{Ψj}∞

j=J) is a prebasis of B with respect to bB′ if it is a pre-
frame of B with respect to bB′ and it is bB-linearly independent, that is, if for a
sequence {wh}h∈WSJ(Φ ;{Ψj}∞

j=J)
∈ bB , ∑h∈WSJ(Φ;{Ψj}∞

j=J)
wh〈h, f 〉= 0 for all f ∈B′,

then we must have wh = 0 for all h ∈ WSJ(Φ;{Ψj}∞
j=J).

For subsets Φ = {φ1, . . . ,φ r},Ψj = {ψ j,1, . . . ,ψ j,s j}, j � J of B and subsets
Φ̃ = {φ̃1, . . . , φ̃ r},Ψ̃j = {ψ̃ j,1, . . . , ψ̃ j,s j}, j � J of B′, we say that

(WSJ(Φ;{Ψj}∞
j=J),WSJ(Φ̃;{Ψ̃j}∞

j=J))

is a pair of nonstationary nonhomogeneous dual M-wavelet frames in (B,B′) if

1. WSJ(Φ;{Ψj}∞
j=J) is a preframe of B with respect to bB′ ;

2. WSJ(Φ̃ ;{Ψ̃j}∞
j=J) is a preframe of B′ with respect to bB;

3. for all f ∈ B′ and g ∈ B, the following identity holds:

r

∑
�=1

∑
k∈Zd

〈 f ,φ �
MJ ;k〉〈φ̃ �

MJ ;k,g〉+
∞

∑
j=J

s j

∑
�=1

∑
k∈Zd

〈 f ,ψ j,�
M j ;k

〉〈ψ̃ j,�
M j ;k

,g〉= 〈 f ,g〉. (59)

By the assumption in (57), all the series on the left-hand side of (59) converge
absolutely. From the above definition, we have

f =
r

∑
�=1

∑
k∈Zd

〈 f ,φ �
MJ ;k〉φ̃ �

MJ ;k+
∞

∑
j=J

s j

∑
�=1

∑
k∈Zd

〈 f ,ψ j,�
M j ;k〉ψ̃

j,�
M j ;k, f ∈ B′ (60)

and (58) holds (that is, ‖ f‖B′ is characterized by its framelet coefficients). Similarly,

g =
r

∑
�=1

∑
k∈Zd

〈g, φ̃ �
MJ ;k〉φ �

MJ ;k+
∞

∑
j=J

s j

∑
�=1

∑
k∈Zd

〈g, ψ̃ j,�
M j ;k

〉ψ j,�
M j ;k

, g ∈ B, (61)

C−1
6 ‖g‖B � ‖{〈g, h̃〉}h̃∈WSJ(Φ̃;{Ψ̃j}∞

j=J)
‖bB

�C−1
5 ‖g‖B, ∀ g ∈ B. (62)
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We say that (WSJ(Φ;{Ψj}∞
j=J),WSJ(Φ̃;{Ψ̃j}∞

j=J)) is a pair of nonstationary
nonhomogeneous biorthogonal M-wavelet bases in (B,B′) if it is a pair of nonsta-
tionary nonhomogeneous dualM-wavelet frames in (B,B′) and the biorthogonality
relations similar to (13) hold, that is, the two systems are biorthogonal to each other.

In the following, we discuss the particular case of Sobolev spaces which are
Hilbert spaces. For a Sobolev space B = Hτ(Rd), we have B′ = H−τ(Rd) and we
define a normed sequence space (bHτ (Rd),‖ · ‖bHτ (Rd )

), indexed by the elements of

WSJ(Φ;{Ψj}∞
j=J), with the weighted norm ‖ · ‖b

Hτ(Rd )
as follows:

∥

∥

∥{wh}h∈WSJ(Φ;{Ψj}∞
j=J)

∥

∥

∥

2

b
Hτ (Rd )

: = ∑
φ∈Φ

∑
k∈Zd

|detM|2τJ/d|wφMJ ;k
|2

+
∞

∑
j=J

∑
ψ∈Ψj

∑
k∈Zd

|detM|2τ j/d|wψ
M j ;k

|2 (63)

and bHτ (Rd) := {{wh}h∈WSJ(Φ;{Ψj}∞
j=J)

| ‖{wh}h∈WSJ(Φ ;{Ψj}∞
j=J)

‖bHτ (Rd )
< ∞}.

WSJ(Φ;{Ψj}∞
j=J) ⊂ Hτ(Rd) is a preframe of Hτ (Rd) with respect to bH−τ (Rd)

satisfying (58) with B = Hτ(Rd) if and only if for all g ∈ Hτ(Rd),

C5‖g‖2
Hτ(Rd)

� ∑
φ∈Φ

∑
k∈Zd

|〈g, |detM|−τJ/dφMJ ;k〉Hτ (Rd)|2

+
∞

∑
j=J

∑
ψ∈Ψj

∑
k∈Zd

|〈g, |detM|−τ j/dψM j;k〉Hτ (Rd)|2 �C6‖g‖2
Hτ (Rd)

, (64)

with 〈·, ·〉Hτ (Rd) in (10). Define ĝ(ξ ) := f̂ (ξ )(1+ ‖ξ‖2)τ for f ∈ H−τ(Rd). Then
‖ f‖H−τ (Rd) = ‖g‖Hτ (Rd ) and 〈 f ,ψM j ;k〉 = 〈g,ψM j ;k〉Hτ (Rd ). We see that (58) with

B = Hτ(Rd) is equivalent to (64) (see [51, Proposition 2.1] with M= 2Id).
Hence, WSJ(Φ;{Ψj}∞

j=J) ⊂ Hτ(Rd) is a preframe of Hτ(Rd) with respect to
bH−τ (Rd) is equivalent to saying that after a renormalization of WSJ(Φ;{Ψj}∞

j=J),

WSτ
J(Φ;{Ψj}∞

j=J) : = {|detM|−τJ/dφMJ ;k : k ∈ Z
d ,φ ∈ Φ}

∪{|detM|−τ j/dψM j ;k : j � J,k ∈ Z
d ,ψ ∈Ψj} (65)

is a frame of the Hilbert space Hτ (Rd) in the classical sense. If WSJ(Φ;{Ψj}∞
j=J)

is a prebasis of Hτ(Rd) with respect to bH−τ (Rd), then WSτ
J(Φ;{Ψj}∞

j=J) is a Riesz

basis of the Hilbert space Hτ(Rd) in the classical sense.
For a Besov space Bτ

p,q(R
d) with τ ∈ R and 1 < p,q < ∞, define

‖{wh}h∈WSJ(Φ ;{Ψj}∞
j=J)

‖q
b

Bτ
p,q(Rd )

:=
(

∑
φ∈Φ

∑
k∈Zd

|wφMJ ;k
|p
)q/p

+
∞

∑
j=J

|detM|(1/2−1/p+τ/d) jq
(

∑
ψ∈Ψj

∑
k∈Zd

|wψ
M j ;k

|p
)q/p

. (66)



Wavelets and Framelets Within the Framework of Nonhomogeneous Wavelet Systems 143

For B = bHτ (Rd ) or more generally B = bBτ
p,q(R

d), it is easy to check that (57) and
all the conditions for bB are satisfied.

In the rest of this section, we shall use the frequency-based definition instead.
For a function space (B,‖ ·‖B) such that all the elements in B are tempered distri-
butions, we define its corresponding frequency-based function space ( ̂B,‖ · ‖

̂B
) as

follows:
̂B := { f̂ : f ∈ B} and ‖ f̂‖

̂B
:= ‖ f‖B, f ∈ B. (67)

That is, the Fourier transform is an isometry from (B,‖ · ‖B) to ( ̂B,‖ · ‖
̂B
). Also,

by Plancherel theorem (2π)d〈 f ,g〉= 〈 f̂ , ĝ〉, we simply take b
̂B
= bB.

Let B be a (frequency-based) function space and B′ be its dual space. We assume
that D(Rd)⊂B∩B′ , (B′)′ =B, and D(Rd) is dense in bothB andB′. For subsets
Φ,Ψ j, j � J of B, we say that FWSJ(Φ;{Ψ j}∞

j=J) is a frequency-based preframe
of B with respect to bB′ if there exist positive constants C7 and C8 such that

C7‖f‖B′ � ‖{〈f,h〉h∈FWSJ(Φ;{Ψ j}∞
j=J)

‖bB′ �C8‖f‖B′ , ∀ f ∈B′. (68)

Similarly, FWSJ(Φ ;{Ψ j}∞
j=J) is a frequency-based prebasis of B with respect

to bB′ if it is a frequency-based preframe of B with respect to bB′ and it is
bB-linearly independent, that is, if ∑h∈FWSJ(Φ;{Ψ j}∞

j=J)
wh〈 f ,h〉 = 0 ∀ f ∈ B′ for

{wh}h∈FWSJ(Φ;{Ψ j}∞
j=J)

∈ bB, then wh = 0 for all h ∈ FWSJ(Φ ;{Ψ j}∞
j=J).

For subsets Φ,Ψ j, j � J of B and subsets Φ̃ ,Ψ̃ j, j � J of B′ in (21) and (22),
we say that (FWSJ(Φ ;{Ψ j}∞

j=J),FWSJ(Φ̃ ;{Ψ̃ j}∞
j=J)) is a pair of frequency-based

nonstationary nonhomogeneous dual N-wavelet frames in (B,B′) if:

1. FWSJ(Φ ;{Ψ j}∞
j=J) is a frequency-based preframe of B with respect to bB′ .

2. FWSJ(Φ̃ ;{Ψ̃ j}∞
j=J) is a frequency-based preframe of B′ with respect to bB.

3. for all f ∈B′ and g ∈B, the following identity holds:

r

∑
�=1

∑
k∈Zd

〈f,ϕ�
NJ ;0,k〉〈ϕ̃ �

NJ ;0,k,g〉 +
∞

∑
j=J

s j

∑
�=1

∑
k∈Zd

〈f,ψ j,�
N j ;0,k〉〈ψ̃

j,�
N j ;0,k,g〉

= (2π)d〈f,g〉. (69)

It is evident that (WSJ(Φ;{Ψj}∞
j=J),WSJ(Φ̃;{Ψ̃j}∞

j=J)) is a pair of nonstationary
nonhomogeneous dual M-wavelet frames in (B,B′) if and only if

(FWSJ( ̂Φ ;{̂Ψj}∞
j=J),FWSJ(

̂Φ̃ ;{̂Ψ̃j}∞
j=J))

is a pair of frequency-based nonstationary nonhomogeneous dual (MT)−1-wavelet
frames in ( ̂B, ̂B′). Similarly, we say that the pair in (23) is a pair of frequency-
based nonstationary nonhomogeneous biorthogonalN-wavelet bases in (B,B′) if it
is a pair of frequency-based nonstationary nonhomogeneous dual N-wavelet frames
in (B,B′) and the frequency-based biorthogonality relations in (44) hold.
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By the following result, we see that the notion of a frequency-based nonhomo-
geneous dual wavelet frames in the distribution space plays a basic role in the study
of pairs of nonhomogeneous dual wavelet frames in a pair of dual function spaces.

Theorem 5. Let N be a d × d real-valued invertible matrix. Let Φ ,Φ̃ in (21) and
Ψ j,Ψ̃ j, j � J in (22) be subsets of distributions. Then the pair in (23) is a pair of
frequency-based nonstationary nonhomogeneous dual N-wavelet frames in a pair
of dual function spaces (B,B′), if and only if,

(i) there exists a positive constant C such that
∥

∥{〈f,h〉}h∈FWSJ(Φ;{Ψ j}∞
j=J)

∥

∥

bB′ �C‖f‖B′ , f ∈ D(Rd) (70)

and
∥

∥{〈g, h̃〉}h̃∈FWSJ(Φ̃;{Ψ̃ j}∞
j=J)

∥

∥

bB
�C‖g‖B, g ∈ D(Rd); (71)

(ii) the pair (FWSJ(Φ;{Ψ j}∞
j=J),FWSJ(Φ̃ ;{Ψ̃ j}∞

j=J)) is a pair of frequency-based
nonstationary nonhomogeneous dualN-wavelet frames in the distribution space.

Proof. We sketch a proof which is parallel to the proof of [43, Theorem 7] for the

Sobolev space B = Ĥτ(R). For more details on a complete proof, see [43, Theo-
rem 7]. Since the necessity part is trivial, we only prove the sufficiency part.

For h0 ∈ FWSJ(Φ ;{Ψ j}∞
j=J), by our assumption in (54) and (70), we have

|〈f,h0〉| �CCh0‖f‖B′ for all f ∈ D(Rd). Hence, 〈·,h0〉 can be extended into a con-
tinuous linear functional on B′, and therefore, h0 can be identified with an element
in B. By our assumption in (55) and (56), we can deduce that (70) holds for all
f ∈ B′. Similarly, we have h̃0 ∈ B′ for every h̃0 ∈ FWSJ(Φ̃ ;{Ψ̃ j}∞

j=J) and (71)
holds for all g ∈B. By the relation in (57), we deduce that (68) holds and

C̃7‖g‖B � ‖{〈g, h̃〉h̃∈FWSJ(Φ̃;{Ψ̃ j}∞
j=J)

‖bB � C̃8‖g‖B, ∀ g ∈B

with C̃7 =C7 := (C0C)−1 and C̃8 =C8 :=C.
By item (ii), we see that (24) holds for all f,g ∈ D(Rd). Since D(Rd) is dense

in B and B′, by what has been proved and by a standard density argument, we see
that identity (69) holds for all f ∈B′ and g ∈B. Therefore, the pair in (23) is a pair
of frequency-based nonstationary nonhomogeneous dual N-wavelet frames in a pair
of dual function spaces (B,B′). ��

As discussed in Sect. 3, we have a complete picture about item (ii) of Theorem 5
on frequency-based nonstationary nonhomogeneous dual framelets in the distri-
bution space. Though we have some sufficient conditions in [51] for item (i) of

Theorem 5 for the particular case B= Ĥτ(Rd), more effort is needed to get a com-
plete understanding and characterization of item (i) of Theorem 5 on the stability of
a frequency-based nonstationary nonhomogeneous wavelet systems in various func-
tion spaces. In Sect. 5, we shall address the stability issue of a nonhomogeneous
wavelet system which is derived from a filter bank.
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5 Wavelets and Framelets Derived from Filter Banks

Many nonhomogeneous wavelets and framelets are derived from filter banks. In this
section, we shall study the two fundamental issues on frequency-based nonhomo-
geneous wavelets and framelets that come from filter banks: frequency-based non-
homogeneous dual framelets in the distribution space and stability of a frequency-
based nonhomogeneous wavelet system in a general function space. For simplic-
ity, we only discuss stationary nonhomogeneous wavelets and framelets in Sobolev
spaces.

As a particular case of Theorem 3, we have

Corollary 4 Let M be a d×d integer expansive matrix. Define N := (MT)−1. Let a
and ã be 2πZd-periodic trigonometric polynomials satisfying a(0) = ã(0) = 1. De-
fine ϕ and ϕ̃ as in (38). For 2πZd-periodic trigonometric polynomials Θ ,b1, . . . ,bs,
b̃1, . . . , b̃s, define η(ξ ) :=Θ(ξ )ϕ̃(ξ ) and

ψ�(MTξ ) := b�(ξ )ϕ(ξ ) and ψ̃�(MTξ ) := b̃�(ξ )ϕ̃(ξ ), �= 1, . . . ,s. (72)

Define

Φ := {ϕ}, Ψ := {ψ1, . . . ,ψ s}, Φ̃ := {η}, Ψ̃ := {ψ̃1, . . . , ψ̃s}. (73)

Then, ({Φ ;Ψ},{Φ̃;Ψ̃}) is a frequency-based nonhomogeneous dual N-framelet in
the distribution space D ′(Rd), if and only if, Θ(0) = 1 and

Θ(MTξ )a(ξ +2πω)ã(ξ )+
s

∑
�=1

b�(ξ +2πω)b̃�(ξ ) =Θ(ξ )δ (ω) (74)

for all ω ∈ ΩN := [NZd ]∩ [0,1)d.

We shall see in Sect. 6 that (74) is equivalent to the perfect reconstruction prop-
erty of the dual framelet filter bank ({a;b1, . . . ,bs},{ã; b̃1, . . . , b̃s})Θ .

To study the stability of FWSJ(Φ ;Ψ ) in a function space B and the stability of
FWSJ(Φ̃ ;Ψ̃) in B′, we have to introduce some definitions.

By ∂ j we denote the partial derivative with respect to the j-th coordinate. Define
N0 := N∪{0}. For β = (β1, . . . ,βd)

T ∈ N
d
0, we define |β | := β1 + · · ·+ βd , ∂ :=

(∂1, . . . ,∂d)
T, and ∂ β := ∂ β1

1 · · ·∂ βd
d . For a nonnegative integer m and two smooth

functions f and g, the notation f(ξ ) = g(ξ )+O(‖ξ − ξ0‖m) as ξ → ξ0 means that
∂ β f(ξ0) = ∂ β g(ξ0) for all β ∈N

d
0 such that |β |< m.

For 1� p�∞, the Lp smoothness of a distribution f is measured by its Lp critical
exponent νp( f ) defined by νp( f ) = sup{τ ∈ R | f ∈ Bτ

p,p(R
d)}. For the particular

case p = 2, we have ν2( f ) = sup{τ ∈ R | f ∈ Hτ(Rd)}. More generally, for a
family of function spaces Bτ with smooth exponent τ ∈ R and for any distribution
f , we define ν( f | B·) := sup{τ ∈R | f ∈Bτ}. In case that f ∈Bτ for all τ , we
simply use the convention ν( f | B·) :=−∞.
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It has been shown in [51, Theorem 2.3 and Proposition 2.6] that

Proposition 7 Let τ ∈R be a real number. Let b1, . . . ,bs be 2πZd-periodic trigono-
metric polynomials such that there is a nonnegative integer m >−τ satisfying

b�(ξ ) = O(‖ξ‖m), ξ → 0, �= 1, . . . ,s,

Let φ be a compactly supported tempered distribution such that ν2(φ) > τ. Define
ϕ := φ̂ and ψ1, . . . ,ψ s as in (72) with M= 2Id. Then there exists a positive constant
C (depending on J and ϕ ,ψ1, . . . ,ψ s) such that

‖{〈f,h〉}h∈FWSJ({ϕ};{ψ1,...,ψs})‖b ̂H−τ (Rd )
�C‖f‖

̂H−τ (Rd )
, f ∈ ̂H−τ(Rd).

With a little bit more work, one can show that Proposition 7 holds for a general
integer isotropic expansive matrix M. Here we say that M is isotropic if M is similar
to a diagonal matrix with all the diagonal entries having the same modulus. For
the particular case τ = 0, the following result says that if a compactly supported
function φ ∈ L2(R

d) is refinable, then it automatically implies ν2(φ) > 0.

Theorem 6. ([37, Theorem 2.2]) Let M be a d × d integer expansive matrix and a
be an r× r matrix of 2πZd-periodic trigonometric polynomials. If φ = [φ1, . . . ,φ r]T

is an r×1 column vector of compactly supported functions in L2(R
d) and satisfies

φ̂(MTξ ) = a(ξ )φ̂(ξ ) for almost every ξ ∈R
d, then ν2(φ �)> 0 for all �= 1, . . . ,r.

Consequently, combining Corollary 4 and Proposition 7, we have

Theorem 7. ([51, Theorem 1.1 with M= 2]) Under the same notation as in Corol-
lary 4. Suppose that M is a d×d integer isotropic expansive matrix. Let φ , φ̃ be com-

pactly supported tempered distributions. Define ϕ := φ̂ and ϕ̃ := ˆ̃φ . Let Φ ,Ψ ,Φ̃ ,Ψ̃
be defined in (73). For any given τ ∈ R, if Θ(0) = 1 and the following three condi-
tions are satisfied:

1. (74) holds for the filter bank ({a;b1, . . . ,bs},{ã; b̃1, . . . , b̃s})Θ ;
2. ν2(φ) > τ and ν2(φ̃ )>−τ;
3. there exist nonnegative integers m >−τ and m̃ > τ satisfying

b�(ξ ) = O(‖ξ‖m) and b̃�(ξ ) = O(‖ξ‖m̃), ξ → 0, �= 1, . . . ,s,

then (FWSJ(Φ ;Ψ),FWSJ(Φ̃;Ψ̃ )) is a pair of frequency-based nonhomogeneous
dual N-wavelet frames in the pair of dual Sobolev spaces (Hτ (Rd),H−τ(Rd)).

The quantity ν2(φ) can be estimated from its refinement mask a. To do so, let us
introduce some definitions. We say that a has m sum rules with respect to M if

∂ β a(2πω) = 0, β ∈ N
d
0 with |β |< m, ω ∈ ΩN\{0}, (75)

where ΩN := [NZd ]∩ [0,1)d and N := (MT)−1. Moreover, if a has m sum rules but
not m+1 with respect to M, then we denote by sr(a,M) := m.
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We provide here an example of nonhomogeneous framelets using box splines.
Box splines are important examples of refinable functions in high dimensions. For
a given d ×m (direction) matrix Ξ of full rank with integer entries and m � d, the
Fourier transform of the box spline MΞ and the mask of MΞ are given by

̂MΞ (ξ ) := ∏
k∈Ξ

1− e−ik·ξ

ik ·ξ and aΞ (ξ ) = ∏
k∈Ξ

1+ e−ik·ξ

2
, ξ ∈ R

d, (76)

satisfying ̂MΞ (2ξ ) = aΞ (ξ )̂MΞ (ξ ), where k∈ Ξ means that k is a column vector of
Ξ and k goes through all the columns of Ξ once and only once.

The box spline MΞ belongs to Cm(Ξ )−1, where m(Ξ )+1 is the minimum number
of columns that can be discarded from Ξ to obtain a matrix of rank < d. In other
words, we have ν2(MΞ ) = m(Ξ )+ 1/2. When Ξ is a 1×m row vector with all its
components being 1, the box spline MΞ is the well-known B-spline of order m and
has the mask 2−m(1+ e−iξ )m. See [24] for more details on box splines. Theorem 7
can be applied to the box splines to obtain framelets in Sobolev spaces. For any
τ ∈ R such that 0 < τ < min(m(Ξ)+ 1/2,sr(aΞ ,2Id)), then WS0({MΞ};{MΞ}) is
a nonhomogeneous 2Id-framelet in Hτ(Rd), see [51] for more detail.

To study wavelets in Sobolev spaces, in the following we recall a key quantity in
wavelet analysis. Let M be a d×d integer invertible matrix and defineN :=(MT)−1.
Suppose that a(0) = 1 and a has m sum rules but not m+1 sum rules with respect
to M, that is, m := sr(a,M). For β = (β1, . . . ,βd)

T ∈ N
d
0 with |β | = m and n ∈ N,

we define a sequence un,β = {un,β (k)}k∈Zd which is uniquely determined by

∑
k∈Zd

un,β (k)e−ik·ξ = (1− e−iξ1)β1 · · · (1− e−iξd)βd a((MT)n−1ξ ) · · ·a(MTξ )a(ξ ),

where ξ = (ξ1, . . . ,ξd)
T ∈ R

d . For 1 � p � ∞, we define

ρ(a,M, p) := max{limsup
n→∞

‖un,β‖1/n
lp(Zd)

| β ∈ N
d
0, |β |= m}.

Define a fundamental quantity νp(a,M) in wavelet analysis (see [36, page 61]) by

νp(a,M) :=− logρ(M)[|detM|1−1/pρ(a,M, p)], (77)

where ρ(M) denotes the spectral radius of M. νp(a,M) is called the Lp smoothness
exponent of a mask a with a dilation matrix M.

The above quantity νp(a,M) plays a very important role in characterizing the
convergence of a cascade algorithm in a Sobolev space, and in characterizing the
Lp critical exponent of a refinable function vector. It was showed in [36, Theorem
4.3] that the vector cascade algorithm associated with mask a and an isotropic di-
lation matrix M converges in the Sobolev space Hτ

p(R
d) := { f ∈ Lp(R

d) | ∂ β f ∈
Lp(R

d) ∀ |β | � τ} for a nonnegative integer τ , if and only if, νp(a,M) > τ . In
general, νp(a,M) provides a lower bound for the Lp critical exponent of a com-
pactly supported refinable function φ with a mask a and a dilation matrix M, that
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is, νp(a,M)� νp(φ) always holds if φ̂(MTξ ) = a(ξ )φ̂(ξ ) and φ is compactly sup-
ported. Moreover, if the shifts of the refinable function φ associated with a mask a
and an integer isotropic expansive matrix M are stable (that is, for every ξ ∈ R

d ,
there exists kξ ∈ Z

d such that φ̂(ξ + 2πkξ ) = 0), then νp(φ) = νp(a,M). That is,
νp(a,M) indeed characterizes the Lp smoothness exponent of a compactly supported
nontrivial refinable function φ with a mask a and an integer isotropic expansive
matrix M. Furthermore, we also have νp(a,M) � νq(a,M) � νp(a,M) + (1/q−
1/p) logρ(M) |detM| for 1 � p � q � ∞. For a trigonometric polynomial mask a and
an integer dilation matrix M, the quantity ν2(a,M) can be numerically computed
using symmetry of the mask a by finding the spectral radius of certain finite matrix
([35, Algorithm 2.1]). Interested readers should consult [13,14,32,35,36,46,50,57–
59, 61, 64, 70, 75] and references therein on the convergence of cascade algorithms
and smoothness of refinable functions.

For frequency-based nonhomogeneous biorthogonal wavelet bases, we have

Theorem 8. Let M be a d × d integer isotropic expansive matrix. Define N :=
(MT)−1. Let a and ã be 2πZd-periodic trigonometric polynomials satisfying a(0) =
ã(0) = 1. Define ϕ and ϕ̃ as in (38). For 2πZd-periodic trigonometric polynomi-
als b1, . . . ,bs, b̃1, . . . , b̃s, define ψ1, . . . ,ψs, ψ̃1, . . . , ψ̃ s as in (72). Define Φ ,Ψ ,Φ̃ ,Ψ̃
as in (73) with Θ = 1. Then (FWSJ(Φ ;Ψ ),FWSJ(Φ̃ ;Ψ̃)) is a pair of frequency-
based nonhomogeneous Riesz N-wavelet bases in the pair of dual Sobolev spaces
(Hτ(Rd),H−τ(Rd)), if

ν2(a,M)> τ, ν2(ã,M)>−τ (78)

and
P[ã,b̃1,...,b̃dM−1]

(ξ )
T

P[a,b1,...,bdM−1]
(ξ ) = IdM , ξ ∈ R

d, (79)

where {ω0, . . . ,ωdM−1} = ΩN := [NZd ]∩ [0,1)d, dM := |detM|, and the matrix
P[a,b1,...,bdM−1]

(ξ ) is defined to be

⎡

⎢

⎢

⎢

⎣

a(ξ +2πω0) a(ξ +2πω1) · · · a(ξ +2πωdM−1)
b1(ξ +2πω0) b1(ξ +2πω1) · · · b1(ξ +2πωdM−1)

...
...

. . .
...

bdM−1(ξ +2πω0) bdM−1(ξ +2πω1) · · · bdM−1(ξ +2πωdM−1)

⎤

⎥

⎥

⎥

⎦

.

Theorem 8 has been proved in [51, Theorem 3.1] with M = 2Id. A more tech-
nical proof can be used to show that Theorem 8 holds. Moreover, when d = 1, the
conditions in (78) and (79) in Theorem 8 are also necessary ([51]).

In the following, we present an example of wavelets in Sobolev spaces. Let m be
a positive integer. Let d = 1 and M= 2. Define ã(ξ ) = 1,b(ξ ) = e−iξ ,

a(ξ ) := cos2m(ξ/2)
m−1

∑
n=0

(m+n−1)!
n!(m−1)!

sin2n(ξ/2) and b̃(ξ ) = e−iξ a(ξ +π).



Wavelets and Framelets Within the Framework of Nonhomogeneous Wavelet Systems 149

Then (FWS0({ϕ};{ψ}),FWS0({ϕ̃};{ψ̃})) is a pair of frequency-based nonho-
mogeneous biorthogonal 2−1-wavelet bases in (Hτ (R),H−τ(R)) for all τ ∈ (1/2,
ν2(a,2)). Note that ν2(a,2)> 1/2 for all m ∈ N. For more detail, see [51].

6 Discrete Framelet Transform and Its Basic Properties

Algorithmic aspect of wavelets and framelets is a fundamental part of wavelet
analysis. Though we have seen the connections of frequency-based wavelets and
framelets in the distribution space with filter banks in previous sections, it is
very natural and important to study the discrete wavelet/framelet transform and
its basic properties purely from the discrete setting. The properties of discrete
wavelet/framelet transform with a filter bank are traditionally derived from wavelets
and framelets in the function setting via a multiresolution analysis [6, 19, 68, 69].
However, in this section, we shall study discrete wavelet/framelet transform and its
properties purely in the discrete sequence setting without any wavelets or framelets
in the function setting involved. Though this approach is very natural for algorithms,
little attention has been paid to this direction until a few years ago in the literature.
We shall review the recent developments on this topic in this section.

By l(Zd) we denote the linear space of all sequences v :Zd →C of complex num-
bers on Z

d . For v∈ l(Zd), we often write v= {v(k)}k∈Zd , and we shall model signals
by l(Zd). Similarly, by l0(Zd) we denote the linear space of all finitely supported se-
quences on Z

d . An element in l0(Zd) is often regarded as a finite-impulse-response
(FIR) filter (also called a finitely supported mask in the literature of wavelet analy-
sis). We often use u for a general filter, and v for a general signal or dataset.

A discrete framelet transform can be described using two linear operators –
the subdivision operator and the transition operator. More precisely, for a fil-
ter u ∈ l0(Zd) and a d × d integer invertible matrix M, the subdivision operator
Su,M : l(Zd)→ l(Zd) is defined to be

[Su,Mv](n) := |detM| ∑
k∈Zd

v(k)u(n−Mk), n ∈ Z
d (80)

for v ∈ l(Zd), and the transition operator Tu,M : l(Zd)→ l(Zd) is defined to be

[Tu,Mv](n) := |detM| ∑
k∈Zd

v(k)u(k−Mn), n ∈ Z
d (81)

for v∈ l(Zd). For u∈ l0(Zd) and v∈ l(Zd), the convolution u∗v of u and v is defined
to be [u ∗ v](n) := ∑k∈Zd u(k)v(n− k), n ∈ Z

d .
In the following, we introduce a multi-level discrete framelet transform employ-

ing a filter bank derived from the oblique extension principle. Let

({a;b1, . . . ,bs},{ã; b̃1, . . . ,bs})Θ (82)
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be a filter bank with all filters in l0(Zd). For a positive integer J, a J-level discrete
framelet transform consists of two parts: a J-level framelet decomposition and a
J-level framelet reconstruction.

Let M be a d×d integer invertible matrix. Using the primal low-pass filter a and
primal high-pass filters b1, . . . ,bs for decomposition, a J-level framelet decomposi-
tion is given by: for j = J, . . . ,1,

v j−1 := |detM|−1/2Ta,Mv j, wj−1;� := |detM|−1/2Tb�,Mv j, �= 1, . . . ,s,
(83)

where vJ : Zd → C is an input signal. After a J-level framelet decomposition, the
original input signal vJ is decomposed into one sequence v0 of low-pass framelet co-
efficients and sJ sequences wj;� of high-pass framelet coefficients for �= 1, . . . ,s and
j = 0, . . . ,J−1. Such framelet coefficients are often processed for various purposes.
One of the most commonly employed operations is thresholding so that the low-
pass framelet coefficients v0 and high-pass framelet coefficients wj;� become v̊0 and
ẘ j;�, respectively. More precisely, ẘ j;�(k) = η(wj;�(k)),k ∈ Z

d , where η : C → C

is a thresholding function. For example, for a given threshold value ε > 0, the hard
thresholding function ηhard and soft-threshold function ηsoft are defined to be

ηhard(z) =

{

z, if |z|� ε;

0, otherwise
and ηsoft(z) =

{

z− ε z
|z| , if |z|� ε;

0, otherwise.

Using the dual low-pass filter ã and dual high-pass filters b̃1, . . . , b̃s for reconstruc-
tion, a J-level framelet reconstruction is

v̆0 :=Θ ∗ v̊0, (84)

v̆ j := |detM|−1/2Sã,Mv̆ j−1 + |detM|−1/2
s

∑
�=1

Sb̃�,M
ẘ j−1;�, j = 1, . . . ,J, (85)

recover v̊J from v̆J via the relation v̊J =Θ ∗ v̆J. (86)

For a multi-level discrete framelet transform, there are three fundamental proper-
ties: perfect reconstruction, stability, and sparsity. In the following, we address them
one by one. When nothing is performed on the framelet coefficients, that is, v̊0 = v0

and ẘ j;� =wj;� for all �= 1, . . . ,s, j = 0, . . . ,J−1, we say that the above J-level dis-
crete framelet transform has the perfect reconstruction property if v̊J = vJ . Note that
a J-level discrete framelet transform recursively employs one-level discrete framelet
transforms J times. Therefore, to study the perfect reconstruction property of a J-
level discrete framelet transform for all positive integers J, it suffices to study it for
J = 1. For simplicity of presentation, we often use the formal Fourier series v̂ of a
sequence v = {v(k)}k∈Zd , which is defined by

v̂(ξ ) := ∑
k∈Zd

v(k)e−ik·ξ , ξ ∈R
d.

Now we have the following result on perfect reconstruction of a discrete framelet
transform with a filter bank in (82) (see [45, Theorem 1.4.2] and [7, 22, 23, 40, 42]).
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Theorem 9. (Oblique Extension Principle) Let a ∈ l0(Zd) be a primal low-pass
filter and b1, . . . ,bs ∈ l0(Zd) be primal high-pass filters for decomposition. Let
ã ∈ l0(Zd) be a dual low-pass filter and b̃1, . . . , b̃s ∈ l0(Zd) be dual high-pass fil-
ters for reconstruction. Let M be a d ×d integer invertible matrix and Θ ∈ l0(Zd).
Then the filter bank in (82) has the following perfect reconstruction property:

Θ ∗v= |detM|−1Sã,M(Θ ∗Ta,Mv)+ |detM|−1
s

∑
�=1

Sb̃�,M
Tb�,Mv, ∀ v∈ l(Zd), (87)

if and only if, for all ξ ∈R
d,

Θ̂(MTξ )â(ξ +2πω) ˆ̃a(ξ )+
s

∑
�=1

̂b�(ξ +2πω)̂b̃�(ξ ) = Θ̂ (ξ )δ (ω), (88)

for all ω ∈ Ω(MT)−1 := [(MT)−1
Z

d ]∩ [0,1)d.

If (88) holds, then we say that the filter bank in (82) is a dual M-framelet filter
bank (derived from OEP). The role played by the factor |detM|−1/2 in (83) and (85)
is explained by the following result [45, Proposition 1.4.5]:

Proposition 8 Let θ ,a,b1, . . . ,bs ∈ l0(Zd). Then for all v ∈ l2(Zd),

‖θ ∗Ta,Mv‖2
l2(Zd)

+
s

∑
�=1

‖Tb�,Mv‖2
l2(Zd)

= |detM|‖θ ∗ v‖2
l2(Zd )

, (89)

if and only if, {a;b1, . . . ,bs}Θ is a tight M-framelet filter bank, where Θ̂(ξ ) :=
|θ̂ (ξ )|2; that is, ({a;b1, . . . ,bs},{a;b1, . . . ,bs})Θ is a dual M-framelet filter bank.

For analysis of a multi-level discrete framelet transform, it is convenient to
rewrite the J-level framelet decomposition using a J-level decomposition/analysis
operator WJ : l(Zd)→ (l(Zd))1×(sJ+1) by

WJv := (v0,w0;1, . . . ,w0;s, . . . ,wJ−1;1, . . . ,wJ−1;s), (90)

where w j−1;� and v0 are defined in (83). Similarly, a J-level reconstruction/synthesis
operator VJ : (l(Zd))1×(sJ+1) → l(Zd) is defined by

VJ(v̊0, ẘ0;1, . . . , ẘ0;s, . . . , ẘJ−1;1, . . . , ẘJ−1;s) = v̊J, (91)

where v̊J is computed via the recursive formulas in (84)–(86). Due to the recursive
cascade structure of the operators WJ and VJ in (83) and (84)–(86), a multi-level
discrete framelet transform is often called a fast framelet transform.

Note that a J-level discrete framelet transform has the perfect reconstruction
property if and only if VJWJv = v for all v ∈ l(Zd). By Theorem 9, we have a
complete characterization of the perfect reconstruction property.

Beyond the perfect reconstruction property, another fundamental property of a
multi-level discrete framelet transform is its stability. We say that a multi-level dis-
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crete framelet transform with a dual M-framelet filter bank in (82) has stability in
the space l2(Zd) if there exists a positive constant C such that

‖WJv‖(l2(Zd))1×(sJ+1) �C‖v‖l2(Zd), ∀ v ∈ l2(Z
d), J ∈ N, (92)

‖VJw‖l2(Zd) �C‖w‖(l2(Zd))1×(sJ+1) , ∀ w ∈ (l2(Z
d))1×(sJ+1), J ∈N. (93)

Obviously, (92) implies that a small change in an input data v induces a small change
of all framelet coefficients. Similarly, (93) means that a small perturbation of all
framelet coefficients results in a small perturbation of a reconstructed signal. The
notion of stability of a multi-level discrete framelet transform can be extended into
other sequence spaces. Under the assumption that â(0) = ˆ̃a(0) = 1, if its underly-
ing frequency-based nonhomogeneous dual framelet in Theorem 3 has stability in
L2(R

d), then it is not difficult to deduce that the multi-level discrete framelet trans-
form with the dual framelet filter bank in (82) has stability in the space l2(Z). How-
ever, so far, there is no necessary and sufficient condition available for the stability
of a multi-level discrete framelet transform in the discrete sequence setting. This
problem is currently under investigation, and we shall report the results elsewhere.
The characterization of the stability of a multilevel discrete framelet transform in the
sequence space l2(Zd) is tightly linked to the existence of an associated compactly
supported refinable function in L2(R

d).
It has been shown in [45, Proposition 1.4.8] for M = 2 (also see [23]) that for

a dual M-framelet filter bank in (82) we must have s � |detM| − 1. Moreover, if
s = |detM| − 1, then it is essentially a biorthogonal wavelet filter bank. We say
that a filter bank in (82) is a biorthogonal M-wavelet filter bank if Θ̂ = 1 and s =
|detM| − 1. The difference between wavelets and framelets is mainly due to the
following result (see [45, Proposition 1.1.2]).

Proposition 9 Let ({a;b1, . . . ,bs},{ã; b̃1, . . . , b̃s})Θ be a dualM-framelet filter bank
such that Θ̂ = 1. Let W := W1 and V := V1, where WJ and VJ are defined in (90)
and (91), respectively. Then W is onto ⇐⇒ V is one-one ⇐⇒ V W = Id l(Zd) and
W V = Id(l(Zd))1×(s+1) ⇐⇒ s = |detM|− 1.

Note that the perfect reconstruction property is simply V W = Id l(Zd). Hence, a dis-
crete wavelet transform refers to invertible framelet operators W and V . Therefore,
for a wavelet transform, we can first perform the synthesis operator V followed by
the analysis operator W ; the perfect reconstruction property is still preserved.

Next, we study the sparsity of a discrete framelet transform. One key feature
of a discrete framelet transform is its sparse representation for smooth or piecewise
smooth signals. It is desirable to have as many as possible negligible framelet coeffi-
cients for smooth signals. Smooth signals are theoretically modeled by polynomials
of various degrees. Denote N0 :=N∪{0}, the set of all nonnegative integers. Let p :
R

d →C be a polynomial in d-variables, that is, p=∑β∈Nd
0

pβ xβ . Sampling the poly-

nomial p on the integer lattice Z
d , we have a polynomial sequence p|

Zd : Zd → C

which is given by [p|
Zd ](n)= p(n),n∈Z

d . If a sequence v= {v(k)}k∈Zd is a polyno-
mial sequence, then a polynomial p, satisfying v(k)= p(k) for all k∈Z

d , is uniquely
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determined. Therefore, for simplicity of presentation, we shall use p to denote both
a polynomial function p on R

d and its induced polynomial sequence p|
Zd on Z

d .
One can easily tell them apart from the context.

For a nonnegative integer m ∈ N0, Πm denotes the space of all polynomials in
d-variables of (total) degree no more than m. In particular, Π := ∪∞

m=0Πm denotes
the space of all polynomials on R

d . For p(x) = ∑β∈Nd
0

pβ xβ and a smooth function

f(ξ ), we shall use the following polynomial differentiation operator in this section:

p(x− i∂ )f(ξ ) := ∑
β∈Nd

0

pβ (x− i∂ )β f(ξ ), x,ξ ∈ R
d ,

where ∂ := (∂1, . . . ,∂d)
T acts on the variable ξ and xβ := xβ1

1 · · ·xβd
d for x =

(x1, . . . ,xd)
T and β = (β1, . . . ,βd)

T ∈ N
d
0.

Proposition 10 ([42, Propositions 2.1 and 3.1]) Let M be a d×d integer invertible
matrix. Let u = {u(k)}k∈Zd ∈ l0(Zd). Let p ∈ Πm. Then

1. p∗u is a polynomial sequence in Πm given by

[p∗u] := ∑
k∈Zd

p(·−k)u(k) = [p(·− i∂ )û(ξ )]|ξ=0 = ∑
β∈Nd

0

(−i)|β |

β !
∂ βp(·)∂ β û(0).

Also, ∂ β (p ∗ u) = (∂ βp) ∗ u, p(· − y) ∗ u = (p ∗ u)(· − y) for all β ∈ N
d
0 and

y ∈ R
d;

2. Tu,Mp= p(M·)∗ ů ∈ Πm, where ů ∈ l0(Zd) satisfies

ˆ̊u(ξ ) = |detM|û((MT)−1ξ )+O(‖ξ‖m+1), ξ → 0.

Let c ∈ R
d . By Proposition 10, we see that p∗u = p(·− c) for all p ∈ Πm if and

only if û has m+1 linear-phase moments with phase c: û(ξ ) = e−ic·ξ +O(‖ξ‖m+1)
as ξ → 0. Proposition 10 also implies that Tu,Mp = 0 for all p ∈ Πm if and only if
û(ξ ) = O(‖ξ‖m+1) as ξ → 0, that is, u has m+1 vanishing moments.

Now we proceed to investigate the subdivision operator acting on polynomial
spaces. In contrast to the case of the convolution operator and the transition operator,
Su,Mp is not always a polynomial sequence for an input polynomial sequence p.

Theorem 10. ([42, Lemma 3.2]) Let u = {u(k)}k∈Zd ∈ l0(Zd) be a finitely sup-
ported sequence on Z

d and p ∈ Π be a polynomial in d-variables. Then the fol-
lowing statements are equivalent:

1. Su,Mp is a polynomial sequence, that is, Su,Mp ∈ Π ;
2. ∑k∈Zd (∂ β p)(−k−M−1γ)u(Mk+ γ) = ∑k∈Zd (∂ βp)(−k)u(Mk) for all β ∈ N

d
0

and γ ∈ ΓM := Z
d ∩ [M[0,1)d];

3. [(∂ βp)(−i∂ )(̂u[γ](ξ )e−i(M−1γ·ξ )]|ξ=0 = [(∂ βp)(−i∂ )̂u[0](ξ )]|ξ=0 for all β ∈N
d
0

and γ ∈ ΓM, where ̂u[γ](ξ ) := ∑k∈Zd u(Mk+ γ)e−ik·ξ is a coset sequence at γ;
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4. [∂ βp(−iM−1∂ )û(ξ )]|ξ=2πω = 0 for all β ∈ N
d
0 and ω ∈ Ω(MT)−1\{0}, where

Ω(MT)−1 := [(MT)−1
Z

d]∩ [0,1)d.

Moreover, if any of the above items (1)–(4) holds, then for every β ∈ N
d
0 , y ∈ R

d,

Su,M(∂ βp) = [(∂ βp)(M−1·)]∗u and Su,M(p(·−y)) = [Su,Mp](·−My). (94)

By Theorem 10, we see that Su,Mp ∈ Πm for all p ∈ Πm if and only if
∂ β û(2πω) = 0 for all β ∈ N

d
0 with |β | � m and ω ∈ Ω(MT)−1\{0}. That is,

Su,Mp ∈ Πm for all p ∈ Πm if and only if u has m+1 sum rules with respect to M.

7 Directional Tight Framelets in L2(R
d) and Projection Method

As an application of the theory developed in previous sections, we study in this
section frequency-based nonstationary nonhomogeneous tight framelets in L2(R

d)
with directionality. We also discuss the projection method for tight framelets.

As an application of Proposition 6, we have the following constructive result:

Theorem 11. ([44, Theorem 2]) Let M be a d × d real-valued expansive matrix.
Then there exist two real-valued functions φ ,ψ in the Schwarz class such that

(i) {{φ};{ψ}} is a nonhomogeneous tight M-framelet in L2(R
d): for all J ∈ Z,

∑
k∈Zd

|〈 f ,φMJ ;k〉|2 +
∞

∑
j=J

∑
k∈Zd

|〈 f ,ψM j ;k〉|2 = ‖ f‖2
L2(R

d)
∀ f ∈ L2(R

d); (95)

(ii) φ̂ and ψ̂ are compactly supported C∞ even functions;
(iii) ψ has infinite vanishing moments; ψ̂ vanishes in a neighborhood of the origin;
(iv) there exist 2πZd-periodic measurable functions ak,bk,k ∈ Z

d in C∞(Td) such
that for all ξ ∈ R

d and k ∈ Z
d ,

e−ik·MTξ φ̂(MTξ ) = ak(ξ )φ̂(ξ ) and e−ik·MTξ ψ̂(MTξ ) = bk(ξ )φ̂(ξ ).

Moreover, {ψ} is a homogeneous tight M-framelet in L2(R
d) satisfying

∑
j∈Z

∑
k∈Zd

|〈 f ,ψM j ;k〉|2 = ‖ f‖2
L2(Rd)

∀ f ∈ L2(R
d).

As in [44], we can modify examples in Theorem 11 by a splitting technique in
[31] to achieve directionality. Here we only provide an example for M= 2I2.

Corollary 5 ([44, Theorem 18]) Let M= 2I2. Let m be a positive integer and 0 �
ρ < 1. Then there exist two real-valued functions φ and η in L2(R

d)∩C∞(R2)
satisfying all the following properties:
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(i) φ̂ is a compactly supported radial basis function in C∞(R2) and there exists
a 2πZ2-periodic function a in C∞(T2) such that φ̂(2ξ ) = a(ξ )φ̂(ξ ) for all
ξ ∈ R

2;
(ii) η has the tensor-product structure in polar coordinates and there exist positive

real numbers r1, r2,θ0 such that θ0 <
π
m and

suppη = {re[iuθ | r1 � r� r2,−θ0 � θ � θ0};

(iii) for J ∈N0, a nonstationary nonhomogeneous tight 2I2-framelet in L2(R
2):

∑
k∈Z2

|〈 f ,φ2J I2;k〉|2+
∞

∑
j=J

s j

∑
�=1

∑
k∈Z2

|〈 f ,ψ j,�
2 j I2;k

〉|2 = ‖ f‖2
L2(R2), ∀ f ∈ L2(R

2), (96)

where s j := m2�ρ j�, �·� is the floor function, and all ψ j,� are real-valued functions
in the Schwarz class satisfying the following properties:

1. ψ j,0 is defined as follows: for r � 0 and θ ∈ [−π ,π),

̂ψ j,0(reiθ ):=

{

η(rei2�ρ j�θ)+η(−rei2�ρ j�θ), if θ ∈ [−2−�ρ j�π ,2−�ρ j�π),
0, if θ ∈ [−π ,π)\[−2−�ρ j�π ,2−�ρ j�π);

2. other ψ j,� are obtained via rotations from ψ j,0: for all �= 1, . . . ,s j ,

ψ j,�(reiθ ) := ψ j,0(reiθ ei2−�ρ j�π(�−1)/m), r � 0,θ ∈ [−π ,π); (97)

3. the support of ̂ψ j,0
2 jI2;k

has two parts which are symmetric about the origin and

each part obeys width ≈ length1−ρ . More precisely, for all k ∈ Z
2 and j � 0,

supp ̂ψ j,0
2 jI2;k={reiθ ,−reiθ | 2 jr1 � r � 2 jr2,−2 j−�ρ j�θ0 � θ � 2 j−�ρ j�θ0};

4. ̂ψ j,� are compactly supported functions in C∞(R2) vanishing in a neighborhood
of the origin and there exist 2πZ2-periodic functions b j,� in C∞(T2) such that

̂ψ j,�(2ξ ) = b j,�(ξ )φ̂ (ξ ), ξ ∈ R
2, �= 1, . . . ,s j, j ∈ N∪{0}.

See Figs. 1 and 2 for the graphs of the directional framelets in Corollary 5. As
discussed in [44], the two families of examples of tight framelets have associated
tight framelet filter banks derived from OEP and can be also derived from Theo-
rem 3 through such tight framelet filter banks. the relation width ≈ length1−ρ with
ρ = 1/2 in item (3) is called hyperbolic scaling in [4], which is claimed to be im-
portant for directional representations to capture edge singularity. Though the tight
framelets in Theorem 11 and Corollary 5 are compactly supported in the frequency
domain, using FIR filters and similar ideas as in Corollary 5, it is not very difficult to
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Fig. 1: Tight framelets at different scale levels: ψ2,0,ψ4,0,ψ8,0,ψ16,0,ψ32,0,ψ64,0 in
Corollary 5

Fig. 2: Tight framelets at the scale level j = 8 with different rotation directions:
ψ8,�, �= 0, . . . ,7 in Corollary 5. The framelet ψ8,� is obtained from ψ8,0 by rotation
via (97) for all �= 1, . . . ,7

construct compactly supported nonstationary dual 2I2-framelets in L2(R
2) with di-

rectionality and vanishing moments in the time domain. We shall address this issue
elsewhere.

We finish this paper by discussing the projection method on framelets and re-
finable functions. For a block diagonal d × d dilation matrix M, a simple way of
constructing M-wavelets and M-framelets in d dimensions is the tensor product
of lower dimensional ones. The projection method, which is sort of “an inverse”
of the tensor product method, is useful for deriving low-dimensional wavelets and
framelets from higher dimension ones [32, 34, 38]. In fact, one can first use the
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tensor product method to construct high dimensional wavelets and framelets from
one-dimensional ones, then one can use the projection method to derive new low-
dimensional wavelets and framelets. Though projection method works well for
homogeneous/nonhomogeneous wavelets or framelets in function spaces, for sim-
plicity, we only discuss here the projection method for stationary nonhomogeneous
tight framelets in L2(R

d).
Let P be a d ×m real-valued matrix with d � m. Let f : Rm → C be a tempered

distribution and u : Zm → C be a filter. Now we “define” a projected function P f
and a projected filter Pu in the lower dimension d as follows:

̂P f (ξ ) := f̂ (PTξ ) and ̂Pu(ξ ) := û(PTξ ), ξ ∈ R
d . (98)

The projection operator is well-defined under some mild conditions [38]. Here we
assume that f̂ and û are continuous (e.g., f and u are compactly supported) so that
̂P f and ̂Pu are continuous and therefore are distributions, even though P f and Pu
may not make sense. Note that the box spline MΞ defined in (76) is simply a pro-
jected function Ξ χ[0,1)m , where χ[0,1)m is the characteristic function of [0,1)m.

The following is a consequence of Proposition 6 and [38, Theorem 2.2].

Proposition 11 Let m � d and M,M̊ be d × d and m×m real-valued expansive
matrices, respectively. Suppose that there is a d×m real-valued matrix P such that

PM̊=MP and PT(Zd\[MT
Z

d])⊆ Z
m\[M̊T

Z
m]. (99)

If ({Φ;Ψ},{Φ̃;Ψ̃}) is a nonhomogeneous tight M̊-framelet in L2(R
m) such that f̂

is continuous for every element f in Φ,Ψ ,Φ̃ , and Ψ̃ , then ({PΦ;PΨ},{PΦ̃;PΨ̃})
is a nonhomogeneous tight M-framelet in L2(R

d), where PΦ := {Pφ | φ ∈ Φ}.

Let {{φ};{ψ1, . . . ,ψ2m−1}} be the tensor product Haar orthonormal 2Im-wavelet
in L2(R

m). Let P = [1, . . . ,1]. Then {{Pφ};{Pψ1, . . . ,Pψ2m−1}} is a tight 2-framelet
in L2(R). Note that Pφ is the B-spline of order m. After a simple procedure for re-
ducing the number of generators [38], this projected tight framelet becomes the
spline tight 2-framelet obtained in [73]. The projection method is also applica-
ble to filter banks. Let a filter bank in (82) be a dual M̊-framelet filter bank. Let
P be a d × m integer projection matrix satisfying (99). By [38, Theorem 4.9],
({Pa;Pb1, . . . ,Pbs},{Pã;Pb̃1, . . . ,Pb̃s})PΘ is a dual M-framelet filter bank. The pro-
jection method also works well with refinable functions and refinable structure:

Proposition 12 ([38, Theorem 4.1]) Let m � d and M,M̊ be d ×d and m×m real-
valued expansive matrices, respectively. Suppose that P is a d×m integer matrix sat-
isfying PM̊=MP and PZm =Z

d . Let φ be a compactly supported function satisfying
φ̂(M̊Tξ ) = â(ξ )φ̂(ξ ) for all ξ ∈ R

m for some finitely supported mask a ∈ l0(Zm).
Then ̂Pφ (MTξ ) =̂Pa(ξ )̂Pφ(ξ ) for all ξ ∈R

d and sr(a,M̊)� sr(Pa,M). Moreover,
for all 1 � p � ∞, νp(φ)� νp(Pφ) and

|detM|1−1/pρ(Pa,M, p)� |detM̊|1−1/pρ(a,M̊, p).

If in addition ρ(M) = ρ(M̊), then νp(a,M̊)� νp(Pa,M) for all 1 � p � ∞.
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We provide an example to demonstrate the usefulness of the projection method.
Let M= 2Id and a be an interpolatory mask (that is, a(0) = 2−d and a(2k) = 0 for
all k ∈ Z

d\{0}) such that the support of the mask a is contained inside [−3,3]d.
Then ν∞(a,2Id) � 2, and consequently, its associated compactly supported refin-
able function cannot be in C2(Rd). The argument is as follows (see [32]). Suppose
that ν∞(a,2Id) > 2. Then we must have sr(a,2Id) � 3. Let P = [1,0, . . . ,0]. Com-
bining the fact that a is interpolatory, we can easily conclude that Pa must be an
interpolatory mask with four sum rules and support contained inside [−3,3]. Such a
mask is unique and is given by Pa(−3) = Pa(3) =−1/32,Pa(−1)= Pa(1) = 9/32,
Pa(0) = 1/2, and Pa(k) = 0 for all k ∈Z\{−3,−1,0,1,3}. However, ν∞(Pa,2) = 2.
Consequently, by Proposition 11, we deduce that ν∞(a,2Id)� ν∞(Pa,2) = 2, a con-
tradiction. Hence, ν∞(a,2Id)� 2.
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Compactly Supported Shearlets

Gitta Kutyniok, Jakob Lemvig, and Wang-Q Lim

Abstract Shearlet theory has become a central tool in analyzing and representing 2D
data with anisotropic features. Shearlet systems are systems of functions generated
by one single generator with parabolic scaling, shearing, and translation operators
applied to it, in much the same way wavelet systems are dyadic scalings and trans-
lations of a single function, but including a precise control of directionality. Of the
many directional representation systems proposed in the last decade, shearlets are
among the most versatile and successful systems. The reason for this being an exten-
sive list of desirable properties: shearlet systems can be generated by one function,
they provide precise resolution of wavefront sets, they allow compactly supported
analyzing elements, they are associated with fast decomposition algorithms, and
they provide a unified treatment of the continuum and the digital realm.

The aim of this paper is to introduce some key concepts in directional representa-
tion systems and to shed some light on the success of shearlet systems as directional
representation systems. In particular, we will give an overview of the different paths
taken in shearlet theory with focus on separable and compactly supported shearlets
in 2D and 3D. We will present constructions of compactly supported shearlet frames
in those dimensions as well as discuss recent results on the ability of compactly sup-
ported shearlet frames satisfying weak decay, smoothness, and directional moment
conditions to provide optimally sparse approximations of cartoon-like images in
2D as well as in 3D. Finally, we will show that these compactly supported shearlet
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systems provide optimally sparse approximations of an even generalized model of
cartoon-like images comprising of C2 functions that are smooth apart from piece-
wise C2 discontinuity edges.

1 Introduction

Recent advances in modern technology have created a brave new world of
enormous, multi-dimensional data structures. In medical imaging, seismic imag-
ing, astronomical imaging, computer vision, and video processing, the capabilities
of modern computers and high-precision measuring devices have generated 2D, 3D,
and even higher dimensional data sets of sizes that were infeasible just a few years
ago. The need to efficiently handle such diverse types and huge amounts of data ini-
tiated an intense study in developing efficient multivariate encoding methodologies
in the applied harmonic analysis research community.

In medical imaging, e.g., CT lung scans, the discontinuity curves of the image
are important specific features since one often wants to distinguish between the im-
age “objects” (e.g., the lungs) and the “background”; i.e., it is important to precisely
capture the edges. This observation holds for various other applications than medi-
cal imaging and illustrates that important classes of multivariate problems are gov-
erned by anisotropic features. Moreover, in high-dimensional data most information
is typically contained in lower-dimensional embedded manifolds, thereby also pre-
senting itself as anisotropic features. The anisotropic structures can be distinguished
by location and orientation/direction which indicates that our way of analyzing
and representing the data should capture not only location, but also directional
information.

In applied harmonic analysis, data is typically modeled in a continuum setting as
square-integrable functions or, more generally, as distributions. Recently, a novel di-
rectional representation system – so-called shearlets – has emerged which provides
a unified treatment of such continuum models as well as digital models, allowing,
for instance, a precise resolution of wavefront sets, optimally sparse representations
of cartoon-like images, and associated fast decomposition algorithms. Shearlet sys-
tems are systems generated by one single generator with parabolic scaling, shearing,
and translation operators applied to it, in the same way wavelet systems are dyadic
scalings and translations of a single function, but including a directionality charac-
teristic owing to the additional shearing operation (and the anisotropic scaling).

The aim of this survey paper is to introduce the key concepts in directional rep-
resentation systems and, in particular, to shed some light on the success of shearlet
systems. Moreover, we will give an overview of the different paths taken in shearlet
theory with focus on separable and compactly supported shearlets, since these sys-
tems are most well-suited for applications in, e.g., image processing and the theory
of partial differential equations.
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1.1 Directional Representation Systems

In recent years, numerous approaches for efficiently representing directional features
of two-dimensional data have been proposed. A perfunctory list includes: steerable
pyramid by Simoncelli et al. [40], directional filter banks by Bamberger and Smith
[2], 2D directional wavelets by Antoine et al. [1], curvelets by Candès and Donoho
[4], contourlets by Do and Vetterli [10], bandlets by LePennec and Mallat [39],
and shearlets by Labate, Weiss, and two of the authors [37]. Of these, shearlets are
among the most versatile and successful systems which owes to the many desirable
properties possessed by shearlet systems: they are generated by one function, they
provide optimally sparse approximation of so-called cartoon-like images, they allow
compactly supported analyzing elements, they are associated with fast decomposi-
tion algorithms, and they provide a unified treatment of continuum and digital data.

Cartoon-like images are functions that are C2 apart from C2 singularity curves,
and the problem of sparsely representing such singularities using 2D representa-
tion systems has been extensively studied; only curvelets [1], contourlets [10], and
shearlets [21] are known to succeed in this task in an optimal way (see also Sect. 3).
We describe contourlets and curvelets in more details in Sect. 1.4 and will here just
mention some differences to shearlets. Contourlets are constructed from a discrete
filter bank and have therefore, unlike shearlets, no continuum theory. Curvelets, on
the other hand, are a continuum-domain system which, unlike shearlets, does not
transfer in a uniform way to the digital world. It is fair to say that shearlet theory is
a comprehensive theory with a mathematically rich structure as well as a superior
connection between the continuum and digital realm.

The missing link between the continuum and digital world for curvelets is caused
by the use of rotation as a means to parameterize directions. One of the distinctive
features of shearlets is the use of shearing in place of rotation; this is, in fact, decisive
for a clear link between the continuum and digital world which stems from the fact
that the shear matrix preserves the integer lattice. Traditionally, the shear parameter
ranges over a non-bounded interval. This has the effect that the directions are not
treated uniformly, which is particularly important in applications. On the other hand,
rotations clearly do not suffer from this deficiency. To overcome this shortcoming
of shearing, Guo, Labate, and Weiss together with two of the authors [37] (see also
[20]) introduced the so-called cone-adapted shearlet systems, where the frequency
plane is partitioned into a horizontal and a vertical cone which allows restriction of
the shear parameter to bounded intervals (Sect. 2.1), thereby guaranteeing uniform
treatment of directions.

Shearlet systems therefore come in two ways: One class being generated by a
unitary representation of the shearlet group and equipped with a particularly ‘nice’
mathematical structure however, causes a bias towards one direction, which makes
it unattractive for applications; the other class being generated by a quite sim-
ilar procedure, but restricted to cones in frequency domain, thereby ensuring an
equal treatment of all directions. To be precise this treatment of directions is only
“almost equal” since there still is a slight, but controllable, bias towards directions
of the coordinate axes, see also Fig. 4 in Sect. 2.2. For both classes, the continuous
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shearlet systems are associated with a 4-dimensional parameter space consisting of
a scale parameter measuring the resolution, a shear parameter measuring the orien-
tation, and a translation parameter measuring the position of the shearlet (Sect. 1.3).
A sampling of this parameter space leads to discrete shearlet systems, and it is ob-
vious that the possibilities for this are numerous. Using dyadic sampling leads to
so-called regular shearlet systems which are those discrete systems mainly consid-
ered in this paper. It should be mentioned that also irregular shearlet systems have
attracted some attention, and we refer to the papers [27–29]. We end this section by
remarking that these discrete shearlet systems belong to a larger class of represen-
tation systems – the so-called composite wavelets [23–25].

1.2 Anisotropic Features, Discrete Shearlet Systems, and Quest
for Sparse Approximations

In many applications in 2D and 3D imaging the important information is often
located around edges separating “image objects” from “background.” These fea-
tures correspond precisely to the anisotropic structures in the data. Two-dimensional
shearlet systems are carefully designed to efficiently encode such anisotropic fea-
tures. In order to do this effectively, shearlets are scaled according to a parabolic
scaling law, thereby exhibiting a spatial footprint of size 2− j times 2− j/2, where 2 j

is the (discrete) scale parameter; this should be compared to the size of wavelet foot-
prints: 2− j times 2− j. These elongated, scaled needle-like shearlets then parametrize
directions by slope encoded in a shear matrix. As mentioned in the previous section,
such carefully designed shearlets do, in fact, perform optimally when representing
and analyzing anisotropic features in 2D data (Sect. 3).

In 3D, the situation changes somewhat. While in 2D we “only” have to handle
one type of anisotropic structures, namely curves, in 3D a much more complex situa-
tion can occur, since we find two geometrically very different anisotropic structures:
Curves as one-dimensional features and surfaces as two-dimensional anisotropic
features. Our 3D shearlet elements in spatial domain will be of size 2− j times 2− j/2

times 2− j/2 which corresponds to “plate-like” elements as j →∞. This indicates that
these 3D shearlet systems have been designed to efficiently capture two-dimensional
anisotropic structures, but neglecting one-dimensional structures. Nonetheless, sur-
prisingly, these 3D shearlet systems still perform optimally when representing and
analyzing 3D data that contain both curve and surface singularities (Sect. 4).

Of course, before we can talk of optimally sparse approximations, we need to
actually have these 2D and 3D shearlet systems at hand. Several constructions of
discrete band-limited 2D shearlet frames are already known, see [6, 20, 28, 29]. But
since spatial localization of the analyzing elements of the encoding system is im-
mensely important both for a precise detection of geometric features as well as for
a fast decomposition algorithm, we will mainly follow the sufficient conditions for
and construction of compactly supported cone-adapted 2D shearlet systems by Kit-
tipoom and two of the authors [27] (Sect. 2.3). These results provide a large class of
separable, compactly supported shearlet systems with good frame bounds, optimally
sparse approximation properties, and associated numerically stable algorithms.
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1.3 Continuous Shearlet Systems

Discrete shearlet systems are, as mentioned, a sampled version of the so-called con-
tinuous shearlet systems. These continuous shearlets come, of course, also in two
different flavors, and we will briefly describe these in this section.

1.3.1 Cone-Adapted Shearlet Systems

Anisotropic features in multivariate data can be modeled in many different ways.
One possibility is the cartoon-like image class discussed above, but one can also
model such directional singularities through distributions. One would, e.g., model
a one-dimensional anisotropic structure as the delta distribution of a curve. The so-
called cone-adapted continuous shearlet transform associated with cone-adapted
continuous shearlet systems was introduced by Labate and the first author in [30] in
the study of resolutions of the wavefront set for such distributions. It was shown that
the continuous shearlet transform is not only able to identify the singular support
of a distribution, but also the orientation of distributed singularities along curves.
More precisely, for a class of band-limited shearlet generators ψ ∈ L2(R2), the first
author and Labate [30] showed that the wavefront set of a (tempered) distribution f
is precisely the closure of the set of points (t,s), where the shearlet transform of f

(a,s, t) �→
〈

f ,a−3/4ψ(A−1
a S−1

s (·− t))
〉

, where Aa =

(

a 0
0 a1/2

)

and Ss =

(

1 s
0 1

)

,

is not of fast decay as the scale parameter a → 0. Later Grohs [18] extended this
result to Schwartz-class generators with infinitely many directional vanishing mo-
ments, in particular, not necessarily band-limited generators. In other words, these
results demonstrate that the wavefront set of a distribution can be precisely cap-
tured by continuous shearlets. For constructions of continuous shearlet frames with
compact support, we refer to [19].

1.3.2 Shearlets from Group Representations

Cone-adapted continuous shearlet systems and their associated cone-adapted con-
tinuous transforms described in the previous section have only very recently –
in 2009 – attracted attention. Historically, the continuous shearlet transform was
first introduced in [20] without restriction to cones in frequency domain. Later,
it was shown in [7] that the associated continuous shearlet systems are generated
by a strongly continuous, irreducible, square-integrable representation of a locally
compact group, the so-called shearlet group. This implies that these shearlet systems
possess a rich mathematical structure, which in [7] was used to derive uncertainty
principles to tune the accuracy of the shearlet transform, and which in [6] allowed
the usage of coorbit theory to study smoothness spaces associated with the decay of
the shearlet coefficients.
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Dahlke, Steidl, and Teschke generalized the shearlet group and the associated
continuous shearlet transform to higher dimensions R

n in the paper [8]. Further-
more, in [8] they showed that, for certain band-limited generators, the continuous
shearlet transform is able to identify hyperplane and tetrahedron singularities. Since
this transform originates from a unitary group representation, it is not able to capture
all directions, in particular, it will not capture the delta distribution on the x1-axis
(and more generally, any singularity with “x1-directions”). We also remark that the
extension in [8] uses another scaling matrix as compared to the one used for the
three-dimensional shearlets considered in this paper; we refer to Sect. 4 for a more
detailed description of this issue.

1.4 Applications

Shearlet theory has applications in various areas. In this section, we will present two
examples of such: Denoising of images and geometric separation of data. Before,
in order to show the reader the advantages of digital shearlets, we first give a short
overview of the numerical aspects of shearlets and two similar implementations
of directional representation systems, namely contourlets and curvelets, discussed
in Sect. 1.1.

Curvelets [3]. This approach builds on directional frequency partitioning and the
use of the Fast Fourier transform. The algorithm can be efficiently implemented
using (in frequency domain) multiplication with the frequency response of a filter
and frequency wrapping in place of convolution and down-sampling. However,
curvelets need to be band-limited and can only have very good spatial localiza-
tion if one allows high redundancy.

Contourlets [10]. This approach uses a directional filter bank, which produces direc-
tional frequency partitioning similar to those of curvelets. As the main advantage
of this approach, it allows a tree-structured filter bank implementation, in which
aliasing due to subsampling is allowed to exist. Consequently, one can achieve
great efficiency in terms of redundancy and good spatial localization. However,
the directional selectivity in this approach is artificially imposed by the special
sampling rule of a filter bank which introduces various artifacts. We remark that
also the recently introduced Hybrid Wavelets [17] suffer from this deficiency.

Shearlets [38]. Using a shear matrix instead of rotation, directionality is natu-
rally adapted for the digital setting in the sense that the shear matrix preserves
the structure of the integer grid. Furthermore, excellent spatial localization is
achieved by using compactly supported shearlets. The only drawback is that
these compactly supported shearlets are not tight frames and, accordingly, the
synthesis process needs to be performed by iterative methods.

To illustrate how two of these implementations perform, we have included a
denoising example of the Goldhill image using both curvelets1 and shearlets, see

1 Produced using Curvelab (Version 2.1.2), which is available from http://curvelet.org.

http://curvelet.org
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Fig. 1: Denoising of the Goldhill image (512× 512) using shearlets and curvelets.
The noisy image in (b) has a peak signal-to-noise ratio of 20.17 dB. The curvelet-
denoised image in (c) and (e) has a PSNR of 28.70 dB, while the shearlet-denoised
image in (d) and (f) has a PSNR of only 29.20 dB
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Fig. 2: Geometric separation of mixed “point-and-curve” data. (a): Input data.
(b) and (c): The output of the separation algorithm

Fig. 1. We omit a detailed analysis of the denoising results and leave the visual
comparison to the reader. For a detailed review of the shearlet transform and asso-
ciated aspects, we refer to [14, 16, 36, 38]. We also refer to [26, 35] for MRA based
algorithmic approaches to the shearlet transform.

The shearlet transform, in companion with the wavelet transform, has also been
applied to accomplish geometric separation of “point-and-curve”-like data. An arti-
ficially made example of such data can be seen in Fig. 2a. For a theoretical account
of these separation ideas we refer to the recent papers by Donoho and the first au-
thor [12, 13]. Here, we simply display the result of the separation, see Fig. 1d. For
real-world applications of these separation techniques we refer to the paper [33] on
neurobiological imaging.

In the spirit of reproducible research [15], we wish to mention that Figs. 1d, f
and 2, If and 1d have been produced by the discrete shearlet transform implemented
in the Matlab toolbox Shearlab which has recently been released under a GNU
license and is freely available at http://www.shearlab.org.

1.5 Outline

In Sect. 2 we present a review of shearlet theory in L2(R2), where we focus
on discrete shearlet systems. We describe the classical band-limited construction
(Sect. 2.2) and a more recent construction of compactly supported shearlets
(Sect. 2.3). In Sect. 3 we present results on the ability of shearlets to optimally
sparsely approximate cartoon-like images. Section 4 is dedicated to a discussion
on similar properties of 3D shearlet systems.

http://www.shearlab.org
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2 2D Shearlets

In this section, we summarize what is known about constructions of discrete shear-
let systems in 2D. Although all results in this section can easily be extended to
(irregular) shearlet systems associated with a general irregular set of parameters for
scaling, shear, and translation, we will only focus on the discrete shearlet systems
associated with a regular set of parameters as described in the next section. For a
detailed analysis of irregular shearlet systems, we refer to [27]. We first start with
various notations and definitions for later use.

2.1 Preliminaries

For j ≥ 0,k ∈ Z, let

A2 j =

(

2 j 0

0 2 j/2

)

, Sk =

(

1 k

0 1

)

, and Mc =

(

c1 0

0 c2

)

,

where c = (c1,c2) and c1,c2 are some positive constants. Similarly, we define

Ã2 j =

(

2 j/2 0

0 2 j

)

, S̃k =

(

1 0

k 1

)

, and M̃c =

(

c2 0

0 c1

)

.

Next, we define discrete shearlet systems in 2D.

Definition 1. Let c = (c1,c2) ∈ (R+)
2. For φ ,ψ, ψ̃ ∈ L2(R2) the cone-adapted 2D

discrete shearlet system SH(φ ,ψ , ψ̃ ;c) is defined by

SH(φ ,ψ , ψ̃;c) = Φ(φ ;c1)∪Ψ(ψ;c)∪Ψ̃(ψ̃;c),

where

Φ(φ ;c1) = {φ(·−m) : m ∈ c1Z
2},

Ψ(ψ ;c) = {2
3
4 jψ(SkA2 j · −m) : j ≥ 0,−�2 j/2� ≤ k ≤ �2 j/2�,m ∈ McZ

2},

and

Ψ̃(ψ̃ ;c) = {2
3
4 jψ̃(S̃kÃ2 j · −m) : j ≥ 0,−�2 j/2� ≤ k ≤ �2 j/2�,m ∈ M̃cZ

2}.

If SH(φ ,ψ , ψ̃ ;c) is a frame for L2(R2), we refer to φ as a scaling function and ψ
and ψ̃ as shearlets.
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Our aim is to construct compactly supported functions φ ,ψ , and ψ̃ to obtain
compactly supported shearlets in 2D. For this, we will describe general sufficient
conditions on the shearlet generators ψ and ψ̃ , which lead to the construction of
compactly supported shearlets. To formulate our sufficient conditions on ψ and ψ̃
(Sect. 2.3), we will first need to introduce the necessary notational concepts.

For functions φ ,ψ , ψ̃ ∈ L2(R2), we define Θ : R2 ×R
2 → R by

Θ(ξ ,ω) = |φ̂ (ξ )||φ̂(ξ +ω)|+Θ1(ξ ,ω)+Θ2(ξ ,ω), (1)

where
Θ1(ξ ,ω) = ∑

j≥0
∑

|k|≤�2 j/2�

∣

∣ψ̂(ST
k A2− j ξ )

∣

∣

∣

∣ψ̂(Sk
T A2− j ξ +ω)

∣

∣

and
Θ2(ξ ,ω) = ∑

j≥0
∑

|k|≤�2 j/2�

∣

∣ ˆ̃ψ(SkÃ2− j ξ )
∣

∣

∣

∣ ˆ̃ψ(SkÃ2− j ξ +ω)
∣

∣ .

Also, for c = (c1,c2) ∈ (R+)
2, let

R(c) = ∑
m∈Z2\{0}

(

Γ0(c
−1
1 m)Γ0(−c−1

1 m)
)

1
2 +

(

Γ1(M
−1
c m)Γ1(−M−1

c m)
)

1
2

+(Γ2(M̃
−1
c m)Γ2(−M̃−1

c m))
1
2 ,

where

Γ0(ω) = esssup
ξ∈R2

|φ̂(ξ )||φ̂ (ξ +ω)| and Γi(ω) = esssup
ξ∈R2

Θi(ξ ,ω) for i = 1,2.

2.2 Classical Construction

We now first describe the construction of band-limited shearlets which provides
tight frames for L2(R2). Constructions of this type were first introduced by Labate,
Weiss, and two of the authors in [37]. The classical example of a generating shearlet
is a function ψ ∈ L2(R2) satisfying

ψ̂(ξ ) = ψ̂(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1
),

where ψ1 ∈ L2(R) is a discrete wavelet, i.e., satisfies the discrete Calderón condition
given by

∑
j∈Z

|ψ̂1(2
− jξ )|2 = 1 for a.e. ξ ∈ R,

with ψ̂1 ∈ C∞(R) and suppψ̂1 ⊆ [− 5
4 ,− 1

4 ] ∪ [ 1
4 ,

5
4 ], and ψ2 ∈ L2(R) is a bump

function, namely

1

∑
k=−1

|ψ̂2(ξ + k)|2 = 1 for a.e. ξ ∈ [−1,1],
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satisfying ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1,1]. There are several choices of ψ1

and ψ2 satisfying those conditions, and we refer to [20] for further details. The
tiling of the frequency domain given by these band-limited generators and choosing

C1

C2

C3

R

C4

Fig. 3: The cones C1–C4 and
the centered rectangle R in
the frequency domain

Fig. 4: Tiling of the fre-
quency domain induced by
band-limited shearlets

ψ̃(x1,x2) = ψ(x2,x1) is illustrated in Fig. 4. As described in Fig. 3, a conic region
C1 ∪C3 is covered by the frequency support of shearlets in Ψ(ψ ;c) while C2 ∪C4

is covered by Ψ̃(ψ̃ ;c). For this particular choice, using an appropriate scaling func-
tion φ for the centered rectangle R (see Fig. 3), it was proved in [20, Theorem 3]
that the associated cone-adapted discrete shearlet system SH(φ ,ψ , ψ̃;(1,1)) forms
a Parseval frame for L2(R2).

