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Foreword

For the benefit of the general readership, it might be a good idea to first explain
the difference between “inverse problems” versus “analysis problems” using simple
general terms as defined by Professor Shiro Kubo of Osaka University in his book
published in the early 1990s.

Analysis problems are well-posed problems concerned with finding distribu-
tion(s) of certain variable(s) in a domain of a given size and shape that can be
multiply connected and time-dependent. Results of the analysis problems also de-
pend on boundary and/or initial conditions given at every point of a boundary of
the domain. Properties of the media filling the domain must also be given in ad-
dition to strengths and locations/distribution of any possible sources/sinks. Finally,
equation(s) governing the field variable(s) must be given. If all of these pieces of in-
formation are given, then the problem of finding the field distribution of variable(s)
is a well-posed problem that can be solved using appropriate numerical integration
algorithms.

However, if at least one of these pieces of information is missing, such under-
specified problems become inverse problems of determining the missing piece of
information in addition to simultaneously solving the original analysis problem. To
enable ourselves to accomplish this complex task, we must be given an additional
piece of information (typically, a part of the solution of the corresponding analysis
problem) which makes the inverse problem an over-specified or ill-posed problem.

For example, when given size and shape of an isotropic plate and either Neumann
or Dirichlet boundary conditions at every point along the edges of the plate, steady
state heat conduction in the plate will be governed by the LaPlace’s equation for
temperature. This would be a classical well-posed analysis problem. However, if
boundary conditions are not given on one boundary of this plate, the problem of
finding temperature distribution in the plate becomes under-specified and cannot be
solved. This problem will become solvable if we provide both Dirichlet and Neuman
boundary conditions simultaneously on at least some parts of the plate’s boundaries
which will make this an over-specified or ill-posed inverse problem of determining
the missing boundary conditions and simultaneously determining the distribution of
temperature throughout the plate.

Inverse problems have traditionally been considered mathematically challenging
problems and have consequently been studied predominantly by mathematicians.
Since there are many practical inverse problems in a variety of disciplines that re-
quire mathematical tools for their solution, it is scientists and engineers that have
been developing many of these methods recently out of necessity to obtain prac-
tical results. Consequently, an initially wide gap between scientists and engineers
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versus applied mathematicians has been steadily narrowing as both communities
have realized that they have many things to learn from each other.

This book is a welcome and unique publication that uses a common language
to blend the rigour of the applied mathematics world and the reality of a research
scientist’s or an engineer’s world. Thus, it should appeal to everyone who has the
basic knowledge of differential equations and at least a rudimentary understanding
of basic mathematical models used in field theory and general continuum mechanics
and transport processes. Specifically, applied mathematicians will be able to find
here physical relevance for some of their theoretical work and learn to appreciate
the importance of developing understandable, easy-to-use, easy to adapt and reliable
algorithms for the solution of different classes of inverse problems. At the same time,
research scientists and engineers will be able to learn from this book that some of
the methods and formulations that they have been using in the past are prone to
problems of non-uniqueness of the results and that accuracy of many of the practical
methods could easily become a real issue when solving inverse problems.

Actually, this book could be used not only as a valuable reference book, but also
as a textbook for students in the fields of applied mathematics, engineering and exact
sciences. Besides its simple language, this book is easy to comprehend also because
it contains a number of illustrative examples and exercises demonstrating each of
the major concepts and algorithms.

For example, basic concepts of regularization of ill-posed problems are very
nicely explained and demonstrated so that even a complete novice to this field can
understand and apply them. Formulations and applications in image processing and
thermal fields presented in this book have direct practical applications and add sig-
nificantly to the more complete understanding of the general problematics of inverse
problems governed by elliptic and parabolic partial differential equations. Inverse
scattering problems have not been covered in this book as this field can easily fill a
separate book.

Many formulations for the solution of inverse problems used to be very disci-
pline specific and even problem specific. Thus, despite their mathematical elegance
and solution efficiency and accuracy, most of the classical inverse problems solution
methods had severe limitations concerning their fields of applicability. Furthermore,
most of these methods used to be highly mathematical, thus requiring highly math-
ematical education on the part of users.

Since industry requires fast and simple algorithms for the solution of a wide
variety of inverse problems, this implies a growing need for users that do not have
a very high degree of mathematical education. Consequently, many of the currently
used general algorithms for the solution of inverse problems eventually result in
some sort of a functional that needs to be minimized. This has been recognized by
the authors of this book which have therefore included some of the most popular
minimization algorithms in this text.

Hence, this book provides a closed loop on how to formulate an inverse problem,
how to choose an appropriate algorithm for its solution, and how to perform the
solution procedure.
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I recommend this book highly to those that are learning about inverse problems
as well as to those that think that they know everything about such problems. Both
entities will be pleasantly surprised with the ease that concepts, formulations and
solution algorithms are explained in this book.

George S. Dulikravich

Miami, Florida

June 2011



Preface

Archimedes, is this crown made of gold?
King Hiero II of Syracusea, circa 250 BCE.

(. . . ) to find a shape of a bell by means of the sounds
which it is capable of sending out.

Sir A. Schusterb, 1882.

Can one hear the shape of a drum?
Marc Kacc, 1966.

a Hiero II (308 BCE - 215 BCE).
b Sir A. Schuster (1851-1934).
c Marc Kac (1914-1984).

On inverse problems

Perhaps the most famous inverse problem for the mathematical community is: Can
one hear the shape of a drum? [40, 65]. That is: Is one able to figure out the shape of a
drum based on the sound it emits? The corresponding direct problem is to determine
the sound emitted by a drum of known shape. The solution to the direct problem is
long known, but the solution to the inverse problem eluded the scientific community
for a long time. It was found to be negative: there are two drums, different in shape,
that emit the same sound, see [36]. Several other mathematical aspects concerning
the resolution of inverse problems have been investigated in recent years.

Parallel to that, a large number of significant inverse problem methodology ap-
plications were developed in engineering, medicine, geophysics and astrophysics,
as well as in several other branches of science and technology.

Why? Because inverse problems is an interdisciplinary area that matches the
mathematical model of a problem to its experimental data. Or, given a bunch of
numbers, data, in a data driven research, looks for a mathematical model. It is an
interface between theory and practice!

About this book

The general purpose of this book is to introduce certain key ideas on inverse prob-
lems and discuss some meaningful applications. With this approach, we hope to be
able to stimulate the reader to study inverse problems and to use them in practical
situations.
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The book is divided, though not in sequence, in two main parts, one of a more
mathematical nature, and the other more linked to applications. It adopts an ele-
mentary approach to the mathematical analysis of inverse problems and develops a
general methodology for the solution of real inverse problems. Further, it discusses
a series of applications of this methodology, ranging from image processing applied
to medicine, to problems of radiation applied to tomography, and onto problems
of conductive heat transfer used in the design of thermal devices. The choice of
applications reflect the acquaintance of the authors.

In order to make the book of a manageable size and suitable for a larger audience,
we opted to make the presentation of mathematical concepts in the context of lin-
ear, finite dimensional, inverse problems. In this setting, key issues can be handled
with mathematical care, in a rather “pedestrian” and easy way because the problem
is linear and finite dimensional, requiring only acquaintance with basic ideas from
linear algebra. Geometrical ideas, which are a key to generalization, are empha-
sized.

Some of the applications considered, however, involve problems which are nei-
ther finite dimensional nor linear. The treatment then is numerical, and the ideas
from the first part of the book are used as guidelines, through extrapolation. This
is possible, in part, because, to simplify, this book deals, several times, with least
squares methods. Although the subjects in this book are intricate, the chapters can
be read, somewhat, independently of one another. This is because of the intended
redundancy, employed for pedagogical reasons, like in an old teaching’s tradition:
attention, association and repetition. To make it easier to peruse the book, a descrip-
tion of the book’s content, chapter by chapter, is given on pages 4-6.

The pre-requisites to read this book are calculus of several variables and linear
algebra. Nonetheless, a few concepts and results from linear algebra and calculus are
reviewed in the appendix, in order to make the book reasonably self-contained. Even
though knowledge of differential equations is necessary to understand some parts,
basic concepts on this subject are not supplied or reviewed. Knowledge of numerical
methods might be useful for reading certain sections. We included exercises at the
end of each chapter, many of them guided, to make it easier for readers to grasp, and
extend the concepts presented.

We believe that this book can be read, with some interest and to their profit,
by upper division undergraduate students and beginning graduate students in ap-
plied mathematics, physics, engineering, and biology. Since it also includes some
thoughts on mathematical modeling, which are in the back of the minds of re-
searchers, but are not usually spelled out, this book may interest them too.

Some remarks

Practical matters: we use emphasised expressions to signal a group of words with a
specific meaning when they are being defined either explicit or implicitly. The end
of an example, a proof, or an argument is indicated by a small black square.

The authors will be happy to receive any comments and/or suggestions on this book.
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This text reflects the partnership between a mathematician and an engineer. It
is the result of a cross fertilization, in full collaboration, that greatly enthuses us
and that, we hope, encourages others to break the usual barriers and pursue similar
partnerships.

Francisco Duarte Moura Neto
Antônio José da Silva Neto

Nova Friburgo, Brazil
July 2012
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Chapter 0

Road Map

We shall begin by presenting some areas of application of inverse problems and the
content of book’s chapters.

0.1 Inverse Problems in a Snapshot

Given a line, y = 3x + 4, to find a point that belongs to the line is a so-called
direct problem. Given two points, (−1,1) and (0,4), an inverse problem is to find the
equation of the line that they determine.

Let us make this a larger section. Given a line, y = 3x + 4, in order to find the y
value when, say, x = −1 is a direct problem.

Given a class of lines, y = ax + b, and theoretically measured data

(xmeas1
,y−meas1) = (−1,1), (xmeas2

,ymeas2
) = (0,4) ,

finding the specific line, that satisfies the data, i.e. finding that a = 3 and b = 4, is
an inverse identification problem.

Given a line, y = 3x + 4, and theoretically measured data, ymeas = 1, finding the
source x = −1, is an inverse reconstruction problem.

Reality enters the picture if, for instance, to solve an inverse identification prob-
lem, one is given a set of experimental data,

(xmeas1
,ymeas1

) = (−1,1.1), (xmeas2
,ymeas2

) = (1,6.85), (xmeas3
,ymeas3

) = (0,3.9) ,

which does not allow an immediate matching with the model, i.e., there is no model
in the class able to interpole the data.

These examples are quite simple and it is somewhat difficult to grasp their distinct
nature. We shall return to these matters in Section 2.8.

0.2 Applied Inverse Problems

Due to the growing interest in inverse problems, several seminars and international
congresses have taken place: First International Conference on Inverse Problems
in Engineering: Theory and Practice, 1993 [8] (its seventh edition took place in
Orlando, USA, in May 2011); Inverse Problems in Diffusion Processes, 1994 [31];
Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Med-
ical and Nonmedical Applications, 1995 [9] and the Joint International Conference
on Mathematical Methods and Supercomputing for Nuclear Applications, 1997 [6],
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to mention but a few. The number of published results pertaining original research
has also grown. Just as an example, in the 2011 edition of the International Congress
on Industrial and Applied Mathematics, that took place in Vancouver, ICIAM 2011,
one finds a large number of simposia on inverse problems, as well as on computa-
tional modeling, finances and applications to life sciences, in which inverse prob-
lems also play an important role.

As examples of inverse problems applications in everyday life we can mention
the following reconstruction problems1: underground non-metallic materials detec-
tion by reflected radiation means; intensity and position estimation of luminous radi-
ation from a biological source using experimental radiation measures; tomography
(Computerized Tomography, or CT; Single Photon Emission Computerized Tomog-
raphy, or SPECT; Near Infrared Optical Tomography, or NIROT); thermal sources
intensity estimation with functional dependence in space and/or time in heat transfer
problems, based in transient temperature measures, and initial condition estimation
of transient problems in conductive heat transfer.

The estimation of properties used in mathematical models of physical systems
is, in its own right, a special class of inverse problems, the so-called identification
problems. It is common to estimate the thermal conductivity and diffusivity of mate-
rials, depending, or not, on temperature, in diffusive processes, and also the radiative
properties — single scattering albedo, optical thickness and anisotropic scattering
phase function — in heat transfer by thermal radiation in participating media. The
study of combustion inside furnaces is one of the areas where this kind of thermal
radiation inverse problems are applied.

Another important inverse problems class is image reconstruction (the aforemen-
tioned tomography problem can be included here too), which can be formulated
as a mixed identification and reconstruction problem. Based on the estimation of
medium properties, it is possible to identify defects in components — through non-
destructive testing in industry, — or altered regions in biological tissues — applied
in diagnosis and treatment in medicine.

A research and technological innovation area that has received growing demands
is new materials development. Recent trends in the use of materials, points to the
development of materials with specific properties, designed in advance to meet the
demands of new applications, ranging from engineering to medicine.

The need to use adequate techniques for new materials characterization, that is,
determination of their properties, is obvious. However, the degrees of freedom of an
experimental device are usually restrained during its development and operational
phases. This, in turn, frequently imposes practical limitations, which restricts the
experiment’s possibilities only to a fraction. In this case, inverse problems method-
ology has been used to determine those properties, and also in the design of experi-
ments, allowing to tackle more complex and challenging problems.

1 The notion of reconstruction problems is discussed in Sections 2.8 and 8.1. The prob-
lems mentioned here can be formulated as reconstruction problems but can also be formu-
lated as identification problems or sometimes a mix of reconstruction and identification
problems, depending on the mathematical model adopted and the role that the estimated
quantity plays in it.
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0.3 Crossing the Science-Technology Gap

We all have faced the resolution of inverse problems before. Perhaps not from a
mathematical point of view, though. Kids love solving inverse problems. “ I’m the
part of the bird that’s not in the sky. I can swim in the ocean and yet remain dry.
What am I2?” They love the ambiguity inherent to inverse problems, one of which
is that they, in general, have more than one answer. Mathematicians, due to this
feature, classify inverse problems as ill-posed problems.

One of the greatest ideas in mathematics is giving a name to that which is not
known: the unknown (x, perhaps?). In solving inverse problems this is done all the
time. When something is named it may be talked about, even if one does not grasp it
in its wholeness. After that, and persevering a little, enlightenment may be reached.
The “unknown” will be limited or nailed down by assertions which it satisfies3. Step
by step, the range of possible x’s is reduced. Many times, in the end, it remains just
a unique x. That is when mathematicians utter in satisfaction “The solution exists,
and is unique!”

Another great discovery was the notion of function4. From it the notion of solu-
tion operator is only a step away: the solution operator of a given problem is that
abstruse mathematical concept that, from the data, reveals the solution. Oh, yes,
this is a function because — do you remember? — the solution is unique, as it was
shown.

The solution operator has to bear resemblance with reality, and it must be con-
structed from observations of the system or phenomenon under investigation. It must
model reality. It must fit the data, as much as possible. Is this least squares?

Then comes the solution operator representation. What does it do with the data
to produce the answer? Is it a linear function? A polynomial, perhaps? Is it the sum
of the derivatives of order less than four of the data? There are lots of possibilities!

What we want is to know the answer. How about to transform that representa-
tion into an algorithm, a finite procedure that, in the end, will grant us the divine
grace of knowing the answer to the problem?

2 “I am a shadow”.
3 Strictly speaking, this is not mathematics, it is modeling — physical modeling in a broad

sense, which may include biological modeling, sociological modeling and so on.
4 The notion of function, or almost it, has been reinvented under different names in so many

sciences because it is a fundamental concept. When being taught mathematics, however,
few really are able to grasp the concept in its fullness.

Just to make it clear, since we shall use it frequently, a function f , with domain A
and codomain B, is a rule that for each element x ∈ A attributes a unique element f (x)
belonging to B. The attribution is indicated by �→, and the notation for f , with all its
features is

f :A → B

x �→ f (x)

or, sometimes, a shorter version is usual: A � x �→ f (x) ∈ B.
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Well, it is not exactly that way. The algorithm only tells us what should be done
and the order thereof. In the end, we may feel much too lazy to do all the work. Or,
perhaps, computations would take us so long that we may have to devote to it the
rest of our lives! Now, instead, how about programming the algorithm?

And the computer does well what it is told to do. To do orderly? “So, they are
talking about serial programming? So boring!” What then is the neat idea? Partial
order? Parallel computing?

Finally, the numbers or a picture (worth a thousand words): the answer! Even so,
a mathematical answer. And the problem ends. Ends? (The answer is yes, for this
book. However...)

No! We still have to place it all inside a capsule, inside a wrapper, inside a product
which is intensely loaded with knowledge.

And, through crossroads, the scientific and technological adventure continues.

0.4 Chapter by Chapter

The chapters in this book can be read more or less independently of one another. It
is convenient to describe the contents of the book chapter by chapter, so the reader
can locate more easily a specific content. We do it next.

Chapter 1 Mathematical Modeling. In this chapter we present some basic ideas
on mathematical modeling, what special type of questions a math-
ematical modeler wants to answer (which a mathematical illiterate
would not pose), and the role of inverse problems in this setting. The
methodology used to illustrate the explanation is multivariate linear
regression, and an application to flow in porous medium is considered.
The notion of function, which plays a very prominent role throughout
the book, is emphasized here.

Chapter 2 Fundamental Concepts in Inverse Problems. Here we present the clas-
sical analytical difficulties of inverse problems, the questions of ex-
istence, uniqueness and ill-posedeness. The discussion is elementary,
and the examples come from algebraic equations. The condition on
the evaluation of functions is touched upon and the question of sta-
bility of numerical algorithms is also pointed out by simple examples.
General classifications of mathematical models and inverse problems
are presented.

Chapter 3 Spectral Analysis of an Inverse Problem. This chapter introduces the
regularization of a finite dimensional inverse problem, in order to get
a meaningful approximation of its solution. Linear algebra ideas, in
particular the spectral theory of symmetric matrices, are used to un-
derstand the workings of simple regularization schemes. The methods
of Tikhonov, steepest descent, Landweber, and conjugate gradient are
discussed in this context, and the discrepancy principle is presented.
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Chapter 4 Image Restoration. This is the first chapter devoted to applications.
De-blurring of images is considered, and examples from restoration
of digital images, text, and biological images are handled. Some blur-
ring mechanisms based on convolution are presented. These problems
are formulated as nonlinear systems, using Tikhonov’s regularization
technique, with a family of regularization terms constructed with Breg-
man’s divergences, and are solved by Newton-Raphson’s root finder
algorithm coupled with Gauss-Seidel iterative method. A schematic
presentation of a restoration algorithm is included.

Chapter 5 Radiative Transfer and Heat Conduction. In this chapter inverse prob-
lems involving the linear Boltzmann equation of radiative transfer are
presented. The interaction of radiation with heat conduction is also
considered. The Levenberg-Marquardt method is discussed and used
to solve inverse problems. Several parameters are determined: phase
function expansion coefficients, single scattering albedo, optical thick-
ness, thermal conductivity, and refraction index. Confidence intervals
are obtained.

Chapter 6 Thermal Characterization. This chapter discusses thermal characteri-
zation of a polymeric material using data acquired with the hot-wire
method. This amounts to determine the material’s thermal conductiv-
ity and specific heat with a transient technique. The inverse problem
methodology, which allows determination of more parameters than
traditional experimental methods, gives better results. Again, we em-
ploy the Levenberg-Marquardt method. Confidence intervals for the
results are determined.

Chapter 7 Heat Conduction. This chapter considers the reconstruction of a
thermal source in a heat conduction problem. It is formulated as an
optimization problem in an infinite dimensional space. The conjugate
gradient method in a function space (Alifanov’s iterative regularization
method) is presented and applied to this problem. The use of discrep-
ancy principle as a stopping criterion is illustrated.

Chapter 8 A General Perspective. This chapter proposes a reasonably general for-
mulation of inverse problems and their types, while stressing the role
of observation operators. Further, it discusses the gradient of objective
functions, with some generality, leaving aside, however, mathematical
aspects.

Afterword Some Thoughts on Model Complexity and Knowledge. In the last
chapter we engage in a discussion of different levels of mathemati-
cal models, from quantification of phenomena, somewhat proposed by
Pythagoras, to the revolutionary concept set in motion by Newton of
a dynamical model, and the role of computation and inverse problems
in that endeavor.
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Appendix A Spectral Theory and a Few Other Ideas from Mathematics. In the ap-
pendix, we collect some concepts and results from linear algebra and
calculus, that are used throughout the book: norms, distances, inner-
products, orthogonal matrices, projections, spectral theorem of a real,
symmetric matrix, singular value decomposition of a real matrix, and
Taylor’s formulae.



Chapter 1

Mathematical Modeling

In this chapter we present some of the aspects of the interface between mathematics
and its applications, the so-called mathematical modeling. This is neither mathemat-
ics nor applied mathematics and is usually performed by scientists and engineers.
We do this in the context of linear algebra, which allows easy comparison between
direct and inverse problems. We also show some of the modeling stages and encour-
age the use of a least-squares method. An application to the study of flow in a porous
medium is presented. Some key issues pertaining to the use of models in practical
situations are discussed.

1.1 Models

We want to think about how we may come to understand a phenomenon, process or
physical system. To simulate this endeavor, we make a thought experiment1, under
the assumption of conducting an investigation into the behavior of a hypothetical
system, schematically represented by a black box.

Consider a black box whose inner working mechanisms are unknown and that,
given a stimulus or input, answers with a reaction or output. See Fig. 1.1.
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�

Input Output

Fig. 1.1 Black box: the mental prototype

We aim to foretell the box behaviour in several distinct situations. In particular,
we would like to tackle the following problems:

P1: Given an arbitrary stimulus, tell what the corresponding reaction will be;

P2: Given the reaction, tell what stimulus produced it.

However, we are not interested in generic predictions, but only in those based in
scientific descriptions of the behaviour of the black box. To that end, we will

1 Thought experiments have been used by several scientists, as for instance G. Galilei (1564-
1642), R. Descartes (1596-1650), I. Newton (1643-1727), and A. Einstein (1879-1955),
and it turns out to be a good artifact of investigation to keep in mind.
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associate to the real situation a physical model and a corresponding mathematical
model. Predictions will be made from the latter.

We shall call physical model any description of the phenomena involved using
such concepts as, for example, number of items, mass, volume, energy, momentum,
charge and their conservation, exchange, movement, or transference, etc.

By mathematical model we mean any kind of mathematical structure, such as,
for example, a function, an equation, a set with an equivalence relationship, a vector
space, a group, a graph, a probability distribution, a Markov chain, a neural network,
a system of non-linear partial differential equations, an elliptic operator defined on
a fiber space, etc.

Our guiding methodology when choosing a model, which we shall call modeling,
is part of the scientific method, that we present in a somewhat modern language.

In practical situations we try to choose or develop a mathematical model that best
describes the physical model, avoiding contradictions with reality and deviations
from the phenomena of interest. We only keep the model as long as it is not refuted
by experimental data2.

1.2 Observing Reality

The sleuth that is to solve a crime, or, in other words, who is to foretell the behaviour
of a person or group of persons in a given situation, must create a careful profile of
those persons and know, as best he can, the episode and the circumstances. Thus, he
must bear in mind the various elements of the deed, the deeds before it and its con-
sequences. To that end he must search for information where it is available, which,
logically, includes the crime scene. He must observe and carry on the investigation,
questioning persons, in any way, related to the crime, and analyzing their answers3.

Our goal is to be able to guess the behaviour of the black box, Fig. 1.1. Anal-
ogously to the observation of a crime’s trail, we begin the observational and ex-
perimental phase of our project. By applying different stimuli to the black box we
observe and take note of the corresponding reactions.

2 The mathematical model will be accepted as long as its predictions do not contradict ex-
perimental facts. That is a very strong requirement of the scientific discourse. If the model
fails, one does not have any impediment to throw it away, to reject it, no matter for how
long and for how many it has been used. In fact, one is obliged to reject it. This very strong
stance, singles out the scientific method. This is precisely what Johannes Kepler (1571-
1630) did. At a certain point, he believed that the orbits of the planets, around the sun, were
circles. However, the data collected by Tycho Brahe (1546-1601) indicated that the orbit
of Mars could not be fitted by a circle. This difficulty led him to discard the hypothesis
that the orbits were circles, and embrace the more accurate model of elliptical orbits.

3 Obviously, he can also consider the forensic analysis that makes it possible to track the
trajectory of a projectile, a body, or a car, and any kind of materials involved. This consti-
tutes, in foresight, a set of inverse problems, which, naturally, uses knowledge of physics
and mathematics.
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The next step is to organize the experimental data in a way suitable for analysis.
We thus create a database of real or experimental data. This is critical, since the
way data is organized will emphasize certain aspects at the expense of others. Infor-
mation can be presented, for example, as tables, diagrams, graphs and images. Some
possible data structures are sketched in Fig. 1.2. Catalogues of possible stimuli and
conceivable reactions can be created (Fig. 1.2b, first row, second column). Some-
times, these catalogues correspond to the domain and the codomain of appropriate
functions.

Assume we want to answer problems formulated in Section 1.1, page 7, and
some other questions that may arise out of curiosity or by chance. However, we
would want to avoid resorting, everytime, to experimentation. With this is mind, but
still wanting to do it scientifically, we build a mathematical model of the situation.

As a matter of fact, the experimental database allows one to answer some prob-
lems. Many people would be perfectly happy to solve their problems that way. Then,
why should we build a mathematical model of the situation in the first place? Among
the many reasons to do so, we mention two:

• Once a mathematical model has been devised, a natural environment is avail-
able in which several settings and hypothesis can be generated and tested, i.e.
a number of scenarious may be constructed. In the example, it is possible, by
standard deductive reasoning (logic implication), to propose candidates for
reactions due to a wider range of stimuli values;

• A remarkable advantage of a mathematical model is the compression of infor-
mation. Once the model is obtained, additional structures within the database
become apparent. Those perceived structures are enough to render almost use-
less large parts of the database. This results in effective compression4 which,
in turn, leads to comprehension.

1.3 The Art of Idealization: Model Characterization

A class of models is chosen according to the given situation, technological and/or
pratical measuring capabilities, purpose, and so on. Choosing a class of models is
known as model characterization. We remark that this endeavour is not an applica-
tion of mathematics in itself (in the sense that it is not solely the carrying out of an
algorithm); indeed, it is an intelligent activity, a task generally highly complex, an
art that demands an educated sensibility to execute it at its best. As a matter of fact,

4 It is relevant to realize that mathematical models can effectively compress data. To illus-
trate this point, assume that we are dealing with data on the price of photocopies. If one
has a database, then we need to have a table relating the number of copies and its price.
We would have, for example, that one copy costs 10 cents, two copies cost 20 cents, three
copies cost 30 cents and so on up to, say, a hundred copies that cost 10 monetary units
(m.u.), a very long table. And it could be longer! By means of a mathematical model,
using the notion of function, we say that the price of n copies is n× 0.10 m.u., with n ∈ N.
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this is so much true that, at times, in novel situations, the stage of characterization
may require the development of new mathematical structures5.

To characterize the model, for example, we can perform an exploratory data
analysis, in which we contemplate the data and afterwards may point out simple
relationships between them.

Let’s make it concrete by returning to the black box example. Assume that the
stimulus and its corresponding reaction can be quantified/described each of them by
three measurings that we collect in vectors6, the

input signal, x= (x1, x2, x3)T ∈ R3 ,

and the

output signal, y= (y1, y2, y3)T ∈ R3 .

The description of the input/output signals as elements of R3 is evidently part of the
characterization stage7,8. The summing up of the data in a table constitutes one of
the simplest quantitative models, the DB (database) model.

An exploratory analysis of the available data may suggest as reasonable the fol-
lowing additional hypotheses on the black box workings:

H1: Reproducibility — The repetition of the same input signal produces the same
output signal9;

5 An illustration of this is the invention of complex numbers by Tartaglia (1500-1557) and
Cardano (1501-1576) in 1545 to solve equations of the third degree. These equations were
associated with practical problems, which indicated that they had three real roots. How-
ever, the available methods did not allow their solution because they required the square
root of a negative number, which, at that time, had not yet been defined.

6 Here, vectors are vertical, or column vectors, that is, n × 1 matrices. Also, they are repre-
sented using bold letters. The entries of a m×n matrix, A, are denoted by Ai j, i = 1, . . . ,m,
and j = 1, . . . , n. For A, in particular for vertical vectors, AT represents the transpose
of A, that is, the matrix whose entries are given by (AT )i j = Aji, for all i = 1, . . . , n,
j = 1, . . . ,m.

7 We could have chosen R4, as the set of possible inputs if measures were related to three-
dimensional space, and we also had to characterize time. Or, maybe, even higher order
dimensional spaces could be necessary as is the case when, for example, we want to keep
other information such as temperature, pressure, etc in the output signal.

8 Note the non-sequential nature of modeling. Even before acquiring the experimental data
of which we spoke in the previous section, we must start characterizing the model. See
Section 2.8, page 44, and the Afterword, starting on page 177 for further considerations
on modeling.

9 It should be pointed out that the same here subtends within a certain margin of error associ-
ated with the model. The variability could be, for instance, characterized by a probabilistic
random variable, or by an interval. This would require a more complete or detailed model.
The characterization of a model always assumes some idealization. That is, even though
the real phenomena do not strictly satisfy a certain assumption, we assume they satisfy
in order to proceed with modeling. What is important is that conclusions from the model
and from reality do not differ significantly. Sometimes this is a quantitative statement: the
difference between numbers, coming from the model, and data, from reality, should be
bounded by a certain predefined value. Modeling is an art that has to be practiced for one
to have a good grasp on it.
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H2: Proportionality — If the input signal is amplified α times, the output signal
is also amplified by that same factor;

H3: Superposition of effects — If we add up two input signals, the output signal is
the sum of the output signals corresponding to the individual input signals10.

These hypotheses form an example of what we mean by a physical model of the
real situation. Espousing these hypotheses allows us to obtain a model that is more
complete than the DB model, a descriptive model11. This, in principle, contains the
data set, though not necessarily in an explicit manner12.

Mathematically, the first hypothesis means that

H1: The attribution, input → output, is a function.

We shall denote that function by F , and call it the behaviour function of the
black box13. The second and third hypotheses essentially characterize F as a lin-
ear function,

H2: F ’s evaluation commutes with scalar multiplication14,

F (λ u) = λF (u) for all λ ∈ R, u ∈ R3 , (1.2)

10 In a sense, this means that inputs do not interact. Each one goes through the black box in
its own way, ignoring the other.

11 Descriptive models, roughly speaking, try to answer questions like: “What happened?”
(“What”) or “When it happened?” (“When”). Databases try to answer questions of the
same nature. On the other hand, the explanatory model focuses in: “How it happened?”
(“How”). Further discussion on the nature of models is presented in Afterword, page 177.

12 What we mean here is that, for example, the function R � x �→ f (x) = x2 ∈ R contains
the information of the following table,

x -1 0 1 2

y=f(x) 1 0 1 4

We could say that f encapsulates the table.
13 It is worth to remind that, for some functions, different inputs imply different outputs,

whereas for some other functions, certain different inputs can give the same output. The
former case is not the rule and deserves a special name, the function is called injective or
a one-to-one function.

14 F of a multiple is the multiple of F . One may have some restrictions on this way of
stating this property, and rightly so. Let us be more precise. First consider the function
multiplication by scalar λ, given by

Λ : R3 → R3

v �→ Λ(v) = λv .

Hypothesis H2 can be written in terms of a commutation of a composition of functions,

F ◦ Λ = Λ ◦ F , (1.1)

which justifies the assertion at the beginning of this footnote.
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H3: The evaluation of F commutes with vector summation15,

F (u + v) = F (u) + F (v) for all u, v ∈ R3 . (1.4)

Granting the validity of the hypothesis H1, the act of organizing the data as stimuli
or reactions, as suggested in Fig. 1.2b, page 9, would correspond, respectively, to
the construction of the domain and the codomain of the behaviour — characterized
by a function — of the black box.

In our example, the characterization stage reaches its end when we specify the
model, by saying that the black box behaviour is described by a function, which is
linear.

Non-linear models are relevant in many applications and will be dealt with in
other sections within this book. We only considered the linear model so far, to facil-
itate the understanding of the concepts presented here.

1.4 Resolution of the Idealization: Mathematics

We are assuming that the mathematical model of the black box is a linear function,
from R3 to R3. This characterizes the model. However, we do not know which
specific linear function it is. One needs to determine that function, or, at least, to
approximate it, in order to solve the problems posed in Section 1.1. This is the stage

15 F of a sum is the sum of F ’s. Similarly to the previous footnote, we can rewrite hypothesis
H3 as commutation of composition of functions. The idea of preserving the notion of
commutation is a neat one. However, to do that, one sometimes has to work a bit (to adapt
notions). Let S be the function that adds two vectors,

S : R3 ×R3 → R3

(u,v) �→ S(u,v) = u + v .

Also, let F̄ be, essentially, two copies of F , representing the function

F̄ : R3 ×R3 → R3 ×R3

(u,v) �→ F̄ (u,v) = (F (u),F (v)) .

It may seem odd to define such a function, but that is exactly what we need here. In fact,
Eq. (1.4) can be rewritten as

F ◦ S = S ◦ F̄ . (1.3)

Note that if we stick to the computer science notion of overloading a function, we can still
denote F̄ by F . In this case, Eq. (1.3) could be written simply as F ◦ S = S ◦ F .

Simply put, we just want to say that, for a linear function, F of a sum is the sum of the
F ’s, or that F commutes with summation. To make this statement precise, we need to do
what we have just done. When you have to spell it out, before simplicity becomes simple,
it may seem somewhat complex at times. Finally, we are not always blessed with com-
mutation, so when we are, nothing more appropriate than to make an effort to recognize
it.
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Table 1.1 Data set: stimuli × reactions

stimuli x ∈ R3 e1 e2 e3

reactions F (x) ∈ R3 a1 a2 a3

in which the model is determined, where an inverse identification problem is solved
to pinpoint a specific linear function.

Example 1.1. Model identification using an ideal database. In the example we
are considering, it is very easy to determine the model. We will do it first in a par-
ticular case. Let {e1, e2, e3}, be the canonical basis of R3,

e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .

Assume that we know the reaction of the black box when stimuli e1, e2 and e3 are
applied. That is, let us say we have the information contained in the ideal database

e1
F�→ F (e1) = a1 , e2

F�→ F (e2) = a2 , e3
F�→ F (e3) = a3 , (1.5)

where a1, a2, a3 ∈ R3. This dataset could also be represent by Table 1.1.
Now, construct the 3 × 3 matrix A whose columns are formed by the images of

the vectors e j, F (e j), for j = 1, 2, 3, i.e.:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
F (e1) F (e2) F (e3)
| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
a1 a2 a3

| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.6)

Then, if a generic stimulus is denoted by x = (x1, x2, x3)T ∈R3, the reaction F (x)
will be given by the product Ax∈R3. In fact, by F ’s linearity,

F (x) = F (x1e1 + x2e2 + x3e3)

= x1F (e1) + x2F (e2) + x3F (e3)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
F (e1) F (e2) F (e3)
| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

or, simply put, the reaction F (x) is given by the product Ax ∈ R3,

F (x) = Ax . (1.7)

In the previous example, determining the model, that is, choosing a specific linear
function F , boils down to finding A, as can be seen immediately from Eq. (1.7).
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We are now in a good position to define a third general problem. Although it is not
as fundamental as the two presented in Section 1.1, even so it is equally important,
and it is instrumental in the resolution of the former,

P3: From a structured data set, determine matrix A.

If, as we assume, Eq. (1.5) is known to us, i.e., we have the information contained
in that equation, or equivalently in Table 1.1, we can see that, based on Eq. (1.6), it
is more than automatic to obtain A.

Now, let us consider the more general situation when we know F in some given
basis of R3, not necessarily the canonical one.

Example 1.2. Identification using more general ideal data. Assume the values of
F in a basis {u1, u2, u3} of R3 are known16. That is, let us say that the ideal database

u1
F�→ F (u1) = v1 , u2

F�→ F (u2) = v2 , u3
F�→ F (u3) = v3 , (1.8)

is available to us. Clearly, this information could be organized in a table similar to
Table 1.1.

This is motivated by the fact that, for practical experimental17, economical, or
even ethical reasons, it is not always possible to apply the rather special choice of
stimuli e1, e2, and e3, but maybe it is possible to apply stimuli u1, u2, and u3.

Since the columns of matrix A in Eq. (1.6) are given by the images of the canon-
ical vectors by F , and since we have to determine them from the information in
Eq. (1.8), we must, in the first place, write the canonical vectors in terms of the el-
ements of the basis {u1, u2, u3}. We will use e1 as an example. Let c1, c2 and c3 be
the only scalars such that

e1 = c1u1 + c2u2 + c3u3 .

Let U be the matrix whose columns are the vectors ui, i = 1,2,3 and let V be the
matrix such that its columns are vi, i.e.,

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
u1 u2 u3

| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
v1 v2 v3

| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.9)

Also, let c= (c1, c2, c3)T . With this notation,

e1 = c1u1 + c2u2 + c3u3

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| | |
u1 u2 u3

| | |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

or, simply,

e1 = U c . (1.10)

16 See page 189 in the Appendix A, to recall the definition of a basis of a vector space.
17 This issue is exemplified in the last paragraph of Section 0.2, page 2.
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Now, multiplying both sides of Eq. (1.10) by the inverse of matrix U, U−1, and since
U−1U=I is the 3 × 3 identity matrix, we have

c = U−1e1 . (1.11)

Notice that to obtain c explicitly corresponds to finding the solution of a system of
linear equations (see Eq. (1.10), where the unknown is c). Determination of the first
column of A results now from the linearity of F , and Eqs. (1.8), (1.9), and (1.11),

F (e1) = F (c1u1 + c2u2 + c3u3)

= c1F (u1) + c2F (u2) + c3F (u3)

= c1v1 + c2v2 + c3v3 = Vc

= VU−1e1 .

If we do the same for e2 and e3, we can see that F (x) = Ax with

A = VU−1 . (1.12)

Thus, from Eq. (1.7) and the dataset, Eq. (1.8), we have just determined the model
in this case,

F (x) = VU−1x .

It is worthwhile to pay attention to this result. Equation (1.12) justifies the following
assertion18:

knowing a linear transformation in a basis19 leads to the full knowledge of it20.

18 This is an interesting result. We have a function defined in R3. The set of all functions
from R3 to R3 is a huge set. In principle, we have an enormous variety of possibilities to
build a function whose domain and codomain are R3. Our task is simply this: we have to
choose where to send through this function a very large number of points of the domain,
having an equally large number of possibilities on the codomain from where to choose.
Because it is a linear function, that is, because it satisfies a few simple algebraic rules, Eqs.
(1.2) and (1.4), the number of possibilities to define the function is drastically reduced. In
fact, knowing the value of the function in three randomly chosen points of R3 virtually
determines the value of the function in all the other points. Of course, it is not just any
three points that can be used, since, in particular, the origin cannot be chosen as one of
those points. Technically, those three points must form a basis of R3. But, anyway, the
limitation imposed by linearity is awesome: it reduces an uncountable set of information
to a finite set with three data.

19 In this example, to know a linear transformation on a basis is to have Eq. (1.8) or Eq. (1.9),
(since both have the same structured information content).

20 In the example, to know F is, by Eq. (1.7), to know Eq. (1.12).
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1.5 Idealized Data Processing: Solution Operator

Notice that questions P1 to P3 are of different nature. Questions P1 and P2 are
natural questions which can be posed by anyone who has devoted attention to the
behaviour of the black box. However, question P3 can only be asked by a modeler,
that is, someone who tries to create a mathematical model to describe the behaviour
of the black box.

After having characterized a model, problems P1 to P3 can be solved from the
point of view of the mathematical model. This is very simple in this case, and that
is what we will do next.

For the first one, given x, an input signal, the solution is simply the product Ax.
The second one is solved by means of the inverse of A. If y is the output, the input
that generates it is A−1y.

Moreover, the third problem, determining A itself, can also be presented in math-
ematical terms. The determination of A was given in Eq. (1.12), A = VU−1.

Schematically, we show in Table 1.2 the information required to answer each
problem and the number crushing procedure that needs to be performed in these
elementary linear algebra problems. It is customary to say that P1 is a direct prob-
lem while P2 and P3 are inverse problems. This terminology is not in contradiction21

with the kind of mathematical tasks involved to solve each one, see Table 1.2. More-
over, P2 is an example of a so-called reconstruction problem and P3 an identification
problem.

It is now plain to see that, since the solutions to problems P1 and P2 depend on
A, we need, in principle, to solve problem P3 and only then deal with the other two.

On the other hand, as we will see in Section 1.8, knowing how to solve direct
problems can be used for inverse problems resolution, if the notion of solving is
made flexible.

In some applications, problems P2 and P3 can appear combined. One such exam-
ple will be discussed in Chapter 4. There, one wants to recover a real image from a
distorted one obtained from an experimental device. However, the distortion caused
by the experimental technique is not known in advance.

1.6 Mind the Gap: Least Squares

We remark that, in the previous section, the solutions to problems P1 to P3 were
constructed with, virtually, no contact with experiments, only in the realm of the
mathematical model. In particular, it is assumed that the information in Eq. (1.8),
which could come from an experiment, is ideally known, i.e., without errors.

In this section we will bring the mathematical model in contact with reality, using
the physical model and the experimental data as a bridge. The criterion chosen to
make such a contact possible is not a part of mathematics. However, its application
is mathematical (or algorithmic).

21 See, however, Exercise 1.3.
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The introduction of reality in the model begins with the answer to question P3,
basing it not on an ideal database, Eq. (1.8), but from a real database, made up
of measurements with all the ambiguity thereof, that is, with all the contradictions
between the experimental data and the hypotheses H1 to H3, listed on page 11, that
may exist by chance (compare with Fig. 1.3, page 19).

In this case, the estimation of model parameters or the identification of the model
corresponds to the determination of A, from experimental data22.

Summing up, in the characterization stage, we choose a class of models. In the
stage of estimation or identification, we pick, based on real data, one of the models
within that class.

Example 1.3. Identification using experimental data. Let
{
(xk, yk) ∈ R3 ×R3, for k = 1, . . . , n

}
(1.13)

be the experimental data set, formed by ordered pairs (couples) of input and output
signals. We say that the data is perfectly representable (or that it can be interpolated)
by a linear function if there exists a matrix A such that

Axk = yk for all k = 1, . . . , n . (1.14)

Otherwise we say that the data is not perfectly representable by a linear function.
The one dimensional case is illustrated in Fig.1.3.

x

x

x
x

x

x
x

x
x

x

x

a) b)

x

x x
xxx

xx x

x

Fig. 1.3 Here are represented two data sets consisting of several pairs of real numbers, i.e.,
elements of R2. The first one may be viewed as related to an ideal data set and the second
to a real, experimental, data set. (a) A set of input and output signals perfectly representable
by a linear function. (b) The set of input and output signals displayed here is not perfectly
representable by a linear function. However, we can choose a linear model to represent it, by
means, for example, of the least squares method.

If the data is perfectly representable by a linear function we choose some input
signals, u1, u2, u3, that form a basis of R3 with the corresponding output signals,
v1, v2, v3, and Eqs. (1.9) and (1.12) define A.

22 There are lots of ways to call this. Statisticians prefer, perhaps, estimation. You would
calibrate the model, were you an engineer. Electrical engineers may prefer to speak of
identification. Those which investigate artificial intelligence may train the model. Some
call it determination of parameters, fitting the model to the data, or model selection.
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If we want to keep the linear model even when the data is not perfectly rep-
resentable by a linear function23, we must relax the condition in Eq. (1.14). We
consider now a way we can do it. Let

|v| =(
3∑

j=1

v2
j
) 1

2 =
(
(v1)2 + (v2)2 + (v3)2) 1

2 ,

be the Euclidean norm of

v =(v1, v2, v3)T ∈R3 .

Also, let xk
j be the jth coordinate of xk, that is,

xk =(xk
1, x

k
2, x

k
3)T .

Denote by M(3,3) the set of real 3 × 3 matrices. For B∈M(3,3), we define half the
quadratic error function24,

E(B) =
1
2

n∑

k=1

|Bxk − yk|2

=
1
2

n∑

k=1

3∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

Bi jx
k
j

⎞
⎟⎟⎟⎟⎟⎟⎠ − yk

i

⎤
⎥⎥⎥⎥⎥⎥⎦

2

. (1.15)

Note that the data is perfectly representable by A if and only if E(A) = 0.
We choose A, the matrix defining the linear model, as the one, within all B ∈

M(3,3), that minimizes E,

A = argminB∈M(3,3)E(B) ,

that is,

E(A) = min
B∈M(3,3)

E(B) .

This criterion is known as the least squares method. It bridges the gap between the
mathematical model and the experimental data. We stress that the determination
of A satisfying the aforementioned criterion is, strictly speaking, a mathematical
problem.

23 One reason to want to keep the linear model is its simplicity which is a value that is worth
to strive for.

24 Here, and elsewhere in this book, we use 1 / 2 for a slight simplification in the critical
point equation. There is no need for it.
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1.7 Optimal Solution

To obtain the optimal solution, the minimum point of E in Eq. (1.15) must be deter-
mined. We search for this minimum by means of the critical point equation,

∂E
∂Blm

= 0 , for l,m = 1, 2, 3 .

We have
∂Bi j

∂Blm
= δilδ jm ,

where δil, the Krönecker’s delta, is a notation25 for the elements of the identity
matrix, I, i.e.,

δil =

{
1, if i= l
0, if i� l

.

Thus,

∂E
∂Blm

=

n∑

k=1

3∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

Bi jx
k
j

⎞
⎟⎟⎟⎟⎟⎟⎠ − yk

i

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

∂Bi j

∂Blm
xk

j

⎞
⎟⎟⎟⎟⎟⎟⎠

=

n∑

k=1

3∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

Bi jx
k
j

⎞
⎟⎟⎟⎟⎟⎟⎠ − yk

i

⎤
⎥⎥⎥⎥⎥⎥⎦ δilx

k
m

=

n∑

k=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

Bl jx
k
j

⎞
⎟⎟⎟⎟⎟⎟⎠ − yk

l

⎤
⎥⎥⎥⎥⎥⎥⎦ xk

m

=

3∑

j=1

Bl j

⎛
⎜⎜⎜⎜⎜⎝

n∑

k=1

xk
j x

k
m

⎞
⎟⎟⎟⎟⎟⎠ −

n∑

k=1

yk
l xk

m

=

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

Bl jC jm

⎞
⎟⎟⎟⎟⎟⎟⎠ − Dlm , (1.16)

where

C jm=

n∑

k=1

xk
j x

k
m , and Dlm=

n∑

k=1

yk
l xk

m . (1.17)

The critical point equation for the critical point B (a matrix) is rewritten as

BC = D ,

where C and D are known matrices, Eq.(1.17), determined from the data. The solu-
tion is then given by

B = DC−1 . (1.18)

The expression for B looks like Eq. (1.12).
25 Using this notation, the product of I by a matrix A, IA that, evidently, equals A, yields

the strange looking expression:
∑3

j=1 δi jA jk = Aik.
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1.8 A Suboptimal Solution

A strategy that can be used at times when solving inverse problem P3 involves solv-
ing the direct problem P1 several times. One guesses or estimates values of the
parameters (comprising the entries of matrix A in the example), a successive num-
ber of times, and solve P1 for those values, selecting the value of A that best fits the
data, in a previously established sense. In other words, the estimation (which cor-
responds to the minimization of E) can be performed by a net search, or sampling,
that we describe briefly here.

Several values of the parameters, i.e., several matrices, will be chosen in succes-
sion which we shall denote by A1, A2, . . . , Am. They define a grid or net in M(3,3).
With them, the direct problem P1 is solved successive times. That is, A j xk is com-
puted, for k=1, . . . , n, j = 1, . . . ,m. We use that information to compute

E(A j), j = 1, . . . ,m ,

with E defined by Eq. (1.15).
The strategy to choose the next matrix in the sequence, Am+1, or decide to stop

the search, and to keep Am, or any other of the previous matrices, A1, A2, . . . ,Am−1,
as solving the identification problem, is the defining step in several modern, non-
gradient based, optimization methods. Nowadays, several methods employ different
strategies in choosing the grid, as for instance in simulated annealing, [46, 50, 71],
and others, so-called, metaheuristics, [69]. This is a suboptimal strategy, due to the
fact that, since

{A1, . . . , Am} ⊂ M ,

we have

minB∈{A1,...,Am} E(B) ≥ min
B∈M

E(B) . (1.19)

Sure enough some limit theorem, when m → +∞, can be pursued. This is too far
from our goal in this book.

1.9 Application to Darcy’s Law

Here, we present an application of the model we have been discussing in this chapter.
We trade the general black box model by the study of the flow of a fluid in a saturated
porous medium. In such a medium, the flux, u, and the gradient of the pressure, ∇p,
satisfy Darcy’s law ([28], [56]),

u = −1
μ

K∇p , for x ∈ Ω ,

where K is the permeability tensor of the medium, μ > 0 is the viscosity of the
fluid, and Ω ⊂ R3 is the porous region. Also, p : Ω → R and u : Ω → R3. In
general, the permeability K = K(x) is a matrix-valued function,

K : Ω→ M(3,3) ,
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where, we recall, M(3,3) represents the set of 3×3 real matrices. In simple words, the
permeability measures the easiness for the fluid to go through the porous medium.
If K is a constant function, the porous medium is called homogeneous, otherwise it
is a heterogeneous porous medium. If the medium is heterogeneous, the easiness of
flow varies along the medium. If K is a scalar multiple of the identity matrix, K =
kI, then the medium is said to be isotropic. Otherwise, it is an anisotropic porous
medium (in which case, the easiness of flow differs depending on the direction of
the pressure gradient). Just to practice the terminology, we can have an isotropic
medium, with k changing in space, in which case it is also heterogeneous.

Assume that we are investigating the permeability of a homogeneous anisotropic
porous medium, and that we have a table containing several measurements of (vec-
tor) fluid flows, uk for given applied pressure gradient, ξk = −∇p,

ξk ∈ R3 , uk ∈ R3 , k = 1, . . . , n .

Assume also that the fluid viscosity, μ, is known. Then, following Eq. (1.15), we
define half the quadratic error function,

E(K) =
1
2

n∑

k=1

|1
μ

Kξk + uk|2

=
1
2

n∑

k=1

3∑

i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=1

1
μ

Ki jξ
k
j

⎞
⎟⎟⎟⎟⎟⎟⎠ + uk

i

⎤
⎥⎥⎥⎥⎥⎥⎦

2

. (1.20)

This function is to be minimized to obtain the permeability tensor of the porous
medium, i.e., the permeability tensor K∗ satisfies

K∗ = argminK∈M(3,3)E(K) .

Exercises

1.1. Show that: (a) Eq. (1.1) is equivalent to Eq. (1.2); (b) Eq. (1.3) is equivalent to
Eq. (1.4).

1.2. Verify the validity of Eq. (1.12).

1.3. Assume that the mathematical model relating stimuli x ∈ R3 and reactions
y ∈ R3 is given by By = x, where B is a 3 × 3 matrix. Construct a table similar to
Table 1.2 in this case. Read critically the paragraph where the footnote 21 is called,
page 17.

1.4. (a) Verify the assertion in the sentence following Eq. (1.15). (b) Give conditions
on the data, Eq. (1.13), such that there is only one solution to E(A) = 0.

1.5. (a) Compute
∑3

j=1 δi jA jk.

(b) Check the details on the derivation of Eq. (1.16).
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(c) From data, Eq. (1.13), define matrices X = (x1, . . . , xn) and Y = (y1, . . . , yn).
Show that C=XXT and D=YXT , where C and D are defined in Eq. (1.17).

(d) If X is invertible (in particular, X must be a 3 × 3 matrix), show that the
expression for B, Eq. (1.18), reduces to Eq. (1.12).

1.6. Determine the critical point equation for function E = E(K) given by Eq. (1.20).

1.7. Simple regression model. Consider the simple regression model

y = a + bx , (1.21)

where a and b are called regression coefficients, a is the intercept and b is the slope,
x is called regressor, predictor or independent variable, and y is the response or
dependent variable. Assume that you have pairs of measurements (xi, yi) ∈ R2,
i = 1, . . . , n, of regressor and response variables. The residual equation is

ri = yi − (a + bxi) ,

and half the quadratic error function is

E(a,b) =
1
2

n∑

i=1

r2
i =

1
2

n∑

i=1

[
yi − (a + bxi)

]2 .

(a) Obtain the critical point equation

∇E =

(
∂E
∂a
,
∂E
∂b

)

= (0, 0) . (1.22)

(b) Denote the solution of Eq. (1.22) by (â, b̂), and show that

â =

(∑n
i=1 x2

i

) (∑n
i=1 yi

)
−

(∑n
i=1 xi

) (∑n
i=1 xiyi

)

n
∑n

i=1 x2
i −

(∑n
i=1 xi

)2
, (1.23a)

b̂ =
n
∑n

i=1 xiyi −
(∑n

i=1 xi

) (∑n
i=1 yi

)

n
∑n

i=1 x2
i −

(∑n
i=1 xi

)2
. (1.23b)

Hint. Write the equations in matrix form and make use of the expression for
the inverse of a 2 × 2 matrix,

(
A B
C D

)−1

=
1

AD − BC

(
D −B
−C A

)

.

