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Preface to the Series

The Niels Henrik Abel Memorial Fund was established by the Norwegian
government on January 1. 2002. The main objective is to honor the great
Norwegian mathematician Niels Henrik Abel by awarding an international
prize for outstanding scientific work in the field of mathematics. The prize
shall contribute towards raising the status of mathematics in society and stim-
ulate the interest for science among school children and students. In keeping
with this objective the board of the Abel fund has decided to finance one
or two Abel Symposia each year. The topic may be selected broadly in the
area of pure and applied mathematics. The Symposia should be at the high-
est international level, and serve to build bridges between the national and
international research communities. The Norwegian Mathematical Society is
responsible for the events. It has also been decided that the contributions from
these Symposia should be presented in a series of proceedings, and Springer
Verlag has enthusiastically agreed to publish the series. The board of the Niels
Henrik Abel Memorial Fund is confident that the series will be a valuable con-
tribution to the mathematical literature.

Ragnar Winther
Chairman of the board of the Niels Henrik Abel Memorial Fund



Preface

The Abel Symposium 2006 focused on the intersection between computer sci-
ence, computational science and mathematics. Ever since the early years of
computers, applied mathematics has depended heavily upon computational
methods. However, in recent years, computation has also been affecting pure
mathematics in fundamental ways. Conversely, ideas and methods of pure
mathematics are becoming increasingly important in computational and ap-
plied mathematics. At the core of computer science is the study of com-
putability and complexity for discrete mathematical structures. Studying the
foundations of computational mathematics raises similar questions concerning
continuous mathematical structures.

There are several reasons for these developments. The exponential growth
of computing power is bringing computational methods into ever new ap-
plication areas. Equally important is the advance of software and program-
ming languages, which to an increasing degree allows the representation of
abstract mathematical structures in program code. Symbolic computing is
putting algorithms from mathematical analysis in the hands of pure and ap-
plied mathematicians, and the combination of symbolic and numerical tech-
niques is becoming increasingly important both in computational science and
in areas of pure mathematics.

We are witnessing a development where a focus on computability, comput-
ing and algorithms is contributing towards a unification of areas of computer
science, applied and pure mathematics. The basis for this conference was a
belief that these developments will prevail in the twenty-first century. The
Symposium brought together some of the leading international researchers
working in these areas, presented a snapshot of current state of the art, and
raised questions about future research directions.

The symposium took place in Ålesund, from May 25–27, 2006 and was
organized by

• Ron DeVore, University of South Carolina
• Arieh Iserles, University of Cambridge
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• Hans Munthe-Kaas, University of Bergen
• Peter Olver, University of Minnesota
• Brynjulf Owren, NTNU
• Nick Trefethen, University of Oxford

The scientific committee made a deliberate choice to compose a group of
international invitees consisting of senior leading researchers and also brilliant
young people. The participants were encouraged to be open (and perhaps
even provocative) on future developments within computational science. This
resulted in a meeting with open and very stimulating discussions.

Talks presented

• Doug Arnold: Finite element exterior calculus and its applications
• David Bindel: Modeling resonant microsystems: toward cell phones on a

chip?
• Folkmar Bornemann: The whence and whither of using PDEs in computer

vision
• Franco Brezzi: Recent developments in Mimetic Finite Differences
• Albert Cohen: Some remarks on Compressed Sensing
• Wolfgang Dahmen: Adaptive multiscale methods
• Ioana Dumitriu: Toward accurate polynomial evaluation in rounded arith-

metic: foundations for the future
• Alan Edelman: New Applications of Random Matrix Theory or Stochastic

Eigen-analysis
• Björn Engquist : Heterogeneous Multi-scale Methods
• Anna Gilbert: Putting the “Computational” in “Computational Harmonic

Analysis”
• Leslie Greengard: Modern algorithms and the future of mathematical soft-

ware
• Tom Hou: The Interplay between Local Geometric Properties and the

Global Regularity for the 3D Incompressible Euler Equations
• Peter D. Lax: The numerical solution of hyperbolic systems of conservation

laws
• Christian Lubich: Variational approximations in quantum dynamics
• Nilima Nigam: The good, the bad, and the not-so-ugly: algorithms for com-

putational scattering
• Guillermo Sapiro: Mathematics and computation in image processing and

other high dimensional signals
• Stephen Smale: The mathematics of learning, from machine to human
• Rob Stevenson: Optimal adaptive finite element methods
• Eitan Tadmor: Theory and computation of entropy stability in quasilinear

PDEs
• Mike Todd: The role of ellipsoids in optimization theory
• Anna-Karin Tornberg: Fluid-structure interactions: the collective dynam-

ics of suspensions
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• Paul Tupper: A difficult open conjecture in the analysis of molecular dy-
namics

• Divakar Viswanath: Strange attractors from Lorenz to turbulence
• Shing-Tung Yau: Minimization with the affine normal direction

International participants who did not give talks:

• Ingrid Daubechies, Princeton
• Richard Falk, Rutgers
• Ernst Hairer, Geneva
• Reinout Quispel, LaTrobe

Participants from Norwegian universities and research labs:

• Petter Bjørstad, Bergen
• Elena Celledoni, Trondheim
• Snorre Christiansen, Oslo
• Michael Floater, Oslo
• Helge Holden, Trondheim
• Kenneth H.-Karlsen, Oslo
• Trond Kvamsdal, Sintef
• Anne Kværnø, Trondheim
• Hans P. Langtangen, Oslo

• Tom Lyche, Oslo
• Syvert P. Nørsett, Trondheim
• Einar Rønquist, Trondheim
• Trond Steihaug, Bergen
• Tor Sørevik, Bergen
• Xue-Cheng Tai, Bergen
• Warwick Tucker, Bergen
• Ragnar Winther, Oslo
• Antonella Zanna, Bergen

More information about the symposium may be found at this web-page:
http://abelsymposium.no/2006

May 23, 2008 Bergen and Trondheim,
Hans Munthe-Kaas Brynjulf Owren
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Geometric Methods in Engineering
Applications

Xianfeng Gu*, Yalin Wang, Hsiao-Bing Cheng, Li-Tien Cheng,
and Shing-Tung Yau

Computer Science, Stony Brook University, Stony Brook, NY 11790, USA,
gu@cs.sunysb.edu

Summary. In this work, we introduce two sets of algorithms inspired by the ideas
from modern geometry. One is computational conformal geometry method, including
harmonic maps, holomorphic 1-forms and Ricci flow. The other one is optimization
method using affine normals.

In the first part, we focus on conformal geometry. Conformal structure is a
natural structure of metric surfaces. The concepts and methods from conformal
geometry play important roles for real applications in scientific computing, computer
graphics, computer vision and medical imaging fields.

This work systematically introduces the concepts, methods for numerically com-
puting conformal structures inspired by conformal geometry. The algorithms are
theoretically rigorous and practically efficient.

We demonstrate the algorithms by real applications, such as surface matching,
global conformal parameterization, conformal brain mapping etc.

In the second part, we consider minimization of a real-valued function f over
R

n+1 and study the choice of the affine normal of the level set hypersurfaces of f
as a direction for minimization. The affine normal vector arises in affine differential
geometry when answering the question of what hypersurfaces are invariant under
unimodular affine transformations. It can be computed at points of a hypersurface
from local geometry or, in an alternative description, centers of gravity of slices. In
the case where f is quadratic, the line passing through any chosen point parallel
to its affine normal will pass through the critical point of f . We study numerical
techniques for calculating affine normal directions of level set surfaces of convex f
for minimization algorithms.

1 Introduction

Conformal structure is a natural geometric structure of a metric surface. It
is more flexible than Riemannian metric structure and more rigid than topo-
logical structure, therefore it has advantages for many important engineering
applications.

The first example is from computer graphics. Surface parameterization
refers to the process to map a surface onto the planar domain, which plays
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a fundamental role in graphics and visualization for the purpose of texture
mapping. Surface parameterization can be reformulated as finding a special
Riemannian metric with zero Gaussian curvature everywhere, namely a flat
metric. If the parameterization is known, then pull back metric induced by
the map is the flat metric; conversely, if a flat metric of the surface is known,
then the surface can be flattened onto the plane isometrically to induce the
parameterization.

The second example is from geometric modeling. Constructing manifold
splines on a surface is an important issue for modeling. In order to define
parameters and the knots of the spline, special atlas of the surface is required
such that all local coordinate transition maps are affine. One way to construct
such an atlas is as follows, first a flat metric of the surface is found, then a
collection of open sets are located to cover the whole surface, finally each open
set is flattened using the flat metric to form the atlas.

The third example is from medical imaging. The human brain cortex sur-
face is highly convolved. In order to compare and register brain cortex sur-
faces, it is highly desirable to canonically map them to the unit sphere. This
is equivalent to find a Riemannian metric on the cortex surface, such that the
Gaussian curvature induced by this metric equals to one everywhere. Once
such a metric is obtained, the cortex surface can be coherently glued onto the
sphere piece by piece isometrically.

For most applications, the desired metrics should minimize the angle dis-
tortion and the area distortion. The angles measured by the new metric should
be consistent with those measured by the original metric. The existence of
such metrics can be summarized as Riemann uniformization theorem. Finding
those metrics is equivalent to compute surface conformal structure. Therefore,
it is of fundamental importance to compute conformal structures of general
surfaces.

In modern geometry, conformal geometry of surfaces are studied in Rie-
mann surface theory. Riemann surface theory is a rich and mature field, it
is the intersection of many subjects, such as algebraic geometry, algebraic
topology, differential geometry, complex geometry etc. This work focuses on
converting theoretic results in Riemann surface theory to practical algorithms.

2 Previous Works

Much research has been done on mesh parameterization due to its usefulness
in computer graphics applications. The survey of [Floater and Hormann 2005]
provides excellent reviews on various kinds of mesh parameterization tech-
niques. Here, we briefly discuss the previous work on the conformal mesh
parameterization.

Several researches on conformal mesh parameterization tried to discretize
the nature of the conformality such that any intersection angle at any point on
a given manifold is preserved on the parameterized one at the corresponding
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Spherical Euclidean Hyperbolic

point. Floater [Floater 1997] introduced a mesh parameterization technique
based on convex combinations. For each vertex, its 1-ring stencil is parame-
terized into a local parameterization space while preserving angles, and then
the convex combination of the vertex is computed in the local parameter-
ization spaces. The overall parameterization is obtained by solving a sparse
linear system. [Sheffer and de Sturler 2001] presented a constrained minimiza-
tion approach, so called angle-based flattening (ABF), such that the variation
between the set of angles of an original mesh and one of 2D flatten version is
minimized. In order to obtain a valid and flipping-free parameterization, sev-
eral angular and geometric constraints are incorporated with the minimization
process. Lately, they improved the performance of ABF by using an advanced
numerical approach and a hierarchical technique [Sheffer et al. 2005].

Recently, much research has been incorporated with the theories of
differential geometry. [Levy et al. 2002] applied the Cauchy–Riemann equa-
tion for mesh parameterization and provided successful results on the con-
strained 2D parameterizations with free boundaries. [Desbrun et al. 2002]
minimized the Dirichlet energy defined on triangle meshes for comput-
ing conformal parameterization. It has been noted that the approach of
[Desbrun et al. 2002] has the same expressional power with [Levy et al. 2002].
Gu and Yau [Gu and Yau 2003] computed the conformal structure using the
Hodge theory. A flat metric of the given surface is induced by computing the
holomorphic 1-form with a genus-related number of singularities and used
for obtaining a globally smooth parameterization. [Gortler et al. 2005] used
discrete 1-forms for mesh parameterization. Their approach provided an in-
teresting result in mesh parameterization with several holes, but they cannot
control the curvatures on the boundaries. Ray et al. [Ray et al. 2005] used
the holomorphic 1-form to follow up the principle curvatures on manifolds
and computed a quad-dominated parameterization from arbitrary models.
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Kharevych et al. [Kharevych et al. 2005] applied the theory of circle patterns
from [Bobenko and Springborn 2004] to globally conformal parameteriza-
tions. They obtain the uniform conformality by preserving intersection angles
among the circum-circles each of which is defined from a triangle on the given
mesh. In their approach, the set of angles is non-linear optimized first, and
then the solution is refined with cooperating geometric constraints. They
provide several parameterization results, such as 2D parameterization with
predefined boundary curvatures, spherical parameterization, and globally
smooth parameterization of a high genus model with introduced singularity
points. [Gu et al. 2005] used the discrete Ricci flow [Chow and Luo 2003] for
generating manifold splines with a single extraordinary point. The Ricci flow
is utilized for obtaining 2D parameterization of high-genus models in their
paper.

In theory, the Ricci flow [Chow and Luo 2003] and the variations with
circle patterns [Bobenko and Springborn 2004] have the same mathematical
power. However, because of the simplicity of the implementation, we adopt
the Ricci flow as a mathematical tool for the parameterization process.

In contrast to all previous approaches, the parameterization spaces in our
interests are not only the 2D spaces but also arbitrary hyperbolic spaces.
As a result, we can provide novel classes of applications in this paper, such
as parameterization with interior and exterior boundaries having prescribed
curvatures, PolyCube-mapping, quasi-conformal cross-parameterization with
high-genus surfaces, and geometry signatures.

3 Theoretic Background

In this section, we introduce the theories of conformal geometry.

3.1 Riemann Surface

Suppose S is a two dimensional topological manifold covered by a collection
of open sets {Uα}, S ⊂

⋃
α Uα. A homeomorphism φα : Uα → C maps Uα

to the complex plane. (Uα, φα) forms a local coordinate system. Suppose two
open sets Uα and Uβ intersect, then each point p ∈ Uα

⋂
Uβ has two local

coordinates, the transformation between the local coordinates is defined as
the transition function

φαβ := φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uβ ∩ Uβ). (1)

A complex function f : C → C is holomorphic, if its derivative exists. If f
is invertible, and f−1 is also holomorphic, then f is called bi-holomorphic.
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Definition 1 (Conformal Structure). A two dimensional topological
manifold S with an atlas {(Uα, φα)}, if all transition functions φαβ’s are
bi-holomorphic, then the atlas is called a conformal atlas. The union of all
conformal atlas is called the conformal structure of S.

A surface with conformal structure is called a Riemann surface. All metric
surfaces are Riemann surfaces.

3.2 Uniformization Metric

Suppose S is a C2 smooth surface embedded in R
3 with parameter (u1, v2).

The position vector is r(u1, u2), the tangent vector is dr = r1du1 + r2du2,
where r1, r2 are the partial derivatives of r with respect to u1, u2 respectively.
The length of the tangent vector is represented as the first fundamental form

ds2 =
∑

gijdu1du2 (2)

where gij =< ri, rj >. The matrix (gij) is called the Riemannian metric
matrix.

A special parameterization can be chosen to simplify the Riemannian met-
ric, such that g11 = g22 = e2λ and g12 = 0, such parameter is called the
isothermal coordinates. If all the local coordinates of an atlas are isothermal
coordinates, then the atlas is the conformal atlas of the surface. For all ori-
entable metric surfaces, such atlas exist, namely

Theorem 1 (Riemann Surface). All orientable metric surfaces are
Riemann surfaces.

The Gauss curvature measures the deviation of a neighborhood of a point
on the surface from a plane, using isothermal coordinates, the Gaussian cur-
vature is calculated as

K = − 2
e2λ

∆λ, (3)

where ∆ is the Laplace operator on the parameter domain.

Theorem 2 (Gauss–Bonnet). Suppose a closed surface S, the Riemannian
metric g induces the Gaussian curvature function K, then the total curvature
is determined by ∫

S

KdA = 2πχ(S), (4)

where χ(S) is the Euler number of S.

Suppose u : S → R is a function defined on the surface S, then e2ug is
another Riemannian metric on S. Given arbitrary two tangent vectors at one
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point, the angle between them can be measured by g or e2ug, the two mea-
surements are equal. Therefore we say e2ug is conformal (or angle preserving)
to g. (S,g) and (S, e2ug) are endowed with different Riemannian metrics but
the same conformal structure.

The following Poincaré uniformization theorem postulates the existence of
the conformal metric which induces constant Gaussian curvature,

Theorem 3 (Poincaré Uniformization). Let (S,g) be a compact
2-dimensional Riemannian manifold, then there is a metric ḡ conformal
to g which has constant Gauss curvature.

Such a metric is called the uniformization metric. According to Gauss–Bonnet
Theorem 4, the sign of the constant Gauss curvature is determined by the
Euler number of the surface. Therefore, all closed surfaces can be conformally
mapped to three canonical surfaces, the sphere for genus zero surfaces χ > 0,
the plane for genus one surfaces χ = 0, and the hyperbolic space for high
genus surfaces χ < 0.

3.3 Holomorphic 1-Forms

Holomorphic and meromorphic functions can be defined on the Riemann
surface via conformal structure. Holomorphic differential forms can also be
defined.

Definition 2 (holomorphic 1-form). Suppose S is a Riemann surface with
conformal atlas {(Uα, zα}, where zα is the local coordinates. Suppose a complex
differential form ω is represented as

ω = fα(zα)dzα,

where fα is a holomorphic function, then ω is called a holomorphic 1-form.

Holomorphic 1-forms play important roles in computing conformal struc-
tures.

A holomorphic 1-form can be interpreted as a pair of vector fields, ω1 +√
−1ω2, such that the curl and divergence of ω1, ω2 are zeros,

∇× ωi = 0,∇ · ωi = 0, i = 1, 2,

and
n × ω1 = ω2,

everywhere on the surface. Both ωi are harmonic 1-forms, the following Hodge
theorem clarifies the existence and uniqueness of harmonic 1-forms.

Theorem 4 (Hodge). Each cohomologous class of 1-forms has a unique har-
monic 1-form.
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3.4 Ricci Flow

In geometric analysis, Ricci flow is a powerful tool to compute Riemannian
metric. Recently, Ricci flow is applied to prove the Poincaré conjecture. Ricci
flow is the process to deform the metric g(t) according to its induced Gauss
curvature K(t), where t is the time parameter

dgij(t)
dt

= −K(t)gij(t). (5)

It is proven that the curvature evolution induced by the Ricci flow is
exactly like heat diffusion on the surface

K(t)
dt

= −∆g(t)K(t), (6)

where ∆g(t) is the Laplace–Beltrami operator induced by the metric g(t).
Ricci flow converges, the metric g(t) is conformal to the original metric at
any time t. Eventually, the Gauss curvature will become constant just like
the heat diffusion K(∞) ≡ const, the limit metric g(∞) is the uniformization
metric.

3.5 Harmonic Maps

Suppose S1, S2 are metric surfaces embedded in R
3. φ : S1 → S2 is a map

from S1 to S2. The harmonic energy of the map is defined as

E(φ) =
∫

S1

< ∇φ,∇φ > dA.

The critical point of the harmonic energy is called the harmonic maps.
The normal component of the Laplacian is

∆φ⊥ =< ∆φ,n ◦ φ > n,

If φ is a harmonic map, then the tangent component of Laplacian vanishes,

∆φ = ∆φ⊥,

where ∆ is the Laplace–Beltrami operator.
We can diffuse a map to a harmonic map by the heat flow method:

dφ

dt
= −(∆φ − ∆φ⊥).
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4 Computational Algorithms

In practice, all surfaces are represented as simplicial complexes embedded
in the Euclidean space, namely, triangular meshes. All the algorithms are
discrete approximations of their continuous counter parts. We denote a mesh
by M , and use vi to denote its ith vertex, edge eij for the edge connecting vi

and vj , and fijk for the triangle formed by vi, vj and vk, which are ordered
counter-clock-wisely.

If a mesh M is with boundaries, we fist convert it to a closed symmetric
mesh M̄ by the following double covering algorithm:

1. Make a copy mesh M ′ of M .
2. Reverse the orientation of M ′ by change the order of vertices of each face,

fijk → fjik.
3. Glue M and M ′ along their boundaries to form a closed mesh M̄ .

In the following discussion, we always assume the surfaces are closed. We
first introduce harmonic maps for genus zero surfaces, then holomorphic one-
forms for genus one surfaces and finally Ricci flow method for high genus
surfaces.

4.1 Genus Zero Surfaces: Harmonic Maps

For genus zero surfaces, the major algorithm to compute their conformal map-
ping is harmonic maps, the basic procedure is to diffuse a degree one map until
the map becomes harmonic:

1. Compute the normal of each face, then compute the normal of each vertex
as the average of normals of neighboring faces.

2. Set the map φ equals to the Gauss map,

φ(vi) = ni.

3. Diffuse the map by Heat flow acting on the maps

φ(vi)− = (∆φ(vi) − ∆φ(vi)⊥)ε

where ∆φ(vi))⊥ is defined as

< ∆φ(vi), φ(vi) > φ(vi).

4. Normalize the map by setting

φ(vi) =
φ(vi) − c
|φ(vi) − c| ,

where c is the mass center defined as

c =
∑
vi

φ(vi).

5. Repeat step 2 and 3, until ∆φ(vi)) is very closed to ∆φ(vi))⊥.
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where ∆ is a discrete Laplace operator, defined as

∆φ(vi) =
∑

j

wij(φ(vi) − φ(vi)),

where vj is a vertex adjacent to vi, wij is the edge weight

wij =
cot α + cot β)

2
,

α, β are the two angles against edge eij .
The harmonic map φ : M → S

2 is also conformal. The conformal maps
are not unique, suppose φ1, φ2 : M → S

2 are two conformal maps, then
φ1 ◦ φ−1

2 : S
2 → S

2 is a conformal map from sphere to itself, it must be a
so-called Möbius transformation. Suppose we map the sphere to the complex
plane by a stereo-graphics projection

(x, y, z) → 2x + 2
√
−1y

2 − z
,

then the Möbius transformation has the form

w → aw + b

cw + d
, ad − bc = 1, a, b, c, d ∈ C.

The purpose of the normalization step is to remove Möbius ambiguity of
the conformal map from M to S

2.
For genus zero open surfaces, the conformal mapping is straight forward:

1. Double cover M ′ to get M̄ .
2. Conformally map the doubled surface to the unit sphere.
3. Use the sphere Möbius transformation to make the mapping symmetric.
4. Use stereographic projection to map each hemisphere to the unit disk.

The Möbius transformation on the disk is also a conformal map and with the
form

w → eiθ w − w0

1 − w̄0w
, (7)

where w0 is arbitrary point inside the disk, theta is an angle. Figure 1
illustrates two conformal maps from the David head surface to the unit disk,
which differ by a Möbius transformation.

Fig. 1. According to Riemann Mapping theorem, a topological disk can be con-
formally mapped to the unit disk. Two such conformal maps differ by a Möbius
transformation of the unit disk
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4.2 Genus One Surfaces: Holomorphic One-Forms

For genus one closed surfaces, we compute the basis of holomorphic one-form
group, which induces the conformal parameterization directly. A holomorphic
one-form is formed by a pair of harmonic one-forms ω1, ω2, such that ω2 is
conjugate to ω1.

In order to compute harmonic one-forms, we need to compute the homol-
ogy basis for the surface. A homology base curve is a consecutive halfedges,
which form a closed loop. First we compute a cut graph of the mesh, then
extract a homology basis from the cut graph. Algorithm for cut graph:

1. Compute the dual mesh M̄ , each edge e ∈ M has a unique dual edge
ē ∈ M̄ .

2. Compute a spanning tree T̄ of M̄ , which covers all the vertices of M̄ .
3. The cut graph is the union of all edges whose dual are not in T̄ ,

G = {e ∈ M |ē 
∈ T̄}.

Then, we can compute homology basis from G:

1. Compute a spanning tree T of G.
2. G

T = {e1, e2, · · · , en}.
3. ei ∪ T has a unique loop, denoted as γi.
4. {γ1, γ2, · · · , γn} form a homology basis of M .

A harmonic one-form is represented as a linear map from the halfedge to
the real number, ω : {Half Edges} → R, such that⎧⎨⎩

ω∂f ≡ 0
∆ω ≡ 0∫

γi
ω = ci

(8)

where ∂ represents boundary operator, ∂fijk = eij + ejk + eki, therefore
ω∂fijk = ω(eij) + ω(ejk) + ω(eki); ∆ω represents the Laplacian of ω,

∆ω(vi) =
∑

j

wijω(hij),

hij are the half edges from vi to vj ; {ci} are prescribed real numbers. It can
be shown that the solution to the above equation group exists and is unique.

On each face fijk there exists a unique vector t, such that on each edge,
ω(hij) =< vj−vi, t >,ω(hjk) =< vk−vj , t > and ω(hki) =< vi−vk, t >. Let
t′ = n × t, then ω′(hij) =< vj − vi, t′ > defines another harmonic one-form,
which is conjugate to ω, (ω, ω′) form a holomorphic one-form.

We cut a surface M along its cut graph to get a topological disk DM , by
gluing multiple copies of DM consistently, we can construct a finite portion
of the universal covering space of M .

We then integrate a holomorphic one-form to map DM to the plane con-
formally in the following way:
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Fig. 2. Holomorphic 1-forms on different surfaces

1. Fix one vertex v0 ∈ DM , and map it to the origin φ(v0) = (0, 0)
2. For any vertex v ∈ DM , compute the shortest path γ from v0 to v in DM

3. φ(v) = (
∫

γ
ω,
∫

γ
ω′)

We then visualize the holomorphic one-forms by texture mapping a checker
board onto DM using texture coordinates φ. Figure 2 demonstrates the holo-
morphic 1-forms on three different surfaces.

4.3 High Genus Surfaces: Discrete Ricci Flow

For high genus surfaces, we apply discrete Ricci flow method to compute their
uniformization metric and then embed them in the hyperbolic space.

Circle Packing Metric

We associate each vertex vi with a circle with radius γi. On edge eij , the two
circles intersect at the angle of Φij . The edge lengths are

l2ij = γ2
i + γ2

j + 2γiγj cos Φij

A circle packing metric is denoted by {Σ,Φ,Γ}, where Σ is the triangula-
tion, Φ the edge angle, Γ the vertex radii.
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Two circle packing metrics {Σ,Φ1,Γ1} and {Σ,Φ2,Γ2} are conformal
equivalent, if:

• The radii of circles are different, Γ1 
= Γ2.
• The intersection angles are same, Φ1 ≡ Φ2.

In practice, the circle radii and intersection angles are optimized to ap-
proximate the induced Euclidean metric of the mesh as close as possible.

Poincaré Disk

According to Riemann uniformization theorem, high genus surfaces can be
conformally embed in hyperbolic space. Instead of treat each triangle as an
Euclidean triangle, we can treat each triangle as a hyperbolic triangle. The
hyperbolic space is represented using Poincaré disk, which is the unit disk on
the complex plane, with Riemannian metric

ds2 =
4dwdw̄

(1 − w̄w)2
.

The rigid motion in Poincaré disk is Möbius transformation 7. The geodesics
are circle arcs which are orthogonal to the unit circle. A hyperbolic circle in
Poincaré disk with center c and radius r is also an Euclidean circle with center
C and radius R, such that C = 2−2µ2

1−µ2|c|2 and R2 = |C|2 − |c|2−µ2

1−µ2|c|2 , µ = er−1
er+1 .

Hyperbolic Ricci Flow

Let
ui = log tanh

γi

2
, (9)

then discrete hyperbolic Ricci flow is defined as

dui

dt
= K̄i − Ki. (10)
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In fact, discrete Ricci flow is the gradient flow of the following hyperbolic Ricci
energy

f(u) =
∫ u

u0

n∑
i=1

(K̄i − Ki)dui, (11)

where n is the number of edges, u = (u1, u2, · · · , um), m is the number of
vertices. In practice, if we set K̄i ≡ 0 by minimizing the Ricci energy us-
ing Newton’s method, the hyperbolic uniformization metric can be computed
efficiently.

Once the hyperbolic metric for a mesh is calculated, the mesh can be
flattened face by face in the Poincaré disk. Determining the position of a
vertex in the Poincaré disk is equivalent to finding the intersection between
two hyperbolic circles, which can be converted as finding the intersection
between two Euclidean circles.

