Numerical Methods

Real-Time and Embedded Systems Programming

Featuring in-depth coverage of:

- Fixed and floating point mathematical techniques without a coprocessor
- Numerical I/O for embedded systems
- Data conversion methods

Don Morgan

Numerical Methods

Real-Time and Embedded Systems Programming

Numerical Methods

Real-Time and Embedded Systems Programming

Featuring in-depth coverage of:

- Fixed and floating point mathematical techniques without a coprocessor
- Numerical I/O for embedded systems
- Data conversion methods

M\&T 曾 M\&T Books

F ${ }^{\text {® }}$ A Division of M\&T Publishing, Inc.
411 BOREL AVE. SAN MATEO, CA 94402
© 1992 by M\&T Publishing, Inc.
Printed in the United States of America
All rights reserved. No part of this book or disk may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without prior written permission from the Publisher. Contact the Publisher for information on foreign rights.

Limits of Liability and Disclaimer of Warranty
The Author and Publisher of this book have used their best efforts in preparing the book and the programs contained in it and on the diskette. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The Author and Publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Library of Congress Cataloging-in-Publication Data
Morgan, Don 1948-
Numerical Methods/Real-Time and Embedded Systems Programming
by Don Morgan
p. cm.

Includes Index
ISBN 1-55851-232-2 Book and Disk set

1. Electronic digital computers-Programming. 2. Real-time data processing.
2. Embedded computer systems-Programming.
I. Title

QA76.6.M669 1992
513.2'0285—dc20

91-47911
CIP
Project Editor: Sherri Morningstar
Cover Design: Lauren Smith Design
959493924321

Trademarks: The 80386, 80486 are registered trademarks and the $8051,8048,8086,8088$, $80 C 196$ and 80286 are products of Intel Corporation, Santa Clara, CA. The Z80 is a registered trademark of Zilog Inc., Campbell, CA. The TMS34010 is a product of Texas Instruments, Dallas, TX. Microsoft C is a product of Microsoft Corp. Redmond, WA.

Acknowledgment

Thank you Anita, Donald and Rachel
for your love and forbearance.

Contents

WHY THIS BOOK IS FOR YOU 1
INTRODUCTION 3
CHAPTER 1: NUMBERS Z
Systems of Representation 8
Bases \pm
The Radix Point, Fixed and Floating \square
Types of Arithmetic 15
Fixed Point \square
Floating Point 11
Positive and Negative Numbers 18
Fundamental Arithmetic Principles [1]
Microprocessors 2
Buswidth 22
Data type 24
Flags 2
Rounding and the Sticky Bit Es
Branching 26

NUMERICAL METHODS

Instructions 26
Addition 26
Subtraction 27
Multiplication 27
Division 28
Negation and Signs 28
Shifts, Rotates and Normalization 2d
Decimal and ASCII Instructions 30
CHAPTER 2: INTEGERS 33
Addition and Subtraction 33
Unsigned Addition and Subtraction 33
Multiprecision Arithmetic 35
add64: Algorithm 36
add64: Listing 36
sub64: Algorithm B7
sub64: Listing 37
Signed Addition and Subtraction 38
Decimal Addition and Subtraction 40
Multiplication and Division 42
Signed vs. Unsigned 43
signed-operation: Algorithm 4
signed-operation: Listing 45
Binary Multiplication 46
cmul: Algorithm 40
cmul: Listing 40
A Faster Shift and Add 50
cmul2: Algorithm E
cmul2: Listing 52
Skipping Ones and Zeros 53
booth: Algorithm 55
booth: Listing 5
bit-pair: Algorithm 57
bit-pair: Listing 58
Hardware Multiplication: Single and Multiprecision 6
mu132: Algorithm 6
mu132: Listing 6
Binary Division 64
Error Checking 6
Software Division 65
cdiv: Algorithm 6
cdiv: Listing 6
Hardware Division 6
div32: Algorithm 74
div32: Listing B
div64: Algorithm B
div64: Listing 8
CHAPTER 3; REAL NUMBERS 85
Fixed Point 86
Significant Bits 87
The Radix Point 80
Rounding 8
Basic Fixed-Point Operations 92

NUMERICAL METHODS

A Routine for Drawing Circles 95
circle: Algorithm 68
circle: Listing 68
Bresenham's Line-Drawing Algorithm 100
line: Algorithm 101
line: Listing 101
Division by Inversion 105
divnewt: Algorithm 108
divnewt: Listing 109
Division by Multiplication 114
divmul: Algorithm 116
divmul: Listing 11
CHAPTER 4: FLOATING-POINT ARITHMETIC 123
What To Expect 124
A Small Floating-Point Package 127
The Elements of a Floating-Point Number 128
Extended Precision 131
The External Routines 132
fp_add: Algorithm 132
fp_add: Listing 133
The Core Routines 134
Fitting These Routines to an Application 136
Addition and Subtraction: FLADD. 136
FLADD: The Prologue. Algorithm 138
FLADD: The Prologue. Listing 138
The FLADD Routine Which Operand is Largest? Algorithm 140
The FLADD Routine: Which Operand is Largest? Listing 14]
The FLADD Routine: Aligning the Radix Points. Algorithm. 14.
The FLADD Routine: Aligning the Radix Point. Listing 143
FLADD: The Epilogue. Algorithm 144
FLADD: The Epilogue. Listing 145
Multiplication and Division: FLMUL 147
flmul: Algorithm 14
flmul: Listing 148
mu164a: Algorithm 15
mu164a: Listing 153
FLDIV 154
fldiv: Algorithm 154
fldiv: Listing 155
Rounding 159
Round: Algorithm 159
Round: Listing 160
CHAPTER 5: INPUT, OUTPUT, AND CONVERSION 163
Decimal Arithmetic 16
Radix Conversions 165
Integer Conversion by Division 165
bn_dnt: Algorithm 160
bn_dnt: Listing 16
Integer Conversion by Multiplication 169
dnt_bn: Algorithm 170
dnt_bn: Listing 170
Fraction Conversion by Multiplication 172
bfc_dc: Algorithm. 173
bfc_dc: Listing 173

NUMERICAL METHODS

Fraction Conversion by Division 175
Dfc_bn: Algorithm 176
Dfc_bn: Listing 177
Table-Driven Conversions 179
Hex to ASCII 179
hexasc: Algorithm 180
hexasc: Listing 180
Decimal to Binary 188
tb_dcbn: Algorithm 188
tb_dcbn: Listing 184
Binary to Decimal 187
tb_bndc: Algorithm 188
tb_bndc: Listing 189
Floating-Point Conversions 193
ASCII to Single-Precision Float 192
atf: Algorithm 193
atf: Listing 19
Single-Precision Float to ASCII 200
fta: Algorithm 200
Fta: Listing 202
Fixed Point to Single-Precision Floating Point 208
ftf: Algorithm 207
ftf: Listing 208
Single-Precision Floating Point to Fixed Point 21
ftfx Algorithm 218
ftfx: Listing 213
CHAPTER 6: THE ELEMENTARY FUNCTIONS 217
Fixed Point Algorithms 217
Lookup Tables and Linear Interpolation 217
lg 10: Algorithm 219
$\lg 10$: Listing 220
Dcsin: Algorithm 224
Dcsin: Listing 227
Computing With Tables 233
Pwrb: Algorithm 234
Pwrb: Listing 235
CORDIC Algorithms 237
Circular: Algorithm 24
Circular: Listing 242
Polynomial Evaluations 24
taylorsin: Algorithm 249
taylorsin: Listing 250
Polyeval: Algorithm 25
Polyeval: Listing 25
Calculating Fixed-Point Square Roots 253
fx_sqr: Algorithm 254
fx_sqr: Listing 254
school_sqr: Algorithm 256
school_sqr: Listing 25
Floating-Point Approximations 259
Floating-Point Utilities 259
frxp: Algorithm 259
frxp: Listing 260
ldxp: Algorithm 26
ldxp: Listing 26

NUMERICAL METHODS

flr: Algorithm 26
flr: Listing 26
flceil: Algorithm 26
flceil: Listing 260
intmd: Algorithm 268
intmd: Listing 268
Square Roots 269
Flsqr: Algorithm. 270
Flsqr: Listing 271
Sines and Cosines 273
flsin: Algorithm 274
Flsin: Listing. 2.7
APPENDIXES:
A: A PSEUDO-RANDOM NUMBER GENERATOR 28
B: TABLES AND EQUATES 295
C: FXMATH.ASM 297
D: FPMATH.ASM 337
E: IO.ASM 373
F: TRANS.ASM AND TABLE.ASM 407
G: MATH.C 475
GLOSSARY 485
INDEX 493

Additional Disk

Just in case you need an additional disk, simply call the toll-free number listed below. The disk contains all the routines in the book along with a simple C shell that can be used to exercise them. This allows you to walk through the routines to see how they work and test any changes you might make to them. Once you understand how the routine works, you can port it to another processor. Only $\$ 10.00$ postage-paid.

To order with your credit card, call Toll-Free 1-800-533-4372 (in CA 1-800-356-2002). Mention code 7137. Or mail your payment to M\&T Books, 411 Bore 1 Ave., Suite 100, San Mateo, CA 94402-3522. California residents please add applicable sales tax.

Why This Book Is For You

The ability to write efficient, high-speed arithmetic routines ultimately depends upon your knowledge of the elements of arithmetic as they exist on a computer. That conclusion and this book are the result of a long and frustrating search for information on writing arithmetic routines for real-time embedded systems.

With instruction cycle times coming down and clock rates going up, it would seem that speed is not a problem in writing fast routines. In addition, math coprocessors are becoming more popular and less expensive than ever before and are readily available. These factors make arithmetic easier and faster to use and implement. However, for many of you the systems that you are working on do not include the latest chips or the faster processors. Some of the most widely used microcontrollers used today are not Digital Signal Processors (DSP), but simple eight-bit controllers such as the Intel 8051 or 8048 microprocessors.

Whether you are using one on the newer, faster machines or using a simple eight-bit one, your familiarity with its foundation will influence the architecture of the application and every program you write. Fast, efficient code requires an understanding of the underlying nature of the machine you are writing for. Your knowledge and understanding will help you in areas other than simply implementing the operations of arithmetic and mathematics. For example, you may want the ability to use decimal arithmetic directly to control peripherals such as displays and thumbwheel switches. You may want to use fractional binary arithmetic for more efficient handling of D/A converters or you may wish to create buffers and arrays that wrap by themselves because they use the word size of your machine as a modulus.

The intention in writing this book is to present a broad approach to microprocessor arithmetic ranging from data on the positional number system to algorithms for

NUMERICAL METHODS

developing many elementary functions with examples in 8086 assembler and pseudocode. The chapters cover positional number theory, the basic arithmetic operations to numerical I/O, and advanced topics are examined in fixed and floating point arithmetic. In each subject area, you will find many approaches to the same problem; some are more appropriate for nonarithmetic, general purpose machines such as the 8051 and 8048 , and others for the more powerful processors like the Tandy TMS34010 and the Intel 80386. Along the way, a package of fixed-point and floating-point routines are developed and explained. Besides these basic numerical algorithms, there are routines for converting into and out of any of the formats used, as well as base conversions and table driven translations. By the end of the book, readers will have code they can control and modify for their applications.

This book concentrates on the methods involved in the computational process, not necessarily optimization or even speed, these come through an understanding of numerical methods and the target processor and application. The goal is to move the reader closer to an understanding of the microcomputer by presenting enough explanation, pseudocode, and examples to make the concepts understandable. It is an aid that will allow engineers, with their familiarity and understanding of the target, to write the fastest, most efficient code they can for the application.

Introduction

If you work with microprocessors or microcontrollers, you work with numbers. Whether it is a simple embedded machine-tool controller that does little more than drive displays, or interpret thumbwheel settings, or is a DSP functioning in a realtime system, you must deal with some form of numerics. Even an application that lacks special requirements for code size or speed might need to perform an occasional fractional multiply or divide for a D/A converter or another peripheral accepting binary parameters. And though the real bit twiddling may hide under the hood of a higher-level language, the individual responsible for that code must know how that operation differs from other forms of arithmetic to perform it correctly.

Embedded systems work involves all kinds of microprocessors and microcontrollers, and much of the programming is done in assembler because of the speed benefits or the resulting smaller code size. Unfortunately, few references are written to specifically address assembly language programming. One of the major reasons for this might be that assembly-language routines are not easily ported from one processor to another. As a result, most of the material devoted to assembler programming is written by the companies that make the processors. The code and algorithms in these cases are then tailored to the particular advantages (or to overcoming the particular disadvantages) of the product. The documentation that does exist contains very little about writing floating-point routines or elementary functions.

This book has two purposes. The first and primary aim is to present a spectrum of topics involving numerics and provide the information necessary to understand the fundamentals as well as write the routines themselves. Along with this information are examples of their implementation in 8086 assembler and pseudocode that show each algorithm in component steps, so you can port the operation to another target. A secondary, but by no means minor, goal is to introduce you

NUMERICAL METHODS

to the benefits of binary arithmetic on a binary machine. The decimal numbering system is so pervasive that it is often difficult to think of numbers in any other format, but doing arithmetic in decimal on a binary machine can mean an enormous number of wasted machine cycles, undue complexity, and bloated programs. As you proceed through this book, you should become less dependent on blind libraries and more able to write fast, efficient routines in the native base of your machine.

Each chapter of this book provides the foundation for the next chapter. At the code level, each new routine builds on the preceeding algorithms and routines. Algorithms are presented with an accompanying example showing one way to implement them. There are, quite often, many ways that you could solve the algorithm. Feel free to experiment and modify to fit your environment.

Chapter 1 covers positional number theory, bases, and signed arithmetic. The information here provides the necessary foundation to understand both decimal and binary arithmetic. That understanding can often mean faster more compact routines using the elements of binary arithmetic-in other words, shifts, additions, and subtractions rather than complex scaling and extensive routines.

Chapter 2 focuses on integer arithmetic, presenting algorithms for performing addition, subtraction, multiplication, and division. These algorithms apply to machines that have hardware instructions and those capable of only shifts, additions, and subtractions.

Real numbers (those with fractional extension) are often expressed in floating point, but fixed point can also be used. Chapter 3 explores some of the qualities of real numbers and explains how the radix point affects the four basic arithmetic functions. Because the subject of fractions is covered, several rounding techniques are also examined. Some interesting techniques for performing division, one using multiplication and the other inversion, are also presented. These routines are interesting because they involve division with very long operands as well as from a purely conceptual viewpoint. At the end of the chapter, there is an example of an algorithm that will draw a circle in a two dimensional space, such as a graphics monitor, using only shifts, additions and subtractions.

Chapter 4 covers the basics of floating-point arithmetic and shows how scaling is done. The four basic arithmetic functions are developed into floating-point
routines using the fixed point methods given in earlier chapters.
Chapter 5 discusses input and output routines for numerics. These routines deal with radix conversion, such as decimal to binary, and format conversions, such as ASCII to floating point. The conversion methods presented use both computational and table-driven techniques.

Finally, the elementary functions are discussed in Chapter 6. These include table-driven techniques for fast lookup and routines that rely on the fundamental binary nature of the machine to compute fast logarithms and powers. The CORDIC functions which deliver very high-quality transcendentals with only a few shifts and additions, are covered, as are the Taylor expansions and Horner's Rule. The chapter ends with an implementation of a floating-point sine/cosine algorithm based upon a minimax approximation and a floating-point square root.

Following the chapters, the appendices comprise additional information and reference materials. Appendix A presents and explains the pseudo-random number generator developed to test many of the routines in the book and includes SPECTRAL.C, a C program useful in testing the functions described in this book. This program was originally created for the pseudo-random number generator and incorporates a visual check and Chi-square statistical test on the function. Appendix B offers a small set of constants commonly used.

The source code for all the arithmetic functions, along with many ancillary routines and examples, is in appendices C through F.

Integer and fixed-point routines are in Appendix C. Here are the classical routines for multiplication and division, handling signs, along with some of the more complex fixed-point operations, such as the Newton Raphson iteration and linear interpolation for division.

Appendix D consists of the basic floating-point routines for addition, subtraction, multiplication, and division, Floor, ceiling, and absolute value functions are included here, as well as many other functions important to the more advanced math in Chapter 6.

The conversion routines are in Appendix E. These cover the format and numerical conversions in Chapter 5

In Appendix F, there are two source files. TRANS.ASM contains the elementary

NUMERICAL METHODS

functions described in Chapter 6, and TABLE.ASM that holds the tables, equates and constants used in TRANS.ASM and many of the other modules.

MATH.C in Appendix F is a C program useful in testing the functions described in this book. It is a simple shell with the defines and prototypes necessary to perform tests on the routines in the various modules.

Because processors and microcontrollers differ in architecture and instruction set, algorithmic solutions to numeric problems are provided throughout the book for machines with no hardware primitives for multiplication and division as well as for those that have such primitives.

Assembly language by nature isn't very portable, but the ideas involved in numeric processing are. For that reason, each algorithm includes an explanation that enables you to understand the ideas independently of the code. This explanation is complemented by step-by-step pseudocode and at least one example in 8086 assembler. All the routines in this book are also available on a disk along with a simple C shell that can be used to exercise them. This allows you to walk through the routines to see how they work and test any changes you might make to them. Once you understand how the routine works, you can port it to another processor. The routines as presented in the book are formatted differently from the same routines on the disk. This is done to accommodate the page size. Any last minute changes to the source code are documented in the Readme file on the disk.

There is no single solution for all applications; there may not even be a single solution for a particular application. The final decision is always left to the individual programmer, whose skills and knowledge of the application are what make the software work. I hope this book is of some help.

CHAPTER 1

Numbers

Numbers are pervasive; we use them in almost everything we do, from counting the feet in a line of poetry to determining the component frequencies in the periods of earthquakes. Religions and philosophies even use them to predict the future. The wonderful abstraction of numbers makes them useful in any situation. Actually, what we find so useful aren't the numbers themselves (numbers being merely a representation), but the concept of numeration: counting, ordering, and grouping.

Our numbering system has humble beginnings, arising from the need to quantify objects-five horses, ten people, two goats, and so on-the sort of calculations that can be done with strokes of a sharp stone or root on another stone. These are natural numbers-positive, whole numbers, each defined as having one and only one immediate predecessor. These numbers make up the number ray, which stretches from zero to infinity (see Figure 1-1).

Figure 1-1. The number line.

NUMERICAL METHODS

The calculations performed with natural numbers consist primarily of addition and subtraction, though natural numbers can also be used for multiplication (iterative addition) and, to some degree, for division. Natural numbers don't always suffice, however, how can you divide three by two and get a natural number as the result? What happens when you subtract 5 from 3 ? Without decimal fractions, the results of many divisions have to remain symbolic. The expression " 5 from 3" meant nothing until the Hindus created a symbol to show that money was owed. The words positive and negative are derived from the Hindu words for credit and debit'.

The number ray-all natural numbers-became part of a much greater schema known as the number line, which comprises all numbers (positive, negative, and fractional) and stretches from a negative infinity through zero to a positive infinity with infinite resolution*. Numbers on this line can be positive or negative so that 35 can exist as a representable value, and the line can be divided into smaller and smaller parts, no part so small that it cannot be subdivided. This number line extends the idea of numbers considerably, creating a continuous weave of ever-smaller pieces (you would need something like this to describe a universe) that finally give meaning to calculations such as $3 / 2$ in the form of real numbers (those with decimal fractional extensions).

This is undeniably a valuable and useful concept, but it doesn't translate so cleanly into the mechanics of a machine made of finite pieces.

Systems of Representation

The Romans used an additional system of representation, in which the symbols are added or subtracted from one another based on their position. Nine becomes $I X$ in Roman numerals (a single count is subtracted from the group of 10 , equaling nine; if the stroke were on the other side of the symbol for 10 , the number would be 11). This meant that when the representation reached a new power of 10 or just became too large, larger numbers could be created by concatenating symbols. The problem here is that each time the numbers got larger, new symbols had to be invented.

Another form, known as positional representation, dates back to the Babylonians, who used a sort of floating point with a base of $60 .{ }^{3}$ With this system, each successively larger member of a group has a different symbol. These symbols are
then arranged serially to grow more significant as they progress to the left. The position of the symbol within this representation determines its value. This makes for a very compact system that can be used to approximate any value without the need to invent new symbols. Positional numbering systems also allow another freedom: Numbers can be regrouped into coefficients and powers, as with polynomials, for some alternate approaches to multiplication and division, as you will see in the following chapters.

If \mathbf{b} is our base and \mathbf{a} an integer within that base, any positive integer may be represented as:

$$
A=\sum_{i=0}^{n-1} a_{i} b^{i}
$$

or as:
$a_{i} * b^{i}+a_{i-1} * b^{i-1}+\ldots+a_{0} * b_{0}$

As you can see, the value of each position is an integer multiplied by the base taken to the power of that integer relative to the origin or zero. In base 10 , that polynomial looks like this:
$a_{i} * 10^{i}+a_{i-1} * 10^{i-1}+\ldots+a_{0} * 10^{0}$
and the value 329 takes the form:

3 * $10+2$ * $10+* 10$

Of course, since the number line goes negative, so must our polynomial:
$a_{i} * b_{i}+a_{i-1} * b^{i-1}+\ldots+a_{0} * b^{0}+a_{-1} * b^{-1}+a_{-2} * b^{-2}+\ldots+a_{-i} * b^{b-i}$

Bases

Children, and often adults, count by simply making a mark on a piece of paper for each item in the set they're quantifying. There are obvious limits to the numbers

NUMERICAL METHODS

that can be conveniently represented this way, but the solution is simple: When the numbers get too big to store easily as strokes, place them in groups of equal size and count only the groups and those that are left over. This makes counting easier because we are no longer concerned with individual strokes but with groups of strokes and then groups of groups of strokes. Clearly, we must make the size of each group greater than one or we are still counting strokes. This is the concept of base. (See Figure 1-2.) If we choose to group in 10 s , we are adopting 10 as our base. In base 10 , they are gathered in groups of 10 ; each position can have between zero and nine things in it. In base 2 , each position can have either a one or a zero. Base 8 is zero through seven. Base 16 uses zero through nine and a through f. Throughout this book, unless the base is stated in the text, a B appended to the number indicates base 2, an O indicates base 8 , a \mathbf{D} indicates base 10 , and an \mathbf{H} indicates base 16 .

Regardless of the base in which you are working, each successive position to the left is a positive increase in the power of the position.

In base 2, 999 looks like:

1111100111B

If we add a subscript to note the position, it becomes:
$1_{9} 1_{8} 1_{7} 1_{6} 1_{5} 0_{4} 0_{3} 1_{2} 1_{1} 1_{0}$
This has the value:
$1 * 2^{9}+1 * 2^{8}+1 * 2^{7}+1 * 2^{6}+1 * 2^{5}+1 * 2^{4}+1 * 2^{3}+1 * 2^{2}+1 * 2^{1}+1 * 2^{0}$
which is the same as:
$1 * 512+1 * 256+1 * 128+1 * 64+1 * 32+0 * 16+0 * 8+1 * 4+1 * 2+1 * 1$

Multiplying it out, we get:
$512+256+128+64+32+0+0+4+2+1=999$

Figure 1-2. The base of a number system defines the number of unique digits available in each position.

Octal, as the name implies, is based on the count of eight. The number 999 is 1747 in octal representation, which is the same as writing:
$1 * 8^{3}+7 * 8^{2}+4 * 8^{1}+7 * 8^{0}$
or

```
1*512 + 7*64 + 4*8 + 7*1
```

When we work with bases larger than 10 , the convention is to use the letters of the alphabet to represent values equal to or greater than 10 . In base 16 (hexadecimal), therefore, the set of numbers is 0123456789 abcdef , where $a=10$ and $f=15$. If you wanted to represent the decimal number 999 in hexadecimal, it would be 3 e 7 H , which in decimal becomes:

```
3*16}\mp@subsup{6}{}{2}+14*1\mp@subsup{6}{}{1}+7*1\mp@subsup{6}{}{0
```

Multiplying it out gives us:

```
3*256 + 14*16 + 7*1
```

Obviously, a larger base requires fewer digits to represent the same value.
Any number greater than one can be used as a base. It could be base 2, base 10, or the number of bits in the data type you are working with. Base 60 , which is used for timekeeping and trigonometry, is attractive because numbers such as $1 / 3$ can be expressed exactly. Bases 16,8 , and 2 are used everywhere in computing machines, along with base 10 . And one contingent believes that base 12 best meets our mathematical needs.

The Radix Point, Fixed and Floating

Since the physical world cannot be described in simple whole numbers, we need a way to express fractions. If all we wish to do is represent the truth, a symbol will do. A number such as $2 / 3$ in all its simplicity is a symbol-a perfect symbol, because it can represent something unrepresentable in decimal notation. That number translated to decimal fractional representation is irrational; that is, it becomes an endless series of digits that can only approximate the original. The only way to express an irrational number in finite terms is to truncate it, with a corresponding loss of accuracy and precision from the actual value.

Given enough storage any number, no matter how large, can be expressed as ones and zeros. The bigger the number, the more bits we need. Fractions present a similar but not identical barrier. When we're building an integer we start with unity, the smallest possible building block we have, and add progressively greater powers (and multiples thereof) of whatever base we're in until that number is represented. We represent it to the least significant bit (LSB), its smallest part.

The same isn't true of fractions. Here, we're starting at the other end of the spectrum; we must express a value by adding successively smaller parts. The trouble is, we don't always have access to the smallest part. Depending on the amount of storage available, we may be nowhere near the smallest part and have, instead of a complete representation of a number, only an approximation. Many common values can never be represented exactly in binary arithmetic. The decimal 0.1 or one 10th, for example, becomes an infinite series of ones and zeros in binary (1100110011001100 ... B). The difficulties in expressing fractional parts completely can lead to unacceptable errors in the result if you're not careful.

The radix point (the point of origin for the base, like the decimal point) exists on the number line at zero and separates whole numbers from fractional numbers. As we move through the positions to the left of the radix point, according to the rules of positional notation, we pass through successively greater positive powers of that base; as we move to the right, we pass through successively greater negative powers of the base.

In the decimal system, the number 999.999 in positional notation is
929190.9-19-29-3

And we know that base 10

$$
\begin{gathered}
10^{2}=100 \\
10^{1}=10 \\
10^{0}=1
\end{gathered}
$$

It is also true that

$$
\begin{gathered}
10^{-1}=.1 \\
10^{-2}=.01 \\
10^{-3}=.001
\end{gathered}
$$

We can rewrite the number as a polynomial
$9 * 10^{2}+9 * 10^{1}+9 * 10^{0}+9 * 10^{-1}+9 * 10^{-2}+9 * 10^{-3}$
Multiplying it out, we get
$900+90+9+.9+.09+.009$
which equals exactly 999.999 .

Suppose we wish to express the same value in base 2. According to the previous example, 999 is represented in binary as 1111100111 B . To represent 999.999 , we need to know the negative powers of two as well. The first few are as follows:

NUMERICAL METHODS

$$
\begin{array}{r}
2^{-1}=.5 D \\
2^{-2}=.25 D \\
2^{-3}=.125 D \\
2^{-4}=.0625 D \\
2^{-5}=.03125 D \\
2^{-6}=.015625 D \\
2^{-7}=.0078125 D \\
2^{-8}=.00390625 D \\
2^{-9}=.001953125 D \\
2^{-10}=.0009765625 D \\
2^{-11}=.00048828125 D \\
2^{-12}=.000244140625 D
\end{array}
$$

Twelve binary digits are more than enough to approximate the decimal fraction .999. Ten digits produce

$$
\begin{gathered}
1111100111.1111111111= \\
999.9990234375
\end{gathered}
$$

which is accurate to three decimal places.
Representing 999.999 in other bases results in similar problems. In base 5, the decimal number 999.999 is noted

$$
\begin{gathered}
12444.4444141414= \\
1 * 5^{4}+2 * 5^{3}+4 * 5^{2}+4 * 5^{1}+4 * 5^{0}+4 * 5^{-1}+4 * 5^{-2}+4 * 5^{-3}+4 * 5^{-4}+1 * 5^{-5}+ \\
4 * 5^{-6}+1 * 5^{-7}+4 * 5^{-8}+1 * 5^{-9}+4 * 5^{-10}= \\
1 * 625+2 * 125+4 * 25+4 * 5+4+4^{\star} .2+4^{\star} .04+4 \star .008+4 * .0016 \\
+1^{*} .00032+4 * .000065+1^{*} .0000125+4^{*} .00000256 \\
+1 * .000000512+4 * .0000001024
\end{gathered}
$$

or

```
625+ +250 + 100 + 20 + 4 +. 8 + . 16 +. .032 + .0064 + .00032 + .000256 +
    .0000128 + .00001024 + .000000512 + .00004096 =
    999.9990045696
```

But in base 20, which is a multiple of 10 and two, the expression is rational. (Note that digits in bases that exceed 10 are usually denoted by alphabetical characters; for example, the digits of base 20 would be 0123456789 ABCDEFGHIJ .)

$$
\begin{gathered}
29 \mathrm{~J} . \mathrm{JJC} \\
2 \times 20^{2}+9 \times 20^{1}+19 \times 20^{0}+19 \times 20^{-1}+19 \times 20^{-2}+12 \times 20^{-3}= \\
2 \times 400+9 \times 20+19 \times 1 .+19 \times .05+19 \times .0025+12 \times .000125
\end{gathered}
$$

Or

$$
\begin{gathered}
800+180+19 .+.95+.0475+.0015= \\
999.999
\end{gathered}
$$

As you can see, it isn't always easy to approximate a fraction. Fractions are a sum of the value of each position in the data type. A rational fraction is one whose sum precisely matches the value you are trying to approximate. Unfortunately, the exact combination of parts necessary to represent a fraction exactly may not be available within the data type you choose. In cases such as these, you must settle for the accuracy obtainable within the precision of the data type you are using.

Types of Arithmetic

This book covers three basic types of arithmetic: fixed point (including integeronly arithmetic and modular) and floating point.

Fixed Point

Fixed-point implies that the radix point is in a fixed place within the representation. When we're working exclusively with integers, the radix point is always to the right of the rightmost digit or bit. When the radix point is to the left of the leftmost digit, we're dealing with fractional arithmetic. The radix point can rest anywhere within the number without changing the mechanics of the operation. In fact, using fixed-point arithmetic in place of floating point, where possible, can speed up any arithmetic operation. Everything we have covered thus far applies to fixed-point arithmetic and its representation.

NUMERICAL METHODS

Though fixed-point arithmetic can result in the shortest, fastest programs, it shouldn't be used in all cases. The larger or smaller a number gets, the more storage is required to represent it. There are alternatives; modular arithmetic, for example, can, with an increase in complexity, preserve much of an operation's speed.

Modular arithmetic is what people use every day to tell time or to determine the day of the week at some future point. Time is calculated either modulo 12 or 24that is, if it is 9:00 and six hours pass on a 12-hour clock, it is now 3:00, not 15:00:

```
9+6 = 3
```

This is true if all multiples of 12 are removed. In proper modular notation, this would be written:
$9+6 \cong 3, \bmod 12$.

In this equation, the sign $\cong 1$ means congruence. In this way, we can make large numbers congruent to smaller numbers by removing multiples of another number (in the case of time, 12 or 24). These multiples are often removed by subtraction or division, with the smaller number actually being the remainder.

If all operands in an arithmetic operation are divided by the same value, the result of the operation is unaffected. This means that, with some care, arithmetic operations performed on the remainders can have the same result as those performed on the whole number. Sines and cosines are calculated mod 360 degrees $(\operatorname{or} \bmod 2 \pi$ radians). Actually, the input argument is usually taken $\bmod \pi / 2$ or 90 degrees, depending on whether you are using degrees or radians. Along with some method for determining which quadrant the angle is in, the result is computed from the congruence (see Chapter 6).

Random number generators based on the Linear Congruential Method use modular arithmetic to develop the output number as one of the final steps. ${ }^{4}$ Assembly-language programmers can facilitate their work by choosing a modulus that's as large as the word size of the machine they are working on. It is then a simple matter to calculate the congruence, keeping those lower bits that will fit within the
word size of the computer. For example, assume we have a hexadecimal doubleword:

12345678 H
and the word size of our machine is 16 bits
$12345678 \mathrm{H}=5678 \bmod 10000 \mathrm{H}$

For more information on random number generators, see Appendix A.
One final and valuable use for modular arithmetic is in the construction of selfmaintaining buffers and arrays. If a buffer containing 256 bytes is page aligned-the last eight bits of the starting address are zero-and an 8 -bit variable is declared to count the number of entries, a pointer can be incremented through the buffer simply by adding one to the counting variable, then adding that to the address of the base of the buffer. When the pointer reaches 255 , it will indicate the last byte in the buffer; when it is incremented one more time, it will wrap to zero and point once again at the initial byte in the buffer.

Floating Point

Floating point is a way of coding fixed-point numbers in which the number of significant digits is constant per type but whose range is enormously increased because an exponent and sign are embedded in the number. Floating-point arithmetic is certainly no more accurate than fixed point-and it has a number of problems, including those present in fixed point as well as some of its own-but it is convenient and, used judiciously, will produce valid results.

The floating-point representations used most commonly today conform, to some degree, to the IEEE 754 and 854 specifications. The two main forms, the long real and the short real, differ in the range and amount of storage they require. Under the IEEE specifications, a long real is an 8-byte entity consisting of a sign bit, an 11-bit exponent, and a 53 -bit significand, which mean the significant bits of the floatingpoint number, including the fraction to the right of the radix point and the leading one

NUMERICAL METHODS

to the left. A short real is a 4-byte entity consisting of a sign bit, an 8-bit exponent, and a 24 -bit significand.

To form a binary floating-point number, shift the value to the left (multiply by two) or to the right (divide by two) until the result is between 1.0 and 2.0. Concatenate the sign, the number of shifts (exponent), and the mantissa to form the float.

Doing calculations in floating point is very convenient. A short real can express a value in the range 10^{38} to 10^{-38} in a doubleword, while a long real can handle values ranging from 10^{308} to 10^{-308} in a quadword. And most of the work of maintaining the numbers is done by your floating-point package or library.

As noted earlier, some problems in the system of precision and exponentiation result in a representation that is not truly "real"-namely, gaps in the number line and loss of significance. Another problem is that each developer of numerical software adheres to the standards in his or her own fashion, which means that an equation that produced one result on one machine may not produce the same result on another machine or the same machine running a different software package. This compatibility problem has been partially alleviated by the widespread use of coprocessors.

Positive and Negative Numbers

The most common methods of representing positive and negative numbers in a positional number system are sign magnitude, diminished-radix complement, and radix complement (see Table 1-1).

With the sign-magnitude method, the most significant bit (MSB) is used to indicate the sign of the number: zero for plus and one for minus. The number itself is represented as usual-that is, the only difference between a positive and a negative representation is the sign bit. For example, the positive value 4 might be expressed as 0100 B in a 4 -bit binary format using sign magnitude, while -4 would be represented as 1100B.

This form of notation has two possible drawbacks. The first is something it has in common with the diminished-radix complement method: It yields two forms of zero, 0000B and 1000B (assuming three bits for the number and one for the sign). Second, adding sign-magnitude values with opposite signs requires that the magni-
tudes of the numbers be consulted to determine the sign of the result. An example of sign magnitude can be found in the IEEE 754 specification for floating-point representation.

The diminished-radix complement is also known as the one's complement in binary notation. The MSB contains the sign bit, as with sign magnitude, while the rest of the number is either the absolute value of the number or its bit-by-bit complement. The decimal number 4 would appear as 0100 and -4 as 1011 . As in the foregoing method, two forms of zero would result: 0000 and 1111.

The radix complement, or two's complement, is the most widely used notation in microprocessor arithmetic. It involves using the MSB to denote the sign, as in the other two methods, with zero indicating a positive value and one meaning negative. You derive it simply by adding one to the one's-complement representation of the same negative value. Using this method, 4 is still 0100 , but -4 becomes 1100 . Recall that one's complement is a bit-by-bit complement, so that all ones become zeros and all zeros become ones. The two's complement is obtained by adding a one to the one's complement.

This method eliminates the dual representation of zero-zero is only 0000 (represented as a three-bit signed binary number)-but one quirk is that the range of values that can be represented is slightly more negative than positive (see the chart below). That is not the case with the other two methods described. For example, the largest positive value that can be represented as a signed 4-bit number is 0111B, or 7 D , while the largest negative number is 1000 B , or -8 D .

NUMERICAL METHODS

One's complement		Two's	complement	Sign complement
0111	7		7	7
0110	6		6	6
0101	5		5	5
0100	4		4	4
0011	3		3	3
0010	2		2	2
0001	1		1	1
0000	0		0	0
1111	-0		-1	-7
1110	-1		-2	-6
1101	-2		-3	-5
1100	-3		-4	-4
1011	-4		- 5	-3
1010	- 5		- 6	- 2
1001	-6		-7	- 1
1000	-7		- 8	- 0

Table 1-1. Signed Numbers.

Decimal integers require more storage and are far more complicated to work with than binary; however, numeric I/O commonly occurs in decimal, a more familiar notation than binary. For the three forms of signed representation already discussed, positive values are represented much the same as in binary (the leftmost
bit being zero). In sign-magnitude representation, however, the sign digit is nine followed by the absolute value of the number. For nine's complement, the sign digit is nine and the value of the number is in nine's complement. As you might expect, 10 's complement is the same as nine's complement except that a one is added to the low-order (rightmost) digit.

Fundamental Arithmetic Principles

So far we've covered the basics of positional notation and bases. While this book is not about mathematics but about the implementation of basic arithmetic operations on a computer, we should take a brief look at those operations.

1. Addition is defined as $a+b=c$ and obeys the commutative rules described below.
2. Subtraction is the inverse of addition and is defined as $b=c-a$.
3. Multiplication is defined as $a b=c$ and conforms to the commutative, associative, and distributive rules described below.
4. Division is the inverse of multiplication and is shown by $b=c / a$.
5. A power is $b a=c$.
6. A root is $b={ }^{a} \sqrt{ } c$
7. A logarithm is $a=\log _{b} c$.

Addition and subtraction must also satisfy the following rules: ${ }^{5}$
8. Commutative:

$$
\begin{aligned}
& a+b=b+a \\
& a b=b a
\end{aligned}
$$

9. Associative:
$\mathrm{a}=(\mathrm{b}+\mathrm{c})=(\mathrm{a}+\mathrm{b})+\mathrm{c}$
$\mathrm{a}(\mathrm{bc})=(\mathrm{ab}) \mathrm{c}$
10. Distributive:
$\mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{ab}+\mathrm{ac}$

From these rules, we can derive the following relations: ${ }^{6}$
11. $(a b)^{c}=a^{c} b^{c}$

NUMERICAL METHODS

12. $\mathrm{a}^{\mathrm{b}} \mathrm{a}^{\mathrm{c}}=\mathrm{ac}^{(\mathrm{b}+\mathrm{c})}$
13. $\left(a^{b}\right)^{c}=a^{(b c)}$
14. $a+0=a$
15. $a \times 1=a$
16. $a^{1}=a$
17. $\mathrm{a} / 0$ is undefined

These agreements form the basis for the arithmetic we will be using in upcoming chapters.

Microprocessors

The key to an application's success is the person who writes it. This statement is no less true for arithmetic. But it's also true that the functionality and power of the underlying hardware can greatly affect the software development process.

Table $1-2$ is a short list of processors and microcontrollers currently in use, along with some issues relevant to writing arithmetic code for them (such as the instruction set, and bus width). Although any one of these devices, with some ingenuity and effort, can be pushed through most common math functions, some are more capable than others. These processors are only a sample of what is available. In the rest of this text, we'll be dealing primarily with 8086 code because of its broad familiarity. Examples from other processors on the list will be included where appropriate.

Before we discuss the devices themselves, perhaps an explanation of the categories would be helpful.

Buswidth

The wider bus generally results in a processor with a wider bandwidth because it can access more data and instruction elements. Many popular microprocessors have a wider internal bus than external, which puts a burden on the cache (storage internal to the microprocessor where data and code are kept before execution) to keep up with the processing. The 8088 is an example of this in operation, but improvements in the 80x86 family (including larger cache sizes and pipelining to allow some parallel processing) have helped alleviate the problem.

Table 1-2. Instructions and flags.

NUMERICAL METHODS

Data type

The larger the word size of your machine, the larger the numbers you can process with single instructions. Adding two doubleword operands on an 8051 is a multiprecision operation requiring several steps. It can be done with a single ADD on a TMS34010 or 80386. In division, the word size often dictates the maximum size of the quotient. A larger word size allows for larger quotients and dividends.

Flags

The effects of a processor's operation on the flags can sometimes be subtle. The following comments are generally true, but it is always wise to study the data sheets closely for specific cases.

- Zero. This flag is set to indicate that an operation has resulted in zero. This can occur when two operands compare the same or when two equal values are subtracted from one another. Simple move instructions generally do not affect the state of the flag.
- Carry. Whether this flag is set or reset after a certain operation varies from processor to processor. On the 8086, the carry will be set if an addition overflows or a subtraction underflows. On the 80 C 196 , the carry will be set if that addition overflows but cleared if the subtraction underflows. Be careful with this one. Logical instructions will usually reset the flag and arithmetic instructions as well as those that use arithmetic elements (such as compare) will set it or reset it based on the results.
- Sign. Sometimes known as the negative flag, it is set if the MSB of the data type is set following an operation.
- Overflow. If the result of an arithmetic operation exceeds the data type meant to contain it, an overflow has occurred. This flag usually only works predictably with addition and subtraction. The overflow flag is used to indicate that the result of a signed arithmetic operation is too large for the destination operand. It will be set if, after two numbers of like sign are added or subtracted, the sign of the result changes or the carry into the MSB of an operand and the carry out don't match.
- Overflow Trap. If an overflow occurred at any time during an arithmetic operation, the overflow trap will be set if not already set. This flag bit must be cleared explicitly. It allows you to check the validity of a series of operations.
- Auxiliary Carry. The decimal-adjust instructions use this flag to correct the accumulator after a decimal addition or subtraction. This flag allows the processor to perform a limited amount of decimal arithmetic.
- Parity. The parity flag is set or reset according to the number of bits in the lower byte of the destination register after an operation. It is set if even and reset if odd.
- Sticky Bit. This useful flag can obviate the need for guard digits on certain arithmetic operations. Among the processors in Table 1-2, it is found only on the 80C196. It is set if, during a multiple right shift, more than one bit was shifted into the carry with a one in the carry at the end of the shift.