(c) It is worthwhile to verify the dimensional correctness of Eq. (1.23). Check
this.
Hint. Let the units of a variable x be denoted by [x]. Typical values of [x]
would be L for length, M for mass, and T for time. Then, if [x] = X and
[y] = Y, one can check from Eq. (1.23) that [â] = Y and [b̂] = Y/X. This
is compatible with Eq. (1.21) since b is multiplied by x to, partly, produce y,
[b][x] = [y], and then, [b] = [y]/[x] = Y/X.
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(d) In the setting of statistics, the following notations are usual,

x̄ =
1
n

n∑

i=1

xi , ȳ =
1
n

n∑

i=1

yi ,

S xx =

n∑

i=1

x2
i −

1
n

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

xi

⎞
⎟⎟⎟⎟⎟⎠

2

, and

S xy =

n∑

i=1

xiyi −
1
n

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

xi

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

yi

⎞
⎟⎟⎟⎟⎟⎠ .

Show that

S xx =

n∑

i=1

(xi − x̄)2 , and S xy =

n∑

i=1

yi(xi − x̄) .

(e) Show that

â = ȳ − b̂x̄ ,

b̂ =

∑n
i=1 xiyi − (∑n

i=1 xi)(
∑n

i=1 yi)
n

∑n
i=1 x2

i −
(∑n

i=1 xi)2

n

=

∑n
i=1 xiyi − nx̄ȳ

∑n
i=1 x2

i − n (x̄)2
=

S xy

S xx
.

(f) Let H(E) denote the Hessian of E, that is, the matrix of the second order
derivatives of E,

H(E) =

⎛
⎜⎜⎜⎜⎝

∂2E
∂a2

∂2E
∂a∂b

∂2E
∂b∂a

∂2E
∂b2

⎞
⎟⎟⎟⎟⎠ .

Compute H(E) |(â,b̂).

(g) Determine an expression for the eigenvalues26 of H(E).

(h) Show that the eigenvalues of H(E) are positive, whenever n ≥ 2.
Hint. Show that α ±

√
α2 − β > 0 whenever α > 0 and α2 ≥ β.

(i) Use the spectral theorem to show that (â, b̂) is a minimum point of E since
H(E) is a positive-definite matrix27.

26 For a reminder on how to compute eigenvalues in simple cases, see Example A.1,
page 192.

27 Further information about regression models can be seen in [55]. In particular, the mod-
eling of residues as a probabilistic distribution is discussed. Usually, the normal distribu-
tion is used, which amounts to introducing another parameter, σ, in the model present in
Eq. (1.21), corresponding to the standard deviation of the normal, leading to the model
y = a + bx + ε, where ε ∼ N(0,σ2) stands for the normal distribution with zero mean and
variance σ2.



26 Exercises

1.8. Consider Darcy’s law for a homogeneous, isotropic porous medium, in one di-
mension. Use previous exercise with a = 0 in Eq. (1.21), to model the relationship
between flux and pressure gradient. Determine an appropriate expression for an es-
timator of the scalar permeability, by mimicking the steps proposed in Exercise 1.7.



Chapter 2

Fundamental Concepts in Inverse Problems

The final answer to several problems can be reduced to evaluating a function—the
solution function or the solution operator—and in the case of inverse problems it
is not different. This is the point of view of a mathematician — insisting in the
use of the notion of function. Not that one can always come about with the solu-
tion operator explicitly, but we can think abstractly on it and deduce its properties.
This justifies the treatment that we present in this chapter of some of the aspects
and complications that arise in the evaluation of functions. Next, we discuss some
general aspects of mathematical models and inverse problems. A few classification
schemes of inverse problems, illuminating different aspects, are presented. These
classifications are used in subsequent chapters.

At times, the functions we are dealing with are quite complex, or are given in an
extremely intricate way (for example, the function happens to be the solution of a
partial differential equation [PDE]). In such a case it is almost always unavoidable
to resort to a computer to produce a numerical value, i.e., a numerical solution. In
this case the knowledge of the properties of the solution operator turns out to be
very useful, even when we do not have the solution operator explicitly. In any case,
the evaluation of the function (solution)—the final result—will be within a certain
range of error, which varies mainly due to the following characteristics:

1. The problem is more complicated, or ill-behaved;

2. The function is more ill-behaved;

3. The way in which the function is evaluated in the computer (the algorithm)
can be better or worse.

Case 1 is related to the need of regularizing the problem and we will present that
concept in Chapter 3. Presently we deal with cases 2 and 3. Once a (small) error is
introduced in a computation —through an experimental datum or due to round-off—
it affects the final outcome. The error in the result can: (i) be reduced; (ii) remain
small; (iii) be amplified.

There are two notions that can help us to understand error dynamics when eval-
uating a function: (a) the condition of the function being evaluated; and (b) the
stability1 of the algorithm used to evaluate it.

Condition will be dealt with in Sections 2.1 to 2.4 and algorithm stability in Sec-
tion 2.5. Section 2.6 covers some questions related to existence and uniqueness. The
notion of well-posed problem in the sense of Hadamard is considered in Section 2.7.
In Section 2.8 a very simple classification of inverse problems is presented.

1 The word stability can have several meanings. It is used even to name the notion of condi-
tion, in the sense that will be defined in this chapter, depending on authors. Caution is to
be exercised as its meaning depends on the context.
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2.1 Condition of Function Evaluation

Evaluation of a function at a given point can be well or ill conditioned. This is an
intrinsic property of the function being evaluated and it does not depend on approx-
imations.

Qualitatively it is said that the evaluation is well-conditioned if a small error in
the point where the function is evaluated does not affect greatly the value of the
function. If, however, a small error in the evaluation point leads to a large error in
the value of the function, the evaluation is ill-conditioned.

It is possible to identify the notion of well-conditioned evaluation with continuity.
Nevertheless, we desire a more restrictive notion, in the sense that well-conditioned
implies continuity, but not the other way around. This shall be important when work-
ing with finite-precision arithmetic, and will allow us to distinguish different be-
haviours among continuous functions. Given a function, its qualitative behaviour
can even depend on the region of the domain, having places where its evaluation is
well-conditioned, and others where it is ill-conditioned. Let us see an example to
illustrate this discussion.

Example 2.1. Evaluation of a rational function. Consider the evaluation of the
function f (x) = 1/(1 − x). The computation of f (x) is:

(a) ill-conditioned, if x lies near 1, (but, of course, x must be different from 1);

(b) well-conditioned, otherwise.

We shall treat these two cases next:

(a) When x is near 1.

Assume x=1.00049 and that in the computation we use an approximate value,
x∗=1.0005. In this case, the absolute error of the evaluation is:

eabs = f (x∗)− f (x)= −103/24.5 .

We remark that an error of 10−5 = x∗ − x in the data led to an evaluation error
of −103/24.5. The error is magnified by the multiplication factor

m =
error in the result (of the evaluation)

error in the point (of the domain)
= −103/24.5

10−5
,

which, in absolute value satisfies c = |m| > 106.

(b) When x is far from 1.

When x is far from 1, the previous magnification phenomenon does not occur.
Let x=1998, and x∗=2000 an approximation of x. Then the absolute error in
the evaluation is

eabs =
1

1 − 2000
− 1

1 − 1998
=

2
1999 ·1997

.

Thus, the amplification factor of the error is (1999 ·1997)−1 < 10−6, effec-
tively reducing the error.
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2.2 Condition as a Derivative Bound

To study how a data error affects the evaluation of a function f , let x be the point of
interest and let x∗ be its approximation, and consider the quotient

m =
error in the result (evaluation)
error in the datum (domain)

=
f (x∗) − f (x)

x∗ − x
. (2.1)

Of course, Eq. (2.1) is Newton’s quotient of f , a preliminary step in the definition
of the derivative of a function. In the limit, x∗→ x, we have m→ f ′(x) and we define
f ′(x) as the error multiplication factor of the evaluation error of f at x. This is a
local quantity, coming from a local operator, d

dx .

Definition 2.1. Given2 f : D ⊂ R→ R of class C1, c f (x) = | f ′(x)| is the condition
number of the (evaluation) of f at x. We also say that the evaluation of f at x is
well-conditioned if c f (x) ≤ 1 and ill-conditioned if c f (x) > 1.

Thus, if the absolute value of the derivative of f is bounded by 1 at all the points
of its domain of definition, i.e., if | f ′(x)| ≤ 1 for all x ∈ D, then the evaluation of
f is always well-conditioned. A simple example is the evaluation of sin x, for any
x ∈ R.

2.3 Other Derivatives and Other Notions of Condition

It is not always convenient to access the sensitivity of the evaluation of a function by
means of Eq. (2.1). As a matter of fact, Eq. (2.1) is written in terms of the quotient
of two absolute errors: the evaluation absolute error and the data absolute error. At
times, it is more interesting to consider relative errors. This leads to other possi-
bilities to define the multiplication factor of the error in the evaluation. We present
several alternatives in Table 2.1.

Table 2.1 Possible definitions for the multiplication factor of the error

numerator→ absolute error relative error

denominator ↓ in the evaluation in the evaluation

data

absolute error

(a)

f (x∗)− f (x)
x∗−x

∼ f ′(x)

(b)

( f (x∗)− f (x)) / f (x)
x∗−x

∼
f ′(x)
f (x)

data

relative error

(c)

f (x∗)− f (x)
(x∗−x)/x

∼ x f ′(x)

(d)

( f (x∗)− f (x)) / f (x)
(x∗−x)/x

∼ x f ′(x)
f (x)

2 We recall that Rn ⊃ Ω � x �→ f(x) ∈ Rm is called a function of class Ck if the derivatives
of its component functions of order at least k exist and are continuous. A function of class
C0 is just a continuous function.



30 2 Fundamental Concepts in Inverse Problems

As done in the case of Eq. (2.1), we can propose the notion of multiplication
factor by considering the limit x∗ → x, in the quotients of Table 2.1. Thus, we have
the following multiplication factor3, m f (x), at x:

(a) f ′(x): the (usual) derivative of f at x;

(b) f ′(x)/ f (x): the logarithmic derivative of f at x (in fact, the derivative of
ln f (x));

(c) x f ′(x): derivative (differential operator) without a special name;

(d) x f ′(x)/ f (x): the elasticity of f at x (much used in economics).

Likewise, we define the condition number as the absolute value of the multiplica-
tion factor, c f (x) = |m f (x)|. In this case, we can talk about well or ill-conditioned
evaluation for all of the condition numbers presented.

For all cases, from (a) to (d), the notion of well-conditioned evaluation is that the
absolute value of the condition be less than or equal to one.

On the other hand, to be bounded by one can, sometimes, be considered too
restrictive. We opt here for this criterion because in this case there is always a re-
duction of the error. That can be unnecessary, however. It must be pointed out that,
in some applications, it is possible to work with values greater than one: a small am-
plification of the error in the data can be manageable. The transition value between
well and ill-conditioned evaluations depends on the given problem and objectives.

2.4 Condition of Vector-Valued Functions of Several Variables

Consider now a vector-valued function of several variables,

f : Rn ⊃ Ω → Rm

x = (x1, . . . , xn)T �→ f(x) = ( f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))T

where Ω is a subset of Rn. As done previously for functions of a single variable,
we can define different condition numbers (of the evaluation) of function f at x. The
important thing to keep in mind is that the condition is the norm of the multiplier of
the error in the data determining the error in the evaluation.

To begin, let us recall that Taylor’s formula4 gives

f(x∗) − f(x) = Jfx · (x∗ − x) + O
(
|x∗ − x|2

)
, as x∗ → x , (2.2a)

3 When one desires to be more specific, one may say, for example, that f ′(x)/ f (x) is the
multiplication factor (of the evaluation) of the relative error (in the result) with respect to
the absolute error (in the datum).

4 See precise statements of Taylor’s formulae on page 204 of the Appendix A.
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Here, Jfx is the Jacobian matrix of f, the m × n matrix of first-order derivatives of
f, evaluated at x,

Jfx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

. . .
∂ fm
∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣
∣
∣
∣∣
∣
∣∣
∣
∣∣
x

.

Also, O is the usual big-O order symbol, and the norm of a vector v is given by

|v| =
(
v2

1 + . . . + v2
n

) 1
2 .

Equation (2.2a) allows us to write

f(x∗) − f(x)
|f(x)| =

1
|f(x)|Jfx · (x∗ − x) + O

( |x∗ − x|2
|f(x)|

)

, (2.2b)

f(x∗) − f(x) = |x|Jfx ·
(x∗ − x)
|x| + O

(
|x∗ − x|2

)
, (2.2c)

f(x∗) − f(x)
|f(x)| =

|x|
|f(x)|Jfx ·

(x∗ − x)
|x| + O

( |x∗ − x|2
|f(x)|

)

, (2.2d)

as x∗ → x, in all cases.
Due to this result, Eq. (2.2), we define the multiplication matrices (of the

evaluation):

(a) absolute (error in the result) to absolute (error in the datum),

Maa = Jfx ; (2.3a)

(b) relative (error in the result) to absolute (error in the datum),

Mra = Jfx/|f(x)| ; (2.3b)

(c) absolute (error in the result) to relative (error in the datum),

Mar = |x|Jfx ; (2.3c)

(d) relative (error in the result) to relative (error in the datum),

Mrr = |x|Jfx/|f(x)| . (2.3d)

It is worthwhile to compare these matrices with the one dimensional case, as shown
in Table 2.1. These are generalizations, and therefore the notation is slightly more
cumbersome, but the fundamental meaning remains.

Note that, from the definition of the norm of a matrix, Eq. (A5), and its properties,
Eq. (A6), we have that

|Jxf · (x∗ − x)| ≤ |Jxf| · |x∗ − x| .
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The condition number of the evaluation, in these cases, is the norm of the multi-
plication matrix,

c f (x) = |Jfx| , absolute to absolute (2.4a)

c f (x) = |Jfx|/|f(x)| , relative to absolute (2.4b)

c f (x) = |x| · |Jfx| , absolute to relative (2.4c)

c f (x) = |x| · |Jfx/|f(x)|| , relative to relative (2.4d)

Example 2.2. Condition number of a matrix. Given a matrix A, we will analyze
the condition of the function f(x) = Ax.

For the linear function f,

Jfx = A , for all x

The condition number, relative to relative, is given by (see Eq. (2.3d))

|x| |A|/|Ax| .

Now, assume that A is invertible, and let y=Ax. Therefore, x=A−1y, and

|x| |A|
|Ax| =

|A−1y|
|y| |A| ≤ |A

−1| |A| ,

due to Eq. (A6).
Thus, notwithstanding the point where the function f is being evaluated, the con-

dition number is bounded by |A−1| |A|. In this case, it is customary to say that

k(A) = |A−1| |A|

is the condition of matrix A.
In general it is clear that the condition of the evaluation of f(x) = Ax depends on

the point x where such evaluation is to be done, and it can be less than k(A).

Example 2.3. Condition in the resolution of a linear system of equations. Con-
sider the linear problem

Kx = y ,

where y ∈ Rn is a datum and x ∈ Rn is the unknown. Assume that K is invertible so
that x = K−1y. We want to analyze the condition of the solution operator

y �→ K−1y .

The condition number in this case, when considering the relation of the absolute
error in the evaluation to the absolute error in the datum, Eq. (2.3a), is |K−1|.
The previous example is used in Chapters 3 and 4.
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Example 2.4. Difference between close numbers. It is known that the difference
between two numbers that are close is ill-behaved when finite-precision arithmetic
is used, as is usually the case with digital computers.

This fact is not directly related to finite-precision arithmetic, but to the intrinsic
nature of the difference function, and to the fact that it is ill-conditioned for close
numbers.

At the beginning, consider the function

R ×R � (x, y) �→ m(x, y) = x − y ∈ R ,

that calculates the difference between two numbers and let us compute its elastic-
ity as defined in the following equation (compare with Eq. (2.3d) and verify their
dissimilarity). We have

E m(x,y) =

(
x
m
∂m
∂x
,

y
m
∂m
∂y

)

=

(
x

x − y
, −

y
x − y

)

,

from whence

|E m(x, y)| =

√

x2 + y2

(x − y)2
. (2.5)

Now, |Em(x, y)| cannot be less than or equal to 1 (unless x and y have opposite signs,
but then m would not be a difference, it would be a sum). Verify. Yet, it is possible
to obtain regions of R2 in which the difference has a moderate elasticity, say, less
than 2. Although there is an amplification of the error, it is a “small” amplification.
On the other hand, if we choose y near x, y = x + ε, with ε small, then the elasticity,

|E m(x, x + ε)| =
√

(x2 + (x + ε)2)/ε2 ,

can be arbitrarily large subject to ε being sufficiently small and x � 0.
Summing up, the problem of computing the difference between two numbers can

be: (a) well-conditioned, if the numbers are far apart; (b) ill-conditioned if the num-
bers are close. Notice that this is not related to the use of finite-precision arithmetic,
but will be observed in the presence of round-off errors when using such arithmetic.

Finally, it would be more correct to use the norm of the multiplication factor —
the condition number of m — as obtained from Eq. (2.3d), instead of the norm of
the elasticity, Eq. (2.4d). However, in this case, these two notions coincide.

2.5 Stability of Algorithms of Function Evaluation

As mentioned before, the notions of condition and stability are important in un-
derstanding how the errors alter the final outcome of a computation. The notion of
condition of the evaluation of a function is intrinsic to the function whose outcome
(image value) is to be computed, so it is unavoidable to deal with it as long as we
work with that particular function. On the other hand, the notion of stability depends
on the algorithm that is used to compute the value of the function.
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Since there are several ways to evaluate a function, it is possible to select one
that best fits our needs. An algorithm to compute the value of a function is unstable
when the errors occurring through the intermediate steps (of the computation) are
amplified. If this is not the case, the algorithm is stable.

An algorithm to compute the value of a function is constituted of several ele-
mentary steps. To study its stability every step must be analyzed separately, and the
effect of the introduction of an error must be tracked.

Example 2.5. Evaluation of an algebraic function. The evaluation of f (x) =√
x + 1−

√
x is well-conditioned, for all x ≥ 0. We will show two algorithms for

this evaluation: the more natural one is unstable, the other one is stable.
The evaluation of f is always well-conditioned, since the absolute value of its

elasticity,

|E f (x)| = 1
2

∣∣
∣
∣
∣∣

x
√

x + 1
√

x

∣∣
∣
∣
∣∣
≤ 1

2
,

is always bounded by 1
2 .

We will consider two algorithms to evaluate f . The first one corresponds to the
direct computation of

√
x+1−

√
x ,

and the second one is based on the algebraic expression,

1
√

x+1+
√

x
.

The two expressions are algebraically equivalent. In fact,

√
x+1−

√
x =

1
√

x+1+
√

x
,

for all x > 0.
To analyze the stability of the natural algorithms streaming from these two equiv-

alent algebraic expressions, we depict in Fig. 2.1 the steps that make up each algo-
rithm. The schemes in the figure help to prove that the second algorithm is prefer-
able, as we shall see.

Each algorithm is assembled with the intermediate steps defined by the following
functions,

p1(x) =
√

x , p2(x) = x + 1 ,

p3(x) =
√

x , p4(y,z) = z − y ,

p5(y,z) = y + z , p6(x) = 1/x .

The steps of each one of the two algorithms correspond to some of these functions
and the algorithms can be interpreted as compositions of these functions.
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First algorithm

Second algorithm

√
x + 1 −

√
x

p1

p2

√
x

x + 1
√

x + 1
p3

p4x

p1

p2

√
x

x + 1
√

x + 1
p3

x
p5

1
√

x + 1 +
√

x

√
x + 1 +

√
x

p6

Fig. 2.1 Diagrams of the algorithms

Since the elasticity of the composition of functions is the product of the elasticity
of the functions5,

E (p1 ◦ p2 ◦ . . . ◦ pn) = E (p1) × E (p2) × . . . × E (pn) , (2.6)

it suffices to analyze each step. We have that

|Ep1(y)|=1/2 , |Ep2(y)|= |y/(y + 1)|≤1 , Ep3(y)=Ep1(y) ,

and, finally, we recall that the elasticity of the difference function, p4, has already
been analyzed in example 2.4.

Now, we see that step p4 is crucial to decide if the first algorithm is stable or not.
It will be stable if

y=
√

x and z=
√

x + 1

are not too close. However, due to the elasticity of p4, we see that, if they are close,
the multiplication factor will be large. Therefore, this algorithm will only work well

5 We recall that the composition of two functions, p1 and p2, denoted by p1 ◦ p2, is the
function,

(p1 ◦ p2)(x) = p1(p2(x)) .
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if x is very close to zero. For x far from zero, y and z will be close, and the algorithm
will behave inadequately (it will be unstable).

Now let us check the second algorithm. Steps p1, p2 and p3 are common to the
first algorithm. Besides,

|Ep5(y,z)| =
√

(y2 + z2)/(y + z)2 ≤ 1 ,

since we are dealing only with non-negative values of y and z. Also, |Ep6(y)| = 1.
Thus, we see that all the multiplication factors in the various steps of the second
algorithm are less than or equal to 1, rendering it stable.

Example 2.6. Evaluation of a polynomial. Given the cubic polynomial

p(x) = (x − 99π)(x − 100π)(x − 101π) ,

where π is given by the value of a pocket calculator, we will present two algorithms
to evaluate p in xo = 314.15 . The first one will use directly the previous expres-
sion, the second one will be based in the power form of p(x) and will use Horner’s
method.

Let us start by analyzing the condition of the evaluation. Since the elasticity of
the product is the sum of the elasticities,

E( f · g) = E f + Eg , (2.7)

we see that the elasticity of the evaluation of p(x) is given by

Ep(x) =
x

x − 99π
+

x
x − 100π

+
x

x − 101π
.

Thus, this evaluation is ill-conditioned at xo =314.15 due to the necessity of evalu-
ating (x − 100π) in this point. In fact,

Ep(314.15) =
314.15

314.15 − 99π
+

314.15
314.15− 100π

+
314.15

314.15 − 101π
≈ 100.2928− 33905.86− 99.7030 ≈ −33905 .

Notwithstanding, the first algorithm is superior to the second one. In fact, in the first
case, we obtain

p(xo) = (xo − 99π)(xo − 100π)(xo − 101π) = 0.091446 ,

while using Horner’s method (starting the algorithm by the innermost expression,
x0 − 300π and proceeding outwards), we obtain:

p(xo) = ((xo − 300π)xo − 29999π2)xo − 999900π3 = − 0.229 .

Evidently, this result contains numerical errors, since the answer should be
positive.

The fact that a problem is ill-conditioned does not prevent us from computing its
result. We must choose carefully the algorithm to be used, no matter if it is an ill or
well-conditioned problem.
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2.6 Questions on Existence and Uniqueness

Some of the difficulties in solving inverse problems are related to the available in-
formation: quantity (not sufficient data or seemingly overabundance thereof) and
quality of information. We will illustrate these points by means of simple examples.

Let us suppose that the function that truly generates the phenomenon is

f (x) = 2x+1 .

In the inverse identification problem we assume that such function is unknown to
us. We do assume, however, that we can determine to which class of functions the
phenomenon, f (x)=2x+1, belongs, i.e., we characterize the model. The observation
of the phenomenon allows us to characterize it as, say, belonging to the class of
functions of the form

fa,b(x) = ax + b ,

where a and b are arbitrary constants. From the available data we must then de-
termine a and b, i.e., we must identify or select the model. We shall consider two
situations, when one has exact data, or, otherwise, has real (noisy) data.

2.6.1 Exact Data

For the sake of the present analysis, we assume that the available data are exact. We
then have three possibilities:

(a) Not sufficient data. The basic unit of information in this example corresponds
to a point in the graph of the model. Assume known that the point (1, 3) be-
longs to the graph of f . It is obvious that this datum is not sufficient for us to
determine a and b. As a matter of fact we only know that

f (1)=3 or a + b=3 ,

It is then impossible to determine the model (find the values of a and b
uniquely).

(b) Sufficient data. We know data (1, 3) and (2, 5). Thus, a+b = 3 and 2a+b = 5,
from whence we can determine that a = 2 and b = 1, and select the model
f (x) = 2x + 1.

(c) Too much data. Assume now that it is known that the points (0, 1), (1, 3), and
also (2, 5) belong to the graph of f . Then

a=2 and b=1 .

It is plain to see that we have too much data, since we could determine a and
b without knowing the three ordered pairs, being for that matter sufficient to
know any two of such pairs. We point out that too much data does not cause
problems in the determination of the model when exact data is used.
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2.6.2 Real Data

In practice we do not have exact data, so it is best to have too much data, even if some
repetition occurs. In spite of it, in many occasions, we only have a sufficient number
of (non-repeated) data due, for example, to costs of acquiring data. Sometimes, real
data will be called noisy data. We still have three possibilities, discussed below:

(a) Insufficient data. Datum (1, 3.1) has an error—as we know, for our “phe-
nomenon,” f (1)=3 and not 3.1. Moreover, this datum is insufficient, because
we obtain only one relation between a and b,

a + b = 3.1 ,

but cannot determine them individually, not even approximately. Another re-
striction must be imposed so the inverse problem has a unique solution. A
concrete and unexpected example of how this can be achieved in real prob-
lems can be seen in Section 4.6.

(b) Sufficient data. Consider that we have the following approximate data: (1,
3.1) and (2, 4.9). Then, an approximation for a and b is obtained by substitut-
ing the data in a class of models,

{
a + b = 3.1

2a + b = 4.9
, (2.8)

which gives a = 1.8 and b = 1.3 .

However, even with sufficient (but with errors, i.e., noisy) data, it is not always
possible to estimate the parameters by imposing that the model fits or interpolates
the data. Later, we will see on example 2.7 that clarifies this remark.

Alternatively, in these cases, we try to minimize a certain measure of discrepancy
between the model and the data. In the example, for every proposed model within
the characterized class, that is, for every pair (a, b), we would compute the difference
between the data and what is established by the model and combine these differences
in some way and minimize it.

For example, if the pair (a, b) is known, the model is given by fa,b, and the point

(1, fa,b(1))

should belong to the graph. This would be what the model establishes, the so-
called prediction6 of the model. The data however indicates that the point should
be (1, 3.1), so

fa,b(1) − 3.1

6 Here the word prediction means not only “foretelling the future” as is usual; it is foretelling
in regions where data is not available. In models involving time, however, it carries the for-
mer meaning. In any case, we search for scientific predictions, as discussed in Chapter 1.
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is a measure of the error due to the difference between what the model foretells and
what actually happens. This must be done with all the experimental data. The results
may be combined to create a discrepancy measure between what the model foretells
with (a, b) and what the real data shows. Finally, we must find the value of the pair
(a, b) that minimizes that measure.

As an example, let us consider the discrepancy (or error) measure given by

E(a, b) =
1
2

[(
fa,b(1) − 3.1

)2
+

(
fa,b(2) − 4.9

)2
]

=
1
2

[
(a + b − 3.1)2 + (2a + b − 4.9)2

]
.

The minimum point of E is given by its critical point, i.e., the point where the
gradient of E is null,

0 =
∂E
∂a
= (a + b − 3.1) + 2(2a + b − 4.9)

0 =
∂E
∂b
= (a + b − 3.1) + (2a + b − 4.9) .

We thus conclude that

a + b=3.1 and 2a + b=4.9 .

It is a coincidence that, due to the form of the function fa,b, the system in Eq. (2.8),
and the one just obtained, are the same. At times the problem obtained by interpola-
tion as in Eq. (2.8) does not have a solution, while the one obtained by least squares,
like the one we just deduced, is solvable. This is a way to reach a solution in real
inverse problems. This subject is addressed in example 2.7.

(c) Too much data. Assume that

(x1, y1), (x2, y2), . . . , (xn, yn), with n ≥ 3 ,

are several experimental points associated with the “phenomenon” f (x) =
2x + 1.

It is unavoidable that these experimental data are contaminated by errors and impre-
cisions intrinsic to the measuring process. Thus, the data are usually incompatible,
i.e., it is impossible to solve for a and b the system

y1 − fa,b(x1) = y1 − (ax1 + b) = 0

y2 − fa,b(x2) = y2 − (ax2 + b) = 0

...

yn − fa,b(xn) = yn − (axn + b) = 0 .

Usually we say that, since the system has n equations and only two unknown vari-
ables, it possibly has no solution.
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In general we would say that there is no model in the characterized class of mod-
els that interpolates the data, i.e., the data cannot be fitted by the model.

We deal with this question from a geometrical point of view, in the context we
are discussing. Note that the system can be rewritten as

a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ b

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2
...

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We introduce the notation x = (x1, . . . , xn)T , 1 = (1, . . . , 1)T and y = (y1, . . . , yn)T .
This notation allows the vector equation above to be written as

ax + b1 = y .

Thus, the solution of the system of equations can be rephrased as the problem of
finding a linear combination of the vectors x and 1 to obtain y. These vectors, x and
1, belong to Rn, and they are only two. It is necessary n linearly independent vectors
to represent an arbitrary vector of Rn as a linear combination of them. Therefore, it
is very rare for one to be able to choose a and b in order that y = ax + b1. That this
is the case is easily visualized by means of a simple figure, see Fig. 2.2.

������

1

�
�
�
�
��

�����
	
	
		


�
�
�
�
�� �

�
�

�
��

�����
y

x

ax+b1

y−ax−b1

Fig. 2.2 Plane (2-dimensional subspace) in Rn. Vector y does not belong to the plane spanned
by x and 1, span {x,1} = {ax + b1, for all a, b ∈ R}.

Let us consider the method of least squares. Define the error or residual vector,

r = y − (ax + b1) ,

given as the vector of differences between the experimental measurements, y, and
the predictions of the model with coefficients a and b, ax + b1.

Effectively, what can be done is to choose a linear combination between x and 1

(i.e., choose a and b), in such a way that the functional error,

E(a,b) =
1
2
|r|2 = 1

2
|y − ax − b1|2 = 1

2

n∑

i=1

(yi − (axi + b))2 ,

is minimized. Since the sum stands for the error vector’s squared norm, |y−ax−b1|2,
a look at Fig. 2.2 suggests that it is equivalent to requiring that the error vector be
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orthogonal to the plane spanned by x and 1. Or, else,7

〈x, y − ax − b1〉 = 0 and 〈1, y − ax − b1〉 = 0 .

This can be written as

xT (y − ax − b1) = 0 , and 1T (y − ax − b1) = 0 ,

which leads to,

axT x + bxT1 = xT y

a1T x + b1T1 = 1T y ,

whence,
(

xT x xT1

1T x 1T1

) (
a
b

)

=

(
xT y
1T y

)

. (2.9)

Defining A = (x,1), an n × 2 matrix, Eq. (2.9) can be rewritten as

AT A

(
a
b

)

= AT y (2.10)

which is usually called normal equation. Therefore, the determination of the model
reduces to solving the linear system, Eq. (2.10).

We remark that, even though matrix AT A may not be invertible, Eq. (2.10) will
always have a solution. We shall treat this question later on. Assume, however, that
AT A is invertible. Then, the solution to the inverse problem can be represented by

(
a
b

)

=
(
AT A

)−1
AT y . (2.11)

This is the solution of the inverse problem given by the least squares method, which
corresponds to the evaluation of the function,

y �→
(
AT A

)−1
AT y .

It is pertinent here to recall the discussion of Section 2.5, regarding the stability
of function evaluation algorithms. As a matter of fact, the algorithm suggested by

the expression,
(
AT A

)−1
AT y is not the best way to evaluate it; it can be unstable

(depending on matrix A) and even inefficient from a computational point of view8,

7 The notation of inner product is recalled on page 189, Appendix A.
8 The question of the inefficiency of the algorithms must be considered. Non-efficient meth-

ods can render impractical the use of a given algorithm. In the present case, depending on
the size of AT A, it may be very time consuming to find its inverse. Recall however that one
wants to find (a,b)T satisfying Eq. (2.10).
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because it presumes that the inverse of AT A will be computed. The geometric in-
terpretation of the problem at hand is the basis for the construction of alternative
algorithms, stable and more efficient, see [35].

Assume now that A is invertible. Then AT is also invertible, since

(AT )−1 = (A−1)T .

Therefore,
(

a
b

)

= A−1
(
AT

)−1
AT y=A−1y . (2.12)

This result, Eq. (2.12), is valid whether the data are exact or not.

Example 2.7. Sufficient data and the least squares method. We consider now an
example in which, although there are sufficient data, it is impossible to identify the
model due to the existence of experimental errors.

Assume a phenomenon is given precisely by

g(x)=
1

1 + x2/99
.

Thus, in particular, g(1)=0.99 . Again, assume that g is unknown and that, after the
model has been characterized, the following class of models is obtained,

C =
{

gc for all c ∈ R where gc(x) =
1

1 + (x − c)2/99

}

.

Finally, let (1, 1.1) be the only experimental datum.
Well the given datum is, in principle, sufficient to select the model, since only one

parameter, c, is to be determined. However, if we try to determine c by interpolation,
i.e., by means of the equation

gc(1) =
1

1 + (1 − c)2/99
=1.1 ,

we see that it is impossible. In fact, for every value of c, gc(1) will be less than
one. An adequate approach is to use the approximation of least squares previously
presented.

Let

E(c) =
1
2

(1.1 − gc(1))2 =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎝1.1 −

1

1 + (1−c)2

99

⎞
⎟⎟⎟⎟⎟⎟⎠

2

.

The minimum of E is reached when dE/dc = 0, thus c = 1, (see Fig. 2.3).

It must be noted that, in the case of inexact data, it is certainly better to use “too
much” data. In the example just discussed, if we have access to more data points,
even if they contain errors, we may be able to estimate a model more symmetric
with relation to the y-axis, like the phenomenon that is being modeled.
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x

y

b)

x

Fig. 2.3 a) The graph of a phenomenon: g(x) = 1
1+x2/99

. b) Estimated graph: g1(x) =
1

1+(x−1)2/99
.

2.7 Well-Posed Problems

Hadamard defined the notion of a well-posed problem as being one that:

(i) has a solution (existence);

(ii) the solution is unique (uniqueness);

(iii) the solution depends “smoothly” on the data (regularity).

When any of these properties is not satisfied, we say that the problem is ill-posed.
As we have already seen, inverse problems do not always satisfy properties (i)–(iii).

Sometimes, property (i) is not satisfied because it is impossible, once the class
of models is characterized, to interpolate the data with any model within the class.
This has been exemplified in the previous section. We may surpass this by relaxing
the notion of solution — an approximation instead of an interpolation, for example
in a least squares sense.

If property (ii) is not satisfied, additional restrictions must be found to force the
solution to be unique. It is not possible to obtain a unique solution if information
is lacking—there are no mathematical tricks to circumvent lack of knowledge. The
difficulty here steams from the modelization of the phenomenon.

It is said implicitly that the problem involves data. In this case we can talk about
the set of data and properties (i) and (ii) implies that the attribution

data −→ solution

is a function called solution operator, since for any data there is a solution and it is
unique. Property (iii) asks for additional features of the solution operator.
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Property (iii) is more complex from a technical point of view. The notion of
smoothness has to be specified for each problem and, sometimes, can be trans-
lated as continuity or differentiability. It is common for inverse problems in infinite
dimension spaces to be discontinuous. These problems must be rendered
discrete to be solved by means of a computer. It is almost certain that a discrete prob-
lem, coming from the discretization of a differential equation model, is continuous.
Even in this case it may be difficult to obtain the solution, since it can, still, be ill
conditioned.

Thus, in practice, if “well-posed” is to mean a reasonable behaviour in the nu-
merical solution to problems, property (iii) may be substituted by well-conditioned
when we deal with finite dimension spaces. The goal of regularization techniques is
to move around the difficulties associated with the lack of smooth dependence be-
tween the input data and the solution. In some texts this is called a stability problem.

2.8 Classification of Inverse Problems

We give a brief overview of general classes of mathematical models and a discussion
of several ways to classify inverse problems.

2.8.1 Classes of Mathematical Models

When investigating a phenomenon or a physical system, one of the first things to
do is to characterize a mathematical model, i.e., to select a class of models. This
question, which is of the utmost importance, was considered very superficially in
Chapter 1.

For several purposes, the characterization of the system leads to choosing a set of
functions or equations (algebraic, ordinary and/or partial differential equations, inte-
gral equations, integro-differential, algebraic-differential equations, etc), containing
certain unknown constant parameters and/or functions. Of course, other classes of
models can be considered, expressing, nonetheless, basic relations satisfied by the
system or phenomenon under investigation, but we shall only consider the previous
ones.

Taking a somewhat more general point of view, we remark that models can be
either discrete or continuous, either deterministic or stochastic, and either given by
a function (kinematic) or by an equation (dynamic). Each pair of these concepts,
although not exaustive, are exclusive.

Even though each kind of model set forth previously distinguishes itself by its
own technical tools of the trade, we just focus in their conceptual differences, as far
as modeling is concerned. We may also split most of the problems between linear
and nonlinear types. So, when characterizing a model, one possible first thing to
do is deciding that it will be, say, a linear, discrete, stochastic, dynamic model. See
Table 2.2.

From a standpoint of knowledge level, the ‘dynamic’ or equation model is more
fundamental than the ‘kinematic’ or function model. The distinction between
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Table 2.2 Mathematical models

categories values

information content full: deterministic lacking: stochastic
nature of variables discrete continuous

nature of modelization descriptive (kinematic) explanatory (dynamic)
mathematical structure function equation
mathematical property linear non-linear

models, that are given by a function or by an equation, is best understood through
examples. One such example is given by summing integers.

Example 2.8. Sum of integers. Consider the ‘phenomenon’ resulting from pro-
gressively adding integers,

1, 1 + 2 = 3, 1 + 2 + 3 = 6, 10, 15, 21, . . .

This phenomenon can be modeled by the function F : N→ N such that

F(n) = Fn =
n(n + 1)

2
, for all n ∈ N .

This is a ‘kinematic’ or descriptive model. The corresponding recurrence relation

Fn+1 = Fn + (n + 1), for n ≥ 1 ,

together with initial condition F1 = 1, is a ‘dynamic’ or explanatory model of the
same ‘phenomenon’, the sum of the first n integers. Both are discrete, deterministic
models. The kinematic model is nonlinear and the dynamic is (nonhomogeneous)
linear.

In the same line a simple classical example from mechanics is, perhaps, the best.
We shall consider it next.

Example 2.9. Uniform motion. For uniform motion of a pointwise particle in a
straight line, the kinematic model (a function) is

[0,∞[� t �→ x(t) = x0 + v0t ∈ R ,

where x(t) represents the position at a given time t, v0 is the constant velocity, and
x0 is the initial position (position at time t = 0). Clearly, this is a continuous, deter-
ministic, linear (better, affine function), kinematic model.



46 2 Fundamental Concepts in Inverse Problems

The corresponding dynamic model is given by Newton’s second law (differential
equation),

m
d2x
dt2
= F, for t > 0, with F = 0 ,

subjected to the following initial conditions,

x(0) = x0, and
dx
dt

∣
∣
∣∣
∣
t=0
= v(0) = v0 .

Here m represents the mass of the particle, and F the resultant of forces acting on it.
This is a continuous, deterministic, linear, dynamic model.

We shall not consider here the characterization of models any further. See, however,
Afterword, page 177.

2.8.2 Classes of Inverse Problems

A classification scheme of inverse problems arises from the process point of view,
represented by the black box (see Fig. 1.1 on page 7). There, the black box set-
up could represent the interaction between an external observer (researcher) and a
physical system, where the observer could interact with the system by stimulating it
and collecting information about its behaviour or reaction9.

In line with what was said in Chapter 1, we can consider three general classes of
problems:

P1: Direct problem — Given an arbitrary stimulus, tell what the corresponding
reaction will be;

P2: Inverse reconstruction problem — Given the reaction, tell what stimulus
produced it;

P3: Inverse identification problem — From a data set, determine the parameters
and/or functions that specify the system.

This book emphasizes the solution of inverse problems, either reconstruction or
identification of models, and we shall only consider problems related to classes of
models represented by:

• linear or non-linear equations in spaces of finite dimension,

A(x) = y ,

where A is a linear or non-linear function,

Rn ⊃ Ω � x �→ A(x) ∈ Rm

9 Of course, it is not always possible to have such clear cut separation between observer and
physical systems. However, we shall only consider these.
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and y ∈ Rm;

• initial and/or boundary value problems for differential or integro-differential
equations.

Once a particular class of models is selected, we solve the inverse problem by ap-
proximately determining the value of the unknown model’s constants or functions,
using experimental data.

When dealing with differential equation models, we classify the inverse problem
with respect to the role, in the differential equation, of the object to be estimated,
which can be:

(i) initial conditions;

(ii) boundary conditions;

(iii) forcing terms;

(iv) coefficients of the equation, ie. properties of the system10.

Here, (i) to (iii) are reconstruction problems and (iv) is an identification problem.
Moreover, we have a natural splitting of inverse problems to be considered, ei-

ther the models are of finite dimension (such as a system of n equations and m
unknowns) or of infinite dimension (such as an initial value problem for a partial
differential equation), and if the object being estimated is of finite dimension (some
parameters or constants of the model) or of infinite dimension (such as a function,
or an infinite number of parameters). Problems are then classified as belonging to
one of the following types:

Type I: Estimation of a finite number of parameters in a model of finite dimension;

Type II: Estimation of an infinite number of parameters or a function in a model of
finite dimension;

Type III: Estimation of a finite number of parameters in a model of infinite
dimension;

Type IV: Estimation of an infinite number of parameters or a function in a model
of infinite dimension.

10 Just to mention a few, the coefficients could represent material or geometrical properties
as the viscosity of a fluid, the thermal conductivity of a solid material, the permeability
of a porous medium, and so on. If the coefficient varies throughout the space (it would
be a function, not just a constant number) one says that the medium is heterogeneous,
otherwise, if it is constant everywhere in space, one says that the medium is homogeneous.
If the coefficients vary with respect to the direction in space, then the medium is said to be
anisotropic, otherwise it is said isotropic.
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Table 2.3 Classification of inverse problems according to the dimension of the model and of
the object being estimated

Estimation of quantity→ Finite Infinite

Dimension of the model ↓
Finite Type I Type II

Infinite Type III Type IV

This is summed up in Table 2.3. Inverse problems of Type I are considered in
Chapters 1–4; Chapters 5–8 deal mainly with inverse problems of Types III and
IV. In this book we do not consider Type II inverse problems. Section 8.1 further
elaborates on this classification.

Beck [11, 10] proposed the classification of inverse problems with respect to the
type of the unknown of the inverse problem, either parameters or functions. Our
classification is just an extension of his, in the sense that we split his classification
taking into account the dimension of the model, essentially, either finite when, typ-
ically, the model is given by an algebraic function/equation, or infinite when, most
of the times, the model is a differential/integral equation. Therefore, Beck’s estima-
tion of parameters corresponds to Type I or III problems, and Beck’s estimation of
functions corresponds to Type II or IV inverse problems. This further splitting is
justified by the increased level of mathematical complexity of going from a model
of finite dimension to one of infinite dimension.

Exercises

2.1. Let f be a real function of one variable, f : R→ R. It is worthwhile to see what
is the consequence of the fact that the different multiplication factors are constant.
Determine the functions such that:

(a) f ′(x)=c. What can you say about its graph?

(b) f ′(x)/ f (x)=c;

(c) x f ′(x)=c;

(d) x f ′(x)/ f (x)=c.

Verify that the graph of a function satisfying (b), when plotted in a log-normal scale,
is a straight line. Analogously, verify that the graphs of a function satisfying (c), in
a normal-log scale, and of a function satisfying (d), in a log-log scale, are straight
lines.

2.2. For functions f (x) = ln x, g(x) = eαx, h(x) = xβ, l(x) = 1
x−a discuss the regions

of well and ill-conditioning, for the four types of condition numbers defined, in
general, in Eq. (2.4), or on page 30, for a scalar function of one real variable.
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2.3. (a) Since I = AA−1 use Eq. (A6) to show that

k(A) ≥ 1 ,

that is, the condition of any matrix is greater than or equal to 1.

(b) Show that

k(A) = k(A−1) ,

that is, the condition of a matrix and of its inverse are equal.

2.4. Let p j : R→ R, j = 1, . . . ,N, be differentiable functions that do not vanish at
any point, i.e.,

p j(x) � 0 for all x ∈ R j = 1, . . . ,N .

(a) Show that the elasticity of the composition is the product of the elasticities,
that is,

E(p1 ◦ p2) = Ep1 · Ep2 .

(b) Show, by induction, that

E(p1 ◦ p2 ◦ . . . ◦ pN ) = Ep1 · Ep2 · . . .EpN .

(c) Show that the elasticity of the product is the sum of the elasticities, that is,

E(p1 · p2) = Ep1 + Ep2 .

(d) Show, therefore, that

E(p1 · p2 · . . . · pN) = Ep1 + Ep2 + . . . + EpN .

2.5. The difference function between non-negative numbers is given by

[0,+∞[ × [0,+∞[ � (x,y) �→ m(x,y) = x − y ∈ R .

(a) Show that

| Em(x,y) | ≥ 1 .

(b) Determine and sketch the region in [0,+∞[ × [0,+∞[ satisfying

| Em(x,y) | ≤ 2 .

Hint. Example A.1, on page 192, can be useful here.

(c) Do the same for

| Em(x,y) | ≥ 4 .



50 Exercises

2.6. (a) Check the assertion on the last paragraph of Section 2.4 on page 33.

(b) Let f : Rn → R and define the elasticity of f ,

E f (x) =

(
x1

f
∂ f
∂x1
,
x2

f
∂ f
∂x2
, . . . ,

xn

f
∂ f
∂xn

)

.

Let c f (x) denote the relative to relative condition number of f . Show that
|E f (x)| ≤ c f (x).

(c) Conclude that if |E f (x)| ≤ 1 then f is well-conditioned with respect to the
relative to relative condition number.

2.7. Let m be the difference function as in Exercise 2.5. Compute the condition
number of m, for each notion of condition number set forth in Eq. (2.4).

2.8. We should have not used the elasticity in Example 2.5. Compute the relative to
relative condition number of function p5 in that example.

2.9. Let c f (x) denote either one of the condition numbers of f as defined by Eq. (2.4).
Let h = f ◦ g. Show that

ch(x) ≤ c f (g(x)) cg(x) .

Hint. Recall chain’s rule, Jhx = Jfg(x)Jgx.

2.10. Write down the algorithms discussed in Example 2.5 as composition of func-
tions.

2.11. Relate normal equation (2.10) and its solution, Eq. (2.11), with the results of
Exercise 1.7. (Pay attention: the roles of constants a and b are interchanged.)

2.12. QR method for the solution of least squares. From Eq. (2.11) and recalling
that A = (x,1) the solution of the least squares problem,

(â,b̂)T = argmin(a,b)E(a,b) = argmin(a,b)
1
2
|y − ax − b|2 ,

is given by

(
â
b̂

)

=
(
AT A

)−1
AT y =

(
xT x xT1

1T x 1T1

)−1 (
xT

1

)

y . (2.13a)

Consider the function

Rn ×Rn � (x,y)
G�→

(
â(x,y)
b̂(x,y)

)

. (2.13b)
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The condition of the algorithm to compute (â,b̂)T suggested by Eq. (2.13) is very

high since it depends on the computation of the triple product
(
AT A

)−1
AT . This

undermines the stability of the algorithm.
This exercise proposes an alternative algorithm based on the method QR, [35].

Consider the vector

v = âx + b̂1 = (x 1)

(
â
b̂

)

= A
(
AT A

)−1
AT y

which represents the vector, in the plane generated by x and 1, closer to y, repre-
senting its orthogonal projection11.

(a) Consider the function

x �→ Λ(x) = A
(
AT A

)−1
AT

which represents the projection matrix from Rn to the space generated by
the vectors x and 1. Show that Λ(x − λ1) = Λ(x), for all λ ∈ R. (From a
geometrical point of view this result is expected since the space generated by
x and 1 is the same as the space generated by x−λ1 and 1. Of course, we are
assuming that x and 1 are independent, i.e., that x is not a multiple of 1.)

(b) In particular, choose λ� such that x − λ�1 ⊥ 1. Check how the quadruple
product present in Λ(x − λ�1) simplifies.
Hint. AT A is diagonal, therefore easily invertible.

(c) In this case, obtain a simpler expression for v.

(d) Determine α, β such that

α(x − λ�1) + β1 = v .

Hint. Use item (b) and Fourier-Pythagoras trick, page 209.

(e) From the result in item (d), determine an expression for (â,b̂), where

v = âx + b̂1 ,

obtaining a more stable algorithm for least squares.

2.13. Using the concepts introduced in Sections 2.1 and 2.5 study the evaluation
and algorithms to compute

f (x) = sin x − x .

Hint. You may consider using a truncated Taylor’s series of sin x.

11 Further discussion on orthogonal projections can be seen in Section A.4.1.
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2.14. Heat conduction problem. Consider a one-dimensional bar, isolated in its
lateral surface, being heated in one extremity, and in contact with the ambient at the
temperature Tamb in the other extremity. Assume also that heat is being transferred
to its interior. Let T = T (x,t) denote its temperature on position x, at time t . Then
T satisfies the following initial and boundary value problem for a partial differential
equation,

ρcp
∂T
∂t

(x,t) =
∂

∂x

(

k(T,x)
∂T
∂x

)

+ g(x,t) ,

for x ∈ [0,L], t > 0,

−k
∂T
∂x

∣∣
∣
∣
∣
x=0
= q′′(t) , for t > 0 ,

(left boundary: prescribed heat flux),

−k
∂T
∂x

∣
∣
∣∣
∣
x=L
= h [T (L,t) − Tamb] , for t > 0 ,

(right boundary: contact with ambient),

T (x,0) = T0(x), for t > 0 ,

(initial condition). Here, ρ = ρ(x) is the specific mass of the material, cp = cp(x) is
the specific heat of the material, k = k(T,x) is the thermal conductivity, g = g(x,t)
is an internal heat source/sink, q′′ is the interfacial heat flux, h is the convection
coefficient, and T0 = T0(x) is the initial temperature of the bar.

Classify the following problems with respect to being direct, inverse identifica-
tion, or inverse reconstruction problems:

(a) Given k, g, ρ, cp, q′′, h, and T0, determine T = T (x,t);

(b) Given k, g, ρ, cp, h, T0, and measurements of temperature at certain times, on
some locations of the bar, determine q′′;

(c) Given k, ρ, cp, q′′, h, T0, and measurements of temperature at certain times,
on some locations of the bar, determine g;

(d) Given k, ρ, g, cp, q′′, h, and measurements of temperature at certain times, on
some locations of the bar, determine T0;

(e) Given ρ, g, cp, q′′, h, T0, and measurements of temperature at certain times,
on some locations of the bar, determine k;

(f) Given ρ, g, cp, q′′, T0, and measurements of temperature at certain times, on
some locations of the bar, determine k and h;

(g) Given ρ, g, cp, h, T0, and measurements of temperature at certain times, on
some locations of the bar, determine k and q′′.



Chapter 3

Spectral Analysis of an Inverse Problem

In this chapter we treat the solution of systems of linear equations in finite dimen-
sion spaces. This can be seen as examples of inverse reconstruction problems1 of
Type I. We present a mathematical analysis of these linear inverse problems of finite
dimension based on the spectral theorem. We study several aspects and behaviour of
well-established methods for solving inverse problems. In particular, the concept of
regularization, a very important notion in the area of inverse problems, will be dealt
with. The analysis presented here is elementary — it depends on notions of linear
algebra and convergence of numerical series. A similar study of regularization for
problems in infinite dimensional spaces depends on functional analysis and is be-
yond the scope of this book. The interested reader is encouraged to consult [44, 29].

As seen in Chapter 2, when different algorithms are applied to the same prob-
lem, different properties and behaviours are to be expected. In particular, some are
stable, while others are unstable. On the other hand, different formulations for the
same problem (even when mathematically equivalent) lead to different algorithms.
This has already been seen in example 2.5, page 34. We will develop this idea, pre-
senting some algorithms, Tikhonov in Section 3.4, steepest descent in Section 3.7,
Landweber in Section 3.8, and conjugate gradient in Section 3.10, to solve the same
problem.

The mathematical analysis of some of the methods presented will be performed,
in order to gain intuition in the behaviour of the algorithms and be able to chose and
propose the best suited method to solve a specific inverse problem. In this analysis
(Sections 3.4, 3.8, and 3.11), the spectral theorem and the singular value decompo-
sition will be used. A derivation of the conjugate gradient method is performed in
Section 3.10.

In Sections 3.3, 3.5, 3.6, and 3.9, we consider, respectively, regularization
schemes, strategies and the discrepancy principle. We begin the discussion, in Sec-
tion 3.1 with a numerical example to motivate the reader, and we analyse it, in
general, in Section 3.2.

3.1 An Example

Given the matrix

K =

(
1 0
0 1

1024

)

, (3.1)

1 For classifications of inverse problems, see Section 2.8.2.
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and the vector y = (1, 2−10)T , it is plain to see that x = (1,1)T is the solution of the
system

Kx = y . (3.2)

The solution to problems of the kind given by Eq. (3.2), where matrix K is known, y
is fixed and where x is to be found, can be somewhat complex, since small variations
in y may lead to large variations in x. For instance, let us perturb y by p = (0, 2−10)T .
We obtain a solution that differs from x by r = (0, 1)T , i.e.,2

K

((
1
1

)

+

(
0
1

))

= K(x + r) = y + p

=

(
1

2−10

)

+

(
0

2−10

)

.

Thus, the input error, p, is multiplied by a factor of |r|/|p| = 1024, and the problem
is ill-conditioned.

This is, however, a radical behaviour that is not common to all perturbations,
even if they are of the same magnitude. As a matter of fact, if p = (2−10, 0)T , then
r = (2−10, 0)T , since

K

((
1
1

)

+

(
2−10

0

))

=

(
1

2−10

)

+

(
2−10

0

)

,

and thus the multiplication factor of the error is much smaller, |r|/|p| = 1.
We then realize that the computation of the evaluation of the inverse of K at

points contaminated by small errors is more sensitive to certain perturbations than
to others. Some of these perturbations result in excessive amplification.