2.3 Constructing Compactly Supported Shearlets

We are now ready to state general sufficient conditions for the construction of shear-
let frames.

Theorem 1 ([27]). Let φ ,ψ ∈ L2(R2) be functions such that

φ̂ (ξ1,ξ2)≤C1 ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ}
and

|ψ̂(ξ1,ξ2)| ≤C2 ·min{1, |ξ1|α} ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ}, (2)

for some positive constants C1,C2 < ∞ and α > γ > 3. Define ψ̃(x1,x2) = ψ(x2,x1),
and let Linf,Lsup be defined by

Linf = ess inf
ξ∈R2

Θ(ξ ,0) and Lsup = esssup
ξ∈R2

Θ(ξ ,0).

Suppose that there is a constant L̃inf > 0 such that 0 < L̃inf ≤ Linf. Then there exist
a sampling parameter c = (c1,c2) with c1 = c2 and a constant L̃sup < ∞ such that

R(c)< L̃inf ≤ Linf and Lsup ≤ L̃sup,
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and, further, SH(φ ,ψ , ψ̃ ;c) forms a frame for L2(R2) with frame bounds A and B
satisfying

1
|detMc| [L̃inf −R(c)]≤ A ≤ B ≤ 1

|detMc| [L̃sup +R(c)]. (3)

For a detailed proof, we refer to the paper [27] by Kittipoom and two of the authors.
Obviously, band-limited shearlets (from Sect. 2.2) satisfy condition (2). More in-

terestingly, also a large class of spatially compactly supported functions satisfies
this condition. In fact, in [27], various constructions of compactly supported shear-
lets are presented using Theorem 1 and generalized low-pass filters; an example of
such a construction procedure is given in Theorem 2 below. In Theorem 1 we as-
sumed c1 = c2 for the sampling matrix Mc (or M̃c), the only reason for this being the
simplification of the estimates for the frame bounds A,B in (3). In fact, the estimate
(3) generalizes easily to non-uniform sampling constants c1,c2 with c1 �= c2. For ex-
plicit estimates of the form (3) in the case of non-uniform sampling, we refer to [27].

The following result provides a specific family of functions satisfying the general
sufficiency condition from Theorem 1.

Theorem 2 ([27]). Let K,L > 0 be such that L≥ 10 and 3L
2 ≤K ≤ 3L−2, and define

a shearlet ψ ∈ L2(R2) by

ψ̂(ξ ) = m1(4ξ1)φ̂(ξ1)φ̂ (2ξ2), ξ = (ξ1,ξ2) ∈R
2,

where m0 is the low pass filter satisfying

|m0(ξ1)|2 = (cos(πξ1))
2K

L−1

∑
n=0

(

K −1+n
n

)

(sin(πξ1))
2n, ξ1 ∈R,

m1 is the associated bandpass filter defined by

|m1(ξ1)|2 = |m0(ξ1 +
1
2)|2, ξ1 ∈ R,

and φ is the scaling function given by

φ̂(ξ1) =
∞

∏
j=0

m0(2
− jξ1), ξ1 ∈ R.

Then there exists a sampling constant ĉ1 > 0 such that the shearlet system Ψ(ψ ;c)
forms a frame for Ľ2(C1 ∪C3) :=

{

f ∈ L2(R2) : supp f̂ ⊂ C1 ∪C3
}

for any sam-
pling matrix Mc with c = (c1,c2) ∈ (R+)

2 and c2 ≤ c1 ≤ ĉ1.

For these shearlet systems, there is a bias towards the vertical axis, especially
at coarse scales, since they are defined for Ľ2(C1 ∪C3), and hence, the frequency
support of the shearlet elements overlaps more significantly along the vertical axis.
In order to control the upper frame bound, it is therefore desirable to apply a denser
sampling along the vertical axis than along the horizontal axis, i.e., c1 > c2.



Compactly Supported Shearlets 175

Having compactly supported (separable) shearlet frames for Ľ2(C1 ∪C3) at hand
by Theorem 2, we can easily construct shearlet frames for the whole space L2(R2).
The exact procedure is described in the following theorem from [27].

Theorem 3 ([27]). Let ψ ∈ L2(R2) be the shearlet with associated scaling function
φ1 ∈ L2(R) both introduced in Theorem 2, and set φ(x1,x2) = φ1(x1)φ1(x2) and
ψ̃(x1,x2) = ψ(x2,x1). Then the corresponding shearlet system SH(φ ,ψ , ψ̃ ;c) forms
a frame for L2(R2) for any sampling matrices Mc and M̃c with c = (c1,c2) ∈ (R+)

2

and c2 ≤ c1 ≤ ĉ1.

For the horizontal cone C1 ∪C3 we allow for a denser sampling by Mc along the
vertical axis, i.e., c2 ≤ c1, precisely as in Theorem 2. For the vertical cone C2∪C4 we
analogously allow for a denser sampling along the horizontal axis; since the position
of c1 and c2 is reversed in M̃c compared to Mc, this still corresponds to c2 ≤ c1.

We wish to mention that there is a trade-off between compact support of the
shearlet generators, tightness of the associated frame, and separability of the shear-
let generators. The known constructions of tight shearlet frames do not use sep-
arable generators (Sect. 2.2), and these constructions can be shown to not be ap-
plicable to compactly supported generators. Tightness is difficult to obtain while
allowing for compactly supported generators, but we can gain separability as in
Theorem 3, hence fast algorithmic realizations. On the other hand, when allowing
non-compactly supported generators, tightness is possible, but separability seems to
be out of reach, which makes fast algorithmic realizations very difficult.

We end this section by remarking that the construction results above even gener-
alize to constructions of irregular shearlet systems [28, 29].

3 Sparse Approximations

After having introduced compactly supported shearlet systems in the previous sec-
tion, we now aim for optimally sparse approximations. To be precise, we will show
that these compactly supported shearlet systems provide optimally sparse approxi-
mations when representing and analyzing anisotropic features in 2D data.

3.1 Cartoon-like Image Model

Following [11], we introduce STAR2(ν), a class of sets B with C2 boundaries ∂B
and curvature bounded by ν , as well as E 2

ν (R
2), a class of cartoon-like images. For

this, in polar coordinates, we let ρ : [0,2π)→ [0,1] be a radius function and define
the set B by

B = {x ∈R
2 : |x| ≤ ρ(θ), x = (|x| ,θ ) in polar coordinates}.
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In particular, we will require that the boundary ∂B of B is given by the curve

β (θ ) =
(

ρ(θ)cos(θ )
ρ(θ )sin(θ)

)

, (4)

and the class of boundaries of interest to us are defined by

sup|ρ ′′
(θ )| ≤ ν, ρ ≤ ρ0 < 1, (5)

where ρ0 < 1 needs to be chosen so that y+B ⊂ [0,1]2 for some y ∈ R
2.

The following definition now introduces a class of cartoon-like images.

Definition 2. For ν > 0, the set STAR2(ν) is defined to be the set of all B ⊂ [0,1]2

such that B is a translate of a set obeying (1) and (2). Further, E 2
ν (R

2) denotes the
set of functions f ∈ L2(R2) of the form

f = f0 + f1χB,

where B ∈ STAR2(ν) and f0, f1 ∈ C2
0(R

2) with supp fi ⊂ [0,1]2 and ‖ fi‖C2 =

∑|α |≤2 ‖Dα fi‖∞ ≤ 1 for i = 1,2.

One can also consider a more sophisticated class of cartoon-like images, where the
boundary of B is allowed to be piecewise C2, and we refer to the recent paper by
two of the authors [34] and to similar considerations for the 3D case in Sect. 4.2.

Donoho [11] proved that the optimal approximation rate for such cartoon-like
image models f ∈ E 2

ν (R
2) which can be achieved for almost any representation sys-

tem under a so-called polynomial depth search selection procedure of the selected
system elements is

‖ f − fN‖2
2 ≤C ·N−2 as N → ∞,

where fN is the best N-term approximation of f . As discussed in the next section
shearlets in 2D do indeed deliver this optimal approximation rate.

3.2 Optimally Sparse Approximation of Cartoon-like Images

Let SH(φ ,ψ, ψ̃;c) be a shearlet frame for L2(R2). Since this is a countable set
of functions, we can denote it by SH(φ ,ψ , ψ̃ ;c) = (σi)i∈I . We let (σ̃i)i∈I be a
dual frame of (σi)i∈I . As our N-term approximation fN of a cartoon-like image
f ∈ E 2

ν (R
2) by the frame SH(φ ,ψ , ψ̃ ;c), we then take

fN = ∑
i∈IN

〈 f ,σi〉σ̃i,

where (〈 f ,σi〉)i∈IN are the N largest coefficients 〈 f ,σi〉 in magnitude. As in the tight
frame case, this procedure does not always yield the best N-term approximation,
but, surprisingly, even with this rather crude selection procedure, we can prove an
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(almost) optimally sparse approximation rate. We speak of “almost” optimality due
to the (negligible) log-factor in (6). The following result shows that our “new” com-
pactly supported shearlets (see Sect. 2.3) deliver the same approximation rate as
band-limited curvelets [1], contourlets [10], and shearlets [21].

Theorem 4 ([32]). Let c > 0, and let φ ,ψ , ψ̃ ∈ L2(R2) be compactly supported.
Suppose that, in addition, for all ξ = (ξ1,ξ2) ∈ R

2, the shearlet ψ satisfies

(i) |ψ̂(ξ )| ≤C1 ·min{1, |ξ1|α} ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ} and

(ii)
∣

∣

∣

∂
∂ξ2

ψ̂(ξ )
∣

∣

∣≤ |h(ξ1)| ·
(

1+ |ξ2|
|ξ1|

)−γ
,

where α > 5, γ ≥ 4, h ∈ L1(R), and C1 is a constant, and suppose that the shearlet
ψ̃ satisfies (i) and (ii) with the roles of ξ1 and ξ2 reversed. Further, suppose that
SH(φ ,ψ , ψ̃ ;c) forms a frame for L2(R2).

Then, for any ν > 0, the shearlet frame SH(φ ,ψ , ψ̃;c) provides (almost) opti-
mally sparse approximations of functions f ∈ E 2

ν (R
2) in the sense that there exists

some C > 0 such that

‖ f − fN‖2
2 ≤C ·N−2 · (logN)3 as N → ∞, (6)

where fN is the nonlinear N-term approximation obtained by choosing the N largest
shearlet coefficients of f .

Condition (i) can be interpreted as both a condition ensuring (almost) separable
behavior as well as a moment condition along the horizontal axis, hence enforcing
directional selectivity. This condition ensures that the support of shearlets in fre-
quency domain is essentially of the form indicated in Fig. 4. Condition (ii) (together
with (i)) is a weak version of a directional vanishing moment condition,2 which
is crucial for having fast decay of the shearlet coefficients when the corresponding
shearlet intersects the discontinuity curve. Conditions (i) and (ii) are rather mild con-
ditions on the generators; in particular, shearlets constructed by Theorem 2 and 3,
with extra assumptions on the parameters K and L, will indeed satisfy (i) and (ii) in
Theorem 1. To compare with the optimality result for band-limited generators we
wish to point out that conditions (i) and (ii) are obviously satisfied for band-limited
generators.

We remark that this kind of approximation result is not available for shearlet
systems coming directly from the shearlet group. One reason for this being that
these systems, as mentioned several times, do not treat directions in a uniform way.

4 Shearlets in 3D and Beyond

Shearlet theory has traditionally only dealt with representation systems for two-
dimensional data. In the recent paper [8] (and the accompanying paper [9]) this

2 For the precise definition of directional vanishing moments, we refer to [10].
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was changed when Dahlke, Steidl, and Teschke generalized the continuous shearlet
transform (see [7, 30]) to higher dimensions. The shearlet transform on L2(Rn)
by Dahlke, Steidl, and Teschke is associated with the so-called shearlet group in
R\ {0}×R

n−1×R
n, with a dilation matrix of the form

Aa = diag(a,sgn(a) |a|1/n , . . . ,sgn(a) |a|1/n), a ∈ R\ {0},

and with a shearing matrix with n−1 shear parameters s = (s1, . . . ,sn−1) ∈R
n−1 of

the form

Ss =

[

1 s
0 In−1

]

,

where In denotes the n×n identity matrix. This type of shearing matrix gives rise to
shearlets consisting of wedges of size a−1×a−1/n×·· ·×a−1/n in frequency domain,
where a−1 � a−1/n for small a > 0. Hence, for small a > 0, the spatial appearance
is a surface-like element of co-dimension one.

In the following section, we will consider shearlet systems in L2(R3) associ-
ated with a sightly different shearing matrix. More importantly, we will consider
pyramid-adapted 3D shearlet systems, since these systems treat directions in a uni-
form way as opposed to the shearlet systems coming from the shearlet group; this
design, of course, parallels the idea behind cone-adapted 2D shearlets. In [22], the
continuous version of the pyramid-adapted shearlet system was introduced, and it
was shown that the location and the local orientation of the boundary set of cer-
tain three-dimensional solid regions can be precisely identified by this continuous
shearlet transform. The pyramid-adapted shearlet system can easily be generalized
to higher dimensions, but for brevity we only consider the three-dimensional setup
and newly introduce it now in the discrete setting.

4.1 Pyramid-Adapted Shearlet Systems

We will scale according to paraboloidal scaling matrices A2 j , Ã2 j or Ă2 j , j ∈ Z,
and encode directionality by the shear matrices Sk, S̃k, or S̆k, k = (k1,k2) ∈ Z

2,
defined by

A2 j =

⎛

⎝

2 j 0 0
0 2 j/2 0
0 0 2 j/2

⎞

⎠ , Ã2 j=

⎛

⎝

2 j/2 0 0
0 2 j 0
0 0 2 j/2

⎞

⎠ , and Ă2 j=

⎛

⎝

2 j/2 0 0
0 2 j/2 0
0 0 2 j

⎞

⎠ ,

and

Sk =

⎛

⎝

1 k1 k2

0 1 0
0 0 1

⎞

⎠ , S̃k =

⎛

⎝

1 0 0
k1 1 k2

0 0 1

⎞

⎠ , and S̆k =

⎛

⎝

1 0 0
0 1 0

k1 k2 1

⎞

⎠ ,
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respectively. The translation lattices will be defined through the following matrices:
Mc = diag(c1,c2,c2), M̃c = diag(c2,c1,c2), and M̆c = diag(c2,c2,c1), where c1 > 0
and c2 > 0.

We next partition the frequency domain into the following six pyramids:

Pι =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{(ξ1,ξ2,ξ3) ∈ R
3 : ξ1 ≥ 1, |ξ2/ξ1| ≤ 1, |ξ3/ξ1| ≤ 1} : ι = 1,

{(ξ1,ξ2,ξ3) ∈ R
3 : ξ2 ≥ 1, |ξ1/ξ2| ≤ 1, |ξ3/ξ2| ≤ 1} : ι = 2,

{(ξ1,ξ2,ξ3) ∈ R
3 : ξ3 ≥ 1, |ξ1/ξ3| ≤ 1, |ξ2/ξ3| ≤ 1} : ι = 3,

{(ξ1,ξ2,ξ3) ∈R
3 : ξ1 ≤−1, |ξ2/ξ1| ≤ 1, |ξ3/ξ1| ≤ 1} : ι = 4,

{(ξ1,ξ2,ξ3) ∈R
3 : ξ2 ≤−1, |ξ1/ξ2| ≤ 1, |ξ3/ξ2| ≤ 1} : ι = 5,

{(ξ1,ξ2,ξ3) ∈R
3 : ξ3 ≤−1, |ξ1/ξ3| ≤ 1, |ξ2/ξ3| ≤ 1} : ι = 6,

and a centered rectangle

R = {(ξ1,ξ2,ξ3) ∈ R
3 : ‖(ξ1,ξ2,ξ3)‖∞ < 1}.

Fig. 5 The partition of the fre-
quency domain: The centered
rectangle R. The arrange-
ment of the six pyramids is
indicated by the “diagonal”
lines. See Fig. 6 for a sketch
of the pyramids

The partition is illustrated in Figs. 5 and 6. This partition of the frequency space
allows us to restrict the range of the shear parameters. In the case of “shearlet group”
systems one must allow arbitrarily large shear parameters, while the “pyramid-
adapted” systems restrict the shear parameters to

[−�2 j/2�,�2 j/2�]. It is exactly
this fact that gives a more uniform treatment of the directionality properties of the
shearlet system.

These considerations are now made precise in the following definition.

Definition 3. For c = (c1,c2) ∈ (R+)
2, the pyramid-adapted 3D shearlet system

SH(φ ,ψ , ψ̃ , ψ̆ ;c) generated by φ ,ψ, ψ̃ , ψ̆ ∈ L2(R3) is defined by
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Fig. 6: The partition of the frequency domain: The “top” of the six pyramids

SH(φ ,ψ , ψ̃ , ψ̆ ;c) = Φ(φ ;c1)∪Ψ(ψ ;c)∪Ψ̃(ψ̃ ;c)∪Ψ̆(ψ̆ ;c),

where

Φ(φ ;c1) =
{

φm = φ(·−m) : m ∈ c1Z
3} ,

Ψ(ψ ;c) =
{

ψ j,k,m = 2 jψ(SkA2 j ·−m) : j ≥ 0, |k| ≤ �2 j/2�,m ∈ McZ
3
}

,

Ψ̃(ψ̃ ;c) = {ψ̃ j,k,m = 2 jψ̃(S̃kÃ2 j ·−m) : j ≥ 0, |k| ≤ �2 j/2�,m ∈ M̃cZ
3},

and

Ψ̆(ψ̆ ;c) = {ψ̆ j,k,m = 2 jψ̆(S̆kĂ2 j ·−m) : j ≥ 0, |k| ≤ �2 j/2�,m ∈ M̆cZ
3},

where j ∈ N0 and k ∈ Z
2. Here we have used the vector notation |k| ≤ K for k =

(k1,k2) and K > 0 to denote |k1| ≤ K and |k2| ≤ K.

The construction of pyramid-adapted shearlet systems SH(φ ,ψ , ψ̃, ψ̆ ;c) runs
along the lines of the construction of cone-adapted shearlet systems in L2(R2) de-
scribed in Sect. 2.3. For a detailed description, we refer to [31].

We remark that the shearlets in spatial domain are of size 2− j/2 times 2− j/2 times
2− j which shows that the shearlet elements will become “plate-like” as j → ∞. One
could also use the scaling matrix A2 j = diag(2 j,2 j,2 j/2) with similar changes for
Ã2 j and Ă2 j . This would lead to “needle-like” shearlet elements instead of the “plate-
like” elements considered in this paper, but we will not pursue this further here, and
simply refer to [31]. More generally, it is possible to even consider non-paraboloidal
scaling matrices of the form A j = diag(2 j,2α j,2β j) for 0<α,β ≤ 1. One drawback
of allowing such general scaling matrices is the lack of fast algorithms for non-
dyadic multiscale systems. On the other hand, the parameters α and β allow us to
precisely shape the shearlet elements, ranging from very plate-like to very needle-
like, according to the application at hand, i.e., choosing the shearlet-shape that is the
best “fit” for the geometric characteristics of the considered data.
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4.2 Sparse Approximations of 3D Data

We now consider approximations of three-dimensional cartoon-like images using
shearlets introduced in the previous section. The three-dimensional cartoon-like im-
ages E 2

ν (R
3) will be piecewise C2 functions with discontinuities on a closed C2

surface whose principal curvatures are bounded by ν . In [31], it was shown that the
optimal approximation rate for such 3D cartoon-like image models f ∈ E 2

ν (R
3)

which can be achieved for almost any representation system (under polynomial
depth search selection procedure of the approximating coefficients) is

‖ f − fN‖2
2 ≤C ·N−1 as N → ∞,

where fN is the best N-term approximation of f . The following result shows that
compactly supported pyramid-adapted shearlets do (almost) deliver this approxima-
tion rate.

Theorem 5 ([31]). Let c ∈ (R+)
2, and let φ ,ψ , ψ̃ , ψ̆ ∈ L2(R3) be compactly sup-

ported. Suppose that, for all ξ = (ξ1,ξ2,ξ3) ∈ R
3, the function ψ satisfies:

(i) |ψ̂(ξ )| ≤C1 ·min{1, |ξ1|α} ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ} ·min{1, |ξ3|−γ},

(ii)
∣

∣

∣

∂
∂ξi

ψ̂(ξ )
∣

∣

∣≤ |h(ξ1)| ·
(

1+ |ξ2|
|ξ1|

)−γ (
1+ |ξ3|

|ξ1|
)−γ

, i = 2,3,

where α > 8, γ ≥ 4, t �→ th(t) ∈ L1(R), and C1 a constant, and suppose that ψ̃ and
ψ̆ satisfy analogous conditions with the obvious change of coordinates. Further,
suppose that the shearlet system SH(φ ,ψ , ψ̃, ψ̆ ;c) forms a frame for L2(R3).

Then, for any ν > 0, the shearlet frame SH(φ ,ψ, ψ̃ , ψ̆ ;c) provides (almost) opti-
mally sparse approximations of functions f ∈ E 2

ν (R
3) in the sense that there exists

some C > 0 such that

‖ f − fN‖2
2 ≤C ·N−1 · (logN)2 as N → ∞. (7)

In the following we will give a sketch of the proof of Theorem 5 and, in partic-
ular, give a heuristic argument (inspired by a similar one for 2D curvelets in [1]) to
explain the exponent N−1 in (7).

Proof (Theorem 5, Sketch). Let f ∈ E 2
ν (R

3) be a 3D cartoon-like image. The main
concern is to derive appropriate estimates for the shearlet coefficients

〈

f ,ψ j,k,m
〉

.
We first observe that we can assume the scaling index j to be sufficiently large,
since f as well as all shearlet elements are compactly supported and since a finite
number does not contribute to the asymptotic estimate we are aiming for. In par-
ticular, this implies that we do not need to take frame elements from the “scaling”
system Φ(φ ;c1) into account. Also, we are allowed to restrict our analysis to shear-
lets ψ j,k,m, since the frame elements ψ̃ j,k,m and ψ̆ j,k,m can be handled in a similar
way.

Letting |θ( f )|n denote the nth largest shearlet coefficient
〈

f ,ψ j,k,m
〉

in absolute
value and using the frame property of SH(φ ,ψ , ψ̃, ψ̆ ;c), we conclude that

‖ f − fN‖2
2 ≤

1
A ∑

n>N
|θ ( f )|2n,
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for any positive integer N, where A denotes the lower frame bound of the shearlet
frame SH(φ ,ψ , ψ̃, ψ̆ ;c). Thus, for completing the proof, it therefore suffices to
show that

∑
n>N

|θ ( f )|2n ≤C ·N−1 · (logN)2 as N → ∞. (8)

For the following heuristic argument, we need to make some simplifications. We
will assume to have a shearlet of the form ψ(x) = η(x1)ϕ(x2)ϕ(x3), where η is a
wavelet and ϕ a bump (or a scaling) function. Note that the wavelet “points” in the
short direction of the plate-like shearlet. We now consider three cases of coefficients
〈

f ,ψ j,k,m
〉

(Fig. 7):

(a) Shearlets ψ j,k,m whose support does not overlap with the boundary ∂B.
(b) Shearlets ψ j,k,m whose support overlaps with ∂B and is nearly tangent.
(c) Shearlets ψ j,k,m whose support overlaps with ∂B, but not tangentially.

Fig. 7: The three types of shearlet ψ j,k,m and boundary ∂B interactions considered
in the heuristic argument (explaining the approximation rate N−1). Note that only a
section of ∂B is shown

As we argue in the following, only coefficients from case (b) will be significant.
Case (b) is – loosely speaking – the situation in which the wavelet η breaches, in an
almost normal direction, through the discontinuity surface; as is well known from
wavelet theory, 1D wavelets efficiently handle such a “jump” discontinuity.

Case (a). Since f is C2 smooth away from ∂B, the coefficients |〈 f ,ψ j,k,m
〉| will

be sufficiently small owing to the wavelet η (and the fast decay of wavelet coeffi-
cients of smooth functions).

Case (b). At scale j > 0, there are at most O(2 j) coefficients, since the plate-like
elements are of size 2− j/2 times 2− j/2 (and “thickness” 2− j). By assumptions on f
and the support size of ψ j,k,m, we obtain the estimate

|〈 f ,ψ j,k,m
〉| ≤ ‖ f‖∞

∥

∥ψ j,k,m
∥

∥

1 ≤C1 (2
−2 j)1/2

∥

∥ψ j,k,m
∥

∥

1/2
2 ≤C2 ·2− j
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for some constants C1,C2 > 0. In other words, we have O(2 j) coefficients bounded
by C2 ·2− j. Assuming the case (a) and (c) coefficients are negligible, the nth largest
coefficient |θ ( f )|n is then bounded by

|θ ( f )|n ≤C ·n−1.

Therefore,

∑
n>N

|θ ( f )|2n ≤ ∑
n>N

C ·n−2 ≤C ·
∫ ∞

N
x−2dx ≤C ·N−1

and we arrive at (3), but without the log-factor. This in turn shows (7), at least
heuristically, and still without the log-factor.

Case (c). Finally, when the shearlets are sheared away from the tangent position
in case (b), they will again be small. This is due to the vanishing moment conditions
in condition (i) and (ii). ��

Clearly, Theorem 5 is an “obvious” three-dimensional version of Theorem 1.
However, as opposed to the two-dimensional setting, anisotropic structures in three-
dimensional data comprise of two morphologically different types of structure,
namely surfaces and curves. It would, therefore, be desirable to allow our 3D image
class to also contain cartoon-like images with curve singularities. On the other hand,
the pyramid-adapted shearlets introduced in Sect. 4.1 are plate-like and thus, a pri-
ori, not optimal for capturing such one-dimensional singularities. Surprisingly, these
plate-like shearlet systems still deliver the optimal rate N−1 for three-dimensional
cartoon-like images E 2

ν,L(R
3), where L indicates that we allow our discontinuity

surface ∂B to be piecewise C2 smooth; L ∈ N is the maximal number of C2 pieces
and ν > 0 is an upper estimate for the principal curvatures on each piece. In other
words, for any ν > 0 and L ∈ N, the shearlet frame SH(φ ,ψ , ψ̃ , ψ̆ ;c) provides (al-
most) optimally sparse approximations of functions f ∈ E 2

ν,L(R
3) in the sense that

there exists some C > 0 such that

‖ f − fN‖2
2 ≤C ·N−1 · (logN)2 as N → ∞. (9)

The conditions on the shearlets ψ , ψ̃, ψ̆ are similar to these in Theorem 5, but
more technical, and we refer to [31] for the precise statements and definitions as well
as the proof of the optimal approximation error rate. Here, we simply remark that
there exist numerous examples of shearlets ψ , ψ̃ , and ψ̆ satisfying these conditions,
which lead to (9); one large class of examples are separable generators ψ , ψ̃ , ψ̆ ∈
L2(R3), i.e.,

ψ(x)=η(x1)ϕ(x2)ϕ(x3), ψ̃(x)=ϕ(x1)η(x2)ϕ(x3), ψ̆(x)=ϕ(x1)ϕ(x2)η(x3),

where η ,ϕ ∈ L2(R) are compactly supported functions satisfying:

(i) |η̂(ω)| ≤C1 ·min{1, |ω |α} ·min{1, |ω |−γ},

(ii)
∣

∣

∣

( ∂
∂ω

)�ϕ̂(ω)
∣

∣

∣
≤C2 ·min{1, |ω |−γ} for �= 0,1,

for ω ∈R, where α > 8, γ ≥ 4, and C1,C2 are constants.
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5 Conclusions

Designing a directional representation system that efficiently handles data with
anisotropic features is quite challenging since it needs to satisfy a long list of desired
properties: it should have a simple mathematical structure, it should provide opti-
mally sparse approximations of certain image classes, it should allow compactly
supported generators, it should be associated with fast decomposition algorithms,
and it should provide a unified treatment of the continuum and digital realm.

In this paper, we argue that shearlets meet all these challenges, and are, therefore,
one of the most satisfying directional systems. To be more precise, let us briefly
review our findings for 2D and 3D data:

• 2D Data. In Sect. 2, we constructed 2D shearlet systems that efficiently capture
anisotropic features and satisfy all the above requirements.

• 3D Data. In 3D, as opposed to 2D, we face the difficulty that there might exist
two geometrically different anisotropic features; 1D and 2D singularities. The
main difficulty in extending shearlet systems from the 2D to 3D setting lies,
therefore, in introducing a system that is able to represent both these geomet-
rically different structures efficiently. As shown in Sect. 4, a class of plate-like
shearlets is able to meet these requirements. In other words, the extension from
2D shearlets to 3D shearlets has been successful in terms of preserving the de-
sirable properties, e.g., optimally sparse approximations. It does, therefore, seem
that an extension to 4D or even higher dimensions is, if not straightforward then,
at the very least, feasible. In particular, the step to 4D now “only” requires the
efficient handling of yet “another” type of anisotropic feature.

Acknowledgements The first and third author acknowledge support from DFG Grant SPP-1324,
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Shearlets on Bounded Domains

Gitta Kutyniok and Wang-Q Lim

Abstract Shearlet systems have so far been only considered as a means to analyze
L2-functions defined on R

2, which exhibit curvilinear singularities. However, in
applications such as image processing or numerical solvers of partial differential
equations the function to be analyzed or efficiently encoded is typically defined
on a non-rectangular shaped bounded domain. Motivated by these applications, in
this paper, we first introduce a novel model for cartoon-like images defined on a
bounded domain. We then prove that compactly supported shearlet frames satis-
fying some weak decay and smoothness conditions, when orthogonally projected
onto the bounded domain, do provide (almost) optimally sparse approximations of
elements belonging to this model class.

1 Introduction

It is by now well accepted that L2-functions supported on the unit square which
are C2 except for a C2 discontinuity curve are a suitable model for images which
are governed by edges. Of all directional representation systems which provide
optimally sparse approximations of this model class, shearlet systems have distin-
guished themselves by the fact that they are the only system which provides a unified
treatment of the continuum and digital setting, thereby making them particularly
useful for both theoretical considerations as well as applications. However, most
applications concern sparse approximations of functions on bounded domains, for
instance, a numerical solver of a transport dominated equation could seek a solution
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on a polygonal shaped area. This calls for shearlet systems which are adapted to
bounded domains while still providing optimally sparse expansions.

In this paper, we therefore consider the following questions:

(I) What is a suitable model for a function on a bounded domain with curvilinear
singularities?

(II) What is the “correct” definition of a shearlet system for a bounded domain?
(III) Do these shearlet systems provide optimally sparse approximations of the

model functions introduced in (I)?

In the sequel we will indeed provide a complete answer to those questions. These
results push the door open for the usability of shearlet systems in all areas where 2D
functions on bounded domains require efficient encoding.

1.1 Optimally Sparse Approximations of Cartoon-like Images

The first complete model of cartoon-like images has been introduced in [1], the
basic idea being that a closed C2 curve separates smooth – in the sense of C2 –
functions. For the precise definition, we let ρ : [0,2π ]→ [0,1] be a C2 function with
ρ(0) = ρ(2π) and define the set B by

B = {x ∈ R
2 : ‖x‖2 � ρ(θ ), x = (‖x‖2,θ) in polar coordinates}, (1)

where

sup |ρ ′′
(θ )|� ν, ρ ≤ ρ0 < 1. (2)

This allows us to introduce STAR2(ν), a class of sets B with C2 boundaries ∂B and
curvature bounded by ν , as well as E 2(ν), a class of cartoon-like images.

Definition 1 ([1]). For ν > 0, the set STAR2(ν) is defined to be the set of all B ⊂
[0,1]2 such that B is a translate of a set obeying (1) and (2). Further, E 2(ν) denotes
the set of functions f on R

2 with compact support in [0,1]2 of the form

f = f0 + f1χB,

where B ∈ STAR2(ν) and f0, f1 ∈C2(R2) with compact support in [0,1]2 as well as
∑|α |≤2 ‖Dα fi‖∞ ≤ 1 for each i = 0,1.

In [4], Donoho proved that for f ∈ E 2(ν), the optimal rate which can be achieved
under some restrictions on the representation system as well as on the selection
procedure of the approximating coefficients is

‖ f − fN‖2
2 �C ·N−2 as N → ∞,

where fN is the best N-term approximation.
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1.2 Shortcomings of this Cartoon-like Model Class

The first shortcoming of this model is the assumption that the discontinuity curve
is C2. Think, for instance, of an image, which pictures a building. Then the frames
of the windows separate the dark interior of the windows from the presumably light
color of the wall, however this frame is far from being C2. Hence, a much more
natural assumption would be to assume that the discontinuity curve is piecewise C2.

The second shortcoming consists in the fact that the function is implicitly as-
sumed to vanish on the boundary of [0,1]2. More precisely, even if the function
f = f0 + f1χB is non-zero on a section of positive measure of the boundary ∂B,
this situation is not particularly treated at all. However, reminding ourselves of the
very careful boundary treatment in the theory of partial differential equations, this
situation should be paid close attention. Thus, a very natural approach to a careful
handling of the boundary in a model for cartoon-like images seems to consist in
regarding the boundary as a singularity curve itself.

The third and last shortcoming is the shape of the support [0,1]2 of this model.
Typically, in real-world situations the domain of 2D data can be very different from
being a rectangle, and even a polygonal-shape model might not necessarily be suffi-
cient. Examples to support this claim can be found, for instance, in fluid dynamics,
where the flow can be supported on variously shaped domains. In this regard, a suit-
able model situation seems to be to allow the boundary to consist of any piecewise
C2 curve.

1.3 Our Model for Cartoon-like Images on Bounded Domains

The model for cartoon-like images on bounded domains, which we now define, will
indeed take all considerations from the previous subsection into account. For an
illustration, we refer to Fig. 1.

We first introduce STAR2(ν,L), a class of sets B with now piecewise C2 bound-
aries ∂B consisting of C2 smooth pieces whose curvature bounded by ν . This will
serve us for both modeling the bounded domain as well as modeling the discontinu-
ity curve.

Definition 2. Let L > 0 and let ρ : [0,2π ] → [0,1] be a continuous function with
ρ(0) = ρ(2π). Further, let [ai,bi)⊂ [0,2π), 1� i � L be disjoint intervals satisfying

L
⋃

i=1

[ai,bi) = [0,2π),

and let ρi : [ai,bi)→ [0,1], 1 � i � L be C2 functions such that

max
i

sup |ρ ′′
i (θ )| ≤ ν, max

i
sup |ρi| ≤ ρ0 < 1, and ρ

∣

∣

[ai,bi) = ρi.
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Fig. 1: Example of a function f belonging to our model class E 2
ν,L(Ω) of cartoon-

like images on bounded domains

Then B ∈ STAR2(ν,L), if B is a bounded subset of [0,1]2 and B is a translate of a
set of the form

{x ∈ R
2 : ‖x‖2 ≤ ρ(θ ), x = (‖x‖2,θ ) in polar coordinates}.

The above definition allows us to introduce a model class of cartoon-like images
in bounded domains. In accordance with modeling functions on bounded domains,
we now consider functions defined on [0,1]2; its “true” domain is brought into play
by requiring these functions to be supported on Ω ⊆ (0,1)2, which we model as
piecewise C2 bounded. This ensures that we treat ∂Ω as a singularity curve, which
would not have been possible when defining the model on Ω itself.

Definition 3. For ν > 0 and L ∈ Z
+, let Ω ,B ∈ STAR2(ν,L) be such that B ⊂ Ω◦,

where Ω ◦ denotes the interior of the set Ω , and Ω ⊂ (0,1)2. Then, E 2
ν,L(Ω) denotes

the set of functions f on [0,1]2 with compact support in Ω of the form

f = f0 + f1χB,

where f0, f1 ∈ C2([0,1]2) with compact support in Ω and ∑|α |≤2 ‖Dα fi‖∞ ≤ 1 for
each i = 0,1.

Later it will become important to analyze the points on boundaries of sets in
STAR2(ν,L), in which the boundary is not C2. For these points, we will employ the
following customarily used notion.

Definition 4. For ν > 0 and L ∈ Z
+, let B∈ STAR2(ν,L). Then a point x0 ∈ ∂B will

be called a corner point, if ∂B is not C2 at x0.

Since the model E 2
ν ,L(Ω), while containing the previous model E 2

ν as a special
case, is considerably more complicated, we would like to make the reader aware of
the fact that it is now not clear at all whether the optimal approximation rate is still

‖ f − fN‖2
2 ≤C ·N−2 as N → ∞.
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1.4 Review of Shearlets

Inspired by works on generalized wavelets [16, 22], the directional representation
system of shearlets has recently emerged – a first introduction dates back to 2005
in [20] – and rapidly gained attention due to the fact that, in contrast to other pro-
posed directional representation systems, shearlets provide a unified treatment of
the continuum and digital world similar to wavelets. We refer to, e.g., [9,15] for the
continuum theory, [8,19,21] for the digital theory, and [5,10] for recent applications.
Shearlets are scaled according to a parabolic scaling law and exhibit directionality
by parameterizing slope by shearing, which allows the aforementioned unified treat-
ment in contrast to rotation. Thus, shearlets are associated with three parameters:
scale, orientation, and position. A precise definition will be given in Sect. 2.

A few months ago, the theory of shearlets focussed entirely on band-limited
generators although precise spatial localization is evidently highly desirable for,
e.g., edge detection. Recently, motivated by this desideratum, compactly supported
shearlets were studied by Kittipoom and the two authors. It was shown that a large
class of compactly supported shearlets generates a frame for L2(R2) with control-
lable frame bounds alongside with several explicit constructions [12]. By the two
authors it was then proven in [18] that a large class of these compactly supported
shearlet frames does in fact provide (almost) optimally sparse approximations of
functions in E 2

ν in the sense of

‖ f − fN‖2
2 �C ·N−2 · (logN)3 as N → ∞.

It should be mentioned that although the optimal rate is not completely achieved, the
log-factor is typically considered negligible compared to the N−2-factor, wherefore
the term “almost optimal” has been adopted into the language.

1.5 Surprising Result

We now aim to discuss the ability of shearlets to sparsely approximate elements
of the previously introduced model for cartoon-like images on bounded domains,
E 2

ν,L(Ω). For this, we first need to define shearlet systems for functions in L2(Ω).
Assume we are given a (compactly supported) shearlet frame for L2(R2). The most
crude approach to transform this into a shearlet system defined on L2(Ω), where
Ω ∈ STAR2(ν,L), is to just truncate each element at the boundary of Ω . Since it
is well known in classical frame theory that the orthogonal projection of a frame
onto a subspace does not change the frame bounds (cf. [2, Proposition 5.3.5]), this
procedure will result in a (compactly supported) shearlet frame for L2(Ω) with the
same frame bounds as before.

We now apply this procedure to the family of compactly supported shearlet
frames for L2(R2), which yield (almost) optimally sparse approximations of func-
tions in E 2

ν (see [18, Theorem 1.3]). The main result of this paper then proves that
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the resulting family of shearlet frames – now regarded as a system on [0,1]2 with
compact support in Ω – again provides (almost) optimally sparse approxima-
tions now of elements from our model of cartoon-like images on bounded domains
E 2

ν,L(Ω) in the sense of

‖ f − fN‖2
2 �C ·N−2 · (logN)3 as N → ∞.

The precise statement is phrased in Theorem 1 in Sect. 3.
This result is quite surprising in two ways:

• Surprise 1. Regarding a log-factor as negligible – a customarily taken viewpoint
–, the previous result shows that even for our much more sophisticated model of
cartoon-like images on bounded domains the same optimal sparse approximation
rate as for the simple model detailed in Sect. 1.1 can be achieved. This is even
more surprising taking into account that our model contains point singularities at
the corner points of the singularity curves. Naively, one would expect that these
should worsen the approximation rate. However, observing that “not too many”
shearlets intersect these “sparsely occurring” points unravels this mystery.

• Surprise 2. Orthogonally projecting a shearlet system onto the considered boun-
ded domain, thereby merely truncating it, seems an exceptionally crude approach
to derive shearlets for a bounded domain. However, these “modified” shearlet
systems are indeed sufficient to achieve the optimal rate and no sophisticated
adaptions are required, which is of significance for deriving fast algorithmic re-
alizations.

1.6 Main Contributions

The main contributions of this paper are two-fold. Firstly, we introduce E 2
ν,L(Ω)

as a suitable model for a function on a bounded domain with curvilinear singular-
ities. Secondly, we show that the “crude” approach towards a shearlet system on a
bounded domain by simply orthogonally projecting still provides optimally sparse
approximations of elements belonging to our model class E 2

ν,L(Ω).
We should mention that although not formally stated the idea of one piecewise

C2 discontinuity curve in a model for functions on R
2 as an extension of Defini-

tion 1 is already lurking in [1]. Also, a brief sketch of proof of (almost) optimally
sparse approximations of curvelets is contained therein. These ideas are however
very different from ours in two aspects. First of all, our goal is a suitable model
for functions on bounded domains exhibiting discontinuity curves and also treat-
ing the boundary of the domain as a singularity curve. And secondly, in this paper
we consider compactly supported shearlets – hence elements with superior spatial
localization properties in contrast to the (band-limited) curvelets – which allows an
elegant proof of the sparse approximation result in addition to a simplified treatment
of the corner points.
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1.7 Outline

In Sect. 2, after recalling the definition of shearlet systems, we introduce shearlet
systems on bounded domains, thereby focussing in particular on compactly sup-
ported shearlet frames. The precise statement of our main result is presented in
Sect. 3 together with a road map to its proof. The proof itself is then carried out in
Sect. 4. Finally, in Sect. 5, we discuss our main result and possible extensions of it.

2 Compactly Supported Shearlets

We first review the main notions and definitions related to shearlet theory, focussing
in particular on compactly supported generators. For more details we would like to
refer the interested reader to the survey paper [17]. Then we present our definition
of shearlet systems on a bounded domain Ω ∈ STAR2(ν,L).

2.1 Compactly Supported Shearlet Frames for L2(R2)

Shearlets are scaled according to a parabolic scaling law encoded in the parabolic
scaling matrices A2 j or Ã2 j , j ∈Z, and exhibit directionality by parameterizing slope
encoded in the shear matrices Sk, k ∈ Z, defined by

A2 j =

(

2 j 0
0 2 j/2

)

or Ã2 j =

(

2 j/2 0
0 2 j

)

and

Sk =

(

1 k
0 1

)

,

respectively.
We next partition the frequency plane into four cones C1 – C4. This allow the

introduction of shearlet systems which treat different slopes equally in contrast to
the shearlet group-based approach. We though wish to mention that historically the
shearlet group-based approach was developed first due to its advantageous theoret-
ical properties and it still often serves as a system for developing novel analysis
strategies (see, for instance, [6, 7, 13]).

The four cones C1 – C4 are now defined by

Cι =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{(ξ1,ξ2) ∈ R
2 : ξ1 � 1, |ξ2/ξ1|� 1} : ι = 1,

{(ξ1,ξ2) ∈ R
2 : ξ2 � 1, |ξ1/ξ2|� 1} : ι = 2,

{(ξ1,ξ2) ∈ R
2 : ξ1 �−1, |ξ2/ξ1|� 1} : ι = 3,

{(ξ1,ξ2) ∈ R
2 : ξ2 �−1, |ξ1/ξ2|� 1} : ι = 4,
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and a centered rectangle

R = {(ξ1,ξ2) ∈ R
2 : ‖(ξ1,ξ2)‖∞ < 1}.

For an illustration, we refer to Fig. 2a.
The rectangle R corresponds to the low frequency content of a signal and is

customarily represented by translations of some scaling function. Anisotropy comes
into play when encoding the high frequency content of a signal which corresponds
to the cones C1 – C4, where the cones C1 and C3 as well as C2 and C4 are treated
separately as can be seen in the following

Definition 5. For some sampling constant c > 0, the cone-adapted shearlet system
SH(φ ,ψ , ψ̃ ;c) generated by a scaling function φ ∈ L2(R2) and shearlets ψ , ψ̃ ∈
L2(R2) is defined by

SH(φ ,ψ , ψ̃ ;c) = Φ(φ ;c)∪Ψ (ψ ;c)∪Ψ̃(ψ̃ ;c),

where
Φ(φ ;c) = {φm = φ(·− cm) : m ∈ Z

2},

Fig. 2: (a) The cones C1 – C4 and the centered rectangle R in frequency domain.
(b) The tiling of the frequency domain induced by a cone-adapted shearlet system,
where the (essential) support of the Fourier transform of one shearlet generator is
exemplary high-lighted

Ψ (ψ ;c) = {ψ j,k,m = 23 j/4ψ(SkA2 j ·−cm) : j � 0, |k|� �2 j/2�,m ∈ Z
2},

and

Ψ̃ (ψ̃ ;c) = {ψ̃ j,k,m = 23 j/4ψ̃(ST
k Ã2 j ·−cm) : j � 0, |k|� �2 j/2�,m ∈ Z

2}.

The tiling of frequency domain induced by SH(φ ,ψ , ψ̃ ;c) is illustrated in Fig. 2b.
From this illustration, the anisotropic footprints of shearlets contained in Ψ(ψ ;c)
and Ψ̃(ψ̃ ;c) can clearly be seen. The corresponding anisotropic footprints of
shearlets in spatial domain are of size 2− j/2 ×2− j.
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The reader should keep in mind that although not indicated by the notation, the
functions φm, ψ j,k,m, and ψ̃ j,k,m all depend on the sampling constant c. For the sake
of brevity, we will often write ψλ and ψ̃λ , where λ = ( j,k,m) index scale, shear,
and position. For later use, we further let Λ j and Λ̃ j be the indexing sets of shearlets
in Ψ(ψ ;c) and Ψ̃(ψ̃ ;c) at scale j, respectively, i.e.,

Ψ(ψ ;c) = {ψλ : λ ∈Λ j, j = 0,1, . . .} and Ψ̃ (ψ̃;c) = {ψ̃λ : λ ∈ Λ̃ j, j = 0,1, . . .}.

Finally, we define

Λ =
∞
⋃

j=0

Λ j and Λ̃ =
∞
⋃

j=0

Λ̃ j.

The shearlet systems SH(φ ,ψ , ψ̃ ;c) have already been well studied with respect
to their frame properties for L2(R2), and we would like to refer to results in [3, 9,
14]. It should be mentioned that those results typically concern frame properties of
Ψ(ψ ;c), which immediately imply frame properties of Ψ̃(ψ̃;c) likewise, whereas
numerous frame properties for the low-frequency part Φ(φ ;c) can be found in the
wavelet literature. Combining those leads to frame properties of SH(φ ,ψ, ψ̃ ;c).

Recent results in [12] establish frame properties specifically for the case of spa-
tially compactly supported shearlet systems, i.e., shearlet systems with compactly
supported generators φ , ψ , and ψ̃ which lead to a shearlet system consisting of
compactly supported elements. These results give sufficient conditions for the so-
called tq conditions to be satisfied. As one class of examples with “good” frame
bounds, generating shearlets ψ and ψ̃ were chosen to be separable, i.e., of the form
ψ1(x1) ·ψ2(x2) and ψ1(x2) ·ψ2(x1), respectively, where ψ1 is a wavelet and ψ2 a
scaling function both associated with some carefully chosen (maximally flat) low
pass filter. The separability has in addition the advantage to lead to fast accompany-
ing algorithms.

We wish to mention that there is a trade-off between compact support of the
shearlet generators, tightness of the associated frame, and separability of the shear-
let generators. The known constructions of tight shearlet frames do not use separable
generators, and these constructions can be shown to not be applicable to compactly
supported generators. Tightness is difficult to obtain while allowing for compactly
supported generators, but we can gain separability, hence fast algorithmic realiza-
tions. On the other hand, when allowing non-compactly supported generators, tight-
ness is possible, but separability seems to be out of reach, which makes fast algo-
rithmic realizations very difficult.

2.2 Compactly Supported Shearlet Frames for L2(Ω)

Let Ω ∈ STAR2(ν,L) be a bounded domain as defined in Sect. 1.3. The main idea
of constructing a shearlet frame for L2(Ω), preferably with compactly supported
elements, is to start with a compactly supported shearlet frame for L2(R2) and
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apply the orthogonal projection from L2(R2) onto L2(Ω) to each element. To make
this mathematically precise, we let PΩ : L2(R2) → L2(Ω) denote the orthogonal
projection from L2(R2) onto L2(Ω). This allows us to state the following

Definition 6. Let Ω ∈ STAR2(ν,L). For some sampling constant c > 0, the cone-
adapted shearlet system SHΩ (φ ,ψ , ψ̃ ;c) for L2(Ω) generated by a scaling function
φ ∈ L2(R2) and shearlets ψ , ψ̃ ∈ L2(R2) is defined by

SHΩ (φ ,ψ , ψ̃ ;c) = PΩ (Φ(φ ;c)∪Ψ (ψ ;c)∪Ψ̃(ψ̃ ;c)),

where Φ(φ ;c), Ψ(ψ ;c), and Ψ̃ (ψ̃ ;c) are defined as in Definition 5.

As a direct corollary from well known results in frame theory (see [2, Proposition
5.3.5]), we obtain the following result, which clarifies frame properties for systems
SHΩ (φ ,ψ , ψ̃ ;c) to the extent to which they are known for systems SH(φ ,ψ , ψ̃ ;c).
In the sequel, we will usually regard SHΩ (φ ,ψ , ψ̃ ;c) as a system defined on [0,1]2

– in accordance with our model E 2
ν,L(Ω) – by which we simply mean extension by

zero. This system will be sometimes referred to as the extension of SHΩ (φ ,ψ , ψ̃ ;c)
to [0,1]2. The following result also provides frame properties of these systems.

Proposition 1. Let c > 0, let φ ,ψ , ψ̃ ∈ L2(R2), and let Ω ∈ STAR2(ν,L) with pos-
itive measure. Then the following statements are equivalent.

(i) The shearlet system SH(φ ,ψ , ψ̃ ;c) is a frame for L2(R2) with frame bounds A
and B.

(ii) The shearlet system SHΩ (φ ,ψ , ψ̃ ;c) is a frame for L2(Ω) with frame bounds A
and B.

(iii) The extension of the shearlet system SHΩ (φ ,ψ , ψ̃ ;c) to [0,1]2 is a frame with
frame bounds A and B for functions L2([0,1]2) with compact support in Ω .

3 Optimal Sparsity of Shearlets on Bounded Domains

We now have all ingredients to formally state the result already announced in
Sect. 1.5, which shows that even with the “crude” construction of shearlets on
bounded domains and the significantly more sophisticated model for cartoon-like
images on bounded domains we still obtain (almost) optimally sparse approxima-
tions.

3.1 Main Theorem 1

Theorem 1. Let c > 0, and let φ ,ψ, ψ̃ ∈ L2(R2) be compactly supported. Suppose
that, in addition, for all ξ = (ξ1,ξ2) ∈ R

2, the shearlet ψ satisfies

(i) |ψ̂(ξ )|�C1 ·min(1, |ξ1|α) ·min(1, |ξ1|−γ) ·min(1, |ξ2|−γ), and
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(ii)
∣

∣

∣

∂
∂ξ2

ψ̂(ξ )
∣

∣

∣� |h(ξ1)| ·
(

1+ |ξ2|
|ξ1|
)−γ

,

where α > 5, γ � 4, h ∈ L1(R), and C1 is a constant, and suppose that the shearlet
ψ̃ satisfies (i) and (ii) with the roles of ξ1 and ξ2 reversed. Further, let ν > 0,L ∈Z

+

and Ω ∈ STAR2(ν,L), and suppose that SHΩ (φ ,ψ , ψ̃ ;c) forms a frame for L2(Ω).
Then, the extension of the shearlet frame SHΩ (φ ,ψ , ψ̃ ;c) to [0,1]2 provides (al-

most) optimally sparse approximations of functions f ∈ E 2
ν ,L(Ω) in the sense that

there exists some C > 0 such that

‖ f − fN‖2
2 ≤C ·N−2 · (logN)3 as N → ∞,

where fN is the nonlinear N-term approximation obtained by choosing the N largest
shearlet coefficients of f .

3.2 Architecture of the Proof of Theorem 1

Before delving into the proof in the following section, we present some preparation
as well as describe the architecture of the proof for clarity purposes.

Let now SHΩ (φ ,ψ , ψ̃ ;c) satisfy the hypotheses in Theorem 1, and let f ∈
E 2

ν,L(Ω). We first observe that, without loss of generality, we might assume the
scaling index j to be sufficiently large, since f as well as all frame elements in the
shearlet frame SHΩ (φ ,ψ, ψ̃ ;c) are compactly supported in spatial domain, hence
a finite number does not contribute to the asymptotic estimate we aim for. In par-
ticular, this means that we do not need to take frame elements from Φ(φ ;c) into
account. Also, we are allowed to restrict our analysis to shearlets ψ j,k,m, since the
frame elements ˜ψ j,k,m can be handled in a similar way.

We further observe that we can drive the analysis for the frame SH(φ ,ψ , ψ̃ ;c)
and for the domain [0,1]2 instead, since, by hypothesis, Ω is contained in the interior
of [0,1]2, we treat the boundary of Ω as a singularity curve in [0,1]2, and the frame
properties are equal as shown in Proposition 1. In this viewpoint, the function to be
sparsely approximated vanishes on [0,1]2 \Ω .

Our main concern will now be to derive appropriate estimates for the shearlet co-
efficients {〈 f ,ψλ 〉 : λ ∈Λ} of f . Letting |θ ( f )|n denote the nth largest shearlet coef-
ficient 〈 f ,ψλ 〉 in absolute value and exploring the frame property of SH(φ ,ψ , ψ̃ ;c),
we conclude that

‖ f − fN‖2
2 ≤

1
A ∑

n>N
|θ ( f )|2n,

for any positive integer N, where A denotes the lower frame bound of the shearlet
frame SH(φ ,ψ , ψ̃ ;c). Thus, for the proof of Theorem 1, it suffices to show that

∑
n>N

|θ ( f )|2n ≤C ·N−2 · (logN)3 as N → ∞. (3)
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To derive the anticipated estimate in (3), for any shearlet ψλ , we will study two
separate cases:

• Case 1 (The smooth part): The compact support of the shearlet ψλ does not
intersect the boundary of the set B (or ∂Ω ), i.e., supp(ψλ )∩ (∂ B∪∂Ω) = /0.

• Case 2 (The non-smooth part): The compact support of the shearlet ψλ intersects
the boundary of the set B (or ∂Ω ), i.e., supp(ψλ )∩ (∂B∪∂Ω) �= /0.

Notice that this exact distinction is only possible due to the spatial compact support
of all shearlets in the shearlet frame.

In contrast to Case 1, Case 2 will throughout the proof be further subdivided into
the situations – which we now do not state precisely, but just give the reader the
intuition behind them:

• Case 2a. The support of the shearlet intersects only one C2 curve in ∂ B∪∂Ω .
• Case 2b. The support of the shearlet intersects at least two C2 curves in ∂ B∪∂Ω .

– Case 2b-1. The support of the shearlet intersects ∂B∪∂Ω in a corner point.
– Case 2b-2. The support of the shearlet intersects two C2 curves in ∂B∪ ∂Ω

simultaneously, but does not intersect a corner point.

4 Proof of Theorem 1

In this section, we present the proof of Theorem 1, following the road map outlined
in Sect. 3.2. We wish to mention that Case 1 and Case 2a are similar to the proof
of (almost) optimally sparse approximations of the class E 2(ν) using compactly
supported shearlet frames in [18]. However, Case 2b differs significantly from it,
since it, in particular, requires a careful handling of the corner points of ∂B and ∂Ω .

In the sequel – since we are concerned with an asymptotic estimate – for sim-
plicity we will often simply use C as a constant although it might differ for each
estimate. Also all the results in the sequel are independent on the sampling constant
c > 0, wherefore we now fix it once and for all.

4.1 Case 1: The Smooth Part

We start with Case 1 which deals with the smooth part of the function f . Without
loss of generality, we can consider some g ∈ C2([0,1]2) as a model of the smooth
part of f and estimate its shearlet coefficients. The following proposition, which is
taken from [18], implies the rate for optimal sparsity. Notice that the hypothesis on
ψ of the following result is implied by condition (i) in Theorem 1.

Proposition 2 ([18]). Let g ∈ C2([0,1]2), and let ψ ∈ L2(R2) be compactly sup-
ported and satisfy

|ψ̂(ξ )|�C1 ·min(1, |ξ1|α) ·min(1, |ξ1|−γ) ·min(1, |ξ2|−γ) for all ξ = (ξ1,ξ2)∈R
2,
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where γ > 3, α > γ + 2, and C1 is a constant. Then, there exists some C > 0 such
that

∑
n>N

|θ (g)|2n �C ·N−2 as N → ∞.

This settles Theorem 1 for Case 1.

4.2 Case 2: The Non-Smooth Part

Next, we turn our attention to the non-smooth part, and aim to estimate the shearlet
coefficients 〈 f ,ψλ 〉 associated with those shearlets ψλ whose spatial support in-
tersects the discontinuity curve ∂ B or the boundary of the domain Ω . One of the
main means of the proof will be the partitioning of the unit cube [0,1]2 into dyadic
cubes, picking those which contain such an intersection, and estimating the associ-
ated shearlet coefficients. For this, we first need to introduce the necessary notational
concepts.

For any scale j � 0 and any grid point p ∈Z
2, we let Q j,p denote the dyadic cube

defined by
Q j,p = [−2− j/2,2− j/2]2 +2− j/2p.

Further, let Q j be the collection of those dyadic cubes Qj,p which intersect ∂B∪∂Ω ,
i.e.,

Q j = {Q j,p : Q j,p ∩ (∂B∪∂Ω) �= /0, p ∈ Z
2}.

Of interest to us is also the set of shearlet indices, which are associated with shearlets
intersecting the discontinuity curve inside some Qj,p ∈ Q j; hence, for j � 0 and
p ∈ Z

2 with Qj,p ∈ Q j, we will consider the index set

Λ j,p = {λ ∈ Λ j : supp(ψλ )∩Q j,p∩ (∂B∪∂Ω) �= /0}.

Finally, for j � 0, p ∈ Z
2, and 0 < ε < 1, we define Λ j,p(ε) to be the index set

of shearlets ψλ , λ ∈ Λ j,p, such that the magnitude of the corresponding shearlet
coefficient 〈 f ,ψλ 〉 is larger than ε and the support of ψλ intersects Q j,p at the jth
scale, i.e.,

Λ j,p(ε) = {λ ∈Λ j,p : |〈 f ,ψλ 〉|> ε},
and we define Λ(ε) to be the index set for shearlets so that |〈 f ,ψλ 〉| > ε across all
scales j, i.e.,

Λ(ε) =
⋃

j,p

Λ j,p(ε).

The expert reader will have noticed that in contrast to the proofs in [1] and [11],
which also split the domain into smaller scale boxes, we do not apply a weight
function to obtain a smooth partition of unity. In our case, this is not necessary due
to the spatial compact support of the frame elements. Finally, we set

S j,p =
⋃

λ∈Λ j,p

supp(ψλ ),



200 Gitta Kutyniok and Wang-Q Lim

which is contained in a cubic window of size C · 2− j/2 by C · 2− j/2, hence, is of
asymptotically the same size as Qj,p. As mentioned earlier, we may assume that j
is sufficiently large so that it is sufficient to consider the following two cases:

• Case 2a. There is only one edge curve Γ1 ⊂ ∂ B (or ∂Ω ) which can be parame-
terized by x1 = E(x2) (or x2 = E(x1)) with E ∈C2 inside S j,p. For any λ ∈ Λ j,p,
there exists some x̂ = (x̂1, x̂2) ∈ Q j,p∩ supp(ψλ )∩Γ1.

• Case 2b. There are two edge curves Γ1,Γ2 ⊂ ∂B (or ∂Ω ) which can be pa-
rameterized by x1 = E(x2) (or x2 = E(x1)) with E ∈ C2 inside S j,p. For any
λ ∈ Λ j,p, there exist two distinct points x̂ = (x̂1, x̂2) and ŷ = (ŷ1, ŷ2) such that
x̂ ∈ Q j,p ∩ supp(ψλ )∩Γ1 and ŷ ∈ Q j,p ∩ supp(ψλ )∩Γ2.

In the sequel, we only consider the edge curve ∂B to analyze shearlet coefficients
associated with the non-smooth part, since the boundary of the domain Ω can be
handled in a similar way; see also our elaboration on the fact that WLOG we can
consider the approximation on [0,1]2 rather than Ω in Sect. 3.2.

4.2.1 Case 2a: The Non-Smooth Part

This part was already studied in [18], where an (almost) optimally sparse approx-
imation rate by the class of compactly supported shearlet frames SH(φ ,ψ , ψ̃ ;c)
under consideration was proven, and we refer to [18] for the precise argumentation.
For intuition purposes as well as for later usage, we though state the key estimate,
which implies (almost) optimally sparse approximation for Case 2a:

Proposition 3 ([18]). Let ψ ∈ L2(R2) be compactly supported and satisfy the con-
ditions (i), (ii) in Theorem 1 and assume that, for any λ ∈ Λ j,p, there exists some
x̂ = (x̂1, x̂2) ∈ Qj,p ∩ supp(ψλ )∩∂ B. Let s be the slope1 of the tangent to the edge
curve ∂B at (x̂1, x̂2), i.e.,

• s = E ′(x̂2), if ∂B is parameterized by x1 = E(x2) with E ∈C2 in S j,p,
• s = (E ′(x̂1))

−1, if ∂ B is parameterized by x2 = E(x1) with E ∈C2 in S j,p, and
• s = ∞, if ∂B is parameterized by x2 = E(x1) with E ′(x̂1) = 0 and E ∈C2 in S j,p.

Then, there exists some C > 0 such that

|〈 f ,ψλ 〉| ≤C ·2− 9
4 j, if |s|> 3

2
or |s|= ∞, (4)

and

|〈 f ,ψλ 〉| ≤C · 2−
3
4 j

|k+2 j/2s|3 , if |s| ≤ 3. (5)

Similar estimates with ∂B substituted by ∂Ω hold if, for any λ ∈ Λ j,p, there
exists some x̂ = (x̂1, x̂2) ∈ Q j,p ∩ supp(ψλ )∩∂Ω .

1 Notice that here we regard the slope of the tangent to a curve (E(x2),x2), i.e., we consider s of
a curve x1 = sx2 + b, say. For analyzing shearlets ψ̃ j,k,m, the roles of x1 and x2 would need to be
reversed.
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4.2.2 Case 2b: The Non-Smooth Part

Letting ε > 0, our goal will now be to first estimate |Λ j,p(ε)| and, based on this,
derive an estimate for |Λ(ε)|. WLOG we might assume ‖ψ‖1 � 1, which implies

|〈 f ,ψλ 〉|� 2−
3
4 j.

Hence, for estimating |Λ j,p(ε)|, it is sufficient to restrict our attention to scales
j � 4

3 log2(ε−1).
As already announced before, we now split Case 2b into the following two sub-

cases:

• Case 2b-1. The shearlet ψλ intersects a corner point, in which two C2 curves Γ1

and Γ2, say, meet (see Fig. 3a).
• Case 2b-2. The shearlet ψλ intersects two edge curves Γ1 and Γ2, say, simultane-

ously, but it does not intersect a corner point (see Fig. 3b).

B1

B0

T2

T1

Γ2

Γ1

B1

B0

T2

T1

Γ2

Γ1

a b

Fig. 3: (a) A shearlet ψλ intersecting a corner point where two edge curves Γ1 and
Γ2 meet. T1 and T2 are tangents to the edge curves Γ1 and Γ2 in this corner point.
(b) A shearlet ψλ intersecting two edge curves Γ1 and Γ2 which are a part of the
boundary of sets B0 and B1. T1 and T2 are tangents to the edge curves Γ1 and Γ2 in
points contained in the support of ψλ

Case 2b-1. We first consider Case 2b-1. In this case, by a counting argument, it
follows that

|Λ j,p(ε)| ≤C ·2 j/2.

Since there are only finitely many corner points with its number not depending on
scale j � 0, we have

|Λ (ε)| ≤C ·
4
3 log2 (ε−1)

∑
j=0

2 j/2 ≤C · ε− 2
3 .
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The value ε > 0 can be written as a function of the total number N of coefficients,
which yields ε(N)≤C ·N− 3

2 . This implies that

∑
n>N

|θ( f )|2n ≤C ·N−2,

and the optimal sparse approximation rate is proven for Case 2b-1.
Case 2b-2. Next, we consider Case 2b-2. In this case, WLOG, we might assume

that, for any λ ∈ Λ j,p, there exist two distinct points x̂ = (x̂1, x̂2), ŷ = (ŷ1, ŷ2) such
that x̂ ∈ Qj,p∩ supp(ψλ )∩Γ1 and ŷ ∈ Q j,p∩ supp(ψλ )∩Γ2, and the two edge curves
Γ1 and Γ2 are parameterized by x1 = E(x2) (or x2 = E(x1)) with E ∈C2 inside S j,p.
We can then write the function f ∈ E 2

ν ,L(Ω) as

f0χB0 + f1χB1 = ( f0 − f1)χB0 + f1 on S j,p,

where f0, f1 ∈ C2([0,1]2) and B0,B1 are two disjoint subsets of [0,1]2 (see Fig. 3).
By Proposition 2, the rate for optimal sparse approximation is achieved for the
smooth part f1. Thus, it is sufficient to consider f = g0χB0 with g0 = f0 − f1 ∈
C2([0,1]2).

Assume now that the tangents to the edge curves Γ1 and Γ2 at the points x̂ and ŷ
are given by the equations

T1 : x1 − x̂1 = s1(x2 − x̂2) and T2 : x1 − ŷ1 = s2(x2 − ŷ2),

respectively, i.e., s1 and s2 are the slopes of the tangents to the edge curves Γ1 and
Γ2 at x̂ and ŷ, respectively. If the curve Γi, i = 1,2, is parameterized by x2 = E(x1)
with E ′(x̂1) = 0, we let si = ∞ and the tangent is given by x2 = x̂2 (or x2 = ŷ2) in
this case.

Next, for fixed scale j and shear index k, let N1
j,k(Qj,p) denote the number of

shearlets ψλ intersecting Γ1 in Q j,p, i.e.,

N1
j,k(Qj,p) = |{λ = ( j,k,m) : Qj,p ∩ supp(ψλ )∩Γ1 �= /0}|,

let N2
j,k(Q j,p) denote the number of shearlets ψλ intersecting Γ2 in Q j,p, i.e.,

N2
j,k(Qj,p) = |{λ = ( j,k,m) : Qj,p ∩ supp(ψλ )∩Γ2 �= /0}|,

and let Nj,k(Qj,p) denote the number of shearlets ψλ intersecting Γ1 and Γ2 in
Qj,p, i.e.,

Nj,k(Q j,p)= |{λ =( j,k,m) : Qj,p∩supp(ψλ )∩Γ1 �= /0 and Qj,p∩supp(ψλ )∩Γ2 �= /0}|.

Then,

Nj,k(Qj,p)≤ min(N1
j,k(Qj,p),N

2
j,k(Qj,p)). (6)

By a counting argument, there exists some C > 0 such that

Ni
j,k(Qj,p)≤C ·2 j/2 for i = 1,2, (7)



Shearlets on Bounded Domains 203

and the form of supp(ψλ ) implies

Ni
j,k(Qj,p)≤C · (|2 j/2si + k|+1) for i = 1,2. (8)

We now subdivide into three subcases, namely, |s1|, |s2| ≤ 2, and |s1| ≤ 2, |s2|> 2
(or vice versa), and |s1|, |s2|> 2, and show in each case the (almost) optimal sparse
approximation rate claimed in Theorem 1. This then finishes the proof.

Subcase |s1|, |s2| ≤ 2. In this case, (6) and (8) yield

Nj,k(Qj,p)≤C ·min(|2 j/2s1 + k|+1, |2 j/2s2 + k|+1).

We first show independence on the values of s1 and s2 within the interval [−2,2].
For this, let s and s′ be the slopes of the tangents to the edge curve Γ1 (or Γ2) at
t ∈ Q j,p ∩ supp(ψλ ) and t ′ ∈ Q j,p ∩ supp(ψλ ′), respectively, with s ∈ [−2,2]. Since
Γ1 (or Γ2) is C2, we have |s− s′| ≤C ·2− j/2, and hence

|2 j/2s′+ k| ≤C · (|2 j/2s+ k|+1).

This implies that the estimate for Nj,k(Qj,p) asymptotically remains the same, in-
dependent of the values of s1 and s2. Further, we may assume s′ ∈ [−3,3] for
s ∈ [−2,2], since a scaling index j can be chosen such that |s− s′| is sufficiently
small. Therefore, one can apply inequality (5) from Proposition 3 for both points t
and t ′. In fact, it can be easily checked that one can use (5) with the slope s instead
of s′ for the point t ′ (or vice versa); this replacement will not change the asymptotic
estimates which we will derive. Thus, we might from now on use universal values
for the slopes s1 and s2 at each point in Qj,p.

Now using (5) from Proposition 3, we have

|〈 f ,ψ j,k,m〉| ≤C ·max
( 2−

3
4 j

|2 j/2s1 + k|3 ,
2−

3
4 j

|2 j/2s2 + k|3
)

. (9)

Since 2−
3
4 j

|2 j/2si+k|3 > ε implies

|2 j/2si + k|< ε−
1
3 2−

1
4 j for i = 1,2,

the estimate (9) yields

|Λ j,p(ε)| ≤ C · ∑
k∈K1

j (ε)∪K2
j (ε)

min(|2 j/2s1 + k|+1, |2 j/2s2 + k|+1)

≤ C ·
2

∑
i=1

∑
k∈Ki

j(ε)
(|2 j/2si + k|+1)

≤ C · (ε− 1
3 2−

1
4 j +1)2, (10)
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where

Ki
j(ε) = {k ∈ Z : |2 j/2si + k|<C · ε− 1

3 2−
1
4 j} for i = 1,2.

By the hypothesis for Case 2b-2, we have |Qj| � C, where the constant C is inde-
pendent of scale j � 0. Therefore, continuing (10),

|Λ(ε)| ≤C ·
4
3 log2(ε−1)

∑
j=0

|Λ j,p(ε)| ≤C · ε− 2
3 .

This allows us to write ε > 0 as a function of the total number of coefficients N,
which gives

ε(N) ≤C ·N− 3
2 .

Thus,

∑
n>N

|θ( f )|2n ≤C ·N−2, (11)

which is the rate we sought.
Subcase |s1| ≤ 2 and |s2|> 2 or vice versa. In this case, (6)–(8) yield

Nj,k(Qj,p)≤C ·min(|2 j/2s1 + k|+1,2 j/2).

Again utilizing the fact that the edge curves are C2, and using similar arguments as
in the first subcase, WLOG we can conclude that the slopes s1,s2 at each point in
Qj,p are greater than 3

2 .
Now, exploiting inequalities (4) and (5) from Proposition 3, we have

|〈 f ,ψ j,k,m〉| ≤C ·max
( 2−

3
4 j

|2 j/2s1 + k|3 ,2
− 9

4 j
)

. (12)

Since 2−
3
4 j

|2 j/2s1+k|3 > ε implies

|2 j/2s1 + k|< ε−
1
3 2−

1
4 j,

and 2−
9
4 j > ε implies

j ≤ 4
9

log2(ε
−1),

it follows from (12), that

|Λ(ε)| ≤ C ·
(

4
3 log2(ε−1)

∑
j=0

∑
k∈K1

j (ε)
(|2 j/2s1 + k|+1)+

4
9 log2(ε−1)

∑
j=0

2 j/2
)

≤ C ·
(

4
3 log2(ε−1)

∑
j=0

(ε−
1
3 2− j/4 +1)2 +

4
9 log2(ε−1)

∑
j=0

2 j/2
)

≤ C · ε− 2
3 .



Shearlets on Bounded Domains 205

The value ε > 0 can now be written as a function of the total number of coefficients
N, which gives

ε(N) ≤C ·N− 3
2 .

Thus, we derive again the sought rate

∑
n>N

|θ( f )|2n ≤C ·N−2.

Subcase |s1|> 2 and |s2|> 2. In this case, (6) and (7) yield

Nj,k(Q j,p)≤C ·2 j/2.

Following similar arguments as before, we again derive the seeked rate (11).

5 Discussion

A variety of applications are concerned with efficient encoding of 2D functions
defined on non-rectangular domains exhibiting curvilinear discontinuities, such as,
e.g., a typical solution of a transport dominated partial differential equation. As an
answer to this problem, our main result, Theorem 1, shows that compactly supported
shearlets satisfying some weak decay and smoothness conditions, when orthogo-
nally projected onto a given domain bounded by a piecewise C2 curve, provide
(almost) optimally sparse approximations of functions which are C2 apart from a
piecewise C2 discontinuity curve. In this model the boundary curve is treated as a
discontinuity curve.

Analyzing the proof of Theorem 1, it becomes evident that the presented optimal
sparse approximation result for functions in E 2

ν ,L(Ω) generalizes to an even more
encompassing model, which does contain multiple piecewise C2 possibly intersect-
ing discontinuity curves separating C2 regions in the bounded domain Ω .

In some applications, it is though of importance to avoid discontinuities at the
boundary of the domain. Tackling this question requires further studies to carefully
design shearlets near the boundary, and this will be one of our objective for the
future.
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On Christoffel Functions and Related Quantities
for Compactly Supported Measures

D. S. Lubinsky

Abstract Let μ be a compactly supported positive measure on the real line, with
associated orthogonal polynomials {pn}. Without any global restrictions such as
regularity, we discuss convergence in measure for

1. Ratio asymptotics for Christoffel functions
2. The Nevai operators (aka the Nevai condition)
3. Universality limits in the bulk

We also establish convergence a.e. for sufficiently sparse subsequences of Christoffel
function ratios.

1 Introduction

Let μ be a positive measure on the real line, with compact support supp[μ ], and
infinitely many points in its support. Then we may define orthonormal polynomials

pn (x) = γnxn + · · · , γn > 0,

satisfying
∫

pn pmdμ = δmn.

The measure μ is said to be regular in the sense of Stahl, Totik, and Ullmann [29] if

lim
n→∞

γ1/n
n =

1
cap(supp [μ ])

, (1)
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where cap(supp [μ ]) is the logarithmic capacity of the support of μ . In particular, if
the support is an interval [a,b], the requirement is that

lim
n→∞

γ1/n
n =

4
b−a

.

For definitions of logarithmic capacity, and the associated potential theory, see [22,
23, 29].

At first this particular definition seems technical and obscure – to the extent that
one might doubt the utility of the concept. There are numerous equivalent definitions
of regularity, but (1) is used because it is relatively direct. An important monograph
by Stahl and Totik [29] comprehensively explores regular measures and the asymp-
totics in of their orthogonal polynomials. More recent analysis appears in [24].

Regularity of a measure is a very weak global requirement. Thus, the Erdős–
Turán criterion asserts that if μ ′ > 0 a.e. in supp[μ ], then μ is regular. But far less
guarantees regularity, and there are pure jump, and pure singularly continuous mea-
sures, that are regular.

Here is a very useful equivalent formulation of regularity: μ is regular, iff for
every sequence of polynomials {Pn}, where deg(Pn)≤ n, we have

limsup
n→∞

[

|Pn (x)|/
(

∫

|Pn|2 dμ
)1/2

]1/n

≤ 1, (2)

for quasi every x ∈ supp [μ ]. Here quasi-every means except on a set of capacity
0. When C\supp [dμ ] is regular for the Dirichlet problem, one can replace |Pn (x)|
by ‖Pn‖L∞(supp[dμ]). Thus, in an nth root sense, the sup norms of polynomials are
comparable to their L2 (dμ) norms. Regularity of μ also permits asymptotics for
pn (z)

1/n outside supp[μ ], and on supp[μ ]. In particular, regularity is equivalent to

limsup
n→∞

|pn (x)|1/n = 1 for quasi every x ∈ supp [μ ] .