Rounding and the Sticky Bit

A multiple shift to the right is a divide by some power of two. If the carry is set, the result is equal to the integer result plus $1 / 2$, but should we round up or down? This problem is encountered frequently in integer arithmetic and floating point. Most floating-point routines have some form of extended precision so that rounding can be performed. This requires storage, which usually defaults to some minimal data type (the routines in Chapter 4 use a word). The sticky bit reduces the need for such extended precision. It indicates that during a right shift, a one was shifted into the carry flag and then shifted out.

Along with the carry flag, the sticky bit can be used for rounding. For example, suppose we wish to divide the hex value 99 H by 16D. We can do this easily with a four-bit right shift. Before the shift, we have:

```
Operand
10011001
Carry flag
Sticky bit
    0
```

We shift the operand right four times with the following instruction:
shr ax, \#4

NUMERICAL METHODS

During the shift, the Least Significant Bit (LSB) of the operand (a one) is shifted into the carry and then out again, setting the sticky bit followed by two zeros and a final one. The operand now has the following form:

```
Operand Carry flag Sticky bit
00001001 1 (from the last shift) 1 (because of the first one
    shifted in and out of the carry)
```

To round the result, check the carry flag. If it's clear, the bits shifted out were less than half of the LSB, and rounding can be done by truncation. If the carry is set, the bits shifted out were at least half of the LSB. Now, with the sticky bit, we can see if any other bits shifted out during the divide were ones; if so, the sticky bit is set and we can round up.

Rounding doesn't have to be done as described here, but however you do it the sticky bit can make your work easier. Too bad it's not available on more machines.

Branching

Your ability to do combined jumps depends on the flags. All the processors listed in the table have the ability to branch, but some implement that ability on more sophisticated relationships. Instead of a simple "jump on carry," you might find "jump if greater," "jump if less than or equal," and signed and unsigned operations. These extra instructions can cut the size and complexity of your programs.

Of the devices listed, the TMS34010, 80x86 and 80C196 have the richest set of branching instructions. These include branches on signed and unsigned comparisons as well as branches on the state of the flags alone.

Instructions

Addition

- Add. Of course, to perform any useful arithmetic, the processor must be capable of some form of addition. This instruction adds two operands, signaling any overflow from the result by setting the carry.
- Add-with-Carry. The ability to add with a carry bit allows streamlined, multiprecision additions. In multibyte or multiword additions, the add instruction is usually used first; the add-with-carry instruction is used in each succeeding addition. In this way, overflows from each one addition can ripple through to the next.

Subtraction

- Subtract. All the devices in Table 1-2 can subtract except the 8048 and 8051. The 8051 uses the subtract-with-carry instruction to fill this need. On the 8048, to subtract one quantity (the subtrahend) from another (the minuend), you must complement the subtrahend and increment it, then add it to the minuend-in other words, add the two's complement to the minuend.
- Subtract-with-Carry. Again, the 8048 does not support this instruction, while all the others do. Since the 8051 has only the subtract-with-carry instruction, it is important to see that the carry is clear before a subtraction is performed unless it is a multiprecision operation. The subtract-with-carry is used in multiprecision subtraction in the same manner as the add-with-carry is used in addition.
- Compare. This instruction is useful for boundary, magnitude and equality checks. Most implementations perform a comparison by subtracting one value from another. This process affects neither operand, but sets the appropriate flags. Many microprocessors allow either signed or unsigned comparisons.

Multiplication

- Multiply. This instruction performs a standard unsigned multiply based on the word size of the particular microprocessor or microcontroller. Hardware can make life easier. On the 8088 and 8086, this instruction was embarrassingly slow and not that much of a challenge to shift and add routines. On later members of the 80×86 family, it takes a fraction of the number of cycles to perform, making it very useful for multiprecision and single-precision work.
- Signed Multiply. The signed multiply, like the signed divide (which we'll

NUMERICAL METHODS

discuss in a moment), has limited use. It produces a signed product from two signed operands on all data types up to and including the word size of the machine. This is fine for tame applications, but makes the instruction unsuitable for multiprecision work. Except for special jobs, it might be wise to employ a generic routine for handling signed arithmetic. One is described in the next chapter.

Division

- Divide. A hardware divide simplifies much of the programmer's work unless it is very, very slow (as it is on the 8088 and 8086). A multiply canextend the useful range of the divide considerably. The following chapter gives examples of how to do this.
- Signed Divide. Except in specialized and controlled circumstances, the signed divide may not be of much benefit. It is often easier and more expeditious to handle signed arithmetic yourself, as will be shown in Chapter 2.
- Modulus. This handy instruction returns the remainder from the division of two operands in the destination register. As the name implies, this instruction is very useful when doing modular arithmetic. This and signed modulus are available on the TMS34010.
- Signed Modulus. This is the signed version of the earlier modulus instruction, here the remainder bears the sign of the dividend.

Negation and Signs

- One's Complement. The one's complement is useful for logical operations and diminished radix arithmetic (see Positive and Negative Numbers, earlier in this chapter). This instruction performs a bit-by-bit complement of the input argument; that is, it makes each one a zero and each zero a one.
- Two's Complement. The argument is one's complemented, then incremented by
one. This is how negative numbers are usually handled on microcomputers.
- Sign Extension. This instruction repeats the value of the MSB of the byte or word through the next byte, word, or doubleword so the proper results can be obtained from an arithmetic operation. This is useful for converting a small data type to a larger data type of the same sign for such operations as multiplication and division.

Shifts, Rotates and Normalization

- Rotate. This simple operation can occur to the right or the left. In the case of a ROTATE to the right, each bit of the data type is shifted to the right; the LSB is deposited in the carry, while a zero is shifted in on the left. If the rotate is to the left, each bit is moved to occupy the position of the next higher bit in the data type until the last bit is shifted out into the carry flag (see figure l-3). On the Z80, some shifts put the same bit into the carry and the LSB of the byte you are shifting. Rotation is useful for multiplies and divides as well as normalization.
- Rotate-through-Carry. This operation is similar to the ROTATE above, except that the carry is shifted into the LSB (in the case of a left shift), or the MSB (in the case of a right shift). Like the ROTATE, this instruction is useful for multiplies and divides as well as normalization.
- Arithmetic Shift. This shift is similar to a right shift. As each bit is shifted, the value of the MSB remains the same, maintaining the value of the sign.
- Normalization. This can be either a single instruction, as is the case on the 80C196, or a set of instructions, as on the TMS34010. NORML will cause the 80C196 to shift the contents of a doubleword register to the left until the MSB is a one, "normalizing" the value and leaving the number of shifts required in a register. On the TMS34010, LMO leaves the number of bits required to shift a doubleword so that its MSB is one. A multibit shift can then be used to normalize it. This mechanism is often used in floating point and as a setup for binary table routines.

Figure 1-3. Shifts and rotates.

Decimal and ASCII Instructions

- Decimal Adjust on Add. This instruction adjusts the results of the addition of two decimal values to decimal. Decimal numbers cannot be added on a binary computer with guaranteed results without taking care of any intrabyte carries that occur when a digit in a position exceeds nine. On the 8086, this instruction affects only the AL register. This and the next instruction can be very useful in an embedded system that receives decimal data and must perform some simple processing before displaying or returning it.
- Decimal Adjust on Subtract. This instruction is similar to the preceeding one except that it applies to subtraction.
- ASCII Adjust. These instructions prepare either binary data for conversion to ASCII or ASCII data for conversion to binary. Though Motorola processors also implement these instructions, they are found only in the 80×86 series in our list. Used correctly, they can also do a certain amount of arithmetic.

Most of the earlier microprocessors-such as the 8080, 8085, Z80, and 8086as well as microcontrollers like the 8051 were designed with general applications in mind. While the 8051 is billed as a Boolean processor, it's general set of instructions makes many functions possible and keeps it very popular today.

All these machines can do arithmetic at one level or another. The 8080, 8085, and Z80 are bit-oriented and don't have hardware multiplies and divides, making them somewhat slower and more difficult to use than those that do. The 8086 and 8051 have hardware multiplies and divides but are terribly slow about it. (The timings for the 8086 instructions were cleaned up considerably in subsequent generations of the 286, 386, and 486.) They added some speed to the floating-point routines and decreased code size.

Until a few years ago, the kind of progress usually seen in these machines was an increase in the size of the data types available and the addition of hardware arithmetic. The 386 and 486 can do some 64 -bit arithmetic and have nice shift instructions, $S H L D$ and $S H R D$, that will happily shift the bits of the second operand into the first and put the number of bits shifted in a third operand. This is done in a single stroke, with the bits of one operand shifted directly into the other, easing normalization of long integers and making for fast binary multiplies and divides. In recent years we've seen the introduction of microprocessors and microcontrollers that are specially designed to handle floating-point as well as fixed-point arithmetic. These processors have significantly enhanced real-time control applications and digital signal processing in general. One such microprocessor is the TMS34010; a microcontroller with a similar aptitude is the 80C196.

NUMERICAL METHODS

1 Kline, Morris. Mathematics for the Nonmathematician. New York, NY: Dover Publications, Inc., 1967, Page 72.
2 Gellert, W., S. Gottwald, M. Helwich, H. Kastner, and H. Küstner (eds.). The VNR Concise Encyclopedia of Mathematics. New York, NY: Van Nostrand Reinhold, 1989, Page 20.

3 Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Publishing Co., 1980, Page 180.

4 Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Publishing Co., 1981, Pages 1-127.

5 Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGrawHill Book Co., 1984, Page 2.

6 Pearson, Carl E. (ed.) Handbook of Applied Mathematics. New York, NY: Van Nostrand Reinhold, 1983, Page 1.

CHAPTER 2

Integers

Reducing a problem to the integer level wherever possible is certainly one of the fastest and safest ways to solve it. But integer arithmetic is only a subset of fixedpoint arithmetic. Fixed-point arithmetic means that the radix point remains in the same place during all calculations. Integer arithmetic is fixed point arithmetic with the radix point consistently to the right of the LSB. Conversely, fractional arithmetic is simply fixed point with the radix point to the left of the MSB. There are no specific requirements regarding placement of the radix point; it depends entirely on the needs of the operation. Sines and cosines may require no integer at all, while a power-series calculation may require an integer portion. You may wish to use two guard digits during multiplication and division for rounding purposes-it depends on you and the application.

To present algorithms for the four basic operations of mathematics-addition, subtraction, multiplication, and division-this chapter will concentrate on integeronly arithmetic. The operations for fixed-point and integer-only arithmetic are essentially the same; the former simply involves some attention to the placement of the radix point.

This chapter begins with the basic operations and the classic algorithms for them, followed by some more advanced algorithms. The classic algorithms aren't necessarily the fastest, but they are so elegant and reflect the character of the binary numbering system and the nature of arithmetic itself so well that they are worth knowing. Besides, on any binary machine, they'll always work.

Addition and Subtraction

Unsigned Addition and Subtraction
Simply put, addition is the joining of two sets of numbers or quantities, into one set. We could also say that when we add we're really incrementing one value, the

NUMERICAL METHODS

augend, by another value, the addend. Subtraction is the inverse of addition, with one number being reduced, or decremented, by another.

For example, the addition operation

0111
+2
9

might be accomplished on the 8086 with this instruction sequence:

$$
\begin{array}{ll}
\text { mov } & \text { al, } \\
\text { add } & \text { al, }
\end{array}
$$

In positional arithmetic, each position is evaluated $0 \leq x$ <base, with x being the digit in that position, and any excess is carried up to the next position. If the base is 10 , no number greater than nine can exist in any position; if an operation results in a value greater than nine, that value is divided by 10 , the quotient is carried into the next position, and the remainder is left in the current position.

The same is true of subtraction except that any underflow in an operation results in a borrow from the next higher position, reducing the strength of that position by one. For example:

17		1	0001
-9	or		$\frac{1001}{8}$

In 8086 assembler, this would be:
mov al,llh
Sub al,9h

On a microprocessor, the carry and borrow use the carry flag. If adding any two unsigned numbers results in a value that cannot be contained within the data type we're using, a carry results (the carry flag is set); otherwise, it is reset. To demonstrate this, lets add two bytes, 7 H and 9 H :

0111
$1 \frac{+1001}{0000}$ the result
the carry

This addition was unsigned and produced a result that was too large for the data type. In this case, the overflow was an error because the value represented in the result was not the full result. This phenomenon is useful, however, when performing multiprecision arithmetic (discussed in the next section).

Subtraction will produce a carry on an underflow (in this case, it's known as a borrow):

```
10001
    -1001
0 1000 the result
| the borrow
```

Processors use the carry flag to reflect both conditions; the trick is to know how they're representing the borrow. On machines such as the 8086, the carry is set for both overflow from addition and underflow from subtraction. On the 80C196, the carry is set on overflow and reset (cleared) on underflow, so it's important to know what each setting means. Besides being set or reset as the result of an arithmetic operation, the carry flag is usually reset by a logical operation and is unaffected by a move.

Because not every problem can be solved with single precision arithmetic, these flags are often used in multiprecision operations.

Multiprecision Arithmetic

Working with large numbers is much the same as working with small numbers. As you saw in the earlier examples, whenever we ADDed a pair of numbers the carry flag was set according to whether or not an overflow occurred. All we do to add a very large number is $A D D$ the least significant component and then $A D D$ each subsequent

NUMERICAL METHODS

component with the carry resulting from the previous addition.
Let's say we want to add two doubleword values, 99999999 H and 15324567 H . The sequence looks like this:

```
mov dx,9999h
mov ax,9999h
add ax,4567h
adc dx,1532h
```

DX now contains the most significant word of the result, and AX contains the least. A 64-bit addition is done as follows.

add64: Algorithm

1. A pointer is passed to the result of the addition.
2. The least significant words of addendO are loaded into AX:DX.
3. The least significant words of addend1 are added to these registers, least significant word first, using the $A D D$ instruction. The next more significant word uses the $A D C$ instruction.
4. The result of this addition is written to result.
5. The upper words of addendO are loaded into AX:DX.
6. The upper words of addend1 are added to the upper words of addendO using the $A D C$ instruction. (Note that the MOV instructions don't change the flags.)
7. The result of this addition is written to the upper words of result.
```
add64: Listing
. *****
,
;add64 - adds two fixed-point numbers
;the arguments are passed on the stack along with a pointer to storage for the
result
add64 proc uses ax dx es di, addendO:qword, addendl:qword, result:word
    mov di, word ptr result
    mov ax, word ptr addend0[0] ; ax = low word, addendo
    mov dx, word ptr addend0[2] ; dx = high word, addend0
    add ax, word ptr addendl[0] ; add low word, addend1
    adc dx, word ptr addendl[2] ; add high word, addend1
    mov word ptr [di], ax
    mov word ptr [di][2], dx
```

```
    mov ax, word ptr addend0[4] ; ax = low word, addend0
    mov dx, word ptr addend0[6] ; dx = high word, addend0
    adc ax, word ptr addendl[4] ; add low word, addendl
    adc dx, word ptr addendl[6] ; add high word, addendl
    mov word ptr [di][4], ax
    mov word ptr [di] [6], dx
    ret
add64 endp
```

This example only covered 64 bits, but you can see how it might be expanded to deal with operands of any size. Although the word size and mnemonics vary from machine to machine, the concept remains the same.

You can perform multiprecision subtraction in a similar fashion. In fact, all you need to do is duplicate the code above, changing only the add-with-carry ($A D C$) instruction to subtract-with-borrow (SBB). Remember, not all processors (the 8048 and 8051 , for instance) have a simple subtract instruction; in case of the 8051 , you must clear the carry before the first subtraction to simulate the SUB. With the 8048 you must have two's complement the subtrahend and ADD.

sub64: Algorithm

```
1. A pointer is passed to the result of the subtraction.
2. The least significant words of sub0 are loaded into AX:DX.
3. The least significant words of sub1 are subtracted fromthese registers,
    least significant word first, using the SUB instructions with the next
    most significant word using the SBB instruction.
4. The result of this subtraction is written to result.
5. The upper words of sub0 are loaded into AX:DX
6. The upper words of subl are subtracted from the upper words of sub0 using
    the SBB intruction. (Note that the MOV instructions don't change the
    flags.)
7. The result of this subtraction is written to the upper words of result.
```


sub64: Listing

```
;*****
; sub64
;arguments passed on the stack, pointer returned to result
```

```
sub64 proc uses dx es di,
```

 sub0:qword, sub1:qword, result:word
    ```
    sub0:qword, sub1:qword, result:word
    mov di, word ptr result
    mov di, word ptr result
    mov ax, word ptr sub0[0] ; ax = low word, sub0
    mov ax, word ptr sub0[0] ; ax = low word, sub0
    mov dx, word ptr sub0[2] ; dx = high word, sub0
    mov dx, word ptr sub0[2] ; dx = high word, sub0
    sub ax, word ptr sub1[0] ; subtract low word, sub1
    sub ax, word ptr sub1[0] ; subtract low word, sub1
    sbb dx, word ptr subl[2] ; subtract high word, sub1
    sbb dx, word ptr subl[2] ; subtract high word, sub1
    mov word ptr [di] [0],ax
    mov word ptr [di] [0],ax
    mov word ptr [di] [2],dx
    mov word ptr [di] [2],dx
    mov ax, word ptr sub0[4] ; ax = low word, sub0
    mov ax, word ptr sub0[4] ; ax = low word, sub0
    mov dx, word ptr sub0[6] ; dx = high word, sub0
    mov dx, word ptr sub0[6] ; dx = high word, sub0
    sbb ax, word ptr subl[4] ; subtract low word, sub1
    sbb ax, word ptr subl[4] ; subtract low word, sub1
    sbb dx, word ptr subl[6] ; subtract high word, sub1
    sbb dx, word ptr subl[6] ; subtract high word, sub1
    mov word ptr [di][4],ax
    mov word ptr [di][4],ax
    mov word ptr [di][6],dx
    mov word ptr [di][6],dx
    ret
    ret
sub64 endp
```

```
sub64 endp
```

```

For examples of multiprecision addition and subtraction using other processors, see the SAMPLES. module included on the disk.

\section*{Signed Addition and Subtraction}

We perform signed addition and subtraction on a microcomputer much as we perform their unsigned equivalents. The primary difference (and complication) arises from the MSB, which is the sign bit (zero for positive and one for negative). Most processors perform signed arithmetic in two's complement, the method we'll use in this discussion. The two operations of addition and subtraction are closely related; each can be performed using the logic of the other. For example, subtraction can be performed identically to addition if the subtrahend is two's-complemented before the operation. On the 8048, in fact, it must be done that way due to the absence of a subtraction instruction.
```

15-7 = 15 + (-7) = 8
0fH - 7H = Ofh + 0f9H = 8H

```

These operations are accomplished on a microprocessor much as we performed them in school using a pencil and paper.

One aspect of using signed arithmetic is that the range of values that can be expressed in each data type is limited. In two's-complement representation, the range is \(-2^{n-1}\) to \(2^{n-1}-1\). Use signed arithmetic carefully; ordinary arithmetic processes can result in a sign reversal that invalidates the operation.

Overflow occurs in signed arithmetic when the destination data type is too small to hold the result of a signed operation-that is, a bit is carried into the MSB (the sign bit) during addition and is not propagated through to the carry, or a borrow was made from the MSB during subtraction and is not propagated through to the carry. If either event occurs, the carry flag may not be set correctly because the carry that did occur may not propagate through the sign bit into the carry flag.

Adding 60 H and 50 H in an eight-bit accumulator results in b0H, a negative number in signed notation even though the original operands were positive. Guard against such overflows when using signed arithmetic.

This is where the overflow flag comes in. Simply put, the overflow flag is used to indicate that the result of a signed arithmetic operation is too large or too small for the destination operand. It is set after two numbers of like sign are added or subtracted if the sign of the result changes or if the carry into the MSB of an operand and the carry out don't match.

When we added 96D \((60 \mathrm{H})\) and \(80 \mathrm{D}(50 \mathrm{H})\), we got an overflow into the sign bit but left the carry flag clear:
```

01010000B (+50H)
+01100000B (+60H)
l0ll0000B (b0H, or -80D)

```

The result was a specious negative number. In this case, the overflow flag is set for two reasons: because we're adding two numbers of like sign with a subsequent change in the sign of the result and because the carry into the sign bit and the carry out don't match.

To guard against accidental overflows in addition and subtraction, test the overflow flag at the end of each operation.

Assume a 32 -bit signed addition in 8086 assembler. The code might look like this:

\section*{NUMERICAL METHODS}
signed_add:
mov
mov
add
add
jo
```

ax, word ptr summendl ;first load one summend
;into dx:ax
dx, word ptr summendl[2]
ax, word ptr summend ;add the two, using the carry flag
dx, word ptr summend2[2] ;to propagate any carry
bogus_result ;out of the lower word;
;check for a valid result

```
good-result:

When writing math routines, be sure to allocate enough storage for the largest possible result; otherwise, overflows during signed operations are inevitable.

\section*{Decimal Addition and Subtraction}

Four bits are needed to represent the decimal numbers zero through nine. If the microcomputer we're using has a base 10 architecture rather than one based on binary, we could increment the value 1001 (9D) and get \(0(0 \mathrm{D})\) or decrement 0 and get 1001 . We could then add and subtract decimal numbers on our machine and get valid results. Unfortunately, most of the processors in use are base 2, so when we increment 1001 (9D) we get 1010 (0AH). This makes performing decimal arithmetic directly on a microcomputer difficult and awkward.

In packed binary coded decimal, a digit is stored in each nibble of a byte (as opposed to unpacked, in which a byte holds only one digit). Whenever addition or subtraction on packed BCD results in a digit outside the range of normal decimal arithmetic (that is, greater than nine or less than zero), a special flag known as the auxiliary carry is set. This indicates that an overflow or underflow has resulted during a particular operation that needs correction. This is analogous to the carry bit being set whenever an overflow occurs. On the 80x86, this flag, in association with the appropriate instruction-DAA for addition and \(D A S\) for subtraction-will produce a decimally correct result on the lower byte of the AX register. Unfortunately, these instructions only work eight bits at a time and even then in only one register, with the operands moved into and out of AL to perform a calculation of any length. As limited as this is, the instructions do allow you to perform a certain amount of decimal arithmetic on a binary machine without converting to binary.

When decimal addition is performed, each addition should be followed by a \(D A A\) or its equivalent. This instruction forces the CPU to add six to a BCD digit if it is outside the range, zero through nine, or if there has been a carry from the digit. It then passes the resulting carry into the next higher position. This adjusts for decimal overflows and allows normal decimal addition to be performed correctly in a packed format.

As an example, if we add 57D and 25D on a binary machine without converting to binary, we might first store the two values in registers in the following packed format:
\(A=01010111 \mathrm{~B}(57 \mathrm{H})\)
\(B=00100101 \mathrm{~B}(25 \mathrm{H})\)

We follow this with an \(A D D\) instruction (note that the carry is ignored here):
add \(a, b\)
with the result placed in A:
\(A=1111100 B \quad(7 c H)\)

Because a decimal overflow occurred in the first nibble (1100B = 12D), the auxiliary carry flag is set. Now when the \(D A A\) instruction is executed, a six is added to this nibble and the carry propagated into the next higher nibble:

1100B
0110B
10010B

This leaves a two as the least significant digit with a carry into the next higher position, which is the same as adding a one to that digit:

\section*{NUMERICAL METHODS}

The final result is 10000010B (82H).
This mechanism is widely implemented on both microprocessors and microcontrollers, such as the \(8048,8051, \mathrm{Z} 80,80 \times 86\), and 80376 . Unfortunately, neither the decimal adjust nor the auxiliary carry flag exists on the 80 C 196 or the TMS34010.

The DAA will work with decimal additions but not with decimal subtractions. Machines such as the Z 80 and \(80 \times 86\) make up for this with additional hardware to support subtraction. The Z 80 uses the N and H flags along with \(D A A\), while the \(80 \times 86\) provides the DAS instruction.

The 8086 series and the 68000 series of microprocessors provide additional support for ASCII strings. On the 8086, these instructions are AAM, AAS, AAA, and \(A A D\) (see Chapter 5 for examples and greater detail). Since they do offer some arithmetic help, let's take a brief look at them now. \({ }^{1}\)
- \(A A A\) adjusts the result of an addition to a simple decimal digit (a value from zero through nine). The sum must be in AL; if the result is greater than nine, AH is incremented. This instruction is used primarily for creating ASCII strings.
- \(A A D\) converts unpacked BCD digits in AH and AL to a binary number in AX. This instruction is also used to convert ASCII strings.
- AAM converts a number less than 100 in AL to an unpacked BCD number in AX, the high byte in AH, and the low byte in AL.
- \(A A S\), similar to \(A A A\), adjusts the result of a subtraction to a single decimal digit (a value from zero through nine).

\section*{Multiplication and Division}

This group comprises what are known as "arithmetic operations of the second kind," multiplication being iterative addition and division being iterative subtraction. In the sections that follow, you'll see several algorithms for each operation, starting with the classic methods for each.

The classic algorithms, which are based on iterative addition or subtraction, may or may not be the fastest way to execute a particular operation on your target machine.

Though error checking must always be done for correct results, the errors that occur with these routines don't have the same impact on the processor state as those involving hardware instructions. What's more, these algorithms work in any binary environment because they deal with the most fundamental elements of the machine. They often provide fast, economical solutions to specialized situations that might prove awkward or slow with hardware instructions (see the multen routine in FXMATH.ASM). Along with the classic algorithms, there will be examples of enhancements to these routines and some algorithms that work best in silicon; nonetheless, they're based on arithmetic viewpoints that you may find interesting.

\section*{Signed vs. Unsigned}

Without special handling, multiplication or division of signed numbers won't always result in correct answers, even if the operands themselves are sign-extended.

In multiplication, a problem arises in that the number of bits in the result of the multiplication is equal to, at a minimum, the number of bits in the largest operand (if neither operand is zero) and, at a maximum, the sum of bits in both operands (if each operand is equal to or greater than \(2^{n-1}\), where \(n\) is the size of the data type). It is usually wise to provide a result data type equal in size to the number of bits in the multiplicand plus the number of bits in the multiplier, or twice the number of bits in the largest operand. For a signed operation, this can mean the result may not have the sign required by the operands. For example, multiplying the two unsigned integers, \(\mathrm{ffH}(255 \mathrm{D})\) and \(\mathrm{ffH}(255 \mathrm{D})\), produces fe \(01 \mathrm{H}(65025 \mathrm{D})\), which is correct. If, however, two numbers are signed, \(\mathrm{ffH}(-1 \mathrm{D})\) and \(\mathrm{ffH}(-1 \mathrm{D})\), the correct result is \(1 \mathrm{H}(1 \mathrm{D})\), not fe01H(-511D). Further, an ordinary integer multiply knows nothing about sign extension, multiplying \(\mathrm{ffH}(-1 \mathrm{D})\) by \(1 \mathrm{H}(1 \mathrm{D})\) produces \(\mathrm{ffH}(255 \mathrm{D})\) in a 16 -bit data type.

Similar problems occur in division. Unlike multiplication, the results of a divide require the difference in the number of bits in the operands. That means two 8 -bit operands could require as little as one bit to represent the result of the division, or as many as eight. With division, it is wise to allot storage equal to the size of the dividend to account for any solution. With this in mind, dividing the two signed 8 -bit operands, \(\mathrm{ffH}(-1 \mathrm{D})\) by \(1 \mathrm{H}(1 \mathrm{D})\), is no problem-in this case the result is \(\mathrm{ffH}(-1 \mathrm{D})\). But if the

\section*{NUMERICAL METHODS}
divisor is any larger, the result is incorrect- \(\mathrm{FFH} / 5 \mathrm{H}=33 \mathrm{H}\), when the correct answer is OH .

Many processors offer a signed version of their multiply and divide instructions. On the 8086, those instructions are IMUL and IDIV. To use them on single-precision operands, be sure both operands are signed and the (byte) word sizes are compatible so the result won't overflow. If you attempt to multiply a signed word operand by an unsigned word operand greater than 7 fffH , your result will be in error. Be careful; this problem can go undetected for a long time.

In multiprecision multiplication, the use of IMUL and IDIV is often impractical, because the operation treats the large numbers as polynomials, breaking them apart into smaller units, or coefficients. These instructions handle all numbers as signed with \(2^{n-1}\) significant bits, where \(n\) is the size of the data type. This inevitably produces an incorrect result because the instructions can only handle word operands in the range \(-32,768\) to 32,767 and byte operands ranging from -128 to 127 , with the MSB of each word or byte treated as a sign bit. Multiplying the numbers 1283 H and 1234 H will result in one subproduct that is out of range and an incorrect product because any of the submultiplies that involve 83 H will incorrectly interpret it as a signed number.

A foolproof way to work with signed multiplies and divides, either single- or multiprecision, is to check the operands for a sign before the multiply or divide. You then handle the operation as unsigned by two's-complementing any negative operands. If necessary, the result can be two's-complemented at the end of the procedure. The algorithm is shown in pseudocode, and the code fragment is an example of how it might be implemented.

\section*{sign_operation: Algorithm}
```

1. Declare and clear a byte variable, sign.
2. Check the sign of the first operand to see if it's negative.
If not, go to step 3.
If so, complement sign, then complement the operand.
3. Check the sign of the second operand to see if it's negative.
If not, go to step 4.
If so, complement sign, then complement the operand.
```
```

4. Perform the multiply or divide.
5. Check ign.
If it's zero, you're done.
If it's -1 (OffH), two's-complement the result and go home.
```

\section*{signed-operation: Listing}
```

signed-operation proc operand0:dword, operandl:dword, result:word

```
signed-operation proc operand0:dword, operandl:dword, result:word
    local sign:byte
    local sign:byte
    mov ax, word ptr operandOL21
    mov ax, word ptr operandOL21
    or =, ax
    or =, ax
    jns check-second ;if not sign, it is positive
    jns check-second ;if not sign, it is positive
    not byte ptr sign
    not byte ptr sign
    not word ptr operand0[2] ;two's complement of operand
    not word ptr operand0[2] ;two's complement of operand
    neg word ptr operand0
    neg word ptr operand0
    jc check-second
    jc check-second
    add word ptr operand0[2],1
    add word ptr operand0[2],1
check-second:
check-second:
    mov ax, word ptr operand1[2]
    mov ax, word ptr operand1[2]
    or ax, ax
    or ax, ax
    jns done-with-check
    jns done-with-check
    not byte ptr sign
    not byte ptr sign
    not word ptr operandl[2]
    not word ptr operandl[2]
    neg word ptr operand1
    neg word ptr operand1
    jc done_with_check
    jc done_with_check
    add word ptr operandl[2],1
    add word ptr operandl[2],1
done_with_check:
```

done_with_check:

```
    ;perform operation here
    on_the_way_out:
    mov al, byte ptr sign
    or al, al
    jns all-done
    mov si, word ptr result
    not word ptr si[6]

\section*{NUMERICAL METHODS}
```

 not word ptr si[4]
 not word ptr si[2]
 neg word ptr si[0]
 jc all_done
 add word ptr si[2], 1
adc word ptr si[4], 0
adc word ptr si[6], 0
all_done:

```

Adding this technique to one of those described below will make it a signed process.

\section*{Binary Multiplication}

Multiplication in a binary system may generally be represented as the multiplication of polynomials, with the algorithm handling each bit, byte, or word as a coefficient of the power of the bits position or the least significant position within that word or byte:
\[
\begin{gathered}
* \quad \begin{array}{c}
a_{n} * 2^{n}+\ldots \cdot a_{1} * 2^{1}+a_{0} * 2^{0} \\
b_{n} * 2^{n}+\ldots b_{1} * 2^{1}+b_{0} * 2^{0} \\
b_{n} *(a) * 2^{n}+\ldots b_{1} *(a) * 2^{1}+b_{0} *(a) * 2^{0}
\end{array},
\end{gathered}
\]
where \(n=\) the bit position. It is the same for bytes and words except that \(n\) is then the power of the least significant bit within the word or byte:
\[
12345678 \mathrm{H}=1234 \mathrm{H} * 16^{4}+5678 \mathrm{H} * 16^{0}=1234 \mathrm{H} * 2^{16}+5678 \mathrm{H} * 2^{0}
\]

In the following example involving the multiplication of two 4-bit quantities, you may recognize the pencil-and-paper method you learned in school:

Step 1:
\[
\begin{array}{lr} 
& \mathrm{a} 3 \times 23+\mathrm{a} 2 \times 22+\mathrm{a} 1 \times 21+\mathrm{a} 0 \times 20 \\
\star & \mathrm{~b} 3 \times 23+\mathrm{b} 2 \times 22+\mathrm{b} 1 \mathrm{x} 21+\mathrm{b} 0 \times 20 \\
\hline \mathrm{~b} 0 \text { * a3 + b0 * a } 2+\mathrm{b} 0 \text { * a1 + b0 * a0 }
\end{array}
\]
```

Step 2:

```
```

$$
\begin{aligned}
& a 3 \times 23+a 2 \times 22+a 1 \times 21+a 0 \times 20 \\
& \mathrm{~b} 0 * \frac{\star \quad \mathrm{~b} 3 \times 23+\mathrm{b} 2 \mathrm{x} 22+\mathrm{b} 1 \mathrm{x} 21+\mathrm{b} 0 \times 20}{\mathrm{a}+\mathrm{b} 0 \text { * a } 2+\mathrm{b} 0 \text { * } \mathrm{a} 1+\mathrm{b} 0 \text { * a0 }} \\
& \text { b1 * a3 t b1 * a2 + b1 * a1 + b1 * a0 }
\end{aligned}
$$

Step 3:

$$
\begin{array}{r}
\begin{array}{r}
a 3 \times 23+\mathrm{a} 2 \times 22+\mathrm{a} 1 \times 21+\mathrm{a} 0 \times 20 \\
* \mathrm{~b} 3 \mathrm{x} 23+\mathrm{b} 2 \mathrm{x} 22+\mathrm{b} 1 \times 21+\mathrm{b} 0 \times 20
\end{array} \\
\mathrm{~b} 2 * \mathrm{a} 3+\mathrm{b} 0 * \mathrm{a} 2+\mathrm{b} 0 * \mathrm{a} 1+\mathrm{b} 0 * \mathrm{a} 0 \\
\mathrm{~b} 1 * \mathrm{a} 3+\mathrm{b} 1 * \mathrm{a} 2+\mathrm{b} 1 * \mathrm{a} 1+\mathrm{b} 1 * \mathrm{a} 0
\end{array}
$$

Step 4:

```

```

$b 3 * a 3+((b 2 * a 3)+(b 3 * a 2))((b 0 * a 1)+(b 0 * a 1)+(b 1 * a 0))+b 0 * a 0$

```

An example of this in a four-bit multiply could be shown as:
\begin{tabular}{c}
\(1100=12 \mathrm{D}\) \\
\(\times \quad 1101=13 \mathrm{D}\) \\
\hline 1100 \\
0000 \\
1100 \\
\(\frac{1100}{10011100=156}\)
\end{tabular}

This is also how the basic shift-and-add algorithm for microprocessors is written. This procedure is taken directly from the positional number theory, which simply states that the value of a bit or integer within a number depends on its position. Thus, each pass through the algorithm shifts both the multiplier and the multiplicand through their corresponding positions, adding the multiplicand to the result if the multiplier has a one in the 0th position. (The right shift is arithmetic; that is, a zero is shifted into the MSB.) As with the pencil-and-paper method, the multiplicand is rotated left and the multiplier is rotated right.

To demonstrate, let's multiply two numbers, 1100 (12D) and 1101 (13D). We

\section*{NUMERICAL METHODS}
must first designate one as the multiplicand and the other as the multiplier and set up registers to hold them. We also need a loop counter to indicate when we have passed through all the bit positions of the multiplier. We can call this variable cntr (counter) and a variable to hold the product prdct. We'll call 1100 (the multiplicand) mltpnd and 1101 (the multiplier) mltpr. In the following example, the values in parentheses are all decimal:
0. \(\quad\) mltpnd \(=1100(12)\)
\(m l t p r=1101(13)\)
cntr \(=100(4)\)
\(p r d c t=0\)
Then, with each pass through the algorithm, the results are:
```

1. \quad mltpnd $=11000(24)$
$m l t p r=0110(6)$
cntr $=011$ (3)
$p r d c t=1100$ (12)
2. \quad mltpnd $=110000(48)$
$m l t p r=0011(3)$
$c n t r=010(2)$
prdct $=1100$ (12)
3. $m l t p n d=1100000(96)$
$m l t p r=0001(1)$
cntr $=1$ (1)
$p r d c t=111100(60)$
4. \quad mltpnd $=11000000$ (192)
$m l t p r=0000(0)$
cntr $=00(0)$
$p r d c t=10011100(156)$
```

The following routine is based on this algorithm but expects 32-bit operands.

\section*{cmul: Algorithm}
1. Allocate enough space to store multiplicand and allow for 32 left shifts, set the variable numbits to 32 , and see that the registers where product is formed contain zeros. (Be certain to provide enough storage for the output, at most Product_bits = Multiplicand_bits + Multiplier_bits. Here, 4 Multiplicand_bits+ 4 Multiplier_bits \(=8\) Product bits.)
2. Shift multiplier right one position and check for a carry. If there is not a carry, go to step 3.

If there is, add the current value in mltpend to the product registers.
3. Shift mltpcnd left one position and decrement the counter variable numbits. Test numbits for zero.

If it's zero, go to step 4.
If not, return to step 2 .
4. Write the product registers to product and go home.

\section*{cmul: Listing}
; ******
; classic multiply
;
cmul proc uses bx cx dx si di, multiplicand:dword, multiplier:dword, product:word
local numbits:byte, mltpend:qword
pushf
cld
sub ax, ax
lea s1, word ptr multiplicand
lea di, word ptr mltpend
mov cx, 2
rep
movsw
stosw
stosw ;clear upper words
mov bx, ax ;clear register to be used to form product
mov cx, ax
dx, ax
byte ptr numbits, 32

\section*{NUMERICAL METHODS}
```

test-multiplier:
shr word ptr multiplier[2], 1
rcr word ptr multiplier, 1
jnc decrement_counter
add ax, word ptr mltpend
adc bx, word ptr mltpend[2]
adc cx, word ptr mltpend[4]
adc dx, word ptr mltpend[6]
decrement_counter:
shl word ptr mltpend, 1
rcl word ptr mltpend[2], 1
rcl word ptr mltpend[4], 1
rcl word ptr mltpend[6], 1
dec byte ptr numbits
jnz test-multiplier
exit:
mov di, word ptr product
mov word ptr [di], ax
mov word ptr [di] [2], bx
mov word ptr [di][4], cx
mov word ptr [di][6], dx
popf
ret
cmul endp

```

One possible variation of this example is to employ the "early-out" method. This technique doesn't use a counter to track the multiply but checks the multiplier for zero each time through the loop. If it's zero, you're done. For examples of early-out termination, see the routines in the section "Skipping Ones and Zeros" and others in FXMATH.ASM included on the accompanying disk.

\section*{A Faster Shift and Add}

The same operation can be performed faster and in a smaller space. For one thing, the shifts being done on the multiplicand and multiplier result in unnecessary doubleprecision additions. Eliminating any unnecessary additions saves time and space. Arranging any shifts so that they are all in the same direction, means fewer registers or memory variables.

As you may recall, positional notation lends itself quite nicely to polynomial
interpretation. Using a binary byte as an example, let's say we have two numbers, \(a\) and \(b\) :
\[
a_{3} * 2^{3}+a_{2} * 2^{2}+a_{1} * 2^{1}+a_{0} * 2^{0}=a
\]
and
\[
\mathrm{b}_{3} \star 2^{3}+\mathrm{b}_{2} * 2^{2}+\mathrm{b}_{1} * 2^{1}+\mathrm{b}_{0} * 2^{0}=\mathrm{b}
\]

When we multiply them, we get:
\[
\begin{gathered}
b_{3} *\left(a_{3} * 2^{3}+a_{2} * 2^{2}+a_{1} \star 2^{1}+a_{0} * a^{0}\right) * 2^{3}+b_{2} *\left(a_{3} * 2+a_{2} * 2^{2}+a_{1} \star 2^{1}+\right. \\
\left.a_{0} * 2^{0}\right) \star 2^{2}+b_{1} *\left(a_{3} \star 2^{3}+a_{2} \star 2^{2}+a_{1} \star 2^{1}+a_{0} * 2^{0}\right) * 2^{1}+b_{0} *\left(a_{3} * 2^{3}+a_{2} * 2^{2}\right. \\
\left.+a_{1} * 2^{1}+a_{0} x^{*} * 2^{0}\right) * 2^{0}=a * b
\end{gathered}
\]

Assuming an initial division by \(2^{4}\) produces a fraction:
\[
\begin{aligned}
a * b=\left[b_{3} *\left(a * 2^{-1}\right)+b_{2} *\left(a * 2^{-2}\right)+\right. & \left.b_{1} *\left(a * 2^{-3}\right)+b_{0} *\left(a * 2^{-4}\right)\right] * \\
& 10000 \mathrm{H}
\end{aligned}
\]

Now we can arrive at the same result as in the previous shift-and-add operation using only right shifts.

In cmul2, we'll be using the multiplicand as the product as well. Since the data type is a quadword, the initial division must be by \(2^{4}\). Storing the multiplicand in the product variable and concatenating this variable with the internal registers allows us eight words, enough for the largest possible product of two quadwords. As the multiplicand is shifted right and out, the lower bytes of the product are shifted in. This way, we can use one less register (or memory location).