This kind of situation can be avoided by subtly modifying the problem. Instead
of solving Eq. (3.2), a slightly altered (perturbed) problem is solved,

Kαx = yα , α > 0 , (3.3)

in such a way that Eq. (3.3) behaves, as much as possible, as Eq. (3.2), but being bet-
ter conditioned with relation to certain perturbations of y. We say that the problem
presented in Eq. (3.3) is a regularization of the original problem, Eq. (3.2). These
notions will be defined precisely later.

Choose

Kα =

(
1 0
0 1

(1−α)10
1

210

)

, and yα = y , 0 < α < 1 , (3.4)

and note that

Kα→K, as α→0 .

Let xα be the solution of Eq. (3.3) for the choices of Kα and yα in Eq. (3.4). We
let α assume a few values, α = 1/2n, n = 1, . . . , 9, and determine the error and the
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Table 3.1 Numerical results for the error multiplication factor

α 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

|r| 0.998 0.887 0.474 0.049 0.456 0.709 0.849 0.923 0.961

|r|/|p| 1022 909 485 50 467 726 869 945 984

corresponding multiplication factor of the error, keeping the perturbation equal to
p = (0,2−10)T . The results are presented in Table 3.1.

In this example, it is possible to obtain better results when the regularization
parameter α = 1/16. The error multiplication factor plummets from 1024, when
α = 0, to 50, when the perturbation in the data is p = (0, 2−10)T .

3.2 Uncertainty Multiplication Factor

Consider the linear problem

Kx = y , (3.5)

where K and y are given data, and x is the unknown. We assume that K is invertible.
Also, consider a family of perturbations of y parameterized by ε, yε , such that |y−
yε |≤ε and define xε as the solution of the perturbed equation,

Kxε = yε . (3.6)

By subtracting the perturbed equation, Eq. (3.6), from the unperturbed equation,
Eq. (3.5), we get

K(xε − x) = yε − y or xε − x = K−1(yε − y) .

Now,
|xε − x| = |K−1(yε − y)| ,

and using Eq. (A6), we obtain,

|xε − x| ≤ |K−1| |yε − y| . (3.7)

That is, the error yε − y due to only knowing the approximation yε of y —this one
unknown— is, at most, amplified by |K−1|, as can be deduced from Eq. (3.7). See
example 2.3, page 32 where this has already been discussed.

The maximum amplification is reached for certain perturbations. As stated by
Eq. (A5),

|K−1| = max
|z|=ε
|K−1z|
|z| .

2 K(x+r)=y+p that when subtracted from Kx=y, yields Kr=p.
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Therefore, there exists at least one zo with |zo|=ε, such that

|K−1| = |K−1zo|/|zo| .
If we choose yε in such a way that yε−y=zo, we will have

|K−1| |yε − y| = |K−1(yε − y)| .
However,

K−1yε = xε and K−1y = x,

due to the definitions of x and xε (see Eqs. (3.5) and (3.6)). Therefore,

|K−1| |yε − y| = |xε − x| . (3.8)

Summing up, we have, for every y, at least a perturbation yε = y+ zo (i.e., a point at
a distance ε from y), such that the error will be amplified by |K−1|. Here, the solution
is

xε = K−1yε = K−1(y + zo) = x + K−1zo ,

and the error’s magnitude is

|K−1zo| = |K−1| ε .

3.3 Regularization Scheme

As we saw, uncertainties in y, in the right hand side of equation Kx = y are, at
most, amplified by |K−1|, see Eq. (3.7). This multiplication factor can be quite large.
It only depends on the smallest singular value of matrix K, since

|K−1| = σ1(K−1) = 1/σn(K) ,

where, in general, σ1(A) represents the largest, and σn(A), the smallest singular
values of an n × n matrix A, (see page 195 of Section A.3).

Just to reinforce, if K has a singular value near zero, then |K−1| will be large. If
the uncertainty in the data is mainly in the direction associated with the smallest
singular values of K, the uncertainty in the solution of the equation can be greatly
amplified. By regularizing the problem, as exemplified in Section 3.1, this situation
can be avoided. We shall consider regularization procedures more systematically.

Let

Kα : Rn → Rn, and bα ∈ Rn, α > 0 ,

be, respectively, a family of invertible matrices (linear operators), and a family of
vectors, parameterized by α > 0. Also, assume that y ∈ Rn. Consider the problem
given by

Kαx = y + bα, α > 0 (3.9)

and let x = xα be its solution, where the superscript α indicates that the solution
depends on α.
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Definition 3.1. The families Kα and bα, α > 0, constitute a linear regularization
scheme for the linear problem Kx = y, if the following conditions hold3:

Kα → K , |bα|↘ 0 and |K−1
α |↗ |K−1| , as α↘ 0 . (3.10)

Here, α is called regularization parameter. The perturbed problem, Eq. (3.9), is
called the regularized problem, Kα is the regularized matrix, and xα is the regular-
ized solution.

We remark that the solution operator of Eq. (3.9) is represented by the function

Rn � y �→ xα = K−1
α (y + bα) ∈ Rn . (3.11)

Theorem 1. (a) If the pair Kα and bα constitute a linear regularization scheme,
we have

xα → x , as α→ 0 . (3.12)

(b) The evaluation’s condition of the regularized problem solution, Eq. (3.11), is
less than the evaluation’s condition of the unperturbed problem

y �→ x = K−1y , (3.13)

solution of the original problem, Eq. (3.5).

Proof

(a) By definition of x and xα, Eqs. (3.11) and (3.13),

xα − x = K−1
α (y + bα) − K−1y = (K−1

α − K−1)y + K−1
α bα .

From triangle’s inequality, Eq. (A27), Eq. (A6), and definition requirement
on Kα, Eq. (3.10), we get,

|xα − x| = |(K−1
α − K−1)y − K−1

α bα|
≤ |K−1

α − K−1| |y| + |K−1
α | |bα|

≤ |K−1
α − K−1| |y| + |K−1| |bα| . (3.14)

By definition,

lim
α→0

Kα = K if and only if lim
α→0
|Kα − K| = 0 ,

and, since the inversion of matrices is a continuous function,

lim
α→0

K−1
α = K−1 , or lim

α→0
|K−1
α − K−1| = 0 .

Finally, using Eq. (3.14), Eq. (3.10) and previous result, we prove that xα → x,
as α→ 0.

3 Here, for instance, aα ↘ 0 as α↘ 0 means that aα is an increasing function of α > 0, and
that limα→0 aα = 0, is taken only from the right of zero.
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(b) The condition of the evaluation of the solution of the regularized problem,
Eq. (3.11), is less than the condition of the evaluation of x = K−1y, solution of
the original problem, Eq. (3.5), since |K−1

α | < |K−1|, for α > 0 as is required in
the definition of a linear regularization scheme, Eq. (3.10). This is illustrated
in Fig. 3.1.

||K-1||

αK|| ||
-1

α

Fig. 3.1 Graph of the norm of K−1
α as a function of α, illustrating some requirements for Kα

to be a linear regularization

Let us say one more time that the requirement on the condition lays with the in-
verse, because it is this matrix that solves (theoretically) the inverse problem, and
transforms it into a function evaluation problem. To restrain the growth of error in
the data, matrices with smaller condition numbers are preferred, which justifies the
last condition in Eq. (3.10).

3.4 Tikhonov’s Regularization

In this section, we present and analyze a classical regularization scheme, the
Tikhonov’s regularization scheme, [88, 1, 2]. We apply this regularization to the
problem given by Eq. (3.5). The analysis depends on the classical spectral theory of
linear operators in finite dimension vector spaces (Sections A.2 and A.3).

We are going to see that Eq. (3.5) can be substituted by the equivalent problem
of minimizing the functional

f (x) =
1
2
|Kx − y|2 , (3.15)

where we recall here that K and y are given.

Theorem 2. Let K be an invertible matrix. Then,

(i) x� is the minimum point of f if and only if x� is the solution of Eq. (3.5);

(ii) The critical point equation of f is KT Kx = KT y;

(iii) The critical point equation of f is equivalent to Eq. (3.5).
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Proof. (i) x� satisfies Kx� = y if and only if f (x�) = 0. Now, f (x) ≥ 0 for all x.
Therefore, x� is the only minimum point of f (since K is invertible).
(ii) Let us compute the critical point equation of f , ∇ f (x) = 0. First, the directional
derivative of f at x, in the direction of h, is given by

d fx(h) = lim
ε→0

f (x + εh) − f (x)
ε

= lim
ε→0

1
2ε

(
|K(x + εh) − y|2 − |Kx − y|2

)

= lim
ε→0

1
2ε

(〈K(x + εh) − y,K(x + εh) − y〉

− 〈Kx − y,Kx − y〉)

= lim
ε→0

1
2

(〈Kx − y,Kh〉 + 〈Kh,Kx − y〉 + ε〈Kh,Kh〉)

= 〈Kx − y,Kh〉
= 〈KT (Kx − y), h〉 , (3.16)

To get this result, we used the bilinearity of the inner product, its symmetry, and the
way a matrix changes places in the inner product.

From the definition of gradient of f , ∇ f — the vector that represents the deriva-
tive through the inner product — we obtain

d fx(h) = 〈∇ f (x), h〉 ,

for all h ∈ Rn. We reach the conclusion that4

∇ f (x) = KT (Kx − y) , (3.17)

which leads to the critical point equation

KT Kx = KT y . (3.18)

(iii) We recall that a matrix K is invertible if and only if its transpose, KT , is also
invertible, and

(KT )−1 = (K−1)T . (3.19)

Then, by multiplying both sides of Eq. (3.18) on the left by (KT )−1, we see that x
satisfies the critical point equation if and only if x satisfies Eq. (3.5).

Equation (3.18) is known as normal equation.
To avoid the amplification of the error in the solution of Eq. (3.5) it is common

to penalize the distance from the solution to a reference value, or the norm of the

4 This is an alternative deduction, more calculus and geometry oriented and using the al-
gebraic structure of the function, than both the one presented in Section 1.6 —that em-
ploys index notation—, and the one presented in Section 2.6 —that employs orthogonal
projections—, to obtain the critical point equation in similar situations.
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solution vector (the distance with respect to the origin). By a reference value we
mean a known approximate solution to the problem. We will denote a reference
value by xr .

In the case of Tikhonov’s method, this idea is implemented by modifying the
regularization term, making it penalize the growth of the distance from the reference
value. For the problem defined in Eq. (3.5), this consists in solving the critical point
equation of the functional

fα(x) =
1
2
|Kx − y|2 + α

2
|x − xr|2 , (3.20)

with α > 0, the so-called regularization parameter. The minimum point xα satisfies
the critical point equation

α(xα − xr) + KT Kxα = KT y , (3.21)

obtained in a similar way to Eq. (3.18). We rewrite it as
(
αI + KT K

)
xα = KT y + αxr . (3.22)

We will verify that Eq. (3.22) provides a regularization scheme for Eq. (3.18). Ob-
serve that, strictly speaking, the problem that is being regularized is Eq. (3.18) and
not Eq. (3.5).

Let

Aα = αI + KT K and bα = αxr , α > 0 . (3.23)

Theorem 3. The families Aα, bα, α > 0, are a linear regularization scheme for
equation KT Kx = KT y.

Proof. Since Aα → KT K, as α → 0 and |bα| ↘ 0, the first two conditions in
Eq. (3.10) are satisfied.

Now, following the notation in Appendix A, if

λ1(KT K) ≥ λ2(KT K) ≥ . . . ≥ λn(KT K) > 0 ,

are the eigenvalues of KT K (the last inequality is strict, since KT K is invertible),
then the eigenvalues of (KT K)−1 satisfy

λi((K
T K)−1) = 1/λn+1−i(K

T K) ,

for i = 1, . . . , n. It results that

1
λn(KT K)

≥ 1
λn−1(KT K)

≥ . . . ≥ 1
λ1(KT K)

> 0 ,

Thus, due to remark A.1 (c), p. 199,

|(KT K)−1| = 1/λn(KT K) .
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Also, from Exercise A.8, p. 210,

λi(αI + KT K) = α + λi(KT K) .

Therefore,

|A−1
α | = |(αI + KT K)−1|
= (α + λn(KT K))−1 .

Hence, we see that the condition of the problem, when α > 0, is inferior to that
when α = 0. Notice that |A−1

α | is a decreasing function of α with limit |(KT K)−1|, as
α→ 0,

lim
α→0
|A−1
α | = |(KT K)−1|

satisfying the third requirement in Eq. (3.10).
Thus, we reach the conclusion that Aα and bα determine a linear regularization

scheme for the linear problem, Eq. (3.18).

When compared to the original problem, Eq. (3.18), we see that this regulariza-
tion scheme shifts the eigenvalues of the matrix of the problem by α. Since they are
all real and non-negative (see example A.2 on page 195), they are far from the origin
at least by α, including the one with smallest absolute value, which determines the
condition of (KT K)−1.

3.5 Regularization Strategy

The notion of regularization scheme has the goal of constraining, in the solution,
the effect of the growth of the error coming from the data, by means of modifying
the problem’s condition. However, the knowledge of an error estimate or the spec-
ified level of uncertainty in the data is not taken into consideration. The notion of
regularization strategy is important when this information is available.

Assume that the right-side of Eq. (3.5), y, is known only approximately, with a
maximum error of ε, i.e., yε is known and not necessarily y, in such a way that

|y − yε | ≤ ε . (3.24)

Let the pair Kα and bα be a linear regularization scheme for Eq. (3.5), and denote
by xα,ε the approximation to x obtained by means of Kα when the datum is yε , i.e.,
xα,ε is the solution of the regularized equation with noisy or corrupted data,

Kαxα,ε = yε + bα . (3.25)

Then,

xα,ε = K−1
α (yε + bα) .
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Definition 3.2. Let Kα, bα, for α > 0, be a linear regularization scheme, and yε an
approximation of y, with precision level ε. A regularization strategy corresponds to
a choice of the value of the regularization parameter, α, to be used, as a function of
the precision level of the data, i.e., it is a relation between α and ε, α = α(ε), such
that α(ε) → 0, as ε → 0.

In the presence of noisy data, this is the concept needed, as can be seen from the
next simple theorem.

Theorem 4. Let Kα, bα, α > 0, be a linear regularization scheme for equation
Kx = y, and yε be an approximation of y with precision level ε, i.e. satisfying
Eq. (3.24). Also, let xα,ε be the solution of the regularized problem with noisy data,
Eq (3.25), and α = α(ε) a regularization strategy. Then

lim
ε→0

xα(ε),ε = x .

Proof. From the solution of the regularized equation with noisy data we get,

xα,ε − x = K−1
α (yε + bα) − K−1y

= K−1
α (yε − y) + (K−1

α − K−1)y + K−1
α bα .

Therefore, using triangle inequality, Eq. (A2), and Eqs. (A6) and (3.10) we get,

|xα,ε − x| ≤ |K−1
α |ε + |K−1

α − K−1| |y| + |K−1| |bα| .

Now, letting α = α(ε) be a regularization strategy, and ε → 0 in the previous equa-
tion, we get the result.

A relevant magnitude to be taken into consideration when evaluating the quality
of the regularization scheme with corrupted data is

|xα,ε − x| .

We now present a qualitative analysis that shows some of the problems likely to
arise when we choose α = α(ε). We have,

|xα,ε − x| ≤ |xα,ε − xα| + |xα − x|
≤ |K−1

α (yε + bα) − K−1
α (y + bα)| + |K−1

α (Kx + bα) − x|
≤ |K−1

α (yε − y)| + |(K−1
α K − I)x| + |K−1

α bα|
≤ |K−1

α | |yε − y| + |K−1
α K − I| |x| + |K−1

α | |bα| . (3.26)

We surmise the qualitative behaviour of the norm of the total error, |xα,ε − x|, by
looking at the behaviour of its bound given by

E(α) = E1(α) + E2(α) + E3(α) ,
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where

E1(α) = |K−1
α | |yε − y| ,

E2(α) = |K−1
α K − I| |x| , and

E3(α) = |K−1
α | |bα| .

From Eq. (3.10), K−1
α K − I = K−1

α (K − Kα), and Eqs. (A5) and (A6), we have,

E2(α) ≤ |K−1
α | |K − Kα| |x|

≤ |K−1| |K − Kα| |x| , and

E3(α) ≤ |K−1| |bα| .
From this, E2(α), E3(α) → 0, as α→ 0, and

lim
α→0

E(α) = lim
α→0

E1(α) = |K−1| |yε − y| . (3.27)

In practice, we cannot consider the limit as ε→ 0; the value of ε � 0 to be chosen
should be a plausible or known level for the error in the data, due, for example, to
the working precision of the measurement device. In general, once ε > 0 is fixed, no
advantage is gained by choosing α close to zero, since, as shown in Eq. (3.27), E(α)
does not go to zero as α→ 0. This is illustrated in Fig. 3.2a. The upper bound of the
total error, E(α), may reach a minimum for a value of α, say α∗, far from zero. We
must warn the reader, however, that strictly speaking this is not a conclusion about
the behaviour of |xα,ε − x|.
Definition 3.3. We say that a regularization strategy, α = α(ε), is optimal when

|xα(ε),ε − x| = inf
α
|xα,ε − x| .

3.6 Reference Value in Tikhonov’s Method

Mimicking the derivation of Eq. (3.26), we can deduce that

xα,ε − x = K−1
α (yε − y) + (K−1

α K − I)x + K−1
α bα . (3.28)

In Tikhonov’s method, with reference value xr, we have
(
αI + KT K

)
xα,ε = KT yε + αxr ,

and substituting, in Eq. (3.28),

Kα by Aα = αI + KT K ,

bα by αxr , K by KT K ,

y by KT y , and yε by KT yε
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(a)

(b)
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(α)E3

(α)E2
α α,ε
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αD(  ) = || Kx  − y ||
α,ε ε
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αα∗

α) E(

α∼α∗

discrepancy

principle

Fig. 3.2 Qualitative behaviour: (a) of the total error bound, E(α) = E1(α) + E2(α) + E3(α);
(b) of the discrepancy, D(α) = |Kxα,ε − yε |

we get

xα,ε − x = A−1
α KT (yε − y) + (A−1

α KT K − I)x + αA−1
α xr

= A−1
α KT (yε − y) + A−1

α

(
(KT K − Aα)x + αxr

)

= A−1
α KT (yε − y) − αA−1

α (x − xr) .

Therefore,

|xα,ε − x| ≤ |A−1
α | |KT | |yε − y| + α|A−1

α | |x − xr| . (3.29)
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Assume that we will solve the inverse problem with a priori information — we know
an approximate value of x, xr, and a value δ>0 (as small as we are able to get), such
that |x − xr|≤ δ, (i.e., xr is a vector not much different from the solution, x, we are
looking for). In this case, the second term on the right side of the inequality given
in Eq. (3.29), would be bounded by αδ|(KT K)−1|, which could be small, even if α
is not. When |x| is large (in the absence of a reference value we may take xr =0), it
is advantageous to control the second term using some previous information. Thus,
α is not forced to be small. That is convenient since it is preferable to choose α
slightly different from zero, on the account of the first term. In fact, the first term,
which depends on the multiplication factor of the data error, |A−1

α |, is not too large
when α is not too small (see the graph of E1(α) in Fig. 3.2a).

This analysis justifies the following assertion:

in inverse problems, good quality additional information contributes to a better
determination of the solution, even when experimental errors are present.

3.7 Steepest Descent Method

Another regularization scheme that can be applied to the problem given by Eq. (3.5)
consists in considering an iterative minimization method for functional f , defined
by Eq. (3.15). Instead of directly solving the algebraic linear system, Eq. (3.5),
we choose an indirect method, which generates a minimizing sequence for the
functional f . This implies a change in the regularization strategy with respect to
Tikhonov’s method, as we shall see.

Assume that x∞ is the minimum point of f . We say that xl ∈Rn, with l ∈N, is a
minimizing sequence of f if

xl → x∞ as l→+∞ .

In this case, xl converges to the solution of Eq. (3.5), whenever K is invertible.
Thus, if we generate a minimizing sequence for the functional defined in Eq. (3.15),
we construct a sequence that converges to the solution of Eq. (3.5). If we stop the
sequence in a finite number of steps, we may end up with only an approximate
solution.

The steepest descent method generates a minimizing sequence for f in the fol-
lowing way. Given an initial approximation xo of the minimum point of f , one
computes x1, the minimum point of the restriction of f to the line that passes by xo,
whose direction is the (local) steepest descent of function f at xo.

We recall here that the steepest descent direction of f at xo is given by a vector
in the direction opposite to the gradient, i.e., for example, in the direction of

−∇ f (xo) = −KT (Kxo − y) .

Therefore, the straight line along which we look for a minimum point of f is given
parametrically by

R � t �→xo − t∇ f (xo) ∈ Rn .
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The minimum point of f along the line can be written as

x1 = xo − t∗∇ f (xo) , (3.30)

where t∗ is the minimum point of the real valued function of a real variable,

R � t �→ h(t) = f (xo − t∇ f (xo)) =
1
2
|K(xo − t∇ f (xo)) − y|2 ∈ R .

However,

h(t) =
1
2
〈Kxo − y − tK∇ f (xo),Kxo − y − tK∇ f (xo)〉

=
1
2

(
|Kxo − y|2 − 2t〈K∇ f (xo),Kxo − y〉 + t2|K∇ f (xo)|2

)
.

which is a second order polynomial in t. Therefore, the critical point equation for h
is

0 = dh/dt = −〈K∇ f (xo),Kxo − y〉 + t|K∇ f (xo)|2 ,
that, by using Eq. (3.17), yields

t∗ =
〈K∇ f (xo),Kxo − y〉
|K∇ f (xo)|2 =

|KT (Kxo − y)|2
|KKT (Kxo − y)|2 .

Using again the expression for ∇ f (xo), Eq. (3.17), and Eq. (3.30), we obtain

x1 = xo −
|KT (Kxo − y)|2
|KKT (Kxo − y)|2 KT (Kxo − y) .

The next step of the algorithm is obtained by applying the same idea, beginning now
at x1. Thus, successively we obtain

xi+1 = xi −
|KT (Kxi − y)|2
|KKT (Kxi − y)|2 KT (Kxi − y) i = 0, 1, 2, . . . (3.31)

This algorithm can be thought of as a regularization scheme if we identify the
i-th step with parameter α, α = 1/i, i ≥ 1. This will be better seen in the next
section when we consider the Landweber method. We note that we are searching
for a solution in sets “much smaller” than the whole space, which may lead to a
“regularity” in the solution. Even so, this scheme is not of the kind considered in
definition 3.1. In particular, it does not have a linear structure and is more difficult
to analyze.

3.8 Landweber Method

The Landweber method is an iterative minimization scheme obtained by modifying
the steepest descent method.
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Observing Eq. (3.31), we see that −∇ f (xi) = −KT (Kxi − y) is multiplied by the
factor

|KT (Kxi − y)|2
|KKT (Kxi − y)|2 .

This implies that xi+1 is the best solution through the line

t �→ xi−t∇ f (xi) .

In the Landweber method this costly and complicated factor is substituted by
a constant γ > 0, and then in every step only a suboptimal solution is obtained
through the given line. Specified an initial guess x0, this method is then defined by
the iteration

xi+1 = xi − γKT (Kxi − y)

= γKT y +
(
I − γKT K

)
xi ,

for i = 0, 1, 2, . . ..
The solution of this recursion relation is given explicitly in terms of the initial

condition x0 and the vector y as

xi = γ

⎡
⎢⎢⎢⎢⎢⎢⎣

i−1∑

l=0

(
I − γKT K

)l

⎤
⎥⎥⎥⎥⎥⎥⎦ KT y +

(
I − γKT K

)i
xo , for i = 1, 2, . . . (3.32)

We now analyze the behaviour of this iteration scheme to check when it is a linear
regularization scheme. Let D(θ1, θ2, . . . , θn) denote a diagonal matrix with diagonal
entries θ1, θ2, . . . , θn. Let also λ j = λ j(KT K) be the jth largest eigenvalue of KT K,
and v j a corresponding eigenvector, in such a way that P = (v1,v2, . . . ,vn) is an
orthogonal matrix diagonalizing KT K, i.e.,

KT K = PD(λ1,λ2, . . . ,λn)PT .

Since

i−1∑

l=o

(1 − γλ j)l = (1 − (1 − γλ j)i)/γλ j ,

we have

xi = γP

⎧
⎪⎪⎨
⎪⎪⎩

i−1∑

l=0

[
I − γD(λ1, . . . , λn)

]l

⎫
⎪⎪⎬
⎪⎪⎭

PT KT y

+ P
[
I − γD(λ1 , . . . , λn)

]i PT x0

= PD

(
1 − (1 − γλ1)i

λ1
, . . . ,

1 − (1 − γλn)i

λn

)

PT KT y

+ PD
(
(1 − γλ1)i, . . . ,(1 − γλn)i

)
PT x0 . (3.33)
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Thus, identifying the i-th step with the regularization parameter α, α = 1/i, i ≥ 1,
the i-th iterate, xi, is the solution of the following equation

A1/ix1/i = KT y + b1/i , (3.34a)

where

A1/i = PD

(
λ1

1 − (1 − γλ1)i
, . . . ,

λn

1 − (1 − γλn)i

)

PT , (3.34b)

and

b1/i = PD

(
λ1(1 − γλ1)i

1 − (1 − γλ1)i
, . . . ,

λn(1 − γλn)i

1 − (1 − γλn)i

)

PT x0 . (3.34c)

Theorem 5. The family A1/i, b1/i, i = 1,2, . . ., defines a linear regularization scheme
for the linear problem KT Kx = KT y, when parameter γ > 0 is sufficiently small in
such a way that

0 < γλ j < 1 , (3.35)

for j=1, . . . , n .

Proof. As a matter of fact,

A1/i → PDPT = KT K ,

b1/i → 0 , (3.36)

as i → +∞, and since
∣∣
∣1−γλ j

∣∣
∣ < 1, we have that

(
1−γλ j

)i
→ 0 as i → ∞, and then

|A−1
1/i| =

1 − (1 − γλn)i

λn
↗ 1
λn
= |(KT K)−1| as i → +∞ .

Equation (3.33) tells us that the eigenvalues of the inverse, 1/λ j, which may be
very large (when λ j is very small, near zero), are mitigated by the regularization
scheme by means of the factor

1 − (1 − γλ j)i .

This factor is close to zero whenever λ j is close to zero. We also remark that the
initial condition x0 is progressively “forgotten” as it is multiplied by (1 − γλ j)i,
which tends to zero as i grows, for all j = 1,2 . . . , n.

Note that Eq. (3.35) can be replaced by asking only that γ satisfies

0 < γ <
1
λ1
. (3.37)
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3.9 Discrepancy Principle

In any regularization scheme such as steepest descent, Landweber iteration or con-
jugated gradient method, the regularization parameter α is related to the iteration
counter i, α = 1/i.

Applying a linear regularization scheme in a problem having at most a level ε of
data error, |y − yε | ≤ ε, we have

|Kxα,ε − yε | = |KK−1
α (yε + bα) − yε |

≤ |KK−1
α − I| |yε | + |KK−1

α | |bα| .
It is obvious that, as the iteration number tends to infinity, i→+∞,

α = 1/i→0 and |Kxα,ε−yε |→0 .

This is illustrated in Fig. 3.2b.
Thus, we could think it is appropriate to pre-specify an arbitrary small tolerance,

δ, in which case we would proceed with the iterations until

|Kx1/i,ε − yε | becomes smaller than δ.

We see that, if we adopt this stopping criterion, we risk choosing values of α = 1/i
smaller than α∗, and, as shown in Fig. 3.2a, the error in

|x1/i,ε − x| ,
which is to be minimized, but that cannot be directly accessed (when x is unknown),
would end up increasing.

As a matter of fact,

|Kx1/i,ε−yε | can decrease,

while, at the same time,

|x1/i,ε−x| can increase as i→+∞ .

This is an extremely important observation. In Fig. 3.2, it is immediately verifiable
that this is the case when α < α∗.

Since the error in yε is at most ε, it is reasonable to assume that the algorithm
should stop when

|Kx1/i,ε − yε | ≤ ε .

That is, we are choosing δ = ε. This stopping criterion is known as discrepancy
principle.

For a practical application and a visualization of the fact that this principle yields
good results, while difficulties arise when it is not in use (i.e., whenever we use too
small a δ) see Fig. 7.3 on page 151.
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3.10 Conjugate Gradient

The conjugate gradient method is a very important regularization method that gen-
erates a minimizing sequence. In fact, when applied to the resolution of a linear
system defined by a real symmetric matrix it arrives to the solution in a finite num-
ber of steps, at most the size of the matrix, considering the computations are carried
out in infinite precision (exact) arithmetic.

For completeness, we present a derivation of the conjugate gradient method for
finite dimension problems. Conjugate gradient has been introduced by Hestenes and
Stiefel [37]. Rather comprehensive presentations are given by Shewchuck [67], and
Golub and Van Loan [35]. A conjugate gradient method applied to a heat transfer
problem is presented in Chapter 7.

3.10.1 Conjugate Gradient Algorithm

Let A be a real, symmetric, positive definite matrix5, and consider the problem

Ax = b , (3.38)

where b ∈ Rn is a known vector in Rn and x ∈ Rn is unknown. Denote the solution
by x�.

As in the case of the steepest descent method, the conjugate gradient method is an
iterative method that searches for solution by minimizing a functional along certain
directions. Here we consider the functional6

E(x) =
1
2

xT Ax − xT b . (3.39)

It can be shown that

∇E = Ax − b , (3.40)

and, therefore, x� is a critical point of E if and only if it solves Eq. (3.38).
The derivation of the conjugate gradient method we present is based on two-

step optimization, with very little geometry discussed. Geometrical aspects of the
conjugate gradient would take us too long at this point, so we have spelled out
the details in exercises for the interested reader in the Appendix A (see exercises
beginning on Exercise A.40, page 219).

Before delving in its derivation, we present its algorithmic form. Conjugate gra-
dient uses search directions pi, i = 0,1,2, . . . , n − 1 defined iteratively. Given an
initial guess x0 for the minimum point of E = E(x), the first search direction is
p0 = ∇E |x0= Ax0 − b, and the method proceeds in the following way,

xi+1 = xi − βipi (3.41a)

pi+1 = ∇E |xi+1 +γi+1pi = Axi+1 − b + γi+1pi , (3.41b)

5 The definition of a positive definite matrix is given on page 195.
6 See Exercise A.13, page 211, to verify that the level sets of E are ellipsoids.
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for i = 0,1,2, . . .with the following choice of parameters,

βi =
(Axi − b)T (Axi − b)

pT
i Api

(3.41c)

γi+1 =
(Axi+1 − b)T (Axi+1 − b)

(Axi − b)T (Axi − b)
(3.41d)

For simplicity, but mainly for computational efficiency, we introduce the residual7,

ri = b − Axi ,

and then, applying A on both sides of Eq. (3.41a), and subtracting b, we get the
following recursion relation for the residuals,

ri+1 = ri + βiApi . (3.42)

Therefore, the conjugate gradient method can be rewritten in algorithmic form as

βi =
rT

i ri

pT
i Api

(3.43a)

xi+1 = xi − βipi (3.43b)

ri+1 = ri + βiApi (3.43c)

γi+1 =
rT

i+1ri+1

rT
i ri

(3.43d)

pi+1 = −ri+1 + γi+1pi (3.43e)

for i = 0,1,2, . . ., with

p0 = Ax0 − b , and r0 = b − Ax0 . (3.43f)

3.10.2 Two-Step Optimization

We begin by presenting the first optimization step of the conjugate gradient method.
Landweber, steepest descent, and conjugate gradient proceed, in each iteration step,
along a prescribed direction

xi+1 = xi − βipi , i = 0,1, . . . (3.44)

where βi is a parameter that specifies the size of the step to be taken in the search
direction, pi.

Consider the line in Rn that goes through xi and has direction pi, defined by the
image of the function

R � β �→ xi − βpi ∈ Rn .

7 Here, the residual is directly related to the gradient of E, ri = −∇E |xi .
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For conjugate gradient, steepest descent (but not for Landweber), and other so-called
conjugate directions methods one chooses βi in such a way that the functional E,
Eq. (3.39), restricted to the line, attains its minimum value. The restricted functional
is given by

R � β �→ l(β) = E(xi − βpi) ∈ R ,

where

l(β) = E(xi) − βpT
i (Axi − b) +

1
2
β2pT

i Api . (3.45)

It is worthwhile noticing that l(β) is just a second degree polynomial in β, with funny
looking coefficients. The critical point of l, i.e. the solution of (dl/dβ) |βi= 0, is given
by

βi = −
‘coefficient of β’

‘twice the coef. of β2’

=
pT

i (Axi − b)

pT
i Api

= −
pT

i ri

pT
i Api

. (3.46)

Now, substituting the value of βi in l, we get the minimum of E restricted to the
search line,

l(βi) = E(xi − βipi) = E(xi) −
1
2

[
pT

i (Axi − b)
]2

pT
i Api

= E(xi) −
1
2

(
pT

i ri

)2

pT
i Api

. (3.47)

Clearly, the decrease in E,

1
2

(
pT

i ri

)2

pT
i Api

, (3.48)

depends only on the direction, not on pi’s norm, as should be expected. In fact, the
quantity in Eq. (3.48) is homogeneous of degree zero8 in pi. In other words, if we
change pi by a non-null multiple of pi, api, with a � 0, the quantity in Eq. (3.48)
does not change.

In the case of steepest descent, we would take γi = 0 for all i, in Eqs. (3.43d) and
(3.43e), in which case the search directions are

pi = ∇E |xi= Axi − b = −ri, i = 0,1,2, . . . .

It should be remarked that if xi is already the solution of the problem, xi = x�, then
ri = 0, the quantity in Eq. (3.48) is null and, in fact, the minimum value of l(β),
Eq. (3.45), would occur for β = 0.

8 A function Rn\{0} � x �→ g(x) ∈ Rm is called homogeneous of degree σ if and only if
g(λx) = λσg(x) for all λ ∈ R\{0}, and for all x ∈ Rn\{0}.
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Unless xi is already the solution of the problem, the quantity in Eq. (3.48) will
be strictly positive, representing an effective reduction in the value of E, which, in
principle, is good since the goal is to find the minimum point corresponding to the
minimum value of E.

We begin by presenting the second optimization step of the conjugate gradient
method which is related to the choice of search direction. This choice has three in-
gredients. In the first step, it coincides with the steepest descent since the first search
direction is p0 = Ax0 − b. The next ingredient is that it consists in a perturbation of
the direction of the gradient of the functional E by the previous search direction,

pi = ∇E|xi + γipi−1

= Axi − b + γipi−1

= −ri + γipi−1 , i = 1,2, . . . (3.49)

Finally, γi is specified by choosing it in order to maximize the decrease in E,
Eq. (3.48). After substituting pi given by Eq. (3.49), in Eq. (3.48), we have to max-
imize the function

R � γ �→ h(γ) =

[
(−ri + γpi−1)T ri

]2

(−ri + γpi−1)T A (−ri + γpi−1)
. (3.50)

The maximum point of this function is given by

γi = −
pT

i−1rirT
i Ari − rT

i rirT
i Api−1

pT
i−1rirT

i Ari + rT
i ripT

i−1Api−1
. (3.51)

Although at first sight it may seem daunting, it is a simple computation that we
prefer to leave as a guided exercise for the reader, Exercise 3.16.

3.10.3 A Few Geometric Properties

What is left, now, in the derivation of conjugate gradient is to show that βi and γi

given, respectively, by Eqs. (3.46) and (3.51) correspond to the values presented
in Eq. (3.43). This is a consequence of the geometric properties of the conjugate
gradient method, presented next.

Theorem 6. Using the notation introduced previously, the following geometric as-
sertions concerning the conjugate gradient method hold:

(a) (Orthogonality of residuals) ri+1 is orthogonal to ri, (and also to all the previ-
ous residuals ri−1, . . . , r0);

(b) (Orthogonality of residuals and search directions) ri+1 is orthogonal to pi and
to pi−1, (and all the way down until p0);

(c) (A−orthogonality9 of pi’s) pi+2 is A−orthogonal to pi+1 and pi (in fact, pi ⊥A

p j, for all i � j), i.e., pT
i Ap j = 0 for all i � j;

9 For a discussion of A-orthogonality see Exercise A.5, page 208.



74 3 Spectral Analysis of an Inverse Problem

(d) pT
i ri = −rT

i ri, for all i.

Before proving this theorem, we show how it is used to simplify βi and γi.
From Eq. (3.46) and using item (d) of the previous theorem we get,

βi = −
pT

i ri

pT
i Api

= − (−ri + γipi−1)T ri

pT
i Api

=
rT

i ri

pT
i Api

. (3.52)

This concludes the derivation of Eq. (3.43a) for βi.
As for Eq. (3.43d) for γi, a little more work has to be done. Start by multiplying

both sides of Eq. (3.42) from the left by rT
i+1, and using item (a) above to get,

rT
i+1ri+1 = βirT

i+1Api ,

which yields

βi =
rT

i+1ri+1

rT
i+1Api

.

Equating the expression for βi from Eq.(3.52) and from the previous equation, we
get,

rT
i+1Api

pT
i Api

=
rT

i+1ri+1

rT
i ri

.

Now, from Eq. (3.51) with i + 1 in place of i, using item (b), pT
i−1ri = 0, and the

previous equation, we get,

γi+1 =
rT

i+1ri+1

rT
i ri

.

This concludes the derivation of the conjugate gradient algorithm, Eq. (3.43).
Next we prove assertions (a) to (d) of theorem 6.

Proof. (theorem 6). The proof of this theorem is done by induction. We sketch it by
showing the first step when i = 0, i.e., we show that

(a0) Orthogonality of residuals: r1 is orthogonal to r0;

(b0) Orthogonality of residual and search direction: r1 is orthogonal to p0;

(c0) A−orthogonality of search directions: p1 is A−orthogonal to p0;

(d0) pT
0 r0 = −rT

0 r0,

and how to prove the second step, when i = 1, from the first, i.e., that
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(a1) Orthogonality of residuals: r2 is orthogonal to r0 and r1;

(b1) Orthogonality of residual and search direction: r2 is orthogonal to p0 and p1;

(c1) A−orthogonality of search directions: p2 is A−orthogonal to p0 and p1;

(d1) pT
1 r1 = −rT

1 r1.

First step: i = 0. Now we tackle the first step.

(a0) r1 is orthogonal to r0, i.e., r1 ⊥ r0. By multiplying both sides of Eq. (3.43c),
with i = 0,

r1 = r0 + β0Ap0 ,

on the left by rT
0 , substituting the value of β0 by expression on Eq. (3.43a),

and recalling that p0 = −r0, we get

rT
0 r1 = rT

0 r0 + β0rT
0 Ap0

= rT
0 r0 +

rT
0 r0

pT
0 Ap0

rT
0 Ap0 = 0 .

(b0) Since p0 = −r0, and r0 ⊥ r1, we conclude that r1 ⊥ p0.

(c0) From Eq. (3.43c), with i = 0, and r1 ⊥ r0, we get

rT
1 r1 = rT

1 (r0 + β0Ap0)

= (r0 + β0Ap0)T β0Ap0

= β0rT
0 Ap0 + β

2
0pT

0 A2p0 .

Now, from Eq. (3.43), and pre-multiplication by pT
0 A we get

pT
0 Ap1 = pT

0 A (−r1 + γ1p0)

= pT
0 A

⎛
⎜⎜⎜⎜⎝−r0 − β0Ap0 +

rT
1 r1

rT
0 r0

p0

⎞
⎟⎟⎟⎟⎠ (3.53)

= −pT
0 Ar0 − β0pT

0 A2p0 +
β0rT

0 Ap0 + β
2
0pT

0 A2p0

rT
0 r0

pT
0 Ap0 = 0 ,

and we conclude that p1 is A−orthogonal to p0.

(d0) Since p0 = −r0, item (d) follows for i = 0.

Second step: i = 1.

(a1) Now, we consider the orthogonality of the second residual to the previous
residuals. From Eq. (3.43c) with i = 1,
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r2 = r1 + β1Ap1 .

By multiplying the previous equation on the left by r1, and using Eq. (3.43a)
with i = 1, we get

rT
1 r2 = rT

1 r1 + β1rT
1 Ap1

= rT
1 r1 +

rT
1 r1

pT
1 Ap1

rT
1 Ap1 = 0 ,

since, from p1 = −r1 + γ1p0,

pT
1 Ap1 = (−r1 + γ1p0)T Ap1

= −rT
1 Ap1 + γ1

=0
︷�︸︸�︷

pT
0 Ap1 .

That is, r2 ⊥ r1. Also, r2 ⊥ r0

rT
0 r2 = rT

0 (r1 + β1Ap1)

= rT
0 r1 + β1(−p0)T Ap1 = 0 .

(b1) Since r2 ⊥ r0 and r0 = −p0, we have r2 ⊥ p0. Moreover,

rT
2 p1 = rT

2 (−r1 + γ1p0) = 0 .

(c1) We show that p2 is A-orthogonal to p0 since

pT
0 Ap2 = pT

0 A (−r2 + γ2p1)

= −pT
0 Ar2 + γ2

=0
︷�︸︸�︷

pT
0 Ap1

=
1
β0

(r0 − r1)T r2 = 0 .

We remark that to show pT
1 Ap2 = 0 one only needs to change 1 to 2 and 0 to

1 in Eq. (3.53).

(d1) Note that

pT
1 r1 = (−r1 + γ1p0)T = −rT

1 r1 + γ1

=0
︷︸︸︷

rT
0 r1 = −rT

1 r1 .

To complete the proof of theorem 6, it is enough to use induction.
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The ‘dynamics’ set forth by the conjugate gradient method, Eq. (3.43), ‘preserves’
the geometric structure stated in items (a) to (d). That is, at step i, the choice of the
next search direction, that is of γi+1, is made in such a way that:

(a) the next residual, ri+1, is orthogonal to the previous ones;

(b) the next residual, ri+1, is orthogonal to the previous search directions;

(c) the search direction pi+1 is A-orthogonal to the previous search directions;

(d) and pT
i ri = −rT

i ri.

3.11 Spectral Analysis of Tikhonov’s Regularization

We will see in detail the difference between solutions x and xα, respectively, of
Eqs. (3.5) and (3.22) and, in particular, we will analyze the spectral behaviour of
the regularization of the problem.

Using the notation introduced in Appendix A, let

σ1≥ . . .≥σn>0

be the singular values of K. The smallest singular value σn=σn(K)>0, is non null
because K is invertible.

The eigenvalues of KT K,

λ1 ≥ . . .≥λn>0 ,

are related to the singular values of K by

λi = σ
2
i ,

as can be seen from observation A.1 (d) on page 199.
Let

D = D(θ1, . . . , θn)

be the diagonal matrix whose main diagonal is formed by θ1, . . . , θn. The singular
value decomposition of K, theorem 8 on page 195, is rendered as

K = QD(σ1, . . . , σn)PT ,

with Q = (w1, . . . ,wn), and P = (v1, . . . , vn), which are appropriate orthogonal
matrices whose columns are denoted, respectively, by wi and vi. Therefore,

KT K = PD2(σ1, . . . , σn)PT =PD(σ2
1, . . . , σ

2
n)PT .
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Alternatively, we can write, emphasizing the use of matrices and vectors, that

K = QD(σ1, . . . , σn)PT =

n∑

i=1

σiwivT
i .

Therefore,

KT K = PD(λ1, . . . , λn)PT = PD(σ2
1, . . . , σ

2
n)PT =

n∑

i=1

σ2
i vivT

i . (3.54)

Analogously, for the regularized matrix, we have,

Aα = αI + KT K

= αPPT + PD(σ2
1, . . . , σ

2
n)PT

= PD(α + σ2
1, . . . , α + σ

2
n)PT

=

n∑

i=1

(α + σ2
i )vivT

i . (3.55)

Comparing the spectral representations of the matrices KT K and Aα, provided by
Eqs. (3.54) and (3.55), we see how the regularization modifies the original problem,
and the role of regularizing parameter.

From the previous results, we can conclude that,

KT = PD(σ1, . . . , σn)QT =

n∑

i=1

σiviwT
i ,

and

K−1 = PD

(
1
σ1
, . . . ,

1
σn

)

QT =

n∑

i=1

1
σi

viwT
i ,

(KT K)−1 = PD

⎛
⎜⎜⎜⎜⎝

1

σ2
1

, . . . ,
1
σ2

n

⎞
⎟⎟⎟⎟⎠ PT =

n∑

i=1

1

σ2
i

vivT
i ,

(Aα)−1 = PD

⎛
⎜⎜⎜⎜⎝

1

α + σ2
1

, . . . ,
1

α + σ2
n

⎞
⎟⎟⎟⎟⎠ PT =

n∑

i=1

1

α + σ2
i

vivT
i .

Also,

A−1
α KT = PD

⎛
⎜⎜⎜⎜⎝
σ1

α + σ2
1

, . . . ,
σn

α + σ2
n

⎞
⎟⎟⎟⎟⎠ QT .
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Finally, the solutions to Eqs. (3.5) and (3.22) are given respectively by

x = K−1y =
n∑

i=1

1
σi

viwT
i y =

n∑

i=1

1
σi

vi〈wi, y〉, (3.56)

xα = A−1
α KT y + αA−1

α xr

= PD

⎛
⎜⎜⎜⎜⎝
σ1

α + σ2
1

, . . . ,
σn

α + σ2
n

⎞
⎟⎟⎟⎟⎠ QT y

+ PD

⎛
⎜⎜⎜⎜⎝
α

α + σ2
1

, . . . ,
α

α + σ2
n

⎞
⎟⎟⎟⎟⎠ PT xr

=

n∑

i=1

σi

α + σ2
i

viwT
i y +

n∑

i=1

α

α + σ2
i

vivT
i xr

=

n∑

i=1

σi

α + σ2
i

vi〈wi, y〉 +
n∑

i=1

α

α + σ2
i

vi〈vi, xr〉 . (3.57)

From Eqs. (3.56) and (3.57), it is obvious that the regularized solution, xα, converges
to the exact solution, x, as α→0.

Exercises

3.1. Augment Table 3.1 by considering the values of |r| and |r|/|p| where Kαr = p,
with p = (2−10,0), as α varies. Qualitatively, how the regularized problem behaves
for these perturbations?

3.2. Check whether Kα, defined by Eq. (3.4), is a linear regularization scheme.

3.3. Show that Eq. (3.19) is valid.

3.4. Let K be an invertible matrix, and let x, y be given such that Kx = y. Let p be
a perturbation on y and r the corresponding perturbation on x, K(x + r) = y + p.

(a) Show that r depends only on p (and not on y nor x) and show that r = r(p) =
K−1p.

(b) Consider the error multiplication factor

mK(p) =
|r(p)|
|p| , (3.58)

and show that it is a homogeneous function of zero degree. (See definition of
homogeneous function in footnote on page 72.)

(c) Let λ � 0 be an eigenvalue associated with eigenvector vλ of K, and compute
mK(vλ).

(d) Let mK = maxp�0 mK (p). Show that mK = |K−1|. (See definition on Eq. (A5).)
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3.5. For the family of perturbations on the right hand side, y, of Kx = y,

[0, 2π] �→ p(θ) = (cos θ, sin θ) ,

(a) determine the corresponding perturbation on x, on the left hand side, for K
given by Eq. (3.1);

(b) compute

g(θ) = mK(p(θ)) ,

and sketch its graph;

(c) do the same for the regularized matrix Kα, defined by Eq. (3.4).

3.6. Let

A =

(
1 β
β γ

)

.

(a) Verify that this class of matrices contains matrix K, from Eq. (3.1), and Kα,
from Eq. (3.4).

(b) Determine the eigenvalues of A.

(c) Assume β and γ small. Use the approximation
√

1 + x ≈ 1 + x
2 , for x near

zero, to obtain approximations for the eigenvalues of A.

(d) Determine the eigenvectors of A.
Hint. Note that ax + by = 0 has solution (x,y) = ξ(−b,a), for all ξ ∈ R.

(e) Verify directly that the eigenvectors of A are orthogonal.

(f) Compute mA(p(θ)) as defined in Exercise (3.5).

(g) Compute m̄A = maxp�0 mA(p).

3.7. (a) Check the details on the derivation of Eq. (3.16).

(b) Let fα be defined by Eq. (3.20). Show that its critical point equation is given
by Eq. (3.21).

3.8. Let A be a real, square, symmetric matrix with non-negative eigenvalues,
λ1,λ2, . . . ,λn. A Tikhonov regularization of matrix A, is defined by

Ak = A + kI , for k ∈]0, +∞[ .

Show that

mAk
=

1
k + λmin

,

where mA is defined in Exercise (3.4), and λmin = mini∈{1,2,...,n} λi.
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3.9. Consider the symmetric matrix

A =

(
100 98
98 100

)

,

or, more generally, let

A =

(
n n − 2

n − 2 n

)

.

(a) Compute the characteristic polynomial and find its roots (the eigenvalues of
A). Denote the eigenvalues by λ1 > λ2.

(b) Determine eigenvectors v1 and v2 corresponding to each eigenvalue.

(c) Show that the eigenvectors corresponding to different eigenvalues are
orthogonal.

(d) By dividing each eigenvector by its norm, find P such that A = PDPT where

D =

(
λ1 0
0 λ2

)

3.10. (a) Find the spectrum of

B =

(
1 1 − 2

n
1 − 2

n 1

)

.

(b) Compute v1,n, an orthonormal eigenvector associated with eigenvalue λ1, and
v2,n, an orthonormal eigenvector associated with the other eigenvalue.

(c) Let

pn(θ) = cos θ v1,n + sin θ v2,n .

Determine rn(θ) such that Brn(θ) = pn(θ).

(d) Determine

mB(pn(θ)) =
|rn(θ)|
|pn(θ)| .

(e) Sketch the graph of mB(pn(θ)), as a function of θ.

(f) Note that B = A/n, where A is the matrix of Exercise 3.9. Show that, for large
n, λ1(B) > λ2(B), satisfy

λ1(B) ≈ 2 and λ2(B) ≈ 0 ,

that is,

lim
n→+∞

λ1(B) = 2 , and lim
n→+∞

λ2(B) = 0 .
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3.11. Let Bε = B + εI, a Tikhonov regularization of matrix B from Exercise 3.10,
and redo that exercise for it.

3.12. Check the details in the proof of theorem 4.

3.13. (a) Derive Eq. (3.28).

(b) Verify the validity of Eq. (3.32).

(c) Check the details on the derivation of Eq. (3.33).

(d) Check the details on the derivation of Eq. (3.34).

(e) Verify the equivalence between Eqs. (3.35) and (3.37).

3.14. We are in debt in Eq. (3.36) since Definition 3.1 requires |b1/i|↘ 0, as i → ∞.
Show that this holds.
Hint. Let 0 < a < 1 and show that ax/(1 − ax) is a decreasing function.

3.15. Descent method for positive definite matrices. Let A be a real, symmetric,
positive definite matrix, and consider the solution of the linear system

Ax = b , (3.59)

where b ∈ Rn is given. Let

E(x) =
1
2

xT Ax − xT b .

(a) Show that

∇E = Ax − b

(b) Let x� be the solution of Eq. (3.59), Ax� = b. For any x � x�, show that

E(x) > E(x�)

Hint. Let x = x� + h and expand E(x� + h), collecting the zero order terms
in h, the first order, and the second order terms. The zero and first order terms
have simple expressions.

(c) Let R � t �→ xi − t∇E |xi∈ Rn be a line in Rn, and let l = l(t) be a function
given by

R � t �→ l(t) = E(xi − t∇E |xi) ∈ R .

Show that its minimum point, t∗i , is given by

t∗i =
(Axi − b)T (Axi − b)

(Axi − b)T A(Axi − b)
.
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(d) Define the steepest descent method by

xi+1 = xi − t∗i (Axi − b) ,

and, likewise, define the Landweber method by,

xi+1 = xi − γ(Axi − b) , (3.60)

where γ is a positive constant, γ > 0. Use the spectral theorem, the regulariza-
tion parameter α = 1/i, i ≥ 1, and mimick the development in Section 3.8, to
show that Eq. (3.60) leads to a linear regularization scheme associated with
solving Eq. (3.59).

3.16. The aim of this exercise is to derive an expression for the maximum point, γi,
Eq. (3.51), of function h = h(γ), Eq. (3.50).

(a) Write h(γ) as the quotient of two polynomials of second degree,

h(γ) =
(a1γ + a2)2

b1γ2 + b2γ + b3
, (3.61)

that is, determine appropriate constants a1, a2, b1, b2 and b3 from Eq. (3.50).

(b) Using the simplified form of h(γ) in Eq. (3.61), keeping the constants a1, a2,
b1, b2 and b3, differentiate it and write the numerator as the product of two
polynomials of degree one.

(c) Find the two critical points of h written in terms of a1, a2, b1, b2 and b3, and
next, substitute their values obtained in item (a).

(d) Show that h(γ) ≥ 0, for all γ ∈ R. Compute limγ→±∞ h(γ). Next, argue that
one of the critical points obtained is already a root of h and corresponds to its
minimum point, and the other critical point must be a maximum point.

3.17. Let εi denote the error in the i−th iteration of the conjugate gradient method,
εi = xi − x�. Recall that xi+1 = xi − βipi.

(a) From the previous equation, obtain a recursive equation for εi+1 in terms of εi.