Perhaps most surprising of all, is the appearance of this concept in so many or-
thogonal polynomial asymptotics that have nothing to do with nth root asymptotics.
The reason for this often is that regularity of μ permits localization, allowing one to
show that one can dispense with the behavior of polynomials outside a given neigh-
borhood of a point (in an appropriate sense and setting of course). This is achieved
by using polynomials that decay geometrically away from a given points, together
with some version of (2).

This is particularly the case in studying asymptotics of Christoffel functions

λn (dμ ,x) = inf
deg(P)≤n−1

∫

P2dμ
P2 (x)

,

where the inf is taken over all polynomials P of degree ≤ n−1. As is well known,

λn (dμ ,x) = 1/
n−1

∑
j=0

p2
j (x) = 1/Kn (x,x) ,
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where

Kn (x, t) =
n−1

∑
j=0

p j (x) p j (t)

is the nth reproducing kernel.
Vili Totik [31], [32] established the following result, which is the single most

important asymptotic for Christoffel functions.

Theorem 1. Let μ be a measure with compact support E. Assume that μ is regular
in the sense of Stahl, Totik, and Ullmann. If I is an interval in the support for which

∫

I
logμ ′ >−∞, (3)

then for a.e. x ∈ I,

lim
n→∞

nλn (dμ ,x) =
μ ′ (x)
ν ′

E (x)
. (4)

Here ν ′
E (x) is the density of the equilibrium measure νE for E . Recall that if

E is a compact set in the plane, with positive logarithmic capacity, it has an equi-
librium measure νE . This is a probability measure with support in E such that the
equilibrium potential

V νE (z) =
∫

log
1

|t − z|dνE (t)

satisfies

V ν (z) =− log cap(E)

quasi-everywhere on E . Moreover, this equation holds precisely at every point of E
that is regular for the Dirichlet problem for C\E – the so-called regular points. For
further orientation, see [22, 23, 29].

In the special case E = [−1,1], ν ′
E (x) =

1

π
√

1−x2
, and Theorem 1 was established

earlier by Maté, Nevai, and Totik [18]. Totik used regularity in localization, which
permitted replacing difficult measures μ by locally “nicer” ones. Totik observes in
[31] that some sort of global condition like regularity is necessary. He notes that,
given any compact set E , properly containing an interval I, one can construct a non-
regular measure that satisfies the local Szegő condition (3), but for which (4) fails
at every point of I. However, this still leaves open the question as to what global
condition is necessary, and whether the Szegő condition (3) is necessary.

Recently, Barry Simon [27] proved that if μ is regular, with compact support E ,
and μ ′ > 0 a.e. on an interval I, then

lim
n→∞

∫

I

∣

∣

∣

∣

ν ′
E − μ ′

nλn

∣

∣

∣

∣

= 0.

An essentially weaker result than asymptotics for Christoffel functions are ratio
asymptotics, for example, involving two closely related measures. This study goes
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back to a celebrated memoir of Nevai [20]. Typically, one might consider a
non-negative function g that is integrable with respect to dμ , and try show that

lim
n→∞

λn (g dμ ,x)
λn (dμ ,x)

= g(x) , (5)

in some sense. Note that this type of limit offers the hope of great generality, as its
formulation does not involve equilibrium measures, or properties of the support. In
particular, when μ is regular, and g±1 are bounded on supp[μ ], while g is continuous
at x, then methods pioneered by P. Nevai allow one to establish (5). This subject was
further explored by Mate, Nevai, and Totik for orthogonal polynomials on the unit
circle [17], and by Lopez [11] for measures on the whole real line.

A recent result of the author [15] shows that, at least for ratio asymptotics of
Christoffel functions, it is possible to move beyond the class of regular measures. In
fact, (5) holds in measure for arbitrary compactly supported measures:

Theorem 2. Let μ be a compactly supported measure on the real line with infinitely
many points in its support. Let g : R→ (0,∞) be a dμ measurable function such that
g±1 are bounded on supp[μ ]. Let ε > 0. Then, as n → ∞,

meas

{

x ∈ {

μ ′ > 0
}

:

∣

∣

∣

∣

λn (g dμ ,x)
λn (dμ ,x)

−g(x)

∣

∣

∣

∣

> ε
}

→ 0. (6)

Moreover, for every p > 0,

lim
n→∞

∫

{μ ′>0}

∣

∣

∣

∣

λn (g dμ ,x)
λn (dμ ,x)

−g(x)

∣

∣

∣

∣

p

dx = 0. (7)

Here, of course, {μ ′ > 0} = {x : μ ′ (x)> 0} and meas denotes linear Lebesgue
measure. The essential feature of this result is the absence of local and global re-
strictions on μ .

One important application of Totik’s Theorem 1 is to universality limits for ran-
dom matrices in the bulk of the spectrum. This much studied limit takes the form

lim
n→∞

K̃n

(

ξ + a
K̃n(ξ ,ξ )

,ξ + b
K̃n(ξ ,ξ )

)

K̃n (ξ ,ξ )
=

sin π (a−b)
π (a−b)

, (8)

uniformly for a,b in compact subsets of the real line. Here, ξ lies in the interior of
supp[μ ], and

K̃n (s, t) = μ ′ (s)1/2 μ ′ (t)1/2 Kn (s, t)

is a normalized form of the reproducing kernel. Quite often, we remove the nor-
malization from the outer Kn, so that (8) takes the form

lim
n→∞

Kn

(

ξ + a
K̃n(ξ ,ξ )

,ξ + b
K̃n(ξ ,ξ )

)

Kn (ξ ,ξ )
=

sin π (a−b)
π (a−b)

, (9)

with a,b now lying in compact subsets of the complex plane.
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The limits (8) and (9) arise in describing the correlation of spacings of eigenvalues
of n×n Hermitian matrices with random entries. A probability distribution is placed
on the space of such matrices, with a probability density that is related to the mea-
sure μ above. There are many settings for universality limits. In the most impor-
tant cases, the fixed measure μ is replaced by measures that change with n. See
[2, 3, 5–7, 9, 10, 19, 26, 28, 30] for further orientation.

One of the biggest challenges is to determine the minimal conditions on μ that
permit the universality limit (8). This has been intensively investigated in recent
years, with important advances in [1, 8, 12–14, 25, 32]. To date, the most general
result for fixed measures is due to Totik, and uses Theorem 1 above, as well as its
method of proof:

Theorem 3. Let μ be a measure with compact support. Assume that μ is regular. If
I is an interval in the support for which

∫

I
log μ ′ >−∞,

then for a.e. ξ ∈ I, (8) holds uniformly for a,b in compact subsets of the real line.

Totik established this theorem using asymptotics for Christoffel functions, an
inequality of the author, and the method of polynomial pullbacks. That allows one
to pass from supp[μ ] consisting of a single interval to several intervals, and then to
general compact sets. Simon proved related results using Jost functions [25].

The drawback of this theorem is the global assumption of regularity, even though
this is a weak global assumption. The author [12] came up with an alternative
method to establish (9) that avoids the assumption of regularity. Its basic hypoth-
esis is that (9) holds for b = a, that is,

lim
n→∞

Kn

(

ξ + a
K̃n(ξ ,ξ )

,ξ + a
K̃n(ξ ,ξ )

)

Kn (ξ ,ξ )
= 1, (10)

for all real a, together with some local hypothesis, such as μ ′ bounded above and
below in some interval. Note that (10) can be reformulated as a ratio asymptotic for
Christoffel functions,

lim
n→∞

λn (dμ ,ξ )

λn

(

dμ ,ξ + a
K̃n(ξ ,ξ )

) = 1. (11)

This ought to be easier to establish than (8), because λn (dμ ,x) (or Kn (x,x) along
the “diagonal”) admits an extremal property. Unfortunately, there do not seem to be
any techniques that establish (11) without first establishing the much stronger limit
(4) in Totik’s Theorem 1.

Recently, the author [16] has established that for arbitrary measures with compact
support, universality holds in measure:
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Theorem 4. Let μ be a measure with compact support and with infinitely many
points in the support. Let ε > 0 and r > 0. Then as n → ∞,

meas

{

ξ ∈ {

μ ′ > 0
}

:

sup
|u|,|v|≤r

∣

∣

∣

∣

∣

∣

Kn

(

ξ + u
K̃n(ξ ,ξ )

,ξ + u
K̃n(ξ ,ξ )

)

Kn (ξ ,ξ )
− sinπ (u− v)

π (u− v)

∣

∣

∣

∣

∣

∣

≥ ε

}

→ 0 as n → ∞. (12)

Using the standard equivalence between convergence in measure, and subse-
quences that converge a.e., one deduces:

Corollary 1. Assume the hypotheses of Theorem 4. Let S be an infinite sequence
of positive integers. Then there is a subsequence S ′ of S such that for a.e. ξ ∈
{μ ′ > 0},

lim
n→∞,n∈S ′

Kn

(

ξ + a
K̃n(ξ ,ξ )

,ξ + b
K̃n(ξ ,ξ )

)

Kn (ξ ,ξ )
=

sinπ (a−b)
π (a−b)

, (13)

uniformly for a,b in compact subsets of the plane.

The proof of Theorem 4 is complicated. It depends on a uniqueness theorem for
the sinc kernel, on maximal functions, and Hilbert transforms, and the theory of
entire functions of exponential type.

It is no coincidence that convergence in measure is the conclusion in Theorems 2
and 4. Both depend heavily on upper bounds for the reproducing kernel Kn that are
true outside sets of small measure. The latter depend on bounds on Green’s functions
associated with C\E , where E is an arbitrary compact subset of the real line.

Another key tool in both Theorems 2 and 4 is an estimate for the tail integral

Ψn (x,r) =

∫

|t−x|≥ r
K̃n(x,x)

Kn (x, t)
2 dμ (t)

Kn (x,x)
, r > 0. (14)

Here, if μ ′ (x) = 0, or does not exist, we set Ψn (x,r) = 0. Also, let

An (x) = p2
n−1 (x)+ p2

n (x) (15)

and define the maximal function

M [dν] (x) = sup
h>0

1
2h

∫ x+h

x−h
dν

for positive measures ν on the real line. In [15], we showed that for a.e. x ∈ supp [μ ],

Ψn (x,r)≤ 8
r

(

γn−1

γn
M [Andμ ](x)

)2

.
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Using the classical weak (1,1) estimate for maximal functions readily yields, for
r,ε > 0,

meas{x ∈ supp [μ ] : Ψn (x,r)≥ ε} ≤ γn−1

γn

17√
rε

. (16)

This estimate has some applications to what Barry Simon calls the Nevai condi-
tion. One way to formulate this involves the Nevai operators {Gn}. Given a function
f that is integrable with respect to dμ , we define

Gn [dμ , f ] (x) =

∫

K2
n (x, t) f (t)dμ (t)

Kn (x,x)
.

The Nevai condition at x is that

lim
n→∞

Gn [dμ , f ] (x) = f (x) (17)

for every continuous f . Paul Nevai [20] introduced the operators {Gn} as a means
to establishing the ratio asymptotic (5) for Christoffel functions.

A very interesting recent result of Breuer, Last, and Simon [4], relates the Nevai
condition to sub-exponential growth of orthogonal polynomials:

Theorem 5. Assume that

0 < inf
n

γn−1

γn
≤ sup

n

γn−1

γn
< ∞. (18)

Then (17) holds at x for every continuous compactly supportly function f iff

lim
n→∞

p2
n (x)

∑n
j=0 p2

j (x)
= 0. (19)

An equivalent formulation of (19) is that

lim
n→∞

λn−1 (dμ ,x)
λn (dμ ,x)

= 1.

Sub-exponential growth of orthogonal polynomials has been studied intensively
over the years [20, 21]. It was Nevai and his collaborators who showed that when
the measure μ has [−1,1] as its essential support, and its recurrence coefficients
have appropriate limits, then (19) is true throughout [−1,1]. In particular, this is
true when μ ′ > 0 a.e. in [−1,1]. More recently, Breuer, Last, and Simon [4] con-
structed an example of a regular measure with support [−2,2] such that (19) fails at
every point of (for example) [1,2]. Nevertheless, they formulated the following:

Conjecture 1. Let μ have compact support. The Nevai condition (19) holds for dμ
a.e. x ∈ supp [dμ ].

Here, we shall prove the following simple:
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Theorem 6. Let μ be compactly supported with infinitely many points in its support.
Let {nk}∞

k=1 be an increasing sequence of positive integers with

∞

∑
k=1

1
nk

< ∞. (20)

(a) Then for Lebesgue a.e. x ∈ {μ ′ > 0},

lim
k→∞

Ank (x)/Knk (x,x) = 0. (21)

(b) Let f : R → R be continuous and of compact support. Then for Lebesgue a.e.
x ∈ {μ ′ > 0},

lim
k→∞

Gnk [ f ] (x) = f (x) . (22)

(c) Let g : R→R be continuous, of compact support, and positive on supp [μ ]. Then
for Lebesgue a.e. x ∈ {μ ′ > 0},

lim
k→∞

λnk (g dμ ,x)
λnk (dμ ,x)

= g(x) . (23)

Recall that An was defined at (15). Since a sequence of functions converges in
measure iff every subsequence contains another subsequence that converges a.e.,
Theorem 6(c) has the following consequence: as n → ∞, λn(gdμ,·)

λn(dμ,·) → g in measure

in {μ ′ > 0}. This provides an alternative, and simpler, proof of the special case of
Theorem 2 in which g is continuous.

We shall discuss the application of (16) to estimates of An (x)/Kn (x,x), and prove
Theorem 6 in the next section.

2 Proof of Theorem 6

We may assume that supp[μ ] is contained in [−1,1]. Maté, Nevai, and Totik [18]
proved, without any further restrictions on μ , that

limsup
n→∞

nλn (dμ ,x)≤ μ ′ (x)/ν[−1,1] (x)

= π
√

1− x2μ ′ (x)

for a.e. x ∈ supp [μ ]. It follows that if we let

S j =
{

μ ′ > 0
}∩{

x : nλn (dμ ,x)≤ 4μ ′ (x) for all n ≥ j
}

,

then

G = supp [μ ]\
∞
⋃

j=1

S j has meas(G ) = 0. (24)
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Note that

x ∈ S j ⇒ n

K̃n (x,x)
≤ 4 for all n ≥ j. (25)

We recall that Ψn (x,r) was defined by (14). We also let

Ωn (x,r) =

∫

|t−x|≥r K2
n (x, t)dμ (t)

Kn (x,x)
, (26)

and d denotes the diameter of supp[μ ].
Our first estimate is a consequence of (16):

Lemma 1. Let n ≥ j ≥ 1, and ε,r > 0.

(a)

meas(S j ∩{x : Ωn (x,r)≥ ε})≤ γn−1

γn

34√
nrε

. (27)

(b)

meas

(

S j ∩
{

x :
An (x)

Kn (x,x)
≥ ε

})

≤
(

γn−1

γn

)−1/2 60d√
nε3/4

. (28)

Proof. (a) For x ∈ S j and n ≥ j, we have by (25),

Ωn (x,r)≤
∫

|t−x|≥r n
4K̃n(x,x)

K2
n (x, t)dμ (t)

Kn (x,x)
=Ψn

(

x,
nr
4

)

.

Thus,

meas(S j ∩{x : Ωn (x,r)≥ ε})≤ meas
(

S j ∩
{

x : Ψn

(

x,
nr
4

)

≥ ε
})

≤ γn−1

γn

17(2)√
nrε

,

by (16).
(b) We use an idea of Breuer, Last, and Simon [4]: from the Christoffel–Darboux
formula, and orthogonality,

∫

(t − x)2 K2
n (x, t)dμ (t) =

(

γn−1

γn

)2

An (x) . (29)

Then, given η > 0, we see that

(

γn−1

γn

)2 An (x)

Kn (x,x)
≤ η2

∫

|t−x|≤η K2
n (x, t)dμ (t)

Kn (x,x)
+d2

∫

|t−x|>η K2
n (x, t)dμ (t)

Kn (x,x)

≤ η2 +d2Ωn (x,η) .
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Then,
(

γn−1

γn

)2 An (x)
Kn (x,x)

≥ 2η2 ⇒ d2Ωn (x,η)≥ η2

so

meas

(

S j ∩
{

x :
An (x)

Kn (x,x)
≥
(

γn−1

γn

)−2

2η2

})

≤ meas

(

S j ∩
{

x : Ωn (x,η)≥ η2

d2

})

≤ γn−1

γn

34d√
nη3/2

,

by (a). Now make the substitution

ε =

(

γn−1

γn

)−2

2η2

to obtain (28).

We can obtain an alternative estimate, by more elementary means. It has a larger,
better power of n in the denominator, but also a worse power of ε:

Lemma 2. Let n ≥ j ≥ 1, and ε,r > 0. We have
(a)

meas

(

S j ∩
{

x :
An (x)

Kn (x,x)
≥ ε

})

≤ 8
nε

. (30)

(b)

meas(S j ∩{x : Ωn (x,r) ≥ ε})≤ 8
nε

(

1
r

γn−1

γn

)2

. (31)

Proof. (a) For x ∈ S j, (25) shows that

An (x)
Kn (x,x)

=
An (x)μ ′ (x)

n
n

K̃n (x,x)
≤ 4An (x)μ ′ (x)

n
,

so,

meas

(

S j ∩
{

x :
An (x)

Kn (x,x)
≥ ε

})

≤ meas
(

S j ∩
{

x : An (x)μ ′ (x)≥ nε
4

})

≤ 4
nε

∫

An (x)μ ′ (x)dx ≤ 8
nε

.

(b) From (29),

∫

|t−x|≥r
K2

n (x, t)dμ (t)≤
∫

(

t − x
r

)2

K2
n (x, t)dμ (t) =

(

γn−1

rγn

)2

An (x) ,
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so

Ωn (x,r)≤
(

γn−1

rγn

)2 An (x)
Kn (x,x)

.

Thus,

meas(S j ∩{x : Ωn (x,r)≥ ε})≤ meas

(

S j ∩
{

x :
An (x)

Kn (x,x)
≥ ε

(

γn−1

rγn

)−2
})

≤ 8
nε

(

γn−1

rγn

)2

.

We turn to the

Proof of Theorem 6. (a) Fix j ≥ 1, ε > 0, and let

En ( j,ε) = S j ∩
{

x :
An (x)

Kn (x,x)
≥ ε

}

.

For n ≥ j, Lemma 2(a) gives

meas(En ( j,ε))≤ 8
nε

.

Let

E ( j,ε) = limsup
k→∞

Enk ( j,ε) =
∞
⋂

�=1

∞
⋃

k=�

Enk ( j,ε) .

Because of (20), E ( j,ε) has linear Lebesgue measure 0. For x ∈ {μ ′ > 0}\
(E ( j,ε)∪G ), we have for large enough k,

Ank (x)

Knk (x,x)
< ε.

Recall that G was defined at (24). Then, if

E = G∪
⋃

j,�≥1

E

(

j,
1
�

)

,

we see that E has linear Lebesgue measure 0, and for x ∈ {μ ′ > 0}\E ,

lim
k→∞

Ank (x)

Knk (x,x)
= 0.

(b) Let

Fn ( j,r,ε) = S j ∩{x : Ωn (x,r) ≥ ε} ,
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so that by Lemma 2(b),

meas(Fn ( j,r,ε))≤ 8
nε

(

γn−1

rγn

)2

≤ 8
nε

(

d
r

)2

.

Recall that d is the diameter of supp[μ ]. Let

F ( j,r,ε) = limsup
k→∞

Fnk ( j,r,ε) ,

so that F ( j,r,ε) has Lebesgue measure 0, by (20) again. For
x ∈ {μ ′ > 0}\(G ∪F ( j,r,ε)), we have

Ωnk (x,r)≤ ε for k large enough.

Finally, let

F = G∪
⋃

j,�,m≥1

F

(

j,
1
�
,

1
m

)

.

Then F has Lebesgue measure 0, and for x∈ {μ ′ > 0}\F , we have, for each r > 0,

lim
k→∞

Ωnk (x,r) = 0.

Now let f be continuous and of compact support. We see that

|Gn [dμ , f ] (x)− f (x)| ≤ 1
Kn (x,x)

∫

|t−x|≤r
| f (t)− f (x)|K2

n (x, t)dμ (t)

+2‖ f‖L∞(R) Ωn (x,r)

≤ sup
|t−x|≤r

| f (t)− f (x)|+2‖ f‖L∞(R) Ωn (x,r) .

It follows that for x ∈ {μ ′ > 0}\F ,

limsup
k→∞

∣

∣Gnk [dμ , f ] (x)− f (x)
∣

∣≤ sup
|t−x|≤r

| f (t)− f (x)| .

As r > 0 is arbitrary, continuity of f gives (22).
(c) We use the elementary inequality [20, p. 76]

λn (g dμ ,x)
λn (dμ ,x)

≤ Gn [dμ ,g](x) .

Together with (b), this gives, for a.e. x ∈ {μ ′ > 0},

limsup
k→∞

λnk (g dμ ,x)
λnk (dμ ,x)

≤ g(x) .
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Replacing dμ by g dμ , and g by g−1, gives for a.e. x ∈ {μ ′ > 0} (recall that g is
bounded below on the compact set supp [μ ]),

limsup
k→∞

λnk (dμ ,x)
λnk (g dμ ,x)

≤ g−1 (x) .

Then, (23) follows. �
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Constr. Approx., 3(1987), 51–72.



220 D. S. Lubinsky
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Exact Solutions of Some Extremal Problems
of Approximation Theory

A.L. Lukashov

Dedicated to the memory of Franz Peherstorfer

Abstract F. Peherstorfer and R. Steinbauer introduced the complex T -polynomials.
Recently, their rational analogues appear as Chebyshev – Markov rational func-
tions on arcs with zeros on these arcs. Explicit representation and detailed proof
for the particular case of one arc is given here. Author’s reminiscences about Franz
Peherstorfer are included.

1 Introduction

In this paper we would like to discuss complex T -polynomials which were intro-
duced in paper [13] written by Franz Peherstorfer and his student Robert Steinbauer.
These polynomials (and their generalizations) turned out to be very useful in other
questions (Bernstein type inequalities, orthogonal polynomials on the unit circle
with (quasi)periodic Verblunsky coefficients, compare [4, 5], [14, Chap. 11]).

Recently, they appeared in [8, 15] as Chebyshev polynomials on arcs with zeros
on those arcs. It turned out that the case of one arc [13, Example 3.1 (a),(b)] has
different applications [1, 10] and was considered there independently of [13, 15]. In
that case the solution is closely connected with trigonometric polynomials which
were introduced by Videnskii [16] as extremal polynomials for estimating deriva-
tives of trigonometric polynomials on an interval shorter than the period. Rational
analogues of the complex T -polynomials appeared firstly for the case of one arc
(implicitly, trigonometric counterparts in different form) in [17], for two arcs in
[7, Corollary 4](they were represented by elliptic functions) and in [4, Theorem 2]
for the case of several arcs (with representations in terms of harmonic measures or
in automorphic functions). They appear also (in the case of several arcs) in [9] as

A.L. Lukashov
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Chebyshev – Markov rational functions on arcs with zeros on those arcs. The case
of one arc was not considered explicitely in [9] (in addition the paper is available in
Russian only), so it seems useful to give detailed proof in that situation.

We consider the functions

RN(z) =
PN(z)
√

D(z)
, PN(z) =

N

∏
j=1

(z− z j), z j ∈ ΓE , j = 1,N, (1)

on the set ΓE = {z ∈ C : z = eiϕ ,ϕ ∈ E }, where E = [α1,α2]∪ ·· · ∪ [α2l−1,α2l ],
0 � α1 < α2 < · · ·< α2l < 2π , and D(z) is a polynomial of degree 2a, z−aD(z)> 0
for z ∈ ΓE ; The branch of square root is chosen by

√

z−aD(z) > 0 for z ∈ ΓE . The
class of such functions will be denoted by RD

N (E ).

Let T
(A,B,A )

N be the class of rational trigonometric functions of the form

rN(ϕ) =
Acos N

2 ϕ +Bsin N
2 ϕ +a1 cos

(

N
2 −1

)

ϕ + . . .+b[N
2 ]

sin
(

N
2 − [N

2

])

ϕ
√

A (ϕ)
,

(2)
where N ∈ N;A,B ∈ R,A2 + B2 �= 0, are fixed numbers; A (ϕ) is a fixed real
trigonometric polynomial of degree a ≤ N, which is positive on the given finite

system of intervals E ; D(eiϕ) = eiaϕA (ϕ) ;and let T
(A,B,A )

N (E ) be the class
of rational trigonometric functions of that form with zeros in E . Besides, we
call deviation points of rN(ϕ) on E those points where |rN(ϕ)| attains its maxi-
mum value on E . By Tn (x) we shall denote the classical Chebyshev polynomials
Tn (x) = cosnarccosx.

Theorem 1. [9] Let gE (ξ ,z) be the Green function of the domain C\ΓE ,

ΓE j = {ξ : ξ = eiϕ , ϕ ∈ E j = [α2 j−1,α2 j ]}.

If for any j, j = 1, . . . , l, the sum of the harmonic measures of ΓE j with respect to

the zeros of the polynomial D(z) = eiaϕA (ϕ) =
m∗
∏
j=1

(z− z j)
mj is a natural number,

namely

(N − a)ω j(∞)+
1
2

m∗

∑
k=1

mkω j(zk) = q(N)
j−1, q(N)

j−1 ∈ N, j = 2, . . . , l,

where

ϖ(z,x) =
∂
∂x

ω
(

z, ΓE ∩{eiϕ : b ≤ ϕ ≤ x},C\ΓE

)

is the density of the harmonic measure, then the minimum of the extremal problem

max
z∈ΓE

|R∗
N(z)|= min

RN∈RD
N (E )

max
z∈ΓE

|RN(z)| (3)



Exact Solutions of Some Extremal Problems of Approximation Theory 223

is attained on the functions R∗
N(e

iϕ) given by

A∗
Nεei N−a

2 ϕ cos

⎛

⎜

⎝

π
2

∫

E∩[b,ϕ]

(

(N −a)(ϖ(∞,ξ )+ϖ(0,ξ ))+
m∗

∑
j=1

m jϖ(z j ,ξ )
)

dξ

⎞

⎟

⎠
,

|ε|= 1, with a suitable constant A∗
N > 0.

The next theorem is a particular case of Theorem 1, but the calculations with
harmonic measures of the arc with respect to finite points are not so easy, and we
give here a direct proof using the same method.

Theorem 2. For E = [−α,α] the minimum in the extremal problem (3) is attained
on the functions

τN(ϕ)√
A (ϕ)

= AN cos
1
2

(

m∗

∑
j=1

m j arccos
sin2(α/2)− sin(β j/2)sin(ϕ/2)
(sin(ϕ/2)− sin(β j/2))sin(α/2)

+ (N −a)arccos
sin(ϕ/2)
sin(α/2)

)

,

where z j = eiβ j , j = 1, . . . ,m∗, and A∗
N > 0 is a suitable constant.

2 Proofs

The following lemmas are used for proving Theorem 2.

Lemma 1. If

rN(ϕ) =
Acos N

2 ϕ +Bsin N
2 ϕ +a1 cos

(

N
2 −1

)

ϕ + · · ·+b[N
2 ]

sin
(

N
2 − [N

2

])

ϕ
√

A (ϕ)
,

where A2+B2 = 1, is least deviated from zero on E in the class T
(A,B,A )

N , then there
exists some ψ ∈ R such that

r̂N(ϕ) = rN(ϕ +ψ) =
cos N

2 ϕ + â1 cos
(N

2 −1
)

ϕ + · · ·+ b̂[N
2 ]

sin
(N

2 − [N
2

])

ϕ
√

ˆA (ϕ)
,

with ˆA (ϕ) = A (ϕ + ψ), âi = ai cosψ + bi sinψ , b̂i = bi cosψ − ai sinψ ,
i = 12, . . . ,N, is least deviated from zero on E +ψ = [−α +ψ ,α +ψ ] in the class

T
(1,0,A )

N .
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Proof. It is not difficult to see that for any ψ ∈ R the function rN(ϕ +ψ) can be
written in the form

rN(ϕ +ψ) =
τN(ϕ +ψ)
√

A (ϕ +ψ)
,

τN(ϕ +ψ) =

(

Acos
N
2

ψ +Bsin
N
2

ψ
)

cos
N
2

ϕ

+

(

Bcos
N
2

ψ −Asin
N
2

ψ
)

sin
N
2

ϕ

+ â1 cos

(

N
2
−1

)

ϕ + b̂1 sin

(

N
2
−1

)

ϕ

+ · · ·+ â[N
2 ]

cos

(

N
2
−
[

N
2

])

ϕ + b̂[N
2 ]

sin

(

N
2
−
[

N
2

])

ϕ,

where

âk = ak cos

(

N
2
− k

)

ψ +bk sin

(

N
2
− k

)

ψ ,

b̂k = bk cos

(

N
2
− k

)

ψ −ak sin

(

N
2
− k

)

ψ , k = 1,

[

N
2

]

.

It is obvious that r̂N(ϕ) := rN(ϕ + ψ) is least deviated from zero on E + ψ =

[−α +ψ ,α +ψ ] in the class T
(A1,B1,A )

N , where A1 = Acos N
2 ψ +Bsin N

2 ψ , B1 =

Bcos N
2 ψ − Asin N

2 ψ . Now, choose a ψ such that Acos N
2 ψ + Bsin N

2 ψ = 1 and
Bcos N

2 ψ − Asin N
2 ψ = 0. Then observe that these equalities are equivalent to

cos N
2 ψ = A√

A2+B2
, sin N

2 ψ = B√
A2+B2

. Besides, under our choice of ψ the function

r̂N(ϕ) =
cos N

2 ϕ + â1 cos
(

N
2 −1

)

ϕ + b̂1 sin
(

N
2 −1

)

ϕ + · · ·
√

A (ϕ +ψ)

is least deviated from zero on E +ψ in the class T
(1,0,A )

N . 	

Lemma 2. If on E

r∗N(ϕ) =
cos N

2 ϕ +a∗1 cos
(

N
2 −1

)

ϕ + · · ·+b∗
[N

2 ]
sin
(

N
2 − [N

2

])

ϕ
√

A (ϕ)
∈ T

(1,0,A )
N

has the maximal number N+1 of deviation points, then it is least deviated from zero

on the functions of the class T A
N = ∪

A,B:A2+B2=1
T

(A,B,A )
N .
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Proof. To prove that contrary assumption is false, suppose that the function

r∗N(ϕ) =
cos N

2 ϕ +a∗1 cos
(

N
2 −1

)

ϕ + · · ·+b∗
[N

2 ]
sin
(

N
2 − [N

2

])

ϕ
√

A (ϕ)

has maximal number of deviation points on E . Besides, suppose that for some ψ we
have ‖r∗N‖> ‖r∗N,ψ‖, where

r∗N,ψ (ϕ) = A (ϕ)−
1
2

(

cosψ cos
N
2

ϕ + sinψ sin
N
2

ϕ +a∗1,ψ cos

(

N
2
−1

)

ϕ

+ · · ·+b∗[N
2 ],ψ

sin

(

N
2
−
[

N
2

])

ϕ
)

(4)

is a function in T
(cosψ,sin ψ,A )

N , least deviated from zero on E . Then, ‖r∗N,ψ‖ contin-

uously depends on ψ , and hence we can assume that ψ
2π ∈ Q, i.e. ψ = 2π p

q , p ∈ Z,
q ∈ N.

Further,
(

cosψ cos
N
2

ϕ + sinψ sin
N
2

ϕ
)q

=

(

cos

(

N
2

ϕ −ψ
))q

=
1

2q−1 cos

(

N
2

ϕ −ψ
)

q+ · · · ,

and hence the pairs of leading coefficients of the numerators of the functions

Tq

(

r∗N (ϕ)
‖r∗N‖

)

and Tq

(

r∗N,ψ (ϕ)
‖r∗N,ψ‖

)

with the denominator
√

A q(ϕ) are equal to
(

1
‖r∗N‖q ,0

)

and
(

1
‖r∗N,ψ‖q ,0

)

correspondingly, and their norms are equal to 1. Therefore, the

functions

‖r∗N‖qTq

(

r∗N(ϕ)

‖r∗N‖
)

= r∗Nq(ϕ) and ‖r∗N,ψ‖qTq

(

r∗N,ψ(ϕ)
‖r∗N,ψ‖

)

= r∗Nq,ψ(ϕ)

have the same pairs of leading coefficients (1,0) of the numerator, and the following
inequality is true:

‖r∗Nq‖> ‖r∗Nq,ψ‖.

On the other hand, in E the values of r∗N(ϕ)
‖r∗N‖ cover the interval [−1,1] N times, and

hence in E the values of r∗Nq(ϕ)= ‖r∗N‖Tq

(

r∗N (ϕ)
‖r∗N‖

)

cover the interval [−‖r∗Nq‖,‖r∗Nq‖]
Nq times, thus this function is least deviated from zero on E in the class T

(1,0,A q)
Nq .

This contradicts the last inequality. 	
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Proof of Theorem 2. The function

x =
sinϕ/2
sinα/2

gives a one-to-one mapping of E onto [−1,1]. For any algebraic polynomial P(x)
of degree n that substitution gives a (half-order) trigonometric polynomial of order
n/2. Hence, the same substitution into the Chebyshev–Markov rational function
deviated least from zero on [−1,1] with given denominator

√

√

√

√

m∗

∏
j=1

(x−a j)
mj ,

where

a j =
sinβ j/2
sin α/2

,

gives a trigonometric function of the type under consideration. Besides, it is de-
viated least from zero on E with maximal number of deviation points and all its
zeros are on E . Thus, the function r∗N(ϕ) is a solution of problem (3) from the class

T
(A,B,A )

N (E ).
Consequently, Lemma 1 implies that there exist some ψ such that the function

r̂∗N(ϕ) = r∗N(ϕ +ψ) is least deviated from zero on E +ψ in the class of functions

T
(1,0,A )

N , and by Lemma 2 it also is least deviated from zero on E +ψ in the class

T A
N = ∪

A,B∈R: A2+B2=1
T

(A,B,A )
N .

Consequently, r∗N(ϕ) is least deviated from zero on E in the class T A
N (E ) as well.

Consider now an arbitrary function of the class

T A
N (E ) = {rN(ϕ) : rN(ϕ) =

τN(ϕ)
√

A (ϕ)
, τN(ϕ) = Acos

N
2

ϕ +Bsin
N
2

ϕ

+ a1 cos

(

N
2
−1

)

ϕ + · · ·+b[N
2 ]

sin

(

N
2
−
[

N
2

])

ϕ,

rN(ϕ j) = 0, ϕ j ∈ E , j = 1,n}.

Evidently, its numerator can be expressed by its zeros ϕ j, j = 1,N, in the form

τN(ϕ) = cτ
N

∏
j=1

sin
ϕ −ϕ j

2
= cτ

1
(2i)N e

− i
2

N
∑

j=1
ϕ j

z−
N
2

N

∏
j=1

(z− z j) ,
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where z = eiϕ ,z j = eiϕ j , j = 1, . . . ,N, and |cτ |= 1. Hence, there is some c1, |c1|= 1,

such that πN(z) = c1

N
∏
j=1

(z−z j) is a self-reciprocal polynomial and z j ∈ΓE , j = 1,N.

Besides, the constant c1 can be explicitly found by the formula c1 =
(2i)N

cτ
e

i
2

N
∑

j=1
ϕ j

.
Therefore, to the first (leading) and last coefficients of the numerator of the func-

tion πN(z) correspond a pair of the coefficients of the polynomial τN(ϕ). The fol-
lowing is the detailed description of the correspondence:

1
(2i)N e

− i
2

N
∑

j=1
ϕ j

ei N
2 ϕ +

(−1)Ne
i
2

N
∑

j=1
ϕ j

(2i)N e−i N
2 ϕ + · · ·

=
1

(2i)N

⎛

⎝e
− i

2

N
∑

j=1
ϕ j
+(−1)Ne

i
2

N
∑

j=1
ϕ j

⎞

⎠cos
N
2

ϕ

+
i

(2i)N

⎛

⎝e
− i

2

N
∑

j=1
ϕ j − (−1)Ne

i
2

N
∑

j=1
ϕ j

⎞

⎠sin
N
2

ϕ + · · ·

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

cos 1
2

2m
∑

j=1
ϕ j

(−1)m22m−1 cosmϕ +
sin 1

2

2m
∑

j=1
ϕ j

(−1)m22m−1 sinmϕ + · · · , N = 2m,

− sin 1
2

2m−1
∑

j=1
ϕ j

(−1)m−122m−2 cos 2m−1
2 ϕ +

cos 1
2

2m−1
∑

j=1
ϕ j

(−1)m−122m−2 sin 2m−1
2 ϕ + · · · , N = 2m−1,

m ∈ N.

(5)

Conversely, to each polynomial PN(z) =
N
∏
j=1

(z− z j), z j ∈ ΓE , j = 1,N, with zeros

in ΓE is put in correspondence a polynomial πN(z) = cPN PN(z), |cPN |= 1, to which,
in its turn, the above procedure puts in correspondance a trigonometric polynomial
τN(ϕ) with a pair of leading coefficients A,B, A2 +B2 = 1, depending on zeros z j .

Besides, r∗N(ϕ) is least deviated from zero on E in the class T A
N (E ), and hence

it corresponds to the function R∗
N(z), least deviated from zero on ΓE in the class

RD
N (E ), and by (5),

min
RN∈RD

N (E )
max
z∈ΓE

|RN(z)|= 2N−1 min
rN∈T A

N (E )
max
ϕ∈E

|rN(ϕ)|. 	


My Friend and Collaborator

One of the goals of this note is to pay a tribute to Franz Peherstorfer (of course rem-
iniscences from below should be done for his obituary [2], but I was late). His role
in my professional carrier and his influence on my mathematical interests were very
significant.
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He was a reviewer of my first serious paper which I submitted to JAT in 1993.
By the influence of studies in Master class in geometry in the Netherlands I wrote
a lot of words “obviously,” “evidently,” “clearly”, and so on. Franz wrote a very
gentle, clever, and patient report asking for clarifying any places of that kind and
giving a counterexample to one of them. Stupid guy, I was so disappointed that
for a long time I didn’t try to revise the manuscript, but finally I rewrote it in a
quite different form and it appeared in 1998 [3]. Almost simultaneously with the
acceptance letter I got an e-mail from Franz with an invitation to Linz for a couple of
weeks to give a short lecture course on automorphic functions and their application
to extremal problems in approximation theory. Those two weeks were so beautiful:
full of fruitful discussions, nice hiking in the Alps, and good Austrian beers! Franz
posed a question: is it possible to generalize results of his seminal paper [11] to the
case of several intervals using the automorphic functions approach? After a couple
of trips to Linz and long discussions (the question was enlarged by including the
results from [12] to the task), we wrote a paper [6].

These trips changed my visions of mathematics a lot, and also my position in
home university in Saratov and so on. Unfortunately, our collaboration was not so
fruitful after we finished our second joint paper [7], but we had some similar ideas
and I hoped to realize them in a suitable time with Franz but alas...
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A Lagrange Interpolation Method by Trivariate
Cubic C1 Splines of Low Locality

G. Nürnberger and G. Schneider

Abstract We develop a local Lagrange interpolation method for trivariate cubic
C1 splines. The splines are constructed on a uniform partition consisting of octahe-
dra (with one additional edge) and tetrahedra. The method is 2-local and stable and
therefore yields optimal approximation order. The numerical results and visualiza-
tions confirm the efficiency of the method.

1 Introduction

Locality and stability are important properties for a Lagrange interpolation method,
since they imply optimal approximation order. In recent years, a number of pa-
pers appeared where locality is achieved by decomposing the partition on which the
spline space is defined into classes with common vertices and edges [3, 4, 6]. The
locality of these methods depends on the number of classes in the decomposition.
The method for cubic C1 splines on Freudenthal partitions achieves a locality of 5,
while the method for cubic C1 splines on type-4 partitions is 4-local. For cubic C1

splines on an arbitrary partition, the locality can be as high as 10.
In this paper, we investigate the problem of how to construct Lagrange interpolation
methods of low locality. In other words, which tetrahedral partitions can be decom-
posed into only few classes. We consider a partition consisting of tetrahedra and
octahedra alternately. In order to obtain a tetrahedral partition, we subdivide each
octahedron into four tetrahedra by adding one additional edge. For this partition, we
construct a local Lagrange interpolation method which is 2-local.
It is also desirable to construct a partition where all tetrahedra are almost the same
size and shape. However, there is a basic problem. It is well known that the space
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R3 cannot be decomposed into tetrahedra with edges of the same length [2]. The
partition that is used in this paper consists of tetrahedra which are congruent. More-
over, the edges of these tetrahedra are nearly of the same length.
The paper is organized as follows. In Sect. 2, we recall some basic facts about spline
spaces on tetrahedral partitions and the Bernstein–Bézier representation of splines.
Section 3 deals with the partition on which the spline space is defined. We introduce
some notation and describe the decomposition of the partition. We briefly recall
some facts about spline interpolation on partial Worsey–Farin splits in Sect. 4, be-
fore we introduce a refinement of the partition. Based on this refinement and on
the decomposition of the partition, we define a Lagrange interpolation set for the
space of cubic C1 splines in Sect. 5. Finally, we provide some numerical results and
visualizations in Sect. 6.

2 Preliminaries

In this section, we recall some basic facts about spline spaces on tetrahedral parti-
tions and the Bernstein–Bézier representation of these splines. For more detail on
these subjects, see [5]. We also give a few lemmas which we need for the proof of
our main result.

Given a tetrahedral partition Δ of some polygonal domain Ω ⊂ R3 and non-
negative integers d and r, the space of trivariate splines of degree d and smoothness
r on Δ is defined by

S r
d (Δ) :=

{

s ∈Cr(Ω); s|T ∈ Pd ∀ T ∈ Δ
}

,

where

Pd :=
{

xiy jzk; i+ j+ k ≤ d, 0 ≤ i, j,k ≤ d
}

is the space of trivariate polynomials of total degree d. In this paper, we are only
interested in cubic C1 splines where d = 3 and r = 1. For the remainder of this
section, let all indices i, j,k, l be non-negative integers. Let T := Δ(v0,v1,v2,v3) be
a non-degenerate tetrahedron. The domain points associated with T are defined by

DT :=
{

ξ T
i, j,k,l := (iv0 + jv1 + kv2 + lv3)/3; i+ j+ k+ l = 3

}

.

The ball of radius 1 around the vertex v0 with respect to T is the subset of domain
points defined by

DT
1 (v0) :=

{

ξi, j,k,l ∈ DT ; i ≥ 2
}

,

with similar definitions for the other vertices. We further define

D1(v) :=
⋃

T∈Δ ; v∈T

DT
1 (v).
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The tube of radius 1 with respect to T around the edge e = 〈v0,v1〉 is defined by

ET
1 (e) :=

{

ξ T
i, j,k,l ∈ DT ; i+ j ≥ 2

}

.

The definitions for the other edges are similar. Further, we define

E1(e) :=
⋃

T∈Δ ; e∈T

ET
1 (e).

The set of domain points of the tetrahedral partition Δ is defined by

D(Δ) :=
⋃

T∈Δ
DT .

We use the Bernstein–Bézier representation

s|T := ∑
i+ j+k+l=3

cT
i, j,k,lB

T
i, j,k,l ,

for a continuous spline s ∈ S 0
3 , where the coefficients cT

i, j,k,l are the Bernstein–
Bézier coefficients (B-coefficients for the remainder of this paper) with respect to T ,
and

BT
i, j,k,l :=

3!
i! j!k!l!

φ i
0φ j

1 φ k
2 φ l

3.

is the cubic Bernstein polynomial with respect to T . The linear polynomials φm ∈
P1 are the barycentric coordinates with respect to T satisfying φm(vn) := δm,n, 0 ≤
m,n ≤ 3, where δm,n denotes Kronecker’s delta. Note that if l = 0, the Bernstein
polynomial BT

i, j,k,l degenerates to a bivariate polynomial on the face Δ(v0,v1,v2). If
k = 0 and l = 0, it degenerates to a univariate polynomial on the edge 〈v0,v1〉. s|T is
uniquely determined by its B-coefficients cT

i, j,k,l , i+ j+ k+ l = 3. We associate the

B-coefficient cT
i, j,k,l and the Bernstein polynomial BT

i, j,k,l with the respective domain

point ξ T
i, j,k,l . For a domain point η ∈ DT , we denote the B-coefficient of s|T asso-

ciated with η by cη , and the Bernstein polynomial associated with η by Bη . Let
T = Δ(v0,v1,v2,v3) and ˜T = Δ(v0,v1,v2, ṽ3) be two neighboring tetrahedra, and
s ∈ S 0

3 (T ∪ ˜T ). Then, s ∈ S 1
3 (T ∪ ˜T ) if and only if the B-coefficients of s|T and s|˜T

satisfy

c
˜T
i, j,k,1 = φ0(ṽ3)c

T
i+1, j,k,0 +φ1(ṽ3)c

T
i, j+1,k,0 + φ2(ṽ3)c

T
i, j,k+1,0 +φ3(ṽ3)c

T
i, j,k,1, (1)

for i+ j + k = 2, where the φm are the barycentric coordinates with respect to T .
Note that if the B-coefficients associated with the ball BT

1 (v) for some vertex v of T
are known, then the remaining B-coefficients associated with B1(v) are determined
by this equation. Likewise, if the B-coefficients associated with ET

1 (e) are known
for some edge e of T , the remaining B-coefficients associated with E1(e) are also
determined by (1).
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Fig. 1 The Clough–Tocher
refinement of a face. Black
circles are known B-
coefficients, black square
is a given data value

We now give some lemmas concerning Lagrange interpolation on faces and
edges of tetrahedra.

Lemma 1. Let F :=Δ(v0,v1,v2) be a face of some non-degenerate tetrahedron T :=
Δ(v0,v1,v2,v3), and let s be a spline in S 1

3 (T ). Given some real value f and all
B-coefficients of M := (DT ∩F) \ {ξ T

1110}, the B-coefficient cT
1110 is uniquely and

stably determined by s(ξ T
1110) = f .

Proof. Since s|F = ∑
i+ j+k=3

cT
i, j,k,0BT

i, j,k,0, and since BT
1110(ξ T

1110) =
2
3 �= 0, we have

cT
1110 =

1

BT
1110(ξ

T
1110)

(

f − ∑
η∈M

cT
η BT

η(ξ
T
1110)

)

.

This is clearly stable. �
Lemma 2. Let T := Δ(v0,v1,v2,v3) be a non-degenerate tetrahedron, and let vF be
a point in the interior of the face F := Δ(v0,v1,v2). By applying the well-known
Clough–Tocher split to F, we obtain the subtetrahedra T0 := Δ(v0,v1,vF ,v3), T1 :=
Δ(v1,v2,vF ,v3), and T2 := Δ(v2,v0,vF ,v3). We denote the resulting partition by
ΔCT (T ). Let

M := {ξ Ti
3000,ξ

Ti
2100,ξ

Ti
1200,ξ

Tj
1110; i = 0, . . . ,2, j = 1,2} ⊂ D3(ΔCT (T )),

and let the B-coefficients associated with the domain points in M be given (black
circles in Fig. 1). Let s be a spline in S 1

3 (ΔCT (T )). Then, for any real value f , the
B-coefficients of s|F are uniquely and stably determined by

s(vF ) = f .

Proof. Since s(vF )= cT0
0030, it follows immediately that cT0

0030 = f . The B-coefficients
associated with ξ Ti

2010, i = 0, . . . ,2, (white circles in Fig. 1) can be computed from
C1 smoothness across the interior faces of ΔCT (T ). The remaining unknown B-
coefficients are cT0

1020,c
T0
0120 and cT0

1110 (white squares in Fig. 1). The C1 smoothness
conditions involving these B-coefficients lead to the linear system
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⎛

⎝

−s 1 0
−r 0 1
0 −r −s

⎞

⎠

⎛

⎜

⎜

⎝

cT0
1110

cT0
1020

cT0
0120

⎞

⎟

⎟

⎠

=

⎛

⎝

d1

d2

d3

⎞

⎠ ,

where d1,d2 and d3 are linear combinations of known B-coefficients and r,s are
barycentric coordinates of vF satisfying vF = rv0 + sv1 +(1− r− s)v2. Since vF is
in the interior of F , both r and s are greater than 0, and thus the determinant of the
matrix −2rs �= 0. �
Lemma 3. Let e := 〈v0,v1〉 be an edge of some non-degenerate tetrahedron T :=
Δ(v0,v1,v2,v3), and let s be a spline in S 1

3 (T ). Given real value fi, j,0,0, i+ j = 3,
the B-coefficients cT

i, j,0,0, i+ j = 3, of a spline s ∈ S 1
3 (T ) are uniquely and stably

determined by the linear system

s(ξ T
i, j,0,0) = fi, j,0,0, i+ j = 3.

Proof. Since s|e is a univariate cubic polynomial, the problem is equivalent to uni-
variate Lagrange interpolation at equidistant interpolation points and therefore has
a unique solution. �
Lemma 4. Let e := 〈v0,v1〉 be an edge of some non-degenerate tetrahedron T :=
Δ(v0,v1,v2,v3), and let s be a spline in S 1

3 (T ). Given the B-coefficients cT
3,0,0,0 and

cT
2,1,0,0, and real values f1,2,0,0 and f0,3,0,0, the B-coefficients cT

1,2,0,0 and cT
0,3,0,0 of

a spline s ∈ S 1
3 (T ) are uniquely and stably determined by the interpolation condi-

tions

s(ξ T
1,2,0,0) = f1,2,0,0, s(ξ T

0,3,0,0) = f0,3,0,0.

Proof. Since s(ξ T
0,3,0,0) = cT

0,3,0,0, this B-coefficient is immediately determined by
the second equation. The first equation yields

s(ξ T
1,2,0,0) = ∑

i+ j=3
cT

i, j,0,0BT
i, j,0,0(ξ T

1,2,0,0) = f1,2,0,0.

Since BT
1,2,0,0(ξ T

1,2,0,0) �= 0, the B-coefficient cT
1,2,0,0 is uniquely determined. �

3 A Uniform Partition Consisting of Tetrahedra and Octahedra

In this section, we describe a uniform partition over which the splines are con-
structed. Let N be an even integer and h := 1/N. Then for i, j, l ∈Z, let

vi, j,2l :=

((

i+
1
2

)

h, jh, lh

)
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Fig. 2 An octahedron split
into four tetrahedra

and

vi, j,2l+1 :=

(

ih,

(

j+
1
2

)

h,

(

l +
1
2

)

h

)

be the vertices of the body-centered cubic (BCC) grid. We denote the k-th layer of
vertices by Vk := {vi, j,k, i, j ∈ Z}. We call a layer Vk even or odd depending on the
parity of the index k. To obtain a uniform partition of space, we connect the vertices
of each layer Vk with their 12 nearest neighbors. The resulting partition consists of
the following octahedra and tetrahedra. For even k, we denote the tetrahedra by

T A
i, j,k := Δ(vi, j,k,vi, j+1,k,vi, j,k+1,vi+1, j,k+1),

T B
i, j,k := Δ(vi, j,k,vi+1, j,k,vi+1, j,k+1,vi+1, j−1,k+1),

and the octahedra by

Oi, j,k :=♦(vi, j,k,vi+1, j,k,vi, j+1,k,vi+1, j+1,k,vi+1, j,k−1,vi+1, j,k+1).

Similarly, for odd k we have

T A
i, j,k := Δ(vi, j,k,vi, j+1,k,vi−1, j+1,k+1,vi, j+1,k+1),

T B
i, j,k := Δ(vi, j,k,vi+1, j,k,vi, j+1,k+1,vi, j,k+1),

Oi, j,k :=♦(vi, j,k,vi+1, j,k,vi, j+1,k,vi+1, j+1,k,vi, j+1,k−1,vi, j+1,k+1).

To obtain a tetrahedral partition, we add an additional edge to each octahedron
Oi, j,k which connects the vertex in the layer Vk−1 with the vertex in the layer Vk+1.
This splits the octahedron into four tetrahedra (Fig. 2). We denote these tetrahedra

by T (m)
i, j,k, m = 1, . . . ,4. We denote the resulting infinite partition by ̂♦.

We now define the finite partition ♦ :=
2(N+1)
⋃

k=0
Lk, where

L0 :=
{

T A
i, j,0; i = 0, . . . ,N, j = 0, . . . ,N

}

,

Lk :=
{

T A
i, j,k; i = 0, . . . ,N, j = 0, . . . ,N

}

∪{T B
i, j,k; i = 0, . . . ,N −1, j = 1, . . . ,N

}

∪
{

T (m)
i, j,k; i = 0, . . . ,N −1, j = 0, . . . ,N, m = 1, . . . ,4

}

, 2 ≤ k ≤ 2N,

k even,
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Fig. 3: Left: The layers of the partition. Tetrahedra T A
i, j,k are light gray, while tetra-

hedra T B
i, j,k are white.

Right: A partition consisting of tetrahedra and octahedra

Lk :=
{

T A
i, j,k; i = 1, . . . ,N, j = 0, . . . ,N −1

}

∪{T B
i, j,k; i = 0, . . . ,N, j = 0, . . . ,N

}

∪
{

T (m)
i, j,k; i = 0, . . . ,N, j = 0, . . . ,N −1, m = 1, . . . ,4

}

, 1 ≤ k ≤ 2N +1,

k odd,

L2(N+1) :=
{

T A
i, j,k; i = 0, . . . ,N, j = 0, . . . ,N

}

∪
{

T (m)
i, j,k; i = 0, . . . ,N −1, j = 0, . . . ,N, m = 1, . . . ,4

}

.

Figure 3 gives an impression of these layers and of the partition. Note that the
tetrahedra of ♦ are congruent. Each tetrahedron has two edges of length h. These
edges have no common vertices. The length of the remaining four shorter edges is√

3h/2.
As usual, we say that two tetrahedra are neighbors if and only if they share a com-

mon face. A tetrahedron is said to be an interior tetrahedron if it has four neighbors.
All other tetrahedra are called boundary tetrahedra. A face is called a boundary face
if it is the face of exactly one tetrahedron. All other faces are called interior faces.
A vertex and edge is called a boundary vertex and edge, respectively, if there exists
some boundary face it belongs to. All other vertices and edges are interior vertices
and edges, respectively.

This partition can be decomposed into the following few classes of tetrahedra.
We first consider classes of tetrahedra with respect common vertices (Fig. 4, left).

K0 :=
{

T A
i, j,k ∈♦; i+ j even, k even

}

,

K1 :=♦\K0.
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Fig. 4: Left: Classes with regard to common Vertices. Black tetrahedra belong to K0,
while white and gray tetrahedra belong to K1, with gray tetrahedra also belonging
to the subclass K′

1.
Right: Classes with regard to common Edges. Black tetrahedra belong to K2, gray
tetrahedra belong to K3, and white tetrahedra belong to K4 ∪K5

We say a vertex v is a K0-vertex if there exists some tetrahedron T ∈ K0 with v ∈ T .
All other vertices are K1-vertices.

To deal with a special situation on the boundary of the partition, we define the
following subclass of K1.

K ′
1 :=

{

T A
i, j,k ∈ K1; T A

i, j,k has a K1-vertex
}

.

Note that the tetrahedra in class K0 are disjoint, and for each interior vertex of
the partition, there is exactly one tetrahedron in class K0 that the vertex belongs to.
Moreover, each boundary vertex of the partition belongs to exactly one tetrahedron
in K0 ∪K′

1. This also means that each tetrahedron in class K′
1 shares exactly three

common vertices with the tetrahedra in class K0, and each tetrahedron in class K1 \
K ′

1 shares exactly four common vertices with the tetrahedra in class K0 ∪K′
1.

Next, starting new, we consider classes of tetrahedra with common edges (Fig. 4,
right).

K2 :=
{

T A
i, j,k ∈♦} ,

K3 :=
{

T B
i, j,k ∈♦} .

Each tetrahedron that is not a subtetrahedron of one of the octahedra is either in
class K2 or in class K3. For the next class, we choose exactly one tetrahedron T (m)

i, j,k
for each octahedron Oi, j,k of the partition. If there exists a tetrahedron T of Oi, j,k

which has exactly two boundary faces, we choose this tetrahedron. If there exists no

such tetrahedron, we choose T (1)
i, j,k.

K4 :=
{

T (m)
i, j,k ∈ ♦

}

,

K5 :=♦\ (K2 ∪K3 ∪K4).
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These last two classes contain all the subtetrahedra of the octahedra of ♦. Let e be
an edge of the partition. Let m ∈ {2, . . . ,5} be the smallest index such that there
exists a tetrahedron T ∈ Km sharing e. We call e a Km-edge.

We need the following subclasses for some special situations on the boundary of
the partition.

K ′
3 :=

{

T B
i, j,k ∈ K3; T B

i, j,k has exactly two K3-edges
}

,

K′′
3 :=

{

T B
i, j,k ∈ K3; T B

i, j,k has exactly three K3-edges
}

,

K′
4 := {T ∈ K4; T has exactly two K4-edges} .

The tetrahedra in class K ′
3 have exactly one boundary face each, while the tetrahedra

in classes K′′
3 and K ′

4 have exactly two boundary faces each. Note that for each Km-
edge there exists exactly one tetrahedron in class Km sharing that edge.

4 A (Partial) Worsey–Farin Refinement of ♦

To improve the locality of the interpolation method, we introduce a refinement of ♦
by splitting some of the tetrahedra in ♦ using partial Worsey–Farin splits. To fully
describe these splits, we need some additional notation.

Let T := Δ(v1,v2,v3,v4) be some tetrahedron and 0 ≤ m ≤ 4. For each vertex
vi, i = 1, . . . ,m, let Fi be the face of T defined by the other three vertices of T . Let
vT be a point in the interior of T , and vFi , i = 1, . . . ,m, a point in the interior of the
Fi. Then the m-th degree partial Worsey–Farin refinement of T (Fig. 5), denoted by
Δ m

WF(T ), is the set of tetrahedra that results from connecting vFi to the vertices of
Fi, and vT to the vertices vi and vFi , i = 1, . . . ,m. For m = 0, this is the well-known
Alfeld split, while for m = 4 it is the Worsey–Farin split. We call vT the split point
of the tetrahedron, and vFi the split point of the face Fi.

Fig. 5: A partial Worsey–Farin split of degree 1
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Theorem 1. Let Δ m
W F(T ) be the partial Worsey–Farin split of degree 0 ≤ m ≤ 4 of

some tetrahedron T . Let

M :={vi; i = 1, . . . ,4}

∪
{

2
3

vi +
1
3

v j,
1
3

vi +
1
2

v j; i, j = 1, . . . ,4, i �= j

}

∪
{

1
3
(u+w+ vFi); 〈u,w〉an edge of Fi, i = 1, . . . ,m

}

∪

⎧

⎪

⎨

⎪

⎩

1
3

4

∑
j=1
j �=i

v j; i = m+1, . . . ,4

⎫

⎪

⎬

⎪

⎭

.

Then the set M is a minimal determining set for S 1
3 (Δ m

W F(T )).

For the proof of this theorem, see Theorem 6.3 in [3].
We now describe a refinement of the partition ♦. We first split certain faces of

the partition using a Clough–Tocher split. Then we apply a (partial) Worsey–Farin
split to all tetrahedra that have at least one of those faces. To define the Clough–
Tocher splits, we make the following observation. Each face F := Δ(u,v,w) of the
partition consists of one edge of the length h and two shorter edges of the lengths
√

3
4 h. Let 〈u,v〉 be the longer edge. Then, when applying a Clough–Tocher split to

F , we use vF := (3u+ 3v+ 2w)/8 as the split point. This ensures that vF and the
barycenters of the two tetrahedra that share F are collinear. We split the following
faces:

• For all T ∈ K3, we split those faces of T which are interior faces of ♦. If T is
an interior tetrahedron, then these faces have three K2-edges each. For boundary
tetrahedra, they have two K2-edges and one K3-edge.

• For all T ∈ K′
4, we split the two boundary faces of T . These faces have two K2-

edges and one K4-edge.
• All interior faces of the octahedra are split. Again, these have two K2-edges and

one K4-edge.

We then apply a (partial) Worsey–Farin split to each tetrahedron with at least one
split face, using the barycenter as the split point. This results in the following refine-
ment:

• The tetrahedra of class K2 are not split.
• All interior tetrahedra T ∈ K3 are refined with a (full) Worsey–Farin split.
• Each tetrahedron T ∈ K′

3 is refined using a partial Worsey–Farin split of degree
3. These tetrahedra have exactly one boundary face which is the only face that is
not split.

• Each tetrahedron T ∈ K ′′
3 is refined using a partial Worsey–Farin split of degree

2, where a Clough–Tocher split is applied to the two interior faces.
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• All interior tetrahedra T ∈ K4 ∪K5 are refined using a partial Worsey–Farin split
of degree 3. Each of these tetrahedra has exactly one neighboring tetrahedron
˜T ∈ K2. The common face of T and ˜T is the only face that is not split.

• All boundary tetrahedra T ∈ K′
4 are refined using a (full) Worsey–Farin split.

We denote the resulting refined partition by ˜♦.

5 Local Lagrange Interpolation by S 1
3 (
˜♦)

In this section, we state our main results. We provide a Lagrange interpolation set
and an algorithm for Lagrange interpolation by S 1

3 (
˜♦). We show that the interpo-

lation set is both local and stable, and that the interpolation method therefore yields
optimal approximation order 4.

We define the following subsets of the domain points.

M0 :=
⋃

T∈K0

⋃

v∈T

DT
1 (v),

M ′
1 :=

⋃

T∈K′
1

DT
1 (v), v a K1-vertex of T,

M2 :=
⋃

T∈K2

{

ξ T
1110,ξ

T
1101,ξ

T
1011,ξ

T
0111

}

,

M ′
3 :=

⋃

T∈K′
3

{vF ; F is a face of T with exactly two K2-edges} ,

M ′′
3 :=

⋃

T∈K′′
3

{vF ; F is a face of T with exactly two K2-edges} ,

M4 :=
⋃

T∈K4

{vF ; F is a face of T with exactly one K4-edge} ,

We denote the union of these sets by

M := M0 ∪M ′
1 ∪M2 ∪M ′

3 ∪M ′′
3 ∪M4 ∪M ′

4.

The following theorem shows that M is a Lagrange interpolation set for S 1
3 (
˜♦).

Theorem 2. For each set { fη ; η ∈ M } of real values there exists a unique spline

s ∈ S 1
3 (
˜♦) which satisfies

s(η) = fη , ∀ η ∈ M .

Before we proof this theorem, we give the following algorithm which pro-
vides an order in which the B-coefficients of s are computed from the data values
{ fη ; η ∈ M }.
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1. For each T ∈ K0, use the data values associated with M0 to compute the B-coefficients on the
edges of T .

2. For each T ∈ K′
1, compute the B-coefficients on the edges of T using C1 smoothness at the

vertices of T , and the data values associated with M ′
1.

3. For each T ∈ K1 \K′
1, compute the B-coefficients on the edges of T using C1 smoothness at the

vertices of T .
4. For each T ∈ K2, compute the B-coefficients on the faces of T from the data values associated

with M2, using Lemma 1.
5. For each T ∈ K3, compute the B-coefficients on the faces of T using C1 smoothness across the

edges of T . If T is in class K ′
3 or K′′

3 , and F is a face of T which has interpolation points in M ′
3

or M ′′
3 , use the associated data values and Lemma 2 to compute the B-coefficients of F .

6. For each T ∈ K4, and for each face F of T , compute the B-coefficients on F using C1 smooth-
ness across the edges of T . If F has interpolation points in M4 or M ′

4, use the associated data
values and Lemma 2.

7. For each T ∈ K5, compute the B-coefficients of the faces of T using C1 smoothness.
8. For each T ∈ ♦, compute the B-coefficients associated with domain points in the interior of T

by using C1 smoothness.

Proof (of Theorem 2). Following the steps of algorithm in Sect. 5, we show how
the B-coefficients of each tetrahedron can be computed using only smoothness
conditions and data values located at the points of M . We first show how the B-
coefficients on the edges of ♦ can be computed.

Beginning with step (1), let e be the edge of some tetrahedron T ∈ K0. Then all
four domain points of that edge are in the set M0, and the B-coefficients associated
with that edge can be computed from the data values located at these domain points
by Lemma 3.

Now, moving to step (2), let T be some tetrahedron in class K ′
1. Then one of the

vertices of T is a K1-vertex. Let v be that vertex. Then M ′
1 contains the domain

points DT
1 (v). Each of the other three vertices of T , u1,u2,u3, is shared with some

tetrahedron in class K0. For each edge e = 〈v,ui〉 of T , i = 1,2,3, the B-coefficients
of e are determined by C1 smoothness at ui and the data values in DT

1 (v) as in
Lemma 4. The B-coefficients of the other edges of T are determined by C1 smooth-
ness only.

Following step (3), let e = 〈u,v〉 be one of the remaining edges of ♦. Then for
both u and v there exist tetrahedra Tu and Tv, respectively, which are either in class K0

or in class K′
1. Since the B-coefficients associated with the edges of Tu and Tv have

already bean determined, the B-coefficients of e can be determined by C1 smooth-
ness at u and v.

We now show how the remaining B-coefficients can be computed, giving a brief
outline of the process before we address steps (4)–(8) of the algorithm. We consider
the tetrahedra of ♦ in the order given by algorithm in Sect. 5. Let T be a tetrahedron
in class Km. For each Kn-edge of T , n < m, there exists exactly one tetrahedron T ′ in
class Kn that shares the edge. The B-coefficients associated with the faces of T ′ have
already been computed in a previous step. Therefore, the B-coefficients associated
with the tube around this edge are determined by C1 smoothness. In all cases where
the B-coefficients of a face cannot be computed by C1 smoothness alone, there are
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data values associated with the face, and those B-coefficients are determined as in
Lemma 2.

Following step (4) of algorithm in Sect. 5, let T be a tetrahedron in class K2.
Then T is not split, and the set M2 contains the face barycenters of T . Since the
B-coefficients associated with the edges of T are already known, the B-coefficients
associated with these barycenters can be computed using Lemma 1.

Moving to step (5), we consider the tetrahedra in class K3. Let T be such a tetra-
hedron with no boundary faces. Then a full Worsey–Farin split has been applied to
T , and each edge of T is a K2-edge, i.e. the edge of some tetrahedron in class K2.
The B-coefficients associated with the faces of T are determined by C1 smoothness
across the edges of T .

Now let T be a tetrahedron in class K′
3. These tetrahedra have three interior

faces and one boundary face. One of the interior faces, has three K2-edges. The
B-coefficients associated with that face are determined by C1 smoothness across
these edges. The boundary face, has one K2-edge and two K3-edges. This face is
not split, and the B-coefficient associated with its barycenter is determined by C1

smoothness across the K2-edge. The remaining two faces of T are interior faces
with two K2-edges and one K3-edge. These two faces are subdivided by a Clough–
Tocher split, and the split point is contained in the set M ′

3. Therefore, the remaining
B-coefficients of these faces are determined as in Lemma 2.2.

For the tetrahedra in class K′′
3 the situation is similar. The two boundary faces are

not split and have one K2-edge and two K3-edges each. The B-coefficient associated
with the barycenter is determined by C1 smoothness across the K2-edge. The two
interior faces are split with a Clough–Tocher split and have two K2-edges and one
K3-edge. The split points are contained in M ′′

3 , and the remaining B-coefficients are
determined as in Lemma 2.2.

At this point, only B-coefficients associated with domain points in the octahedra
of the partition remain to be determined. These are dealt with in the last two steps of
algorithm in Sect. 5. Following step (7), let T be a tetrahedron in class K4 belonging
to an octahedron O. If O is an interior octahedron, then two of the faces of T are
shared with tetrahedra in the classes K2 or K3, and the B-coefficients associated with
these faces are already determined. The remaining two faces are interior faces of the
octahedron. They have two K2-edges and one K4-edge, and their split points are
contained in the set M4. Thus, the remaining B-coefficients associated with these
faces are determined as in Lemma 2.2. If O is a boundary octahedron, then none
of the faces of T is shared with any of the previously considered tetrahedra. In this
case, each face of T has two edges that are either K2-edges or K3-edges, and exactly
one K4-edge. The split point of each of these faces is contained in the set M4, and
again Lemma 2.2 can be applied to determine the remaining B-coefficients.

Finally, moving to step (8), let T be a tetrahedron in class K5. Each face of T has
three Km-edges with m ≤ 4, and the B-coefficients associated with this face are de-
termined by C1 smoothness across the edges. Now that the B-coefficients associated
with all the faces of the partition are already known, by Theorem 1 the remaining
B-coefficients in the interior of the tetrahedra are also determined. Note that by the
construction of the partition, the split point of each interior face F that is refined



244 G. Nürnberger and G. Schneider

with a Clough–Tocher split lies on the line segment that connects the incenters of
the two tetrahedra sharing F . This ensures that all C1 smoothness conditions across
that F are satisfied (cf. [8]). This concludes the proof. �

We now show that the Lagrange interpolation set M is local and stable.

Theorem 3. The Lagrange interpolation method described in algorithm in Sect. 5
is 2-local, i.e. for each T ∈ ♦, the corresponding B-coefficients depend only on the
data values

{ fη}η∈M∩star2(T )
,

where star0(T ) := T and star�(T ) :=
⋃{T ′ ∈ ♦; T ′ ∩ star�−1(T ) �= /0}.

It is also stable, i.e. there exists a real constant C > 0 such that for each s ∈ S 1
3 (
˜♦)

and each B-coefficient cT
η of s,

|cT
η | ≤C max

ξ∈M∩star2(T )
| fξ |.

Proof. The B-coefficients of a spline s ∈ S 1
3 (
˜♦) are computed either by one of the

Lemmas 1–4, or by C1 smoothness as in (1). Due to the uniformity of the partition
♦, these computations only depend on the data values { fη ; η ∈ M }. Since each of
these computations is stable, the interpolation method is also stable.

To establish the locality of the method, we observe that the B-coefficients of
s are computed in a certain order prescribed by algorithm in Sect. 5. Let e be an
edge. If e belongs to some tetrahedron T ∈ K0, then the B-coefficients of s|e are
computed locally from data values associated with e as in Lemma 3. If e belongs
to some tetrahedron T ∈ K1, then the B-coefficients of s|e are computed either as in
Lemma 4 or by C1 smoothness at the vertices of e. In either case, the computation
of s|e is at most 1-local.

For the remaining B-coefficients of s, we have to consider the classes with respect
to common edges. Let T be a tetrahedron in class K2. Then T is not split, and the
B-coefficients on the faces of T are computed as in Lemma 1. Since this depends on
the B-coefficients on the edges of T , the computation of s|T is also at most 1-local.

Now let T be a tetrahedron in class K3. Each edge of T is either the edge of
some tetrahedron in class K2, or it is a boundary edge. The computation of the
B-coefficients on the faces of T depends either on C1 smoothness across the K2-
edges, or on data values located on the faces using Lemma 2. In either case, the
computation is at most 2-local.

Finally, let T be a tetrahedron in class K4 or K5. The tetrahedra in these classes
form the octahedra of ♦. For an interior octahedron, the computation of its as-
sociated B-coefficients depends only on the surrounding K2-tetrahedra (Fig. 6).
Since these tetrahedra are in the 1-star of T , and the computation of their B-
coefficients is at most 1-local, it follows that the computation of the B-coefficients
of T is at most 2-local. We have to take a closer look at boundary octahedra, since
the computation of their B-coefficients not only depends on the surrounding



A Lagrange Interpolation Method by Trivariate Cubic C1 Splines of Low Locality 245

Fig. 6 The K2-tetrahedra sur-
rounding an interior octahe-
dron. For boundary octahedra,
one of these tetrahedra is
missing

Fig. 7 A boundary octa-
hedron with two adjacent
tetrahedra in class K′

3

tetrahedra in class K2, but also on the surrounding tetrahedra in classes K′
3 and

K′′
3 . Let O be a boundary octahedron. Of the 12 edges of O, nine are K2-edges,

two are K3-edges, and one is a K4-edge. The computation of the B-coefficients
associated with the tubes around the K2-edges is at most 2-local, since the com-
putation of the corresponding K2-tetrahedra is at most 1-local. This covers nine
of the edges and four of the faces of O. Now consider the two faces of O which
are shared with tetrahedra in classes K′

3 or K′′
3 (Fig. 7). These faces have two K2-

edges each, and their split point in contained in the sets M ′
3 or M ′′

3 , respectively.
The B-coefficients associated with these faces are computed as in Lemma 2, us-
ing C1 smoothness across the K2-edges only. Thus, the computation is also 2-local.
Finally, consider the two boundary faces of O. One of these faces has two K2-
edges and one K4 edge. There is a data value associated with the split point of
this face, since the split point is contained in the set M4. Using Lemma 2, the
B-coefficients of this face can be computed 2-locally. The last face F of O belongs
to a boundary tetrahedron T in class K′

4. It has two K3-edges and one K4-edge. It
is coplanar with two boundary faces F1 and F2 of adjacent tetrahedra in classes K′

3
or K′′

3 (Fig. 7). These faces are not split and have a single K2-edge each, and the
B-coefficients associated with their barycenters are computed using C1 smoothness
across these K2-edges. The B-coefficients of F are then computed as in Lemma 2,
using C1 smoothness across the K3-edges and B-coefficients associated with F1 and
F2. Since all relevant tetrahedra are within the 1-star of T , this computation is also
2-local. This shows that the computation of all B-coefficients associated with the
faces of O is 2-local. Thus, the computation of the interior B-coefficients of O is
also 2-local, completing the proof. �
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The next theorem provides an error bound for ‖ f − s‖Ω for sufficiently smooth
functions f , where ‖ · ‖Ω denotes the maximum norm on Ω . We define a linear
operator I mapping C(Ω) on S 1

3 (
˜♦). Let f ∈C(Ω). Then I f ∈ S 1

3 (
˜♦) is defined

as the unique spline that satisfies

I f (η) = f (η), ∀ η ∈ M .

Let W m
∞ (B) denote the usual Sobolev space defined on some compact subset B ⊆ Ω ,

equipped with the seminorm

| f |m,B := ∑
|α |=m

‖Dα f‖B,

where ‖ · ‖B denotes the maximum norm on B, and Dα := Dα1
x Dα2

y Dα3
z the partial

derivative operator with α := (α1,α2,α3) and |α| := α1 +α2 +α3.

Theorem 4. For f ∈W m+1
∞ (Ω), 0 ≤ m ≤ 3, there exists a real constant K > 0 such

that for 0 ≤ |α| ≤ m,

‖Dα(I f − f )‖Ω ≤ K|Δ |m+1−|α || f |m+1,Ω , (2)

where |Δ | denotes the diameter of the tetrahedra of ♦.

Proof. Fix m, and let f ∈ W m+1
∞ (Ω). Fix T ∈ ♦ and let ΩT := star2(T ). By

Lemma 4.3.8 of [1], there exists a cubic polynomial p such that for all 0 ≤ |β | ≤ m,

‖Dβ ( f − p)‖ΩT ≤C1|ΩT |m+1−|β || f |m+1,ΩT , (3)

where C1 is some constant and |ΩT | is the diameter of ΩT . Since Ip = p, it follows
that

‖Dα( f −I f )‖T ≤ ‖Dα( f − p)‖T +‖DαI( f − p)‖T .

We estimate the first term using (3) with β = α . For the second term, using the
Markov inequality [7] and Theorem 3, we obtain

‖DαI( f − p)‖T ≤C2|Δ |−|α |‖I( f − p)‖T ≤C3|Δ |−|α |‖ f − p‖ΩT .

Due to the uniformity of the tetrahedra, there exists a constant C4 such that |ΩT | ≤
C4|Δ |. Using (3) with β = 0, we get

‖Dα( f −I f )‖T ≤C5|ΩT |m+1−|α || f |m+1,ΩT .

Taking the maximum over all tetrahedra, we obtain (2), thus completing the proof.
�
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6 Numerical Tests

In this section, we present our numerical results that confirm the optimal approxi-
mation order of our method. We constructed a spline interpolating the well-known
Marschner–Lobb test function

p(x,y,z) :=
1− sin(π z

2 )+α(1+ρr(x2 + y2))

2(1+α)
,

where ρr := cos(2π fM cos(π r
2 )), for fM = 6 and α = 0.25. Table 1 shows the size

parameter N of the partition, the maximum error emax, the decay exponent d, and the
number of interpolation points #IP. The maximum error was computed by sampling
each tetrahedron at 120 points.