\section*{cmul2: Algorithm}
1. Move the multiplicand into the lowest four words of the product and load the shift counter (numbits) with 64. Clear registers \(A X, B X, C X\), and \(D X\) to hold the upper words of the product.
2. Check bit 0 of the multiplicand.

\section*{NUMERICAL METHODS}
```

 If it's one, go to step 3.
 Shift the product and multiplicand right one bit.
 Decrement the counter.
 If it's not zero, return to the beginning of step 2.
 If it's zero, we're done.
 3. Add the multiplier to the product.
Shift the product and the multiplicand right one bit.
Decrement the counter.
If it's not zero, return to step 2.
If it's zero, we're done.
```
cmul2: Listing
; ******
;
; A faster shift and add. Multiply one quadword by another,
; passed on the stack, pointers returned to the results.
; Composed of shift and add instructions.
cmul2 proc uses bx cx dx si di, multiplicand:qword, multiplier:qword,
product:word
    local numbits:byte
    pushf
    cld
    sub ax, ax
    mov di, word ptr product
    lea si, word ptr multiplicand ;write the multiplicand
                                    ; to the product
    mov cx, 4
rep mov sw
    sub di, 8 ;point to base of product
    lea si, word ptr multiplier ;number of bits
    mov byte ptr numbits, 40h
    sub ax, ax
    mov bx, ax
    mov cx, ax
    mov dx, ax
test_for_zero:
    test word ptr [di], 1 ;test the multiplicand for a
        ; one in the LSB
    jne add multiplier ;makes the jump if the
```

;LSB is a one
jmp short shift
add multiplier
add ax, word ptr [si] ;add the multlplier to
; subproduct
adc bx, word ptr [si][2]
adc cx, word ptr [si][4]
adc dx, word ptr [si][6]
shift:
shr dx, 1
rcr cx, 1
rcr bx, 1
rcr ax, 1
rcr word ptr [di][6], 1
rcr word ptr [d1][4], 1
rcr word ptr [di][2], 1
rcr word ptr [di][0], 1
dec byte ptr numbits
jz exit
jmp short test_for_zero
exit:
mov word ptr [di][8], ax
word ptr [dil [10], bx
mov word ptr [di][12], cx
mov word ptr [di][14], dx
popf
ret
cmul endp

```

For an example of a routine written for the Z 80 and employing this technique, see the SAMPLES. module on the accompanying disk.

\section*{Skipping Ones and Zeros}

Anyone who has ever struggled with time-critical code on a bit-oriented machine has probably tried to find a way to lump the groups of ones and zeros in multipliers and multiplicands into one add or shift. A number of methods involve skipping over series of ones and zeros; we'll look at two such procedures. Their efficiency depends on the hardware involved: On machines that provide a sticky bit, such as the 80C196,

\section*{NUMERICAL METHODS}
these routines can provide the most improvement. Unfortunately, the processors that provide that bit also normally have a hardware multiply.

The first technique we'll look at is the Booth algorithm which finds its way around ones and zeros by restating the multiplier. \({ }^{2}\) Suppose we want to multiply 1234 H by \(0 \mathrm{fff0H}\). Studying the multiplier, we find that 0 fff0H is equal to 10000 H -10 H . A long series of rotates and additions can thus be replaced by one subtraction and one addition-that is, subtract \(10 \mathrm{H} \times 1234 \mathrm{H}\) from the product, then add 10000 H x 1234 H to the product. The drawback is that the time it takes to execute this operation depends on the data. If the worst-case condition arises-a multiplier with alternating ones and zeros-the procedure can take longer than a standard shift and add.

The trick here is to scan the multiplier looking for changes from ones to zeros and zeros to ones. The way this is done depends on the programmer and the MPU selected. The following table presents the possible combinations of bits examined and the actions taken.
\begin{tabular}{rcl} 
Bit 0 & Carry & Action* \\
0 & 0 & No action \\
0 & 1 & Add the current state of the multiplicand \\
1 & 0 & Subtract the current state of the multiplicand \\
1 & 1 & No action
\end{tabular}
* This chart assumes that the multiplicand has been rotated along with the multiplier as it is being scanned.

Remember that as the multiplier is scanned from position 0 through position \(n\), the multiplicand must also be shifted (multiplied) through these positions.

In its simplest form, the Booth algorithm may be implemented similarly to the shift and add above except that bit 0 of the multiplier is checked along with the carry to determine the appropriate action. As you can see from the table, if you're in the middle of a stream of zeros or ones, you do nothing but shift the multiplier and multiplicand. Depending on the size of the operands involved and the instruction set, it may be faster simply to increment a counter for a multibit shift when the time comes.

The coding for this algorithm is heavily dependent on the device (instruction
set), but one possible scheme is as follows.

\section*{booth: Algorithm}
1. Allocate space for the multiplicand and 32 shifts. Clear the carry and the registers used to form the product.
2. Jump to step 6 if the carry bit is set.
3. Test the 0 th bit. If it's not set, jump to step 5.
4. Subtract mltpend from the registers used to form the product.
5. Shift mltpend left one position.

Check multiplier to see if it's zero. If so, go to step 8.
Shift multiplier right one position, shifting the LSB into the carry, and jump to step 2.
6. Test the 0 th bit. If it's set, jump to step 5 .
7. Add mltpend to the product registers and jump to step 5 .
8. Write the product registers to product and go home.
```

booth: Listing
; *****
; booth
; unsigned multiplication algorithm
; 16 X 16 multiply
booth proc uses bx cx dx, multiplicand:dword, multiplier:dword, product:word
local mltpend:qword
pushf
cld
sub ax, ax
lea si, word ptr multiplicand
lea di, word ptr mltpend
mov cx, 2
rep mov SW
stosw
stosw ;clear upper words
mov bx, ax
mov cx, ax
mov dx, ax
clc
check_carry:

```
```

 jc carry_set
 test word ptr multiplier, 1 ;test bit 0
 jz
 sub_multiplicand:
sub ax, word ptr mltpend
sbb bx, word ptr mltpend[2]
sbb cx, word ptr mltpend[4]
sbb dx, word ptr mltpend[61
shift_multiplicand:
shl
rcl
rcl word ptr mltpend[6], 1
or word ptr multiplier[2], 0 ;early-out mechanism
jnz shift multiplier
or word ptr multiplier, 0
jnz shift multiplier
jw short exit
shift multiplier:
shr word ptr multiplier[2], 1 ;shift multiplier
rcr word ptr multiplier, 1
jmp short check carry
exit:
mov di, word ptr product
mov word ptr [di], ax
mov word ptr [dil[2], bx
mov word ptr [di][4], cx
mov word ptr [di][6], dx
popf
ret
carry-set:
test word ptr multiplier, 1 ;test bit 0
jnz shift-multiplicand
add multiplicand:
add ax, word ptr mltpend
adc bx, word ptr mltpend[2]
adc cx, word ptr mltpend[4]
adc dx, word ptr mltpend[6]
jmp short shift_multiplicand
booth endp
word ptr mltpend, 1
word ptr mltpend[2], 1
rcl word ptr mltpend[4], 1

```

A corollary to the Booth algorithm is bit pair encoding. The multiplier is scanned, as in the Booth algorithm, but this time three bits are considered at once (see
the following chart). This method is attractive because it guarantees that half as many partial products will be required as with the shift and add to produce the result.
\begin{tabular}{cccl} 
Bit \(n+1\) & Bit \(n\) & Bit \(\mathrm{n}-1\) & \begin{tabular}{l} 
Action* \\
0
\end{tabular} \\
0 & 0 & 0 & No action \\
0 & 0 & 1 & Add the current state of the multiplicand \\
0 & 1 & 0 & Add the current state of the multiplicand \\
0 & 1 & 1 & Add twice the current state of the multiplicand \\
1 & 0 & 0 & \begin{tabular}{l} 
Subtract twice the current state of the \\
multiplicand
\end{tabular} \\
1 & 0 & 1 & Subtract the current state of the multiplicand \\
1 & 1 & 0 & Subtract the current state of the multiplicand \\
1 & 1 & 1 & No action
\end{tabular}
* This chart assumes that the multiplicand has been shifted along with the multiplier scanning.

The multiplier is examined two bits at a time relative to the high-order bit of the next lower pair (bit \(\mathbf{n}-\mathbf{I}\) in the table). First, the multiplier is understood to have a phantom zero to the right of bits 0 and 1 ; These bits are analyzed accordingly. Second, a phantom zero can be assumed to the left of the multiplier for the purpose of filling out the table. For example, the number 21 H would be viewed as:
\[
\begin{array}{llllllll} 
& 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} & \\
\underline{0} & 1 & 0 & 0 & 0 & 0 & 1 & \underline{0}
\end{array}
\]

The basic approach to implementing this routine is similar to the Booth algorithm.

\section*{bit_pair: Algorithm}
```

1. Allocate space to hold the multiplicand plus 32 bits for shifting. Clear
the carry and the registers to be used to form the product.
2. If the carry bit is set, jump to step 8.
3. Test the Oth bit. If it's clear, jump to step 5.
```

\section*{NUMERICAL METHODS}
4. Test bit 1.

If it's set, subtract mltpend from the product registers and continue with step 7.

Otherwise, add mltpond to the product registers and go to step 7 .
5. Test bit 1.

If it's set, jump to step 6.
Otherwise, continue from step 7.
6. Subtract twice mltpond from the product registers.
7. Shift mltpend left two positions.

Check multiplier to see if it's zero. If so, continue at step 13.
Shift multiplier two positions to the right and into the carry.
Jump to step 2.
8. Test the 0 th bit.

If it's set, jump to step 11.
Otherwise, go to step 12.
9. Add the current value of \(m\) ltpend to the product registers.
10. Add the current value of mltpond to the product registers and continue with step 7.
11. Test bit 1 .

If it's set, jump to step 7.
Otherwise, add twice mltpend to the product registers and continue from step 7.
12. Test bit 1.

If it's set, subtract mltpcnd from the product registers and continue with step 7.

Otherwise, add mltpcnd to the product registers and go to step 7.
13. Write the product registers to product and go home.

\section*{bit_pair: Listing}
i \(\star \star \star \star * *\)
; bit pair encoding
;
;
;
bit_pair proc uses bx cx dx, multiplicand:dword, multiplier:dword, product:word
```

 local mltpend:qword
 pushf
 cld
 sub ax, ax
 lea si, word ptr multiplicand
 lea di, word ptr mltpcnd
 mov cx, 2
 rep movsw
stosw
stosw ;clear upper words
mov bx, ax
mov cx, ax
mov dx, ax
clc
check carry:
jc carry set
test word ptr multiplier, 1
;test bit 0
jz shiftorsub
test word ptr multiplier, 2 ;test bit 1
jnz sub multiplicand
jmp add multiplicand
shiftorsub:
test
jz
word ptr multiplier, 2 ;test bit 1
shift multiplicand
;cheap in-line multiply
sub ax, word ptr mltpend
sbb bx, word ptr mltpend[2]
sbb cx, word ptr mltpend[4]
sbb dx, word ptr mltpcnd[6]
sub multiplicand:
sub ax, word ptr mltpend
sbb bx, word ptr mltpend[2]
sbb cx, word ptr mltpend[4]
sbb dx, word ptr mltpend[6]
shift multiplicand:
shl word ptr mltpend, 1
rcl word ptr mltpend[2], 1
rcl word ptr mltpcnd[4], 1
rcl word ptr mltpcnd[6], 1
shl word ptr mltpend, 1
rcl word ptr mltpend[2], 1
rcl word ptr mltpcnd[4], 1
rcl word ptr mltpcnd[6], 1
or word ptr multlplier[2], 0 ;early out if multiplier is zero

```

\section*{NUMERICAL METHODS}
```

 jnz shift_multiplier
 or word ptr multiplier, 0
jnz shift multiplier
jmp short exit
shift multiplier:
shr word ptr multiplier[2], 1 ; shift multiplier right twice
rcr word ptr multiplier, 1
shr word ptr multiplier[2], 1
rcr word ptr multiplier, 1
jmp short check_carry
exit:
mov di, word ptr product ;write product out beforeleaving
mov word ptr [di], ax
mov word ptr [di] [2], bx
mov word ptr [di][4], cx
mov word ptr [di][6], dx
popf
ret
carry_set:
test word ptr multiplier, 1
jnz addorsubx2
jmp short addorsubx1
addx2_multiplicand:
add ax, word ptr mltpend ;cheap in-line multiplier
adc bx, word ptr mltpend[2]
adc cx, word ptr mltpend[4]
adc dx, word ptr mltpend[6]
add-multiplicand:
add ax, word ptr mltpend
adc bx, word ptr mltpend[2]
adc cx, word ptr mltpend[4]
adc dx, word ptr mltpend[6]
jmp short shift_multiplicand
addorsubx2:
test word ptr multiplier, 2 ;test bit 1
jnz shift-multiplicand
jmp short addx2_multiplicand
addorsubx1:
test word ptr multiplier, 2 ;test bit 1
jnz sub_multiplicand
jmp short add_multiplicand

```
bit_pair endp

\section*{Hardware Multiplication: Single and Multiprecision}

If the processor you're using has a hardware multiply, you're in luck. Depending on the size of the operands, it's almost always faster than any of the preceeding techniques and can be extended to handle operands of virtually any size. There are exceptions, however; for example, the MUL instruction on the 8086 was terribly slow, making it a draw in certain situations. The 80286 was faster in both cycle time and clock speed, and the 80386 was even faster; nevertheless, many examples show that multiplication using the shift and add technique is highly competitive. This is almost never true of multiprecision multiplication, although the double precision shift available on the 80386 and up may be an exception.

In earlier examples involving multiplication, we saw numbers represented as binary polynomials in which each position contained either a zero or a one times base 2 taken to a certain power. To perform that multiplication, we multiplied each bit of the muliplicand by each bit of the multiplier, and summed the subproducts according to their power to form the product (see the section Binary Multiplication). Working with larger numbers is much the same except that the polynomials generally show the operands broken into bytes or words. For example, suppose we needed to multiply two 24 -bit quantities, such as 123456 H and 654321 H . We would want to restate these numbers in terms of a new base, that of our hardware multiply. In this case, we're using an 8086 with a 16-bit multiply, so our base is \(21^{6}(10000 H)\). First, 123456 H becomes three single-byte quantities:
```

12x10000H1 + 3456x10000H0

```
and 654321 H becomes:
\(65 \times 10000 \mathrm{H} 1+4321 \times 10000 \mathrm{HO}\)

To better understand this process, let's relabel each byte. The quantity 123456 H can be seen as the sum of \(120000 \mathrm{H}+3456 \mathrm{H}\), which becomes \(\mathrm{a}+\mathrm{b}\). The quantity

\section*{NUMERICAL METHODS}

654321 H becomes \(650000 \mathrm{H}+4321 \mathrm{H}\), which then becomes \(\mathrm{d}+\mathrm{e}\). Now, multiply:
```

 d+e
 a+b
 bd
ae
ad

```

With the original numbers, that calculation is:
\[
\begin{array}{r}
650000 \mathrm{H}+43218 \\
\times 120000 \mathrm{H}+34568 \\
\hline 0 \mathrm{db} 94116 \mathrm{H} \\
14 \mathrm{a} 5 \mathrm{ee} 0000 \mathrm{H} \\
4 \mathrm{~b} 8520000 \mathrm{H} \\
71 \mathrm{a} 00000000 \mathrm{H} \\
\hline 7336 \mathrm{bf} 94116 \mathrm{H}
\end{array}
\]

The direction the multiply takes is not significant; that is, the most significant words could have been multiplied first because the final additions align the results. This technique can be extended as far as needed to produce a result. It's also fast, requiring only a few multiplies and divides.

In mul32, we multiply two doubleword numbers and arrive at a quadword result.

\section*{mul32: Algorithm}
1. Use DI to hold the address of the result, a quadword.
2. Move the most significant word of the multiplicand into AX and multiply by the most significant word of the multiplier. The product of this multiplication is written to result.
3. The most significant word of the multiplicand is returned to AX and multiplied by the least significant word of the multiplier. The least significant word of this product is MOVed to the second word of result, the most significant word of the product is \(A D D e d\) to the third word of result, and any carry is propagated to the most significant word by adding-with-carry a zero.
4. The least significant word of the multiplicand is moved to AX and multiplied by the most significant word of the multiplier. The product
is added to the second word of result and added-with-carry to the third word of result, with any carry propagated into the most significant word.
5. Finally, the least significant word of the multiplicand is moved into \(A X\) and multiplied by the least significant word of the multiplier. The least significant word of this product is moved to the least significant word of result, the most significant word of the product is added to the second word of result, and any carry is propagated into the third and then the most significant word of result.

\section*{mu132: Listing}
```

;*****

```
;mu132 - Multiplies two unsigned fixed-point values. The ;arguments and a pointer to the result are passed on the stack.
mu132 proc uses dx di, smultiplicand:dword, smultiplier:dword, result:word
mov di, word ptr result ;small model pointer is near mov ax, word ptr smultiplicand[2] ;multiply multiplicand high mul word ptr smultiplier[2] ;word by multiplier high word mov word ptr [di][4], ax mov word ptr [di] [6], dx mov ax, word ptr smultiplicand[2] ;multiply multiplicand high mul word ptr smultiplier[0] ;word by multiplier low word mov word ptr [di][2], ax add word ptr [di][4], dx adc word ptr [di][6], 0 ; add any remnant carry mov ax, word ptr smultiplicand[0] ;multiply multiplicand low mul word ptr smultiplier[2] ;word by multiplier high word add word ptr [di][2], ax adc word ptr [di][4], dx adc word ptr [di][6], 0 ;add any remnant carry mov ax, word ptr smultiplicand[0] ;multiply multiplicand low mul word ptr smultiplier[0] ; word by multiplier low word mov word ptr [di] [0], ax add word ptr [di][2], dx adc word ptr [di][4], 0 ;add any remnant carry adc word ptr [di][6], 0
    ret
mu132 endp

For additional examples of this technique, see the FXMATH.ASM module.

\section*{NUMERICAL METHODS}

\section*{Binary Division}

\section*{Error Checking}

Division requires more error checking than any of the other basic arithmetic operations. Depending on whether you're using the hardware division instructions or a brew of your own, you'll need to know if a mistake has been made. The primary difference between using a hardware instruction and using your own solution is that an error made during the execution of a hardware instruction can blow up a program quite unaesthetically by invoking an exception or trap.

Three basic errors can occur during division: overflow, division of zero, and an attempt to divide by zero.

You can avoid overflow by checking the dividend and divisor to see whether their quotient will fit in the space provided, or by always breaking the dividend into coefficients of the same size data type as the dividend. An overflow (or underflow) can happen quite easily when the dividend is very large and the divisor is small. If you're using a software algorithm to perform the divide, you may find that you lose part of your data. If you're using a hardware instruction, a hardware exception will be invoked. On the 8086, the largest dividend allowed is 32-bits, the largest divisor is 16 with a 16 -bit quotient. In this case, dividing 12345678 H by 01 DEH results in a quotient of 9 bfe 9 H and a hardware exception (the result too large for the 16 bits the 8086 allows).

If you think such an overflow could occur in your code, it might be wise to include a test before the divide to ascertain how much storage the quotient will require and, therefore, which form of the divide to use. The largest dividend a divisor can divide and store is equal to the size of the data type multiplied by the divisor. By comparing the number obtained from such a multiplication with an arbitrary dividend, you can determine whether the result of that operation will fit in the data type specified.

With binary numbers, this is easy. The largest quotient an 8086 can produce without overflow is 16 bits, which amounts to a left shift of the divisor of 16 bits or a multiplication of 10000 H . If the value obtained is greater than or equal to the dividend, the result of the division will fit; if not, it won't. In other words, if you're dividing a 32 -bit quantity by a 16 -bit quantity, simply comparing the divisor with the
upper word of the dividend (dividend \(/ 10000 \mathrm{H}\) ) will tell you whether the quotient will fit in 16 bits or not. If the upper 16 bits of the dividend are greater than your divisor, the operation will overflow. This test can be extended to 16 -bit dividends and eightbit divisors.

Suppose we wish to divide 12345678 H by 1 deH . Since this divisor is larger than one byte, we must use 16-bit division. The 1 deH need not be multiplied by 10000 H or shifted; we only need to compare the upper word of the dividend and the divisor to see which is greater.
```

mov dx, dvdnd[2] ;1234H
mov ax, dvdnd[0] ;5678H
mov cx, dvsr ;1DEH
cmp dx, cx ;compare
ja not_big_enuf ;the quotient won't fit

```
div32:

Depending on the circumstances, the best method may be to begin any multiprecision divide by clearing DX and loading AX with the most significant word. An overflow is impossible with this technique as long as you have a divisor, since 1 H multiplied by 10000 H is greater than any one-word dividend.

The other two errors, division of zero and an attempt to divide by zero, are easily detected in the beginning of the routine. If either condition is true, the program can branch to a predetermined error routine and return.

Finally, two conditions are worth checking if your arithmetic gets very big:
- Are the divisor and dividend equal?
- Is the divisor greater than the dividend?

If the two are equal, return a one; if the divisor is greater, return a zero with the dividend in the remainder.

Examples of this kind of checking can be found in the FXMATH.ASM module and later in this chapter in the section Hardware Division.

\section*{Software Division}

The classic multiplication algorithm is based on the idea of multiplication as iterative addition, so you shouldn't be surprised to learn that the method for division


Figure 2-1. Division using shift and subtract.
is based on shift and subtract. This procedure isn't fast, but it's friendly.
The procedure involves shifting the dividend left into a variable, the remainder, and comparing this remainder with the divisor. If the remainder is equal to or larger than the divisor, the divisor is subtracted from the remainder and a one is left-shifted into a variable, called the quotient. This continues until the requisite number of bits have been shifted. No early out is available here; the number of shifts necessary depends on the size of the operands.

The following variables will be used for the division algorithms: \(d v s r, d v d n d\), qtnt, cntr, and rmndr. Note that during execution of the algorithm the quotient, dividend, and remainder share memory locations (Figure 2-1). Shifting the dividend into the remainder leaves the lower bits free to become the quotient. At the end of the routine the dividend is gone, leaving only the quotient and the remainder. For the programmer, this means fewer shifts, some increase in speed, and a slightly smaller routine. The integers these routines are meant to handle are unsigned; the method for signed division is the same as for multiplication which was described earlier (see Signed vs. Unsigned), and is demonstrated in FXMATH.ASM.

\section*{cdiv: Algorithm}
```

1. Load the quotient (qtnt) with the dividend (dvdnd); set an onboard
register, si, with the number of bits in the dividend(this will also
be the size of our quotient); and clear registers AX, BX, CX, and DX.
2. Left-shift the dividend into the quotient and remainder simultaneously.
3. Compare rmdr and dvsr.
If dvsr > = rmndr, subtract dvsr from rmndr and increment qtnt.
Otherwise, fall through to the next step.
4. Decrement si and test it for zero. If si is not 0, return to step 2.
5. Write the remainder and leave.
```

This will work for any size data type and, as you can see, is basically an iterative subtract.

\section*{NUMERICAL METHODS}
```

cdiv: Listing
;}********
; classic divide
; one quadword by another, passed on the stack, pointers returned
; to the results
; composed of shift and sub instructions
; returns all zeros in remainder and quotient if attempt is made to divide
; zero. Returns all ffs in quotient and dividend in remainder if divide by
; zero is attempted.
cdiv proc uses bx cx dx si di, dvdnd:qword, dvsr:qword,
qtnt:word, rmndr:word
pushf
cld ;upward
mov cx, 4
lea si, word ptr dvdnd
mov di, word ptr qtnt ;move dividend to quotient
rep movsw
sub di, 8
mov si, }6
sub ax, ax
mov bx, ax
mov cx, ax
mov dx, ax
shift:
shl word ptr [dil, 1
rcl word ptr [dil[2], 1
rcl word ptr [dil[41, 1
rcl word ptr [di] [6], 1
rcl ax, 1
rcl bx, 1
rcl cx, 1
rcl dx, 1
compare:
cmp dx, word ptr dvsr[6] ;Compare the remainder and
;divisor
jb test-for-end
cmp cx, word ptr dvsr[4] ;if remainder\geqdivisor
jb test-for-end
cmp bx, word ptr dvsr[2]
jb test-for-end
cmp ax, word ptr dvsr[0]
jb test-for-end

```
    sbb bx, word ptr dvsr[2]
    sbb cx, word ptr dvsr[4]
    sbb dx, word ptr dvsr[6]
    add word ptr [di], 1
    adc word ptr [di][2], 0
    adc word ptr [di][4], 0
    adc word ptr [di][6], 0
test_for_end:
    dec si
    jnz shift
    mov di, word ptr rmndr
    mov word ptr [di], ax
    mov word ptr [di][2], bx
    mov word ptr [di][4], cx
    mov word ptr [di][6], dx
exit:
    popf
    ret
cdiv endp
```

```
```

ax, word ptr dvsr ;if it is greater than

```
```

ax, word ptr dvsr ;if it is greater than
;the divisor
;the divisor

```
;subtract the divisor and
```

;subtract the divisor and
;increment the quotient
;increment the quotient
;decrement the counter
;decrement the counter
;write remainder
;write remainder
;to take care of cld

```
;to take care of cld
```


Hardware Division

Many microprocessors and microcontrollers offer hardware divide instructions that execute within a few microseconds and produce accurate quotients and remainders. Except in special cases, from the 80286 on up, the divide instructions have an advantage over the shift-and-subtract methods in both code size (degree of complexity) and speed. Techniques that involve inversion and continued multiplication (examples of both are shown in Chapter 3) don't stand a chance when it comes to the shorter divides these machine instructions were designed to handle.

The 8086 offers hardware division for both signed and unsigned types; the 286, 386 , and 486 offer larger data types but with the same constraints. The DIV instruction is an unsigned divide, in which an implied destination operand is divided by a specific source operand. If the divisor is 16 bits wide, the dividend is assumed to be in DX:AX. The results of the division are returned in the same register pair (the quotient goes in AX and the remainder in DX). If the divisor is only eight bits wide, the dividend is expected to be in AX ; at the end of the operation, AL will contain the quotient, while AH will hold the remainder.

NUMERICAL METHODS

As a result, you should make sure the implied operands are set correctly. For example,
div cx
says that DX:AX is to be divided by the 16-bit quantity in CX. It also means that DX will then be replaced by the remainder and AX by the quotient. This is important because not all divisions turn out neatly. Suppose you need to divide a 16-bit quantity by a 9 -bit quantity. You'll probably want to use the 16 -bit form presented in the example. Since your dividend is only a word wide, it will fit neatly in AX. Unless you zero DX, you'll get erroneous results. This instruction divides the entire DX:AX register pair by the 16 -bit value in CX. This can be a major annoyance and something you need to be aware of.

As nice as it is to have these instructions available, they do have a limitation; what if you want to perform a divide using operands larger than their largest data type? The 8086 will allow only a 32-bit dividend and a 16-bit divisor. With the 386 and 486 , the size of the dividends has grown to 64 bits with divisors of 32 ; nevertheless, if you intend to do double-precision floating point, these formats are still too small for a single divide.

Several techniques are available for working around these problems. Actually, the hardware divide instructions can be made to work quite well on very large numbers and with divisors that don't fit so neatly in a package.

Division of very large numbers can be handled in much the same fashion as hardware multiplication was on similarly large numbers. Begin by dividing the most significant digits, using the remainders from these divisions as the upper words (or bytes) in the division of the next most significant digits. Store each subquotient as a less and less significant digit in the main quotient.

The number 987654321022 H can be divided by a 2987 H bit on the 8086 using the 16-bit divide, as follows (also see Figure 2-2):

1. Allocate storage for intermediate results and for the final quotient. Assuming 32 bits for the quotient (qtnt) and 16 bits for the remainder (rmndr), three words will be required for the dividend ($d \nu d n d$) and only 16 bits for the divisor

Figure 2-2. Multiprecision division
(dvsr). Actually, the number of bits in the QUOTIENT is equal to the log, DIVIDEND - $\log _{2}$, DIVISOR, or 34 bits.
2. Clear DX, load the most significant word of the dividend into $A X$ and the divisor into CX, and divide:

```
sub, dx, dx
mov ax, word ptr dvdnd[4] ;9876
div cx ;divide
```

3. At the completion of the operation, AX will hold 3 and DX will hold 1 be 1 H .
4. Store AX in the upper word of the quotient:
```
mov
word ptr qtnt[4], ax ;3H
```

5. With the remainder still in DX as the upper word of the "new" dividend, load
the next most significant word into AX and divide again:
```
mov ax, word ptr dvdnd[2] ;5432H
div cx ;recall that the divisor
;is still in CX
```

6. Now DX holds 2420 H and AX holds 0abdeH as the remainder. Store AX in the next most significant word of the quotient and put the least significant word of the dividend into AX.
```
mov word ptr qtnt[2],ax ;OabdeH
```

7. Divide DX:AX one final time:
```
mov ax, word ptr dvdnd[0]
div cx
```

8. Store the result AX in the least significant word of the quotient and DX in the remainder.
```
mov word ptr qtnt[0],ax ;0deb2H
mov word ptr rmndr,dx ;le44H
```

This technique can be used on arbitrarily large numbers; it's simply a matter of having enough storage available.

What if both the divisor and the dividend are too large for the hardware to handle by itself? There are at least two ways to handle this. In the case below, the operands are of nearly equal size and only need to be normalized; that is, each must be divided or right-shifted by an amount great enough to bring the divisor into range for a hardware divide (on an 8086, this would be a word). This normalization doesn't affect the integer result, since both operands experience the same number of shifts. Because the divisor is truncated, however, there is a limitation to the accuracy and precision of this method.

If we have good operands, right-shift the divisor, counting each shift, until it fits
within the largest data type allowed by the hardware instruction with the MSB a one. Right shift the dividend an equal number of shifts. Once this has been done, divide the resulting values. This approximate quotient is then multiplied by the original divisor and subtracted from the original dividend. If there is an underflow, the quotient is decremented, the new quotient multiplied by the divisor with that result subtracted from the original dividend to provide the remainder. When there is no underflow, you have the correct quotient and remainder.

Figure 2-3. Multiword division. This process can continue as long as there is a remainder.

The normalization mentioned earlier is illustrated in Figure 2-3. It requires only that the operands be shifted right until the 16 MSBs of the divisor reside within a word and the MSB of that word is a one.

An example of this technique for 32 bit operands is shown in div32.

div32: Algorithm

1. Set aside a workspace of eight words. Load the dividend (dvdnd) into the lowest two words and the divisor (dvsr) into the next two words. Use DI to point to the quotient.
2. Check to see that the dividend is not zero.

If it is, clear the quotient, set the carry, and leave.
3. Check for divide by zero.

If division by zero has occurred, return -1 with the carry set.
If the divisor is greater than a word, go to step 4.
Use $B X$ to point at the remainder (rmndr).
Bring the most significant word of the dividend into AX (DX is zero) and divide by the normalized divisor.

Store the result in the upper word of the quotient.
Bring the least significant word of the dividend into AX (DX contains the remainder from the last division) and divide again.

Store the result in the least significant word of the quotient.
Store DX and clear the upper word of the remainder.
4. Shift both the dividend and the divisor until the upper word of the divisor is zero. This is the normalization.
5. Move the normalized dividend into DX:AX and divide by the normalized divisor.
6. Point to the quotient with BX and the top of the workspace with DI.
7. Multiply the divisor by the approximate quotient and subtract the result from a copy of the original dividend.
If there is no overflow, you have the correct quotient and remainder. Otherwise, decrement the approximate quotient by one and go back to the beginning of step 7. This is necessary to get the correct remainder.
8. Write the remainder, clear the carry for success, and go home.

div32: Listing

```
; *****
```

; div32
;32-by-32-bit divide
;Arguments are passed on the stack along with pointers to the
;quotient and remainder.
div32 proc uses ax dx di si,
dvdnd:dword, dvsr:dword, qtnt:word, rmndr:word
local workspace[8] :word
sub ax, ax
mov $d x, a$
mov cx, 2
lea si, word ptr dvdnd
lea di, word ptr workspace
rep movsw
mov cx, 2
lea si, word ptr dvsr
lea di, word ptr workspace[4]
rep movsw
mov di, word ptr qtnt
cmP word ptr dvdnd, ax
jne do-divide
cmp word ptr dvdnd[2], ax
jne do_divide ;check for a
jmp zero_div ;zero dividend
do_divide:
cmp word ptr dvsr[2],ax
jne shift isee if it is small enough
cmp word ptr dvsr, ax
je div_by_zero
mov bx, word ptr rmndr
mov ax, word ptr dvdnd[2]
div word ptr dvsr
mov word ptr [di][2],ax ;and save it
mov ax, word ptr dvdnd
div word ptr dvsr ; then the lower word
mov word ptr [di],ax ;and save it
mov word ptr [bx],dx
;save remainder
xor ax,ax
mov word ptr [bx][2],ax
jmp exit

NUMERICAL METHODS

```
shift:
    shr word ptr dvdnd[2], 1
    word ptr dvdnd[0], 1
    word ptr dvsr[2], 1
    word ptr dvsr[0], 1
    word ptr dvsr[2],ax
    shift
divide:
    mov
    mov
    div
    mov
get-remainder
    mov bx, di
    lea
reconstruct:
    mov
    mul
    mov
    mov
    mov
    mul
    add
    mov
    mov
    sub
    sbb
    jnc
    mov
    mov
    sub
    sbb
    jmp
div_ex:
    mov
    mov word ptr [di], ax
    mov word ptr [di] [2], dx
```

```
    clc
exit:
    ret
div_by_zero:
    not ax ;division by zero
    mov word ptr [di][0], ax
    mov ord ptr [di] [2], ax
    stc
    jmp
zero_div:
    mov word ptr [di][0], ax
    mov word ptr [di][21, ax
    stc
    jmp exit
div32 endp
```

If very large operands are possible and the greatest possible precision and accuracy is required, there is a very good method using a form of linear interpolation. This is very useful on machines of limited word length. In this technique, the division is performed twice, each time by only the Most Significant Word of the divisor, once rounded down and once rounded up to get the two limits between which the actual quotient exists. In order to better understand how this works, take the example, $98765432 \mathrm{H} / 54321111 \mathrm{H}$. The word size of the example machine will be 16 bits, which means that the MSW of the divisor is $5432 \mathrm{H} * 2^{16}$. The remaining divisor bits should be imagined to be a fractional extension of the divisor, in this manner: 5432.1111 H .

The first division is of the form:

$$
987654328 / 54320000 \mathrm{H}
$$

and produces the result:
1.cf910000H.

Next, increment the divisor, and perform the following division:

NUMERICAL METHODS

for the second quotient:

1.cf8c0000H.

Now, take the difference between these two values:

$$
1 \mathrm{cf} 910000 \mathrm{H}-1 \mathrm{Cf} 8 \mathrm{C} 0000 \mathrm{H}=50000 \mathrm{H} .
$$

This is the range within which the true quotient exists. To find it, multiply the fraction part of the divisor described in the lines above by this range:

$$
50000 \mathrm{H} * .1111 \mathrm{H}=5555 \mathrm{H},
$$

and subtract this from the first quotient:

$$
1 \mathrm{cf} 910000 \mathrm{H}-5555 \mathrm{H}=1 . \mathrm{cf} 90 \mathrm{aaabH} .
$$

To prove this result is correct, convert this fixed point result to decimal, yielding:

$$
1.810801188229 \mathrm{D} .
$$

Convert the operands to decimal, as well:

```
98765432H/54321111H = 2557891634D/1412567313D = 1.81081043746D.
```

This divide does not produce a remainder in the same way the division above does; its result is true fixed point with a fractional part reflecting the remainder. This method can be very useful for reducing the time it takes to perform otherwise time consuming multiple precision divisions. However, for maximum efficiency, it requires that the position of the Most Significant Word of the divisor and dividend be known in advance. If they are not known, the routine is responsible for locating these bits, so that an attempt to divide zero, or divide by zero, does not occur.

The next routine, div64, was specially written for the floating point divide in

Chapter Four. This method was chosen, because it can provide distinct advantages in code size and speed in those instances in which the position of the upper bits of each operand is known in advance. In the next chapter, two routines are presented that perform highly accurate division without this need. They, however, have their own complexities.

To begin with, the operands are broken into word sizes (machine dependent), and an initial division on the entire dividend is performed using the MSW of the divisor and saved. The MSW of the divisor is incremented and the same division is performed again, this will, of course result in a quotient smaller than the first division. The two quotients are then subtracted from one another, the second quotient from the first, with the result of this sutraction multiplied by the remaining bits of the divisor as a fractional multiply. This product is subtracted from the first quotient to yield a highly accurate result. The final accuracy of this operation is not to the precision you desire, it can be improved by introducing another different iteration.

div64: Algorithm

1. Clear the result and temporary variables.
2. Divide the entire dividend by the Most Significant Word of the divisor. (The remaining bits will be considered the fractional part.)

This is the first quotient, the larger of the two, save this result in a temporary variable.
3. Increment the divisor.

If there is an overflow, the next divide is really by 2^{16}, therefore, shift the dividend by 16 bits and save in a temporary variable. Continue with step 5.
4. Divide the entire dividend by the incremented divisor.

This is the second quotient, the smaller of the two, save this result in a temporary variable.
5. Subtract the second quotient from the first.
6. Multiply the result of this subtraction by the fractional part of the divisor.
7. Subtract the integer portion of this result from the first quotient.
8. Write the result of step 7 to the output and return.