(b) If one requires that εi+1 be A−orthogonal to pi, show that one gets an expres-
sion for βi as in Eq. (3.46).

(c) From Eq. (3.49) for pi, and assuming that pi’s are A−orthogonal, pT
i Ap j = 0

if i � j, show that

γi =
pT

i Ari

pT
i−1Api−1

.

The request of A−orthogonality can replace the minimization procedures in the
derivation of conjugate gradient method. However, one still needs to use the stated
properties in theorem 6 to simplify parameters βi and γi, as done in Section 3.10.

3.18. Use induction to prove the results stated in Theorem 6.



Chapter 4

Image Restoration

Assume we have access to a certain image obtained by means of a device that, in the
process of acquisition, causes a degradation, such as blurring. The objective of this
chapter is to show how to restore the image from the degraded image, considering
specific examples1.

In the image processing literature, the recovery of an original image of an ob-
ject is called restoration or reconstruction, depending on the situation. We shall not
discuss this distinction2.

In any case, in the nomenclature of inverse problems we are using as setforth in
Section 2.8, both of these cases, restoration or reconstruction, are suitably called
reconstruction inverse problems.

We assume here that the image is in grayscale. Every shade of gray will be rep-
resented by a real number between 0 (pure black) and 1 (pure white). The origi-
nal image is represented by a set of pixels (i, j), i = 1, . . . , L and j = 1, . . . ,M,
which are small monochromatic squares in the plane that make up the image. Each
pixel has an associated shade of grey, denoted by Ii j or I(i, j), which constitutes an
L × M matrix (or a vector of LM coordinates). A typical image can be made up
of 256 × 512 = 131 072 pixels. Analogously, we will denote by Yi j, i = 1, . . . , L,
j = 1, . . . ,M the grayscale of the blurring of the original image.

The inverse problems to be solved in this chapter deal with obtaining I, the orig-
inal image, from Y, the blurred image. These problems3 are of Type I, and, most of
them, deal with inverse reconstruction problems, as presented in Section 2.8, which,
properly translated, means that given a degraded image one wants to determine the
original image, or, more realistically, to estimate it.

4.1 Degraded Images

We shall assume that the degraded image is obtained from the original image through
a linear transformation. Let B be the transformation that maps the original image I
to its degraded counterpart Y, Y = B I, explicitly given by [27]

1 The results presented in this chapter were obtained by G. A. G. Cidade [24].
2 We just observe that reconstruction is associated with operators whose singular values are

just 0 and 1 (or some other constant value), whereas when restoration is concerned the
range of singular values is more extense. For understanding what are the consequences of
having just 0 and 1 as singular values see Section A.4.2.

3 See the classification in Table 2.3, page 48.
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Yi j =

L∑

i′=1

M∑

j′=1

Bi′ j′

i j Ii′ j′ , i = 1, . . . ,L, j = 1, . . . ,M . (4.1)

We call Eq. (4.1) the observation equation. We note that Y corresponds to the ex-
perimental data, and we call the linear operator B the blurring matrix4 or, strictly
speaking, blurring operator.

We assume that the blurring matrix has a specific structure

Bi+k j+l
i j = bkl , for − N ≤ k ≤ N and − N ≤ l ≤ N , (4.2a)

and Bmn
i j = 0, otherwise . (4.2b)

Here bkl, for −N ≤ k, l ≤ N, is called the matrix of blurring weights, This means
that blurring is equal for every position of the pixel (homogeneous blurring).

At each pixel (i, j), the blurring takes into consideration the shades of the neigh-
bouring pixels so that the domain of dependence is the square neighbourhood cen-
tered in pixel (i, j) covering N pixels to the left, right, up and down (see Fig. 4.1)
comprising (2N +1)× (2N+1) pixels whose values determine the value of the pixel
(i, j). In particular, (bkl) is a (2N+1)× (2N+1) matrix. Usually, one takes N�L,M.
Moreover, the coefficients are chosen preferably in such a way that

N∑

k=−N

N∑

l=−N

bkl = 1 , (4.3)

with bkl ≥ 0 for −N ≤ k, l ≤ N.
Figure 4.1 illustrates the action of a blurring matrix with N = 1, on the pixel

(i, j)= (7, 3). This pixel belongs to the discrete grid where the image is defined. The
square around it demarcates the domain of dependence of the shade of gray Y73, of
pixel (7,3) of the blurred image, in tones of gray of the pixels of the original image
pixels,

I62, I72, I82, I63, I73, I83, I64, I74, and I84 .

We can assume that bkl admits separation of variables, in the sense that bkl = fk fl,
for some fk, −N ≤ k ≤ N. In this case, fk ≥ 0 for all k, and Eq. (4.3) implies that

N∑

k=−N

fk = 1 . (4.4)

Here, fk can be one of the profiles shown in Fig. 4.2: (a) truncated gaussian, (b)
truncated parabolic, or (c) preferred direction. It could also be a combination of the
previous profiles or some more general weighting function.

4 Strictly speaking B = (Bi′ j′

i j ) is not a matrix. However, it defines a linear operator.



4.1 Degraded Images 87
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with N=1

i=7, j=3

Fig. 4.1 The blurring matrix with N = 1 acts on the point (i, j) = (7, 3) of the discrete grid of
the image (pixels)

With respect to the situation depicted in Fig. 4.1, one possibility is to choose
f−1 = 1/4, f0 = 1/2 and f1 = 1/4 which leads to the following matrix of blurring
weights

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−1−1 b−1 0 b−1 1

b0−1 b0 0 b0 1

b1−1 b1 0 b1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f−1

f0
f1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

( f−1 f0 f1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
16

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
2 4 2
1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.5)

Therefore, in this case, for instance,

Y73 =
1

16
(I62 + 2I72 + I82

+2I63 + 4I73 + 2I83 + I64 + 2I74 + I84) . (4.6)

This scheme cannot be taken all the way to the boundaries of the image. At a
boundary point we cannot find enough neighbour pixels to take the weighted aver-
age. we describe two possible approaches for such situations. One simple approach
here is to consider that the required pixels lying outside the image have a constant
value, for example zero or one (or some other intermediate constant value). An-
other approach is to add the weights of the pixels that lie outside of the image to the
weights of the pixels that are in the image, in a symmetric fashion. This is equivalent
to attributing the pixel outside of the image the shade of gray of its symmetric pixel
across the boundary (border) of the image.
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kf

kf

kf

k

k

a) gaussian

b) parabolic

c) preferred direction

Fig. 4.2 The blurring matrix can represent several kinds of tensorial two-dimensional convo-
lutions: gaussian, parabolic, with preferred direction, or a combination of them

For illustration purposes, say now that (7,3) is a pixel location on the right bound-
ary of the image. The positions (8,4), (8,3), (8,2) are outside the image and do not
correspond to any pixel. We let the weights 1/16, 2/16 and 1/16 of these positions to
be added to the symmetric pixels, with respect to the boundary, respectively, (6,4),
(6,3), and (6,2). The result is

Y73 =
1

16
(2I62 + 2I72 + 4I63 + 4I73 + 2I64 + 2I74) . (4.7)

4.2 Restoring Images

The inverse reconstruction problem to be considered here is to obtain the vector I
when the matrix B and the experimental data Y are known, by solving Eq. (4.1)
for I.
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We can look at this problem as a finite dimension optimization problem. First,
the norm of an image I is taken as the Euclidean norm of I thought of as a vector
in RLM ,

|I| =
⎛
⎜⎜⎜⎜⎜⎜⎝

L∑

i=1

M∑

j=1

I2
i j

⎞
⎟⎟⎟⎟⎟⎟⎠

1
2

,

not the norm in the set of L×M matrices, as defined in Eq. (A5). Next, consider the
discrepancy (or residual) vector Y − B I, and the functional obtained from its norm

R(I) =
1
2
|Y − B I|2 , (4.8)

to which we add a Tikhonov’s regularization term, [81, 26, 27, 70, 86] getting

Q(I) =
1
2
|Y − B I|2 + αS (I)

=
1
2

L∑

i=1

M∑

j=1

⎛
⎜⎜⎜⎜⎜⎝Yi j −

N∑

k=−N

N∑

l=−N

bklIi+k, j+l

⎞
⎟⎟⎟⎟⎟⎠

2

+ αS (I) , (4.9)

where S is the regularization term5 and α is the regularization parameter, with
α > 0. Here, B and Y are given by the problem. Finally, the inverse problem is
formulated as finding the minimum point of Q.

Several regularization terms can be used, and common terms are6 [25, 26, 16]:

Norm S (I) =
1
2
|I − Ī|2 = 1

2

L∑

i=1

M∑

j=1

(
Ii j − Īi j

)2
(4.10a)

Entropy S (I) = −
L∑

i=1

M∑

j=1

(

Ii j − Īi j − Ii j ln
Ii j

Īi j

)

(4.10b)

In both cases, Ī is a reference value (an image as close as possible to the image that
is to be restored), known a priori.

The notion of regularization and its properties are discussed in Chapter 3. The
concept of reference value is introduced in Section 3.4, page 60 and the advantage
of its use is explained in Section 3.6, page 63.

5 To improve readability we insert a comma (,) between the subscripts of I whenever ade-
quate: Ii+k, j+l.

6 Some regularization terms can be interpreted as Bregman’s divergences or distances
[14, 81, 25, 42]. The use of Bregman’s divergences as regularization terms in Tikhonov’s
functional was proposed by N. C. Roberty [27], from the Universidade Federal do Rio
de Janeiro. Bregman’s distance was introduced in [14] and it is not a metric in the usual
sense. Exercise A.14 recalls the notion of metric spaces, while Exercise A.35 presents the
definition of Bregman’s divergences. Some other exercises in Appendix A elucidate the
concept of Bregman’s divergence.
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In the case now under consideration, image restoration, the reference value can
be the given blurred image Ī = Y, or a gray image (i.e., with everywhere constant
intensity),

Īi j = c , for i = 1, . . . , L j = 1, . . . ,M ,

where c is a constant that can be chosen equal to the mean value of the intensities of
the blurred image,

c =
1

LM

⎛
⎜⎜⎜⎜⎜⎜⎝

L∑

i=1

M∑

j=1

Yi j

⎞
⎟⎟⎟⎟⎟⎟⎠ .

4.3 Restoration Algorithm

Image restoration can be carried out by Tikhonov’s method, with the regularization
term given by the entropy functional, Eq. (4.10b). The regularized problem corre-
sponds to the minimum point equation of the functional Q, and is a variant of the
one analyzed in Chapter 3. The entropy functional chosen here renders the regular-
ization as non-linear, differing from the one treated in the referred chapter.

Substituting the expression of S (I) given in the right hand side of Eq. (4.10b) in
Eq. (4.9), we obtain

Q(I) =
1
2

L∑

i=1

M∑

j=1

⎛
⎜⎜⎜⎜⎜⎝Yi j −

N∑

k=−N

N∑

l=−N

bklIi+k, j+l

⎞
⎟⎟⎟⎟⎟⎠

2

−α
L∑

i=1

M∑

j=1

(

Ii j − Īi j − Ii j ln
Ii j

Īi j

)

. (4.11)

To minimize this functional, the critical point equation is used

∂Q
∂Irs
= 0 for all r = 1, . . . , L, s = 1, . . . ,M . (4.12)

This is a non-linear system of LM equations and LM unknowns, Ii j, i=1, . . . , L, j=
1, . . . ,M. For notational convenience, let Frs=∂Q/∂Irs, and F the function

RLM �I �→F(I)∈RLM , (4.13)

where, from Eq. (4.11), its (r, s)-th function7 is given by Frs,

Frs = −
L∑

i=1

M∑

j=1

⎛
⎜⎜⎜⎜⎜⎝Yi j −

N∑

k=−N

N∑

l=−N

bklIi+k, j+l

⎞
⎟⎟⎟⎟⎟⎠ br−i,s− j + α ln

Irs

Īrs
. (4.14)

7 When computing Frs , we use that

∂Ii j/∂Irs = δirδ js and
N∑

k=−N

N∑

l=−N

bkl∂Ii+k, j+l/∂Irs = br−i,s− j .
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Using this notation, the system of non-linear critical point equations of Q, Eq.
(4.12), becomes

F(I) = 0 . (4.15)

Therefore, the inverse problem is reduced to solving Eq. (4.15). We will show how
this non-linear system can be solved by the Newton’s method.

4.3.1 Solution of a System of Non-linear Equations Using
Newton’s Method

Consider a system of equations like the one in Eq. (4.15). Newton’s method is it-
erative and, under certain circumstances, converges to the solution. We sketch its
derivation.

An initial estimate of the solution is needed: Io. Then, Ip+1 is defined from Ip,
with p = 0, 1, . . . , using a linearization of Eq. (4.15) by means of a Taylor’s series
expansion of function F around Ip.

Due to the Taylor’s formula8 of F, we have

F(Ĩ) = F(Ip) +
L∑

m=1

M∑

n=1

∂F
∂Imn

∣∣
∣
∣∣
∣
∣
Ip

(
Ĩmn − Ip

mn

)

+ O
(
|Ĩ − Ip|2

)
, as Ĩ → Ip . (4.16)

Here, we should be careful with the dimensions of the mathematical objects. As
stated in Eq. (4.13), F, evaluated at any point, is an element of RLM , i.e., the left
side of Eq. (4.16) has LM elements. This also holds for every term ∂F/∂Imn, for all
m = 1, . . . , L, n = 1, . . . ,M.

For Newton’s method, Ip+1 is defined by keeping only up to the first order term
of Taylor’s expansion of F, right side of Eq. (4.16), setting the left side equal to zero
(we are iteratively looking for a solution of equation F = 0), and substituting Ĩ by
Ip+1. Thus, Newton’s method for solution of Eq. (4.15) is

0 = F(Ip) +
L∑

m=1

M∑

n=1

∂F
∂Imn

∣∣
∣
∣
∣∣
∣
Ip

(
Ip+1
mn − Ip

mn

)
. (4.17)

To determine Ip+1, we assume that Ip is known. Therefore, we see that Eq. (4.17)
is a system of linear equations for Ip+1. This system has LM equations and LM
unknowns, Ip+1

mn , where m = 1, . . . , L, n = 1, . . . ,M.
Newton’s method can be conveniently written in algorithmic form as below. Let

the vector of corrections

ΔIp = Ip+1 − Ip ,

with entries (ΔIp)m,n, m = 1, . . . ,L, j = 1, . . . ,M. Choose an arbitrary tolerance
(threshold) ε > 0.

8 Taylor’s formula is recalled in Section A.5.
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1. Initialization
Choose an initial estimate9 I0.

2. Computation of the increment
For p = 0, 1, . . ., determine ΔIp = (ΔIp)mn ∈ RM2

such that10

L∑

m=1

M∑

n=1

∂F
∂Imn

∣
∣
∣
∣∣
∣
∣
Ip

ΔIp
mn = −F(Ip) . (4.18a)

3. Computation of a new approximation
Compute11

Ip+1 = Ip + ΔIp . (4.18b)

4. Use of the stopping criterion
Compute |ΔIp|= |Ip+1−Ip|. Stop if |ΔIp|<ε. Otherwise, let p= p+1 and go to
step 2.

4.3.2 Modified Newton’s Method with Gain Factor

Newton’s method, as presented in Eq. (4.18), does not always converge. It is conve-
nient to introduce a modification by means of a gain factor γ, changing Eq. (4.18b)
and substituting it by

Ip+1 = Ip + γΔIp , (4.19)

that will lead to the convergence of the method to the solution of Eq. (4.15) in a
wider range of cases, if the gain factor γ is adequately chosen.

4.3.3 Stopping Criterion

The iterative computations, by means of the modified Newton’s method, defined by
Eqs. (4.18a) and (4.19), is interrupted when at least one of the following conditions
is satisfied

|ΔIp| < ε1, |S (Ip+1) − S (Ip)| < ε2 or |Q(Ip+1) − Q(Ip)| < ε3 , (4.20)

where ε1, ε2 and ε3 are values sufficiently small, chosen a priori.

9 For the problems we are aiming at, the initial estimate, I0, can be, for example, Ī, i.e., the
blurred image, or a totally gray image.

10 Compare with Eq. (4.17).
11 Given Ip, by choosing ΔIp and Ip+1 as in Eq. (4.18), it follows that Ip+1 satisfies Eq. (4.17).
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4.3.4 Regularization Strategy

As mentioned in Chapter 3, the regularized problem differs from the original prob-
lem. It is only in the limit (as the regularization parameter approaches zero) that the
solution of the regularized problem approaches the solution of the original problem,
in special circumstances determined by a specific mathematical analysis. On the
other hand, as was also mentioned in the same chapter, in practice the regularization
parameter should not always approach zero, since, in the inevitable presence of mea-
surement noise, the errors in the solution of the inverse problem can be minimized
by correctly choosing the value of the regularization parameter. Thus, it is neces-
sary to find the best regularization parameter, α∗, which lets the original problem
be minimally altered, and yet, that the solution remains stable. The regularization
presented here is non-linear, in contrast with that defined in Section 3.3.

It is possible to develop algorithms to determine the best regularization param-
eter, [84, 85]. However, they are computationally costly. A natural approach is to
perform numerical experiments with the restoration algorithm, to determine a good
approximation for the optimal regularization parameter.

4.3.5 Solving Sparse Linear Systems Using the
Gauss-Seidel Method

We now present an iterative method suitable for solving the system of equations
(4.18a).

From Eq. (4.14), we obtain

Crs
mn =

∂Frs

∂Imn
=

N∑

k=−N

N∑

l=−N

bklbr−m+k,s−n+l +
α

Irs
δrmδsn , (4.21)

for r,m = 1, 2, . . . , L and s, n = 1, 2, . . . ,M. Here, we also use the equations that can
be found in the footnote on page 90.

The linear system of equations given by Eqs. (4.18a) and (4.21) is banded,12 the
length of it (distance from the non-zero elements to the diagonal) varying with the
order of the blurring matrix represented in Eqs. (4.1) and (4.2). The diagonal of
fourth order tensor C is given by the elements Crs

mn, of C, such that r = m and s = n,
i.e., by elements Cmn

mn. For some types of blurring operator, it is guaranteed that the
diagonal is dominant for the matrix C of the linear system of Eq. (4.18a).

Due to the large number of unknowns to be computed (for example, if LM =

256× 512), and the features of matrix C, that we just described, an iterative method

12 Every point of the image is related only to its neighbours, within the reach of the blurring
matrix.
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is better suited to solve the system of Eq. (4.18a), and we choose the Gauss-Seidel
method.13

Putting aside the term of the diagonal in Eq. (4.18a), we obtain the correction
term of a Gauss-Seidel iteration,

ΔIp,q+1
rs = − 1

(∂Frs/∂Irs)|Ip,q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Frs|Ip,q +

L∑

m=1
m�r

M∑

n=1
n�s

∂Frs

∂Imn

∣
∣
∣∣
∣
Ip,q
ΔIp,q̃

mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.23)

Here q is the iteration counter of the Gauss-Seidel method and q̃ can be q or q + 1.
This is so because, depending on the form the elements of ΔIp,q are stored in the
vector of unknowns ΔI, for every unknown of the system, characterized by specific
r, s, it will use the previous value of the unknowns (i.e., the value computed in the
previous iteration, ΔIp,q) in some (m,n) positions, or the present values ΔIp,q+1, in
other (m,n) positions, computed in the current iteration, q + 1.

For this problem, we can set the initial estimate to zero, ΔIp,0 = 0.

4.3.6 Restoration Methodology

We summarize here the methodology adopted throughout this chapter:

1. Original problem. Determine vector I that solves the equation
BI = Y;

13 We recall here the Gauss-Seidel method, [35]. Consider the system

Ax = b . (4.22)

Let D be the diagonal matrix whose elements in the diagonal coincide with the diagonal
entries of A. Let L and U denote, respectively, the lower and upper-triangular matrices,
formed by the elements of A. Then,

A = L + D + U ,

and the system can be rewritten as

(L + D)x = −Ux + b .

Denoting by xq the q-th iteration (approximation of the solution), the Gauss-Seidel method
is: given x0 = x0, arbitrarily chosen, let

(L + D)xq+1 = −Uxq + b ,

for q = 0,1,2 . . ., until convergence is reached. Using index notation, we have

xq+1
i = a−1

ii

⎧
⎪⎪⎨
⎪⎪⎩

bi −
⎛
⎜⎜⎜⎜⎜⎜⎝

∑

j<i

ai j x
q+1
j +

∑

j>i

ai j x
q
j

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎬
⎪⎪⎭
.

It is expected that limq→+∞ xq = x, where x denotes the solution of Eq. (4.22). This can be
guaranteed under special circumstances.
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2. Alternative formulation. Minimize the function
R(I) = 1

2 |Y − BI|2;

3. Regularized problem. Minimize the function
Q(I) = R(I) + αS (I);

4. Critical point. Determine the critical point equation
∇Q(I) = 0;

5. Critical point equation solution. use modified Newton’s method, to solve the
non-linear critical point system of equations;

6. Linear system solution. use Gauss-Seidel method to solve the linear system
of equations which appears in Newton’s method

C(Ip+1 − Ip) = −F(Ip), where C is from Eq. (4.21).

In the following sections, we will present three examples of the application of this
methodology to the restoration of a photograph, a text and a biological image.

4.4 Photo Restoration

In Fig. 4.3b, it is shown the blurring of the original 256 × 256 pixels image, pre-
sented in Fig. 4.3a, due to a blurring matrix consisting on a Gaussian weight, with a
dependence domain of 3 × 3 points, that is, bkl satisfies Eq. (4.3) and

bkl ∝ exp

⎛
⎜⎜⎜⎜⎝−

r2
k + r2

l

2σ2

⎞
⎟⎟⎟⎟⎠ , (4.24)

where σ is related14 to the bandwidth and rk = |k|.
The space of shades of gray, [0,1], is discretized and coded with 256 integer

values, between 0 and 255, where 0 corresponds to black and 255 to white15. The
histograms in Fig. 4.3, present the frequency distribution of occurrence of every
(discrete) shade in the image. For example, if in 143 (horizontal axis) the frequency
is 1003 (vertical axis), it means that there are 1003 pixels in the image with shade
143.

Figure 4.3c exhibits the photograph’s restoration, done without regularization,
stopped in the 200-th iteration of the Newton’s method, and in Fig. 4.3d the regular-
ized restoration (α=0.06).

The histogram of the image restored with regularization is, qualitatively, the one
closer to the histogram of the original image. This corroborates the evident improve-
ment in the image restored with regularization.

The behaviour of functionals Q, R and S defined in Eqs. (4.8)–(4.10) is recorded
in Fig. 4.4. The minimization of functional Q is related to the maximization of the
entropy functional, S.

14 The symbol ∝ means that the quantities are proportional, that is, if a ∝ b, then there is a
constant c such that a = cb.

15 The discretization of the shade space is known as quantization.
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Fig. 4.3 Restoration of an artificially modified image, from a Gaussian with 3×3 points and
σ2=1. Images are on the left and their shade of gray histograms are on the right. (a) original
image; (b) blurred image. (Author: G. A. G. Cidade from the Universidade Federal do Rio de
Janeiro).
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Fig. 4.3 (Cont.) Restoration of an artificially modified image, from a Gaussian with 3×3
points and σ2 = 1. (c) restored image without regularization (α = 0, γ = 0.1); (d) restored
image with regularization (α=0.06, γ=0.1). (Author: G. A. G. Cidade).
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iterations iterations

iterations iterations

Fig. 4.4 Behaviour of the functionals Q, S and R during the iterative process. (a) α = 0 and
γ= 0.3; (b) α= 0 and γ= 0.1; (c) α= 0.06 and γ= 0.1; (d) α= 0.06 and γ= 0.05. (Author: G.
A. G. Cidade).
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When the regularization parameter is not present, α = 0, it is observed that
the proposed algorithm diverges, even when one uses a gain factor in the correc-
tions of the intensity in Newton’s iterative procedure, Eq. (4.19), as can be seen in
Figs. 4.4a,b.

Figures 4.4c,d show the convergence of the algorithm, that naturally is achieved
faster for the largest gain factor, γ=0.1. In this case, approximately 20 iterations are
needed. On the other hand, 40 iterations will be necessary if γ=0.05. Functional R,
shown in these figures, corresponds to half the square of the norm of the residuals,
defined as the difference between original blurred image, Y, and restored blurred
image, BI, given by

R(I) =
1
2
|Y − BI|2 .

4.5 Text Restoration

Figures 4.5a and b present an original text (256 × 256 pixels) and the result of its
blurring by means of a Gaussian blurring matrix with 5 × 5 points and σ2 = 10.

Text restoration is shown in Fig. 4.5c. There are border effects, that is, structures
along the border that are not present neither in the original text nor in the blurred
image. These occur due to inadequate treatment of pixels near the border (boundary)
of the image. This effect can be minimized by considering reflexive conditions at the
borders, or simply by considering null the intensity of elements outside the image.
See Exercises 4.2, 4.4.

A simple text has, essentially, but two shades: black and white. This is reflected
by the histograms of the original and restored texts (Fig. 4.5). However, the blurred
text exhibits gray pixels, as shown by its histogram Fig. 4.5b. Notice that the original
and restored texts can be easily read, unlike the blurred text.

4.6 Biological Image Restoration

In this section we consider a biological image restoration, which consists of an ex-
ample of an inverse problem involving a combination of identification and recon-
struction problems (problems P2 and P3, Section 2.8).

Results of applying the methodology described in this chapter to a real biolog-
ical image of 600 nm × 600 nm are presented in Fig. 4.6. The image represents an
erythroblast being formed, under a leukemic pathology. This image has been ac-
quired by means of an atomic force microscope at the Institute of Biophysics Carlos
Chagas Filho, of the Universidade Federal do Rio de Janeiro [25].

In the inverse problem presented here, the original image, I, is being restored to-
gether with the choice of the blurring operator given by matrix B. This is an ill-posed
problem to determine I, since neither the blurring matrix B is known, in contrast with
the problems treated in the previous sections, nor the original image is known.
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Fig. 4.5 Restoration of a text blurred by means of a Gaussian. (a) original text; (b) blurred
text; (c) restored text with regularization parameter α= 0.2, and gain factor γ= 0.1. (Author:
G. A. G. Cidade).
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Fig. 4.6 Restorarion of an image obtained by means of an atomic force microscope, together
with the blurring matrix identification . (a) original image; (b) restored image with α= 0.03,
γ = 0.2, Gaussian with 9×9 points and σ2=10; (c) restored image with α = 0.03, γ = 0.2,
and Gaussians with 15×15 points and σ2 = 20, 40 and 60. (Author: G. A. G. Cidade. Images
acquired with an Atomic Force Microscope at the Instituto de Biofísica Carlos Chagas Filho
of the Universidade Federal do Rio de Janeiro.)
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If we knew the original image, or if we knew several images and their blurred
counterparts, we could adapt the methodology employed to solve the model problem
considered in Chapter 1 to identify the blurring matrix.

In the absence of a more quantitative criterion, the blurring matrix identifica-
tion is performed qualitatively, taking into consideration the perception of medical
specialists, in relation to the best informative content, due to different restorations,
obtained from assumed blurring matrices.

To find the blurring matrix in a less conjectural way, one can use Gaussian to-
pographies (see Fig. 4.6) to represent, as much as possible, the geometric aspect of
the tip of the microscope, which is the main cause for the degradation that the image
undergoes. In other words, we assume that the class of blurring operators is known,
i.e., we characterize the model, being the specific model identified simultaneously
with the restoration of the image.

We used blurring matrices of 9 × 9, 15 × 15 and 21 × 21 points, with different
values for σ2: 10, 20, 40 and 60.

From Fig. 4.6, it can be concluded that we gain more information with Gaussian
topographies of 15 × 15 than with those of 9 × 9. For the tests with 21 × 21 points
the results were not substantially better.

Figure 4.6c, resulting from the procedure, is considerably better than the blurred
image. As in the previous section, the border effects here present are also due to
inadequately considering the outside neighbour elements of the border of the image.

Exercises

4.1. Show that Eq. (4.4) is valid.

4.2. Assume that pixel (7,3) is located at the upper right corner of the image. Fol-
lowing the deduction of Eq. (4.7), and assuming symmetry, show that we should
take

Y73 =
1

16
(4I62 + 4I72 + 4I63 + 4I73) =

1
4

(I62 + I72 + I63 + I73) .

4.3. Consider a 3 × 3 blurring weight matrix16

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−1−1 b−1 0 b−1 1

b0−1 b0 0 b0 1

b1−1 b1 0 b1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let I be an image and Y its blurred counterpart. Assume we use symmetric condi-
tions on the boundary. Work out explicit formulae for the blurred image Y tone of
grays, Yi j, if

(a) pixel (i, j) is in the interior of the image;

16 Working with indices is sometimes very cumbersome. Several of the following exercises
proposes practicing a little ‘indices mechanics’...
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(b) pixel (i, j) is in the image’s lower boundary;

(c) pixel (i, j) is in the image’s lower left corner.

4.4. Do a similar problem as Exercise (4.3), however, instead of using a symmetric
condition at boundaries and corners, assume that outside the image, pixels have a
uniform value, denoted by Iext .

4.5. Given two pixels (i, j) and (i′, j′), we define their distance by

d
(
(i, j), (i′, j′)

)
= max{|i − i′|, | j − j′|} ,

where max of a finite set of real numbers denotes the largest one in the set.

(a) Give explicitly the pixels that comprise the circle centered at (i, j) and radius
1,

C(i, j)(1) =
{
(i′, j′) | d

(
(i, j), (i′, j′)

)
= 1

}
.

(b) Determine the disk B(i, j)(2), centered at (i, j) and radius 2,

B(i, j)(2) =
{
(i′, j′) | d

(
(i, j), (i′, j′)

)
≤ 2

}
.

(c) Sketch the sets C(i, j)(1) and B(i, j)(2).

(d) Give, in the same way, the circle with center (i, j) and radius N.

4.6. (a) Let

P =
{
(i′, j′), i′, j′ = 1, . . . ,M

}
= {i, i = 1, . . . ,M}2 ,

be the set of pixels of a square image. Given a set of pixels S ⊂ P, define the
distance of pixel (i, j) to set S by

d ((i, j),S) = min
{
d

(
(i, j), (i′, j′)

)
, (i′, j′) ∈ S

}
,

where min of a finite set of real numbers denotes the smallest one in the set.
The right boundary of the image is

R =
{
(i′, j′) ∈ P, | i′ = M

}
=

{
(M, j′), j′ = 1, . . . ,M

}
.

Determine d ((i, j),R).

(b) Likewise, define respectively, L, the left, U, the top, and D, the bottom image
boundaries, and compute d ((i, j),L), d ((i, j),U), and d ((i, j),D).

(c) The boundary of the image is defined by B = L ∪ T ∪ R ∪ D. Compute
d ((i, j),B).
Hint. Use functions max and/or min to express your answer.
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4.7. Assume that B is a blurring operator with form given by Eq. (4.2).

(a) Let (i, j) be a fixed interior pixel (not on the boundary of the image), and at a
distance at least N from the boundary of the image. In particular, B(i, j)(N) ⊂
P. Show that

Yi j =

N∑

k=−N

N∑

l=−N

bklIi+k, j+l . (4.25)

Hint. Change, for instance, the index of summation i′, by k, with i′ = i+ k, in
Eq. (4.1), that is ‘center’ the summation around i.

(b) The structure of the blurring operator cannot be taken all the way to the
boundary of the image. This is why in (a), the pixel (i, j) is restricted to the
pixels of distance N or more from the boundary. Verify this. If (i, j) has dis-
tance less than N, we cannot compute Yi j using Eq. (4.25).

4.8. Given a blurring operator B, as in Eq. (4.1), define the domain of dependence
of pixel (i, j) as the set of pixels of the image I that contribute to the value of the
pixel in the blurred image, Yi j, that is,

D(i, j) =
{
(i′, j′) such that Bi′ j′

i j � 0
}
.

Assume that the blurring operator B has the structure specified in Eq. (4.2). Deter-
mine for which pixels (i, j) ∈ P, one has

D(i, j) = B(i, j)(N) .

4.9. The blurring operator B has the structure presented in Eq. (4.2). Let β be the
(2N + 1) × (2N + 1) matrix given by

β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−N,−N · · · · · · · · · b−N,N
...

. . .
...

...
b0,−N b0,0 b0,N
...

...
. . .

...
bN,−N · · · · · · · · · bN,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(a) Give an expression for the entries of β, βi′ j′ , in terms of bkl. That is, determine
k(i′) and l( j′) such that

βi′ j′ = bk(i′)bl( j′), for i′, j′ = 1, . . . , 2N + 1 .

(b) For pixel (i, j), define the (2N + 1) × (2N + 1) matrix I = I(i, j), given by

I = I(i, j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ii−N, j−N · · · Ii−N, j · · · Ii−N, j+N
...

. . .
...

...
Ii, j−N Ii, j Ii, j+N
...

...
. . .

...
Ii+N, j−N · · · Ii+N, j · · · Ii+N, j+N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.26)
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Give an expression for the entries of I = I(i, j), I(i, j)
i′ , j′ , in terms of the entries

Ikl of the image I, similar to what was done in (a).

4.10. (a) Given m × n matrices, A and B, define the following pointwise matrix
product, giving rise to a m × n matrix, C = A : B where Ci j = Ai j · Bi j.
Compute β : I, where β is defined in Exercise 4.9, and I is an image.

(b) Compute the pointwise matrix product, β̃ : I(7,3), between matrix given by
Eq. (4.5), denoted here by β̃, and I(7,3), defined in Eq. (4.26), when N = 1,
and (i, j) = (7,3).

(c) Let S (A) be the sum of all elements of matrix A,

S (A) =
m∑

i=1

n∑

j=1

Ai, j .

Compute S (β̃ : I(7,3)) and compare with Eq. (4.6).

(d) Show that Eq. (4.25) can be written as

Yi j = S
(
β̃ : I(i, j

)
.

4.11. The entropy regularization, Eq. (4.10b), makes use of the function s(x) =
x0 − x + x ln x

x0
, with x0 = Īi j and x = Ii j. Take, for concreteness, x0 = 1/2.

(a) Compute and sketch s′.

(b) Compute and sketch s′′. Show that s′′(x) > 0 for all x. Conclude that s is
strictly convex17.

(c) Sketch s.

4.12. Let f = ( fp) be a vector in Rn with entries fp, and m a constant in R. Consider
Csiszár measure, [42],

Θq =
1

1 + q

∑

p

fp
f q
p − mq

q
, (4.27)

and Bregman divergence, [14],

BΘq

(
f , f

)
= Θq( f ) − Θq( f ) − 〈∇Θq( f ), f − f 〉 .

(a) Show that θq(x) = x xq−mq

q , is strictly convex.

(b) Show that the family of Bregman divergence, parametrized by q, is

BΘq =
1

q + 1

∑

p

⎡
⎢⎢⎢⎢⎢⎢⎣ fp

f q
p − f

q
p

q
− f

q
p( fp − f p)

⎤
⎥⎥⎥⎥⎥⎥⎦ .

17 The concept of convexity of functions is recalled in Exercise A.34, page 216.
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(c) Derive the following family of regularization terms, parametrized by q

S (I) = BΘq (I,Ī)

=

L∑

i=1

M∑

j=1

⎡
⎢⎢⎢⎢⎢⎣I

q
i j

Iq
i j − Īq

i j

q
− Īq

i j(Ii j − Īi j)

⎤
⎥⎥⎥⎥⎥⎦ . (4.28)

Here, each value of q yields different regularization terms such as the ones
defined in Eq. (4.10). These regularization terms may be used in the last term
of Eq. (4.9), [27].
Hint. Define fp = Ii j as the estimated value of the shade of gray for the image
at the pixel (i, j), and Īi j its corresponding reference value. Observe that the
term mq in Eq. (4.27) cancels out in the derivation steps of Eq. (4.28).

(b) Setting q = 1, derive Eq. (4.10a), from the family of regularization terms
given by Eq. (4.28).

(c) Considering the limit q → 0, in Eq. (4.28), check that

lim
q→0

BΘq(I,I) = S (I) ,

where S (I) is given by Eq. (4.10b).
Hint. Recall that limq→0 (xq − 1)/q = ln x.

4.13. Use the same notation as in Exercise 4.12.

(a) Show that θq(x) = xq−mq

q , when q > 1, and θq(x) = − xq−mq

q , when 0 < q < 1,
are strictly convex functions.

(b) Show that the family of Bregman divergence, parametrized by q, is

BΘq =
∑

p

⎡
⎢⎢⎢⎢⎢⎢⎣

f q
p − f

q
p

q
− f

q−1
p ( fp − f p)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

when q > 1, and determine the corresponding expression when 0 < q < 1.

(c) Derive the following family of regularization terms, parametrized by q

S (I) = BΘq(I,Ī)

=

L∑

i=1

M∑

j=1

⎡
⎢⎢⎢⎢⎢⎣

Iq
i j − Īq

i j

q
− Īq−1

i j (Ii j − Īi j)

⎫
⎪⎪⎬
⎪⎪⎭
. (4.29)

when q > 1. Derive also the expression when 0 < q < 1.

(b) Setting q = 2, derive Eq. (4.10a), from the family of regularization terms
given by Eq. (4.29).
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(c) Considering the limit q → 0, in Eq. (4.29), check the relation between

lim
q→0

BΘq (I,I) ,

and S (I) given by Eq. (4.10b).

4.14. (a) Derive Eq. (4.14), from Eq. (4.11).

(b) Derive Eq. (4.21), from Eq. (4.14).

4.15. (a) Show that for a general value q > 0, Eq. (4.14) is written as

Frs = −
M∑

i=1

M∑

j=1

⎛
⎜⎜⎜⎜⎜⎝Yi j −

N∑

k=−N

N∑

l=−N

bklIi+k, j+l

⎞
⎟⎟⎟⎟⎟⎠ br−i,s− j

+
α

q

(
Iq
rs − Īq

rs

)
. (4.30)

(b) Considering the limit q → 0, derive Eq. (4.14) from Eq. (4.30).

4.16. Show that for a general value q > 0 Eq. (4.21) is written as

Crs
mn =

∂Frs

∂Imn
=

N∑

k=−N

N∑

l=−N

bklbr−m+k,s−n+l + αIq−1
rs δrmδsn .

4.17. Equation (4.24) states a proportionality that bkl has to satisfy.

(a) Let c denote the constant of proportionality for a 3× 3 blurring matrix. Deter-
mine it.

(b) Show that bkl in Eq. (4.24) admits a separation of variables structure.

(c) Let c denote the constant of proportionality for a N×N blurring matrix. Obtain
an expression for it.



Chapter 5

Radiative Transfer and Heat Conduction

We show in this chapter how to estimate the value of several material properties,
such as single scattering albedo and thermal conductivity, present in the heating
process of a material with thermal radiation.

The inverse problems considered here deal with the estimation of a finite num-
ber of parameters, related to an infinite dimensional model. These problems are
solved as finite dimensional optimization problems, using the Levenberg-Marquadt
method, which is a variant of Newton’s method for non-linear systems of equations.
In an intermediary step, this method includes a regularization, similar to Tikhonov’s
regularization (Section 3.4).

This chapter deals with inverse identification problems. According to Table 2.3,
page 48, they are classified as Type III inverse problems.

5.1 Mathematical Description

Consider the example depicted in Fig. 5.1, of a material body subjected to heating
due to thermal radiation. Assume we can regulate the intensity and the position of
the heat sources and that we perform temperature measurements in some material
body points, using temperature sensors1.

W W1 2 3W

x

X1

X2
X3

W

Z - material properties

W=I(Z,X)

heated
body

temperature
sensors

Fig. 5.1 Schematic representation of a participating medium (absorbent, emittant, and scat-
terer) being subject to radiation originated in external sources. Here Z represents material
properties, X intensity of external sources of radiation and W = I(Z,X) measurements of
temperature at several positions within the material body.

1 In this example the measurements involve only temperature. Notwithstanding, problems
involving thermal radiation measurements are discussed within this chapter, as well.
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We denote by W a vector representing the output of this physical system, given
by the resulting set of temperature measurements, comprising measurements in sev-
eral specific points. By X we denote values representing levels and types of the
regulation of the system (external sinks or sources), i.e. systems input, and by Z the
physical/material properties of the body which influence the system’s output.

The question is: given temperature measurements, W, and knowing the value of
the regulation, X, obtain an estimate, Z, of the physical properties values.

In a general way, consider the question of obtaining an estimate, Z, for some con-
stants, present in a mathematical model for a physical system’s output. This output is
represented by a physical magnitude, W, obtained from experimental measurements
of the real output of the physical system.

The hypotheses used throughout this chapter are

Z = (Z1, . . . , ZN)T ∈ RN , W = (W1, . . . ,WM)T ∈ RM ,

and X can be an element of RK , or even a function. We represent the dependence of
W in Z and X in a functional form by W = I(Z,X).

The dependence of I = (I1, . . . , IM)T on Z can be explicit —as was the case
considered in Chapter 1, when the relationship between the system inputs, x, and
the system outputs, y, was given by a linear function, R3 � x �→ Ax ∈ R3,— or
implicit, if W and Z satisfy a given, possibly non-linear, system of equations, which
would be written as

G(W,Z,X) = 0 ,

for some known function G : RM ×RN ×RK → RM .
Another possibility is when Z is a parameter of a differential or integro-differential

equation, and W represents some observation of its solution (such as the value of
the solution in some points of the domain, or an average of the solution for some
part of the domain) [68, 81]. In this case, X can be the value of an initial or boundary
condition, or a source. Unless we can find the solution explicitly, we would say that
I is given implicitly (as the solution of the appropriate equation).

In the first two cases the inverse problem is of Type I, while in the last one the in-
verse problem is of Type III, in accordance with the classification given in Table 2.3,
page 48. This is the type with which we will deal in this chapter.

More generally, the relation between W, Z and X implies a relation of cause-
effect (stimulus-reaction), linear or non-linear, that can be explicit or implicit. Here
I represents the solution operator—the abstract object that explicitly renders W
as a function of Z and X. In practice, I may be impossible to obtain explicitly.
Sometimes its existence, or even its uniqueness and smooth dependence on data, can
be abstractly proven. That information may be insufficient for application purposes,
and must be complemented by some numerical solution. Fortunately, the qualitative
theoretical results can bring to light behaviour and properties of the algorithm for
numerical solution.
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Given material properties Z and parameters X the i-th predicted output of the
system is Ii(Z,X). This is compared with the effectively measured quantity (experi-
mental data), Wi, defining the residual,

Ri = Ri(Z,X) = Ii(Z,X) − Wi . (5.1)

Here, Z = (Z1, . . . ,ZN )T ∈ RN is the vector of unknowns of the problem.
The inverse problem is solved as an optimization problem, on a space of finite

dimension, in which we pursue the minimization of the functional representing half
the sum of the squared residuals,

Q = Q(Z) =
1
2
|R|2 = 1

2
RT R =

1
2
|I(Z) − W|2

=
1
2

M∑

i=1

[Ii(Z) − Wi])2 , (5.2)

where R = (R1, . . . ,RM)T ∈ RM represents the residual between computed mag-
nitudes I and measurements (experimental data) W, and M is the total number of
experimental data available.

This formulation is similar to the minimization problems presented in Sections 2.6
and 3.4, and is an instance of the least squares method.

5.2 Modified Newton’s Method

The functional given by Eq. (5.2), is minimized by finding its critical point,∇Q = 0,
that is,

∂Q
∂Zk
= 0 for k = 1, 2, . . . ,N , (5.3)

which constitutes a system of N non-linear equations and N unknowns, Z = (Z1, . . . ,
ZN). From Eqs. (5.1) to (5.3), the critical point equation is rewritten as

M∑

i=1

Ri
∂Ii

∂Zk
= 0 for k = 1, 2, . . . ,N . (5.4)

We solve Eq. (5.4) by means of a modified Newton’s method, that can be deduced
as follows. Using a Taylor’s expansion of R around Zn, where n will be the index
of the iterations in the iterative procedure, and keeping only the zero and first order
terms, we have

Rn+1
i = Rn

i +

N∑

j=1

∂Rn
i

∂Z j
ΔZn

j , for i = 1, 2, . . . ,M . (5.5)

Here, Rn represents the evaluation of R in Zn,

Rn = R(Zn) = I(Zn) −W , (5.6)
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and,

ΔZn = Zn+1 − Zn ,

or, in coordinates, Rn
i =Ri(Zn) and ΔZn

j =Zn+1
j −Zn

j .
Using Eq. (5.5) in the system of equations (5.4), and noticing that ∂Ri/∂Z j =

∂Ii/∂Z j, we obtain,

M∑

i=1

⎛
⎜⎜⎜⎜⎜⎜⎝Rn

i +

N∑

j=1

∂Ii

∂Z j

∣
∣
∣∣
∣
∣
Z=Zn

ΔZn
j

⎞
⎟⎟⎟⎟⎟⎟⎠
∂Ii

∂Zk

∣
∣
∣
∣∣
Z=Zn
= 0 , (5.7)

for k = 1, 2, . . . ,N.
We look at I as a function of Z only, making X constant. By definition, the Jaco-

bian matrix of I with respect to Z, J=JI|Z , has entries

Ji j=∂Ii/∂Z j ,

for i=1, . . . ,M, and j = 1, . . . ,N, that is,

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂I1
∂Z1

· · · ∂I1
∂ZN

...
. . .

...
∂IM
∂Z1

· · · ∂IM
∂ZN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The system of equations (5.7) can, therefore, be rewritten in the form known as
normal equation

(Jn)TJnΔZn = −(Jn)T Rn , (5.8)

where Jn represents JI|Z=Zn .
An iterative procedure can be constructed to determine the vector of unknowns Z

that minimizes the functional Q, knowing the experimental data, W, and computed
values, I, which depend on the unknowns to be determined, Z.

Starting from an initial estimate, Z0 and measurements W, residuals are com-
puted from Eq. (5.6), and corrections are computed sequentially from Eq. (5.8),
where n is the iteration counter. The algorithm can be written as2,

Rn = I(Zn,X) −W (5.9a)

(Jn)TJnΔZn = −(Jn)T Rn (5.9b)

Zn+1 = Zn + ΔZn . (5.9c)

2 The method described here is a modification of Newton’s method (presented in Sec-
tion 4.3, page 92). We remark that the goal is not Newton’s method, but the solution
of Eq. (5.4), that is obtained here by means of the modified Newton’s method, given by
Eq. (5.9). For the problem treated here Newton’s method demands the computation of
second order derivatives of I, while the method based on Eq. (5.8) avoids that. See Exer-
cise 5.1.
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The iterative procedure is interrupted when a convergence criterion defined a priori
is satisfied. For example,

∣∣
∣ΔZn

j /Z
n
j

∣∣
∣<ε , for all j with j=1, 2, . . . ,N .

Here, ε is a sufficiently small value, say 10−5. Another possibility is the use of the
vector of corrections norm, |ΔZn| < ε as considered in Newton’s method.

Observe that in every iteration the values In
i = Ii(Zn), i = 1, 2, . . . ,M, are com-

puted using the estimates for the unknowns, Zn. This involves, in the examples dis-
cussed later in this chapter, the solution of differential or integro-differential equa-
tions. This makes them implicit inverse problems.

Finally, we remark that the solution of Eq. (5.9b) can be written as

ΔZn = −
[
(Jn)TJn

]−1
(Jn)T Rn (5.10)

Equation 5.10 represents explicitly the solution of Eq. (5.8), making use of the in-
verse3 of (Jn)TJn.

5.3 Levenberg-Marquardt’s Method

The methods presented in Section 4.3 and the algorithm presented in the previous
section, are Newton-like, and can encounter convergence difficulties if the initial
estimate for the vector of unknowns, Z0, is not adequately selected. Choosing an
adequate initial estimate can prove extremely difficult.

In 1963, Marquardt [54] designed the algorithm that will be described presently,
with the objective of reaching convergence with a wider range of initial estimates.
One of the referees of his work noticed that, in 1944, Levenberg had made a similar
proposal: adding a term in the diagonal of matrix JTJ . The method came to be
known as the Levenberg-Marquardt method.

Based on Eq. (5.8), the Levenberg-Marquardt method considers the determina-
tion of the corrections ΔZn by means of the following equation,

[
(Jn)TJn + λnI

]
ΔZn = −(Jn)T Rn . (5.11)

Here λ = λn is the damping factor and I represents the identity matrix. Observe
that this formulation is similar to the Tikhonov’s regularization, Eq. (3.22).

Similar to the developments in the previous section, an iterative algorithm is built
to determine the vector of unknowns Z that should minimize the functional Q. The
procedure is based on Eq. (5.11). From an initial estimate, Z0, corrections are se-
quentially computed,

ΔZn = −
[
(Jn)TJn + λnI

]−1
(Jn)T Rn , for n = 0, 1, . . . , (5.12)

3 In computations, one rarely inverts a matrix due to its high computational cost. It is prefer-
able to solve the system of equations. Therefore, the corrections ΔZn are computed by
solving the linear algebraic system of equations (5.8). For theoretical considerations it is
sometimes useful to have closed form solutions, that is, to have the solution written in
terms of a solution operator.
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where n is an iteration counter, and the new estimates for the vector of unknowns are
computed by Eq. (5.9c). The iterations are interrupted when a convergence criterion
established a priori is satisfied.

It should be noticed that the solution of the problem described by Eq. (5.11)
differs from the one given by Eq. (5.8). On the other hand, our aim is to solve
Eq. (5.4). To guarantee the convergence, at the beginning of the iterative process,
a relatively high value is assigned to λ, λ0, thus emphasizing the importance of
the diagonal of matrix (JTJ + λI) relative to the information contained in the
elements outside the diagonal. Through the iterative procedure, the value of the
damping factor λ is to be reduced, in such a way that its value approaches zero as
the procedure approaches its conclusion. In the light of the notion of regularization,
described in Chapter 3, Eq. (5.11) is a kind of regularization of Eq. (5.8).

An algorithm to control the value of the damping factor will be described shortly,
[54]. Let c > 1, d > 1 and ξ > 1. Let also Qn = Q(Zn). When Qn+1 ≤ Qn/c, the
reduction λn+1 = λn/d is performed. Otherwise, λn = ξλn−1 is taken, and a new
estimate for the vector of unknowns Zn+1 is computed for the same value of the
iteration counter n, using again the previous estimate Zn. Silva Neto and Özişik,
[74, 75, 79], used c = d = ξ = 2 in the applications in heat transfer by means of
thermal radiation.

5.4 Confidence Intervals for Parameter Estimates

Folowing Gallant [34, 38, 59], the confidence intervals of the estimates of the param-
eters Z are computed using the sensitivity coefficients,

∂Ii/∂Z j , i = 1, . . . ,M and j = 1, . . . ,N ,

and the standard deviation, σ, of the error present in the experimental data.
Let ∇I be the M×N matrix whose entries are given by the sensitivity coefficients,

(∇I)i j =
∂Ii

∂Z j

∣
∣∣
∣
∣∣
Z

.

In this case, the square of the standard deviation of the estimators of the parameters
are given by

σ2
Z =

(
σ2

Z1
, . . . , σ2

ZN

)T
= σ2

{

diag
[
(∇I)T ∇I

]−1
}

(5.13a)

where diag(A) represents the vector whose elements are the elements of the diagonal
of a matrix A.

Assuming a normal distribution for the experimental errors, with zero mean, the
99 % confidence intervals for the estimates Zj are [33]

]
Z j − 2.576σZj , Zj + 2.576σZj

[
for j = 1, . . . ,N . (5.13b)

In general, smaller confidence intervals are associated with larger sensitivity coeffi-
cients and smaller experimental errors, thus producing better estimates.
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Fig. 5.2 Radiative transfer in a participating medium. Optical variable τ is related (sometimes
linearly) to the spatial variable x.

5.5 Phase Function, Albedo and Optical Thickness

Different types of radiation, like neutral particles, gamma rays and photons have
been used to identify objects in industry (through non-destructive tests) and also in
medicine (for diagnosis and therapy).

Heat transfer by thermal radiation in a participating medium, that is, one that
emits, absorbs and scatters radiation, schematically represented in Figs. 5.1 and 5.2,
is modeled according to the linear version of the Boltzmann equation [60, 80, 69, 57].

It is worthwhile to mention that the physical phenomena relevant to neutron trans-
port in nuclear reactors, or to tomography with scattering (NIROT—Near Infrared
Optical Tomography) can also be represented mathematically by the linear Boltz-
mann equation.

Consider the situation depicted in Fig. 5.2 representing a flat plate made of a
scattering anisotropic, gray material with transparent boundary surfaces, subject to
external isotropic radiation on its left surface, in a permanent regimen (steady-state
— it does not depend on time).

A material is anisotropically scattering when the scattering depends on angle and
it is gray if the properties do not depend on the radiation’s wavelength. A material
has a transparent surface when this surface does not reflect radiation.

In this case, and also considering azimuthal symmetry and a cold medium (no
emission), the linear Boltzmann equation is written as [60] (see Fig. 5.2)

μ
∂I
∂τ

(τ, μ) + I(τ, μ) =
ω

2

∫ 1

−1
p(μ, μ′)I(τ, μ′)dμ′ , (5.14a)

in 0<τ<τ0 , −1≤μ≤1, and

I(0, μ) = 1, μ > 0, and I(τ0, μ) = 0, for μ < 0 . (5.14b)

In this equation, I(τ,μ) is the radiation intensity in position τ, following direction
represented by μ. Here, τ is the spatial optical variable, and μ is the cosine of the po-
lar angle θ formed between the direction of the radiation beam and the τ axis. Also,
ω is the single scattering albedo (the ratio between the scattering and the extinc-
tion coefficients, σs and β, respectively, with β = σs + ka, and ka is the absorption
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coefficient), τ0 is the medium’s optical thickness (related to the geometrical thick-
ness of the medium) and p(μ, μ′) is the anisotropic scattering phase function.