5 Applications

Conformal geometry has broad applications in medical imaging, computer
graphics, geometric modeling and many other fields.

5.1 Conformal Brain Mapping

Human cortex surfaces are highly convoluted, it is difficult to analyze and
study them. By using conformal maps, we can map the brain surface to the
canonical unit sphere and carry out all the geometric processing, analysis,
measurement on the spherical domain. Because the conformal map preserves
angle structure, local shapes are well preserved, it is valuable for visualization
purpose. Different cortical surfaces can be automatically registered on the
canonical parameter domain, it is more efficient to compare surfaces using
conformal brain mapping.

Figure 3 illustrates an example of conformal brain mapping. The cortical
surface is reconstructed from MRI images and converted as a triangular mesh.

Fig. 3. Conformal brain mapping
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Fig. 4. Texture mapping using conformal mapping

5.2 Global Conformal Parameterization

In computer graphics, surface parameterization plays an important role for
various applications, such as texture mapping, texture synthesis.

Basically, a surface is mapped to the plane, the planar coordinates of each
vertex are used as texture coordinates. It is highly desirable to reduce the
distortion between the texture image and the geometric surface. Conformal
mapping is useful because it is angle distortion free. Figure 4 illustrates an
example for texture mapping using global conformal parameterization of a
genus two surface.

5.3 Manifold Splines

In geometric modeling, conventional splines are defined on the planar domains.
It is highly desirable to define splines on surfaces with arbitrary topologies
directly.

In order to define splines on manifolds, one needs to compute a special
atlas of the manifold, such that all chart transition maps are affine. Such kind
of atlas can be easily constructed by integrating a holomorphic 1-form.

Figure 5 demonstrates one example of genus 6 surface. The holomorphic
1-form induces an affine atlas with singularities, the planar Powell–Sabin
splines are defined on the atlas directly.

6 Affine Normal

Many problems in engineering field can be formulated as optimization prob-
lems. Suppose f : R

n → R is a differentiable function, finding its critical
points is the basic task.

Situated at any point, a natural direction to choose for minimization is
the steepest descent direction. This is the direction along which the function
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Fig. 5. Manifold splines constructed from holomorphic 1-form

is locally diminishing the most rapidly. The steepest descent direction can be
computed from derivative information of f through the form −∇f . Unfortu-
nately, while this direction is intuitively sound, it shows slow convergence.

Newton’s method use quadratic approximation at the origin,

f(x) ≈ xT∇2f(0)x + ∇fT (0)x + c.

When the quadratic approximation is taken at a point y, the critical point
is at x = y − (∇2f(y)−1∇f(y), therefore, one can use x to replace y as the
next guess. By iteration, the critical point can be reached. Newton’s method
quadratically converges. But it is expensive to compute the inverse of the
second derivative matrices, the Hessian matrices.

6.1 Affine Normal

Let M be a hypersurface in R
n+1, N is the normal vector field on M . Now

if X and Y are vector fields on M and DXY is the flat connection on R
n+1,

then we decompose
DXY = ∇XY + h(X,Y )N,

where ∇XY is the tangential part of DXY and h(X,Y ) the normal part, also
known as the second fundamental form. Furthermore, in this case, ∇XY is
the Levi–Civita connection of the Riemannian metric induced by R

n+1 on M .
We choose an arbitrary local frame field e1, e2, · · · , en tangent to M and

det(e1, e2, · · · , en+1) = 1, we may define h as DXY = ∇XY + h(X,Y )en+1,
to arrive at the affine metric

IIik = H− 1
n+2 hik,
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where H is the determinant det{hik}. In this case, the affine normal field is
given by ∆M , where the Laplacian is with respect to the affine metric II and
M is the position vector of M .

Suppose M is a level set surface of the function f , we can derive the affine
normal field as

H
1

n+2

(
f ij(− n

n+2fpqfpqi + n
fn+1,i

|∇f | )
− n

|∇f |

)
,

where the coordinates xi used are rotated so that xn+1 is in the normal
direction. It can be shown that when the hypersurface is an ellipsoid, all
affine normals point towards its center. In fact, the affine normals of the level
sets of a quadratic polynomial will point toward the unique critical point, even
if that critical point is unstable.

6.2 Affine Normal Descent Algorithm

Using this affine normal field, we can summarize our algorithm in the following
steps, iterated to convergence:

1. Compute the affine normal direction to the level set of the function at the
current approximation location.

2. Use a line search to find the minimum of the function along that direction.
This location serves as the new approximation.

We call this the affine normal descent algorithm. For the quadratic minimiza-
tion problem, due to the nature of the affine normal and the ellipsoidal level
sets of f , the approximations of this algorithm will take the value of the
exact minimum after one iteration. Thus, the affine normal and the vector
−(∇2f)−1∇f used in Newton’s method are parallel to each other in this case.
This means we may view this algorithm as an extension of the steepest descent
method, using the affine normal direction, which points at the center of ellip-
soids, instead of the steepest descent direction, which points at the center of
spheres. On the other hand, we may view it as a relative of Newton’s method,
both exact for the quadratic minimization problem but with different higher
order terms.

6.3 Efficiency

In terms of computational costs, we note that the previously derived formula
for the affine normal direction requires first, second, and third derivatives
of f , as well as inversion of an n × n matrix of second derivatives. While
it may be possible to generate other forms or approximations of the affine
normal direction that simplify the inversion or diminish the need of derivative
information. Instead, we consider a different viewpoint of the affine normal
to bypass the need for such information. Consider a convex hypersurface,
a point on that surface, and the tangent plane located there. Furthermore,
consider the class of planes intersecting with the surface and parallel to the
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Table 1. Five-dimensional Result: In this five-dimensional example, convergence is
achieved after five iterations

j f(pj) |pj − pj−1|
0 2.02669978966015
1 −0.87543513107826 2.17147295853185
2 −1.16211480429203 0.13960261665982
3 −1.16232787552543 0.00003483822789
4 −1.16232787579106 0.00001466875411
5 −1.16232787579106 0.00000000001789

tangent plane. On each of these planes, we look at the center of gravity of
the region enclosed by the intersection of the plane with the surface. The
union of these centers of gravity forms a curve. It turns out that the one-
sided tangent direction of this curve at the point of interest is the affine
normal vector. Thus, an alternate approach for calculating the affine normal
vector involves calculating centers of gravity, completely bypassing the need
for derivative information higher than that of the first derivative which is
required for tangent planes.

6.4 Experimental Results

We tested our method for several cases and measure the accuracy and effi-
ciency. For a five-dimensional convex function, let

f(x) =
5∑

i=1

(x2
i + sin xi).

Let (−0.2, 0, 0.4, 1,−0.3) be the starting point. The iterations of our algorithm
are shown in Table 1, the algorithm converge to the point⎛⎜⎜⎜⎜⎝

−0.45018354967147
−0.45018354967140
−0.45018354967139
−0.45018354967125
−0.45018354967129

⎞⎟⎟⎟⎟⎠
From the statistics, we can see that the affine normal method is efficient

and practical.

7 Conclusion

This paper introduces some algorithms inspired by geometric insights.
We first introduce a series of computational algorithms to compute con-

formal Riemannian metrics on surfaces, especially the uniformization metrics.
The algorithms include harmonic maps, holomorphic 1-forms and surface Ricci
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flow on discrete meshes. The methods are applied for various applications in
computer graphics, medical imaging and geometric modeling.

In the future, we will generalize these algorithms for discrete 3-manifolds
represented as tetrahedral meshes.

Second, we introduce an efficient optimization algorithm based on affine
differential geometry, which reaches the critical point for quadratic functions
in one step. The method is practical and efficient. In the future, we will im-
prove the method for computing affine normals.
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1 Introduction and Motivation

We present a boundary integral method, and an accompanying boundary
element discretization, for solving boundary-value problems for the Laplace–
Beltrami operator on the surface of the unit sphere S in R

3. We consider a
closed curve C on S which divides S into two parts S1 and S2. In particular,
C = ∂S1 is the boundary curve of S1. We are interested in solving a boundary
value problem for the Laplace–Beltrami operator in S2, with boundary data
prescribed on C.

We shall begin by describing a physical problem of interest. Then, we
derive an integral representation formula for solutions of the Laplace–Beltrami
operator on the sphere, and introduce the single and double layer potentials
[5, 8]. We investigate their jump properties, and use these to derive an integral
equation for the solution of a Dirichlet problem. A variational strategy is
presented, along with some numerical experiments validating our ideas. To the
best of our knowledge, the discretizations of these integral equations have not
been studied before. We believe they present an elegant and natural solution
strategy for boundary value problems on the sphere.

This work is motivated in part by recent investigations into the motion
of point vortices on spheres, specifically in bounded regions with walls on
the sphere. Kidambi and Newton [4] considered such a problem, assuming
the bounded sub-surface of the sphere lent itself to the method of images.
Crowdy, in a series of papers [1, 2, 3], has also investigated the motion of vor-
tices on spheres. In [3], he uses conformal mapping onto the complex plane to
study the motion of a vortex on a sphere with walls. We shall study a closely
related model problem, for which the methods of [3, 4] would be applica-
ble. However, we propose an integral-equation method instead which is valid
for any bounded sub-region S2, provided the curve C is sufficiently smooth.
This technique will be valid even where the method of images is not, and
which does not involve explicit knowledge of conformal mappings between the
stereographically-projected subregion of interest, and the upper half of the
complex plane.
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1.1 Point Vortex Motion on a Sphere with Walls

The underlying physical phenomenon considered in [3] is the motion of a point
vortex in an incompressible fluid on the surface of the unit sphere, S. There is
a bounded solid region, denoted S1 ⊆ S, with a simply connected boundary,
C. No fluid can penetrate into S1. Let S2 be the surface of the sphere excluding
S1 ∪ C, see Fig. 1.

A point on the sphere S will be described in terms of the spherical angles,

x(ϕ, θ) =

⎛⎝ cos ϕ sin θ
sin ϕ sin θ

cos θ

⎞⎠ ∈ S, ϕ ∈ [0, 2π), θ ∈ [0, π].

We consider a point vortex of strength κ located at a point x0 ∈ S2. The flow
motion is assumed irrotational, except for the point vorticity associated with
the vortex. This assumption needs some justification, which we will discuss
below. The incompressible nature of the fluid allows us to prescribe a stream
function, Ψ(x0, x), for the fluid velocity. That is, the velocity field satisfies

u = ∇Ψ × er.

Here er is the unit radial vector to the surface. The vorticity is then defined
as

ω = ωer := ∇× u.

If the fluid motion is irrotational except at x0, then ω = 0 except at that point.
We insist that the boundary C be a streamline of the motion. Without loss of
generality, we can set the streamline constant to zero. The function Ψ is really
the Green’s function for the Laplace–Beltrami operator on the subsurface S2

of the sphere:

C
S2

S1

Fig. 1. The unit sphere, S, with an impenetrable island S1 on the surface. C is the
boundary of the island
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−�S Ψ(x0, x) = κδ(|x − x0|), ∀x ∈ S2, (1a)
Ψ(x0, x) = 0, ∀x ∈ C. (1b)

We recall that, in spherical coordinates, �S is defined as

∆Su(x) =
[

1
sin2 θ

∂2

∂ϕ2
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
u(x(ϕ, θ)). (2)

The assumption that the fluid motion is irrotational can be justified by
noting that since the fluid is incompressible, it can perfectly slip at Σ. This
allows us to prescribe a circulation at C, so that the Gauss constraint for the
vorticity, ∫

S2

ω dσ = 0,

is satisfied.
Analogously to finding Green’s functions in the plane, we can find Ψ in

terms of the fundamental singularity U of the Laplace–Beltrami operator on
the entire surface of the sphere, and a smooth function vx0(x). That is,

Ψ(x, x0) = U(x, x0) + vx0(x) (3)

where vx0 solves

−�Svx0(x) =
κ

4π
, ∀x ∈ Ω, vx0(x) = −U(x0, x), x ∈ C. (4)

We can interpret the fundamental singularity, U , as the stream function for a
point vortex of strength κ on the sphere without boundaries. We denote the
fundamental singularity, with κ = 1, as U∗ henceforth. Note that from [3], we
get that

U(xa, x) = −κ log

∣∣∣∣∣ (z − za)(z − za)
(1 + |z|2)(1 + |za|2)

∣∣∣∣∣
where we’ve stated this in terms of the mapped points z, za in the complex
plane:

z = cot(θ/2)eiφ, x = (θ, φ)

The fundamental singularity U satisfies the partial differential equation:

−�SU = κ

(
δ(|x − x0|) −

1
4π

)
, (5a)

and the Gauss condition for the vorticity, ω = −�S U :∫
S

ω ds = 0. (5b)

The implication of (5a) is that there is a “sea” of uniform vorticity, 1
4π ,

in which the point vortex at x0 must be embedded if moving on the whole
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sphere. We cannot find a distribution Ũ which satisfies −�S Ũ = δ|x − x0| on
the sphere, and which simultaneously satisfies the Gauss constraint. In order
to satisfy the constraint and simultaneously have an irrotational flow, we must
either counterbalance the point vortex at x0 by another vortex on the sphere,
or have the entire fluid moving with a uniform background vorticity. This
feature of the fundamental singularity will appear again in the next section,
and will require us to impose a side constraint on the solution density, when
employing integral equations. This is reminiscent of similar problems arising
in the solution of potential problems in unbounded regions of the plane.

At this juncture, we could use the Green’s function Ψ to study the motion
of the point vortex, which is governed in the stereographic coordinates z by

∂z0

∂t
=

−i

2
(1 + |z0|2)

∂vz0

∂z
|z=z0 .

The solutions of this evolution equation are described in terms of level sets
of the smooth part, vx0(x0) = constant. Such an investigation is performed
in the papers by Kidambi and Newton [4], and Crowdy [3]. Instead, we shall
study a closely related mathematical model problem.

Consider the Dirichlet boundary value problem in S2 for the Laplace–
Beltrami operator:
Find a smooth u such that for given Dirichlet data g

∆Su(x) = 0 for x ∈ S∈, (6a)
u(x) = g(x) for x ∈ C (6b)

We wish to solve (6) by reformulating the boundary value problem as an
integral equation. As usual, the process of reformulation is not unique; we
shall be employing a layer ansatz, and solving an integral equation of the first
kind for the unknown density. We note that we could equivalently have cho-
sen to study the Neumann or Robin problem for the system. We could use
the Green’s function for S2, Ψ , to solve this Dirichlet problem. The methods
suggested in [4] and [3] would also be applicable for our model problem, with
some caveats: the method of Kidambi and Newton relies on the ability to use
the method of images, while Crowdy’s work requires knowledge of a conformal
map from the stereographically-projected S2 into the upper half plane or the
unit circle. Instead, we propose an integral equation method which is valid for
any bounded sub-region S2, provided the curve C is sufficiently smooth, and
without conformally mapping to the plane. Additionally, integral equations
allow us to solve problems with lower regularity properties, a feature we shall
explore in upcoming work.

If S1 were to degenerate, ie, if the interior of C had zero area, we would need
to add extra conditions to satisfy the Gauss constraint. Mathematically, we
would be dealing with the screen problem, and anticipate singular behaviour
on the corners of the screen. On the surface of the entire sphere without walls,
we must either embed the point vortex in a fluid of uniform vorticity (hence
no longer irrotational), or counter-balance it by another point vortex.



Boundary Integral Equations for the Laplace–Beltrami Operator 25

2 An Integral Representation Formula on the Sphere

We begin by reminding the reader of some vectorial identities on the sphere.
Let er, eθ, eϕ be the usual unit vectors in spherical coordinates. Recall that
we can define the surface gradient of a scalar f on S as

∇Sf(x) =
1

sin θ

∂f

∂ϕ
eϕ +

∂f

∂θ
eθ.

In the same way we introduce the surface divergence for a vector-valued func-
tion V on the sphere as

divSV(x) =
1

sin θ

(
∂

∂ϕ
Vϕ(ϕ, θ) +

∂

∂θ
(sin θ Vθ(ϕ, θ))

)
.

We easily see the identity:

∆Su(x) = divS∇Su(x).

We introduce the vectorial surface rotation for a scalar field f on the sphere:

curlSf(x) = − ∂f

∂θ
eϕ +

1
sin θ

∂f

∂ϕ
eθ

and the (scalar) surface rotation of a vector field V as

curlSV(x) =
1

sin θ

(
− ∂

∂ϕ
Vθ(ϕ, θ) +

∂

∂θ
(sin θ Vϕ(ϕ, θ))

)
.

We then obtain another vectorial identity for the Laplace–Beltrami operator:

∆Su(x) = −curlScurlSu(x) for x ∈ S.

We shall be using a variational setting for most of this paper; to this end,
we introduce the inner product

〈u, v〉L2(S) =
∫
S

u(x)v(x)dσx =

2π∫
0

π∫
0

u(x(ϕ, θ))v(x(ϕ, θ)) sin θ dθdϕ.

We shall now derive the Green’s identiy. We find, by integration by parts,

〈−∆Su, v〉L2(S) = aS(u, v) = aS(v, u) = 〈u,−∆Sv〉L2(S)

where we have introduced the symmetric bilinear form

aS(u, v) :=

2π∫
0

π∫
0

[
1

sin θ

∂

∂ϕ
u(ϕ, θ)

∂

∂ϕ
v(ϕ, θ) + sin θ

∂

∂θ
v(ϕ, θ)

∂

∂θ
u(ϕ, θ)

]
dθdϕ

=
∫
S

∇Su(x) · ∇Sv(x) dσx.
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Stoke’s theorem for the positively oriented curve C and region S2 may be
written as ∫

S2

curlSV(x)dσx =
∫
C

V(x) · t(x) dsx.

Here, t is the unit tangent vector to C. We note that a similar identity holds
for the region S1, with care taken with the orientation of the tangent. Now,
setting V = v(x)W(x) and applying the product rule we get∫
S2

curlSv(x) ·W(x) dσx = −
∫
C

v(x)[W(x) ·t(x)]dsx +
∫
S2

v(x)curlSW(x)dσx.

With W(x) = curlSu(x) we finally obtain Green’s first formula for the
Laplace–Beltrami operator,

−
∫
S2

curlSv(x) · curlSu(x) dσx =
∫
C

v(x)[curlSu(x) · t(x)]dsx

+
∫
S2

v(x)∆Su(x)dσx. (7)

Note that the left hand side of (7) coincides with the bilinear form aS(u, v),
with the role of S being played by S2.

2.1 Fundamental Solution and a Representation Formula

Proposition 1. [6, 7] The fundamental solution of the Laplace–Beltrami op-
erator ∆S as defined in (2) is given by

U∗(x, x0) = − 1
4π

log |1 − (x,x0)| (8)

= − 1
4π

log [1 − cos(ϕ − ϕ0) sin θ sin θ0 − cos θ cos θ0] . (9)

In particular,

∆SU∗(x), x0) =
1
4π

(10)

for x = x(ϕ, θ), x0 = x(ϕ0, θ0) ∈ S with (ϕ, θ) 
= (ϕ0, θ0).

Remark 1. For x, x0 ∈ S we have

|x − x0|2 = |x|2 − 2(x, x0) + |x0|2 = 2[1 − (x, x0)].

Hence we obtain

− 1
2π

log |x − x0| = − 1
4π

[log[1 − (x, x0)] + log 2] .

In particular, the fundamental solution of the three-dimensional Laplace–
Beltrami operator corresponds to the fundamental solution of the two-
dimensional Laplace operator.
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The first Green’s identity can be used to derive a representation formula
for smooth functions defined on the sphere.

Proposition 2. Every sufficiently smooth function u on S2 (u ∈ C2(S2) ∩
C1(S̄2)) satisfies the following representation formula

1
4π

∫
S2

u(x)dσx −
∫
S2

U∗(x, x0)∆Su(x)dσx

−
∫
C

U∗(x, x0) curlSu(x) · t(x)dsx +
∫
C

u(x) curlSU∗(x, x0) · t(x)dsx

=
{

u(x0) if x0 ∈ S1,
0 if x0 ∈ S \ S̄1.

(11)

Proof. We obtain Green’s second formula by interchanging the roles of u
and v in (7), adding the two identities and using the symmetry of the left
hand side. ∫

S2

u(x)∆Sv(x) − v(x)∆Su(x) dσx

=
∫
C

[v(x) curlSu(x) − u(x) curlSv(x)] · t(x)dsx. (12)

We define the ε-neighbourhood of x0 on S, Bε(x0) := {y ∈ S : |y − x0| > ε}
and set S2,ε := S \ Bε(x0). The second Green’s formula for S2,ε with v(x) =
U∗(x, x0) yields:

1
4π

∫
S2,ε

u(x) dσx −
∫

S2,ε

U∗(x, x0)∆Su(x) dσx

=
∫
C

[U∗(x, x0) curlSu(x) − u(x) curlSU∗(x, x0)] · t(x)dsx

+
∫

∂Bε(x0)

[U∗(x, x0) curlSu(x) − u(x) curlSU∗(x, x0)] · t(x)dsx (13)

First we observe that

|
∫
S2

U∗(x, x0)∆Su(x) dσx| ≤ ||∆S u||L∞(S)

∫
S2

|U∗(x, x0)| dσx ≤ M,

and hence:

lim
ε→0

∫
S2,ε

U∗(x, x0)∆Su(x) dσx =
∫
S2

U∗(x, x0)∆Su(x) dσx.
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Furthermore, we can estimate the integral∣∣∣∣∣∣
∫

∂Bε

U∗(x, x0) curlSu(x) · t(x) dsx

∣∣∣∣∣∣ ≤ ||curlSu||L∞

∫
∂Bε

|U∗(x, x0)| dsx,

By changing coordinates, without loss of generality x0 can be taken to be
the north pole of the sphere, i.e. x0 = (0, 0, 1)�. The curve ∂Bε is then
fully described by the latitude θε, say. According to the cosine law we have
cos θε = 1 − ε2

2 and thus∫
∂Bε

|U∗(x, x0)| dsx =
1
4π

∫ 0

2π

log |1 − cos θε| sin θε dϕ

= −1
2
ε

√
(1 − ε2

4
) log

ε2

2
−→ 0 (as ε → 0).

To analyse the second contribution along ∂Bε, we again assume x0 to be the
northpole. We then compute

curlSU∗(x, x0) =
sin θε

4π(1 − cos θε)
eϕ.

Since the line element on the surface of the sphere is given by

t(x(ϕ, θ)) · dsx(ϕ,θ) = dθ eθ + sin θdϕ eϕ,

we deduce that (note the orientation of ∂Bε):

−
∫

∂Bε

u(x)[curlSU∗(x, x0) · t(x)]dsx = − sin2 θε

4π(1 − cos θε)

∫ 0

2π

u(ϕ, θε) dϕ,

which in the limit as ε −→ 0 tends to

u(x0)
2

lim
ε→0

ε2 (1 − ε2

4 )
ε2

2

= u(x0).

Taking the limit as ε → 0 in (13) proves the result. ��

At this juncture, we draw the reader’s attention to the term
∫
S2

u(x) dσx

in the representation formula (11). If u satisfied �Su = 0 in S2, the familiar
integral representation formula for the Laplacian in 2-D would not involve
such a term; indeed, the left hand side of the representation formula consists
of line integrals only if u satisfies the side constraint,

∫
S2

u dσx = 0. This is
linked to the Gauss constraint.
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3 Layer Potentials and Boundary Integral Operators

Having derived an integral representation formula for solutions of the Laplace–
Beltrami problem in S2 in the previous section, we are now in a position to
reformulate the boundary value problem as an integral equation.

3.1 Single and Double Layer Potentials

Following the integral representation derived in Proposition 2 we define the
following two layer potentials:

• The single layer potential with sufficiently smooth density function σ:

(Ṽ σ)(x) :=
∫
C

U∗(x, y)σ(y) dsy for x 
∈ C

• And the double layer potential with sufficiently smooth density function µ:

(W̃µ)(x) :=
∫
C

µ(y) [curlSU∗(x, y) · t(y)] dsy for x 
∈ C

By Proposition 2, every solution to the homogeneous Laplace–Beltrami equa-
tion can be written as the sum of a single and a double layer potential modulo
a constant. This is the starting point for the so-called direct boundary integral
approach. However, for the purpose of this paper we follow the layer ansatz
based on the following observation.

For x 
∈ C, the single layer potential satisfies:

∆S(Ṽ σ)(x) = ∆S

∫
C

U∗(x, y)σ(y) dsy =
∫
C

∆SU∗(x, y)σ(y) dsy

=
1
4π

∫
C

σ(y) dsy = 0 (14a)

under the constraint
∫
C

σ(y) dsy = 0. (14b)

Hence, we may find the general solution of the Dirichlet boundary value prob-
lem (6) as

u(x) =
∫
C

U∗(x, y)σ(y) dsy + p, (15)

where p ∈ R is some Lagrange multiplier related to the constraint (14b).
Similarly, the double layer potential satisfies the Laplace–Beltrami equation
for x 
∈ C:
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∆S(W̃µ)(x) = ∆S

∫
C

µ(y) [curlSU∗(x, y) · t(y)] dsy

=
∫
C

µ(y)[∆S curlS U∗(x, y) · t(y)] dsy

=
∫
C

µ(y)[curlS ∆SU∗(x, y) · t(y)] dsy

= 0,

without any further constraints on the density µ. We might thus also try to
look for the solution to (6) in the form of a double layer.

3.2 Jump Relations for Ṽ and W̃

In the previous section, we have only defined the layer potentials for x away
from the boundary curve. However, in order to align the operators with the
given Dirichlet data along C, we need to investigate their behavior in the
limit as x approaches C. Similarly, if one is interested in solving the Neumann
problem in which the tangential component of the vectorial surface rotation
is prescribed along C, one has to investigate the limit features of this quantity
for the layer potentials. In both cases, there will be certain jump relations
across the curve C. For the purpose of this paper however, we will restrict
ourselves to the Dirichlet case. First, consider the single layer potential with
density σ for x̃ 
∈ C:

(Ṽ σ)(x̃) =
∫
C

U∗(x̃, x)σ(x) dsx

= − 1
4π

∫
C

log[1 − 〈x̃ , x〉]σ(x) dsx (16)

The following lemma describes the limit behavior of the single layer potential.

Lemma 1. For x0 ∈ C we have:

(V σ)(x0) := lim
S�x̃→x0

(Ṽ σ)(x̃) =
∫
C

U∗(x0, y)σ(y) dsy

as a weakly singular line integral and hence (Ṽ σ) is continuous across C.

Proof. Fix an arbitrary ε > 0. Let x0 ∈ C be fixed, and x̃ ∈ S satisfy |x̃−x0|<ε.
Introduce the notation

Cε,≤ := {y ∈ C, |y − x0| ≤ ε}, Cε,> := {y ∈ C, |y − x0| > ε}.
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Then, if we define

Iε(x̃) :=
∫
C

U∗(x̃, y)σ(y) dsy −
∫
Cε,>

U∗(x0, y)σ(y) dsy,

we can easily show

Iε =
∫
Cε,>

[U∗(x̃, y) − U∗(x0, y)] σ(y) dsy +
∫
Cε,≤

U∗(x̃, y)σ(y) dsy. (17)

The first integral in (17) vanishes in the limit as x̃ −→ x0, i.e.

lim
x̃→x0

∫
Cε,>

[U∗(x̃, y) − U∗(x0, y)] σ(y) dsy = 0.

The second term in (17) we can bound in terms of the density σ:∣∣∣∣∣
∫
Cε,≤

U∗(x̃, y)σ(y) dsy

∣∣∣∣∣ ≤ ‖σ‖L∞(C)

∫
Cε,≤

|U∗(x̃, y)| dsy.

To finish the proof, note that we can estimate∫
Cε,≤

|U∗(x̃, y)| dsy ≤
∫

y ∈ C
|y − x̃| ≤ 2ε

|U∗(x̃, y)| dsy
x̃→x0−→

∫
y ∈ C

|y − x0| ≤ 2ε

|U∗(x0, y)| dsy
ε→0−→ 0.