```
div64: Listing
; ******
;div64
;will divide a quad word operand by a divisor
;dividend occupies upper three words of a }6\mathrm{ word array
;divisor occupies lower three words of a 6 word array
;used by floating point division only
div64 proc uses es ds,
            dvdnd:qword, dvsr:qword, qtnt:word
    local result:tbyte, tmp0:qword,
                        tmpl:qword, opa:qword, opb:qword
    pushf
    cld
    sub ax, ax
    lea di, word ptr result
    mov cx, 4
rep stosw
    lea di, word ptr tmp0 ;quotient
    mov cx, 4
rep stosw
setup:
    mov bx, word ptr dvsr[3]
continue_setup:
    lea si, word ptr dvdnd ;divisor no higher than
    lea di, word ptr tmp0 ;receives stuff for quotient
    sub a,dx
    mov ax, word ptr [si][3]
    diV bx
    mov word ptr [di][4], ax ;result goes into temporary varriable
    mov ax, word ptr [si][1]
    div bx
    mov word ptr [di][2], ax
    sub ax, ax
    mov ah, byte ptr [si]
    div bx
    mov word ptr[di] [0], ax ;entire first approximation
```

```
    lea si, word ptr dvdnd
    lea di, word ptr tmpl
    sub dx, dx
    add bx, 1
    jnc as_before
    mov ax, word ptr [si] [3]
    mov word ptr [di][2], ax
    mov ax, word ptr [si] [l]
    mov word ptr [di][0], ax
    jmp find-difference
as-before:
    mov ax, word ptr [si] [3]
    div bx
    mov word ptr [di][4], ax
    mov ax, word ptr [si] [l]
    div bx
    mov word ptr [di][2], ax
    sub a, ax
    mov ah, byte ptr [si]
    div bx
    mov word ptr [di] [0], ax ;result goes into quotient
find-difference:
    invoke sub64, tmp0, tmp1, addr opa
    lea si, word ptr dvsr
    lea di, word ptr opb
    mov cx, 3
rep movsb
    sub ax, ax
    stosb
    stosw
    invoke mu164a, opa, opb, addr result ;fractional multiply to get
    ;portion of
;difference to subtract from
;initial quotient
```


NUMERICAL METHODS

```
    lea di, word ptr opb ; (high quotient)
    mov cx, 3
rep movsb
    sub ax, ax
    stosb
    stosw
    invoke sub64,tmp0, opb, addr tmp0 ;subtract and write out result
    lea si, word ptr tmp0
div_exit:
    mov di, word ptr qtnt
    mov cx, 4
rep movsw
    popf
    ret
div64 endp
```

When writing arithmetic routines, keep the following in mind:

- Addition can always result in the number of bits in the largest summend plus one.
- Subtraction requires at least the number of bits in the largest operand for the result and possibly a sign.
- The number of bits in the product of a multiplication is always equal to \log, multiplier $+\log$, multiplicand. It is safest to allow 2 n bits for an n -bit by n bit multiplication.
- The size, in bits, of the quotient of a division is equal to the difference, log, dividend $-\log _{2}$, divisor. Allow as many bits in the quotient as in the dividend.

Microsoft Macro Assembler Reference. Version 6.0. Redmond, WA: Microsoft Corp., 1991.

Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGrawHill Book Co., 1984, Page 148.

CHAPTER 3

Real Numbers

There are two kinds of fractions. A symbolic fraction represents a division operation, the numerator being the dividend and the denominator the divisor. Such fractions are often used within the set of natural numbers to represent the result of such an operation. Because this fraction is a symbol, it can represent any value, no matter how irrational or abstruse.

A real number offers another kind of fraction, one that expands the number line with negative powers of the base you're working with. Base 10, involves a decimal expansion such that $\mathrm{a}_{-1}, * 10^{-10}+\mathrm{a}^{-2 *} 10^{-10}+\mathrm{a}_{-3} * 10^{-10}$. Nearly all scientific, mathematical, and everyday work is done with real numbers because of their precision (number of representable digits) and ease of use.

The symbolic fraction $1 / 3$ exactly represents the division of one by three, but a fractional expansion in any particular base may not, For instance, the symbolic fraction $1 / 3$ is irrational in bases 10 and 2 and can only be approximated by .33333333D and .55555555 H .

A value in any base can be irrational-that is, you may not be able to represent it perfectly within the base you're using. This is because the positional numbering system we use is modular, which means that for a base to represent a symbolic fraction rationally all the primes of the denominator must divide that base evenly. It's not the value that's irrational; it's just that the terms we wish to use cannot express it exactly. The example given in the previous paragraph, $1 / 3$, is irrational in base 10 but is perfectly rational in base 60 .

There have been disputes over which base is best for a number system. The decimal system is the most common, and computers must deal with such numbers at some level in any program that performs arithmetic calculations. Unfortunately, most microprocessors are base 2 rather than base 10 . We can easily represent decimal

NUMERICAL METHODS

integers, or whole numbers, by adding increasingly larger powers of two. Decimal fractions, on the other hand, can only be approximated using increasingly larger negative powers of two, which means smaller and smaller pieces. If a fraction isn't exactly equal to the sum of the negative powers of two in the word size or data type available, your representation will only be approximate (and in error). Since we have little choice but to deal with decimal reals in base 2 , we need to know what that means in terms of the word size required to do arithmetic and maintain accuracy.

The focus of this chapter is fixed-point arithmetic in general and fractional fixed point in particular.

Fixed Point

Embedded systems programmers are often confronted with the task of writing the fastest possible code for real-time operation while keeping code size as small as possible for economy. In these and other situations, they turn to integer and fixedpoint arithmetic.

Fixed point is the easiest-to-use and most common form of arithmetic performed on the microcomputer. It requires very little in the way of protocol and is therefore fast-a great deal faster than floating point, which must use the same functions as fixed point but with the added overhead involved in converting the fixed-point number into the proper format. Floating point is fixed point, with an exponent for placing the radix and a sign. In fact, within the data types defined for the two standard forms of floating-point numbers, the long real and short real, fewer significant bits are available than if the same data types were dedicated to fixed-point numbers. In other words, no more precision is available in a floating-point number than in fixed point.

In embedded applications, fixed point is often a must, especially if the system can not afford or support a math coprocessor. Applications such as servo systems, graphics, and measurement, where values are computed on the fly, simply can't wait for floating point to return a value when updating a Proportional-Integral-Derivative (PID) control loop such as might be used in a servo system or with animated graphics. So why not always use integer or fixed-point arithmetic?

Probably the most important reason is range. The short real has a decimal range of approximately 10^{38} to 10^{-38} (this is a range, and does not reflect resolution or

REAL NUMBERS

accuracy; as you'll see in the next chapter, floating-point numbers have a real problem with granularity and significance). To perform fixed-point arithmetic with this range, you would need 256 bits in your data type, or 32 bytes for each operand.

Another reason is convenience. Floating-point packages maintain the position of the radix point, while in fixed point you must do it yourself.

Still another reason to use floating-point arithmetic is the coprocessor. Using a coprocessor can make floating point as fast as or faster than fixed point in many applications.

The list goes on and on. I know of projects in which the host computer communicated with satellites using the IEEE 754 format, even though the satellite had no coprocessor and did not use floating point. There will always be reasons to use floating point and reasons to use fixed point.

Every application is different, but if you're working on a numerically intensive application that requires fast operation or whose code size is limited, and your system doesn't include or guarantee a math coprocessor, you may need to use some form of fixed-point arithmetic.

What range and precision do you need? A 32-bit fixed-point number can represent 2^{32} separate values between zero and 4,294,967,296 for integer-only arithmetic and between zero and $2.3283064365 \mathrm{E}-10$ for fractional arithmetic or a combination of the two. If you use a doubleword as your basic data type, with the upper word for integers and the lower one for fractions, you have a range of $1.52587890625 \mathrm{E}-5$ to 65,535 with a resolution of $4,294,967,296$ numbers.

Many of the routines in FXMATH.ASM were written with 64-bit fixed-point numbers in mind: 32 bits for integer and 32 bits for fraction. This allows a range of $2.3283064365 \mathrm{E}-10$ to $4,294,967,295$ and a resolution of 1.84467440737 E 30 numbers, which is sufficient for most applications. If your project needs a wider range, you can write specialized routines using the same basic operations for all of them; only the placement of the radix point will differ.

Significant Bits

We normally express decimal values in the language of the processor-binary. A 16-bit binary word holds 16 binary digits (one bit per digit) and can represent 65,536 binary numbers, but what does this mean in terms of decimal numbers? To

NUMERICAL METHODS

estimate the number of digits of one base that are representable in another, simply find $\operatorname{ceil}\left(\log _{a} B^{n}\right)$, where a is the target base, B is the base you're in, and n is the power or word size. For example, we can represent a maximum of

$$
\text { decimal-digits }=5=\operatorname{ceil}\left(\left(\log _{10}\left(2^{16}\right)\right)\right.
$$

in a 16-bit binary word (a word on the 8086 is 16 bits, $2^{16}=65536$, and $\log _{10} 65536$ $=4.8$, or five decimal digits). Therefore, we can represent 50,000 as $\mathrm{c} 350 \mathrm{H}, 99.222 \mathrm{D}$ as 63.39 H , and .87654 D as. e 065 H .

Note: A reference to fixed-point or fractional arithmetic refers to binary fractions. For the purposes of these examples, decimal fractions are converted to hexadecimal by multiplying the decimal fraction by the data type. To represent .5 D in a byte, or 256 bits, I multiply .5 by 256 . The result is 128 , or 80 H . These are binary fractions in hexadecimal format. Results will be more accurate if guard digits are used for proper rounding. Conversion to and from fixed-point fractions is covered in Chapter 5.

We can express five decimal numbers in 16 bits, but how accurately are we doing it? The Random House dictionary defines accuracy as the degree of correctness of a quantity, so we could say that these five decimal digits are accurate to 16 bits. That is, our representation is accurate because it's correct given the 16 bits of precision we're using, though you still may not find it accurate enough for your purposes.

Clearly, if the fraction cannot be expressed directly in the available storage or is irrational, the representation won't be exact. In this case, the error will be in the LSB; in fact, it will be equal to or less than this bit. As a result, the smallest value representable (or the percent of error) is shown as $2^{-\mathrm{m}}$, where m is the number of fraction bits. For instance, 99.123 D is 63.1 fH accurate to 16 bits, while 63.1 f 7 cH is accurate to 24 bits. Actually, 63.1 fH is 99.121 D and $63.1 \mathrm{f7} 7 \mathrm{cH}$ is 99.12298 , but each is accurate within the constraints of its precision. Assuming that no extended precision is available for rounding, no closer approximation is possible within 16 or 24 bits. The greater the precision, the better the approximation.

The Radix Point

The radix point can occur anywhere in a number. If our word size is 16 bits, we can generally provide eight bits for the integer portion and eight bits for the fractional portion though special situations might call for other forms. Floating point involves fixed-point numbers between 1.0 and 2.0. In a 24-bit number, this leaves 23 bits for the mantissa. The maximum value for a sine or cosine is 1 , which may not even need to be represented, leaving 16 bits of a 16-bit data type for fractions. Perhaps you only need the fraction bits as guard digits to help in rounding; in such cases you might choose to have only two bits, leaving the rest for the integer portion.

Depending on your application, you may want a complete set of fixed-point routines for each data type you use frequently (such as 16- and 32-bit) and use other routines to address specific needs. In any event, maintaining the radix point (scaling) requires more from the programmer than does floating point, but the results, in terms of both speed and code size, are worth the extra effort.

The nature of the arithmetic doesn't change because of the radix point, but the radix point does place more responsibility on the programmer. Your software must know where the radix point is at all times.

Rounding

If all the calculations on a computer were done with symbolic fractions, the error involved in approximating fractions in any particular base would cease to exist. The arithmetic would revolve around multiplications, divisions, additions, and subtractions of numerators and denominators and would always produce rational results. The problem with doing arithmetic this way is that it can be very awkward, timeconsuming, and difficult to interpret in symbolic form to any degree of precision.

On the other hand, real numbers involve error because we can't always express a fraction exactly in a target base. In addition, computing with an erroneous value will propagate errors throughout the calculations in which it is used. If a single computation contains several such values, errors can overwhelm the result and render the result meaningless. For example, say you're multipying two 8 -bit words and you know that the last two bits of each word are dubious. The result of this operation will be 16 bits, with two error bits in one operand plus two error bits in the

NUMERICAL METHODS

other operand. That means the product will contain four erroneous bits.
For this reason, internal calculations are best done with greater precision than you expect in the result. Perform the arithmetic in a precision greater than needed in the result, then represent only the significant bits as the result. This helps eliminate error in your arithmetic but presents another problem: What about the information in the extra bits of precision? This brings us to the subject of rounding.

You can always ignore the extra bits. This is called truncation or chop, and it simply means that they are left behind. This method is fast, but it actually contributes to the overall error in the system because the representation can only approach the true result at exact integer multiples of the LSB. For example, suppose we have a decimal value, 12345D, with extended bits for greater precision. Since 5 is the least significant digit, these extended bits are some fraction thereof and the whole number can be viewed as:

Whenever the result of a computation produces extended bits other than zero, the result, 12345D, is not quite correct. As long as the bits are always less than one-half the LSB, it makes little difference. But what if they exceed one-half? A particular calculation produces 12345.7543 D . The true value is closer to 12346 D than to 12345 D , and if this number is truncated to 12345D the protection allowed by the extended bits is lost. The error from truncation ranges from zero to almost one in the LSB but is definitely biased below the true value.

Another technique, called jamming, provides a symmetrical error that causes the true value or result to be approached with an almost equal bias from above and below. It entails almost no loss in speed over truncation. With this technique, you simply set the low-order bit of the significant bits to one. Using the numbers from the previous example, 12345.0000 D through 12345.9999 D remain 12345.0000 D .

And if the result is even, such as 123456.0000 D , the LSB is set to make it 123457.0000 D . The charm of this technique is that it is fast and is almost equally biased in both directions. With this method, your results revolve symmetrically
about the ideal result as with jamming, but with a tighter tolerance (one half the LSB), and, at worst, only contributes a small positive bias.

Perhaps the most common technique for rounding involves testing the extended bits and, if they exceed one-half the value of the LSB, adding one to the LSB and propagating the carry throughout the rest of the number. In this case, the fractional portion of 12345.5678 D is compared with .5 D . Because it is greater, a one is added to 12345 D to make it 12346 D .

If you choose this method of rounding to maintain the greatest possible accuracy, you must make still more choices. What do you do if the extended bits are equal to exactly one-half the LSB?

In your application, it may make no difference. Some floating-point techniques for calculating the elementary functions call for a routine that returns an integer closest to a given floating-point number, and it doesn't matter whether that number was rounded up or down on exactly one-half LSB. In this case the rounding technique is unimportant.

If it is important, however, there are a number of options. One method commonly taught in school is to round up and down alternately. This requires some sort of flag to indicate whether it is a positive or negative toggle. This form of rounding maintains the symmetry of the operation but does little for any bias.

Another method, one used as the default in most floating-point packages, is known as round to nearest. Here, the extended bits are tested. If they are greater than one-half the LSB, the significant bits are rounded up; if they are less, they are rounded down; and if they are exactly one-half, they are rounded toward even. For example, 12345.5000 D would become 12346.0000 D and 12346.5000 D would remain 12346.0000 D . This technique for rounding is probably the most often chosen, by users of software mathematical packages. Round to nearest provides an overall high accuracy with the least bias.

Other rounding techniques involve always rounding up or always rounding down. These are useful in interval arithmetic for assessing the influences of error upon the calculations. Each calculation is performed twice, once rounded up and once rounded down and the results compared to derive the direction and scope of any error. This can be very important for calculations that might suddenly diverge.

NUMERICAL METHODS

At least one bit, aside from the significant bits of the result, is required for rounding. On some machines, this might be the carry flag. This one bit can indicate whether there is an excess of equal to or greater than one-half the LSB. For greater precision, it's better to have at least two bits: one to indicate whether or not the operation resulted in an excess of one-half the LSB, and another, the sticky bit, that registers whether or not the excess is actually greater than one-half. These bits are known as guard bits. Greater precision provides greater reliability and accuracy. This is especially true in floating point, where the extended bits are often shifted into the significant bits when the radix points are aligned.

Basic Fixed-Point Operations

Fixed-point operations can be performed two ways. The first is used primarily in applications that involve minimal number crunching. Here, scaled decimal values are translated into binary (we'll use hex notation) and handled as though they were decimal, with the result converted from hex to decimal.

To illustrate, let's look at a simple problem: finding the area of a $\operatorname{circle}\left(\mathrm{A}=\pi \mathrm{r}^{2}\right)$. If the radius of the circle is 5 inches (and we use 3.14 to approximate it), the solution is $3.14 *(5 * 5)$, or 78.5 square inches. If we were to code this for the 8086 using the scaled decimal method, it might look like this:

| mov | ax, 5 | ;the radius |
| :--- | :--- | :--- |
| mul | al | ;square the radius |
| mov | $\mathrm{dx}, 13 \mathrm{aH}$ | $; 314=3.14 \mathrm{D} * 100 \mathrm{D}$ |
| mul | dx | ;ax will now hold 1eaaH |

The value leaaH converted to decimal is 7,850 , which is 100 D times the actual answer because π was multiplied by 100D to accommodate the fraction. If you only need the integer portion, divide this number by 100D. If you also need the fractional part, convert the remainder from this division to decimal.

The second technique is binary. The difference between purely binary and scaled decimal arithmetic is that instead of multiplying a fraction by a constant to make it an integer, perform the operation, then divide the result by the same constant for the result. We express a binary fraction as the sum of negative powers of two, perform

REAL NUMBERS

the operation, and then adjust the radix point. Addition, subtraction, multiplication, and division are done just as they are with the integer-only operation; the only additional provision is that you pay attention to the placement of the radix point. If the above solution to the area of a circle were written using binary fixed point, it would look like this:

| mov | ax, 5 | ; the radius |
| :--- | :--- | :--- |
| mul | al | ; square the radius |
| mov | $\mathrm{dx}, 324 \mathrm{H}$ | $; 804 \mathrm{D}=3.14 \mathrm{D} * 256 \mathrm{D}$ |
| mul | dx | $; a x$ will now hold 4 e 84 H |

The value 4 eH is 78 D , and 84 H is $.515 \mathrm{D}(132 \mathrm{D} / 256 \mathrm{D}$).
Performing the process in base 10 is effective in the short term and easily understood, but it has some drawbacks overall. Both methods require that the program keep track of the radix point, but correcting the radix point in decimal requires multiplies and divides by 10 , while in binary these corrections are done by shifts. An added benefit is that the output of a routine using fixed-point fractions can be used to drive D/A converters, counters, and other peripherals directly because the binary fraction and the peripheral have the same base. Using binary arithmetic can lead to some very fast shortcuts; we'll see several examples of these later in this chapter.

Although generalized routines exist for fixed-point arithmetic, it is often possible to replace them with task specific high-speed routines, when the exact boundaries of the input variables are known. This is where thinking in base 2 (even when hex notation is used) can help. Scaling by 1,024 or any binary data type instead of 1,000 or any decimal power can mean the difference between a divide or multiply routine and a shift. As you'll see in a routine at the end of this chapter, dividing by a negative power of two in establishing an increment results in a right shift. A negative power of 10 , on the other hand, is often irrational in binary and can result in a complex, inaccurate divide.

Before looking at actual code, lets examine the basic arithmetic operations. The conversions used in the following examples were prepared using the computational techniques in Chapter 5.

Note: The "." does not actually appear. They are assumed and added by the author for clarification.

Say we want to add 55.33 D to 128.67 D . In hex, this is $37.54 \mathrm{H}+80 . \mathrm{acH}$, assuming 16 bits of storage for both the integer and the mantissa:

| 37.54 H | $(55.33 \mathrm{D})$ |
| ---: | ---: |
| $+\quad 80 . \mathrm{acH}$ | $(128.67 \mathrm{D})$ |
| b 8.00 H | $(184.00 \mathrm{D})$ |

Subtraction is also performed without alteration:

| $80 . a c H$ | $(128.67 \mathrm{D})$ |
| ---: | ---: |
| $-\quad 37.54 \mathrm{H}$ | $(55.33 \mathrm{D})$ |
| 49.58 H | $(73.34 \mathrm{D})$ |
| | |
| | 37.54 H |
| $80 . a c H$ | $(128.33 \mathrm{D})$ |
| $\mathrm{b} 6 . a 8 \mathrm{H}$ | $(-73.34 \mathrm{D})$ |

Fixed-point multiplication is similar to its pencil-and-paper counterpart:

| | $80 . \mathrm{acH}$
 $\times \quad 37.548$ |
| :--- | ---: |
| | lbcf.2c70H |
| | $(728.67 \mathrm{D})$ |
| $(7119.3111 \mathrm{D})$ | |

as is division:

| $80 . \mathrm{acH}$ | $(128.67 \mathrm{D})$ |
| ---: | ---: |
| $\div \quad 37.54 \mathrm{H}$ | $(55.33 \mathrm{D})$ |
| 2.53 H | $(2.32 \mathrm{D})$ |

The error in the fractional part of the multiplication problem is due to the lack of precision in the arguments. Perform the identical operation with 32-bit precision, and the answer is more in line: $80 . \mathrm{ab} 85 \mathrm{H} \times 37.547 \mathrm{bH}=1 \mathrm{bcf} .4 \mathrm{fad} 0 \mathrm{ce} 7 \mathrm{H}$.

The division of 80 acH by 3754 H initially results in an integer quotient, 2 H , and a remainder. To derive the fraction from the remainder, continue dividing until you reach the desired precision, as in the following code fragment:

| sub | a, dx | |
| :---: | :---: | :---: |
| mov | ax, 80ach | |
| mov | cx, 37548 | |
| div | CX | ;this divide leaves the quotient
 ; (2) in ax and the remainder
 ;remainder (1204H) in dx |
| mov | byte ptr quotient[l], al | |
| sub | ax, ax | |
| div | CX | ;Divide the remainder multiplied ;by $10000 \mathrm{H} x$ to get the fraction ;bits Overflow is not a danger ; since a remainder may never be ; greater than or ;even equal to the divisor. |
| mov | byte ptr quotient [0], ah | ; the fraction bits are then 53H, ;making the answer constrained ;to a 16-bit word for this ;example, 2.53H |

* The 8086 thoughtfully placed the remainder from the previous division in the DX register, effectively multiplying it by 10000 H .

Of course, you could do the division once and arrive at both fraction bits and integer bits if the dividend is first multiplied by 10000 H (in other words, shifted 16 places to the left). However, the danger of overflow exists if this scaling produces a dividend more than 10000 H times greater than the divisor.

The following examples illustrate how fixed-point arithmetic can be used in place of floating point.

A Routine for Drawing Circles

This first routine is credited to Ivan Sutherland, though many others have worked with it.' The algorithm draws a circle incrementally from a starting point on the circle
and without reference to sines and cosines, though it's based on those relationships.
To understand how this algorithm works, recall the two trigonometric identities (see Figure 3-1):

```
sin}0=\mathrm{ ordinate / radius vector
cos 0= abscissa / radius vector
    (where 0}\mathrm{ is an angle)
```

Multiplying a fraction by the same value as in the denominator cancels that denominator, leaving only the numerator. Knowing these two relationships, we can derive both the vertical coordinate (ordinate) and horizontal coordinate (abscissa)

Figure 3-1. A circle drawn using small increments of \mathbf{t}.
in a rectangular coordinate system by multiplying $\sin \theta$ by the radius vector for the ordinate and $\cos \theta$ by the radius vector for the abscissa. This results in the following polar equations:

$$
\begin{aligned}
& x(a)=r * \cos a \\
& y(a)=r * \sin a
\end{aligned}
$$

Increasing values of θ, from zero to 2π radians, will rotate the radius vector through a circle, and these equations will generate points along that circle. The formula for the sine and cosine of the sum of two angles will produce those increasing values of θ by summing the current angle with an increment:

```
sin}(\alpha+\beta)=\operatorname{sin}\alpha\operatorname{cos}\beta+\operatorname{cos}\alpha\operatorname{sin}
cos(\alpha+\beta)=\operatorname{cos}\alpha\operatorname{cos}\beta-\operatorname{sin}\alpha\operatorname{sin}\beta
```

Let a be the current angle and b the increment. Combining the polar equations for deriving our points with the summing equations we get:

$$
\begin{aligned}
& y(\alpha+\beta)=r \star \sin \alpha \cos \beta+r \star \cos \alpha \sin \beta \\
& x(\alpha+\beta)=r * \cos \alpha \cos \beta-r * \sin \alpha \sin \beta
\end{aligned}
$$

For small angles (much smaller than one), an approximation of the cosine is about one, and the sine is equal to the angle itself. If the increment is small enough, the summing equations become:

$$
\begin{aligned}
& y(\alpha+\beta)=r * \sin \alpha+r * \cos \alpha * \beta \\
& x(\alpha+\beta)=r * \cos \alpha-r * \sin \alpha * \beta
\end{aligned}
$$

and then:

$$
\begin{aligned}
& y(\alpha+\beta)=y(\alpha)+x(\alpha) \star \beta \\
& x(\alpha+\beta)=x(\alpha)-y(\alpha) \star \beta
\end{aligned}
$$

NUMERICAL METHODS

Using these formulae, you can roughly generate points along the circumference of a circle. The difficulty is that the circle gradually spirals outward, so a small adjustment is necessary-the one made by Ivan Sutherland:

$$
\begin{aligned}
& y(\alpha+\beta)=y(\alpha)+x(\alpha+\beta) * \beta \\
& x(\alpha+\beta)=x(\alpha)-y(\alpha) * \beta
\end{aligned}
$$

When you select an increment that is a negative power of two, the following routine generates a circle using only shifts and adds.

circle: Algorithm

```
1. Initialize local variables to the appropriate values, making a copy of
    x and y and clearing x_point and y_point. Calculate the value for the
    the loop counter, count.
2. Get_x and_y and round to get new values for pixels. Perform a de facto
    divide by l000H by taking only the value of DX in each case for the points.
3. Call your routine for writing to the graphics screen.
4. Get _y, divide it by the increment, inc, and subtract the result from
    _X.
5. Get _x, divide it by inc, and add the result to _y.
6. Decrement count.
    If it isn't zero, return to step 2.
    If it is, we're done.
```


circle: listing

```
; *****
```

;
;
;
circle proc uses bx cx dx si di, x_ coordinate:dword, y_ coordinate:dword,
increment:word
local x:dword, y:dword, x_point:word, y_point:word, count
mov ax, word ptr x_ coordinate
mov dx, word ptr x_coordinate[2]

```
        mov }\begin{array}{ll}{\mathrm{ mord ptr x, ax }}\\{\mathrm{ mov }}&{\mathrm{ word ptr x[2], dx}}
    mov word ptr x[2], dx
    mov ax, word ptr y_coordinate
    mov dx, word ptr y_coordinate[2]
    mov word ptr y, ax
    mov word ptr y[2], dx
        ax, ax
        x_point, ax
        y__point, ax
        ax, 4876h
        mov dx, 6h
    mov cx, word ptr increment
get_num_points:
    shl ax, 1
    rcl dx, 1
    loop get_num_points
    mov count, dx ;divide by 10000h
set_point:
    mov ax, word ptr x
    mov dx, word ptr x[2]
    add ax, 8000h ;add .5 to round up
    jnc store_x
    adc dx, Oh
store_x:
    mov x_point, dx
    mov ax, word ptr y
    mov dx, word ptr y[2]
    add ax, 8000h ;add .5
    jnc store_y
    adc dx, Oh
store_y:
    mov y_point, dx
;your routine for writing to the screen goes here and uses x-point and
;y_point as screen coordinates
```

```
mov ax, word ptr y
```

mov ax, word ptr y
mov dx, word ptr y[2]

```
mov dx, word ptr y[2]
```

```
    mov cx, word ptr increment
update_x:
    sar dx 1
sign
    rcr ax, 1
    loop update x
    sub word ptr x, ax ;new x equals x - y * increment
    sbb word ptr x[2], dx
    mov ax, word ptr x
    mov dx, word ptr x[2]
    mov cx, word ptr increment
update_y:
    sar dx, 1
sign
    rcr ax, 1
    loop update_y
    add word ptr y, ax ;new y equals y + x * increment
    adc word ptr y[2], dx
    dec count
    jnz set_point
    ret
circle endp
```


Bresenham's Line-Drawing Algorithm

This algorithm is credited to Jack Bresenham, who published a paper in 1965 describing a fast line-drawing routine that used only integer addition and subtraction. ${ }^{2}$

The idea is simple: A line is described by the equation $f(x, y)=y^{\prime} * x-x * y$ for a line from the origin to an arbitrary point (see Figure 3-2). Points not on the line are either above or below the line. When the point is above the line, $f(x, y)$ is negative; when the point is below the line, $f(x, y)$ is positive. Pixels that are closest to the line described by the equation are chosen. If a pixel isn't exactly on the line, the routine decides between any two pixels by determining whether the point that lies exactly between them is above or below the line. If above, the lower pixel is chosen; if below, the upper pixel is chosen.

In addition to these points, the routine must determine which axis experiences the greatest move and use that to program diagonal and nondiagonal steps. It

If the pixel is not exactly on the line, the choice between any two pixels is made by determining whether the point that lies between them is above or below the actual line.

Figure 3-2. Bresenham's line-drawing algorithm.
calculates a decision variable based on the formula $2 * b+a$, where a is the longest interval and b the shortest. Finally, it uses $2 * b$ for nondiagonal movement and $2 *$ $b-2 * a$ for the diagonal step.

line: Algorithm

```
1. Set up appropriate variables for the routine. Move xstart to x and ystart
    to y.
2. Subtract xstart from xend.
    If the result is positive, make xstep_diag 1 and store the result in
    x dif.
    If the result is negative, make xstep_diag -1 and two's-complement the
```


NUMERICAL METHODS

result before storing it in x_dif.
3. Subtract ystart from yend.

If the result is positive, make ystep_diag 1 and store the result in y_dif.

If the result is negative, make ystep_diag -1 and two's-complement the result before storing it in y_dif.
4. Compare $x _d i f$ with $y _d i f$.
 value of ystep_diag in ystep.

If x _dif is larger, clear ystep and store the value of xstep_diag in xstep.
5. Call your routine for putting a pixel on the screen.
6. Test decision.

If it's negative, add xstep to x, ystep to y, and inc to decision, then continue at step 7 .

If it's positive, add xstep_diag to x, ystep_diag to y, and diag_inc to decision, then go to step 7.
7. Decrement x dif.

If it's not zero, go to step 5.
If it is, we're done.

line: Listing

```
;*****
```

;
line proc uses bx cx dx si di, xstart:word, ystart:word, xend:word, yend:word
local x:word, y:word, decision:word, x_dif:word, y_dif:word,
xstep_diag:word,
ystep_diag:word, xstep:word, ystep:word, diag_incr:word, incr:word
mov ax, word ptr xstart
mov word ptr x, ax ;initialize local variables
mov ax, word ptr ystart
mov word ptr y, ax
direction:
mov ax, word ptr xend
sub ax, word ptr xstart ;total x distance
jns large_x ;which direction are we drawing?

```
```

large_x:

```
```

large_x:
mov
mov
store xdif:
store xdif:
mov
mov
mov
mov
sub
sub
jns
jns
neg
neg
mov
mov
jmp
jmp
large_y:
large_y:
mov
mov
store ydif:
store ydif:
mov
mov
octant:
octant:
mov
mov
mov
mov
cmp
cmp
jg
jg
mov
mov
mov
mov
sub
sub
mov
mov
mov
mov
mov
mov
jmp
jmp
bigger x:
bigger x:
mov
mov
mov
mov
sub
sub
mov
mov
setup inc:
setup inc:
mov
mov
shl
shl
mov

```
```

 mov
    ```
```

neg mov jmp
ax
word ptr xstep_diag, -1 short store xdif

```
                                    ;went negative
```

 ;went negative
 word ptr xstep_diag, 1
 word ptr xstep_diag, 1
 x dif, ax
 x dif, ax
 ax, word ptr yend ;y distance
 ax, word ptr yend ;y distance
 ax, word ptr ystart
 ax, word ptr ystart
 large_y
 large_y
 ax
 ax
 word ptr ystep_diag, -1
 word ptr ystep_diag, -1
 short store ydif
 short store ydif
 word ptr ystep_diag, 1
 word ptr ystep_diag, 1
 word ptr y_dif, ax ;direction is determined by signs
 word ptr y_dif, ax ;direction is determined by signs
 ax, word ptr x di
 ax, word ptr x di
 ;the axis with greater difference
 ;the axis with greater difference
 ;becomes our reference
;becomes our reference
;we have a bigger y move
;we have a bigger y move
;than x
;than x
;x won't change on nondiagonal
;x won't change on nondiagonal
;steps, y changes every step
;steps, y changes every step
word ptr xstep, ax
word ptr xstep, ax
ax, word ptr ystep_diag
ax, word ptr ystep_diag
word ptr ystep, ax
word ptr ystep, ax
setup inc
setup inc
ax, word ptr xstep_diag ;x changes every step
ax, word ptr xstep_diag ;x changes every step
;y changes only
;y changes only
word ptr xstep, ax
word ptr xstep, ax
;on diagonal steps
;on diagonal steps
ax, ax
ax, ax
word ptr ystep, ax
word ptr ystep, ax
ax, word ptr y dif
ax, word ptr y dif
ax, 1
ax, 1
word ptr incr, ax
word ptr incr, ax
;calculate decision variable
;calculate decision variable
;nondiagonal increment
;nondiagonal increment
; = 2 * y_dif

```
    ; = 2 * y_dif
```


NUMERICAL METHODS

```
sub ax, word ptr x_dif
mov word ptr decision, ax ;decision variable
; = 2 * y_dif - x_dif
sub ax, word ptr x_dif
mov word ptr diag incr, ax ;diagonal increment
; = 2 * y_dif - 2 * x_dif
mov ax, word ptr decision ;we will do it all in
;the registers
mov bx, word ptr x
mov cx, word ptr x_dif
mov dx, word ptr y
```

line loop:

```
; Put your routine for turning on pixels here. Be sure to push ax, cx, dx,
; and bx before destroying them; they are used here. The value for the x
; coordinate is in bx, and the value for the y coordinate is in dx.
```

 or ax, ax
 jns dpositive
 ;calculate new position and
 add bx, word ptr xstep ;update the decision variable
 add \(d x\), word ptr ystep
 add ax, incr
 jmp short chk loop
 dpositive:
add bx, word ptr xstep_diag
add dx, word ptr ystep_diag
add ax, word ptr diag incr
chk_loop:
loop line loop
ret
line endp

When fixed-point operands become very large, it sometimes becomes necessary to find alternate ways to perfom arithmetic. Multiplication isn't such a problem; if it exists as a hardware instruction on the processor you are using, it is usually faster than division and is easily extended.

Division is not so straightforward. When the divisors grow larger than the size allowed by any hardware instructions available, the programmer must resort to other

REAL NUMBERS

methods of division, such as CDIV (described in Chapter 2), linear polation (used in the floating-point routines), or one of the two routines presented in the following pages involving Newton-Raphson approximation and iterative multiplication. The first two will produce a quotient and a remainder, the last two return with a fixed point real number. Choose the one that best fits the application. ${ }^{3,4}$

Division by Inversion

A root of an equation exists whenever $f(x)=0$. Rewriting an equation so that $f(x)=0$ makes it possible to find the value of an unknown by a process known as Newton-Raphson Iteration. This isn't the only method for finding roots of equations and isn't perfect, but, given a reasonably close estimate and a well behaved function, the results are predictable and correct for a prescribed error.

Look at Figure 3-3. The concept is simple enough: Given an initial estimate of a point on the x axis where a function crosses, you can arrive at a better estimate by evaluating the function at that point, $f(x$,$) , and its first derivative of f\left(x_{0}\right)$ for the slope of the curve at that point. Following a line tangent to $f\left(x_{0}\right)$ to the x axis produces an improved estimate. This process can be iterated until the estimate is within the allowed error.

The slope of a line is determined by dividing the change in the y axis by the corresponding change in the x axis: $d y / d x$. In the figure, $d y$ is given by $\mathrm{f}\left(\mathrm{x}_{0}\right)$, the distance from the x axis at x_{0} to the curve, and $d x$ by $\left(x_{I^{-}} x_{0}\right)$, which results in

$$
f^{\prime}\left(x_{0}\right)=f\left(x_{0}\right) /\left(x_{1}-x_{0}\right)
$$

Solving for x , gives

$$
x_{1}=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)
$$

Substituting the new x, for x_{0} each time the equation is solved will cause the estimate to close in on the root very quickly, doubling the number of correct significant bits with each pass.

To using this method to find the inverse of a number, divisor, requires that the

Figure 3-3. Newton-Raphson iteration.
equation be formulated as a root. A simple equation for such a purpose is

$$
f(x)=1 / x-\text { divisor }
$$

From there, it's a short step to

$$
\mathrm{x}=1 / \text { divisor }
$$

Now the equation for finding the root becomes an equation for finding the inverse of a number:

$$
\mathbf{x}_{1},=((1 / \mathrm{x})-\text { divisor }) /\left(-1 / \text { divisor }^{2}\right)
$$

which simplifies to:

$$
\mathrm{x}_{\text {new }}=\mathrm{x}_{\text {old }} *\left(2-\operatorname{divisor}(\mathrm{x})_{\text {old }}\right)
$$

In his book Digital Computer Arithmetic, Joseph Cavanagh suggests that this equation be simplified even further to eliminate the divisor from the iterative process and use two equations instead of one. He makes the term $\operatorname{divisor}(x)$ equal to one called unity (because it will close in on one) in this routine, which reduces the equation to:

$$
\mathrm{x}_{\text {new }}=\mathrm{X}_{\mathrm{old}} *(2-\text { unity })
$$

Multiplying both sides of this equation by the divisor, divisor, and substituting again for his equality, $\operatorname{divisor}(x)=$ unity, he generates another equation to produce new values for unity without referring to the original divisor:

$$
\begin{gathered}
(\operatorname{divisor}(\mathrm{x}))_{\text {new }}=(\operatorname{divisor}(\mathrm{x}))_{\text {old }}^{*}(2-\text { unity })= \\
\text { unity new }=\text { unity old* }(2-\text { unity })
\end{gathered}
$$

This breaks the process down to just two multiplies and a two's complement. When these two equations are used together in each iteration, the algorithm will compute the inverse to an input argument very quickly.

To begin, there must be an initial estimate of the reciprocal. For speed, this can be computed with a hardware instruction or derived from a table if no such instruction exists on your processor. Multiply the initial estimate by the divisor to get the first unity. Then, the two equations are evaluated as a unit, first generating a new divisor and then a new unity, until the desired precision is reached.

The next routine expects the input divisor to be a value with the radix point between the doublewords of a quadword, fixed-point number. The routine finds the most significant word of the divisor, then computes and saves the number of shifts required to normalize the divisor at that point-that is, position the divisor so that its most significant one is the bit just to the right of the implied radix point: . 1 XXX ...

NUMERICAL METHODS

For example, the number 5 is

Normalized, it is:

After that, the actual divisor is normalized within the divisor variable as if the radix point were between the third and fourth words. Since the greatest number proportion or divisor will see is two or less, there is no danger of losing significant bits. Placing the radix point there also allows for greater precision.

Instead of subtracting the new proportion from two, as in the equation, we two's complementproportion and the most significant word is ANDed with 1 H to simulate a subtraction from two. This removes the sign bits generated by the two's complement and leaves an integer value of one plus the fraction bits.
Finally, the reciprocal is realigned based on a radix point between the doublewords as the fixed-point format dictates, and multiplied by the dividend.

divnewt: Algorithm

```
1. Set the loop counter,lp, for three passes. This is a reasonable number
    since the first estimate is 16-bits. Check the dividend and the divisor
    for zero.
    If no such error conditions exist, continue with step 2,
    Otherwise, go to step 10.
2. Find the most significant word of the divisor.
    Determine whether it is above or below the fixed-point radix point.
    In this case, the radix point is between the doublewords.
    Test to see if it is already normalized.
    If so, go to step 5.
3. Shift a copy of the most significant word of the divisor left or right
    until it is normalized, counting the shifts as you proceed.
4. Shift the actual divisor until its most significant one is the MSB of
```

the third word of the divisor. This is to provide maximum precision for the operation.
5. Divide 1000000 H by the most significant word of the divisor for a first approximation of the reciprocal. The greater the precision of this first estimate, the fewer passes will be required in the algorithm (the result of this division will be between one and two.)

Shift the result of this division left one hex digit, four bits, to align it as an integer with a three-word fraction part. This initial estimate is stored in the divisor variable.

Divide this first estimate by two to obtain the proportionality variable, proportion.
6. Perform a two's complement on proportion to simulate subtracting it from two. Multiply proportion by divisor. Leave the result in divisor.
7. Multiply proportion by the estimate, storing the results in both proportion and estimate. Decrement lp.

If it isn't zero, continue with step 6 .
Otherwise, go to step 8.
8. Using the shift counter, shift, reposition divisor for the final multiplication.
9. Multiply divisor, now the reciprocal of the input argument, by the dividend to obtain the quotient. Write the proper number of words to the ouput and exit.
10. An attempt was made to divide zero or divide by zero; exit with error.

divnewt: Listing

; $* * * * *$
; divnewt- division by Raphson-Newton zeros approximation
;
;
;
divnewt proc uses bx cx dx di si, dividend:qword, divisor:qword, quotient:word
local temp[8]:word, proportion:qword, shift:byte, qtnt_adjust:byte, lp:byte, tmp:qword, unity:qword
cld ;upward
sub CX, CX

```
    mov byte ptr lp, 3
    mov qtnt_adjust, cl
    or cx, word ptr dividend[0]
    or cx, word ptr dividend[2]
    or cx, word ptr dividend[4]
    or cx, word ptr dividend[6]
    je
    sub cx, cx
    or cxr word ptr divisor [0]
    or cx, word ptr divisor [2]
    or cx, word ptr divisor [4]
    or
    je
    sub ax, ax
    mov bx, 8
find_msb:
    lea
    dec
    dec
    bx
cmp word ptr [di] [bx], ax
je
    mov
    mov
    sub
    cmp
    jb
    ja
    test
    jne norm dvsr
shift_left:
    dec cx
    shl ax, 1
    test ah, 80h
    jne save_shift
    jmp shift_ left
normalize
shift_right:
    inc cx
    shr ax, 1
    or ax, ax
```

```
save-shift
shift right
save shift:
    mov byte ptr shift, cl
    sub ax, ax
shift back:
    cmp word ptr [di][6], ax
    je norm_dvsr
shr wordptr [di][6], 1
rcr word ptr [di][4], 1
rcr word ptr [di][2], 1
rcr word ptr [di] [0], 1
jmp
norm dvsr:
    test word ptr [di][4], 8000h
    jne make_first
    shl
    rcl
    rcl
    jmp
make first:
    mov dx, 1000h
    sub ax, ax
    mov bx, word ptr [di][4]
    div bx
    sub dx, dx
    mov cx, 4
correct dvsr:
    shl ax, 1
    rcl dx, 1
    loop correct_dvsr
    mov word ptr divisor[4], ax
    mov word ptr divisor[6], dx
    sub cx, cx
    mov word ptr divisor[2], cx
    mov word ptr divisor[0], cx
    shr dx 1
```

```
;first approximation
```

;first approximation
;could come from a table
;could come from a table
;keep only the four least bits
;keep only the four least bits
;don't want to waste time with
;don't want to waste time with
;a big shift
;a big shift
;don't want to waste time

```

\section*{NUMERICAL METHODS}
```

;with a big shift
rcr ax, 1
mu1 bx ;reconstruct for first attempt
shl ax, 1
;don't want to waste time
;with a big shift
rcl dx, 1
mov word ptr unity[4], dx
sub cx, cx
mov word ptr unity[6], cx
mov word ptr unity[2], cx
mov word ptr unity, cx

```
```

makeproportion:

```
makeproportion:
    mov word ptr proportion[4], dx
    mov word ptr proportion[4], dx
    sub ax, ax
    sub ax, ax
    mov word ptr proportion[6], ax
    mov word ptr proportion[6], ax
    mov word ptr proportion[2], ax
    mov word ptr proportion[2], ax
    mov word ptr proportion, ax
    mov word ptr proportion, ax
invert_proportion:
invert_proportion:
    not word ptr proportion[6]
    not word ptr proportion[6]
    not word ptr proportion[4]
    not word ptr proportion[4]
    not word ptr proportion[2]
    not word ptr proportion[2]
    neg word ptr proportion ;attempt to develop with
    neg word ptr proportion ;attempt to develop with
    ;2's complement
    ;2's complement
jc mloop
jc mloop
add word ptr proportion[2], 1
add word ptr proportion[2], 1
adc word ptr proportion[4], 0
adc word ptr proportion[4], 0
adc word ptr proportion[6], 0
adc word ptr proportion[6], 0
mloop:
mloop:
    and word ptr proportion[6], 1 ;make it look like it was
    and word ptr proportion[6], 1 ;make it look like it was
    ;subtracted from 2
    ;subtracted from 2
    invoke mu164, proportion, divisor, addr temp
    invoke mu164, proportion, divisor, addr temp
    lea si, word ptr temp[6]
    lea si, word ptr temp[6]
    lea di, word ptr divisor
    lea di, word ptr divisor
    mov cx, 4
    mov cx, 4
rep movsw
rep movsw
    invoke mu164, proportion, unity, addr temp
    invoke mu164, proportion, unity, addr temp
    lea si, word ptr temp[6]
```

 lea si, word ptr temp[6]
    ```
```

 lea di, word ptr unity
 mov
 cx, 4
 rep
lea si, word ptr temp[6]
lea di, word ptr proportion
mov cx, 4
rep
movSw
dec byte ptr lp
je divnewt_shift
jmp invert_proportion
;six passes for 64 bits
ovrflw:
sub ax, ax
not ax
mov cx, 4
mov di, word ptr quotient
rep stosw
jmp divnewt_exit
divnewt_shift:
lea di, word ptr divisor
mov cl, byte ptr shift
or cl, cl
js
qtnt_right:
mov ch, 10h
sub ch, cl
mov cl, ch
sub ch, ch
jmp qtlft
qtnt_left:
neg Cl
sub ch, ch
add cl, 10h ; we Want to take it to the MSB
shl word ptr [dil[0], 1
rcl word ptr [di][2], 1
rcl word ptr [di1[4], 1
rcl word ptr [di][6], 1
loop qtlft
divnewt_mult:
;multiply reciprocal by dividend

```

\section*{NUMERICAL METHODS}
```

 sub ax, ax ; see that temp is clear
 mov cx, 8
 lea di, word ptr temp
 rep stosw
invoke mul64, dividend, divisor, addr temp
mov bx, 4 ;adjust for magnitude of result
add bl, byte ptr qtnt_adjust
mov di, word ptr quotient
lea si, word ptr temp
add si, bx
cmp bl, Oah
jae write zero
mov cx, 4
rep movsw
jmp
write_zero:
mov cx, 3
rep movsw
sub ax, ax
stoSw
divnewt_exit:
popf
ret
divnewt endp

```

\section*{Division by Multiplication}

If the denominator and numerator of a fraction are multiplied by the same factor, the ratio does not change. If a factor could be found, such that multiplying it by the denominator causes the denominator to approach one, then multiplying the numerator by the same factor must cause that numerator to approach the quotient of the ratio or simply the result of the division.