We remark that 1
2 p(μ, μ′) represents the probability density of an incident beam

with direction μ′ to be scattered following the direction represented by μ. More
explicitly, the probability that the scattered direction μ is between μ1 and μ2 given
that the incident direction is μ′ is given in terms of p(μ,μ′) by

P(μ1 ≤ μ ≤ μ2 | μ′) =
1
2

∫ μ2

μ1

p(μ,μ′) dμ .

The medium is isotropic when the scattering is uniform in all directions, i.e., when
p(μ, μ′) = c, for all μ,μ′ ∈ [−1,1], where c is a constant value. Since

P(−1 ≤ μ ≤ 1 | μ′) = 1 , (5.15)

it is then necessary that c = 1.
The second term in the left hand side of Eq. (5.14a) represents the absorption

and scattering of radiation by the medium away from the direction represented by μ
(out scattering) and the right hand side represents the way the radiation is scattered
by the medium into such direction (in scattering). The emission of radiation by the
medium can be neglected if compared to the incident radiation in τ = 0. We recall
that we are considering here a steady state problem (it does not depend on time).

When the operator, the medium’s geometry (in this case, the optical thickness τ0

for the plane-parallel medium), the material properties (here, ω and p = p(μ, μ′))
and the boundary conditions (given in this example by Eq. (5.14b)) we say that the
model is characterized. That is, it is modeled by steady state linear Boltzmann equa-
tion, with specific type Dirichlet boundary conditions and identified (all constants
and auxiliary functions are given). In this case we deal with a direct problem, and
the radiation intensity I(τ, μ) can be computed in all of the spatial domain 0 ≤ τ ≤ τo

and the angular domain −1 ≤ μ ≤ 1.
Different analytic and numerical techniques have been developed to solve the lin-

ear radiative transport equation, Eq. (5.14). Wick [93] and Chandrasekhar [20, 21]
created the discrete-ordinates method, by replacing the right-side term of Eq. (5.14a)
by a Gaussian quadrature term. This leads to a system of ordinary differential equa-
tions with as many equations as points used in the quadrature. Silva Neto and
Roberty [80] presented a comparison between spherical harmonics expansion meth-
ods, PN , Galerkin, global base and discrete-ordinates (i.e., finite differences+ Gaus-
sian quadrature), S N , for the case of isotropic scattering. Chalhout et al. [19] consid-
ered three variations of the discrete ordinates method and performed a comparison
with the Monte Carlo method. Moura Neto and Silva Neto [57, 63] presented solu-
tions using methods with integrating factor and operator splitting.

We use the customary representation of the scattering phase function by expan-
sion in Legendre polynomials [60, 79, 47],

p(μ, μ′) =
L∑

l=0

(2l + 1) flPl(μ)Pl(μ′) , (5.16)

where fl, l=0, 1, . . . , L are the coefficients of expansion with f0=1.
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In the example presented here, we consider the inverse problem of estimating si-
multaneously the medium’s optical thickness, τ0, the single scattering albedo,ω, and
the scattering phase function, p(μ,μ′), by means of its coefficients, fl, l=1, 2, . . . , L,
in the expansion in Legendre polynomials, Eq. (5.16) [79, 47].

The vector of unknowns is made up of the following elements

Z = (τ0, ω, f1, . . . , fL)T ,

to be determined using the experimental measurements of the radiation that leaves
the medium, Wi , i = 1, 2, . . . ,M, by minimizing the functional

Q = Q(τ0, ω, f1, . . . , fL)

=
1
2
|R|2 = 1

2

M∑

i=1

[Ii[Z] −Wi]2 .

Here Ii[Z], i = 1,2, . . . ,M are the values of the radiation intensities computed by
the solution of the direct problem described by Eq. (5.14) and evaluated in the same
directions in which the radiation leaving the medium is measured, μi, i = 1,2, . . . ,M
which are pre-defined directions, assuming the parameters Z = (τ0, ω, f1, f2, . . . , fL)
are known,

Ii[Z] = I[τ0, ω, f1, f2, . . . , fL](μi) , for i = 1, 2, . . . ,M .

The Levenberg-Marquardt method, described in Section 5.3, is used to solve this
optimization problem in finite dimension.

Since we do not have experimental data on this problem, we use synthetic or
artificial data. For that we mean data generated from solving the direct problem with
known parameters and adding random values to simulate experimental errors. In the
example we are considering, we assume that the parameters Z = (τ0, ω, f1, . . . , fL)T

are known in advance and we use them to solve the direct problem, Eq. (5.14). The
synthetic data is then determined by

Wi = Ii[τ0, ω, f1, . . . , fL](μi) + cεi ,

where εi is a realization of a uniform random variable in the interval [−1,1],

c = γmax
i

I(τ0,μi), for i = 1, . . . ,M ,

and γ is a maximum percentage error parameter.
It should be remarked that the solution of inverse problems with synthetic data

makes it possible to verify that the computational procedure is correct, before ap-
plying it to real problems.

The value of the phase function is related to the angle subtended between the
directions of the incident radiation and the scattered radiation [22]. The results pre-
sented in Figs. 5.3 and 5.4 where computed assuming the incident radiation to be
exclusively in the direction of vector (1, 0). A representation in polar coordinates is
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Fig. 5.3 Estimation of an anisotropic scattering phase function, with L = 7, characterizing
forward scattering, ω = 0.5 and τ0 = 2.0. For forward scattering, the phase function repre-
sentation is restricted to the 1st and 4th quadrant. The experimental error reached 6.2 % of the
highest intensity value that was measured. Here, M∗ is the number of coefficients of the phase
function that were considered in the estimations. Solid line represents the exact phase func-
tion, and dashed line represents the estimates for the phase function obtained with different
values for M∗. The best result occurs with M∗ = 4.
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Fig. 5.4 Estimation of a phase function with L = 5, with preferential backward scattering,

ω = 0.1 and τ0 = 10.0. In a preferred backward scattering, one should have
∫ 0

−1
p(μ,1) dμ >

∫ 1

0
p(μ,1) dμ, which is the case if p(μ,1) < p(−μ,1), for μ > 0, as shown in the graph of

the phase function. The experimental error reached 4.1 % of the highest intensity measured
value. The number of coefficients of the phase function, M∗, were chosen as 1 to 4. Solid line
represents the exact phase function, and dashed line represents the phase function obtained
estimate with different values for M∗. Fairly good results were obtained with M∗ = 2 and
M∗ = 3.
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(a)

run run

confidence intervals confidence intervals

(b)

run run

confidence intervals confidence intervals

Fig. 5.5 Confidence intervals for the single scattering albedo (ω), optical thickness (τ0), and
first two coefficients of the anisotropic scattering phase function expansion ( f1 and f2) esti-
mates when the phase function has L = 7 terms.
– exact values, - - - confidence intervals, -•-•- estimates. Experimental error in the highest
mean value of the measured intensities: (a) 6.2 %, and (b) 2.1 %.
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given in which the distance from the point on the graph to the origin provides the
probability density for the radiation to be scattered according to that direction.

Figure 5.3 represents the phase function estimation of an anisotropic scattering,
with preferential forward scattering with L= 7, (see Eq. (5.16)). Due to the experi-
mental error occurring in the measurements, W, of γ =6.2 % of the highest value of
the measured intensity (where, 6.2 % is, therefore, the lowest percentage of experi-
mental error in the measurements being considered), it is not possible to recover all
the coefficients. The highest-order coefficients, with relatively low numerical val-
ues, are more rapidly affected, causing the estimation to deteriorate. However, the
relevant information for the design of thermal equipments is the shape of the phase
function, and not necessarily the value of each coefficient separately.

As a matter of fact, the number of coefficients, L, of the anisotropic scattering
phase function represented in Eq. (5.16) is also an unknown of the problem. Silva
Neto and Özişik [79] developed a criterion to choose the number of coefficients in
the expansion M∗ in such a way to obtain the best possible estimated phase function,
considering the available experimental data.

In the test case represented in Fig. 5.3, M∗ = 3 or 4 values would be chosen. It
must be pointed out that, in the absence of experimental errors (an ideal situation that
does not happen in practice) all seven coefficients, i.e., M∗ = L= 7, were estimated
within the precision established a priori in the stopping criterion.

Figures 5.5a and b show the estimates for ω, τ0, and for the first two coefficients,
f1 and f2, of the phase function represented in Fig. 5.3. The different executions of
the computational code correspond to estimates due to different sets of experimental
data. Figure 5.5a presents the results when the lowest experimental error reaches
6.2 % and, in Fig. 5.5b, the lowest experimental error reaches 2.1 %.

Figure 5.4 presents the results on the estimation of a phase function with L =
5, corresponding to a medium with preferential backward scattering. The lowest
experimental error here considered is 4.1 %. In this example we would choose M∗ =

2 or 3.
Using the expression for the confidence intervals, Eq. (5.13), we are able to com-

pute them for the various parameters being estimated, and we represent them in
graphical form in Fig. 5.5. As expected, the estimates, in the examples given here,
have narrower confidence intervals, when the experimental data presents lower lev-
els of noise.

5.6 Thermal Conductivity, Optical Thickness and Albedo

Silva Neto and Özişik [74] solved an inverse problem involving heat transfer due
to conduction and radiation in a participating medium, considering only isotropic
scattering (not depending on the polar angle). Lobato et al. [48] dealt with a simi-
lar problem, but using stochastic methods [69] for the minimization of the squared
residues functional.

Consider the situation illustrated in Fig. 5.6. A plane-parallel, gray, isotropically
scattering medium with transparent boundary surfaces, is subject to incident external
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Fig. 5.6 Heat transfer by thermal conduction and radiation in a participating medium

isotropic radiation that reaches surface τ = 0. The surfaces at τ = 0 and τ = τ0 are
kept at constant temperatures T1 and T2, respectively.

The mathematical formulation of the heat transfer problem due to one dimen-
sional, steady-state heat conduction, in which the coupling with the transfer due to
radiation in the participating medium is achieved by the source term, is given, in a
dimensionless formulation, by a boundary value problem of an ordinary differential
equation (Poisson’s equation, with a non-linear source term and Dirichlet boundary
conditions) [60]

d2Θ

dτ2
−

(1 − ω)
N

[
Θ4(τ) −G∗[I](τ)

]
= 0 , in 0 < τ < τ0 , (5.17a)

with boundary conditions,

Θ(0) = 1 and Θ(τ0) = T2/T1 . (5.17b)

Here

G∗[I](τ) =
1
2

∫ 1

−1
I(τ, μ) dμ , N =

k β

4 n2σT 3
1

, Θ =
T
T1
, (5.17c)

where Θ is the dimensionless temperature, N is the conduction-radiation parameter,
ω is the simple scattering albedo, k is the thermal conductivity, β is the extinction
coefficient (absorption+ scattering), n is the medium’s refractive index, and σ is the
Stefan-Boltzmann’s constant.

Modeling of the radiative transfer in the participating medium is achieved by
means of the linear Boltzmann’s equation [60],

μ
∂I
∂τ

(τ, μ) + I(τ, μ) = H(Θ(τ)) +
ω

2

∫ 1

−1
I(τ, μ′) dμ′ , (5.17d)

in 0<τ<τ0 and − 1≤μ≤1, and

I(0, μ) = 1 , for μ > 0, and I(τ0, μ) = 0 , for μ < 0 , (5.17e)
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where the source term, H(Θ), is related to the medium’s temperature distribution,

H(Θ) = (1 − ω) Θ4 , (5.17f)

and the remaining symbols have already been defined. We observe that since the
medium is an isotropic scatterer, the phase function of scattering is

1
2

p(μ, μ′)=
1
2

for all μ, μ′ .

Equation (5.17) provides a complete mathematical formulation for the one dimen-
sional heat transfer problem, in steady state regime, by the combined mode of con-
duction and radiation. The problem of conduction, Eqs. (5.17a)–(5.17c), and the
radiation problem, Eqs. (5.17d)–(5.17f), are coupled by means of the source terms,
given respectively by

G∗ = G∗[I] and H = H(Θ) .

To solve Eq. (5.17), we use an iterative procedure. Starting with a first estimate of
I, we solve Eqs. (5.17a)–(5.17c) to obtain an estimate of Θ. From this estimate of
Θ, we solve Eqs. (5.17d)–(5.17f) to obtain a new estimate of I. This is done until
convergence is reached.

In the solution of the direct problem, Silva Neto and Özişik [74] used the iterative
procedure described with the Galerkin method, global basis for the part of the prob-
lem related to heat transfer due to radiation in a participating medium, Eqs. (5.17d)–
(5.17f), and the finite difference method for the part of the problem related to heat
transfer by conduction, Eqs. (5.17a)–(5.17c).

In the inverse problem just presented, we consider the simultaneous estimation
of the optical thickness, τ0 , the single scattering albedo, ω, and the conduction-
radiation parameter, N. We use synthetic experimental measurements of the radia-
tion, Wi , i = 1, 2, . . . ,M, and of temperature inside the medium, represented by X j ,
j = 1, 2, . . . ,K. The vector of unknowns Z= (τ0, ω,N)T is determined — the model
is identified — as the minimum point by minimization of the functional

Q=Q(τ0,ω,N) =
1
2

M∑

i=1

[Ii (τ0, ω,N) − Wi]2

+
1
2

K∑

j=1

[
Θ j (τ0, ω,N) − X j

]2
, (5.18)

where Ii(τ0, ω,N), i = 1, 2, . . . ,M, are the radiation intensities computed in the
same surface and in the same directions in which the radiation is measured, Wi ,
i = 1, 2, . . . ,M. Here, Θ j(τ0, ω,N), j = 1, 2, . . . ,K, are temperatures computed in
the same positions where the temperatures are measured, X j , j = 1, 2, . . . ,K. The
radiation and temperature intensities are computed by solving Eq. (5.17), following
the procedure already described.
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run

Fig. 5.7 Confidence intervals for the optical thickness (τ0), single scattering albedo (ω),
and conduction-radiation parameter (N) estimates in the combined conduction-radiation heat
transfer model.
– exact values, - - - confidence intervals, -•-•- estimates. Experimental error of 4 % of the
largest value of the magnitudes that were measured.
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Figure 5.7 presents the results of the parameters (τ0, ω,N) estimation, for a test
case in which the exact values,

(τ0, ω,N) = (1.0, 0.9, 0.05) ,

were known a priori. The different results considered represent, as before, estimates,
obtained with the execution of the computational code with different sets of syn-
thetic experimental data. The artificially generated experimental error is set to 4 %
of the value of the largest measured magnitude.

Conduction-radiation parameter, N, is relatively small, which indicates a domi-
nance of the radiative heat transfer mechanism. This fact is proved by the relatively
large size of confidence intervals4 of the estimates of N (N depends on the medium’s
thermal conductivity, k), when compared to those obtained for the parameters τ0

and ω.

5.7 Refractive Index and Optical Thickness

Consider a gray flat plate in radiative equilibrium, with two gray boundary surfaces,
opaque —diffuse emittant and reflector (non-specular),— with emissivity ε and re-
flectivity ρ, which are kept at constant temperatures T0 and TL (see Fig. 5.8).

T o

τ

LT 
ρ
ε
=0τ thermocouples iX

ρ
ε

τ =τo

Fig. 5.8 Schematic representation of a one dimensional medium in radiative thermal equilib-
rium

The temperature distribution inside the medium, T (τ) satisfies [75],

T 4(τ) − T 4
L

T 4
0 − T 4

L

=
θ(τ) +

[
1
ε − 1

]
S

1 + 2
[

1
ε
− 1

]
S
, (5.19)

where the function θ(τ) satisfies the integral equation

θ(τ) =
1
2

[

E2(τ) +
∫ τ0

0
θ(τ′) E1(|τ − τ′|) dτ′

]

. (5.20)

Here, Em(τ) represents the m-th integral exponential function, given by

Em(τ) =
∫ 1

0
ηm−2 e−

τ
η dη , (5.21a)

4 The confidence intervals are related to the sensitivity coefficients ∂I/∂τ0, ∂I/∂ω, ∂I/∂N,
∂Θ/∂τ0, ∂Θ/∂ω, and ∂Θ/∂N.
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and the constant S is given by

S = 1 − 2
∫ τ0

0
θ(τ′) E2(τ′) dτ′ . (5.21b)

Given the optical thickness of the medium, τ0, function θ(τ) is computed by Eq. -
(5.20). If θ(τ) is known, parameter S is computed using Eq. (5.21b). The tempera-
ture distribution inside the medium is then computed by Eq. (5.19).

For opaque and gray surfaces, ε=1−ρ. When the refractive index of the medium,
nm , is higher than that of its environment, ne , the reflectivity ρ is related to the
relative refractive index n=nm/ne as follows,

ρ(n) = 1 − 1
n2

{
1
2
− (3n + 1)(n − 1)

6(n + 1)2
− n2(n2 − 1)2

(n2 + 1)3
ln

(
n − 1
n + 1

)

+
2n3(n2 + 2n − 1)
(n2 + 1)(n4 − 1)

− 8n4(n4 + 1)
(n2 + 1)(n4 − 1)2

ln(n)

}

. (5.22)

In the inverse problem presented here, the simultaneous estimation of the relative
refractive index, n, and the medium’s optical thickness, τ0, is considered. The vector
of unknowns Z = (n, τ0)T , is to be determined from the experimental measurements
inside the medium, Xi, i = 1, 2, . . . ,M, by minimizing the functional

Q(n, τ0) =
1
2
|R|2 = 1

2

M∑

i=1

[Ti (n, τ0) − Xi]2 ,

where Ti(n, τ0), i = 1, 2, . . . ,M are the temperatures computed in the same positions
in which the experimental data are measured, Xi , using the problem described by
Eqs. (5.19) through (5.22).

(a)

run

(b)

run

Fig. 5.9 Confidence intervals for the estimates.
– exact values, - - - confidence intervals, -•-•- estimates. Experimental error of the highest
temperature measurement: (a) 5 %; (b) 2.5 %.
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Results of the estimates of (n, τ0) are presented in Fig. 5.9, in which the exact
values for the test case, (2.0, 3.0), were known a priori. The results correspond to
estimates obtained by means of different sets of experimental synthetic data. Two
levels of experimental errors corresponding to 5 % and 2.5 % are used, and the re-
sults are presented, respectively, in Figs. 5.9a and b.

As expected, these estimates are better (smaller confidence intervals for the same
confidence level) when the experimental data present lower noise levels.

Exercises

5.1. We recall that Newton’s method, presented in Section 4.3, for the system of
equations G(Z) = 0, where G : RN → RN is a vector-valued function, is given by
the iterative scheme,

JGnΔZn = −Gn

Zn+1 = Zn + ΔZn ,

where JGn represents the Jacobian matrix of G, evaluated at Zn

JGn=JG|Z=Zn ,

and Gn=G(Zn). We remark that ΔZn satisfies a linear system of equations.
In the case of Eq. (5.4), the function G has the following structure,

Gk(Z)=
M∑

i=1

Ri ∂Ii/∂Zk ,

where, for simplicity, we are omitting the dependency of G in X.
Show that the equation for ΔZn reads

[(Jn)TJn + An]ΔZn=−(Jn)T Rn ,

where

An
jk=

n∑

i=1

Ri(Zn)
(
∂2Ii/∂Z j∂Zk

)
.

(Compare this procedure with Eq. (5.8) and note that here, second order derivatives
of I are needed in order to compute matrices An, which make this algorithm more
expensive and more prone to numerical errors than the other.)

5.2. Deduce the Levenberg-Marquardt method considering the functional given by
Eq. (3.20).

5.3. Assume that the participant medium is isotropic, i.e., p(μ,μ′) = c is a constant.

(a) Use Eq. (5.15) to determine the value of constant c.
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(b) Obtain the simplified version of the Boltzmann equation, Eq. (5.14), for I =
I(τ, μ).

(c) Show that there is not a solution of the integro-differential equation for the
isotropic medium, with the prescribed boundary conditions, depending only
on τ, i.e, I = I(τ).

(d) Obtain a solution I = I(τ) if only the first requirement in Eq. (5.14b) is asked
for.

5.4. An alternative approach for the solution of Eq. (5.14a) uses an integrating fac-
tor. Define a new dependent variable as

J(τ,μ) = e
τ
μ I(τ,μ)

and show that Eq. (5.14a) may be written as

μ
∂J
∂τ

(τ,μ) =
ω

2

∫ 1

−1
p(μ,μ′)eτ

(
1
μ−

1
μ′

)

J(τ,μ′) dμ′

Write the boundary conditions given by Eq. (5.14b) in terms of the new dependent
variable, [57].



Chapter 6

Thermal Characterization

The development of new materials is a research intensive area, which is fueled by
ever-increasing technological demands. With relevant applications, both in engi-
neering and medicine, there is an obvious need for using adequate techniques for
the characterization of new materials to verify if they meet the physical and chem-
ical properties specified in the design phase, such as viscosity, elasticity, density,
etc. In this context, the meaning of characterization differs from the meaning we
have established in Chapters 1 and 2. Here characterization means determination
of the properties of the material, which we call inverse identification problem, and
requires, most commonly, the conduction of laboratory tests. We recognize the am-
biguity with our previous use of the word “characterization”, but since in the area of
materials the word characterization is used in the sense of identification we prefer
to maintain it and be able to have the chosen chapter title.

During the development and operation of an experimental device, it is common
to control different degrees of freedom to correctly estimate the properties under
scrutiny. Frequently, with such a procedure, practical limitations are imposed that
restrict the full use of the possibilities of the experiment.

Using a blend of theoretical and experimental approaches, determining unknown
quantities by coupling the experiment with the solution of inverse problems, a greater
number of degrees of freedom can be manipulated, involving even the simultaneous
determination of new unknowns, included in the problem due to more elaborate
physical, mathematical and computational models [18].

The hot wire method, for example, has been used successfully to determine the
thermal conductivity of ceramic materials, even becoming the worldwide standard
technique for values of up to 25 W/(m K). For polymers, the parallel hot wire tech-
nique is replaced by the cross-wire technique, where a junction of a thermocouple—
a temperature sensor—is welded to the hot wire, which works as a thermal source
at the core of the sample whose thermal properties are to be determined [17].

In this chapter we consider the determination of thermal properties of new poly-
meric materials by means of the solution of a heat transfer inverse problem, using
experimental data obtained by the hot wire method. This consists of an identification
inverse problem, being classified as a Type III inverse problem (see Section 2.8).

6.1 Experimental Device: Hot Wire Method

In this section we briefly describe the experimental device used to determine the
thermal conductivity of new materials.
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The hot wire method is a transient technique, i.e., it is based on the measurement
of the time variation of temperature due to a linear heat source embedded in the ma-
terial to be tested. The heat generated by the source is considered to be constant and
uniform between both ends of the test body. The basic elements of the experimental
device are sketched in Fig. 6.1. From the temperature variation, measured by the
slope in Fig. 6.2a, in a known time interval, the thermal conductivity of the sample
is computed. In practice, the linear thermal source is approximated by a thin electric
resistor and the infinite solid is replaced by a finite size sample.

heating circuit

reference

measurement
circuit

clamps

test
body

wire
hot

thermocouple (temperature sensor)

Fig. 6.1 Experimental apparatus for the standard hot wire technique

The experimental apparatus is made up of two test bodies. In the upper face of the
first test body, two orthogonal incisions are carved to receive the measuring cross.
The depth of these incisions corresponds to the diameter of the wires to be inserted
within.

temperature

ln t

theoretical

experimental

(b)

Fig. 6.2 Hot wire method. (a) Increase in temperature θ(r,t) as a function of time;
(b) Theoretical (infinite sample size) and presumed experimental (finite sample size)

graphs.

The measuring cross is formed by the hot wire (a resistor) and the thermocouple,
whose junctions are welded perpendicular to the wire. After placing the measuring
cross in the incisions, the second test body is placed upon it, wrapping the measuring
cross. The contact surfaces of the two test bodies must be sufficiently flat to ensure
good thermal contact. Clamps are used to fulfill this goal, pressing the two bodies
together.
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Some care should be taken when working with the hot wire method to ensure
the reliability of the results: (i) a resistor must be used as similar as possible to
the theoretical linear heat source; (ii) ensure the best possible contact between the
sample and the hot wire; (iii) the initial part of the temperature × time graph should
not be used for the computations —use only times in the range t> t1, in Fig. 6.2b,—
thus eliminating the effect of the thermal contact resistance between the electric
resistor (the wire) and the sample material; (iv) limit the test time to ensure that the
finite size of the sample does not affect the linearity of the measured temperatures
(t< t2 in Fig. 6.2b).

6.2 Traditional Experimental Approach

Consider a linear thermal source that starts releasing heat due to Joule’s effect—
a resistor, for example— at time t = 0, inside an infinite medium that is initially
at temperature T = T0. Let the linear thermal source be infinite in extension and
located in the z axis. Due to the symmetry of the problem in the z direction, we have
a solution that does not depend on z and this situation can be modeled as an initial
value problem for the heat equation in two-dimensions,

∂T
∂t
= k � T + s(x,t) , x = (x,y) ∈ R2 , t > 0 , (6.1a)

T (x,0) = T0(x) , x ∈ R2 . (6.1b)

Here T = T (x,t) is the temperature,�T = ∂
2T
∂x2 +

∂2T
∂y2 is the laplacian of T with respect

to the spatial variables, k is the medium’s thermal conductivity, s is the thermal
source term, and T0 is the initial temperature. Under the previous hypothesis, T0 is a
constant, and s is a singular thermal source corresponding to a multiple of a Dirac’s
delta (generalized) function centered at the origin,

s(x,t) = q′δ(x) , (6.2)

where q′ is the linear power density.
The solution of Eq. (6.1) can be written as the sum of a general solution of a ho-

mogeneous initial value problem, T 1, and a particular solution of a non-homogeneous
initial value problem, T 2, that is, T = T 1 + T 2, where T 1 satisfies

∂T 1

∂t
= k � T 1 , x ∈ R2, t > 0 , (6.3a)

T 1(x,0) = T0 , x ∈ R2 . (6.3b)

and T 2 satisfies

∂T 2

∂t
= k � T 2 + s(x,t) , x ∈ R2, t > 0 , (6.4a)

T 2(x,0) = 0 , x ∈ R2 . (6.4b)
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The solution of Eq. (6.3) relies on the fundamental solution of the heat equation
[39], through a convolution with the initial condition,

T 1(x,t) =
1

4kπt

∫ +∞

−∞

∫ +∞

−∞
e−

|x−y|2
4kt T0(y) dy1 dy2 . (6.5)

The solution of Eq. (6.4) is attained by Duhamel’s principle [39, 61]. One looks for
a solution in the form of variation of parameters,

T 2(x,t) =
∫ t

0
U(x,t,τ) dτ , (6.6)

where, for each τ, U( · , · , τ) satisfies a homogeneous initial value problem, with
initial time t = τ,

∂U
∂t
= k � U , x ∈ R2, t > τ , (6.7a)

U(x,τ,τ) = s(x,τ) , x ∈ R2 . (6.7b)

Since Eq. (6.7) is, in fact, a family of homogeneous problems, parametrized by τ,
its solution is obtained by convolution with the fundamental solution of the heat
equation,

U(x,t,τ) =
1

4kπ(t − τ)

∫ +∞

−∞

∫ +∞

−∞
e−

|x−y|2
4k(t−τ) s(y, τ) dy1 dy2 ,

and then, substituting this result in Eq. (6.6),

T 2(x,t) =
∫ t

0

1
4kπ(t − τ)

∫ +∞

−∞

∫ +∞

−∞
e−

|x−y|2
4k(t−τ) s(y,τ) dy1 dy2 dτ .

Since

1
4kπt

∫ +∞

−∞

∫ +∞

−∞
e−
|x−y|2

4kt dy1 dy2 = 1 , (6.8)

T0 is a constant, and s is given by Eq. (6.2), we have

T (x,t) = T0 +
q′

4kπ

∫ t

0

1
t − τ

e−
|x−y|2
4k(t−τ) dτ ,

= T0 +
q′

4kπ

∫ +∞

|x|2/4kt

e−u

u
du , (6.9)

where we have made the change of variables u = |x|2/4k(t − τ).
For times sufficiently greater than t = 0, and for radial distances, r, near the

linear source, more precisely, when |x|2/4kt → 0, the temperature increases in the
following way, [12],

T (x,t) = T0 +
q′

4 π k
(ln t − 2 ln |x|) + O(1), as |x|2/4kt → 0 , (6.10)
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as can be seen from Eq. (6.9), and the following result,
∫

e−u

u
du = ln u e−u + (u ln u − u) e−u +

∫

(u ln u − u) e−u du . (6.11)

This dependence is represented in Fig. 6.2a.
Now, from Eq. (6.10) and Fig. 6.2, letting x0 � 0 be a certain fixed point of the

medium, and denoting θ1 = T (x0,t1), and θ2 = T (x0,t2), we get

‘slope’ ≈ θ2 − θ1
ln t2 − ln t1

=
q′

4 π k
,

and then k =
q′

4 π

ln
(

t2
t1

)

(θ2 − θ1)
. (6.12)

In the traditional experimental approach, temperatures are measured for different
times, (tl, Tl), for l = 1, 2, . . . ,L, where L is the total number of experimental mea-
surements, and, from the fitting of a line to the points

(ln tl, θl) , with θl = Tl − T0 , l = 1, 2, . . . ,L ,

by means of the least squares method, the slope of the line is obtained, and from it
the thermal conductivity of the material by means of Eq. (6.12). A few more details
can be found in Exercise 6.4.

This method was used to determine the thermal conductivity of a phenolic foam,
with 25 % of its mass being of lignin.1 The lignin used was obtained from sugarcane
bagasse. This is an important by-product of the sugar and ethanol industry, and
different applications are being sought for it, besides energy generation. The thermal
conductivity was found as

k = (0.072 ± 0.002) W/(m K) . (6.13)

The theoretical curve for an infinite medium and the expected curve, presumably
obtainable in an experiment with a finite sample are presented in Fig. 6.2b. Observe
that for time values relatively small (t < t1) and relatively large (t > t2), deviations
from linearity occur. Therefore, experimental measurements in these situations are
to be avoided. The deviation for t < t1 is due to the thermal resistance between the
hot wire and the sample. The deviation from linearity for t > t2 occurs when heat
reaches the sample’s surface, thus starting the process of heat transfer by convection
to the environment.

In a real experiment the sample’s dimensions are finite. Moreover, for materi-
als with high thermal diffusivity, α = k/ρcp, where ρ is the specific mass and cp is
the specific heat at constant pressure per unit mass, the interval where linearity oc-
curs can be very small. This feature renders experimentation unfeasible, within the
required precision.

1 The experimental data used here was obtained by Professor Gil de Carvalho from Rio de
Janeiro State University [18].
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6.3 Inverse Problem Approach

In this section, we present a more general approach to identifying the relevant pa-
rameters in the physical model, based on solving an inverse problem. First we
present the model, next we set up an optimization problem to identify the model,
present an algorithm to solve the minimization problem, and present the results on
the determination of the thermal conductivity and specific heat of a phenolic foam.

6.3.1 Heat Equation

We shall consider the determination of the thermal conductivity of the medium us-
ing the point of view of applied inverse problems methodology. That is, we select
a mathematical model of the phenomenon —heat transfer by conduction,— then
formulate a least squares problem and set up an algorithm to solve it.

To deal with the inverse problem of heat transfer by conduction used here, con-
sider a sample of cylindrical shape with radius R, with a linear heat source along
its centerline, exchanging heat with the surrounding environment (ambient), and set
initially at room temperature, Tamb. To keep the description as simple as possible, it
will be considered that the cylinder is long enough, making the heat transfer depend
only on the radial direction. The mathematical formulation of this problem is given
by the heat equation and Robin’s boundary conditions [12, 61],

1
r
∂

∂r

(

k r
∂T
∂r

)

+ g(r,t) δ(r) = ρ cp
∂T (r, t)
∂t

(6.14a)

in 0 ≤ r ≤ R, for t > 0, and

−k
∂T
∂r

(R, t) = h (T (R,t) − Tamb) , for t > 0 (6.14b)

T (r,0) = Tamb in 0 ≤ r ≤ R , (6.14c)

where g(r, t) is the volumetric power density, h is the convection heat transfer coef-
ficient, and the remaining symbols have already been defined.

When the geometry, material properties, boundary conditions, initial condition
and source term are known, Eq. (6.14) can be solved, thus determining the medium’s
transient temperature distribution. This is a direct problem.

If some of these magnitudes, or a combination of them, are not known, but exper-
imental measurements of the temperature inside or at the boundary of the medium
are available, we deal with an inverse problem, which allows us to determine the
unknown magnitudes, granted that the data holds enough information.

Most of the techniques developed to solve inverse problems rely on solving the
direct problem with arbitrary values for the magnitudes that are to be determined.
Usually, the procedures involved are iterative, so the direct problem has to be solved
several times. It is thus desirable to have a method of solution of the direct problem
capable of attaining a high precision. At the same time, it should not consume much
computational time. In the example considered in Section 6.3.5, the finite difference
method was used to solve the problem of heat transfer through the sample.
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6.3.2 Parameter Estimation

Here we consider the formulation of the problem of simultaneously estimating the
thermal conductivity and the specific heat of a material. These parameters are rep-
resented by

Z =
(
k, cp

)T
.

Notice that other parameters could be estimated simultaneously with the thermal
conductivity and the specific heat, such as the coefficient of heat transfer by con-
vection from the sample to the environment, h. In this case, we should also perform
measurements at times t > t2.

Let Tc(rm,tl) be computed temperatures, and Te(rm,tl) experimentally measured
temperatures, at positions rm, with m= 1, 2, . . . ,M, where M is the number of tem-
perature sensors employed, at times tl, with l=1, 2, . . . , L, and L denoting the num-
ber of measurements performed by each sensor. Consider the norm given by half the
sum of the squares of the residues between computed and measured temperatures,

Q(Z) =
1
2

M∑

m=1

L∑

l=1

[Tc(rm, tl) − Te(rm, tl)]2 , (6.15)

or, simply,

Q =
1
2

I∑

i=1

(Ti −Wi)2 =
1
2

RT R .

Here, Ti and Wi, are compact notations, respectively for the calculated and measured
temperature, referred to the same sensor and at the same time. Also, Ri=Ti−Wi and
I=M×L.

The inverse problem considered here is solved as a finite dimension optimization
problem, where the norm Q is to be minimized, and the parameters correspond to
the minimum point of Q.

6.3.3 Levenberg-Marquardt

We describe here the Levenberg-Marquardt method [54], presented in section 5.3, to
estimate the parameters.

The minimum point of Q, Eq. (6.15), is pursued by solving the critical point
equation

∂Q/∂Zj=0 , j=1, 2 .

Analogously to Section 5.3, an iterative procedure is built. Let n be the iteration
counter. New estimates of parameters, Zn+1, of residuals, Rn, and corrections, ΔZn,
are computed sequentially,
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Rn = Tn −W (6.16a)

ΔZn = −
[
(Jn)T Jn + λnI

]−1
(Jn)T Rn , (6.16b)

Zn+1 = Zn + ΔZn (6.16c)

for n = 0, 1, 2, . . ., until the convergence criterion
∣∣
∣ΔZn

j /Z
n
j

∣∣
∣ < ε , j = 1, 2

is satisfied. Here, ε is a small number, for example, 10−5.
The elements of the I × 2 Jacobian matrix,

Ji j=∂Ti/∂Z j , for i=1, . . . , I , and j=1, 2 ,

as well as the residuals, Rn, are computed at every iteration, by the solution of the
direct problem given by Eq. (6.14), using the estimates for the unknowns obtained
in the previous iteration.

6.3.4 Confidence Intervals

As presented in Section 5.4, Walds’s confidence intervals of the estimates Z =
(k,cp)T are computed by [59], page 87, [34]. In this case, the square of the standard
deviation is given by [38]

σ2
Z =

⎛
⎜⎜⎜⎜⎜⎝

σ2
k

σ2
cp

⎞
⎟⎟⎟⎟⎟⎠ = σ

2
{

diag
[
(∇T)T ∇T

]−1
}

. (6.17)

where T = (T1, . . . , TI)T , T = T(Z) = T(k, cp), and σ is the standard deviation of
the experimental errors.

Assuming a normal distribution for the experimental errors and 99 % of confi-
dence, the confidence intervals of the estimates of k and cp are [33],

]k − 2.576σk , k + 2.576σk[ ,

and ]
cp − 2.576σcp , cp + 2.576σcp

[
.

6.3.5 Application to the Characterization of a Phenolic Foam with
Lignin

This section presents the results obtained in the estimation of thermal conductiv-
ity and specific heat of a phenolic foam, with 25 % of its mass being of lignin. As
mentioned at the beginning of this chapter, in materials’s literature the word ‘char-
acterization’ is used to mean what we call model identification, therefore we give
credit to this usage by employing it in this section’s title.
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Recall that the traditional experimental approach, described in Section 6.1, was
only able to determine the thermal conductivity. With the approach based on the
inverse heat transfer problem, described in Section 6.3.2, we were able to obtain,
from the same set of experimental data, not only the thermal conductivity, but also
the sample’s specific heat. The thermal conductivity was estimated as being

k = 0.07319 W/(mK) ,

with the following 99 % confidence interval:

]0.07313, 0.07325[ W/(m K) .

This value excellently agrees with the one obtained by the traditional approach,
Eq. (6.13).

For the specific heat, determined simultaneously with the thermal conductivity,
the estimate obtained was cp = 1563.0 J/(kg K) and the following 99 % confidence
interval was obtained

]1559.6, 1566.4[ J/(kgK) .

Vega [91] presents an expected value of 1590 J/(kg K) for the specific heat of phe-
nolic resins, and this agrees very well with the value obtained by the solution of
the inverse problem considered here. The traditional approach provides no means of
estimating this property.

time (s)

temperature (oC)

Fig. 6.3 Temperature profiles (– theoretical +++ experimental)

Figure 6.3 presents the temperature×time plot, which exhibits the computed tem-
peratures with the estimated properties k and cp . The values of the measured temper-
atures Wi, i = 1,2, . . . , I, which were used in the solution of the inverse problem, are
exhibited in the same graph. Notice the excellent agreement between experimental
data and temperature determined by the computational simulation.
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exact value

case

case
case

case
case

Fig. 6.4 Results of the simulations considering different initial estimates

Figure 6.4 shows that the minimization iterative process converges to the same
solution, no matter which one of several initial estimates of the unknown magnitudes
is used. This suggests that the global minimum of Q is reached.

6.4 Experiment Design

Using the mathematical model and the computational simulation presented here,
it is possible to design experiments to obtain, precise and economically, physical
parameters, determining a priori the best localization for the temperature sensors,
as well as the best time intervals in which the experimental measurements are to be
performed.

The concepts of “best” or “optimum” are necessarily bound to a judgment cri-
terion that, in the situation described here, may, for example, consist in the min-
imization of the region contained in the confidence intervals that, as previously
described in this chapter, and in Chapter 5, is related to larger values of the sen-
sitivity coefficients.

Further details on inverse problems and experiment design for applications re-
lated to heat and mass transfer phenomena may be found in [50, 71, 45, 51, 89, 52, 49].

Exercises

6.1. Show that T 2 defined in Eq. (6.6) satisfies Eq. (6.4).
Hint. Use Bernoulli’s formula

d
dt

∫ t

a
f (s,t) ds = f (t,t) +

∫ t

a

∂ f
∂t

(s,t) ds .
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6.2. Show validity of Eq. (6.8).
Hint. Use polar coordinates in R2.

6.3. Use integration by parts to show Eq. (6.11).

6.4. From Eq. (6.10), θ = α ln t, for α = q′/4πk. (a) Given measurements (ti,θi),
obtain the least squares formulation to determine α; (b) obtain an expression for α
in terms of the experimental data; (c) write an expression for k.

6.5. Let

D =

L∑

l=1

(
∂Tl

∂k

)2 L∑

l=1

(
∂Tl

∂cp

)2

−
⎛
⎜⎜⎜⎜⎜⎝

L∑

l=1

∂Tl

∂k
∂Tl

∂cp

⎞
⎟⎟⎟⎟⎟⎠

2

.

Show that

σ2
k =

σ2

D

L∑

l=1

(
∂Tl

∂cp

)2

, and

σ2
cp
=
σ2

D

L∑

l=1

(
∂Tl

∂k

)2

6.6. Write the matrix JT J, to be used in Eq. (6.16b), for the vector of unknowns
Z = (k,cp,h)T , where k is the thermal conductivity, cp is the specific heat, and h is
the convection heat transfer coefficient, for the inverse heat conduction problem in
which these three parameters are to be estimated simultaneously.

6.7. Why, for t < t2, is the approximation of infinite medium, in the situation repre-
sented in Fig. (6.2), a good one?

6.8. The sensitivity coefficients, [11], are defined by

Xz j =
∂T
∂Z j

where T represents the observable variable, that may be measured experimentally,
and z j one unknown to be determined with the solution of the inverse problem.
Considering the situation represented in Fig. (6.2), is it possible to estimate the
convection heat transfer coefficient, i.e. Z j = h considering the experimental data
acquired at t < t2? What is the link between this exercise and Exercise 6.7?



Chapter 7

Heat Conduction

We present in this chapter estimates of the intensity of thermal sources with spatial
and temporal dependence in heat transfer by conduction. This is an inverse recon-
struction problem, and it is classified as a Type IV inverse problem1. In other words,
we consider a function estimation problem in an infinite dimensional model.

The regularization of the inverse problem is attained by changing it to the prob-
lem of optimizing a functional defined in an infinite dimension space by means of
the conjugate gradient method. Thus, as described in Sections 3.7, 3.8 and 3.10,
respectively for the steepest descent, Landweber, and conjugate gradient methods,
regularization is achieved by means of an iterative minimization method. We em-
ploy here Alifanov’s iterative regularization method [1, 92, 87].

7.1 Mathematical Formulation

Let Ω denote the set where the physical problem under investigation is defined —a
space-time or a spatial region where the action takes place. See Fig. 7.1. Consider
the problem of determining a function g, knowing the problem’s input data, f, exper-
imental measurements, X, and how g influences the output of the physical system,
represented by T [g].

Let us represent by

Γ = Γ1 ∪ Γ2 ∪ . . . ∪ ΓM ,

the subset (subregion) of Ω where experimental measurements are taken, and by

Ω ⊃ Γ � x �→ X(x) ∈ Rl ,

the measurements. If Γi is just an isolated point, Γi = {xi}, the measurements can be
represented simply by Xi = X(xi). Let

Λ = Λ1 ∪ . . . ∪ΛL ,

be the subset of Ω where the unknown function g is defined,

Ω ⊃ Λ � r �→ g(r) ∈ Rk .

Here Λ could be a part of the boundary of Ω, or some other subset of Ω.
The physical system output, due to some source g, T [g], is defined in Ω,

Ω � ω �→ T [g](ω) ∈ Rl .
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Fig. 7.1 Representation of the physical domain Ω, of subset Λ, where the unknown of the
problem (function g) is defined, and of the region Γ, where the experimental measurements
are performed

This quantity is evaluated at the points where the experimental measurements are
performed, i.e., in Γ.

Given g, we can compute the difference between what the model predicts and the
measurements. For each x ∈ Γ, we define the residual

T [g](x) − X(x) ,

and, with this, by taking into account all the points where measurements are made,
we define the functional representing half the sum — when Γ is a discrete set — or
the integral — when Γ is a continuum set — of the squares of the residuals,

J
[
g
]
=

1
2

∫

Γ

|T [g](x) − X(x)|2 dx . (7.1)

The inverse problem of determining the function g = g(r) is solved as a minimiza-
tion problem in a space of infinite dimension, where one searches the minimum
point of the functional J in a function space.

If M>1, and l=1, i.e., when several sensors are used and the measurements are
scalar, it is customary to write the functional J= J[g] in the form

J
[
g
]
=

1
2

∑

m

∫

Γm

{Tm[g](x) − Xm(x)}2 dx ,

where Tm[g] and Xm represent the restrictions of T [g] and X to the region Γm. If the
measuring region is discrete —as is usually the case— and Γm = {xm

1 , . . . , x
m
N }, the

functional is rewritten as

J
[
g
]
=

1
2

M∑

m=1

N∑

n=1

{
Tm,n[g] − Xm,n

}2 ,

where Tm,n[g] and Xm,n represent, respectively, the computed and measured quanti-
ties in xm

n ∈ Γm. If Ω is a space-time subset, index n of xm
n stands for successive time

instants.
1 See Table 2.3.
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Observe that as mentioned in Section 5.1 the dependence of the system output
T on the unknown g, represented here by T [g], can be implicit in the sense that it
is related, for example, to the solution of a differential equation, exactly as in the
situation that we shall consider in this chapter. We remark that the dependence of
the computed magnitude T in g implies a cause-effect relationship, which can be
linear or non-linear, explicit or implicit.

To better understand the functional J[g] described by Eq. (7.1), consider the situ-
ation depicted in Fig. 7.2a. This figure represents a thin plate with an internal thermal
source, which can depend both on space and time, g = g(x,t), and having its external
surfaces insulated. The mechanism of heat transfer within the plate is purely by heat
conduction. From transient temperature measurements, inside the medium, Xm(t),
m = 1, 2, . . . ,M (see Fig. 7.2b), it is desired to estimate the intensity of the thermal
source, g(x, t).

heat source

0 L

x

t

insulated
boundary

...1

boundary

measured
temperatures

M 
x=Lx=0

x

insulated

(a)

X
m
(t)

m=M

m=i
m=1

interval
observation t f

time

measured
temperature

(b)

Fig. 7.2 (a) Distributed time-dependent thermal source. (b) Transient temperature measure-
ments.

In this case, the functional J, Eq. (7.1), is written as

J
[
g
]
=

1
2

M∑

m=1

∫ t f

0

[
Tm[g](t) − Xm(t)

]2 dt , (7.2)

where [0,t f ] represents the observation time period in which experimental data is
acquired.

To obtain a computational solution, a discretization of the independent variables
(x and t in this example) is performed. Nonetheless, as will be seen in the next
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sections, the minimization procedure of the functional given generically by Eq. (7.1)
does not depend on such discretization. The procedure is fully performed in a func-
tion space. The discretization is performed afterwards, and only to obtain a compu-
tational solution.

The parameter estimation problems presented in Chapters 5 and 6 are finite di-
mensional optimizations. The search for a solution is performed by solving the crit-
ical point equation of the residual functional,for example Eq. (5.2), in Rn, to mini-
mize it.

On the other hand, the conjugate gradient with the adjoint equation, Alifanov’s
regularization method, considers directly the functional minimization problem, by
building a minimizing sequence. Conjugate gradient has been used successfully in
solving inverse problems of function estimation. This method, which has been pre-
sented for real symmetric matrices in Section 3.10, will be presented in Section 7.3
for the problem of heat conduction. Its success is due, mainly, to two important fea-
tures: (i) the regularization is embedded in it; and (ii) the method is computationally
efficient.

7.2 Expansion in Terms of Known Functions

Before carrying on with the estimation of functions, assume known a priori, in the
example presented in the previous section, that the intensity of the volumetric heat
source g = g(x, t) can be represented by separation of variables

g(x, t) =

⎛
⎜⎜⎜⎜⎜⎝

L∑

l=0

alPl(x)

⎞
⎟⎟⎟⎟⎟⎠ H(t) .

Here, Pl(x) and H(t) are known functions2 and al, l=0,1, . . . , L are coefficients. The
inverse problem of estimating a function g(x,t) is, then, reduced to the estimation of
a finite number of these coefficients,

Z = (a0, a1, . . . , aL)T .

In this case we would have a parameter estimation problem. Thus the technique
described in Chapter 5 can be applied.

7.3 Conjugate Gradient Method

Consider the following iterative procedure for the estimation of the function g(r)
that minimizes the functional defined by Eq. (7.1) [64],

gn+1(r) = gn(r) − βnPn(r) , n = 0, 1, 2, . . . , (7.3)

where n is the iteration counter, βn is a parameter that specifies the stepsize in the
search direction, Pn, given by

Pn(r) = J′gn (r) + γnPn−1(r) , (7.4)

2 Such as Pl(x) = xl and H(t) = e−t.
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where γn is the conjugate coefficient, with γ0 = 0, and J′gn (r) is the functional gra-
dient3 which, later on in this chapter, we shall show how to compute.

The case when γn = 0, n = 1, 2, . . . , corresponds to the steepest descent method.
This usually converges slowly.

The search stepsize, βn, used in Eq. (7.3), is found by minimizing the functional

R � βn �→ J
[
gn+1

]
= J

[
gn − βnPn]

with relation to βn, that is,

J
[
gn−βnPn] = min

β

1
2

M∑

m=1

∫

Γm

{
Tm

[
gn−βPn] (x) − Xm(x)

}2 dx . (7.5)

The stepsize βn is the solution of the critical point equation of functional J, restricted
to a line passing through gn =gn(r) in the direction defined by Pn =Pn(r), i.e., βn is
the critical point of

R � β �→ J[gn − βPn] ∈ R .

In this case, βn satisfies Eq. (7.5).
We will later show that in initial and boundary value problems for linear partial

differential equations, homogeneous or not, βn is given by

βn =

M∑

m=1

∫

Γm

(Tm[gn](x) − Xm(x))ΔTm[Pn](x) dx

M∑

m=1

∫

Γm

(ΔTm[Pn](x))2 dx

, (7.6)

where ΔT =ΔT [P] represents the linear operator that solves the sensitivity problem
with input value P and, likewise, ΔTm is the evaluation of ΔT [P] in Γm.

The conjugate coefficient can be computed by

γn =

∫

Λ

[
J′gn (r)

]2
dr

/∫

Λ

[
J′gn−1 (r)

]2
dr , (7.7)

which minimizes J[gn − βnPn] with respect to the possible choices of γn in the defi-
nition of Pn, Eq. (7.4). This is in the same vein of what was done to show Eq (3.43d).

To use the iterative procedure described, it is necessary to know the gradient J′g(r)
and the variation ΔTm = ΔTm[Pn]. When obtaining the gradient, an adjoint equation
is used, and the variation ΔTm is obtained as the solution to the sensitivity problem.
In Section 7.4, we show how to obtain the adjoint equation, and consequently the
gradient, as well as how to construct the sensitivity problem for the heat conduction
problem.

3 The general definition of the gradient of a functional is presented in Chapter 8.
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7.4 Thermal Source in Heat Transfer by Conduction

In this section, we present basic problems — the sensitivity problem and the ad-
joint equation — which are instrumental in constructing an algorithm to determine
thermal sources in heat conduction, from temperature measurements.

Obtaining the sensitivity problem, the adjoint equation and the gradient equation
is directly related to the operator of the direct problem, that connects the computed
magnitude, T [g], to the function to be estimated, g(r). These questions will be dis-
cussed in a more general way, in Chapter 8.

We discuss here an example considering the estimation of the spatial and tem-
poral functional dependence of a thermal source, in a one dimensional medium,
without any previous knowledge of the functional dependence, [78].

7.4.1 Heat Transfer by Conduction

Consider a one dimensional plate of thickness L, under the action of heat sources
distributed within the material body, and time-dependent, represented by function
g = g(x, t). The plate is, initially, at temperature T0, and its two boundary surfaces
are thermally insulated at all times. The mathematical formulation of the problem of
heat transfer by conduction in the medium, considering constant thermal properties
(homogeneous, isotropic medium), is given by

k
∂2T
∂x2

(x, t) + g(x, t) = ρcp
∂T
∂t

(x, t) , 0 < x < L , t > 0 (7.8a)

∂T
∂x

(0, t) = 0 ,
∂T
∂x

(L, t) = 0 , for t > 0 and (7.8b)

T (x,0) = T0 , in 0≤ x≤L , (7.8c)

where k is the material’s thermal conductivity, ρ is its specific mass and cp is the
specific heat.

When the geometry, the material properties, the source term, the initial and bound-
ary conditions are known, we have a direct problem, whose solution provides the
knowledge of the temperature field in the full spatial and temporal domain. When
some of these characteristics (or a combination thereof) is unknown, but experimen-
tal measurements of temperature inside the medium or at its boundary are available,
we deal with an inverse problem, from which it is possible to estimate the unknown
quantities.

Here, we will consider the inverse problem for the estimation of g(x,t) = g1(x)g2(t)
from the experimental transient measurements of temperature, Xm(t), m=1, 2, . . . ,M,
on the boundaries and inside the medium, [78].

The temperature field necessary to compute step 2 of the algorithm presented
in Section 7.5.1 is obtained by solving Eq. (7.8), using as source term the estimate
obtained in a previous step of the iterative procedure.
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7.4.2 Sensitivity Problem

In general, the sensitivity problem corresponds to a linearization of the original
problem. In the present case, the sensitivity problem is obtained by perturbing the
heat source, g→g+Δg, causing a variation in the temperature field, T →T+ΔT . The
sensitivity problem corresponds to the problem satisfied by ΔT .

The problem given by Eq. (7.8) is then written as

k
∂2(T + ΔT )
∂x2

+ (g + Δg) = ρcp
(∂T + ΔT )
∂t

, 0< x<L , t>0 ,

∂(T + ΔT )
∂x

= 0 , at x=0 and x=L , t>0 , and

T + ΔT = T0 for t=0 , in 0≤ x≤L .