Putting these estimates together, we see that lim
ε→0

lim
x̃→x

Iε(x̃) = 0, which proves

the assertion. ��

The case of the double layer potential is slightly more involved, since the
limit process reveals a hidden delta function. To see this, consider the double
layer potential with density µ for x 
∈ C:

(W̃µ)(x) =
∫
C

µ(x̃) [curlSU∗(x, x̃) · t(x̃)] dsx̃

=
1
4π

∫
C

µ(x̃)
1

A(x, x̃)

[(
− cos(ϕ − ϕ̃) cos θ sin θ̃ + sin θ cos θ̃

− sin θ̃ sin(ϕ − ϕ̃)

)
· t(x̃)

]
dsx̃

(18)

A(x, x̃) = 1 − cos(ϕ − ϕ̃) sin θ sin θ̃ − cos θ cos θ̃. Where x = x(ϕ, θ) and
x̃ = x(ϕ̃, θ̃)



32 S. Gemmrich et al.

Lemma 2. For x0 ∈ C we have:

(γS2
0 W̃µ)(x0) := lim

S2�x→x0
(W̃µ)(x)

= (Kµ)(x0) +
(

1 − α(x0)
2π

)
µ(x0),

where α(x0) represents the interior (with respect to S2) angle of C at x0. For
a smooth curve, α = π. The operator (Kµ) is given by the following integral
expression:

(Kµ)(x0) = lim
ε→0

(Kεµ)(x0)

= lim
ε→0

∫
|x̃−x0|≥ε

µ(x̃) [curlS U∗(x, x̃) · t(x̃)] dsx̃. (19)

Hence the double layer potential satisfies:[
(γ0W̃µ)

]
C

:= (γS2
0 W̃µ) + (γS1

0 W̃µ) = µ, (20)

where we tacitely assumed the orientation of the tangential vector t along C
to be in accordance with the orientation of S2 in the sense of Stoke’s theorem.

Proof. Given ε > 0, let x ∈ S2 with ‖x − x0‖ < ε.We introduce the notation

Cε,< := {x̃ ∈ C, |x̃ − x0| < ε}, Cε,≥ := {x̃ ∈ C, |x̃ − x0| ≥ ε}

Then,

(Wµ)(x)−(Kεµ)(x0) =
∫
Cε,≥

µ(x̃) [curlS U∗(x, x̃) − curlS U∗(x0, x̃)] · t(x̃) dsx̃∫
Cε,<

µ(x̃) curlS U∗(x, x̃) · t(x̃) dsx̃

and the first integral again vanishes as x approaches x0, i.e.∣∣∣∣∣
∫
Cε,≥

µ(x̃) [curlS U∗(x, x̃) − curlS U∗(x0, x̃)] · t(x̃) dsx̃

∣∣∣∣∣ x→x0−→ 0.

The second term can be rewritten as follows:∫
Cε,<

µ(x̃) curlS U∗(x, x̃) · t(x̃) dsx̃

=
∫
Cε,<

[µ(x̃) − µ(x0)] curlS U∗(x, x̃) · t(x̃) dsx̃

+ µ(x0)
∫
Cε,<

curlS U∗(x, x̃) · t(x̃) dsx̃. (21)
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For the first integral on the right hand side of (21) we have the estimate∣∣∣∣∣
∫
Cε,<

[µ(x̃) − µ(x0)] curlS U∗(x, x̃) · t(x̃) dsx̃

∣∣∣∣∣
≤ sup

Cε,<

|µ(x̃) − µ(x0)|
∫
Cε,<

|curlS U∗(x, x̃) · t(x̃)| dsx̃

≤ M · length (Cε) · sup
Cε,<

|µ(x̃) − µ(x0)|

for some constant M , and hence the integral vanishes in the limit as ε −→ 0.
For the second integral in (21), we define Ωε(x) := {x̃ ∈ S2 : |x − x̃| < ε}
to see

µ(x0)
∫
Cε,<

curlS U∗(x, x̃) · t(x̃) dsx̃ = µ(x0)
∫

∂Ωε(x0)

curlS U∗(x, x̃) · t(x̃) dsx̃

− µ(x0)
∫

x̃ ∈ S2

|x̃ − x0| = ε

curlS U∗(x, x̃) · t(x̃) dsx̃

Using the representation formula with u ≡ 1 we get

= µ(x0)

⎛⎝1 − 1
4π

∫
Ωε

dσx̃

⎞⎠− µ(x0)
∫

x̃ ∈ S2

|x̃ − x0| = ε

curlS U∗(x, x̃) · t(x̃) dsx̃

and without loss of generality we compute the remaining integral with respect
to the northpole to find for all x0:

lim
ε→0

∫
x̃ ∈ C

|x̃ − x0| = ε

curlS U∗(x, x̃) · t(x̃) dsx̃ =
α(x0)

2π
.

Putting the parts together we see that

lim
ε→0

lim
x→x0

(
(W̃µ)(x) − (Kεµ)(x0)

)
=
(

1 − α(x0)
2π

)
µ(x0).

��

4 A BIE Strategy for Solving the Dirichlet Problem

With the single and double layer potentials defined as in the previous sec-
tion, we are now in a position to reformulate the Dirichlet problem for
the Laplace–Beltrami operator. For the purposes of this paper, we assume
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sufficient smoothness of the data g and the curve C such that all the operators
are well-defined; these assumptions can be relaxed, and the precise regularity
and smoothness assumptions necessary are a subject of a forthcoming work.
In what follows, however, we assume the curve C is at least C2, and that the
boundary data is smooth. We shall present a numerical example where we
allow g to be Lipschitz.

Recall that we wish to find a smooth function u such that

−�Su = 0 in S2, and u = g on C. (22)

We seek a solution of this equation in terms of a layer ansatz. That is, we
wish to find a density, σ or µ, so that either

u := Ṽ σ or u := W̃µ (23)

solves 22.

Lemma 3. If the density σ solves the boundary integral equation

V σ = g, on C, and also
∫
C

σds = 0, (24)

then the function u := Ṽ σ solves (22).If the density µ solves

(
1
2
I + K)µ = g, on C, (25)

then the solution of (22) is given by the double layer potential, u := W̃µ.

The proof is immediate from the previous section.

4.1 An Indirect Integral Equation Formulation

For concreteness, we describe in some detail a variational strategy to solve a
boundary integral equation, whose solution then can be used to solve (22). We
seek a solution u of the Laplace–Beltrami operator with prescribed boundary
values on C. The solution is assumed to be of the form

u = Ṽ σ + p

where the density satisfies the integral equation

V σ + p = g on C

along with the constraint ∫
C

σds = 0.
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We can write the weak formulation of this problem in saddle-point form as:
Find σ ∈ H and a multiplier p ∈ R such that

〈V σ, χ〉 + p〈1, χ〉 = 〈g, χ〉, (26a)
q〈1, σ〉 = 0, (26b)

for any test function χ ∈ H and any real constant q. Under the present
assumptions on smoothness, we set H = C(C), and 〈·, ·〉 is simply the L2−
inner product along C; we will describe the appropriate Sobolev spaces in
which to naturally seek σ in subsequent work. The angle brackets will then
represent the duality pairings in L2.

The discretization strategy is now standard. Let τh be a partition of C, with
sub-interval size h > 0. We approximate H by a finite-dimensional space, Sh,
which is parametrized by the meshsize h; as h → 0, the approximation error
infvh∈Sh

‖u − vh‖H → 0 for all u ∈ H. We then study the discrete Galerkin
problem:
Find σh ∈ Sh, ph ∈ R, such that for all (χh, qh) ∈ Sh × R,

〈V σh, χh〉 + ph〈1, χh〉ds = 〈g, χh〉, (27a)
qh〈1, σh〉 = 0, (27b)

We shall provide an error analysis of this system in a subsequent paper, based
on the correct choices of Sobolev spaces for the densities σ and approxima-
tion spaces Sh; at present, we present numerical experiments to validate the
boundary element strategy.

4.2 Numerical Experiments

In what follows, we choose C to be the equator of the sphere, which is described
by the latitude θ = π/2. We solve the Laplace–Beltrami equation in the
southern hemisphere S2. To do this we prescribe Dirichlet data g on C and
solve the discrete Galerkin system (27). The partitions τh = ∪N

i=1Ωi of C are
chosen to consist of uniform sub-intervals of size h. The approximations are
sought in the space of piece wise constant functions, i.e.

Sh := {χ |χ(ϕ) = ci for ϕ ∈ Ωi}.

In the specific case of the southern hemisphere, a Green’s function for the
problem is known and we can write down the solution in closed form as follows:

u(ϕ, θ) =
1
4π

∫ 2π

0

cos(θ)
−1 + cos(ϕ − ϕ0) sin(θ)

g(ϕ0) dϕ0, (28)

for θ > π
2 and ϕ ∈ [0, 2π]. This expression serves as a reference for our

computed solution.
We report the convergence behavior of the method in terms of the L2 error

of the computed solution along the latitude θ = 3/4π. In Table 1, we report
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Table 1. L2 error of BEM solution, measured along θ = 3/4 π

DoF Convergence for g = sin(ϕ) Convergence for g = h(ϕ)

L2 error Ratio L2 error Ratio

20 2.41e−4 – 0.023 –
40 2.99e−5 8.06 2.57e−4 89.49
80 3.73e−6 8.02 3.06e−5 8.40
160 4.66e−7 8.00 3.73e−6 8.20
320 5.83e−8 7.99 4.61e−7 8.09
640 7.28e−9 8.01 4.73e−8 8.05

Convergence Denavior

g=sin
g=h
g=hat function
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Fig. 2. a Convergence behavior for different choices of g and b View on solution
from below the south pole for hat-shaped data, h(ϕ)

this L2-error versus the number of unknowns, for two choices of Dirichlet data:
g = sin(ϕ), and g = h(ϕ), where h is a hat-shaped function,

h(ϕ) :=

{
17
(
1 − 6

π |ϕ|
)
, |ϕ| ≤ π

6

0 otherwise.

We note that halving the mesh-size reduces the L2 error by a factor of 8 in
both cases. Figure 2a shows the convergence behavior in terms of the above
mentioned error versus the number of unknowns. In Fig. 2b, we see the ac-
tual solution of the boundary value problem, corresponding to the piece wise
Dirichlet data g = h(ϕ).

5 Conclusion

We have presented a boundary integral formulation, and associated Galerkin
discretization strategy, for a boundary value problem for the Laplace–Beltrami
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operator on the unit sphere in R
3. Numerical experiments verify the applica-

bility of the idea, and a rigorous error analysis will be presented in future
work.
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Summary. In this paper, we perform a careful numerical study of nearly singular
solutions of the 3D incompressible Euler equations with smooth initial data. We con-
sider the interaction of two perturbed antiparallel vortex tubes which was previously
investigated by Kerr in [16, 19]. In our numerical study, we use both the pseudo-
spectral method with the 2/3 dealiasing rule and the pseudo-spectral method with
a high order Fourier smoothing. Moreover, we perform a careful resolution study
with grid points as large as 1,536× 1,024× 3,072 to demonstrate the convergence of
both numerical methods. Our computational results show that the maximum vor-
ticity does not grow faster than doubly exponential in time while the velocity field
remains bounded up to T = 19, beyond the singularity time T = 18.7 reported
by Kerr in [16, 19]. The local geometric regularity of vortex lines near the region
of maximum vorticity seems to play an important role in depleting the nonlinear
vortex stretching dynamically.

1 Introduction

The question of whether the solution of the 3D incompressible Euler equations
can develop a finite time singularity from a smooth initial condition is one of
the most challenging problems. A major difficulty in obtaining the global regu-
larity of the 3D Euler equations is due to the presence of the vortex stretching,
which is formally quadratic in vorticity. There have been many computational
efforts in searching for finite time singularities of the 3D Euler and Navier–
Stokes equations, see e.g. [5, 23, 20, 12, 24, 16, 4, 2, 10, 22, 11, 19]. Of particular
interest is the numerical study of the interaction of two perturbed antipar-
allel vortex tubes by Kerr [16, 19], in which a finite time blowup of the 3D
Euler equations was reported. There has been a lot of interests in studying
the interaction of two perturbed antiparallel vortex tubes in the late 1980s
and early 1990s because of the vortex reconnection phenomena observed for
the Navier–Stokes equations. While most studies indicated only exponential
growth in the maximum vorticity [23, 1, 3, 20, 21, 24], the work of Kerr and
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Hussain in [20] suggested a finite time blow-up in the infinite Reynolds number
limit, which motivated Kerr’s Euler computations mentioned above.

There has been some interesting development in the theoretical under-
standing of the 3D incompressible Euler equations. It has been shown that
the local geometric regularity of vortex lines can play an important role in
depleting nonlinear vortex stretching [6, 7, 8, 9]. In particular, the recent re-
sults obtained by Deng et al. [8, 9] show that geometric regularity of vortex
lines, even in an extremely localized region containing the maximum vorticity,
can lead to depletion of nonlinear vortex stretching, thus avoiding finite time
singularity formation of the 3D Euler equations.

In a recent paper [13] (see also [14, 15]), we have performed well-resolved
computations of the 3D incompressible Euler equations using the same ini-
tial condition as the one used by Kerr in [16]. In our computations, we use a
pseudo-spectral method with a very high order Fourier smoothing to discre-
tise the 3D incompressible Euler equations. The time integration is performed
using the classical fourth order Runge–Kutta method with adaptive time step-
ping to satisfy the CFL stability condition. We use up to 1,536×1,024×3,072
space resolution to resolve the nearly singular behavior of the 3D Euler equa-
tions. Our computational results demonstrate that the maximum vorticity
does not grow faster than doubly exponential in time, up to t = 19, beyond
the singularity time t = 18.7 predicted by Kerr’s computations [16, 19]. More-
over, we show that the velocity field, the enstrophy, and enstrophy produc-
tion rate remain bounded throughout the computations. This is in contrast to
Kerr’s computations in which the vorticity blows up like O((T − t)−1) and the
velocity field blows up like O((T − t)−1/2). The vortex lines near the region of
the maximum vorticity are found to be relatively smooth. With the velocity
field being bounded, the non-blowup result of Deng et al. [8, 9] can be applied,
which implies that there is no blowup of the Euler equations up to T = 19.
The local geometric regularity of the vortex lines near the region of maximum
vorticity seems to play an important role in the dynamic depletion of vortex
stretching.

The purpose of this paper is to perform a systematic convergence study
using two different numerical methods to further validate the computational
results obtained in [13] (see also [14]). These two methods are the pseudo-
spectral method with the 2/3 dealiasing rule and the pseudo-spectral method
with a high order Fourier smoothing. For the 3D Euler equations with periodic
boundary conditions, the pseudo-spectral method with the 2/3 dealiasing rule
has been used widely in the computational fluid dynamics community. This
method has the advantage of removing the aliasing errors completely. On the
other hand, when the solution is nearly singular, the decay of the Fourier spec-
trum is very slow. The abrupt cut-off of the last 1/3 of its Fourier modes could
generate significant oscillations due to the Gibbs phenomenon. In our com-
putational study, we find that the pseudo-spectral method with a high order
Fourier smoothing can alleviate this difficulty by applying a smooth cut-off at
high frequency modes. Moreover, we find that by using a high order smoothing,



Numerical Study of Singular Solutions 41

we can retain more effective Fourier modes than the 2/3 dealiasing rule. This
gives a better convergence property. To demonstrate the convergence of both
methods, we perform a careful resolution study, both in the physical space and
spectrum space. Our extensive convergence study shows that both numerical
methods converge to the same solution under mesh refinement. Moreover, we
show that the pseudo-spectral method with a high order Fourier smoothing
offers better accuracy than the pseudo-spectral method with the 2/3 dealias-
ing rule.

To understand the differences between our computational results and those
obtained by Kerr in [16], we need to make some comparison between Kerr’s
computations [16] and our computations. In Kerr’s computations, he used a
pseudo-spectral discretization with the 2/3 dealiasing rule in the x and y di-
rections, and a Chebyshev discretization in the z-direction with resolution of
order 512 × 256 × 192. In order to prepare the initial data that can be used
for the Chebyshev polynomials, Kerr performed some interpolation and used
extra filtering. As noted by Kerr [16] (see the top paragraph of page 1729),
“An effect of the initial filter upon the vorticity contours at t = 0 is a long
tail in Fig. 2a” (see also Fig. 2 of this paper). Such “a long tail” seems to be
a numerical artifact. In comparison, since we use pseudo-spectral approxima-
tions in all three directions, there is no need to perform interpolation or use
extra filtering as was done in [16]. Our initial vorticity contours are essentially
symmetric (see Fig. 1). There is no such “a long tail” in our initial vorticity
contours.

A more important difference between Kerr’s computations and our com-
putations is the difference between his numerical resolution and ours. From
the numerical results presented at t = 15 and t = 17 in [16], one can observe
noticeable oscillations in the vorticity contours (see Fig. 4 of [16] or Fig. 22
of this paper). By t = 17, the two vortex tubes have effectively turned into
two thin vortex sheets which roll up at the left edge (see Figs. 24 and 25 of

Fig. 1. The axial vorticity (the second component of vorticity) contours of the initial
value on the symmetry plane. The vertical axis is the z-axis, and the horizontal axis
is the x-axis
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Fig. 2. Kerr’s axial vorticity contours of the initial value on the symmetry plane.
The vertical axis is the z-axis, and the horizontal axis is the x-axis. This is Fig. 2a
of [16]

this paper). The rolled up portion of the vortex sheet travels backward in
time and moves away from the dividing plane (the x–y plane). With only 192
Chebyshev grid points along the z-direction in Kerr’s computations, there are
not enough grid points to resolve the rolled up portion of the vortex sheet,
which is some distance away from the dividing plane. The lack of resolution
along the z-direction plus the Gibbs phenomenon due to the use of the 2/3
dealiasing rule in the x and y directions may contribute to the oscillations
observed in Kerr’s computations. In comparison, we have 3,072 grid points
along the z-direction, which provide about 16 grid points across the singular
layer at t = 18, and about eight grid points at t = 19 [13]. It is also worth
mentioning that Kerr has only about 100 effective Fourier modes in the x and
y directions (see Fig. 18 of [16]), while we have about 1,300 effective Fourier
modes in |k| (see Figs. 11 and 12 of this paper). The difference between our
resolutions is quite significant.

It is worth noting that the computations for t ≤ 17, which Kerr used as
the primary evidence for a singularity, is still far from the predicted singular-
ity time, T = 18.7. With the asymptotic scaling parameter being T − t = 1.7,
the error in the singularity fitting could be of order one. In order to justify
the predicted asymptotic behavior of vorticity and velocity blowup, one needs
to perform well-resolved computations much closer to the predicted singular-
ity time. As our computations demonstrate, the alleged singularity scaling,
‖ω‖∞ ≈ c/(T − t), does not persist in time (here ω is vorticity). If we take
T = 18.7, as suggested in [16], the scaling constant, c, does not remain con-
stant as t → T . In fact, we find that c rapidly decays to zero as t → T (see
Fig. 20 of this paper).

The rest of this paper is organized as follows. We describe the set-up of
the problem in Sect. 2. In Sect. 3, we perform a systematic convergence study
of the two numerical methods. We describe our numerical results in detail and
compare them with the previous results obtained in [16, 19] in Sect. 4. Some
concluding remarks are made in Sect. 5.
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2 The Set-Up of the Problem

The 3D incompressible Euler equations in the vorticity stream function for-
mulation are given as follows:

ωt + (u · ∇)ω = ∇u · ω, (1)
−� ψ = ω, u = ∇× ψ, (2)

with initial condition ω |t=0= ω0, where u is velocity, ω is vorticity, and
ψ is stream function. Vorticity is related to velocity by ω = ∇ × u. The
incompressibility implies that

∇ · u = ∇ · ω = ∇ · ψ = 0.

We consider periodic boundary conditions with period 4π in all three
directions.

We study the interaction of two perturbed antiparallel vortex tubes us-
ing the same initial condition as that of Kerr (see Sect. III of [16]). Follow-
ing [16], we call the x–y plane as the “dividing plane” and the x–z plane
as the “symmetry plane”. There is one vortex tube above and below the
dividing plane respectively. The term “antiparallel” refers to the antisym-
metry of the vorticity with respect to the dividing plane in the following
sense: ω(x, y, z) = −ω(x, y,−z). Moreover, with respect to the symme-
try plane, the vorticity is symmetric in its y component and antisymmet-
ric in its x and z components. Thus we have ωx(x, y, z) = −ωx(x,−y, z),
ωy(x, y, z) = ωy(x,−y, z) and ωz(x, y, z) = −ωz(x,−y, z). Here ωx, ωy, ωz

are the x, y, and z components of vorticity respectively. These symmetries
allow us to compute only one quarter of the whole periodic cell.

A complete description of the initial condition is also given in [13]. There
are a few misprints in the analytic expression of the initial condition given in
[16]. In our computations, we use the corrected version of Kerr’s initial condi-
tion by comparing with Kerr’s Fortran subroutine which was kindly provided
to us by him. A list of corrections to these misprints is given in the Appendix
of [13].

We should point out that due to the difference between Kerr’s discretiza-
tion strategies and ours in solving the 3D Euler equations, there is some no-
ticeable difference between the discrete initial condition generated by Kerr’s
discretization and the one generated by our pseudo-spectral discretization.
In [16], Kerr interpolated the initial condition from the uniform grid to the
Chebyshev grid along the z-direction and applied extra filtering. This inter-
polation and extra filtering, which were not provided explicitly in [16], seem
to introduce some numerical artifact to Kerr’s discrete initial condition. Ac-
cording to [16] (see the top paragraph of page 1729), “An effect of the initial
filter upon the vorticity contours at t = 0 is a long tail in Fig. 2a”. Since our
computations are performed on a uniform grid using the pseudo-spectral ap-
proximations in all three directions, we do not need to use any interpolation
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To demonstrate this slight difference between Kerr’s discrete initial condition
and ours, we plot the initial vorticity contours along the symmetry plane in
Fig. 1 using our spectral discretization in all three directions. As we can see,
the initial vorticity contours in Fig. 1 are essentially symmetric. This is in
contrast to the apparent asymmetry in Kerr’s initial vorticity contours as il-
lustrated by Fig. 2, which is Fig. 2a of [16]. We also present the 3D plot of the
vortex tubes at t = 0 and t = 6 respectively in Fig. 3. We can see that the two
initial vortex tubes are essentially symmetric. By time t = 6, there is already
a significant flattening near the center of the tubes.

Fig. 3. The 3D view of the vortex tube for t = 0 and t = 6. The tube is the
isosurface at 60% of the maximum vorticity. The ribbons on the symmetry plane
are the contours at other different values
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We exploit the symmetry properties of the solution in our computations,
and perform our computations on only a quarter of the whole domain. Since
the solution appears to be most singular in the z direction, we allocate twice
as many grid points along the z direction than along the x direction. The
solution is least singular in the y direction. We allocate the smallest resolution
in the y direction to reduce the computation cost. In our computations, two
typical ratios in the resolution along the x, y and z directions are 3 : 2 : 6
and 4 : 3 : 8. Our computations were carried out on the PC cluster LSSC-
II in the Institute of Computational Mathematics and Scientific/Engineering
Computing of Chinese Academy of Sciences and the Shenteng 6800 cluster in
the Super Computing Center of Chinese Academy of Sciences. The maximal
memory consumption in our computations is about 120 GB.

3 Convergence Study of the Two Numerical Methods

We use two numerical methods to compute the 3D Euler equations. The first
method is the pseudo-spectral method with the 2/3 dealiasing rule. The second
method is the pseudo-spectral method with a high order Fourier smoothing.
The only difference between these two methods is in the way we perform the
cut-off of the high frequency Fourier modes to control the aliasing error. If v̂k

is the discrete Fourier transform of v, then we approximate the derivative of v
along the xj direction, vxj

, by taking the discrete inverse Fourier transform of
ikjρ(2kj/Nj)v̂k, where k = (k1, k2, k3) and ρ is a high frequency Fourier cut-
off function. Here kj is the wave number (|kj | � Nj/2) along the xj direction
and Nj is the total number of grid points along the xj direction. For the
pseudo-spectral method with the 2/3 dealiasing rule, the cut-off function ρ is
chosen such that ρ(x) = 1 if |x| ≤ 2/3, and ρ(x) = 0 if 2/3 < |x| ≤ 1. For the
pseudo-spectral method with a high order smoothing, we choose the cut-off
function ρ to be a smooth function of the form ρ(x) ≡ exp(−α|x|m) with
α = 36 and m = 36. The time integration is performed using the classical
fourth order Runge–Kutta method. Adaptive time stepping is used to satisfy
the CFL stability condition with CFL number equal to π/4. We use a sequence
of resolutions: 768×512×1,536, 1,024×768×2,048, and 1,536×1,024×3,072,
to demonstrate the convergence of our numerical computations.

3.1 Comparison of the Two Methods

It is interesting to make some comparison of the two spectral methods we
use. First of all, both methods are of spectral accuracy. The pseudo-spectral
method with the 2/3 dealiasing rule has been widely used in the computational
fluid dynamics community. It has the advantage of removing the aliasing er-
ror completely. On the other hand, when the solution is nearly singular, the
Fourier spectrum typically decays very slowly. By cutting off the last 1/3 of
the high frequency modes along each direction abruptly, this can introduce
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Fig. 4. The profile of the Fourier smoothing, exp(−36(x)36), as a function of x.
The vertical line corresponds to the cut-off mode using the 2/3 dealiasing rule. We
can see that using this Fourier smoothing we keep about 12–15% more modes than
those using the 2/3 dealiasing rule

oscillations in the physical solution due to the Gibbs phenomenon. In this
paper, we will provide solid numerical evidences to demonstrate this effect.
On the other hand, the pseudo-spectral method with the high order Fourier
smoothing is designed to keep the majority of the Fourier modes unchanged
and remove the very high modes to avoid the aliasing error, see Fig. 4 for the
profile of ρ(x). We choose α to be 36 to guarantee that ρ(2kj/Nj) reaches
the level of the round-off error (O(10−16)) at the highest modes. The order
of smoothing, m, is chosen to be 36 to optimize the accuracy of the spectral
approximation, while still keeping the aliasing error under control. As we can
see from Fig. 4, the effective modes in our computations are about 12–15%
more than those using the standard 2/3 dealiasing rule. Retaining part of
the effective high frequency Fourier modes beyond the traditional 2/3 cut-off
position is a special feature of the second method.

To compare the performance of the two methods, we perform a careful
convergence study for the two methods. In Fig. 5, we compare the Fourier
spectra of the enstrophy obtained by using the pseudo-spectral method with
the 2/3 dealiasing rule with those obtained by the pseudo-spectral method
with the high order smoothing. For a fixed resolution 768 × 512 × 1,536, we
can see that the Fourier spectra obtained by the pseudo-spectral method with
the high order smoothing retains more effective Fourier modes than those
obtained by the spectral method with the 2/3 dealiasing rule. This can be
seen by comparing the results with the corresponding computations using a
higher resolution 1,024 × 768 × 2,048. Moreover, the pseudo-spectral method
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Fig. 5. The enstrophy spectra versus wave numbers. We compare the enstrophy
spectra obtained using the high order Fourier smoothing method with those using
the 2/3 dealiasing rule. The dashed lines and dashed–dotted lines are the enstrophy
spectra with the resolution 768 × 512 × 1,536 using the 2/3 dealiasing rule and
the Fourier smoothing, respectively. The solid lines are the enstrophy spectra with
resolution 1,024×768×2,048 obtained using the high order Fourier smoothing. The
times for the spectra lines are at t = 15, 16, 17, 18, 19 respectively

with the high order Fourier smoothing does not give the spurious oscillations
in the Fourier spectra which are present in the computations using the 2/3
dealiasing rule near the 2/3 cut-off point.