In this procedure, as in the last, you normalize the divisor, or numerator-that is, shift it so that its most significant one is to the immediate right of the radix point, creating a number-such that \(.5 \geq\) number < 1 . To keep the ratio between the denominator and numerator equal to the original fraction, perform the same number of shifts, in the same direction, on the dividend or numerator.

Next, express the divisor, which is equal to or greater than one half and less than one, as one minus some offset:
```

divisor = l- offset

```

To bring this number, 1- offset, closer to one, choose another number by which to multiply it which will retain its original value and increase it by the offset, such as:
```

multiplier = 1 + offset.

```

To derive the first attempt, multiply this multiplier by the divisor:
```

multiplier * divisor = (1 - offset) * (1 + offset) = 1 - offset }\mp@subsup{}{}{2

```
followed by
```

(1 + offset) * dividend

```

As you can see, the result of this single multiplication has brought the divisor closer to one (and the dividend closer to the quotient). For the next iteration, \(1-\) offset \(^{2}\) is multiplied by \(1+\operatorname{offset}^{2}\) (with a similar multiplication to the dividend). The result is \(1-\) offset \(^{4}\), which is closer still to one. Each following iteration of \(1-\) offset \(^{\mathrm{n}}\) is multiplied by \(1+\) offset \(^{\mathrm{n}}\) (with that same \(1+\) offset \(^{\mathrm{n}}\) multiplying the dividend) until the divisor is one, or almost one, which is .11111111...B to the word size of the machine you're working on. Since the same operation was performed on both the dividend and the divisor, the ratio did not change and you need not realign the quotient.

To illustrate, let's look at how this procedure works on the decimal division 12345/1222. Remember that a bit is a digit in binary. Normalizing the denominator in the discussion above required shifting it so that its most significant one was to the immediate right of the radix point. The same thing must be done to the denominator in the decimal fraction \(12345 / 1222 \mathrm{D}\); 1222D becomes .9776 D , and performing the same number of shifts (in the same direction) on the numerator, 12345, yields 9.8760 D . Since the divisor (.9976D) is equal to \(1-.0224\), make the first multiplier

\section*{NUMERICAL METHODS}
equal to \(1+.0224\) and multiply divisor \(*(1 .+.0224)=.99949824 \mathrm{D}\). You then take 9.8760 D , the dividend, times \((1 .+.0224)\) to get 10.0972224 D . On the next iteration, the multiplier is \(\left(1+.0224^{2}\right)\), or 1.000501760 D , which multiplied by the denominator is .999999748 D and by the numerator is 10.10228878 D. Finally, multiplying .999999748 D by \(\left(1+.0224^{4}\right)\) produces a denominator of .999999999 D , and \((1+\) \(.0224^{4}\) ) times 10.10228878 D equals 10.10229133 D , our quotient. The next routine illustrates one implementation of this idea.

\section*{clivmul: Algorithm}
1. Set pass counter, lp, for 6, enough for a 64 -bit result. Check both operands for zero,
If either is zero, go to step 10.
Otherwise continue with step 2.
2. Find the most significant word of divisor, and see whether it is above or below the radix point,

If it's below, normalization is to the left; go to step 3 a.
If it's above, normalization is to the right; go to step 3b.
If it's right there, see whether it's already normalized.
if so, skip to step 4.
Otherwise, continue with step 3 a.
3. a) Shift a copy of the most significant word of the divisor left until the MSB is one, counting the shifts as you go. Continue with step 4.
b) Shift a copy of the most significant word of the divisor right until
it is zero, counting the shifts as you go. Continue with step 4.
4. Shift the actual divisor so that the MSB of the most significant word is one.
5. Shift the dividend right or left the same number of bits as calculated in step 3. This keeps the ratio between the dividend and the divisor the same.
6. Offset \(=1\) - normalized divisor.
7. Multiply the offset by the divisor, saving the result in a temporary register. Add the divisor to the temporary register to simulate the multiplication of \(1+\) offset by the divisor. Write the temporary register to the divisor.
8. Multiply the offset by the dividend, saving the result in a temporary
simulate the multiplication of \(1+\) offset by the dividend. Write the temporary register to the divisor.
9. Decrement \(1 p\),

If it's not yet zero, go to step 6.
Otherwise, the current dividend is the quotient; exit.
10. Overflow exit, leave with an error condition.

\section*{divmul: Listing}
; *****
;divmul-division by iterative multiplication
;Underflow and overflow are determined by shifting. If the dividend shifts out on ;any attempt to normalize, then we have "flowed" in whichever direction it ;shifted out.
i
divmul proc uses bx cx \(d x\) di si, dividend:qword, divisor:qword, guotient:word
local temp[8]:word, dvdnd:qword, dvsr:qword, delta:qword,
divmsb:byte,
lp:byte, tmp:qword
cld
sub cx, cx
mov byte ptr lp, 6 ;should only take six passes
lea di, word ptr dvdnd ;check for zero
mov ax, word ptr dividend[0]
mov dx, word ptr dividend[2]
or cx, ax
or cx, dx
mov word ptr [di][0], ax
mov word ptr [di][2], dx
mov ax, word ptr dividend[4]
mov \(d x\), word ptr dividend[6]
mov word ptr [di][4], ax
mov word ptr [di][6], dx
or cx, ax
or cx, dx
je ovrflw ;zero dividend
sub cx, cx
lea di, word ptr dvsr ;check for zero
mov ax, word ptr divisor[0]
mov \(d x\), word ptr divisor[2]
; upward
```

 or cx, ax
 or cx, dx
 mov word ptr [dil[0], ax
 mov word ptr [di] [2], dx
 mov ax, word ptr divisor[4]
 mov dx, word ptr divisor[6]
 mov word ptr [di][4], ax
 mov word ptr [di][6], dx
 or cx, ax
 or
 je
 sub ax, ax
 mov bx, 8
 find_MSB: ;look for MSB of divisor
dec bx
dec bx
cmp word ptr [di] [bx], ax ; di is pointing at dvsr
je find msb
mov ax, word ptr [di] [bx
sub
cmp
cx, cx
bx, 2h
jb shift left
ja shift right
test word ptr [di][bxl, 8000h ;normalized?
jne norm dvsr
shift_left:
dec cx
shl ax, 1
test ah, 80h
jne norm_dvsr
jmp shift_left
; count the number of
;shifts to normalize
shift_right:
inc
Cx
shr ax, 1
or ax, ax
je norm_dvsr
jmp shift_right ;count the number of shifts
;to normalize

```
```

norm dvsr:
test word ptr [di][6], 8000h
jne norm dvdnd ;we want to keep
shl word ptr [di][0], 1
rcl word ptr [di] [2], 1
rcl
rcl
jmp
word ptr [di] [4], 1
word ptr [di] [6], 1
norm_dvsr
;the divisor
;truly normalized
;for maximum
;precision
;this should normalize dvsr
norm dvdnd:

| cmp | bl, 4h | ;bx still contains pointer ;to dvsr |
| :---: | :---: | :---: |
| jbe | chk 2 | |
| add | cl, 10h | ;adjust for word |
| jmp | ready_dvdnd | |
| chk_2: | | |
| cmp | bl, 2 h | |
| jae | ready_dvdnd | |
| sub | cl, 10h | ;adjusting again for size |
| | | ;of shift |
| ready_dvdnd: | | |
| lea | di, word ptr dvdnd | |
| or | cl, cl | |
| je | makedelta | ;no adjustment necessary |
| or | cl, cl | |
| jns | do_dvdnd_right | |
| neg | cl | |
| sub | ch, ch | |
| jmp | do_dvdnd_left | |
| do_dvdnd_right: | | |
| shr | word ptr [di][6], 1 | ; no error on underflow |
| rcr | word ptr [di][4], 1 | ;unless it becomes zero, |
| | | ;there may still be some |
| useable information | | |
| rcr | word ptr [di][2], 1 | |
| rcr | word ptr [di] [0], 1 | |
| loop | do_dvdnd_right | ; this should normalize dvsr |
| sub | ax, ax | |
| or | ax, word ptr [di][6] | |
| or | ax, word ptr [di][4] | |
| or | ax, word ptr [di][2] | |
| or | ax, word ptr [di][0] | |

```
```

 jne setup
 mov di, word ptr quotient
 mov
 rep stosw
jmp divmul exit
do_dvdnd_left
shl word ptr [di] [0], 1
rcl word ptr [di][2], 1
rcl word ptr [di][4], 1
rcl word ptr [di][6], 1
jc ovrfl
loop do dvdnd_left
setup:
mov si, di
mov di, word ptr quotient
mov cx, 4
rep movsw
makedelta:
lea
mov
rep movsw
not word ptr delta[6]
not word ptr delta[4]
not word ptr delta[2]
neg word ptr delta
jc mloop
add word ptr delta[2], 1
adc word ptr delta[4], 0
adc word ptr delta[6], 0
mloop:
invoke mu164, delta, dvsr, addr temp

```
```

 lea si, word ptr temp[8]
 lea di, word ptr tmp
 mov cx, 4
 rep movsw
invoke add64, tmp, dvsr, addr dvsr
lea di, word ptr divisor
mov si, word ptr quotient
mov
cx, 4
rep movsw
invoke mu164, delta, divisor, addr temp
sub ax, ax
cmp word ptr temp[6], 8000h
jb no_round
add word ptr temp[8], 1
adc word ptr temp[10], ax
adc word ptr temp[12], ax
adc word ptr temp[14], ax
no_round:
lea si, word ptr temp[8]
lea di, word ptr tmp ;double duty
mov cx, 4
rep movsw
invoke add64, divisor, tmp, quotient
dec byte ptr lp
je divmul_exit
jmp makedelta ;six passes for 64 bits
ovrflw:
sub ax, ax
not ax
mov cx, 4
mov di, word ptr quotient
stosw ;make infinite answer
jmp divmul exit
divmul_exit:
popf
ret
divmul
endp

```

\section*{NUMERICAL METHODS}

1
Van Aken, Jerry, and Ray Simar. A Conic Spline Algorithm. Texas Instruments, 1988.

Van Aken, Jerry, and Carrel Killebrew Jr. The Bresenham Line Algorithm. Texas Instruments, 1988.

Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGrawHillBook Co., 1984, Pages 278-284. Also see Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Publishing Co., 1981, Pages. 295-297.

Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGrawHillBook Co., 1984, Pages 284-289.

\section*{CHAPTER 4}

\section*{Floating-Point Arithmetic}

Floating-point libraries and packages offer the software engineer a number of advantages. One of these is a complete set of transcendental functions, logarithms, powers, and square-root and modular functions. These routines handle the decimalpoint placement and housekeeping associated with arithmetic and even provide some rudimentary handles for numerical exceptions.

For the range of representable values, the IEEE 754 standard format is compact and efficient. A single-precision real requires only 32 bits and will handle a decimal range of \(10^{38}\) to \(10^{-38}\), while a double-precision float needs only 64 bits and has a range of \(10^{308}\) to \(10^{-308}\). Fixed-point representations of the same ranges can require a great deal more storage.

This system of handling real numbers is compact yet has an extremely wide dynamic range, and it's standardized so that it can be used for interapplication communication, storage, and calculation. It is slower than fixed point, but if a math coprocessor is available or the application doesn't demand speed, it can be the most satisfactory answer to arithmetic problems.

The advantages of floating point do come with some problems. Floating-point libraries handle so much for the programmer, quietly and automatically generating 8 to 15 decimal digits in response to input arguments, that it's easy to forget that those digits may be in error. After all, floating point is just fixed point wrapped up with an exponent and a sign; it has all the proclivities of fixed point to produce erroneous results due to rounding, loss of significance, or inexact representation. But that's true of any form of finite expression-precautions must always be taken to avoid errors. Floating-point arithmetic is still a valuable tool, and you can use it safely if you understand the limitations of arithmetic in general and of floating-point format, in particular.

\section*{NUMERICAL METHODS}

\section*{What To Expect}

Do you know what kind of accuracy your application needs? What is the accuracy of your input? Do you require only slide rule accuracy for fast plotting to screen? Or do you need the greatest possible accuracy and precision for iterative or nonlinear calculation?

These are important questions, and their answers can make the difference between calculations that succeed and those that fail. Here are a few things to keep in mind when using floating-point arithmetic.
- No mathematical operation produces a result more accurate than its weakest input. It's fine to see a string of numbers following a decimal point, but if that's the result of multiplying pi by a number accurate to two decimal places, you have two decimal places of accuracy at best.
- Floating point suffers from some of the very conveniences it offers the developer. Though most floating-point libraries use some form of extended precision, that's still a finite number of significant bits and may not be enough to represent the input to or result of a calculation. In an iterative loop, you can lose a bit more precision each time through an operation, this is especially true of subtraction.
- Floating point's ability to cover a wide range of values also leads to inaccuracies. Again, this is because the number of significant bits is finite: 24 for a short real and 53 for a long real. That means a short real can only represent \(2^{23}\) possible combinations for every power of two.

To get the greatest possible precision into the double- and quadword formats of the short and long real, the integer 1 that must always exist in a number coerced to a value between 1.0 and 2.0 is omitted. This is called the hidden bit, and using its location for the LSB of the exponent byte allows an extra bit of precision. Both single and double-precision formats include the hidden bit.
Between \(2^{1}(2 \mathrm{D})\) and \(2^{2}(4 \mathrm{D}), 2^{23}\) individual numbers are available in a short real. That leaves room for two cardinals (counting numbers, such as 1,2 , and 3 ) and a host of fractions-not an infinite number, as the number line allows, but still quite a few. These powers of two increase ( \(1,2,4,8 \ldots\) ) and decrease ( \(.5, .25\), .125...), but the number of significant bits remains the same (except for denormal

\section*{FLOATING-POINT ARITHMETIC}
arithmetic); each power of two can only provide \(2^{23}\) individual numbers. This means that between two consecutive powers of two, such as \(2^{32}\) and \(2^{33}\), on the number line are \(4,294,967,296\) whole numbers and an infinite number of fractions thereof. However, a single-precision float will only represent \(2^{23}\) unique values. So what happens if your result isn't one of those numbers? It becomes one of those that 23 bits can represent.
Around 0.0 is a band that floating-point packages and coprocessors handle differently. The smallest legal short real has an exponent of \(2-{ }^{126}\). The significand is zero, with only the implied one remaining (the hidden bit). That still leaves 8,388,607 numbers known as denormals to absolute zero. As the magnitude of these numbers decreases from \(2^{-126}\) to \(2^{-149}\), the implied one is gone and a bit of precision is lost for every power of two until the entire significand is zero. This is described in the IEEE 854 specification as "gradual underflow" and isn't supported by all processors and packages. Use caution when using denormals; multiplication with them can result in so little significance that it may not be worth continuing, and division can blow up.
- It's easy to lose significance with floating-point arithmetic, and the biggest offender is subtraction. Subtracting two numbers that are close in value can remove most of the significance from your result, perhaps rendering your result meaningless as well. The lost information can be estimated according to the formula Significance_lost \(=-\ln (1-m i n u e n d /\) subtrahend \() / \ln (2)\), but this is of little value after the loss.'

Assume for a moment that you're using a floating-point format with seven significant decimal digits (a short real). If you subtract. 1234567 from . 1234000 , the result is \(-5.67 \mathrm{E}-5\). You have lost four decimal digits of significance. Instances of such loss are common in function calls involving transcendentals, where the operands are between 0.0 and 1.0.
This loss of significance can occur in other settings as well, such as those that involve modularity. Sines and cosines have a modularity based on \(\pi / 2\) or 90 degrees. Assuming a computation of harmonic displacement, \(\mathrm{x}=\mathrm{L} \sin (\omega \mathrm{t})\), if \(\omega \mathrm{t}\) gets very large, which can happen if we are dealing with a high enough frequency

\section*{NUMERICAL METHODS}
or a long enough time, very little significance will be left for calculating the sine. The equation \(\mathrm{x}=\mathrm{L} \sin (\omega \mathrm{t}), \omega=2 \pi \mathrm{f}\), with \(f\) being frequency and \(t\) being time, will calculate the angular displacement of a reference on a sinusoid in a given period of time. If the frequency of the sinusoid is 10 MHz and the time is 60 seconds, the result is an \(\omega\) t of 3769911184.31 . If this is expressed as a short real without extended precision, however, we'll have only enough bits to express the eight most significant digits (3.7699111E9). The very information necessary to compute the sine and quadrant is truncated. The sine of 3769911184.31 is \(2.24811195116 \mathrm{E}-3\), and the sine of 3.7699111 E 9 is -.492752198651 . Computing with long reals will help, but it's limited to 15 decimal digits.
- The normal associative laws of addition and multiplication don't always function as expected with floating point. The associative law states:
\[
(A+B)+C=A+(B+C)
\]

Look at the following seven-digit example of floating point:
\[
\begin{gathered}
(7.654321+(-1234567))+1234568= \\
-1234559+1234568= \\
9
\end{gathered}
\]
while
\[
\begin{gathered}
7.654321+(-1234567+1234568)= \\
7.654321+1= \\
8.654321
\end{gathered}
\]

Note that the results aren't the same. Of course, using double-precision arguments will minimize such problems, but it won't eliminate them. The number of significant bits available in each precision heavily affects the accuracy of what you're representing.
- It is hard to find any true equalities in floating-point arithmetic. It's nearly impossible to find any exactitudes, without which there can be no equalities. D. E. Knuth suggested a new set of symbols for floating point. \({ }^{2}\) These symbols were
"round" (because the arithmetic was only approximate) and included a round plus, a round minus, a round multiply, and a round divide. Following from that set was a floating-point compare that assessed the relative values of the numbers. These operations included conditions in which one number was definitely less than, approximately equal to, or definitely greater than another.

Most floating-point packages compare the arguments exactly. This usually works in greater-than/less-than situations, depending on the amount of significance left in the number, but almost never works in equal-to comparisons.

What this means is that the results of a computation depend on the precision and range of the input and the kind of arithmetic performed. When you prepare operations and operands, make sure the precision you choose is appropriate. Though single-precision arguments will be used in this discussion, the same problems exist in double precision.

\section*{A Small Floating-Point Package}

The ability to perform floating-point arithmetic is a big advantage. Without a coprocessor to accelerate the calculations it may never equal fixed points for speed, but the automatic scaling, convenient storage, standardized format, and the math routines are nice to have at your fingertips. Unfortunately, even in systems where speed isn't a problem, code size can make the inclusion of a complete floating-point package impossible.

Your system may not require double-precision support-it might not need the trigonometric or power functions-but could benefit from the ability to input and process real-world numbers that fixed point can't handle comfortably. Unfortunately, most packages are like black boxes that require the entire library or nothing; this is especially true of the more exotic processors that have little third-party support. It's hard to justify an entire package when only a few routines are necessary. At times like this, you might consider developing your own.

The rest of this chapter introduces the four basic arithmetic operations in floating point. The routines do not conform to IEEE 754 in all ways-most notably the numeric exceptions, many of which are a bit dubious in an embedded application-

\section*{NUMERICAL METHODS}
but they do deliver the necessary accuracy and resolution and show the inner workings of floating point. With the routines presented later in the book, they're also the basis for a more complete library that can be tailored to the system designer's needs.

The following procedures are single-precision (short real) floating-point routines written in \(80 x 86\) assembler, small model, with step-by-step pseudocode so you can adapt them to other processors.

Only the techniques of addition, subtraction, multiplication, and division will be described in this chapter; refer to FPMATH.ASM for complementary and support functions.

\section*{The Elements of a Floating-Point Number}

To convert a standard fixed-point value to one of the two floating-point formats, you must first normalize it; that is, force it through successive shifts to a number between 1.0 and 2.0. (Note that this differs from the normalization described earlier in the fixed-point routines, which involved coercing the number to a value greater than or equal to one-half and less than one. This results in a representation that consists of: a sign, a number in fixed-point notation between 1.0 and 2.0 , and an exponent representing the number of shifts required. Mathematically, this can be expressed as \({ }^{3}\)
\[
\sum_{k=1}^{24} f_{k} * 2^{-k}
\]
for \(-125 \leq\) exponent \(\leq 128\) in single precision and
\[
\text { sign * } 2^{\text {exponent }} * \sum_{k=1}^{53} f_{k} * 2^{-k}
\]
for \(-1,021 \leq\) exponent \(\leq 1,024\) in double precision.

Since the exponent is really the signed (int) \(\log _{2}\) of the number you're representing, only numbers greater than 2.0 or less than 1.0 have an exponent other than zero and require any shifts at all. Very small numbers (less than one) must be normalized using left shifts, while large numbers with or without fractional extensions require right shifts. As the number is shifted to the right, the exponent is incremented; as the number is shifted to the left, the exponent is decremented.

The IEEE 754 standard dictates that the exponent take a certain form for some errors and for zero. For a Not a Number (NAN) and infinity, the exponent is all ones; for zero, it is all zeros. For this to be the case, the exponent is biased- 127 bits for single precision, 1023 for double precision.

Figure 4-1 shows the components of a floating-point number: a single bit representing the sign of the number (signed magnitude), an exponent ( 8 bits for single precision and 11 bits for double precision, and a mantissa ( 23 bits for single precision, 52 bits for double).


Figure 4-1. Single and double-precision floating-point numbers.

\section*{NUMERICAL METHODS}

Let's look at an example of a single-precision float. The decimal number 14.92 has the following binary fixed-point representation (the decimal point is shown for clarity):
```

1110.11101011100001010010

```

We need three right shifts to normalize it:
\(1.11011101011100001010010 \times 2^{3}\)

We add 127D to the exponent to make it 130D \((127+3)\) :

10000010 B

Because this is a positive number, the sign bit is 0 (the bit in parentheses is the hidden bit):

O+10000010 +111101111010111000010100108
or

\section*{416eb852H}

The expression of the fractional part of the number depends on the precision used. This example used 24 bits to conform to the number of bits in the singleprecision format. If the number had been converted from a 16-bit fixed-point word, the single-precision version would be 416 eb 000 H . Note the loss of significance.

Retrieving the fixed-point number from the float is simply a matter of extracting the exponent, subtracting the bias, restoring the implied leading bit, and performing the required number of shifts. The bandwidth of the single-precision float if fairly high-approximately 3.8 db -so having a data type to handle this range would require more than 256 bits. Therefore we need some restrictions on the size of the fixed-point value to which we can legally convert. (For more information, refer to Chapter 5 .)

\section*{FLOATING-POINT ARITHMETIC}

\section*{Extended Precision}

If all floating-point computations were carried out in the precision dictated by the format, calculations such as those required by a square-root routine, a polynomial evaluation, or an infinite series could quickly lose accuracy. In some cases, the results would be rendered meaningless. Therefore, IEEE 754 also specifies an extended format for use in intermediate calculations. \({ }^{3}\) This format increases both the number of significant bits and the exponent size. Single-precision extended is increased from 24 significant bits to at least 32 , with the exponent increased to at least 11 bits. The number of significant bits for double precision can be greater than 79 and the exponent equal to or greater than 15 bits.

This extended precision is invisible to users, who benefit from added accuracy in their results. Those results are still in the standard single or double-precision format, necessitating a set of core routines (using extended precision) that are generally unavailable to the normal user. Another set of routines is needed to convert standard format into extended format and back into standard format, with the results rounded at the end of a calculation.

The routines described later in this chapter take two forms. Some were written, for debugging purposes, to be called by a higher-level language (C); they expect single-precision input and return single-precision output. They simply convert to and from single precision to extended format, passing and receiving arguments from the core routines. These external routines have names that begin with \(\mathrm{fp}_{-}\), such as \(f p \_m u l\). The core routines operate only with extended precision and have names beginning with fl , such as flmul ; these routines cannot be called from C. \({ }^{4}\)

The extended-precision level in these routines uses a quadword for simple parameter passing and offers at least a 32 -bit significand. This simplifies the translation from extended to standard format, but it affords less immunity to loss of significance at the extremes of the single precision floating range than would a greater number of exponent bits. If your application requires a greater range, make the exponent larger- 15 -bits is recommended-in the higher level routines before passing the values to the core routines. This can actually simplify exponent handling during intermediate calculations.

Use the core routines for as much of your work as you can; use the external
routines when the standard format is needed by a higher-level language or for communications with another device. An example of a routine, cylinder, that uses these core routines to compute the volume of a cylinder appears in the module FPMATH.ASM, and many more appear in TRANS.ASM.

\section*{The External Routines}

This group includes the basic arithmetic procedures-fp_mul, fp_div, fp_add, and \(f p_{-} s u b\). Written as an interface to C , they pass arguments and pointers on the stack and write the return values to static variables.

In \(f p \_a d d\), two single-precision floating-point numbers and a pointer to the result arrive on the stack. Local variables of the correct precision are created for each of the floats, and memory is reserved for the extended result of the core routines. A quadword is reserved for each of the extended variables, including the return; the single-precision float is written starting at the second word, leaving the least significant word for any extended bits that result from intermediate calculations.

After the variables are cleared, the doubleword floats are written to them and the core routine, fladd, is called. Upon return from fladd, the routine extracts the singleprecision float (part of the extended internal float) from the result variable, rounds it, and writes it out with the pointer passed from the calling routine.

\section*{fp_add: Algorithm}
```

1. Allocate and clear storage for three quadwords, one for each operand and
one for the extended-precision result.
2. Align the 32-bit operands within the extendedvariables so that the least
significant byte is at the boundary of the second word.
3. Invoke the core addition routine with both operands and a pointer to the
quadword result.
4. Invoke the rounding routine with the result of the previous operation
and a pointer to that storage.
5. Pull the 32-bit float out of the extended variable, write it to the static
variable, and return.
```

\section*{FLOATING-POINT ARITHMETIC}
```

fp-add: Listing
; *****
;
fp_add proc uses bx cx dx si di,
fp0:dword, fpl:dword, rptr:word
local flp0:qword, flpl:qword, result:qword
pushf
cld
xor ax,ax
lea di,word ptr result
mov cx,4
rep stosw
lea di,word ptr flp0
mov cx,4
rep stosw
lea di,word ptr flpl ;clear variables for
mov cx,4
rep stosw
lea si,word ptr fp0
lea di,word ptr flp0[2]
mov cx,2
rep movsw
lea si,word ptr fpl
lea di,word ptr flp1[2]
mov cx,2
rep movsw
invoke fladd, flp0, flpl, addr result ;do the add
invoke round, result, addr result ;round the result
lea si, word ptr result[2] ;make it a standard float
mov di,rptr
mov cx,2
rep movsw
popf
ret
fp_add endp

```

\section*{NUMERICAL METHODS}

This interface is consistent throughout the external routines. The prototypes for these basic routines and fp_comp are:
```

fp_add proto c fp0:dword, fpl:dword, rptr:word
fp_sub proto c fp0:dword, fpl:dword, rptr:word
fp_mu1 proto c fp0:dword, fpl:dword, rptr:word
fp_div proto c fp0:dword, fpl:dword, rptr:word
fp_camp proto c fp:dword, fpl:dword

```

Fp_comp compares two floating-point values and returns a flag in AX specifying whether \(f p 0\) is greater than \(f p l(1)\), equal to \(f p l(0)\), or less than \(f p l(-1)\). The comparison assumes the number is rounded and does not include extended-precision bits. (FPMATH.ASM contains the other support routines.)

\section*{The Core Routines}

Because these routines must prepare the operands and pass their arguments to the appropriate fixed-point functions, they're a bit more complex and require more explanation. They disassemble the floating-point number, extract the exponent, and align the radix points to allow a fixed-point operation to take place. They then take the results of these calculations and reconstruct the float.

The basic arithmetic routines in this group include:
```

fladd proto flp0:qword, flpl:qword, rptr:word
-flp0 is addend0; flpl is addendl
flsub proto flp0:qword, flpl:qword, rptr:word
-flp0 is the minuend; flpl is the subtrahend
flmul proto flp0:qword, flpl:qword, rptr:word
-flp0 is the multiplicand; flpl is the multiplier
fldiv proto flp0:qword, flpl:qword, rptr:word
-flp0 is the dividend; flpl is the divisor

```

\section*{FLOATING-POINT ARITHMETIC}

For pedagogical and portability reasons, these routines are consistent in terms of how they prepare the data passed to them.

Briefly, each floating-point routine must do the following:
1. Set up any variables required for the arguments that are passed and for the results of the current computations.
2. Check for initial errors and unusual conditions.
- Division:
divisor \(==\) zero: return divide by zero error
divisor \(==\) infinite: return zero
dividend \(==\) zero: return infinity error
dividend \(==\) infinite: return infinite
dividend \(==\) divisor: return one
- Multiplication:
either operand \(==\) zero: return zero
either operand \(==\) infinite: return infinite
- Subtraction:
minuend \(==\) zero: do two's complement of subtrahend
subtrahend \(==\) zero: return minuend unchanged operands cannot align: return largest with appropriate sign
- Addition:
either addend \(==\) zero: return the other addend unchanged operands cannot align: return largest
3. Get the signs of the operands. These are especially useful in determining what action to take during addition and subtraction.
4. Extract the exponents, subtracting the bias. Perform whatever handling is required by that procedure. Calculate the approximate exponent of the result.
5. Get the mantissa.
6. Align radix points for fixed-point routines.

\section*{NUMERICAL METHODS}
7. Perform fixed-point arithmetic.
8. Check for initial conditions upon return. If a zero is returned, this is a shortcut exit from the routine.
9. Renormalize, handling any underflow or overflow.
10. Reassert the sign.
11. Write the result and return.

\section*{Fitting These Routines to an Application}

One of the primary purposes of the floating-point routines in this book is to illustrate the inner workings of floating-point arithmetic; they are not assumed to be the best fit for your system. In addition, all the routines are written as near calls. This is adequate for many systems, but you may require far calls (which would require far pointers for the arguments). The functions write their return values to static variables, an undesireable action in multithreaded systems because these values can be overwritten by another thread. Though the core routines use extended precision, the exponents are not extended; if you choose to extend them, 15 bits are recommended. This way, the exponent and sign bit can fit neatly within one word, allowing as many as 49 bits of precision in a quadword format. The exceptions are not fully implemented. If your system needs to detect situations in which the mathematical operation results in something that cannot be interpreted as a number, such as Signaling or Quiet NANS, you will have to write that code. Many of the in-line utility functions in the core and external routines may also be rewritten as stand alone subroutines. Doing so can make handling of the numerics a bit more complex but will reduce the size of the package.

These routines work well, but feel free to make any changes you wish to fit your target. A program on the disk, MATH.C, may help you debug any modifications; I used this technique to prepare the math routines for this book.

\section*{Addition and Subtraction: FLADD}

Fladd, the core routine for addition and subtraction, is the longest and most complex routine in FPMATH.ASM (and perhaps the most interesting). We'll use it

\section*{FLOATING-POINT ARITHMETIC}
as an example, dissecting it into the prologue, the addition, and the epilogue.
The routine for addition can be used without penalty for subtraction because the sign in the IEEE 754 specification for floating point is signed magnitude. The MSB of the short or long real is a 1 for negative and a 0 for positive. The higher-level subtraction routine need only \(X O R\) the MSB of the subtrahend before passing the parameters to fladd to make it a subtraction.

Addition differs from multiplication or division in at least two respects. First, one operand may be so much smaller than the other that it will contribute no significance to the result. It can save steps to detect this condition early in the operation. Second, addition can occur anywhere in four quadrants: both operands can be positive or both negative, the summend can be negative, or the addend can be negative.

The first problem is resolved by comparing the difference in the exponents of the two operands against the number of significant bits available. Since these routines use 40 bits of precision, including extended precision, the difference between the exponents can be no greater than 40 . Otherwise no overlap will occur and the answer will be the greater of the two operands no matter what. (Imagine adding . 00000001 to 100.0 and expressing the result in eight decimal digits). Therefore, if the difference between the exponents is greater than 40 , the larger of the two numbers is the result and the routine is exited at that point. If the difference is less than 40 , the smaller operand is shifted until the exponents of both operands are equal.

If the larger of the two numbers is known, the problem of signs becomes trivial. Whatever the sign of the larger, the smaller operand can never change it through subtraction or addition, and the sign of the larger number will be the sign of the result. If the signs of both operands are the same, addition takes place normally; if they differ, the smaller of the two is two's complemented before the addition, making it a subtraction.

The fladd routine is broken into four logical sections, so each part of the operation can be explained more clearly. Each section comprises a pseudocode description followed by the actual assembly code listing.

\section*{FLADD: The Prologue.}
1. Two quadword variables, opa and \(o p b\), are allocated and cleared for use later in the routine. Byte variables for the sign of each operand and a general sign byte are also cleared.
2. Each operand is checked for zero.

If either is zero, the routine exits with the other argument as its answer.
3. The upper word of each float is loaded into a register and shifted left once into the sign byte assigned to that operand. The exponent is then moved to the exponent byte of that operand, exp0 and expl. Finally, the exponent of the second operand is subtracted from the exponent of the first and the difference placed in a variable, diff.
4. The upper words of the floats are \(A N D\) ed with 7 fH to clear the sign and exponent bits. They're then ORed with 80 H to restore the hidden bit.
We now have a fixed-point number in the form 1.xxx.

\section*{FLADD: The Prologue}
```

; *****
;
;
fladd proc uses bx cx dx si di,
fp:qword, fpl:qword, rptr:word
local opa:qword, opb:qword, signa:byte,
signb:byte, exponent:byte, sign:byte,
diff:byte, sign0:byte, sign1:byte,
exp0:byte, exp1:byte
pushf
std ;decrement
xor ax,ax ;clear appropriate variables
lea di,word ptr opa[6] ;larger operand
mov cx,4
rep stosw word ptr [di]
lea di,word ptr opb[6] ;smaller operand
mov cx,4
rep stosw word ptr [di]
mov byte ptr sign0, al
mov byte ptr sign1, al
mov byte ptr sign, al ;clear sign

```

\section*{FLOATING-POINT ARITHMETIC}
```

chk_fp0:
mov cx, 3
lea di,word ptr fp0[4]
repe scasw
nonzero
jnz chk_fpl
lea si,word ptr fp1[4
jmp short leave with other
chk_fpl:
mov cx, 3
lea di,word ptr fp1[4]
repe
scasw
do add
lea si,word ptr fp0[4]
;return other addend
; *****
leave with other:
mov di,word ptr rptr
add di,4
mov cx,3
rep movsw
jmp fp_addex
; *****
do_add:
lea si,word ptr fp0
lea bx,word ptr fpl
mov ax,word ptr [si][4]
shl
rcl byte ptr sign0,
mov byte ptr exp0, ah
mov dx,word ptr [bx][4]
shl dx,
rcl byte ptr sign1, 1
mov byte ptr exp1, dh
sub ah, dh
mov byte ptr diff, ah ;and now the difference
restore-missing-bit:
;set up operands
and word ptr fp0[4], 7fh
or word ptr fpO[4], 80h

```
\begin{tabular}{lll} 
mov & ax, word ptr fpl & \begin{tabular}{l}
;load these into registers; \\
;we'll use them
\end{tabular} \\
mov & bx, word ptr fp1[2] & \\
mov & \(d x\), word ptr fp1[4] & \\
and & \(d x, 7 f h\) & \\
or & \(d x, 80 h\) &
\end{tabular}

\section*{The FLADD Routine:}
5. Compare the difference between the exponents.

If they're equal, continue with step 6 .
If the difference is negative, take the second operand as the largest and continue with step 7 .

If the difference is positive, assume that the first operand is largest and continue with step 8.
6. Continue comparing the two operands, most significant words first.

If, on any compare except the last, the second operand proves the largest, continue with step 7.

If, on any compare except the last, the first operand proves the largest, continue with step 8.

If neither is larger to the last compare, continue with step 8 if the second operand is larger and step 7 if the first is equal or larger.
7. Two's-complement the variable diff and compare it with 40 D to determine whether to go on.

If it's out of range, write the value of the second operand to the result and leave.

If it's in range, move the exponent of the second operand to exponent, move the sign of this operand to the variable holding the sign of the largest operand, and move the sign of the other operand to the variable holding the sign of the smaller operand.

Load this fixed-point operand into opa and continue with step 9.
8. Compare diff with 40 D to determine whether it's in range.

If not, write the value of the first operand to the result and leave.
If so, move the exponent of the first operand to exponent, move the sign of this operand to the variable holding the sign of the largest operand, and move the sign of the other operand to the variable holding the sign of the smaller operand. Load this fixed-point operand into opa and continue with step 9.

\section*{FLOATING-POINT ARITHMETIC}

The FLADD Routine: Which Operand is Largest?
```

find_largest:
cmp byte ptr diff,0
je cmp_rest
test byte ptr diff,80h ;test for negative
je numa_bigger
jmp short numb_bigger
cmp_rest:
cmp
ja
jb
cmp
ja numb_bigger
jb numa_bigger
cmp ax, word ptr fp0[0]
jb numa_bigger
;defaults to numb
numb_bigger:
sub
mov
neg
mov byte ptr diff,al
cmp
jna
ax, ax
dx, word ptr fp0[4]
numb_bigger
;if above
numa_bigger
;if below
bx, word ptr fp0[2]
al,byte ptr diff
al
byte ptr diff,al ;save difference
al,60
;do range test
; *****
lea si,word ptr fp1[6]
leave_with_largest:
mov
add
in range
di,word ptr rptr
di,6
mov

```

```

;this is an exit!!!!!