Since the problem is linear, when the perturbed equations are subtracted from the
original problem, the sensitivity problem for ΔT is obtained,

k
∂2ΔT
∂x2

(x, t) + Δg(x,t) = ρcp
∂ΔT
∂t

(x, t) , 0< x<L , t>0 , (7.9a)

∂ΔT
∂x

(x, t) = 0 , at x=0 and x=L , t>0 , (7.9b)

and ΔT (x, t) = 0 for t=0 , and 0≤ x≤L . (7.9c)

Notice that this problem is linear in Δg, but the problem in Eq. (7.8) is not linear in
g, due to the non-homogeneity of the initial condition.

A perturbation in the source term, g→ g+Δg, causes a perturbation in the tem-
perature distribution T → T +ΔT , that satisfies T [g+Δg] = T [g]+ΔT [Δg], where
ΔT = ΔT [Δg] represents the solution of Eq. (7.9) and is linear in Δg.

7.4.3 Adjoint Problem and Gradient Equation

To obtain the adjoint problem, we first consider the minimization problem for J[g]
given by Eq. (7.2), repeated here for convenience,

J[g] =
1
2

M∑

m=1

∫ t f

0

[
T [g](xm, t) − Xm(t)

]2 dt (7.10)

subjected to the restriction that T satisfies Eq. (7.8). Here, xm, m= 1, 2, . . . ,M, rep-
resent the positions of the temperature sensors, and t f is the final time of observation
(aquisition of experimental data).

This minimization with restriction may be turned into a minimization problem
with no restrictions (unconstrained optimization). Multiply the restriction, Eq. (7.8a),
properly equated to zero by letting the term in the right hand side be moved to the
left hand side, by a Lagrange multiplier, λ = λ(x,t), integrate it and add to J[g] to
construct a Lagrangian functional,
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L[g] =
1
2

M∑

m=1

∫ t f

0

[
T [g](xm, t) − Xm(t)

]2 dt + (7.11)

+

∫ t f

0

∫ L

0
λ(x, t)

[

k
∂2T
∂x2

(x, t) + g(x, t) − ρcp
∂T
∂t

(x, t)

]

dx dt .

Here, λ = λ(x,t) is a so-called adjoint function. The minimization ofL is equivalent
to the minimization of J restricted to Eq. (7.8a). Further, we have to minimize L
restricted to satisfying Eqs. (7.8b,7.8c).

We shall compute the derivative4 of L in g, and denote it by dLg. We have

L[g+Δg] =
1
2

M∑

m=1

∫ t f

0

[
Tm[g](t) + ΔTm[Δg](t) − Xm(t)

]2 dt (7.12)

+

∫ t f

0

∫ L

0
λ(x,t)

[

k
∂2(T + ΔT )
∂x2

+ g(x,t)

+ Δg(x,t) − ρcp
∂(T + ΔT )
∂t

]

dx dt .

Here, Tm[g](t)=T [g](xm,t). Subtracting Eq. (7.11) from Eq. (7.12) results

L[g + Δg] − L[g]

=
1
2

∫ t f

0

M∑

m=1

[
2 (Tm[g](t) − Xm(t)) + ΔTm[Δg](t)

]
ΔTm[Δg](t) dt +

+

∫ t f

0

∫ L

0
λ(x,t)

[

k
∂2ΔT
∂x2

(x,t) − ρcp
∂ΔT
∂t

(x,t)

]

dx dt

+

∫ t f

0

∫ L

0
λ(x,t)Δg(x,t) dx dt .

The derivative is obtained from the previous expression by dropping the second
order terms in Δg due to the linearity of the considered problems. Here, it is only
necessary to think that Δg is small, an infinitesimal, that ΔTm[Δg] = O(Δg), and that
second order terms, (Δg)2, are even smaller and can be despised. Therefore,

dLg[Δg] =
∫ t f

0

M∑

m=1

[
Tm[g](t) − Xm(t)

]
ΔTm[Δg](t) dt

+

∫ t f

0

∫ L

0
λ(x,t)

[

k
∂2ΔT
∂x2

(x,t) − ρcp
∂ΔT
∂t

(x,t)

]

dx dt

+

∫ t f

0

∫ L

0
λ(x,t)Δg(x,t) dx dt . (7.13)

4 The definition of the derivative of a functional, in an abstract context, is presented in
Chapter 8.
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Now, λmust be chosen in a way to cancel the sum of the first two integrals on the
right side of the equation, or, in other words, in such a way that dLg[Δg] is given
by the last integral on the right hand side of Eq. (7.13). This is an operational rule
that allows to determine the gradient of L, L′

g, and its justification is presented in
Section 8.2.4.

Integrating by parts the second integral and using the boundary conditions that
ΔT satisfies, we see that these integrals will cancel each other if λ satisfies the
following adjoint problem

k
∂2λ

∂x2
(x,t) +

M∑

m=1

[Tm(x,t) − X(x,t)] δ(x − xm) = −ρcp
∂λ

∂t
(x,t) (7.14a)

for 0 < x < L , t > 0 (7.14b)
∂λ

∂x
(x,t) = 0 at x = 0 and x = L , t > 0 (7.14c)

and λ(x,t f ) = 0, for 0 ≤ x ≤ L . (7.14d)

Therefore, Eq. (7.13) is reduced to

dLg[Δg] =
∫ t f

0

∫ L

0
λ(x,t)Δg(x,t) dx dt . (7.15)

Due to the definition, the gradient L′
g(x,t) is the function that represents the deriva-

tive in the inner product, i.e., it is such that

dLg[Δg] =
∫ t f

0

∫ L

0
L′

g(x,t)Δg(x,t) dx dt . (7.16)

Comparing Eqs. (7.15) and (7.16) we get that

L′
g(x,t) = λ(x,t) .

It is obvious that

J[g] = L[g,λ], for every g and λ ,

because T satisfies the direct problem, and the term multiplied by λ in L is null.
Then, both derivatives coincide, dJg = dLg and the same is true for the gradients,
J′g=L′

g. We conclude that

J′g(x,t)=λ(x,t) ,

i.e., the gradient of J is given by the solution of the adjoint problem.
Notice that the adjoint problem is a final value problem. Defining a new variable

t∗= t f −t , for 0≤ t≤ t f , (7.17)

it is transformed into an initial value problem, [78, 92, 87].
The direct problem, Eq. (7.8), the sensitivity problem, Eq. (7.9), and the adjoint

problem, Eq. (7.14), after the change of variable mentioned previously, differ only
in the source term. Therefore, the same computational routine can be used to solve
the three problems, except that the solution to the adjoint equation has to take into
account the change of variables (it should be integrated backwards in time).
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7.4.4 Computation of the Critical Point

We present a derivation of Eq. (7.6). Initially notice that,

J[g + γP] =
1
2

M∑

m=1

∫

Γm

(Tm[g](x) − Xm(x) + γΔTm[P](x))2 dx .

From this expression it can be deduced that

d
dγ

J[g + γP] =
M∑

m=1

∫

Γm

(Tm[g](x) − Xm(x)

+γΔTm[P](x))ΔTm[P](x) dx . (7.18)

Having this derivative set equal to zero, replacing γ by −βn, g by gn, and P by Pn

on the right side of the previous equation, and solving with respect to βn, we obtain
Eq. (7.6).

7.5 Minimization with the Conjugate Gradient Method

The iterative procedure that defines the conjugate gradient method in the infinite
dimensional setting written to be applied to a heat conduction problem is presented
here. The results are discussed in Section 7.6.

7.5.1 Conjugate Gradient Algorithm

The iterative procedure that defines the conjugate gradient method can be summa-
rized as follows.

1. Let n=0. Choose an initial estimate, g0(r), for example, g0(r)= ‘constant’;

2. Compute Tm[gn], m = 1, 2, . . . ,M, by solving the direct problem5, Eq. (7.8);

3. Since Tm[gn] and the experimental measurements Xm(x), m = 1, 2, . . . ,M, for
x ∈ Γm, are known, solve the adjoint problem, Eq. (7.14), which determines
the gradient6, J′gn (r);

4. Compute the conjugate coefficient, γn, with Eq. (7.7);

5. Compute the search direction, Pn(r), with Eq. (7.4);

6. Solve the sensitivity problem with input data Δg = Pn, and obtain ΔT [Pn],
Eq. (7.9);

5 As mentioned in Section 7.1, this computation can be related to the solution of a differen-
tial equation, an integro-differential equation, or of an algebraic system of equations.

6 See Section 7.4, for the appropriate gradient in a heat conduction problem.
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7. Compute the stepsize in the search direction, βn, with Eq. (7.6);

8. Compute the new estimate gn+1(r) with Eq. (7.3);

9. Interrupt the iterative procedure if the stopping criterion is satisfied. Other-
wise, set n = n + 1 and return to Step 2.

7.5.2 Stopping Criterion and Discrepancy Principle

We now present a brief discussion on the stopping criterion. Real experimental data,
Xm(x), m = 1, 2, . . . ,M, for x∈Γm, is always contaminated by noise. In this case, the
usual stopping criterion J[gn+1]<δ, where δ is a small value fixed a priori, without
any further reasoning, may prove inadequate. In fact, the high frequencies of the
experimental noise could be incorporated in the estimate gn(r), possibly rendering
it useless. This effect can be appreciated in Fig. 7.3a. The original function, g(r),
is made up of an ascending slope and a descending slope. The estimate obtained
presents high frequency oscillations.

(a) (b)

Fig. 7.3 Estimate of a function g = g(r). The exact value of g is represented by a graph of
triangular shape. (a) one can observe that the estimate is contaminated by high frequency
experimental noise; (b) The estimate is performed by using the discrepancy principle as the
stopping criterion for the iterative procedure, resulting in a smoother estimate, almost free
from experimental noise.

Following the concepts presented in Section 3.9, let us analyze further this situa-
tion. We want to solve a problem of the form

Ax=y ,

where x is the unknown. However, instead of y, we have a noisy experimental data
yε , in such a way that

|y − yε | < ε .
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Let xα,ε be the estimate of x determined using the noisy data yε , with a regularization
scheme (where α is the regularization parameter). It does not make sense, therefore,
to demand that the residual, |Axα,ε−yε |, be much smaller than ε, [30]. The best we
can expect is that

‘residual’ ≈ ε, or then, J = |R|2/2 ≈ ε2/2 . (7.19)

Let us assume that the standard deviation of the experimental errors, σ, is the same
for all the sensors and measurements,

|Tm[g](t) − Xm(t)| � σ .
Replacing this approximation in Eq. (7.2), we have

J ≈ Mσ2 t f /2 .

Let

η2 = Mσ2t f /2 .

The stopping criterion to be followed then is the discrepancy principle, [1, 2], in
which the iterative procedure is interrupted when

J[gn+1] < η2 .

7.6 Estimation Results

Recall that Fig. 7.3a presents the estimation of g when the stopping criteria does not
take in consideration the discrepancy principle.

Figure 7.3b presents the estimate of the same function considered in Fig. 7.3a,
using, however, the discrepancy principle as the stopping criterion for the iterative
procedure. It is plain to see in this case that the interruption of the iterative procedure
occurred previously to the beginning of the degradation of the estimates. Thus, the
high frequency oscillations were not incorporated into the estimate. We can see with
this example the role of the discrepancy principle.

A further example of the employment of the methodology concerns the estima-
tion of the strength of a heat source of the form,

g(x,t) = g1(x) g2(t) .

The algorithm described in Section 7.5.1 is used, where, in Step 3, the adjoint func-
tion is computed using Eq. (7.14). The gradient is obtained and, in Step 6, the vari-
ation ΔTm is computed using the sensitivity problem, given by Eq. (7.9), with the
source term Δg(x,t)=Pn(x,t), where Pn(x,t) has been computed in Step 5.

Figures 7.4 and 7.5 show such an example of the estimation of the strength of
time and space dependent heat sources for two different test cases. In Fig. 7.4 we
consider a heat source with a gaussian dependence in both space and time. In the
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situation depicted in Fig. 7.5, a piecewise-linear periodic sawtooth function in space
is considered. In these figures, the dimensionless time variable τ=αt/L2, where α=
k/ρcp is the material thermal diffusivity, and dimensionless space variable X= x/L ,
are used. Solid lines correspond to exact values for the strength of the heat source.
Estimates are presented for the dimensionless time instants

τ=0.1τ f ; 0.3τ f and 0.5τ f .

(a)

G, intensity

X
G, intensity

τ/τf

(b)

G, intensity

G, intensity

X

τ/τf

Fig. 7.4 Estimation of a space and time dependent volumetric heat source using nine temper-
ature sensors (sensors positions are marked on X axis by bullets): (a) without experimental
error – spatial variation and temporal variation. (b) with 13 % of experimental error – spatial
variation and temporal variation.

Figure 7.4 present estimates for the strength of the heat source, in the dimension-
less positions

X=0.13; 0.25 and 0.5 ,

with and without experimental error. It is possible to observe the degradation of the
estimates when a relatively large error level is considered in the experimental data
used for the solution of the inverse heat conduction problem. Figure 7.5 exhibits
results for

X=0.06; 0.12 and 0.17 .

In both figures, G=g/gref, where gref was adjusted in such a way that the maximum
measured value for the dimensionless temperature was unity.
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In Figs. 7.5 estimates are presented for a heat source with sudden variations in
the spatial component. The goal is to show the effect of the position of the tem-
perature sensors. In both cases, experimental errors are not considered. Solid lines
correspond to exact values for heat source strength. In Fig. 7.5a the temperature
sensors are not in the same position where the sudden temperature variations occur.
When better positions are chosen, the estimates improve significantly, as shown in
Fig.7.5b. We surmise that in a general way the quality of the estimates obtained
with the solution of an inverse problem improves when adequate information is in-
troduced in the problem.

(a)

G, intensity

X

G, intensity
X

τ/τf

(b)

G, intensity

G, intensity
X

τ/τf

Fig. 7.5 Estimation of a space and time dependent volumetric heat source using seven tem-
perature sensors (sensors positions are indicated by black bullets along X axis): (a) badly
positioned – spatial variation and temporal variation; (b) well positioned – spatial variation
and temporal variation

Exercises

7.1. An alternative way to derive Eq. (7.6) that is popular among engineers is by
using Taylor’s formula. Do it.
Hint. On the right hand side of Eq. (7.5), use the following Taylor’s expansions
(keeping only the first order terms),

Tm
[
gn − βnPn] = Tm

[
gn] − ∂Tm

∂gn
βnPn , and

Tm
[
gn + Pn] = Tm

[
gn] +

∂Tm

∂gn
Pn .

Use also ΔTm [Pn] = Tm
[
gn + Pn] − Tm

[
gn].
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7.2. Mimick the proof that Eq. (3.41d) can be written as Eq. (3.43d) to prove
Eq. (7.7).
Hint. Lot’s of work here!

7.3. (a) Show that the problem defined by Eq. (7.9) is linear in ΔT . That is, let
ΔT [δgi], i = 1,2, be the solution of Eq. (7.9) when the source is Δgi. Let
k ∈ R. Show that

ΔT [kΔg1] = kΔT [Δg1] , and

ΔT [Δg1 + Δg2] = ΔT [Δg1] + ΔT [Δg2] .

(b) Show that the solution of Eq. (7.8) is not linear with respect to g unless T0 = 0.
In this case, show that it is linear.

7.4. Check the details in the derivation of Eq. (7.14).
Hint. Show by integration by parts that

∫ t f

0
λ
∂ΔT
∂t

dt = λ ΔT |t=t f
−

∫ t f

0

∂λ

∂t
ΔT dt ,

∫ L

0
λ
∂2ΔT
∂x2

dx =

(

−ΔT
∂λ

∂x

)∣∣∣
∣
∣
∣

L

0

+

∫ L

0

∂2λ

∂x2
ΔT dx ,

and the boundary and initial conditions of the sensitivity problem, Eq. (7.9) are used
in the derivation. Show that, for appropriate choices of final values and boundary
values for λ,

∫ t f

0

∫ L

0
λ(x,t)

[

k
∂2ΔT
∂x2

− ρcp
∂ΔT
∂t

]

dx dt

=

∫ t f

0

∫ L

0

[

k
∂2λ

∂x2
+ ρcp

∂λ

∂t

]

ΔT dx dt .

Also, assume that Dirac’s delta ‘function’, δ = δ(x) has the property that
∫ a

−a
h(x)δ(x) dx = h(0) ,

for a > 0 and h = h(x) a continuous function. Show that

∫ t f

0

M∑

m=1

[
Tm[g](t) − Xm(t)

]
ΔTm[Δg](t) dt

=

M∑

m=1

[Tm(x,t) − X(x,t)] δ(x − xm)

7.5. Perform the change of variables, Eq. (7.17), and determine the problem satis-
fied by

λ̄(t) = λ(t f − t) ,

where λ satisfies Eq. (7.14).
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7.6. Verify the derivation of Eq. (7.18) and show that it leads to Eq. (7.6).

7.7. In the heat conduction in a one-dimensional medium, with constant thermal
properties, and insulated boundaries, the strength of two plane heat sources, g1 =

g1(t) and g2 = g2(t), can be estimated simultaneously, from measurements made of
the temperature at a certain number of interior points, [76]. Derive the sensitivity
problem, the adjoint problem, and the gradients J′g1

and J′g2
for Alifanov’s iterative

regularization method, considering the perturbations g1 → g1 + Δg1 and g2 →
g2 + Δg2, which leads to the perturbation T → T + ΔT .
Hint. Consider the conjugate coefficients

γn
g1
=

∫

Λ

[
J
′n
g1

]2
dr

∫

Λ

[
J
′n−1
g1

]2
dr

and γn
g2
=

∫

Λ

[
J
′n
g2

]2
dr

∫

Λ

[
J
′n−1
g2

]2
dr



Chapter 8

A General Perspective

This chapter introduces a more general perspective of direct and inverse problems.
At the outset, we must observe that, from a mathematical standpoint, there is no

reason to justify the distinction between direct and inverse problems. As pointed out
by Keller [43], it is adequate to say that two problems are mutually inverse if the for-
mulation of one involves partly or completely the solution of the other. Our presen-
tation emphasises this. However, in applying the methodology of inverse problems
to any particular physical problem, we can say that the model represents a cause-
effect relationship and, in this case, finding that relationship is an inverse problem,
determining the effect produced by a cause is a direct problem,while determining the
cause by the effect it provokes is again an inverse problem. Also, when considering
initial and boundary value problems for evolution equations — as those involving
ordinary and partial differential equations or recurrence relations, — there is a stan-
dard distinction between cause and effect which leads to a classification of problems
as direct and inverse problems. Therefore, to facilitate the discussion, we will con-
tinue calling some of them direct and others inverse. A more detailed discussion of
the classification of inverse problems is presented.

We also consider the question of equivalence between gradient computation,
based on its definition, and the more common computation by means of an oper-
ational rule using a Lagrangian function. This operational rule was used in Sec-
tion 7.4. The theoretical derivation presented here of the operational rule serves as a
proof in the case of Type I problems, but only as a guide for Types II to IV problems.
For the latter, more sophisticated mathematical considerations have to be carried out
because they involve infinite dimensional spaces [44, 29, 66].

8.1 Inverse Problems and Their Types

We consider a somewhat more general presentation of inverse problems. It has the
ingredients already discussed in Chapter 1, and in other chapters. Here, we just men-
tion the most basic mathematical structures needed. To treat the problems in a rigor-
ous mathematical fashion, more complex concepts are called for, which, typically,
are problem-dependent. We do not discuss that. We proceed with some examples,
to illustrate the distinct pieces of the formulation and their applicability.

8.1.1 Classification of Problems

LetU,V, T , andY be normed vector spaces with inner product1. We think of these
sets as

1 These notions are recalled in the exercises of Appendix A.
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U — ‘space of fields’;

V — ‘space of sources’;

T — ‘space of physical properties of a class of mathematical models’;

Y — ‘auxiliary space’.

All these spaces are ‘glued’ together by a function

G :U ×V × T → Y ,

constituting a model of a cause-effect relationship. We define2,3

P1: Direct problem Given a source b ∈ V, and a model specified by p ∈ T ,
determine the field x ∈ U such that

G(x,b,p) = 0 . (8.1)

The solution of the direct problem, Eq. (8.1), is denoted byXp(b), andX : V×T →
U, with X(b,p) = Xp(b). It is the solution operator of the direct problem. We can,
therefore, write

G(Xp(b),b,p) = 0 . (8.2)

With this notation, we can represent the black box, Fig. 1.1, as

input: b
Xp

−→ output: x = Xp(b) .

Note that the direct problem is problem P1, described in Section 2.8: given stimuli
(sources), determine reactions (fields).

P2: Inverse reconstruction problem Having a specific model by knowing p ∈ T ,
and given a field x ∈ U, determine a source b ∈ V, satisfying Eq. (8.1).

This is problem P2 described in Section 2.8: given reactions, determine stimuli.

P3: Inverse identification problem Given a field x ∈ U, and source b ∈ V, deter-
mine the physical properties of the system p ∈ T , still satisfying Eq. (8.1).

This is problem P3 described in Section 2.8: given stimulus and corresponding re-
actions, pinpoint the properties of the model. We remark that, in fact, this general
formulation makes virtually no real distinction between direct and inverse problems.
All of them refer to the same equation, Eq. (8.1).

2 We think of the elements of V as causing an effect belonging to U which is the set of
effects. A specific cause-effect relationship is established by G and a particular element
of T .

3 We use the same notation, P1 to P3, already introduced in Chapters 1 and 2, since the
concepts presented here are just generalizations of the ones presented there.
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The issue of characterizing a model appropriate for a particular physical situation
is completed when the setsU,V, T , andY, and a functionG relating them (explicit
or implicitly defined), are chosen.

Most of the times we are thinking about direct problems consisting of initial and
boundary value problems for partial differential equations. This is why we say that
b is the source, or the forcing term, and it could also indicate an initial and/or a
boundary condition, p represents physical properties of the system, and x is the
field. We remark, though, that the analysis presented here does not limit itself to this
case.

Example 8.1. Heat equation. We illustrate these problems by the initial value
problem for the heat equation with Robin’s boundary condition in a material do-
main Ω ⊂ Rn,

ρcp
∂u
∂t
=

n∑

i, j=1

∂

∂xi

(

ki j
∂u
∂x j

)

+ f , for x ∈ Ω, t > 0 ,

u(x, 0) = u0(x) , for x ∈ Ω (initial condition) ,

αu + β
∂u
∂n
= g, for x ∈ ∂Ω and t > 0 (Robin’s boundary condition) .

Here,

Ω × [0, +∞[� (x,t) �→ u(x,t) ∈ R ,

is the temperature distribution, ρ = ρ(x) is the specific mass of the material, cp =

cp(x) is the specific heat of the material, K = K(x) = (ki j)i, j=1,...,n is the thermal
conductivity tensor, f = f (x,t) is an internal volumetric heat source/sink, α and β
are material properties, such as the convection heat transfer coefficient, defined at
the boundary, n is the exterior normal vector to the boundary of Ω, ∂∂n = n · ∇ is the
exterior normal derivative, and g is a boundary heat source/sink.

One possibility is to write Robin’s boundary condition as

α(u − uamb) + β
∂u
∂n
= 0 ,

that is, g = αuamb, where uamb refers to the external temperature of the body.
Recall the black box mental prototype discussed in Chapter 1. In the present

example, the input (source term), b, has three components, the initial condition u0,
and the heat sources/sinks, f and g, respectively, in the interior of the body, and at its
boundary. The output (field), x, is given by the temperature distribution u. The class
of models, F = Fp, can be parametrized by p, which corresponds to the properties
of the model, and is given by various mathematical objects, Ω, ρ, cp, K, α and β.

More explicitly, in this heat equation problem, the source term, b, consists of

b = (u0, f ,g) ∈ V ,

where

V =C0(Ω,R) ×C0(Ω×]0,+∞[,R)× C0(∂Ω×]0, +∞[,R) ,
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and, for instance,

C0(∂Ω×]0, +∞[,R) ,

represents the set of continuous functions defined on ∂Ω×]0, +∞[, with values in
R. Likewise, C2 represents functions with continuous second order derivatives.

The field (generically represented by x) would be u,

u ∈ U = C2(Ω×]0, +∞[,R) ∩ C0(Ω × [0, +∞[,R) ,

where Ω stands for the closure of Ω, Ω = Ω ∪ ∂Ω.
Next, the physical properties are represented by

p = (Ω,ρ,cp,K,α,β) ∈ T ,

where,

ρ ∈ C0(Ω×]0, +∞[,R) ,

cp ∈ C0(Ω×]0, +∞[,R) ,

K ∈ C0(Ω×]0, +∞[,M3×3) ,

and M3×3 is the set of real 3 × 3 matrices. Also,

α ∈ C0(∂Ω×]0, +∞[,R) , and

β ∈ C0(∂Ω×]0, +∞[,R3) .

One way to handle the set of regions Ω as a subset of an inner-product space, as re-
quired by, for instance, the space of physical properties,T in Eq. (8.1), is to consider
each subset Ω as represented by is characteristic or indicator function,

χ
Ω
(x) =

{
1, if x ∈ Ω
0, otherwise

.

Now, the operator G : U×V×T → Y would have the form G = (G1,G2,G3), with

G1 = ρcp
∂u
∂t
−

n∑

i, j=1

∂

∂xi

(

ki j
∂u
∂x j

)

− f ∈ C0(Ω×]0, +∞[,R) ,

G2 = u(x,0) − u0(x) ∈ C0(Ω,R) ,

G3 = αu + β
∂u
∂n

− g ∈ C0(∂Ω×]0, +∞[,R) .

Finally, the equation would be written as

G(u,b,p) = (G1(u,b,p),G2(u,b,p),G3(u,b,p)) = 0 ,

where the zero on the right hand side is a special zero,

0 ∈ C0(Ω×]0, +∞[,R) ×C0(Ω,R) × C0(∂Ω×]0, +∞[,R) .
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8.1.2 Observation Operators

One major use of inverse problems is to model data coming from real experiments.
In order to understand this better, it is convenient to model the data acquisiton pro-
cess, and we shall do this right away.

Let C : U → W be a function where W is a vector space with inner product
〈 · , · 〉, and U is the space of fields. Given x ∈U, we say that z = C(x) is an obser-
vation of x, and that C is an observation operator. Notice that we can have, as a
particular case, W=U and C the identity function.

Example 8.2. One or several measurements. Let T = T (a,t), a ∈R, t ∈ [0,∞), be
the temperature distribution in a one dimensional, isolated, bar. As time advances,
the temperature at a fixed point, say a=2, represented by the function τ(t)=T (2,t),
is an observation of T . The observation operator corresponding to the situation we
just described represents the observations depending on the possible temperature
fields, and is given by function Γ,

C0(R × [0,∞),R)
Γ−→ C0([0,∞),R)

T �→ τ = Γ[T ] ,

with

[0,∞)
Γ[T ]
−→ R

t �→ τ(t) = Γ[T ](t) = T (2,t) .

We remark that the notation is quite flexible and can be worked out to accommodate
one or several measuring points. If one measures the temperature at two points,
say a = 2, and a = 5, it is sufficient to let Γ[T ] ∈ C0([0,∞),R2) and Γ[T ](t) =
(T (2,t), T (5,t)),

[0,∞[� t �→ τ(t) = Γ[T ](t) = (T (2,t), T (5,t)) ∈ R2 .

Example 8.3. Discrete time observation operator. With T = T (a,t) as in the
previous example, the sequence

τn = T (2,n) , for n ∈ N ,

is an observation of T . It means that one is measuring the temperature at position
x = 2 and at times 1, 2, 3, . . .. The observation operator O is given by

C0(R × [0,∞),R)
O−→ s(N)

T �→ τ = O[T ] ,

where s(N) is the set of sequences of real numbers,

s(N) = {(xn)n∈N, such that xn ∈ R, for all n ∈ N} ,
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and

N
O[T ]
−→ R

n �→ τn = O[T ](n) = T (2,n) .

Example 8.4. Blurring operator. Another example of an observation operator
would be the blurring operator, defined in Eq. (4.1), p. 86.

Let ML×M be the set of real L × M matrices, and

ML×M
β
→ ML×M

I → β(I) = Y

where

Yi j =

L∑

i′=1

M∑

j′=1

Bi′ j′

i j Ii′ j′ , i = 1, . . . ,L, j = 1, . . . ,M .

8.1.3 Inverse Problems in Practice

There is a slight difference between the theoretical formulation of inverse problems,
presented in Section 8.1.1, and the way it has to be formulated to handle practical
problems. This leads to another formulation of inverse problems, though still pre-
sented in mathematical terms. In practice we have to be more flexible or to settle for
weaker goals.

Due to the necessity of solving problems taking into account the behaviour of the
system under investigation, represented by the field x, and since it is captured by
observations, the formulation has to include observation operators.

For instance, the theoretical inverse reconstruction problem to be solved can,
therefore, be rephrased as: if the physical properties of the system, p, are known,
and a field observation, z=C(x), is known (but x is unknown), determine the source
b. That is,

given z = C(x), and p, determine b such that

Xp(b) = x . (8.3)

Notice that since x is unknown, we cannot check whether Eq. (8.3) is satisfied or
not. That is, unless C is an invertible function, it is impossible, in general, to solve
this problem, or at least it is impossible to verify if it has been solved.

By applying the observation operator on both sides of Eq. (8.3), and since z =
C(x), we get the null residual equation,

C(Xp(b)) = z . (8.4)

This is an equation that can be verified.
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It is worthwhile to emphasize that Eq. (8.4) is a consequence of Eq. (8.3). How-
ever, they are not equivalent. Having found b satisfying Eq. (8.4), it does not imply
that Eq. (8.3) is satisfied. Nonetheless, we ellect the problem of knowing p and z,
and wanting to determine b satisfying Eq. (8.4).

Given a source b and physical properties p, the predicted observation — due to
the source b — is defined by C(Xp(b)). We remark that, to compute the predicted
observation, first the direct problem is solved for the source b, determining the field
Xp(b), and then, to observe it, the observation operator C is applied to the field
Xp(b), and C(Xp(b)) is obtained.

The theoretical residual is defined by

r = C(Xp(b)) − z ,

and, for each b, it is a measure of how much b does not satisfy Eq. (8.4), if r � 0.
In practical applications, an inverse problem must be solved not with the knowl-

edge of an observation, z, of the solution of the direct problem, but from experimen-
tal data, Zmeas. That is, in practice z is not known. Even so, the data is modeled as if
it was obtained by means of an observation operator, when in fact it was not.

The practical residual is defined as

R = C(Xp(b)) − Zmeas .

We have, therefore, two reasons to change what is understood as solution of the
inverse problem:

(i) instead of knowing x, only z=C(x) is known;

(ii) as a matter of fact, not even z=C(x) is known, only Zmeas is, which, suppos-
edly, is a measurement (or several), or an approximation, of z.

Thus, it is no longer possible to interpolate the data with the model to solve the
inverse problem, as required by Eq. (8.3). There one needs the explicit knowledge
of x, which is unavailable.

We define practical inverse problems:

P∗2: Practical inverse reconstruction problem Given a measured observation of
field x, denoted by Zmeas, and physical properties p, determine the source b∗,
that minimizes half the quadratic error function, (or half the squared residu-
als)

V � b �→ E[b] =
1
2
|R|2 = 1

2
|C(Xp(b)) − Zmeas|2 , (8.5)

i.e., determine b∗ such that

E[b∗] = min
b∈V

E[b] .

Notice that the size of C(Xp(b))−Zmeas is to be minimized, i.e., b∗ must be chosen to
minimize the difference between the predicted observation when the source b is as-
sumed known, which is computed by C(Xp(b)), and the experimental measurement,
Zmeas, which is obtained experimentally.
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P∗3: Practical inverse identification problem Given a measured observation of
field x, Zmeas, and a known source b, determining the physical properties p∗,
that minimizes half the quadratic error function

T � p �→ E[p] =
1
2
|C(Xp(b)) − Zmeas|2 . (8.6)

This is problem P3 described in Section 2.8: given measurements of stimuli and
reactions, determine their relationship.

8.1.4 Domain of Dependence

We intend to distinguish different types of operators by using the concept of domain
of dependence, and for that we begin by discussing three simple examples.

Example 8.5. Let B0(R,R) be the set of continuous and bounded functions defined
on R with values on R. That is, f ∈ B0(R,R) if and only if f ∈ C0(R,R) and there
is K ∈ R such that | f (x)| ≤ K, for all x ∈ R.

Consider a function H from B0(R,R) into itself,

H : B0(R,R) → B0(R,R)

f �→ H[ f ] = g ,

defined by

H[ f ](x) = g(x) =
∫ x+ 1

2

x− 1
2

f (s) ds .

Roughly, we want to say that the domain of dependence of the image of f at x, that
is, the domain of dependence of H[ f ](x) = g(x), denoted by Dg(x), is the subset of
the domain of f where the values of f influence the values of g(x). In this case,

DH[ f ](x) = {s ∈ R such that the value of f (s) affects H[ f ](x)}

=

[

x − 1
2
, x +

1
2

]

.

The previous example has the particularity of f and g = H[ f ] sharing the same
domain. We overthrow this special case by presenting a finite dimension example.
For this, we need to interpret Rn as the function space Fn.

Denote by Fn the set of functions defined on the first n integers with values in R,
that is, Fn = { f | f : {1,2, . . . ,n} → R}. As we shall see, Fn is essentially the same
as Rn. Consider the function

L : Fn → Rn

f �→ L( f ) = ( f (1), f (2), . . . , f (n)) . (8.7)
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Note that Fn and Rn are vector spaces and that L is a linear function between them,
that is,

L( f + g) = L( f ) +L(g) , for all f ,g ∈ Fn (8.8a)

and

L(k f ) = kL( f ) , for all k ∈ R, f ∈ Fn . (8.8b)

Moreover,L has an inverse,

M : Rn → Fn

x �→ M[x] = f , (8.9a)

with

f (i) = xi , for i = 1,2, . . . , n . (8.9b)

One can show that L ◦ M(x) = x and M ◦ L( f ) = f . We denote the inverse by
M = L−1. The function L is called an isomorphism between vector spaces since
it is invertible, Eq. (8.9), and is linear, Eq. (8.8). In a coloquial way, we interpret
Rn as a set of real valued functions defined on the finite set of the first n integers,
{1,2, . . . ,n}.

Example 8.6. Let h : R3 → R2 be defined by

h(x,y,z) =

(
3x + 2y + z

x + z

)

.

We want to discuss an appropriate notion of domain of dependence. For that, we
reinterpret this function as a function between function spaces

h̃ : F3 → F2

f �→ h̃[ f ] = g

where

g(1) = h̃[ f ](1) = 3 f (1) + 2 f (2) + f (3) ,

g(2) = h̃[ f ](2) = f (1) + f (3) .

Now, it seems plausible to define

Dh̃[ f ](1) = Dg(1) = {1,2,3} , and Dh̃[ f ](2) = Dg(2) = {1,3} .

Note that in the previous example, f and g = h[ f ] do not share the same domain.
The same kind of affairs can show up in an infinite dimensional setting.
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Example 8.7. Wave equation. Let B0(R × [0, +∞[,R) be the set of real valued,
bounded, continuous functions defined on R × [0, +∞[. Consider the function W,

W : B0(R,R) → B0(R × [0, +∞[,R)

v �→ W[v] = u

defined by

u(x,t) =W[v](x,t) =
1
2

∫ x+ct

x−ct
v(s) ds . (8.10)

The domain of dependence, in this case, is given by

DW[v](x,t) = Du(x,t) = [x − ct, x + ct] .

It just happens that u, defined by Eq. (8.10), is the solution of the wave equation,
utt = c2uxx, satisfying the initial conditions, u(x,0) = 0 and ut(x,0) = v(x).

In order to be able to express more precisely what is to be meant by domain of
dependence of the answer to a problem, we need to introduce some notation.

Let Ωd be either {1,2, . . . , k} or an open subset4 of Rk. Likewise, let also Ωa be
such kind of set.

To make things not too technical, let U = C∞
0 (Ωd,R

m) and V = C∞
0 (Ωa,R

n),
where C∞

0 stands for functions infinitely differentiable with compact support5. The
sets U and V are function spaces. If Ωd = {1,2, . . . ,k} then U is just k copies of Rm,
U = Rm ×Rm × . . . ×Rm = (Rm)k.

Let τ be an operator between these spaces,

τ : U → V ,

which shall play the role of the solution operator of a certain problem.
We want to grasp what influences an answer to a problem, the domain of de-

pendence. That is the main, very roughly prescribed, goal. We shall do that by first
determining which places do not interfere with the answer.

Let A be an open subset of Ωd. Then6, C∞
0 (A,Rm) ⊂ C∞

0 (Ωd,R
m).

4 We recall that a set Ω ⊂ Rm is open if for every point a ∈ Ω, there is an open ball centered
around a fully contained in Ω, i.e. there is r > 0 such that if |x − a| < r then x ∈ Ω. A set
F ⊂ Rm is closed if its complement, Rm\F, is open. A set K ⊂ Rm is called compact if it
is closed and bounded, and a set K is called bounded if there is a number l ∈ R such that
|x| ≤ l, for all x ∈ K. For further discussion see [53].

5 We recall that the support of a function f is the smallest closed set containing all the points
x where f (x) � 0. Equivalently, it is the complement of the open set defined by the union
of all open sets where f is not null in any point — the complement of the largest set where
f is different from zero. (Qualitatively, the support is to be the set where all the ‘action’
occurs.)

6 Strictly speaking, given α ∈ C∞
0 (A,Rm), it is not true that α ∈ C∞

0 (Ωd,R
m) because the

domain of definition of α is A and not Ωd. Nontheless, given α, we can construct an
extension of α defined on Ωd, which we denote by α̃ ∈ C∞

0 (Ωd,R
m), given by α̃(x) = α(x)

for all x ∈ A, and α̃(x) = 0 for all x ∈ Ωd\A. By abuse of notation, instead of using α̃, we
say that α ∈ C∞

0 (Ωd,R
m).
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Let u ∈ U, y ∈ Ωa, and v = τ[u]. Assume A ⊂ Ωd be an open set such that

v(y) = τ[u + φ](y) ,

for all φ ∈ C∞
0 (A,Rm) ⊂ C∞

0 (Ωd,R
m). We say that the values of u on A do not affect

the value of τ[u] on y ∈ Ωa. Let Λy be the union of all such open sets A ⊂ Ωd, that
is, Λy is the largest such open set. We define the domain of dependence of v = τ[u]
at y ∈ Ωa as the closed set given by

Dτ[u](y) = Dv(y) = Ωd\Λy .

This definition is compatible with the examples already presented, and work as well,
in a simple way, when Ωd is a finite set. Nonetheless, it is unable to grasp some
fundamental information, as we shall see by example.

Consider Exercises 8.3 and 8.4. In both cases, the domain of dependence is
{0} ⊂ R, a finite set. However, in order to be able to compute β[ f ] = f ′(0), in
Exercise 8.4, one needs the information of f in a neighbourhood of 0, no matter
how small, and not just the value of f in 0. This means that we need an infinite
amount of information.

When the operator τ is such that Dτ[u](y) ⊂ Ωd is an infinite set for at least
a y ∈ Ωa, we say that τ is a global operator. When the domain of dependence
Dτ[u](y) ⊂ Ωd is a finite set for all y ∈ Ωa, we have two possibilities. If we need to
have the knowledge of u in a small neighbourhood of at least a point in Ωd, then we
say that τ is a local operator. Otherwise, it is a pointwise operator.

We rewrite these ideas. Using the notation previously introduced, let v = τ[u] and
y ∈ Ωa. We say that τ is

(a) pointwise operator if v(y) depends on the values of u in a finite number of
points;

(b) local operator if v(y) depends on the values of u in a neighborhood of a finite
numbers of points in its domain;

(c) global operator if v(y) depends on the values of u in a way that cannot be
classified in items (a) or (b).

Example 8.8. The operator Λ given by

Λ : C1
0(R,R) → C1

0(R,R)

f �→ Λ[ f ] = g

where

Λ[ f ](x) = g(x) =
f (x) + f (−x)

2
,

is a pointwise operator.
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8.1.5 Types of Inverse Problems

In the framework described in this chapter, the classification presented in Section
2.8, based on the dimension of the model and of the estimated quantity can be clar-
ified a little more.

In the case of the dimension of the estimated quantity, we have

• In the inverse reconstruction problem, the dimension of the estimated proper-
ties clearly is the dimension of the input space (space of sources), dim (V);

• In the inverse identification problem, the dimension of the estimated proper-
ties clearly is the dimension of the property space, dim (T ).

We say that the model is of infinite dimension if the problem involves global or local
operators, and we say that it is of finite dimension if it involves pointwise operators.

For convenience, we recall here Table 2.3 of inverse problems type:

Type I Estimation of a finite number of parameters in a model of finite dimen-
sion;

Type II Estimation of a infinite number of parameters or a function in a model of
finite dimension;

Type III Estimation of an finite number of parameters in a model of infinite dimen-
sion;

Type IV Estimation of an infinite number of parameters or a function in a model
of infinite dimension.

Example 8.9. Dimension of the model

(a) Let x = x(t), p = p(t), and b ∈ R and consider the problem

x′ = px , for t > 0 ,

x(0) = b ,

If p = p(t) and measurements of x are known, determining b is a type III
inverse reconstruction problem. Whereas, if b and measurements of x are
known, to determine p = p(t) is a type IV inverse identification problem,
whereas if p is a constant, its determination is a type III inverse identification
problem.

(b) Let px = b, with p, x, b ∈ R. Assume b is known, and measurements of x are
also known. The determination of p is a type I inverse identification problem.

(c) Let p(t)x(t) = b(t), for t ∈ R, where p, x, and b are real functions of a real
variable. Assume b(t) is known, and measurements of x(t) are also known.
The determination of p = p(t) is a type II inverse identification problem.



8.2 Gradient Calculation 169

8.2 Gradient Calculation

In this section we begin with some considerations on the computation of the gra-
dient, and then establish an operational rule, in general, which has been used in
Section 7.4.

8.2.1 Reformulation of the Direct Problem

It is necessary, for the analysis we developed to establish the operational rule, that
there is a function, A,

A : U × T −→ V ,

relating U, V and T , in such a way that

G(x,b,p) = b − A(x,p) .

The direct problem7 is therefore, rewritten as: given source b ∈ V and model speci-
fied by p ∈ T , determine the field x ∈ U such that8

A(x, p) = b . (8.11)

Since Xp(b) is the solution of the direct problem, Eq. (8.11), is rewritten as

A(Xp(b), p) = b .

We find it convenient to write A(x,p) = Ap(x).
In the case of the heat equation problem, Example 8.1, it is fairly simple to define

A.

8.2.2 Gradient Calculation by Its Definition

Here, we obtain an expression for calculating the gradient of functional E, Eq. (8.5),
from the definition of gradient [53]. Recall that the gradient of E is an element
of V. Initially we will compute the directional derivative (Gâteaux derivative) of
functional E. Let bε be a curve in V, parameterized by ε, with

b0=b , and (d/dε)|ε=0 bε = b̃ ,

as illustrated in Fig. 8.1.
For small values of ε, we may think of bε as a small perturbation of b, that is,

bε ∼b+ε b̃ , when ε�1 .
7 The reader is advised to pay attention because A plays a different role from matrix A in

Section 1.4. In the way the direct problem is formulated here, A corresponds to matrix
A−1.

8 Notice that b is multiplied by 1. This is the form for the equivalence between the opera-
tional rule and the result using the definition of the gradient. The equation of heat transfer
by conduction, Eq. (7.8a), was written to meet this condition.
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b

b=bo

bε
ε<0

ε>0

∼

Fig. 8.1 Curve parameterized by parameter ε. It’s tangent vector at b is b̃.

If we denote by dEb[b̃] the directional derivative of E at b in the direction b̃, then
by the chain rule

dEb[b̃] =
d
dε

∣
∣∣
∣
∣
ε=0

E[bε] = 〈C(Xp(b)) − Zmeas, dCXp(b) dXp(b) b̃〉 . (8.12)

Here, dCX and dXp(b) denote the derivatives of C and X, evaluated, respectively, at
X and b. The inner product 〈 , 〉 is defined in W.

Recall that the gradient of functional E, evaluated at b, E′
b, is the element of V

that represents the Fréchet derivative of E, dEb, with respect to the inner product,
[53], i.e., such that

dEb[b̃] = 〈E′
b, b̃〉 , for all b̃ ∈ V . (8.13)

From Eqs. (8.12) and (8.13) we see that, while in Eq. (8.13) b̃ is alone in the second
entry of the inner product, in Eq. (8.12) it is being acted upon, successively, by linear
operators dXp(b) and dCXp(b).

Given a linear operator

O : W1 → W2 ,

we denote by O∗ the adjoint operator9 of O, i.e., the operator that switches places
with O in the inner product, or, explicitly

〈Ow1,w2〉 = 〈w1,O∗w2〉 , for all w1 ∈ W1, w2 ∈ W2 .

Using this concept we have, successively, from Eq. (8.12),

dEb[b̃] = 〈
(
dCXp(b)

)∗ [C(Xp(b)) − Zmeas], dXp(b)b̃〉
= 〈(dXp(b))∗

(
dCXp(b)

)∗ [C(Xp(b)) − Zmeas], b̃〉 . (8.14)

9 The adjoint operator can be quite complex, [66], but for matrices it is simple. Given a real
n × m matrix, M, the associated linear operator is

Rm � x �→ Mx ∈ Rn .

Let 〈 , 〉 be the usual real scalar product. Then, the adjoint operator, M∗, corresponds, sim-
ply, to the transpose of M.
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Comparing Eqs. (8.14) and (8.13), we obtain the following expression for the gra-
dient of E at b

E′
b = (dXp(b))∗

(
dCXp(b)

)∗ [C(Xp(b)) − Zmeas] . (8.15)

Equation (8.15) for the gradient of E at b is quite complicate and we shall interpret
it next.

8.2.3 Interpretation of the Gradient:
Sensitivity and Adjoint Problems

Denote dXp(b)b̃ by X̃. The sensitivity problem, associated with the direct problem,
Eq. (8.11), corresponds to the linearization of this problem, that is, it is the problem
that X̃ satisfies.

To obtain the linearized problem, it is enough to substitute in Eq. (8.11), b by bε

and x by X(bε), obtaining Ap(X(bε)) = bε , and to differentiate with respect to ε, in
ε=0. We then have

(d/dε)|ε=0 Ap(Xp(bε)) = (d/dε)|ε=0 bε ,

where, by the chain rule, gives

dAp
Xp(b)dX

p(b)b̃ = b̃ . (8.16)

Therefore, the problem that X̃ satisfies, the sensitivity problem, is

dAp
Xp(b)X̃ = b̃ . (8.17)

Given b, the solution of the direct problem Xp(b) is to be computed, and then
dAp

Xp(b) is evaluated. The sensitivity problem is then: given b̃, determine X̃, such
that Eq. (8.17) is satisfied. Since

X̃ = dXp(b)b̃ ,

it can be concluded that dXp(b) represents the solution operator of the sensitivity
problem, i.e., it is the inverse operator of dAp

Xp(b),

[
dAp

Xp(b)

]−1
= dXp(b) .

This could also have been seen from Eq. (8.16).
Now, we note that the adjoint operator of the solution operator of the sensitiv-

ity problem, (dXp(b))∗, is used in Eq. (8.15). Moreover, it should be equal to the
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solution operator of the adjoint problem of the sensitivity problem10,
{[

dAp
Xp(b)

]∗}−1
,

[58, 73]. In fact,

[
dXp(b)

]∗
=

{[
dAp

Xp(b)

]−1
}∗
=

{[
dAp

Xp(b)

]∗}−1
. (8.18)

In particular, the adjoint problem of a linear problem is the linear problem that corre-
sponds to the adjoint operator of the linear operator that defines the linear problem.

Summarizing, from Eq. (8.18), to obtain the gradient, Eq. (8.15), it is sufficient
to solve the following problem for y,

(dAp
Xp(b))

∗y = (dCXp(b))
∗[C(Xp(b)) − Zmeas] , (8.19)

from which we get the gradient, E′
b = y.

We remark that the source for problem defined by Eq. (8.19) is

(dCXp(b))∗[C(Xp(b)) − Zmeas] ,

that depends on the difference between what was foretold and what was measured
—discrepancy between the model and the real data.

To emphasize, we repeat that to determine the gradient of E in b, these steps are
to be followed:

1.a Determine the solution of the direct problem,Xp(b);

1.b Determine the linear operator that defines the sensitivity problem, dAp
Xp(b);

1.c Determine the adjoint operator of the operator of the sensitivity problem,
(dAp

Xp(b))
∗;

2.a Determine the observation, C(Xp(b)) (prediction);

2.b Determine the residual, the difference between the predicted and measured
values, C(Xp(b)) − Zmeas;

3.a Determine the derivative of the observation operator at Xp(b), dCXp(b);

10 If P denotes the operator of a linear problem, P−1 denotes the solution operator. The as-
sertion of the paragraph can be rewritten as

(P−1)∗= (P∗)−1 .

Formally, this is shown as follows:

〈u, (P−1)∗v〉 = 〈P−1u,v〉 = 〈P−1u, P∗(P∗)−1v〉
= 〈PP−1u, (P∗)−1v〉 = 〈u,(P∗)−1v〉 ,

for all u and v. This derivation is correct for bounded operators in Hilbert spaces. Nonethe-
less, mathematical rigorousness is lacking if unbounded operators are involved [66], since
the mathematics involved is much more refined.
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3.b Determine the adjoint of the operator dCXp(b), (dCXp(b))∗;

4.a Determine the source term for Eq. (8.19), (dCXp(b))∗[C(Xp(b)) − Zmeas];

4.b Solve, for y, the adjoint problem, Eq. (8.19).

In essence, to determine the gradient, it suffices to solve the adjoint problem of the
sensitivity problem, with a source that, essentially, depends on how different the
prediction is from the measurement.

8.2.4 Operational Rule for the Computation of the Gradient

Using the notation previously established, we consider the minimization of

E[b] =
1
2
|C(Xp(b)) − Zmeas|2 ,

subjected to the constraint

G(Xp(b),b) = 0 .

Here, differently from Eq. (8.1), we let G ba a function defined only in U × V,
where, we recall, U is the space of fields, and V is the space of sources.

We reformulate this problem as an unconstrained minimization problem by means
of a Lagrange multiplier, denoted by λ, to handle the constraint. We define the fol-
lowing Lagrangian function

L : V ×V → R

(b, λ) �→ L[b, λ] =
1
2
|C(Xp(b)) − Zmeas|2 + 〈λ,G(Xp(b), b)〉 .

Then, for the curve bε ,

d
dε

∣∣
∣
∣∣
ε=0

L[bε , λ] = 〈C(Xp(b)) − Zmeas, dCXp(b)dXp(b)b̃〉

+ 〈λ, b̃ − dAp
Xp(b)dX

p(b)b̃〉

=
〈
(dCXp(b))∗[C(Xp(b)) − Zmeas] − (dAp

Xp(b))
∗λ , dXp(b)b̃

〉
+

+ 〈λ, b̃〉 . (8.20)

On the other hand, by definition, X(bε) satisfies the direct equation

Ap(X(bε)) = bε .

Hence, it can be concluded that G(X(bε)), bε) = 0. Thus, E[bε] = L[bε, λ], regard-
less the value of λ. It follows that

d
dε

∣∣
∣
∣
∣
ε=0

L[bε, λ] = 〈E′
b, b̃〉 . (8.21)



174 8 A General Perspective

It seems useless to consider the function L. However, it suggests an operational
rule to determine the equation that the gradient of E satisfies. Note that λ is arbitrary.
If we choose λ to nullify the first factor of the first inner product on the right side of
Eq. (8.20), i.e., if we impose that λ satisfies the following equation,

(dAp
Xp(b))

∗λ = (dCXp(b))∗[C(Xp(b)) − Zmeas] , (8.22)

and if we compare Eqs. (8.21) and (8.20), we reach the conclusion that λ = E′
b.

This is no news since Eq. (8.22) is the equation for the gradient, as already seen in
Eq. (8.19).

One can wonder what is the advantage of this approach, and the answer is ‘the
operational rule’. To obtain Eq. (8.22), that tells us what is the problem to be solved
to determine the gradient of E, i.e., the adjoint equation, we compute, as indicated
in Eq. (8.20),

d
dε

∣
∣
∣
∣∣
ε=0

L[bε ,λ] ,

and arrange the resulting terms in two groups. The first one is 〈λ, b̃〉. The second
one comprising the rest, should be made null. When we impose that the rest is to be
null, we obtain Eq. (8.22), without consciously considering all the stages that lead
to the derivation of Eq. (8.19), and which were detailed in the previous section. This
operational rule was used in Section 7.4.

Exercises

8.1. Show that L in Eq. (8.7) is an isomorphism, i.e, verify that it is linear, Eq. (8.8)
and that M in Eq. (8.9) is its inverse, i.e., L ◦M(x) = x and M◦L( f ) = f .

8.2. Heat equation. Consider the operator

H : B0(R,R) → B0(R×]0, +∞[,R)

u0 �→ u = H[u0]

where

u(x,t) = H[u0](x,t) =
1

√
4kπt

∫ +∞

−∞
e−

(x−y)2

4kt u0(y) dy .

Here u is the solution of the heat equation ut = kuxx, with initial condition u(x,0) =
u0(x). Show that the domain of dependence is Du(x,t) = R.

8.3. Dirac’s delta function. Let

δ : B0(R,R) → R

u �→ v = δ[u] = u(0)

Set R = F1. Show that the domain of dependence is Dδ[u](1) = {0}.
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8.4. Derivative. Let

β : C1(R,R) → R

u �→ v = β[u] = u′(0)

Show that the domain of dependece is {0} ⊂ R.