Figure 8 shows a rendering of a spline interpolating the Marschner–Lobb func-
tion. The spline was constructed on the partition described in Sect. 3 with the size
parameter N = 100 using our method. The picture was obtained by ray tracing the
volume, extracting the isosurface for the isovalue 0.5.

Table 1: Maximum errors of splines interpolating the Marschner–Lobb test function

N emax d #IP

82 1.53 ·10−4 – 17,890,456
164 1.04 ·10−5 3.88 142,127,672
330 4.95 ·10−7 4.39 1,143,476,372
660 3.12 ·10−8 3.99 9,173,788,772

Fig. 8: Isosurface of a spline interpolating the Marschner–Lobb test function
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Approximation of Besov Vectors by
Paley–Wiener Vectors in Hilbert Spaces

Isaac Z. Pesenson and Meyer Z. Pesenson

Abstract We develop an approximation theory in Hilbert spaces that generalizes
the classical theory of approximation by entire functions of exponential type. The
results advance harmonic analysis on manifolds and graphs, thus facilitating data
representation, compression, denoising and visualization. These tasks are of great
importance to machine learning, complex data analysis and computer vision.

1 Introduction

One of the main themes in Analysis is correlation between frequency content of a
function and its smoothness. In the classical approach, the frequency is understood
in terms of the Fourier transform (or Fourier series) and smoothness is described in
terms of the Sobolev or Lipshitz and Besov norms. For these notions it is well un-
derstood [1, 8] that there exists a perfect balance between the rate of approximation
by bandlimited functions ( trigonometric polynomials) and smoothness described
by Besov norms. For more recent results of approximations by entire functions of
exponential type we refer to [5]–[7].

The classical concepts and result were generalized to Riemannian manifolds,
graphs, unitary representations of Lie groups and integral transforms in our work
[11]–[21], [8].
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The goal of the present article is to develop a form of a Harmonic Analysis which
holds true in general Hilbert spaces. In the introduction section, we formulate main
results obtained in the paper. The exact definitions of all notions are given in the
text.

We start with a self-adjoint positive definite operator L in a Hilbert space H
and consider its positive root D = L1/2. For the operator D one can introduce notion
of the Spectral Transform FD which is an isomorphism between H and a direct
integral of Hilbert spaces over R.

A Paley–Wiener space PWω(D),ω > 0, is introduced as the set of all f ∈ H
whose image FD f has support in [0,ω ]. In the case when H = L2(R)

d and D is
a positive square root from the Laplace operator, our definition produces regular
Paley–Wiener spaces of spherical exponential type.

The domain Ds,s ∈ R, of the operator Ds,s ∈ R, plays the role of the Sobolev
space and we introduce Besov spaces Bα

2,q = Bα
2,q(D),α > 0,1 ≤ q ≤ ∞, by using

Peetre’s interpolation K-functor [2, 4, 8, 9, 23].

Bα
2,q(D) =

(

H ,Dr/2
)K

α/r,q
, (1)

where r can be any natural such that 0 < α < r,1 ≤ q < ∞, or 0 ≤ α ≤ r,q = ∞. It is
crucial for us that Besov norms can be described in terms of a modulus of continuity
constructed in terms of the Schrodinger group eitD2

, wave semigroup eitD, or the
heat semigroup e−tD2

. In what follows the notation ‖ · ‖ below means ‖ · ‖H . We
introduce a notion of best approximation

E ( f ,ω) = inf
g∈PWω (D)

‖ f −g‖, f ∈ H . (2)

We also consider the following family of functionals which describe a rate of decay
of the Spectral transform FD

R( f ,ω) =

(

∫ ∞

ω
‖FD( f )(λ )‖2

X(λ )dm(λ )
)1/2

,ω > 0. (3)

The Plancherel Theorem for FD implies that every such functional is exactly the
best approximation of f by Paley–Wiener functions from PWω(D):

R( f ,ω) = E ( f ,ω) = inf
g∈PWω (D)

‖ f −g‖. (4)

Our main results are the following.

Theorem 1. The norm of the Besov space Bα
2,q(D),α > 0,1 ≤ q ≤ ∞ is equivalent

to the following norms

‖ f‖+
(

∫ ∞

0
(sαE ( f ,s))q ds

s

)1/q

, (5)
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‖ f‖+
(

∞

∑
k=0

(

akαE ( f ,ak)
)q

)1/q

,a > 1. (6)

‖ f‖+
(

∫ ∞

0
(sαR( f ,s))q ds

s

)1/q

, (7)

and

‖ f‖+
(

∞

∑
k=0

(

akαR( f ,ak)
)q

)1/q

,a > 1. (8)

Theorem 2. A vector f ∈ H belongs to Bα
2,q(D),α > 0,1 ≤ q ≤ ∞, if and only

if there exists a sequence of vectors fk = fk( f ) ∈ PWak(D),a > 1,k ∈ N such that
the series ∑k fk converges to f in H and the following inequalities hold for some
c1 > 0,c2 > 0 which are independent on f ∈ Bα

2,q(D)

c1‖ f‖Bα
2,q(D) ≤

(

∞

∑
k=0

(

akα‖ fk‖
)q

)1/q

≤ c2‖ f‖Bα
2,q(D),a > 1. (9)

In the case when α > 0,q = ∞ one has to make appropriate modifications in the
above formulas.

According to (4) the functional E ( f ,ω) is a measure of decay of the Spectral
Transform FD and the Theorems 1 and 2 show that Besov spaces on a manifold
M describe decay of the Spectral transform FD associated with any appropriate
operator D.

In the case H = L2(R
d), the Theorems 1 and 2 are classical and can be found

in [1, 8] and [22]. In the case when H is L2-space on a Riemannian manifold or a
graph and D is the square root from the corresponding Laplace operator Theorems
1 and 2 were proved in our papers [11]–[20].

2 Paley–Wiener Subspaces Generated by a Self-adjoint
Operator in a Hilbert Space

Now we describe Paley-Wiener functions for a self-adjoint positive definite operator
D in H . According to the spectral theory [4] for any self-adjoint operator D in a
Hilbert space H there exist a direct integral of Hilbert spaces X =

∫

X(λ )dm(λ )
and a unitary operator FD from H onto X , which transforms domain of Dk,k ∈ N,
onto Xk = {x ∈ X |λ kx ∈ X} with norm

‖x(λ )‖Xk =

(

∫ ∞

0
λ 2k‖x(λ )‖2

X(λ )dm(λ )
)1/2

(10)
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besides FD(Dk f ) = λ k(FD f ), if f belongs to the domain of Dk. As it is known, X
is the set of all m-measurable functions λ → x(λ ) ∈ X(λ ), for which the norm

‖x‖X =

(

∫ ∞

0
‖x(λ )‖2

X(λ )dm(λ )
)1/2

is finite.

Definition 1. We will say that a vector f from H belongs to the Paley–Wiener
space PWω(D) if the support of the Spectral transform FD f belong to [0,ω ]. For
a vector f ∈ PWω(D) the notation ω f will be used for a positive number such that
[0,ω f ] is the smallest interval which contains the support of the Spectral transform
FD f .

Using the spectral resolution of identity Pλ we define the unitary group of oper-
ators by the formula

eitD f =
∫ ∞

0
eitτ dPτ f , f ∈ H , t ∈ R.

Let us introduce the operator

Rω
D f =

ω
π2 ∑

k∈Z

(−1)k−1

(k−1/2)2 ei( π
ω (k−1/2))D f , f ∈ H ,ω > 0. (11)

Since
∥

∥eitL f
∥

∥= ‖ f‖ and

ω
π2 ∑

k∈Z

1
(k−1/2)2 = ω , (12)

the series in (11) is convergent and it shows that Rω
D is a bounded operator in H

with the norm ω :

‖Rω
D f‖ ≤ ω‖ f‖, f ∈ H . (13)

The next theorem contains generalizations of several results from the classical
harmonic analysis (in particular the Paley–Wiener theorem) and it follows essen-
tially from our results in [13, 14, 19].

Theorem 3. The following statements hold

1. The set
⋃

ω>0 PWω(D) is dense in H ;
2. The space PWω(D) is a linear closed subspace in H ;
3. A function f ∈ H belongs to PWω(D) if and only if it belongs to the set

D∞ =
∞
⋂

k=1

Dk(D),

and for all s ∈R+ the following Bernstein inequality takes place

‖Ds f‖ ≤ ω s‖ f‖; (14)
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4. A vector f ∈ H belongs to the space PWω f (D),0 < ω f < ∞, if and only if f
belongs to the set D∞, the limit

lim
k→∞

‖Dk f‖1/k

exists and
lim
k→∞

‖Dk f‖1/k = ω f . (15)

5. A vector f ∈ H belongs to PWω(D) if and only if f ∈ D∞ and the upper bound

sup
k∈N

(

ω−k‖Dk f‖
)

< ∞ (16)

is finite,
6. A vector f ∈ H belongs to PWω(D) if and only if f ∈ D∞ and

limk→∞‖Dk f‖1/k = ω < ∞. (17)

In this case, ω = ω f .
7. A vector f ∈ H belongs to PWω(D) if and only if it belongs to the to the set D∞

and the following Riesz interpolation formula holds

(iD)n f = (Rω
D)

n f ,n ∈ N; (18)

8. f ∈ PWω(D) if and only if for every g∈H the scalar-valued function of the real
variable

〈

eitD f ,g
〉

, t ∈ R
1, is bounded on the real line and has an extension to

the complex plane as an entire function of the exponential type ω;
9. f ∈ PWω(D) if and only if the abstract-valued function eitD f is bounded on the

real line and has an extension to the complex plane as an entire function of the
exponential type ω;

10. f ∈ PWω(D) if and only if the solution u(t), t ∈ R
1 of the Cauchy problem for

the corresponding abstract Schrodinger equation

i
∂u(t)

∂ t
= Du(t),u(0) = f , i =

√−1,

has analytic extension u(z) to the complex plane C as an entire function and
satisfies the estimate

‖u(z)‖H ≤ eω |ℑz|‖ f‖H .

3 Direct and Inverse Approximation Theorems

Now we are going to use the notion of the best approximation (2) to introduce
Approximation spaces Eα

2,q(D),0 < α < r,r ∈N,1 ≤ q ≤ ∞, as spaces for which the
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following norm is finite

‖ f‖Eα
2,q(D) = ‖ f‖+

(

∫ ∞

0
(sαE ( f ,s))q ds

s

)1/q

, (19)

where 0 < α < r,1 ≤ q < ∞, or 0 ≤ α ≤ r,q = ∞. It is easy to verify that this norm
is equivalent to the following “discrete” norm

‖ f‖+
(

∑
j∈N

(

a jαE ( f ,a j)
)q

)1/q

,a > 1, (20)

The Plancherel Theorem for FD also gives the following inequality

E ( f ,ω) ≤ ω−k
(

∫ ∞

ω
‖FD(D

k f )(λ )‖2
X(λ )dm(λ )

)1/2

≤ ω−k‖Dk f‖. (21)

In the classical Approximation theory the Direct and Inverse Theorems give
equivalence of the Approximation and Besov spaces. Our goal is to extend these
results to a more general setting.

For any f ∈ H we introduce a difference operator of order m ∈N as

Δ m
τ f = (−1)m+1

m

∑
j=0

(−1) j−1C j
me jτ(iD) f ,τ ∈ R. (22)

and the modulus of continuity is defined as

Ωm( f ,s) = sup
|τ|≤s

‖Δ m
τ f‖ (23)

The following theorem is a generalization of the classical Direct Approximation
Theorem by entire functions of exponential type [8].

Theorem 4. There exists a constant C > 0 such that for all ω > 0 and all f

E ( f ,ω) ≤ C
ωk Ωm−k

(

Dk f ,1/ω
)

,0 ≤ k ≤ m. (24)

In particular, the following embeddings hold true

Bα
2,q(D)⊂ Eα

q (D),1 ≤ q ≤ ∞. (25)

Proof. If h ∈ L1(R) is an entire function of exponential type ω then for any f ∈ H
the vector

g =
∫ ∞

−∞
h(t)eitD f dt
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belongs to PWω(D). Indeed, for every real τ we have

eiτDg =

∫ ∞

−∞
h(t)ei(t+τ)D f dt =

∫ ∞

−∞
h(t − τ)eitD f dt.

Using this formula we can extend the abstract function eiτDg to the complex plane as

eizDg =
∫ ∞

−∞
h(t − z)eitD f dt.

Since by assumption h ∈ L1(R) is an entire function of exponential type ω we have

‖eizDg‖ ≤ ‖ f‖
∫ ∞

−∞
|h(t − z)|dt ≤ ‖ f‖eω |z|

∫ ∞

−∞
|h(t)|dt.

It shows that for every functional g∗ ∈ H the function
〈

eizDg,g∗
〉

is an entire func-
tion and

∣

∣

∣

〈

eizDg,g∗
〉∣

∣

∣≤ ‖g∗‖‖ f‖eω|z|
∫ ∞

−∞
|h(t)|dt.

In other words,
〈

eizDg,g∗
〉

is an entire function of the exponential type ω which is
bounded on the real line and application of the classical Bernstein theorem gives the
following inequality

∣

∣

∣

∣

∣

(

d
dt

)k〈

eitDg,g∗
〉

∣

∣

∣

∣

∣

≤ ωk sup
t∈R

∣

∣

∣

〈

eitDg,g∗
〉∣

∣

∣
.

Since
(

d
dt

)k
〈

eitDg,g∗
〉

=
〈

eitD(iD)kg,g∗
〉

we obtain for t = 0
∣

∣

∣

〈

Dkg,g∗
〉∣

∣

∣≤ ωk‖g∗‖‖ f‖
∫ ∞

−∞
|h(τ)|dτ.

Choosing g∗ such that ‖g∗‖ = 1 and
〈

Dkg,g∗
〉

= ‖Dkg‖ we obtain the following
inequality

‖Dkg‖ ≤ ωk‖ f‖
∫ ∞

−∞
|h(τ)|dτ

which implies that g belongs to PWω(D).
Let

h(t) = a

(

sin(t/n)
t

)n

(26)

where n ≥ m+3 is an even integer and

a =

(

∫ ∞

−∞

(

sin(t/n)
t

)n

dt

)−1

.
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With such choice of a and n the function h will have the following properties:

1. h is an even nonnegative entire function of exponential type one
2. h belongs to L1(R) and its L1(R)-norm is 1
3. the integral

∫ ∞

−∞
h(t)|t|mdt (27)

is finite.

Consider the following vector

Qω,m
h ( f ) =

∫ ∞

−∞
h(t)

{

(−1)m−1Δ m
t/ω f + f

}

dt, (28)

where

(−1)m+1Δ m
s f = (−1)m+1

m

∑
j=0

(−1) j−1C j
me js(iD) f =

m

∑
j=1

b je js(iD) f − f , (29)

and
b1 +b2 + · · ·+bm = 1. (30)

The formulas (28) and (29) imply the following formula

Qω ,m
h ( f ) =

∫ ∞

−∞
h(t)

m

∑
j=1

b je j t
ω (iD) f dt =

∫ ∞

−∞
Φ(t)et(iD) f dt.

where

Φ(t) =
m

∑
j=1

b j

(

ω
j

)

h

(

t
ω
j

)

.

Since the function h(t) is of the exponential type one every function h(tω/ j) is of
the type ω/ j. It also shows that the function Φ(t) is of the exponential type ω as
well.

Now we estimate the error of approximation of f by Qω,m
h ( f ). If the modulus of

continuity is defined as
Ωm( f ,s) = sup

|τ|≤s
‖Δ m

τ f‖ (31)

then since by (28)

f −Qω,m
h ( f ) =

∫ ∞

−∞
h(t)Δ m

t/ω f dt

we obtain

E ( f ,ω) ≤ ‖ f −Qω,m
h ( f )‖ ≤

∫ ∞

−∞
h(t)

∥

∥

∥Δ m
t/ω f

∥

∥

∥dt ≤
∫ ∞

−∞
h(t)Ωm ( f , t/ω)dt.
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Now we are going to use the following inequalities

Ωm ( f ,s) ≤ skΩm−k(D
k f ,s) (32)

Ωm ( f ,as)≤ (1+a)m Ωm( f ,s),a ∈ R+. (33)

The first one follows from the identity

Δ k
t f =

(

eitD − I
)k

f =
∫ t

0
...

∫ t

0
ei(τ1+···+τk)DDk f dτ1...dτk, (34)

where I is the identity operator and k ∈N. The second one follows from the property

Ω1 ( f ,s1 + s2)≤ Ω1 ( f ,s1)+Ω1 ( f ,s2)

which is easy to verify. We can continue our estimation of E( f ,ω).

E ( f ,ω) ≤
∫ ∞

−∞
h(t)Ωm ( f , t/ω)dt ≤ Ωm−k

(

Dk f ,1/ω
)

ωk

∫ ∞

−∞
h(t)|t|k(1+ |t|)m−kdt

≤ Ch
m,k

ωk Ωm−k

(

Dk f ,1/ω
)

,

where the integral

Ch
m,k =

∫ ∞

−∞
h(t)|t|k(1+ |t|)m−kdt

is finite by the choice of h. The inequality (24) is proved and it implies the second
part of the theorem.

In fact, we proved a little bit more. Namely, for the same choice of the function
h the following holds.

Corollary 1. For any 0 ≤ k ≤ m,k,m ∈ N, here exists a constant Ch
m,k such that for

all 0 < ω < ∞ and all f ∈ H the following inequality holds

E ( f ,ω) ≤ ‖Qω,m
h ( f )− f‖ ≤ Ch

m,k

ωk Ωm−k

(

Dk f ,1/ω
)

, (35)

where

Ch
m,k =

∫ ∞

−∞
h(t)|t|k(1+ |t|)mdt,0 ≤ k ≤ m,

and the operator
Qω ,m

h : H → PWω(D)

is defined in (28).

Next, we are going to obtain the Inverse Approximation Theorem in the case
q = ∞.

Lemma 1. If there exist r > α −n > 0,α > 0,r,n ∈N, such that the quantity

bα
∞,n,r( f ) = sup

s>0

(

sn−α Ωr (D
n f ,s)

)

(36)
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is finite, then there exists a constant A = A(n,r) for which

sup
s>0

sαE ( f ,s) ≤ A(n,r)bα
∞,n,r( f ). (37)

Proof. Assume that (5) holds, then

Ωr (D
n f ,s) ≤ bα

∞,n,r( f )sα−n

and (35) implies

E ( f ,s) ≤ Ch
n+r,ns−nbα

∞,n,r( f )sn−α

= A(n,r)bα
∞,n,r( f )s−α . (38)

Lemma is proved.

Lemma 2. If for an f ∈ H and for an α > 0 the following upper bound is finite

sup
s>0

sαE ( f ,s) = T ( f ,α) < ∞, (39)

then for every r > α −n > 0,α > 0,r,n ∈ N, there exists a constant C(α,n,r) such
that the next inequality holds

bα
∞,n,r( f )≤C(α,n,r)(‖ f‖+T( f ,α)) . (40)

Proof. The assumption implies that for a given f ∈ H and a sequence of numbers
a j,a > 1, j = 0,1,2, ... one can find a sequence g j ∈ PWaj(D) such that

‖ f −g j‖ ≤ T ( f ,α)a− jα ,a > 1.

Then for
f0 = g0, f j = g j −g j−1 ∈ PWa j(D), (41)

the series
f = f0 + f1 + f2 + · · · (42)

converges in H . Moreover, we have the following estimates

‖ f0‖= ‖g0‖ ≤ ‖g0 − f‖+‖ f‖ ≤ ‖ f‖+T( f ,α),

‖ f j‖ ≤ ‖ f −g j‖+‖ f −g j−1‖
≤ T ( f ,α)a− jα +T ( f ,α)a−( j−1)α = T ( f ,α)(1+aα)a− jα , (43)

which imply the following inequality

‖ f j‖ ≤C(a,α)a− jα (‖ f‖+T( f ,α)) , j ∈N. (44)
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Since f j ∈ PWaj(D) we have for any n ∈ N

‖Dn f j‖ ≤ a jn‖ f j‖,a > 1, (45)

we obtain
‖Dn f j‖ ≤C(a,α)a− j(α−n) (‖ f‖+T( f ,α))

which shows that the series

∑
j∈N

Dn f j

converges in H and because the operator Dn is closed the sum f of this series
belongs to the domain of Dn and

Dn f = ∑
j∈N

Dn f j .

Next, let Fj = Dn f j then we have that Dn f = ∑ j Fj, where Fj ∈ PWa j(D) and
according to (44) and (45)

‖Fj‖= ‖Dn f j‖ ≤ a jn‖ f j‖ ≤C(a,α)a− j(α−n)(‖ f‖+T( f ,α)). (46)

Pick a positive t and a natural N such that

a−N ≤ t < a−N+1,a > 1, (47)

then we obviously have the following formula for any natural r

Δ r
t Dn f =

N−1

∑
j=0

Δ r
t Fj +

∞

∑
j=N

Δ r
t Fj, (48)

where Δ r
t is defined in (22). Note, that the Bernstein inequality and the formula (34)

imply that if f ∈ PWω(D), then

‖Δ r
t f‖ ≤ (tω)r‖ f‖. (49)

Since (19) and (47) hold we obtain for j ≤ N −1 the following inequalities

‖Δ r
t Fj‖ ≤ (a jt)r‖Fj‖ ≤C(a,α)(‖ f‖+T ( f ,α))a j(n+r−α)−(N−1)r),a > 1.

These inequalities imply
∥

∥

∥

∥

∥

N−1

∑
j=0

Δ r
t Fj

∥

∥

∥

∥

∥

≤C(a,α)(‖ f‖+T ( f ,α))a−r(N−1)
N−1

∑
j=0

a(n+r−α) j

=C(a,α)(‖ f‖+T ( f ,α))a−r(N−1) 1−a(n+r−α)N

1−a(n+r−α)

≤C(a,α,n,r)(‖ f‖+T ( f ,α))tα−n. (50)
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By applying the following inequality

‖Δ r
t Fj‖ ≤ 2r‖Fj‖

to terms with j ≥ N we can continue our estimation as
∥

∥

∥

∥

∥

∞

∑
j=N

Δ r
t Fj

∥

∥

∥

∥

∥

≤ 2rC(a,α)(‖ f‖+T( f ,α))
∞

∑
j=N

a−(α−n) j

=C(a,α)2r(‖ f‖+T( f ,α))a−N(α−n)(1−a(n−α))−1

≤C(a,α,n,r)(‖ f‖+T( f ,α))tα−n. (51)

It gives the following inequality

‖Δ r
t Dn f‖ ≤C(a,α,n,r)tα−n(‖ f‖+T ( f ,α)),

from which one has

Ωr (D
n f ,s) ≤C(a,α,n,r)(‖ f‖+T ( f ,α))sα−n,s > 0,

and
bα

∞,n,r( f ) ≤C(a,α,n,r)(‖ f‖+T( f ,α)).

The Lemma is proved.

Our main result concerning spaces Bα
2,∞(D),α > 0, is the following.

Theorem 5. The norm of the space Bα
2,∞D),α > 0, is equivalent to the following

norms
‖ f‖+ sup

s>0
(sαE ( f ,s)) , (52)

‖ f‖+ sup
s>0

(sαR( f ,s))) , (53)

‖ f‖+ sup
k∈N

(

akαE ( f ,ak)
)

,a > 1, (54)

‖ f‖+ sup
k∈N

(

akαR( f ,ak))
)

,a > 1. (55)

Moreover, a vector f ∈ H belongs to Bα
2,∞(D),α > 0, if and only if there exists a

sequence of vectors fk = fk( f )∈PWak(D),a> 1, such that the series ∑ fk converges
to f in H and

c1‖ f‖Bα
2,∞(D) ≤ sup

k∈N

(

akα‖ fk‖
)

≤ c2‖ f‖Bα
2,∞(D),a > 1, (56)

for certain c1 = c1(D,α),c2 = c2(D,α) which are independent of f ∈ Bα
2,∞(D).

Proof. That the norm of Bα
2,∞(D),α > 0, is equivalent to any of the norms (52)–(55)

follows from the last two Lemmas and (4).
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Next, if the norm (52) is finite then it was shown in the proof of the last Lemma
that there exists a sequence of vectors fk = fk( f ) ∈ PWak(D),a > 1, such that the
series ∑ fk converges to f in H . Moreover, the inequality (44) shows existence of
constant c which is independent of f ∈ Bα

2,∞(D) for which the following inequality
holds

sup
k∈N

(

akα‖ fk‖
)

≤ c‖ f‖Bα
2,∞(D),a > 1,

Conversely, let us assume that there exists a sequence of vectors fk = fk( f ) ∈
PWak(D),a > 1, such that the series ∑ fk converges to f in H and

sup
k∈N

(

akα‖ fk‖
)

< ∞.

We have

E ( f ,aN)≤
∥

∥

∥

∥

∥

f −
N−1

∑
k=0

fk

∥

∥

∥

∥

∥

=
∞

∑
k=N

‖ fk‖ ≤ sup
k∈N

(

akα‖ fk‖
) ∞

∑
k=N

a−α j

≤C sup
k∈N

(

akα‖ fk‖
)

a−Nα ,

or

sup
N

aNαE ( f ,aN)≤C sup
k∈N

(

akα‖ fk‖
)

.

Since we also have

‖ f‖ ≤ ∑
k

‖ fk‖ ≤ sup
k∈N

(

akα‖ fk‖
)

∑
k

a−αk,a > 1,

the theorem is proved.

Theorems 1 and 2 from the Introduction are extensions of the Theorem 5 to all
indices 1 ≤ q ≤ ∞. Their proofs go essentially along the same lines as the proof of
the last theorem and are omitted.
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A Subclass of the Length 12 Parameterized
Wavelets

David W. Roach

Abstract In this paper, a subclass of the length 12 parameterized wavelets is given.
This subclass is a parameterization of the coefficients of a subset of the trigono-
metric polynomials, m(ω), that satisfy the necessary conditions for orthogonality,
that is m(0) = 1 and |m(ω)|2 + |m(ω + π)|2 = 1, but is not sufficient to represent
all possible trigonometric polynomials satisfying these constraints. This parameter-
ization has three free parameters whereas the general parameterization would have
five free parameters. Finally, we graph some example scaling functions from the
parameterization and conclude with a numerical experiment.

1 Introduction

Since the discovery of wavelets in the 1980s, the variety of uses for these functions
has been demonstrated including image compression, de-noising, image recogni-
tion, and the solution of numerical PDE’s to name a few. One restraint with the
development of these applications is the accessibility to a large variety of wavelets
with varying properties. Typically, a researcher has a handful of wavelets to experi-
ment with which include the standard Daubechies orthogonal wavelets as well as a
few biorthogonal wavelets. The Daubechies standard wavelets have minimal phase
and a maximum number of vanishing moments for a variety of lengths. A list of
the trigonometric polynomial coefficients were published in the seminal work [2]
on wavelets. Although the standard wavelets were highlighted because of their min-
imal phase and vanishing moments, a whole continuum of wavelets with varying
properties were identified theoretically in [2] and would be accessible through a
spectral factorization technique. In this paper, we give a simple approach to finding
a closed representation for the coefficients of a subset of the trigonometric poly-
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nomials, m(ω), which satisfy the necessary conditions for the orthogonality of the
associated scaling functions, i.e. m(0) = 1 and |m(ω)|2 + |m(ω + π)|2 = 1, for the
specific length of 12. In earlier papers, [4, 8, 9], the complete necessary and suffi-
cient parameterizations were given for all trigonometric polynomials up to length
ten which satisfy the necessary conditions for orthogonality. Here, we extend the
results to a subclass of the length 12 parameterization which is sufficient to satisfy
the conditions for orthogonality but do not characterize the entire class of length 12
trigonometric polynomials.

Other researchers have investigated the parameterization of orthogonal wavelets
(see [13]). It appears that Schneid and Pittner [11] were the first to give formulas that
would lead to the explicit parameterizations for the class of finite length orthogonal
scaling functions after finding the Kronecker product of some matrices for wavelet
lengths of two through ten. Colella and Heil investigated the length four parameter-
ization in [1]. Others have constructed parameterizations for biorthogonal wavelets
as well as multiwavelets (see [3] and [7]). Regensburger, in [6], constructed the ex-
plicit parameterizations for the orthogonal scaling functions with multiple vanishing
moments up to length ten by first solving the linear system of equations that result
from the vanishing moment conditions and then solving the necessary condition for
orthogonality.

In this current work, we give an explicit parameterization for a subclass of the
length 12 wavelets by forcing an extra nonlinear condition that simplifies the solu-
tion. We then give examples from this continuum of length 12 wavelets that have a
varying number of vanishing moments and conclude with a numerical experiment.

2 The Nonlinear Equations

The necessary conditions for orthogonality are well known in the literature (see
[2, 5], and others). A scaling function φ that satisfies the dilation equation

φ(x) =
N

∑
k=0

hkφ(2x− k)

has an associated trigonometric polynomial m of degree N which can be ex-
pressed as

m(ω) =
N

∑
k=0

hkeikω .

Moreover, it is well known that m can be written as an infinite product. In order for
this product to converge, m must not vanish at the origin, i.e. m(0) = c �= 0. This
condition immediately implies that

N

∑
k=0

hk = 1. (1)
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We have chosen a nonstandard normalization of one in order to avoid carrying
around a

√
2 in our construction. When implementing the coefficients, we rescale

the coefficients to sum to
√

2 in order to maintain orthonormality.
Moreover, the necessary condition for the orthogonality of φ with its integer

shifts is given by
|m(ω)|2 + |m(ω +π)|2 = 1. (2)

This condition is equivalent to the dilation coefficients satisfying a system of non-
linear equations, specifically

N−2 j

∑
k=0

hkhk+2 j =
1
2

δ ( j), j = 0, . . . ,
N −1

2

where δ (0) = 1 and δ ( j) = 0 for j �= 0.
For the length 12 case (i.e. N = 11) that we are currently considering, we have

the following underdetermined nonlinear system:

h2
0 +h2

1+h2
2 +h2

3 +h2
4 +h2

5 +h2
6 +h2

7 +h2
8 +h2

9 +h2
10+h2

11 =
1
2

h0h2 + h1h3 +h2h4 +h3h5 +h4h6 +h5h7 +h6h8 +h7h9 +h8h10+h9h11 = 0

h0h4 +h1h5 +h2h6 +h3h7 +h4h8 +h5h9 +h6h10+h7h11 = 0

h0h6 +h1h7 +h2h8 +h3h9 +h4h10+h5h11 = 0

h0h8 +h1h9 +h2h10+h3h11 = 0

h0h10+h1h11 = 0.

Additionally, these two conditions (1) and (2) imply the zeroth vanishing moment
condition m(π) = 0 or equivalently the linear equations

(N−1)/2

∑
k=0

h2k =
(N−1)/2

∑
k=0

h2k+1 =
1
2
.

Because the products of the coefficients in the system of nonlinear equations have
the pattern that the odd indices multiply the other odd indices and similarly for the
even indices, it is convenient to separate the even indices from the odd indices in the
following fashion

m(ω) =
n

∑
k=0

ake2kiω +bke(2k+1)iω

where we let n = (N −1)/2. Note that, since there are no odd length scaling func-
tions satisfying the necessary condition for orthogonality, N will always be an odd
integer.

As a means of summary with our new notation, we conclude with the following
statements. Given a scaling function φ and its associated trigonometric polynomial

m(ω) =
n

∑
k=0

ake2kiω +bke(2k+1)iω
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of degree 2n+1, the necessary condition for orthogonality,

|m(ω)|2 + |m(ω +π)|2 = 1,

is equivalent to the following system of nonlinear equations:

n− j

∑
k=0

akak+ j +bkbk+ j =
1
2

δ ( j), j = 0, . . . ,n−1

where δ (0) = 1 and δ ( j) = 0 for j �= 0.

3 Length Four

Although the length four parameterization is well known (see [8, 13]), it is used in
the construction of the length 12 parameterization and is presented here for com-
pleteness.

For length four (N = 3 and n = 1), the nonlinear system of equations is

a0 +a1 =
1
2

(3)

b0 +b1 =
1
2

(4)

a2
0 +a2

1 +b2
0 +b2

1 =
1
2

(5)

a0a1 +b0b1 = 0. (6)

Subtracting twice (6) from (5) gives

(a0 −a1)
2 +(b0 −b1)

2 =
1
2
.

This equation allows the introduction of a free parameter, that is,

a0 −a1 =
1√
2

sinθ (7)

b0 −b1 =
1√
2

cosθ . (8)

Combining (3) and (4) with (7) and (8) gives the length four parameterization

a0 =
1
4
+

1

2
√

2
sin θ , b0 =

1
4
+

1

2
√

2
cosθ ,

a1 =
1
4
− 1

2
√

2
sin θ , b1 =

1
4
− 1

2
√

2
cosθ .
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These formulas are well known (see [1,8,13], and others). To aid in the construction
of the longer parameterizations, a different period and phase shift are chosen for
the length four solution, that is θ = 2α − π/4. With this substitution and some
simplification, the length four solution can be written as

a0 =
1
4
(1− cos2α + sin2α)

b0 =
1
4
(1+ cos2α + sin2α)

a1 =
1
4
(1+ cos2α − sin2α)

b1 =
1
4
(1− cos2α − sin2α)

where this form will simplify future computations. It should be noted that this pa-
rameterization is a necessary representation for the coefficients and upon substitut-
ing them back into the system of (3)–(6), we see that they are also sufficient.

4 Length 12 Subclass

For the construction of the complete parameterizations for lengths six, eight, and
ten see [8, 9]. In those constructions, the parameterization describes the complete
set of all trigonometric polynomials that satisfy the necessary conditions for the
orthogonality of the associated scaling functions. For the length 12 case (N = 11
and n = 5), we will impose an additional nonlinear equation that will simplify the
parameterization but will relegate the parameterization to a subclass rather than a
complete characterization.

For the length 12 case, the nonlinear system of equations is given by

a0 +a1 +a2 +a3 +a4 +a5 =
1
2

(9)

b0 +b1 +b2 +b3 +b4 +b5 =
1
2

(10)

a2
0 +a2

1 +a2
2 +a2

3 +a2
4 +a2

5 +b2
0 +b2

1 +b2
2 +b2

3 +b2
4 +b2

5 =
1
2

(11)

a0a1 +a1a2 +a2a3 +a3a4 +a4a5 +b0b1 +b1b2 +b2b3 +b3b4 +b4b5 = 0 (12)

a0a2 +a1a3 +a2a4 +a3a5 +b0b2 +b1b3 +b2b4 +b3b5 = 0 (13)

a0a3 +a1a4 +a2a5 +b0b3 +b1b4 +b2b5 = 0 (14)

a0a4 +a1a5 +b0b4 +b1b5 = 0 (15)

a0a5 +b0b5 = 0 (16)

An important step in the construction is establishing the connection between the
sums of the even and odd indexed coefficients back to the length four parameter-
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ization. More specifically, the sums a0 + a2 + a4, a1 + a3 + a5, b0 + b2 + b4, and
b1 +b3 +b5 satisfy the system of equations associated with the length four param-
eterization, i.e.

(a0 +a2 +a4)+ (a1 +a3 +a5) =
1
2

(b0 +b2 +b4)+ (b1 +b3 +b5) =
1
2

(a0 + a2 + a4)
2 +(a1 +a3 +b5)

2 +(b0 +b2 +b4)
2 +(b1 +b3 +b5)

2 =
1
2

(a0 +a2+a4)(a1 +a3 +b5)+ (b0 +b2+b4)(b1 +b3 +b5) = 0.

The third equation is equivalent to the sum of (11), (13), and (15), and the last one is
equivalent to the sum of (12), (14), and (16). Therefore, we can use the length four
parameterization for these sums, i.e.

a0 +a2 +a4 =
1
4
(1− cos2α + sin2α)

b0 +b2 +b4 =
1
4
(1+ cos2α + sin2α)

a1 +a3 +a5 =
1
4
(1+ cos2α − sin2α)

b1 +b3 +b5 =
1
4
(1− cos2α − sin2α).

In an effort to linearize the system of equations, note that the sum and difference of
(11) and twice (16) give the two equations:

(a0 +a5)
2 +(b0 +b5)

2 =
1
2
−a2

1 −a2
2 −a2

3 −a2
4 −b2

1 −b2
2 −b2

3 −b2
4 (17)

(a0 −a5)
2 +(b0 −b5)

2 =
1
2
−a2

1 −a2
2 −a2

3 −a2
4 −b2

1 −b2
2 −b2

3 −b2
4 := p2 (18)

Although the right hand side, p2, has not yet been determined, we use the fact that
the right-hand sides of (17) and (18) are equivalent and introduce two new free
parameters β and γ in the following fashion:

a0 +a5 = pcosβ
b0 +b5 = psinβ
a0 −a5 = pcosγ
b0 −b5 = psinγ,

which can be solved directly for a0,a5,b0, and b5. There are now eight linear equa-
tions that are each a necessary constraint for all trigonometric polynomials of length
12 which satisfy the necessary conditions for orthogonality. It should be noted that
the nonlinear equation (16) is satisfied.
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Upon examination of (15), we can see that a1,a4,b1, and b4 have an orthogonality
condition with the known coefficients a0,a5,b0, and b5. Using this observation, we
impose an additional constraint which is not part of the original set of nonlinear
equations, i.e.

a1a4 +b1b4 = 0.

This additional constraint allows us to solve for a1,a4,b1, and b4 in the same way
as a0,a5,b0, and b5 since

(a1 + a4)
2 +(b1 +b4)

2 =
1
2
−a2

0 −a2
2 −a2

3 −a2
5 −b2

0 −b2
2 −b2

3 −b2
5

(a1 − a4)
2 +(b1 −b4)

2 =
1
2
−a2

0 −a2
2 −a2

3 −a2
5 −b2

0 −b2
2 −b2

3 −b2
5 := q2

giving us

a1 +a4 = qcosδ
b1 +b4 = qsinδ
a1 −a4 = qcosσ
b1 −b4 = qsinσ ,

which readily gives the solutions for a1,a4,b1, and b4. Plugging these solutions and
the ones for a0,a5,b0, and b5 into (15) yields

1
2

pq(cos(β −δ )− cos(γ −σ)) = 0

which implies p = 0, q = 0 or cos(β − δ ) = cos(γ −σ). The first two possibilities
give us a restricted parameterization of shorter length polynomials. The third pos-
sibility has a continuum of solutions, but for the sake of simplifying the equations,
we choose δ = β and σ = γ . This choice reduces (14) to

p
4
(−4q+ cosβ + cos(2α + γ)+ sinβ − sin(2α + γ)) = 0

which can be solved for q, i.e.

q =
1
4
(cosβ + cos(2α + γ)+ sinβ − sin(2α + γ)) .

Using this parameterization for q and (13) gives us the parameterization for p, i.e,

p =
1
4
(cosβ − cos(2α + γ)+ sinβ + sin(2α + γ)) .

Although these choices for p and q are not necessary, they are sufficient to solve the
nonlinear system of equations and give a three parameter subclass of the length 12
trigonometric polynomials that satisfy the necessary conditions for orthogonality.
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Theorem 1. For any real numbers α,β , and γ , the trigonometric polynomial m(ω)
of the form

m(ω) =
5

∑
k=0

ake2kiω +bke(2k+1)iω

with coefficients defined as

p =
1
4
(cosβ − cos(2α + γ)+ sinβ + sin(2α + γ))

q =
1
4
(cosβ + cos(2α + γ)+ sinβ − sin(2α + γ))

a0 =
p
2
(cosβ + cosγ)

b0 =
p
2
(sinβ + sinγ)

a1 =
q
2
(cosβ + cosγ)

b1 =
q

2
(sinβ + sinγ)

a2 =
1
4
(1− cos2α + sin2α)− p

2
(cosβ + cosγ)− q

2
(cosβ − cosγ)

b2 =
1
4
(1+ cos2α + sin2α)− p

2
(sinβ + sinγ)− q

2
(sinβ − sinγ),

a3 =
1
4
(1+ cos2α − sin2α)− p

2
(cosβ − cosγ)− q

2
(cosβ + cosγ)

b3 =
1
4
(1− cos2α − sin2α)− p

2
(sinβ − sinγ)− q

2
(sinβ + sinγ)

a4 =
q
2
(cosβ − cosγ)

b4 =
q
2
(sinβ − sinγ)

a5 =
p
2
(cosβ − cosγ)

b5 =
p
2
(sinβ − sinγ),

satisfies

m(0) = 1 and |m(ω)|2 + |m(ω +π)|2 = 1.

Proof. A simple verification that these coefficients satisfy the nonlinear system
completes the proof.

A few example parameterized wavelets were selected where the parameters are
given in Table 1. and the graphs of their associated scaling function are given
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Table 1: Parameters associated with some example length 12 parameterized scaling
functions

Wavelet α β γ
B12 -2.24199155163278 -0.963122858225026 -0.720149522024697
C12 -2.07373764689361 -1.00906384228338 -0.826372187328246
S12 1.3 1.9793277207032078 1.9580372879121213
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Fig. 1: Graphs for the parameterized length 12 scaling functions given in Table 1.
(a) B12, (b) C12, (c) S12, and (d) the standard Daubechies scaling function D10 of
length 10

in Fig. 1 along with the standard Daubechies scaling function of length ten. The
examples B12 and C12 each have only one vanishing moment, but were chosen
because of their comparable performance in the image compression scheme. The
example S12 has three vanishing moments and the Daubechies standard wavelet
D10 has five vanishing moments.
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5 A Numerical Experiment

In this section, we present a numerical experiment using image compression as a
comparison for the parameterized wavelets B12, C12, and S12, with the standard
length ten Daubechies wavelet D10 all with periodic boundary extensions and the
FBI biorthogonal 9/7 wavelet with symmetric boundary extensions. Because of its
common use as an industry standard and similar length, we chose to include the
biorthogonal 9/7 wavelet in the comparison. The 9/7 biorthogonal wavelet has one
advantage over the orthogonal parameterized wavelets in that it is symmetric. This
symmetry can be used to improve the performance of image compression at the im-
age boundaries. We have included this advantage in our numerical results (Table 2).

The details of the numerical experiment are as follows:

• Eight level decomposition with periodic boundaries (except for 9/7 which has
symmetric extensions) using D10, B12, C12, S12, and 9/7 FBI for the seven
images in Fig. 2.

• Embedded Zero-tree (EZW) compression (see [12] and [10]) with a file size ra-
tio of 32:1. For this experiment, all of the images are 512× 512 with a PGM
file-size of 256 Kb and a compressed file-size of 8 Kb. This particular EZW im-
plementation is not completely optimized and would not necessarily yield the
maximum PSNR possible but serves well as a comparative measure of the true
compressibility of the wavelet decomposition.

• Eight level reconstruction followed by a Peak Signal to Noise Ratio (PSNR), i.e.

RMSE =

√

√

√

√

1
5122

512

∑
i=1

512

∑
i=1

|Ai, j − Ãi, j|2

PSNR = 20log10

(

255
RMSE

)

where Ai, j is the original matrix of grayscale values and Ãi, j is the compressed
version.

The results from the experiment are given in Table 2.

Table 2: PSNR results for the seven images Barb, Boat, Lena, Marm, Bark, Fing,
and Sand using the wavelets D10, B12, C12, S12, and 9/7 FBI

Wavelet Barb Boat Lena Marm Bark Fing Sand
D10 26.29 28.74 32.30 34.78 21.27 30.14 23.27
B12 26.38 28.74 32.32 35.37 21.45 30.25 23.44
C12 26.22 28.52 31.89 33.92 21.34 30.22 23.33
S12 25.74 28.34 31.58 32.40 21.02 29.66 23.03

FBI9/7 26.30 29.23 32.82 35.12 21.43 30.14 23.46

The best PSNR for each image is boldfaced
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Fig. 2: The seven test images used in the compression scheme (512×512 grayscale
images): (a) Barb, (b) Boat, (c) Lena, (d) Marm, (e) Bark, (f) Fing, and (g) Sand
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Geometric Properties of Inverse Polynomial
Images

Klaus Schiefermayr

Abstract Given a polynomial Tn of degree n, consider the inverse image of R and
[−1,1], denoted by T −1

n (R) and T −1
n ([−1,1]), respectively. It is well known that

T −1
n (R) consists of n analytic Jordan arcs moving from ∞ to ∞. In this paper, we

give a necessary and sufficient condition such that (1) T −1
n ([−1,1]) consists of ν

analytic Jordan arcs and (2) T −1
n ([−1,1]) is connected, respectively.

1 Introduction

Let Pn be the set of all polynomials of degree n with complex coefficients. For
a polynomial Tn ∈ Pn, consider the inverse images T −1

n (R) and T −1
n ([−1,1]),

defined by

T −1
n (R) :=

{

z ∈ C : Tn(z) ∈ R
}

(1)

and

T −1
n ([−1,1]) :=

{

z ∈C : Tn(z) ∈ [−1,1]
}

, (2)

respectively. It is well known that T −1
n (R) consists of n analytic Jordan arcs mov-

ing from ∞ to ∞ which cross each other at points which are zeros of the derivative
T ′

n . In [11], Peherstorfer proved that T −1
n (R) may be split up into n Jordan arcs

(not necessarily analytic) moving from ∞ to ∞ with the additional property that Tn

is strictly monotone decreasing from +∞ to −∞ on each of the n Jordan arcs. Thus,
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T −1
n ([−1,1]) is the union of n (analytic) Jordan arcs and is obtained from T −1

n (R)
by cutting off the n arcs of T −1

n (R). In [14, Theorem 3], we gave a necessary and
sufficient condition such that T −1

n ([−1,1]) consists of 2 Jordan arcs, compare also
[5], where the proof can easily be extended to the case of � arcs, see also [11, Remark
after Corollary 2.2]. In the present paper, we will give a necessary and sufficient con-
dition such that (1) T −1

n ([−1,1]) consists of ν (but not less than ν) analytic Jordan
arcs (in Sect. 2) and (2) T −1

n ([−1,1]) is connected (in Sect. 3), respectively. From
a different point of view as in this paper, inverse polynomial images are considered,
e.g., in [6, 7, 15], and [8].

Inverse polynomial images are interesting for instance in approximation theory,
since each polynomial (suitable normed) of degree n is the minimal polynomial with
respect to the maximum norm on its inverse image, see [2, 4, 10], and [3].

2 The Number of (Analytic) Jordan Arcs of an Inverse
Polynomial Image

Let us start with a collection of important properties of the inverse images T −1
n (R)

and T −1
n ([−1,1]). Most of them are due to Peherstorfer [11] or classical well known

results. Let us point out that T −1
n (R) (and also T −1

n ([−1,1])), on the one hand
side, may be characterized by n analytic Jordan arcs and, on the other side, by n (not
necessarily analytic) Jordan arcs, on which Tn is strictly monotone.

Let C := {γ(t) : t ∈ [0,1]} be an analytic Jordan arc in C and let Tn ∈ Pn be a
polynomial such that Tn(γ(t)) ∈ R for all t ∈ [0,1]. We call a point z0 = γ(t0) a
saddle point of Tn on C if T ′

n (z0) = 0 and z0 is no extremum of Tn on C.

Lemma 1. Let Tn ∈ Pn be a polynomial of degree n.

(i) T −1
n (R) consists of n analytic Jordan arcs, denoted by C̃1,C̃2, . . . ,C̃n, in the

complex plane running from ∞ to ∞.
(ii) T −1

n (R) consists of n Jordan arcs, denoted by Γ̃1,Γ̃2, . . . ,Γ̃n, in the complex
plane running from ∞ to ∞, where on each Γ̃j, j = 1,2, . . . ,n, Tn(z) is strictly
monotone decreasing from +∞ to −∞.

(iii) A point z0 ∈ T −1
n (R) is a crossing point of exactly m, m ≥ 2, analytic Jordan

arcs C̃i1 ,C̃i2 , . . . ,C̃im , 1≤ i1 < i2 < · · ·< im ≤ n, if and only if z0 is a zero of T ′
n

with multiplicity m−1. In this case, the m arcs are cutting each other at z0 in
successive angles of π/m. If m is odd then z0 is a saddle point of Re{Tn(z)}
on each of the m arcs. If m is even then, on m/2 arcs, z0 is a minimum of
Re{Tn(z)} and on the other m/2 arcs, z0 is a maximum of Re{Tn(z)}.

(iv) A point z0 ∈ T −1
n (R) is a crossing point of exactly m, m ≥ 2, Jordan arcs Γ̃i1 ,

Γ̃i2 , . . . ,Γ̃im , 1 ≤ i1 < i2 < · · · < im ≤ n, if and only if z0 is a zero of T ′
n with

multiplicity m−1.
(v) T −1

n ([−1,1]) consists of n analytic Jordan arcs, denoted by C1,C2, . . . ,Cn,
where the 2n zeros of T 2

n − 1 are the endpoints of the n arcs. If z0 ∈ C

is a zero of T 2
n − 1 of multiplicity m, then exactly m analytic Jordan arcs
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Ci1 ,Ci2 , . . . ,Cim of T −1
n ([−1,1]), 1 ≤ i1 < i2 < · · · < im ≤ n, have z0 as com-

mon endpoint.
(vi) T −1

n ([−1,1]) consists of n Jordan arcs, denoted by Γ1,Γ2, . . . ,Γn, with Γj ⊂ Γ̃j,
j = 1,2, . . . ,n, where on each Γj, Tn(z) is strictly monotone decreasing from
+1 to −1. If z0 ∈ C is a zero of T 2

n − 1 of multiplicity m then exactly m
Jordan arcs Γi1 , . . . ,Γim of T −1

n ([−1,1]), 1 ≤ i1 < i2 < · · · < im ≤ n, have z0

as common endpoint.
(vii) Two arcs Cj,Ck, j �= k, cross each other at most once (the same holds for

Γj,Γk).
(viii) Let S := T −1

n ([−1,1]), then the complement C\S is connected.
(ix) Let S := T −1

n ([−1,1]) then, for Pn(z) := Tn((z− b)/a), a,b ∈ C, a �= 0, the
inverse image is P−1

n ([−1,1]) = aS+b.
(x) T −1

n ([−1,1])⊆R if and only if the coefficients of Tn are real, Tn has n simple
real zeros and min

{|Tn(z)| : T ′
n (z) = 0

}≥ 1.
(xi) T −1

n (R) is symmetric with respect to the real line if and only if Tn(z) or
iTn(z) has real coefficients only.

Proof. (i), (iii), (iv), and (xi) are well known.
For (ii), see [11, Theorem 2.2].
Concerning the connection between (iii),(iv) and (v),(vi) note that each zero z0 of
Q2n(z) = T 2

n (z)− 1 ∈ P2n with multiplicity m is a zero of Q′
2n(z) = 2Tn(z)T ′

n (z)
with multiplicity m−1, hence a zero of T ′

n (z) with multiplicity m−1. Thus, (v) and
(vi) follow immediately from (i) and (iii) and (ii) and (iv), respectively.
(vii) follows immediately from (viii).
Concerning (viii), suppose that there exists a simple connected domain B, which
is surrounded by a subset of T −1

n ([−1,1]). Then the harmonic function v(x,y) :=
Im{Tn(x+ iy)} is zero on ∂B thus, by the maximum principle, v(x,y) is zero on B,
which is a contradiction.
(ix) follows from the definition of T −1

n ([−1,1]).
For (x), see [11, Corrolary 2.3].

Example 1. Consider the polynomial Tn(z) := 1+z2(z−1)3(z−2)4 of degree n= 9.
Figure 1 shows the inverse images T −1

n ([−1,1]) (solid line) and T −1
n (R) (dotted

and solid line). The zeros of Tn +1 and Tn −1 are marked with a circle and a disk,
respectively. One can easily identify the n = 9 analytic Jordan arcs C̃1,C̃2, . . . ,C̃n

which T −1
n (R) consists of, compare Lemma 1 (i), and the n = 9 analytic Jordan

arcs C1,C2, . . . ,Cn which T −1
n ([−1,1]) consists of, compare Lemma 1 (v), where

the endpoints of the arcs are exactly the circles and disks, i.e., the zeros of T 2
n −1.

Note that C̃1 = R, C1 = [−0.215 . . . ,0] and C2 = [0,1].

Before we state the result concerning the minimal number of analytic Jordan arcs
T −1

n ([−1,1]) consists of, let us do some preparations. Let Tn ∈ Pn and consider the
zeros of the polynomial T 2

n −1 ∈ P2n. Let {a1,a2, . . . ,a2�} be the set of all zeros of
T 2

n −1 with odd multiplicity, where a1,a2, . . . ,a2� are pairwise distinct and each a j
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Fig. 1: Inverse images T −1
9 ([−1,1]) (solid line) and T −1

9 (R) (dotted and solid line)
for the polynomial T9(z) := 1+ z2(z−1)3(z−2)4

has multiplicity 2β j −1, j = 1, . . . ,2�. Further, let

(b1,b2, . . . ,b2ν) := ( a1, . . . ,a1
︸ ︷︷ ︸

(2β1−1)−times

, a2, . . . ,a2
︸ ︷︷ ︸

(2β2−1)−times

, . . . , a2�, . . . ,a2�
︸ ︷︷ ︸

(2β2�−1)−times

), (3)

thus

2ν =
2�

∑
j=1

(2β j −1), (4)

i.e., b1,b2, . . . ,b2ν are the zeros of odd multiplicity written according to their
multiplicity.

Theorem 1. Let Tn ∈ Pn be any polynomial of degree n. Then, T −1
n ([−1,1]) con-

sists of ν (but not less than ν) analytic Jordan arcs with endpoints b1,b2, . . . ,b2ν if
and only if T 2

n − 1 has exactly 2ν zeros b1,b2, . . . ,b2ν (written according to their
multiplicity) of odd multiplicity.

Proof. By Lemma 1 (v), T −1
n ([−1,1]) consists of n analytic Jordan arcs C1,C2,

. . . ,Cn, which can be combined into ν analytic Jordan arcs in the following way.
Clearly, two analytic Jordan arcs Ci1 and Ci2 can be joined together into one ana-
lytic Jordan arc if they have the same endpoint, which is a zero of T 2

n − 1, and if
they lie on the same analytic Jordan arc C̃i3 of Lemma 1 (i). By Lemma 1 (iii) and
(v), such combinations are possible only at the zeros of T 2

n − 1 of even multiplic-
ity. More precisely, let d1,d2, . . . ,dk be the zeros of T 2

n −1 with even multiplicities
2α1,2α2, . . . ,2αk, where, by assumption,

2α1 +2α2 + · · ·+2αk = 2n−2ν.
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By Lemma 1 (iii) and (v), at each point d j, the 2α j analytic Jordan arcs of
T −1

n ([−1,1]) can be combined into α j analytic arcs, j = 1,2, . . . ,k. Altogether, the
number of such combinations is α1 +α2 + · · ·+αk = n−ν , thus the total number of
n analytic Jordan arcs is reduced by n−ν , hence ν analytic Jordan arcs remain and
the sufficiency part is proved. Since, for each polynomial Tn ∈ Pn, there is a unique
ν ∈ {1,2, . . . ,n} such that T 2

n −1 has exactly 2ν zeros of odd multiplicity (counted
with multiplicity), the necessity part follows.

Example 2. For a better understanding of the combination of two analytic Jordan
arcs into one analytic Jordan arc, as done in the proof of Theorem 1, let us again
consider the inverse image of the polynomial of Example 1.

• The point d1 = 0 is a zero of Tn − 1 with multiplicity 2α1 = 2, thus 2 ana-
lytic Jordan arcs, here C1 and C2, have d1 as endpoint, compare Lemma 1 (v).
Along the arc C̃1, d1 is a maximum, along the arc C̃2, d1 is a minimum, compare
Lemma 1 (iii), thus the 2 analytic Jordan arcs C1 and C2 can be joined together
into one analytic Jordan arc C1 ∪C2.

• The point d2 = 2 is a zero of Tn−1 with multiplicity 2α2 = 4, thus 4 analytic Jor-
dan arcs, here C6, C7, C8 and C9, have d2 as endpoint. Along the arc C̃7 or C̃9, d3

is a maximum, along the arc C̃8 or C̃1, d3 is a minimum, compare Lemma 1 (iii).
Hence, the analytic Jordan arcs C6 and C9 can be combined into one analytic
Jordan arc C6 ∪C9, analogously C7 and C8 can be combined into C7 ∪C8.

• The point a1 = 1 is a zero of Tn − 1 with multiplicity 3, thus 3 analytic Jordan
arcs, here C2, C4 and C5, have a1 as endpoint. Since a1 is a saddle point along
each of the three analytic Jordan arcs C̃1,C̃4,C̃5, compare Lemma 1 (iii), no com-
bination of arcs can be done.

Altogether, we get α1 +α2 = 3 = n− ν combinations and therefore T −1
n ([−1,1])

consists of ν = 6 analytic Jordan arcs, which are given by C1∪C2, C3, C4, C5, C6∪C9

and C7 ∪C8.

Lemma 2. For any polynomial Tn(z) = cnzn + · · · ∈ Pn, cn ∈ C\{0}, there exists a
unique � ∈ {1,2, . . . ,n}, a unique monic polynomial H2�(z) = z2�+ · · · ∈ P2� with
pairwise distinct zeros a1,a2, . . . ,a2�, i.e.,

H2�(z) =
2�

∏
j=1

(z−a j), (5)

and a unique polynomial Un−�(z) = cnzn−�+ · · · ∈ Pn−� with the same leading co-
efficient cn such that the polynomial equation

T 2
n (z)−1 = H2�(z)U

2
n−�(z) (6)

holds. Note that the points a1,a2, . . . ,a2� are exactly those zeros of T 2
n − 1 which

have odd multiplicity.

Proof. The assertion follows immediately by the fundamental theorem of algebra
for the polynomial Q2n(z) :=T 2

n (z)−1= c2
nz2n+ · · · ∈ P2n, where 2� is the number
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of distinct zeros of Q2n with odd multiplicity. It only remains to show that the case
� = 0 is not possible. If � = 0, then all zeros of Q2n are of even multiplicity. Thus
there are at least n zeros (counted with multiplicity) of Q′

2n which are also zeros of
Q2n but not zeros of Tn. Since Q′

2n(z) = 2Tn(z)T ′
n (z), there are at least n zeros

(counted with multiplicity) of T ′
n , which is a contradiction.

Let us point out that the polynomial equation (6) (sometimes called Pell equation)
is the starting point for investigations concerning minimal or orthogonal polynomi-
als on several intervals, see, e.g., [7, 9, 10, 12, 13, 18], and [19].

In [14, Theorem 3], we proved that the polynomial equation (6) (for � = 2) is
equivalent to the fact that T −1

n ([−1,1]) consists of two Jordan arcs (not necessarily
analytic), compare also [5]. The condition and the proof can be easily extended to
the general case of � arcs, compare also [11, Remark after Corollary 2.2]. In addi-
tion, we give an alternative proof similar to that of Theorem 1.

Theorem 2. Let Tn ∈ Pn be any polynomial of degree n. Then T −1
n ([−1,1]) con-

sists of � (but not less than �) Jordan arcs with endpoints a1,a2, . . . ,a2� if and only
if T 2

n − 1 has exactly 2� pairwise distinct zeros a1,a2, . . . ,a2�, 1 ≤ � ≤ n, of odd
multiplicity, i.e., if and only if Tn satisfies a polynomial equation of the form (6)
with H2� given in (5).

Proof. By Lemma 1 (vi), T −1
n ([−1,1]) consists of n Jordan arcs Γ1,Γ2, . . . ,Γn, which

can be combined into � Jordan arcs in the following way: Let d1,d2, . . . ,dk be those
zeros of T 2

n − 1 with even multiplicities 2α1,2α2, . . . ,2αk and let, as assumed
in the Theorem, a1,a2, . . . ,a2� be those zeros of T 2

n − 1 with odd multiplicities
2β1 −1,2β2− 1, . . . ,2β2�−1, where

2α1 +2α2 + · · ·+2αk +(2β1 −1)+ (2β2−1)+ · · ·+(2β2�−1) = 2n (7)

holds. By Lemma 1 (vi), at each point d j, the 2α j Jordan arcs can be combined into
α j Jordan arcs, j = 1,2, . . . ,ν , and at each point a j , the 2β j − 1 Jordan arcs can
be combined into β j Jordan arcs, j = 1,2, . . . ,2�. Altogether, the number of such
combinations, using (7), is

α1 +α2 + · · ·+αν +(β1 −1)+ (β2−1)+ · · ·+(β2�−1) = (n+ �)−2�= n− �,

i.e., the total number n of Jordan arcs is reduced by n− �, thus � Jordan arcs remain
and the sufficiency part is proved. Since, by Lemma 2, for each polynomial Tn ∈ Pn

there is a unique � ∈ {1,2, . . . ,n} such that T 2
n − 1 has exactly 2� distinct zeros of

odd multiplicity, the necessity part is clear.

Example 3. Similar as after the proof of Theorem 1, let us illustrate the combina-
tion of Jordan arcs by the polynomial of Example 1. Taking a look at Fig. 1, one
can easily identify the n = 9 Jordan arcs Γ1,Γ2, . . . ,Γn ∈ T −1

n ([−1,1]), where each
arc Γj runs from a disk to a circle. Note that the two arcs, which cross at z ≈ 0.3,
may be chosen in two different ways. Now, T 2

n − 1 has the zero d1 = 0 with mul-
tiplicity 2α1 = 2, the zero d2 = 2 with multiplicity 2α2 = 4, and a zero a1 = 1
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with multiplicity 2β1 − 1 = 3, all other zeros a j have multiplicity 2β j − 1 = 1,
j = 2,3, . . . ,2�. Thus, it is possible to have one combination at d1 = 0, two com-
binations at d2 = 2 and one combination of Jordan arcs at a1 = 1. Altogether, we
obtain α1 +α2 +(β1 −1) = 4 = n− � combinations and the number of Jordan arcs
is �= 5.

For the sake of completeness, let us mention two simple special cases, first
the case � = 1, see, e.g., [14, Remark 4], and second, the case when all endpoints
a1,a2, . . . ,a2� of the arcs are real, see [9].

Corollary 1. Let Tn ∈ Pn.

(i) T −1
n ([−1,1]) consists of � = 1 Jordan arc with endpoints a1,a2 ∈ C, a1 �=

a2, if and only if Tn is the classical Chebyshev polynomial of the first kind
(suitable normed), i.e., Tn(z) = Tn((2z− a1 − a2)/(a2 − a1)), where Tn(z) :=
cos(narccosz). In this case, T −1

n ([−1,1]) is the complex interval [a1,a2].
(ii) T −1

n ([−1,1]) = [a1,a2]∪ [a3,a4]∪ . . .∪ [a2�−1,a2�], a1,a2, . . . ,a2� ∈ R, a1 <
a2 < · · · < a2�, if and only if Tn satisfies the polynomial equation (6) with H2�

as in (5) and a1,a2, . . . ,a2� ∈ R, a1 < a2 < · · ·< a2�.

Let us consider the case of �= 2 Jordan arcs in more detail. Given four pairwise
distinct points a1,a2,a3,a4 ∈ C in the complex plane, define

H4(z) := (z−a1)(z−a2)(z−a3)(z−a4), (8)

and suppose that Tn(z) = cnzn+ · · · ∈ Pn satisfies a polynomial equation of the form

T 2
n (z)−1 = H4(z)U

2
n−2(z) (9)

with Un−2(z) = cnzn−2+ · · · ∈ Pn−2. Then, by (9), there exists a z∗ ∈C such that the
derivative of Tn is given by

T ′
n (z) = n(z− z∗)Un−2(z). (10)

By Theorem 2, T −1
n ([−1,1]) consists of two Jordan arcs. Moreover, it is proved in

[14, Theorem 3] that the two Jordan arcs are crossing each other if and only if z∗ ∈
T −1

n ([−1,1]) (compare also Theorem 4). In this case, z∗ is the only crossing point.
Interestingly, the minimum number of analytic Jordan arcs is not always two, as the
next theorem says. In order to prove this result, we need the following lemma [14,
Lemma 1].

Lemma 3. Suppose that Tn ∈ Pn satisfies a polynomial equation of the form (9),
where H4 is given by (8), and let z∗ be given by (10).

(i) If z∗ is a zero of Un−2 then it is either a double zero of Un−2 or a zero of H .
(ii) If z∗ is a zero of H then z∗ is a simple zero of Un−2.

(iii) The point z∗ is the only possible common zero of H and Un−2.
(iv) If Un−2 has a zero y∗ of order greater than one then y∗ = z∗ and z∗ is a double

zero of Un−2.
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Theorem 3. Suppose that Tn ∈ Pn satisfies a polynomial equation of the form (9),
where H4 is given by (8), and let z∗ be given by (10). If z∗ /∈ {a1,a2,a3,a4} then
T −1

n ([−1,1]) consists of two analytic Jordan arcs. If z∗ ∈ {a1,a2,a3,a4} then
T −1

n ([−1,1]) consists of three analytic Jordan arcs, all with one endpoint at z∗,
and an angle of 2π/3 between two arcs at z∗.

Proof. We distinguish two cases:

1. Tn(z∗) /∈ {−1,1}: By Lemma 3, T 2
n −1 has 4 simple zeros {a1,a2,a3,a4} and

n−2 double zeros. Thus, by Theorem 1, T −1
n ([−1,1]) consists of two analytic

Jordan arcs.
2. Tn(z∗) ∈ {−1,1}:

2.1 If z∗ ∈ {a1,a2,a3,a4} then, by Lemma 3, T 2
n −1 has 3 simple zeros given

by {a1,a2,a3,a4} \ {z∗}, n− 3 double zeros and one zero of multiplicity
3 (that is z∗). Thus, by Theorem 1, T −1

n ([−1,1]) consists of three analytic
Jordan arcs.

2.2 If z∗ /∈ {a1,a2,a3,a4} then, by Lemma 3, z∗ is a double zero of Un−2. Thus
T 2

n −1 has 4 simple zeros {a1,a2,a3,a4}, n−4 double zeros and one zero
of multiplicity 4 (that is z∗). Thus, by Theorem 1, T −1

n ([−1,1]) consists of
two analytic Jordan arcs.

The very last statement of the theorem follows immediately by Lemma 1 (iii).

Let us mention that in [14], see also [16] and [17], necessary and sufficient con-
ditions for four points a1,a2,a3,a4 ∈ C are given with the help of Jacobian elliptic
functions such that there exists a polynomial of degree n whose inverse image con-
sists of two Jordan arcs with the four points as endpoints. Concluding this section,
let us give two simple examples of inverse polynomial images.

Example 4.

(i) Let a1 =−1, a2 =−a, a3 = a and a4 = 1 with 0 < a < 1 and

H4(z) = (z−a1)(z−a2)(z−a3)(z−a4) = (z2 −1)(z2 −a2).

If

T2(z) :=
2z2 −a2 −1

1−a2 , U0(z) :=
2

1−a2 ,

then
T 2

2 (z)−H4(z)U
2

0 (z) = 1.

Thus, by Theorem 2, T −1
2 ([−1,1]) consists of two Jordan arcs with endpoints

a1, a2, a3, a4, more precisely T −1
2 ([−1,1]) = [−1,−a]∪ [a,1].

(ii) Let a1 = i, a2 =−i, a3 = a− i and a4 = a+ i with a > 0 and

H4(z) = (z−a1)(z−a2)(z−a3)(z−a4) = (z2 +1)((z−a)2+1).
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Fig. 2: The inverse image T −1
2 ([−1,1]) for 0 < a < 2 (left plot), for a = 2 (middle

plot) and for a > 2 (right plot)

If

T2(z) :=
i
a

(

z2 −az+1
)

, U0(z) :=
i
a
,

then
T 2

2 (z)−H4(z)U
2

0 (z) = 1.

Thus, by Theorem 2, T −1
2 ([−1,1]) consists of two Jordan arcs with endpoints

a1, a2, a3, a4. More precisely, if 0 < a < 2,

T −1
2 ([−1,1]) =

{

x+ iy ∈C : − (x−a/2)2

1−a2/4
+

y2

1−a2/4
= 1

}

,

i.e., T −1
2 ([−1,1]) is an equilateral hyperbola (not crossing the real line) with

center at z0 = a/2 and asymptotes y =±(x−a/2).
If a = 2, T −1

2 ([−1,1]) = [i,a− i]∪ [−i,a+ i], i.e., the union of two complex
intervals.
If 2 < a < ∞,

T −1
2 ([−1,1]) =

{

x+ iy ∈ C :
(x−a/2)2

a2/4−1
− y2

a2/4−1
= 1

}

,

i.e., T −1
2 ([−1,1]) is an equilateral hyperbola with center at z0 = a/2, crossing

the real line at a/2±
√

a2/4−1 and asymptotes y =±(x−a/2).
In Fig. 2, the sets T −1

2 ([−1,1]) including the asymptotes are plotted for the
three cases discussed above.

3 The Connectedness of an Inverse Polynomial Image

In the next theorem, we give a necessary and sufficient condition such that the in-
verse image is connected.
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Theorem 4. Let Tn ∈ Pn. The inverse image T −1
n ([−1,1]) is connected if and only

if all zeros of the derivative T ′
n lie in T −1

n ([−1,1]).

Proof. Let Γ :=
{

Γ1,Γ2, . . . ,Γn
}

denote the set of arcs of T −1
n ([−1,1]) as in

Lemma 1 (vi).
“⇐=”: Suppose that all zeros of T ′

n lie in Γ . Let A1 ∈ Γ be such that it contains
at least one zero z1 of T ′

n with multiplicity m1 ≥ 1. By Lemma 1 (ii), (iv) and (vi),
there are m1 additional arcs A2,A3, . . . ,Am1+1 ∈Γ containing z1. By Lemma 1 (vii),

A j ∩Ak = {z1} for j,k ∈ {1,2, . . . ,m1 +1}, j �= k.

Now assume that there is another zero z2 of T ′
n , z2 �= z1, with multiplicity m2, on

A j∗ , j∗ ∈ {1,2, . . . ,m1 + 1}. Since no arc A j, j ∈ {1,2, . . . ,m1 + 1} \ { j∗} contains
z2, there are m2 curves Am1+1+ j ∈ Γ , j = 1,2, . . . ,m2, which cross each other at z2

and for which, by Lemma 1 (vii),

A j ∩Ak = {z2} for j,k ∈ {m1 +2, . . . ,m1 +m2 +1}, j �= k,

A j ∩Ak = /0 for j ∈ {1,2, . . . ,m1 +1} \ { j∗},
k ∈ {m1 +2, . . . ,m1 +m2 +1}

A j∗ ∩Ak = {z2} for k ∈ {m1 +2, . . . ,m1 +m2 +1}.
If there is another zero z3 of T ′

n , z3 /∈ {z1,z2}, on A j∗∗ , j∗∗ ∈ {1,2, . . . ,m1+m2+1},
of multiplicity m3, we proceed as before.
We proceed like this until we have considered all zeros of T ′

n lying on the con-
structed set of arcs. Thus, we get a connected set of k∗+1 curves

A∗ := A1 ∪A2 ∪ . . .∪Ak∗+1

with k∗ zeros of T ′
n , counted with multiplicity, on A∗.

Next, we claim that k∗ = n−1. Assume that k∗ < n−1, then, by assumption, there
exists a curve Ak∗+2 ∈ Γ , for which

Ak∗+2 ∩A∗ = {}
and on which there is another zero of T ′

n . By the same procedure as before, we get
a set A∗∗ of k∗∗+1 arcs of Γ for which A∗ ∩A∗∗ = {} and k∗∗ zeros of T ′

n , counted
with multiplicity. If k∗ + k∗∗ = n− 1, then we would get a set of k∗ + k∗∗ + 2 =
n+1 arcs, which is a contradiction to Lemma 1 (i). If k∗+ k∗∗ < n−1, we proceed
analogously and again, we get too many arcs, i.e., a contradiction to Lemma 1 (vi).
Thus, k∗ = n− 1 must hold and thus Γ is connected.

“=⇒”: Suppose that Γ is connected. Thus, it is possible to reorder Γ1,Γ2, . . . ,Γn

into Γk1 ,Γk2 , . . . ,Γkn such that Γk1 ∪ . . .∪Γk j is connected for each j ∈ {2, . . . ,n}. Now
we will count the crossing points (common points) of the arcs in the following way:
If there are m+1 arcs A1,A2, . . . ,Am+1 ∈Γ such that z0 ∈A j, j = 1,2, . . . ,Am+1, then
we will count the crossing point z0 m-times, i.e., we say A1, . . . ,Am+1 has m crossing
points. Hence, Γk1 ∪Γk2 has one crossing point, Γk1 ∪Γk2 ∪Γk3 has two crossing points,
Γk1 ∪Γk2 ∪Γk3 ∪Γk4 has 3 crossing points, and so on. Summing up, we arrive at n−1
crossing points which are, by Lemma 1 (iv) the zeros of T ′

n .
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Theorem 4 may be generalized to the question how many connected sets
T −1

n ([−1,1]) consists of. The proof runs along the same lines as that of Theorem 4.

Theorem 5. Let Tn ∈ Pn. The inverse image T −1
n ([−1,1]) consists of k, k ∈

{1,2, . . . ,n}, connected components B1,B2, . . . ,Bk with B1 ∪ B2 ∪ . . . ∪ Bk =
T −1

n ([−1,1]) and Bi ∩B j = {}, i �= j, if and only if n− k zeros of the derivative
T ′

n lie in T −1
n ([−1,1]).
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On Symbolic Computation of Ideal
Projectors and Inverse Systems

Boris Shekhtman

Abstract A zero-dimensional ideal J in the ring k[x] of polynomials in d variables is
often given in terms of its “border basis”; that is a particular finite set of polynomials
that generate the ideal. We produce a convenient formula for symbolic computation
of the space of functionals on k[x] that annihilate J. The formula is particularly
useful for computing an explicit form of an ideal projector from its values on a
certain finite set of polynomials.

1 Introduction

Throughout, k will stand for the field of complex numbers or the field of real num-
bers, k[x] := k [x1, . . . ,xd ] will denote the space (algebra, ring) of polynomials in d
indeterminants with coefficients in the field k and (k[x])′ is the algebraic dual of
k[x], i.e., the space of all linear functionals on k[x].

Definition 1 ([1]). A linear idempotent operator P : k[x] → k[x] is called an ideal
projector if kerP is an ideal in k[x].

Lagrange interpolation projectors, Taylor projectors and, in one variable, Hermite
interpolation projectors are all examples of ideal projectors. Thus, the study of ideal
projectors holds a promise of an elegant extension of operators, traditionally used in
approximation theory, to multivariate setting. The theory was initiated by Birkhoff
[1], Carl de Boor [2], de Boor and Ron [1], Mőller [7], and Sauer [10].
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Any finite-dimensional projector, ideal or not, can be written as

P f =∑λ j( f )g j (1)

where (g j) ⊂ k[x] is a (linear) basis for the range of P and (λ j) ⊂ (k[x])′ are dual
functionals:

λk (g j) = δk, j (2)

forming a basis in the space

ranP∗ = (kerP)⊥

Thus, the functionals (λ j) determine the kernel of P

kerP =
{

f ∈ k[x] : λ j( f ) = 0 for all j
}

.

Conversely, the kernel of P determines the span of (λ j) since

span
{

λ j
}

= (kerP)⊥.

When the projector P is ideal, its kernel is often given by the ideal basis, a finite set
of polynomials that generate the ideal kerP and thus the projector P is define by its
values on a finite subsets of polynomials. The purpose of this note is to present a
convenient formula (9) for symbolic computation of the functionals (λ j) from these
values.

To expand on this point, recall

Theorem 1 ([2]). A linear operator P : k[x]→ k[x] is an ideal projector if and only if

P( f g) = P( f ·P(g)) (3)

for all f ,g ∈ k[x].

In terms of the quotient algebra k[x]/kerP, (3) says that [ f [g]] = [ f g] ∈ k[x]/J,
for all f ,g ∈ k[x].

Let G ⊂ k[x] stand for a finite-dimensional range of the projector P, and let g=
(g1, . . . ,gN) be a linear basis for G. We define the border for g to be

∂g := {1,xigk, i = 1, . . . ,d,k = 1, . . . ,N}\G.

By the de Boor’s formula (3), the ideal projector is completely determined by its
finitely many values (cf. [2])

{P f , f ∈ ∂g}. (4)

Equivalently, the polynomials { f −P f , f ∈ ∂g} form an ideal basis, called the bor-
der basis (cf. [5, 9, 11]) for the ideal kerP.