We perform further comparison of the two methods using the same res-
olution. In Fig. 6, we plot the energy spectra computed by the two methods
using resolution 768 × 512 × 1,536. We can see that there is almost no dif-
ference in the Fourier spectra generated by the two methods in early times,
t = 8, 10, when the solution is still relatively smooth. The difference begins to
show near the cut-off point when the Fourier spectra raise above the round-off
error level starting from t = 12. We can see that the spectra computed by
the pseudo-spectral method with the 2/3 dealiasing rule introduces noticeable
oscillations near the 2/3 cut-off point. The spectra computed by the pseudo-
spectral method with the high order smoothing, on the other hand, extend
smoothly beyond the 2/3 cut-off point. As we see from Fig. 5, a significant
portion of those Fourier modes beyond the 2/3 cut-off position are still accu-
rate. In the next subsection, we will demonstrate by a careful resolution study
that the pseudo-spectral method with the high order smoothing indeed offers
better accuracy than the pseudo-spectral method with the 2/3 dealiasing rule.

Similar comparison can be made in the physical space for the velocity field
and the vorticity. In Fig. 7, we compare the maximum velocity as a function
of time computed by the two methods using resolution 768×512×1,536. The
two solutions are almost indistinguishable. In Fig. 8, we plot the maximum
vorticity as a function of time. The two solutions agree very well up to t = 18.
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Fig. 6. The energy spectra versus wave numbers. We compare the energy spectra
obtained using the high order Fourier smoothing method with those using the 2/3
dealiasing rule. The dashed lines and solid lines are the energy spectra with the
resolution 768×512×1,536 using the 2/3 dealiasing rule and the Fourier smoothing,
respectively. The times for the spectra lines are at t = 8, 10, 12, 14, 16, 18 respectively
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Fig. 7. Comparison of maximum velocity as a function of time computed by two
methods. The solid line represents the solution obtained by the pseudo-spectral
method with the high order smoothing, and the dashed line represents the solution
obtained by the pseudo-spectral method with the 2/3 dealiasing rule. The resolution
is 768 × 512 × 1,536 for both methods

The solution obtained by the pseudo-spectral method with the 2/3 dealiasing
rule grows slower from t = 18 to t = 19. To understand why the two solutions
start to deviate from each other toward the end, we examine the contour plot
of the axial vorticity in Figs. 9 and 10. As we can see, the vorticity computed
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Fig. 8. Comparison of maximum vorticity as a function of time computed by two
methods. The solid line represents the solution obtained by the pseudo-spectral
method with the high order smoothing, and the dashed line represents the solution
obtained by the pseudo-spectral method with the 2/3 dealiasing rule. The resolution
is 768 × 512 × 1,536 for both methods

Fig. 9. Comparison of axial vorticity contours at t = 17 computed by two methods.
The picture on the top is the solution obtained by the pseudo-spectral method with
the 2/3 dealiasing rule, which is shifted by a distance of π in z direction, and the
picture on the bottom is the solution obtained by the pseudo-spectral method with
the high order smoothing. The resolution is 768 × 512 × 1,536 for both methods.
The box is the whole x–z computational domain [−2π, 2π] × [0, 2π]

by the pseudo-spectral method with the 2/3 dealiasing rule already develops
small oscillations at t = 17. The oscillations grow bigger by t = 18. We
note that the oscillations in the axial vorticity contours concentrate near the
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Fig. 10. Comparison of axial vorticity contours at t = 18 computed by two methods.
This figure has the same layout as Fig. 9. The top picture uses the 2/3 dealiasing
rule, while the bottom picture uses the high order smoothing. The resolution is
768 × 512 × 1,536 for both methods

region where the magnitude of vorticity is close to zero. On the other hand,
the solution computed by the spectral method with the high order smoothing
is still quite smooth.

3.2 Resolution Study for the Two Methods

In this subsection, we perform a resolution study for the two numerical
methods using a sequence of resolutions. For the pseudo-spectral method
with the high order smoothing, we use the resolutions 768 × 512 × 1,536,
1,024 × 768 × 2,048, and 1,536 × 1,024 × 3,072 respectively. Except for the
computation on the largest resolution 1,536× 1,024× 3, 072, all computations
are carried out from t = 0 to t = 19. The computation on the final resolu-
tion 1,536 × 1,024 × 3,072 is started from t = 10 with the initial condition
given by the computation with the resolution 1,024 × 768 × 2,048. For the
pseudo-spectral method with the 2/3 dealiasing rule, we use the resolutions
512 × 384 × 1,024, 768 × 512 × 1,536 and 1,024 × 768 × 2,048 respectively.
The computations using the first two resolutions are carried out from t = 0
to t = 19 while the computation on the largest resolution 1,024× 768× 2,048
is started at t = 15 with the initial condition given by the computation with
resolution 512 × 512 × 1,024.

First, we perform a convergence study of the enstrophy and energy spectra
for the pseudo-spectral method with the high order smoothing at later times
(from t = 16 to t = 19) using two largest resolutions 1,024× 768× 2,048, and
1,536 × 1,024 × 3,072. The results are given in Figs. 11 and 12 respectively.
They clearly demonstrate the spectral convergence of the spectral method
with the high order smoothing.
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enstrophy spectra comparison on two resolutions using Fourier smoothing method.
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Fig. 11. Convergence study for enstrophy spectra obtained by the pseudo-spectral
method with high order smoothing using different resolutions. The dashed lines and
the solid lines are the enstrophy spectra on resolution 1,536 × 1,024 × 3,072 and
1,024 × 768 × 2,048, respectively. The times for the lines from bottom to top are
t = 15, 16, 17, 18, 19

0 500 1000 1500

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

energy spectra comparison on two resolutions using Fourier smoothing method.
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Fig. 12. Convergence study for energy spectra obtained by the pseudo-spectral
method with high order smoothing using different resolutions. The dashed lines
and the solid lines are the energy spectra on resolution 1,536 × 1,024 × 3,072 and
1,024 × 768 × 2,048, respectively. The times for the lines from bottom to top are
t = 15, 16, 17, 18, 19
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Fig. 13. The maximum vorticity ‖ω‖∞ in time computed by the pseudo-spectral
method with high order smoothing using different resolutions

To further demonstrate the accuracy of our computations, we compare
the maximum vorticity obtained by the pseudo-spectral method with the high
order smoothing for three different resolutions: 768×512×1,536, 1,024×768×
2,048, and 1,536 × 1,024 × 3,072 respectively. The result is plotted in Fig. 13.
Two conclusions can be made from this resolution study. First, by comparing
Fig. 13 with Fig. 8, we can see that the pseudo-spectral method with the high
order smoothing is indeed more accurate than the pseudo-spectral method
with the 2/3 dealiasing rule for a given resolution. Secondly, the resolution
768×512×1,536 is not good enough to resolve the nearly singular solution at
later times. However, we observe that the difference of the numerical solution
obtained by the resolution 1,024 × 768 × 2,048 is very close to that obtained
by the resolution 1,536 × 1,024 × 3,072. This indicates that the vorticity is
reasonably well-resolved by our largest resolution 1,536 × 1,024 × 3,072.

We have also performed a similar resolution study for the maximum ve-
locity in Fig. 14. The solutions obtained by the two largest resolutions are
almost indistinguishable, which suggests that the velocity is well-resolved by
our largest resolution 1,536 × 1,024 × 3,072.

Next, we perform a similar resolution study for the pseudo-spectral method
with the 2/3 dealiasing rule. The results are very similar to the ones we have
obtained for the pseudo-spectral method with the high order smoothing. Here
we just present a few representative results. In Fig. 15, we plot the enstrophy
spectra for a sequence of times from t = 8 to t = 18 using different resolutions.
The resolutions we use here are 512 × 384 × 1,024, 786 × 512 × 1,536, and
1,024 × 768 × 2,048 respectively. If we compare the Fourier spectra at t = 18
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Fig. 14. Maximum velocity ‖u‖∞ in time computed by the pseudo-spectral method
with high order smoothing using different resolutions
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Fig. 15. Convergence study for enstrophy spectra obtained by the pseudo-spectral
method with the 2/3 dealiasing rule using different resolutions. The solid line is
computed with resolution 512 × 384 × 1,024, the dashed line is computed with
resolution 786 × 512 × 1,536, and the dashed–dotted line is computed with res-
olution 1,024 × 768 × 2,048. The times for the lines from bottom to top are
t = 8, 10, 12, 14, 16, 18, 19
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and t = 19 (the last two curves in Fig. 15), we clearly observe convergence
of the enstrophy spectra as we increase our resolutions. On the other hand,
the decay of the enstrophy spectra becomes very slow at later times. The
oscillations near the 2/3 cut-off point become more and more pronounced as
time increases. This abrupt cut-off of high frequency spectra introduces some
oscillations in the vorticity contours at later times.

To demonstrate that the two numerical methods converge to the same
solution when the solution is nearly singular, we compare the enstrophy
spectra computed by the two numerical methods at later times using the
largest resolutions that we can afford. For the pseudo-spectral method with
the high order smoothing, we use resolution 1,536 × 1,024 × 3,072. For
the pseudo-spectral method with the 2/3 dealiasing rule, we use resolu-
tion 1,024 × 768 × 2,048. In Fig. 16, we plot the enstrophy spectra for
t = 15, 16, 17, 18, 19, respectively. We observe that the two methods give ex-
cellent agreement for those Fourier modes that are not affected by the high
frequency cut-off. This shows that the two numerical methods converge to the
same solution with spectral accuracy.

We have performed a similar convergence study for the pseudo-spectral
method with the 2/3 dealiasing in the physical space for the maximum vor-
ticity. The result is given in Fig. 17. As we can see, the computation with a
higher resolution gives faster growth in the maximum vorticity. This is also
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enstrophy comparison.
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Fig. 16. The enstrophy spectra versus wave numbers. We compare the enstrophy
spectra obtained using the high order Fourier smoothing method with those using
the 2/3 dealiasing rule. The dashed lines are the enstrophy spectra using the 2/3
dealiasing rule with resolution 1,024×768×2,048, and the solid lines are the spectra
with resolution 1,536×1,024×3,072 using the Fourier smoothing. The times for the
spectra lines are at t = 15, 16, 17, 18, 19 respectively
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Fig. 17. The maximum vorticity ‖ω‖∞ in time computed by the pseudo-spectral
method with the 2/3 dealiasing rule using different resolutions

what we observed earlier for the pseudo-spectral method with the high order
smoothing. As we will see in the next section, the maximum vorticity grows
almost like doubly exponential in time. To capture this rapid dynamic growth
of maximum vorticity, we must have sufficient resolution to resolve the nearly
singular solution of the Euler equations at later times.

The resolution study given by Fig. 17 suggests that the maximum vorticity
is reasonably resolved by resolution 768 × 512 × 1,536 before t = 18. It is
interesting to note that at t = 17, small oscillations have already appeared in
the vorticity contours in the region where the magnitude of vorticity is small,
see Fig. 9. Apparently, the small oscillations in the region where the vorticity is
close to zero in magnitude have not yet polluted the accuracy of the maximum
vorticity in a significant way. Note that there is no oscillation developed in the
vorticity contours obtained by the pseudo-spectral method with the high order
smoothing at this time. From Fig. 8, we know that the maximum vorticity
computed by the two methods agrees reasonably well with each other before
t = 18. This shows that the two methods can still approximate the maximum
vorticity reasonably well with resolution 768 × 512 × 1,536 before t = 18.

The resolution study given by Fig. 17 also suggests that the computation
obtained by the pseudo-spectral method with the 2/3 dealiasing rule using
resolution 768 × 512 × 1,536 is significantly under-resolved after t = 18. This
is also supported by the appearance of the relatively large oscillations in the
vorticity contours at t = 18 from Fig. 10. It is interesting to note from Fig. 8
that the computational results obtained by the two methods with resolution
768 × 512 × 1,536 begin to deviate from each other precisely around t = 18.
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By comparing the result from Fig. 8 with that from Fig. 17, we confirm again
that for a given resolution, the pseudo-spectral method with the high or-
der smoothing gives a more accurate approximation than the pseudo-spectral
method with the 2/3 dealiasing rule.

4 Analysis of Computational Results

In this section, we will present a series of numerical results to reveal the nature
of the nearly singular solution of the 3D Euler equations, and compare our
results with those obtained by Kerr in [16, 19]. Based on the convergence
study we have performed in the previous section, we will present only those
numerical results which are computed by the pseudo-spectral method with
the high order smoothing using the largest resolution 1,536 × 1,024 × 3,072.

4.1 Review of Kerr’s Results

In [16], Kerr presented numerical evidence which suggested a finite time singu-
larity of the 3D Euler equations for two perturbed antiparallel vortex tubes.
He used a pseudo-spectral discretization in the x and y directions, and a
Chebyshev method in the z direction with resolution of order 512×256×192.
His computations showed that the growth of the peak vorticity, the peak axial
strain, and the enstrophy production obey (T−t)−1 with T = 18.9. Kerr stated
in his paper [16] (see page 1727) that his numerical results shown after t = 17
and up to t = 18 were “not part of the primary evidence for a singularity” due
to the lack of sufficient numerical resolution and the presence of noise in the
numerical solutions. In his recent paper [19] (see also [17, 18]), Kerr applied a
high wave number filter to the data obtained in his original computations to
“remove the noise that masked the structures in earlier graphics” presented
in [16]. With this filtered solution, he presented some scaling analysis of the
numerical solutions up to t = 17.5. The velocity field was shown to blow up
like O((T − t)−1/2) with T being revised to T = 18.7.

4.2 Maximum Vorticity Growth

From the resolution study we present in Fig. 13, we find that the maximum
vorticity increases rapidly from the initial value of 0.669–23.46 at the final
time t = 19, a factor of 35 increase from its initial value. Kerr’s computations
predicted a finite time singularity at T = 18.7. Our computations show no
sign of finite time blowup of the 3D Euler equations up to T = 19, beyond
the singularity time predicted by Kerr. We use three different resolutions, i.e.
768× 512× 1,536, 1,024× 768× 2,048, and 1,536× 1,024× 3,072 respectively
in our computations. As we can see, the agreement between the two succes-
sive resolutions is very good with only mild disagreement toward the end of
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Fig. 18. Study of the vortex stretching term in time, resolution 1,536×1,024×3,072.
We take c1 = 1/8.128, c2 = 1/23.24 to match the same starting value for all three
plots

the computations. This indicates that a very high space resolution is indeed
needed to capture the rapid growth of maximum vorticity at the later stage
of the computations.

In order to understand the nature of the dynamic growth in vorticity, we
examine the degree of nonlinearity in the vortex stretching term. In Fig. 18,
we plot the quantity, ‖ξ · ∇u ·ω‖∞, as a function of time, where ξ is the unit
vorticity vector. If the maximum vorticity indeed blew up like O((T −t)−1), as
alleged in [16], this quantity should have been quadratic as a function of max-
imum vorticity. We find that there is tremendous cancellation in this vortex
stretching term. It actually grows slower than C‖ω‖∞ log(‖ω‖∞), see Fig. 18.
It is easy to show that such weak nonlinearity in vortex stretching would
imply only doubly exponential growth in the maximum vorticity. Indeed, as
demonstrated by Fig. 19, the maximum vorticity does not grow faster than
doubly exponential in time. In fact, the growth slows down toward the end
of the computation, which indicates that there is stronger cancellation taking
place in the vortex stretching term.

We remark that for vorticity that grows as rapidly as doubly exponential
in time, one may be tempted to fit the maximum vorticity growth by c/(T −t)
for some T . Indeed, if we choose T = 18.7 as suggested by Kerr in [19], we find
a reasonably good fit for the maximum vorticity as a function of c/(T − t) for
the period 15 ≤ t ≤ 17. We plot the scaling constant c in Fig. 20. As we can
see, c is close to a constant for 15 ≤ t ≤ 17. To conclude that the 3D Euler
equations indeed develop a finite time singularity, one must demonstrate that



58 T.Y. Hou and R. Li

10 11 12 13 14 15 16 17 18 19

−1

−0.5

0

0.5

1

Fig. 19. The plot of log log ‖ω‖∞ vs time, resolution 1,536 × 1,024 × 3,072
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Fig. 20. Scaling constant in time for the fitting ‖ω‖∞ ≈ c/(T − t), T = 18.7

such scaling persists as t approaches to T . As we can see from Fig. 20, the
scaling constant c decreases rapidly to zero as t approaches to the alleged
singularity time T . Therefore, the fitting of ‖ω‖∞ ≈ O((T − t)−1) is not
correct asymptotically.
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4.3 Velocity Profile

One of the important findings of our computations is that the velocity field
is actually bounded by 1/2 up to T = 19. This is in contrast to Kerr’s
computations in which the maximum velocity was shown to blow up like
O((T − t)−1/2) [17, 19]. We plot the maximum velocity as a function of time
using different resolutions in Fig. 14. The computation obtained by resolution
1,024 × 768 × 2,048 and the one obtained by resolution 1,536 × 1,024 × 3,072
are almost indistinguishable. The fact that the velocity field is bounded is
significant. With the velocity field being bounded, the non-blowup theory of
Deng et al. [8] can be applied, which implies non-blowup of the 3D Euler
equations up to T . We refer to [13, 14] for more discussions.

4.4 Local Vorticity Structure

In this subsection, we would like to examine the local vorticity structure near
the region of the maximum vorticity. To illustrate the development in the
symmetry plane, we show a series of vorticity contours near the region of the
maximum vorticity at late times in a manner similar to the results presented
in [16]. For some reason, Kerr scaled his axial vorticity contours by a factor of
5 along the z-direction. Noticeable oscillations already develop in Kerr’s axial
vorticity contours at t = 15 and t = 17, see Fig. 22. To compare with Kerr’s
results, we scale the vorticity contours in the x–z plane by a factor of 5 in the
z-direction. The results at t = 15 and t = 17 are plotted in Fig. 21. The results
are in qualitative agreement with Kerr’s results, except that our computations
are better resolved and do not suffer from the noise and oscillations which are
present in Kerr’s vorticity contours.

In order to see better the dynamic development of the local vortex struc-
ture, we plot a sequence of vorticity contours on the symmetry plane at
t = 17.5, 18, 18.5, and 19 respectively in Fig. 23. The pictures are plotted
using the original length scales, without the scaling by a factor of 5 in the z
direction as in Fig. 21. From these results, we can see that the vortex sheet
is compressed in the z direction. It is clear that a thin layer (or a vortex
sheet) is formed dynamically. The head of the vortex sheet begins to roll up
around t = 16. Here the head of the vortex sheet refers to the region extend-
ing above the vorticity peak just behind the leading edge of the vortex sheet
[16]. By the time t = 19, the head of the vortex sheet has traveled backward
for quite a distance and away from the dividing plane. The vortex sheet has
been compressed quite strongly along the z-direction. In order to resolve this
nearly singular layer structure, we use 3,072 grid points along the z-direction,
which gives about 16 grid points across the layer at t = 18 and about eight
grid points across the layer at t = 19. In comparison, the 192 Chebyshev grid
points along the z-direction in Kerr’s computations would not be sufficient to
resolve the rolled-up portion of the vortex sheet.



60 T.Y. Hou and R. Li

Fig. 21. The contour of axial vorticity around the maximum vorticity on the sym-
metry plane at t = 15 (on the top) and t = 17 (on the bottom). The vertical axis is
the z-axis, and the horizontal axis is the x-axis. The figure is scaled in z direction
by a factor of 5 to compare with Fig. 4 in [16]

We also plot the isosurface of vorticity near the region of the maximum
vorticity in Figs. 24 and 25 to illustrate the dynamic roll-up of the vortex sheet
near the region of the maximum vorticity. The isosurface of vorticity in Fig. 24
is set at 0.6 × ‖ω‖∞. Figure 24 gives the local vorticity structure at t = 17.
If we scale the local roll-up region on the left hand side next to the box by a
factor of 4 along the z direction, as was done in [19], we would obtain a local
roll-up structure which is qualitatively similar to Fig. 1 in [19]. In Fig. 25, we
show the local vorticity structure for t = 18 and t = 19. In both figures, the
isosurface is set at 0.5×‖ω‖∞. We can see that the vortex sheets have rolled
up and traveled backward in time away from the dividing plane. Moreover,
we observe that the vortex lines near the region of maximum vorticity are
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Fig. 22. Kerr’s axial vorticity contours on the symmetry plane at t = 15 (on the
top) and t = 17 (on the bottom). These are from Fig. 4 in [16]

relatively straight and the unit vorticity vectors seem to be quite regular. On
the other hand, the inner region containing the maximum vorticity does not
seem to shrink to zero at a rate of (T − t)1/2, as predicted in [19]. The length
and the width of the vortex sheet are still O(1), although the thickness of the
vortex sheet becomes quite small.

Another interesting question is how the vorticity vector aligns with the

eigenvectors of the deformation tensor, which is defined as M ≡ 1
2
(∇u+∇T u).

In Table 1, we document the alignment information of the vorticity vector
around the point of maximum vorticity with resolution 1,536× 1,024× 3,072.
In this table, λi (i = 1, 2, 3) is the i-th eigenvalue of M , θi is the angle between
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Fig. 23. The contour of axial vorticity around the maximum vorticity on the sym-
metry plane (the x–z plane) at t = 17.5, 18, 18.5, 19

the i-th eigenvector of M and the vorticity vector. One can see clearly that
for 16 ≤ t ≤ 19 the vorticity vector at the point of maximum vorticity is
almost perfectly aligned with the second eigenvector of M . The angle between
the vorticity vector and the second eigenvector is very small throughout this
time interval. Note that the second eigenvalue, λ2, is positive and is about
20 times smaller in magnitude than the largest and the smallest eigenvalues.
Moreover, we observe that the magnitude of the second eigenvalue does not
change much in time. This dynamic alignment of the vorticity vector with the
second eigenvector of the deformation tensor is another indication that there
is a dynamic depletion of vortex stretching.
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Fig. 24. The local 3D vortex structure and vortex lines around the maximum
vorticity at t = 17. The size of the box on the left is 0.0753 to demonstrate the scale
of the picture. The isosurface is set at 0.6 × ‖ω‖∞

5 Concluding Remarks

We investigate the interaction of two perturbed vortex tubes for the 3D Euler
equations using Kerr’s initial condition [16]. We use both the pseudo-spectral
method with the standard 2/3 dealiasing rule and the pseudo-spectral method
with a 36th order Fourier smoothing. We perform a careful resolution study
to demonstrate the convergence of both methods. Our numerical computa-
tions demonstrate that while both methods converge to the same solution un-
der resolution study, the pseudo-spectral method with the 36th order Fourier
smoothing offers better computational accuracy for a given resolution. More-
over, we find that the pseudo-spectral method with the 36th order Fourier
smoothing is more effective in reducing the numerical oscillations due to the
Gibbs phenomenon while still keeping the aliasing error under control.

Our numerical study indicates that there is a very subtle dynamic de-
pletion of vortex stretching. The maximum vorticity is shown to grow no
faster than doubly exponential in time up to T = 19, beyond the singularity
time predicted by Kerr in [16]. The velocity field is shown to be bounded
throughout the computations. Vortex lines near the region of the maximum
vorticity are quite regular. We provide numerical evidence that the vortex
stretching term is only weakly nonlinear and is bounded by ‖ω‖∞ log(‖ω‖∞).
This implies that there is tremendous dynamic cancellation in the nonlinear
vortex stretching term. With the velocity field being bounded and the vortex
lines being regular near the region of the maximum vorticity, the non-blowup
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Fig. 25. The local 3D vortex structures and vortex lines around the maximum
vorticity at t = 18 (on the top) and t = 19 (on the bottom). The isosurface is set at
0.5 × ‖ω‖∞

conditions of Deng et al. [8] are satisfied. This provides a theoretical support
for our computational results and sheds some light to our understanding of
the dynamic depletion of vortex stretching.

Finally, we would like to mention that we have carried out a convergence
study of the two numerical methods we consider in this paper for the one-
dimensional Burgers equation. The Burgers equation shares some essential
numerical difficulties with the 3D Euler equations that we consider here. It has
the same type of quadratic nonlinearity in the convection term and it is known
that it can form a shock singularity in a finite time. An important advantage of
the Burgers equation is that we have an analytic solution formula which can be
solved numerically up to the machine precision by using the Newton iterative
method. Using this semi-analytical solution, we have computed the solution
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Table 1. The alignment of the vorticity vector and the eigenvectors of M around
the point of maximum vorticity with resolution 1,536 × 1,024 × 3,072

Time |ω| λ1 θ1 λ2 θ2 λ3 θ3

16.012295 5.628002 −1.508771 89.992936 0.206199 0.007159 1.302352 89.998852
16.515890 7.016002 −1.864394 89.995940 0.232299 0.010438 1.631355 89.990387
17.013589 8.910001 −2.322629 89.998141 0.254699 0.006815 2.066909 89.993445
17.515769 11.430017 −2.630440 89.969954 0.224305 0.085053 2.415185 89.920433
18.011609 14.890004 −3.625738 89.969613 0.257302 0.036607 3.378515 89.979590
18.516346 19.130010 −4.501348 89.966725 0.246305 0.036617 4.274913 89.984720
19.014394 23.590012 −5.477438 89.966055 0.247906 0.034472 5.258292 89.994005

Here, λi (i = 1, 2, 3) is the i-th eigenvalue of M , θi is the angle between the i-th
eigenvector of M and the vorticity vector. One can see that the vorticity vector is
aligned very well with the second eigenvector of M

very close to the shock singularity time and documented the errors of both
numerical methods using very large resolutions. The computational results we
obtain on the Burgers equation completely support the convergence study of
the two numerical methods for the 3D Euler equations that we present in this
paper. The performance of these two numerical methods and their convergence
property for the 1D Burgers equation are basically the same as those for the
3D Euler equations. More details of this study can be found in [14].
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Summary. We present a systematic development of energy-stable approximations
of the two-dimensional shallow water (SW) equations, which are based on the general
framework of entropy conservative schemes introduced in [Tad03, TZ06]. No arti-
ficial numerical viscosity is involved: stability is dictated solely by eddy viscosity.
In particular, in the absence of any dissipative mechanism, the resulting numerical
schemes precisely preserve the total energy, which serves as an entropy function for
the SW equations. We demonstrate the dispersive nature of such entropy conserv-
ative schemes with a series of scalar examples, interesting for their own sake. We
then turn to the SW equations. Numerical experiments of the partial-dam-break
problem with energy-preserving and energy stable schemes, successfully simulate
the propagation of circular shock and the vortices formed on the both sides of the
breach.

1 Introduction

Consider a three-dimensional domain in which the homogenous fluid flows
with a free-surface under the influence of gravity. One of the widely used
approaches for the description of such unsteady free-surface flows is that
of shallow water. Under the shallow-water approximation that refers to the
fact that a horizontal scale is in excess of the depth of the fluid, the 3D
Navier–Stokes equations can be simplified to the shallow water equations with
the depth-averaged continuity equation and momentum equations. Neglecting
diffusion of momentum due to wind effects and Coriolis terms, we consider
two-dimensional shallow water (SW) equations in the conservative form for
free-surface compressible flow with flat frictionless bottom on two dimensional
x–y plane,

∂

∂t

⎡⎣ h
uh
vh

⎤⎦+
∂

∂x

⎡⎣ uh
u2h + gh2/2

uvh

⎤⎦+
∂

∂y

⎡⎣ vh
uvh

v2h + gh2/2

⎤⎦ = ζ
∂

∂x

⎡⎣ 0
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vxh

⎤⎦+ζ
∂

∂y

⎡⎣ 0
uyh
vyh

⎤⎦ .

(1.1)
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Here, h = h(x, y, t) is the total water depth which plays the role of density,
and (u(x, y, t), v(x, y, t)) are the depth-averaged velocity components along x
and y direction. The three equations express, respectively, conservation laws of
mass and momentum in x and y direction for the shallow water flow, driven
by convective fluxes on the LHS together with eddy viscous fluxes on the
RHS. These fluxes involve the constant gravity acceleration g > 0, and ζ > 0
is the eddy viscosity. By ignoring the small scale vortices in the motion, we
calculate a large-scale flow motion with eddy viscosity ζ that characterizes
the transport and dissipation of energy into the smaller scales of the flow.