8.5. Dirac’s delta function on a circle. Let

C : B0(R2,R) → R

u �→ C[u]

where

C[u] =
∫ 2π

0
u(cos θ, sin θ) dθ .

Determine the domain of dependence.

8.6. Pointwise, local and global operators. Consider the set of functions W1 =

C1
0(R,R), consisting of functions of class C1 that are not null at most on a bounded

interval. Let also k > 0 be a constant, and m ∈ C1(R,R), be a bounded function.
Show that

(a) The operator L1 given by

L1 : C1
0(R,R) → R

f �→ L1[ f ] =
∫ +∞

−∞
f (y) dy ,

is a global operator.

(b) The operator L2 given by

L2 : C1
0(R,R) → R

f �→ L2[ f ] = f (0) ,

is a pointwise operator.

(c) The operator L3 given by

L3 : C1
0(R,R) → C0

0(R,R)

f �→ L3[ f ] =
d f
dx

is a local operator.
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(d) The operator L4 given by

L4 : C1
0(R,R) → C1

0(R,R)

f �→ L4[ f ] = g

where

L4[ f ](x) = g(x) = m(x)g(x) ,

is a pointwise operator.

(e) The operator L5 given by

L5 : C1
0(R,R) → C1

0(R×]0, +∞[,R)

f �→ L5[ f ] = u

where

L5[ f ](x,t) = u(x,t) =
1

√
4kπt

∫ +∞

−∞
e−

(x−y)2

4kt dy ,

is a global operator.



Afterword: Some Thoughts on Model Complexity and
Knowledge

O objetivo final de uma aula deveria ser formar futuros
pesquisadores, e não decoradores de matéria.a

Stephen Kanitz, 2003.

We have an incapacity for proving anything which no
amount of dogmatism can overcome. We have an idea
of truth which no amount of skepticism can overcome.

Blaise Pascal (1623-1662).

... a verdadeira e inexpugnável glória de Deus começa
onde termina a linguagem...b

Luis Fernando Veríssimo, 2008.

a Translation from portuguese: “The main purpose of
a class should be to train researchers, and not mem-
orizers”, [41].

b Translation from portuguese: “...the true and in-
expugnable God’s glory begins where language
ends...”, [90].

What are we doing when we use mathematical models to understand physical (chem-
ical, biological, social, environmental,...) phenomena? Why it works? When it
works? These are very deep questions. E. Wigner’s “The Unreasonable Effective-
ness of Mathematics in the Natural Sciences,” [94] and R. Feynman’s “The Charac-
ter of Physical Law” [32] treat some aspects of these questions. Due to the nature
of inverse problems, these questions are always on the back of our minds. Here we
take a look at some of these issues. We shall present the ‘how’ questions. How mod-
els get more fundamental? More fundamental means more knowledge? These are
implicit questions we try to shed light on. These considerations just intend to say
what is being done, not how to do it.

Computational Modeling

Computational science and engineering (CSE) is a modern way to confront prob-
lems. It builds its strength by bringing together ideas coming from computing,
mathematics, and engineering to handle contemporary challenges. Strang’s book
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[83] presents his very interesting account of the basic technical skills the CSE prac-
titioner should have.

Here we will foccus on model building activity, its historical emergence, and
its levels. This a major skill in CSE and deserves to be seen from several points
of view. In a very sketchy picture, we could say that engineers and physicists are
well trained at building models, whereas mathematicians are good at drawing logi-
cal conclusions from them. Computer scientists are good at the art of constructing
fast algorithms to get numbers out of the models. We shall use the term computa-
tional modeling for this whole set of activities. Roughly speaking, it corresponds to
modeling a physical phenomenon, process or system, and constructing an automatic
information system which provides information about its behaviour or its properties
by means of a computational device.

Computational modeling is then an area of scientific research inherently interdis-
ciplinary (or at least multidisciplinary, [62]) since it covers at least two assumptions
for the study of a particular subject. This field of research and their problems should
be able to be described using mathematical language and models, and these have
to be solved with the aid of a computer. Moreover, the computer may also serve
to capture data, in an automated manner, in real situations, and to present results
and scenarios, or even, to command an intervention in an environment. This, in
particular, leads to a sequence of steps11 for solving a problem or to enhance its
understanding12:

observation → intuition about the phenomenon → data → physical
model13 → mathematical model→ solution algorithm14 → compu-
tational implementation15 → simulation scenarios (results)→ view-
ing and making the results available16 → analysis of the results →
inference about the phenomenon → comparison → validation →
intervention .

Consequently, computational modeling is not mathematics, because it needs modern
technology to crunch numbers, it is not physics, even in its broadest sense, because
it requires the analysis of the behaviour of discretization processes, and it is not

11 Clearly, this scheme has several important internal feedbacks. Among them, there is the
computational implementation. Frequently, this forces a return to the algorithm and to the
mathematical model, given the unsurpassable computational difficulties. This is just one
example of the many possible feedbacks. It exhibits the non-sequential nature of compu-
tational modeling, and demonstrates that it is not an easy task.

12 It goes without saying that all these steps involve diverse branchs of science and several
scientists, which work with specific tools through ingenious arts and crafts. Nevertheless,
the time is ripe for a computational modeler, a professional with a comprehensive view of
the whole process.

13 Physical model: By this we mean a specific linguistic jargon adequate to describe the main
features of the phenomenon under investigation, not necessarily restricted to Physics.

14 Solution algorithms, implemented in computers, usually involve discretization.
15 Use of technology. Here, we use the word ‘technology’ in a broader sense, to include, for

instance, object oriented programming techniques, debuggers, code evaluators, and so on.
16 Again, the use of technology.
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computing, because it needs the construction of mathematical models of physical
phenomena, and draw conclusions from them.

Computational modeling has a lot of mathematical structures (numbers, shapes,
and so on) associated with technologies for the capture, representation, processing
and provision of these structures, and specific ‘physical’ understanding of a prob-
lem. The need for the knowledge from various disciplines is the foundation of the
interdisciplinary nature of computational modeling. It is clearly a way to approach
a problem, at least those that can be described by mathematical objects, combining
theory and practice through technology17.

Historical and Conceptual Perspective

Science, and more generally the evolution of human knowledge, is part of history
of mankind, and therefore its leaps forward, its main ideas, and its unequivocal
advances are difficult to pinpoint in one time, in one place.

In this whirlwind, the roots of what is called computational modeling did not
appear yesterday at the dawn of computing and computers. The interplay between
science and technology, one of the ways of computational modeling, has been one
of the pillars of human society for millenia. Could we find a landmark that would
indicate its beginning? Certainly this would include mathematics and would take us
to its origins.

Pythagoras (about 570 to 497 BC), centuries before the Christian era, has insisted
that “everything is numbers”. This assertion is, of course, a highly distorted snapshot
of his thoughts. Probably other persons and peoples before him may have had simi-
lar perceptions and understandings. Anyway, what we want is to understand this as
“it is a good idea to quantify the phenomena of nature!”, and properly acknowledge
that it has been around for a long time.

At that time, there was already technology to handle numbers or mathematical
concepts. In fact, at a certain point in history, one realizes that two lines can occupy
particular positions and deserve to be called perpendicular lines. This is due to the
symmetry that we can observe that this configuration presents. There is, however,
the issue of constructing an artefact (structure) with that property. A method — a
technology known by the Egyptians was to make knots equally spaced on a string,
and construct a triangle with sides 3, 4 and 5. The right angle would be constructed
in this way, technologically speaking! It is relevant to remember here the saying of
V. I. Arnold,“...Mathematics is the part of physics where experiments are cheap”18.

Rooted on the brilliant contributions of the geniuses of antiquity, it is possible
to justify that a major step forward in the genesis of computational modeling was
performed at the time when Newton was standing on the shoulders of giants, as

17 Due to the large scope of tasks and knowledge required, this type of action cannot be done
nor grasped by an individual. It requires multidisciplinary teams.

18 “Mathematics is a part of physics. Physics is an experimental science, a part of natural
science. Mathematics is the part of physics where experiments are cheap...”, [7]
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he himself said19. It is a time when mathematical models, capable of capturing the
essence of various phenomena, were devised.

Often, different groups of scientists end up constructing their own jargon for
certain common and known notions, which, due to the difficulties of communica-
tion between specialities, have not percolated through the scientific community. Al-
though the set of fundamental ideas is not that big, we would say that it usually falls
victim of the Babel’s tower effect and its diversification force.

We shall try to overthrow, at least a little, this communication barrier. Or, at least,
we shall present our view why this is the best time in history to weaken such barrier.
We will reflect on the concept of computational modeling, and try to understand its
essence and to uncover its origin. For this, we introduce a little nomenclature, and
illustrate it with some elementary examples.

We need to make some effort in order to see how these concepts apply to more
complex situations such as those presented in other chapters of this book. We may
seize the opportunity, however, because we are living a historic moment in science,
vibrant, conducive to a weakening of that communication barrier due to the ability
of integrating mathematical models with information technology.

Let us begin by thinking about as sets are, usually, defined. Sets can be provided
by extension

A = {6, 7, 8, 9, 10} , (1)

or by comprehension

A = {y ∈ N, such that (y − 8)2 ≤ 4} .

Here we denote the set of natural numbers by N. One may think that defining a set
by extension is almost the same as providing a function that generates it. That is, the
set that we want to have a hold on is given as the image of a function. Consider the
function f given by

f : {1, 2, 3, 4, 5} → N

x �→ f (x) = x + 5 .

Then, the image of f ,

Im ( f ) = {y = f (x), for x = 1, 2, . . . , 5}
= { f (1) = 6, f (2) = 7, . . . , f (5) = 10}
= {6, 7, 8, 9, 10} . (2)

coincides with the set A. In symbols, Im ( f ) = A. Presenting a set in this way, as
the image of a function, we may say that it is given encapsulated.

Table 8.1 sketches what we have just said, and relates to the way a computer
scientist deals with the same concepts. The second part of the table also includes
other ideas on the issue of models and modeling, discussed later on.
19 Quote of Isaac Newton (1642-1727) "If I have seen further queries [than certain other men]

it is by standing upon the shoulders of giants." in a letter to Robert Hooke (1635-1703),
on February 5, 1675, referring to the work of Galileo Galilei (1564-1642) and Johannes
Kepler (1571-1630) in physics and astronomy, [5].
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Let us reflect about the construction of models of physical phenomena. In a prac-
tical situation, following the ‘advice of Pythagoras’, we associate numbers to phe-
nomena, that is, we construct a database (DB) of the situation. In the next stage, we
perform the creative act of obtaining, first, the function that represents the data, and
then the equation that has the function as one of its solution. Finally, we can say that
we have modeled the situation mathematically to its full extent.

Next, we check the database. For the sake of concreteness, let us assume that the
set A is given by Eq. (1). After analysing it, it is reasonable to guess that the class of
models for data, C, is the set whose elements are

Ca,b = {y ∈ N, such that (y − a)2 ≤ b}, for all a, b ∈ R ,

that is,

C =
{
Ca,b, for all a,b ∈ R

}
.

This highly creative stage, we call the characterization of the model. At this point,
it should be emphasized that the values of the parameters a and b are unknown.
Therefore, the next step is to determine a and b. This must be done in such a way as
to select, among the elements of the class of models C, the one that best represents,
in some sense, the set A, according to experimental data. This is the inverse iden-
tification problem. This is also called model selection, model identification, model
estimation, optimization, machine learning, calibration etc., depending on the class
of scientists who are tackling this problem20.

We can classify the models as descriptive, when, in a sense, it is a ‘picture’ of the
state of things, or explanatory if it establishes the relations of interdependence. The
intellectual sophistication of models grows from descriptive models to explanatory
models, going from specifics to fundamentals. The information contained in each of
the models is about the same, but is being compressed, by focusing on fundamental
principles, in the direction presented in the diagram below:

DB → function → equation . (3)

Most theories, at least those that adopt mathematical models, start with a database,
then proceed to represent the data by means of a function and then to get an equa-
tion21 for which the function is one of the solutions22.

This is already too much confusion! The beginner finds him/herself in a very
difficult position, and if he/she gives it a little thought, tends to get muddled. Is it not
so? The scholar, in possession of an equation, works to get a function (the solution

20 Most likely, this Babel tower effect might be mitigated as the modus operandi of compu-
tational modeling becomes more widely used in getting results.

21 Here, usually, these are differential equations. By no means it is universal and, in no way,
it is essential for the ideas presented here, that the models are differential equations.

22 A statistician would say he/she has a sample of a random variable, then a random variable
and finally a stochastic equation. If time is involved, maybe he/she can have a time series
— a realization of a stochastic process— followed by a stochastic process and finally a
stochastic equation.
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Table 8.2 Position of a fallen body as a function of time

When time (s) t 0 1 2 3 4
Where space (m) x 100 95.1 81.4 55.9 21.6

to the problem) and, in fact, still has more interest in the database generated from the
model (because he/she is usually interested in the interpretation of the solution)23.

But if what you want is data, why would you build the equation? A reminder is
that you still have to have data anyway in order to construct a meaningful equation.
Can only be a strange thing to do! Understanding (or is it compressing data?) is the
key.

Let us consider a physical situation, for example, the drop of a solid body due to
gravity. To study and investigate the fall of a body, one can make use of a descriptive
model or even of an explanatory. In the case of the motion of point particles (point
masses), the descriptive model is known as the kinematics of the particle, and the
explanatory model is obtained from Newton’s 2nd law.

Typically, descriptive models are useful in answering to questions like: “what,
where and when? ”. It also handles questions like “how many, when?”, “how much,
where?”, “how many, how much?” or combinations thereof.

In the fall of a solid, what is the very solid, and where and when can be given by
a worksheet, as Table 8.2, that is a DB. After careful analysis, it is possible to give
a descriptive model (or kinematic model) in parametric form (function)

x(t) = x0 + v0t − 1
2

gt2 . (4)

Here, g denotes the acceleration of gravity, x0, the initial position and v0 the initial
velocity. We let the x-axis to point out of the earth’s surface. In the example, we
assume that g = 9.8m/s2, x0 = 100m, and v0 = 0m/s. Therefore,

x(t) = 100 − 4.9t2 . (5)

We want to comment on this model. When we write Eq (4) to address the status of
the fall of a point particle, what we have done is to characterize a class of descriptive
models. The determination of the constants present there is the identification of the
model. This is done, for example, using the experimental measurements present in
Table 8.2

In contrast, explanatory models answer the question: “how?”. In the case of a
body, how it falls to the earth. It falls satisfying Newton’s second law. This expresses
the change in velocity (the acceleration) by the action of a force,

23 Let us be more explicit. Consider the design of an airplane. Assume that one has modeled
the problem using differential equations that tells how to balance forces and other physical
quantities. What one wants, for example, is to estimate the value of the pressure at a few
critical points on the wing, to see if it will endure flying conditions. In short: one wants
specific numbers. These would constitute a small ‘database’. That is, we want to follow
Eq. (3) in the direction opposite to the arrows.
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m
dv
dt
= F , (6)

where m is the mass of the body, v is its velocity, and F is the force acting on the
body. Since v = dx/dt, and, in the fall of a body, the gravitational attraction force
is equal to mg, then

d2x
dt2
= −g . (7)

Similarly to the case of the descriptive model, here you can also employ the con-
cept of characterization and identification of the model. When you write Eq. (6),
what you have done is to characterize the model. Once you obtained Eq. (7) you,
essentially, identified the model.

This is the explanatory (or dynamic) model. Integrating twice Eq. (7) with respect
to time, we obtain

dx
dt
= v0 − gt ,

x(t) = x0 + v0t − 1
2

gt2 ,

which turns out to be the descriptive model discussed previously.
What we are calling descriptive and explanatory models, engineers or physicists

would call, respectively, kinematic and dynamic models. We could say that the ex-
planatory model contains enough information for one to recover the descriptive
model. It is advantageous at this time, to review Table 8.1, where we present, in
summary form, the notions of model, its purpose, and its meaning.

All these concepts should be used with a grain of salt, they help you organize
your thoughts, but have their limitations24.

Another natural question to ask yourself is ‘why?’. For example, why the body is
attracted to the Earth? The question “Why it happened?” (“Why”) was deemed by
Newton as a deterrent to scientific understanding, and he urged scientists to deviate
their attention away from it. There was no need to assume or ask anything else. As
Occam25 would say, ‘let us use my ‘razor’, and forget the whys!’.

The development of scientific knowledge can be, somewhat, understood from
the example just being presented. Typically, at the beginning of the study or inves-
tigation of a phenomenon, one gathers data. Usually, by means of observation and
controlled experiments, one quantifies the actual situation and constructs a DB, as
Table 8.2. Next, one theorizes a little bit and gets a descriptive (parametric, func-
tional) model as given in Eq. (4). Finally, one looks for explanatory models, which,
in the example considered, is given by Newton’s second law, Eq. (6).
24 Roughly, it can be said that mathematicians keep the direct problems and statisticians

work with the inverse problems. Would that fit what one calls theoretical and experimental
work? Scientific or technologically oriented job? Almost any generalization of this nature
tends to be imprecise because of its simplicity.

25 William of Occam (1285-1347), an English theologian, used a logical implement, the so-
called Occam’s razor, to cut absurd arguments. Occam’s maxim is that the simpler the
explanation is, the better it is.
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After all, when did first emerged the structuring of a chain of models of increasing
complexity, as depicted by Eq. (3)? Who built the database, who discovered the
descriptive model (kinematic) and who unveiled the explanatory model (dynamic)?
And in what context? A historical example is called for and we shall duly interpret it.

One of the earliest examples of this type of method, constructing the first models
that quantify the most basic situation — making observations carefully — and pro-
ceeding to more sophisticated models was performed in studying the orbits of the
planets and other celestial bodies. In this case, the DB was produced by Tycho Brahe
(1546-1601), who built an observatory (Uranienborg) in an island of Denmark, to
do so. The descriptive model is due to Johannes Kepler — Kepler’s laws. The ex-
planatory model was developed by Galileo Galilei — the law of inertia — and more
strongly by Isaac Newton with his second law and the law of gravitational attrac-
tion (universal gravitation theory)26. Gauss, with his least squares method, enters
the picture, opens the door to future computations, and to the solution of practical
inverse problems.

There is a simple relationship between the classes of models and mathematical
structures:

explanatory models ←→ equations
descriptive models ←→ functions

database (tables) ←→ function evaluation

From the foregoing it is clear that explanatory models are conceptually more
sophisticated than descriptive ones, which in turn are more sophisticated than ta-
bles (DB). Needless to say, it is not our intention to devalue nor valuing the skills
needed to obtain any of the types of models discussed. It is blatantly clear that the
advancement of scientific knowledge depends crucially in DB’s, descriptive, and ex-
planatory models, each equipped with its own set of difficulties. Table 8.1 deserves
to be revisited at this time since it presents a summary of these ideas.

The advancement of knowledge follows, in many sciences, this path

DB
induction:art
=⇒ descriptive model

induction:art
=⇒ explanatory model

whereas27 applications run the other way around

explanatory model
deduction:math
=⇒ descriptive model

deduction:math
=⇒ DB

If this is so old, dating back at least to the sixteenth and seventeenth centuries, what
else is new? And how it all fits together?

Computational modeling — with its science, technique and technology — comes
exactly at the transition from explanatory to descriptive model and from descriptive
to database. Computer and its peripherals correspond, in fact, to the technological
novelty in the previous diagrams. Moreover, the technology that allows experiments
was and remains extremely relevant in the first of the above diagrams, especially in

26 For an exciting presentation of these events in the history of science, see Feynman [32].
27 Here art refers to model building skills, which in fact is a refined art.
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building database. It also happens that computational tools, together with electron-
ics, have been developed for automatic data aquisition, through the widest range of
sensors. In this way its technological strength enters the former diagram.

Our goal as scientists is to predict the behaviour of phenomena, processes and
systems in different situations. Thus, and using the drop of a point particle as an
example, we would like to answer the following problems:

P1 : Given any specific time, say the position of the point mass;

P2 : Given a position, determine the time instant when the point mass passes
through this position;

P3 : How is it that a point mass falls?

We are not, however, interested in answers/predictions of a general nature, but only
those based on scientific descriptions of the fall of the point mass. To do that ...
(goto Chapter 1).

Exercise

Descriptive model. We recall Kepler’s laws:

1st law the orbit of the planet forms an ellipse, with the sun as one of the focus of
the ellipse;

2nd law equal areas are swept in equal time intervals. The area that is swept by a
planet in the interval of time between time t and time t + �t is defined in
the following way. At time, t, draw the line joining the Sun’s position and
the planet’s position, the so-called radius vector, and do the same at a given
time interval, �t, later. The area swept is defined as the area enclosed by the
radius vectors and the ellipse;

3rd law the time to go round the ellipse, the period T , varies as (it is proportional
to) the size of the orbit raised to the power of three halves, where the size
of the orbit is the biggest diameter across the ellipse.

Assume that the orbit of a certain planet is given by the ellipse

x2

a2
+

y2

b2
= 1 , (8)

with a > b, and that the planet travels anti-clockwise.

(a) Assume that the Sun has position (xs,ys), with xs > 0 and ys = 0. Give an
expression for xs in terms of a and b.

(b) Assume that the constant of proportionality in the third law is represented by
α. Give an expression for T .
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(c) Let A = A(t) denote the area swept by the planet, when starting from the
position (x(0), y(0)) = (a,0). Obtain an expression for dA

dt .

(d) Let the position of the planet be represented by polar coordinates,

(x(t), y(t)) = (r(t) cos θ(t),r(t) sin θ(t)) .

Obtain an expression for r(t) as a function of θ(t).

(e) Write, using polar coordinates, an integral expression for the area, S = S (t),
formed by the x-axis, the ellipse, and the position of the planet vector at time
t, (x(t),y(t)).

(f) Relate A(t) with S (t), and their derivatives with respect to time.

(g) Compute A(t), t ≤ T when θ(t) = π/2, and when θ(t) = π.

(h) Let

v1
m = ‘mean velocity of the planet going from (a,0) to (0,b)’ ,

v2
m = ‘mean velocity of the planet going from (0,b) to (−a,0)’ .

Compute them. Which one is biggest? Compute v2
m/v

1
m.

Hint. Recall that the area of the ellipse defined by Eq. (8) is πab and its perimeter

is 2π
√

a2+b2

2 .



Appendix A

Spectral Theory and a Few Other Ideas
From Mathematics

In this appendix, we collect some notations, as well as linear algebra and calculus
results that are used throughout the book, particularly the spectral theorem, singular
value decomposition, and Taylor’s formula which are the basic tools of analysis to
understand the behaviour of some methods for solving inverse problems. Several
concepts are also recalled in step-by-step exercises.

A.1 Norms, Inner Products and Tensor Products

A set of vectors v1,v2, . . . , vk ∈ Rn is said to generate Rn if and only if any element
x ∈ Rn can be written as a linear combination of them, i.e.,

x = c1v1 + c2v2 + . . . + ckvk ,

for appropriate choices of the coefficients c1,c2, . . . , ck. The set is called linearly
independent if the only way to represent the zero vector by a linear combination

0 = c1v1 + c2v2 + . . . + ckvk ,

is when all the coefficients c1,c2, . . . , ck are null. (Otherwise, it is said that the vectors
are linearly dependent.) A set of vectors is a basis of Rn if and only if they are
linearly independent and generate Rn.

In Rn, we denote by

|x| =
√

x2
1 + x2

2 + . . . + x2
n , (A1)

the Euclidean norm of vector x = (x1, . . . , xn)T , (we always think of vectors as n× 1
matrices, i.e., “column vectors”). If |x| = 1, we say that the vector is normalized or
a unit vector. For any x, y ∈ Rn, the triangle inequality is written as

|x + y| ≤ |x| + |y| . (A2)

For any vector x � 0, x/|x| is a unit vector.
Given y ∈ Rn, the inner product between x and y is denoted by

〈x, y〉 = x1y1 + . . . + xnyn = xT y . (A3)

Two vectors are said orthogonal if and only if 〈x, y〉 = 0, which we denote by x⊥y.
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Given a real m × n matrix A, we denote by A∗ the adjoint matrix or adjoint
operator of A, i.e., the matrix that changes places within the inner product in such a
way that

〈Ax, y〉 = 〈x, A∗y〉 , ∀x ∈ Rn, ∀y ∈ Rm . (A4)

Notice that the inner product computed on the left hand side of Eq. (A4) is computed
in Rm, while the one on the right hand side is computed in Rn. In particular, A∗ is
n × m. Since

〈Ax,y〉 = (Ax)T y = xT AT y = 〈x, AT y〉

for all x∈Rn and y∈Rm, due to the properties of matrix transposition, we conclude
that the adjoint operator of A is simply its transpose, A∗=AT .

Recall that the induced norm of a matrix A is given by

|A| = max
x�0

|Ax|
|x| = max

|x|=r
r�0

|Ax|
|x| = max

|x|=1
|Ax| . (A5)

If B is a matrix and x a vector, both with appropriate dimensions, then

|AB| ≤ |A| |B| and |Ax| ≤ |A| |x| . (A6)

Given a square matrix A, n × n, we say that λ ∈ C is an eigenvalue of A if and
only if there exists a non zero vector x, possibly in Cn, such that

Ax = λx .

The set of all eigenvalues of a matrix,

σA = {λ ∈ C such that there exists x � 0 satisfying Ax = λx} ,

is called the spectrum of A.
We recall that the eigenvalues of a matrix A are the roots of its characteristic

polynomial,

pc(λ) = det(A − λI) .

It is possible to show that, for real matrices A,

|A|= (largest eigenvalue of AT A)
1
2 . (A7)

Given two vectors u and v of Rn, the tensor product u ⊗ v is defined as the n × n
matrix whose i j element is given by uiv j, i.e.,

u ⊗ v = uvT .

Notice the similarities and differences between the definitions of tensor product and
inner product, Eq. (A3).
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We denote by L2(Ω) the set of square-integrable functions, that is,

f ∈ L2(Ω) if and only if
∫

Ω

f 2(x) dx < +∞ ,

and by

〈 f , g〉 =
∫

Ω

f (x)g(x) dx ,

the inner product defined in L2(Ω).

A.2 Spectral Theorem

Let v1, . . . , vn be a basis of Rn. We say the basis is orthonormal if the vectors are
mutually orthogonal and normalized, i.e., if they satisfy the following orthogonality
relations,

〈vi, v j〉 = δi j =

{
1, if i = j ,
0, if i � j

for i, j = 1, . . . , n .

Let V be the matrix whose i-th column is the vector vi, i = 1, . . . , n. Then, the basis
is orthonormal if and only if

VT V = I ,

where I is the identity matrix. In this case, matrix V is said to be orthogonal.
Here, we recall the spectral theorem [82].

Theorem 7. Spectral theorem. Let A be a real, square, symmetric matrix, that is
such that AT = A. Then, its eigenvalues are real, λ1 ≥ . . . ≥ λn, and there exists an
orthonormal basis v1, . . . , vn of Rn, formed by eigenvectors of A,

Avi = λivi, for i = 1, . . . , n . (A8)

If we denote

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 · · · 0
...
. . .

...
0 · · · λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

| · · · |

v1
. . . vn

| · · · |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we can collect all equations in (A8) in a single matrix equation

AP=PD , (A9)

or, considering that P is an orthogonal matrix (in particular, an invertible matrix),

A = PDPT . (A10)
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It is sometimes useful to denote D by diag(λ1,λ2, . . . ,λn). Also, we denote the eigen-
values of real symmetric matrices, A, by λi(A), i=1, . . . , n, in a decreasing order of
magnitude,

λ1(A)≥λ2(A)≥ . . .≥λn(A) .

Example A.1. As a simple, useful and nice application of the spectral theorem, we
show how to sketch the region H constituted by (x,y) ∈ R2 satisfying

x2 + y2 − 4xy ≥ 1 . (A11)

Solution. First we rewrite Eq. (A11) by means of the product of matrices, choosing
symmetric the matrix in the middle, as

(
x y

)

A
︷���������︸︸���������︷(

1 −2
−2 1

) (
x
y

)

≥ 1 . (A12)

Next, we construct matrices P and D for A as guaranteed by the spectral theorem.
The eigenvalues of A, roots of the characteristic polynomial,

pc(λ) = det

(
1 − λ −2
−2 1 − λ

)

= (1 − λ)2 − 4 ,

are λ1 = −1 and λ2 = 3.
For the eigenvalue λ1, we solve the system

A−λ1I
︷�������������������������︸︸�������������������������︷(

1 − (−1) −2
−2 1 − (−1)

) (
x
y

)

=

(
0
0

)

,

and get (x, y)T = (1, 1) as an eigenvector for λ1 = −1. Analogously, for λ2 = 3, we
solve the system

A−3I
︷���������︸︸���������︷(
−2 −2
−2 −2

) (
x
y

)

=

(
0
0

)

,

and get (x, y)T = (1, − 1) as an eigenvector for λ2 = 3.
The eigenvectors are orthogonal and, dividing each one by its norm, give or-

thonormal vectors. Therefore, A = PDPT , where

P =

⎛
⎜⎜⎜⎜⎜⎝

1√
2

1√
2

1√
2

− 1√
2

⎞
⎟⎟⎟⎟⎟⎠ and D =

(
−1 0
0 3

)

.

Next, we consider a change of variables,

(
u
v

)

= PT

(
x
y

)

=

⎛
⎜⎜⎜⎜⎜⎝

1√
2

1√
2

1√
2

− 1√
2

⎞
⎟⎟⎟⎟⎟⎠

(
x
y

)

=

⎛
⎜⎜⎜⎜⎜⎝

x+y√
2

x−y√
2

⎞
⎟⎟⎟⎟⎟⎠ .
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Equation (A12) then becomes (u v)D(u v)T ≥ 1 or

−1
2

(x + y)2 +
3
2

(x − y)2 ≥ 1 . (A13)

Notice that − 1
2 (x + y)2 + 3

2 (x − y)2 = 1 is a hyperbola and its line asymptotes are
given by

−1
2

(x + y)2 +
3
2

(x − y)2 = 0 ,

that is,

(
√

3 − 1)x = (1 +
√

3)y or (
√

3 + 1)x = (
√

3 − 1)y ,

and its vertices are given by solving the system (that comes from Eq. (A13), by
making it an equality, and equating the first term to zero)

{
x + y = 0

3
2 (x − y)2 = 1

,

yielding
⎛
⎜⎜⎜⎜⎝

√
6

6
,−

√
6

6

⎞
⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝−

√
6

6
,

√
6

6

⎞
⎟⎟⎟⎟⎠ .

From these calculations the sketch of region H is easily done.

The conclusion of the spectral theorem can be represented by the commutative
diagram in Fig. A.1. Notice that depending on the use of this result, it can be con-
venient to write A, Eq. (A8), in the form

A =
n∑

i=1

λivi ⊗ vi =

n∑

i=1

λivivT
i , (A14a)

or, when multiplied by x,

Ax =
n∑

i=1

λivivT
i x =

n∑

i=1

λivi〈vi, x〉 . (A14b)

R R

R R

A

D
P P

n n

nn

T

Fig. A.1 Commutative diagram
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In particular, Eq. (A14b) is in the form of separation of variables, where

〈vi, x〉 ,

is the Fourier coefficient of x, in the direction of vector vi , and

λi〈vi, x〉 ,

is the corresponding Fourier coefficient of its image, Ax.
The analysis and synthesis of a real symmetric matrix provided by the spectral

theorem are very convenient for the evaluation of analytic matrix functions. Note
that

A2 = AA = PDPT PDPT = PDDPT = PD2PT ,

For the polynomial

q(x)=a0 + a1x + . . . + ak xk ,

we denote

q(A)=a0I + a1A + . . . + akAk .

It can be shown that

q(A) = Pq(D)PT . (A15)

For every analytic function

f (x)=
∞∑

j=0

a jx
j ,

defined in a disk of radius less than |A|, we let

f (A)=
∞∑

j=0

a jA
j ,

and then,

f (A) = P f (D)PT = PΓPT ,

where Γ is a diagonal matrix whose elements are f (λi), i = 1, . . . , n. It is simple to
verify that the inverse of A is given by

A−1 = PD−1PT . (A16)
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Example A.2. Matrices of the form KT K. Let K be a real m × n matrix. Matrix
A=KT K is symmetric and its eigenvalues are all non-negative. The same is true for
matrices of the form KKT .

Solution. Let λ be an eigenvalue and v the corresponding eigenvector (v�0). Then,
Av=λv and

λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 = 〈KT Kv, v〉 = 〈Kv,Kv〉 .

From this it can be concluded that

λ =
〈Kv,Kv〉
〈v, v〉

=
|Kv|2
|v|2 ≥ 0 .

Definition A.1. A real, symmetric matrix A is positive definite if and only if
xT Ax > 0 for all x � 0, x ∈ Rn. If xT Ax ≥ 0 for all x ∈ Rn the matrix is posi-
tive semi-definite.

A.3 Singular Value Decomposition

We begin by enunciating the singular value decomposition theorem.

Theorem 8. Singular value decomposition — SVD. Let K be a real m × n ma-
trix and p = min{m, n}. Then there exist orthonormal basis u1, u2, . . . , un of Rn,
v1,v2, . . . , vm of Rm, and scalars σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, such that,

K = VΛUT , (A17)

with Λ, a m × n matrix given by

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 · · · 0
...
. . .

...
0 · · · σn

0 . . . 0
...
. . .

...
0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, if m > n = p ,

or, Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 · · · 0 0 . . . 0
...
. . .

...
...
. . .

...
0 · · · σm 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, if p = m < n ,

or Λ = diag(σ1,σ2, . . . , σp), if m = n = p, and V = (v1, v2, . . . , vm), an orthogonal
m × m matrix, U = (u1, u2, . . . , un) an orthogonal n × n matrix.

Before giving a proof of the theorem we present some conclusions streaming from
it. The singular values of K are the numbersσi, that we denote byσ1(K) ≥ σ2(K) ≥
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R R

R R

n

n

T
V

Λ

K

U

m

m

Fig. A.2 Commutative diagram

. . . ≥ σp(K) ≥ 0, explictly mentioning matrix K. As the index i grows, the corre-
sponding singular value diminishes.

Equation (A17) can be written in different ways. We have

K =
p∑

i=1

σivi ⊗ ui =

p∑

i=1

σiviuT
i ,

or, what is the same, the commutative diagram in Fig. A.2 is valid.
The evaluation of Kx, that can be thought of as a generalization of the Fourier

method of separation of variables, is written as

Kx =
p∑

i=1

σivi〈ui, x〉 .

The singular value decomposition does not allow the generality that the spectral the-
orem does with relation to function evaluation, but the representation of the inverse
is still provided, as seen immediately.

If K is invertible (n=m= p), the singular values of the inverse are

σ1(K−1)=1/σn(K) , σ2(K−1)=1/σn−1(K) , and so on.

In particular, the largest singular value of K originates the smallest singular value of
K−1 and vice versa. The inverse is given by

K−1 = UΛ−1VT =

n∑

i=1

1
σi

ui ⊗ vi =

n∑

i=1

1
σi

uivT
i , (A18)

where Λ−1 is a diagonal matrix and the elements of the diagonal are σ−1
i ,

Λ−1 = diag

(
1
σn
,

1
σn−1
, . . . ,

1
σ1

)

.

The evaluation in y is given by

K−1y =
n∑

i=1

σ−1
i ui〈vi,y〉 .
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Now, we present a proof of theorem 8, since this result is not commonly discussed
in elementary courses on linear algebra.

Proof of theorem 8. We start by building a basis of Rn. Define A = KT K (we could
have choosen A = KKT ). A is a real symmetric matrix and the spectral theorem can
be applied to it. Therefore, let

u1, u2, . . . , un ,

be an orthonormal basis of Rn, that diagonalizes A. Let

λ1 ≥ λ2 ≥ . . . ≥ λn ,

be the eigenvalues of A,

Aui = λiui .

Now, we construct a basis of Rm. Considering no as the index of the smallest non-
zero eigenvalue of A, we note that the vectors

wi = Kui , for i = 1, . . . , no ≤ p ,

are non-zero since

KT wi = KT Kui = Aui = λiui � 0 , i = 1, . . . , no .

Also, the vectors wi are mutually orthogonal since

〈wi,w j〉 = 〈Kui,Ku j〉 = 〈ui,K
T Ku j〉

= 〈ui, Au j〉 = 〈ui, λ ju j〉 = λ jδi j ,

for i, j = 1, . . . , no. We define

vi =
wi

|wi| =
Kui

|Kui| , i = 1, . . . , no (A19a)

and

σi = |wi| = |Kui| � 0 . (A19b)

Thus, v1, . . . , vno are orthonormal and

Kui = σivi ,

as well as

KT vi = KT wi

σi
=
λi

σi
ui .
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Also,

λi = λi〈ui, ui〉 = 〈λiui, ui〉 = 〈Aui, ui〉
= 〈KT Kui, ui〉 = 〈Kui,Kui〉
= 〈σivi, σivi〉 = σ2

i 〈vi, vi〉 = σ2
i ,

whence λi = σ
2
i for i = 1,2, . . . , no.

We define σi=0, for no< i≤ p, if there is such i, and likewise let vi, for no< i≤m,
be orthonormal vectors that together with v1,v2, . . . , vno , form an orthonormal basis
of Rm. Then, defining Λ as one of the possibilities in the statement of the theorem,
accordingly to the order relation between m and n, letting U = (u1,u2, . . . , un), and
V= (v1,v2, . . . , vm), the stated properties are satisfied.

Example A.3. Determine the singular value decomposition of

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 1
1 1
1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Solution First compute

AT A =

(
1 1 1 1
1 1 1 −1

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 1
1 1
1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
4 2
2 4

)

.

(We choose AT A instead of AAT because the order of the former is smaller. Nonethe-
less, we could have used AAT .) The positive square root of non-zero eigenvalues of
AT A are singular values of A. All other singular values of A, if any, are zero. The
characteristic polynomial of AT A is

pc(λ) = det(AT A − λI) = det

(
4 − λ 2

2 4 − λ

)

= (2 − λ)(6 − λ) .

Therefore,
√

6 and
√

2 are the singular values of A. An orthonormal eigenvector
associated with eigenvalue 6 is v1 = (

√
2/2,

√
2/2)T , and one associated with 2 is

v2 = (
√

2/2, −
√

2/2)T . Now,

AAT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 2 0
2 2 2 0
2 2 2 0
0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A unit eigenvector associated with λ = 6 is

u1 =
(√

3/3,
√

3/3,
√

3/3,0
)T
,
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and one associated with the other eigenvalue, λ = 2, is

u2 = e4 = (0,0,0,1)T .

We use a trick to complete u1 and u2 to an orthonormal basis of R4. The plane of
equation x+ y+ z = 0 is the set of vectors, in R3 that are orthogonal to n = (1,1,1)T .
One such vector is o1 = (1, − 1,0)T . Another is determined by the cross product1

o2 = o1 × n = (−1, − 1,2)T . Normalizing and imbedding these vectors in R4, with
the 4th-entry equal to zero, we get an orthonormal basis of R4. Finally, the SVD of
A is A = UΣVT , with,

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3

3 0
√

2
2 −

√
6

6√
3

3 0 −
√

2
2 −

√
6

6√
3

3 0 0 2
√

6
6

0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Σ =

( √
6 0 0 0

0
√

2 0 0

)T

, and

V =

⎛
⎜⎜⎜⎜⎜⎝

√
2

2

√
2

2√
2

2 −
√

2
2

⎞
⎟⎟⎟⎟⎟⎠ .

Remark A.1. Eigenvalues and singular values.

(a) Given any matrix K, we have that

|K| = σ1(K) ,

and if K is invertible,

|K−1| = [σn(K)]−1 .

(b) If K is a real symmetric matrix and λ1(K) ≥ λ2(K) ≥ . . . ≥ λn(K) are its
eigenvalues, then the set of its singular values is

{|λ1(K)|, |λ2(K)|, . . . , |λn(K)|} .

(c) Let A be a real symmetric matrix. Then |A| = maxi |λi(A)|.

(d) If A = KT K, the eigenvalues of A, λi(KT K), are related to the singular values
of K, σi(K), by λi(KT K) = σ2

i (K).

1 For the sake of completeness, we recall the definition of cross product of two vectors x,
y ∈ R3, given by

x × y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)T .
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A.4 Special Classes of Matrices

In this section we shall present the class of projection matrices and another one that
generalizes them, representing projection functions. For that we need to introduce a
few more concepts from linear algebra.

A.4.1 Projection Matrices

In Rn, a set U is called a vector subspace if it is

(a) closed under sums of its elements,

for all u ∈ U, and all v ∈ U we must have u + v ∈ U ,

(b) and it is closed under multiplication by scalars,

for all r ∈ R, and all u ∈ U we need that ru ∈ U .

Given two vector subspaces U and V in Rn, with their intersection containing only
the null vector, U ∩ V = {0} ⊂ Rn, we define their direct sum,

U ⊕ V = {u + v ∈ Rn, for all u ∈ U, v ∈ V} .

As an example, if U is the x-axis in R3, U = R×{(0,0)} ⊂ R3, and V is the yz-plane,
V = {0} ×R2, then U ⊕ V = R3.

The notion of a direct sum of two vector subspaces can be extended to the direct
sum of three or more vector subspaces. However, since we do not use it, we leave it
to the reader to pursue it.

Two vector subspaces, U and V ⊂ Rn, are said to be orthogonal if for all u ∈ U
and v ∈ V , we have u⊥v. For this definition, the xy-plane in R3 and the yz-plane are
not orthogonal subspaces, while the x-axis and the yz-plane are.

Given two orthogonal subspaces, it is clear that their intersection is just the null
vector, and we denote their direct sum by U ⊕⊥ V , just to reinforce, through the
notation, that the vector subspaces are orthogonal.

Now we introduce the notion of projection matrices and present its geometrical
interpretation.

Definition A.2. A real, square, n × n matrix P is called a projection matrix if

P2 = P . (A20)

Moreover, if it is symmetric, PT = P, it is called an orthogonal projection. Other-
wise it is called an oblique projection.

Requirement present in Eq. (A20) does not correspond immediatly to what one
would expect a projection should be. It is, however, easy to verify. That this def-
inition lives up to the expected geometrical meaning depends on further notions,
that we present next.
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Given an m × n matrix A, define the vector subspaces

null space of A: N(A) = {x ∈ Rn such that Ax = 0} , and

image of A: Im(A) = {Ax ∈ Rm, for all x ∈ Rn} .

When P is a projection, we call S = Im(P) the screen of the projection P, and call
V = N(P) the space of directions of projection.

Given a projection P, any x ∈ Rn can be uniquely decomposed as a sum of two
vectors, one in the screen and the other in the directions of projection, x1 ∈ S and
x2 ∈ V, with x = x1 + x2. Clearly,

x = Px + (I − P)x .

Now, take x1 = Px and x2 = (I − P)x. One can check that

x1 = Px ∈ S and x2 = (I − P)x ∈ V . (A21)

Moreover, this decomposition is unique. If x = x̃1 + x̃2, with x̃1 ∈ S, and x̃2 ∈ V,
then, S � x̃1 − x1 = x2 − x̃2 ∈ V. Therefore, since x̃1 − x1 belongs to the screen,
there exists h ∈ Rn such that Ph = x̃1 − x1. Now,

x̃1 − x1 = Ph = P2h = P(P(h))

= P(x̃1 − x1) = P(x2 − x̃2) = 0 .

Therefore, x̃1 = x1 and x̃2 = x2, and x1 and x2 are unique.
We can write that

Rn = S ⊕V , (A22)

that is, Rn is the direct sum of S and V. Moreover, when P is symmetric, S and V
are orthogonal, and we write,

Rn = S ⊕⊥ V .

Given x ∈ S ⊕⊥ V and its unique decomposition x = x1 + x2, x1 ∈ S and x2 ∈ V,
we can interpret x1 and x2 as the sides of a right triangle with its hypothenuse being
x, and therefore, |x|2 = |x1|2 + |x2|2

Now, P restricted to the screen, P|S, is the identity, and restricted to the directions
of projection, P|V, is the null operator. In fact, if u1 ∈ S = Im(P), there exists h1

such that Ph1 = u1, and then,

P|S(u1) = Pu1 = P(P(h1)) = P2h1 = Ph1 = u1 .

Since it is the identity in Im(P), it is an isometry.
This gives a simple explanation of a projection. From Eq. (A22), given any u ∈

Rn, u can be written as u = u1 + u2, with u1 ∈ S and u2 ∈ V, and P(u) = u1.
The spectrum of a projection matrix has only 0’s and 1’s,

σP ⊂ {0,1} .

If P is a projection, but it is not the zero matrix nor the identity, then

σP = {0,1} .
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A.4.2 Forgetting Matrices

Here we introduce a generalization of projection matrices that has interesting prop-
erties, in a fashion similar to projection matrices, preserving certain subspaces.

Definition A.3. A real m × n matrix A is called a forgetting matrix if and only if
AT A is a projection matrix.

Theorem 9. A matrix is forgetting if and only if its singular values are 0’s and 1’s.
Proof. Let A be a forgetting m × n matrix and let its singular value decomposition
be given by

A = UΣVT ,

where U is a m × m orthogonal matrix, V is a n × n orthogonal matrix and Σ is a
possibly retangular m × n matrix with the singular values in the main diagonal and
null outside the diagonal. Therefore,

AT A = VΣT

=I
︷︸︸︷

UT U ΣVT = VΣTΣVT

Note that ΣTΣ is a diagonal matrix, with the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1 0 . . . . . . 0

0 σ2
2

...
...

. . .
...

...
. . . 0

0 · · · · · · 0 σ2
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1 0 . . . 0 . . . 0

0 σ2
2

...
...

...
. . .

...
...

0 · · · 0 σ2
k 0

...
...
. . .

...
0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where k = min{m,n}. The n eigenvalues of AT A, λ1, . . . , λn are related to the singular
values of A. Since, by hypothesis, AT A is a projection matrix, its eigenvalues can be
0’s or 1’s. And so, the singular values of A are also 0’s and 1’s.

The converse is that if σA ⊂ {0,1}, then it is a forgetting matrix. In fact, since AT A
is symmetric, the spectral theorem guarantees the existence of an orthogonal matrix
V and a diagonal matrix Γ with 0’s and 1’s in the diagonal, such that AT A = VΓVT .
Therefore,

(AT A)2 = AT AAT A = VΓVT VΓVT = VΓ2VT = VΓVT = AT A ,

which implies that AT A is a projection matrix. Therefore, A is a forgetting
matrix.

Let F be an m × n forgetting matrix. Likewise to the projection matrix, define

(a) the screen of F, as the set S = Im(F) ⊂ Rm;

(b) the forgetting directions of F, as the set V = N(F) ⊂ Rn.
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In Rn, given a vector subspace, U, we denote by U⊥, (reads U ‘perp’) the sub-
space of all vectors orthogonal to each vector of U,

U⊥ = {x ∈ Rn such that 〈x,u〉 = 0, for al u ∈ U}

Let v1, v2, . . . , vk be vectors in Rn. By the vector subspace generated by those vec-
tors we mean the set of all linear combinations of them,

span {v1, v2, . . . , vk}
={a1v1 + a2v2 + . . . + akvk, for all ai ∈ R, i = 1,2, . . . , k} .

Theorem 10. Let F be a forgetting matrix, and let

Y = V⊥

where V is the forgetting directions subspace of F. Then, F restricted to Y is an
isometry.

Proof. In fact, consider the singular value decomposition of F, F = UΣVT . Here,

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| . . . |
u1 . . . um

| . . . |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and VT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

— vT
1 —

· · · · · · · · ·
— vT

n —

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and Σ is the matrix whose possibly non-zero entries are in the main diagonal and
represent the singular values of F. Let k be the number of singular values of F equal
to 1. Matrix F can be written as

F = u1vT
1 + u2vT

2 + . . . + ukvT
k .

With the notation set forth,

Y = span {v1, v2, . . . , vk} ,
V = span {vk+1, . . . , vn} , (A23)

S = span {u1, u2, . . . , uk} .

Any y ∈ Y = V⊥ can be written as

y = a1v1 + a2v2 + . . . + akvk ,

for appropriate values of the constants a1, a2, . . . , ak. Now,

|y|2 = 〈
k∑

i=1

aivi,

k∑

j=1

a jv j〉

=
∑

i

∑

j

aia j〈vi, v j〉 =
∑

i

∑

j

aia jδi j =

k∑

i=1

a2
i
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Moreover,

F(y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

j=1

u jvT
j

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

i=1

aivi

⎞
⎟⎟⎟⎟⎟⎟⎠

=

k∑

j=1

k∑

i=1

aiuivT
j vi

=

k∑

j=1

k∑

i=1

aiu jδ ji =

k∑

j=1

a ju j ,

and then,

|F(y)| =
⎛
⎜⎜⎜⎜⎜⎜⎝

k∑

i=1

a2
i

⎞
⎟⎟⎟⎟⎟⎟⎠

1
2

. (A24)

Therefore, |F(y)| = |y| and this implies that F, restricted to V⊥, is an isometry.

A.5 Taylor’s Formulae

We state here a few of Taylor’s formulae. For a presentation with proofs in the
general context of normed vector spaces see [23].

First of all, we recall the meaning of big-O and little-o, the order symbols. We
write that

h(y) = O(g(y)) , as y → x ,

if and only if, there is a constant M > 0 such that

|h(y)|
|g(y)| ≤ M ,

for all y � x in a neighbourhood of x. Also, h(y) = f(y) + O(g(y)), as y → x, if and
only if h(y) − f(y) = O(g(y)), as y → x.

We say that

h(y) = o(g(y)) , as y → x ,

if and only if,

lim
y→x

|h(y)|
|g(y)| = 0 .

Note that for α > 0 (for instance, α = 1)

f(y) = O
(
|y − x|k+α

)
, as y → x , implies that

f(y) = o
(
|y − x|k

)
, as y → x . (A25)
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Let f be a vector valued function of several variables,

Rn ⊃ Ω→ Rm

x �→ f(x) ,

where

f(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(x1,x2, . . . , xn)
f2(x1,x2, . . . , xn)

...
fm(x1,x2, . . . , xn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We collect the first order derivatives of f, whenever they exist, in the Jacobian
matrix,

Jfx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
...
. . .

...
∂ fm
∂x1

∂ fm
∂x2

· · · ∂ fm
∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣
∣
∣∣
∣
∣∣
∣
∣∣
∣
∣
∣∣
(x1,x2,...,xn)

.

When m = 1, the Jacobian matrix is represented by the gradient,

∇ fx =

(
∂ f
∂x1
,
∂ f
∂x2
, . . . ,

∂ f
∂xn

)

.

Consider now the second order derivatives of the kth entry of f, fk, collected in the
Hessian matrix

H( fk)|x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2 fk
∂x2

1

∂2 fk
∂x1∂x2

· · · ∂2 fk
∂x1∂xn

∂2 fk
∂x2∂x1

∂2 fk
∂x2

2
· · · ∂2 fk

∂x2∂xn

...
...

. . .
...

∂2 fk
∂xn∂x1

∂2 fk
∂xn∂x2

· · · ∂2 fk
∂x2

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣
∣∣
∣
∣∣
∣
∣
∣∣
∣
∣∣
∣
∣∣
(x1,x2,...,xn)

.

Given h ∈ Rn, we have

hTH ( fk)|xh =
n∑

i=1

n∑

j=1

hi
∂2 fk
∂xi∂x j

h j .

Denote the second order derivative bilinear operator of f at x applied to vector h by

Rn � h �→ hTH (f)|xh ∈ Rm ,

where

hTH (f)|xh =
(
hTH ( f1)|xh, hTH( f2)|xh, . . . hTH( fm)|xh

)T
.

A function Rn ⊃ Ω f→ Rm is called differentiable at x ∈ Ω if and only if

f(y) = f(x) +Jfx(y − x) + o(|y − x|), as y → x .



206 Appendix A Spectral Theory and a Few Other Ideas From Mathematics

Theorem 11. Taylor’s formulae. Let f be a vector valued function of several
variables,

Rn ⊃ Ω→ Rm

x �→ f(x)

(a) (mean value inequality — first derivative) Assume that f is of class C2, that
is, its derivatives of first and second order exist and are continuous. Then,

|f(y) − f(x)| ≤ sup
0<t<1
|Jf(1−t)x+ty | · |y − x| .

(b) (mean value inequality — second derivative) Assume that f is of class C3,
that is, its derivatives of first, second and third order exist and are continuous.
Then,

|f(y) − f(x) − Jfx(y − x)| ≤ 1
2

sup
0<t<1
|H(f)|(1−t)x+ty| |y − x|2 .

(c) (mean value theorem — first derivative) Assume2 that m = 1 and f is of class
C2, Rn ⊃ Ω � x �→ f (x) ∈ R. Then, there is t ∈]0,1[, such that

f (y) = f (x) + ∇ f(1−t)x+ty · (y − x) .

(d) (mean value theorem — second derivative) Assume again that m = 1, and that
f is of class C2, Rn ⊃ Ω � x �→ f (x) ∈ R. Then, there is 0 < t < 1, such that

f (y) = f (x) + ∇ fx · (y − x) +
1
2

(y − x)T H ( f )|(1−t)x+ty (y − x) .

We remark that the important point in order to get equalities and not inequalities,
in Taylor’s formulae, is the dimension of the codomain, which for equality must be
one, and not the domain. See Exercise A.32.