The formula (9) computes the functionals λ j from the finitely many values of the
ideal projector given by (4).
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2 Preliminaries

2.1 Multiplication Operators

Using the polynomials (4) one can define a sequence of multiplication operators on
G: MP,g = (M1, . . . ,Md) where

Mi(g) = P(xig) . (5)

With the aid of (3) it is easy to see (cf. [2, 11]) that this is a sequence of pairwise
commuting operators with the cyclic vector P1:

{p(MP,g)(P1), p ∈ k[x]}= G.

The sequence MP,g is similar (literally and figuratively) to the operators of multipli-
cation by xi on k[x]/J.

There is a partial converse to this statement ([4, 8, 11]): every cyclic sequence
L = (L1, . . . ,Ld) of commuting operators on a finite-dimensional subspace G ⊂ k[x]
defines the (unique) ideal projector. The sequence of multiplication operators for
this projector is similar to L.

2.2 Duality

The space of all formal power series in x is denoted by k[[x]]. For λ̂ ∈ k[[x]], we
use λ̂ (D) to denote the differential operator on k[x] obtained by formally replacing
the indeterminants with the corresponding partial derivatives with respect to these
indeterminants. Every λ̂ ∈ k[[x]] defines a linear functional λ on k[x] by

λ ( f ) :=
(

λ̂ (D) f
)

(0) for every f ∈ k[x].

It is well-known (cf. [1] and [6] in its original form) that the map

λ̂ �−→ λ

defined by the display above is a linear isomorphism between k[[x]] and (k[x])′.
Thus, every functional λ is identified with the power series λ̂ ∈ k[[x]] and, when
there is no possibility for confusion, we will denote both by the same letter. For
instance, the point evaluation functional (k[x])′ 	 λ : λ ( f ) := f (z) is identified with
the power series for the exponential function λ (x) = ex·z.

For a set J ⊂ k[x], we define

J⊥ := {λ ∈ k[[x]] : λ ( f ) = 0 for every f ∈ J}.
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For every f ∈ k[x] we have (cf. [1, 6])

(Diλ )( f ) = λ (xi f ) . (6)

That is, the operator Di is the adjoint to the operator of multiplication by independent
variable on k[x].

A linear subspace Λ ⊂ k[[x]] is D-invariant if Diλ ∈Λ for every λ ∈Λ and every
i = 1, . . . ,d. The next theorem (cf. [1]) is an easy consequence of (6):

Theorem 2 ([6]). A subspace J ⊂ k[x] is an ideal if and only if J⊥ ⊂ k[[x]] is D-
invariant.

3 The Main Result

Theorem 3. Let P : P f =
N
∑
j=1

λ j( f )g j be a N-dimensional ideal projector on k[x].

Let g= (g1, . . . ,gN) be a basis for ran P and let M̃P,g =
(

M̃1, . . . ,M̃d
)

be the matri-
ces representing the operators Mi defined by (5) in the basis g. Then

λ := (λ1, . . . ,λN)
t = e

(

d
∑

i=1
xiM̃i

)

λ (0). (7)

Proof. First, we claim that

Mt
i = Di |G .

Indeed, for every g ∈ G = ranP and every λ ∈ ranP∗ = (kerP)⊥ we have λ (Mig) =
(Mt

i λ ) (g). On the other hand

λ (Mig) = λ (P(xig)) = (P∗λ )(xig) = λ (xig) = (Diλ )(g),

where the second equality follows from λ ∈ (kerP∗)⊥ = ranP∗ and the last from (6).
This means that

(Diλk) =
N

∑
j=1

m(i)
j,kλ j, (8)

where m(i)
j,k is the j,k-th entry in the matrix M̃t

i . By D-invariance, Diλk =
N
∑
j=1

a(i)j,kλ j

for some coefficients a(i)j,k. Since (λ j) is a basis in ran P∗ it follows that a(i)j,k = m(i)
j,k.

The display (8) means that, as a vector-valued function of x1, λ is the solution of
the initial value problem

D1u = M̃1u, u(0) = λ (0,x2, . . . ,xd) .

Thus,

λ = ex1M̃1 u(0) = ex1M̃1 λ (0,x2, . . . ,xd) .



On Symbolic Computation of Ideal Projectors and Inverse Systems 293

Next, we observe that, as a vector-valued function of x2, ex1M̃1 λ (0,x2, . . . ,xd) solves
the initial value problem

D2u = M̃2u, u(0) = λ (x1,0,x3, . . . ,xd) = ex1M̃1 λ (0,0,x3, . . . ,xd) .

Hence,

λ = ex1M̃1 ex2M̃2 λ (0,0,x3, . . . ,xd) = ex1M̃1+x2M̃2 λ (0,0,x3, . . . ,xd) .

Repeating this process d−2 more times we obtain (7).

Corollary 1. Suppose that g1 = 1 ∈ ranG. Then

λ = (λ1, . . . ,λN)
t = e

(

d
∑

i=1
xiM̃i

)

e1, (9)

where e1 = (1,0, . . . ,0)t ∈ k
N.

Proof. Observe that for every λ ∈ k[[x]] we have λ (D)1 = λ (0). Since, by (2),
(λ j(D)1)(0) = λ j (g1) = δ j,1 it follows that λ j(0) = δ j,1.

Remark 1. The formula (9) can be interpreted algebraically in terms of an inverse
systems for the quotient ring of a zero-dimensional ideal. For a zero-dimensional
ideal J ⊂ k[x], we define multiplication operators M̂i on k[x]/J by

M̂i[ f ] = [xi f ]

and the matrices M̃i as the matrices of the operators M̂i in any linear basis for k[x]/J.
Then the formula (8) gives a linear basis for the Macaulay inverse systems (cf. [6])
for k[x]/J.

The formula can also be interpreted as follows: Any N-dimensional D-invariant
subspace of k[[x]] has a basis of the form (9) for some cyclic sequence of commuting
matrices

(

M̃1, . . . ,M̃d
)

. Conversely, every cyclic sequence of commuting matrices
(

M̃1, . . . ,M̃d
)

generate an N-dimensional D-invariant subspace of k[[x]] via (9).

4 A Couple of Examples

Both example will deal with the ideal projector onto the span of g= (1,x,y); hence,
∂g=

{

x2,xy,y2
}

.

Example 1. Define Px2 = Pxy = Py2 = 0. Then the matrices of multiplication oper-
ators in the basis g are

M1 =

⎡

⎣

0 0 0
1 0 0
0 0 0

⎤

⎦ , M2 =

⎡

⎣

0 0 0
0 0 0
1 0 0

⎤

⎦ .
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It is easy to verify that these matrices commute, hence define an ideal projector P.
Maple computations give

(

exM1+yM2
)

⎡

⎣

1
0
0

⎤

⎦=

⎡

⎣

1
x
y

⎤

⎦

and
P f = f (0)1+(Dx f ) (0)x+(Dy f ) (0)y

is the Taylor projector onto first degree polynomials.

Example 2. Define Px2 = y, Pxy = Py2 = 0. Then the matrices of multiplication
operators in the basis g are

M1 =

⎡

⎣

0 0 0
1 0 0
0 1 0

⎤

⎦ , M2 =

⎡

⎣

0 0 0
0 0 0
1 0 0

⎤

⎦ .

Again, it is easy to verify that these matrices commute, hence define an ideal pro-
jector P. Maple computations give

(

exM1+yM2
)

⎡

⎣

1
0
0

⎤

⎦=

⎡

⎣

1
x

1
2 x2 + y

⎤

⎦

and the ideal projector given by

P f = f (0)1+(Dx f ) (0)x+

(

1
2

D2
x +Dy

)

f (0)y

is the ideal projector in question.
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Abstract Let Ω ⊂ R
3 be a connected polyhedral domain that is allowed to con-

tain polyhedral holes and Δ be a tetrahedral partition of Ω . Given 0 ≤ r ≤ d, we
define

Sr
d(Δ) = {s ∈Cr(Ω); s|σ ∈ Pd for any tetrahedronσ ∈ Δ)},

the spline space of degree d and smoothness r, where Pd is the trivariate polynomial
space of total degree not exceeding d.

In this paper, we obtained the following result.

Theorem

dimS1
8(Δ) = ∑

v∈V
dimS1

3(Star(v))+ 5|E|+9|F|+ |T |+3|Eb|+3|Eδ |,

where V,E,F,T,Eb, and Eδ are the sets of vertices, edges, triangles, tetrahedra,
boundary edges, and singular edges of Δ , respectively.
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1 Introduction

We first introduce some terminology. Let V = {v1, . . . ,vn+1} ⊂ R
n be a set of n+1

points which are in general position, i.e., {v1−vn+1, . . . ,vn−vn+1} is a basis of Rn.
The convex hull [V ] of V is called a n-simplex. The convex hull of m+1 points of V
is also a simplex, called an m-face. A 0-face is called a vertex, a 1-face is called an
edge, a 2-face is called a triangle, a 3-face is called a tetrahedron, and an (n− 1)-
face is called a facet. For an n-simplex σ , we denote by Facei(σ) the collection of
all i-faces of σ and Face(σ) =

⋃n
i=0 Facei(σ).

Definition 1. A simplicial complex Δ in R
n is a collection of simplices in R

n such
that

• Every simplex of Δ is a face of a n-simplex of Δ or itself is a n-simplex,
• Every face of a simplex of Δ is still in Δ , and
• The intersection of any two simplices of Δ is empty or a face of each other.

Similar to a simplex, for a simplicial complex Δ we denote by Facei(Δ) the col-
lection of all i-simplices of Δ . We denote by Ω =

⋃

σ∈Facen(Δ ) σ the region covered
by the simplicial complex Δ . A simplex δ ∈ Δ is called boundary if δ ⊂ ∂Ω , the
boundary of Ω ; otherwise, it is called inner (or interior).

For a simplex σ of Δ , we denote by

Star(σ) = {δ ∈ Δ ; σ is a face of δ}

the simplicial complex formed by the collection of all the simplices (together with
their faces) with σ as a common face. Star(σ) is called the σ -star of σ .

For an m-simplex σ = [v0,v1, . . . ,vm], we denote by

Dk
vi,σ =

m

∏
j=0, j �=i

D
kj
v j−vi

the mixed directional derivative of order k = (k0, . . . , ̂ki, . . . ,km) ∈ Zm
+ (Z+ is the set

of all nonnegative integers), where ̂ki means that the component ki in k is missing,

Dv j−vi = (v j −vi) ·� the directional derivative of v j −vi, and D
kj
v j−vi

= ((v j −vi) ·
�)k j (� is the gradient vector).

Similarly, for an i-simplex σ = [v0,v1, . . . ,vi] (i ≥ 1), if [v0,v1, . . . ,vi,w] is an (i+
1)-simplex, we denote by

Dk
σ ,w =

∂ k

∂nk
σ ,w

the directional derivative of order k along nσ ,w, where nσ ,w is the unit inner normal
vector of [v0,v1, . . . ,vi,w] to σ .
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More generally, if W = {w1,. . .,wm}(m≥ 1) such that δ = [v0,v1,. . .,vi,w1, . . . ,wm]
is an (m+ i)-simplex, we denote

Dk
σ ,W = ∏

w∈W
Dkw

σ ,w or Dk
σ ,δ = ∏

w∈W
Dkw

σ ,w,

where σ = [v0,v1, . . . ,vi]. We also denote by

δ/σ = [0,nσ ,w1 ,nσ ,w2 , . . . ,nσ ,wm ]

the simplex composed of the original and the normal vectors nσ ,w1 ,nσ ,w2 , . . . ,nσ ,wm ,
where we identify a vector as a point which has the same components with this
vector.

For an i-simplex σ of a simplicial complex Δ in R
n, we define the simplicial

complex
TStar(σ) = {δ/σ ; δ ∈ Facen(Star(σ))}

the transversal star of σ , where we assume that TStar(σ) also contains all faces of
δ/σ and ask i ≤ n−1. Clearly, TStar(σ) is a simplicial complex in R

n−i. TStar(σ)
is called the σ -TStar of σ .

For convenience, we call a simplicial complex in R
3 a tetrahedral partition. For a

tetrahedral partition Δ , we introduce the following definition.

Definition 2. For an edge e ∈ Face1(Δ), the degree of e, denoted by degree(e), is
the number of triangles in Star(e) sharing e as a common edge. An inner edge e of Δ
is called odd (even) if degree(e) is odd (even) and it is called singular if degree(e)=4
and these four triangles are pairwise coplanar.

In addition, we denote
|v|= v1 + · · ·+ vm

for a vector v = (v1, . . . ,vm) ∈ R
m and |V | the number of elements of a set V .

Let Ω ⊂ R
3 be a connected polyhedral domain which is allowed to contain polyhe-

dral holes and Δ be a tetrahedral partition of Ω , i.e., Ω =
⋃

σ∈Δ σ . Given 0 ≤ r ≤ d,
we define

Sr
d(Δ) = {s ∈Cr(Ω); s|σ ∈ Pd for any σ ∈ Face3(Δ)}

the spline space of degree d and smoothness r, where Pd is the trivariate polyno-
mial space of total degree not exceeding d. For convenience, we define S−1

d (Δ) the
collection of all functions whose restrictions to a tetrahedron σ ∈ Face3(Δ) belong
to Pd .
Clearly, Sr

d(Δ) is a linear space with finite dimension. In particular, if we denote by
dimSr

d(Δ) the dimension of Sr
d(Δ), then dimSr

d(Δ) ≤ dimS−1
d (Δ) = 1

6(d + 3)(d +
2)(d + 1)|Face3(Δ)|. Owing to the importance in a variety of areas, including fi-
nite element method, wavelets, data fitting, and computer aided geometric design,
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spline spaces are extensively studied. Among others, the dimension problem of
spline spaces attracts considerable attention in the study. This paper is devoted to
the dimension problem. In this paper, we obtain the dimension of S1

8(Δ), where Δ
is a tetrahedral partition.

For Δ being a triangulation, i.e., a simplicial complex in R
2, the dimensions of the

spline spaces Sr
d(Δ) are obtained in the following cases: dimS1

d(Δ)(d ≥ 5) is ob-
tained by Morgan and Scott ([5]); dimSr

d(Δ)(d ≥ 4r + 1) is respectively obtained
by Wang and Lu ([11]) and Alfeld and Schumaker ([2]); Dong ([4]) solved the case
d ≥ 3r+ 2; and dimS1

4(Δ) is obtained by Alfeld et al. ([1]). In the case where Δ is
a tetrahedral partition, X. Shi ([9] and [10]) found dimSr

d(Δ) for d ≥ 8r + 1 for a
general tetrahedral partition and dimS1

d(Δ) (d ≥ 7) ([9] and [10]) for an odd tetra-
hedral partition. A tetrahedral partition Δ is odd if it has only odd inner edges or
singular edges. For a generic tetrahedral partition Δ , Alfeld/Schumaker/Whiteley
([3]) obtained dimS1

d(Δ)(d ≥ 8) and X. Shi ([6]) obtained dimS1
7(Δ). A tetrahe-

dral partition Δ is called generic provided that for a sufficiently small perturbation
of the location of the vertices of Δ , the resulting tetrahedral partition ˜Δ satisfies
dimSr

d(
˜Δ)=dimSr

d(Δ). For a general simplicial complex Δ in R
n, dimSr

d(Δ) was
obtained by Shi ([10]) if d ≥ 2nr+1.

2 Main Results

In this section, Δ represents a tetrahedral partition unless stated otherwise. Similar
to Alfeld/Schumaker/Whiteley ([3]), we use the following notations.

Vb = the set of boundary vertices of Δ ,
VI = the set of inner vertices of Δ ,
Eb = the set of boundary edges of Δ ,
EI = the set of inner edges of Δ ,
Ee = the set of even edges of Δ ,
Eo = the set of odd edges of Δ ,
Eδ = the set of singular edges of Δ ,
Fb = the set of boundary triangular faces of Δ ,
FI = the set of inner triangular faces of Δ ,
V = VI

⋃

Vb, E = EI
⋃

Eb, F = FI
⋃

Fb,
T = the set of tetrahedra of Δ ,

Ev = {e ∈ E; v is a vertex of e},
Fδ = { f ∈ F ; δ is a face of f},
Tδ = {t ∈ T ; δ is a face of t},
E∂

v = Ev
⋂

Eb, Eδ
v = Ev

⋂

Eδ .

(1)

In this paper, we will prove the following main result.
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Theorem 1. Let Δ be a tetrahedral partition. Then

dimS1
8(Δ) = ∑v∈V

(

dimS1
3(Star(v))+Nv

)

+∑e∈E

(

dimS1
2(TStar(e))−3

)

+|E|+3|F|+ |T |,
(2)

where Nv = 2|Ev|+ |E∂
v |+ |Eδ

v |+ |Fv|.
Remark 1. For Δ being a triangulation, dimS1

d(Δ) (d ≥ 5) is obtained by Mor-
gan/Scott in 1975 ([5]), but dimS1

4(Δ) is obtained by Alfeld/Piper/Schumaker in
1987 ([1]). This is because that the method of deriving dimS1

4(Δ) is very different
and more difficult than that of deriving dimS1

d(Δ) (d ≥ 5).

Remark 2. Similarly, for Δ being a tetrahedral partition, the method of obtaining
dimS1

8(Δ) is also very different from and much difficult than the method of obtaining
dimS1

d(Δ)(d ≥ 9).

Remark 3. Obtaining dimS1
3(Star(v)) is even more difficult than obtaining both

dimS1
2(Δ) and dimS1

3(Δ), the still famous open problems, where Δ is a general trian-
gulation. In fact, let Δ be a (n−1)-simplicial complex embedded in the coordinate
superplane xn=0 of Rn and v ∈ R

n be a point out of the superplane xn=0. Denote by
Star(v) the star formed by respectively joining v to all vertices of Δ . Then, it holds
that ([7–9])

dimSr
d(Star(v)) =

d

∑
k=0

dimSr
k(Δ).

Especially, let n = 3,r = 1,d = 3, then

dimS1
3(Star(v)) = 4+dimS1

2(Δ)+ dimS1
3(Δ).

This means that to obtain dimS1
3(Star(v)), one has to obtain both dimS1

2(Δ) and
dimS1

3(Δ).

It is easy to obtain

dimS1
2(TStar(e)) = degree(e)+ 3+ δe+∂e,

where δe = 1 if e is a singular edge; otherwise δe = 0, and ∂e = 1 if e is a boundary
edge; otherwise ∂e = 0. From the above equality, we have

∑
e∈E

(

dimS1
2(TStar(e))−3

)

= ∑
e∈E

(degree(e)+ δe+ ∂e) = 3|F|+ |Eb|+ |Eδ |. (3)

Similarly, it holds

∑v∈V |Ev|= 2|E|, ∑v∈V |E∂
v |= 2|Eb|, ∑v∈V |Eδ

v |= 2|Eδ |, ∑v∈V |Fv|= 3|F|. (4)
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According to (3) and (4), Theorem 1 can be rewrite as

Theorem 2.

dimS1
8(Δ) = ∑v∈V dimS1

3(Star(v))+ 5|E|+9|F|+ |T |+3|Eb|+3|Eδ |. (5)

For convenience, we denote v1, v2, · · · , vn0 (n0 = |V |) are all vertices of Δ , e1, e2,
· · · , en1 (n1 = |E|) are all edges of Δ , and δ1, δ2, · · · , δm2 , δm2+1, . . . , δn2 (n2 = |F |)
are all vertices of Δ with first m2 triangles are inner.

The remainder of this paper is dedicated to prove Theorem 1. The key to prove
Theorem 1 is the analysis of how to obtain the numbers Nv’s.

For a polynomial p of degree 8 defined on a tetrahedron σ = [v0,v1,v2,v3], it has
the following Bézier form:

p(x) = ∑
|i|=8

ci
8!
i!

ui, (6)

where i = (i0, i1, i2, i3) ∈ Z4
+, i! = i0! i1! i2! i3!, and u = (u0,u1,u2,u3) are the

barycentric coordinates of x with respect to σ , i.e., x = u0v0 +u1v1 +u2v2 +u3v3,
and ui = ui0

0 ui1
1 ui2

2 ui3
3 . ci’s are called Bézier coefficients of p.

Lemma 1. A polynomial p(x) of degree 8 defined on σ is uniquely determined by
its following values and Bézier coefficients:

1. Cj = {ci; i j ≥ 4}, 0 ≤ j ≤ 3, where i = (i0, i1, i2, i3). We should note that Cj
⋂

Ck

is not empty even for j �= k. They have the common element c(ī0,ī1,ī2,ī3); where
īt = 4 if t = j or k; otherwise īt = 0.

2. For any edge e of σ , the values are

{Dk
e,σ p(me); |k|= 2},

where me is the centroid of the edge e.
3. For any triangle face δ of σ , we select a unit normal vector nδ of δ . Assume that

n1δ and n2δ are two unit vectors such that nδ , n1δ and n2δ are perpendicular to
each other. Then, the values are

{∂ p(mδ )

∂nδ
,

∂ 2 p(mδ )

∂ nδ ∂n1δ
,

∂ 2 p(mδ )

∂ nδ ∂n2δ
},

where mδ is the centroid of the triangle δ .
4. For σ itself, the values is

{p(mσ)},
where mσ is the centroid of σ .

The proof of Lemma 1 is straightforward.
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For a spline s ∈ S−1
8 (Δ), its restriction pσ = s|σ to a tetrahedron σ ∈ Δ has the

following Bézier form

pσ (x) = ∑
|i|=8

cσ
i

8!
i!

ui
σ , (7)

where the notations are similar to that in (6). {cσ
i ; σ ∈ T and |i| = 8} are called

Bézier coefficients of s. Then, similar to Lemma 1, we have the following lemma.

Lemma 2. s ∈ S−1
8 (Δ) is uniquely determined by its following values and Bézier

coefficients:

1. For any vertex v ∈V, the coefficients are

Ck
v = {cσ

i ; ∀ σ = [v,vσ1,vσ2,vσ3] ∈ T, i = (i0, i1, i2, i3) ∈ Z4
+, |i|= 8, i0 ≥ k},

where k = 4.
2. For any edge e ∈ E, the values are

E ′
e = {Dk

e,σ pσ(me); ∀σ ∈ Te and |k|= 2},

where me is the centroid of the edge e.
3. For any triangle face δ ∈ F, we select a unit normal vector nδ of δ . Assume that

n1δ and n2δ are two unit vectors such that nδ , n1δ and n2δ are perpendicular to
each other. Then, the values are

T ′
δ = {∂ pσ(mδ )

∂nδ
,

∂ 2 pσ (mδ )

∂nδ ∂n1δ
,

∂ 2 pσ (mδ )

∂nδ ∂n2δ
; ∀σ ∈ Tδ},

where mδ is the centroid of the triangle δ .
4. For a tetrahedron σ ∈ T , the values is

{pσ(mσ )},

where mσ is the centroid of the edge σ . We denote

xT = (pσ1(mσ1), pσ2(mσ2), · · · , pσn3
(mσn3

))
′
, (8)

where σi, 1 ≤ i ≤ n3 = |T | are all tetrahedra in Δ and x
′

means the transpose of
vector x.

Two tetrahedra is called i-face adjacent if they have a common i-face. For two 2-
face adjacent tetrahedra, say σ = [v0,v1,v2,v3] and σ̄ = [v0,v1,v2, v̄3], we denote
δ = [v0,v1,v2] and ei = [v j,vk], where {i, j,k} = {0,1,2}.

C0 conditions. If s ∈ S−1
8 (Δ) is determined by its Bézier coefficients and values

given in Lemma 2, the necessary and sufficient condition of s ∈ S0
d(Δ) is that for any
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two 2-face adjacent tetrahedra of Δ , say σ = [v0,v1,v2,v3] and σ̄ = [v0,v1,v2, v̄3],
it holds the following conditions:

⎧

⎨

⎩

cσ
(i0,i1,i2,0)

= cσ̄
(i0,i1,i2,0)

where i0 + i1 + i2 = 8 and max{i0, i1, i2} ≥ 4

D2
ei,vi

pσ (mei) = D2
ei ,vi

pσ̄ (mei), i = 0,1,2.
(9)

In fact, the restriction pσ |δ of pσ to δ is uniquely determined by {cσ
(i0,i1,i2,0)

; i0 +

i1+ i2 = 8,max{i0, i1, i2}≥ 4}⋃{D2
ei,vi

pσ (mei); i= 0,1,2} and the restriction pσ̄ |δ
of pσ̄ to δ is uniquely determined by {cσ̄

(i0,i1,i2,0)
; i0 + i1 + i2 = 8,max{i0, i1, i2} ≥

4}⋃{D2
δi,vi

pσ̄ (mδi
); i = 0,1,2}, respectively. Therefore, pσ |δ = pσ̄ |δ iff (9) holds,

i.e., s ∈ S0
8(Δ) if (9) holds.

C1 conditions. For convenience, we will divide Bézier coefficients and the function
values in Lemma 2 into different classes. Correspondingly, the C1 conditions of
s ∈ S0

8(Δ) are also divided into different classes.

1. The first class is composed of Bézier coefficients of C5
v as defined in Lemma 2.

Correspondingly, C1 conditions among C5
v are called vertex-C1 conditions with

respect to v.
2. For a vertex v∈V and an edge e= [v,w]∈E , the second class Bézier coefficients

is a subset of C4
v\C5

v given by

Cv,e = {cσ
i ; ∀σ = [v,w,v1,v2] ∈ T, i = (4, iw, i1, i2), iw ≥ 2, |i|= 8}. (10)

Any C1 condition of s involves Cv,e is called a vertex-edge-C1 condition with
respect to v and e.

3. The third class is E ′
e (defined in Lemma 2). Any C1 condition of s involves E ′

e for
is called an edge-C1 condition with respect to e .

4. The fourth class is T ′
δ (defined in Lemma 2). Any C1 condition of s related to T ′

δ
for some δ is called a triangle-C1 condition.

By the classification as above, we have

Lemma 3. If s ∈ S0
8(Δ) is determined by its Bézier coefficients and values given in

Lemma 2, then the necessary and sufficient condition of s ∈ S1
8(Δ) is that for any

two 2-face adjacent tetrahedra of Δ (we use the same notations as them in C0 case),
it holds the following equalities:

1. The vertex-C1 conditions at v j, j = 0,1,2, are

cσ̄
(i0,i1,i2,1)

= b0cσ
(i0+1,i1,i2,0)

+b1cσ
(i0,i1+1,i2,0)

+b2cσ
(i0,i1,i2+1,0)+

b3cσ
(i0,i1,i2,1)

, i j ≥ 5, i0 + i1 + i2 = 7,
(11)

where (b0,b1,b2,b3) are the barycentric coordinates of v̄3 with respect to σ .
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2. vertex-edge-C1 conditions corresponding to vertex v j and edge ek = [v j,vl] are

cσ̄
(i0,i1,i2,1)

= b0cσ
(i0+1,i1,i2,0)

+b1cσ
(i0,i1+1,i2,0)

+b2cσ
(i0,i1,i2+1,0)+

b3cσ
(i0,i1,i2,1)

, i j = 4, il = 2,3, ik = 3− il,
(12)

where { j,k, l} = {0,1,2}.
3. The edge-C1 condition at edge ek = [v j,vl ] is

Dek,v̄3 Dek,vk pσ̄ (mek) = (c1Dek ,vk + c2Dek,v3)Dek ,vk pσ (mek ), (13)

where nek ,v̄3 = c1nek ,vk + c2nek ,v3 .
4. The triangle-C1 conditions on δ = [v0,v1,v2] are

∂ pσ̄ (mδ )
∂nδ

=
∂ pσ (mδ )

∂ nδ
,

∂ 2 pσ̄ (mδ )
∂nδ ∂ n1δ

=
∂ 2 pσ (mδ )
∂ nδ ∂ n1δ

,
∂ 2 pσ̄ (mδ )
∂nδ ∂ n2δ

=
∂ 2 pσ (mδ )
∂ nδ ∂ n2δ

. (14)

The matrix form of (14) is as follows.

Wδ xδ = 0, (15)

where

xδ = (
∂ pσ̄ (mδ )

∂ nδ
,

∂ 2 pσ̄(mδ )

∂nδ ∂n1δ
,

∂ 2 pσ̄ (mδ )

∂nδ ∂n2δ
,

∂ pσ (mδ )

∂nδ
,

∂ 2 pσ(mδ )

∂ nδ ∂ n1δ
,

∂ 2 pσ (mδ )

∂ nδ ∂n2δ
)′

and

Wδ =

⎡

⎣

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

⎤

⎦ .

For a boundary triangle δ , we denote by

xδ = (
∂ pσ (mδ )

∂ nδ
,

∂ 2 pσ (mδ )

∂nδ ∂n1δ
,

∂ 2 pσ(mδ )

∂nδ ∂n2δ
)′.

and
x∂δ = (x′δm2+1

,x′δm2+2
, . . . ,x′δn2

)′.

Thus, the triangle-C1 conditions for Δ have the following matrix form

Wσ xσ = 0, (16)

where xσ = (x′δ1
, x′δ2

, . . . ,x′δm2
,x′∂δ )

′ and

Wσ =

⎡

⎢

⎢

⎢

⎣

Wδ 0 · · · 0 0
0 Wδ · · · 0 0
...

...
. . .

...
...

0 0 · · · Wδ 0

⎤

⎥

⎥

⎥

⎦

.
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Proof of Lemma 3. Clearly, we only need to prove s|σ ⋃ σ̄ ∈ C1(σ
⋃

σ̄). This is
equivalent to prove

∂ pσ̄
∂nδ

∣

∣

∣

∣

δ
=

∂ pσ
∂nδ

∣

∣

∣

∣

δ
, (17)

where δ = σ
⋂

σ̄ . Since ∂ pσ
∂ nδ

|δ is a polynomial of degree 7 in two variables. It is
easy to check that pσ is determined by its values

{ ∂
∂nδ

Di
v j ,δ pσ (v j); |i| ≤ 3, j = 0,1,2}⋃{ ∂

∂ nδ
Dek ,vk pσ (mek ); k = 0,1,2}⋃

{ ∂ pσ (mδ )
∂nδ

,
∂ 2 pσ (mδ )
∂ nδ ∂n1δ

,
∂ 2 pσ (mδ )
∂nδ ∂ n2δ

} (18)

Correspondingly, ∂ pσ̄
∂ nδ

|δ is determined by

{ ∂
∂nδ

Di
v j ,δ pσ̄ (v j); |i| ≤ 3, j = 0,1,2}⋃{ ∂

∂ nδ
Dek ,vk pσ̄ (mek ); k = 0,1,2}⋃

{ ∂ pσ̄ (mδ )
∂nδ

,
∂ 2 pσ̄ (mδ )
∂ nδ ∂n1δ

,
∂ 2 pσ̄ (mδ )
∂nδ ∂ n2δ

}. (19)

Therefore, the proof of (17) is equivalent to prove the corresponding values in (18)
and (19) are equal to each other.

Since (11) and (12) are directly from the well-known Bézier net C1 conditions, it
is not difficult to prove that (11) and (12) are equivalent to

∂
∂nδ

Di
v j ,δ pσ̄(v j) =

∂
∂nδ

Di
v j ,δ pσ(v j), |i| ≤ 3, j = 0,1,2. (20)

For edge ek = [v j,vl ], since all the vectors nδ ,nek, v̄3 ,nek, vk are perpendicular to
edge ek, there exist constants b1 and b2 such that nδ = b1nek , v̄3 +b2nek , vk . Accord-
ing to (13), we have

∂
∂nδ

Dek, vk pσ̄(mek) = b1
∂

∂ nek , v̄3
Dek , vk pσ̄ (mek)+ b2

∂
∂ nek , vk

Dek , vk pσ̄(mδk
)

= b1(c1Dek , vk + c2Dek , v3)
∂

∂nek , v̄3
Dek , vk pσ (mek)+ b2D2

ek, vk
pσ (mek )

= b1
∂

∂nek , v̄3
Dek,vk pσ(mek)+ b2

∂
∂nek , vk

Dek ,vk pσ (mek )

= ∂
∂nδ

Dek, vk pσ(mek).

(21)

From (20), (21), and (14), we conclude that (17) holds, i.e., s ∈ S1
8(Δ).

For convenience, we re-formula the equations (11)–(13) as follows.

• The vertex-C1 conditions corresponding to v are, for any 2-face adjacent tetrahe-
dra σ = [v,v1,v2,w], σ̄ = [v,v1,v2,w̄] ∈ Star(v),

cσ̄
i+εw

= ∑
u∈Vσ

bucσ
i+εu

, i = (iv, i1, i2,0), iv ≥ 5, |i|= 7, (22)
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where Vσ is the set of vertices of σ , (bu)u∈Vσ are the barycentric coordinates of
w̄ with respect to σ and εv = (1,0,0,0),εv1 = (0,1,0,0),εv2 = (0,0,1,0),εw =
(0,0,0,1). We denote (22) as the following matrix form.

Wvxv = 0, (23)

where xv is the vector formed by all Bézier coefficients of C5
v and Wv is the

corresponding coefficient matrix.
The matrix form of vertex-C1 conditions for Δ is

WV xV = 0, (24)

where xV = (x′v1
,x′v2

, . . . ,x′vn0
)′ and

WV =

⎡

⎢

⎢

⎢

⎣

Wv1 0 · · · 0
0 Wv2 · · · 0
...

...
. . .

...
0 0 · · · Wvn0

⎤

⎥

⎥

⎥

⎦

.

• For any 2-face adjacent tetrahedra σ = [v,v1,v2,w], σ̄ = [v,v1,v2,w̄] ∈ Star(e),
the vertex-edge-C1 conditions corresponding to vertex v and edge e = [v,v1] are

cσ̄
i+εw

= ∑
u∈Vσ

bucσ
i+εu

, i = (4, i1,3− i1,0), i1 = 2,3. (25)

We will write out the matrix form of (25) later.
• For any 2-face adjacent tetrahedra σ = [v,v1,v2,w], σ̄ = [v,v1,v2,w̄] ∈ Star(e),

the edge-C1 conditions at edge e = [v,v1] are

De,w̄De,v2 pσ̄ (me) = (c1De,v2 + c2De,w)De,v2 pσ(me), (26)

where ne,w̄ = c1ne,v2 + c2ne,w.

For e = [v,w] ∈ E , we assume that σi = [v,w,vi,vi+1], 0 ≤ i ≤ m−1, are all tetra-
hedra in Star(e), where vm = v0 if e is an inner edge. Then, the matrix form of (26)
is as follows.

Wexe = 0, (27)

where We is the corresponding coefficient matrix and

xe =

(D2
e,v0

pσ0(me),De,v0 De,v1 pσ0(me), · · · ,D2
e,vm−1

pσm−1(me),De,vm−1 De,v0 pσm−1(me))
′

if e is an inner edge and

xe = (D2
e,v0

pσ0(me), . . . ,De,vm−1 De,vm pσm−1(me),D
2
e,vm

pσm−1(me))
′

if e is a boundary edge (comparing to the inner edge case, it has one more component
D2

e,vm
pσm−1(me)).
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The matrix form of vertex-C1 conditions for Δ is

WExE = 0, (28)

where xE = (x′e1
,x′e2

, . . . ,x′en1
)′ and

WE =

⎡

⎢

⎢

⎢

⎣

We1 0 · · · 0
0 We2 · · · 0
...

...
. . .

...
0 0 · · · Wen1

⎤

⎥

⎥

⎥

⎦

.

To obtain the matrix form of (25), we assume that e = [v,w] and σi = [v,w,vi,vi+1],
0 ≤ i ≤ m− 1, are all tetrahedra in Star(e), where vm = v0 if e is an inner edge. We
denote by

pi(x) = ∑
i0+i1+i2+i3=8

ci
i0,i1,i2,i3

8!
i0! i1! i2! i3!

ui0
0 ui1

1 ui2
2 ui3

3 (29)

the restriction of a spline se ∈ S1
8(Star(e)) to the tetrahedron σi and (u0,u1,u2,u3)

are the barycentric coordinates of x with respect to σi, i.e., x = u0v+u1w+u2vi +
u3vi+1. We also denote det[a,b,c,d] = ((b−a)×(c−a)) ·(d−a) the mixed product
of vectors b−a, c−a, d−a. Then, (25) is equivalent to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ci
4,3,0,1 = − Wi

Vi−1
ci−1

5,3,0,0 +
Ui

Vi−1
ci−1

4,4,0,0+
Ti

Vi−1
ci−1

4,3,0,1 − Vi
Vi−1

ci−1
4,3,1,0,

ci
4,2,1,1 = − Wi

Vi−1
ci−1

5,2,0,1 +
Ui

Vi−1
ci−1

4,3,0,1+
Ti

Vi−1
ci−1

4,2,0,2 − Vi
Vi−1

ci−1
4,2,1,1,

1 ≤ i ≤ m−be,

(30)

where cm
i, j,k,l = c0

i, j,k,l if e is inner, Wi = det[w,vi−1,vi,vi+1],Ui = det[v,vi−1,vi,vi+1],

Ti = det[v,w,vi−1,vi+1], Vi = det[v,w,vi,vi+1], and (− Wi
Vi−1

, Ui
Vi−1

,− Vi
Vi−1

, Ti
Vi−1

) are the

barycentric coordinates of vi+1 with respect to σi−1, i.e., vi+1 = − Wi
Vi−1

v+ Ui
Vi−1

w−
Vi

Vi−1
vi−1 +

Ti
Vi−1

vi. In addition, since pi|δi
= pi−1|δi

(δi = [v,w,vi]), it holds

ci
j,k,l,0 = ci−1

j,k,0,l, j+ k+ l = 8, 1 ≤ i ≤ m−be. (31)

Especially, we set l = 0 in (31), we have

ci
j,k,0,0 = c0

j,k,0,0, j+ k = 8,1 ≤ i ≤ m−1. (32)

Remark 4. Since {c0
5,3,0,0,c

0
4,4,0,0,c

i
4,3,1,0,c

i
4,3,0,1} determine uniquely a linear poly-

nomial and the first equation of (30) shows that those linear polynomials are joint
smoothly, those linear polynomials have to be the same. Thus, there are exact four
free variables among these unknowns, say {c0

5,3,0,0,c
0
4,4,0,0,c

0
4,3,1,0,c

0
4,3,0,1}. Noting

that c0
5,3,0,0 ∈ C5

v (so it is already fixed in the previous steps) and c0
4,4,0,0 (it will be

fixed separately) will appear also in the vertex-edge-C1 conditions corresponding to
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the edge e = [v,w] and the vertex w, only c0
4,3,1,0 and c0

4,3,0,1 = c1
4,3,1,0 are real free

variables. We denote

ce = c0
4,4,0,0, c0

v,e = c0
4,3,1,0, c1

v,e = c1
4,3,1,0.

Thus, (30) has the following matrix form

Wv,exv,e +W ′
v,exv +W ′′

v,ece = 0, (33)

where

xv,e =

⎧

⎨

⎩

(c0
4,2,2,0,c

0
4,2,1,1, . . . ,c

m−1
4,2,2,0,c

m−1
4,2,1,1,c

0
v,e,c

1
v,e)

′, e is an inner edge,

(c0
4,2,2,0,c

0
4,2,1,1, · · ·,cm−1

4,2,2,0,c
m−1
4,2,1,1,c

m−1
4,2,0,2,c

0
v,e,c

1
v,e)

′, e is a boundary edge,

and Wv,e, W ′
v,e and W ′′

v,e are the corresponding coefficient matrices.

The matrix form of vertex-edge-C1 conditions for the edges of Star(v) is

Wv,Starxv,Star +W ′
v,Starxv +W ′′

v,StarxE = 0, (34)

where xv,Star = (x′v,ẽ1
,x′v,ẽ2

, . . . ,x′v,ẽns
)′ (ẽi ∈ Star(v), 1 ≤ i ≤ ns = |Ev|),

xE = (ce1 ,ce2 , . . . ,cen1
)′, and Wv,Star, W ′

v,Star, W ′′
v,Star are the corresponding coefficient

matrices. We will discuss the structure of Wv,Star later.

The matrix form of vertex-edge-C1 conditions for S1
8(Δ) is

WV,ExV,E +W ′
V,ExV +W ′′

V,ExE = 0, (35)

where xV,E = (x′v1,Star, . . . ,x
′
vn0 ,Star)

′,

WV,E =

⎡

⎢

⎢

⎢

⎣

Wv1,Star 0 · · · 0
0 Wv2,Star · · · 0
...

...
. . .

...
0 0 · · · Wvn0 ,Star

⎤

⎥

⎥

⎥

⎦

,

and W ′
V,E ,W

′′
V,E are the corresponding coefficient matrices.

Finally, the matrix form for the C1 conditions for S1
8(Δ) is

⎡

⎢

⎢

⎣

WV,E W ′
V,E 0 0 0 W ′′

V,E
0 WV 0 0 0 0
0 0 WE 0 0 0
0 0 0 Wσ 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

xV,E

xV

xE

xσ
xT

xE

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0. (36)
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Lemma 4. If for any vertex v ∈ Δ , rank(Wv,Star)=rank([Wv,Star W ′
v,Star W ′′

v,Star]), then

dimS1
8(Δ) = dim(null(WV,E))+ dim(null(WV ))+ dim(null(WE ))

+dim(null(Wσ ))+ |E|+ |T |,
where rank(M) is the rank of matrix M and null(M) is the null space of M.

The proof of Lemma 4 is straightforward. Note that rank(WV,E) =
rank([WV,E W ′

V,E W ′′
V,E ]) if rank(Wv,Star) = rank([Wv,Star W ′

v,Star W ′′
v,Star]) holds for all

vertex v of Δ . Thus, the matrix [WV,E W ′
V,E W ′′

V,E ] can be simplified to a version
[W̃V,E W̃ ′

V,E W̃ ′′
V,E ] such that rank(W̃V,E)= rank([W̃V,E W̃ ′

V,E W̃ ′′
V,E ])=ñ, the number of

rows of W̃V,E . Thus, if we denote W the coefficient matrix of (36), it holds

dimS1
8(Δ) = dim(null(W)) = dim(null(W̃V,E))+ dim(null(WV ))

+ dim(null(WE))+ dim(null(Wσ))+ |E|+ |T |
= dim(null(WV,E))+ dim(null(WV ))+ dim(null(WE))

+dim(null(Wσ))+ |E|+ |T |.

Next, we analyze dimS1
8(Δ) in Lemma 4 term by term. We first consider

dim(null(Wσ)) and have the following lemma.

Lemma 5. dim(null(Wσ))= 3|F|.
The proof of Lemma 5 is straightforward.

For dim(null(WE)), we chose a tetrahedron σ̃ ∈ Te. Then for any σ ∈ Te, the values
{Dk

e,σ pσ (me); |k| = 2}⋃{Dk
e,σ̃ pσ̃ (me); |k| ≤ 1} determine uniquely a bivariate

quadratic polynomial on triangle σ/e. If those polynomials satisfy (26), they define
a spline se ∈ S1

2(TStar(e))). Thus,

dim(null(We)) = dimS1
2(TStar(e)))−3.

Therefore, we have the following lemma.

Lemma 6. dim(null(WE))=∑e∈E

(

dimS1
2(TStar(e))−3

)

.

Next, we consider dim(null(WV )). For a vertex v ∈ V and a tetrahedron σ ∈ Tv, the
Bézier coefficients {cσ

i ; i = (iw)w∈Vσ ∈ Z4
+, |i| = 8, iv ≥ 5} determine uniquely

a trivariate cubic polynomial on σ . The vertex-C1 conditions (22) insure that those
cubic polynomials are C1 joint between any two 2-face adjacent tetrahedra. It con-
cludes that the Bézier coefficients C5

v determine uniquely a spline sv ∈ S1
3(Star(v))

if they satisfy (22). Thus,

dim(null(Wv)) = dimS1
3(Star(v)))

and
dim(null(WV )) = ∑v∈V dim(null(Wv)) = ∑v∈V dimS1

3(Star(v)),

i.e., we have



The Dimension of the Space of Smooth Splines of Degree 8 on Tetrahedral Partitions 311

Lemma 7. dim(null(WV )) = ∑v∈V dimS1
3(Star(v)).

Next, we discuss the most difficult part of Lemma 4, i.e., how to obtain
dim(null(Wv,Star)) in the following equations.

dim(null(WV,E)) = ∑
v∈V

dim(null(Wv,Star)). (37)

To obtain dim(null(WV,E)), we only need to analyze the vertex-edge-C1 conditions
(25) which takes the Bézier coefficients of Cv,e (defined in (10)) as unknowns. We
need to re-formula (25) again. For e= [v,w]∈E , we assume that σi = [v,w,vi,vi+1],
0 ≤ i ≤ m− 1, are all tetrahedra in Star(e), where vm = v0 if e is inner. Next, we
generalize a terminology in [1].

Definition 3. Let Av,e be a subset of Cv,e (defined in (10)). Av,e is called determining
Cv,e if the Bézier coefficients in Av,e, together with all other involved Bézier coeffi-
cients in the vertex-edge-C1 conditions (30) that are not contained in Cv,e, are zeros,
then all the Bézier coefficients in Cv,e have to be zeros if they satisfy the vertex-
edge-C1 conditions (30). An edge e ∈ Ev is called confinable if there exists a subset
Av,e of Cv,e determining Cv,e with |Av,e|= m+3+ εe+2be and containing

Mv,e = {c0
4,4,0,0, ci

4,2,2,0; 0 ≤ i ≤ m−1+be}, (38)

where εe = 1 if e is a singular edge; εe = 0 otherwise.

Next, we analyze the second equation of (30) and, after applying (31), rewrite it as

1
Vi

ci
4,2,1,1 = − Wi

Vi−1Vi
ci

5,2,1,0 +
Ui

Vi−1Vi
ci

4,3,1,0 +
Ti

Vi−1Vi
ci

4,2,2,0 − 1
Vi−1

ci−1
4,2,1,1,

1 ≤ i ≤ m−be.
(39)

We will discuss (39) case by case.

Case 1. e = [v,w] is a boundary edge, then (30) is the same as

1
Vi

ci
4,2,1,1 = − Wi

Vi−1Vi
ci

5,2,1,0 +
Ui

ViVi
ci−1

4,3,1,0+
Ti

Vi−1Vi
ci

4,2,2,0− 1
Vi−1

ci−1
4,2,1,1,

1 ≤ i ≤ m−1.
(40)

The matrix form of (40) (i.e., (30)) is

Bv,ex′v,e +B′
v,ex

′′
v,e +Fv,exv +Gv,exE = 0, (41)

where
x′v,e = (c0

4,2,1,1, . . . ,c
m−2
4,2,1,1)

′,

x′′v,e = (cm−1
4,2,1,1,c

0
4,3,1,0,c

1
4,3,1,0,c

0
4,2,2,0, . . . ,c

m−1
4,2,2,0)

′,
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Bv,e =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
V0

1
V1

0 · · · 0 0

0 1
V1

1
V2

· · · 0 0
0 0 1

V2
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1
Vm−3

1
Vm−2

0 0 0 · · · 0 1
Vm−2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

B′
v,e,Fv,e,Gv,e are the coefficient matrices (but they are not important). If we treat a

vector x as a set of its components, then xv,e = x′v,e
⋃

x′′v,e.

It is obvious that
rank(Bv,e) = m−1 = degree(e)−2. (42)

Let Av,e = {c0
4,3,1,0, c1

4,3,1,0, cm−1
4,2,1,1}

⋃

Mv,e. We set all the elements in Av,e are zeros

and set ci
5,2,1,0 = 0, 0 ≤ i ≤ m− 1, at the same time. Then, according to Remark 4

and (40), all the Bézier coefficients of Cv,e are zeros. Therefore, we have

Lemma 8. A boundary edge e ∈ E∂
v is confinable.

Case 2. e = [v,w] is an inner edge and m is an odd number. In this case, we re-write
(39)(i.e., (30)) as the following matrix form

Bv,ex′v,e +B′
v,ex

′′
v,e +Fv,exv +Gv,exE = 0, (43)

where x′v,e = (c0
4,2,1,1, . . . ,c

m−1
4,2,1,1)

′, x′′v,e = (c0
4,3,1,0,c

1
4,3,1,0,c

0
4,2,2,0, . . . ,c

m−1
4,2,2,0)

′,

Bv,e =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
V0

1
V1

0 · · · 0 0

0 1
V1

1
V2

· · · 0 0
0 0 1

V2
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1
Vm−2

1
Vm−1

1
V0

0 0 · · · 0 1
Vm−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and again, B′
v,e,Fv,e,Gv,e are the coefficient matrices. We still have xv,e = x′v,e

⋃

x′′v,e.

Since detBv,e =
2

∏m−1
i=0 Vi

�= 0, it yields

rank(Bv,e) = m = degree(e). (44)

Let Av,e = {c0
4,3,1,0, c1

4,3,1,0}
⋃

Mv,e. If we set all the elements in Av,e are zeros and

set ci
5,2,1,0 = 0, 0 ≤ i ≤ m− 1, at the same time. Then, according to (43) and (44),

all the Bézier coefficients of Cv,e are zeros. Therefore, we have

Lemma 9. An odd inner edge e ∈ Ev is confinable.
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If e is an even inner edge, (39) is equivalent to

1
Vi

ci
4,2,1,1 =− Wi

Vi−1Vi
ci

5,2,1,0 +
Ui

Vi−1Vi
ci

4,3,1,0 +
Ti

Vi−1Vi
ci

4,2,2,0 −
1

Vi−1
ci−1

4,2,1,1,

1 ≤ i ≤ m−1 (45)

and

−
m−1

∑
i=0

(−1)i Wi

Vi−1Vi
ci

5,2,1,0 +
m−1

∑
i=0

(−1)i Ui

Vi−1Vi
ci

4,3,1,0 +
m−1

∑
i=0

(−1)i Ti

Vi−1Vi
ci

4,2,2,0 = 0.

(46)
Clearly, we only need to discuss (46).

Case 3. e = [v,w] is an inner edge with m = 4, but e is not singular. According to
(31) and (32), we re-write the first equation of (30) as follows.

1
Vi

ci+1
4,3,1,0 =− Wi

Vi−1Vi
c0

5,3,0,0+
Ui

Vi−1Vi
c0

4,4,0,0+
Ti

Vi−1Vi
ci

4,3,1,0−
1

Vi−1
ci−1

4,3,1,0, 1 ≤ i ≤ 4

(47)
Setting i = 1 and i = 4 in (47), respectively, we obtain

⎧

⎪

⎨

⎪

⎩

1
V1

c2
4,3,1,0 =− W1

V0V1
c0

5,3,0,0 +
U1

V0V1
c0

4,4,0,0 +
T1

V0V1
c1

4,3,1,0 − 1
V0

c0
4,3,1,0,

1
V3

c3
4,3,1,0 =− W0

V3V0
c0

5,3,0,0 +
U0

V3V0
c0

4,4,0,0 +
T0

V3V0
c0

4,3,1,0 − 1
V0

c1
4,3,1,0.

(48)

Substituting (48) into (46) (m=4), it yields
(

U0

V3V0
− U2

V0V2
− U3T0

V0V2V3

)

c0
4,3,1,0 +

(

− U1

V0V1
+

U3

V0V2
+

U2T1

V0V1V2

)

c1
4,3,1,0 +B = 0,

(49)
where

B = −∑m−1
i=0 (−1)i Wi

Vi−1Vi
ci

5,2,1,0 +∑m−1
i=0 (−1)i Ti

Vi−1Vi
ci

4,2,2,0

+
(

U3W0
V0V2V3

− U2W1
V0V1V2

)

c0
5,3,0,0 +

(

U1U2
V0V1V2

− U0U3
V0V2V3

)

c0
4,4,0,0.

Since v0 − v, v1 − v and w − v are linearly independent, there exist constants
aw,a0,a1 and bw,b0,b1 such that

{

v2 −v = aw(w−v)+ a0(v0 −v)+ a1(v1 −v),
v3 −v = bw(w−v)+ b0(v0 −v)+ b1(v1 −v).

(50)

According to the definitions of Vi,Ui and Ti in (30), the following equalities can be
checked directly.
⎧

⎨

⎩

V1 =−a0V0, V2 = (a0b1 −a1b0)V0, V3 =−b1V0,
U0 = bwV0, U1 = awV0, U2 = (awb0 −a0bw)V0, U3 = (a1bw −awb1)V0,
T0 = b0V0, T1 = a1V0,

(51)
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From (51), it holds

V2U0 −V3U2 = ((a0b1 −a1b0)bw − (−b1)(awb0 −a0bw))V
2
0 = b0(awb1 −a1bw)V

2
0 .

Therefore,
V2U0 −V3U2 =−T0U3 (52)

Similarly,
V1U3 −V2U1 = T1U2 (53)

Substituting (52) and (53) into (49), it yields

− 2U3T0

V0V2V3
c0

4,3,1,0 +
2U2T1

V0V1V2
c1

4,3,1,0 +B = 0, (54)

Clearly, Ui �= 0, 0 ≤ i ≤ 3. Since e is not singular, {v, w, v1, v3} or {v, w, v0, v2}
(or both) is a set of non-coplanar points, i.e., T0 �= 0 or T1 �= 0 (or both). Without
loss of generality, we assume T0 �= 0.

Therefore, (45) and (54) (i.e., (30)) have the following matrix form.

Bv,ex′v,e +B′
v,ex

′′
v,e +Fv,exv +Gv,exE = 0, (55)

where
x′v,e = (c0

4,2,1,1,c
1
4,2,1,1,c

2
4,2,1,1,c

0
4,3,1,0)

′,

x′′v,e = (c3
4,2,1,1,c

1
4,3,1,0,c

0
4,2,2,0,c

1
4,2,2,0,c

2
4,2,2,0,c

3
4,2,2,0)

′,

Bv,e =

⎡

⎢

⎢

⎢

⎣

1
V0

1
V1

0 ×
0 1

V1

1
V2

×
0 0 1

V2
×

0 0 0 − 2U3T0
V0V2V3

⎤

⎥

⎥

⎥

⎦

,

and again, B′
v,e,Fv,e,Gv,e are the coefficient matrices and ×’s are some numbers. We

still have xv,e = x′v,e
⋃

x′′v,e.

It is obvious that
rank(Bv,e) = 4 = degree(e). (56)

Let Av,e = {c3
4,2,1,1, c1

4,3,1,0}
⋃

Mv,e. We set all the elements in Av,e are zeros and set

c0
5,3,0,0 = ci

5,2,1,0 = 0, 0 ≤ i ≤ m−1, at the same time. Then, according to Remark 4
and (54), all the Bézier coefficients of Cv,e are zeros. Therefore, we have

Lemma 10. A nonsingular inner edge e ∈ Ev with m = 4 is confinable.

Case 4. e = [v,w] is a singular edge. In this case, we can prove B ≡ 0, i.e., (54) is
an identity. First of all,

Ti = 0, i = 0,1,2,3, (57)
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since {v, w, vi−1, vi+1} are coplanar. According to (51), we have

a1 = b0 = 0. (58)

Using (51) and (58), it yields

U1U2V3 −U0U3V1 = (aw(awb0 −a0bw)(−b1)−bw(a1bw −awb1)(−a0))V
3
0 = 0.

(59)
Therefore, (54) is simplified as

−
m−1

∑
i=0

(−1)i Wi

Vi−1Vi
ci

5,2,1,0 +

(

U3W0

V0V2V3
− U2W1

V0V1V2

)

c0
5,3,0,0 = 0. (60)

Similar to (47), since Ti = 0, for ci
5,2,1,0, we have the following equations.

1
Vi

ci+1
5,2,1,0 =− Wi

Vi−1Vi
c0

6,2,0,0 +
Ui

Vi−1Vi
c0

5,3,0,0 −
1

Vi−1
ci−1

5,2,1,0, 1 ≤ i ≤ 4 (61)

Setting i = 1 and i = 4 in (61), respectively, we obtain
⎧

⎪

⎨

⎪

⎩

1
V1

c2
5,2,1,0 =− W1

V0V1
c0

6,2,0,0 +
U1

V0V1
c0

5,3,0,0 − 1
V0

c0
5,2,1,0,

1
V3

c3
5,2,1,0 =− W0

V3V0
c0

6,2,0,0 +
U0

V3V0
c0

5,3,0,0 − 1
V0

c1
5,2,1,0.

(62)

Substituting (62) into (60), it yields
(

− W0
V3V0

+ W2
V0V2

)

c0
5,2,1,0 +

(

W1
V0V1

− W3
V0V2

)

c1
5,2,1,0 +

(

W1W2
V0V1V2

− W0W3
V0V2V3

)

c0
6,2,0,0

+
(

U3W0
V0V2V3

− U2W1
V0V1V2

+ W3U0
V0V2V3

− W2U1
V0V1V2

)

c0
5,3,0,0 = 0.

(63)

According to (52) and (53), since Ti = 0, it holds

V2U0 =V3U2, V1U3 =V2U1. (64)

Symmetrically,
V2W0 =V3W2, V1W3 =V2W1. (65)

(65) shows that the coefficients of c0
5,2,1,0 and c1

5,2,1,0 in (63) are zeros. According to
(65),

W1W2V3 −W0W3V1 =W1W0V2 −W0W1V2 = 0.

Thus, the coefficient of c0
6,2,0,0 in (63) is zero. Similarly, according to (64) and (65)

U3W0V1−U2W1V3+U0W3V1−U1W2V3=W0V2U1−W1U0V2+U0W1V2−U1W0V2=0.

Thus, the coefficient of c0
5,3,0,0 in (63) is also zero. Therefore, (63) is an identity if e

is a singular edge.
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Therefore, (45) (i.e., (30)), has the following matrix form.

Bv,ex′v,e +B′
v,ex

′′
v,e +Fv,exv +Gv,exE = 0, (66)

where
x′v,e = (c0

4,2,1,1,c
1
4,2,1,1,c

2
4,2,1,1)

′,

x′′v,e = (c3
4,2,1,1,c

0
4,3,1,0,c

1
4,3,1,0,c

0
4,2,2,0,c

1
4,2,2,0,c

2
4,2,2,0,c

3
4,2,2,0)

′,

Bv,e =

⎡

⎢

⎣

1
V0

1
V1

0
0 1

V1

1
V2

0 0 1
V2

⎤

⎥

⎦
,

and again, B′
v,e,Fv,e,Gv,e are the coefficient matrices. We still have xv,e = x′v,e

⋃

x′′v,e.

It is obvious that
rank(Bv,e) = 3 = degree(e)−1. (67)

Let Av,e = {c3
4,2,1,1, c0

4,3,1,0, c1
4,3,1,0}

⋃

Mv,e. We set all the elements in Av,e are zeros

and set c0
5,3,0,0 = ci

5,2,1,0 = 0, 0 ≤ i ≤ m− 1, at the same time. Then, according to
Remark 4 and (45), all the Bézier coefficients of Cv,e are zeros. Therefore, we have

Lemma 11. A singular edge e ∈ Ev is confinable.

Definition 4. We denote Γv the collection of all triangles, edges, and vertices in
Star(v) which do not contain the vertex v. Γv is called the surface triangulation of
Star(v) or the link of vertex v.

We have the following lemma

Lemma 12. In Star(v), there are at least four confinable edges with degrees smaller
than six if v is inner.

Proof. According to Euler formula, it holds

|Γv,0|− |Γv,1|+ |Γv,2|= 2, (68)

where Γv,0,Γv,1,Γv,2 are the sets of vertices, edges, triangles of Γv, respectively. It is
clear that

2|Γv,1|= 3|Γv,2| (69)

According to (68) and (69), it holds

|Γv,1|= 3(|Γv,0|− 2), |Γv,2)|= 2(|Γv,0|− 2). (70)

Thus, we have

∑
w∈Γv,0

degree(w) = 2|Γv,1|= 6(|Γv,0|− 2),
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where degree(w) is the number of edges of Γv,1 sharing w as a common vertex. If
there are at most three vertices with degrees smaller than six, then

∑
w∈Γv,0

degree(w)≥ 6(|Γv,0|− 3)+ 3×3> 6(|Γv,0|− 2) = ∑
w∈Γv,0

degree(w).

This is a contradiction. This shows that there exists at least four vertices w ∈
Γv,0 such that their degrees degree(w) satisfy 3 ≤ degree(w) ≤ 5. Noting that
degree(w) = degree(e)(e = [v,w]), Lemma 12 is proved.

Similar to [1], we introduce the following definition.

Definition 5. For an edge e= [v,w]∈E , we assume that δ = [v,w,u]∈F is an inner
triangle, and that σ ′ = [v,w,u,u′], σ ′′ = [v,w,u,u′′] ∈ T are the two consecutive
tetrahedra sharing δ as a common 2-face. Then δ is called degenerate (at edge e)
whenever {v,w,u′,u′′} are coplanar. Otherwise, δ is called nondegenerate (at edge
e).

From Remark 4, (45) and (46), we have the following lemma.

Lemma 13. If e = [v,w] is an inner edge and [v,w,v j] is nondegenerate at [v,w],
then

Av,e = {c0
4,4,0,0, c0

4,3,1,0, c1
4,3,1,0,c

m−1
4,2,1,1}

⋃

{ci
4,2,2,0; 0 ≤ i ≤ m−1, i �= j}

determines Cv,e, since in (46) Tj �= 0.

In fact, in this case, (45) and (46) (i.e., (30)), has the following matrix form

Bv,ex′v,e +B′
v,ex

′′
v,e +Fv,exv +Gv,exE = 0, (71)

where
x′v,e = (c0

4,2,1,1, . . . ,c
m−2
4,2,1,1,c

j
4,2,2,0)

′

and

x′′v,e = (cm−1
4,2,1,1,c

0
4,3,1,0,c

1
4,3,1,0,c

0
4,2,2,0, . . . ,

̂c j
4,2,2,0, . . . ,c

m−1
4,2,2,0)

′,

where ̂c j
4,2,2,0 means that the term c j

4,2,2,0 in x′′v,e is dropped,

Bv,e =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
V0

1
V1

0 · · · 0 ×
0 1

V1

1
V2

· · · 0 ×
0 0 1

V2
· · · 0 ×

...
...

...
. . .

...
...

0 0 0 · · · 1
Vm−2

×
0 0 0 · · · 0

Tj
Vj−1Vj

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and again, B′
v,e,Fv,e,Gv,e are the coefficient matrices and the ×s are some numbers.

We still have xv,e = x′v,e
⋃

x′′v,e.
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It is obvious that
rank(Bv,e) = m = degree(e), (72)

since Tj �= 0.

According to (42), (44), (56), (67) and (72), for each e ∈ Ev, there exist degree(e)−
δe−2∂e linear independent equations, where δe = 1 if e is a singular edge and δe = 0
otherwise, and ∂e = 1 if e is a boundary edge and ∂e = 0 otherwise. The total number
of those equations is

∑
e∈Ev

degree(e)−|Eδ
v |− 2|E∂

v |.

So it concludes that

rank(Wv,Star)≤ ∑
e∈Ev

degree(e)−|Eδ
v |− 2|E∂

v |. (73)

To prove
rank(Wv,Star) = ∑

e∈Ev

degree(e)−|Eδ
v |− 2|E∂

v |, (74)

we need some definitions and results in [1]. If (74) is right, then rank(Wv,Star) equals
its row numbers. This means that Lemma 4 holds. Thus, in the rest, we need only to
prove (74).

Definition 6. A tree τ is a connected set of edges in Γv containing no loops. Precisely
one vertex in τ is identified as the root of τ . The vertex of an edge e in τ that is closer
to the root of τ is called the parent of the other vertex which is called its child. A
chain is a tree such that no vertex has more than one child. Those vertices in a tree τ
that have no children are called the leaves of τ . Two trees are called disjoint if their
respective sets of vertices are disjoint. A forest is a set of disjoint trees. A descendant
of a vertex w ∈ Γv is any vertex u ∈ Γv whose path from the root contains w, and w
is called an ancestor of u

We divide the vertices w ∈ Γv into two classes

Definition 7. w is called a terminating vertex if the edge [v,w] is confinable. Any
other vertex w ∈ Γv is called propagating.

Definition 8. A proper tree τ is a tree such that

1. The root of τ is a terminating vertex.
2. Every vertex of τ besides its root is a propagating vertex.
3. Every edge [vparent, vchild] in τ is nondegenerate at the child vertex vchild, i.e.,

[v, vparent, vchild] is nondegenerate at [v, vchild].

It holds the following lemma.

Lemma 14. For Γv, there exists a forest of disjoint proper trees that contains all
propagating vertices.
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Proof. The proof of Lemma 14 is very similar to the proof of Theorem 3 of [1]. We
omit the proof here.

We now consider the dimension of the null space of

Wv,Starxv,Star = 0. (75)

Let ϒ be a forest of disjoint proper trees that contains all vertices of Γv. We arrange
the vertices in Γv in any order

w1,w2, . . . ,wn̄, n̄ = |Γv,0|,

of satisfying that w j is behind wi if w j is, with respect to ϒ , a descendant of wi.

For any propagating vertex wchild of a proper tree described in Lemma 14, we assume
its parent is wparent. Then, we choose

c j
4,2,2,0 ∈ x′v,e = (c0

4,2,1,1, . . . ,c
m−2
4,2,1,1,c

j
4,2,2,0)

′

in (71) as ce
4,2,2,0, where e = [wparent,wchild].

According to Lemma 14, it holds

x′v,ei

⋂

xv,e j = /0, if i < j, (76)

where ek = [v,vk], 1 ≤ k ≤ n̄. If we denote x′v,Star the vector formed by the unknowns

in
⋃n̄

k=1 x
′′
v,ek

\⋃n̄
k=1 x

′
v,ek

, then (75) is reformed as follows.

W̃v,Starx̃v,Star = 0, (77)

where
x̃v,Star = (x′Tv,e1

,x′Tv,e2
, . . . ,x′Tv,en̄

,x′Tv,Star)
′,

W̃v,Star =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Bv,e1 ∗ ∗ · · · ∗ ∗
0 Bv,e2 ∗ · · · ∗ ∗
0 0 Bv,e3 · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · Bv,en̄ ∗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

and ∗’s are the corresponding matrices. That is, W̃v,Star is a blocked diagonal ma-
trix with every diagonal matrix being square and nonsingular. This means that (74)
holds.

Noting that if f = [v,w1,w2] ∈ Fv, then xv,e1

⋂

xv,e2 contains only one element,
where e1 = [v,w1] and e2 = [v,w2]. We denote this element by c f

4,2,2,0. Therefore,

⋃

e∈Ev

xv,e =
⋃

e∈Ev

{c0
e,4,2,1,1, . . . ,c

m−1
e,4,2,1,1,c

0
v,e,c

1
v,e}

⋃

f∈Fv

{c f
4,2,2,0}



320 X. Shi et al.

and

|
⋃

e∈Ev

xv,e|= ∑
e∈Ev

(degree(e)−be+2)+ |Fv|= ∑
e∈Ev

degree(e)−|E∂
v |+2|Ev|+ |Fv|.

Thus, together with (74), it holds that

dim(null(Wv,Star) = dim(null(W̃v,Star) = |⋃e∈Ev
xv,e|− rank(Wv,Star)

= |Fv|+2|Ev|+ |Eδ
v |+ |E∂

v |= Nv.
(78)

According to Lemmas 4–7 and (37) and (78), it holds that

dimS1
8(Δ) = dim(null(WV,E))+ dim(null(WV ))+ dim(null(WE))

+dim(null(Wσ))+ |E|+ |T |
= ∑v∈V (dimS1

3(Star(v))+Nv)+∑e∈E(dimS1
2(TStar(e))−3)

+3|F|+ |E|+ |T |.
Theorem 1 is proved.
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On Simultaneous Approximation in Function
Spaces

Eyad Abu-Sirhan

Abstract The problem of simultaneous approximation in function spaces has
attracted many researchers recently. Major results on the space of vector-valued
continuous functions started to appear early nineties. In 2002, results on simulta-
neous approximation in p-Bochner integrable function spaces were published. The
objective of this paper is to give a characterization for some subspaces of Bochner
integrable functions space to be simultaneously proximinal.

1 Introduction

Let X be a Banach space, G a closed subspace of X , and (Ω ,Σ ,μ) be a measure
space.

Definition 1. Let (M,d) be a metric space. A Borel measurable function from Ω to
M is called strongly measurable if it is the pointwise limit of a sequence of simple
Borel measurable functions from Ω to M.

L1 (μ ,X) denotes the Banach space consisting of (equivalent classes of ) strongly
measurable functions f : Ω → X such that

∫

Ω
‖ f (t)‖dμ is finite, with the usual norm

‖ f‖1 =
∫

Ω

‖ f (s)‖dμ .

If X is the Banach space of real numbers, we simply write L1 (μ) . For A ∈ Σ
and a strongly measurable function f : Ω → X , we write χA for the characteristic
function of A and χA f denotes the function χA (s) f (s) . In particular, for x ∈ X ,
χAx(s) = χA (s)x.
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For a finite number of elements x1,x2, . . . ,xm in X , we set

d ({xi : 1 ≤ i ≤ m} ,G) = inf
g∈G

m

∑
i=1

‖xi −g‖ .

G is said to be simultaneously proximinal if for any finite number of elements
x1,x2, . . . ,xm in X there exists at least y ∈ G such that

m

∑
i=1

‖xi − y‖= d ({xi : 1 ≤ i ≤ m} ,G) .

The element y is called a best simultaneous approximation of x1,x2, . . . ,xm in
G. Of course, for m = 1 the preceding concepts are just best approximation and
proximinality.

The theory of best simultaneous approximation has been investigated by many
authors. Most of the work done has dealt with the space of continuous functions
with values in a Bnach space e.g. [1,4,8]. Some recent results for best simultaneous
approximation in Lp (μ ,X), 1≤ p≤∞ have been obtained in [2]–[3], [5,7,9]. In [3],
it is shown that if G is a reflexive subspace of a Banach space X , then L1 (μ ,G) is
simultaneously proximinal in L1 (μ ,X) . In [2], it is shown that if G is L1-summand
of a Banach space X , then L1 (μ ,G) is simultaneously proximinal in L1 (μ ,X) . It is
the aim of this paper to show that if G is a closed separable subspace, then L1 (μ ,G)
is simultaneously proximinal in L1 (μ ,X) if and only if G is simultaneously prox-
iminal in X .

2 Preliminary Results

Throughout this section X is a Banach space and G is a closed subspace of X . Let
f1, f2, . . . , fm be any finite number of elements in L1 (μ ,X) , and set

φ (s) = d ({ fi (s) : 1 ≤ i ≤ m} ,G) .

Theorem 1. Let (Ω ,Σ ,μ) be a measure space, f1, f2, . . . , fm be any finite number
of elements in L1 (μ ,X) , and φ (s) as defined above. Then, φ ∈ L1 (μ) and

d
({ fi : 1 ≤ i ≤ m} , L1 (μ ,G)

)

=
∫

Ω

|φ (s)|dμ .

Proof. Since f1, f2, . . . , fm ∈ L1 (μ ,X), there exist sequences of simple functions

( f(i,n))
∞
n=1, i = 1,2, . . . ,m,

such that

lim
∥

∥ f(i,n) (s)− fi (s)
∥

∥= 0,
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for i = 1,2, . . . ,m, and for almost all s. We may write

f(i,n) =
k(n)

∑
j=1

χA(n, j) (·)x(i,n, j), i = 1,2, . . . ,m,

k(n)

∑
j=1

χA(n, j) (·) = 1, and that μ (A(n, j))> 0. Then

d
({

f(i,n) (s) : 1 ≤ i ≤ m
}

, G
)

=
k(n)

∑
j=1

χA(n, j)d
({

x(i,n, j) : 1 ≤ i ≤ m
}

, G
)

and by the continuity of d

limd
({

f(i,n) (s) : 1 ≤ i ≤ m
}

, G
)

= d ({ fi (s) : 1 ≤ i ≤ m} , G) ,

for almost all s. Thus φ is measurable and φ ∈ L1 (μ).
Now, for any h ∈ L1 (μ ,G) ,

∫

Ω

d ({ fi (s) : 1 ≤ i ≤ m} , G)dμ ≤
∫

Ω

m

∑
i=1

‖ fi (s)−h(s)‖dμ

=
m

∑
i=1

‖ fi −h‖1

Hence,
∫

Ω

d ({ fi (s) : 1 ≤ i ≤ m} , G)dμ ≤ d
({ fi : 1 ≤ i ≤ m} , L1 (μ ,G)

)

.

To prove the reverse inequality, let ε > 0 be given and wi, i = 1,2, . . . ,m, be
simple functions in L1 (μ ,X) such that

‖ fi −wi‖1 <
ε

3m
.

We may write wi = ∑�
k=1 χAk (·) x(i,k),

�

∑
k=1

χAk (·) = 1, and that μ (Ak)> 0. Since

wi ∈ L1 (μ ,X) for all i, we have
∥

∥x(i,k)
∥

∥μ (Ak) < ∞ for all k and i. If μ (Ak) < ∞,
select hk ∈ G so that

m

∑
i=1

∥

∥x(i,k)−hk
∥

∥< d
({

x(i,k) : 1 ≤ i ≤ m
}

, G
)

+
ε

3μ (Ak)
,

for all k. If μ (Ak) = ∞, put hk = 0.
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Let g = ∑�
k=1 χAk (·)hk. It is clear that g ∈ L1 (μ ,G) . Then

d
({ fi : 1 ≤ i ≤ m} , L1 (μ ,G)

) ≤
m

∑
i=1

‖ fi −g‖1

=
m

∑
i=1

‖ fi −wi +wi −g‖1

≤
m

∑
i=1

‖ fi −wi‖1 +
m

∑
i=1

‖wi −g‖1

<
m

∑
i=1

( ε
3m

)

+
m

∑
i=1

‖wi −g‖1

=
ε
3
+

m

∑
i=1

�

∑
k=1

μ (Ak)
∥

∥x(i,k)−hk

∥

∥

=
ε
3
+

�

∑
k=1

m

∑
i=1

μ (Ak)
∥

∥x(i,k)−hk

∥

∥

=
ε
3
+

�

∑
k=1

μ (Ak)
m

∑
i=1

∥

∥x(i,k)−hk

∥

∥

≤ ε
3
+

�

∑
k=1

μ (Ak)d
({

x(i,k) : 1 ≤ i ≤ m
}

, G
)

+
ε
3

=
2ε
3

+

∫

Ω

�

∑
k=1

χAk (s)d
({

x(i,k) : 1 ≤ i ≤ m
}

, G
)

dμ

=
2ε
3

+

∫

Ω

d ({wi (s) : 1 ≤ i ≤ m} , G)dμ

≤ 2ε
3

+
∫

Ω

[

d ({ fi (s) : 1 ≤ i ≤ m} , G)
+(∑m

i=1 ‖ fi (s)−wi (s)‖)
]

dμ

≤ 2ε
3

+

⎡

⎣

∫

Ω
d ({ fi (s) : 1 ≤ i ≤ m} , G)dμ

+
∫

Ω
∑m

i=1 ‖ fi (s)−wi (s)‖dμ

⎤

⎦

≤ 2ε
3

+

∫

Ω

d ({ fi (s) : 1 ≤ i ≤ m} , G)dμ +
m

∑
i=1

‖ fi −wi‖1

≤ 2ε
3

+

∫

Ω

d ({ fi (s) : 1 ≤ i ≤ m} , G)dμ +
ε
3

≤ ε +
∫

Ω

d ({ fi (s) : 1 ≤ i ≤ m} , G)dμ

This ends the proof.
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Corollary 1. Let (Ω ,Σ ,μ) be a measure space, f1, f2, . . . , fm be any finite number
of elements in L1 (μ ,X) . Let g : Ω → G be a measurable function such that g(s) is
a best simultaneous approximation of f1 (s) , f2 (s) , . . . , fn (s) for almost all s. Then
g is a best simultaneous approximation of f1, f2, . . . , fn in L1 (μ ,G) ( and therefore
g ∈ L1 (μ ,G)).