If we turn off the eddy viscosity (ζ = 0), system (1.1) is reduced to the
inviscid shallow water equations,

∂

∂t

⎡⎣ h
uh
vh

⎤⎦+
∂

∂x

⎡⎣ uh
u2h + gh2/2

uvh

⎤⎦+
∂

∂y

⎡⎣ vh
uvh

v2h + gh2/2

⎤⎦ = 0. (1.2)

The SW equations (1.1) constitute an incompletely parabolic system,
whose solutions can exhibit discontinuities associated with hydraulic jumps
and bores in flows or the propagation of sharp fronts. In this paper, we are
concerned with construction of energy-stable numerical methods for simu-
lating two dimensional flows, in which initial discontinuities associated with
partial-dam-break need to be evolved in time. The conservation of the total
energy, E = (gh2 + u2h + v2h)/2, guarantees that such numerical simulations
of shallow water flows are nonlinearly stable and free of artificial numerical
viscosity, which may dramatically change the profiles of the solutions in long
time integration. In our computation, conservation of the total energy is en-
forced by utilizing entropy conservative fluxes which are tailored to preserve
the energy, being an entropy function for the SW equations. The resulting
numerical scheme is energy-stable, free of artificial numerical viscosity in the
sense that energy dissipation is driven solely by the eddy viscous fluxes. In
the particular case that eddy viscosity is absent, ζ = 0, our scheme precisely
preserves the total energy E.

A general framework for the construction of entropy-conservative schemes
for 1D nonlinear conservation laws is introduced in Sect. 3, following [Tad03,
TZ06]. We then test these entropy-conservative schemes for 1D Burgers’ equa-
tion being the prototype of scalar nonlinear conservation laws in Sect. 4. In
Sect. 5, we generalize the recipe for the entropy-stable approximations of two
dimensional shallow water equations with the energy playing the role of en-
tropy. The extension is carried out dimension by dimension. The algorithm
along each dimension follows the same recipe outlined in the one-dimensional
setup. The key ingredient behind these schemes is the construction of energy-
preserving numerical fluxes. Our main results on the 2D shallow water equa-
tions are summarized in Theorem 5.1. To illustrate the performance of the
new schemes, we test a two-dimensional partial-dam-break problem in Sect. 6.
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The numerical results, especially those of the fine meshes, successfully simu-
late both the circular shock water wave propagations and the vortices formed
on both sides of the breach.

2 Entropy Dissipation: The General Framework

2.1 Entropy Variables

We consider a two-dimensional hyperbolic system,

∂

∂t
u +

∂

∂x
f(u) +

∂

∂y
g(u) = 0. (2.1)

We assume that it obeys an additional conservation law where a convex en-
tropy function U(u) is balanced by entropy fluxes F (u) and G(u),

∂

∂t
U(u) +

∂

∂x
F (u) +

∂

∂y
G(u) = 0. (2.2)

Note that (2.2) holds if the entropy function U(u) is linked to the entropy
fluxes F (u) and G(u) through the compatibility relations,

U�
u fu = F�

u , U�
u gu = G�

u . (2.3)

In fact, multiplying (2.1) by U�
u on the left, one recovers the equivalence

between (2.1) and (2.3) for all classical solutions u’s of (2.1). These formal
manipulations are valid only under the smooth region. To justify these steps in
the presence of shock discontinuities, the conservation laws (2.1) are realized
as appropriate vanishing viscosity limits, u = limζ↓0 uζ , where uζ is governed
by the (possibly incompletely) parabolic system

∂

∂t
uζ +

∂

∂x
f(uζ) +

∂

∂y
g(uζ) = ζ

∂

∂x

(
Q

∂

∂x
uζ

)
+ ζ

∂

∂y

(
Q

∂

∂y
uζ

)
, ζ ≥ 0.

(2.4)
Here, ζ ↓ 0 stands for the vanishing viscosity amplitude such as the eddy vis-
cosity coefficient in the SW equations (1.1)), and Q = Q(u) is any admissible
viscosity coefficient which is H-symmetric positive-definite,

QH = (QH)� ≥ 0, H := (Uuu)−1
. (2.5)

The passage from vanishing viscosity limits to weak entropy solutions of
(2.1) is classical, [Lax73], and we refer to the more comprehensive recent books
of e.g., [Ser99, Daf00]. Here, we shall study these limits in terms of the entropy
variables, v(u) := Uu(u). We assume that the entropy U(u) is convex, so that
the nonlinear mapping u �→ v is one-to-one. Following [God61, Moc80], we
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claim that the change of variables, u = u(v), puts the system (2.1) into the
equivalent symmetric form,

∂

∂x
u(v) +

∂

∂x
f(u(v)) +

∂

∂y
g(u(v)) = 0.

The above system is symmetric in the sense that the Jacobian matrices
fluxes are,

uv(v) = (uv(v))� , fv(v) = (fv(v))� , and gv(v) = (gv(v))� . (2.6)

Indeed, a straightforward computation using the compatibility relations (2.3)
shows that u(v), f(v), and g(v) are, respectively, the gradients of the corre-
sponding potential functions φ, ψx, and ψy,

u(v) = φv(v), φ(v) := 〈v,u(v)〉 − U(u(v)), (2.7)

f(v) = ψx
v(v), ψx(v) := 〈v, f(v)〉 − F (u(v)), (2.8)

g(v) = ψy
v(v), ψy(v) := 〈v,g(v)〉 − G(u(v)). (2.9)

Hence the Jacobian matrices H(v) := uv(v), Ax(v) := fv(v), and Ay(v) :=
gv(v) in (2.6) are symmetric, being Hessians of the potentials φ(v), ψx(v),
and ψy(v). Moreover, the convexity of U(·) implies that H is positive definite,
H = (Uuu)−1

> 0.
We now introduce the same entropy change of variables, u = u(v), into

the associated parabolic system (2.4), which reads

∂

∂t
u(vζ) +

∂

∂x
f(vζ) +

∂

∂y
g(vζ) = ζ

∂

∂x

(
S(vζ)

∂

∂x
vζ

)
+ ζ

∂

∂y

(
S(vζ)

∂

∂y
vζ

)
.

(2.10a)
By (2.6) and admissibility condition (2.5), the system (2.10a) is symmetric in
the sense that the Jacobian matrices involved are all symmetric, namely, (2.6)
holds and

S(u(v)) = S�(u(v)) > 0, S(v) := Q(u(v))uv(v). (2.10b)

Integrate (2.4) against the entropy variable v := Uu, employ the compatibility
relations (2.3) and use ‘differentiation by parts’ on the dissipation terms on
the RHS to find the following entropy balance statement,

∂

∂t
U(uζ) +

∂

∂x

(
F (uζ) − ζ

〈
vζ , Quζ

x

〉 )
+

∂

∂y

(
G(uζ) − ζ

〈
vζ , Quζ

y

〉 )
=

− ζ
[〈

vζ
x, S(vζ)vζ

x

〉
+
〈
vζ

y, S(vζ)vζ
y

〉]
≤ 0. (2.11)

Letting ζ ↓ 0, we obtain the entropy inequality, [God61, Kru70, Lax71]

∂

∂t
U(u) +

∂

∂x
F (u) +

∂

∂y
G(u) ≤ 0. (2.12)
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This shows that weak solution dissipates entropy. The precise amount of en-
tropy decay is dictated by the specific dissipation: spatial integration of (2.11)
yields the entropy decay statement,

d

dt

∫
y

∫
x

U(uζ) dxdy = −ζ

∫
y

∫
x

[〈
vζ

x, S(vζ)vζ
x

〉
+
〈
vζ

y, S(vζ)vζ
y

〉]
dxdy ≤ 0.

(2.13)

2.2 The Example of the Shallow Water Equations

We consider the 2D shallow water equations (1.1) for the conservative variables
u := (h, uh, vh)� where h is the water-depth and u, v are depth-averaged
velocity components along x and y-direction. The total energy is given by the
depth-averaged sum of the potential and kinetic energies,

E(u) :=
gh2 + u2h + v2h

2
. (2.14a)

The total energy plays the role of an entropy function for the SW equations.
Straightforward computation gives us the following entropy fluxes, entropy
variables and potentials.

• Entropy fluxes

F (u) = guh2 +
u3h + uv2h

2
, G(u) = gvh2 +

u2vh + v3h

2
. (2.14b)

• Entropy variable

v(u) =

⎡⎢⎣ gh − u2 + v2

2
u
v

⎤⎥⎦ (2.14c)

with the Jacobian matrices, H := uv and H−1 = vu, given by

H =
1
g

⎡⎣ 1 u v
u c2 + u2 uv
v uv c2 + v2

⎤⎦ , H−1 =
1
h

⎡⎣ c2 + u2 + v2 −u −v
−u 1 0
−v 0 1

⎤⎦ ,

(2.14d)
where c :=

√
gh is the ‘sound’ speed, or wave celerity.

• The potentials of the temporal and spatial fluxes u(v), f(u(v)) and
g(u(v)) are given, respectively, by

φ(v) =
gh2

2
, ψx(v) =

guh2

2
, ψy(v) =

gvh2

2
. (2.14e)
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The general statement of entropy balance, (2.13), amounts to

d

dt

∫
y

∫
x

E(u) dxdy = −ζ

∫
y

∫
x

h(u2
x+u2

y+v2
x+v2

y) dxdy, E(u) =
gh2 + u2h + v2h

2
.

(2.15)

Since h ≥ 0, we conclude that the total energy is decreasing in time,
thus recovering energy stability. In fact, the expression on the RHS of (2.2)
specifies the precise decay rate, which is dictated solely by the viscous fluxes
through their dependence on the nonnegative eddy viscosity ζ. Our objective
in this paper is to construct “faithful” approximations to the 2D shallow water
equations, which precisely reproduce the energy balance (2.2).

3 Entropy Conservative Schemes: The 1D Setup

Setting g ≡ 0 in (2.1), we consider the one-dimensional system of hyperbolic
conservation laws,

∂u
∂t

+
∂

∂x
f(u) = 0, x ∈ R, t > 0, (3.1)

governing the N -vector of conserved variables u = [u1, · · · , uN ]� and balanced
by the flux functions f = [f1, · · · , fN ]�. We assume it is endowed with an
entropy pair, (U,F ), such that every strong solution of (3.1) satisfies the
entropy equality

∂

∂t
U(u) +

∂

∂x
F (u) = 0, (3.2)

whereas weak solutions are sought to satisfy the entropy inequality, U(u)t +
F (u)x ≤ 0.

We now turn our attention to consistent approximations of (3.1), (3.2),
based on semi-discrete conservative schemes of the form

d

dt
uν(t) = − 1

∆x

(
fν+ 1

2
− fν− 1

2

)
. (3.3)

Here, uν(t) denotes the discrete solution along the equally spaced grid lines,
(xν := ν∆x, t), and fν+ 1

2
is the Lipschitz-continuous numerical flux which

occupies a stencil of 2p-gridvalues,

fν+ 1
2

= f(uν−p+1, · · · ,uν+p).

The scheme is consistent with the system (3.1) if f(u,u, · · · ,u) = f(u), ∀u ∈
R

N . Making the change of variables uν = u(vν), we obtain the equivalent form
of (3.3)

d

dt
u(vν(t)) = − 1

∆x

(
fν+ 1

2
− fν− 1

2

)
. (3.4)
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The essential difference lies with the numerical flux, fν+ 1
2
, which is now ex-

pressed in terms of the entropy variables,

fν+ 1
2

= f (vν−p+1, · · · ,vν+p) := f (u (vν−p+1) , · · · ,u (vν+p)) ,

consistent with the differential flux, f(v,v, · · · ,v) = f(v) ≡ f(u(v)). The
semi-discrete schemes (3.3) and (3.4) are completely identical. The entropy
variables-based formula (3.4) has the advantage that it provides a natural or-
dering of symmetric matrices, which in turn enables us to compare the numer-
ical viscosities of different schemes, consult [Tad87] for details. In particular,
we will be able to utilize the so called entropy conservative discretization of
[Tad03] for the convective part of the system of conservation laws (3.1), and
thus recover the precise entropy balance dictated by physical dissipative terms
of the underlying original systems.

The scheme (3.3) is called entropy-conservative if it satisfies a discrete
entropy equality,

d

dt
U (uν(t)) +

1
∆x

(
Fν+ 1

2
− Fν− 1

2

)
= 0, (3.5)

where Fν+ 1
2

= F (uν−p+1, · · · ,uν+p) is a consistent numerical entropy flux,
F (u,u, · · · ,u) = F (u), ∀u ∈ R

N . Entropy conservative schemes will play
an essential role in the construction of entropy stable schemes, by adding a
judicious amount of physical viscosity.

The key step in the construction of entropy conservative schemes for the
systems of conservation laws is the choice of an arbitrary piecewise-constant
path in phase space. We shall use the phase space of the entropy vari-
able v to connect two neighboring gridvalues, vν and vν+1, at the spatial
cell [xν , xν+1], through the intermediate states {vj

ν+ 1
2
}N

j=1. To this end, let

{rj ≡ rj

ν+ 1
2
}N

j=1 be an arbitrary set of N linearly independent N -vectors, and

let {�j ≡ �j

ν+ 1
2
}N

j=1 be the corresponding orthogonal set. We introduce the

intermediate gridvalues, {vj

ν+ 1
2
}N

j=1, which define a piecewise constant path
in phase space across the jump ∆vν+ 1

2
:= vν+1 − vν ,⎧⎪⎪⎪⎨⎪⎪⎪⎩

v1
ν+ 1

2
= vν

vj+1

ν+ 1
2

= vj

ν+ 1
2

+
〈
�j ,∆vν+ 1

2

〉
rj , j = 1, 2, · · · , N − 1,

vN+1
ν+ 1

2
= vν+1

. (3.6)

Theorem 3.1 (Tadmor [Tad03, Theorem 6.1]). Consider the system of
conservation laws (3.1). Given the entropy pair (U, F ), then the conservative
scheme

d

dt
uν(t) = − 1

∆xν

(
f∗ν+ 1

2
− f∗ν− 1

2

)
(3.7)
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with a numerical flux f∗
ν+ 1

2

f∗ν+ 1
2

=
N∑

j=1

ψ
(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)
〈
�j ,∆vν+ 1

2

〉 �j (3.8)

is an entropy-conservative approximation, consistent with (3.1) and (3.2).
Here, v = Uu(u) are the entropy variables associated with the entropy U ,
and ψ(v) := 〈v, f(u(v))〉 − F (u(v)) is the entropy potential.

The proof is based on the fact that the entropy equality (3.5) holds if and
only if

〈
∆vν+ 1

2
, f∗

ν+ 1
2

〉
equals a conservative difference,〈

∆vν+ 1
2
, f∗ν+ 1

2

〉
= ∆ψν+ 1

2
, ∆ψν+ 1

2
:= ψ(vν+1) − ψ(vν). (3.9)

Indeed, (3.9) is equivalent to (3.5),〈
vν , f∗ν+ 1

2
− f∗ν− 1

2

〉
= Fν+ 1

2
− Fν− 1

2
, (3.10a)

where the numerical entropy flux Fν+ 1
2

is given by

Fν+ 1
2

=
1
2

[〈
vν + vν+1, f∗ν+ 1

2

〉
−
(
ψ(vν) + ψ(vν+1)

)]
(3.10b)

A straightforward manipulation of the numerical flux (3.8) confirms the
desired equality (3.9),

〈
∆vν+ 1

2
, f∗ν+ 1

2

〉
=

N∑
j=1

ψ
(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)
〈
�j ,∆vν+ 1

2

〉 〈
�j , ∆vν+ 1

2

〉

=
N∑

j=1

ψ
(
vj+1

ν+ 1
2

)
− ψ

(
vj

ν+ 1
2

)
= ψ

(
vN+1

ν+ 1
2

)
− ψ

(
v1

ν+ 1
2

)
= ∆ψν+ 1

2
.

Although the recipe for constructing entropy-conservative fluxes in (3.8)
allows an arbitrary choice of a path in phase space, inappropriate choices of the
path may cause the computed intermediate values to lie outside the physical
space, say h < 0. A ‘physically relevant’ choice is offered by a Riemann path
which consists of {uj

ν+ 1
2
}N

j=1, stationed along an (approximate) set of right

eigenvectors, {r̂j}, of the Jacobian fu(uν+ 1
2
). Set vj

ν+ 1
2

= v(uj

ν+ 1
2
), j =

1, 2, . . . , N , and let �j ’s be the orthogonal system to {vj+1 − vj}N
j=1. This

will be our choice of a path for computing entropy stable approximations
of shallow water equations in Sect. 5 below. The construction of the entropy
conservative flux f∗

ν+ 1
2

follows [TZ06, Algorithm 1] which states,
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Algorithm 1 If uν = uν+1 then f∗
ν+ 1

2
= f(vν); else

• Set u1
ν+ 1

2
:= uν and compute recursively the intermediate states,

uj+1

ν+ 1
2

= uj

ν+ 1
2

+
〈
�̂j ,∆uν+ 1

2

〉
r̂j , j = 1, 2, 3. (3.11)

Here, {�̂j} and {r̂j} are the left and right eigensystems of an averaged
Jacobian Ãν+ 1

2
, given by the Roe matrix, Ãν+ 1

2
= Ã(uν ,uν+1) (see

[Roe81]).
• Set rj := v(uj+1

ν+ 1
2
) − v(uj

ν+ 1
2
) and compute {�j}3

j=1 as the corresponding
orthogonal system. (Note that {rj , �j} is the eigen-path in v-space, corre-
sponding to the eigen-path in u-space, {r̂j , �̂j}.)

• Compute the entropy-conservative numerical flux,

f∗ν+ 1
2

=
3∑

j=1

ψ(vj+1

ν+ 1
2
) − ψ(vj

ν+ 1
2
)〈

�j ,∆vν+ 1
2

〉 �j . (3.12)

4 Scalar Problems

We test our entropy stable schemes with the prototype example of inviscid
Burgers’ equation. Though very simple, the inviscid Burgers’ equation is often
used as the testing ground for numerical approximations of nonlinear conser-
vation laws.

4.1 Entropy Conservative Schemes

We consider the inviscid Burgers’ equation,

∂u

∂t
+

∂

∂x
f(u) = 0, f(u) =

1
2
u2. (4.1)

Any convex function U(u) serves as an entropy function for the scalar Burgers
equation. The solutions of (4.1) satisfy, at the formal level,

∂

∂t
U(u) +

∂

∂x
F (u) = 0. (4.2)

These are additional conservation laws balanced by the corresponding entropy
flux functions F (u) satisfying the compatibility relation U ′f ′ = F ′. Spatial
integration then yields the total entropy conservation (ignoring boundary con-
tributions) ∫

x

U(x, t) dx =
∫

x

U(x, 0) dx. (4.3)
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We now turn to the discrete framework. Discretization in space yields the
semi-discrete scheme,

d

dt
uν(t) +

1
∆x

(
fν+ 1

2
− fν− 1

2

)
= 0. (4.4)

Clearly,
∑

uν(t)∆x is conserved. We seek a consistent numerical flux fν+ 1
2
,

that is entropy conservative in the sense of satisfying the discrete analogue
of (4.2),

d

dt
U(uν(t)) +

1
∆x

(Fν+ 1
2
− Fν− 1

2
) = 0,

so that we have the additional conservation of entropy
∑

U(uν(t))∆x. Accord-
ing to Theorem 3.1, consult (3.9), such 2-point scalar entropy conservative
fluxes are uniquely determined, fν+ 1

2
= f∗

ν+ 1
2
, by

fν+ 1
2

= f∗
ν+ 1

2
:=

ψ(uν+1) − ψ(uν)
v(uν+1) − v(uν)

. (4.5)

Recall that v(u) := U ′(u) is the entropy variable associated with the entropy
pair (U,F ), and ψ(u) := v(u)f(u) − F (u) is the potential function of the
flux f(u(v)). We demonstrate the constructions of above entropy conservative
numerical flux with two different choices of entropy functions:

• We begin with the logarithmic entropy U(u) = − ln u together with the
entropy flux F (u) = −u. We use the entropy variable v(u) = −1/u. The
entropy flux potential in this case is ψ(u) = −1/2v = u/2. The entropy
conservative numerical flux (4.5) then reads,

f∗
ν+ 1

2
:=

ψ(uν+1) − ψ(uν)
v(uν+1) − v(uν)

=
1
2
uνuν+1.

This numerical flux yields the entropy conservative schemes

d

dt
uν(t) = uν(t)

uν+1(t) − uν−1(t)
2∆x

.

This scheme was discussed by Goodman and Lax in [GL88], Hou and Lax
in [HL91], and Levermore and Liu in [LL96] in their study of the dispersive
oscillations arising in numerical solutions of the conservative schemes for
the inviscid Burgers’ equation.

• Next, we consider the family of entropy functions,

Up(u) = u2p, p = 1, 2, · · · , (4.6)

with the corresponding entropy flux functions Fp(u) = 2pu2p+1/(2p + 1).
Using the entropy variable v(u) := U ′(u) = 2pu2p−1 and the potential
function ψ(u) := v(u)f(u)−F (u) = p(2p−1)

2p+1 u2p+1, we compute the entropy
conservative flux

f∗
ν+ 1

2
:=

ψ(uν+1) − ψ(uν)
v(uν+1) − v(uν)

=
2p − 1

2(2p + 1)
·
u2p+1

ν+1 − u2p+1
ν

u2p−1
ν+1 − u2p−1

ν

. (4.7)
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The resulting scheme (4.4), (4.7) is entropy conservative in the sense that the
discrete analogue of total entropy conservation (4.3) is satisfied,∑

ν

u2p
ν (t)∆x =

∑
ν

u2p
ν (0)∆x.

Thus, for each p we obtain its own Up-entropy conservative scheme.

Remark 4.1. Although these schemes with the entropy-conservative flux (4.7)
admit the dispersive oscillations shown in the numerical results of Sect. 4.3,
we expect the amplitude of these oscillations to be reduced for increasing p’s,
as the conservation of entropies Up,[∑

ν

u2p
ν (t)∆x

] 1
2p

=

[∑
ν

u2p
ν (0)∆x

] 1
2p

(4.8)

approaches the maximum principle, ||uν(t)||L∞ ≤ ||uν(0)||L∞ (the inequality
reflects the small amount of dissipation due to time discretization). Indeed,
as p ↑ ∞, the entropy-conservative schemes based on (4.7) approach the first-
order entropy stable Engquist–Osher scheme [EO80].

4.2 Entropy Dissipation

To recover the physical relevant entropy inequality, that is

∂tUp(u) + ∂xFp(u) ≤ 0,

one can add numerical dissipation,

d

dt
uν(t)+

1
∆x

(
f∗

ν+ 1
2
− f∗

ν− 1
2

)
=

ε

(∆x)2
(
d(uν+1)−2d(uν)+d(uν−1)

)
, ε > 0.

(4.9)
This serves as an approximation to the vanishing viscosity regularization

ut + f(u)x = εd(u)xx, d′(u) > 0, ε > 0.

Sum this scheme (4.9) against the entropy variable vν to find

d

dt

∑
ν

Up(uν(t))∆x +
∑

ν

vν

(
f∗

ν+ 1
2
− f∗

ν− 1
2

)
= ε

∑
ν

vν
d(uν+1) − 2d(uν) + d(uν−1)

∆x
.

(4.10)

According to (3.10a), the second term on the left of (4.10) vanishes,
∑(

Fν+ 1
2
−

Fν− 1
2

)
∆x = 0. Summation by parts on the RHS of (4.10) yields
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ε
∑

ν

vν
d(uν+1) − 2d(uν) + d(uν−1)

∆x
= − ε

∆x

∑
ν

(
vν+1 − vν

)
×
(
d(uν+1) − d(uν)

)
≤ 0,

since d′(v) = d′(u)u′(v) > 0, and hence (vν+1 − vν) · (d(uν+1) − d(uν)) > 0.
The resulting entropy balance that follows reads,

d

dt

∑
ν

Up(uν(t))∆x = − ε

∆x

∑
ν

∆vν+ 1
2
∆dν+ 1

2
≤ 0. (4.11)

Observe that the amount of entropy dissipation on the right is completely
determined by the dissipation term εd(u). No artificial viscosity is introduced
by the convective term. If we exclude any dissipative mechanism (ε = 0), then
we are back at the entropy conservative schemes of Sect. 4.1.

4.3 Numerical Experiments

Time Discretization

To complete the computation of a semi-discrete scheme, the semi-discrete en-
tropy conservative scheme (4.4), (4.7) needs to be augmented with a proper
time discretization. To enable a large time-stability region and maintain sim-
plicity, the explicit three-stage third-order Runge–Kutta (RK3) method will
be used, Consult [GST01] for more detail of its strong stability-preserving
property, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(1) = un + ∆tL(un)

u(2) =
3
4
un +

1
4
u(1) +

1
4
∆tL(u(1))

un+1 =
1
3
un +

2
3
u(2) +

2
3
∆tL(u(2))

(4.12a)

where
[L(u)]ν := − 1

∆x
(f∗

ν+ 1
2
− f∗

ν− 1
2
). (4.12b)

We note that this explicit RK3 time discretization produces a negligible
amount of entropy dissipation. For a general framework of entropy conserva-
tive fully discrete schemes, consult [LMR02].

Continuous Initial Conditions

We first solve the inviscid Burgers equation (4.1) in the domain x ∈ [0, 1]
with initial condition, u(0, x) = sin(2πx) and subject to periodic boundary
conditions u(t, 1) = u(t, 0). In Fig. 1 we display the numerical solutions for
(4.12a) and (4.12b) with the numerical flux (4.7) for different choices of p.
For small values of p, the dispersive oscillations become noticeable after the
shock is generated due to the absence of any dissipative mechanism in the
entropy-conservative scheme. As p increases, the amplitude of the spurious
dispersive oscillations decreases, which reflects the control of the increasing
L2p-norms in (4.8).
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Fig. 1. 1D Burger’s equation, sine initial condition, entropy-conservative schemes,
200 spatial grids, U(u) = u2p

Discontinuous Initial Conditions

We solve the 1D inviscid Burgers equation (4.1) in the domain x ∈ [0, 1] with
the discontinuous initial condition,
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u(0, x) =

{
2, x ∈ [0, 0.5]
1, x ∈ (0.5, 1]

The boundary values are extrapolated from the interior points. Since we are
only interested in the propagation of the shock wave in the computational
domain [0, 1], there is interaction with the boundary values which do not vary
in the time interval under consideration. In Fig. 2, we display the numerical
solutions for (4.12a) and (4.12b) with the numerical flux (4.7) for different
choices of p. Those solutions show the same pattern as the sin(2πx) initial
condition. Diminishing amplitude of the dispersive oscillations demonstrates
the control of the L2p-norm of the solution with each p.

5 2D Shallow Water Equations

5.1 Energy Stable Schemes

We turn to the construction of entropy/energy-stable schemes for the 2D
shallow water equations,

∂

∂t
u+

∂

∂x
f(u)+

∂

∂y
g(u) = ζ

∂

∂x

(
h

∂

∂x
d(u)

)
+ζ

∂

∂y

(
h

∂

∂y
d(u)

)
, u =

⎡⎣ h
uh
vh

⎤⎦ ,

(5.1)

with convective fluxes f = [uh, u2h + gh2/2, uvh]�, g = [vh, uvh, v2h +
gh2/2]�, and additional diffusive terms d = [0, u, v]�.