```
;this is an exit!!!!!
;this is a range error
;this is a range error
;operands will not
;operands will not
    ;line up
    ;line up
    ;for a valid addition
    ;for a valid addition
    ;leave with largest
    ;leave with largest
    ; operand
    ; operand
    ;that is where the
    ;that is where the
    ;significance is anyway
```

 ;significance is anyway
    ```
; *****
```

in range:
mov al,byte ptr expl
mov byte ptr exponent,al
al, byte ptr sign1
signa, al
al, byte ptr sign0
byte ptr signb, al
si, word ptr fp1[6] ;load opa with largest operand
di,word ptr opa[6]
cx,4
rep movsw
signb_positive:
lea si, word ptr fp0[4] ;set to load opb
jmp shift_into_position
numa_bigger:
sub ax, ax
mov al,byte ptr diff
cmp al,60
jae range errora ;do range test
mov al,byte ptr exp0
mov byte ptr exponent,al ;save exponent of largest value
mov al, byte ptr sign1
mov byte ptr signb, al
mov al, byte ptr sign0
mov byte ptr signa, al
lea si, word ptr fp0[6]
lea di,word ptr opa[6]
mov cx,4
rep movsw
lea si, word ptr fp1[4] ;set to load opb

```

\section*{The FLADD Routine: Aligning the Radix Points.}
9. Divide diff by eight to determine how many bytes to shift the smaller operand so it aligns with the larger operand.

Adjust the remainder to reflect the number of bits yet to be shifted, and store it in AL.

Subtract the number of bytes to be shifted from a maximum of four and
add this to a pointer to opb. That gives us a starting place to write the most significant word of the smaller operand (we're writing downward).
10. Write as many bytes as will fit in the remaining bytes of opb. Move the adjusted remainder from step 9 to \(C L\) and test for zero.

If the remainder is zero, no more shifting is required; continue with step 12.

Otherwise, continue at step 11.
11. Shift the smaller operand bit by bit until it's in position.
12. Compare the signs of the larger and smaller operands.

If they're the same, continue with step 14.
If the larger operand is negative, continue with step 13.
Otherwise, subtract the smaller operand from the larger and continue with step 15.
13. Two's-complement the larger operand.
14. Add the smaller operand to the larger and return a pointer to the result.

\section*{The FLADD Routine: Aligning the Radix Point}
shift_into_position:
;align operands
xor \(a x, a x\)
mov bx, 4
mov cl,3
mov ah,byte ptr diff
shr ax,cl ;ah contains \# of bytes, ;a1 \# of bits
mov cx,5h
shr al,cl
sub bl,ah ;reset pointer below initial
lea di,byte ptr opb
add di,bx
mov cx,bx
inc cx
load_operand:
movsb
loop load_operand
mov cl,al
xor ch,ch
or cx, Cx
```

 je end shift
 shift_operand:
shr word ptr opb[6],1
rcr word ptr opb[4],1
rcr word ptr opb[2],1
rcr word ptr opb[0],l
loop shift_operand
end_shift:
mov al, byte ptr signa
cmp al, byte ptr signb
je just_add
opb_negative:
not word ptr opb[6] ;do two's complement
not word ptr opb[4]
not word ptr opb[2]
neg word ptr opb[0]
jc just_add
adc word ptr opb[2],0
adc word ptr opb[41,0
adc word ptr opb[6],0
just_add:
invoke add64, opa, opb, rptr

```

\section*{FLADD: The Epilogue.}
15. Test the result of the fixed-point addition for zero. If it's zero, leave the routine and write a floating-point zero to output.
16. Determine whether normalization is necessary and, if so, whichdirection to shift.

If the most significant word of the result is zero, continue with step 18.

If the MSB of the most significant word is zero, continue with step 17.
If the MSB of the second most significant byte of the result (the hidden bit) isn't set, continue with step 18.
Otherwise, no shifting is necessary; continue with step 19.
17. Shift the result right, incrementing the exponent as you go, until the second most significant byte of the most significant word is set. This will be the hidden bit. Continue with step 19.
18. Shift the result left, decrementing the exponent as you go, until the second most significant byte of the most significant word is set. This

\section*{FLOATING-POINT ARITHMETIC}
will be the hidden bit. Continue with step 19.
19. Shift the most significant word left once to insert the exponent. Shift it back when you're done, then or in the sign.
20. Write the result to the output and return.

\section*{FLADD: The Epilogue}
handle_sign:
\begin{tabular}{lll} 
mov & si, word ptr rptr \\
mov & \(d x\), & word ptr \\
mov & bi] [4] \\
mov & ax, word \(\operatorname{ptr}\) & [si][2] \\
& & word
\end{tabular}
norm:
sub cx,cx
cmp ax, cx
jne not_zero
cmp bx,cx
jne not_zero
cmp dx,cx
jne not_zero
jmp write_result
;exit with a zero
mov cx,64
cmp dx,0h
je rotate_result_left
cmp \(\quad \mathrm{dh}, \mathrm{O} 0 \mathrm{~h}\)
jne rotate_result_right
test d1,80h
je rotate_result_left
jmp short_done_rotate
rotate_result_right:
shr dx,1
rcr bx,l
rcr ax,1
inc byte ptr exponent ;decrement exponent with ;each shift
test dx,0ff00h
je done rotate
loop rotate result right
rotate_result_left:
shl ax,1
rcl bx,l

\section*{NUMERICAL METHODS}
```

 rcl dx,1
 dec byte ptr exponent ;decrement exponent with
 ;each shift
 test dx,80h
 jne done rotate
 loop rotate result left
 done rotate:
and dx,7fh
shl dx 1
or dh, byte ptr exponent ;insert exponent
shr dx, 1
mov cl, byte ptr sign ;sign of result of
;computation
or cl, cl
je fix sign
or dx,8000h
fix-sign:
mov cl, byte ptr signa ;sign of larger operand
or cl, cl
je write result
or dx,80;0h
write result:
mov di,word ptr rptr
mov word ptr [di],ax
mov word ptr [di][2],bx
mov word ptr [di][4],dx
sub ax,ax
mov word ptr [di][6],ax
fp_addex:
popf
ret
fladd endp

```

At the core of this routine is a fixed-point subroutine that actually does the arithmetic. Everything else involves extracting the fixed-point numbers from the floating-point format and aligning. Fladd calls add64 to perform the actual addition. (This is the same routine described in Chapter 2 and contained in the FXMATH.ASM listing in Appendix C and included on the accompanying disk). It adds two quadword variables passed on the stack with multiprecision arithmetic and writes the output to a static variable, result.

\section*{FLOATING-POINT ARITHMETIC}

\section*{Multiplication and Division}

One minor difference between the multiplication and division algorithms is the error checking at the entry point. Not only are zero and infinity tested in the prologue to division as they are in the prologue to multiplication, we also check to determine whether the operands are the same. If they are identical, a one is automatically returned, thereby avoiding an unnecessary operation.

Floating point treats multiplication and division in a manner similar to logarithmic operations. These are essentially the same algorithms taught in school for doing multiplication and division with logarithms except that instead of log,,, these routines use \(\log _{2}\). (The exponent in these routines is the \(\log\), of the value being represented.) To multiply, the exponents of the two operands are added, and to divide the difference between the exponents is taken. Fixed point arithmetic performs the multiplication or division, any overflow or underflow is handled by adjusting the exponents, and the results are renormalized with the new exponents. Note that the values added and subtracted as the biases aren't exactly 127D. This is because of the manner in which normalization is accomplished in these routines. Instead of orienting the hidden bit at the MSB of the most significant word, it is at the MSB of the penultimate byte (in this case DL). This shifts the number by 8 bits, so the bias that is added or subtracted is 119D.

\section*{FLMUL}

The pseudocode for floating point multiplication is as follows:

\section*{flmul: Algorithm}
```

1. Check each operand for zero and infinity.
If one is found to be infinite, exit through step 9.
If one is found to be zero, exit through step 10.
2. Extract the exponent of each operand, subtract 77H (119D) from one of
them, and add to form the approximate exponent of the result.
3. Test each operand for sign and set the sign variable accordingly.
4. Restore the hiddenbit in eachoperand. Now each operand is a fixed-point
number in the form 1.XXXX...
```

\section*{NUMERICAL METHODS}
5. Multiply the two numbers with the fixed-point routine mul64a.
6. Check the result for zero. If it is zero, exit through step 10.
7. Renormalize the result, incrementing or decrementing the exponent at the same time. This accounts for any overflows in the result.
8. Replace the exponent, set the sign, and exit.
9. Infinity exit.
10. Zero exit.

\section*{flmul: Listing}
; *****
;
;
flmul proc \(\quad c\) uses bx cx dx si di,
fp0:qword, fpl:qword, rptr:word
local result[8]:word, sign:byte, exponent:byte
pushf
std
sub ax,ax
mov byte ptr sign,al ;clear sign variable
lea di,word ptr result[14]
mov
rep stosw
;
lea si,word ptr fp0 ;name a pointer to each fp
lea bx,word ptr fp1
mov ax,word ptr [si][4]
shl
and
ax, 1
ax,0ff00h ;check for zero
jne
jmp
is_a_inf:
cmp ax, Off00h
jne is b zero
jmp return_infinite ;multiplicand is infinite
is_b_zero:
mov \(d x\),word ptr [bx][4]
shl \(d x, 1\)
and dx,0ff00h ;check for zero

\section*{FLOATING-POINT ARITHMETIC}
```

 jnz is b inf
 jmp make_zero
 is_b_inf:
cmp dx,0ff00h
jne get_exp
jmp return infinite
;
get_exp:
sub ah, 77h
add ah, dh
mov
;
mov
Or
jns
not byte ptr sign
a_plus:
mov dx,word ptr [bx][4
or dx, dx
jns restore missing bit
not byte ptr sign
restore missing bit:
and word ptr fp0[4], 7fh ;remove the sign and exponent
or word ptr fpO[4], 80h
and word ptr fpl[4], 7fh
or word ptr fp1[4], 80h
invoke mul64a, fp0, fpl, addr result ;multiply with fixed point
;routine
;check for zeros on return
mov bx, word, ptr result[8]
mov ax, word, ptr results[6]
sub cx, cx
cmp ax,cx
jne not_zero
cmp bx,cx
jne not_zero
cmp dx,cx
jne not_zero
jmp fix_sign
;and restore the hidden bit
;exit with a zero

```

\section*{NUMERICAL METHODS}
```

not_zero:
mov cx,64
cmp dx,0h
je rotate_result_left
cmp dh,00h
jne rotate_result_right
test d1,80h
je rotate_result_left
jmp short_done_rotate
rotate result right:
shr dx,l
rcr bx,l
rcr ax,1
test dx,0ff00h
je done_rotate
inc byte ptr exponent ;decrement exponent with
loop rotate_result_right
rotate_result_left:
shl word ptr result[2],1
rcl word ptr result[4],1
rcl ax,1
rcl bx,l
rcl dx,l
test dx,80h
jne done rotate
dec byte ptr exponent
loop rotate result left
done_rotate:
and
dx,7fh
shl dx, 1
or dh, byte ptr exponent
shr dx, 1
cl,byte ptr sign
cl,cl
je fix-sign
or dx,8000h
fix_sign:
mov
mov word ptr [di], ax
mov word ptr [di][2],bx
mov word ptr [di][4],dx
;decrement exponent with
;each shift
;clear sign bit
;insert exponent
;set sign of float based on
;sign flag
;write to the output

```
```

 ax,ax
 word ptr [di][6],ax
 fp_mulex:
popf
ret
;
return infinite:
sub ax, ax
mov bx, ax
not ax
mov dx, ax
and dx, 0f80h ;infinity
jmp short fix_sign
make_zero:
xor ax,ax
finish_error:
mov di,word ptr rptr
add di,6
mov cx, 4
rep stos word ptr [di]
jmp short fp_mulex
flmul endp

```

The multiplication in this routine was performed by the fixed-point routine mul64a. This is a specially-written form of mul64 which appears in FXMATH.ASM on the included disk. It takes as operands, 5 -byte integers, the size of the mantissa plus extended bits in this format, and returns a 10-byte result. Knowing the size of the operands, means the routine can be sized exactly for that result, making it faster and smaller.

\section*{mul64a: Algorithm}
1. Use DI to hold the address of the result, a quadword.
2. Move the most significant word of the multiplicand into AX and multiply by the most significant word of the multiplier. The product of this multiplication is written to the most significant word result.
3. The most significant word of the multiplicand is returned to AX and multiplied by the second most significant word of the multiplier. The least significant word of the product is MOVed to the second most significant word of result, the most significant word of the product is

\section*{NUMERICAL METHODS}

ADDed to the most significant word of result.
4. The most significant word of the multiplicand is returned to AX and multiplied by the least significant word of the multiplier. The least significant word of this product is MOVed to the third most significant word of result, the most significant word of the product is ADDed to the second most significant word of result, any carries are propagated through with an ADC instruction.
5. The second most significant word of the multiplicand is MOVed to AX and multiplied by the most significant word of the multiplier. The lower word of the product is ADDed to the second most significant word of result and the upper word is added-with-carry (ADC) to the second most significant word of result.
6. The second most significant word of the multiplicand is again MOVed to AX and multiplied by the secondmost significant word of the multiplier. The lower word of the product is ADDed to the third most significant word of result and the upper word is added-with-carry (ADC) to the secondmost significant word of result with any carries propagated to the MSW with an ADC.
7. The second most significant word of the multiplicand is again MOVed to AX and multiplied by the least significant word of the multiplier. The lower word of the product is MOVed to the fourth most significant word of result and the upper word is added-with-carry (AX) to the thirdmost significant word of result with any carries propagated through to the MSW with an ADC.
8. The least significant word of the multiplicand is MOVed into AX and multiplied by the MSW of the multiplier. The least significant word of this product is ADDed to the third most significant word of result, the MSW of the product is ADCed to the second most significant word of result, and any carry is propagated into the most significant word of result with an ADC.

\section*{mul64a: Listing}
; *****
;* mu164a - Multiplies two unsigned 5-byte integers. The
;* procedure allows for a product of twice the length of the multipliers, ;* thus preventing overflows.
mu164a proc uses ax dx,
multiplicand:qword, multiplier:qword, result:word
mov di,word ptr result
sub cx, cx

\section*{FLOATING-POINT ARITHMETIC}


\section*{NUMERICAL METHODS}
```

 mul word ptr multiplier[2] ;word by second MSW of
 ;multiplier
add word ptr [di][2], ax
adc word ptr [di][4], dx
adc word ptr [di][6], cx
adc word ptr [di][8], cx
mul
word ptr multiplier[2]
word ptr multiplier[2]
word ptr multiplier[2]
word ptr [di][4], cx ;add any remnant carry
word ptr [di][61, cx ;add any remnant carry
word ptr [di][8], cx ;add any remnant carry
mul word ptr multiplier[0]
;add any remnant carry
word ptr [di][8], cx }\quad\mathrm{ ;add any remnant carry
;multiply multiplicand low
mul
mov
add
adc
adc
adc
mov
ret
mu164a endp

```

\section*{FLDIV}

The divide is similar to the multiply except that the exponents are subtracted instead of added and the alignment is adjusted just before the fixed-point divide. This adjustment prevents an overflow in the divide that could cause the most significant word to contain a one. If we divide by two and increment the exponent, div64 returns a quotient that is properly aligned for the renormalization process that follows.

The division could have been left as it was and the renormalization changed, but since it made little difference in code size or speed, it was left. This extra division does not change the result.

\section*{fldiv: Algorithm}
1. Check the operands for zero and infinity.

If one is found to be infinite, exit through step 11.
If one is found to be zero, exit through step 12.
2. Test the divisor and dividend to see whether they are equal. If they are, exit now with a floating-point 1.0 as the result.
3. Get the exponents, find the difference and subtract 77H (119D). This is the approximate exponent of the result.

\section*{FLOATING-POINT ARITHMETIC}
4. Check the signs of the operands and set the sign variable accordingly.
5. Restore the hidden bit.
6. Check the dividend to see if the most significant word is less than the divisor to align the quotient. If it's greater, divide it by two and increment the difference between the exponents by one.
7. Use div64 to perform the division.
8. Check for a zero result upon return and exit with a floating-point 0.0 if so.
9. Renormalize the result.
10. Insert the exponent and sign and exit.
11. Infinite exit.
12. Zero exit.

\section*{fldiv: Listing}
```

; *****
;
;
fldiv proc C uses bx cx dx si di,
fp0:gword, fpl:qword, rptr:word
local qtnt:qword, sign:byte, exponent:byte, rmndr:gword
pushf
std
xor ax,ax
mov byte ptr sign, al ;begin error and situation
;checking
lea si,word ptr fp0 ;name a pointer to each fp
lea bx,word ptr fpl
mov ax,word ptr [si][4]
shl ax,1
and ax,0ff00h ;check for zero
jne chk_b
jmp return infinite :infinity
chk_b:
mov dx,word ptr [bx][4]
shl a,1
and dx,0ff00h
jne b_notz

```

\section*{NUMERICAL METHODS}
```

 jmp divide-by-zero
 b_notz:
cmp dx,OffOOh
jne check_identity
jmp make_zero
check_identity:
mov di,bx
add di,4
add si,4
mov cx,3
repe cmpsw
jne not same
mov ax,word ptr dgt[8]
mov bx,word ptr dgt[10]
mov dx,word ptr dgt[12]
mov di,word ptr rptr
mov word ptr [di],ax
mov word ptr [di][2],bx
mov word ptr [di][4],dx
sub ax,ax
mov word ptr [di][6],ax
jmp fldivex
not same:
lea
si,word ptr fp0
lea bx,word ptr fp1
sub ah,dh
add ah,77h
mov byte ptr exponent,ah
mov dx, word ptr [si][4]
Or
h, dx
jns a_plus
not byte ptr sign
a_plus:
mov dx,word ptr [bx][4]
or dx, dx
jns restore_missing_bit
not byte ptr sign
restore_missing_bit: ;line up operands for division

```

\section*{FLOATING-POINT ARITHMETIC}
```

 and word ptr fp0[4], 7fh
 or word ptr fp0[4], 80h
 mov dx, word ptr fp1[4]
 and dx, 7fh
 or dx, 80h
 cmp dx,word ptr fp0[4]
 ja store dvsr
 inc byte ptr exponent
 shl word ptr fp1[0], 1
 rcl word ptr fp1[2], 1
 rcl dx, 1
 store_dvsr:
mov word ptr fp1[41, dx
divide:
invoke divmul, fp0, fpl, addr fp0 ;perform fixed point division
mov dx,word ptr fp0[4] ;check for zeros on return
mov bx,word ptr fp0[2]
mov ax,word ptr fp0[0]
sub cx, cx
cmp ax,cx
jne not zero
cmp bx,cx
jne not zero
cmp dx,cx
jne not zero
jmp fix-sign
not_zero:
mov cx,64
cmp dx,Oh
je rotate_result_left ;realign float
cmp d h , O O h
jne rotate_result_right
test d1,80h
je rotate_result_left
jmp short done_rotate
rotate_result_right:
shr dx,1
rcr bx,1
rcr ax,1
test dx,0ff00h
je done_rotate
;see if divisor is greater than

```
;exit with a zero
; should never go to zero
;realign float
;see if divisor is greater than ;dividend then divide by 2
```

divmul, fp0, fpl, addr fp0
; perform fixed point division ; check for zeros on return

```
```

 inc byte ptr exponent ;decrement exponent with
 loop rotate result right
 rotate_result_left:
shl word ptr qtnt,l
rcl ax,1
rcl bx,l
rcl dx,l
test dx,80h
jne done_rotate
dec byte ptr exponent ;decrement exponent with
loop rotate_result_left
done rotate:
and dx, 7fh
shl dx, 1
or dh, byte ptr exponent ;insert exponent
shr dx, 1
mov cl,byte ptr sign ;set sign flag according
or cl,cl
je fix_sign
or dx,8000h
fix_sign:
mov di,word ptr rptr
mov word ptr [di],ax
mov word ptr [di][2],bx
mov word ptr [di][4],dx
sub ax,ax
mov word ptr [di][61,ax
fldivex:
popf
ret
return infinite:
sub ax, ax
mov bx, ax
not ax
mov dx, ax
and dx, 0f80h
;infinity

```
jmp short finish error
```

make_zero:
xor ax,ax ;positive zero
finish_error:
mov di,word ptr rptr
add di,6
mov cx,4
rep stos word ptr [di]
jmp short fldivex
fldiv endp

```

In order to produce the accuracy required for this floating-point routine with the greatest speed, use div64 from Chapter 2. This routine was specifically written to perform the fixed-point divide.

\section*{Rounding}

Rounding is included in this discussion on floating point because it's used in the external routines.

IEEE 754 says that the default rounding shall "round to nearest," with the option to choose one of three other forms: round toward positive infinity, round to zero, and round toward negative infinity. Several methods are available in the rounding routine, as you'll see in the comments of this routine.

The default method in round is "round to nearest." This involves checking the extended bits of the floating-point number. If they're less than half the LSB of the actual float, clear them and exit. If the extended bits are greater than half the LSB, add a one to the least significant word and propagate the carries through to the most significant word. If the extended bits are equal to exactly one-half the LSB, then round toward the nearest zero. If either of the last two cases results in an overflow, increment the exponent. Clear AX (the extended bits) and exit round. If a fault occurs, AX contains -1 on exit.

\section*{round: Algorithm}
1. Load the complete float, including extended bits, into the microprocessor's

\section*{NUMERICAL METHODS}
registers.
2. Compare the least significant word with one-half (8000H).

If the extended bits are less than one-half, exit through step 5.
If the extended bits aren't equal to one-half, continue with step 3 .
If the extended bits are equal to one-half, test the LSB of the representable portion of the float.

If it's zero, exit through step 5.
If it's one, continue with step 3.
3. Strip the sign and exponent from the most significant word of the float and add one to the least significant word. Propagate the carry by adding zero to the upper word and test what might have been the hidden bit for a one.

A zero indicates that no overflow occurred; continue with step 4.
A one indicates overflow from the addition. Get the most significant word of the float, extract the sign and exponent, and add one to the exponent.

If this addition resulted in an overflow, exit through step 5.
Insert the new exponent into the float and exit through step 5.
4. Load the MSW of the float. Get the exponent and sign and insert them into the rounded fixed-point number; exit through step 5 .
5. Clear \(A X\) to indicate success and write the rounded float to the output.
6. Return \(a-1\) in \(A X\) to indicate failure. Make the float a Quiet NAN (positive overflow) and exit through step 5.

\section*{Round: Listing}
```

; *****
;
round proto flp0:qword, rptr:word
round proc uses bx dx di, fp:qword, rptr:word
mov ax,word ptr fp[0]
mov bx,word ptr fp[2]
mov dx,word ptr fp[4]
cmp ax,8000h
jb round ex ;less than half
jne needs_rounding
test bx,l ;put your rounding scheme
;here, as in the
je round_ex
;commented-out code below

```
\begin{tabular}{|c|c|c|}
\hline jmp & short needs rounding & \\
\hline ; xor & \(\mathrm{x}, 1\) & ;round to even if odd ;and odd if even \\
\hline ; or & bx, 1 & ; round down if odd and up if ;even (jam) \\
\hline jmp & round_ex & \\
\hline needs rounding: & & \\
\hline and & \(\mathrm{dx}, 7 \mathrm{fh}\) & \\
\hline add & bx,1h & \\
\hline adc & dx,0 & \\
\hline test & \(\mathrm{dx}, 80 \mathrm{~h}\) & ;if this is a one, there will \\
\hline je & renorm & ; be an overflow \\
\hline mov & ax,word ptr fp[4] & \\
\hline and & \(\mathrm{dx}, 7 \mathrm{fh}\) & \\
\hline and & ax,0ff80h & ; get exponent and sign \\
\hline add & ax, 80h & ;kick it up one \\
\hline jo & over flow & \\
\hline or & dx, ax & \\
\hline jmp & short round_ex & \\
\hline \multicolumn{3}{|l|}{renorm:} \\
\hline mov & ax,word ptr fp[4] & \\
\hline and & ax,0ff80h & ; get exponent and sign \\
\hline or & \(d x, a x\) & \\
\hline \multicolumn{3}{|l|}{round_ex:} \\
\hline sub & ax, ax & \\
\hline \multicolumn{3}{|l|}{round_exl:} \\
\hline mov & di,word ptr rptr & \\
\hline mov & word ptr [di][0],ax & \\
\hline mov & word ptr [di][Z],bx & \\
\hline mov & word ptr [di][4],dx & \\
\hline sub & ax, ax & \\
\hline mov & word ptr [di][6],ax & \\
\hline ret & & \\
\hline \multicolumn{3}{|l|}{over_flow:} \\
\hline xor & ax, ax & \\
\hline mov & \(b x, a x\) & \\
\hline not & ax & \\
\hline mov & dx, ax & \\
\hline xor & \(d x, 7 \mathrm{fH}\) & ;indicate overflow with an ;infinity \\
\hline jmp & short round ex1 & \\
\hline round endp & & \\
\hline
\end{tabular}

\section*{NUMERICAL METHODS}

1
Ochs, Tom. "A Rotten Foundation," Computer Language 8/2: Page 107. Feb. 1991.

Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Publishing Co., 1981, Pages 213-223.
3 IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754, 1985).

Plauger, P.J. "Floating-Point Arithmetic," Embedded Systems Programming 4/8: Pages 95-100. Aug. 1991.

\section*{CHAPTER 5}

\section*{Input, Output, and Conversion}

To be useful, an embedded system must communicate with the outside world. How that communication proceeds can strongly influence the system's speed and efficiency.

Often, the nature of the system and the applications program that drives it defines the form of the commands that flow between an embedded system and the host. If it's a graphics card or servo controller embedded in a PC, the fastest way to communicate is pure binary for both commands and data. Depending on the availability of a math chip, the numerics are in either fixed or floating-point notation.

Even so, it's quite common to find such systems using ASCII strings and decimal arithmetic to interface with the user. That's because binary communication can be fast, even though it has its problems. The General Purpose Interface Bus (GPIB) has some of the advantages and speed of the hardware interface, but the binary command and data set can sometimes imitate its own bus-control commands and cause trouble. Binary information on RS232, perhaps the most commonly used interface, has similar problems with binary data aliasing commands and delimiters. Packet-based communications schemes are available, however, they can be slow and clumsy. Any problem can be solved on closed systems under controlled circumstances, but rigorous, simple communication schemes often default to ASCII or EBCDIC for ease of debugging and user familiarity.

Whatever choices you make for your system, it will almost always have to communicate with the outside world. This often means accepting and working with formats that are quite foreign to the binary on the microprocessor bus. What's more, the numerics will most likely be decimal and not binary or hex, since that's how most of us view the world.

\section*{Decimal Arithmetic}

If your system does very little calculation or just drives a display, it may not be worth converting the incoming decimal data to another format. The Z80, 8085, and 8051 allow limited addition and subtraction in the form of the DAA or \(D A\) instruction. On the Intel parts, this instruction really only helps during addition; the Z80 can handle decimal correction in both addition and subtraction. The \(80 \times 86\) family offers instructions aimed at packing and unpacking decimal data, along with adjustments for a limited set of basic arithmetic operations. The data type is no greater than a byte, however, making the operation long and cumbersome to implement. The 8096 family lacks any form of decimal instructions such as the DAA or auxiliary carry flag.

Binary-based microprocessors do not work easily with decimal numbers because base 2, which is one bit per digit, and even base 16, which is four bits per digit, are incompatible with base 10 ; they have a different modulus. The DAA instruction corrects for this by adding six to any result greater than nine (or on an auxiliary carry), thereby producing a proper carry out to the next digit.

A few other instructions are available on the 80 x 86 for performing decimal arithmetic and converting to and from ASCII:
- \(A A A\) stands for ASCII Adjust After Addition. Add two unpacked (one decimal digit per byte) 8 -bit decimal values and put the sum in AL . If the sum is greater than nine, this instruction will add six but propagate the carry into AH. That leaves you with an unpacked decimal value perfectly suited for conversion to ASCII.
- \(A A D\) stands for ASCII Adjust before Division, takes an unpacked value in AX and performs an automatic conversion to binary, placing the resulting value in AL. This instruction can help convert ASCII BCD to binary by handling part of the process for you.
- The \(A A M\) instruction, which stands for ASCII Adjust After Multiply, unpacks an 8-bit binary number less than 100 into AL , placing the most significant digit in AH and the least significant in AL. This instruction allows for a fast, easy conversion back to ASCII after a multiplication or division operation.
- AAS stands for ASCII Adjust After Subtraction, corrects radix misalignment

\section*{INPUT, OUTPUT, AND CONVERSION}
after a subtraction. If the result of the subtraction, which must be in AL, is greater than nine, AH is decremented and six is subtracted from AL. If AH is zero, it becomes -1 ( 0 ffH ).

The purpose of these functions is to allow a small amount of decimal arithmetic in ASCII form for I/O. They may be sufficient to drive displays and do simple string or keyboard handling, but if your application does enough number crunching-and it doesn't take much-you'll probably want to do it in binary; it's much faster and easier to work with.

\section*{Radix Conversions}

In his book Seminumerical Algorithms, Donald Knuth writes about a number of methods for radix conversion \({ }^{1}\). Four of these involve fundamental principles and are well worth examining.

These methods are divided into two groups: one for integers and one for fractions. Note: properly implemented, the fractional conversions will work with integers and the integer conversions with the fractions. In the descriptions that follow, we'll convert between base 10 and base 2 . Base A will be the base we're converting from, and base B will be the base we're converting to. The code in this section uses binary arithmetic, often with hexadecimal notation, because that's the native radix of most computers and microprocessors. In addition, all conversions are between ASCII BCD and binary, but you can use these algorithms with any radix.

\section*{Integer Conversion by Division}

In this case, base \(A(2)\) is converted to base \(B\) (10) by division using binary arithmetic. We divide the number to be converted by the base we're converting to and place it in a variable. This is a modular operation, and the remainder of the division is the converted digit. The numbers are converted least significant digit first.

If we were to convert 0ffH (255D) to decimal, for example, we would first divide by \(0 \mathrm{aH}(10 \mathrm{D})\). This operation would produce a quotient of 19 H and a remainder of 5 H (the 5 is our first converted digit). We would then divide 19 H by 0 aH , for a resulting quotient of 2 H and a remainder of 5 H (the next converted digit). Finally,

\section*{NUMERICAL METHODS}
we would divide 2 H by 0 aH , with a 0 H result and a 2 H remainder (the final digit). Briefly, this method works as follows:
1. Shift the bits of the variable decimal_accumulator right four bits to make room for the next digit.
2. Load an accumulator with the value to be converted and divide by 0 aH (10D).
3. \(O R\) the least significant nibble of decimal_accumulator with the four-bit remainder just produced.
4. Check the quotient to see that there is something left to divide.

If so, continue with step 1 above.
If not, return decimal_ accumulator as the result.

The routine bn_dnt converts a 32 -bit binary number to an ASCII string. The routine expects no more than eight digits of decimal data (you can change this, of course).

This routine loads the number to be converted into AX, checks it for zero, and if possible divides it by 10 . Because the remainder from the first division is already in DX, we don't have to move it to prepare for the second division (on the LSW). The remainder generated by these divisions is \(O R\) ed with zero, resulting in an ASCII character that's placed in a string. The conversion is unsigned (we'll see examples of signed conversions later in this chapter).

\section*{bn_dnt: Algorithm}
```

1. Point to the binary value, binary, to be converted and to the output
string, decptr. Load the loop counter for maximum string size.
2. Get the MSW of binary and check for zero.
If it's zero, continue with step 6.
If not, divide by 10.
Return the quotient to the MSW of binary.
Check the remainder for zero.
If it's zero, continue with step 6.
If not, go on to step 3.
3. Get the LSW of binary and check for zero.
```

\section*{INPUT, OUTPUT, AND CONVERSION}

If it's zero, check the remainder from the last division. If it's also zero, continue with step 5 .

Otherwise, continue with step 4.
4. Divide by 10 and return the quotient to the LSW of binary.
5. Make the result ASCII by ORing zero (30H). Write it to the string, increment the pointer, and decrement the loop pointer,
If the loop counter isn't zero, continue with step 2 .
Otherwise, exit with an error.
6. Test the upper word of binary for zero.

If it's not zero, go to step 3.
If it's,check the LSW of the binary variable.
If it's not zero, go to step 4.
If it's, we're done; go to step 7.
7. Realign the string and return with the carry clear.

\section*{bn-dnt: Listing}
```

;*****
; bn_dnt - a routine that converts binary data to decimal
;
;A doubleword is converted. Up to eight decimal digits are
;placed in the array pointed to by decptr. If more are required to
;convert this number, the attempt is aborted and an error flagged.
;
bn_dnt proc uses bx cx dx si di, binary:dword, decptr: word

lea	si,word ptr binary	; get pointer to MSB of ; decimal value
mov	di,word ptr decptr	;string of decimal ASCII digits
mov	cx, 9	
add	di, cx	;point to end of string ;this is for correct ordering
sub	$b x, b x$	
mov	dx, bx	
mov	byte ptr [di],bl	;see that string is zero;terminated
dec	di	

binary_conversion:
sub dx, dx
mov ax,word ptr [si][2] ;get upper word

```
```

 or ax,ax
 je
 div
 mov
 or
 je
divide_lower:
mov ax, word ptr [si]
or
jne
or
je
not_zero:
div iten
put_zero:
mov
or
mov bytr, [di], dl
dec
loop
oops:
mov
ax,-1
stc
ret
chk_empty:
or dx,ax
je still_nothing
jmp short divide_lower
still_nothing
mov ax, word ptr [si]
binary
or ax, ax
je empty
jmp
word ptr [si],ax
dl,'0'
di
binary_conversion
jmp short not_zero
empty:
inc di
mov si, di

```
```

;see if it is zero

```
;see if it is zero
;if so, check empty
;if so, check empty
;divide by }1
;divide by }1
;check for zeros
;check for zeros
;always checking the least
;significant word
;of the binary accumulator
;for zero
;divide lower word
;save quotient
;make the remainder an ASCII
;digit
;write it to a string
;too many characters; just leave
;we are done if the variable
;ls empty
;check least significant word of
;variable for zero
;realign string
;trade pointers
```


INPUT, OUTPUT, AND CONVERSION

```
    mov di, word ptr decptr
    mov cx, 9
rep movsw
finished:
    sub ax,ax ;success
        clc
    ;no carry = success!
```

Integer Conversion by Multiplication

In this case, base A (10) is converted to base B (2) by multiplication using binary arithmetic. We convert the number by multiplying the result variable, called binary-accumulator, by base A (10), before adding each new decimal digit.

To see how this is done, we can reverse the conversion we just completed. This time, we wish to convert 255D to binary. First we create an accumulator, binvar, to hold the result (which is initially set to 0) and a source variable, decvar, to hold the decimal value. We then add decimal digits to binvar one at a time from decvar which is set to 255D. The first iteration places 2D in binvar; we multiply this by 0 aH (10D) to make room for the next addition. (Recall that the arithmetic is binary.) Binvar is now 14 H . The next step is to add 5D. The result, 19 H , is then multiplied by 0 aH to equal $0 f$ faH. To this value we add the final digit, 5D, to arrive at the result $0 f f H$ (255D). This is the last digit, so no further multiplications are necessary.

Assume a word variable, decvar, holds four packed decimal digits. The following pseudocode illustrates how these digits are converted to binary and the result placed in another word variable, binvar.

1. Assume binvar and decvar are word variables located somewhere in RAM.
2. Multiply binvar by base A (10), the routine is converting from base A to base B.
3. Shift a digit (starting with the most significant) from decvar into binvar.
4. Test decvar to see whether it is zero yet.

If it is, we are done and write binvar to memory or return it as the result.
If not, continue from step 2.

NUMERICAL METHODS

In the following code, a pointer to a string of ASCII decimal digits is passed to a subroutine that, in turn, returns a pointer to a doubleword containing the binary conversion. The routine checks each digit for integrity before processing it. If it encounters a nondecimal character, it assumes that it has reached the end of the string. Multiplication by 10 is performed in-line to save time.

dnt_bn: Algorithm

1. Point at the base of the $B C D$ ASCII string (the most significant decimal digit), clear the binary accumulator, and load the loop counter with the maximum string length.
2. Get the ASCII digit and test to see whether it is between 0 and 9, If not, we are done; exit through step 4.

If so, call step 5 to multiply the binary accumulator by 10 . Coerce the ASCII digit to binary, add that digit to the binary accumulator, increment the string pointer, and decrement the loop counter.

If the loop counter is zero, go to step 3.
If not, continue with step 2
3. Exit with error.
4. Write the binary accumulator to output and leave with the carry clear.
5. Execute in-line code to multiply DX:BX by 10.

dnt_bn: Listing

; *****
; dnt_bn - decimal integer to binary conversion routine ; unsigned
; It is expected that decptr points at a string of ASCII decimal digits. ; Each digit is taken in turn and converted until eight have been converted ;or until a nondecimal number is encountered. ; This might be used to pull a number from a communications buffer. ; Returns with no carry if successful and carry set if not.
dnt bn proc uses bx cx dx si di, decptr:word, binary:word

mov	si,word ptr decptr
sub	ax,ax
mov	bx,ax pointer to beginning of
;BCD ASCII string	

INPUT, OUTPUT, AND CONVERSION

```
    mov dx,bx
    mov cx, 9
decimal_conversion:
    mov al,byte ptr [si]
    cmp al,'o'
    jb work_done
    cmp al, 'g'
    ja
    call
    xor
    add
    adc
    inc
    loop
oops:
    stc
    ret
work_done:
    mov di, word ptr binary
    mov word ptr [di],bx
    mov
    clc
    ret
times_ten:
    push
    push
    shl
    rcl
    mov
    mov
        cx, dx
    shl bx,l
    rcl dx,l
    shl bx,l
    rcl dx,l
```


NUMERICAL METHODS

```
    add ;this is the multiply by eight
pop ax
retn
dnt_bn endp
```

```
;add the multiply by two to
```

;add the multiply by two to
;get 10
;get 10
;get it back

```
;get it back
```


Fraction Conversion by Multiplication

The next algorithm converts a fraction in base A (2) to base B (10) by successive multiplications of the number to be converted by the base to which we're converting.

First, let's look at a simple example. Assume we need to convert 8 cH to a decimal fraction. The converted digit is produced as the overflow from the data type, in this case a byte. We multiply 8 cH by 0 aH , again using binary arithmetic, to get 578 H (the five is the overflow). This conversion may actually occur between the low byte and high byte of a word register, such as the AX register in the 8086 . We remove the first digit, 5 , from the calculation and place it in an accumulator as the most significant digit. Next, we multiply 78 H by 0 aH , for a result of 4 b 0 H . Before placing this digit in the accumulator, we shift the accumulator four bits to make room for it. This procedure continues until the required precision is reached or until the initial binary value is exhausted.

Round with care and only if you must. There are two ways to round a number. One is to truncate the conversion at the desired precision plus one digit, $\mathrm{n}_{-\mathrm{k}+\mathrm{l}^{\prime}}$ where n is a converted digit and k is positional notation. A one is then added to the least significant digit plus one, $\mathrm{n}_{-\mathrm{k}}$, if the least significant digit $\mathrm{n}_{-\mathrm{k}+1}$, is greater than onehalf of $\mathrm{n}_{-\mathrm{k}}$. This propagates any carries that might occur in the conversion. The other method involves rounding the fraction in the source base and then converting, but this can lead to error if the original fraction cannot be represented exactly.

To use this procedure, we must create certain registers or variables. First, we create the working variable bfrac to hold the binary fraction to be converted. Because multiplication requires a result register as wide as the sum of the bits of the multiplicand and multiplier, we need a variable as wide as the original fraction plus four bits. If the original fraction is a byte, as above, a word variable or register is more than sufficient. Next, we create $d f r a c$ to accumulate the result starting with the most

INPUT, OUTPUT, AND CONVERSION

significant decimal digit (the one closest to the radix point). This variable needs to be as large as the desired precision.

1. Clear $d f r a c$ and load $b f r a c$ with the binary fraction we're converting.
2. Check bfrac to see if it's exhausted or if we've reached our desired precision. If either is true, we're done.
3. Multiply bfrac by the base to which we're converting (in this case, 0 aH).
4. Take the upper byte of bfrac as the result of the conversion and place it in dfrac as the next less significant digit. Zero the upper byte of bfrac.
5. Continue from step 2.

The following routine accepts a pointer to a 32-bit binary fraction and a pointer to a string. The converted decimal numbers will be placed in that string as ASCII characters.

bfc_dc: Algorithm

```
1. Point to the output string, load the binary fraction in DX:BX, set the
    loop counter to eight (the maximum length of the string), and initialize
    the string with a period.
2. Check the binary fraction for zero.
    If it's zero, exit through step 3.
    If not, clear AX to receive the overflow. Multiply the binary fraction
    by 10, using AX for overflow. Coerce AX to ASCII and write it to the
    string. Decrement the loop counter.
    If the counter is zero, leave through step 3.
    Otherwise, clear the overflow variable and continue with step 2.
3. Exit with the carry clear.
```


bfc-dc: Listing

i *****
; bfc_dc - a conversion routine that converts a binary fraction
; (doubleword) to decimal ASCII representation pointed to by the string

NUMERICAL METHODS

```
;pointer decptr. Set for eight digits, but it could be longer.
bfc dc proc uses bx cx dx si di bp, fraction:dword, decptr:word
local sva:word, svb:word, svd:word
mov di,word ptr decptr ;point to ASCII output string
mov bx,word ptr fraction
mov dx,word ptr fraction[2]
mov
sub
mov byte ptr [di], '.' ;to begin the ASCII fraction
inc di
decimal conversion:
\begin{tabular}{|c|c|c|}
\hline or & \(a x, d x\) & ; check for zero operand \\
\hline or & ax,bx & ;check for zero operand \\
\hline jz & work done & \\
\hline sub & ax, ax & \\
\hline shl & bx, 1 & ;multiply fraction by 10 \\
\hline rcl & dx, 1 & \\
\hline rcl & ax, 1 & ;times 2 multiple \\
\hline mov & word ptr svb,bx & \\
\hline mov & word ptr svd, dx & \\
\hline mov & word ptr sva, ax & \\
\hline shl & bx, 1 & \\
\hline rcl & \(d x, 1\) & \\
\hline rcl & ax, 1 & \\
\hline shl & bx, 1 & \\
\hline rcl & dx, 1 & \\
\hline rcl & ax, 1 & \\
\hline add & bx,word ptr svb & \\
\hline adc & dx,word ptr svd & ; multiply by 10 \\
\hline adc & ax,word ptr sva & ;the converted value is ;placed in AL \\
\hline
\end{tabular}
```


INPUT, OUTPUT, AND CONVERSION

```
or al,'0' ;this result is ASCIIized and
mov byte ptr [di],al
inc di
sub ax,ax
loop decimal conversion
work done:
    mov byte ptr [di],al ;end string with a null
    clc
    ret
bfc_dc endp
```


Fraction Conversion by Division

Like conversion of integers by multiplication, this procedure is performed as a polynomial evaluation. With this method, base A (10) is converted to base B (2) by successively dividing of the accumulated value by base A using the arithmetic of base B. This is the reverse of the procedure we just discussed.

For example, lets convert .66D to binary. We use a word variable to perform the conversion and place the decimal value into the upper byte, one digit at a time, starting with the least significant. We then divide by the base from which we're converting. Starting with the least significant decimal digit, we divide 6.00 H (the radix point defines the division between the upper and lower bytes) by 0 aH to get .99 H . This fraction is concatenated with the next most significant decimal digit, yielding 6.99 H . We divide this number by 0 aH , for a result of. a 8 H . Both divisions in this example resulted in remainders; the first was less than one-half the LSB and could be forgotten, but the second was more than one-half the LSB and could have been used for rounding.

Create a fixed-point representation large enough to contain the fraction, with an integer portion large enough to hold a decimal digit. In the previous example, a byte was large enough to contain the result of the conversion $\left(\log _{10} 256\right.$ is approximately 2.4) with four bits for each decimal digit. Based on that, the variable bfrac should be at least 12 bits wide. Next, a byte variable dfrac is necessary to hold the two decimal digits. Finally, a counter (dcntr) is set to the number of decimal digits to be converted.

1. Clear bfrac and load dcntr with the number of digits to be converted.
2. Check to see that dcntr is not yet zero and that there are digits yet to convert. If not, the conversion is done.
3. Shift the least significant digit of dfrac into the position of the least significant integer in the fixed-point fraction bfrac.
4. Divide bfrac by 0 aH , clear the integer portion to zero, and continue with step 2.

The following example takes a string of ASCII decimal characters and converts them to an equivalent binary fraction. An invisible radix point is assumed to exist immediately preceding the start of the string.