Proof. Assume that g(s) is a best simultaneous approximation of f1 (s), f2 (s),. . .,
fm (s), for almost all s. Then

m

∑
i=1

‖ fi (s)−g(s)‖ ≤
m

∑
i=1

‖ fi (s)− z‖ ,

for almost all s, and for all z ∈ G. Then, set z = 0 and use triangle inequality,

m

∑
i=1

‖g(s)‖ ≤ 2
m

∑
i=1

‖ fi (s)‖

for almost all s, therefore g ∈ L1 (μ ,G) . By Theorem 2.1,

d
({ fi : 1 ≤ i ≤ m} , L1 (μ ,G)

)

=

∫

Ω

d ({ fi (s) : 1 ≤ i ≤ m} , G)dμ

=

∫

Ω

m

∑
i=1

‖ fi (s)−g(s)‖dμ

=
m

∑
i=1

‖ fi −g‖1 .

Therefore g is a best simultaneous approximation for f1, f2, . . . , fm in L1 (μ ,G) .

The condition in Corollary 2.1 is sufficient; g(s) is a best simultaneous approx-
imation of f1 (s) , f2 (s) , . . . , fm (s) for almost all s in G, implies g is a best simul-
taneous approximation of f1, f2, . . . , fm in L1 (μ ,G) . In fact we have the following
theorem:

Theorem 2. Let (Ω ,Σ ,μ) be a measure space. Then, L1 (μ ,G) is simultaneously
proximinal in L1 (μ ,X) if and only if for any finite number of elements f1, f2, . . . , fm

in L1 (μ ,X) , there exists g ∈ L1 (μ ,G) such that g(s) is a best simultaneous approx-
imation of f1 (s) , f2 (s) , . . . , fn (s) for almost all s.

Proof. Sufficiency of the condition is an immediate consequence of Corollary 2.1.
We will show the necessity. Assume that L1 (μ ,G) is simultaneously proximinal in
L1 (μ ,X) and let f1, f2, . . . , fm be any finite number of elements in L1 (μ ,X) . Then,
there exists g ∈ L1 (μ ,G) such that

m

∑
i=1

‖ fi −g‖1 = d
({ fi : 1 ≤ i ≤ m} , L1 (μ ,G)

)

=

∫

Ω

d ({ fi (s) : 1 ≤ i ≤ m} , G)dμ ,
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hence
∫

Ω

(

m

∑
i=1

‖ fi (s)−g(s)‖− d ({ fi (s) : 1 ≤ i ≤ m} , G)

)

dμ = 0.

Thus
m

∑
i=1

‖ fi (s)−g(s)‖= d ({ fi (s) : 1 ≤ i ≤ m} , G) ,

for almost all s.

3 Main Result

Let (Ω ,Σ ,μ) be a measure space and X be a Banach space. We say that f : Ω →X is
measurable in the classical sense if f−1 (O) is measurable for every open set O ⊂ X .

The following lemmas will be used to prove our main result.

Lemma 1. ([10]) Let (Ω ,Σ ,μ) be a complete measure space and X be a Banach
space. If f is a strongly measurable function from Ω to X , then f is measurable in
the classical sense.

Lemma 2. ([10]) Let (Ω ,Σ ,μ) be a complete measure space and X be a Banach
space. If f : Ω → X is measurable in the classical sense and has essentially sepa-
rable range, then f is strongly measurable.

Let Φ be a set-valued mapping, taking each point of a measurable space Ω into
a subset of a metric space X . We say that Φ is weakly measurable if Φ−1(O) is
measurable in Ω whenever O is open in X . Hence we have put, for any A ⊂ X ,

Φ−1(A) = {s ∈ Ω : Φ(s)∩A �= φ}.
The following theorem is due to Kuratowski [6], it is known as Measurable Se-

lection Theorem.

Theorem 3. ([6]) Let Φ be a weakly measurable set-valued map which carries each
point of a measurable space Ω to a closed nonvoid subset of a complete separable
metric space X. Then Φ has a measurable selection; i.e., there exists a function
f : Ω → X such that f (s) ∈ Φ(s) for each sεΩ and f−1(O) is measurable in Ω
whenever O is open in X .

The following theorem is the main result of the paper.

Theorem 4. Let X be a Banach space and G be a closed separable subspace of X ,
and (Ω ,Σ ,μ) is σ -finite complete measure space. Then the following are equiva-
lent:

(i) G is simultaneously proximinal in X .
(ii) L1 (μ ,G) is simultaneously proximinal in L1 (μ ,X) .



On Simultaneous Approximation in Function Spaces 327

Proof. (2) ⇒ (1) : Let x1,x2, . . . ,xm be any finite number of elements in X . Since
(Ω ,Σ ,μ) is σ-finite, we can assume that Ω = ∪

n∈N
An such that μ (An) < ∞ for all

n ∈ N. Then there must be k0 ∈ N such that 0 < μ
(

Ak0

)

< ∞. Define fxi : Ω → X ,
i = 1,2, . . . ,m, by

fxi (s) = χAk0
(s)xi,

for all s ∈ Ω . Then fxi ∈ L1 (μ ,X) for all i. By the assumption, there exists f0 ∈
L1 (μ ,G) such that

m

∑
i=1

‖ fxi − f0‖1 = d
({ fxi : 1 ≤ i ≤ m} ,L1 (μ ,G)

)

.

Then,
m

∑
i=1

‖ fxi − f0‖1 ≤
m

∑
i=1

∥

∥

∥ fxi − χAk0
g
∥

∥

∥

1

=
m

∑
i=1

∥

∥

∥χAk0
xi − χAk0

g
∥

∥

∥

1

=

∫

Ak0

(

m

∑
i=1

‖xi −g‖
)

dμ

= μ
(

Ak0

)

(

m

∑
i=1

‖xi −g‖
)

,

for all g ∈ G. By Theorem 2.2, f0 (s) is a best simultaneous approximation of
fx1 (s) , fx2 (s) , . . . , fxm (s) for almost all s. Then

m

∑
i=1

‖ fxi (s)− f0 (s)‖ ≤
m

∑
i=1

‖ fxi (s)−h(s)‖ ,

for almost all s and for any strongly measurable function h : Ω → G, hence f0 =
χAk0

f0. Put x0 =
∫

Ak0

f0 (s)dμ . Then,

m

∑
i=1

∥

∥

∥

∥

∥

xi − x0

μ
(

Ak0

)

∥

∥

∥

∥

∥

= μ
(

Ak0

)−1
m

∑
i=1

∥

∥

∥

∥

∥

∥

∥

∫

Ak0

fxi (s)dμ −
∫

Ak0

f0 (s)dμ

∥

∥

∥

∥

∥

∥

∥

≤ μ
(

Ak0

)−1
m

∑
i=1

∫

Ak0

‖ fxi (s)− f0 (s)‖dμ

= μ
(

Ak0

)−1
m

∑
i=1

‖ fxi − f0‖1 dμ

≤
m

∑
i=1

‖xi −g‖ ,
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for all g ∈ G. Hence 1
μ(Ak0)

x0 is a best simultaneous approximation of x1,x2, . . . ,

xm in G.
(1)⇒ (2) : Let f1, f2, . . . , fm be any finite number of elements in L1 (μ ,X) . For

each s ∈ Ω define

Φ (s) =

{

g ∈ G :
m

∑
i=1

‖ fi (s)−g‖= d ({ fi (s) : 1 ≤ i ≤ m} , G)

}

.

For each s ∈ Ω , Φ (s) is closed, bounded, and nonvoid subset of G. We shall
show that Φ is weakly measurable. Let O be an open set in X , the set

Φ−1(O) = {s ∈ Ω : Φ(s)∩O �= φ}

can be also be described as

Φ−1(O) = {s ∈ Ω : inf
g∈G

m

∑
i=1

‖ fi (s)−g‖= inf
g∈O

m

∑
i=1

‖ fi (s)−g‖}.

Since (Ω ,Σ ,μ) is complete, fi is measurable in the classical since for i =
1,2, . . . ,m by Lemma 3.1. Since subtraction in G, sum, and the norm in X are con-
tinuous, then the map

s → inf
g∈A

m

∑
i=1

‖ fi (s)−g‖

is measurable for any set A. It follows that Φ−1(O) is measurable. By Theorem 3.3,
Φ has a measurable selection; i.e., there exists a function f : Ω → G such that
f (s) ∈ Φ(s) for each sεΩ and f is measurable in the classical sense. By Lemma
3.2, f is strongly measurable. Hence f is a best simultaneous approximation for
f1, f2, . . . , fm in L1 (μ ,G) by Corollary 2.1.
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Chalmers–Metcalf Operator and Uniqueness
of Minimal Projections in �n

∞ and �n
1 Spaces

Lesław Skrzypek

Abstract We construct the Chalmers–Metcalf operator for minimal projections
onto hyperplanes in �n

∞ and �n
1 and prove it is uniquely determined. We show how

we can use Chalmers–Metcalf operator to obtain uniqueness of minimal projections.
The main advantage of our approach is that it is purely algebraical and does not re-
quire consideration of the min–max problems.

1 Introduction

A projection P : X →V is taken to mean any bounded linear operator P that carries
a Banach space X onto a linear subspace V in such a way that it acts as an identity
on V. A projection P : X →V is called minimal if it has the smallest possible norm,
that is if

‖P‖= λ (V,X) = inf{‖Q‖ : Q : X →V and Q is a projection onto V}. (1)

Observe that any projection with norm one is automatically minimal, though in gen-
eral, a given subspace will not be the range of a projection of norm 1. In many cases,
the existence of a minimal projection is known a priori (see [10]), which is the case
when the subspace is finite-dimensional or finite-codimensional. Although typically
the formula for minimal projection is difficult to find, the reader is referred to [2–
4, 9–11] for more information on problems related to finding a minimal projection.
The problem of the uniqueness of minimal projection is more difficult. Even in �n

∞
and �n

1 the situation is far from being understood. Theorem II.3.6 [11] (see also
[1]) describes the minimal projections and characterizes the uniqueness of minimal
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projections of �n
∞ onto hyperplanes. Theorem II.5.2 [11] (see also [1, 5]) describes

the minimal projections and characterizes the uniqueness of minimal projections of
�n

1 onto hyperplanes. The proof of the latter is lengthy and complicated. There are
partial results on the description of minimal projections and its uniqueness of �n

∞
onto subspaces of codimension 2 (see [6, 7]). General full characterization seems
impossible.

In this paper, we explore algebraic properties of Chalmers–Metcalf operators.
Without knowing the norm or actual minimal projection we are able to construct the
Chalmers–Metcalf operator and use it to prove uniqueness of minimal projections.
Previously, the invertibility of the Chalmers–Metcalf operator in smooth spaces has
been linked to uniqueness of minimal projections [9] but �n

1 and �n
∞ are far from being

smooth. It is interesting to see that this concept can also be used in such spaces. We
will begin with introducing the notion of the Chalmers–Metcalf operator.

By S(X) we denote the unit sphere of X , that is, S(X) = {x : ||x|| = 1}. Let
L : X →Y be a linear operator. A functional g∈ S(Y ∗) is called a norming functional
for L if

||g◦L||= ||L||. (2)

A point x ∈ S(X) is called a norming point for L if

||L(x)|| = ||L||. (3)

A pair (g, f ) ∈ S(Y∗)×S(X) is called a norming pair for L if

g(L f ) = ||L||. (4)

The set of all norming pairs for L is denoted by E (P). If P is a projection from X
onto a finite-dimensional subspace Y, then (since P is a compact operator) it has a
norming functional. If X is reflexive, then any functional attains its norm. Therefore,
there is a norming pair for P. If X is not reflexive then, in general, it is not true.
For example, the Fourier projection does not attain its norm in C[0,2π ]. But any
functional attains its norm in X ∗∗, hence we can always find a norming pair for P
(extending P to P∗∗) in S(X∗)×S(X∗∗).

To each extremal pair (g, f ) in S(X∗)×S(X∗∗) we associate the rank-one operator
g⊗ f from X to X∗∗ given by (g⊗ f )(z) = g(z) · f for z ∈ X .

Theorem 1 ([2, 3]) A projection P : X → V has a minimal norm if and only if the
closed convex hull of {g⊗ f}(g, f )∈E (P) contains an operator EP for which V is an
invariant subspace.

Operator EP is called a Chalmers–Metcalf operator if it is given by the formula

EP =

∫

E (P)

g⊗ f dμ : X → X��, (5)

where μ is a probabilistic Borel measure on E (P) and

EP(V )⊂V (6)
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Under the assumption that X∗ is separable, every operator in the closed convex
hull of {g⊗ f}(g, f )∈E (P) for which V is an invariant subspace is a Chalmers–Metcalf
operator and vice versa (see [8]).

Here, we will list interesting properties of Chalmers–Metcalf operator (see [8]
for details).

• Chalmers–Metcalf operator does not depend on a particular minimal projection,
it only depends on location of V in X (that is if we construct a Chalmers–Metcalf
operator for a particular minimal projection P, it will also be a Chalmers–Metcalf
operator for any other minimal projection). As a result we will say Chalmers–
Metcalf operator for the pair (X ,V ).

• The norming pairs that appears in the Chalmers–Metcalf operator are common
norming pairs for any minimal projection.

• Chalmers–Metcalf operator does not have to be unique.
• The set of all Chalmers–Metcalf operators is a convex set.
• Invertibility of Chalmers–Metcalf operator (restricted to V ) seems to play impor-

tant role in the uniqueness of minimal projection (see [9]).

The Chalmers–Metcalf theorem has many applications especially in case of X =
L1, for example, it has been used to find the minimal projection onto polynomials of
degree 2 (see [2]).

In this paper, we will assume that all considered spaces are real. If X is a Banach
space, then denote by Ext(X) the set of all extreme points of a unit ball in X . Let

ei = (0, . . . ,0,1,0, . . . ,0), (7)

where 1 is on i-th place (all other places have 0’s). It is well known that

Ext(�n
1) = {±ei, i = 1, . . . ,n}, (8)

and

Ext(�n
∞) = {(ε1, . . . ,εn), where εi =±1}. (9)

Every projection P : X → ker f has to be of the following form

P = Id− f ⊗ z, (10)

where f ∈ S(X∗) and z ∈ X such that f (z) = 1.
Since X = �n

∞ and X = �n
1 are symmetric subspaces then there is an isometry

I : X → X such that I(ker f ) = I(ker| f |). Therefore, without a loss of generality, we
can assume that fi ≥ 0 for every i = 1, . . . ,n.

The following useful remark will allow us to assume that zi ≥ 0 for every i =
1, . . . ,n.

Remark 1 Let X = �n
∞ or X = �n

1. Assume that 1 ≥ fi ≥ 0 for every i = 1, . . . ,n
and f ∈ S(X∗). Take a projection P = Id − f ⊗ z : X → ker f such that ||P|| > 1.
Define xi = 0 if zi ≤ 0 and xi = θ zi if zi > 0. Here θ = 1

∑+ fizi
, the summation symbol
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denoting the sum for zi > 0. Then

Q = Id− f ⊗ x, (11)

is a projection from X onto ker f and ||Q|| ≤ ||P||.
Proof. The proof of case X = �n

1 can be found in Lemma 4 [1]. The case X = �n
∞

can be handled analogously. We are presenting it here for the sake of completeness.
Using Lemma 2 [1] we have

||P||= max
i=1,...,n

{|1− fizi|+ |zi|(1− fi)} (12)

and

||Q||= max
i=1,...,n

{1+ xi(1−2 fi)}. (13)

Denote ri = |1− fizi|+ |zi|(1− fi) and si = 1+ xi(1−2 fi). Since ||P||> 1 we have
1−2 fi > 0 (see [1]). We distinguish three cases.

Case 1, fizi ≤ 0. Then xi = 0 and si = 1 < ||P||.
Case 2, 0 < fizi < 1. Then ri = 1+ zi(1−2 fi)≥ 1+θ zi(1−2 fi) = si. Therefore,

si ≤ ||P||.
Case 3, fizi ≥ 1. Observe that fizi ≥ 1 is equivalent to zi −1≥ 1+ zi(1−2 fi). As

a result ri = zi −1 ≥ 1+ zi(1−2 fi)≥ 1+θzi(1−2 fi) = si. Therefore si ≤ ||P||.
We proved that for any i = 1, . . . ,n si ≤ ||P||. As a result ||Q|| ≤ ||P||.

2 Chalmers–Metcalf Operator for Hyperplanes in �n
∞

Minimal projections of norm 1 are a special subclass of all minimal projections
(see [12]). In �n

∞ we know that λ (ker f , �n
∞) = 1 is equivalent to || f ||∞ ≥ || f ||1/2.

(Theorem 1 in [1]). In this section, we will assume that λ (ker f , �n
∞)> 1.

Remark 2 (Remark 3.16 [8]) Take X = �n
∞ and let V be its subspace. Then any

Chalmers–Metcalf operator for the pair (�n
∞,V ) can be written as

EP =
n

∑
i=1

αiei ⊗ yi, (14)

for some yi ∈ S(�n
∞) and αi ≥ 0 such that ∑n

i=0 αi = 1 and ei(Pyi) = ||P|| for all i
such that αi > 0 and all minimal projections P : X →V.

We will prove that in most cases all αi are strictly positive. And as a result we will
see that they are uniquely determined.

Theorem 2 Assume fi �= 0, for every i = 1, . . . ,n, and consider f = ( f1, . . . , fn) ∈
S(�n

1) such that || f ||∞ < || f ||1/2. Then any Chalmers–Metcalf operator for the pair
(�n

∞,ker f ) has the form of (14), where αi > 0 for all i = 1, . . . ,n.
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Proof. Let EP be any Chalmers–Metcalf operator for the pair (�n
∞,ker f ). By

Remark 2

EP =
n

∑
i=1

αiei ⊗ yi, (15)

for some yi ∈ S(�n
∞) and αi ≥ 0 such that ∑n

i=0 αi = 1 and ei(Pyi) = ||P|| for all i
such that αi > 0 and all minimal projections P : X →V.

We know that EP(ker f )⊂ ker f . That is for every x ∈ ker f we have f (EP(x)) = 0.
Observe that for every x = (x1, . . . ,xn)

f (EP(x)) =
n

∑
i=1

αixi f (yi) (16)

Take x = f jei − fie j. Clearly, x ∈ ker f and

f (EP(x)) = αi f j f (yi)−α j fi f (y j). (17)

As a result for every i, j = 1, . . . ,n

αi f j f (yi) = α j fi f (y j). (18)

Set γi = αi f (yi). We will show that γi �= 0, for all i = 1, . . . ,n. Fix i, summing the
above equations over j = 1, . . . ,n produces

γi(
n

∑
k=1

fk) = fi(
n

∑
k=1

γk) (19)

Since fi �= 0 for all i = 1, . . . ,n then either ∑n
k=1 γk �= 0 and as a result γi �= 0, for all

i = 1, . . . ,n or ∑n
k=1 γk = 0 and then γi = 0, for all i = 1, . . . ,n. Therefore,

αi f (yi) = 0, i = 1, . . . ,n. (20)

Since ∑n
i=0 αi = 1, there is k such that αk �= 0. By Remark 2

λ (ker f , �n
∞) = ek(Pyk) = ek(yk)≤ 1, (21)

contrary to the assumption that || f ||∞ < || f ||1/2 which guarantees λ (ker f , �n
∞)> 1.

The condition γi �= 0, for all i = 1, . . . ,n immediately gives us αi �= 0, for all i =
1, . . . ,n.

Using the above theorem, we can give an easy proof of the full description of
uniqueness of minimal projections (see Theorem II.3.6 [11] and also [1]). Our ap-
proach has an advantage in that it does not require a computation of the norm of
minimal projection and considering min–max problems. It is completely algebraic.

Theorem 3 Assume fi �= 0, for every i = 1, . . . ,n, and consider f = ( f1, . . . , fn) ∈
S(�n

1) such that || f ||∞ < 1/2. Then there is only one minimal projection from �1
∞ onto

ker f .
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Proof. Take EP, a Chalmers–Metcalf operator for the pair (�n
∞,ker f ). By Theorem 2

EP =
n

∑
i=1

αiei ⊗ yi, (22)

for some yi ∈ S(�n
∞) and αi > 0 such that ∑n

i=0 αi = 1 and ei(Pyi) = λ (ker f , �n
∞) for

all i = 1, . . . ,n and all minimal projections P : X →V.
Every projection onto ker f has to be of the form

Q = Id − f ⊗ z, (23)

where f (z) = 1. Assume Q is minimal. By (22) we have

ei(Qyi) = λ (ker f , �n
∞). (24)

That is,
ei(yi)− f (yi)zi = λ (ker f , �n

∞). (25)

Since ||Q||> 1, then f (yi) �= 0, for all i= 1, . . . ,n (otherwise, if for some k, f (yk)= 0
then Q(yk) = yk and since yk is a norming point ||Q||= 1). As a result

zi =
ei(yi)−λ (ker f , �n

∞)

f (yi)
. (26)

Therefore, zi are uniquely determined thus Q is unique.

With a little more effort, using the above, we can find the Chalmers–Metcalf
operator exactly.

Theorem 4 Assume fi > 0, for every i = 1, . . . ,n, and consider f = ( f1, . . . , fn) ∈
S(�n

1) such that || f ||∞ < 1/2. Then there is only one minimal projection of �n
∞ onto

ker f and the Chalmers-Metcalf operator for the pair (�n
∞,ker f ) is uniquely defined

by

EP =
n

∑
i=1

αiei ⊗ηi, (27)

where ηi = (−1, . . . ,−1)+ 2ei and

αi =
βi

β1 + · · ·+βn
where βi =

fi

1−2 fi
. (28)

Moreover,

λ (ker f , �n
∞) = 1+

(

n

∑
i=1

fi

1−2 fi

)−1

(29)

and projection P = Id− f ⊗ z is minimal for

zi =
λ (ker f , �n

∞)−1
1−2 fi

. (30)
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Proof. Take EP a Chalmers–Metcalf operator for the pair (�n
∞,ker f ). By Theorem 2

EP =
n

∑
i=1

αiei ⊗ yi, (31)

for some yi ∈ S(�n
∞) and αi > 0 such that ∑n

i=0 αi = 1 and ei(Pyi) = λ (ker f , �n
∞)

for all i = 1, . . . ,n and all minimal projections P : X → V. Take a unique minimal
projection P = Id − f ⊗ z, where f (z) = 1. Using Remark 1 we may assume that
zi ≥ 0 for every i = 1, . . . ,n. Using λ (ker f , �n

∞)> 1 and (26) we may further assume
that zi > 0 for every i = 1, . . . ,n. Therefore

ei(P(ε1, . . . ,εn)) = εi(1− fizi)− zi

(

∑
j �=i

ε j f j

)

. (32)

Since ∑n
i fizi = 1 we have 1− fizi ≥ 0, for all i = 1, . . . ,n. In fact, 1− fizi > 0 for

all i = 1, . . . ,n. Otherwise, fi0 zi0 = 1 and zi = 0 for all i �= i0 but then for i �= i0
ei(P(ε1, . . . ,εn)) = εi and ||ei ◦ P|| = 1 < ||P||. Therefore, for i �= i0, ei is not a
norming functional for P. That contradicts (31). As a result the norm of ei ◦ P is
attained only at the point (ε1, . . . ,εn) where εi = 1 and ε j = −1, j �= i. That is, the
norm is attained only at ηi. As a result

yi = ηi for all i = 1, . . . ,n. (33)

Since ∑n
i fi = 1 we observe that f (ηi) = 2 fi − 1. Using (26) and solving (19)

gives (30) and (28). Using (30) and the fact that ∑n
i=1 fizi = 1 gives (29).

3 Chalmers–Metcalf Operator for Hyperplanes in �1
n

In general, the �n
1 case is more difficult. Although the full description is known, its

proof is very long and complicated (Theorem II.5.2 [11], see also [1, 5]). Here we
present the simple and purely algebraic proof of a special but relatively generic case.

Remark 3 (Remark 3.16 [8]) Take X = �n
1 and let V be its subspace. Then, any

Chalmers–Metcalf operator for the pair (�n
1,V ) can be written as

EP =
n

∑
i=1

αiyi ⊗ ei, (34)

for some yi ∈ S(�n
∞) and αi ≥ 0 such that ∑n

i=1 αi = 1 and yi(Pei) = ||P|| for all i
such that αi > 0 and all minimal projections P : X →V.

Lemma 4. Assume that fi �= 0, for every i= 1, . . . ,n, and consider f =( f1, . . . , fn)∈
S(�n

∞). Also assume that there is a Chalmers–Metcalf operator for the pair (�n
1,ker f ).

such that αi > 0, for every i = 1, . . . ,n, and the matrix of yi is invertible. Then the
minimal projection P : �n

1 → ker f is unique minimal.
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Proof. Let EP be any Chalmers–Metcalf operator for the pair (�n
1,ker f ). By

Remark 3

EP =
n

∑
i=1

αiyi ⊗ ei, (35)

for some yi ∈ S(�n
∞) and αi > 0 such that ∑n

i=1 αi = 1 and yi(Pei) = ||P|| for all
minimal projections P : X → ker f . Every projection onto ker f has to be of the form

Q = Id − f ⊗ z, (36)

where f (z) = 1. Assume Q is minimal. Using (35) we have

yi(Qei) = λ (ker f , �n
1). (37)

That is

yi(ei)− fiyi(z) = λ (ker f , �n
1) (38)

and

yi(z) =
yi(ei)−λ (ker f , �n

1)

fi
. (39)

The last equations give the system of n linear equations with n coordinates of z as
unknowns. The main determinant of the system is the determinant of the matrix of
yi. Since we assume this matrix is invertible, the system has a unique solution.

The assumption that the minimal projection P in �n
1 onto hyperplane attains

norm on every ei is not restrictive. One may expect the minimal projection to be
equally small in every direction. Lemma I.1.1 [11] shows that every minimal pro-
jection of three dimensional space onto hyperplane have at least 6 norming points.
As a result, a projection of norm greater then 1 in �3

1 has to attain norm on all
e1,−e1,e2,−e2,e3,−e3. We will investigate this condition now. Remark 1 shows
that there is always a minimal projection with fi,zi ≥ 0, for i = 1, . . . ,n.

Lemma 5. Let n ≥ 3 and assume that fi,zi ≥ 0, for i = 1, . . . ,n. Define

P = Id− f ⊗ z, (40)

where f (z) = 1. Then P attains norm on every ei, for i = 1, . . . ,n, if and only if
every pair (ηi,ei), for i = 1, . . . ,n, is a norming pair for P. Moreover if fi,zi > 0,
for i = 1, . . . ,n then (ηi,ei), for i = 1, . . . ,n, are the only norming pairs for P.

Proof. Observe that

P(ek) = (− fkz1, . . . ,1− fkzk, . . . ,− fkzn). (41)

Since f (z) = 1 we can see that 0 ≤ fizi ≤ 1, for all i = 1, . . . ,n. We cannot have
fkzk = 1 for any k = 1, . . . ,n (otherwise for some k we have zk = 1/ fk and zi = 0,
for i �= k and that leads to Pek = 0). As a result, for all i = 1, . . . ,n 0 ≤ fizi < 1, and

||Pek||= ηk(Pek). (42)

If fi,zi > 0, then (41) shows that ηk is the only norming functional for Pek.
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If we assume that this minimal projection attains norm on every ei, for i= 1, . . . ,n
and use the above lemma to (39) we can see that z has to satisfy system of equation

ηi(z) =
1−λ (ker f , �n

1)

fi
, for i = 1, . . . ,n. (43)

What we will do now is to reverse this reasoning. We will take z that satisfies the
above equations and we will prove that it will give a minimal projection that attains
norm on every ei, for i = 1, . . . ,n.

Lemma 6. Assume n ≥ 3 and not all of bk are zero. Then all solutions to the system
of equations

(bk +bl)xk − (bk +bl)xl + ∑
i�=k,l

(bk −bl)xi = 0, k, l = 1, . . . ,n (44)

are of the form

(x1, . . . ,xn) = α
(∑n

j=1 b j

n−2 −b1, . . . ,
∑n

j=1 b j

n−2 −bn

)

. (45)

Proof. We rewrite (44) as

2blxk −2bkxl +(bk −bl)
n

∑
i=1

xi = 0, k, l = 1, . . . ,n. (46)

Fix k. Summing over l we obtain

2

(

n

∑
i=1

bi

)

xk −2bk

(

n

∑
i=1

xi

)

+nbk

(

n

∑
i=1

xi

)

−
(

n

∑
i=1

xi

)(

n

∑
i=1

bi

)

= 0. (47)

That is,

2

(

n

∑
i=1

bi

)

xk = (n−2)

(

n

∑
i=1

xi

)

(

∑n
i=1 bi

n−2
−bk

)

, (48)

which is (45) with α = ((n− 2)∑n
i=1 xi)/(2∑n

i=1 bi) in case ∑n
i=1 bi �= 0; in case

∑n
i=1 bi = 0, (48) gives (n−2)bk ∑n

i=1 xi = 0, for all k = 1, . . . ,n. Fixing a k such that
bk �= 0, we get ∑n

i=1 xi = 0, which gives from (46) blxk = bkxl , i.e., xl = (xk/bk)bl ,
which is (45) with α =−xk/bk.

Lemma 7. Let n ≥ 3 and assume f = ( f1, . . . , fn) �= 0 and ∑n
i=1 λi = 1. Define

E =
n

∑
i=1

αi ηi ⊗ ei, (49)

where ηi = (−1, . . . ,−1)+ 2ei. Then E(ker f )⊂ ker f if and only if

αi =
βi

β1 + · · ·+βn
where βi =

f1 + · · ·+ fn

(n−2) fi
−1. (50)
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Proof. Put xk,l = fl ek − fk el , for k, l = 1, . . . ,n. Observe that

ker f = span{xk,l : k, l = 1, . . . ,n}. (51)

As a result E(ker f )⊂ ker f if and only if

f (E(xk,l)) =
n

∑
i=1

αi fi ηi(xk,l) = 0, (52)

for all k, l = 1, . . . ,n. The last equation is equivalent to

∑
i�=k,l

αi fi( fk − fl)+αk fk( fk + fl)−αl fl( fk + fl) = 0, (53)

for all k, l = 1, . . . ,n. Putting zi = αi fi and applying Lemma 6 we obtain

αi = α
(

f1 + · · ·+ fn

(n−2) fi
−1

)

. (54)

If α = 0 then we would have αi = 0, for all i = 1, . . . ,n, a contrary to ∑n
i=1 αi = 1.

Therefore, α �= 0. Normalizing α1 + · · ·+αn = 1 gives the result.

Theorem 5 Assume 1 ≥ f1 ≥ f2 ≥ ·· · ≥ fn > 0, ∑n
i=1 fi > (n−2) f1 and ∑n

j=1
1
f j
>

n−2
fn

. Let w = (w1, . . . ,wn) be the unique solution to the system of equations

ηi(w) =− 1
fi
, for i = 1, . . . ,n. (55)

Then the projection P = Id − f ⊗ z : �n
1 → ker f , for

zi =
wi

∑n
i=1 fiwi

(56)

is minimal and (ηi,ei), for i = 1, . . . ,n, are the only norming pairs for this projec-
tion.

Proof. Let w be the unique solution to the system of equations (55). Summing these
equations over i = 1, . . . ,n gives

− (n−2)
n

∑
i=1

wi =
n

∑
i=1

ηi(w) =−
n

∑
i=1

1
fi
. (57)

As a result
n

∑
i=1

wi =
∑n

i=1
1
fi

n−2
. (58)

Using the above and the assumption ∑n
j=1

1
f j
> n−2

fn
≥ n−2

fk
we get.

2wk = ηk(w)+
n

∑
i=1

wi =− 1
fk
+

∑n
i=1

1
fk

n−2
> 0. (59)
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Therefore,
zi =

wi

∑n
i=1 fiwi

> 0, (60)

for any i = 1, . . . ,n. From the above 0 < fizi < 1. Observe that

fkηk(z) =
fkηk(w)

∑n
i=1 fiwi

=
flηl(w)

∑n
i=1 fiwi

= flηl(z), (61)

for every k, l = 1, . . . ,n. Since

P(ek) = (− fkz1, . . . ,1− fkzk, . . . ,− fkzn) (62)

We can see that

||Pek||= ηkP(ek) = 1− fkηk(z) = 1− flηl(z) = ηlP(el) = ||Pel||. (63)

To prove that P is minimal, take

E =
n

∑
i=1

αi ηi ⊗ ei, and αi =
βi

β1 + · · ·+βn
for βi =

f1 + · · ·+ fn

(n−2) fi
−1. (64)

From (63) (ηi,ei) ∈ ε(P), the assumption ∑n
i=1 fi > (n−2) f1 gives αi > 0. Finally,

By Lemma 7, E(ker f ) ⊂ ker f . Therefore, E is a Chalmers–Metcalf operator for P.
Hence, P is minimal.

Theorem 6 Assume 1 ≥ f1 ≥ f2 ≥ ·· · ≥ fn > 0, ∑n
i=1 fi > (n−2) f1 and ∑n

j=1
1
f j
>

n−2
fn

. Consider f = ( f1, . . . , fn) ∈ S(�n
∞). Then the minimal projection onto ker f is

unique minimal.

Proof. Applying Lemma 4 to Chalmers-Metcalf operator constructed in (64) gives
the result.

Now we can summarize our theorems

Theorem 7 Assume 1 ≥ f1 ≥ f2 ≥ ·· · ≥ fn > 0, ∑n
i=1 fi > (n−2) f1 and ∑n

j=1
1
f j
>

n−2
fn

. Consider f = ( f1, . . . , fn) ∈ S(�n
∞). Then, there is only one minimal projec-

tion of �n
1 onto ker f and the Chalmers–Metcalf operator for the pair (�n

1,ker f ) is
uniquely defined by

EP =
n

∑
i=1

αi ηi ⊗ ei, (65)

where ηi = (−1, . . . ,−1)+ 2ei and

αi =
βi

β1 + · · ·+βn
where βi =

f1 + · · ·+ fn

(n−2) fi
−1. (66)

Moreover,

λ (ker f , �n
1) = 1+(

n

∑
i=1

fiwi)
−1 (67)
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and projection P = Id− f ⊗ z is minimal for

zi = wi (λ (ker f , �n
1)−1), (68)

where

wi =
1
2

(

∑n
i=1

1
fi

n−2
− 1

fi

)

(69)

Proof. The uniqueness of minimal projection follows from the previous theorem.
By the construction of a minimal projection P onto ker f in Theorem 5 we can see
that (ηi,ei) are the only norming pairs for P. Therefore, any Chalmers–Metcalf op-
erator for the pair (�n

1,ker f ) has to be of the form

EP =
n

∑
i=1

αi ηi ⊗ ei, (70)

where αi ≥ 0 and ∑n
i=1 αi = 1. By Lemma 7 we see that every EP has to be of the

form (65). Also

λ (ker f , �n
1) = ηk(Pek) = 1− fkηk(z) = 1− fk

∑n
i=1 fiwi

ηk(w) = 1+
1

∑n
i=1 fiwi

. (71)

(68) and (69) follows from (60) and (59).

Example 1 Assume f1 ≥ f2 ≥ f3 > 0 and consider f = ( f1, f2, f3) ∈ S(�3
∞). Then

the minimal projection P : �3
1 → ker f is unique minimal and the Chalmers–Metcalf

operator for P : �n
1 → ker f is uniquely defined by

EP =

f2+ f3
f1

η1 ⊗ e1 +
f1+ f3

f2
η2 ⊗ e2 +

f1+ f2
f3

η3 ⊗ e3

f2+ f3
f1

+ f1+ f3
f2

+ f1+ f2
f3

, (72)

where η1 = (1,−1,−1),η2 = (−1,1,−1),η3 = (−1,−1,1).

Proof. For n = 3 the assumptions of Theorem 7 are automatically satisfied.

Example 2 The minimal projection from �n
1 onto ker(1, . . . ,1) is

P = Id− 1
n
(1, . . . ,1)⊗ (1, . . . ,1). (73)

This projection is unique minimal.

Proof. For f = (1, . . . ,1) the assumptions of Theorem 7 are automatically satisfied.

Next, we consider the subspace ker(1, 1
4 ,

1
4 ,

1
4 ). It does not satisfy the assumption

of Theorem 7. It is an extreme case. Minimal projection is actually zero on one
of the extreme points of �n

1 and z has only one non-zero coefficient. We will show
how Chalmers–Metcalf operator can be used to obtain that this projection is unique
minimal. The proof is completely algebraic.
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Example 3 The minimal projection from �4
1 onto ker(1, 1

4 ,
1
4 ,

1
4 ) is

P = Id− (1, 1
4 ,

1
4 ,

1
4 )⊗ (1,0,0,0). (74)

This projection is also unique minimal but does not attain the norm on every ei. In
fact P(e1) = 0.

Proof. Consider projection P given by (74). Observe that P(e1) = 0 and

P(ek) =−1/4e1 + ek, (75)

for k = 2,3,4. Therefore, ||Pek|| = 5/4. As a result ||P|| = 5/4 and the follow-
ing pairs ((−1,1,−1,−3/4),e2), ((−1,−3/4,1,−1),e3), ((−1,−1,−3/4,1),e4)
are norming pairs for P. Consider operator

E = 1
3 (−1,1,−1,− 3

4)⊗e2+
1
3 (−1,− 3

4 ,1,−1)⊗e3+
1
3(−1,−1,− 3

4 ,1)⊗e4. (76)

Observe that

(1, 1
4 ,

1
4 ,

1
4 )(Ex) = 1

3
1
4 ((−1,1,−1,− 3

4)x+(−1,− 3
4,1,−1)x+(−1,−1,− 3

4,1)x

= 1
3

1
4 (−3,− 3

4 ,− 3
4 ,− 3

4)x =− 1
4(1,

1
4 ,

1
4 ,

1
4 )x.

(77)
Therefore, E(ker(1, 1

4 ,
1
4 ,

1
4 ))⊂ ker(1, 1

4 ,
1
4 ,

1
4 ) and as a result P is minimal. We will

prove uniqueness of P now. Any projection �4
1 onto ker(1, 1

4 ,
1
4 ,

1
4 ) is given by for-

mula
Q = Id− (1, 1

4 ,
1
4 ,

1
4 )⊗ z, (78)

where z1 +(1/4)(z2 + z3 + z4) = 1. Assume Q is minimal. The norming pairs that
appears in the Chalmers–Metcalf operator (76) are norming pairs for any minimal
projection (see Theorem 2.18 [8]). As a result we obtain the equations

5
4 = (−1,1,−1,− 3

4)Q(e2) = 1+ 1
4 z1 − 1

4 z2 +
1
4 z3 +

3
16 z4,

5
4 = (−1,− 3

4 ,1,−1)Q(e3) = 1+ 1
4 z1 +

3
16 z2 − 1

4 z3 +
1
4 z4,

5
4 = (−1,−1,− 3

4 ,1)Q(e4) = 1+ 1
4 z1 +

1
4 z2 +

3
16 z3 − 1

4 z4.

(79)

Using z1 +(1/4)(z2 + z3 + z4) = 1 and plugging for z1 we can reduce the above
system to

− 5
16 z2 +

3
16 z3 +

2
16 z4 = 0,

2
16 z2 − 5

16 z3 +
3

16 z4 = 0,
3

16 z2 +
2

16 z3 − 5
16 z4 = 0.

(80)

The system has the unique solution z2 = z3 = z4 = 0. Therefore, z1 = 1 and Q = P.

Acknowledgements The author would like to thank the referee for many helpful comments, es-
pecially for providing the easier proof of Lemma 6.
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The Polynomial Inverse Image Method

Vilmos Totik

Abstract In this survey, we discuss how to transfer results from an interval or the
unit circle to more general sets. At the basis of the method is taking polynomial
inverse images.

1 Introduction

In the last decade a method has been developed that (in some cases) allows one
to transfer result from an interval (like [−1,1]) or the unit circle C1 (which we are
going to call model cases) to more general sets. We emphasize that the method
TRANSFORMS the RESULT from the model case to the general case and is not
aimed to carry over the proofs from the model cases to the general situation.

The rationale of the method is the following: on the unit circle C1 and on [−1,1]
many classical and powerful tools (such as Fourier-series, classical orthogonal ex-
pansions, Poisson representation, Taylor expansions, H p-spaces, etc.) have been de-
veloped, which are at our disposal when dealing with a problem on these model sets.
When dealing with more general sets like a compact subset of the real line instead
of [−1,1] or a system of Jordan corves instead of C1, either these tools are non-
existent, or they are difficult to use. Therefore, if we have a method that transforms
a model result to the general case, then

• We get the same result in many situations (as opposed to the single result in the
model case).
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• We save the burden of finding the analogue of the model proof (which may not
exist at all).

The method in question is the following: apply inverse images under polynomial
mapping, i.e. if TN(z) = γNzN + · · · is a polynomial and E0 is [−1,1] or the unit
circle C1, then consider

E = T−1
N E0 = {z TN(z) ∈ E0}.

The point is that many properties are preserved when we take polynomial inverse
images, most notable, equilibrium measures and Green’s functions (see the Ap-
pendix) are preserved.

Thus, in a nutshell we make the following steps:

(a) Start from a result for the model case.
(b) Apply an inverse polynomial mapping to go to a special result on the inverse

images of the model sets.
(c) Approximate more general sets by inverse images as in (b).

Sometimes, (b)–(c) should be followed by an additional step:

(d) Get rid of the special properties appearing in steps (b)–(c).

Among others the polynomial inverse image method has been successful in the
following situations:

1. The Bernstein-type inequality (2) below, the model case being the classical Bern-
stein inequality (1) on [−1,1].

2. The Markoff-type inequality (16)–(17) below, the model case being the classical
Markoff inequality (15).

3. Asymptotics of Christoffel functions on compact subsets of the real line, namely
(25), when the model case was (23) on [−1,1].

4. Asymptotics of Christoffel functions on curves, namely (26), when the model
case was (22) on C1.

5. Universality (28) on general sets, the model case being (28) on [−1,1].
6. Fine zero spacing (30) of orthogonal polynomials, the model case being (29)

on [−1,1].
7. For a system of smooth Jordan curves the Bernstein-type inequality (19), where

the model case was Bernstein’s inequality (18) on the unit circle.

Before elaborating more on the method let us see how it works in a concrete case.
To this we need a few things from potential theory; see the Appendix at the end of
this paper for the definitions. In what follows, for a compact set E ⊂ R of positive
capacity we denote by ωE the density of the equilibrium measure with respect to
the Lebesgue measure on R. This density certain exists in the (one dimensional)
interior of E . On the other hand, if E is a finite family of smooth Jordan curves or
arcs, then ωE denotes the density of the equilibrium measure of E with respect to
arc measure on E .
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2 The Bernstein Inequality on General Sets

Let Pn denote an algebraic polynomial of degree at most n. Bernstein’s inequality

|P′
n(x)| ≤

n√
1− x2

‖Pn‖[−1,1], x ∈ [−1,1] (1)

relating the derivative of Pn to its supremum norm on [−1,1] is of fundamental im-
portance in approximation theory. Now with the polynomial inverse image method
we can prove the following generalization of (1):

Theorem 2.1 If E ⊂ R is compact, then

|P′
n(x)| ≤ nπωE(x)‖Pn‖E , x ∈ Int(E). (2)

Note that for E = [−1,1] we have ωE(x) = 1/π
√

1− x2, so in this case (2) takes the
form (1). Let us also mention that (2) is sharp: if x0 ∈ Int(E) is arbitrary, then for
every ε > 0 there are polynomials Pn of degree at most n = 1,2, . . . such that

|P′
n(x0)|> (1− ε)nπωE(x0)‖Pn‖E

for all large n.
Actually, more is true, namely

( |P′
n(x)|

πωE(x)

)2

+n2|Pn(x)|2 ≤ n2‖Pn‖2
E , x ∈ Int(E), (3)

which is the analogue of the inequality
(

|P′
n(x)|

√

1− x2
)2

+n2|Pn(x)|2 ≤ n2‖Pn‖2
[−1,1] (4)

of Szegő ([6, 35]).
(2) and (3) are due to Baran [1], who actually got them also in higher dimension.

Both inequalities were rediscovered in [38] with the method of the present survey.
The outline of the proof of (2) using polynomial inverse images is as follows:

(a) Start from Bernstein inequality on [−1,1].
(b) Next, consider the special case when E = T−1

N [−1,1] and Pn = Sk(TN) with
some polynomial Sk. Assuming ‖Pn‖E = 1 we get

|P′
n(x)|= |S′k(TN(x))T

′
N(x)| ≤

k
√

1−T2
N(x)

|T ′
N(x)|= kNπ

|T ′
N(x)|

πN
√

1−T2
N(x)

,

and by (6) here the right-hand side is kNπωE(x), i.e. we get (2) in this special
case.

(c) Approximate a general E by T−1
N [−1,1] and Pn by Sk(TN) to get

|P′
n(x)| ≤ (1+ox,E(1))nπωE(x)‖Pn‖E (5)
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where ox,E(1) denotes a quantity that tends to 0 as n tends to infinity. See Sect. 5
for this approximation step (the exact details for the general Bernstein inequality
are in [38, Theorem 3.1]).

(d) Get rid of o(1).

This very last step can be done as follows. Let Pn be any polynomial, and x0 any
point in the interior of E . We may assume ‖Pn‖E = 1. Let Tm(z) = cos(marccosz) be
the classical Chebyshev polynomials, and for some 0< αm < 1 and 0≤ εm < 1−αm

consider the polynomials

Rmn(x) = Tm(αmPn(x)+ εm),

where αm < 1 and 0 ≤ εm < 1−αm are chosen so that αmPn(x0)+ εm is one of the
zeros of Tm. Since the distance of neighboring zeros of Tm is smaller than 10/m,
we can do this with αm = 1−10/m and with some 0≤ εm < 10/m, and then αm → 1
and εm → 0 as m → ∞. Now apply (5) to Rmn. It follows that

|R′
mn(x0)| ≤ (1+o(1))πωE(x0)mn‖Rmn‖E ,

where the term o(1) tends to zero as m → ∞. Here, on the right, ‖Rmn‖E = 1, and on
the left we have

|R′
mn(x0)|= |T ′

m(αmPn(x0)+ εm)||P′
n(x0)|αm.

Since at the zeros z of Tm we have T ′
m(z) = m/

√
1− z2, it follows that

m
√

1− (αmPn(x0)+ εm)2
|P′

n(x0)|αm ≤ (1+o(1))πωE(x0)mn,

where the term o(1) tends to zero as m → ∞. On dividing here by m and letting m
tend to infinity we obtain

|P′
n(x0)|

√

1−P2
n (x0)

≤ πωE(x0)n,

and this is the inequality (3) at the point x0 because in our case ‖Pn‖E = 1. 	


3 The Model case [−1,1], Admissible Polynomial Maps,
Approximation

As we have already mentioned, there are two model cases: the interval [−1,1] and
the unit circle C1 = {z |z|= 1}.

For [−1,1] we allow polynomial maps with respect to real polynomials (called
admissible polynomials) TN(z) = γnxN + · · · , γN �= 0 such that TN has N zeros and
N −1 local extremal values each of which is of size ≥ 1 in absolute value. In other
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1

-1

1

-1

Fig. 1: The set T−1
N [−1,1]

words, there are u1, . . . ,uN with T ′
N(u j) = 0 and |TN(u j)| ≥ 1. Then it easily follows

that the local extremal values alternate in sign and TN(z) runs through the interval
[−1,1] N-times as x runs through the real line. Thus,

E := T−1
N [−1,1] = {x TN(x) ∈ [−1,1]}

consists of N subintervals En, j, 1 ≤ j ≤ N each of which is mapped by TN onto
[−1,1] in a 1-to-1 fashion. However, some of these subintervals may be attached to
one another, so T−1

N [−1,1] actually consists of k intervals for some 1 ≤ k ≤ N; see
Fig. 1 where N = 6 and k = 3. The equilibrium measure of E is the (normalized)
pull-back of the equilibrium measure on [−1,1] under the mapping TN :

ωE(x) =
|T ′

N(x)|
πN

√

1−T 2
N(x)

, x ∈ E. (6)

Polynomial inverse images of intervals, i.e. sets of the form T−1
N [−1,1] with

admissible TN have many interesting properties [24–27]. They are the sets Σ =
∪l

j=1[a j,b j] with the property that the equilibrium measure has rational mass on
each subinterval, i.e. each μΣ ([a j,b j]), j = 1, . . . ,k is of the form p/N. They are
also the sets Σ = ∪l

i=1[ai,bi] for which the Pell-type equation

P2(z)−Q(z)S2(z) = 1 with Q(x) =
l

∏
i=1

(x−ai)(x−bi),

which goes back to N. H. Abel, has polynomial solutions P and Q. See [23]–[28] and
the references there for many more interesting results connected with polynomial
inverse images.

What we need of them is that these sets are dense among all sets consisting of
finitely many intervals.
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Theorem 3.1 Given a system Σ = {[ai,bi]}l
i=1 of disjoint closed intervals and an

ε > 0, there is another system E = {[a′i,b′i]}l
i=1 such that ∪l

i=1[a
′
i,b

′
i] = T−1

N [−1,1]
for some admissible polynomial TN, and for each 1 ≤ i ≤ l we have

|ai −a′i| ≤ ε, |bi −b′i| ≤ ε.

The theorem immediately implies its strengthened form when we also prescribe
if a given a′i (or b′i) is smaller or bigger than ai (or bi). In particular, it is possible
to require e.g. that Σ ⊂ Σ ′. It is also true that in the theorem we can select a′i = ai

for all i, and even b′l = bl . Alternatively we can fix any l + 1 of the 2l points ai,bi,
1 ≤ i ≤ l.

Theorem 3.1 has been proven several times independently in the literature, see
[7, 18, 22, 30, 38]. For a particularly simple proof see [41].

4 The Model case C1, Sharpened form of Hilbert’s Lemniscate
Theorem

For the unit circle C1 we shall take its inverse image under polynomial map-
pings generated by polynomials TN(z) = γNzN + · · · for which T ′

N(z) �= 0 whenever
|TN(z)|= 1. Then

σ := T−1
N C1 = {z |TN(z)|= 1}

is actually a level set of the polynomial TN , which, from now on, we call a lem-
niscate. Since T ′

N(z) �= 0 on E , this E consists of a finite number of analytic Jordan
curves (a Jordan curve is a homeomorphic image of the unit circle). Again, the equi-
librium measure of E is the (normalized) pull-back of the equilibrium measure on
C1 under the mapping TN :

ωσ (z) =
1

2πN
|T ′

N(z)|, z ∈ E. (7)

Hilbert’s lemniscate theorem claims that if K is a compact set on the plane and
U is a neighborhood of K then there is a lemniscate σ that separates K and C \U ,
i.e. it lies within U but encloses K. An equivalent formulation is the following. Let
γ j,Γj, j = 1, . . . ,m be Jordan curves (i.e. homeomorphic images of the unit circle),
γ j lying interior to Γj and the Γj’s lying exterior to one another, and set γ∗ = ∪ jγ j,
Γ ∗ = ∪ jΓj. Then there is a lemniscate σ that is contained in the interior of Γ ∗
which also contains γ∗ in its interior, i.e. σ separates γ∗ and Γ ∗ in the sense that it
separates each γ j from the corresponding Γj. This is not enough for our purposes of
approximation, what we need is the following sharpened form (see [19]).

Let γ∗ and Γ ∗ be twice continuously differentiable in a neighborhood of P and
touching each other at P. We say that they K -touch each other if their (signed)
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curvature at P is different (signed curvature is seen from the outside of Γ ∗). Equiv-
alently we can say that in a neighborhood of P the two curves are separated by two
circles one of them lying in the interior of the other one.

Theorem 4.1 Let γ∗ = ∪m
j=1γ j and Γ ∗ = ∪m

j=1Γj be as above, and let γ∗ K -touch
Γ ∗ in finitely many points P1, . . . ,Pk in a neighborhood of which both curves are
twice continuously differentiable. Then there is a lemniscate σ that separates γ∗
and Γ ∗ and K -touches both γ∗ and Γ ∗ at each Pj.

Furthermore, σ lies strictly in between γ∗ and Γ ∗ except for the points P1, . . . ,Pk,
and has precisely one connected component in between each γ j and Γj, j = 1, . . . ,m,
and these m components are Jordan curves.

From our point of view the following corollary is of primary importance. Let K
be the closed set enclosed by Γ ∗ and K0 the closed set enclosed by γ∗. Denote by
g(K,z) Green’s function of C\K with pole at infinity. Finally, let L be the closed set
enclosed by σ .

Corollary 4.2 Let Γ ∗, γ∗ and P1, . . . ,Pk ∈ Γ ∗ be as in Theorem 4.1. Then for every
ε > 0 there is a lemniscate σ as in Theorem 4.1 such that for each Pj we have

∂g(L,Pj)

∂n
≤ ∂g(K,Pj)

∂n
+ ε, (8)

where ∂ (·)/∂n denotes (outward) normal derivative.
In a similar manner, for every ε > 0 there is a lemniscate σ as in Theorem 4.1

such that for each Pj we have

∂g(K0,Pj)

∂n
≤ ∂g(L,Pj)

∂n
+ ε. (9)

Note that
∂g(K,Pj)

∂n
≤ ∂g(L,Pj)

∂n
≤ ∂g(K0,Pj)

∂ n
,

because K0 ⊂ L ⊂ K.
Now ∂g(K,Pj)

/

∂n gives 2π-times the density of the equilibrium measure at Pj

with respect to arc length on Γ ∗

ωΓ ∗(Pj) =
1

2π
∂g(K,Pj)

∂n
;

hence, we can reformulate (with a different ε) (8) as

ωσ (Pj)≤ ωΓ ∗(Pj)+ ε,

and similarly, (9) can be reformulated as

ωγ∗(Pj)≤ ωσ (Pj)+ ε.
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5 A Critical Point in the Method

The splitting of the set appears in the step (b) when we go from the model case to
its inverse image under a polynomial mapping. That is a big advance, since from
then on one works with several components, and they may be sufficiently general to
imitate an arbitrary set. However, there is a huge price to pay, namely in the transfer,
say, from [−1,1] to E = T−1

N [−1,1], the result is transferred into a very special
statement on E , e.g. in the Bernstein inequality (1) in this step we got the extension
(2) of the Bernstein inequality on E , but only for very special polynomials, namely
of the form Qk(TN). But our aim is to prove (in this case) the full analogue for ALL
polynomials. Besides, in Qk(TN) the polynomial TN is not known, and when we
approximate an arbitrary set of finitely many intervals by T−1

N [−1,1], it is typically
of very high degree.

The idea of how to get rid of the special properties is the following. As we have
already observed, T−1

N [−1,1] consists of N subintervals Ei = EN,i, and we denote by
T−1

N,i that branch of T−1
N that maps [−1,1] into Ei. Let Pn be an arbitrary polynomial

of degree n, and consider the sum

S(x) =
N

∑
i=1

Pn(T
−1

N,i (TN(x))). (10)

We claim that this is a polynomial of TN(x) of degree at most n/N, i.e. S(x) =
Sn(TN(x)) for some polynomial Sn of degree at most n/N. To this end let xi =
T−1

N,i (TN(x)), i = 1, . . . ,N. Then

S(x) = S(x1, . . . ,xN) =
N

∑
i=1

Pn(xi)

is a symmetric polynomial of the variables x1, . . . ,xN , and hence it is a polynomial
of the elementary symmetric polynomials

S j(x1, . . . ,xN) = ∑
1≤k1<k2<···<k j≤N

xk1 xk2 · · ·xkj , 1 ≤ j ≤ N.

However, x1,x2, . . . ,xN are the roots in t of the polynomial equation TN(t) = TN(x),
and so if TN(x) = dNxN + · · ·+d0, then it follows that

S j(x1, . . . ,xN) = (−1) jdN− j/dN

if 1 ≤ j < N, while

SN(x1, . . . ,xN) = (−1)N(d0 −TN(x))/dN,

from which the claim that S is a polynomial of TN(x) follows. On comparing the
degree of the homogeneous parts of these polynomials, we can see that the degree of

Sn(u) := S(T−1
N,1(u))

is at most deg(Pn)/N ≤ n/N in u.
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There is a slight problem, namely if x ∈ EN,i0 , then the sum S(x) contains not
only Pn(x), but also the values of Pn at the conjugate points xi = T−1

N,i (TN(x)), so
S(x) does not really behave like Pn(x). But that is easy to correct, namely we do not
form S from Pn, but rather from a P∗

n , which behaves like Pn around x and is small at
conjugate points. To illustrate this crucial step, we complete the proof of (5) in the
transform of the Bernstein inequality.

Let ε > 0 be arbitrary. Then, by Theorem 3.1, there are polynomial inverse image
sets E∗ consisting of the same number of intervals as E such that the corresponding
endpoints of the subintervals of E and E∗ are as close as we wish. Therefore, we
can choose E∗ ⊂ Int(E) so that

ωE∗(x0)≤ (1+ ε)ωE(x0) (11)

is satisfied. Let E∗ = T−1
N [−1,1], and let E∗

i = T−1
N,i [−1,1], i = 1, . . . ,N be the N

inverse image intervals of [−1,1] under the N branches of T−1
N . Since any translate

of E∗ is the polynomial inverse image of [−1,1] via a translate of TN , we can assume
without loss of generality that x0 is not an endpoint of any of the intervals E∗

i , i.e. x0

is lying in the interior of E∗
i0

for some i0.
Let Pn be an arbitrary polynomial of degree n, and consider the polynomial

P∗
n (x) = (1−α(x− x0)

2)[
√

n]Pn(x), (12)

where α > 0 is fixed so that 1−α(x− x0)
2 > 0 on E . Clearly, P∗

n has degree at
most n+ 2

√
n, ‖P∗

n ‖E ≤ ‖Pn‖E , P∗
n (x0) = Pn(x0), (P∗

n )
′(x0) = P′

n(x0), and there is a
0 < β < 1 such that

|P∗
n (x)| ≤ β

√
n‖Pn‖E , |(P∗

n (x))
′| ≤ β

√
n‖Pn‖E (13)

uniformly for x ∈ E \E∗
i0

(for the last relations just observe that the factor 1−α(x−
x0)

2 is nonnegative and strictly less than one on E \E∗
i0

). For x ∈ E∗ form now

S(x) =
N

∑
i=1

P∗
n (T

−1
N,i (TN(x))). (14)

As we have already observed, this is a polynomial of degree at most (n+2
√

n)/N of
TN(x), i.e. S(x)= Sn(TN(x)) for some polynomial Sn of degree at most (n+2

√
n)/N.

From the properties (13) it is also clear that

‖S‖E∗ ≤ (1+Nβ
√

n)‖Pn‖E , |S′(x0)−P′
n(x0)| ≤ Nβ

√
n‖Pn‖E .

Now S is already of the type for which we have verified (2) above, so if we apply
to S the inequality (2) at x = x0, and if we use (11) and the preceding estimates we
obtain (2):

|P′
n(x0)| ≤ |S′(x0)|+Nβ

√
n‖Pn‖E

≤ (n+2
√

n)πωE∗(x0)‖S‖E∗ +Nβ
√

n‖Pn‖E



354 Vilmos Totik

≤ (n+2
√

n)(1+ ε)πωE(x0)(1+Nβ
√

n)‖Pn‖E +Nβ
√

n‖Pn‖E

= (1+o(1))nπωE(x0)‖Pn‖E ,

since ε > 0 was arbitrary.

6 The Markoff Inequality for Several Intervals

The classical Markoff inequality

‖P′
n‖[−1,1] ≤ n2‖Pn‖[−1,1] (15)

complements Bernstein’s inequality when we have to estimate the derivative of a
polynomial on [−1,1] close to the endpoints. What happens, if we consider more
than one intervals? In [8], it was shown that if E = [−b,−a]∪ [a,b], then

‖P′
n‖E ≤ (1+o(1))

n2b

b2 −a2 ‖Pn‖E .

Why is b/(b2 − a2) the correct factor here? This can be answered by the transfor-
mation x → x2, but what if we have two intervals of different size, or when we have
more than two intervals? With the polynomial inverse image method we proved in
[38] the following extension.

Let E = ∪l
j=1[a2 j−1,a2 j], a1 < a2 < · · · < a2l consist of l intervals. When we

consider the analogue of the Markoff inequality for E , actually we have to talk about
one-one Markoff inequality around every endpoint of E . Let a j be an endpoint of
E , E j part of E that lies closer to a j than to any other endpoint. Let Mj be the best
constant for which

‖P′
n‖E j ≤ (1+o(1))Mjn

2‖Pn‖E (16)

holds, where o(1) tends to 0 as n tends to infinity. This Mj clearly depends on what
endpoint a j we are considering. Its value is given by (see [38])

Theorem 6.1

Mj = 2
∏l−1

i=1(a j −λi)
2

∏i�= j |a j −ai| , (17)

where the λ j are the numbers that appear in the equilibrium measure in (40)–(41).

Let us consider the example E = [−b,−a]∪ [a,b]. In this case l = 2, a1 =
−b, a2 =−a, a3 = a, a4 = b, and, by symmetry, λ1 = 0. Hence,

ωE(t) =
|t|

π
√

(b2 − t2)(t2 −a2)
,

M1 = M4 =
2b2

(b−a)(b+a)(2b)
=

b
b2 −a2
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M2 = M3 =
2a2

(b−a)(b+a)(2b)
=

a
b2 −a2 .

Since M1 = M4 > M2 = M3 we obtain that

‖P′
n‖[−b,−a]∪[a,b] ≤ (1+o(1))n2 b

b2 −a2 ‖Pn‖[−b,−a]∪[a,b],

which is the result of [8] mentioned above.
As an immediate consequence of the theorem we get the following asymptoti-

cally best possible Markoff inequality:

Corollary 6.2

‖P′
n‖E ≤ (1+o(1))n2

(

max
1≤ j≤2l

Mj

)

‖Pn‖E .

It is quite interesting that here the o(1) term cannot be dropped. This is due to the
strange fact that there are cases, where the maximum of

|P′
n(x)|/‖Pn‖E

for all x ∈ E and all Pn of given degree n, is attained in an inner point of E ([2]).
It seems to be a difficult problem to find on several intervals for each n the best

Markoff constant for polynomials of degree at most n. The previous corollary gives
the asymptotically best constant (as n tends to infinity).

7 Bernstein’s Inequality on Curves

Bernstein had another inequality on the derivative of a polynomial, namely if C1 is
the unit circle, then

|P′
n(z)| ≤ n‖Pn‖C1 , z ∈C1 (18)

for any polynomial of degree at most n. With the polynomial inverse image method
in [19] we extended this to a family of C2 Jordan curves.

Theorem 7.1 Let E be a finite union of C2 Jordan curves (lying exterior to one
another), and ωE the density of the equilibrium measure of E with respect to arc
length. Then for any polynomial Pn of degree at most n = 1,2, . . .

|P′
n(z)| ≤ (1+o(1))2πnωE(z)‖Pn‖E , z ∈ E. (19)

This is sharp:

Theorem 7.2 With the assumptions of the previous theorem for any z0 ∈ E there
are polynomials Pn of degree at most n such that

|P′
n(z0)|> (1−o(1))2πnωE(z0)‖Pn‖E .

for some Pn’s.
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We mention that the term o(1) is necessary, without it the inequality is not true. Note
also that, as opposed to (2), here, on the right hand side, the factor is 2πωE(z) rather
than πωE(z).

Corollary 7.3 If E is a finite family of disjoint C2 Jordan curves, then

‖P′
n‖E ≤ (1+o(1))n

(

2π sup
z∈E

ωE(z)

)

‖Pn‖E ,

and this is sharp for

‖P′
n‖E > (1−o(1))n

(

2π sup
z∈E

ωE(z)

)

‖Pn‖E

for some polynomials Pn, n = 1,2, . . . .

8 Asymptotics for Christoffel Functions

Let μ be a finite Borel measure on the plane such that its support is compact and
consists of infinitely many points. The Christoffel functions associated with μ are
defined as

λn(μ ,z) = inf
Pn(z)=1

∫

|Pn|2dμ , (20)

where the infimum is taken for all polynomials of degree at most n that take the
value 1 at z. If pk(z) = pk(μ ,z) denote the orthonormal polynomials with respect to
μ , i.e.

∫

pn pmdμ = δn,m,

then λn can be expressed as

λ−1
n (μ ,z) =

n

∑
k=0

|pk(z)|2.

In other words, λ−1
n (z) is the diagonal of the reproducing kernel

Kn(z,w) =
n

∑
k=0

pk(z)pk(w), (21)

which makes it an essential tool in many problems.
In the past literature, a lot of work has been devoted to Christoffel functions,

e.g. the H p theory emerged from Szegő’s theorem; the density of states in statistical
mechanical models of quantum physics is given by the reciprocal of the Christoffel
function associated with the spectral measure (see e.g. [21]); and the recent break-
through [16] by Lubinsky in universality connected with random matrices has also
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been based on them (cf. also [10, 40] and particularly [31] where the importance of
Christoffel functions regarding off diagonal behavior of the reproducing kernel was
emphasized). See [12,14,33], and particularly [20] by Nevai and [32] by Simon for
the role and various use of Christoffel functions.

In 1915 Szegő proved that if dμ(t)= μ ′(t)dt is an absolutely continuous measure
on the unit circle (identified with [−π ,π ]) then

lim
n→∞

λn(z) = (1−|z|2)exp

(

1
2π

∫ π

−π

eit − z
eit + z

log μ ′(t)dt

)

, |z|< 1

provided logμ ′(t) is integrable (otherwise the limit on the left is 0). Just to show
the importance of Christoffel functions, let us mention that the z = 0 case of this
theorem immediately implies that the polynomials are dense in L2(μ) if and only if
∫

log μ ′ =−∞. Szegő ([36, Th. I’, p. 461]) also proved that on the unit circle

lim
n→∞

nλn(μ ,eiθ ) = 2πμ ′(θ) (22)

under the condition that μ is absolutely continuous and μ ′ > 0 is twice continuously
differentiable. The almost everywhere result came much later, only in 1991 was it
proven in [17] that (22) is true almost everywhere provided log μ ′ is integrable.

All the aforestated results can be translated into theorems on [−1,1], e.g.: if the
support of μ is [−1,1] and log μ ′ ∈ L1

loc, then

lim
n→∞

nλn(x) = π
√

1− x2μ ′(x) (23)

almost everywhere. A local result is that (23) is true on an interval I if μ is in the Reg
class (see below), μ is absolutely continuous on I and log μ ′ ∈ L1(I). The measure
μ is called to be in the Reg class (see [34, Theorem 3.2.3]) if the L2(μ) and L∞(μ)
norms of polynomials are asymptotically the same in n-th root sense:

limsup
n→∞

‖Qn‖1/n
L∞(μ)

‖Qn‖1/n
L2(μ)

≤ 1. (24)

An equivalent formulation is: λn(μ ,z)1/n → 1 uniformly on the support of μ . μ ∈
Reg is a fairly weak condition on μ ; see [34] for general regularity criteria and
different equivalent formulations of μ ∈ Reg. For example, μ ′ > 0 a.e. implies that
μ ∈ Reg.

When the support is not [−1,1], things change. Indeed, let K = supp(μ) ⊂ R be
a compact set (of positive logarithmic capacity), and let νK denote the equilibrium
measure of K. The polynomial inverse image method gives (see [37, 40])

Theorem 8.1 Let K = supp(μ) be a compact set of positive capacity and suppose
that μ ∈ Reg and log μ ′ ∈ L1(I) for some interval I ⊂ K. Then almost everywhere
on I

lim
n→∞

nλn(μ ,x) =
dμ(x)
dνK

, (25)
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where, on the right-hand side, the expression is the Radon–Nikodym derivative of μ
with respect to the equilibrium measure μK.

Of course, when K = [−1,1], then (23) and (25) are the same.
In a similar vein, but with totally different proof (based now on the model

case C1) we have (see [42]):

Theorem 8.2 Let K = supp(μ) be a finite family of C2 Jordan curves and suppose
that μ ∈ Reg and log μ ′ ∈ L1(I) for some arc I ⊂ K. Then almost everywhere on I

lim
n→∞

nλn(μ ,x) =
dμ(x)
dνK

, (26)

Here, L1(I) is meant with respect to arc measure on K.
We note that (26) holds at every point where the measure μ has continuous den-

sity with respect to arc length (see [42]). In this case, the support of μ can be much
more general, and the result is about the asymptotics of the Christoffel function on
an outer boundary arc of the support.

One can also allow a combination of Jordan arcs (homeomorphic images of
[−1,1]) and curves for the support of μ . However, this extension does not come
directly from the polynomial inverse image method, for there is a huge difference
between smooth Jordan arcs and Jordan curves: the interior of Jordan curves (or
family of curves) can be exhausted by lemniscates, and once an arc is in the set, this
is no longer true.

Orthogonal polynomials with respect to area measures go back to Carleman [9]
who gave strong asymptotics for them in the case of a Jordan domain with analytic
boundary curve. For less smooth domains or for regions consisting of several com-
ponents, the situation is more difficult. The polynomial inverse image method in [42]
gave the asymptotics for Christoffel functions with respect to area-like measures:

Theorem 8.3 Suppose that K is a compact set bounded by a finite number of C2

Jordan curves and μ is a measure on K of the form dμ =WdA with some continuous
W such that

cap
({z W (z)> 0}∩ Int(K)

)

= cap(K).

Then for z0 ∈ ∂K

lim
n→∞

n2λn(μ ,z0) =
W (z0)

2πωK(z0)2 (27)

where ωK is the density of the equilibrium measure with respect to arc length on ∂K
(note that the equilibrium measure is supported on ∂ K).

9 Lubinsky’s Universality on General Sets

Let μ be a measure with compact support on the real line, and for simplicity let us
assume that dμ(x)=w(x)dx with an L1 function w. A form of universality in random
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matrix theory/statistical quantum mechanics can be expressed via orthogonal
polynomials in the form (recall that Kn are the reproducing kernels from (21))

lim
n→∞

Kn

(

x+ a
w(x)Kn(x,x)

,x+ b
w(x)Kn(x,x)

)

Kn(x,x)
=

sinπ(a−b)
π(a−b)

. (28)

(The term “universality” comes from the fact that the right-hand side is indepen-
dent of the original weight w as well as of the place x). There has been a lot of
papers devoted to universality both in the mathematics and in the physics literature;
the very first instance is due to E. Wigner concerning the Hermite weight. Previ-
ous approaches used rather restrictive assumptions, see [16] for references. In [16]
Lubinsky recently gave a stunningly simple approach that proves (28) for measures
in the Reg class for which supp(μ) = [−1,1] and w is continuous and positive on
an interval I (then (28) holds on I uniformly in |a|, |b| ≤ A, for any A > 0). In [40],
again with the polynomial inverse image method, universality was extended to reg-
ular measures with arbitrary support (the same result was proved by Simon in [31]
using so called Jost solutions to recurrences):

Theorem 9.1 (28) holds uniformly in |a|, |b| ≤ A, A > 0 at every continuity point
of the weight w (lying inside the support) provided dμ(x) = w(x)dx is in the Reg
class.

When the support is [−1,1], the almost every version of (28) under the local Szegő
condition logw ∈ L1(I) was proved in [10], which just pulls over to the general case
(the support arbitrary) via the polynomial inverse image method (see [40]).

Theorem 9.2 (28) holds at almost every point of an interval I provided dμ(x) =
w(x)dx is in the Reg class and logw ∈ L1(I).

10 Fine Zero Spacing of Orthogonal Polynomials

Let μ be a measure with compact support on the real line, and let pn = pn(μ ,z)
be the n-th orthonormal polynomial with respect to μ . It is well known that
classical orthogonal polynomials on [−1,1] have rather uniform zero spacing: if
xn, j = cosθn, j are the zeros of the n-th orthogonal polynomials, then (inside (−1,1))
θn, j −θn, j+1 ∼ 1/n. In turn, this property of zeros is of fundamental importance in
quadrature and Lagrange interpolation. Several hundreds of papers have been de-
voted to zeros of orthogonal polynomials, still the following beautiful result has
only been proven a few years ago, namely when Levin and Lubinsky [15] found
that Lubinsky’s universality described in Sect. 9 implies very fine zero spacing:

lim
n→∞

(xn,k+1 − xn,k)
n

π
√

1− x2
n,k

= 1. (29)



360 Vilmos Totik

With the polynomial inverse image method this was extended in [40] to arbitrary
support (see also [31]):

Theorem 10.1 If K = supp(μ) ⊂ R, μ ∈ Reg and μ ′ is continuous and positive
about x, then

lim
n→∞

n(xn,k+1 − xn,k)ωK(x) = 1, |xn,k − x| ≤ A/n (30)

where ωK is the density of the equilibrium measure of the support K.

Furthermore, this holds locally a.e. under the local Szegő condition log μ ′ ∈ L1:

Theorem 10.2 If K = supp(μ)⊂ R, μ ∈ Reg and log μ ′ ∈ L1(I) for some interval
I, then (30) is true a.e. in I in the sense that for almost every x ∈ I and for every
A > 0 we have (30) for |xn,k − x| ≤ A/n.

11 Polynomial Approximation on Compact Subsets
of the Real Line

The approximation of the |x| function on [−1,1] by polynomials is a key to many
problems in approximation theory. Let En( f ,F) denote the error of best approxima-
tion to f on F by polynomials of degree at most n. Bernstein [3] proved in 1914,
that the limit

lim
n→∞

nEn(|x|, [−1,1]) = σ (31)

exists, it is finite and positive. This is a rather difficult result (with a proof over
50 pages). For σ he showed 0.278 < σ < 0.286. The exact value of σ is still un-
known. Bernstein returned to the same problem some 35 years later in [4,5], and he
established that for p > 0, p not an even integer, the finite and nonzero limit

lim
n→∞

npEn(|x|p, [−1,1]) = σp (32)

exists, furthermore that for x0 ∈ (−1,1)

lim
n→∞

npEn(|x− x0|p, [−1,1]) = (1− x2
0)

p/2σp (33)

holds true, where σp is the same constant as in (32).
In this section, we discuss the problem that arises for more general sets. This

problem was considered by Vasiliev in [43]. His approach is as follows. Let

F = [−1,1]\∪∞
i=1(αi,βi),

and form the sets
Fm = [−1,1]\∪m−1

i=1 (αi,βi).
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Fm consists of m intervals
Fm = ∪m

j=1[a j,b j]

a1 < b1 < a2 < b2 · · ·bm−1 < am < bm, and for it define

hFm(x) =
∏m−1

j=1 |x−λ j|
√

∏m
j=1 |x−a j||x−b j|

,

where λ j are chosen so that

∫ ak+1

bk

∏m−1
j=1 (t −λ j)

√

∏m
j=1 |t −a j||t −b j|

dt = 0

for all k = 1, . . . ,m−1. Set

hF(x) = lim
m→∞

hFm(x) = sup
m

hFm(x),

where it can be shown that the limit exists (but it is not necessarily finite).
Now with these notations Vasiliev claims the following two results:

lim
n→∞

npEn(|x− x0|p,F) = hF(x0)
−pσp, (34)

lim
n→∞

npEn(|x− x0|p,F)> 0 ⇐⇒
∫ 1

0

meas{[x0− t,x0 + t]\F}2

t3 dt < ∞. (35)

This second claim seems to contradict the fact (see e.g. [39, Corollary 10.4]) that
there are (Cantor type) sets of measure zero for which En(|x− x0|p,F)≥ cn−p with
some c > 0 (for a set F of zero measure the integral is clearly infinite). Vasiliev’s
paper [43] is 166 pages long, and it is dedicated solely to the proof of (34) and (35),
so it is difficult to say what might be wrong in the proof. We do not know if the
full (34) is correct, but we gave in [39, Theorem 10.5] a few pages proof, based on
polynomial inverse images, that shows its validity provided x0 lies in the interior of
E . In fact, in this case we have transferred the original Bernstein theorem (32) into
Vasiliev’s theorem.

Taking into account the form (40) of the equilibrium measure for several inter-
vals, we see that Vasiliev’s function is just hF(x) = πωF(x) if F consists of a finite
number of intervals (and also if F is arbitrary compact, but x is in its interior). Hence,
(34) for x0 ∈ Int(F) takes the following form.

Theorem 11.1 (R. K. Vasiliev) Let F ⊆ R be compact and let x0 be a point in the
interior of F. Then

lim
n→∞

npEn(|x− x0|p,F) = (πωF(x0))
−pσp, (36)

where σp is the constant from Bernstein’s theorem (32).
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For example, if F = [−1,1], then

πω[−1,1](x) =
1√

1− x2
,

and in this special case we recapture Bernstein’s result (33).
Here again, Theorem 11.1 can be obtained from Bernstein’s theorems (32) via

polynomial mappings and approximation.