The second-order semi-discrete entropy conservative schemes (3.7), (3.8)
can be extended to two dimensional shallow water equations (5.1) in a straight-
forward manner. Recall that E denotes the total energy which is serving as
an admissible entropy function with the corresponding entropy fluxes (F,G)
associated with the two dimensional shallow water equations, v := Uv are the
corresponding entropy variables (2.14c), and (ψx, ψy) are the potential pair
(2.14e). We discretize the convective fluxes on the LHS using the entropy-
conservative differences indicated in 1D setup dimension by dimension. For
the dissipative terms on the RHS, we employ the centered differences, while
the intermediate h-values are taken to be the arithmetic mean of two neigh-
boring grid-points, ĥν+ 1

2 ,µ := (hν+1,µ + hν,µ)/2. We then obtain the entropy
stable semi-discrete schemes

d

dt
uν, µ(t) +

1
∆x

(f∗ν+ 1
2 , µ − f∗ν− 1

2 , µ) +
1

∆y
(g∗

ν, µ+ 1
2
− g∗

ν, µ− 1
2
)

=
ζ

∆x

(
ĥν+ 1

2 , µ

dν+1, µ − dν, µ

∆x
− ĥν− 1

2 , µ

dν, µ − dν−1, µ

∆x

)
+

ζ

∆y

(
ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x

)
, (5.2a)
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Fig. 2. 1D Burger’s equation, shock initial condition, entropy-conservative schemes,
200 spatial grids, U(u) = u2p
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with the entropy-conservative fluxes f∗
ν+ 1

2 , µ
and g∗

ν, µ+ 1
2

outlined in (3.12)
along x and y direction, respectively,

f∗ν+ 1
2 , µ =

3∑
j=1

ψx
(
vj+1

ν+ 1
2 ,µ

)
− ψx

(
vj

ν+ 1
2 ,µ

)
〈
�xj

,∆vν+ 1
2 ,µ

〉 �xj

=
g

2

3∑
j=1

(hj+1

ν+ 1
2 , µ

)2uj+1

ν+ 1
2 , µ

− (hj

ν+ 1
2 , µ

)2uj

ν+ 1
2 , µ〈

�xj
, ∆vν+ 1

2 , µ

〉 �xj
, (5.2b)

g∗
ν, µ+ 1

2
=

3∑
j=1

ψy
(
vj+1

ν,µ+ 1
2

)
− ψy

(
vj

ν,µ+ 1
2

)
〈
�yj

,∆vν,µ+ 1
2

〉 �yj

=
g

2

3∑
j=1

(hj+1

ν, µ+ 1
2
)2vj+1

ν, µ+ 1
2
− (hj

ν, µ+ 1
2
)2vj

ν, µ+ 1
2〈

�yj
, ∆vν, µ+ 1

2

〉 �yj
, (5.2c)

Here, uν, µ(t) denotes the discrete solution at the grid point (xν , yµ, t) with
xν := ν∆x, yµ := µ∆y, ∆x and ∆y being the uniform mesh sizes, and dν, µ :=
d(uν, µ). The numerical flux f∗

ν+ 1
2 , µ

and g∗
ν, µ+ 1

2
are constructed separately

along two different phase paths dictated by two sets of vectors {�xj
} and {�yj

}.
Finally, {uj}, {vj}, and {hj} are intermediate values of height and velocities
along paths in the phase space. The physical relevance of the intermediate
solutions along the paths needs to be maintained. To this end, we choose
to work along the paths which are determined by (approximate) Riemann
solvers. Specifically, we use the eigensystems of the Roe matrix in the x and
y directions, [Roe81, Gla87],

Ãx =

⎡⎢⎣ 0 1 0
c̄2
ν+ 1

2 , µ
− ū2

ν+ 1
2 , µ

2ūν+ 1
2 , µ 0

−ūν+ 1
2 , µv̄ν+ 1

2 , µ v̄ν+ 1
2 , µ ūν+ 1

2 , µ

⎤⎥⎦ ,

Ãy =

⎡⎢⎣ 0 0 1
−ūν, µ+ 1

2
v̄ν, µ+ 1

2
v̄ν, µ+ 1

2
ūν, µ+ 1

2

c̄2
ν, µ+ 1

2
− v̄2

ν, µ+ 1
2

0 2v̄ν, µ+ 1
2

⎤⎥⎦ . (5.3a)

Here ū, v̄, and c̄ are the average values of the velocities u, v and the sound
speed c :=

√
gh at Roe-average state,

ū =
uR

√
hR + uL

√
hL√

hR +
√

hL

, v̄ =
vR

√
hR + vL

√
hL√

hR +
√

hL

, c̄ =

√
g(hR + hL)

2
,

(5.3b)

where the subscripts (·)R and (·)L represent two neighboring spatial grid-
points. The vector sets {r̂xj

}3
j=1 and {r̂yj

}3
j=1 are chosen to be the right eigen-

vectors of the x- and y-Roe matrices (5.3a) (omitting the sub/superscripts of
all averaged variables)
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r̂x1 =

⎡⎣ 1
ū − c̄

v̄

⎤⎦ , r̂x2 =

⎡⎣ 0
0
c̄

⎤⎦ , r̂x3 =

⎡⎣ 1
ū + c̄

v̄

⎤⎦ , (5.3c)

r̂y1 =

⎡⎣ 1
ū

v̄ − c̄

⎤⎦ , r̂y2 =

⎡⎣ 0
−c̄
0

⎤⎦ , r̂y3 =

⎡⎣ 1
ū

v̄ + c̄

⎤⎦ , (5.3d)

with the corresponding left eigenvector sets {�̂xj
}3

j=1 and {�̂yj
}3

j=1 given by

�̂x1 =

⎡⎢⎢⎢⎢⎣
ū + c̄

2c̄

− 1
2c̄

0

⎤⎥⎥⎥⎥⎦ , �̂x2 =

⎡⎢⎢⎢⎢⎣
− v̄

c̄

0

1
c̄

⎤⎥⎥⎥⎥⎦ , �̂x3 =

⎡⎢⎢⎢⎢⎣
−ū + c̄

2c̄
1
2c̄

0

⎤⎥⎥⎥⎥⎦ , (5.3e)

�̂y1 =

⎡⎢⎢⎢⎢⎣
v̄ + c̄

2c̄

0

− 1
2c̄

⎤⎥⎥⎥⎥⎦ , �̂y2 =

⎡⎢⎢⎢⎢⎣
ū

c̄

−1
c̄

0

⎤⎥⎥⎥⎥⎦ , �̂y3 =

⎡⎢⎢⎢⎢⎣
−v̄ + c̄

2c̄

0

1
2c̄

⎤⎥⎥⎥⎥⎦ . (5.3f)

We now are able to form the intermediate paths along x and y directions in
u-space as in (3.6): starting with u1

ν+ 1
2 , µ

= u1
ν, µ+ 1

2
= uν, µ, we proceed with

uj+1

ν+ 1
2 , µ

=uj

ν+ 1
2 , µ

+
〈
�̂xj , ∆uν+ 1

2 , µ

〉
r̂xj , j =1, 2, 3, ∆uν+ 1

2 , µ := uν+1, µ − uν, µ,

uj+1

ν, µ+ 1
2
=uj

ν, µ+ 1
2
+
〈
�̂yj , ∆uν, µ+ 1

2

〉
r̂yj , j =1, 2, 3, ∆uν, µ+ 1

2
:= uν, µ+1 − uν, µ.

The construction of the entropy-conservative numerical fluxes f∗
ν+ 1

2 , µ
and

g∗
ν, µ+ 1

2
follows the algorithm indicated in Algorithm 1.

Remark 5.1. We point out that in the case
〈
�̂j ,∆u

〉
= 0 for certain j’s in

u-space, which may cause 〈�j ,∆v〉 = 0 in v-space, hence fail Algorithm 1.
Arguing along the same line as [TZ06, Remark 3.5], we compute the corre-
sponding entropy-conservative numerical fluxes using the alternate formulas,

f∗ν+ 1
2 , µ=

∑
{j|ξxj

=0}

ψx(vj

ν+ 1
2 , µ

+ξxj
rxj

) − ψx(vj

ν+ 1
2 , µ

)

ξxj

�xj
, ξxj

:=
〈
�xj

,∆vν+ 1
2 , µ

〉
,

g∗
ν, µ+ 1

2
=
∑

{j|ξyj
=0}

ψy(vj

ν, µ+ 1
2
+ξyj

ryj
) − ψy(vj

ν, µ+ 1
2
)

ξyj

�yj
, ξyj

:=
〈
�yj

,∆vν, µ+ 1
2

〉
,

where the right and left eigensystems {rxj
}3

j=1 {ryj
}3

j=1 and {�xj
}3

j=1 {�yj
}3

j=1

are constructed as the precise mirror images of the Roe-paths in v-space,
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rx
j := [H]−1

ν+ 1
2 , µ

r̂xj
, �x

j := [H]ν+ 1
2 , µ�̂xj

, j = 1, 2, 3

ry
j := [H]−1

ν, µ+ 1
2
r̂yj

, �y
j := [H]ν, µ+ 1

2
�̂yj

, j = 1, 2, 3

where [H]ν+ 1
2 , µ and [H]ν, µ+ 1

2
denote the averaged symmetrizers such that

∆uν+ 1
2 , µ = [H]ν+ 1

2 , µ∆vν+ 1
2 , µ and ∆uν, µ+ 1

2
= [H]ν, µ+ 1

2
∆vν, µ+ 1

2
.

We summarize our main result on 2D shallow water equations in the following
theorem.

Theorem 5.1. Let E = (gh2 + u2h + v2h)/2 be the total energy of the 2D
shallow water equations (5.1). Then, the semi-discrete approximation (5.2a)
with entropy conservative fluxes f∗

ν+ 1
2 , µ

and g∗
ν, µ+ 1

2
given in (5.2b), (5.2c),

(5.3), is energy stable, and the following discrete energy balance is satisfied,

d

dt

∑
ν, µ

E(uν, µ(t))∆x∆y = −ζ
∑
ν, µ

{
ĥν+ 1

2 , µ

[(
∆uν+ 1

2 , µ

∆x

)2

+
(

∆vν+ 1
2 , µ

∆x

)2
]

+ĥν, µ+ 1
2

[(
∆uν, µ+ 1

2

∆y

)2

+
(

∆vν, µ+ 1
2

∆y

)2
]}

∆x∆y. (5.4)

Observe that no artificial viscosity is introduced in the sense that the energy
dissipation statement (5.4) is the precise discrete analogue of the energy bal-
ance statement (2.2).

Proof. Multiply (5.2a) by [Uu]�ν, µ = v�
ν, µ, and sum up all spatial cells to

get the balance of the total entropy,

d

dt

∑
ν, µ

E(uν, µ(t))∆x∆y +
∑
ν, µ

〈
vν, µ, f∗ν+ 1

2 , µ − f∗ν− 1
2 ,µ

〉
∆y

+
∑
ν, µ

〈
vν, µ,g∗

ν, µ+ 1
2
− g∗

ν,µ− 1
2

〉
∆x

= ζ
∑
ν, µ

〈
vν, µ, ĥν+ 1

2 , µ∆dν+ 1
2 , µ − ĥν− 1

2 ,µ∆dν− 1
2 ,µ

〉 ∆y

∆x

+ ζ
∑
ν, µ

〈
vν, µ, ĥν, µ+ 1

2
∆dν, µ+ 1

2
− ĥν,µ− 1

2
∆dν,µ− 1

2

〉 ∆x

∆y
(5.5)

Since the numerical fluxes f∗
ν+ 1

2 , µ
and g∗

ν, µ+ 1
2

are chosen as the entropy con-
servative fluxes in x and y directions respectively, they satisfy the entropy
conservative requirement (3.10a), so that their v-moments on the left of (5.5)
amount to perfect differences,〈

vν, µ, f∗ν+ 1
2 , µ − f∗ν− 1

2 , µ

〉
= Fν+ 1

2 , µ − Fν− 1
2 , µ, (5.6a)〈

vν, µ, g∗
ν, µ+ 1

2
− g∗

ν, µ− 1
2

〉
= Gν, µ+ 1

2
− Gν, µ− 1

2
, (5.6b)
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with consistent entropy fluxes given by (consult (3.10b)),

2Fν+ 1
2 , µ =

〈
(vν, µ + vν+1, µ), f∗

ν+ 1
2 , µ

〉
− (ψx(vν, µ) + ψx(vν+1, µ))

2Gν, µ+ 1
2

=
〈
(vν, µ + vν, µ+1), g∗

ν, µ+ 1
2

〉
− (ψy(vν, µ) + ψy(vν, µ+1)) .

On the other hand, summation by parts and explicit computation using the
entropy variable (2.14c) on the RHS of (5.5) yield

ζ
∑
ν, µ

〈
vν, µ, ĥν+ 1

2 , µ∆dν+ 1
2 , µ −ĥν− 1

2 ,µ∆dν− 1
2 ,µ

〉 ∆y

∆x

= −ζ
∑
ν, µ

〈
∆vν+ 1

2 , µ, ĥν+ 1
2 , µ∆dν+ 1

2 , µ

〉 ∆y

∆x

= −ζ
∑
ν, µ

[
1

(∆x)2
ĥν+ 1

2 , µ

((
∆uν+ 1

2 , µ

)2

+
(
∆vν+ 1

2 , µ

)2
)]

∆x∆y

(5.7a)

ζ
∑
ν, µ

〈
vν, µ, ĥν, µ+ 1

2
∆dν, µ+ 1

2
−ĥν,µ− 1

2
∆dν,µ− 1

2

〉 ∆x

∆y

= −ζ
∑
ν, µ

〈
∆vν, µ+ 1

2
, ĥν, µ+ 1

2
∆dν, µ+ 1

2

〉 ∆x

∆y

= −ζ
∑
ν, µ

[
1

(∆y)2
ĥν, µ+ 1

2

((
∆uν, µ+ 1

2

)2

+
(
∆vν, µ+ 1

2

)2
)]

∆x∆y

(5.7b)

By (5.6) and (5.7), the semi-discrete energy balance statement (5.4) now fol-
lows,

d

dt

∑
ν, µ

E(uν, µ(t))∆x∆y = −ζ
∑
ν, µ

{
ĥν+ 1

2 , µ

[(
∆uν+ 1

2 , µ

∆x

)2

+
(

∆vν+ 1
2 , µ

∆x

)2
]

+ĥν, µ+ 1
2

[(
∆uν, µ+ 1

2

∆y

)2

+
(

∆vν, µ+ 1
2

∆y

)2
]}

∆x∆y. ��

5.2 Energy Preserving Schemes

In the case that the eddy viscosity is absent, ζ = 0, all the dissipation terms
on the RHS of the difference scheme (5.2a) vanish,

d

dt
uν, µ(t) +

1
∆x

(f∗ν+ 1
2 , µ − f∗ν− 1

2 , µ) +
1

∆y
(g∗

ν, µ+ 1
2
− g∗

ν, µ− 1
2
) = 0. (5.8)

The resulting scheme serves as an energy preserving approximation to the
inviscid shallow water equations (1.2) with the discrete energy equality,



86 E. Tadmor and W. Zhong

d

dt

∑
ν, µ

E(uν, µ(t))∆x∆y = 0.

Remark 5.2. We note that energy preserving semi-discrete scheme (5.2), (5.3)
may allow a substantial increase of the potential enstrophy, 1

2

∑
η2

ν, µ/hν, µ,
especially for the flow over steep topography, due to spurious energy cascade
into smaller scales, consult [AL77, AL81]. Here, η is the sum of the relative
vorticity vx−uy and the Coriolis parameter at that latitude. After a long term
integration, a significant amount of energy is transferred into the smallest re-
solvable scales, where truncation error becomes relevant. It would be desirable
to adapt our energy stable discretization to retain the additional conservation
of enstrophy, advocated in [Ara97, AL81].

6 Numerical Experiments for 2D Shallow Water
Equations

6.1 Boundary Conditions

The numerical treatment of boundaries is intended to be as physically rel-
evant as possible. We describe two basic types of boundary conditions that
are applicable to the two dimensional shallow water problems: the first type
simulates a boundary at infinity or a transmissive boundary; the second type
applies in the presence of solid fixed walls.

Transmissive Boundaries

These are cases in which boundaries are supposed to be transparent in the
sense that waves are allowed to pass through. The inflow and outflow con-
ditions need to be described, hence the method of characteristics in two
dimension follows. The local value of the Froude number Fr := V/

√
gL deter-

mines the flow regime and, accordingly, the number of boundary conditions
to apply. Here V and L denote the characteristic velocity and length scales
of the phenomenon, respectively. For subcritical flow, two external boundary
conditions are required at inflow boundaries, whereas only one boundary con-
dition is required at outflow boundaries. Two dimensional supercritical flow
requires three inflow boundary conditions and no boundary condition at out-
flow boundaries where the flow is only influenced by the information coming
from the interior nodes.

Reflective Boundaries

This is a particular case in which the flow is confined inside a fixed field
by solid walls where we impose the reflective boundary conditions. Since our
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(N+1, µ) (N+1, N) (N+1, N+1)

(ν, µ) (ν, N) (ν, N+1)

(N , N+1)(N , N)(N , µ)

Fig. 3. Right-hand boundary

testing problems in next section are concerned with the flow in a square basin,
without losing generality, we consider the computational domain in the upper-
right corner with the solid boundaries along x and y-direction as shown in
Fig. 3. By the three-point stencil used in our semi-discrete scheme, we try to
impose the value of one computational grid point added outside boundary.

The reflection is incorporated by changing the sign of the normal com-
ponent of the velocity, while the water depth is unaltered. The values at all
the (ν, N + 1) points on the right-hand side of the wall are replaced by the
values at interior (ν, N) points and sign of the normal velocity component u
is switched,

hν, N+1 = hν, N , uν, N+1 = −uν, N , vν, N+1 = vν, N ;

the values at all the (N + 1, µ) points on the top of the wall are replaced by
the values at interior (N, µ) points and sign of the normal velocity component
v is switched

hN+1, µ = hN, µ, uN+1, µ = uN, µ, vN+1, µ = −vN, µ;

the values at all the (N + 1, N + 1) point in the upper-right corner are given
by

hν+1, N+1 = hν, µ, uν+1, N+1 = −uν, µ, vν+1, N+1 = −vν, µ.

6.2 Time Discretization

Similar to the time discretizations of the Burgers’ equation, we integrate the
entropy stable scheme (5.2) and (5.3) with the explicit three-stage Runge–
Kutta method (4.12a) by its high-order accuracy, large stability region and
simplicity.
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u(1) = un + ∆tL(un)

u(2) =
3
4
un +

1
4
u(1) +

1
4
∆tL(u(1))

un+1 =
1
3
un +

2
3
u(2) +

2
3
∆tL(u(2))

(6.1a)

where

[L(u)]ν, µ = − 1
∆x

(fν+ 1
2 , µ − fν− 1

2 , µ) − 1
∆y

(gν, µ+ 1
2
− gν, µ− 1

2
)

+
ζ

∆x
(ĥν+ 1

2 , µ

dν+1, µ − dν, µ

∆x
− ĥν− 1

2 , µ

dν, µ − dν−1, µ

∆x
)

+
ζ

∆y
(ĥν, µ+ 1

2

dν, µ+1 − dν, µ

∆x
− ĥν, µ− 1

2

dν, µ − dν, µ−1

∆x
). (6.1b)

6.3 Numerical Results

We test our entropy-stable schemes with the two dimensional frictionless
partial-dam-break problem originally studied by Fennema and Chaudhry in
[FC90]. It imposes computational difficulties due to the discontinuous initial
conditions. It also involves other computational issues like boundary treat-
ments and positive-water-depth preserving solver.

As shown in Fig. 4, the simplified geometry of the problem consists of a
1, 400×1, 400 m2 basin with a idealized dam in the middle. Water is limited by
the fixed, solid, frictionless walls in this square basin. To prevent any damping
by the source terms, a frictionless, horizontal bottom is used. All walls are
assumed to be reflective. The initial water level of the dam is 10 m and the tail

Fig. 4. Geometry configuration and initial setting of 2D Partial-Dam-Break problem
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water is 9.5 m high. Central part of the dam is assumed to fail instantaneously
or the gate in the middle of the dam is opened instantly. Water is released
into the downstream side through a breach 280 m wide, located between y =
560 and y = 840, forming a wave that propagates while spreading laterally.
A negative wave propagates upstream at the same time. For simplicity, the
Coriolis force is ignored in the computation. The acceleration due to gravity
is taken to be 9.8m s−2. Although there is no analytical reference solution for
this test problem, other numerical results of similar problems are available in
[FC90, CK04].

In the following figures, we display the numerical solutions for the fully
discrete scheme (6.1a)–(6.1b) with the numerical fluxes (5.2b)–(5.2c). The
sum of potential and kinetic energy serves as the generalized entropy function
in the design of our numerical schemes,

E(u) =
gh2 + u2h + v2h

2
.

Uniform space and time grid sizes, ∆x = ∆y and ∆t are used. The com-
putational model is run for up to 50 s after the dam broke when the water
waves haven’t reached the boundaries. Both inviscid and viscous cases are ex-
plored. For the viscous cases, the eddy viscosity is taken to be 10m2s−1. We
use different spatial resolutions for the same problem, and adjust time step
according to the CFL condition.

We first solve the inviscid and viscous shallow water equations on the
computational domain consisting of a 50 × 50 cell square grid with ∆x =
∆y = 28 m. We group our numerical results of inviscid shallow water equa-
tions along the left column of Fig. 5. For comparison, the results of viscous
shallow water equations with eddy viscosity ζ = 10m2s−1 are summarized on
the right column. The first and second row of Fig. 5 depict the perspective
plots of water surface profiles at t=25 s and t=50 s respectively. Remnants of
the dam are represented by jumps near the middle of the plot. The vertical
scale is exaggerated with respect to the horizontal scales. We observe that
the numerical solutions of the water depth in Fig. 5a, c successfully simulate
both the circular shock water wave propagations and the vortices formed on
the both sides of the breach. The undershoots are also developed near sharp
corners of the remanent dam. These steep degressions in the water surface
are noticeable downstream of the breach at t = 50 s. Similar numerical tests
were done in [CK04] by the second-order central-upwind schemes, which were
originally proposed in [KT00].

For the inviscid shallow water equations, dispersive errors of the numerical
schemes, in the form of spurious oscillations in the mesh scale, are noticeable
near the breach in Fig. 5a, c. For the viscous shallow water equations, as
shown in Fig. 5b, d, the presence of eddy viscosity causes the oscillations to
be dramatically reduced around the breach. In addition to eliminating the
wiggles, the eddy viscosity terms also single out the undershoot near sharp
corners of the remnants of dam without damping it.
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(f) Total energy v.s. time, viscous case

Fig. 5. Shallow water equations, ζ = 10m2s−1, Dam-Break, 1,400×1,400 m2 basin,
reflective-slip boundary, ∆x = ∆y = 28 m, ∆t = 0.2 s

We display the total entropy scaled by 104 versus time in Fig. 5f. Compared
with the same entropy plot of the inviscid problem in Fig. 5c, the plot of total
energy in Fig. 5f reveals a O(1) energy decay due to the presence of eddy
viscosity, while the negligible amount of energy decay introduced by RK3
time discretization for the inviscid shallow water equations is not detectable
under the same scale in Fig. 5c.
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Fig. 6. Shallow water equations, ζ = 10m2s−1, Dam-Break, 1,400×1,400 m2 basin,
reflective-slip boundary, ∆x = ∆y = 14 m, ∆t = 0.01 s

Next, in Fig. 6, we display the numerical solutions of the same problem in
the refined spatial mesh with ∆x = ∆y = 14 m. Following the same pattern as
in Fig. 5, Fig. 6 presents the perspective plots and total energy versus time. For
the inviscid case, the profiles of the water elevation in Fig. 6a, c demonstrate
smoother numerical solutions due to the decrease of the grid size, while the
spurious oscillations in the mesh scale are still detectable near the breach
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Fig. 7. Viscous shallow water equations, ζ = 10 m2s−1, Dam-Break, 1,400×1,400 m2

basin, reflective-slip boundary, ∆x = ∆y = 7 m, ∆t = 0.002 s

because of the energy-preserving shallow water solver with the increase of
the total enstrophy. For the viscous case with ζ = 10m2s−1, Fig. 6b, d show
the smoother solutions than inviscid solutions in Fig. 6a, c. The amplitude of
those wiggles near the breach are significantly reduced though they are still
detectable. Further refinement of the mesh from (100 × 100) to (200 × 200)
generates very smooth solutions of the water depth h in Fig. 7a, b, when the
oscillations are limited in the very small mesh scale.
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A Conjecture about Molecular Dynamics
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Summary. An open problem in numerical analysis is to explain why molecular
dynamics works. The difficulty is that numerical trajectories are only accurate for
very short times, whereas the simulations are performed over long time intervals.
It is believed that statistical information from these simulations is accurate, but no
one has offered a rigourous proof of this. In order to give mathematicians a clear
goal in understanding this problem, we state a precise mathematical conjecture
about molecular dynamics simulation of a particular system. We believe that if the
conjecture is proved, we will then understand why molecular dynamics works.

1 Introduction

Molecular dynamics is the computer simulation of a material at the atomic
level. In principle the only inputs to a simulation are the characteristics of a set
of particles and a description of the forces between them. An initial condition
is chosen and from these first principles the evolution of the system in time is
simulated using Newton’s laws and a simple numerical integrator [6, 1].

Molecular dynamics is a very prevalent computational practice, as a glance
at an issue of the Journal of Chemical Physics will show. It does have its
limitations: the motion of only a relatively small number of particles can be
simulated over a short time interval. However, most of the mesoscopic models
that have been suggested to overcome these difficulties still rely on molecular
dynamics as a form of calibration. It is likely that molecular dynamics will
continue to be important in the future.

Given its scientific importance there is very little rigourous justification of
molecular dynamics simulation. From the viewpoint of numerical analysis it
is surprising that it works at all. The problem is that individual trajectories
computed by molecular dynamics simulations are accurate for only small time
intervals. As we will see in Sect. 3, numerical trajectories diverge rapidly from
true trajectories given the step-lengths used in practice. No one disputes this
fact, and no one is particularly concerned with it either. The reason is that
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practitioners are never interested in particular trajectories to begin with. They
are interested in ensembles of trajectories. As long as the numerical trajecto-
ries are representative of a particular ensemble of true trajectories, researchers
are content. However, that this statistical information is computed accurately
has yet to be rigourously demonstrated in representative cases.

The goal of this article is to present a concise mathematical conjecture that
encapsulates this fundamental difficulty. We present a model system that is
representative of systems commonly simulated in molecular dynamics. We
present the results of numerical simulations of this system using the Störmer–
Verlet method, the work-horse of molecular dynamics. In each simulation a
random initial condition is generated, an approximate trajectory for the sys-
tem is computed and the net displacement of one particle over the duration
of the simulation is recorded. We show that even for step-sizes that are far
too large to accurately compute the position of the particle, the distribution
of the particle’s displacement over the many initial conditions appears to be
accurate. From the numerical data we conjecture a rate of convergence for
this particular statistical property. We believe that if this conjectured rate of
convergence (or one like it) can be rigourously established, even for this single
system, then we will understand significantly better why molecular dynamics
works.

The problem of explaining the accuracy of molecular dynamics simulation
is well-known both in the physical sciences (for example [6, p. 81]) and in the
mathematics community [12]. This latter reference is a survey of the relation
between computation and statistics for initial value problems in general. There
has been plenty of excellent mathematical work that has done much to explain
various features of this type of simulation, but has not resolved the issue we
consider here. See [13, 14, 15] for surveys.

One body of work that has addressed the statistical accuracy of under-
resolved trajectories in a special case is by Stuart and co-workers. In [3, 17]
they have explored some linear test systems with provable statistical proper-
ties in the limit of large numbers of particles. They are able to show that if the
systems are simulated with appropriate methods the statistical features of nu-
merical trajectories are accurate in the same limit even when the step-lengths
are too large to resolve trajectories. Though these results are interesting since
they are the only ones of their kind now known, for the highly non-linear
problems of practical molecular dynamics very different arguments will be
required.