Taylor’s formulae give precise results. Sometimes, a simpler, less informative
version, might be useful. This can be accomplished by use of big-O notation. In
fact, we have the following results:

(a) Assume that f is of class C2, then,

f(y) = f(x) +Jfx · (y − x) + O
(
|y − x|2

)
, when y → x . (A26a)

(b) Assume that f is of class C3, then,

f(y) = f(x) +Jfx · (y − x) +
1
2

(y − x)T H (f)|x (y − x)

+ O
(
|y − x|3

)
, when y → x . (A26b)

2 When the function assumes real values, m = 1, items (c) and (d) can be improved to an
equality. Also, in this case, J fx is just the gradient and the second derivative is given by
the Hessian matrix, H( f ).
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Exercises

A.1. Transpose. Denote by ei ∈ Rn the ith canonical vector, that is, all entries of ei

are zero except the ith entry which equals to 1. Let x = ei and y = e j, i, j = 1,2, . . . , n
in

〈Bx,y〉 = 〈x,Cy〉 ,

and, from it, show that the way a matrix changes its position in the inner product is
by its transpose, C = BT , therefore giving another proof of this result.

A.2. Cauchy-Schwartz inequality. This exercise is a guide to prove that | 〈x,y〉 |≤
|x| |y|.

(a) Given two vectors a, b ∈ Rn, orthogonal, a ⊥ b, then a and b are the sides of
a right triangle, the catheti, with c = a + b, its hypothenuse. Show that

|a|2 + |b|2 = |c|2 .
Hint. Develop 〈a + b,a + b〉.

(b) Given vectors x,y ∈ Rn, such that x � 0, show that y is the sum of a vector in
the direction of x, v1, and another one, v2, orthogonal to x, v1 ⊥ v2, explicitly,

y =

v1
︷�︸︸�︷
〈x,y〉
〈x,x〉

x +

v2
︷�������︸︸�������︷

y − 〈x,y〉
〈x,x〉

x .

(c) Using (a) and (b), show that

|y|2 = | 〈x,y〉 |
2

〈x,x〉
+ |v2|2 ,

and, therefore, since |v2|2 ≥ 0, show that

| 〈x,y〉 | ≤ |x| |y| .

A.3. Let c(t) = a(t)v1 + b(t)v2, where vi ∈ Rn, i = 1,2 are orthogonal. Show that
|c(t)|2 = a2(t) + b2(t).

A.4. Norm. In general, a norm in Rn is a function with the ‘strange’ looking symbol
| · |,

Rn → R

x �→ |x| ,
which satisfies the following properties,

(i) (positivity) |x| ≥ 0 for all x ∈ Rn, and |x| = 0 if and only if x = 0.
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(ii) (homogeneity of degree 1) For all λ ∈ R and x ∈ Rn, |λx| = |λ| |x|.
(iii) (triangle inequality) For all pairs of vectors, x,y ∈ Rn,

|x + y| ≤ |x| + |y| . (A27)

(a) Show that

|x| =
√

x2
1 + x2

2 + . . . + x2
n ,

is a norm in Rn.

(b) Show that, for a general norm, |a − b| ≤ |a − c| + |c − b|
Hint. Here is a guide to prove the triangle inequality for norm defined by Eq. (A1).

(i) Write explicitly |x + y|2.

(ii) Do the same for (|x| + |y|)2.

(iii) Show the triangle inequality.

A.5. Inner product. An inner product in Rn is a function with a funny looking
symbol, 〈 · , · 〉,

Rn ×Rn → R

(x,y) �→ 〈x,y〉

satisfying the following conditions

(i) (positivity) For all vectors x ∈ Rn,

〈x,x〉 ≥ 0 , and 〈x,x〉 = 0 if and only if x = 0 . (A28a)

(ii) (bilinearity) For all vectors x1, x2, y1, y2 ∈ Rn, and all scalars a1,a2,b1,b2 ∈ R,

〈a1x1 + a2x2,b1y1 + b2y2〉 = a1b1〈x1,y1〉
+ a1b2〈x1,y2〉 + a2b1〈x2,y1〉 + a2b2〈x2,y2〉 (A28b)

(iii) (symmetry) For all x, y ∈ Rn,

〈x,y〉 = 〈y,x〉 (A28c)

(a) Show that, in general, the bilinearity, Eq. (A28b), follows from symmetry,
Eq. (A28c), and linearity in the first slot in the inner product, i.e.,

〈ax,y〉 = a〈x,y〉 ,
〈x1 + x2,y〉 = 〈x1,y〉 + 〈x2,y〉 .
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(b) Show Cauchy-Schwartz inequality,

|〈x,y〉| ≤ |〈x,x〉| 12 |〈y,y〉| 12 .

(c) (Fourier-Pythagoras trick) For a general inner product, we say that x is or-
thogonal to y, and denote this by x ⊥ y if and only if 〈x,y〉 = 0. Given a set
of non-null orthogonal vectors p1,p2, . . . ,pn, and a vector x,

x = a1p1 + a2p2 + . . . + anpn ,

find a simple expression for the constants ai, i = 1,2, . . . , n, by making the
inner product of pi with both sides of the previous equation.

(d) Given a real, symmetric, positive definite, n × n matrix A, show that

〈x,y〉 = xT Ay

defines an inner product.

In the case that the inner product is defined by matrix A, we denote the or-
thogonality between x and y by x ⊥A y, and say that x is A−orthogonal to y.

(e) Given an inner product, show that

|x| =
√
〈x,x〉 ,

is a norm in the sense defined in Exercise A.4.

(f) Redo Exercise A.1 for the inner product defined in item (d).

A.6. Norm of a matrix. Given a real matrix A, m × n, define the function

Rn\{0} � x �→ q(x) =
|Ax|
|x| .

(a) Show that q is a homogeneous function of degree zero.

(b) Show that

max
x�0

|Ax|
|x| = max

|x|=r
r�0

|Ax|
|x| = max

|x|=1
|Ax| .

(c) Let D be a n × n diagonal matrix and di, i = 1,2, . . . , n be its diagonal entries.
Show that

|D| = max
i=1,2,...,n

|di| .

A.7. Show the validity of Eq. (A15).
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A.8. (a) Given a square matrix A, show that the spectrum is translated when A
is translated, that is,

σA+kI = k + σA .

Here, if S is a subset of C, k + S = {s + k. for all s ∈ S }, is the translation of
set S by k.

(b) Show that eigenvectors remain the same, that is, if v � 0 is an eigenvector
associated with eigenvalueλ of A, then v still remains an eigenvector of A+kI.

(c) Given an invertible matrix, and σA = {λ1,λ2, . . . , λl}, show that

σA−1 =

{
1
λ1
,

1
λ2
, . . . ,

1
λl

}

.

(d) Discuss the eigenvectors of A−1.

A.9. Gerschgorin’s circles theorem. Let A be a square matrix with real or complex
entries, A = (ai j)i, j=1,...,n. Every eigenvalue of a matrix A, n×n, be it real or complex,
is inside (belongs to) the union of Gerschgorin’s C1,C2, . . . ,Cn, where Ci is the
circle, on the complex plane centered in aii, the ith element of the main diagonal of
matrix A, and radius given by

ri =

n∑

j=1; j�i

|ai j| .

which is the sum of the absolute values of the remaining entries in the ith line. In
symbols,

Ci = {z = x + iy ∈ C, such that |z − aii| ≤ ri} ,

and,

σA ⊂ ∪n
i=1Ci .

(a) Given the matrix,

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 2 1
1 5 3
2 4 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

determine centers and radii of Gerschgorin’s circles.

(b) A matrix is diagonally dominant when each diagonal entry exceeds the sum of
the absolute values of the remaining entries in that line. Is matrix D diagonally
dominant?

(c) Recall that a matrix is invertible if and only if 0 is not one of its eigenvalues.
Show that a diagonally dominant matrix is invertible.
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(d) Given any square matrix A, show that there exists k0 ∈ R such that A + kI is
invertible for k ≥ k0.
Hint. Show that k0 can be chosen such that A + k0I is diagonally dominant.

(e) Show Gerschgorin’s circles theorem.
Hint. Given an eigenvector associated with an eigenvalue,λ, at least one com-
ponent, say the ith component, is non-null. Dividing the eigenvector by the ith

entry, get another eigenvector, v. Write the ith equation from Av = λv, and
note that the absolute value of all entries of v are all less than or equal to 1.

A.10. Let A be a real matrix.

(a) Show that AT A and AAT are symmetric matrices.

(b) Show that |Ax|2 = 〈Ax, Ax〉 = 〈AT Ax, x〉.

(c) Given a real m × n matrix A, show that all eigenvalues of AT A are real, non-
negative.
Hint. Use spectral theorem and item (b).

(d) Use the spectral theorem to prove Eq. (A7).

(e) Assume that A is, furthermore, a symmetric matrix. Let λ1 ≥ λ2 ≥ . . . ≥ λn

be its eigenvalues, and

λabs = max
i=1,2...,n

|λi| .

Use the spectral theorem to show that

|A| = λabs .

A.11. (a) Verify that Eq. (A12) can be written as Eq. (A13).

(b) Sketch the region defined by Eq. (A11).

A.12. Use the spectral theorem to show that a symmetric matrix is positive definite
if and only if all eigenvalues are strictly positive.

A.13. Ellipsoids. An hyper-ellipsoide in Rn is a hypersurface (dimension n−1, can
be locally parametrized by n − 1 parameters) which can be transformed by a rigid
motion to the canonical form3

(
y1

a1

)2

+

(
y2

a2

)2

+ . . . +

(
yn

an

)2

= 0 .

3 The usual definition in two dimensions, that the sum of the distances of a point in the
ellipse to two points, the focci, is constant, is too restrictive in Rn, when n > 2.
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Given a real, n × n, symmetric, positive-definite matrix A and b ∈ Rn, show that
the level sets of

E(x) =
1
2

xT Ax − xT b ,

are either the empty set, a point (the solution of Ax = b), or an ellipsoid.
Hint. By the spectral theorem, there exists an orthogonal matrix, P, and a diagonal
matrix, D, such that A = PDPT . Consider the change of variables x = Py, giving
the function F(y) = E(Py), complete squares, and translate.

A.14. Metric spaces. A metric space in Rn is defined when there is a function,

d : Rn ×Rn → R

called a metric or distance function, such that, for all x, y, z ∈ Rn,

(i) (positivity) d(x,y) ≥ 0, and d(x,y) = 0 if and only if x = y;

(ii) (symmetry) d(x,y) = d(y,x);

(iii) (triangle’s inequality) d(x,y) ≤ d(x,z) + d(z,y).

(a) In Rn, we use the metric coming from a norm,

d(x,y) = |x − y| =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2 .

Show that it is a metric.

(b) Show that the function

d(x,y) = |x − y| ,
defined by means of a norm, is a distance in Rn, (a so-called metric induced
by the norm).

(c) The function

ρ(x,y) = |x − y|2 ,
is not a metric. Show that it satisfies (i), and (ii), but fails to satisfy (iii).

(d) Given a symmetric, positive definite matrix M, show that

d(x,y) =
[
(x − y)T M(x − y)

] 1
2 ,

is a metric.

A.15. Given an orthogonal matrix, P, show that it preserves distances and angles in
the following way:



Exercises 213

(a) Show that it preserves the inner-product

〈Px, Py〉 = 〈x, y〉 for all x, y .

(b) Show that it preserves the norm |x| = 〈x, x〉 1
2 , i.e.,

|Px| = |x| .

(c) Recall that the angle between two vectors, θ(x, y), 0 ≤ θ ≤ π, is defined from
the equation

cos θ(x,y) =
〈x, y〉
|x||y| .

Show that θ(Px,Py) = θ(x,y).

A.16. Rigid motions. A function G : U → V is an isometry between metric spaces
(sets with a distance) if and only if

d(G(x),G(y)) = d(x, y) , for all x,y ∈ U . (A29)

Let G : Rn → Rn. Show that G is an isometry if and only if G(x) = Ux + b, where,
U is an orthogonal matrix, and b ∈ Rn, that is, an isometry in Rn is an orthogonal
transformation followed by a translation, the so-called rigid motions.
Hint. A general idea here is that if something is conserved, then derive it and at a
certain point it will give zero. Something should come out. Differentiate Eq. (A29)
with respect to xi and y j. A partial differential system of equations for G should
come up. Its solution yields the result.

A.17. Find the singular value decomposition of

A =

(
1 1 2
1 1 −1

)

.

A.18. Let A be an n × 2 matrix given by A = (1,1 − 2en). Determine its singular
value decomposition.

A.19. Show that v1,v2, . . . , vno defined in Eq. (A19a) are orthonormal.

A.20. (a) Show that P is a projection if and only if I−P is a projection. Likewise,
P is an orthogonal projection, if and only if I − P is.

(b) If P is an orthogonal projection, show that its screen and its directions of
projection spaces are orhogonal subspaces, i.e., show that S ⊥ V.

A.21. (a) Show that the xy-plane in R3 and the yz-plane are not orthogonal sub-
spaces. (b) Show that the x-axis and the yz-plane are orthogonal subspaces.

A.22. Show the validity of Eq. (A21).
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A.23. (a) Given a matrix A, show that A(AT A)−1AT is an orthogonal projection,
whenever AT A is invertible.

(b) Determine its screen and its directions of projection space.

A.24. (a) Given a projection matrix P, show that σP ⊂ {0,1}.

(b) Given an orthogonal matrix, show that its eigenvalues are complex numbers
with absolute value 1.

A.25. Show that projection matrices and orthogonal matrices are forgetting matri-
ces. (As with the identity matrix, which is a projection matrix, but does not ‘project’
anything, orthogonal matrices are forgetting matrices, but, do not ‘forget’ anything.)

A.26. Let Λ be a subset of {1,2, . . . , n} and k = #Λ=‘number of elements of Λ’.
Define

πΛ : Rn → Rk

x �→ πΛ(x) = (xi)i∈Λ

For example, let n = 5 and Λ = {1,3,4}. Then

π{1,3,4}(x) = (x1,x3,x4)T .

(a) Determine the matrix F that represents π{1,3,4}, i.e.,

π{1,3,4}(x) = F

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x3

x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(b) Show that F is a forgetting matrix.

(c) In general, let Λ = {i1, i2, . . . , ik}, with i1 < i2 < . . . < ik. Determine F such
that

πΛ(x) = Fx .

(d) Show that F is a forgetting matrix.

A.27. Averaging is forgetting

(a) Show that M = 1
n11

T is a forgetting matrix, and interpret the product Mx, for
x ∈ Rn.

(b) Show that K = 1√
n
1T is a forgetting matrix.
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A.28. Let U be a subspace of Rn. Show

Rn = U ⊕⊥ U⊥ (A30)

A.29. (a) Show the validity of Eq. (A23). (b) Show the validity of Eq. (A24).

A.30. Convex sets. Given two points in Rn, x,y ∈ Rn, the line segment joining them
is the set

[
x, y

]
= {(1 − t)x + ty ∈ Rn, for all t ∈ [0,1]} .

Note that if x = y, then
[
x, y

]
= {x}. A set K ⊂ Rn is called convex set if and only

if, for all x,y ∈ K , the line segment is contained in K . In symbols,

[
x, y

]
⊂ K

(a) Consider the function

[0,1] � t �→ c(t) = (1 − t)x + ty ∈ Rn ,

and compute c(0), c(1/2), c(1) and dc
dt . What is the relation between the func-

tion c and the set
[
x, y

]
?

(b) Let Hn = [0, +∞[n. Show that Hn ⊂ Rn is a convex set.

(c) Let

Ba(r) = ‘open ball of center a and radius r in Rn’

= {x ∈ Rn | |x − a| ≤ r} .

Show that B0(r) is a convex set.

A.31. Show the validity of Eq. (A25).

A.32. Most people are used to Taylor’s formula for scalar functions, i.e., when the
function has values in R, Rn ⊃ Ω � x �→ f (x) ∈ R, in which case, given two
points x, y, there exists a point in-between ξ = (1 − t)x + ty, 0 < t < 1 such that
f (y) = f (x)+∇ fξ · (y−x). That this cannot be the case, in general, for vector valued
functions with values in Rm, with m ≥ 2, can be seen in the following example.
Given

R � θ �→ f(θ) = (cos θ, sin θ) ,

let θ0 = 0 and θ1 = π. Show that there is no ξ, 0 < ξ < π, such that

f(π) = f(0) +
df
dθ

∣
∣
∣∣
∣
ξ
· (π − 0) .

We remark that the important thing here is the dimension of the codomain and not
of the domain.



216 Exercises

A.33. Use Theorem 11 to prove Eq. (A26).

A.34. Convex functions. Let K → R be a twice-continuously differentiable func-
tion defined on a convex set. Here, we can think of K as either Rn or Hn.

A function F is called convex if and only if

F((1 − t)x + ty) ≤ (1 − t)F(x) + tF(y) , (A31)

for all t ∈ [0,1], and all x,y ∈ K .

(a) The graph of a function F : K → R is the set

graph(F) = {(x, F(x)) ∈ K ×R | x ∈ K} ,

and the epigraph of a function is the set

epigraph(F) = ‘set of points above the graph’

= {(x, y) ∈ K ×R | x ∈ K and y ≥ F(x)} ,

Show that F is a convex function if and only if epigraph(F) is convex.

(b) Let F be a convex function. Rearranging appropriately Eq. (A31) (taking all
dependence on t to the left hand side of the equation), and letting t → 0, show
that

〈∇F |x, y − x〉 ≤ F(y) − F(x) .

(c) Use the previous result and Taylor’s formula to show that the Hessian of a
convex function F,

H(F) |x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2F
∂x2

1
. . . ∂2F

∂x1∂xn

...
. . .

...
∂2F
∂xn∂x1

. . . ∂2F
∂xn∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is a positive semidefinite matrix, i.e., for all z ∈ Rn,

zT H(F) |x z ≥ 0 .

Hint. For y sufficiently close to x, (z = y − x), the second order term in
Taylor’s formula, dominates the higher order terms.

(d) A function F is called strictly convex if and only if

F((1 − t)x + ty) < (1 − t)F(x) + tF(y) ,

for all t ∈]0,1[, and all x,y ∈ K , x � y. Show that if H(F)|y is positive definite
for all y ∈ K , then F is strictly convex.
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A.35. Bregmann divergence. Given a strictly convex differentiable function4, F :
K → R, with K ⊂ Rn, a Bregman distance or divergence is a function defined by,

BF : K ×K → R

(x,y) �→ BF(x,y) = F(x) − F(y) − 〈∇F |y ,x − y〉 .

(Here, divergence is used to mean a quantification of the difference of points, x, with
respect to another, y, fixed point, as measured5 by a function F.)

(a) Give an expression for F(x), expanding it by Taylor’s formula with a second
order error term, around y, and relate it with BF(x,y).

(b) Show that Bregman divergence is non-negative, i.e., BF(x,y) ≥ 0 for all x,y ∈
K and it is equal to zero if and only if x = y.

(c) Show that S (x) = |x|2 is strictly convex.

(d) LetBS denote the Bregman divergence corresponding to S . Show thatBS (x,y) =
|x − y|2. Verify that BS is not a distance (see Exercise A.14).

(e) Let M be a positive definite matrix, and consider the inner product defined by

〈x,y〉M = xT My ,

the related norm,

|x|M =
√

xT Mx .

and metric (distance),

dM(x, y) = |x − y|M =
√

(x − y)T M(x − y) .

When M is the inverse of the covariance matrix of some probability distri-
bution, dM is called a Mahalanobis distance. Let G(x) = xT Mx. Show that it
generates a Bregman divergence,BG, and relate it to Mahalanobis distance.

A.36. (a) For the function below, show that it is strictly convex, and construct
the corresponding Bregman divergence,

F(x) =
n∑

i=1

xi log xi −
n∑

i=1

xi ,

BF(x,y) =
n∑

i=1

xi log
xi

yi
−

∑

i=1

xi +

n∑

i=1

yi .

4 We remark that a sufficient condition for a function to be strictly convex is given in Exer-
cise A.34.

5 For fixed y, consider the hyperplane in Rn ×R, through (y, F(y)) and orthogonal to ∇Fy ,
defined by,

z = F(y) + 〈∇F |y ,x − y〉 ,

for x ∈ Rn and z ∈ R. Clearly, z can be seen as a function of x, z = z(x). Note that the
Bregman divergence, BF (x,y) is just the height difference between the function F and the
hyperplane, i.e., BF(x,y) = F(x) − z(x).
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(b) Do the same for the functions below,

G(x) = −
n∑

i=1

log xi ,

BG(x,y) =
n∑

i=1

(
xi

yi
− log

xi

yi
− 1

)

.

A.37. Given x, x0 ∈]0, +∞[, in order to compare x relative to x0, we consider the
ratio x/x0. Now, let f = f (y) be a function of class C2 such that

f (1) = 0, f ′(y) < 0, for y < 1, and f ′(y) > 0, for y > 1 . (A32)

(a) Show that u(y) = (y − 1)2 satisfies Eq. (A32).

(b) Show that v(y) = 1 − y + y ln y satisfies Eq. (A32). Sketch the graph of v.

(c) Show that a function satisfying Eq. (A32) is a convex function.

(d) Show that it also satisfies f ′(1) = 0.

(e) Show that g(x) = f ( x
x0

) has the interesting property that it increases as x

departs6 away from x0.

(f) Show that the same result is true for the function h(x) = x0 f ( x
x0

).

(g) Compute s(x,y) = yv
(

x
y

)
.

(h) Compute Bregman’s divergence for v, Bv(x,y), and compare the result with
s(x,y).

(i) Do the same for u, i.e., compare s(x,y) = yu
(

x
y

)
and Bu(x,y).

(j) Consider the following generalization of Bregman’s divergence. Let f = f (x,y)
be a real-valued, strictly convex function in the first entry, defined in a subset
of R2. Define

B f (x,y) = f (x,y) − f (y,y) − ∂ f
∂x

∣∣
∣
∣
∣
(y,y)

(x − y) .

Let f (x,y) = (x/y)2. Show that the corresponding Bregman’s divergence is
the square of the relative distance between x and y relative to y, i.e., B f (x,y) =
( x−y

y

)2.

A.38. Let f = f (x) be a convex, real valued function defined on R.

6 This is a very simple property that one could require in order to compare x and x0. It is also
homogeneous of degree zero with respect to multiplying both x and x0 by some constant
value.
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(a) Show that

F(x) = f (x1) + f (x2) + . . . + f (xn) ,

is also convex.

(b) Show that if f ′′(x) > 0 then JF |x is positive definite, and therefore F = F(x)
is strictly convex.

(c) Show that

BF(x,y) = f (x1) + f (x2) + . . . + f (xn) −
[
f (y1) + f (y2) + . . . + f (yn)

]

+ f ′(y1)(x1 − y1) + f ′(y2)(x2 − y2) + . . . + f ′(yn)(xn − yn)

=

n∑

i=1

[
f (xi) − f (yi) − f ′(yi)(xi − yi)

]
.

(d) Show that F(x) = x2
1 + x2

2 + . . . + x2
n is strictly convex.

(e) Show that F(x) =
∑n

i=1 [xi ln xi + (1 − xi)] is strictly convex.

(f) Show that F(x) = −
∑n

i=1 ln xi is strictly convex.

(g) Compute Bregman’s divergence for functions in items (d), (e) and (f).

A.39. Consider the following generalization of Bregman’s divergence. Let f =
f (x,y) be a strictly convex function in the first entry, real valued function defined
on a subset of Rn ×Rn. Define

B f (x,y) = f (x,y) − f (y,y) − ∇x f |(y,y) · (x − y) .

(a) Let f (x,y) = g(x1,y1) + g(x2,y2) + . . . + g(xn,yn) and obtain an expression for
B f (x,y).

(b) For g(x,y) = (x/y)2, determine B f (x,y).

(c) Let f (x,y) =
(|x|/|y|)2. Compute B f (x,y).

Exercises: The Conjugate Gradient Method

The conjugate gradient method is, somewhat, geometrically simple. However, be-
fore simplicity is achieved, some previous work has to be done. Next we present a
collection of exercises to pave the road of simplicity in its understanding.

A.40. Intersection of a linear space with an ellipsoide is an ellipsoide. Let A be
a positive definite symmetric matrix. From Exercise A.13, we know that

1
2

xT Ax − xT b = ‘constant’

is an ellipsoide.



220 Exercises

(a) Let p1 and p2 be two linearly independent vectors. Consider the restriction of
the ellipsoide to the plane τ, consisting of points

x = y1p1 + y2p2 =

P
︷��������︸︸��������︷
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

| |
p1 p2

| |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
y1

y2

)

= Py ,

for all y1, y2 ∈ R, that is the set of solutions y ∈ R2 of the equation

1
2

yT PT APy − yT PT b = ‘constant’ .

Show that this set is an ellipse, a single point, or the empty set.

(b) Propose and show a similar result for the restriction of the elipsoide to a
k−dimensional subspace τ = span {p1,p2, . . . , pk} generated by k linearly in-
dependent vectors.

A.41. How to change places in an inner product. Let A be a symmetric, n × n,
positive definite matrix, and S an n×m matrix. Consider the inner product 〈y, z〉A =
yT Az, for all y, z ∈ Rn. Show that if

〈S x, y〉A = 〈x, S ∗y〉A ,

for all x ∈ Rm, y ∈ Rn, then S ∗ = A−1S T A.

A.42. Translation: completing squares

(a) By completing squares show that

a
2

x2 − bx =
a
2

(

x −
b
a

)2

−
b2

2a
.

(b) Let f (x) = a
2 x2 − bx. Verify that the minimum point of f is b/a, and find the

minimum of f .

(c) Obtain the critical point equation of f and its solution.

(d) Let D = diag(a1, a2, . . . ,an) be a diagonal matrix with a1 ≥ a2 ≥ . . . ≥ an > 0.
Let b = (b1,b2, . . . ,bn) ∈ Rn, and fi(x) = ai

2 x2 − bix, for i = 1,2, . . . , n.
Complete the squares for the function

E(x) =
1
2

xT Dx − xT b

= f1(x1) + f2(x2) + . . . + fn(xn) .

(e) From the result in the previous item, determine the minimum point and the
minimum of E.
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(f) Write the critical point equation of E, as a system of linear equations, using
matrix D.

(g) Assume that A is a positive definite symmetric matrix, and let P, orthogonal,
and D, diagonal matrices, as given by the spectral theorem, A = PDPT . Redo
appropriately items (d) to (f) with A in the place of D.
Hint. Use the change of variables y = PT x twice.

A.43. Decoupling. Let A, P and D as in the spectral theorem, A = PDPT , and
consider the system of equations Ax = b. Show that the equation satisfied by y =
PT x, coming from a change of variables, is decoupled, i.e., the equation for each yi,
does not depend on the other variables

A.44. Spheres and ellipsoides. Let A be a symmetric positive definite matrix. As
in Exercise A.5 denote by 〈 , 〉A the inner product 〈x , y〉A = xT Ay. Consider the

norm |x|A = 〈x ,x〉
1
2
A , the distance dA(x,y) = |x − y|A and the corresponding sphere,

centered at c, with radius r,

S n−1
c (r) = {x ∈ Rn | dA(x,y)} .

(a) Let

D = diag

(
1
a2
,

1
b2

)

=

(
a−2 0
0 b−2

)

.

Determine the analytical expression for the one-dimensional sphere, S 1
(x0,y0)(1)

i.e., the ‘circle’ of radius 1 and center (x0,y0) for the distance dD, and represent
it in the cartesian plane. What is it usually called?

(b) In R3, let D = diag
(

1
a2 ,

1
b2 ,

1
c2

)
. Represent S 2

(x0,y0,z0)(1).

A.45. Rotated ellipse

(a) Consider the equation

(x − y)2 +
(x + y)2

36
= 1 .

Represent it. Hint. Let x − y = 0 and find the extrema points of the ellipse on
that line. Do the same for x + y = 0.

(b) Do the same for the equation

(x − y + 1)2 +
(x + y − 5)2

36
= 4 . (A33)

(c) Equation (A33) is the level 4 set of a function F of the form

F(x,y) =
1
2

(x y)A

(
x
y

)

−
1
2

(x y)

(
b1

b2

)

+ c ,

where A is a positive definite, symmetric matrix, b = (b1, b2)T ∈ R2 and
c ∈ R. Determine A, b and c.



222 Exercises

(d) Show that the minimum point of F is the same as the minimum point of
E(x) = 1

2 xT Ax − xT b.

A.46. Different gradients and the steepest descent method. Let p ∈ Rn be a
search direction, x0 ∈ Rn and E(x) = 1

2 xT Ax − xT b, with A a symmetric, positive
definite matrix, and b ∈ Rn.

(a) Show that the minimum point of E along the line

R � t �→ x0 + tp ∈ Rn ,

is x0 + t∗p where

t∗ =
pT (b − Ax0)

pT Ap
.

(b) The derivative of E at x0 applied to vector p, dEx0 (p), i.e., the directional
derivative, is given by

dEx0 (p) = lim
t→0

E(x0 + tp) − E(x0)
t

,

and the gradient of E at x0, ∇Ex0 , is the vector that represents the derivative,
with respect to an inner product,

dEx0 (p) = 〈∇Ex0 , p〉 .

Show that

∇Ex0 = Ax0 − b ,

when the inner product is 〈x, y〉 = xT y, and

∇Ex0 = A−1(Ax0 − b) ,

when the inner product is 〈x, y〉A = xT Ay.

(c) The steepest descent is a method that choses minus the gradient as the search
direction. Use the previous items to show that applying the steepest descent
method to E, we arrive at the solution of the system Ax = b in one step, no
matter which is the initial guess, if we use the gradient coming from the inner
product 〈 , 〉A. That is, show that

x0 + t∗p = x∗ , where x∗ = A−1b ,

if p = −∇Ex0 = −A−1(Ax0 − b).

Remark. This seems too good to be true, and the catch is this: In order to find the
search solution, p = −A−1(Ax0 − b) = −x0 + A−1b, we already have to find the
solution A−1b. One can also check that in this case t∗ = 1. This works because of
the following three reasons:
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(i) The level sets of E, as seen through the ‘eyes’ of the inner product 〈 , 〉A, are
‘evenly’ rounded spheres, centered at the solution of equation Ax = b (this
fact is seen in item (e), Exercise A.54);

(ii) Given any initial guess x0, it will be in a level set of E;

(iii) The gradient of E at x0 is A-orthogonal to the level sets of E and its negative
is directed towards the center of the sphere.

(d) Given a point x0, in a level set of E, which is a sphere, and a set of n A-
orthogonal search directions, p1, p2, . . . , pn, one can find a linear combination
of the search directions,

c1p1 + c2p2 + . . . + cnpn

such that the center of the sphere x∗ can be represented as

x∗ = x0 + c1p1 + c2p2 + . . . + cnpn ,

and constants ci are determined independently of one another, in particular,
can be determined in whatever order one wishes. Show that

F(c) = E(x0 + c1p1 + c2p2 + . . . + cnpn)

= α0 +

n∑

i=1

1
2

c2
i 〈pi, pi〉A + αici ,

with

α0 =
1
2
〈x0, x0〉A − xT

0 b =
1
2

xT
0 Ax0 − xT

0 b ,

αi = 〈x0, pi〉A − pT
i b = pT

i (Ax0 − b) .

(e) Determine the constants ci by finding the critical point equation of F.

A.47. Optimization of a decoupled function. Let fi : R → R, for i = 1,2, . . . , n,
be functions of class C∞, and define

F(x) = f1(x1) + f2(x2) + . . . + fn(xn) .

Assume that F has a global point of minimum, which then is determined as the so-
lution of the critical point equation. Show that the critical point of F can be obtained
by considering, separately, the critical point of each fi.

A.48. Drawing a method. In R2, let (u,v) and (−v,u) be two orthogonal vectors. Let
also x∗ = (x∗,y∗)T be the center of concentric circles (level sets). Let x0 = (x0,y0)T

be an initial guess for x∗. (This exercise is to solve Ix = x∗, i.e., finding x = x∗ by
minimization along search directions).
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(a) Minimize E(x) = 1
2 xTIx − xT x∗, along the line t �→ x0 + t(u,v)T . Let the

minimum point be x1 = x0 + t1(u,v)T . Show that

t1 =
(u,v)(x∗ − x0)

(u,v)(u,v)T
.

(b) Show that x1 − x∗ ⊥ x1 − x0.

(c) Draw a picture of this, representing at least x0, x1, x∗, (u,v), (−v,u), the level
sets E(x0) and E(x1), and the lines through x0 and x1 and through x1 and x∗.

A.49. Curvature, Gauss map of a curve & all that. Let R ⊃]a,b[� t �→
(c1(t),c2(t)) ∈ R2 be a parametrization of a curve C in R2. Then (c′1(t),c′2(t))T is
a tangent vector to the curve C at (c1(t),c2(t)), and

T =
(c′1(t),c′2(t))T

√

(c′1)2 + (c′2)2

is a unit tangent vector. The vector field

N(t) =
(−c′2(t),c′1(t))T

√

(c′1)2 + (c′2)2

is a unit normal vector field to the curve, with the added feature that, together with
T , in the order (T,N), be a positively oriented basis of R2, that is, det(T N) > 0.
Recall that S 1

0(1) = {(x,y) ∈ R2 | x2 + y2 = 1}. Let (x,y) ∈ C, then there is t ∈]a,b[
such that x = c1(t) and y = c2(t). Define

N : C → S 1
0 ⊂ R2

in the following way, N(x,y) =
(−c′2(t),c′1(t))√

(c′1)2+(c′2)2
. Strictly speaking, we are using N in two

different ways, but we hope this does not confuse the reader. Function N is called
the Gauss map for the curve. It records the way the curve bends. Its rate of variation
per unit length at point (x,y), in the direction of the tangent,

k =
1

√

(c′1)2 + (c′2)2
〈dN

dt
, T 〉 ,

is called the signed curvature of the curve. The curvature is just |k|. The definition
of the Gauss map, N, of a curve, and of its signed curvature, k, depends on the
parametrization of the curve, differing, however, at most, by a minus sign.

(a) Show that the signed curvature is given by

k(t) =
c′1c′′2 − c′′1 c′2

((c′1)2 + (c′2)2)3/2
.
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(b) Consider the line ax + by = c. Show that N is either

N =
−(a,b)T

√
a2 + b2

, or
(a,b)T

√
a2 + b2

,

and compute k.

(c) Given the circle of radius R and center (a,b),

S 1
(a,b)(R) =

{
(x,y) ∈ R2 | (x − a)2 + (y − b)2 = R2

}
,

and the usual parametrization given by

x(θ) = a + R cos θ

y(θ) = b + R sin θ

determine T , N and k. Note that k is negative.

(d) Consider the ellipse

x2

a2
+

y2

b2
= 1 ,

with a > b, and its parametrization given by

x(t) = a cos t

y(t) = b sin t .

Determine T , N and k. Also, determine the maximum and the mininum of its
curvature, and where they occur.

A.50. Gauss map for surfaces. A smooth surface S in R3 is called orientable if it
has a smooth unit normal vector field. The function

N : S → S 2
0(1) =

{
(x,y,z) ∈ R3 | x2 + y2 + z2 = 1

}

where, for each x ∈ S , N(x) is the unit normal vector to the surface S at x, is called
Gauss map. It records the way the surface ‘bends’ and ‘twists’ (’writhes’).

If the surface S is given by an equation of the form

F(x,y,z) = d

where F is a smooth function, F : R3 → R, then S is just the level set of F, corre-
sponding to level d. In this case, we recall from vector calculus, that the gradient

∇F =

(
∂F
∂x
,
∂F
∂y
,
∂F
∂z

)

,

is normal to the level sets, pointing in the direction of local steepest ascent of F, and
we can take N = ∇F/|∇F|.
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Let

R2 ⊃ U � (u,v)
x�→ X(u,v) = (x(u,v),y(u,v),z(u,v)) ∈ S ⊂ R3

be a parametrization (coordinates) of a piece of S . Given (u0,v0) ∈]a,b[×]c,d[⊂ U,
consider the coordinate curves,

R ⊃]a,b[� u �→ c1(u) = (x(u,v0),y(u,v0),z(u,v0))T ∈ S ⊂ R3 , and

R ⊃]c,d[� v �→ c2(v) = (x(u0,v),y(u0,v),z(u0,v))T ∈ S ⊂ R3 ,

and, in order to avoid the ambiguity of the previous definition, we define the Gauss
map at X0 = (x(u0,v0), y(u0,v0),z(u0,v0)) ∈ S , N(X0), by the unit vector in the direc-
tion of c′1(u0) × c′2(v0). Since

det(c′1(u0) c′2(v0) N(X0))

is positive, we say that those vectors, in that order, constitute a positively oriented
basis for R3, and that (c′1(u0) c′2(v0)) constitute a positively oriented basis for the
tangent space of S at X0 = (x(u0,v0), y(u0,v0),z(u0,v0)).

(a) A special case of this occurs when S is parametrized as the graph of a func-
tion,

(x,y) �→ f (x,y) ∈ R .

In this case, the parametrization is X(x,y) = (x,y, f (x,y)). Show that

N =
(−∂ f /∂x,−∂ f /∂y, 1)

√
1 + (∂ f /∂x)2 + (∂ f /∂y)2

.

(b) (Plane) Compute N when S is a plane, say,

S =
{
(x,y,z) ∈ R3 | ax + by + cz = d

}
.

In this case, N is a constant (vector) function, given, up to a sign, by

N =
(a,b,c)

√
a2 + b2 + c2

.

(c) (Sphere) Let S be a sphere,

S = S 2
0(R) =

{
(x,y,z) ∈ R3 | x2 + y2 + z2 = R2

}

Compute N in three different ways by considering S as the level set of a
function, by considering it as the graph of a function, and by means of the
usual spherical coordinates parametrization,

]0,2π[×]0,π[� (θ,φ) �→ (R cos θ sinφ,R sin θ sin φ,R cosφ) ∈ S ⊂ R3 .
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(d) (Cylinder) Consider the surface of a cylinder,

C =
{
(x,y,z) ∈ R3 | x2 + y2 = r2

}
,

and determine its Gauss map.

(e) (Ellipsoide) Determine the Gauss map of the ellipsoide,

x2

a2
+

y2

b2
+

z2

c2
= 1 .

A.51. Metric tensor Given a surface S in R3, to go from one point of the surface
to another over the surface cannot, in general, be accomplished by a straight line,
due to the surface’s curvature. Assume we are given a parametrization of a piece of
the surface,

R2 ⊃ U � (u,v)
x�→ X(u,v) = (x(u,v),y(u,v),z(u,v)) ∈ S ⊂ R3 .

Consider the tangent vectors to the surface in X(u,v) given by the partial derivatives
of X,

t1 = Xu =
∂X
∂u
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x
∂u
∂y
∂u
∂z
∂u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and t2 = Xv =

∂X
∂v
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x
∂v
∂y
∂v
∂z
∂v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Furthermore, assume that {Xu,Xv} form a basis of the tangent plane to the surface S
at the point X(u,v), denoted by TX(u,v)S . Let α, β ∈ TX(u,v)S . Then, there are scalars
a1, a2, b1 and b2 such that

α = a1t1 + a2t2 , and β = b1t1 + b2t2 .

Show that:

(a) the inner product of α and β is

αTβ = 〈α, β〉 = aT Mb = 〈a, b〉M ,

where aT = (a1, a2), bT = (b1, b2),

M = (JX)T JX =
(
〈Xu, Xu〉 〈Xu, Xv〉
〈Xv, Xu〉 〈Xv, Xv〉

)

, (A34)

and

JX = (Xu Xv) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Matrix M is called the metric tensor (and the Gram matrix of the basis {Xu,Xv})
and it is related to the first fundamental form of the surface [15].
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(b) Assume a piece of surface S ⊂ R3 is parametrized as the graph of a function,

R2 ⊃ U � (x,y) �→ (x,y,z(x,y)) ∈ S ⊂ R3 .

Determine an expression for the metric tensor.

(c) Given a plane ax + by + cz = d let c � 0 and parametrize it as a graph of a
function, z = z(x,y). Determine its metric tensor.

(d) Let a surface be given as the level set of a function,

G(x,y,z) = 0 .

Assume that z can be written implicitly as a function of x and y, z = z(x,y).
Show that

M =
1

(∂G/∂z)2

(
(∂G/∂x)2 + (∂G/∂z)2 (∂G/∂x) (∂G/∂y)

(∂G/∂x) (∂G/∂y) (∂G/∂y)2 + (∂G/∂z)2

)

.

(e) Given the sphere

S 0(r) =
{
(x,y,z) ∈ R3 | x2 + y2 + z2 = r2

}
,

consider the standard spherical coordinates,

]0,2π[×]0,π[� (θ,φ) �→ (x(θ,φ),y(θ,φ),z(θ,φ)) ∈ R3 (A35a)

with

x(θ,φ) = r cos θ sin φ (A35b)

y(θ,φ) = r sen θ sin φ (A35c)

z(θ,φ) = r cos φ (A35d)

and determine the metric tensor. Do the same using the result in (d).

(f) Given the ellipsoide

x2

a2
+

y2

b2
+

z2

c2
= 1

determine the metric tensor.

A.52. Curvatures& all that: how to measure variations on the Gauss map of a
surface. Given a local parametrization of a piece of a surface,

(u,v) �→ X(u,v) = (x(u,v),y(u,v),z(u,v)) ,

denote by N = N(u,v) the Gauss map. Denote the derivatives of N by

Nu =
∂N
∂u

and Nv =
∂N
∂v
.
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From the standpoint of the twists and bendings of the surface, the relevant quantities
are the projections of Nu and Nv onto the tangent plane TXS . Since N is a unit vector,
the orthogonal projection of Nu onto the direction of N is 〈Nu,N〉N and its projection
onto TXS is, therefore,

Vu = Nu − 〈Nu,N〉N .

Likewise, the projection of Nv over TXS is

Vv = Nv − 〈Nv,N〉N .

(a) Since Vu and Vv are vectors in the tangent plane TXS , they can be written as
linear combinations of the basis {Xu,Xv} of TXS ,

Vu = k11Xu + k12Xv

Vu = k21Xu + k22Xv .

By making inner products of Vu and Vv with Xu and Xv, show that

K =

(
k11 k12

k21 k22

)

= M−1H , (A36)

where

M =

(
〈Xu,Xu〉 〈Xv,Xu〉
〈Xu,Xv〉 〈Xv,Xv〉

)

,

and

H =

(
〈Vu,Xu〉 〈Vv,Xu〉
〈Vu,Xv〉 〈Vv,Xv〉

)

.

Matriz K that records the variations of the Gauss map, N, on the surface, with respect
to the basis {Xu,Xv} of the tangent space TXS , is a symmetric matrix and captures
the curvature of S . Its eigenvalues are called principal curvatures of S at X, and
their eigenvectors are the principal directions of S at X. The determinant of K is
called the Gaussian curvature, and half the trace of K, (k11 + k22)/2, is called the
mean curvature of S at X(u,v).

(b) Consider the spherical coordinates of S 0(r), given by Eq. (A35), and deter-
mine matriz K. Also, determine the principal curvatures of S 0(r).

A.53. Let A be a symmetric, positive definite matrix. Given vectors a, b ∈ R3, show
that A−1(a × b) is A-orthogonal to a and b.

A.54. How is it that an ellipse has constant curvature? Given a scalar function

R3 ⊃ U � (x,y,z)T �→ G(x,y,z) ∈ R ,
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let S be a surface defined as a level set of G,

S =
{
(x,y,z) ∈ R3 | G(x,y,z) = c

}
.

Assume that z can be written implicitly as a function of x and y, z = z(x,y) ∈ R,
such that,

G(x,y,z(x,y)) = c . (A37)

Consider the local parametrization of S given by

(x,y) �→ X(x,y) = (x,y,z(x,y)) .

Let the inner product of the ambient space, R3, be given by

〈a, b〉A = aT Ab ,

for all a, b ∈ R3.

(a) Differentiate Eq. (A37) with respect to x. Let

∇G = (∂G/∂x, ∂G/∂y,∂G/∂z)

and obtain a relation between Xx and ∇G. Do the same for Xy.

(b) Use (a) to show that A−1(∇G)T is A-orthogonal to Xx and Xy. Note that Gauss
map can be written as

N =
A−1(∇G)T

|A−1(∇G)T |A
,

where | · |A =
√
〈 · , · 〉A.

(c) Let

Vx = Nx − 〈Nx,N〉AN

Vy = Ny − 〈Ny,N〉AN ,

and, similarly to what was done in Exercise A.52, write

Vx = k11Xx + k12Xy

Vy = k21Xx + k22Xy .

Show that K = M−1
A HA where

MA =

(
〈Xu,Xu〉A 〈Xv,Xu〉A
〈Xu,Xv〉A 〈Xv,Xv〉A

)

,

and

HA =

(
〈Vu,Xu〉A 〈Vv,Xu〉A
〈Vu,Xv〉A 〈Vv,Xv〉A

)

.
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(d) From Exercise A.13, we know that S defined as

1 = G(x,y,z) = (x y z)A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
y
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is an ellipsoide. Show that

(∇G)T = 2A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
y
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(e) Show that the curvature matrix K of S , is the identity. That is, the ellipsoide,
as seen from the metric defined by A, is isotropically round, i.e., it is a sphere
(of radius 1).
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acquisition process, 85
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anisotropic
– medium, 47
– porous medium, 23
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Babel tower effect, 182
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blurring operator, 162
Boltzmann equation, 115, 122
border effect, 99
boundary condition
– Dirichlet, 122
– Robin, 159
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Bregman divergence, 217
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commutative diagram, 193
computational modeling, 178
computational science and engineering, 177
computer program, 4, 178
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– directional, 59, 170
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– pixel, 103
domain, 3
domain of dependence, 86, 104, 164, 167
Duhamel’s principle, 132

eigenvalue, 25, 60, 77, 190, 192
elasticity, 30, 33
– composition of functions, 35
– product of functions, 36
equation
– Boltzmann, 115, 122
– critical point, 21, 24, 59, 66, 90, 111
– heat, 134, 159
– integral, 125
– normal, 41, 59, 112
– null residual, 162
– Poisson, 122
– residual, 24
– transport, 116
error
– dynamics, 27
– quadratic, 24, 163
– vector, 40
estimation
– function, 144
– parameter, 19
evaluation
– ill-conditioned, 28, 44
– well-conditioned, 28
exploratory data analysis, 11

factor
– damping, 113
– error multiplication, 29
– gain, 92
field, 159
forcing term, 159
forgetting matrix, 202
Fourier coefficient, 194
Fourier-Pythagoras trick, 209
Fréchet derivative, 170
function, 3
– adjoint, 148
– behaviour, 12
– characteristic, 160
– codomain, 3
– composition, 35
– condition of function evaluation, 27

– convex, 216
– domain, 3
– estimation, 144
– graph, 216
– homogeneous, 72
– injective, 12
– integral exponential, 125
– linear, 12, 165
– of class Ck, 29
– overloaded, 13
– phase, 116
– quadratic error, 20, 24, 163
– square-integrable, 191
– strictly convex, 216
– support, 166

Galileo, 180
Gauss map
– curve, 224
– surface, 225
Gaussian
– curvature, 229
– topography, 102
Gerschgorin’s circles, 210
gradient, 59, 149, 170

Hessian matrix, 25, 205
heterogeneous
– medium, 47
– porous medium, 23
homogeneous
– function, 72
– medium, 47
– porous medium, 23
Hooke, 180
Horner’s method, 36

ill-condition, 29, 44
image restoration, 85
information compression, 10
inner product, 191, 208
input, 7, 12, 159
instability, 34
interpolation
– data, 163
– linear function, 19
inverse identification problem, 1
inverse problem
– classification, 48
– practical inverse identification problem, 164
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– practical inverse reconstruction problem, 163
– problems mutually inverse, 157
– reconstruction, 85
– Type I, 53, 85
– Type III, 109, 129
– Type IV, 141
– types, 47, 168
inverse reconstruction problem, 1, 85, 141
isometry, 213
isomorphism, 165
isotropic
– medium, 47, 116
– porous medium, 23

Jacobian matrix, 31, 205

Kepler, 180
Kepler’s laws, 186
Krönecker’s delta, 21

Lagrange multiplier, 147, 173
Lagrangian, 147, 173
Landweber method, 66, 83
least squares method, 41
Levenberg, 113, 135
line segment, 215
linear
– combination, 189
– function, 165
– regularization, 68
linearization, 147

Marquardt, 113, 135
material
– anisotropic, 115
– gray, 115
– opaque, 125
– transparent, 115
mathematical model, 8, 178
mathematical modeling, 7
matrix
– adjoint, 190
– band, 93
– blurring, 86
– diagonally dominant, 210
– forgetting, 202
– Hessian, 25, 205
– Jacobian, 31, 112, 205
– linear model, 20
– orthogonal, 191

– pointwise matrix product, 105
– positive definite, 195
– positive semidefinite, 216
– projection, 200
– symmetric, 191
mean curvature, 229
medium
– isotropic, 116
– isotropic porous medium, 23
– participating, 115, 121
method
– conjugate directions, 72
– conjugate gradient, 70, 71, 83, 219
– descent, 82
– discrete-ordinates, 116
– Gauss-Seidel, 94
– Horner, 36
– hot wire, 129
– iterative minimization, 65
– Landweber, 66, 83
– least squares, XII, 20, 41, 111
– Levenberg-Marquardt, 113, 135
– modified Newton, 111
– Newton, 91
– scientific, 8
– separation of variables, 86
– steepest descent, 65, 83, 145
metric space, 212
– distance, 212
– metric induced by norm, 212
metric tensor, 227
minimizing sequence, 65
model
– calibration, 19
– characterization, 10, 37, 102, 182, 184
– database, 11
– descriptive, 12, 182, 183
– determination, 14
– dynamic, 184
– estimation, 19
– explanatory, 182–184
– exploratory, 12
– identification, 19, 102, 183, 184
– kinematic, 183
– linear, 20
– mathematical, 8, 10, 178
– nonlinear, 45
– physical, 8, 12, 178
– prediction, 38, 111
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– regression, 24
– residual, 111
– training, 19
– characterization, 183
modeling, 8
– computational, 178
– mathematical, 7

net search, 22
new materials, 2, 129
Newton, 179
– method, 111
– quotient, 29
– second law, 46, 183
noisy data, 38
norm, 207
– Euclidean, 20, 189
– induced, 190
normal equations, 41

observation, 110, 161
– predicted, 163
Occam, 184
operator
– adjoint, 170, 190
– blurring, 162
– observation, 161
– solution, 3, 43, 110, 171
optical thickness, 116
optimal regularization strategy, 63
order symbol, 204
orientable surface, 225
orthogonal
– matrix, 191
– projection, 200
– subspaces, 200
– vectors, 83, 209
orthogonality relations, 191
output, 7, 12, 159

parameter estimation, 19
Pascal, 177
permeability tensor, 22
physical model, 8, 178
pixel, 85
Poisson’s equation, 122
porous medium, 22
prediction of the model, 38, 111
problem
– adjoint, 149

– direct, 1, 17, 46, 158
– ill-posed, 3, 43
– initial value, 159
– inverse, 1, 17, 182
– inverse identification, 1, 17, 46, 47, 158
– inverse reconstruction, 1, 17, 46, 47, 158
– sensitivity, 147, 171
– well-posed, 43
product
– inner, 191
– pointwise matrix product, 105
– tensor, 190
projection
– matrix, 200
– oblique, 200
– orthogonal, 200
Pythagoras, 179

quantization, 95

recursion relation, 71
reference value, 60, 63, 89
regression
– coefficients, 24
– simple, 24
regularization
– linear, 68
– linear scheme, 57, 62
– parameter, 57, 68, 69, 89, 152
– problem, 57
– scheme, 83, 152
– spectral behaviour, 77
– Tikhonov, 58, 80, 82
representation
– by linear function, 19
– of derivative, 170
residual, 24, 71, 99, 111, 142, 163
– practical, 163
– vector, 89
rigid motion, 213
Robin boundary condition, 159

sampling, 22
scheme
– linear regularization, 57, 61
– regularization, 60, 66, 152
seady state, 116
search direction, 71, 144
sensitivity problem, 147, 171
separation of variables, 144, 194
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set
– bounded, 166
– by comprehension, 180
– by extension, 180
– closed, 166
– compact, 166
– convex, 215
– encapsulated, 180
– open, 166
signal
– input, 11
– output, 11
singular value, 56, 77, 195
solution operator, 3, 43, 158
source, 159
specialist, 102
specific heat, 52, 159
spectrum, 190
square-integrable function, 191
stability, 34
standard deviation, 114, 136
steepest descent method, 83
stopping criterion, 69
strategy
– of regularization, 62
– suboptimal, 22
suboptimal solution, 22, 67
subspace, 200
– generated by vectors, 203
support of a function, 166
surface
– Gauss map, 225
– Gaussian curvature, 229
– mean curvature, 229
– metric tensor, 227
– orientable, 225
– principal curvatures, 229
symmetric matrix, 191

Taylor’s formula, 30, 204
temperature distribution, 159
tensor
– diagonal, 93
– metric, 227
– permeability, 22
– thermal conductivity, 159
theorem
– singular value decomposition, 195
– spectral, 191

thermal conductivity, 52
thermocouple, 129
Tikhonov regularization, 58, 80, 82
transient technique, 130
transport equation, 116
triangle inequality, 189

uncertainty, 56

variable
– regressor, 24
– response, 24
vector
– discrepancy, 89
– orthogonal, 209
vector space
– A-orthogonal vectors, 83
– canonical basis, 14
– canonical vector, 207
– direct sum of subspaces, 200
– inner product, 208
– isomorphism, 165
– linear combination, 189
– orthogonal subspaces, 200
– orthonormal basis, 191
– positively oriented basis, 226
– subspace, 200

well-conditioned, 29
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