12 Appendix: Basic Notions from Logarithmic Potential Theory

For a general reference to logarithmic potential theory see [29].
Let E ⊂ C be compact. Except for pathological cases, there is a unique probabil-

ity (Borel) measure μE on E , called the equilibrium measure of E , that minimizes
the energy integral

∫ ∫

log
1

|z− t|dμ(z)dμ(t). (37)

μE certainly exists if E has non-empty interior. One should think of μE as the distri-
bution of a unit charge placed on the conductor E (in this case Coulomb’s law takes
the form that the repelling force between charged particles is proportional with the
reciprocal of the distance).

The logarithmic capacity of E is cap(E) = exp(−V ), where V is the minimum
of the energies (37) above. The Green’s function of the unbounded component Ω
of the complement C\E with pole at infinity is denoted by gΩ (z,∞), and it has the
form

gΩ (z,∞) =

∫

log
1

|z− t|dμE(t)+ logcap(E). (38)

When E ⊂ R then we shall denote by ωE(t) the density of μE with respect to
Lebesgue measure wherever it exists. It certainly exists in the interior of E . For
example

ω[−1,1](t) =
1

π
√

1− t2
, t ∈ [−1,1]

is just the well known Chebyshev distribution.
If E = T−1

N [−1,1], E = ∪N
i=1Ii in such a way that TN maps each of the intervals Ii

onto [−1,1] in a 1-to-1 way, then (see [13, 29])

μE(A) =
1
N

N

∑
i=1

μ[−1,1](TN(A∩ Ii)),

which gives

ωE(t) =
|T ′

N(t)|
πN

√

1−TN(t)2
, t ∈ E. (39)
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We also know a rather explicit form for ωE when E =∪l
1[a j,b j] is a set consisting

of finitely many intervals (see e.g. [38]):

ωE (x) =
∏l−1

j=1 |x−λ j|
π
√

∏l
j=1 |x−a j||x−b j|

, (40)

where λ j are chosen so that

∫ ak+1

bk

∏l−1
j=1(t −λ j)

√

∏l
j=1 |t −a j||t −b j|

dt = 0 (41)

for all k = 1, . . . , l−1. It can be easily shown that these λ j’s are uniquely determined
and there is one λ j on any contiguous interval (bk,ak+1).
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On Approximation of Periodic Analytic
Functions by Linear Combinations
of Complex Exponents

Vesselin Vatchev

Abstract For a 2π-periodic function f , analytic on I = [0,2π ], we solve the mini-
mization problem

En( f ) = min
c j∈R

‖ f + c1 f ′+ · · ·+ cn f (n)‖2
L2(I)

,

and establish the convergence limn→∞ En( f ) = 0. In case of even n i.e. 2n all of
the zeros, l j, j = 1, . . . ,2n, of the corresponding characteristic polynomial 1+c1λ +
· · ·+ c2nλ 2n are purely imaginary, l− j =−l j , and we prove the estimate

max
t∈I

| f (t)−
n

∑
j=−n

b jeil jt | ≤
(

2π
l2
1

En( f )

)1/2

,

where l1 has the smallest absolute value among all of the l’s.

1 Introduction

The approximation of functions by linear combinations of exponents of the form
∑d jeλ jt with complex λ ’s is well studied. The most popular and used case is
the Fourier approximation when λ ’s are equally spaced on the imaginary axes.
It is well known, see [3], that if f and its derivatives to order N, included, are
2π-periodic and continuous then the choice of coefficients d∗

0 = 1
π
∫ 2π

0 f (t) dt,

d∗
k = 1

2π
∫ 2π

0 f (t)e−ikt dt, k = ±1, . . . ,±n, where i2 = −1, provides convergent
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approximation of order n−N in the Hilbert space L2(I) with the norm ‖ f‖2 =
(

∫ 2π
0 | f (t)|2 dt

)1/2
and in the space of bounded functions L∞(I) with the norm

‖ f‖∞ = supt∈I | f (t)|. The following estimate holds true, for details see [3],

‖ f (t)−
n

∑
k=−n

d∗
k eikt‖∞ <C

‖ f (N)(t)‖2

nN . (1)

The error estimate (1) depends on the norm of f (N) and the number of used ex-
ponents. The ’modes’ eikt are the spanning set of the null space of the operator
F = D∏n

j=1(D
2 + j2Id), where D f = f ′ and Id is the identity operator. The ’fre-

quencies’ 0,±1, . . . ,±n are the zeros of the corresponding characteristic polynomial
P(λ ) = λ ∏n

j=1(λ 2+ j2). The operator F does not depend on the particular function
f although the error estimate (1) depends on it. In the current paper we consider op-
timization over a class of operators F with all of their λ ’s being purely imaginary.
This particular distribution allows us to use results from the theory of orthogonal
polynomials on the real line.

For an analytic 2π-periodic function f we solve the problem

En( f ) = min
c j∈R

‖ f + c1 f ′+ · · ·+ cn f (n)‖2
2. (2)

Assuming that (2) has a solution {c∗j}n
j=1 we let Ln( f ) = f +∑n

k=1 c∗k f (k). The opera-

tor Ln has n-dimensional null space spanned by the functions eλkt ,k = 1, . . . ,n where
λ ’s are the zeros of the polynomial with real coefficients Pn(λ ) = 1+∑n

k=1 c∗kλ k.
In [5] and [6], the problem (2) for n = 2,4 and decompositions of the function

f with respect to the corresponding null spaces is considered. The results in the
current paper are continuation of those results.

In Sect. 2, we consider general solutions of the minimization problem (2) for 2π-
periodic functions and establish a rate of convergence for analytic functions, when
n → ∞. In Sect. 3, we derive a three-term recurrence formula for special cases of
Christoffel polynomials and relate them to the λ ’s. In Sect. 4, we obtain explicit
formulas and error estimates for the approximation of a function f by the corre-
sponding exponential functions generated by Ln( f ).

2 The Minimization Problem for Periodic Functions

We begin with the questions of existence of solutions of (2) and the convergence of
En( f ) when n → ∞. Since En contains no higher than the n-th derivative, when we
deal with a fixed n we can consider f only n times continuously differentiable on
the interval I = [0,2π ], and all f , f ′, . . . , f (n) 2π-periodic and linearly independent
on I. It is clear that En+1( f ) ≤ En( f ) ≤ ‖ f‖2

2.
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Let Gram(g1, . . . ,gm) denote the determinant of the Gram matrix of the func-
tions g1, . . . ,gm. Then the following result is an exercise from the theory of the least
square methods.

Proposition 1. If f is n times differentiable function then

min
c j∈R

‖ f + c1 f ′+ · · ·+ cn f (n)‖2
2 =

Gram( f , f ′, . . . , f (n))

Gram( f ′, . . . , f (n))
≤ ‖ f‖2

2 ≤ ‖ f‖2
∞|I|,

for a unique set of real c’s.

Since f is 2π-periodic analytic function, it follows that f can be represented by the
Fourier series f (t) = ∑∞

j=−∞ d jei jt , where for the complex coefficients d j we have
that d− j = d̄ j, d̄ is the complex conjugated of d. It is well known, see [3], that for an-
alytic periodic function f the sequence of its Fourier coefficients |d j| exponentially
converges to zero as | j| → ∞. WLOG we can assume that d0 =

1
π
∫ 2π

0 f (t) dt = 0, if
otherwise we consider the function f = f −d0. Next, we interpret the minimization
problem (2) as a problem of finding a certain discrete orthogonal polynomial.

Theorem 1. For a 2π-periodic analytic function f on I and even n the estimate
En( f ) ≤C 4n

n!2 holds true with a real constant C that depends only on f . For the op-
timal selection of c’s all of the zeros of the corresponding characteristic polynomial
Pn(λ ) are purely imaginary.

Proof. Let

Qn(λ ) = 1+
n/2

∑
k=1

(−1)kc2kλ 2k,

Rn(λ ) =
n/2

∑
k=1

(−1)kc2k+1λ 2k+1,

then by using the Fourier decomposition of the derivatives, i. e. f (k)(t) =

∑∞
j=−∞(i j)kd jei jt , from the Parseval’s identity we get that

‖ f + c1 f ′+ · · ·+ cn f (n)‖2
2 =

∞

∑
j=−∞

|d j|2|Pn(i j)|2

=
∞

∑
j=−∞

|d j|2
(|Qn( j)|2 + |Rn( j)|2) .

It is clear that the minimum is attained for Rn ≡ 0, i.e. c2k+1 = 0 and Qn being the
n-th discrete Christoffel polynomial (see Sect. 3 for details) with a weight ( j, |d j|2).
Since the weight is even, i.e. |d− j|= |d j|, it follows that Qn(λ ) =

T ′
n/2+1(λ )

T ′
n/2+1(0)λ

, where

Tn is the n-th orthogonal polynomial for the discrete weight function ( j, |d j |2). Since
Qn has only real zeros, the relation between Qn and Pn provides that Pn is an even
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algebraic polynomial with purely imaginary zeros. From the fact that f is periodic
and analytic it follows that the sequence |d j| is an even and exponentially decreasing
when | j| → ∞. Furthermore, since d0 = 0, and d j ≤Ce−r j,r > 0 we get the estimate

En( f )≤
∞

∑
j=−∞

|d j|2
((n/2)!)2

n/2

∏
k=1

( j2 − k2)≤C
4n

(n!)2 ∑
| j|>n/2

e− jr j2n ≤C
4n

(n!)2 .

	

In that way, we established that if f , f ′, . . . , f (n) are linearly independent there is

a unique solution c∗ of the problem (2) and En approaches 0 as n → ∞. To the end of
the paper we refer to the solution as c only. For the characterization of the solution
of the problem (2) we need to consider some properties of orthogonal polynomials
on the real line.

3 Related Properties of Orthogonal Polynomials

Let w(x)> 0 be a weight function with discrete or continuous, finite or infinite, sup-
port S on the real line. For a natural n the nth orthogonal polynomial, Pn, associated
with w(x) is defined as the solution of the following problem

min
P̃n(x)=xn+rn−1(x)

∫

S
w(x)P̃2

n (x) dx, (3)

where rn−1 is an algebraic polynomial of degree less than n. In the case when S is
a discrete set, the integral is replaced by a sum and the corresponding polynomials
are known as discrete orthogonal polynomials. The orthogonal polynomials (3) exist
and are uniquely defined for any n. The n-th orthonormal polynomial with leading
coefficient γn > 0 is defined as pn(x) = P̃n(x)/‖P̃n‖2 = γnxn + rn−1(x). Furthermore,
pn has exactly n simple zeros on the smallest interval containing S. We are inter-
ested only in symmetric, with respect to the origin, support set S and an even weight
function w(x). In that case, the orthogonal polynomials satisfy a three-term recur-
rence relation of the form xPn(x) = anPn+1(x)+ an−1Pn−1(x), where an =

γn
γn+1

> 0,

with initialization P−1(x) = 0,P0(x) = 1/‖w‖2
2, and a−1 = 0. There is an extensive

literature on orthogonal polynomials, see for example [4]. An important property of
any sequence of orthogonal polynomials is the Christoffel–Darboux formula

n

∑
k=0

pk(t)pk(x) = an
pn+1(x)pn(t)− pn(x)pn+1(t)

x− t
. (4)

The problem minqn(z)=1
∫

S w(x)q2
n(x) dx, has a unique solution, see again [4], of

the form

Cn(x) =
∑n

k=0 Pn(0)Pn(x)

∑n
k=0 P2

n (0)
,
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with minimum equal to 1/μ2
n (0), where μn(0) = ∑n

k=0 P2
n (0). The polynomials

Cn are called Christoffel polynomials and the quantity μn(0) is known as one of
the Christoffel numbers. By applying (4) we get that μn(0) = an(P′

n+1(0)Pn(0)−
P′

n(0)Pn+1(0)).
Next lemma provides a recurrence formula for the Christoffel polynomials.

Lemma 1. For an even weight function w(x) and a symmetric support S the Christof-

fel polynomials associated to w(x) and z = 0 are C2n+1(x) =C2n(x) =
P2n+1(x)

P′
2n+1(0)x

and

satisfy the three-term relation

x2C2n(x) =−k2nC2n+2(x)+ (k2n+ k2n−1)C2n(x)− k2n−1C2n−2(x), (5)

with k2n =−a2n+1a2n+2
P′

2n+3(0)
P′

2n+1(0)
and k2n−1 =−a2na2n−1

P′
2n−1(0)

P′
2n+1(0)

. Furthermore k2n +

k2n−1 = a2
2n+1 + a2

2n.

Proof. For any k the polynomials P2k+1 are odd and P2k are even, hence C2n+1(x) =

C2n(x)=
∑n

k=0 P2k(0)P2k(x)

∑n
k=0 P2

2k(0)
and μ2n+1(0)= μ2n(0). By applying the Christoffel-Darboux

formula (4) to P2n(x) with t = 0 we get

C2n(x) =
a2nP2n(0)

μ2n(0)
P2n+1(x)

x
=

P2n+1(x)
P′

2n+1(0)x
. (6)

Since P2n+1 has 2n+ 1 real zeros and P2n+1(0) = 0, it follows that P2n+1(x)/x has
2n real zeros, and hence C2n(x) has exactly 2n real zeros. The recurrence relation is
obtained from the recurrence for Pn and (6) in the following way

x2C2n(x) =
xP2n+1(x)

P′
2n+1(0)

=
1

P′
2n+1(0)

(a2n+1P2n+2(x)+ a2nP2n(x))

= a2n+1a2n+2
P2n+3(x)

P′
2n+1(0)x

+(a2
2n+1+a2

2n)
P2n+1(x)

P′
2n+1(0)x

)+ a2na2n−1
P2n−1(x)

P′
2n+1(0)x

.

For any j we have that C2 j(0) = 1, and hence k2n + k2n−1 = a2
2n+1 +a2

2n. The proof
is complete. 	


The Christoffel polynomials are not the only ones that satisfy a recurrence of the
type (5). If Pn are normalized by Pn(0) = 1 then they satisfy a similar relation. The
matrix of recurrence coefficients is called the spectral matrix of the system P. The
next remark summarizes some properties of the spectral matrices.

Remark 1. Let C2n(x) be the vector column (C0(x),C2(x), . . . ,C2n(x))′ and the zeros
of C2n be ±l j. Then the spectral matrix, denoted by CKn, for the system of polyno-
mials C is defined to be the tridiagonal matrix
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(k2n−2+ k2n−1) k2n−1 0
k2n−4 −(k2n−4 + k2n−3) k2n−3

. . .
k4 −(k4 + k3) k3

k2 −(k2 + k1) k1

0 k0 −k0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

From the general theory and Lemma 1 it follows that λ j = l2
j > 0, j = 1, . . . ,n and

C2n(λ j) are respectively the eigenvalues and the eigenvectors of CKn.

In the next section, we consider the approximation of f by the spanning set of the
null space of Ln( f ).

4 Approximation with Imaginary Exponents

We consider an analytic 2π-periodic function f with a Fourier series f (t) =
∑∞

j=−∞ d jei jt , where d0( f ) = 0 and d j( f ) = 1
2π
∫ 2π

0 f (t)e−i jtdt. The discrete func-
tion w( f ,k) = |dk( f )|2 ≥ 0 is defined for any integer k and can be considered as
a discrete weight function on the real line. Furthermore, since w( f ,k) has an ex-
ponential decay when |k| → ∞ we can define the sequence of discrete Christoffel
polynomials and Christoffel numbers associated with the weight w( f ,k). The fol-
lowing result holds true

Lemma 2. Let f be analytic and 2π-periodic on I with d0 = 0, and n be fixed, then
the extremal problem

min
ck∈R

‖ f +
n

∑
k=1

ck f (2k)‖2
2 =

1

μ2
2n(0)

(7)

has unique solution c.

Proof. Calculating the Fourier series of the even derivatives of f we get

f (2k)(t) =
∞

∑
j=−∞

(−1)k j2kd je
i jtand d j( f (2k)) = (−1)k j2kd j.

By using the Parseval’s identity, it follows that

‖ f +
n

∑
k=1

ck f (2k)‖2
2 =

∞

∑
j=−∞

d2
j

(

1+
n

∑
k=1

(−1)k j2kc j

)2

=
∞

∑
j=−∞

w( f , j)p2
2n( j),

where p2n(λ ) is an algebraic polynomial of degree at most 2n and p2n(0) = 1. Tak-
ing into account that w( f , j) is an even sequence we conclude that the minimum is
obtained only for the Christoffel polynomial C2n. This concludes the proof.
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The problem (7) can be considered as a problem for finding ε-solution to a dif-
ferential equation of order 2n, for more details see [1]. It is a standard technique to
relate systems of differential equations of low order to a differential equation of a
higher order.

Remark 2. For f , n, and c as in Theorem 1, the differential equation

f (t)+
n

∑
k=1

ck f (2k)(t) = ε(t) (8)

is equivalent to the system

x′′(t) =−CKnx(t)+E(t), (9)

where x(t) = (xn(t), . . . ,x1(t))T, x1(t) = f (t), and E(t) = (ε(t),0, . . . ,0)T.

From the preceding comments, it follows that the eigenvalues of CKn are λ j = l2
j >

0. Let f ∗ g(t) =
∫ t

0 f (t − x)g(x) dx denote the one-sided convolution of f and g. If
λ1 = min j λ j , then the following theorem holds true.

Theorem 2. Let x be the solution of (9) with prescribed initial conditions and y
be the solution of the homogeneous problem u′′(t) = −CKnu(t) satisfying the same
initial conditions. Then

‖x j − y j‖∞ ≤
(

2π
λ1

)1/2

‖ε‖2

for j = 1, . . . ,n.

Proof. Let z j = x j − y j, then the vector function z(t) is the solution of the sys-
tem z′′(t) =−CKnz(t)+E(t), with initial conditions z j(0) = z′j(0) = 0, j = 1, . . . ,n.
Since the matrix CKn is tridiagonal and symmetric it admits a Takagi factorization,
see [2], in the form CKn = UΛUT , where U = (ui, j) is an unitary real matrix and
Λ is diagonal with entries on the main diagonal λ j, the eigenvalues of CKn. Multi-
plying z′′(t) = −CKnz(t)+E(t) from the left by UT and substituting v = UT z we
obtain the following decoupled system for the v’s, v′′k =−λkvk +ε/

√
n,k = 1, . . . ,n.

Since vk(0) = v′k(0) = 0, by applying the one-sided Laplace Transform to both sides

of the equation for vk we get L (vk) =
L (ε)

(ξ 2+l2
k )
√

n
= L (ε)L (cos(lkt))/(

√
nlk), and

hence vk(t) = ε(t) ∗ cos(lkt)/(
√

nlk). From the inverse relation z =Uv we get that
z j = ∑n

k=1 uk, jvk. The matrix U is unitary and by using the Schwarz inequality we
can get an estimate for |z j(t)|, j = 1, . . . ,n at any z ∈ I. Since the function ε(t) is
2π-periodic we have

|z j(t)| =
∣

∣

∣

∣

∣

n

∑
k=1

uk, jvk(t)

∣

∣

∣

∣

∣

≤
(

n

∑
k=1

u2
k, j

)1/2( n

∑
k=1

vk(t)
2

)1/2

=

(

n

∑
k=1

1
nλk

∣

∣

∣

∣

∫ t

0
ε(t − x)cos(lkx) dx

∣

∣

∣

∣

2
)1/2

≤ ‖ε‖2
(2π)1/2

|l1|
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The right-hand side does not depend on t and taking the maximum of the left-hand
side over I we complete the proof. 	


From the proof of the theorem it follows that z1 = f − y1. If the coefficients c
in (8) are chosen to minimize ‖ε‖2 it follows that ε(t) = Ln( f )(t), Ln(y1) = 0, and
En( f ) = ‖ε‖2

2. If y1(t) = ∑n
| j|≥1 b jei jt , then from Theorem 2 we obtain the estimate

max
t∈I

| f (t)−
n

∑
j=−n

b jeil jt | ≤
(

2π
l2
1

En( f )

)1/2

.

We conclude the paper with a comment on how to obtain the explicit expression for
the approximant y1. From the equivalence stated in Remark 2, it follows that y1 has

to satisfy the initial conditions y(k)1 (0) = f (k)(0),k = 0,1, . . . ,2n− 1. The resulting
system for the unknown b’s has a Van Der Monde coefficient matrix, and hence it
has a unique solution.
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Matrix Extension with Symmetry
and Its Applications

Xiaosheng Zhuang

Abstract In this paper, we are interested in the problems of matrix extension with
symmetry, more precisely, the extensions of submatrices of Laurent polynomials
satisfying some conditions to square matrices of Laurent polynomials with certain
symmetry patterns, which are closely related to the construction of (bi)orthogonal
multiwavelets in wavelet analysis and filter banks with the perfect reconstruction
property in electronic engineering. We satisfactorily solve the matrix extension
problems with respect to both orthogonal and biorthogonal settings. Our results
show that the extension matrices do possess certain symmetry patterns and their co-
efficient supports can be controlled by the given submatrices in certain sense. More-
over, we provide step-by-step algorithms to derive the desired extension matrices.
We show that our extension algorithms can be applied not only to the construction
of (bi)orthogonal multiwavelets with symmetry, but also to the construction of tight
framelets with symmetry and with high order of vanishing moments. Several exam-
ples are presented to illustrate the results in this paper.

1 Introduction and Motivation

The matrix extension problems play a fundamental role in many areas such as elec-
tronic engineering, system sciences, mathematics, etc. We mention only a few ref-
erences here on this topic; see [1–3, 5, 8, 10, 12, 19–21, 23–25]. For example, matrix
extension is an indispensable tool in the design of filter banks in electronic engineer-
ing (see [19,24,25]) and in the construction of multiwavelets in wavelet analysis (see
[1–3, 5, 8, 10, 12, 14, 18, 20, 21]). In this section, we shall first introduce the general
matrix extension problems and then discuss the connections of the general matrix
extension problems to wavelet analysis and filter banks.
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1.1 The Matrix Extension Problems

In order to state the matrix extension problems, let us introduce some notation and
definitions first. Let p(z) =∑k∈Z pkzk,z∈C\{0} be a Laurent polynomial with com-
plex coefficients pk ∈ C for all k ∈ Z. We say that p has symmetry if its coefficient
sequence {pk}k∈Z has symmetry; more precisely, there exist ε ∈ {−1,1} and c ∈ Z

such that

pc−k = ε pk ∀ k ∈ Z. (1)

If ε = 1, then p is symmetric about the point c/2; if ε = −1, then p is antisym-
metric about the point c/2. Symmetry of a Laurent polynomial can be conveniently
expressed using a symmetry operator S defined by

Sp(z) :=
p(z)
p(1/z)

, z ∈ C\{0}. (2)

When p is not identically zero, it is evident that (1) holds if and only if Sp(z) = εzc.
For the zero polynomial, it is very natural that S0 can be assigned any symmetry
pattern; i.e., for every occurrence of S0 appearing in an identity in this paper, S0
is understood to take an appropriate choice of εzc for some ε ∈ {−1,1} and some
c ∈ Z so that the identity holds. If P is an r× s matrix of Laurent polynomials with
symmetry, then we can apply the operator S to each entry of P, i.e., SP is an r× s
matrix such that [SP] j,k := S([P] j,k), where [P] j,k is the ( j,k)-entry of the matrix P.

For two matrices P and Q of Laurent polynomials with symmetry, even though
all the entries in P and Q have symmetry, their sum P+Q, difference P−Q, or
product PQ, if well defined, generally may not have symmetry any more. This is
one of the difficulties for matrix extension with symmetry. In order for P±Q or PQ
to possess some symmetry, the symmetry patterns of P and Q should be compatible.
For example, if SP= SQ (i.e., both P and Q have the same symmetry pattern), then
indeed P±Q has symmetry and S(P±Q) = SP= SQ. In the following, we discuss
the compatibility of symmetry patterns of matrices of Laurent polynomials.

For an r× s matrix P(z) = ∑k∈ZPkzk, we denote

P
∗(z) := ∑

k∈Z
P∗

k z−k with P∗
k := Pk

T
, k ∈ Z, (3)

where Pk
T

denotes the transpose of the complex conjugate of the constant matrix Pk

in C. We say that the symmetry of P is compatible or P has compatible symmetry, if

SP(z) = (Sθ1)
∗(z)Sθ2(z) (4)

for some 1× r and 1× s row vectors θ1 and θ2 of Laurent polynomials with sym-
metry. For an r× s matrix P and an s× t matrix Q of Laurent polynomials, we say
that (P,Q) has mutually compatible symmetry if

SP(z) = (Sθ1)
∗(z)Sθ (z) and SQ(z) = (Sθ )∗(z)Sθ2(z) (5)
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for some 1 × r, 1 × s, 1 × t row vectors θ1,θ ,θ2 of Laurent polynomials with
symmetry. If (P,Q) has mutually compatible symmetry as in (5), then their product
PQ has compatible symmetry and in fact S(PQ) = (Sθ1)

∗Sθ2.
For a matrix of Laurent polynomials, another important property is the support of

its coefficient sequence. For P= ∑k∈ZPkzk such that Pk = 0 for all k ∈ Z\[m,n] with
Pm �= 0 and Pn �= 0, we define its coefficient support to be csupp(P) := [m,n] and the
length of its coefficient support to be |csupp(P)| := n−m. In particular, we define
csupp(0) := /0, the empty set, and |csupp(0)| :=−∞. Also, we use coeff(P,k) := Pk

to denote the coefficient matrix (vector) Pk of zk in P. In this paper, 0 always denotes
a general zero matrix whose size can be determined in the context.

Now, we introduce the general matrix extension problems with symmetry. We
shall use r and s to denote two positive integers such that 1 ≤ r ≤ s. Ir denotes the
r× r identity matrix.

Problem 1 (Orthogonal Matrix Extension). Let F be a subfield of C. Let P be an
r× s matrix of Laurent polynomials with coefficients in F such that P(z)P∗(z) = Ir

for all z ∈ C\{0} and the symmetry of P is compatible. Find an s× s square matrix
Pe of Laurent polynomials with coefficients in F and with symmetry such that

1. [Ir,0]Pe = P (that is, the submatrix of the first r rows of Pe is the given
matrix P);

2. The symmetry of Pe is compatible and Pe(z)P∗
e(z) = Is for all z ∈C\{0} (that is,

Pe is paraunitary);
3. The length of the coefficient support of Pe can be controlled by that of P in some

way.

Problem 1 is closely related to the construction of orthonormal multiwavelets
in wavelet analysis and the design of filter banks with the perfect reconstruction
property in electronic engineering. More generally, Problem 1 can be extended to a
more general form with respect to the construction of biorthogonal multiwavelets in
wavelet analysis. In a moment, we shall reveal their connections, which also serve
as our motivation. The more general form of Problem 1 can be stated as follows.

Problem 2 (Biorthogonal Matrix Extension). Let F be a subfield of C. Let (P,˜P)
be a pair of r × s matrices of Laurent polynomials with coefficients in F such
that P(z)˜P∗(z) = Ir for all z ∈ C\{0}, the symmetry of P or ˜P is compatible, and
SP= S˜P. Find a pair of s× s square matrices (Pe,˜Pe) of Laurent polynomials with
coefficients in F and with symmetry such that

1. [Ir,0]Pe = P and [Ir,0]˜Pe = ˜P (that is, the submatrix of the first r rows of Pe,˜Pe

is the given matrix P,˜P, respectively);
2. (Pe,˜Pe) has mutually compatible symmetry and Pe(z)˜P∗

e(z) = Is for all z∈C\{0}
(that is, (Pe,˜Pe) is a pair of biorthogonal matrices);

3. The lengths of the coefficient support of Pe and ˜Pe can be controlled by those of
P and ˜P in some way.
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1.2 Motivation

The above problems are closely connected to wavelet analysis and filter banks. The
key of wavelet construction is the so-called multiresolution analysis (MRA), which
contains mainly two parts. One is on the construction of refinable function vectors
that satisfies certain desired conditions. Another part is on the derivation of wavelet
generators from refinable function vectors obtained in first part, which should be
able to inherit certain properties similar to their refinable function vectors. From
the point of view of filter banks, the first part corresponds to the design of filters
or filter banks with certain desired properties, while the second part can be and is
formulated as some matrix extension problems stated previously. In this paper, we
shall mainly focus on the second part (with symmetry) of the MRA while assume
that the refinable function vectors with certain properties are given in advance (part
of Sect. 3 is on the construction of refinable functions satisfying (14)).

We say that d is a dilation factor if d is an integer with |d|> 1. Throughout this
paper, d denotes a dilation factor. For simplicity of presentation, we further assume
that d is positive, while multiwavelets and filter banks with a negative dilation factor
can be handled similarly by a slight modification of the statements in this paper.

We say that φ = [φ1, . . . ,φr]
T : R→ C

r×1 is a d-refinable function vector if

φ = d ∑
k∈Z

a0(k)φ(d ·−k), (6)

where a0 : Z → C
r×r is a finitely supported sequence of r × r matrices on Z,

called the low-pass filter (or mask) for φ . The symbol of a0 is denoted by a0(z) :=
∑k∈Z a0(k)zk, which is an r× r matrix of Laurent polynomials.

In the frequency domain, the refinement equation in (6) can be rewritten as

̂φ(dξ ) = â0(ξ )̂φ(ξ ), ξ ∈R, (7)

where â0 is the Fourier series of a0 given by

â0(ξ ) := ∑
k∈Z

a0(k)e
−ikξ = a0(e

−iξ ), ξ ∈ R. (8)

The Fourier transform ̂f of f ∈ L1(R) is defined to be ̂f (ξ ) =
∫

R
f (t)e−itξ dt and

can be extended to square integrable functions and tempered distributions.
We say that a compactly supported d-refinable function vector φ in L2(R) is

orthogonal if
〈φ ,φ(·− k)〉= δ (k)Ir, k ∈ Z, (9)

where δ is the Dirac sequence such that δ (0) = 1 and δ (k) = 0 for all k �= 0.
Usually, a wavelet system is generated by some wavelet function vectors ψ� =

[ψ�
1, . . . ,ψ�

r ]
T, �= 1, . . . ,L, from a d-refinable function vector φ as follows:

̂ψ�(dξ ) = â�(ξ )̂φ (ξ ), �= 1, . . . ,L, (10)

where each a� : Z→ C
r×r is a finitely supported sequence of r × r matrices on Z,

called the high-pass filter (or mask) for ψ�, �= 1, . . . ,L.
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We say that {ψ1, . . . ,ψL} generates a d-multiframe in L2(R) if {ψ�
j,k := d j/2ψ�

(d j ·−k) : j,k ∈ Z, �= 1, . . . ,L} is a frame in L2(R), that is, there exist two positive
constants C1,C2 such that

C1‖ f‖2
L2(R)

≤
L

∑
�=1

∑
j∈Z

∑
k∈Z

|〈 f ,ψ�
j,k〉|2 ≤C2‖ f‖2

L2(R)
, ∀ f ∈ L2(R), (11)

where |〈 f ,ψ�
j,k〉|2 = 〈 f ,ψ�

j,k〉〈ψ�
j,k, f 〉 and 〈·, ·〉 is the inner product defined to be

〈 f ,g〉 :=
∫

R

f (t)g(t)
T
dt, f ∈ (L2(R))

s1×�,g ∈ (L2(R))
s2×�.

If C1 = C2 = 1 in (11), we say that {ψ1, . . . ,ψL} generates a tight d-multiframe in
L2(R). The wavelet function vectors ψ� are called tight multiframelets. When r = 1,
we usually drop the prefix multi.

If φ is a compactly supported d-refinable function vector in L2(R) associated
with a low-pass filter a0, then it is well-known (see [6]) that {ψ1, . . . ,ψL} associ-
ated with high-pass filters {a1, . . . ,aL} via (10) generates a tight d-multiframe if and
only if

L

∑
�=0

â�â�(·+2πk/d)
T
= δ (k)Ir, k = 0, . . . ,d−1. (12)

According to various requirements of problems in applications, different de-
sired properties of a wavelet system are needed, which usually can be character-
ized by conditions on the low-pass filter a0 for φ and the high-pass filters a� for
ψ�, � = 1, . . . ,L. Among all properties of a wavelet system, high order of vanish-
ing moments, (bi)orthogonality, and symmetry are highly desirable properties in
wavelet and filter bank applications. High order of vanishing moments is crucial
for the sparsity representation of a wavelet system, which plays an important role
in image denoising and compression. (Bi)orthogonality (more general, tightness of
a wavelet system) results in simple rules for guaranteeing the perfect reconstruc-
tion property. Symmetry usually produces better visual effect and less artifact in
signal/image processing; not to mention the double reduction of the computational
cost for a symmetric system.

A framelet ψ has vanishing moments of order n if
∫

R

tkψ(t)dt = 0 k = 0, . . . ,n−1, (13)

which is equivalent to saying that dk

dtk ψ̂(0) = 0 for all k = 0, . . . ,n−1. If (12) holds
and the low-pass filter a0 satisfies

1−|â0(ξ )|2 = O(|ξ |2n), ξ → 0, (14)

which means 1−|â0(ξ )|2 has zero of order 2n near the origin, then the framelet sys-
tem generated by {ψ1, . . . ,ψL} has vanishing moments of order n (see [6]). We shall
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see in Sect. 3 on the connection of tight frames to the orthogonal matrix extension
problem and on the construction of symmetric complex tight framelets with high
order of vanishing moments via the technique of matrix extension with symmetry.

Next, let us review the construction of tight d-multiframes in the point of view
of filters and filter banks. Let F be a subfield of C. Let a0 : Z → F

r×r be a low-
pass filter with multiplicity r for a d-refinable function vector φ = [φ1, . . . ,φr]

T. The
d-band subsymbols (polyphase components) of a0 are defined to be

a0;γ(z) :=
√
d ∑

k∈Z
a0(γ +dk)zk, γ ∈ Z. (15)

Let a1, . . . ,aL :Z→F
r×r be high-pass filters for function vectors ψ1, . . . ,ψL, respec-

tively. The polyphase matrix for the filter bank {a0,a1, . . . ,aL} (or
{a0,a1, . . . ,aL}) is defined to be

P(z) =

⎡

⎢

⎢

⎢

⎣

a0;0(z) · · · a0;d−1(z)
a1;0(z) · · · a1;d−1(z)

...
...

...
aL;0(z) · · · aL;d−1(z)

⎤

⎥

⎥

⎥

⎦

, (16)

where a�;γ are subsymbols of a� similarly defined as in (15) for γ = 0, . . . ,d−1 and
�= 1, . . . ,L.

If φ is a compactly supported d-refinable function vectors in L2(R), then it is
well-known (see [6]) that {ψ1, . . . ,ψL} associated with {a1, . . . ,aL} via (10) gener-
ates a tight d-multiframe, i.e., (12) holds, if and only if,

P∗(z)P(z) = Idr, z ∈ C\{0}. (17)

Note that the polyphase matrix P is not necessarily a square matrix (only if L =
d−1). When the d-refinable function vector φ associated with a low-pass filter a0 is
orthogonal, the multiframlet system generated by {ψ1, . . . ,ψd−1} via (10) becomes
an orthonormal multiwavelet basis for L2(R). In this case, the polyphase matrix P
associated with the filter bank {a0, . . . ,ad−1} is indeed a square matrix. Moreover,
the low-pass filter a0 for φ is a d-band orthogonal filter:

d−1

∑
γ=0

a0;γ(z)a
∗
0;γ (z) = Ir, z ∈ C\{0}. (18)

Now, one can show that the derivation of high-pass filters a1, . . . ,ad−1 from a0 so
that the filter bank {a0,a1, . . . ,ad−1} has the perfect reconstruction property as in
(17) is simply a special case of Problem 1 (orthogonal matrix extension). More
generally, for L = d− 1, one can consider the construction of biorthogonal mul-
tiwavelets (see Sect. 4), which corresponds to Problem 2. Our main focus of this
paper is on matrix extension with symmetry with respect to Problems 1 and 2. We
shall study in Sects. 2 and 4 on the orthogonal matrix extension problem and the
biorthogonal matrix extension problem, respectively.
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1.3 Prior Work and Our Contributions

Without considering symmetry issue, it is known in the engineering literature that
Problem 1 or 2 can be solved by representing the given matrices in cascade struc-
tures; see [19, 24]. In the context of wavelet analysis, orthogonal matrix extension
without symmetry was discussed by Lawton, Lee, and Shen in their paper [20].
In electronic engineering, an algorithm using the cascade structure for orthogonal
matrix extension without symmetry was given in [24] for filter banks with perfect
reconstruction property. The algorithms in [20,24] mainly deal with the special case
that P is a row vector (that is, r = 1 in our case) without symmetry, and the coef-
ficient support of the derived matrix Pe indeed can be controlled by that of P. The
algorithms in [20,24] for the special case r = 1 can be employed to handle a general
r× s matrix P without symmetry; see [20, 24] for detail. However, for the general
case r > 1, it is no longer clear whether the coefficient support of the derived ma-
trix Pe obtained by the algorithms in [20, 24] can still be controlled by that of P.
For r = 1, Goh et al. in [9] considered the biorthogonal matrix extension problem
without symmetry. They provided a step-by-step algorithm for deriving the exten-
sion matrices, yet they did not concern about the support control of the extension
matrices nor the symmetry patterns of the extension matrices. For r > 1, there are
only a few results in the literature [1,4] and most of them only consider about some
very special cases. The difficulty comes from the flexibility of the biorthogonality
relation between the given pair (P,˜P) of biorthogonal matrices.

Several special cases of matrix extension with symmetry were considered in the
literature. For F = R and r = 1, orthogonal matrix extension with symmetry was
considered in [21]. For r = 1, orthogonal matrix extension with symmetry was stud-
ied in [12] and a simple algorithm is given there. In the context of wavelet analysis,
several particular cases of matrix extension with symmetry related to the construc-
tion of (bi)orthogonal multiwavelets were investigated in [1, 3, 10, 12, 19, 21]. How-
ever, for the general case of an r × s matrix, the approaches on orthogonal matrix
extension with symmetry in [12,21] for the particular case r = 1 cannot be employed
to handle the general case. The algorithms in [12, 21] are very difficult to be gen-
eralized to the general case r > 1, partially due to the complicated relations of the
symmetry patterns between different rows of P. For the general case of matrix ex-
tension with symmetry, it becomes much harder to control the coefficient support of
the derived matrix Pe, comparing with the special case r = 1. Extra effort is needed
in any algorithm of deriving Pe so that its coefficient support can be controlled by
that of P.

The contributions of this paper lie in the following aspects. First, we satisfactorily
solve the matrix extension problems with symmetry for any r,s such that 1 ≤ r ≤ s.
More importantly, we obtain a complete representation for any r × s paraunitary
matrix P or pairs of biorthogonal matrices (P,˜P) having compatible symmetry with
1≤ r ≤ s. This representation leads to step-by-step algorithms for deriving a desired
matrix Pe or the pair of extension matrices (Pe,˜Pe) from a given matrix P or a pair
(P,˜P). Second, we obtain an optimal result in the sense of (21) on controlling the
coefficient support of the desired matrix Pe derived from a given matrix P by our
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algorithm for orthogonal matrix extension with symmetry. This is of importance
in both theory and application, since short support of a filter or a multiwavelet is
a highly desirable property and short support usually means a fast algorithm and
simple implementation in practice. Third, we introduce the notion of compatibility
of symmetry, which plays a critical role in the study of the general matrix exten-
sion problems with symmetry (r ≥ 1). Fourth, we provide a complete analysis and
a systematic construction algorithm for symmetric filter banks with the perfect re-
construction property and symmetric (bi)orthogonal multiwavelets. Finally, most of
the literature on the matrix extension problem only consider Laurent polynomials
with coefficients in the special field C (see [20]) or R (see [2,21]). In this paper, our
setting is under a general field F, which can be any subfield of C satisfies certain
conditions (see (19) for the case of orthogonal matrix extension).

1.4 Outline

Here is the structure of this paper. In Sect. 2, we shall study the orthogonal ma-
trix extension with symmetry and present a step-by-step algorithm for this prob-
lem. We shall also apply our algorithm in this section to the design of symmetric
filter banks in electronic engineering and to the construction of symmetric orthonor-
mal multiwavelets in wavelet analysis. In Sect. 3, we shall discuss the construction
of symmetric complex tight framelets with high order of vanishing moments and
with symmetry via our algorithm for orthogonal matrix extension with symmetry.
In Sect. 4, we shall study the biorthogonal matrix extension problem correspond-
ing to the construction of symmetric biorthogonal multiwavelets. We also provide
a step-by-step algorithm for the construction of the desired pair of biorthogonal ex-
tension matrices. Examples will be provided to illustrate our algorithms and results.

2 Orthogonal Matrix Extension with Symmetry

In this section, we shall study the orthogonal matrix extension problem with sym-
metry. The Laurent polynomials that we shall consider in this section have their
coefficients in a subfield F of the complex field C such that F is closed under the
operations of complex conjugate of F and square roots of positive numbers in F. In
other words, the subfield F of C satisfies the following properties:

x̄ ∈ F and
√

y ∈ F ∀ x,y ∈ F with y > 0. (19)

Two particular examples of such subfields F are F = R (the field of real numbers)
and F = C (the field of complex numbers). A nontrivial example is the field of all
algebraic number, i.e., the algebraic closure Q of the rational number Q. A subfield
of R given by Q∩R also satisfies (19).

Problem 1 is completely solved by the following theorem.
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Theorem 1. Let F be a subfield of C such that (19) holds. Let P be an r× s matrix
of Laurent polynomials with coefficients in the subfield F such that the symmetry
of P is compatible, i.e., SP = (Sθ1)

∗Sθ2 for some 1× r, 1× s vectors θ1, θ2 of
Laurent polynomials with symmetry. Then P(z)P∗(z) = Ir for all z ∈C\{0} (that is,
P is paraunitary), if and only if, there exists an s× s square matrix Pe of Laurent
polynomials with coefficients in F such that

(1) [Ir,0]Pe = P; that is, the submatrix of the first r rows of Pe is P;
(2) Pe is paraunitary: Pe(z)P∗

e(z) = Is for all z ∈ C\{0};
(3) The symmetry of Pe is compatible: SPe = (Sθ)∗Sθ2 for some 1× s vector θ of

Laurent polynomials with symmetry;
(4) Pe can be represented as products of some s× s matrices P0,P1, . . . ,PJ+1 of

Laurent polynoimals with coefficient in F:

Pe(z) = PJ+1(z)PJ(z) · · ·P1(z)P0(z); (20)

(5) P j,1 ≤ j ≤ J are elementary: P j(z)P∗
j(z) = Is and csupp(P j)⊆ [−1,1];

(6) (P j+1,P j) has mutually compatible symmetry for all 0 ≤ j ≤ J;
(7) P0 = U∗

Sθ2
and PJ+1 = diag(USθ1 , Is−r), where USθ1 , USθ2 are products of a

permutation matrix with a diagonal matrix of monomials, as defined in (23);
(8) The coefficient support of Pe is controlled by that of P in the following sense:

|csupp([Pe] j,k)| ≤ max
1≤n≤r

|csupp([P]n,k)|, 1 ≤ j,k ≤ s. (21)

The representation in (20) is often called the cascade structure in the literature
of engineering, see [19, 24]. The key of Theorem 1 is to construct the elementary
paraunitary matrices P1, . . . ,PJ step by step such that P j’s have the properties stated
as in Items (4)–(7) of the theorem. We shall provide such a step-by-step algorithm
next, which not only provides a detailed construction of such P j’s, but also leads to
a constructive proof of Theorem 1. For a complete and detailed proof of Theorem 1
using our algorithm, one may refer to [16, Sect. 4].

2.1 An Algorithm for the Orthogonal Matrix Extension with
Symmetry

Now we present a step-by-step algorithm on orthogonal matrix extension with
symmetry to derive the desired matrix Pe in Theorem 1 from a given matrix P. Our
algorithm has three steps: initialization, support reduction, and finalization. The step
of initialization reduces the symmetry pattern of P to a standard form. The step of
support reduction is the main body of the algorithm, producing a sequence of ele-
mentary matrices A1, . . . ,AJ that reduce the length of the coefficient support of P
to 0. The step of finalization generates the desired matrix Pe as in Theorem 1. More
precisely, see Algorithm 1 for our algorithm written in the form of pseudo-code.
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Algorithm 1 Orthogonal matrix extension with symmetry

(a) Input: P as in Theorem 1 with SP = (Sθ1)
∗Sθ2 for some 1× r and 1× s row vectors θ1 and

θ2 of Laurant polynomials with symmetry.
(b) Initialization: Let Q :=U∗

Sθ1
PUSθ2 . Then the symmetry pattern of Q is

SQ= [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T[1s1 ,−1s2 , z

−11s3 ,−z−11s4 ], (22)

where all nonnegative integers r1, . . . , r4, s1, . . ., s4 are uniquely determined by SP.
(c) Support Reduction: Let P0 :=U∗

Sθ2
and J := 1.

1: while (|csupp(Q)| > 0) do
2: Let Q0 :=Q, [k1,k2] := csupp(Q), and AJ := Is .
3: if k2 =−k1 then
4: for j = 1 to r do
5: Let q := [Q0] j,: and p := [Q] j,: be the jth rows of Q0 and Q, respectively. Let

[�1, �2] := csupp(q), � := �2 − �1, and B j := Is.
6: if csupp(q) = csupp(p) and �≥ 2 and (�1 = k1 or �2 = k2) then
7: B j := Bq. AJ := AJB j . Q0 :=Q0B j .
8: end if
9: end for

10: Q0 takes the form in (31). Let B(−k2 ,k2) := Is, Q1 :=Q0, j1 := 1 and j2 := r3 + r4 +1.
11: while j1 ≤ r1 + r2 and j2 ≤ r do
12: Let q1 := [Q1] j1,: and q2 := [Q1] j2,:.
13: if coeff(q1,k1) = 0 then j1 := j1 +1. end if
14: if coeff(q2,k2) = 0 then j2 := j2 +1. end if
15: if coeff(q1,k1) �= 0 and coeff(q2,k2) �= 0 then
16: B(−k2 ,k2) := B(−k2,k2)B(q1,q2). Q1 := Q1B(q1,q2). AJ := AJB(q1,q2). j1 := j1 + 1.

j2 := j2 +1.
17: end if
18: end while // end inner while loop
19: end if
20: Q1 takes the form in (31) with either coeff(Q1,−k) = 0 or coeff(Q1,k) = 0. Let AJ :=

AJBQ1 and Q :=QAJ . Then

SQ= [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T[1s′1 ,−1s′2 , z

−11s′3 ,−z−11s′4 ].

Replace s1, . . . , s4 by s′1, . . ., s
′
4, respectively. Let PJ := A∗

J and J := J+1.
21: end while // end outer while loop
(d) Finalization: Q = diag(F1,F2,F3,F4) for some r j × s j constant matrices Fj in F, j =

1, . . . ,4. Let U := diag(UF1 ,UF2 ,UF3 ,UF4) so that QU = [Ir ,0]. Define PJ :=U∗ and PJ+1 :=
diag(USθ1 , Is−r).

(e) Output: A desired matrix Pe satisfying all the properties in Theorem 1

In the following subsections, we present detailed constructions of the matrices
USθ , Bq, B(q1,q2), BQ1 , and UF appearing in Algorithm 1.

2.1.1 Initialization

Let θ be a 1 × n row vector of Laurent polynomials with symmetry such that
Sθ = [ε1zc1 , . . . ,εnzcn ] for some ε1, . . . ,εn ∈ {−1,1} and c1, . . . ,cn ∈ Z. Then,
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the symmetry of any entry in the vector θdiag(z−�c1/2�, . . . ,z−�cn/2�) belongs to
{±1,±z−1}. Thus, there is a permutation matrix Eθ to regroup these four types
of symmetries together so that

S(θUSθ ) = [1n1 ,−1n2 ,z
−11n3,−z−11n4 ], (23)

where USθ := diag(z−�c1/2�, . . . ,z−�cn/2�)Eθ , 1m denotes the 1 × m row vector
[1, . . . ,1], and n1, . . . ,n4 are nonnegative integers uniquely determined by Sθ . Since
P satisfies (4), Q := U∗

Sθ1
PUSθ2 has the symmetry pattern as in (22). Note that USθ1

and USθ2 do not increase the length of the coefficient support of P.

2.1.2 Support Reduction

For a 1×n row vector f in F such that ‖f‖ �= 0, we define nf to be the number of
nonzero entries in f and ε j := [0, . . . ,0,1,0, . . . ,0] to be the jth unit coordinate row
vector in R

n. Let Ef be a permutation matrix such that fEf = [ f1, . . . , fnf ,0, . . . ,0]
with f j �= 0 for j = 1, . . . ,nf. We define

Vf :=

⎧

⎪

⎨

⎪

⎩

f̄1
| f1| , if nf = 1;

f̄1
| f1|

(

In − 2
‖vf‖2 v∗fvf

)

, if nf > 1,
(24)

where vf := f− f1
| f1| ‖f‖ε1. Observing that ‖vf‖2 = 2‖f‖(‖f‖−| f1|), we can verify

that VfV ∗
f = In and fEfVf= ‖f‖ε1. Let Uf := EfVf. Then Uf is unitary and satisfies

Uf= [ f
∗

‖f‖ ,F
∗] for some (n−1)×n matrix F in F such that fUf= [‖f‖,0, . . . ,0]. We

also define Uf := In if f= 0 and Uf := /0 if f= /0. Here, Uf plays the role of reducing
the number of nonzero entries in f. More generally, for an r×n nonzero matrix G of
rank m in F, employing the above procedure to each row of G, we can obtain an n×n
unitary matrix UG such that GUG = [R,0] for some r×m lower triangular matrix R of
rank m. If G1G∗

1 = G2G∗
2, then the above procedure produces two matrices UG1 ,UG2

such that G1UG1 = [R,0] and G2UG2 = [R,0] for some lower triangular matrix R of
full rank. It is important to notice that the constructions of Uf and UG only involve
the nonzero entries of f and nonzero columns of G, respectively. In other words, up
to a permutation, we have

[Uf] j,: = ([Uf]:, j)
T = ε j , if [f] j = 0,

[UG] j,: = ([UG]:, j)
T = ε j , if [G]:, j = 0.

(25)

Denote Q := U∗
Sθ1

PUSθ2 as in Algorithm 1. The outer while loop produces a se-
quence of elementary paraunitary matrices A1, . . . ,AJ that reduce the length of the
coefficient support of Q gradually to 0. The construction of each A j has three parts:
{B1, . . . ,Br}, B(−k,k), and BQ1 . The first part {B1, . . . ,Br} (see the for loop) is con-
structed recursively for each of the r rows of Q so that Q0 :=QB1 · · ·Br has a special
form as in (31). If both coeff(Q0,−k) �= 0 and coeff(Q0,k) �= 0, then the second part
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B(−k,k) (see the inner while loop) is further constructed so that Q1 := Q0B(−k,k)
takes the form in (31) with at least one of coeff(Q1,−k) and coeff(Q1,k) being 0.
BQ1 is constructed to handle the case that csupp(Q1) = [−k,k − 1] or csupp(Q1)
= [−k+1,k] so that csupp(Q1BQ1)⊆ [−k+1,k−1].

Let q denote an arbitrary row of Q with |csupp(q)| ≥ 2. We first explain how to
construct Bq for a given row q such that Bq reduces the length of the coefficient
support of q by 2 and keeps its symmetry pattern. Note that in the for loop, B j is
simply Bq with q being the current jth row of QB0 · · ·B j−1, where B0 := Is.

By (22), we have Sq = εzc[1s1 ,−1s2 ,z
−11s3 ,−z−11s4 ] for some ε ∈ {−1,1}

and c ∈ {0,1}. For ε = −1, there is a permutation matrix Eε such that S(qEε)
= zc[1s2 ,−1s1,z

−11s4 ,−z−11s3 ]. For ε = 1, we let Eε := Is. Then, qEε must take
the form in either (26) or (27) with f1 �= 0 as follows:

qEε =[f1,−f2,g1,−g2]z
�1 +[f3,−f4,g3,−g4]z

�1+1 +
�2−2

∑
�=�1+2

coeff(qEε , �)z
�

+[f3,f4,g1,g2]z
�2−1 +[f1,f2,0,0]z�2;

(26)

qEε =[0,0,f1,−f2]z
�1 +[g1,−g2,f3,−f4]z

�1+1 +
�2−2

∑
�=�1+2

coeff(qEε , �)z
�

+[g3,g4,f3,f4]z
�2−1 +[g1,g2,f1,f2]z

�2 .

(27)

If qEε takes the form in (27), we further construct a permutation matrix Eq such
that [g1,g2,f1,f2]Eq = [f1,f2,g1,g2] and define Uq,ε := Eε Eqdiag(Is−sg ,z

−1Isg),
where sg is the size of the row vector [g1,g2]. Then, qUq,ε takes the form in (26).
For qEε of form (26), we simply let Uq,ε := Eε . In this way, q0 := qUq,ε always
takes the form in (26) with f1 �= 0.

Note that Uq,εU∗
q,ε = Is and ‖f1‖= ‖f2‖ if q0q

∗
0 = 1, where ‖f‖ :=

√
ff∗. Now

we construct an s× s paraunitary matrix Bq0 to reduce the coefficient support of q0

as in (26) from [�1, �2] to [�1 +1, �2 −1] as follows:

B∗
q0

:=
1
c

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1(z+
c0

cf1
+ 1

z ) f2(z− 1
z ) g1(1+

1
z ) g2(1− 1

z )

cF1 0 0 0

−f1(z− 1
z ) −f2(z− c0

cf1
+ 1

z ) −g1(1− 1
z ) −g2(1+

1
z )

0 cF2 0 0

cg1
cf1

f1(1+ z) − cg1
cf1

f2(1− z) cg′1g
′
1 0

0 0 cG1 0

cg2
cf1

f1(1− z) − cg2
cf1

f2(1+ z) 0 cg′2g
′
2

0 0 0 cG2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (28)
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where cf1 := ‖f1‖, cg1 := ‖g1‖, cg2 := ‖g2‖, c0 := 1
cf1

coeff(q0, �1+1)coeff(q∗0,−�2),

cg′1 :=

{−2cf1−c0
cg1

if g1 �= 0;

c otherwise,
cg′2 :=

{ 2cf1−c0
cg2

if g2 �= 0;

c otherwise,

c := (4c2
f1
+2c2

g1
+2c2

g2
+ |c0|2)1/2,

(29)

and [
f∗j
‖f j‖ ,F

∗
j ] = Uf j , [g

′∗
j ,G

∗
j ] = Ug j for j = 1,2 are unitary constant extension

matrices in F for vectorsf j,g j in F, respectively. Here, the role of a unitary constant
matrix Uf in F is to reduce the number of nonzero entries in f such that fUf =
[‖f‖,0, . . . ,0]. The operations for the emptyset /0 are defined by ‖ /0‖= /0, /0+A = A
and /0 ·A = /0 for any object A.

Define Bq := Uq,εBq0U
∗
q,ε . Then, Bq is paraunitary. Due to the particular form of

Bq0 as in (28), direct computations yield the following very important properties of
the paraunitary matrix Bq:

(P1) SBq = [1s1 ,−1s2,z1s3 ,−z1s4 ]
T[1s1 ,−1s2 ,z

−11s3 ,−z−11s4 ], csupp(Bq) =
[−1,1], and csupp(qBq) = [�1+1, �2−1]. That is, Bq has compatible symmetry
with coefficient support on [−1,1] and Bq reduces the length of the coefficient
support of q exactly by 2. Moreover, S(qBq) = Sq.

(P2) If (p,q∗) has mutually compatible symmetry and pq∗ = 0, then S(pBq) = S(p)
and csupp(pBq) ⊆ csupp(p). That is, Bq keeps the symmetry pattern of p and
does not increase the length of the coefficient support of p.

Next, let us explain the construction of B(−k,k). For csupp(Q) = [−k,k] with
k ≥ 1, Q is of the form as follows:

Q=

⎡

⎢

⎢

⎣

F11 −F21 G31 −G41

−F12 F22 −G32 G42

0 0 F31 −F41

0 0 −F32 F42

⎤

⎥

⎥

⎦

z−k +

⎡

⎢

⎢

⎣

F51 −F61 G71 −G81

−F52 F61 −G72 G82

G11 −G21 F71 −F81

−G12 G22 −F72 F82

⎤

⎥

⎥

⎦

z−k+1

+
k−2

∑
n=2−k

coeff(Q,n)zn +

⎡

⎢

⎢

⎣

F51 F61 G31 G41

F52 F61 G32 G42

G51 G61 F71 F81

G52 G62 F72 F82

⎤

⎥

⎥

⎦

zk−1 +

⎡

⎢

⎢

⎣

F11 F21 0 0
F12 F22 0 0
G11 G21 F31 F41

G12 G22 F32 F42

⎤

⎥

⎥

⎦

zk

(30)

with all Fjk’s and G jk’s being constant matrices in F and F11,F22,F31,F42 being of
size r1 × s1, r2 × s2, r3 × s3, r4 × s4, respectively. Due to Properties (P1) and (P2) of
Bq, the for loop in Algorithm 1 reduces Q in (30) to Q0 := QB1 · · ·Br as follows:

⎡

⎢

⎢

⎢

⎢

⎣

0 0 ˜G31 − ˜G41

0 0 − ˜G32 ˜G42

0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

z−k + · · ·+

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0

˜G11 ˜G21 0 0
˜G12 ˜G22 0 0

⎤

⎥

⎥

⎥

⎥

⎦

zk. (31)
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If either coeff(Q0,−k) = 0 or coeff(Q0,k) = 0, then the inner while loop does
nothing andB(−k,k) = Is. If both coeff(Q0,−k) �= 0 and coeff(Q0,k) �= 0, thenB(−k,k)
is constructed recursively from pairs (q1,q2) with q1,q2 being two rows of Q0 sat-
isfying coeff(q1,−k) �= 0 and coeff(q2,k) �= 0. The construction of B(q1,q2) with
respect to such a pair (q1,q2) in the inner while loop is as follows.

Similar to the discussion before (26), there is a permutation matrix E(q1,q2) such
that q1E(q1,q2) and q2E(q1,q2) take the following form:

[

q̃1

q̃2

]

:=

[

q1

q2

]

E(q1,q2) =

⎡

⎣

0 0 g̃3 −g̃4

0 0 0 0

⎤

⎦z−k +

⎡

⎣

˜f5 −˜f6 g̃7 −g̃8

g̃1 −g̃2 ˜f7 −˜f8

⎤

⎦z−k+1

+
k−2

∑
n=2−k

coeff

([

q̃1

q̃2

]

,n

)

zn +

⎡

⎣

˜f5 ˜f6 g̃3 g̃4

g̃5 g̃6 ˜f7 ˜f8

⎤

⎦ zk−1 +

⎡

⎣

0 0 0 0

g̃1 g̃2 0 0

⎤

⎦ zk,

(32)

where g̃1, g̃2, g̃3, g̃4 are all nonzero row vectors. Note that ‖g̃1‖ = ‖g̃2‖=: cg̃1 and
‖g̃3‖= ‖g̃4‖=: cg̃3 . Construct an s× s paraunitary matrix B(q̃1,q̃2) as follows:

B∗
(q̃1,q̃2)

:=
1
c

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c0
cg̃1

g̃1 0 g̃3(1+
1
z ) g̃4(1− 1

z )

c ˜G1 0 0 0

0 c0
cg̃1

g̃2 −g̃3(1− 1
z ) −g̃4(1+

1
z )

0 c ˜G2 0 0

cg̃3
cg̃1

g̃1(1+ z) − cg̃3
cg̃1

g̃2(1− z) − c0
cg̃3

g̃3 0

0 0 c ˜G3 0

cg̃3
cg̃1

g̃1(1− z) − cg̃3
cg̃1

g̃2(1+ z) 0 − c0
cg̃3

g̃4

0 0 0 c ˜G4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (33)

where c0 := 1
cg̃1

coeff(q̃1,−k+1)coeff(q̃∗2,−k), c :=(|c0|2+4c2
g̃3
)

1
2 , and [

g̃∗j
‖g̃ j‖ ,

˜G∗
j ] =

Ug̃ j
are unitary constant extension matrices in F for vectors g̃ j in F, j = 1, . . . ,4,

respectively. Let B(q1,q2) := E(q1,q2)B(q̃1,q̃2)E
T
(q1,q2)

. Similar to Properties (P1) and
(P2) of Bq, we have the following very important properties of B(q1,q2):

(P3) SB(q1,q2) = [1s1,−1s2 ,z1s3 ,−z1s4 ]
T[1s1 ,−1s2,z

−11s3 ,−z−11s4 ], csupp(B(q1,q2))
= [−1,1], csupp(q1B(q1,q2)) ⊆ [−k+ 1,k− 1] and csupp(q2B(q1,q2)) ⊆ [−k+
1,k−1]. That is, B(q1,q2) has compatible symmetry with coefficient support on
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[−1,1] and B(q1,q2) reduces the length of both the coefficient supports of q1

and q2 by 2. Moreover, S(q1B(q1,q2)) = Sq1 and S(q2B(q1,q2)) = Sq2.
(P4) If both (p,q∗1) and (p,q∗2) have mutually compatible symmetry and pq∗1 =

pq∗2 = 0, then S(pB(q1,q2)) = Sp and csupp(pB(q1,q2)) ⊆ csupp(p). That is,
B(q1,q2) keeps the symmetry pattern of p and does not increase the length of
the coefficient support of p.

Now, due to Properties (P3) and (P4) of B(q1,q2), B(−k,k) constructed in the in-
ner while loop reduces Q0 of the form in (31) with both coeff(Q0,−k) �= 0 and
coeff(Q0,k) �= 0, to Q1 := Q0B(−k,k) of the form in (31) with either coeff(Q1,−k)
= coeff(Q1,k) = 0 (for this case, simply let BQ1 := Is) or one of coeff(Q1,−k)
and coeff(Q1,k) is nonzero. For the latter case, BQ1 := diag(U1W1, Is3+s4)E with
U1,W1 constructed with respect to coeff(Q1,k) �= 0 or BQ1 := diag(Is1+s2 ,U3W3)E
with U3,W3 constructed with respect to coeff(Q1,−k) �= 0, where E is a permuta-
tion matrix. BQ1 is constructed so that csupp(Q1BQ1)⊆ [−k+1,k−1]. Let Q1 take
form in (31). The matrices U1,W1 or U3,W3, and E are constructed as follows.

Let U1 := diag(U
˜G1
,U

˜G2
) and U3 := diag(U

˜G3
,U

˜G4
) with

˜G1 :=

[

˜G11
˜G12

]

, ˜G2 :=

[

˜G21
˜G22

]

, ˜G3 :=

[

˜G31
˜G32

]

, ˜G4 :=

[

˜G41
˜G42

]

. (34)

Here, for a nonzero matrix G with rank m, UG is a unitary matrix such that GUG =
[R,0] for some matrix R of rank m. For G = 0,UG := I and for G = /0,UG := /0.
When G1G∗

1 = G2G∗
2, UG1 and UG2 can be constructed such that G1UG1 = [R,0] and

G2UG2 = [R,0].
Let m1, m3 be the ranks of ˜G1, ˜G3, respectively (m1 = 0 when coeff(Q1,k) = 0

and m3 = 0 when coeff(Q1,−k) = 0). Note that ˜G1 ˜G∗
1 = ˜G2 ˜G∗

2 or ˜G3 ˜G∗
3 = ˜G4 ˜G∗

4
due to Q1Q

∗
1 = Ir. The matrices W1,W3 are then constructed by

W1 :=

⎡

⎢

⎢

⎣

U1 U2

Is1−m1

U2 U1

Is2−m1

⎤

⎥

⎥

⎦

,W3 :=

⎡

⎢

⎢

⎣

U3 U4

Is3−m3

U4 U3

Is4−m3

⎤

⎥

⎥

⎦

, (35)

where U1(z) =−U2(−z) := 1+z−1

2 Im1 and U3(z) = U4(−z) := 1+z
2 Im3 .

Let WQ1 := diag(U1W1, Is3+s4) for the case that coeff(Q1,k) �= 0 or WQ1 :=
diag(Is1+s2 ,U3W3) for the case that coeff(Q1,−k) �= 0. Then WQ1 is paraunitary.
By the symmetry pattern and orthogonality of Q1, WQ1 reduces the coefficient sup-
port of Q1 to [−k+1,k−1], i.e., csupp(Q1WQ1) = [−k+1,k−1]. Moreover, WQ1

changes the symmetry pattern of Q1 such that

S(Q1WQ1) = [1r1,−1r2 ,z1r3 ,−z1r4]
TSθ1,

with

Sθ1 = [z−11m1 ,1s1−m1 ,−z−11m1 ,−1s2−m1 ,1m3 ,z
−11s3−m3 ,−1m3 ,−z−11s4−m3 ].
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E is then the permutation matrix such that

S(Q1WQ1)E = [1r1,−1r2 ,z1r3 ,−z1r4, ]
TSθ ,

with Sθ = [1s1−m1+m3 , ,−1s2−m1+m3 ,z
−11s3−m3+m1 ,−z−11s4−m3+m1 ] = (Sθ1)E .

2.2 Application to Filter Banks and Orthonormal Multiwavelets
with Symmetry

In this subsection, we shall discuss the application of our results on orthogonal
matrix extension with symmetry to d-band symmetric paraunitary filter banks in
electronic engineering and to orthonormal multiwavelets with symmetry in wavelet
analysis.

Symmetry of the filters in a filter bank is a very much desirable property in many
applications. We say that the low-pass filter a0 with multiplicity r has symmetry if

a0(z) = diag(ε1zdc1 , . . . ,εrzdcr )a0(1/z)diag(ε1z−c1 , . . . ,εrz−cr ) (36)

for some ε1, . . . ,εr ∈ {−1,1} and c1, . . . ,cr ∈R such that dc�− c j ∈ Z for all �, j =
1, . . . ,r. If a0 has symmetry as in (36) and if 1 is a simple eigenvalue of a0(1), then
it is well known that the d-refinable function vector φ in (6) associated with the
low-pass filter a0 has the following symmetry:

φ1(c1 −·) = ε1φ1, φ2(c2 −·) = ε2φ2, . . . , φr(cr −·) = εrφr. (37)

Under the symmetry condition in (36), to apply Theorem 1, we first show that
there exists a suitable paraunitary matrix U acting on Pa0 := [a0;0, . . . ,a0;d−1] so that
Pa0U has compatible symmetry. Note that Pa0 itself may not have any symmetry.

Lemma 1. Let Pa0 := [a0;0, . . . ,a0;d−1], where a0;0, . . . ,a0;d−1 are d-band subsym-
bols of a d-band orthogonal filter a0 satisfying (36). Then there exists a dr × dr
paraunitary matrix U such that Pa0U has compatible symmetry.

Proof. From (36), we deduce that

[a0;γ (z)]�, j = ε�ε jz
Rγ
�, j [a0;Qγ

�, j
(z−1)]�, j, γ = 0, . . . ,d−1; �, j = 1, . . . ,r, (38)

where γ,Qγ
�, j ∈ Γ := {0, . . . ,d−1} and Rγ

�, j, Qγ
�, j are uniquely determined by

dc�− c j − γ = dRγ
�, j +Qγ

�, j Qγ
�, j ∈ Γ .with Rγ

�, j ∈ Z, (39)

Since dc�− c j ∈ Z for all �, j = 1, . . . ,r, we have c�− c j ∈ Z for all �, j = 1, . . . ,r
and therefore, Qγ

�, j is independent of �. Consequently, by (38), for every 1 ≤ j ≤ r,
the jth column of the matrix a0;γ is a flipped version of the jth column of the matrix
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a0;Qγ
�, j

. Let κ j,γ ∈ Z be an integer such that |csupp([a0;γ ]:, j + zκ j,γ [a0;Qγ
�, j
]:, j)| is as

small as possible. Define P := [b0;0, . . . ,b0;d−1] as follows:

[b0;γ ]:, j :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[a0;γ ]:, j, γ = Qγ
�, j;

1√
2
([a0;γ ]:, j + zκ j,γ [a0;Qγ

�, j
]:, j), γ < Qγ

�, j;
1√
2
([a0;γ ]:, j − zκ j,γ [a0;Qγ

�, j
]:, j), γ > Qγ

�, j,

(40)

where [a0;γ ]:, j denotes the jth column of a0;γ . Let U denote the unique transform
matrix corresponding to (40) such that P := [b0;0, . . . ,b0;d−1] = [a0;0, . . . ,a0;d−1]U.
It is evident that U is paraunitary and P= Pa0U. We now show that P has compatible
symmetry. Indeed, by (38) and (40),

[Sb0;γ ]�, j = sgn(Qγ
�, j − γ)ε�ε jz

Rγ
�, j+κ j,γ , (41)

where sgn(x) = 1 for x ≥ 0 and sgn(x) =−1 for x < 0. By (39) and noting that Qγ
�, j

is independent of �, we have

[Sb0;γ ]�, j
[Sb0;γ ]n, j

= ε�εnzRγ
�, j−Rγ

n, j = ε�εnzc�−cn , �,n = 1, . . . ,r,

which is equivalent to saying that P has compatible symmetry. �� ��
Now, for a d-band orthogonal low-pass filter a0 satisfying (36), we have an al-

gorithm to construct high-pass filters a1, . . . ,ad−1 such that they form a symmetric
paraunitary filter bank with the perfect reconstruction property. See Algorithm 2.

Algorithm 2 Construction of orthonormal multiwavelets with symmetry

(a) Input: An orthogonal d-band filter a0 with symmetry in (36).
(b) Initialization: Construct U with respect to (40) such that P :=Pa0U has compatible symmetry:

SP = [ε1zk1 , . . . ,εrzkr ]TSθ for some k1, . . .,kr ∈ Z and some 1×dr row vector θ of Laurent
polynomials with symmetry.

(c) Extension: Derive Pe with all the properties as in Theorem 1 from P by Algorithm 1.
(d) High-pass Filters: Let P := PeU

∗ =: (am;γ )0≤m,γ≤d−1 as in (16). Define high-pass filters

am(z) :=
1√
d

d−1

∑
γ=0

am;γ(z
d)zγ , m = 1, . . . ,d−1. (42)

(f) Output: A symmetric filter bank {a0,a1, . . . ,ad−1} with the perfect reconstruction property,
i.e., P in (16) is paraunitary and all filters am, m = 1, . . . ,d−1, have symmetry:

am(z) = diag(εm
1 zdcm

1 , . . .,εm
r zdcm

r )am(1/z)diag(ε1z−c1 , . . . ,εrz
−cr ), (43)

where cm
� := (km

� − k�) + c� ∈ R and all εm
� ∈ {−1,1}, km

� ∈ Z, for �, j = 1, . . . , r and m =
1, . . . ,d−1, are determined by the symmetry pattern of Pe as follows:

[ε1zk1 , . . .,εrz
kr ,ε1

1 zk1
1 , . . . ,ε1

r zk1
r , . . . , zkd−1

1 , . . . ,εd−1
r zkd−1

r ]TSθ := SPe. (44)
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Proof (of Algorithm 2). Rewrite Pe = (bm;γ )0≤m,γ≤d−1 as a d×d block matrix with
r×r blocks bm;γ . Since Pe has compatible symmetry as in (44), we have [Sbm;γ ]�,: =

εm
� ε�zkm

� −k� [Sb0;γ ]�,: for �= 1, . . . ,r and m = 1, . . . ,d−1. By (41), we have

[Sbm;γ ]�, j = sgn(Qγ
�, j − γ)εm

� ε jz
Rγ
�, j+k j,γ+km

� −k� , �, j = 1, . . . ,r. (45)

By (45) and the definition of U∗ in (40), we deduce that

[am;γ ]�, j = εm
� ε jz

Rγ
�, j+km

� −k� [am;Qγ
�, j
(z−1)]�, j. (46)

This implies that [Sam]�, j = εm
� ε jzd(k

m
� −k�+c�)−c j , which is equivalent to (43) with

cm
� := km

� − k�+ c� for m = 1, . . . ,d−1 and �= 1, . . . ,r. �� ��
Since the high-pass filters a1, . . . ,ad−1 satisfy (43), it is easy to verify that each

ψm = [ψm
1 , . . . ,ψ

m
r ]

T defined in (10) also has the following symmetry:

ψm
1 (cm

1 −·) = εm
1 ψm

1 , ψm
2 (c

m
2 −·) = εm

2 ψm
2 , . . . , ψm

r (cm
r −·) = εm

r ψm
r . (47)

In the following, let us present an example to demonstrate our results and illus-
trate our algorithms (for more examples, see [16]).

Example 1. Let d= 3 and r = 2. Let a0 be the 3-band orthogonal low-pass filter with
multiplicity 2 obtained in [15, Example 4]. Then

a0(z) =
1

540

[

a11(z)+ a11(z−1) a12(z)+ z−1a12(z−1)
a21(z)+ z3a21(z−1) a22(z)+ z2a22(z−1)

]

,

where

a11(z) = 90+(55−5
√

41)z− (8+2
√

41)z2 +(7
√

41−47)z4,

a12(z) = 145+5
√

41+(1−
√

41)z2 +(34−4
√

41)z3,

a21(z) = (111+9
√

41)z2 +(69−9
√

41)z4,

a22(z) = 90z+(63−3
√

41)z2 +(3
√

41−63)z3.

The low-pass filter a0 satisfies (36) with c1 = 0,c2 = 1 and ε1 = ε2 = 1. From Pa0 :=
[a0;0,a0;1,a0;2], the matrix U constructed by Lemma 1 is given by

U :=
1√
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√
2 0 0 0 0 0

0 1 0 0 0 1
0 0 1 0 1 0
0 0 0

√
2 0 0

0 0 z 0 −z 0
0 z 0 0 0 −z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Let
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c0 = 11−
√

41, t12 = 5(7−
√

41), c12 = 10(29+
√

41), t13 =−5c0,

t16 = 3c0, t15 = 3(3
√

41−13), t25 = 6(7+3
√

41), t26 = 6(21−
√

41),

t53 = 400
√

6/c0, t55 = 12
√

6(
√

41−1), t56 = 6
√

6(4+
√

41), c66 = 3
√

6(3+7
√

41).

Then, P := Pa0U satisfies SP= [1,z]T[1,1,1,z−1,−1,−1] and is given by

P=

√
6

1080

[

180
√

2 b12(z) b13(z) 0 t15(z− z−1) t16(z− z−1)

0 0 180(1+ z) 180
√

2 t25(1− z) t26(1− z)

]

,

where b12(z) = t12(z + z−1) + c12 and b13(z) = t13(z − 2+ z−1). Applying Algo-
rithm 1, we obtain a desired paraunitary matrix Pe as follows:

Pe =

√
6

1080

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

180
√

2 b12(z) b13(z) 0 t15(z− 1
z ) t16(z− 1

z )

0 0 180(1+ z) 180
√

2 t25(1− z) t26(1− z)

360 − b12(z)√
2

− b13(z)√
2

0 t15√
2
( 1

z − z) t16√
2
( 1

z − z)

0 0 90
√

2(1+ z) −360 t25√
2
(1− z) t26√

2
(1− z)

0
√

6t13(1− z) t53(1− z) 0 t55(1+ z) t56(1+ z)

0
√

6t12
2 ( 1

z − z)
√

6t13
2 ( 1

z − z) 0 b65(z) b66(z)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where b65(z) = −√
6(5t15(z + z−1) + 3c12)/10 and b66(z) = −√

6t16(z + z−1)/2
+ c66. Note that SPe = [1,z,1,z,−z,−1]T[1,1,1,z−1,−1,−1] and the coefficient
support of Pe satisfies csupp([Pe]:, j) ⊆ csupp([P]:, j) for all 1 ≤ j ≤ 6. From the
polyphase matrix P := PeU

∗ =: (am;γ )0≤m,γ≤2, we derive two high-pass filters a1,a2

as follows:

a1(z) =

√
2

1080

[

a1
11(z)+ a1

11(z
−1) a1

12(z)+ z−1a1
12(z

−1)

a1
21(z)+ z3a1

21(z
−1) a1

22(z)+ z2a1
22(z

−1)

]

,

a2(z) =

√
6

1080

[

a2
11(z)− z3a2

11(z
−1) a2

12(z)− z2a2
12(z

−1)

a2
21(z)−a2

21(z
−1) a2

22(z)− z−1a2
22(z

−1)

]

,

where
a1

11(z) = (47−7
√

41)z4 +2(4+
√

41)z2 +5(
√

41−11)z+180,

a1
12(z) = 2(2

√
41−17)z3 +(

√
41−1)z2 −5(29+

√
41),

a1
21(z) = 3(37+3

√
41)z+3(23−3

√
41)z−1,

a1
22(z) =−180z+3(21−

√
41)−3(21−

√
41)z−1,

a2
11(z) = (43+17

√
41)z+(67−7

√
41)z−1,

a2
12(z) = 11

√
41−31− (79+

√
41)z−1,

a2
21(z) = (47−7

√
41)z4 +2(4+

√
41)z2 −3(29+

√
41)z,

a2
22(z) = 2(2

√
41−17)z3 +(

√
41−1)z2 +3(3+7

√
41).
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Then the high-pass filters a1, a2 satisfy (43) with c1
1 = 0, c1

2 = 1, ε1
1 = ε1

2 = 1 and
c2

1 = 1, c2
2 = 0, ε2

1 = ε2
2 = −1. See Fig. 1 for graphs of the 3-refinable function

vector φ associated with the low-pass filter a0 and the multiwavelet function vectors
ψ1,ψ2 associated with the high-pass filters a1,a2, respectively.