One subproblem that has been attacked more successfully is that of the
computation of ergodic averages. These are averages of functions along very
long trajectories. All that numerical trajectories have to do to get these correct
is sample the entire phase space evenly. This is a much weaker property than
getting all statistical features correct. The most striking work on this ques-
tion is by Reich [11] which establishes rapid convergence of ergodic averages
for Hamiltonian systems which are uniformly hyperbolic on sets of constant
energy. Unfortunately, this property has never been established for realistic
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systems, and is unlikely to hold for them [9, 10]. The work [18] established
similar results for systems with much weaker properties but requires radically
small time steps for convergence to occur.

The contribution of this work is to precisely specify a simple problem
which encapsulates all the essential difficulties of the more general problem.
In Sect. 2 we present the system we will study. Section 3 shows the results
of some numerical experiments on this system. There we state our conjecture
based on the results. In Sect. 4 we will discuss two possible approaches to
proving the conjecture. Finally, in Sect. 5 we will discuss prospects for the
eventual resolution of the conjecture.

2 The System

The system consists of n = 100 point particles interacting on an 11.5 by 11.5
square periodic domain. We let q ∈ T

2n and p ∈ R
2n denote the positions

and velocities of the particles, with qi ∈ T
2, pi ∈ R

2 denoting the position and
velocity of particle i. The motion of the system is described by a system of
Hamiltonian differential equations:

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
,

with Hamiltonian

H(q, p) =
1
2
‖p‖2

2 +
∑
i<j

VLJ(‖qi − qj‖).

Here VLJ denotes the famous Lennard-Jones potential. In our simulations we
use a truncated version:

VLJ(r) =
{

4
(

1
r12 − 1

r6

)
, if r ≤ rcutoff,

0, otherwise.

Figure 1 shows the positions of the particles on the periodic domain for one
state of the system. Though the particles are only points, in the figure each
is represented by a circle of radius 1/2.

We take our initial conditions q0, p0 to be randomly distributed according
to the probability density function

Z−1e−H(q,p)/kT , (1)

where Z is chosen so that the function integrates to one. This is known as
the canonical distribution (or ensemble) for the system at temperature T .
There is a simple physical interpretation of this distribution: if the system is
weakly connected to another very large system at temperature T , this is the
distribution we will find the original system in after a long period of time. In
our units k = 1, and we choose T = 1.
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Fig. 1. The positions of the particles for a representative state of the system

There are many ways of sampling from the canonical distribution at a
given temperature. For our experiments we generated initial conditions using
Langevin dynamics. See [4] for an explanation of this technique and a com-
parison with other methods. If done correctly, the precise method of sampling
from the canonical distribution will have no bearing on the results of the
experiments we will present subsequently.

The numerical method we use for integrating our system is the Störmer–
Verlet scheme. Given an initial q0, p0 and a ∆t > 0 it generates a sequence of
states qn, pn, n ≥ 0 such that (qn, pn) ≈ (q(n∆t), p(n∆t)). The version of the
algorithm we use is

qn+1/2 = qn + pn∆t/2,

pn+1 = pn − ∆t∇V (qn+1/2),
qn+1 = qn + pn+1∆t/2.

This is a second-order explicit method. It is symplectic, and as a consequence
conserves phase space volume [7].
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Finally we have to decide upon our step-length ∆t. If ∆t is too large the
energy of the computed solution will increase rapidly and explode. In practice,
it is observed that for small enough step lengths energy remains within a
narrow band of the true energy for very long time intervals. (There is extensive
theoretical justification for this phenomenon, see Sect. 4.1). Practitioners tend
to pick a ∆t as large as possible while still maintaining this long-term stability
on their time interval of interest. For the system and initial conditions we
describe here ∆t = 0.01 yields good approximate energy conservation on the
time interval [0, 100]. For our numerical experiments we will let ∆t take this
value and smaller. (The recommended value in [6], a standard reference, for
this type of system is ∆t = 0.005.)

3 The Problem

We will first examine how well trajectories are computed with ∆t = 0.01.
Figure 2 shows the computed x-position of one particle versus time for the
same initial conditions and for a range of step-lengths. If the trajectory com-
puted by Störmer–Verlet is accurate over the time interval [0, 5], we expect
that reducing the time step by a factor of a thousand would not yield a sig-
nificantly different curve. However, we see that the two curves for ∆t = 0.01

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1.5

−1

−0.5

0

0.5

t

∆ t= 0.01
∆ t=0.001
∆ t=0.0001
∆ t=0.00001

Fig. 2. Computed x-position of one particle versus time for fixed initial conditions
for a range of ∆t
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and ∆t = 0.00001 very quickly diverge. They are distinguishable to the eye
almost immediately and completely diverge around 1.2 time units.

Reducing the step length to ∆t = 0.001 gives a curve that agrees with the
∆t = 0.00001 line longer, but still diverges around 2.5 time units. Similarly,
even with ∆t = 0.0001 trajectory is not accurate over the whole interval
depicted.

From these numerical results, we might conjecture that reducing the step-
length by a constant factor only extends the duration for which the simulation
is accurate by a constant amount of time. This is consistent with theoretical
results about the convergence of numerical methods for ordinary differential
equations. What is surprising in this case is that the time-scale on which the
trajectories are valid appears to be miniscule compared to the time-scale on
which computation are actually performed. It seems that the trajectories we
compute here with stepsize even as small as ∆t = 0.00001 are not accurate
over the whole interval [0, 5] let alone over considerably longer intervals.

Fortunately we almost never care about what one particular trajectory is
doing in molecular dynamics. We only care about statistical features of the
trajectories when initial conditions are selected according to some probability
distribution. Here we will consider the example of self-diffusion. Self-diffusion
is the diffusion of one particular particle through a bath of identical particles.
We can imagine somehow marking one particle at time zero and watching
its motion through the system. This single-particle trajectory will depend on
the positions and velocities of all the particles (including itself) at time zero.
Since these are random, the trajectory of the single particle is random.

One way to measure self-diffusion is to look at the distribution of the
x-coordinate of the tracer particle relative to its initial condition. To estimate
this, we generate many random initial conditions, perform the simulation using
the Störmer–Verlet method, and record the net displacement of the particle
in the given direction. Figure 3 show the histograms of these displacements
at time T = 10 for three different step-lengths.

In contrast to the case where we examined single trajectories, here the
histograms are virtually identical for the different step-lengths. This suggests
that any information we glean from the first histogram will be accurate.

To check this more carefully, we compute the variance of the total displace-
ment at various times T for varying step-lengths. Let R(T ) = ‖q1(T )− q1(0)‖
denote the total displacement of the particle after time T . This is a random
quantity through its dependence on the state of the system at t = 0. Let
R∆t(T ) denote this same displacement as simulated with the Störmer–Verlet
method. This also is a random quantity. Now define 〈R2

∆t(T )〉 to be the ex-
pected value of R2

∆t(T ) when the initial conditions are chosen according to
the canonical distribution. Let us see how this last quantity depends on ∆t.
We do this by generating many initial conditions from the canonical ensemble
and then simulating the system for 100 time units, keeping track of the total
displacement of the tracer particle.
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Fig. 3. Displacement in x direction of 1 particle at T = 10 for three different
step-lengths

Figure 4 shows 〈R2
∆t(T )〉 versus T for three choices of step length. The

inset shows a subset of the data with error bars. Up to the sampling error
there is no difference between the curves. As far as we can tell from this plot,
the answers for ∆t = 0.01 are accurate. The time-scale is much larger than
the short interval we found the trajectory to be accurate over. Lest we give
the impression that 〈R2

∆t(T )〉 depends linearly on T , Fig. 5 shows the same
results for a smaller time interval.

We conjecture that the reason 〈R2
∆t(T )〉 does not appear to depend on ∆t

is that even for these large values of ∆t it closely matches 〈R2(T )〉. It is not
clear at all what the rate of convergence of R∆t(T ) to R(T ) is and how it
depends on T . However we make the following conjecture:

Conjecture 1 For the system described in Sect. 2 with the initial distribution
given by (1) and the Störmer–Verlet integrator with time step ∆t∣∣〈R2

∆t(T )〉 − 〈R2(T )〉
∣∣ ≤ C∆t2,

for all T ∈ [0, AeB/∆t], for some constants A,B,C.

We will explain the reasons for hypothesizing this particular dependence in the
next section. Here we will briefly note what dependence the classical theory
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of convergence for numerical ODEs gives:∣∣〈R2
∆t(T )〉 − 〈R2(T )〉

∣∣ ≤ CeLT ∆t2

for T ∈ [0, E log(F/∆t)] for sufficiently small ∆t for some C,L,E, F > 0. (See
[16, p. 239], for example.) So we need to explain why the error remains so
small even for long simulations.

4 Two Approaches

We will discuss two possible approaches to proving Conjecture 1: backward
error analysis and shadowing.

4.1 Backward Error Analysis

Typically a pth order numerical method applied to a system of ODEs com-
putes a trajectory that is O(∆tp) close to the exact trajectory on a finite inter-
val. Backward error analysis is a way of showing that the numerical trajectory
is an O(exp(−1/∆t)) approximation to the exact trajectory of a perturbed
system. This result can be used in turn to prove results about the stability of
the numerical trajectory. See [2] for an early reference and [7, Chap. IX.] for
a recent comprehensive treatment of the subject.

If we apply a symplectic integrator to a Hamiltonian system it turns out
that the modified system is also Hamiltonian. The Hamiltonian function H̃
for the new system can be written as H̃ = H + O(∆t2). There are two con-
sequences for us. Firstly, the numerical method agrees very closely with the
exact solutions of the modified Hamiltonian on short time intervals. If we de-
note the solution to the modified system with the same initial conditions by
(q̃, p̃) then

|q̃(n∆t) − qn| ≤ Ce−D/∆t (1)

for T ∈ [0, B/∆t], for some appropriate constants [5]. (This alone is not useful
for analysing molecular dynamics since T and ∆t are both large.) Secondly,
the modified Hamiltonian H̃ is conserved extremely well by the numerical
method for long time intervals:∣∣∣H̃(q0, p0) − H̃(qn, pn)

∣∣∣ ≤ Ce−D/∆t,

for n∆t ∈ [0, AeB/∆t]. Putting this together with H̃ = H + O(∆t2) gives∣∣H(q0, p0) − H(qn, pn)
∣∣ ≤ E∆t2,

for n∆t ∈ [0, AeB/∆t]. We chose the bound in Conjecture 1 in analogy with
this last result.
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Suppose we wanted to bound the error between 〈R2
∆t(t)〉 and 〈R2(t)〉 using

these estimates. The fact that the initial conditions are random adds an extra
level of complication to the problem. We have been using 〈·〉 to denote the
average with respect to the canonical distribution for the Hamiltonian H.
The perturbed Hamiltonian H̃ has a different canonical distribution. We de-
note averages with respect to it by 〈·〉′. We let R̃ denote the net displacement
of the tracer particle under the new flow given by H̃.

We might try bounding the error in the following way:

|〈R2
∆t(T )〉 − 〈R2(T )〉| ≤ |〈R2

∆t(T )〉 − 〈R̃2(T )〉|
+|〈R̃2(T )〉 − 〈R̃2(T )〉′|
+|〈R̃2(T )〉′ − 〈R2(T )〉|

We discuss each of the three terms in turn.
The first term is due to the numerical trajectory not agreeing with the

exact trajectory of the modified system with Hamiltonian H̃. According to (1)
we can bound this term by C exp(−D/∆t) for a duration of B/∆t. The studies
in [5] suggest that this is a tight estimate for typical molecular dynamics
simulations.

The second term is the difference in the expectation of R̃2(t) due to a
perturbation in the measure. Since the two measures are proportional to
exp(−H/kT ) and exp(−H̃/kT ) respectively, and H − H̃ = O(∆t2), we ex-
pect this term to be on the order of O(∆t2) for all T . This probably can be
rigourously controlled without much difficulty.

The third term is just the difference in 〈R2(t)〉 between the original system
and the perturbed system. This is likely to be extremely difficult to bound.
However, showing that it is small is not a question about computation but
about statistical physics. For now let us assume that it is O(∆t2) for all T for
now.

Already we can see that this approach will not get us the result that we
want, even assuming we can bound the third term. The best estimate we have
so far is that the error is bounded by O(∆t2) for T ∈ [0, B/∆t]. The bound
would hold on an interval much shorter than what is needed. It appears that
backward error analysis alone cannot explain the observed convergence.

4.2 Shadowing

The idea of shadowing is complementary to that of backward error analysis.
Whereas backward error analysis shows that the numerical trajectory is close
to the exact trajectory of a different Hamiltonian system with the same initial
condition, shadowing attempts to show that the numerical trajectory is close
to an exact trajectory of the same Hamiltonian system with a different initial
condition. See [8] for a nice review of shadowing for Hamiltonian systems.

In our situation, if shadowing were possible, something like the following
would hold. Suppose we compute a numerical trajectory starting from (q0, p0)



A Conjecture about Molecular Dynamics 105

with time step ∆t, which we denote by (qn, pn), n ≥ 0. If shadowing is possible
then there is an exact trajectory (q̃(t), p̃(t)) of the same Hamiltonian system
starting at some other initial condition (q̃(0), p̃(0)) such that

(qn, pn) ≈ (q̃(n∆t), p̃(n∆t))

for n∆t in some large range of times. Assuming that it is possible to shadow
every numerical trajectory in this way, let us denote the map on the phase
space that takes the numerical initial condition to the initial condition of the
shadow trajectory by

S∆t(q0, p0) = (q̃(0), p̃(0)).

The idea of shadowing is used very effectively by Reich in [11]. For a
Hamiltonian system for which shadowing holds he demonstrates that long-
time averages will be computed accurately by almost all numerical trajecto-
ries. That is,

lim
T→∞

1
T

∫ T

0

g(q(t), p(t))dt ≈ lim
N→∞

1
N

N∑
n=0

g(qn, pn), (2)

for almost all initial conditions (q0, p0) = (q(0), p(0)), for reasonable functions
g. Since the quantity on the left does not depend on (q(0), p(0)) in the systems
considered in [11] (except for sets of measure zero), it is sufficient that such a
map S∆t exists to get the result.

In our case we are interested in more general statistical features of trajec-
tories than long-time averages. For example, the variance of the displacement
of a single particle in a finite time interval cannot be put into the form of a
long-time average such as in (2). This puts more stringent requirements on
S∆t. To show that statistics are captured correctly we cannot consider just
single trajectories; we have make sure the entire ensemble’s statistics are re-
produced correctly. If the shadowing map S∆t systematically picked initial
conditions for which the tracer particle tended to move to the left, for ex-
ample, then the computed statistics could be quite inaccurate. See [8] for a
discussion of this issue in the context of astrophysics. What is necessary for
this shadowing to work is for S∆t to leave the canonical ensemble invariant:

〈G(q, p)〉 = 〈G(S∆t(q, p))〉 (3)

for some suitably broad class of functions G on phase space. This is an even
more stringent requirement than just that shadowing is possible at all, and it
may be quite unlikely to hold for our system.

Fortunately we can weaken some other requirements demanded of shad-
owing considerably for our problem. We do not need the trajectory of the
whole system to be close; we only need the trajectory of a single particle to
be close. Suppose that our tracer particle’s numerical trajectory is denoted
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by (qn
1 , pn

1 ) for n ≥ 0. We say that weak shadowing holds if we can select q̃(0),
p̃(0) such that

(qn
1 , pn

1 ) ≈ (q̃1(n∆t), p̃1(n∆t))

for n∆t in some long range of times.
To see how this fits in with the conjecture suppose that we have both (3)

and
‖(qn

1 , pn
1 ) − (q̃1(T )), p̃1(T ))‖ ≤ C∆t2, (4)

for T = n∆t ∈ [0, AeB/∆t]. This means that (assuming we can obtain reason-
able bounds on R2

∆t(T ) and R2(T )) that

|〈R2
∆t(T )〉 − 〈R2(T )〉| ≤ K|〈‖qn

1 ‖〉 − 〈‖q1(t)‖〉|
≤ K|〈‖qn

1 ‖〉 − 〈‖q̃1(T )‖〉| + K|〈‖q̃1(T )‖〉 − 〈‖q1(T )‖〉|
≤ K〈‖(qn

1 , pn
1 ) − (q̃1(T )), p̃1(T ))‖〉

+K|〈G(S∆t(q0, p0))〉 − 〈G(q0, p0)〉|,

for T ∈ [0, AeB/∆t]. Here we have let G be the composition of the time T
flow map of the Hamiltonian system with the 2-norm. Now the first term
above is bounded by CTe−D/∆t by (4) and the second term is 0 by (3),
thus establishing the conjecture. Simultaneously proving (3) and (4) for some
shadowing map S∆t may not be easy, but it may be much easier than proving
the usual stronger shadowing result.

5 Discussion

Despite the ideas presented in the previous section, the conjecture we have
presented is probably not open to attack by existing techniques. The problem
is that there is no rigourous mathematical theory of how statistical regularities
emerge from the dynamics of generic high-dimensional Hamiltonian systems.
Consequently, there is no theory of how perturbations in the Hamiltonian
dynamics leads to perturbation in the statistics. A numerical analyst has
three choices when faced with this situation:

1. Take Up Mathematical Physics. If we are to make progress on the conjecture
these entirely non-numerical problems need to be tackled first. Mathemat-
ical physicists are interested in proving things like ergodicity and decay
of correlations for Hamiltonian systems such as presented here, and it is
conceivable that eventually there will a robust body of theory that we can
apply to our problem. So one possibility is to work on developing such a
theory. This likely will not have much to do with computation.

2. Relax Standards of Rigour. Theoretical physicists, as opposed to mathe-
matical physicists, have accepted that much reliable information can be
obtained through calculations that cannot be rigourously justified. Typi-
cally theoretical physicists study systems about which nothing interesting
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can be proved; to do otherwise would be far too restrictive. There is no
reason why this informal yet highly fruitful style of reasoning should be
restricted to systems themselves and not numerical discretizations of sys-
tems. A combination of non-rigourous arguments and careful numerical
experiments could do a lot to clarify how the Störmer–Verlet method is
able to compute statistics so accurately for our system.

3. Abandon the Whole Pursuit. For many, the purpose of numerical analysis
is to provide reliable, efficient algorithms. If one is pursuing a theoretical
question, it is hoped that it will lead to better algorithms eventually. Sadly,
even a complete resolution of the conjecture we have presented in unlikely
to have much effect on computational practice. Many people have tried
for years to devise an integrator that is more efficient than the Störmer–
Verlet method for computing statistically accurate trajectories in molecular
dynamics. They have only been successful for Hamiltonian systems with
special structure. (The prime example of this is the multiple time stepping
methods, see [7, Chap. VIII.4].) In fact, we state another conjecture which
is not formulated rigourously.

Conjecture 2 No integration scheme can improve the efficiency by more
than a factor of two with which Störmer–Verlet computes statistically ac-
curate trajectories for systems like that in Sect. 2.

Here even a clear mathematical formulation would be a challenge. Obvi-
ously if we already know a lot about a system we can contrive an algorithm
which will give correct statistics for a tracer particle, but this does not
count. The conjecture is intended to capture the idea that Störmer–Verlet
is a very general purpose method; we do not need to know anything about
a system to apply it.

At the Abel Symposium participants seemed to prefer the first of the three
options: try to prove what one can about the system and its discretization.
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3. B. Cano, A. M. Stuart, E. Süli, J. O. Warren, Stiff oscillatory systems, delta
jumps and white noise, Found. Comput. Math. 1 (2001), no. 1, 69–99.

4. E. Cancès, F. Legoll, and G. Stoltz. Theoretical and numerical comparison of
some sampling methods for molecular dynamics. To appear, Math. Mod. Num.
Anal.

5. R. D. Engle, R. D. Skeel, M. Drees, Monitoring energy drift with shadow Hamil-
tonians. J. Comput. Phys. 206 (2005), no. 2, 432–452.

6. D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms
to Applications, 2nd edition. Academic Press, London, 2002.

7. E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations. Springer
Series in Computational Mathematics, Berlin, 2002.

8. W. Hayes and K. Jackson. A Survey of Shadowing Methods for Numerical
Solutions of Ordinary Differential Equations. Applied Numerical Mathematics
53:1-2, pp. 299–321 (2005).

9. T. J. Hunt and R. S. MacKay, Anosov parameter values for the triple linkage
and a physical system with a uniformly chaotic attractor. Nonlinearity 16 (2003),
no. 4, 1499–1510.

10. C. Liverani, Interacting Particles, Hard Ball Systems and the Lorentz Gas, in:
D. Szász (Ed.), Hard Ball Systems and the Lorentz Gas, Springer, Berlin, 2000.

11. S. Reich. Backward error analysis for numerical integrators. SIAM J. Numer.
Anal. 36 (1999), no. 5, 1549–1570.

12. H. Sigurgeirsson and A. M. Stuart, Statistics from computations. Foundations
of computational mathematics (Oxford, 1999), 323–344, London Math. Soc.
Lecture Note Ser., 284, Cambridge Univ. Press, Cambridge, 2001.

13. R. D. Skeel and P. F. Tupper, editors. Mathematical Issues in Molecular Dy-
namics. Banff International Research Station Reports. 2005.

14. B. Leimkuhler and S. Reich, Simulating Hamiltonian dynamics. Cambridge
Monographs on Applied and Computational Mathematics, 14. Cambridge Uni-
versity Press, Cambridge, 2004.

15. C. LeBris, Computational chemistry from the perspective of numerical analysis.
Acta Numer. 14 (2005), 363–444.

16. A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis,
Cambridge University Press, Cambridge, 1996.

17. A. M. Stuart and J. O. Warren, Analysis and Experiments for a Computational
Model of a Heat Bath, J. Stat. Phys. 97 (1999), 687–723.

18. P. F. Tupper, Ergodicity and the numerical simulation of Hamiltonian systems.
SIAM J. Appl. Dyn. Syst. 4 (2005), no. 3, 563–587.



The Dynamics of Transition to Turbulence
in Plane Couette Flow

D. Viswanath

Department of Mathematics, University of Michigan, 530 Church Street,
Ann Arbor, MI 48109, USA, divakar@umich.edu

Summary. In plane Couette flow, the incompressible fluid between two plane par-
allel walls is driven by the motion of those walls. The laminar solution, in which
the streamwise velocity varies linearly in the wall-normal direction, is known to be
linearly stable at all Reynolds numbers (Re). Yet, in both experiments and compu-
tations, turbulence is observed for Re � 360.

In this article, we show that for certain threshold perturbations of the laminar
flow, the flow approaches either steady or traveling wave solutions. These solutions
exhibit some aspects of turbulence but are not fully turbulent even at Re = 4,000.
However, these solutions are linearly unstable and flows that evolve along their un-
stable directions become fully turbulent. The solution approached by a threshold
perturbation could depend upon the nature of the perturbation. Surprisingly, the
positive eigenvalue that corresponds to one family of solutions decreases in magni-
tude with increasing Re, with the rate of decrease given by Reα with α ≈ −0.46.

1 Introduction

1.1 Transition to Turbulence

The classical problem of transition to turbulence in fluids has not been fully
solved in spite of attempts spread over more than a century. Transition to
turbulence manifests itself in a simple and compelling way in experiments.
For instance, in the pipe flow experiment of Reynolds (see [1]), a dye injected
at the mouth of the pipe extended in “a beautiful straight line through the
tube” at low velocities or low Reynolds numbers (Re). The line would shift
about at higher velocities, and at yet higher velocities the color band would
mix up with the surrounding fluid all at once at some point down the tube.

A wealth of evidence shows that the incompressible Navier–Stokes equa-
tion gives a good description of fluid turbulence. Therefore one ought to be
able to understand the transition to turbulence using solutions of the Navier–
Stokes equation. However, the nature of the solutions of the Navier–Stokes
equation is poorly understood. Thus the problem of transition to turbulence
is fascinating both physically and mathematically.
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The focus of this paper is on plane Couette flow. In plane Couette flow, the
fluid is driven by two plane parallel walls. If the fluid is driven hard enough, the
flow becomes turbulent. Such wall driven turbulence occurs in many practical
situations such as near the surface of moving vehicles and is technologically
important.

The two parallel walls are assumed to be at y = ±1. The walls move in the
x or streamwise direction with velocities equal to ±1. The z direction is called
the spanwise direction. The Reynolds number is a dimensionless constant
obtained as Re = UL/ν, where U is half the difference of the wall velocities,
L is half the separation between the walls, and ν is the viscosity of the fluid.
The velocity of the fluid is denoted by u = (u, v, w), where u, v, w are the
streamwise, wall-normal, and spanwise components.

For the laminar solution, v = w = 0 and u = y. The laminar solution is
linearly stable for all Re. As shown by Kreiss et al. [7], perturbations to the
laminar solution that are bounded in amplitude by O(Re−21/4) decay back
to the laminar solution. However, in experiments and in computations, tur-
bulent spots are observed around Re = 360 [2]. The transition to turbulence
in such experiments must surely be because of the finite amplitude of the dis-
turbances. By a threshold disturbance, we refer to a disturbance that would
lead to transition if it were slightly amplified but which would relaminarize if
slightly attenuated. The concept of the threshold for transition to turbulence
was highlighted by Trefethen and others [16]. The amplitude of the threshold
disturbance depends upon the type of the disturbance. It is believed to scale
with Re at a rate given by Reα for some α <= −1.

Our main purpose is to explain how certain finite amplitude disturbances
of the laminar solution lead to turbulence. The dynamical picture that will
be developed in this paper is illustrated in Fig. 1. Historically, the laminar
solution itself has been the focus of attempts to understand mechanisms for
transition. Our focus however will be on a different solution that is represented
as an empty oval in Fig. 1.

� �

�

�

curve on stable manifold

into turbulence

P

Fig. 1. Schematic sketch of the dynamical picture of transition to turbulence that
is developed in this paper. The solid oval stands for the laminar solution, and the
empty oval stands for a steady or traveling wave solution
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Solutions that could correspond to the empty oval in Fig. 1 will be called
lower-branch solutions [11, 19]. A solution at a certain value of Re can be
continued by increasing a carefully chosen parameter. When this parameter is
increased, Re first decreases and begins to increase after a bifurcation point
and we end up with an “upper branch solution” at the original value of Re.
The fact that a continuation procedure can lead to an upper-branch solu-
tion appears to have no significance for the dynamics at a fixed value of Re,
however.

Depending upon the type of disturbance, the lower-branch solution could
either be a steady solution or a traveling wave. Those solutions are not laminar
in nature. Neither are they fully turbulent even at high Re. Unlike the lami-
nar solution, these solutions are linearly unstable. The lower-branch solutions
remain at an O(1) distance from the laminar solution, while the threshold
amplitudes decrease with Re as indicated already. Therefore the threshold
disturbances are too tiny to perturb the laminar solution directly onto a
lower-branch solution. We will show, however, that some threshold distur-
bances perturb the laminar solution to a point on the stable manifold of a
lower-branch solution (point P in Fig. 1). A slightly larger disturbance brings
the flow close to the lower-branch solution, after which the flow follows a
branch of its unstable manifold and becomes fully turbulent.

For certain types of disturbances, the perturbed laminar solution does not
approach a lower branch solution. Thus the dynamical picture of Fig. 1 is not
valid for those disturbances. Instead it flows towards an edge state [15]. We
give a brief discussion of the nature of the edge states in Sect. 4.

1.2 Connections to Earlier Research

The dynamical picture presented in Fig. 1 is related directly and indirectly to
much earlier research. Basic results from hydrodynamic stability show that
some eigenmodes that correspond to the least stable eigenvalue of the lin-
earization around the laminar solution do not depend upon the spanwise or
z direction. This may lead one to expect that disturbances that trigger tran-
sition to turbulence are 2-dimensional. That expectation is not correct, how-
ever. As shown by Orszag and Kells [13], spanwise variation is an essential
feature of disturbances that trigger transition to turbulence. Accordingly, all
the disturbances considered in this paper are 3-dimensional.