Dfc_bn: Algorithm

```
1. Find least significant ASCII BCD digit. Point to the binary fraction
    variable and clear it. Clear DX to act as the MSW of the dividend and
    set the loop counter to eight (the maximum number of characters to
    convert).
2. Put the MSW of the binary result variable in AX and the least significant
    ASCII BCD digit in DL. Check to see if the latter is a decimal digit.
    If not, exit through step 6.
    If so, force it to binary. Decrement the string pointer and check the
    dividend (32-bit) for zero.
    If it's zero, go to step 3.
    Otherwise, divide DX:AX by 10.
3. Put AX in the MSW of the binary result variable and get the LSW. Check
    DX:AX for zero.
    If it's zero, go to step 4.
    Otherwise, divide DX:AX by 10.
4. Put AX in the LSW of the binary result variable. Clear DX for the next
    conversion. Decrement the loop variable and check for zero.
    If it's zero, go to step 5.
    Otherwise, continue with step 2.
5. Exit with the carry clear.
6. Exit with the carry set.
```


INPUT, OUTPUT, AND CONVERSION

Dfc-bn: Listing

```
;*****
```

; dfc_bn - A conversion routine that converts an ASCII decimal fraction
; to binary representation. decptr points to the decimal string to be
; converted. The conversion will produce a doubleword result. The
;fraction is expected to be padded to the right if it does not fill eight
; digits.
dfc_bn proc uses bx cx dx si di, decptr:word, fraction:word
pushf
cld
mov di, word ptr decptr ;point to decimal string
sub ax,ax
mov cx, 9
repne scasb ;find end of string
dec di
dec di ;point to least significant
mov si,di
;byte
mov di, word ptr fraction ;point of binary fraction
mov word ptr [di], ax
mov word ptr [di][2], ax
mov cx, 8
; maximum number of
;characters
binary_conversion:
mov ax, word ptr [di][2] ;get high word of result
mov dl, byte ptr [si]
$\mathrm{cmP} \mathrm{dl},{ }^{\prime} \mathrm{O}^{\prime}$
jb oops
cmp dl, 'g'
ja oops
xor dl, '0'
;if it gets past here,
;it must be OK
;deASCIIize

NUMERICAL METHODS

```
    dec si
    sub bx,bx
    or bx,dx
    or bx,ax
    jz no_div0 ;prevent a divide by zero
    div iten ;divide by 10
no_div0:
    mov word ptr [di][2],ax
    mov ax,word ptr [di]
    sub bx,bx
    or bx,dx
    or bx,ax
    jz no_div1 ;prevent a divide by zero
    div iten
no_divl:
    mov
    sub
    loop binary-conversion ;loop will terminate
        dx,dx
        ;automatically
work_done:
    sub ax,ax
    clc ;no carry =success!
    ret
oops:
    mov ax,-1 ;bad character
    stc
    ret
dfc_bn endp
```

As you may have noticed from the fractional conversion techniques, truncating or rounding your results may introduce errors. You can, however, continue the conversion as long as you like. Given a third argument representing allowable error, you could write an algorithm that would produce the exact number of digits required to represent your fraction to within that error margin. This facility may or may not be necessary in your application.

INPUT, OUTPUT, AND CONVERSION

Table-Driven Conversions

Tables are often used to convert from one type to another because they often offer better speed and code size over computational methods. This chapter covers the simpler lookup table conversions used to move between bases and formats, such as ASCII to binary. These techniques are used for other conversions as well, such as converting between English and metric units or between system-dependent factors such as revolutions and frequency. Tables are also used for such things as facilitating decimal arithmetic, multiplication, and division; on a binary machine, these operations suffer increased code size but make up for that in speed.

For all their positive attributes, table-driven conversions have a major drawback: a table is finite and therefore has a finite resolution. Your results depend upon the resolution of the table alone. For example, if you have a table-driven routine for converting days to seconds using a table that has a resolution of one second, an input argument such as 16.1795 days, which yields $1,397,908.8$ seconds will only result in only $1,397,908$ seconds. In this case, your result is almost a full second off the actual value.

Such problems can be overcome with a knowledge of what input the routine will receive and a suitable resolution. Another solution, discussed in the next chapter, is linear interpolation; however, even this won't correct inexactitudes in the tables themselves. Just as fractions that are rational in one base can be irrational in another, any translation may involve inexact approximations that can compound the error in whatever arithmetic the routine performs upon the table entry. The lesson is to construct your tables with enough resolution to supply the accuracy you need with the precision required.

The following covers conversion from hex to ASCII, decimal to binary, and binary to decimal using tables.

Hex to ASCII

The first routine, hexasc, is a very simple example of a table-driven conversion: from hex to ASCII.

The procedure is simple and straightforward. The table, hextab, contains the ASCII representations of each of the hex digits from 0 through f in order. This is an
improvement over the ASCII convention, where the numbers and alphabet are not contiguous. In the order we're using, the hex number itself can be used as an index to select the appropriate ASCII representation.

Because it uses XLAT, an 8086 -specific instruction, this version of the routine isn't very portable, though it could conceivably be replaced with a move involving an index register and an offset (the index itself). Before executing XLAT, the user places the address of the table in BX and an index in AL. After XLAT is executed, AL contains the item from the table pointed to by the index. This instruction is useful but limited. In the radix conversion examples that follow, other ways of indexing tables will be presented.

Hexasc takes the following steps to convert a binary quadword to ASCII hex.

hexasc: Algorithm

```
1. SI points to the most significant byte of the binary quadword, DI points
    to the output string, BX points to the base of hextab, and CX holds the
    number of bytes to be converted.
2. The byte indicated by SI is pulled into AL and copied to AH.
3. Since each nibble contains a hex digit, AH is shifted right four times
    to obtain the upper nibble. Mask AL to recover the lower nibble.
4. Exchange AH and AL so that the more significant digit is translated first.
5. Execute XLAT. AL now contains the ASCII equivalent of whatever hex digit
    was in AL.
6. Write the ASCII character to the string and increment DI.
7. Exchange AH and AL again and execute XLAT.
8. Write the new character in AL to the string and increment DI.
9. Decrement SI to point to the next lesser significant byte of the hex
    number.
10. Execute the loop. When CX is 0, it will automatically exit and return.
```

```
hexascs Listing
```

hexascs Listing
; ******
; ******
; hex-to-ASCII conversion using xlat
; hex-to-ASCII conversion using xlat
; simple and common table-driven routine to convert from hexadecimal
; simple and common table-driven routine to convert from hexadecimal
; notation to ASCII
; notation to ASCII
; quadword argument is passed on the stack, with the result returned

```
; quadword argument is passed on the stack, with the result returned
```


INPUT, OUTPUT, AND CONVERSION

```
; in a string pointed to by sptr
    .data
hextab byte '0', '1', '2', '3', '4', '5', '6', '7',
    '8', '9', 'a', 'b', 'c',' 'd', 'e', 'f' ;table of ASCII
                            ;characters
    .code
hexasc proc uses bx cx dx si di, hexval:qword, sptr:word
    lea si, byte ptr hexval[7]
    mov di, word ptr sptr
    mov bx, offset byte ptr hextab
    mov
cx, 8
```

```
;point to MSB of hex value
```

;point to MSB of hex value
;point to ASCII string
;point to ASCII string
;offset of table
;offset of table
; number of bytes to be
; number of bytes to be
;converted
;converted
make ascii:
mov
mov
shr
a, byte ptr [si]
ah, al
ah,1
shr
shr
ah,1
ah,1
shr
ah,1
and al, Ofh
xchg
al,ah
xlat
mov byte ptr [di],al ;write ASCII byte to string
inc
di
xchg
al, ah
xlat
mov
inc
dec
loop
sub
al, al
mov byte ptr [di],al ;NULL at the end of the
;string

```

\section*{NUMERICAL METHODS}
ret
```

hexasc endp

```

\section*{Decimal to Binary}

Clearly, the table is important in any table-driven routine. The next two conversion routines use the same resource: a table of binary equivalents to the powers of 10 , from \(10^{9}\) to \(10^{-10}\). The problem with table-driven radix conversion routines, especially when they involve fractions, is that they can be inaccurate. Many of the negative powers of base 10 are irrational in base 2 and make any attempt at conversion merely an approximation. Nevertheless, tables are commonly used for such conversions because they allow a direct translation without requiring the processor to have a great deal of computational power.

The first example, \(t b \_d c b n\), uses the tables int_tab and frac_tab to convert an input ASCII string to a quadword fixed-point number. It uses the string's positional data-the length of the integer portion, for instance- to create a pointer to the correct power of 10 in the table. After the integer is converted to binary, it is multiplied by the appropriate power of 10 . The product of this multiplication is added to a quadword accumulator. When the integer is processed, the product is added to the most significant doubleword; when the fraction is processed, the product is added to the least significant doubleword (the radix point is between the doublewords).

Before the actual conversion can begin, the routine must determine the power of 10 occupied by the most significant decimal digit. It does this by testing each digit in turn and counting it until it finds a decimal point or the end of the string. It uses the number of characters it counted to point to the correct power in the table. After determining the pointer's initial position, the routine can safely increment it in the rest of the table by multiplying consecutive numbers by consecutive powers of 10 .

\section*{tb-dcbn: Algorithm}
```

1. Form a pointer to the fixed-point result (the ASCII string) and to the
base address of the integer portion of the table. Clear the variable to
hold the fixed-point result and the sign flag. Set the maximum number
of integers to nine.
2. Examine the first character.
```

If it's a hyphen, set the sign flag, increment the string pointer past that point, and reset the pointer to this value. Get the next character and continue with step 3.

If it's a "+," increment the string pointer past that point and reset the pointer to this value. Get the next character and continue with step 3.
3. If it's a period save the current integer count, set a new count for the fractional portion, and continue with step 2.
4. If it's the end of the string, continue with step 5 .

If it's not a number, exit through step 10.
if it's a number, increment the number counter.
5. Test the counter to see how many integers have been processed.

If we have exceeded the maximum, exit through step 12.
If the count is equal to or less than the maximum, increment the string pointer, get a new character and test to see whether we are counting integers or fractions,

If we are counting integers, continue with step 3.
If we are counting fractional numbers, continue with step 4.
6. Get the integer count, convert it to hex, and multiply it by four (each entry is four bytes long) to index into the table.
7. Get a character.

If it's a period continue with step 8.
If it's the end of the string, continue with step 10.
If it's a number, deASCIIize it, multiply it by the four-byte table entry, and add the result to the integer portion of the fixed-point result variable. Increment the string pointer and increment the table pointer by the size of the data type.Continue with step 7 .
8. Increment the string pointer past the period.
9. Get the next character.

If it's the end of the string, continue with step 10.
If not, deASCIIize it and multiply it by the next table entry, adding the result to the fixed-point variable. Increment the string pointer and increment the table pointer by the size of the data type. Continue with step 9.

\section*{NUMERICAL METHODS}
10. Check the sign flag.

If it's set, two's-complement the fixed-point result and exit with success.

If it's clear, exit with success.
11. Not a number: set \(A X\) to -1 and continue with step 12.
12. Too big. Set the carry and exit.

\section*{tb-dcbn: Listing}
```

;******
; table-conversion routines
.data

int tab	dword	$3 b 9 a c a 00 h$ $000186 a 0 h$, $00002710 h, 000003 e 8 h, 00000064 h$
frac_tab	dword	$000000 \mathrm{ah}, 00000001 \mathrm{~h}$

;
.code
; converts ASCII decimal to fixed-point binary
;
tb_dcbn proc uses bx cx dx si di.
sptr:word, fxptr:word
local sign:byte
mov di, word ptr sptr ;point to result
mov si, word ptr fxptr ;point to ascii string
lea bx, word ptr frac_tab ;point into table
mov cx,4 ;clear the target variable
sub ax,ax
sub dx,dx
rep stosw
mov di, word ptr sptr ;point to result

```

\section*{INPUT, OUTPUT, AND CONVERSION}
\begin{tabular}{|c|c|c|}
\hline mov & cl,al & ; to count integers \\
\hline mov & ch, 9 h & ; max int digits \\
\hline mov & byte ptr sign, al & ; assume positive \\
\hline mov & al, byte ptr [si] & ; get character \\
\hline cmp & al '-' & ;check for sign \\
\hline je & negative & \\
\hline cmp & al,'+' & \\
\hline je & positive & ; count: \\
\hline & & ; count the number of ;characters in the string \\
\hline cmp & al,'.' & \\
\hline je & fnd_dot & \\
\hline chk_frac: & & \\
\hline cmp & al,0 & ;end of string? \\
\hline je & gotnumber & \\
\hline cmp & a1, '0' & ; is it a number then? \\
\hline jb & not_a_number & \\
\hline cmp & a1,'9' & \\
\hline ja & not_a_number & \\
\hline cntnu: & & \\
\hline inc & cl & ; count \\
\hline cmp & cl, ch & ;check size \\
\hline ja & too_big & \\
\hline inc & si & ; next character \\
\hline mov & al, byte ptr [si] & ; get character \\
\hline or & dh, dh & ;are we counting int \\
\hline & & ;or frac? \\
\hline jne & chk_frac & \\
\hline jmp & short count & ; count characters in int \\
\hline fnd_dot: & & \\
\hline mov & dh, cl & ; switch to counting fractions \\
\hline inc & dh & ; can't be zero \\
\hline mov & d1,13h & ;includes decimal point \\
\hline xchg & ch, dl & \\
\hline jmp & short cntnu & \\
\hline negative: & & \\
\hline not & sign & ;make it negative \\
\hline positive: & & \\
\hline inc & si & \\
\hline mov & word ptr fxptr,si & \\
\hline mov & al, byte ptr [si] & ; get a character \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline jmp & short count & \\
\hline \multicolumn{3}{|l|}{gotnumber:} \\
\hline sub & ch, ch & \\
\hline xchg & \(\mathrm{cl}, \mathrm{dh}\) & ; get int count \\
\hline dec & cl & \\
\hline shl & word ptr cx,l & ;multiply by four \\
\hline shl & word ptr cx,l & \\
\hline sub & \(\mathrm{bx}, \mathrm{cx}\) & ;index into table \\
\hline sub & cx, cx & ;don't need integer count \\
\hline & & ;anymore \\
\hline mov & si,word ptr fxptr & ;point at string again \\
\hline \multicolumn{3}{|l|}{cnvrt_int:} \\
\hline mov & cl,byte ptr [si] & ;get first character \\
\hline cmp & cl,'.' & \\
\hline je & handle_fraction & ; go do fraction, if any \\
\hline cmp & cl, 0 & \\
\hline je & do_sign & ;end of string \\
\hline sub & cl, '0' & \\
\hline mov & ax,word ptr [bx][2] & \\
\hline mul & cx & ;multiply by deASCIIized -input \\
\hline add & word ptr [di][4], ax & \\
\hline adc & word & \\
\hline mov & ax,word ptr [bx] & \\
\hline mul & cx & ;multiply by deASCIIized input \\
\hline add & word ptr [dil[4], ax & \\
\hline adc & word ptr [di][6],dx & \\
\hline add & bx, 4 & ; drop table pointer \\
\hline inc & si & \\
\hline jmp & short cnvrt_int & \\
\hline \multicolumn{3}{|l|}{handle_fraction:} \\
\hline inc & si & ;skip decimal point \\
\hline \multicolumn{3}{|l|}{cnvrt_frac:} \\
\hline mov & cl,byte ptr [si] & ;get first character \\
\hline cmp & cl, 0 & \\
\hline je & do_sign & ; end of string \\
\hline sub & \(\mathrm{cl}, \mathrm{\prime} \mathrm{O}^{\prime}\) & \\
\hline mov & ax,word ptr [bx][2] & ; this can never result \\
\hline & & \\
\hline mul & CX & ;multiply by deASCIIized \\
\hline & & ;input \\
\hline
\end{tabular}
```

word ptr [di][2],ax
mov ax,word ptr [bx]
cx
word ptr [di][0],ax
word ptr [di][2],dx
bx,4
si
short cnvrt_frac
do_sign:
mov
or
lal,byte ptr sign
lal,byte ptr sign
je exit
not word ptr [di][6]
not word ptr [di][4]
not word ptr [di][2]
neg word ptr [di]
jc exit
add word ptr [di] [2],1
adc word ptr [di] [4],0
adc word ptr [di] [61,0
exit:
ret
;
not_a_number
sub ax,ax
not ax ;-1
too_big:
stc
jmp short exit
tb_dcbn
mov ax,word ptr [bx]
mul
add
adc
add
inc
jmp
exit ;it is positive
or
word ptr [di] [4],0
sub
short exit
endp
;input
;drop table pointer
exit:
;
;-1
;failure

```
add
mul
add
adc
add
inc
jmp
```

;multiply by deASCIIized

```
```

;multiply by deASCIIized

```

\section*{Binary to Decimal}

The binary-to-decimal conversion, \(t b \_b n d c\), could have been written in the same manner as \(t b \_d c b n\) - using a separate table with decimal equivalents to hex positional data. That would have required long and awkward decimal additions, however, and would hardly have been worth the effort.

The idea is to divide the input argument by successively smaller powers of 10 , converting the quotient of every division to ASCII and writing it to a string. This is
done until the routine reaches the end of the table. To use the same table and keep the arithmetic binary, take the integer portion of the binary part of the fixed-point variable to be converted and, beginning at the top of the table, compare each entry until you find one that's less than the integer you're trying to convert. This is where you start. Successively subtract that entry from the integer, counting as you go until you get an underflow indicating you've gone too far. You then add the table entry back into the number and decrease the counter. This is called restoring division; it was chosen over other forms because some of the divisors would be two words long. That would mean using a division routine that would take more time than the simple subtraction here. The number of times the table entry could divide the input variable is forced to ASCII and written to the next location in the string.
\(T b-b n d c\) is an example of how this might be done.

\section*{tb_bndc: Algorithm}
1. Point to the fixed-point variable, the output ASCII string, and the top of the table. Clear the leading-zeros flag.
2. Test the MSB of the fixed-point variable for sign. If it's negative, set the sign flag and two's-complement the fixed-point variable.
3. Get the integer portion of the fixed-point variable. Compare the integer portion to that of the current table entry.

If the integer is larger than the table entry, continue with step 5 .
If the integer is less than the table entry, check the leading-zeros flag. If it's nonzero, output a zero to the string and continue with step 4. If it's zero, continue with step 4.
4. Increment the string pointer, increment the table pointer by the size of the data type, and compare the table pointer with the offset of fractab, \(10^{\circ}\).

If the table pointer is greater than or equal to the offset of fractab, continue with step 3.

If the table pointer is less than the offset of fractab, continue with step 6.
5. Increment the leading-zeros flag, call step 10, and continue with step

\section*{INPUT, OUTPUT, AND CONVERSION}

4 upon return.
6. If the leading-zeros flag is clear, write a zero to the string, increment the string pointer, issue a period, increment the string pointer again, and get the fractional portion of the fixed-point variable.
7. Load the fractional portion into the DX:AX registers.

7a. Compare the current table entry with DX:AX.
If the MSW of the fractional portion is greater, continue with step 9.
If the MSW of the fractional portion is less, continue with step 8.
8. Write a zero to the string.

8 a . Increment the string and table pointers and test for the end of the table. If it's the end, continue with step 11.
If it's not the end, continue with step 7 a.
9. Call step 10 and continue with step 8 a.
10. Subtract the table entry from the remaining fraction, counting each subtraction. When an underflow occurs, add the table entry back in and decrement the count. Convert the count to an ASCII character and write it to the string. Return to the caller.
11. Write a NULL to the next location in the string and exit.

\section*{tb_bndc: Listing}

```

mov byte ptr [di],'-' ;write hyphen to output
;string
inc di
not
not
not
neg
jc
add
adc
adc
positive:
mov
mov
dx, word ptr [si][6]
ax, word ptr [si][4]
;get integer portion
sub
cx, cx
walk_tab:
cmp
ja
jb
number
;entry smaller
pushptr
;integer smaller
cmp
jae
ax, word ptr [bx]
dx, word ptr [bx]
[2]
;find table entry smaller
;than integer
gotnumber
pushptr:
cmp
byte ptr cl, leading_zeros ;have we written a number
;yet?
je
skip_zero
mov
cntnu:
inc
skip_zero:
inc bx
di
;next character
word ptr count: [di],'O' ;write a '0' to the string
inc
bx
;next table entry
bx
inc
bx
inc
inc
bx
cmp
bx, offset word ptr frac_tab ; done with integers?
jae
handle-fraction
;yes, do fractions
jmp
short walk_tab

```
gotnumber:
```

 sub cx, cx
 inc leading zeros
    ```
        ;shut off leading zeros bypass

\section*{INPUT, OUTPUT, AND CONVERSION}
```

cnvrt_int:
call near ptr index ;calculate and write to string
jmp short cntnu
handle_fraction:
cmp
jne
mov
inc
do_frac:
mov
inc
get_frac:
mov
sub
walk_tabl:
cmp
ja
jb
cmp
jae
word ptr [di],'.'
di
dx, word ptr [si][2]
ax, word ptr [si][0]
Cx, cX
dx, word ptr [bx] [2]
small_enuf
pushptr1
ax, word ptr [bx]
small_enuf
pushptrl:
mov
skip_zerol:
inc di
inc bx
inc
inc
inc
cmp
jae
jmp short walk_tab1
small_enuf:
sub
CX, cX
small_enufl:
call near ptr index
jmp short skip_zerol
exit:
inc
di

```
cmp
jne
mov
inc
```

 byte ptr leading_zeros,0
 do frac
byte ptr [di],'0'
di
cmp
;find suitable table entry
;put decimal point
;move fraction to registers
;write '0'
byte ptr [di],'0'
;next character
bx
bx
bx
bx, offset word ptr tab_end
exit
mov
[2]
;written anything yet?

```
call
near ptr index
; calculate and write to string
handle_fraction: short cntnu
```

h

```
```

h

```;move fto r

-; next character
; next entry
```

 short walk_tab1
 ;calculate and write
    ```

\section*{NUMERICAL METHODS}
```

 sub cl,cl ;put NULL at
 mov byte ptr [si],cl ;end of string
 ret
index:
inc
sub ax, word ptr [bx]
sbb dx, word ptr [bx] [2]
jnc
dec
add
adc
or
mov
retn
tb_bndc

```
inc
sub

\section*{sbb}
jnc
dec
add
adc
or
mov
retn
tb_bndc
```

sub
mov
ret
index:

```
```

cx

```
cx
index
index
cx
cx
ax, word ptr [bx] ;put it back
ax, word ptr [bx] ;put it back
dx, word ptr [bx][2]
dx, word ptr [bx][2]
cl,'O' ;make it ascii
cl,'O' ;make it ascii
byte ptr [di],cl ;write to string
byte ptr [di],cl ;write to string
endp
endp
;count subtractions
;count subtractions
;subtract until a carry
```

;subtract until a carry

```

\section*{Floating-Point Conversions}

This next group of conversion routines involves converting ASCII and fixed point to floating point and back again. These are specialized routines, but you'll notice that they employ many of the same techniques just covered, both table-driven and computational.

The conversions discussed in this section are ASCII to single-precision float, single-precision float to ASCII, fixed point to single-precision floating point, and single-precision floating point to fixed point.

You can convert ASCII numbers to single-precision floating point by first converting from ASCII to a fixed-point value, normalizing that number, and computing the shifts for the exponent, or you can do the conversion in floating point. This section gives examples of both; the next routine uses floating point to do the conversion.

\section*{ASCII to Single-Precision Float}

Simply put, each ASCII character is converted to hex and used as a pointer to a table of extended-precision floating-point equivalents for the decimal digits 0 through 10. As each equivalent is retrieved, a floating point accumulator is multiplied by 10 , and the equivalent is added, similar to the process described earlier for integer conversion by multiplication.

The core of the conversion is simple. We need three things: a place to put our result flaccum, a flag indicating that we have passed a decimal point dpflag, and a counter for the number of decimal places encountered dpcntr.
1. Clear flaccum and dpcntr.
2. Multiply flaccum by 10.0 .
3. Fetch the next character.

If it's a decimal point, set dpflag and continue with step 3.
If dpflag is set, increment dpcntr.
If it's a number, convert it to binary and use it as an index into a table of extended floats to get its appropriate equivalent.
4. Add the number retrieved from the table to flaccum.
5. See if any digits remain to be converted. If so, continue from step 2.
6. If dpflag is set, divide flaccum by 10.0 dpentr times.
7. Exit with the result in flaccum.

The routine atf performs the conversion described in the pseudocode. It will convert signed numbers complete with signed exponents.

\section*{atf: Algorithm}
1. Clear the floating-point variable, point to the input ASCII string, clear local variables associated with the conversion, and set the digit counter to 8.
2. Get a character from the string and check for a hyphen.

If the character is a hyphen, complement numsin and get the next character. Go to step 3.
If not, see if the character is "+."
If not, go to step 3.
If so, get the next character and go to step 3.
3. See if the next character is "."

If so, test \(d p\), the decimal-point flag.
If it's negative, we have gone beyond the end; go to step 7 .
If not, invert \(d p\), get the next character, and go to to step 4.
If not, go to step 4.
4. See if the character is an ASCII decimal digit.

If it isn't, we may be done; go to step 5.
If it is, multiply the floating-point accumulator by 10 to make room for the new digit.

Force the digit to binary.
Multiply the result by eight to form a pointer into a table of extended floats.

Add this new floating-point digit to the accumulator.
Check dp_flag to determine whether we have passed a decimal point and should be decrementing \(d p\) to count the fractional digits. If so, decrement \(d p\).

Decrement the digit counter, digits.
Get the next character.
Return to the beginning of step 3.
5. Get the next character and force it to lowercase.

Check to see whether it's an "e"; if not, go to step 7.
Otherwise, get the next character and check it to see whether it's a hyphen.

If so, complement expsin, the exponent sign, and go to step 6.
Otherwise, check for a "+."
If it's not a "+," go to step 6a.
If it is, go to step 6.
6. Get the next character.

6a. See if the character is a decimal digit.
If not, go to step 7.
Otherwise, multiply the exponent by 10 and save the result.
Subtract 30 H from the character to force it to binary and \(O R\) it with the exponent.

Continue with step 6.
7. See if expsin is negative.

If it is, subtract exponent from \(d p\) and leave the result in the \(C L\) register.

If not, add exponent to \(d p\) and leave the result in CL.
8. If the sign of the number, numsin, is negative, force the extended float

\section*{INPUT, OUTPUT, AND CONVERSION}
to negative.
If the sign of the number in \(C L\) is positive, go to step 10.
Otherwise, two's-complement \(C L\) and go to step 9.
9. Test CL for zero.

If it's zero, go to step 11.
If not, increment a loop counter. Test \(C L\) to see whether its LSB has a zero.

If so, multiply the value of the loop counter by eight to point to the proper power of 10 . Divide the floating-point accumulator by that power of 10 and shift \(C L\) right once. Continue with the beginning of step 9.
(These powers of 10 are located in a table labeled 10. For this scheme to work, these powers of 10 follow the binary order \(1,2,4,8\), as shown in the table immediately preceding the code.)

If not, shift \(C L\) right once for next power of two and continue at the beginning of step 9 .
10. Test CL for zero.

If it's zero, go to step 11.
If not, increment a loop counter and test \(C L\) to see whether its LSB is a zero.

If so, multiply the value of the loop counter by eight to point to the properpower of 10 . Multiply the floating-point accumulator by that power of 10 , shift \(C L\) right once, and continue with the beginning of step 10 . (These powers of 10 are located in a table labeled '10'. Again, for this scheme to work, these powers of 10 must follow the binary order 1,2 , 4, 8, as shown in the table immediately preceding the code.)

If not, shift \(C L\) to the right once and continue with the beginning of step 10.
11. Round the new float, write it to the output, and leave.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{atf: Listing}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{;} \\
\hline & \multicolumn{5}{|l|}{.data} \\
\hline \multirow[t]{3}{*}{dst} & \multirow[t]{3}{*}{qword} & 000000000000h & \(3 f 8000000000 \mathrm{~h}\) & 40000000000 h & 404000000000h, \\
\hline & & 408000000000h & 40a000000000h & 40 c 000000000 h & 40 e 00000000 h , \\
\hline & & 41000000000 h & 41100000000 h & & \\
\hline one & qword & 3 f 8000000000 h & & & \\
\hline ten & qword & 412000000000 h , & 42 c 800000000 h, & & \\
\hline
\end{tabular}
```

 461c40000000h,
 4cbebc200000h, 5a0elbc9bf00h, 749dc5ada82bh
 .code
 ;unsigned conversion from ASCII string to short real
atf proc uses si di, string:word, rptr:word ;one word for near pointer
local exponent:byte, fp:qword, numsin:byte, expsin:byte.
dp_flag:byte, digits:byte, dp:byte
pushf
std
xor ax,ax
lea di,word ptr fp[6]
cx,8
rep stosw word ptr [di]
mov si,string ;pointer to string
do_numbers:
mov byte ptr [exponent],al ;initialize variables
mov byte ptr dp_flag,al
mov byte ptr numsin,al
mov byte ptr expsin,al
mov byte ptr dp,al
mov byte ptr digits,8h ;count of total digits rounding
;digit is eight
;begin by checking for a
;sign, a number, or a
;period
;
do_num:
mov bl, [si] ;get next char
cmp bl,'-'
jne not minus ;it is a negative number
not [numsin] ;set negative flag
inc si
mov bl,es:[si] ;get next char
jmp not sign
not_minus:
cmp
bl,'+'
;is it plus?

```
\begin{tabular}{|c|c|c|}
\hline jne & not_sign & \\
\hline inc & si & \\
\hline mov & al, [si] & ; get next char \\
\hline \multicolumn{3}{|l|}{not_sign:} \\
\hline cmp & bl, '.' & ;check for decimal point \\
\hline jne & not_dot & \\
\hline test & byte ptr [dp],80h & ; negative? \\
\hline jne & end_o_cnvt & ;end of conversion \\
\hline not & dp_flag & ; set decimal point flag \\
\hline inc & si & \\
\hline mov & bl, [si] & ; get next char \\
\hline \multicolumn{3}{|l|}{not_dot:} \\
\hline cmp & bl, '0' & ; get legitimate number \\
\hline jb & not_a_num & \\
\hline cmp & bl, '9' & \\
\hline ja & not_a_num & \\
\hline invoke & flmul, fp, ten, addr fp & ;multiply floating-point \\
\hline mov & bl, [si] & ; accumulator by 10.0 \\
\hline sub & bl, 30h & ; make it hex \\
\hline sub & bh, bh & ;clear upper byte \\
\hline shl & bx, 1 & ;multiply index for \\
\hline & & ;proper offset \\
\hline shl & bx, 1 & \\
\hline shl & bx, 1 & \\
\hline invoke & fladd, fp, dgt[bx], addr & ;add to floating-point ;accumulator \\
\hline test & byte ptr [dp_flag],0ffh & ;have we encountered a \\
\hline je & no_dot_yet & ;decimal point yet? \\
\hline dec & [dp] & ;count fractional digits \\
\hline \multicolumn{3}{|l|}{no_dot_yet:} \\
\hline inc & si & ;increment pointer \\
\hline dec & byte ptr digits & ;one less digit \\
\hline jc & not_a_num & ;at our limit? \\
\hline mov & bl,es:[si] & ;next char \\
\hline jmp & not_sign & \\
\hline \multicolumn{3}{|l|}{not_a_num:} \\
\hline mov & bl, [si] & ; next char \\
\hline or & bl,lower_case & \\
\hline cmp & bl, 'e' & ; check for exponent \\
\hline je & chk_exp & ;looks like we may have \\
\hline & & ;an exponent \\
\hline
\end{tabular}

\section*{NUMERICAL METHODS}
```

 jmp end_o_cnvt
 chk_exp:
inc si
mov bl,[si]
cmp bl,'-'
jne chk_plus
not [expsin]
jmp
chk_plus:
cmp
jne
chk_expl:
inc
mov
chk_exp2:
cmp
jb
cmp
ja
sub
mov
mul
mov
mov
sub
or
jmp
end_o_cnvt:
sub
mov
mov
or
jns
sub
jmp
pas_exp:
add
chk_numsin:
cmp
word ptr numsin,0ffh
;test sign

```
```

 jne chk_expsin
 chk_expsin:
xor
or
jns
neg
do_negpow:
or
je
inc
test
je
mov
push
shl
shl
shl
invoke
pop
do_negpowa:
shr cx, 1
jmp short do_negpow
do_pospow:
or cl,cl ;is exponent zero yet?
je atf ex
inc ax
test cx,lh ;check for one in LSB
je
mov
push
shl
shl bx,l
shl bx,l
invoke flmul, fp, powers[bx], addr fp
pop
do_pospowa:
shr cx,1
jmp short do_pospow
atf_ex:
invoke round, fp, addr fp ;round the new float

```
or
```

word ptr fp[4],8000h ;if exponent negative,
;so is number
;make exponent positive
;is exponent zero yet?
;check for one in LSB
;make pointer
bx,1
bx,1
bx,1
fldiv, fp, powers[bx], addr fp
;divide by power of }1
ax
bx,l
;make pointer
;multiply by power often

```

\section*{NUMERICAL METHODS}
```

 mov di,word ptr rptr ;write it out
 mov ax,word ptr fp
mov bx,word ptr fp[2]
mov dx,word ptr fp[4]
mov word ptr [di],bx
mov word ptr [di][2],dx
popf
ret
atf endp

```

\section*{Single-Precision Float to ASCII}

This function is usually handled in C with \(f c v t()\) plus some ancillary routines that format the resulting string. The function presented here goes a bit further; its purpose is to convert the float from binary to an ASCII string expressed in decimal scientific format.

Scientific notation requires its own form of normalization: a single leading integer digit between 1.0 and 10.0. The float is compared to 1.0 and 10.0 upon entry to the routine and successively multiplied by 10.0 or divided by 10.0 to bring it into the proper range. Each time it is multiplied or divided, the exponent is adjusted to reflect the correct value.

When this normalization is complete, the float is disassembled and converted to fixed point. The sign, which was determined earlier in the algorithm, is positioned as the first character in the string and is either a hyphen or a space. Each byte of the fixed-point number is then converted to an ASCII character and placed in the string. After converting the significand, the routine writes the value of the exponent to the string.

In pseudocode, the procedure might look like this.

\section*{fta: Algorithm}
```

1. Clear a variable, fixptr, large enough to hold the fixed-point
conversion. Allocate and clear a sign flag, sinptr. Do the same for a
flag to suppress leading zeros (leading zeros), a byte to hold the
exponent, and a byte to count the number of multiplies or divides it takes
to normalize the number, ndg.
2. Test the sign bit of the input float. If it's negative, set sinptr and
make the float positive.
```
3. Compare the input float to 1.0 .

If it's greater, go to step 4.
If it's less, multiply it by 10.0. Decrement \(n d g\) and check for underflow.
If underflow occurred, go to step 18.
If not, return to the beginning of step 3 .
4. Compare the float resulting from step 3 to 10.0 .

If it's less, go to step 5.
If it's greater, divide by 10.0. Increment \(n d g\) and check for overflow.
If overflow occurred, go to step 17.
If not, return to the beginning of step 4 .
5. Round the result.
6. Extract the exponent, subtract the bias, and check for zero. If we underflow here, we have an infinite result; go to step 17.
7. Restore the hidden bit. Using the value resulting from step 6, align the significand and store it in the fixed-point field pointed to by fixptr. We should now have a fixed-point value with the radix point aligned correctly for scientific notation.
8. Start the process of writing out the ASCII string by checking the sign and printing hyphen if sinptr is -1 and a space otherwise.
9. Convert the fixed-point value to ASCII with the help of \(A A M\) and call step 19 to write out the integer.
10. Write the radix point.
11. Write each decimal digit as it's converted from the binary fractional portion of the fixed-point number until eight characters have been printed.
12. Check ndg to see whether any multiplications or divisions were necessary to force the number into scientific format.

If ndg is zero, we're done; terminate the string and exit through step 16.

If ndg is not zero, continue with step 13.
13. Print the "e."
14. Examine the exponent for the appropriate sign. If it's negative, print hyphen and two's-complement \(n d g\).
15. Convert the exponent to ASCII format, writing each digit to the output.
16. Put a NULL at the end of the string and exit.
17. Print "infinite" to the string and return with failure, \(A X=-1\).
18. Print "zero" to the string and return with failure, \(A X=-1\).
19. Test to see whether or not any zero is leading.

If so, don't print-just return.
If not, write it to the string.

\section*{Fta: Listing}
i \(* * * * *\)
```

; conversion of floating point to ASCII

```
fta proc uses bx cx dx si di, fp:qword, sptr:word
    local sinptr:byte, fixptr:qword, exponent:byte.
    leading_zeros:byte, ndg:byte
        pushf
        std
        xor ax,ax ;clear fixed-point
        lea di,word ptr fixptr[6]
        mov cx,4
rep stosw
    mov byte ptr [sinptr],al ;clear the sign
    mov byte ptr [leadin_zeros],al ;and other variables
    mov byte ptr [ndg],al
    mov byte ptr [exponent],al
ck_neg:
    test word ptr fp[4],8000h ;get the sign
    je gtr_0
    xor word ptr fp[4],8000h ;make float positive
    not byte ptr [sinptr] ;set sign
        ; negative
; \({ }^{* * *}\)
gtr_0: ;compare input with 1.0
    invoke flcomp, fp, one ;still another kind of
```

;normalization
;argument reduction
;decimal counter
;range of single-
;precision float
;multiply by 10.0
;compare with 10.0
;decimal counter
;orange of single-
;precision float
;divide by 10.0
invoke fldiv, fp, ten, addr fp
jmp short less_than_ten
Rnd:
mov
sub
mov
sub
js
lea
do_shift:
stc
rcr
sub

```
invoke
norm_fix:
mov
mov
mov shl
```

get_exp:

```
```

get_exp:

```
ax,1h
less_than_ten
byte ptr [ndg]
byte ptr [ndg],-37
zero_result
flmul, fp, ten, addr fp short gtr_0
less_than_ten:
invoke
cmp
je
inc byte ptr [ndg]
cmp byte ptr [ndg], 37
jg infinite result invoke jmp
flcomp, fp, ten ax, -1
norm fix
fldiv, fp, ten, addr fp
short less_than_ten
```

round, fp, addr fp
;fixup for translation
;this is for ASCII
; conversion
;dump the sign bit
;remove bias
; could come out zero
;but this is as far as I
; can go
;restore hidden bit

```

NUMERICAL METHODS
```

 je put_upper
 shift_fraction:
shr dl,1
rcr bx,1
rcr
ax,1
shift fraction
put_upper:
mov word ptr [di], ax
mov word ptr [di][2],bx
mov al,dl
mov byte ptr fixptr[4],dl
xchg
sub dx,dx
mov di,word ptr sptr
cld
inc dx
mov al,' '
cmp byte ptr sinptr,Offh
jne put_sign
mov al,'-'
put_sign:
stosb
lea si, byte ptr fixptr[3]
write_integer:
xchg
ah,al
aam
xchg
or
call
xchg
or
call
inc
dec
al,ah
do_decimal:

```

\section*{INPUT, OUTPUT, AND CONVERSION}
```

 mov
 al,'.'
 stosb
 do_decimall:
invoke
or
call
inc
cmp
je
jw
do_exp:
sub
cmp
jne
jmp
write_exponent:
mov
al,'e'
stosb
mov
or
jns
xchg
mo
stosb
neg ah
xchg al,ah
sub ah,ah
finish exponent
cbw
aam
xchg ah,al
or
al,'0'
stosb
xchg ah,al
or al,'0'
stosb
last_byte:
sub
al,al
stosb
popf
fta_ex:
multen, addr fixpt
;convert binary fraction
;to decimal fraction
;write to string
;have we written our
;maximum?
;is there an exponent?
;put the 'e'
al,byte ptr ndg
;with ndg calculate
al,al
; exponent
finish_exponent
al,ah
val,'-
*negative exponent
;make ASCII
;sign extension
;cheap conversion

```
```

 ret
 infinite_result:
mov di,word ptr sptr ;actually writes
;'infinite'
zero_result:
mov di,word ptr sptr ;actually writes 'zero'
mov si,offset zro
mov cx, g
rep movsb
mov ax,-1
jmp short fta_ex
str_wrt:
cmp al,'0'
jne putt
test byte ptr leading_zeros,-1
;don't want any leading
;zeros
putt:
test byte ptr leading_zeros,-1
jne prnt
not leading_zeros
prnt:
stosb
nope:
retn
fta endp

```

Fixed Point to Single-Precision Floating Point
For this conversion, assume a fixed-point format with a 32 -bit integer and a 32 -

\section*{INPUT, OUTPUT, AND CONVERSION}
bit fraction. This allows the conversion of longs and ints as well as purely fractional values; the number to be converted need only be aligned within the fixed-point field.

The extended-precision format these routines use requires three words for the significand, exponent, and sign; therefore, if we shift the fixed-point number so that its topmost one is in bit 7 of the fourth byte, we're almost there. We simply need to count the shifts, adding in an appropriate offset and sign. Here's the procedure.

\section*{ftf: Algorithm}
1. The fixed-point value (binary) is on the stack along with a pointer (rptr) to the float to be created. Flags for the exponent (exponent) and sign (nmsin) are cleared.
2. Check the fixed-point number for sign. If it's negative, two'scomplement it.
3. Scan the fixed-point number to find out which byte contains the most significant nonzero bit.

If the number is all zeros, return the appropriate float at step 9.
If the byte found is greater than the fourth, continue with step 5.
If the byte is the fourth, continue with step 6 .
If the byte is less than the fourth, continue with step 4.
4. The most significant non zero bit is in the first, second, or third byte.

Subtract our current position within the number from four to find out
how many bytes away from the fourth we are.
Multiply this number by eight to get the number of bits in the shift and put this value in the exponent.

Move as many bytes as are available up to the fourth position, zeroing those lower values that have been moved and not replaced.

Continue with step 6.
5. The most significant nonzero bit is located in a byte position greater than four.

Subtract four from our current position within the number to find how many bytes away from the fourth we are.

Multiply this number by eight to get the number of bits in the shift and put this value in the exponent.
Move these bytes back so that the most significant nonzero byte is in the fourth position.

\section*{NUMERICAL METHODS}

Continue with step 6.
6. Test the byte in the fourth position to see whether bit 7 contains a one. If so, continue with step 7.

If not, shift the first three words left one bit and decrement the exponent; continue at the start of step 6 .
7. Clear bit 7 of the byte in the fourth position (this is the hidden bit). Add 86 H to exponent to get the correct offset for the number; place this in byte 5.

Test numsin to see whether the number is positive or negative.
If it's positive, shift a zero into bit 7 of byte 5 and continue with step 8.

If it's negative, shift a one into bit 7 of byte 5 and continue with step 8.
8. Place bytes 4 and 5 in the floating-point variable, round it, and exit.
9. Write zeros to every word and exit.

\section*{ftf; Listing}
i \(* * * * *\)
;
;
; unsigned conversion from quadword fixed point to short real
;The intention is to accommodate long and int conversions as well.
;Binary is passed on the stack and rptr is a pointer to the result.
ftf proc uses si di, binary:qword, rptr:word ;one word for near ;pointer
local exponent:byte, numsin:byte
pushf
xor ax, ax
mov di, word ptr rptr ;point at future float
add di, 6
lea si, byte ptr binary[0] ;point to quadword
mov bx, 7 ;index
do_numbers:
mov byte ptr [exponent], al ;clear flags

\title{
INPUT, OUTPUT, AND CONVERSION
}
```

 mov byte ptr nurnsin, al
 mov dx, ax
 ;
do_num:
mov
or
jns
not
not
not
not
neg
jc
add
adc
adc
find_top:
cmp
je
mov
or
jne
dec
j w
found_it:
mov
cmp
ja
je
shift_left
std
mov
sub
shl
shl
shl
neg
mov
lea
cx, 4
cx, bx
cx, 1
Cx, 1
cx, 1
CX
byte ptr [exponent], cl ;calculate exponent
di, byte ptr binary[4]
lea
bl, dl
make zero
;compare index with 0
;we traversed the entire
;number
;get next byte
;anything there?
;move index
;test for MSB
;radix point
;above
;equal
;or below?
;points to MSB
;target
;times 8

```

\section*{NUMERICAL METHODS}
\begin{tabular}{|c|c|c|c|}
\hline & add & si, bx & \\
\hline & mov & cx, bx & \\
\hline & inc & CX & \\
\hline \multirow[t]{4}{*}{rep} & movsb & & ; move number for nomalization \\
\hline & mov & cx, 4 & \\
\hline & sub & cx, bx & \\
\hline & sub & ax, ax & \\
\hline \multirow[t]{2}{*}{rep} & stosb & & ;clear unused bytes \\
\hline & jmp & short final_right & \\
\hline \multicolumn{4}{|l|}{shift_right:} \\
\hline \multicolumn{4}{|c|}{cld} \\
\hline & mov & cx, bx & ;points to MSB \\
\hline & sub & cx, 4 & ;target \\
\hline & lea & si, byte ptr binary[4] & \\
\hline & mov & di, si & \\
\hline & sub & di, cx & \\
\hline & shl & cl, 1 & \\
\hline & shl & cl, 1 & \\
\hline & shl & cl, 1 & ;times 8 \\
\hline & mov & byte ptr [exponent], cl & ;calculate exponent \\
\hline & mov & cx, bx & \\
\hline & sub & cx, 4 & \\
\hline & inc & CX & \\
\hline \multirow[t]{6}{*}{rep} & \multicolumn{3}{|l|}{movsb} \\
\hline & sub & bx, 4 & \\
\hline & mov & cx, 4 & \\
\hline & sub & cx, bx & \\
\hline & sub & ax, ax & \\
\hline & lea & di, word ptr binary & \\
\hline rep & stosb & & ;clear bytes \\
\hline \multicolumn{4}{|l|}{final_right:} \\
\hline \multicolumn{2}{|r|}{lea} & si, byte ptr binary[4] & ```
;get most significant one into
;MSB
``` \\
\hline \multicolumn{4}{|l|}{final_rightl:} \\
\hline & mov & al, byte ptr [si] & \\
\hline & test & al, dl & ; are we there yet? \\
\hline & jne & aligned & \\
\hline & dec & byte ptr exponent & \\
\hline
\end{tabular}
```

shl word ptr binary[0], 1
rcl word ptr binary[2], 1
rcl word ptr binary[41, 1
jmp short final_right1
aligned:
shl al, 1
mov ah, 86h
add ah, byte ptr exponent
cmp numsin, dh
je positive
stc
jmp short get_ready_to_go
positive:
clc
get_ready_to_go:
rcr ax, 1
mov word ptr binary[4], ax
ftf_ex:
invoke round, binary, rptr ;round the float
exit:
popf
ret
;
make_zero: ;nothing but zeros
std
sub ax, ax ;zero it all out
mov cx, 4
rep stosw
jmp short exit
ftf endp