3 Construction of Symmetric Complex Tight Framelets

Redundant wavelet systems (L ≥ d in (17)) have been proved to be quit useful in
many applications, for examples, signal denoising, image processing, and numeri-
cal algorithm. As a redundant system, it can possess many desirable properties such
as symmetry, short support, high vanishing moments, and so on, simultaneously (see
[6,7,12,22]). In this section, we are interested in the construction of tight framelets
with such desirable properties. Due to [6], the whole picture of constructing tight
framelets with high order of vanishing moments is more or less clear. Yet, when
comes to symmetry, there is no general way of deriving tight framelet systems with
symmetry. Especially when one requires the number of framelet generators is as less
as possible. In this section, we first provide a general result on the construction of
d-refinable functions with symmetry such that (14) holds. Once such a d-refinable
function is obtained, we then show that using our results on orthogonal matrix exten-
sion with symmetry studied in Sect. 2, we can construct a symmetric tight framelet
system with only d or d+1 framelet generators.
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Fig. 1: Graphs of the 3-refinable function vector φ = [φ1,φ2]
T associated with a0 (left

column), multiwavelet function vector ψ1 = [ψ1
1 ,ψ

1
2 ]

T associated with a1 (middle
column), and multiwavelet function vector ψ2 = [ψ2

1 ,ψ2
2 ]

T associated with a2 (right
column) in Example 1

3.1 Symmetric Complex d-Refinable Functions

Let φ be a d-refinable functions associated with a low-pass filters a0. To have high
order of vanishing moments for a tight framelet system, we need to design a0 such
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that (14) holds for some n ∈ N. To guarantee that the d-refinable function φ as-
sociated with a0 has certain regularity and polynomial reproducibility, usually the
low-pass filter a0 satisfies the sum rules of order m for some m ∈N. More precisely,
â0 is of the form:

â0(ξ ) =

(

1+ e−iξ + · · ·+ e−i(d−1)ξ

d

)m

̂L (ξ ), ξ ∈R (48)

for some 2π-periodic trigonometric polynomial ̂L (ξ ) with ̂L (0)=1. For ̂L (ξ )≡1.
a0 is the low-pass filter for B-spline of order m: ̂Bm(ξ ) = (1− e−iξ )m/(iξ )m.

Define a function h by

h(y) :=
d−1

∏
k=1

(

1− y

sin2(kπ/d)

)

, y ∈ R. (49)

One can show that

h(sin2(ξ/2)) =
|1+ · · ·+ e−i(d−1)ξ |2

d2 =
sin2(dξ/2)

d2 sin2(ξ/2)
(50)

and

h(y)−m =

[

d−1

∏
k=1

(

∞

∑
jk=0

y jk

sin2 jk(kπ/d)

)]−m

=
∞

∑
j=0

cm, jy
j, |y|< sin2(π/d), (51)

where

cm, j = ∑
j1+···+ jd−1= j

d−1

∏
k=1

(

m−1+ jk
jk

)

sin(kπ/d)−2 jk , j ∈N. (52)

Define Pm,n(y) a polynomial of degree n−1 as follows:

Pm,n(y) =
n−1

∑
j=0

[

∑
j1+···+ jd−1= j

d−1

∏
k=1

(

m−1+ jk
jk

)

sin(kπ/d)−2 jk

]

y j. (53)

By convention,
(m

j

)

= 0 if j < 0. Note that Pm,n(y) = ∑n−1
j=0 cm, jy j. Then, it is easy to

show the following result by Taylor expansion.

Lemma 2. Let m,n∈N be such that n≤ m; let Pm,n and h be polynomials defined as
in (53) and (49), respectively. Then Pm,n(sin2(ξ/2)) is the unique positive trigono-
metric polynomial of minimal degree such that

1−h(sin2(ξ/2))mPm,n(sin2(ξ/2)) = O(|ξ |2n), ξ → 0. (54)
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For m,n ∈ N such that 1 ≤ n ≤ m, let ̂IIa0(ξ ) := h(sin2(ξ/2))mPm,n(sin2(ξ/2)).
Then the d-refinable function II φ associated with IIa0 by (6) is called the d-refinable
pseudo spline of type II with order (m,n). By Lemma 2, using Riesz Lemma, one can
derive a low-pass filter Ia0 from IIa0 such that |̂Ia0(ξ )|2 = ̂IIa0(ξ ). The d-refinable
function Iφ associated with such Ia0 by (6) is referred as real d-refinable pseudo
spline of type I with order (m,n). Interesting readers can refer to [6, 7, 22] for more
details on this subject for the special case d= 2.

Note that Ia0 satisfies (14). One can construct high-pass filters a1, . . . ,aL from
a0 := Ia0 such that (12) holds. Then ψ1, . . . ,ψL defined by (10) are real-valued
functions. {ψ1, . . . ,ψL} has vanishing moment of order n and generates a tight
d-frame. However, {ψ1, . . . ,ψL} does not necessarily have symmetry since the low-
pass filter Ia0 from IIa0 via Riesz lemma might not possess any symmetry pattern.
In the following, we shall show that we can achieve symmetry for any odd integer
n ∈ N if considering complex-valued wavelet generators.

For 1 ≤ n ≤ m, we have the following lemma regarding the positiveness of
Pm,n(y), which generalizes [12, Theorem 5] and [22, Theorem 2.4]. See
[26, Theorem 2] for its technical proof.

Lemma 3. Let m,n ∈ N be such that n ≤ m. Then Pm,n(y) > 0 for all y ∈ R if and
only if n is an odd number.

Now, by Pm,2n−1(y) > 0 for all y ∈ R and 2n− 1 ≤ m, Pm,2n−1(y) can only have
complex roots. Hence, we must have

Pm,2n−1(y) = c0

n−1

∏
j=1

(y− z j)(y− z j), z1,z1, . . . ,zn−1,zn−1 ∈ C\R.

In view of Lemmas 2 and 3, we have the following result.

Theorem 2. Let d > 1 be a dilation factor. Let m,n ∈ N be positive integers such
that 2n−1≤ m. Let Pm,n(y) be the polynomial defined in (53). Then,

Pm,2n−1(y) = |Qm,n(y)|2, (55)

where Qm,n(y) = c(y− z1) · · · (y− zn−1) with c = (−1)n−1(z1 · · · zn−1)
−1 and z1,z1,

. . ., zn−1,zn−1 ∈ C \R are all the complex roots of Pm,2n−1(y). Define a low-pass
filter a0 by

â0(ξ ) := ei�m(d−1)
2 �ξ

(

1+ e−iξ + · · ·+ e−i(d−1)ξ

d

)m

Qm,n(sin2(ξ/2)), (56)

where �·� is the floor operation. Then,

â0(−ξ ) = eiεξ â0(ξ ) with ε = m(d−1)−2�m(d−1)
2

� (57)
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and

csupp(a0) =

[

−�m(d−1)
2

�− n+1,�m(d−1)
2

�+n−1+ ε
]

.

Let φ be the standard d-refinable function associated with the low-pass filter a0, that
is, ̂φ(ξ ) := ∏∞

j=1 â0(d
− jξ ). Then, φ is a compactly supported d-refinable function

in L2(R) with symmetry satisfying φ( ε
d−1 −·) = φ .

For m,n ∈ N such that 2n− 1 ≤ m, we shall refer the d-refinable function φ
associated with the low-pass filter a0 defined in Theorem 2 as complex d-refinable
pseudo spline of type I with order (m,2n−1).

Now, we have the following result which shall play an important role in our
construction of tight framelet systems in this section.

Corollary 1. Let d > 1 be a dilation factor. Let m,n ∈ N be such that 2n− 1 ≤ m
and a0 be the low-pass filter for the complex d-refinable pseudo spline of type I with
order (m,2n− 1). Then

1−
d−1

∑
j=0

|â0(ξ +2π j/d)|2 = |̂b(dξ )|2, (58)

for some 2π-periodic trigonometric function ̂b(ξ ) with real coefficients. In
particular,

|̂b(ξ )|2 =
{

0 m = 2n−1;

c2n,2n−1[sin2(ξ/2)/d2]2n−1 m = 2n,

where c2n,2n−1 is the coefficient given in (52).

Proof. We first show that 1−∑d−1
j=0 |â0(ξ + 2π j/d)|2 ≥ 0 for all ξ ∈ R. Let y j :=

sin2(ξ/2+ π j/d) for j = 0, . . . ,d− 1. Noting that |â0(ξ )|2 = h(y0)
mPm,2n−1(y0),

we have

1−
d−1

∑
j=0

|â0(ξ +2π j/d)|2 = 1−
d−1

∑
j=0

h(y j)
mPm,2n−1(y j)

= 1−
d−1

∑
j=0

h(y j)
mPm,m(y j)+

d−1

∑
j=0

h(y j)
m

m−1

∑
k=2n−1

cm,kyk
j

=
d−1

∑
j=0

h(y j)
m

m−1

∑
k=2n−1

cm,kyk
j

≥ 0.

The last equality follows from the fact that the low-pass filter a0, which is defined by
factorizing h(y0)

mPm,m(y0) such that |â0(ξ )|2 := h(y0)
mPm,m(y0), is an orthogonal

low-pass filter (see [17]). Now, by that 1−∑d−1
j=0 |â0(ξ +2π j/d)|2 is of period 2π/d,

(58) follows from Riesz Lemma.
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Obviously, ̂b(ξ ) ≡ 0 when m = 2n− 1 since a0 is then an orthogonal low-pass
filter. For m = 2n, noting that h(y j)y j = sin2(dξ/2)/d2 for j = 0, . . . ,d−1, we have

|̂b(dξ )|2 = c2n,2n−1

d−1

∑
j=0

h(y j)
2ny2n−1

j = c2n,2n−1

d−1

∑
j=0

[h(y j)y j]
2n−1h(y j)

= c2n,2n−1[sin2(dξ/2)/d2]2n−1
d−1

∑
j=0

h(y j)P1,1(y j)

= c2n,2n−1[sin2(dξ/2)/d2]2n−1,

which completes our proof. ��

3.2 Tight Framelets via Matrix Extension

Fixed m,n∈N such that 1≤ 2n−1≤m, we next show that we can construct a vector
of Laurent polynomial with symmetry from a low-pass filter a0 for the complex
d-refinable pseudo spline of type I with order (m,2n− 1) to which Algorithm 1 is
applicable. Indeed, by (40), we have a 1× d vector of Laurent polynomial p(z) :=
[b0;0(z), . . . ,b0;d−1(z)] from a0. Note pp∗ = 1 when m = 2n−1 while pp∗ �= 1 when
2n− 1 < m. To apply our matrix extension algorithm, we need to append extra
entries to p when pp∗ < 1. It is easy to show that

1−
d−1

∑
j=0

|â0(ξ +2 jπ/d)|2 = 1−
d−1

∑
γ=0

a0;γ (z
d)a∗0;γ(z

d), z = e−iξ ,

where a0;γ ,γ = 0, . . . ,d−1 are the subsymbols of a0. By Corollary 1, we have

1−
d−1

∑
j=0

|â0(ξ +2 jπ/d)|2 = |̂b(dξ )|2.

for some 2π-periodic trigonometric function ̂b with real coefficients. Hence, we can
construct a Laurent polynomial a0;d(z) from ̂b such that a0;d(e−iξ ) = ̂b(ξ ). Then,
the vector of Laurent polynomials q(z) = [a0;0(z), . . . ,a0;d−1(z),a0;d(z)] satisfies
qq∗ = 1.

For m = 2n, by Corollary 1, |̂b(ξ )|2 = c2n,2n−1[sin2(ξ/2)/d2]2n−1. In this case,
a0;d(z) can be constructed explicitly as follows:

a0;d(z) =
√

c2n,2n−1

(

2− z−1/z
4d2

)n−1 1− z
2d

. (59)

a0;d(z) has symmetry Sa0;d =−z. Let b0;d(z) := a0;d(z). Then p := [b0;0, . . . ,b0;d] is
a 1× (d+ 1) vector of Laurent polynomials with symmetry satisfying pp∗ = 1.
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For m �= 2n, a0;d(z) does not necessary have symmetry. We can further let
b0;d(z) := (a0;d(z)+ a0;d(1/z))/2 and b0;d+1(z) := (a0;d(z)− a0;d(1/z))/2. In this
way, p := [b0;0, . . . ,b0;d,b0;d+1] is a 1× (d+2) vector of Laurent polynomials with
symmetry satisfying pp∗ = 1.

Consequently, we can summerize the above discussion as follows:

Theorem 3. Let m,n ∈ N be such that 1 ≤ 2n − 1 < m. Let a0 (with symbol
a0) be the low-pass filter for the complex d-refinable pseudo spline of type I
with order (m,2n − 1) defined in (56). Then one can derive Laurent polynomi-
als a0;d, . . . ,a0;L,L ∈ {d,d+ 1} such that pa0 := [a0;0, . . . ,a0;d−1, . . . ,a0;L] satisfies
pa0p

∗
a0

= 1, where a0;0, . . . ,a0;d−1 are subsymbols of a0. Moreover, one can con-
struct an (L+ 1)× (L+1) paraunitary matrix U such that pa0U is a vector of Lau-
rent polynomials with symmetry. In particular, if m = 2n, then L = d and a0;d is
given by (59).

Now, applying Theorem 3 and Algorithm 1, we have the following algorithm
to construct high-pass filters a1, . . . ,aL from a low-pass filter a0 for a complex d-
refinable pseudo spline of type I with order (m,2n− 1) so that ψ1, . . . ,ψL defined
by (10) generates a tight framelet system.

Algorithm 3 Construction of symmetric complex tight framelets

(a) Input: A low-pass filter a0 for a complex d-refinable pseudo spline of type I with order
(m,2n−1), 1 ≤ 2n−1 < m. Note that a0 satisfies (36) for r = 1.

(b) Initialization: Construct pa0(z) and U as in Theorem 3 such that p := pa0U is a 1× (L+ 1)
row vector of Laurent polynomials with symmetry (L = d when m = 2n while L = d+1 when
m �= 2n).

(c) Extension: Derive Pe from p by Algorithm 1 with all the properties as in Theorem 1 for the
case r = 1.

(d) High-pass Filters: Let P := [PeU
∗]0:L,0:d−1 =: (am;γ )0≤m≤L,0≤γ≤d−1 as in (16). Define high-

pass filters

am(z) :=
1√
d

d−1

∑
γ=0

am;γ(z
d)zγ , m = 1, . . . ,L. (60)

Note that we only need the first d columns of PeU
∗.

(e) Output: A symmetric filter bank {a0,a1, . . .,aL} with the perfect reconstruction property, i.e.
P∗(z)P(z) = Id for all z ∈ C\{0}. All filters am, m = 1, . . . ,L, have symmetry:

am(z) = εmzdcm−c0am(1/z), (61)

where cm := km + c0 ∈ R and all εm ∈ {−1,1}, km ∈ Z for m = 1, . . . ,L are determined by the
symmetry pattern of Pe as follows:

[1,ε1zk1 , . . .,εLzkL ]TSp := SPe. (62)

Since the high-pass filters a1, . . . ,aL satisfy (43), it is easy to verify that ψ1, . . . ,ψL

defined in (10) also has the following symmetry:

ψ1(c1 −·) = ε1ψ1, ψ2(c2 −·) = ε2ψ2, . . . , ψL(cL −·) = εLψ1. (63)
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In the following, let us present an example to demonstrate our results and
illustrate our algorithms. More examples can be obtained in the same way.

Example 2. Consider dilation factor d = 3. Let m = 4 and n = 2. Then P4,3(y) =
1+ 32

3 y+64y2). The low-pass filter a0 with its symbol a0 for the complex 3-refinable
pseudo spline of order (4,3) is given by

a0(z) =

(

1
z +1+ z

3

)4 [

−
(

4
3
+

2
√

5
3

i

)

1
z
+

(

11
3

+
4
√

5
3

i

)

−
(

4
3
+

2
√

5
3

i

)

z

]

.

Note that csupp(a0) = [−5,5] and a(z) = a(z−1). In this case, m = 2n. By Theo-
rem 3, we can obtain pa0 = [a0;0(z),a0;1(z),a0;2(z),a0;3(z)] as follows:

a0;0(z) =−
√

15i
405

(

10z+27
√

5i−20+10z−1
)

;

a0;1(z) =

√
3

243
(−(4+2

√
5i)z−2 +30z−1 +60+6

√
5i− (5+4

√
5i)z);

a0;2(z) =

√
3

243
(−(5+4

√
5i)z−2 +(60+6

√
5i)z−1 +30− (4+2

√
5i)z)

a0;3(z) =−2
√

10
81

(z−2+ z−1)(1− z).

We have a0;1(z) = z−1a0;2(z−1). Let p = pa0U with U being the paraunitary matrix
given by

U := diag(1,U0,z
−1) with U0 =

[

1√
2

1√
2

1√
2
− 1√

2

]

.

Then p is a 1 × 4 vector of Laurent polynomials with symmetry pattern satis-
fying Sp = [1,z−1,−z−1,−z−1]. Applying Algorithm 3, we can obtain a 4 × 4
extension matrix P

∗
e = [p∗a0

,p∗a1
,p∗a2

,p∗a3
] with pa1 := [a1;0,a1;1,a1;2,a1;3], pa2 :=

[a2;0,a2;1,a2;2,a2;3], and pa3 := [a3;0,a3;1,a3;2,a3;3]. The coefficient support of Pe

satisfies csupp([Pe]:, j) ⊆ csupp([pa0 ] j) for j = 1,2,3,4. The high-pass filters a1,
a2,a3 constructed from pa1 , pa2 , and pa3 via (60) are then given by

a1(z) = c1(b1(z)+b1(z
−1)); a2(z) = c2(b2(z)−b2(z

−1)); a3(z) = c3(b3(z)− z3b3(z
−1)).

where c1 =
√

19178
4660254 , c2 =

√
218094

17665614 , c3 =
2
√

1338
54189 , and

b1(z) =
(

−172−86 i
√

5
)

z5 +
(

−215−172 i
√

5
)

z4 −258 i
√

5z3

+
(

1470+1224 i
√

5
)

z2 +
(

1860+2328 i
√

5
)

z−3036 i
√

5−2943

b2(z) =
(

−652−326 i
√

5
)

z5 +
(

−815−652 i
√

5
)

z4 −978 i
√

5z3

+
(

1832 i
√

5+1750
)

z2 +
(

3508 i
√

5+3020
)

z

b3(z) =
(

4
√

5+10 i
)

z5 +
(

5
√

5+20 i
)

z4 +30 iz3 +
(

−53
√

5−260 i
)

z2.
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We have a1(z) = a1(z−1), a2(z) = −a2(z−1), and a3(z) = −z3a3(z−1). Let φ be
the 3-refinable function associated with the low-pass filter a0. Let ψ1,ψ2,ψ3 be the
wavelet functions associated with the high-pass filters a1,a2,a3 by (10), respectively.
Then φ(−·) = φ , ψ1(−·) = ψ1, ψ2(−·) =−ψ2, and ψ3(1−·) =−ψ3 . See Fig. 2
for the graphs of φ ,ψ1,ψ2, and ψ3.
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Fig. 2: The graphs of φ ,ψ1,ψ2, and ψ3 (left to right) in Example 2. Real part: solid
line. Imaginary part: dashed line

4 Biorthogonal Matrix Extension with Symmetry

In this section, we shall discuss the construction of biorthogonal multiwavelets with
symmetry, which corresponds to Problem 2. Due to the flexibility of biorthogonal-
ity relation P˜P

∗ = Ir, the biorthogonal matrix extension problem becomes far more
complicated than that for the orthogonal matrix extension problem we considered in
Sect. 2. The difficulty here is not the symmetry patterns of the extension matrices,
but the support control of the extension matrices. Without considering any issue on
support control, almost all results of Theorem 1 can be transferred to the biorthogo-
nal case without much difficulty. In Theorem 1, the length of the coefficient support
of the extension matrix can never exceed the length of the coefficient support of the
given matrix. Yet, for the extension matrices in the biorthogonal extension case, we
can no longer expect such nice result, that is, in this case, the length of the coeffi-
cient supports of the extension matrices might not be controlled by one of the given
matrices. Nevertheless, we have the following result.

Theorem 4. Let F be any subfield of C. Let (P,˜P) be a pair of r × s matrices of
Laurent polynomials with coefficients in F such that SP = S˜P = (Sθ1)

∗Sθ2 for
some 1× r, 1× s vectors θ1,θ2 of Laurent polynomials with symmetry. Moreover,
P(z)˜P∗(z) = Ir for all z ∈ C\{0}. Then there exists a pair of s× s square matrices
(Pe,˜Pe) of Laurent polynomials with coefficients in F such that

(1) [Ir,0]Pe =P and [Ir,0]˜Pe = ˜P; that is, the submatrices of the first r rows of Pe,˜Pe

are P,˜P, respectively;
(2) (Pe,˜Pe) is a pair of biorthogonal matrices: Pe(z)˜P∗

e(z) = Is for all z ∈C\{0};
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(3) the symmetry of each Pe,˜Pe is compatible: SPe = S˜Pe = (Sθ)∗Sθ2 for some
1× s vector θ of Laurent polynomials with symmetry;

(4) Pe,˜Pe can be represented as:

Pe(z) = PJ(z) · · ·P1(z), ˜Pe(z) = ˜PJ(z) · · ·˜P1(z), (64)

where (P j,˜P j),1 ≤ j ≤ J are pairs of s× s biorthogonal matrices of Laurent

polynomials with symmetry. Moreover, each pair of (P j+1,P j) and (˜P j+1,˜P j)
has mutually compatible symmetry for all j = 1, . . . ,J−1.

(5) if r = 1, then the coefficient supports of Pe,˜Pe are controlled by those of P,˜P in
the following sense:

max
1≤ j,k≤s

{|csupp([Pe] j,k)|, |csupp([˜Pe] j,k)|} ≤ max
1≤�≤s

|csupp([P]�)|+ max
1≤�≤s

|csupp([˜P]�)|. (65)

4.1 Proof of Theorem 4 and an Algorithm

In this section, we shall prove Theorem 4. Based on the proof, we shall provide a
step-by-step extension algorithm for deriving the desired pair of biorthogonal ex-
tension matrices in Theorem 4.

In this section, F denote any subfield of C. The next lemma shows that for a pair
of constant vectors (f,˜f) in F, we can find a pair of constant biorthogonal matrices
(U(f,˜f),

˜U(f,˜f)) in F such that up to a constant multiplication, it normalizes (f,˜f) to
a pair of unit vectors.

Lemma 4. Let (f,˜f) be a pair of nonzero 1×n vectors in F. Then,

(1) if f˜f
∗ �= 0, then there exists a pair of n× n matrices (U(f,˜f),

˜U(f,˜f)) in F such

that U(f,˜f) = [(
˜f
c̃ )

∗,F ], ˜U(f,˜f) = [(fc )
∗, ˜F ], and U(f,˜f)

˜U∗
(f,˜f)

= In, where F, ˜F are

n× (n− 1) constant matrices in F and c, c̃ are two nonzero numbers in F such
that f˜f

∗
= cc̃. In this case, fU(f,˜f) = cε1 and ˜f˜U(f,˜f) = c̃ε1;

(2) if f˜f
∗
= 0, then there exists a pair of n× n matrices (U(f,˜f),

˜U(f,˜f)) in F such

that U(f,˜f) = [( fc̃1
)∗,( ˜f

c2
)∗,F ], ˜U(f,˜f) = [( fc1

)∗,( ˜f
c̃2
)∗, ˜F ], and U(f,˜f)

˜U∗
(f,˜f)

= In,

where F, ˜F are n× (n− 2) constant matrices in F and c1,c2, c̃1, c̃2 are nonzero
numbers in F such that ‖f‖2 = c1c̃1,‖˜f‖2 = c2c̃2. In this case, fU(f,˜f) = c1ε1

and ˜f˜U(f,˜f) = c2ε2.

Proof. If f˜f
∗ �= 0, there exists {f2, . . . ,fn} being a basis of the orthogonal compli-

ment of the linear span of {f} in F
n. Let F := [f∗2, . . . ,f

∗
n] and U(f,˜f) := [(

˜f
c̃ )

∗,F ].

Then U(f,˜f) is invertible. Let ˜U(f,˜f) := (U−1
(f,˜f)

)∗. It is easy to show that U(f,˜f) and

˜U(f,˜f) are the desired matrices.
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If f˜f
∗
= 0, let {f3, . . . ,fn} be a basis of the orthogonal compliment of the lin-

ear span of {f,˜f} in F
n. Let U(f,˜f) = [( fc̃1

)∗,( ˜f
c2
)∗,F ] with F := [f∗3, . . . ,f

∗
n]. Then

U(f,˜f) and ˜U(f,˜f) := (U−1
(f,˜f)

)∗ are the desired matrices. �� ��

Thanks to Lemma 4, we can reduce the support lengths of a pair (p, p̃) of Laurent
polynomials with symmetry by constructing a pair of biorthogonal matrices (B, ˜B)
of Laurent polynomials with symmetry as stated in the following lemma.

Lemma 5. Let (p, p̃) be a pair of 1×s vectors of Laurent polynomials with symmetry
such that pp̃∗ = 1 and Sp = Sp̃ = εzc[1s1,−1s2 ,z

−11s3 ,−z−11s4 ] =: Sθ for some
nonnegative integers s1, . . . ,s4 satisfying s1+ · · ·+s4 = s and ε ∈{1,−1},c∈ {0,1}.
Suppose |csupp(p)|> 0. Then there exists a pair of s× s matrices (B, ˜B) of Laurent
polynomials with symmetry such that

(1) (B, ˜B) is a pair of biorthogonal matrices: B(z)˜B∗(z) = In;
(2) SB = S˜B = (Sθ )∗Sθ1 with Sθ1 = εzc[1s′1 ,−1s′2,z

−11s′3 ,−z−11s′4 ] for some non-

negative integers s′1, . . . ,s
′
4 such that s′1 + · · ·+ s′4 = s;

(3) the length of the coefficient support of p is reduced by that of B. ˜B does
not increase the length of the coefficient support of p̃. That is, |csupp(pB)| ≤
|csupp(p)|− |csupp(B)| and |csupp(p̃˜B)| ≤ |csupp(p̃)|.

Proof. We shall only prove the case that Sθ = [1s1 ,−1s2 ,z
−11s3 ,−z−11s4 ]. The

proofs for other cases are similar. By their symmetry patterns, p and p̃ must take
the forms as follows with � > 0 and coeff(p,−�) �= 0:

p= [f1,−f2,g1,−g2]z
−�+[f3,−f4,g3,−g4]z

−�+1 +
�−2

∑
k=−�+2

coeff(p,k)zk

+[f3,f4,g1,g2]z
�−1 +[f1,f2,0,0]z�;

p̃= [˜f1,−˜f2, g̃1,−g̃2]z
−˜�+[˜f3,−˜f4, g̃3,−g̃4]z

−˜�+1 +

˜�−2

∑
k=−˜�+2

coeff(p̃,k)zk

+[˜f3,˜f4, g̃1, g̃2]z
˜�−1 +[˜f1,˜f2,0,0]z

˜�.

(66)

Then, either ‖f1‖+ ‖f2‖ �= 0 or ‖g1‖+ ‖g2‖ �= 0. Considering ‖f1‖+ ‖f2‖ �= 0,
due to pp̃∗ = 1 and |csupp(p)|> 0, we have f1˜f

∗
1−f2˜f

∗
2 = 0. Let C :=f1˜f

∗
1 =f2˜f

∗
2.

There are at most three cases: (a) C �= 0; (b) C = 0 but both f1,f2 are nonzero
vectors; (c) C = 0 and one of f1,f2 is 0.

Case (a). In this case, we have f1˜f
∗
1 �= 0 and f2˜f

∗
2 �= 0. By Lemma 4, we can con-

struct two pairs of biorthogonal matrices (U(f1,˜f1)
, ˜U(f1,˜f1)

) and (U(f2,˜f2)
, ˜U(f2,˜f2)

)

with respect to the pairs (f1,˜f1) and (f2,˜f2) such that

U(f1 ,˜f1)
=

[(

˜f1

c̃1

)∗
,F1

]

, ˜U(f1 ,˜f1)
=

[(

f1

c1

)∗
, ˜F1

]

, f1U(f1,˜f1)
= c1ε1, ˜f1 ˜U(f1 ,˜f1)

= c̃1ε1,

U(f2 ,˜f2)
=

[(

˜f2

c̃1

)∗
,F2

]

, ˜U(f2 ,˜f2)
=

[(

f2

c1

)∗
, ˜F2

]

, f2U(f2,˜f2)
= c1ε1, ˜f2 ˜U(f2 ,˜f2)

= c̃1ε1,
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where c1, c̃1 are constants in F such that C = c1c̃1. Define B0(z), ˜B0(z) as follows:

B0(z) =

⎡

⎢

⎣

1+z−1

2 (
˜f1
c̃1
)∗ F1 − 1−z−1

2 (
˜f1
c̃1
)∗ 0 0

− 1−z−1

2 (
˜f2
c̃1
)∗ 0 1+z−1

2 (
˜f2
c̃1
)∗ F2 0

0 0 0 0 Is3+s4

⎤

⎥

⎦
,

˜B0(z) =

⎡

⎢

⎣

1+z−1

2 (f1
c1
)∗ ˜F1 − 1−z−1

2 (f1
c1
)∗ 0 0

− 1−z−1

2 (f2
c1
)∗ 0 1+z−1

2 (f2
c1
)∗ ˜F2 0

0 0 0 0 Is3+s4

⎤

⎥

⎦
.

(67)

Direct computation shows that B0(z)˜B0(z)∗ = Is due to the special structures of
the pairs (U(f1,˜f1)

, ˜U(f1,˜f1)
) and (U(f2,˜f2)

, ˜U(f2,˜f2)
) constructed by Lemma 4. The

symmetry patterns of pB0 and p̃˜B0 satisfies

S(pB0) = S(p̃˜B0) = [z−1,1s1−1,−z−1,−1s2−1,z
−11s3 ,−z−11s4 ].

Moreover, B0(z), ˜B0(z) reduce the lengths of the coefficient support of p and p̃ by
1, respectively.

In fact, due to the above symmetry pattern and the structures of B0, ˜B0, we only
need to show that coeff([pB0] j, �) = coeff([p̃˜B0] j, �) = 0 for j = 1,s1 +1. Note that
coeff([pB0] j, �) = coeff(p, �)coeff([B0]:,1,0) = 1

2c̃1
(f1˜f

∗
1−f2˜f

∗
2) = 0. Similar com-

putations apply for other terms. Thus, |csupp(pB0)| < csupp(p) and |csupp(p̃˜B0)|
< |csupp(p̃)|. Let E be a permutation matrix such that

S(pB0)E = S(p̃˜B0)E = [1s1−1,−1s2−1,z
−11s3+1,−z−11s4+1] =: Sθ1.

Define B(z) = B0(z)E and ˜B(z) = ˜B0(z)E . Then B(z) and ˜B(z) are the desired
matrices.

Case (b). In this case, f1˜f
∗
1 = f2˜f

∗
2 = 0 and both f1,f2 are nonzero vectors. We

have f1f∗1 �= 0 and f2f∗2 �= 0. Again, by Lemma 4, we can construct two pairs of
biorthogonal matrices (U(f1,f1),

˜U(f1,f1)) and (U(f2,f2),
˜U(f2,f2)) with respect to the

pairs (f1,f1) and (f2,f2) such that

U(f1,f1) =

[(

f1

c̃1

)∗
,F1

]

, ˜U(f1,f1) =

[(

f1

c0

)∗
,F1

]

, f1U(f1,f1) = c0ε1,

U(f2,f2) =

[(

f2

c̃2

)∗
,F2

]

, ˜U(f2,f2) =

[(

f2

c0

)∗
,F2

]

, f2U(f2,f2) = c0ε1,

where c0, c̃1, c̃2 are constants in F such that f1f
∗
1 = c0c̃1 and f2f

∗
2 = c0c̃2. Let

B0, ˜B0(z) be defined as follows:
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B0(z) =

⎡

⎢

⎣

1+z−1

2 (f1
c̃1
)∗ F1 − 1−z−1

2 (f1
c̃1
)∗ 0 0

− 1−z−1

2 (f2
c̃2
)∗ 0 1+z−1

2 (f2
c̃2
)∗ F2 0

0 0 0 0 Is3+s4

⎤

⎥

⎦
,

˜B0(z) =

⎡

⎢

⎣

1+z−1

2 (f1
c0
)∗ F1 − 1−z−1

2 (f1
c0
)∗ 0 0

− 1−z−1

2 (f2
c0
)∗ 0 1+z−1

2 (f2
c0
)∗ F2 0

0 0 0 0 Is3+s4

⎤

⎥

⎦
.

(68)

We can show that B0(z) reduces the length of the coefficient support of p by 1, while
˜B0(z) does not increase the support length of p̃. Moreover, similar to case (a), we
can find a permutation matrix E such that

S(pB0)E = S(p̃˜B0)E = [1s1−1,−1s2−1,z
−11s3+1,−z−11s4+1] =: Sθ1.

Define B(z) = B0(z)E and ˜B(z) = ˜B0(z)E . Then B(z) and ˜B(z) are the desired
matrices.

Case (c). In this case, f1˜f
∗
1 = f2˜f

∗
2 = 0 and one of f1 and f2 is nonzero. Without

loss of generality, we assume that f1 �= 0 and f2 = 0. Construct a pair of matrices
(U(f1,˜f1)

, ˜U(f1,˜f1)
) by Lemma 4 such that f1U(f1,˜f1)

= c1ε1 and ˜f1 ˜U(f1,˜f1)
= c2ε2

(when ˜f1 = 0, the pair of matrices is given by (U(f1,f1),
˜U(f1,f1))). Extend this

pair to a pair of s × s matrices (U, ˜U) by U := diag(U(f1,˜f1)
, Is3+s4) and ˜U :=

diag(˜U(f1,˜f1)
, Is3+s4). Then pU and p̃˜U must be of the form:

q := pU = [c1,0, . . .,0,−f2,g1,−g2]z
−�+[f3,−f4,g3,−g4]z

−�+1

+
�−2

∑
k=−�+2

coeff(q,k)zk +[f3,f4,g1,g2]z
�−1 +[c1,0, . . . ,0,f2,0,0]z�;

q̃ := p̃˜U = [0,c2, . . . ,0,−˜f2, g̃1,−g̃2]z
−˜�+[˜f3,−˜f4, g̃3,−g̃4]z

−˜�+1

+

˜�−2

∑
k=−˜�+2

coeff(q̃,k)zk +[˜f3,˜f4, g̃1, g̃2]z
˜�−1 +[0,c2, . . .,0, ,˜f2,0,0]z

˜�.

If [q̃]1 ≡ 0, we choose k such that k = argmin� �=1{|csupp([q]1)| − |csupp([q]�)|},
i.e., k is an integer such that the length of coefficient support of |csupp([q]1)| −
|csupp([q]k)| is minimal among those of all |csupp([q]1)|−|csupp([q]�)|, �= 2, . . . ,s;
otherwise, due to qq̃∗ = 0, there must exist k such that

|csupp([q]1)|− |csupp([q]k)| ≤ max
2≤ j≤s

|csupp([q̃] j)|− |csupp([q̃]1)|,

(k might not be unique, we can choose one of such k so that |csupp([q]1)| −
|csupp([q]k)| is minimal among all |csupp([q]1)|− |csupp([q]�)|, � = 2, . . . ,s).

For such k (in the case of either [q̃]1 = 0 or [q̃]1 �= 0), define two matrices
B(z), ˜B(z) as follows:
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B(z) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
−b(z) 0 · · · 1

Is−k

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, ˜B(z) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · b∗(z)
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

Is−k

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where b(z) in B(z), ˜B(z) is a Laurent polynomial with symmetry such that Sb(z) =
S([q]1/[q]k), |csupp([q]1−b(z)[q]k)|< |csupp([q]k)|, and |csupp([q̃]k−b∗(z)[q̃]1)| ≤
max1≤�≤s |csupp([q̃]�)|. Such b(z) can be easily obtained by long division.

It is straightforward to show that B(z)˜B∗(z) = Is. B(z) reduces the length of the
coefficient support of q by that of b(z) due to |csupp([q]1−b(z)[q]k)|< |csupp([q]k)|.
And by our choice of k, ˜B(z) does not increase the length of the coefficient support
of q̃. Moreover, the symmetry patterns of both q and q̃ are preserved.

In summary, for all cases (a), (b), and (c), we can always find a pair of biorthog-
onal matrices (B, ˜B) of Laurent polynomials such that B reduces the length of the
coefficient support of p while ˜B does not increase the length of the coefficient sup-
port of p̃.

For ‖f1‖+ ‖f2‖ = 0, we must have ‖g1‖+ ‖g2‖ �= 0. The discussion for this
case is similar to above. We can find two matrices B(z), ˜B(z) such that all items in
the lemma hold. In the case that g1g̃

∗
1 = g2g̃

∗
2 = c1c̃1 �= 0, the pair (B0(z), ˜B0(z))

similar to (67) is of the form

B0(z) =

⎡

⎢

⎣

Is1+s2 0 0 0 0

0 1+z
2 ( g̃1

c̃1
)∗ G1 − 1−z

2 ( g̃1
c̃1
)∗ 0

0 − 1−z
2 ( g̃2

c̃1
)∗ 0 1+z

2 ( g̃2
c̃1
)∗ G2

⎤

⎥

⎦
,

˜B0(z) =

⎡

⎢

⎣

Is1+s2 0 0 0 0
0 1+z

2 (g1
c1
)∗ ˜G1 − 1−z

2 (g1
c1
)∗ 0

0 − 1−z
2 (g2

c1
)∗ 0 1+z

2 (g2
c1
)∗ ˜G2

⎤

⎥

⎦
.

(69)

The pairs for other cases can be obtained similarly. We are done. �� ��
Now, we can prove Theorem 4 using Lemma 5.

Proof (of Theorem 4). First, we normalize the symmetry patterns of P and ˜P to
the standard form as in (22). Let Q := U∗

Sθ1
PUSθ2 and ˜Q := U∗

Sθ1
˜PUSθ2 (given θ ,

USθ is obtained by (23)). Then the symmetry of each row of Q or ˜Q is of the form
εzc[1s1 ,−1s2 ,z

−11s3 ,−z−11s4 ] for some ε ∈ {−1,1} and c ∈ {0,1}.

Let p := [Q]1,: and p̃ := [˜Q]1,: be the first row of Q, ˜Q, respectively. Applying
Lemma 5 recursively, we can find pairs of biorthogonal matrices of Laurent poly-
nomials (B1, ˜B1), ..., (BK , ˜BK) such that pB1 · · ·BK = [1,0, . . . ,0] and p̃˜B1 · · · ˜BK =
[1,q(z)] for some 1× (s− 1) vector of Laurent polynomials with symmetry. Note
that by Lemma 5, all pairs (B j ,B j+1) and (˜B j , ˜B j+1) for j = 1, . . . ,K − 1 have

mutually compatible symmetry. Now construct BK+1(z), ˜BK+1(z) as follows:
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BK+1(z) =

[

1 0
q∗(z) Is−1

]

, ˜BK+1(z) =

[

1 −q(z)
0 Is−1

]

.

BK+1 and ˜BK+1 are biorthogonal. Let A := B1 · · ·BKBK+1 and ˜A := ˜B1 · · · ˜BK˜BK+1.
Then, pA= p̃˜A= ε1.

Note that QA and ˜Q˜A are of the forms

QA=

[

1 0
0 Q1(z)

]

, ˜Q˜A=

[

1 0
0 ˜Q1(z)

]

for some (r−1)× s matrices Q1, ˜Q1 of Laurent polynomials with symmetry. More-
over, due to Lemma 5, the symmetry patterns of Q1 and ˜Q1 are compatible and
satisfies SQ1 = S˜Q1. The rest of the proof is completed by employing the standard
procedure of induction. �� ��

According to the proof of Theorem 4, we have an extension algorithm for Theo-
rem 4. See Algorithm 4.

Algorithm 4 Biorthogonal matrix extension with symmetry

(a) Input: P,˜P as in Theorem 4 with SP = S˜P = (Sθ1)
∗Sθ2 for two 1× r, 1× s row vectors θ1,

θ2 of Laurant polynomials with symmetry.
(b) Initialization: Let Q :=U∗

Sθ1
PUSθ2 and ˜Q :=U∗

Sθ1
˜PUSθ2 . Then both Q and ˜Q have the same

symmetry pattern as follows:

SQ= S˜Q= [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T[1s1 ,−1s2 , z

−11s3 ,−z−11s4 ], (70)

where all nonnegative integers r1, . . . , r4, s1, . . . , s4 are uniquely determined by SP. Note that
this step does not increase the lengths of the coefficient support of both P and ˜P.

(c) Support Reduction:
1: Let U0 :=U∗

Sθ2
and A= ˜A := Is.

2: for k = 1 to r do
3: Let p := [Q]k,k:s and p̃ := [˜Q]k,k:s.
4: while |csupp(p)|> 0 and |csupp(p̃)|> 0 do
5: Construct a pair of biorthogonal matrices (B, ˜B) with respect to the pair (p, p̃) by

Lemma 5 such that |csupp(pB)|+ |csupp(p̃˜B)|< |csupp(p)|+ |csupp(p̃)|.
6: Replace p, p̃ by pB, p̃˜B, respectively.
7: Set A := Adiag(Ik−1,B) and ˜A := ˜Adiag(Ik−1, ˜B).
8: end while
9: The pair (p, p̃) is of the form: ([1,0, . . .,0], [1,q(z)]) for some 1× (s− k) vector of Laurent

polynomials q(z). Construct B(z), ˜B(z) as follows:

B(z) =

[

1 0
q∗(z) Is−k

]

, ˜B(z) =

[

1 −q(z)
0 Is−k

]

.

10: Set A := Adiag(Ik−1,B) and ˜A := ˜Adiag(Ik−1, ˜B).
11: Set Q :=QA and ˜Q := ˜Q˜A.
12: end for
(d) Finalization: Let U1 := diag(USθ1 , Is−r). Set Pe :=U1A

∗U0 and ˜Pe :=U1
˜A∗U0.

(e) Output: A pair of desired matrices (Pe,˜Pe) satisfying all the properties in Theorem 4.
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4.2 Application to Construction of Biorthogonal Multiwavelets
with Symmetry

For the construction of biorthogonal refinable function vectors (a pair of
biorthogonal low-pass filters), the CBC (coset by coset) algorithm proposed in [11]
provides a systematic way of constructing a desirable dual mask from a given pri-
mal mask that satisfies certain conditions. More precisely, given a mask (low-pass
filter) satisfying the condition that a dual mask exists, following the CBC algorithm,
one can construct a dual mask with any preassigned orders of sum rules, which is
closely related to the regularity of the refinable function vectors. Furthermore, if the
primal mask has symmetry, then the CBC algorithm also guarantees that the dual
mask has symmetry. Thus, the first part of MRA corresponding to the construc-
tion of biorthogonal multiwavelets is more or less solved. However, how to derive
the wavelet generators (high-pass filters) with symmetry remains open even for the
scalar case (r = 1). We shall see that using our extension algorithm for the biorthogo-
nal case, the wavelet generators do have symmetry once the given refinable function
vectors possess certain symmetry patterns.

Let (φ , ˜φ ) be a pair of dual d-refinable function vectors associated with a pair of
biorthogonal low-pass filters (a0, ã0), that is, φ , ˜φ are d-refinable function vectors
associated with a0, ã0, respectively, and

〈φ , ˜φ (·− k)〉= δ (k)Ir, k ∈ Z. (71)

It is easy to show that the pair of biorthogonal low-pass filters (a0, ã0) satisfies

d−1

∑
γ=0

a0;γ(z)ã
∗
0;γ (z) = Ir, z ∈ C\{0}, (72)

where a0;γ and ã0;γ are d-band subsymbols (polyphase components) of a0 and ã0

defined similar to (15) by

a0;γ(z) := d1 ∑k∈Z a0(k+dk)zk,
ã0;γ(z) := d2 ∑k∈Z ã0(k+dk)zk,

γ ∈ Z. (73)

Here, d1,d2 are two constants in F such that d= d1d2.
To construct biorthogonal multiwavelets in L2(R), we need to design high-pass

filters a1, . . . ,ad−1 : Z→ F
r×r and ã1, . . . , ãd−1 : Z→ F

r×r such that the polyphase
matrices with respect to the filter banks {a0,a1, . . . ,ad−1} and {ã0, ã1, . . . , ãd−1}

P(z) =

⎡

⎢

⎢

⎣

a0;0(z) · · · a0;d−1(z)
a1;0(z) · · · a1;d−1(z)

...
...

...
ad−1;0(z) · · · ad−1;d−1(z)

⎤

⎥

⎥

⎦

, ˜P(z) =

⎡

⎢

⎢

⎣

ã0;0(z) · · · ã0;d−1(z)
ã1;0(z) · · · ã1;d−1(z)

...
...

...
ãd−1;0(z) · · · ãd−1;d−1(z)

⎤

⎥

⎥

⎦

(74)
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are biorthogonal, that is, P(z)˜P∗(z) = Idr, where am;γ , ãm;γ are subsymbols of am, ãm

defined similar to (73) for m,γ = 0, . . . ,d− 1, respectively. The pair of filter banks
({a0, . . . ,ad−1},{ã0, . . . , ãd−1}) satisfying P˜P∗ = Idr is called a pair of biorthogonal
filter banks with the perfect reconstruction property.

Let (a0, ã0) be a pair of biorthogonal low-pass filters such that a0 and ã0 have
the same symmetry satisfying (36). By a slight modification of Lemma 1 (more
precisely, by modifying (40)), one can easily show that there exists a suitable in-
vertible matrix U, i.e., det(U) is a monomial, of Laurent polynomials in F act-
ing on Pa0 := [a0;0, . . . ,a0;d−1] so that Pa0U and Pã0

˜U have compatible symmetry

(˜U= (U∗)−1). Note that Pa0 itself may not have compatible symmetry.
Now, for a pair of biorthogonal d-band low-pass filters (a0, ã0) with multiplicity

r satisfying (36), we have an algorithm (see Algorithm 5) to construct high-pass
filters a1, . . . ,ad−1 and ã1, . . . , ãd−1 such that the polyphase matrices P(z) and ˜P(z)
defined as in (74) satisfy P(z)˜P∗(z) = Idr. Here, Pa0 := [a0;0, . . . ,a0;d−1] and ˜Pã0

:=
[ã0;0, . . . , ã0;d−1] are the polyphase vectors of a0, ã0 obtained by (73), respectively.

Algorithm 5 Construction of biorthogonal multiwavelets with symmetry

(a) Input: A pair of biorthogonal d-band filters (a0, ã0) with multiplicity r and with the same
symmetry as in (36).

(b) Initialization: Construct a pair of biorthogonal matrices (U, ˜U) in F by Lemma 1 such that
both P := Pa0U and ˜P = ˜Pã0

˜U (˜U = (U∗)−1) are matrices of Laurent polynomials with

coefficients in F having compatible symmetry: SP = S˜P = [ε1zk1 , . . .,εrzkr ]TSθ for some
k1, . . . ,kr ∈ Z and some 1×dr row vector θ of Laurent polynomials with symmetry.

(c) Extension: Derive (Pe,˜Pe) with all the properties as in Theorem 4 from (P,˜P) by Algorithm 4.
(d) High-pass Filters: Let P := Pe

˜U∗ =: (am;γ )0≤m,γ≤d−1, ˜P := ˜PeU
∗ =: (ãm;γ )0≤m,γ≤d−1 as in

(74). For m = 1, . . . ,d−1, define high-pass filters

am(z) :=
1
d1

d−1

∑
γ=0

am;γ (z
d)zγ , ãm(z) :=

1
d2

d−1

∑
γ=0

ãm;γ(z
d)zγ . (75)

(e) Output: A pair of biorthogonal filter banks ({a0,a1, . . . ,ad−1},{ã0, ã1, . . ., ãd−1}) with sym-
metry and with the perfect reconstruction property, i.e. P,˜P in (74) are biorthogonal and all
filters am, ãm, m = 1, . . . ,d−1, have symmetry:

am(z) = diag(εm
1 zdcm

1 , . . .,εm
r zdcm

r )am(1/z)diag(ε1z−c1 , . . . ,εrz−cr ),
ãm(z) = diag(εm

1 zdcm
1 , . . .,εm

r zdcm
r )ãm(1/z)diag(ε1z−c1 , . . . ,εrz−cr ),

(76)

where cm
� :=(km

� −k�)+c� ∈R and all εm
� ∈{−1,1}, km

� ∈Z, for �= 1, . . . , r and m= 1, . . . ,d−
1, are determined by the symmetry pattern of Pe as follows:

[ε1zk1 , . . .,εrz
kr ,ε1

1 zk1
1 , . . . ,ε1

r zk1
r , . . . , zkd−1

1 , . . . ,εd−1
r zkd−1

r ]TSθ := SPe. (77)

Let (φ , ˜φ ) be a pair of biorthogonal d-refinable function vectors in L2(R) asso-
ciated with a pair of biorthogonal d-band filters (a0, ã0) and with φ = [φ1, . . . ,φr]

T,
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˜φ = [˜φ1, . . . , ˜φr]
T. Define multiwavelet function vectors ψm = [ψm

1 , . . . ,ψm
r ]

T, ˜ψm =
[˜ψm

1 , . . . , ˜ψ
m
r ]T associated with the high-pass filters am, ãm, m = 1, . . . ,d−1, by

̂ψm(dξ ) := am(e
−iξ )̂φ(ξ ), ̂

˜ψm(dξ ) := ãm(e
−iξ )

̂

˜φ (ξ ), ξ ∈ R. (78)

It is well known that {ψ1, . . . ,ψd−1; ˜ψ1, . . . , ˜ψd−1} generates a biorthonormal multi-
wavelet basis in L2(R). Moreover, since the high-pass filters a1, . . . ,
ad−1, ã1, . . . , ãd−1 satisfy (76), it is easy to verify that each ψm = [ψm

1 , . . . ,ψm
r ]

T,
˜ψm = [˜ψm

1 , . . . , ˜ψ
m
r ]

T defined in (78) has the following symmetry:

ψm
1 (cm

1 −·) = εm
1 ψm

1 , ψm
2 (c

m
2 −·) = εm

2 ψm
2 , . . . , ψm

r (cm
r −·) = εm

r ψm
r ,

˜ψm
1 (cm

1 −·) = εm
1 ˜ψm

1 , ˜ψm
2 (c

m
2 −·) = εm

2 ˜ψm
2 , . . . , ˜ψm

r (cm
r −·) = εm

r ˜ψm
r .

(79)

In the following, let us present an example to demonstrate our results and illus-
trate our algorithms.

Example 3. Let d = 3,r = 2, and a0, ã0 be a pair of dual d-filters with symbols
a0(z), ã0(z) (cf. [13]) given by

a0(z) =
1

243

[

a11(z) a12(z)
a21(z) a22(z)

]

, ã0(z) =
1

34884

[

ã11(z) ã12(z)
ã21(z) ã22(z)

]

.

where
a11(z) =−21z−2 +30z−1 +81+14z−5z2,

a12(z) = 60z−1 +84−4z2 +4z3,

a21(z) = 4z−2 −4z−1 +84z+60z2,

a22(z) =−5z−1 +14+81z+30z2 −21z3,

and
ã11(z) = 1292z−2 +2,844z−1 +17,496+2,590z−1,284z2 +1,866z3,

ã12(z) =−4,773z−2 +9,682z−1 +8,715−2,961z+386z2 −969z3,

ã21(z) =−969z−2 +386z−1 −2,961+8,715z+9,682z2 −4,773z3,

ã22(z) = 1,866z−2 −1,284z−1 +2,590+17,496z+2,844z2 +1,292z3.

The low-pass filters a0 and ã0 do not satisfy (36). However, we can employ a very
simple orthogonal transform E :=

[

1 1
1 −1

]

to a0, ã0 so that the symmetry in (36) holds.

That is, for b0(z) := Ea0(z)E−1 and ˜b0(z) := E−1ã0(z)E , it is easy to verify that b0

and ˜b0 satisfy (36) with c1 = c2 = 1/2 and ε1 = 1,ε2 =−1. Let d= d1d2 with d1 = 1
and d2 = 3. Construct Pb0 := [b0;0,b0;1,b0;2] and ˜P

˜b0
:= [˜b0;0,˜b0;1,˜b0;2] from b0 and

˜b0. Let U be given by

U=

⎡

⎢

⎢

⎢

⎢

⎣

z−1 0 z−1 0 0 0
0 z−1 0 z−1 0 0
1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦
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and define ˜U := (U∗)−1. Let P := Pb0U and ˜P := ˜P
˜b0

˜U. Then we have SP = S˜P =

[z−1,−z−1]T[1,−1,−1,1,1,−1] and P,˜P are given by

P= c

[

t11(1+ 1
z ) t12(1− 1

z ) t13(1− 1
z ) t14 t15(1+ 1

z ) t16(1− 1
z )

t21(1− 1
z ) t22(1+

1
z ) t23(1+

1
z ) t24(1− 1

z ) t25(1− 1
z ) t26(1+

1
z )

]

,

˜P= c̃

[

˜t11(1+ 1
z ) ˜t12(1− 1

z ) ˜t13(1− 1
z ) ˜t14 ˜t15(1+ 1

z ) ˜t16(1− 1
z )

˜t21(1− 1
z ) ˜t22(1+ 1

z ) ˜t23(1+ 1
z ) ˜t24(1− 1

z ) ˜t25(1− 1
z ) ˜t26(1+ 1

z )

]

,

where c = 1
486 , c̃ =

3
34,884 and t jk’s, ˜t jk’s are constants defined as follows:

t11 = 162, t12 = 34, t13 =−196, t14 = 0, t15 = 81, t16 = 29,

t21 =−126, t22 =−14, t13 = 176, t24 =−36, t15 =−99, t16 =−31,

˜t11 = 5,814, ˜t12 =−1,615, ˜t13 =−7,160, ˜t14 = 0, ˜t15 = 5,814, ˜t16 = 2,584,

˜t21 =−5,551, ˜t22 = 5,808, ˜t13 = 7,740, ˜t24 =−1,358, ˜t15 =−6,712, ˜t16 =−4,254.

Applying Algorithm 2, we obtain Pe and ˜Pe as follows:

Pe = c

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

t11(1+
1
z ) t12(1− 1

z ) t13(1− 1
z ) t14 t15(1+

1
z ) t16(1− 1

z )

t21(1− 1
z ) t22(1+ 1

z ) t23(1+ 1
z ) t24(1− 1

z ) t25(1− 1
z ) t26(1+ 1

z )

t31(1+ 1
z ) t32(1− 1

z ) t33(1− 1
z ) t34(1+ 1

z ) t35(1+ 1
z ) t36(1− 1

z )

t41 0 0 t44 t45 0
0 t52 t53 0 0 t56

t61(1− 1
z ) t62(1+ 1

z ) t63(1+ 1
z ) t64(1− 1

z ) t65(1− 1
z ) t66(1+ 1

z )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where all t jk’s are constants given by

t31 = 24, t32 =
472
27

, t33 =−148
27

,

t34 =−36, t35 =−24, t36 =−112
27

,

t41 =
1,09,998

533
, t44 =

94,041
533

, t45 =−1,09,989
533

,

t52 = 406c0, t53 = 323c0, t56 = 1,142c0, c0 =
16,09,537

13,122
,

t61 = 24,210c1, t62 = 14,318c1, t63 =−11,807c1, t64 =−26,721c1,

t65 =−14,616c1, t66 =−1,934c1, c1 = 200/26,163.

And

˜Pe = c̃

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜t11(1+ 1
z ) ˜t12(1− 1

z ) ˜t13(1− 1
z ) ˜t14 ˜t15(1+ 1

z ) ˜t16(1− 1
z )

˜t21(1− 1
z ) ˜t22(1+ 1

z ) ˜t23(1+ 1
z ) ˜t24(1− 1

z ) ˜t25(1− 1
z ) ˜t26(1+ 1

z )
˜t31(1+ 1

z ) ˜t32(1− 1
z ) ˜t33(1− 1

z ) ˜t34(1+ 1
z ) ˜t35(1+ 1

z ) ˜t36(1− 1
z )

˜t41 0 0 ˜t44 ˜t45 0
0 ˜t52 ˜t53 0 0 ˜t56

˜t61(1− 1
z ) ˜t62(1+ 1

z ) ˜t63(1+ 1
z ) ˜t64(1− 1

z ) ˜t65(1− 1
z ) ˜t66(1+ 1

z )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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where all ˜t jk’s are constants given by

˜t31 = 3,483c̃0, ˜t32 = 37,427c̃0, ˜t33 = 4,342c̃0, ˜t34 =−12,222c̃0,

˜t35 =−3,483c̃0, ˜t36 =−7,267, c̃0 =
8,721
4,264

,

˜t41 = 5,814, ˜t44 = 1,1628, ˜t45 =−1,1628,

˜t52 = 3c̃1, ˜t53 = 2c̃1, ˜t56 = 10c̃1, c̃1 =
12,680,011

243
;

˜t61 = 18,203c̃2, ˜t62 = 1,01,595c̃2, ˜t63 = 1,638c̃2, ˜t64 =−33,950c̃2,

˜t65 =−10,822c̃2, ˜t66 =−36,582c̃2, c̃2 =
26,163

2,13,200
.

Note that Pe and ˜Pe satisfy

SPe = SPe = [z−1,−z−1,z−1,1,−1,−z−1]T[1,−1,−1,1,1,−1].

From the polyphase matrices P := Pe˜U∗ and ˜P := ˜PeU∗, we derive high-pass filters
b1,b2 and ˜b1,˜b2 as follows:

b1(z) =

[

b1
11(z) b1

12(z)
b1

21(z) b1
22(z)

]

,b2(z) =

[

b2
11(z) b2

12(z)
b2

21(z) b2
22(z)

]

,

where

b1
11(z) =

199
6,561

+
125

6,561
z3 − 4

81
z2 +

199
6,561

z− 4
81

z−1 +
125

6,561
z−2,

b1
12(z) =− 361

6,561
− 125

6,561
z3 − 56

6,561
z2 +

361
6,561

z+
56

6,561
z−1 +

125
6,561

z−2,

b1
21(z) =

679
3,198

z3 +
679

3,198
z− 679

1,599
z2, b1

22(z) =
387

2,132
z3 − 387

2,132
z,

b2
11(z) = c3(323z3 −323z),

b2
12(z) = c3(406z3 +2,284z2 +406z),

b2
21(z) = c4(−36,017+12,403z3 −29,232z2 +36,017z+29,232z−1 −12,403z−2),

b2
22(z) = c4(41,039−12,403z3 −3,868z2 +41,039z−3,868z−1 −12,403z−2),

c3 =
27

32,19,074
, c4 =

50
63,57,609

.

And

˜b1(z) =

[

˜b1
11(z) ˜b1

12(z)
˜b1

21(z)
˜b1

22(z)

]

,˜b2(z) =

[

˜b2
11(z) ˜b2

12(z)
˜b2

21(z)
˜b2

22(z)

]

,

where

˜b1
11(z) =− 859

17,056
+

7,825
17,056

z3 − 3,483
8,528

z2 − 859
17,056

z− 3,483
8,528

z−1 +
7,825

17,056
z−2,
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˜b1
12(z) =−49,649

17,056
+

25,205
17,056

z3 − 559
656

z2 +
49,649
17,056

z+
559
656

z−1 − 25,205
17,056

z−2,

˜b1
21(z) =

1
6
(z3 + z−2z2), ˜b1

22(z) =
1
3
(z3 − z),

˜b2
11(z) = 2c̃3(z

3 − z),

˜b2
12(z) = c̃3(3z3 +10z2 +3z), c̃3 =

39,257
26,244

;

˜b2
21(z) =− 9,939

1,70,560
+

59,523
8,52,800

z3− 16,233
4,26,400

z2+
9,939

1,70,560
z+

16,233
4,26,400

z−1− 59,523
8,52,800

z−2,

˜b2
22(z) =

81,327
1,70,560

+
40,587

1,70,560
z3 − 4,221

32,800
z2 +

81,327
1,70,560

z− 4,221
32,800

z−1 +
40,587

1,70,560
z−2.

Then the high-pass filters b1,b2 and ˜b1,˜b2 satisfy (76) with c1
1 = c1

2 = 1/2,
ε1

1 = 1,ε1
2 = 1 and c2

1 = c2
2 = 3/2, ε1

1 =−1,ε1
2 =−1, respectively. Using E , we can

define a1,a2 and ã1, ã2 to be the high-pass filters constructed from b1,b2 and ˜b1,˜b2

by a1(z) := E−1b1(z)E,a2 := E−1b2E and ã1(z) := E˜b1(z)E−1, ã2 := E˜b2E−1.
See Fig. 4 for graphs of the 3-refinable function vectors φ , ˜φ associated with

the low-pass filters a0, ã0, respectively, and the biorthogonal multiwavelet function
vectors ψ1,ψ2 and ˜ψ1, ˜ψ2 associated with the high-pass filters a1,a2 and ã1, ã2, re-
spectively. Also, see Fig. 3 for graphs of the 3-refinable function vectors η, ˜η associ-
ated with the low-pass filters b0,˜b0, respectively, and the biorthogonal multiwavelet
function vectors ζ 1,ζ 2 and ˜ζ 1, ˜ζ 2 associated with the high-pass filters b1,b2 and
˜b1,˜b2, respectively.
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Fig. 3: Graphs of φ = [φ1,φ2]
T, ψ1 = [ψ1

1 ,ψ1
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Fig. 4: Graphs of η = [η1,η2]
T, ζ 1 = [ζ 1

1 ,ζ 1
2 ]

T, and ζ 2 = [ζ 2
1 ,ζ 2

2 ]
T (top, left to right),

and ˜η = [˜η1, ˜η2]
T, ˜ζ 1 = [˜ζ 1

1 ,
˜ζ 1

2 ]
T, and ˜ζ 2 = [˜ζ 2

1 ,
˜ζ 2

2 ]
T (bottom, left to right)

References

1. Y. G. Cen and L. H. Cen, Explicit construction of compactly supported biorthogonal mul-
tiwavelets based on the matrix extension, IEEE Int. Conference Neural Networks & Signal
Processing, Zhenjiang, China, June 8∼10, 2008.

2. C. K. Chui and J. A. Lian, Construction of compactly supported symmetric and antisymmetric
orthonormal wavelets with scale = 3, Appl. Comput. Harmon. Anal., 2 (1995), 21–51.

3. L. H. Cui, Some properties and construction of multiwavelets related to different symmetric
centers, Math. Comput. Simul., 70 (2005), 69–89.

4. L. H. Cui, A method of construction for biorthogonal multiwavelets system with 2r multiplicity,
Appl. Math. Comput., 167 (2005), 901–918.

5. I. Daubechies, Ten lectures on wavelets, CBMS-NSF Series in Applied Mathematics, SIAM,
Philadelphia, 1992.

6. I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets:MRA-based constructions of wavelet
frames, Appl. Comput. Harmon. Anal, 14 (2003), 1–46.

7. B. Dong and Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal.,
22 (2007), 78–104.

8. J. Geronimo, D. P. Hardin, and P. Massopust, Fractal functions and wavelet expansions based
on several scaling functions, J. Approx. Theory, 78 (1994), 373–401.

9. S. S. Goh and V. B. Yap, Matrix extension and biorthogonal multiwavelet construction, Lin.
Alg. Appl., 269 (1998), 139–157.

10. B. Han, Symmetric orthonormal scaling functions and wavelets with dilation factor 4, Adv.
Comput. Math., 8 (1998), 221–247.

11. B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal
multiwavelets, J. Approx. Theory, 110 (2001), 18–53.

12. B. Han, Matrix extension with symmetry and applications to symmetric orthonormal complex
M-wavelets, J. Fourier Anal. Appl., 15 (2009), 684–705.

13. B. Han, S. Kwon and X. Zhuang, Generalized interpolating refinable function vectors, J. Com-
put. Appl. Math., 227 (2009), 254–270.

14. B. Han and Q. Mo, Splitting a matrix of Laurent polynomials with symmetry and its applica-
tion to symmetric framelet filter banks, SIAM J. Matrix Anal. Appl., 26 (2004), 97–124.



Matrix Extension with Symmetry and Its Applications 415

15. B. Han and X. Zhuang, Analysis and construction of multivariate interpoalting refinable func-
tion vectors, Acta Appl. Math., 107 (2009), 143–171.

16. B. Han and X. Zhuang, Matrix extension with symmetry and its application to filter banks,
SIAM J. Math. Anal., 42 (5) (2010), 2297–2317.

17. P. N. .Heller, Rank M wavelets with N vanishing moments. SIAM J. Matrix Anal. Appl.
16(1995), 502–519.

18. H. Ji and Z. Shen, Compactly supported (bi)orthogonal wavelets generated by interpolatory
refinable functions, Adv. Comput. Math., 11 (1999), 81–104.

19. Q. T. Jiang, Symmetric paraunitary matrix extension and parameterization of symmetric or-
thogonal multifilter banks, SIAM J. Matrix Anal. Appl., 22 (2001), 138–166.

20. W. Lawton, S. L. Lee, and Z. Shen, An algorithm for matrix extension and wavelet construc-
tion, Math. Comp., 65 (1996), 723–737.

21. A. Petukhov, Construction of symmetric orthogonal bases of wavelets and tight wavelet frames
with integer dilation factor, Appl. Comput. Harmon. Anal., 17 (2004), 198–210.

22. Y. Shen, S. Li, and Q. Mo, Complex wavelets and framelets from pseudo splines, J. Fourier
Anal. Appl., 16 (6) (2010), 885–900.

23. Z. Shen, Refinable function vectors, SIAM J. Math. Anal., 29 (1998), 235–250.
24. P. P. Vaidyanathan, Multirate systems and filter banks, Prentice Hall, New Jersey, 1992. (1984),

513–518.
25. D. C. Youla and P. F. Pickel, The Quillen-Suslin theorem and the structure of n-dimesional

elementary polynomial matrices, IEEE Trans. Circ. Syst., 31 (1984), 513–518.
26. X. Zhuang, Construction of symmetric complex tight wavelet frames from pseudo splines via

matrix extension with symmetry, Preprint, http://arxiv.org/abs/1003.3500 .

http://arxiv.org/abs/1003.3500

	Cover
	Series: Springer Proceedings in Mathematics, Volume 13
	Approximation Theory XIII: San Antonio 2010
	Copyright
	Preface
	Contents
	List of Contributors
	An Asymptotic Equivalence Between Two Frame Perturbation Theorems
	1 The Perturbation Theorems
	2 An Asymptotic Equivalence
	References

	Growth Behavior and Zero Distribution of Maximally Convergent Rational Approximants
	References

	Generalization of Polynomial Interpolation at Chebyshev Nodes
	1 Introduction
	2 Generalization of Chebyshev Nodes
	3 Lebesgue Functions
	4 Properties of Pairs of Auxiliary Functions
	5 Optimal Nodes for Lagrange Polynomial Interpolation
	References

	Green's Functions: Taking Another Look at Kernel Approximation, Radial Basis Functions, and Splines
	1 Introduction
	2 Toward an Intuitive Interpretation of Native Spaces
	2.1 What is the Current Situation?
	2.2 Mercer's Theorem and Eigenvalue Problems
	2.3 Green's Functions and Eigenfunction Expansions
	2.4 Generalized Sobolev Spaces

	3 Flat Limits
	3.1 Infinitely Smooth RBFs
	3.2 Finitely Smooth RBFs

	4 Stable Computation
	4.1 An Eigenfunction Expansion for Gaussians
	4.2 The RBF-QR Algorithm

	5 Dimension Independent Error Bounds
	5.1 The Current Situation
	5.2 New Results on (Minimal) Worst-Case Weighted L2 Error

	6 Summary
	References

	Sparse Recovery Algorithms: Sufficient Conditions in Terms of Restricted Isometry Constants
	1 Introduction
	1.1 Basis Pursuit
	1.2 Iterative Hard Thresholding
	1.3 Compressive Sampling Matching Pursuit

	2 Restricted Isometry Constants
	3 Basis Pursuit
	4 Iterative Hard Thresholding
	5 Compressive Sampling Matching Pursuit
	References

	Lagrange Interpolation and New Asymptotic Formulae for the Riemann Zeta Function
	1 Introduction
	2 Lagrange Interpolation
	3 Asymptotic Behavior of the Interpolation Error
	4 Asymptotic Formulae for ζ(s)
	5 Lp(-1,1)-Asymptotics and Criteria for ζ(s)=0 and ζ(s)≠0
	6 Remarks
	References

	Active Geometric Wavelets
	1 Introduction
	2 Theoretical Background
	2.1 A Jackson Estimate for Piecewise Polynomial Approximation Using Non-convex Domains
	2.2 Adaptive Local Selection of the Weight μ

	3 Overview of the AGW Algorithm
	4 Experimental Results
	References

	Interpolating Composite Systems
	1 Introduction
	2 Composite Dilation Systems
	3 Interpolating Systems
	4 Shearlets
	5 Conclusion
	References

	Wavelets and Framelets Within the Framework of Nonhomogeneous Wavelet Systems
	1 Introduction
	2 Nonhomogeneous Wavelet Systems in L2(Rd)
	3 Frequency-Based Nonhomogeneous Dual Framelets in the Distribution Space
	4 Wavelets and Framelets in Function Spaces
	5 Wavelets and Framelets Derived from Filter Banks
	6 Discrete Framelet Transform and Its Basic Properties
	7 Directional Tight Framelets in L2(Rd) and Projection Method
	References

	Compactly Supported Shearlets
	1 Introduction
	1.1 Directional Representation Systems
	1.2 Anisotropic Features, Discrete Shearlet Systems, and Quest for Sparse Approximations
	1.3 Continuous Shearlet Systems
	1.3.1 Cone-Adapted Shearlet Systems
	1.3.2 Shearlets from Group Representations

	1.4 Applications
	1.5 Outline

	2 2D Shearlets
	2.1 Preliminaries
	2.2 Classical Construction
	2.3 Constructing Compactly Supported Shearlets

	3 Sparse Approximations
	3.1 Cartoon-like Image Model
	3.2 Optimally Sparse Approximation of Cartoon-like Images

	4 Shearlets in 3D and Beyond
	4.1 Pyramid-Adapted Shearlet Systems
	4.2 Sparse Approximations of 3D Data

	5 Conclusions
	References

	Shearlets on Bounded Domains
	1 Introduction
	1.1 Optimally Sparse Approximations of Cartoon-like Images
	1.2 Shortcomings of this Cartoon-like Model Class
	1.3 Our Model for Cartoon-like Images on Bounded Domains
	1.4 Review of Shearlets
	1.5 Surprising Result
	1.6 Main Contributions
	1.7 Outline

	2 Compactly Supported Shearlets
	2.1 Compactly Supported Shearlet Frames for L2(R2)
	2.2 Compactly Supported Shearlet Frames for L2(Ω)

	3 Optimal Sparsity of Shearlets on Bounded Domains
	3.1 Main Theorem 1
	3.2 Architecture of the Proof of Theorem 1

	4 Proof of Theorem 1
	4.1 Case 1: The Smooth Part
	4.2 Case 2: The Non-Smooth Part
	4.2.1 Case 2a: The Non-Smooth Part
	4.2.2 Case 2b: The Non-Smooth Part


	5 Discussion
	References

	On Christoffel Functions and Related Quantities for Compactly Supported Measures
	1 Introduction
	2 Proof of Theorem 6
	References

	Exact Solutions of Some Extremal Problemsof Approximation Theory
	1 Introduction
	2 Proofs
	References

	A Lagrange Interpolation Method by Trivariate Cubic C^1 Splines of Low Locality
	1 Introduction
	2 Preliminaries
	3 A Uniform Partition Consisting of Tetrahedra and Octahedra
	4 A (Partial) Worsey–Farin Refinement of 
	5 Local Lagrange Interpolation by y13(◊)
	6 Numerical Tests
	References

	Approximation of Besov Vectors by Paley–Wiener Vectors in Hilbert Spaces
	1 Introduction
	2 Paley–Wiener Subspaces Generated by a Self-adjoint Operator in a Hilbert Space
	3 Direct and Inverse Approximation Theorems
	References

	A Subclass of the Length 12 Parameterized Wavelets
	1 Introduction
	2 The Nonlinear Equations
	3 Length Four
	4 Length 12 Subclass
	5 A Numerical Experiment
	References

	Geometric Properties of Inverse Polynomial Images
	1 Introduction
	2 The Number of (Analytic) Jordan Arcs of an Inverse Polynomial Image
	3 The Connectedness of an Inverse Polynomial Image
	References

	On Symbolic Computation of Ideal Projectors and Inverse Systems
	1 Introduction
	2 Preliminaries
	2.1 Multiplication Operators
	2.2 Duality

	3 The Main Result
	4 A Couple of Examples
	References

	The Dimension of the Space of Smooth Splines of Degree 8 on Tetrahedral Partitions
	1 Introduction
	2 Main Results
	References

	On Simultaneous Approximation in Function Spaces
	1 Introduction
	2 Preliminary Results
	3 Main Result
	References

	Chalmers–Metcalf Operator and Uniqueness of Minimal Projections in \ell{l}^n_∞ and \ell{l}^n_1 Spaces 
	1 Introduction
	2 Chalmers–Metcalf Operator for Hyperplanes in ln∞
	3 Chalmers–Metcalf Operator for Hyperplanes in ln1
	References

	The Polynomial Inverse Image Method
	1 Introduction
	2 The Bernstein Inequality on General Sets
	3 The Model case [-1,1], Admissible Polynomial Maps, Approximation
	4 The Model case C1, Sharpened form of Hilbert's Lemniscate Theorem
	5 A Critical Point in the Method
	6 The Markoff Inequality for Several Intervals
	7 Bernstein's Inequality on Curves
	8 Asymptotics for Christoffel Functions
	9 Lubinsky's Universality on General Sets
	10 Fine Zero Spacing of Orthogonal Polynomials
	11 Polynomial Approximation on Compact Subsetsof the Real Line
	12 Appendix: Basic Notions from Logarithmic Potential Theory
	References

	On Approximation of Periodic Analytic Functions by Linear Combinations of Complex Exponents
	1 Introduction
	2 The Minimization Problem for Periodic Functions
	3 Related Properties of Orthogonal Polynomials
	4 Approximation with Imaginary Exponents
	References

	Matrix Extension with Symmetry and Its Applications
	1 Introduction and Motivation
	1.1 The Matrix Extension Problems
	1.2 Motivation
	1.3 Prior Work and Our Contributions
	1.4 Outline

	2 Orthogonal Matrix Extension with Symmetry
	2.1 An Algorithm for the Orthogonal Matrix Extension with Symmetry
	2.1.1 Initialization
	2.1.2 Support Reduction

	2.2 Application to Filter Banks and Orthonormal Multiwavelets with Symmetry

	3 Construction of Symmetric Complex Tight Framelets
	3.1 Symmetric Complex d-Refinable Functions
	3.2 Tight Framelets via Matrix Extension

	4 Biorthogonal Matrix Extension with Symmetry
	4.1 Proof of Theorem 4 and an Algorithm
	4.2 Application to Construction of Biorthogonal Multiwavelets with Symmetry

	References