Kreiss et al. [7] and Lundbladh et al. [9] investigated disturbances that are
non-normal pseudomodes of the linearization of the laminar solution. Since
the laminar solution is linearly stable, a slight perturbation along an eigen-
mode will simply decay back to the laminar solution at a predictable rate.
The pseudomodes are chosen to maximize transient growth of the solution of
the linearized equation, which is a consequence of the non-normality of the
linearization. Such disturbances lead to transition with quite small amplitudes
and will be considered again in this paper. It must be noted, however, that
any consideration based on the linearization alone can only be valid in a small
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Fig. 2. The plot above shows the secondary instability in a transition computation
at Re = 2,000

region around the laminar solution. The dynamics of transition to turbulence,
as sketched in Fig. 1, involves an approach towards a lower-branch solution
that lies at an O(1) distance from the laminar solution. It is therefore neces-
sary to work with the fully nonlinear Navier–Stokes equation to explicate the
dynamics of transition to turbulence.

Figure 2 shows the variation of the disturbance energy with time for a
disturbance that leads to transition. We observe that the disturbance energy
increases smoothly initially and is then followed by a spike. The spike is in
turn followed by turbulence. The spike corresponds to a secondary instability,
as noted by Kreiss et al. [7]. In fact, the so-called secondary instability is just
the linear instability of a lower-branch solution as will become clear.

Partly motivated by the secondary instability, there was a search for non-
linear steady solutions related to transition as reviewed in [3]. Early success in
this effort was due to Nagata [11, 12] who computed steady solutions of plane
Couette flow in the interval 125 ≤ Re ≤ 300. Waleffe [18, 19, 20] introduced a
more flexible method for computing such solutions, and like Nagata, argued
that such solutions could be related to transition to turbulence. The numer-
ical method we use was introduced in [17]. It uses a combination of Krylov
space methods and the locally optimally constrained hook step to achieve far
better resolution as shown by [4, 17] and this paper.

The computations in [7, 9] imply that threshold amplitudes scale as Reα

for α < −1. The value of α appears to depend upon the type of perturba-
tion. Our focus is not on determining the scaling of the threshold amplitudes.
Nevertheless, we will discuss numerical difficulties that beset determination
of threshold amplitudes.
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Measuring threshold amplitudes poses experimental challenges as well and
it is not always clear from experiments if the thresholds have a simple power
scaling with Re. One difficulty is that the turbulent states can be short lived.
Schmiegel and Eckhardt [14] have connected the lifetime of turbulence to the
possibility that turbulent dynamics in the transition regime is characterized
by a chaotic repeller and not a chaotic attractor.

1.3 Connections to Recent Research

Wang et al. [21] have taken steps towards an asymptotic theory of the lower
branch solutions and carried their computation beyond Re = 50, 000. They
connect the asymptotics to scalings of the threshold for transition to turbu-
lence. The lower branch states occur as solutions to equations that use periodic
boundary conditions. Because such boundary conditions cannot be realized in
laboratory setups, the solutions are best thought of as waves. Thus it is per-
tinent to consider their stability with respect to subharmonic disturbances as
in [21]. That paper also suggests that lower branch solutions might be of use
for control. A somewhat different suggestion related to control can be found
in [5].

Not all disturbances follow the dynamical picture of Fig. 1 as already noted.
For the third type of disturbance considered in Sect. 4, the laminar solution
perturbed by the threshold disturbance evolves towards a state that looks
almost like an invariant object of the underlying differential equation. Those
objects have been termed edge states by Schnieder et al. [15]. Lagha et al. [8]
make the important point that the dynamical picture of Fig. 1 can be valid
for typical disturbances only if the lower-branch solution has a single unstable
eigenvalue.

Near the threshold for the third type of disturbance, it appears as if the
disturbed state evolves and approaches a traveling wave. Indeed, a crude or
under-resolved computation could easily mistake that appearance for a true
solution. When we attempted to refine that near-solution using the numerical
method reviewed in Sect. 3, the numerical method converged to a traveling
wave solution. However, that traveling wave has two unstable eigenvalues and
the flow near the threshold does not come as close to that traveling wave as
the dynamical picture of Fig. 1 would require.

Visualizing the dynamics in state space is fundamental to the approach to
transition to turbulence sketched in this paper and in the articles discussed
above. Yet there has so far been no way to obtain revealing visualizations
of state space dynamics. Gibson et al. [4] have recently produced revealing
visualizations of the state space of turbulent flows. For instance, one of their
figures shows a messy-looking turbulent trajectory cleanly trapped by the
unstable manifolds of certain equilibrium solutions.

Section 2 reviews some basic aspects of plane Couette flow. The numerical
method used to flesh out the dynamical picture of Fig. 1 is given in Sect. 3. In
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Sect. 4, we consider three different types of disturbances. The lower-branch so-
lutions (empty oval of Fig. 1) that correspond to the first two types are steady
solutions. For a given Re, the solutions that correspond to these two types are
identical modulo certain symmetries of plane Couette flow. In Sect. 5, we con-
sider some qualitative aspects of the solutions reported in Sect. 4. A surprising
finding is that these these solutions are less unstable for larger Re. The top
eigenvalue of these solutions is real and positive. For one family of solutions,
the top eigenvalue appears to decrease at the rate Reα for α ≈ −0.46.

In the concluding Sect. 6, we give additional context for this paper from
two points of view. The first point of view is mainly computational and has
to do with reduced dimension methods. In this paper, we have taken care to
use adequate spatial resolution to ensure that the computed solutions are true
solutions of the Navier–Stokes equation. We recognize, however, that resolving
all scales may prove computationally infeasible in some practical situations.
We argue that transition to turbulence computations can be useful in gaging
the possibilities and limitations of methods that do not resolve all scales.
Secondly, we briefly discuss the connection of transition computations with
transition experiments.

2 Some Aspects of Plane Couette Flow

The Navier–Stokes equation ∂u/∂t + (u.∇)u = −(1/ρ)∇p + (1/Re)�u de-
scribes the motion of incompressible fluids. The velocity field u satisfies the
incompressible constraint ∇.u = 0. For plane Couette flow the boundary
conditions are u = (±1, 0, 0) at the walls, which are at y = ±1. To render
the computational domain finite, we impose periodic boundary conditions in
the x and z directions, with periods 2πΛx and 2πΛz, respectively. To enable
comparison with [9], we use Λx = 1.0 and Λz = 0.5 throughout this paper.

Certain basic quantities are useful for forming a general idea of the nature
of a velocity field of plane Couette flow. The first of these is the rate of energy
dissipation per unit volume for plane Couette flow, which is given by

D =
1

8π2ΛxΛz

∫ 2πΛz

0

∫ +1

−1

∫ 2πΛx

0

|∇u|2 + |∇v|2 + |∇w|2 dx dy dz. (1)

The rate of energy input per unit volume is given by

I =
1

8π2ΛxΛz

∫ 2πΛx

0

∫ 2πΛz

0

∂u

∂y

∣∣∣
y=1

+
∂u

∂y

∣∣∣
y=−1

dx dz. (2)

For the laminar solution (u, v, w) = (y, 0, 0), both D and I are normalized
to evaluate to 1. Expressions such as (1) and (2) are derived using formal
manipulations. The derivations would be mathematically valid if the velocity
field u were assumed to be sufficiently smooth. Although such smoothness
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properties of solutions of the Navier–Stokes are yet to be proved, numerical
solutions possess the requisite smoothness. Even solutions in the turbulent
regime appear to be real analytic in the time and space variables, which is
why spectral methods have been so successful in turbulence computations.

In the long run, on physical grounds, we expect the time averages of D
and I to be equal because the energy dissipated through viscosity must be
input at the walls. For steady solutions and traveling waves, the values of D
and I must be equal.

Another useful quantity is the disturbance energy. The disturbance energy
of (u, v, w) is obtained by integrating (u−y)2+v2+w2 over the computational
box. This quantity has already been used in Fig. 2. The disturbance energy is
a measure of the distance from the laminar solution.

Two discrete symmetries of the Navier–Stokes equation for plane Couette
flow will enter the discussion later. The shift-reflection transformation of the
velocity field is given by

S1u =

⎛⎝ u
v
−w

⎞⎠(x + πΛx, y,−z

)
, (3)

and the shift-rotation transformation of the velocity field is given by

S2u =

⎛⎝−u
−v
w

⎞⎠(−x + πΛx,−y, z + πΛz

)
. (4)

Plane Couette flow is unchanged under both these transformations. Thus if
a single velocity field along a trajectory of plane Couette flow satisfies either
symmetry, all points along the trajectory must have the same symmetry. How-
ever, velocity fields that lie on the stable and unstable manifolds of symmetric
periodic or relative periodic solutions need not be symmetric.

3 Numerical Method

The Navier–Stokes equation in the standard form given in Sect. 2 cannot be
viewed as a dynamical system because the velocity field u must satisfy the in-
compressibility condition and because there is no equation for evolving the
pressure p. It can be recast as a dynamical system, however, by using the y
components of u and ∇×u, which is the vorticity field. If the resulting system
is discretized in space using M + 1 Chebyshev points in the y direction, and
2L and 2N Fourier points in the x and z directions, respectively, the number
of degrees of freedom of the spatially discretized system is given by

2(M − 1) + (2M − 4)((2N − 1)(2L − 1) − 1) (1)
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Fig. 3. The plot above shows the variation of D defined by (1) for a disturbance
slightly above the threshold and for a disturbance slightly below the threshold

as shown in [17]. We do not use a truncation strategy to discard modes and
we employ dealiasing in the directions parallel to the wall.

Given a form of the disturbance P , the threshold for transition is obtained
by integrating the disturbed velocity (y, 0, 0)+ εP in time for different ε [7]. If
ε is greater than the threshold value, the flow will spike and become turbulent
as evident from Figs. 2 and 3. If ε is below the threshold value, the flow will
relaminarize. As indicated by Figs. 2 and 3, we may graph either disturbance
energy or D to examine a value of ε. We may also graph I, which is defined
by (2), against time.

The accurate determination of thresholds is beset by numerical difficul-
ties. To begin with, suppose that we are able to integrate the Navier–Stokes
equation for plane Couette flow exactly. Then as implied by the dynamical
picture in Fig. 1, a disturbance of the laminar solution that is on the threshold
will fall into a lower-branch solution, and it will take infinite time to do so.
However, computations for determining the threshold, such as that shown in
Fig. 2, can only be over a finite interval of time. Thus the finiteness of the
time of integration is a source of error in determining thresholds. Two other
sources of error are spatial discretization and time discretization.

An accurate determination of the threshold will need to estimate and bal-
ance these three sources of error carefully. In our computations, we determine
the thresholds with only about two digits of accuracy. That modest level of
accuracy is sufficient for our purposes. In Tables 1 and 3, the thresholds are
reported using disturbance energy per unit volume.

Once the threshold has been determined, we need to compute a steady
solution or a traveling wave to complete the dynamical picture of Fig. 1. The
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Table 1. Data for disturbances of the form (1) with unsymmetric noise and for
steady solutions that correspond to the empty oval in Fig. 1

Label Re D/I λmax Reτ T Threshold

B1 500 1.3920 0.04326 53 150 2.46e − 4
B2 1,000 1.3486 0.03294 73 300 5.73e − 5
B3 2, 000 1.3285 0.02413 103 500 1.36e − 5
B4 4,000 1.3210 0.01732 145 1, 000 3.30e − 6

The steady solutions are labeled B1 through B4. D and I, which are defined by
(1) and (2), correspond to those steady solutions. The next two columns give the
eigenvalue with the maximum real part and the frictional Reynolds number for those
solutions. T is the time interval used to determine the threshold disturbance and
the threshold is reported using disturbance energy per unit volume

initial guess for that lower-branch solution is produced by perturbing the lam-
inar solution by adding the numerically determined threshold disturbance and
integrating the perturbed point over the time interval used for determining
the threshold (this time interval is 500 in Fig. 2 and 300 in Fig. 3).

That initial guess is fed into the method described in [17] to find a lower-
branch solution with good numerical accuracy. That method finds solutions
by solving Newton’s equations, but the equations are set up and solved in a
non-standard way. Suppose that the spatially discretized equation for plane
Couette flow is written as ẋ = f(x), where the dimension of x is given by
(1). To find a steady solution, for instance, it is natural to solve f(x) = 0
after supplementing that equation by some conditions that correspond to the
symmetries (3) and (4). However that is not the way we proceed. We solve for
a fixed point of the time t map x(t;x0), for a fixed value of t, after accounting
for the symmetries. The Newton equations are solved using GMRES. The
method does not always compute the full Newton step, however. Instead, the
method finds the ideal trust region step within a Krylov subspace as described
in [17].

This method can easily handle more than 105 degrees of freedom, and thus
makes it possible to carry out calculations with good spatial resolution. The
reason for setting up the Newton equations in the peculiar way described in
the previous paragraph has to do with the convergence properties of GMRES.
The matrix that arises in solving the Newton equations approximately has the
form I −∂x(t;x0)/∂x0, where I is the identity. Because of viscous damping of
high wavenumbers, many of the eigenvalues of that matrix will be close to 1,
thus facilitating convergence of GMRES. We may expect the convergence to
deteriorate as Re increases, because viscous damping of high wavenumbers is
no longer so pronounced, and that is indeed the case. Nevertheless, we were
able to go up to Re = 4,000, and we believe that even higher values of Re can
be reached.
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4 Disturbances of the Laminar Solution and Transition
to Turbulence

In this section, we consider three types of disturbances and determine the
threshold amplitudes for various values of Re. To complete the dynamical
picture of Fig. 1, we determine for the first two types the steady solution or
traveling wave that corresponds to the empty oval of that figure using the
numerical method of the previous section.

4.1 Rolls with Unsymmetric Noise

We follow [7] and consider the disturbance,

(u, v, w) = ε(0, ψz,−ψy), (1)

where ψ = (1 − y2)2 sin(z/Λz). This disturbance is unchanged by both S1,
which was defined by (3), and by S2, which was defined by (4). A disturbance
of the laminar solution u = (y, 0, 0) of the form (1) never leads to transition
to turbulence. It is necessary to add some more terms to the disturbance to
make the velocity field depend upon the x direction.

To introduce dependence on x, we add modes of the Stokes problem.
One can get an eigenvalue problem for v̂(y), where v = v̂(y) exp(ιlx/Λx +
ιnz/Λz) exp(σt), or for η̂(y), where η = η̂(y) exp(ιlx/Λx + ιnz/Λz) exp(σt).
Here η is the wall-normal component of the vorticity field. For a v mode,
η = 0, and vice versa. For a given mode, the velocity field is recovered using
the divergence free condition. The velocity fields of modes with different (l, n)
are obviously orthogonal. A calculation shows that the velocity fields for the
v and η modes with the same (l, n) are also orthogonal. For a given (l, n), we
pick the v and η modes with the least stable σ.

To the disturbance (1), we added both v and η modes for (l, n) with
−3 ≤ l ≤ 3 and −7 ≤ n ≤ 7. Together the added modes can be called noise.
The energy of the noise was equal to 1% of the energy of (1). This energy was
equally distributed over the various orthogonal modes. Following [7], we chose
random phases for the modes. The threshold can depend upon the choice of
phase. Therefore, for accurate determination of thresholds it is better to use
non-random phases.

After adding modes of this form to (1), the resulting disturbance in un-
changed by neither S1 nor S2. Therefore the disturbance is unsymmetric.
Table 1 reports data from computations carried out using such an unsym-
metric disturbance. The thresholds in that table give the energy of (1) and
do not include the energy within the noise terms. The lower-branch solutions
B1 through B4 correspond to the empty oval in Fig. 1. Each of these solu-
tions appears to have a single unstable eigenvalue. We determined the most
unstable eigenvalues using simultaneous iteration and the time t map of the
Navier–Stokes equation, as in Sect. 3, with t = 8. All the solutions seem to
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Fig. 4. The plots above graph the energy in the solution B4 of Table 1 against
streamwise wavenumber, spanwise wavenumber, and Chebyshev mode

have just one unstable eigenvalue. That eigenvalue is real. Surprisingly, it de-
creases with Re at the rate Reα, where α ≈ −0.46. Thus the lower-branch
solutions become less and less unstable with increasing Re.

All our computations used (2L,M + 1, 2N) = (24, 65, 32). By (1), the
number of degrees of freedom in the computation for finding the lower-branch
solutions is 88, 414. As shown by Fig. 4, that much resolution was entirely
adequate. The solutions B1 through B4 were computed with at least five
digits of accuracy.

4.2 Rolls with Symmetric Noise

It has been suggested that one purpose of adding the noise to (1) is to break
symmetries and that a symmetric disturbance would lead to drastically in-
creased thresholds [7]. To investigate that matter, we symmetrized the distur-
bances used to generate Table 1. More specifically, if u is a disturbed velocity
field, we replaced it by (u + S1u + S2u + S1S2u)/4 which is unchanged by
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Table 2. Data for disturbances of the form (1) with symmetric noise and steady
solutions that correspond to the empty oval in Fig. 1

Label Re sx sz Threshold

C1 500 1.5600 0.0016 2.97e − 4
C2 1,000 6.1093 0.0012 5.72e − 5
C3 2,000 0.5075 0.0018 1.40e − 5
C4 4,000 2.8719 0.0013 3.28e − 6

The solutions Cn are connected to the solutions Bn of Table 1 as follows: Cn(x +
sx, y, z + sz) = Bn

Table 3. Data for disturbances obtained by superposing Orr–Sommerfeld modes
and for the corresponding traveling waves labeled D1 and D2

Label Re D/I λmax Reτ cx cz T Threshold

D1 500 1.2863 0.0464 51 0.3051 0 100 8.4e − 3
D2 1,000 1.2522 0.0379 72 0.2666 0 200 1.6e − 3

cx and cz give the wave speeds in the x and z directions. The other columns are as
in Table 1

both S1 and S2. A comparison of Tables 1 and 2 shows that the thresholds are
in fact not elevated. Thus we conclude that the purpose of adding the noise is
not to break the symmetry but to introduce dependence on the x direction.
The lower-branch solutions that correspond to such symmetric disturbances
are labeled C1 through C4 in Table 2.

The solutions C1 through C4 are just translations of the solutions B1
through B4 as indicated in Table 2. If the thresholds were determined ex-
actly, the disturbances of Tables 1 and 2 would come arbitrarily close to the
corresponding solution in the infinite time limit. Each threshold in those tables
was determined inexactly using a finite time interval, and we verified that the
disturbed states evolve and come within 2% of the corresponding lower-branch
solution. Thus there can be little doubt about the role of these lower-branch
solutions in the transition to turbulence. The C family of solutions is the same
as the lower-branch family of [20].

Given that the solutions C1 through C4 are just translations of the solu-
tions B1 through B4, it is tempting to think that all threshold disturbances,
say at Re = 4,000, might evolve and approach a translate of a single solution
such as C4. That is not correct, however, as we will now show.

4.3 Superposed Orr–Sommerfeld Modes

The disturbances for Table 3 were obtained by superposing Orr–Sommerfeld
modes as in [13]. An Orr–Sommerfeld mode is of the form (u, v, w) =
(û(y), v̂(y), ŵ(y)) exp(ιlx/Λx+ιnz/Λz) exp(σt).WeuseOrr–Sommerfeldmodes
with (l, n) = ±(1, 0) and (l, n) = ±(1, 1). The phases of the Orr–Sommerfeld



The Dynamics of Transition to Turbulence in Plane Couette Flow 121

modes were chosen to make v̂(0) real. The disturbance energy was equally
distributed across the modes. For given (l, n), we chose the least stable mode
and symmetrized it as in (3.2) of [13]. Note that the disturbance depends on
both the x and z directions.

The solutions obtained by following the numerical method of Sect. 3 were
traveling waves in this case. The wave speeds for both D1 and D2 in Table 3
are nonzero in the x direction. These traveling waves are unsymmetric and
they do not become symmetric even after translations in the x and z direc-
tions.

The thresholds for this third type of disturbance are reported in Table 3.
Close to the threshold, the flow appears to approach a traveling wave. After a
diligent computation, we feel sure that there is no true traveling wave solution
or relative periodic solution to complete the dynamical picture of Fig. 1. The
flow near the threshold evolves and comes within 10% of D1 or D2 but no
closer. It appears to approach an edge state.

Figure 5 shows plots of the rates of energy input and energy dissipation
near an edge state. In that figure, the disturbance is very close to the threshold
and the time axis is chosen to correspond to an edge state. Note that the
dissipation sags below energy input and then rises above it. Therefore, we do
not expect a traveling wave or an equilibrium solution near the edge state.
The second crossing of the two curves is below the first. In addition, both the
curves spike and transition to turbulence soon after they cross. Therefore, a
periodic or relative periodic solution is unlikely to be found near the edge state.
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Fig. 5. The thick line is a plot of D defined by (1) and the thin line is a plot
of I defined by (2). The disturbance used to get the plots was a superposition of
Orr–Sommerfeld modes at Re = 500
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In pipe flow transition computations, we have observed that the rate of
dissipation and the rate of energy input become almost horizontal lines near
the edge states. The rate of dissipation is slightly above the rate of energy
input, suggesting that there may be no invariant objects near the edge states
in these instances.

As stated earlier, the laminar solution of plane Couette flow is linearly sta-
ble. The computations of this section shed some light on the laminar-turbulent
separatrix. A part of this separatrix is formed by the stable manifolds of the
B and C family of solutions. We have shown that these stable manifolds come
closer and closer to the laminar solution as Re increases. The traveling waves
D1 and D2 are also on the separatrix. However, we have not found tiny distur-
bances to the laminar solution for which the thresholds diminish in magnitude
with increasing Re and which approach these solutions as the flow evolves as
in Fig. 1. In the next section, we show that the D solutions are qualitatively
similar to the B and C solutions.

5 Lower-Branch Solutions of Plane Couette Flow

A notable feature of the solutions of Tables 1–3 is that the solutions are
streaky. This feature is illustrated in Fig. 6. The contour lines for the stream-
wise velocity are approximately parallel to the x axis, but the streamwise
velocity varies in a pronounced way in the z direction. We observe that D1
is less streaky than C1. The contour lines become much straighter when we
go from C1 to C4. This increase in streakiness with Re is in accord with the
asymptotic theory sketched in [21].

To show that these solutions are not fully turbulent, we begin by describing
the use of frictional or wall units [10]. The mean shear at the wall, which is
denoted by

〈
∂u
∂y

∣∣
y=1

〉
, is the basis for frictional units. The frictional units for

velocity and length are given by

uf =

√
ν
〈∂u

∂y

∣∣∣
y=1

〉
and lf = ν/uf ,

respectively. If the width of the channel is L, the frictional Reynolds number
is given by Reτ = Luf/ν = L/lf . The width of the channel in frictional units
equals the frictional Reynolds number. The use of frictional units is signaled
by using + as a superscript.

The use of frictional units is necessary to state some remarkable properties
of turbulent boundary layers. If y+ measures the distance from the wall and
<u>+ is the mean streamwise velocity in frictional units, after making <u>+=
0 at y+ = 0 by shifting the mean velocities if necessary, then <u>+≈ y+ in the
viscous sublayer. The viscous sublayer is about five frictional units thick. The
buffer layer extends from 5 to about 30 units. It is followed by the logarithmic
layer where <u>+≈ A log y+ +B, for constants A and B. These relationships
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Fig. 6. Contour plots of the streamwise velocity at y = 0. The plots correspond to
D1, C1, and C4. Contour lines are drawn at 12 equispaced values between the max-
imum and minimum streamwise velocity in the slice. The lines are solid for positive
values and dashed for negative values. The minimums are −0.1922,−0.3969,−0.3833
and the maximums are 0.4146, 0.3969, 0.3833. In each plot the maximum occurs in
the widest gap between the solid lines

between <u>+ and y+ have been confirmed in numerous experiments and in
some computations. The experiments are of a very diverse nature as discussed
in [10], and it is remarkable that such a simple relationship holds across all
those experiments.

There are other relationships that govern the dependence of quantities
such as turbulence intensities or turbulent energy production on the distance
from the wall. These relationships also characterize turbulent boundary layers.
To show that the C and D solutions are not fully turbulent, we will use plots
of turbulent energy production. Turbulent energy production equals

− <u∗v∗>
∂ <u>

∂y
,

where u∗ = u− <u> and v∗ = v− <v> are the fluctuating components of the
streamwise and wall-normal velocities and <u> is the mean streamwise veloc-
ity. Turbulent energy production is easy to measure experimentally and shows
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a very sharp peak in the buffer region of turbulent boundary layers [6]. This
sharp peak has intrigued experimentalists for a long time. In experiments, the
means are calculated by averaging pointwise measurements over long intervals
of time. The means involved in the definition of turbulent energy production
will be computed by averaging in the x and z directions.

Figure 7 shows plots of turbulent energy production against y+, the dis-
tance from the upper wall in frictional units. In each plot, y+ varies from 0
to the channel width. The first plot is for a turbulent steady solution of plane
Couette flow at Re = 400. The data for the velocity field of that solution is
from [20]. The second and third plots are for C1 and C4, respectively. The
first plot is strikingly different from the other two. In the first plot, we notice
that turbulent energy production peaks inside the buffer layer and then falls
off sharply, in a way that is typical of turbulent boundary layers. The second
and third plots correspond to higher Re, yet the peak occurs farther away
from the wall in frictional units and there is no sharp fall-off. The plots for
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Fig. 7. The plots show the dependence of turbulent energy production in frictional
units on y+ for a turbulent steady solution, C1, and C4
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Fig. 8. Contour plots of the streamwise vorticity at x = π. The contour lines are
equispaced between −0.11 and 0.13 for the first plot, which corresponds to C2, and
between −0.19 and 0.17 for the second plot, which corresponds to D2. The lines are
dotted for negative values of streamwise vorticity

D1 and D2 are not shown. Those plots are similar to the ones for C1 and C4
in that they do not match what we expect for turbulent boundary layers. A
notable difference is that the plots for D1 and D2 are not symmetric about
the center of the channel. Thus the C and D solutions exhibit some aspects
of near-wall turbulence such as the formation of streaks, but do not exhibit
many other aspects.

Figure 8 is another illustration of the qualitative similarity between the
C and D solutions. In both plots of Fig. 8, one may observe a region near
the center of the channel where the streamwise vorticity varies rapidly. Those
regions correspond to the critical layer discussed in [21].

6 Conclusion

We verified the dynamical picture for transition to turbulence given in Fig. 1
for certain disturbances. The third type of disturbance considered in Sect. 4.3
shows that that picture does not hold for all disturbances. A more exhaus-
tive study of different types of disturbances of the laminar solution would be
desirable.

We found (along with Wang et al. [21]) that the B or C solutions become
less unstable as Re increases. This was an unexpected finding. Even a good
heuristic explanation of this trend would be interesting.

Transition to turbulence computations would be good targets for reduced
dimension methods. Reduced dimension methods are diverse in nature. Al-
though this is not the place to review them, we believe the intricate dy-
namics of transition of turbulence featuring steady solutions, traveling waves,
thresholds and various types of disturbances makes it non-trivial to reduce
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dimension. A valid way to reduce dimension must capture the dynamics cor-
rectly and not introduce spurious artifacts. It has been known since the work
of Orszag and Kells [13] that under-resolved spatial discretizations lead to
spurious transitions.

It is important to connect transition computations to experiments. How-
ever, connecting transition computations to experiments is impeded by two
problems. Firstly, the experiments are performed in much larger domains to
eliminate boundary effects. The numerical methods reviewed and discussed
in Sect. 2 ought to be able to handle at least 10 million degrees of freedom
with a good parallel implementation. Therefore it seems that computations
can be performed in much larger domains (i.e., domains with larger Λx and
Λz) and that this problem can be overcome. Secondly, it is very difficult to
imagine a way to reproduce the sort of disturbances that have been consid-
ered in the computational literature in experiments. The disturbances used in
experiments are of a different sort. For instance, one type of disturbance is to
inject fluid from the walls. The best way to reconcile this disparity between
computation and experiment might be to carry out computations using good
models of laboratory disturbances.
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