```
```

;shift carry into MSB

```
;shift carry into MSB
;put it all back the way it
; should be
;clear bit
;offset so that exponent will be
;right after addition
```


## Single-Precision Floating Point to Fixed Point

Ftfx simply extracts the fixed-point number from the IEEE 754 floating-point

## NUMERICAL METHODS

format and places it, if possible, in a fixed-point field composed of a 32-bit integer and a 32 -bit fraction. The only problem is that the exponent might put the significand outside our fixed-point field. Of course, the field can always be changed; for this routine, it's the quadword format with the radix point between the doublewords.

## fttx Algorithm

```
1. Clear the sign flag, sinptr, and the fixed-point field it points to.
2. Round the incoming floating-point number.
3. Set the sign flag through sinptr by testing the MSB of the float.
4. Extract the exponent and subtract the bias. Restore the hidden bit.
5. Test the exponent to see whether it's positive or negative.
 If it's negative, two's complement the exponent and test the range to
 see if it's within 28H.
 If it's greater, go to step 9.
 If it's not greater, continue with step 7.
 If positive, test the range to see if it's within 18H.
 If it's less, go to step 10.
 If not, continue with step 6.
6. Shift the integer into position and go to step 8.
7. Shift the fraction into position and continue with step 8.
8. See if the sign flag is set.
 If not, exit with success.
 If it is, two's-complement the fixed-point number and exit.
9. Error. Write zeros to all words and exit.
10. Write a OffH to the exponent and exit.
```


## fftx: Listing

```
;*****
; conversion of floating point to fixed point
; Float enters as quadword.
; Pointer, sptr, points to result.
; This could use an external routine as well. When the float
; enters here, it is in extended format.
```


# INPUT, OUTPUT, AND CONVERSION 

```
ftfx proc uses bx cx dx si di, fp:qword, sptr:word
 local sinptr:byte, exponent:byte
 pushf
 std
;
 xor ax,ax
 mov byte ptr [sinptr],al ;clear the sign
 mov byte ptr [exponent],al
 mov di,word ptr sptr ;point to result
;
;***
;
do_rnd:
 invoke round, fp, addr fp ;fixup for translation
;
set_sign:
 mov
 mov
 mov
 dx,word ptr fp[4]
 jns get_exponent
 not byte ptr [sinptr] ;it is negative
;
get_exponent:
 sub
 shl
 sub dh,86h
 mov
 mov
 and
 stc
 rcr dl,l
;
which_way:
 or cl,cl ;test for sign of exponent
 jns shift_left
 neg cl
shift_right:
 cmp cl,28h ;range of fixed-point number
 ja
 make_zero
 ;no significance too small
make_fraction.:
```


## NUMERICAL METHODS

```
 shr dx,1
fixed
 rcr bx,1
 rcr ax,1
 loop make fraction
 mov word ptr [di] [0],ax
 mov word ptr [di] [2],bx
 mov word ptr [di][4],dx
 imp short print_result
shift_left:
 cmP cl,18h
 ja
make_max
make_integer
 shr bx,1
 rcr dx,1
 rcr ax,1
 loop make_integer
 mov word ptr [di][6],ax
 mov word ptr [di][4],dx
 mov word ptr [di][2],bx
print_result
 test
 ie
 not
 not
 not
 neg
 ic
 add
 adc
 adc
exit:
 popf
 ret
;
make_zero:
 sub
 ax,ax
 mov
 cx,4
rep stosw
 imp short exit
;
```

make_max:			;error too big
	sub	ax, ax	
	mov	cx, 2	
rep	stosw		
	not	ax	
	stosw		
	and	word ptr [di][4], 7f80h	;infinite
	not	ax	
	stosw		
	jmp	short exit	

## NUMERICAL METHODS

1 Knuth, D. E. Seminumerical Algorithms. Reading, MA: AddisonWesley Publishing Co., 1981, Pages 300-312.

## CHAPTER 6

## The Elementary Functions

According to the American Heritage Dictionary, elementary means essential, fundamental, or irreducible, but not necessarily simple. The elementary functions comprise algebraic, trigonometric, and transcendental functions basic to many embedded applications. This chapter will focus on three ways of dealing with these functions: simple table-driven techniques that use linear interpolation; computational fixed-point, including the use of tables, CORDIC functions, and the Taylor Series; and finally floating-point approximations. We'll cover sines and cosines along with higher arithmetic processes, such as logarithms and powers.

We'll begin with a fundamental technique of fixed-point arithmetic-table lookup-and examine different computational methods, ending with the more complex floating-point approximations of the elementary functions.

## Fixed Point Algorithms

## Lookup Tables and Linear Interpolation

In one way or another, many of the techniques in this chapter employ tables. The algorithms in this section derive their results almost exclusively through table lookup. In fact, you could rewrite these routines to do only table lookup, if that is all you require.

Some of the fastest techniques for deriving values involve look-up tables. As mentioned in Chapter 5, the main disadvantage to table-driven routines is that the tables are finite. Therefore, the results of any table-driven routine depends upon the table's resolution. The routines in this section involve an additional step to help alleviate these problems: linear interpolation.

The idea behind interpolation is to approximate unknown data points based upon information provided by known data points. Linear interpolation attempts to do this

## NUMERICAL METHODS

by bridging two known points with a straight line as shown in Figure 6-1. Using this technique, we replace the actual value with the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$, where $\mathrm{y}=\mathrm{y}_{0}+(\mathrm{x}-$ $\left.\mathrm{x}_{0}\right)\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right) /\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)$. This formula represents the slope of the line between the two known data points, with $\left[f\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)\right] /\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)$ representing an approximation of the first derivative (the finite divided difference approximation). As you can see from Figure 6-1, a straight line is not likely to represent the shape of a function well and can result in a very loose approximation if too great a distance lies between each point of known data.


Figure 6-1. Linear interpolation produces an approximate value based on a straight line drawn between known data. The closer the data points, the better the approximation.

Consider the problem of estimating $\log _{10}(2.22)$ based on a table of common logs for integers only. The table indicates that $\log _{10}(2)=0.3010299957$ and $\log _{10}(3)=$ 0.4771212547 . Plugging these values into the formula above, we get:

```
y}=0.3010299957+(2.22-2.0)(0.4771212547-0. 3010299957) / (3-2
y=0.3010299957 + (.22) (0.1760182552)/(1)
y=0.3397540118.
```


## THE ELEMENTARY FUNCTIONS

The true value is 0.3463529745 , and the error is almost $2 \%$. For more accuracy, we would need more data points on a finer grid.

An example of this type of table-driven approximation using linear interpolation is the function $\lg 10$, presented later in this section. ${ }^{1}$ The derivation of the table used in this routine was suggested by Ira Harden. This function produces $\log _{10}(X)$ of a value based on a table of common logarithms for $\mathrm{X} / 128$ and a table of common logarithms for the powers of two. Before looking the numbers up in the table, it normalizes each input argument (in other words, shifts it left until the most significant one of the number is the MSB of the most significant word) to calculate which power of two the number represents. The MSB is then shifted off, leaving an index that is then used to point into the table.

If any fraction bits need to be resolved, linear interpolation is used to calculate a closer approximation of our target value. The $\log$ of the power of two is then added in, and the process is complete.

The function lg10 approximates $\log _{10}(\mathrm{X})$ using a logarithm table and fixed-point arithmetic, as shown in the following pseudocode:

## Ig10: Algorithm

```
1. Clear the output variable. Check the input argument for 0.
 If zero, exit
 If not, check for a negative argument.
 If so, exit
 If all OK, continue with step 2.
2. Determine the number of shifts required to normalize the input
 argument, that is so that the MSB is a one. Perform that shift first
 by moves and then individual shifts.
3. Perform linear interpolation.
 First get the nominal value for the function according to the table.
 This is the f(x) from the equation above. It must be guaranteed to
 be equal to or less than the value sought.
 Get the next greater value from the table, f(x,). This isguaranteed
 to be greater than the desired point.
 Now multiply by the fraction bits associated with the number we using
 to point into the table. These fraction bits represent the difference
```


## NUMERICAL METHODS

between the nominal data point, $\mathrm{x}_{0}$, and the desired point. Add the interpolated value to the nominal value and continue with step 4.
4. Point into another table containing powers of logarithms using the number of shifts required to normalize the number in step 2. Add the logarithm of the power of two required to normalize the number.
5. Exit with the result in quadword fixed-point format.

## Ig10: Listing <br> ; *****

.data
; $\log (x / 128) \quad ; T o$ create binary tables from decimal, multiply the decimal ; value you wish to use by one in the data type of your ;fixed-point system. For example, we are using a 64-bit fixed ;point format, a 32-bit fraction and a 32-bit integer. In ;this system, one is $2^{32}$, or 4294967296 (decimal), convert ;the result of that multiplication to hexadecimal and you are ; done. To convert p to our format we would multiply 3.14 by ; 4294967296 with the result 13493037704 (decimal), which we ;then convert to the hexadecimal value 3243f6a89H.


# THE ELEMENTARY FUNCTIONS 

0402fh, 040ach, 04128h, 041a3h, 0421eh, 04298h,
04312h, 0438ch, 04405h, 0447dh, 044f5h, 0456ch,
045e3h, 04659h, 046cfh, 04744h, 047b9h, 0482eh
048a2h, 04915h, 04988h, 049fbh, 04a6dh, 04adeh,
$04 b 50 h, 04 b c 0 h, 04 c 31 h, 04 c a 0 h .04 d 10 h$

```
; log(2**x)
log10_power dword 000000h, 004d10h, 009a20h, 00e730h, 013441h, 018151h,
 01ce61h, 021b72h, 026882h, 02b592h, 0302a3h, 034fb3h,
 039cc3h, 03e9d3h, 0436e4h, 0483f4h, 04d104h, 051e15h,
 056b25h, 05b835h, 060546h, 065256h, 069f66h, 06ec76h,
 073987h, 078697h, 07d3a7h, 0820b8h, 086dc8h. 08bad8h,
 0907e9h, 0954f9h
```

    . code
    ;
; Logarithms using a table and linear interpolation.
;Logarithms of negative numbers require imaginary numbers.
;Natural logarithms can be derived by multiplying result by 2.3025 .
; Logarithms to any other base are obtained by dividing (or multiplying by the
;inverse of) the $\log _{10}$. of the argument by the $\log _{10}$ of the target base.
lgl0 proc uses bx cx si di, argument:word, logptr:word
local powers_of_two:byte
pushf
std ;increment down for zero
;check to come
sub ax, ax
mov cx, 4
mov di, word ptr logptr ;clear log output
add di, 6
rep stosw

mov	si, word ptr logptr	;point at output which is   ;zero
add	si, 6	;most significant word
mov	di, word ptr argument	;point at input
add	di, 6	;most significant word
mov	ax, word ptr [di]	
or	ax, ax	
js	exit	;we don't do negatives
sub	ax, ax	

## NUMERICAL METHODS



```
;linear interpolation
;get first approximation
;(floor)
;and following approximation
;(ceil)
;find difference
;multiply by fraction bits
;drop fractional places
;add interpolated value to
;original
get_power:
 mov bl, 31 ;need to correct for power
 ;of two
 sub bl, byte ptr powers_of_two
 sub bh, bh
 shl bx,1
 shl bx,1
 lea si, word ptr log10_power
 add si, bx
 sub dx, dx
 add ax, word ptr [si] ;add log of power
 adc dx, word ptr [si][2]
 mov di, word ptr logptr
 mov word ptr [di] [2],ax ;write result to qword
 mov word ptr [di][4],dx
 sub cx, cx
 mov word ptr [di],cx
 mov word ptr [di] [6],cx
exit:
 popf
 ret
lg10 endp
```

An example of linear interpolation appears in the TRANS.ASM module called sqrtt.

## NUMERICAL METHODS

Another example using a table and linear interpolation involves sines and cosines. Here we have a table that describes a quarter of a circle, or 90 degrees, which the routine uses to find both sines and cosines. Since the only difference is that one is 90 degrees out of phase with the other, we can define one in terms of the other (see Figure 6-2). Using the logic illustrated by this figure, it is possible to calculate sines and cosines using a table for a single quadrant.

To use this method, however, we must have a way to differentiate between the values sought, sine or cosine. We also need a way to determine the quadrant the function is in that fixes the sign (see Figure 6-3).

Dcsin will produce either a sine or cosine depending upon a switch, $c s \_$flag.

## Dcsin: Algorithm

1. Clear sign, clear the output variable, and check the input argument for zero.


Figure 6-2. Sine and cosine are the same function 90 degrees out of phase.

## THE ELEMENTARY FUNCTIONS

If it is zero, set the output to 0 for sines and 1 for cosines. Otherwise, continue with step 2.
2. Reduce the input argument by dividing by 360 (we are dealing in degrees) and take the remainder as our angle.

If the result is negative, add 360 to make it positive.
3. Save a copy of the angle in a register, divide the original again by 90 to identify which quadrant it is in. The quotient of this division remains in AX.
4. Check cs-flag to see whether a sine or cosine is desired.

AOh requests sine; continue with step 9 .
Anything else means a cosine; continue with step 5.
5. Compare AX with zero.

If greater, go to step 6.
Otherwise, continue with step 13.
6. Compare AX with one.


Figure 6-3. Quadrants for sine/cosine approximations.

## NUMERICAL METHODS

```
 If greater, go to step 7.
 Otherwise, set sign.
 Two's complement the angle.
 Add 180 to make it positive again.
 Continue with step 14.
7. Compare AX with two.
 If greater, go to step 8.
 Otherwise, set sign.
 Subtract }180\mathrm{ from the angle to bring it back within 90 degrees.
 Continue with step 13.
8. Two's complement the angle.
 Add 360 to point it back into the table.
 Continue with step 14.
9. Compare AX with zero.
 If greater, go to step 10.
 Otherwise, 2's complement the angle.
 Add 90 to point it into the table.
 Continue with step 14.
10. Compare AX with one.
 If greater, go to step ll.
 Otherwise, subtract }90\mathrm{ from the angle to bring it back onto the
 table.
 Continue with step 13.
11. Compare AX with two.
 If greater, go to step 12.
 Otherwise, two's complement the angle,
 Add 270, so that the angle points at table.
 Set sign.
 Continue with step 14.
12. Set sign.
 Subtract 270 from the angle.
13. Use the angle to point into the table.
```


## THE ELEMENTARY FUNCTIONS

Get $f\left(x_{0}\right)$ from the table in the form of the nominal estimation of the sine.

Check to see if any fraction bits require linear interpolation. If not, continue with step 15.

Get $f\left(x_{1}\right)$ from the table in the form of the next greater approximation.

Subtract $f\left(x_{0}\right)$ from $f\left(x_{1}\right)$ and multiply by the fraction bits.
Add the result of this multiplication to $f\left(x_{0}\right)$.
Continue with step 15.
14. Use the angle to point into the table.

Get $f\left(x_{0}\right)$ from the table in the form of the nominal estimation of the sine.

Check to see if any fraction bits requiring linear interpolation. If not, continue with step 15.

Get $f\left(x_{1}\right)$ from the table in the form of the next smaller approximation.

Subtract $f\left(x_{0}\right)$ from $f\left(x_{1}\right)$ and multiply by the fraction bits.
Add the result of this multiplication to $f\left(x_{0}\right)$.
Continue with step 15.
15. Write the data to the output and check sign.

If it's set, two's complement the output and exit.
Otherwise, exit.

## Dcsin: Listing

```
; *****
 .data
;sines(degrees)
sine_tblword 0ffffh, 0fff6h, 0ffd8h, 0ffa6h, 0ff60h, 0ff06h,
 Ofe98h, Ofe17h, Ofd82h, Ofcdgh, Ofclch, Ofb4bh,
 0fa67h, 0f970h, 0f865h, 0f746h, 0f615h, 0f4d0h,
 0f378h, 0f20dh, 0f08fh, 0eeffh, 0ed5bh, 0eba6h,
 Oegdeh, 0e803h, 0e617h, 0e419h, 0e208h, Odfe7h,
 0ddb3h, 0db6fh, 0d919h, 0d6b3h, 0d43bh, 0d1b3h,
 0cf1bh, 0cc73h, 0cgbbh, 0c6f3h, 0c4lbh, 0c134h,
 Obe3eh, Obb39h, 0b826h, 0b504h, Obld5h, Oae73h
```


## NUMERICAL METHODS

```
word 0ab4ch, 0a7f3h, 0a48dh, 0a11bh, 09d9bh, 09a10h,
 09679h, 092d5h, 08f27h, 08b6dh, 087a8h, 083d9h,
 08000h, 07c1ch, 0782fh, 07438h, 07039h, 06c30h,
 0681fh, 06406h, 05fe6h, 05bbeh, 0578eh, 05358h,
 04flbh, 04ad8h, 04690h, 04241h, 03deeh, 03996h,
 03539h, 030d8h, 02c74h, 0280ch, 023a0h, 01f32h,
 01ac2h, 0164fh, 011dbh, 00d65h, 008efh, 00477h,
 Oh
 .code
```



## THE ELEMENTARY FUNCTIONS

```
 inc ax
 inc ax
 add si,ax
 dec ax
 mov word ptr [si][4],ax
 jmp exit
prepare-arguments:
 mov si, word ptr argument
 mov ax, word ptr [si][4]
 dx, dx
 mov cx, 360
 idiv cX
 or dx, dx
 jns quadrant
 add dx, 360
quadrant:
 mov bx, dx
 mov ax, dx
 sub dx, dx
 mov cx, 90
 div cx
switch:
 cmp byte ptr cs_flag, 0
 je do_sin
cos_range:
 cmp ax, 0
 jg cchk_l80
 jmp walk_up
```

NUMERICAL METHODS

```
cchk_180:
 jg
 not
 neg
 add
 jmp
cchk_270:
 cmp
 jg
 not
 sub
 jmp
clast_90:
 neg bx
 add
 jmp
;
;
;
do_sin:
 jg
 neg
 add
 jmp
schk_180:
 cmp
 jg
 sub
 jmp
schk_270:
 cmp
 jg
 not
 neg
 add
 jmp walk_back
 ;use decrementing method
 ; set sign flag
 ;find the range of the
 ;argument
 ;use decrementing method
 ;use incrementing method
```

cmp
cmp
not
ax, 2
slast_90
byte ptr sign
bx
bx, 270
walk_back

```
 ; set sign flag
```

```
 ; set sign flag
```

```
 ; set sign flag
```


## THE ELEMENTARY FUNCTIONS

```
slast_90:
 not byte ptr sign ;set sign flag
 sub bx, 270
 jmp walk_up
;
;
walk_up:
 shl bx, 1
 add bx, offset word ptr sine_tbl
 mov
 mov
 or
 je write_result
 inc bx
 inc bx
 mov cx, dx
 mov ax, word ptr [bx]
 sub ax, d
 jnc pos_res0
 neg ax
 mul -
 not dx
 neg ax
 jc leave_walk_up
 inc dx
 jmp leave_walk_up
pos_res0:
 mul word ptr [si] [2]
leave_walk_up:
 add dx, cx
 jmp write-result
walk_back:
 shl bx, 1 ;point into table
 add bx, offset word ptr sine_tbl
 mov dx, word ptr [bx]
 mov ax, word ptr [si][2]
 or ax, ax
;multiply by fraction bits
; and add in angle
```


## NUMERICAL METHODS

```
 je write_result
 dec bx
 dec bx
 mov cx, dx
 mov ax, word ptr [bx]
 sub ax, dx
 jnc pas_resl
 neg ax
 mul word ptr [si][2
 not dx
 neg ax
 jc leave_walk_back
 inc dx
 jmp leave_walk_back
pos_resl:
 mul word ptr [si][2]
leave_walk_back:
 add dx, cx
write_result:
 mov di, word ptr cs_ptr
 mov word ptr [di], ax
 mov word ptr [di][2], dx
 sub ax, ax
 mov word ptr [di][4], ax
 mov word ptr [di][6], ax
 cmp byte ptr sign, al
 je exit
 not word ptr [di] [6]
 not word ptr [di][4]
 not word ptr [di][2]
 neg word ptr [di][0]
 jc exit
 add word ptr [di][2],1
 adc word ptr [di][4],ax
 adc word ptr [di][6],ax
exit:
 popf
 ret
dcsin endp
```


## THE ELEMENTARY FUNCTIONS

## Computing With Tables

Algebra is one of a series of fascinating lectures by the physicist Richard Feynman ${ }^{2}$. In it, he discusses the development of algebra and its connection to geometry. He also develops the basis for a number of very interesting and useful algorithms for logarithms and powers, as well as the algebraic basis for sines and cosines using imaginary numbers.

In algebra, Feynman describes a method of calculating logarithms, and therefore powers, based on 10 successive square roots of 10 . The square root of $10\left(10^{5}\right)$ is 3.16228, which is the same as saying $\log _{10}(3.16228)=.5$. Since $\log _{10}\left(a^{*} \mathrm{c}\right)=\log _{10}(\mathrm{a})$ $+\log _{10}(\mathrm{c})$, we can approximate any power by adding the appropriate logarithms, or multiplying by the powers they represent. For example, $10^{.875}=10^{(.5+.25+.125)}=$ 3.16228 * 1.77828 * $1.33352=7.49894207613$.

As shown in Table 6-1, that taking successive roots of any number is the same as taking that number through successively more negative powers of two.

The following algorithm is based on these ideas and was suggested by Donald Knuth ${ }^{3}$. The purpose of $p w r b$ is to raise a given base to a power $\mathrm{x}, 0 \leq \mathrm{x}<1$. This is accomplished in a manner similar to division. We do this by testing the input argument against successively more negative powers of $\mathbf{b}$, and subtracting those that do not drive the input argument negative. Each power whose logarithm is less than the input is added to the output multiplied by that power. If a logarithm of a certain power can not be subtracted, the power is increased and the algorithm continues. The process continues until $x=0$.

## NUMERICAL METHODS

number	power of $\mathbf{1 0}$	power of $\mathbf{2}$
10.0	1	$2^{0}$
3.16228	$1 / 2$	$2^{-1}$
1.77828	$1 / 4$	$2^{-2}$
1.33352	$1 / 8$	$2^{-3}$
1.15478	$1 / 16$	$2^{-4}$
1.074607	$1 / 32$	$2^{-5}$
1.036633	$1 / 64$	$2^{-6}$
1.018152	$1 / 128$	$2^{-7}$
1.0090350	$1 / 256$	$2^{-8}$
1.0045073	$1 / 512$	$2^{-9}$
1.0022511	$1 / 1024$	$2^{-10}$

## Table 6-1. Computing with Tables

In pseudocode:
Pwrb: Algorithm

1. Set the output, $y$, equal to 1 , clear the exponent counter, $K$.
2. Test our argument, $x$, to see if it is zero.

If so, continue at step 6.
If not, go to step 3.
3. Use $k$ to point into a table of logarithms of the chosen base to successively more negative powers of two. Test $x<\log _{b}\left(1+2^{-k}\right)$.

If so, continue with step 5.
Else, go to step 4.
4. Subtract the value pointed to in the table from $x$.

Multiply a copy of the output by the current negative power of two through a series of right shifts.

Add the result to the output.
Go to step 2.

## THE ELEMENTARY FUNCTIONS

```
5. Bump our exponent counter, k, by one,
 Go to step 2.
6. There is nothing left to do, the output is our result,
 Exit.
```


## Pwrb: Listing

```
; *****
```

    .data
    power10 qword 4d104d42h, 2d145116h, 18cf1838h, 0d1854ebh,
6bd7e4bh, 36bd211h, 1b9476ah,
Odd7ea4h, 6ef67ah, 378915h, 1bc802h, Ode4dfh,
6f2a7h, 37961h, 1bcb4h, 0de5bh,
6f2eh, 3797h, 1bcbh, Ode6h, 6f3h, 379h, 1bdh,
Odeh, $6 \mathrm{fh}, 38 \mathrm{~h}, 1 \mathrm{ch}, 0 \mathrm{eh}, 7 \mathrm{~h}, 3 \mathrm{~h}, 2 \mathrm{~h}, 1 \mathrm{~h}$
.code
;
; ******
;pwrb - power to base 2
;input argument must be be $1<=x<2$
pwrb proc uses bx cx dx di si, argument:qword, result:word
local k:byte, z:qword
mov di, word ptr result ;
sub ax, ax
mov cx, 2
;make y = 1
inc ax
stosw
dec ax
stosw
mov byte ptr k, al ;make k = 0
x0:
mov ax, word ptr argument
mov cx ptr argument [2]
mov dx ptr argument ;argument $0<x<1$
sub bx, bx

## NUMERICAL METHODS

```
 cmp
 ax, bx
 ;test for 0.0
 not_done_yet
 cmp
 cx, bx
 jne
 cmp
 jne
 jmp
not_done_yet
 sub
 mov
 cmp
 ja
 shl bx, 1
 shl
 shl bx, 1
 lea si, word ptr power2
 cmp dx, word ptr [si] [bx] [4] ;is this log greater than,
 jb increase
 ja reduce
 cmp cx, word ptr [si][bx][2]
 jb increase
 ja reduce
 cmp ax, word ptr [si] [bx]
 jb increase
reduce:
sub ax, word ptr [si] [bx]
sbb
sbb
cx, word ptr [si] [bx] [2]
dx, word ptr [si][bx][4]
mov
word ptr argument, ax
; \(x<-x-z\)
mov word ptr argument [2], cx
mov word ptr argument [4], dx
sub cx, cx
mov cl, byte ptr \(k\)
mov si, word ptr result
mov ax, word ptr [si]
```

```
 mov bx, word ptr [si][2]
 mov dx, word ptr [si][4]
 cmp cl, 0 ;is this shfit necessary?
 je no_shiftk
shiftk:
 shr dx, 1
 rcr bx, 1
 rcr ax, 1
 loop shiftk
no_shiftk:
 add word ptr [si], ax ;z<-argument>>k
 adc word ptr [si] [2], bx
 adc word ptr [si][4], dx
 jmp x 0
increase:
 inc byte ptr k ;bump the counter to the
 ; next level
 ; and continue
pwrb_exit:
 ret
pwrb endp
```

There is another, similar, routine in the TRANS.ASM module dealing with logarithms.

## CORDIC Algorithms

Cordic is an acronym meaning COordinate, Rotation Digital Computer ${ }^{4}$. It was devised as a way to derive transcendental functions for real-time airborne navigation and has since been used in Intel math coprocessors and Hewlett-Packard calculators. The CORDIC functions are a group of algorithms capable of computing highquality approximations of the transcendental functions and require very little arithmetic power from the processor. Any functions listed in Table 6-2 can be calculated using only shifts, adds, and subtractions. These functions make very good candidates for the core of a floating-point library for processors with or without hardware multiplication and division.

NUMERICAL METHODS

input:	output:	comments:
circular functions   $\mathrm{x}=\mathrm{x}$ rectangular units   $\mathrm{y}=\mathrm{y}$ rectangular units   $\mathrm{z}=\mathrm{z}$ angle	$\begin{aligned} & 1 / \mathrm{k}(\mathrm{x} \cos (\mathrm{z})-\mathrm{y} \sin (\mathrm{z})) \\ & 1 / \mathrm{k}(\mathrm{y} \cos (\mathrm{z})+\mathrm{x} \sin (\mathrm{z})) \\ & 0 \end{aligned}$	in general case
$\begin{aligned} & x=1 \\ & y=0 \\ & z=0 \end{aligned}$	$\begin{aligned} & \cos (\mathrm{a}) \text { multiplier } \\ & 0 \\ & 0 \end{aligned}$	to compute the constant circulark
$\begin{aligned} & x=\operatorname{circulark}(\text { constant }) \\ & y=0 \\ & z=a \end{aligned}$	$\begin{aligned} & \cos (a) \\ & \sin (a) \\ & 0 \end{aligned}$	obtain sine and cosine of a
inverse circular func   $\mathrm{x}=\mathrm{x}$ rectangular units   $y=y$ rectangular units $\mathrm{z}=\mathrm{z}$	$1 / k\left(\div\left(x^{2}+y^{2}\right)\right.$   0 angle	in general case $z+\operatorname{atan}^{-1}(y / x)$
hyperbolic functions $x=x$ $\begin{aligned} & \mathrm{y}=\mathrm{y} \\ & \mathrm{z}=\mathrm{z} \end{aligned}$	rectangular units rectangular units angle	$\begin{aligned} & 1 / \mathrm{k}(\mathrm{x} \cosh (\mathrm{z})+\mathrm{y} \sinh (\mathrm{z})) \\ & \text { in } \operatorname{general} \operatorname{case} \\ & 1 / \mathrm{k}(\mathrm{y} \cosh (\mathrm{z})+\mathrm{x} \sinh (\mathrm{z})) \\ & 0 \end{aligned}$
inverse hyperbolic $x=x$ $\begin{aligned} & \mathrm{y}=\mathrm{y} \\ & \mathrm{z}=\mathrm{z} \end{aligned}$	S   rectangular units   rectangular units angle	$1 / k\left(\div\left(x^{2}+y^{2}\right)\right)$   in general case   0 $z+\tanh ^{-1}(y / x)$

Table 6-2. CORDIC Functions

## THE ELEMENTARY FUNCTIONS

The CORDIC functions makeup a unified core that can derive many other functions, including circular and hyperbolic, as well as powers and roots (see Table 6-2). This discussion will focus on the circular functions; routines for the hyperbolic functions and inverses for both circular and hyperbolic are in the module TRANS.ASM.

Before getting into the specifics of the routine, let's take some time to understand how the CORDIC functions work. Notice that this algorithm has some things in common with the circle algorithm presented earlier in a Chapter 3. That routine used a modified rotation matrix:

$$
R_{a[x, y]}=[\cos (a)-\sin (a), \sin (a)+\cos (a)]
$$

and very small values for sine and cosine to draw a circle with only shifts, additions, and subtractions. A similar idea is at work here, but it goes a step farther.

See why the rotation matrix might help derive the functions listed above, look at Figure 6-4. In a Cartesian coordinate system ( $\mathrm{x}, \mathrm{y}$ ), you can specify a point on a plane by measuring its position relative to the ( $\mathrm{x}, \mathrm{y}$ ) axis. In the figure, point P is at $\mathrm{x}=20, \mathrm{y}=10$. If you draw a line from the origin of the axis to that point, it will form a vector of a certain length offset from the x axis by an angle a . To move this vector about the origin by some amount, in this case $\pi / 10$ radians, you can use the rotation matrix as shown in Figure 6-4. First solving for $x=x * \cos (\alpha)-y * \sin (\alpha)$, then $y=$ $x * \sin (\alpha)+y * \cos (\alpha)$, you will develop a new set of coordinates for point $P$. In this way, you can move around the origin simply by supplying an angle of rotation and the current coordinates. With a few small changes, this same mechanism can deliver the sine and cosine of a desired angle and a number of other functions as well.

To make this work, x and y are needed plus a new argument, z , which will represent the angle or rotation. Next, simplify the equation by factoring out the cosine using the fundamental identity $\tan (a)=\sin (\alpha) / \cos (\alpha)$. This leaves

$$
R={ }_{\mathrm{a}}[\mathrm{x}, \mathrm{y}]=\cos (\alpha)[1-\tan (\alpha), \tan (\mathrm{a})+1]
$$

## NUMERICAL METHODS

Writing this out long hand, you have

$$
x=\cos (\alpha)[x-x(\tan (\alpha))]
$$

and

$$
y=\cos (\alpha)[y(\tan (\alpha))+y]
$$

One more step can ease the computing burden even more: replacing the two multiplications, $y(\tan (\alpha))$ and $x(\tan (\alpha))$, with right shifts if a is made the sum of a series of smaller $a$ 's and each $\tan (\alpha)$ is chosen to be a negative power of two. If every $\tan (a)$ is to become a negative power of two, then the small piece of the angle each represents becomes $\operatorname{atan}\left(2^{-1}\right)$. This means that we will be breaking the input angle, a ,


Figure 6-4. Rotation Matrix

## THE ELEMENTARY FUNCTIONS

into smaller angles equal to $\operatorname{atan}\left(2^{-1}\right)$ and subtracting each $\operatorname{atan}\left(2^{-\mathrm{i}}\right)$ from the input a after each evaluation of the rotation matrix in an effort to close on zero. This subtraction may involve positive and negative signs depending upon the quadrant we are in as we hover around zero; as the tangent changes sign, so then must the atan. See Figure 6-3 in the previous section for the progression of signs. Now, the formulae become

$$
x=\cos (\alpha) \quad\left[\begin{array}{ll}
x-x & \left.\left(2^{-1}\right)\right]
\end{array}\right.
$$

and

$$
y=\cos (\alpha) \quad\left[y\left(2^{-1}\right)+y\right]
$$

The $\cos (\alpha)$ remains, but it is a constant (circulark) that has been precomputed and is factored in when needed. Because we are using negative powers of two, each iteration of the algorithm is responsible for a power of two; the result is 32 iterations for 32 fraction bits.

For the routine, circular, the table of arctangents was precomputed and stored in the table atan_array, as was the constant $\cos (\alpha)$, circulark. The same was done for the hyperbolic functions with the table atanh_array and the constant hyperk. To solve for particular functions, see Table 6-2 for the correct inputs and the expected outputs.

As with so many of the functions covered in this chapter, the input argument for the angle must be confined to the first quadrant. Circular will solve for both sine and cosine, given $\mathrm{X}=\operatorname{circulark}$ (the constant), $\mathrm{Y}=0$, and $\mathrm{Z}=\mathrm{a}$, if $0 \leq \mathrm{a}<\pi / 2$. Reducing the argument for these routines can be done in the same manner as in the table driven routine, $d c \sin$ in an earlier section. Divide the input angle by $2 \pi$, to remove unwanted components of $\pi$, then divide by $\pi / 2$. Take the remainder as your input argument and the quotient as an index to the quadrant the angle is in. See Figure 6-3 for the logic.

## NUMERICAL METHODS

## Circular: Algorithm

1. The variables $X, Y$, and $Z$ serve as both input and output variables.

Load $\mathrm{x}, \mathrm{y}$, and z into local variables smal $l \mathrm{x}, \mathrm{smal} \mathrm{ly}$, and smal lz .
Set the exponent counter, i, to 0.
2. Multiply $x$ and $y$ by $2^{-i}$ and store in smal $l x$ and smal $l y$, respectively. (The multiplication is accomplished by shifting (arithmetically) $x$ and $y$ to the right by the current count in i.) Load $z$ with table entry pointed at by atan_array+i.
3. Test $z \leq 0$.

If true, go to step 5.
Else, continue with step 4.
4. Add smal ly to $x$.

Subtract smal $1 x$ from $y$.
Add smal $l z$ to $z$.
Continue with step 6.
5. Subtract smal ly from $x$.

Add smal $1 x$ to $y$.
Subtract smal $1 z$ from $z$.
Continuewith step 6.
6. Bump the exponent counter, $i$.

Test $\mathrm{i} \geq 32$.
If yes, got to step 7.
Otherwise, go to step 2.
7. Since we have been using the output variables for intermediate storage of our results, the output is current and we may exit.

## Circular: Listing

; ******
.data
atan_array dword
0c90fdaa2h, 76b19c16h, 3eb6ebf2h, 1fd5ba9bh, Offaaddch, 7ff556fh, 3ffeaabh, 1fffd55h, Offffabh, 800000 h , 3fffffh, 200000h, 100000h, $80000 \mathrm{~h}, 40000 \mathrm{~h}, 20000 \mathrm{~h}, 10000 \mathrm{~h}, 8000 \mathrm{~h}, 4000 \mathrm{~h}$, $2000 \mathrm{~h}, 1000 \mathrm{~h}, 800 \mathrm{~h}, 400 \mathrm{~h}, 200 \mathrm{~h}, 100 \mathrm{~h}, 80 \mathrm{~h}$, 40h, 20h, 10h, 8h, 4h, 2h, 1h
.code

## THE ELEMENTARY FUNCTIONS

```
;
; circular-implementation of the circular routine, a subset of the CORDIC devices
;
;
circular proc uses bx cx dx di si, x:word, y:word, z:word
 local smallx:qword, smally:qword, smallz:qword, i:byte,
 shifter:word
 lea di, word ptr smallx ;load input x, y, and z
 mov si, word ptr x
 mov cx, 4
rep movsw
 lea di, word ptr smally
 mov si, word ptr y
 mov cx, 4
rep movsw
 lea di, word ptr smallz
 mov si, word ptr z
 mov cx, 4
rep movsw
sub ax, ax
mov byte ptr i, al ;i=0
mov bx, ax
mov cx, ax
twist:
\begin{tabular}{ll}
sub & ax, ax \\
mov \\
mov & al, i \\
word ptr shifter, ax \\
mov & si, word ptr x \\
mov & ax, word ptr [si] \\
mov & bx, word ptr [si][2] \\
mov & cx, word ptr [si][4] \\
cmp & dx, word ptr [si][6] \\
je & word ptr shifter, 0 \\
load_smallx
\end{tabular}
```

NUMERICAL METHODS

## shiftx:

sar $d x, 1$
rer cx, 1
rer bx, 1
rcr ax, 1
dec word ptr shifter
jnz shiftx

## load_smallx:

mov word ptr smallx, ax
mov word ptr smallx [2], bx
mov word ptr smallx [4], cx
mov word ptr smallx [6], dx
sub ax, ax
mov al, i
mov word ptr shifter, ax
mov si, word ptry
mov ax, word ptr [si]
mov bx, word ptr [si][2]
mov $c x$, word ptr [si][4]
mov $d x$, word ptr [si][6]
cmp word ptr shifter, 0
je load_smally
shifty:
sar dx, 1
rer cx, 1
rcr bx, 1
rer ax, 1
dec word ptr shifter
jnz shifty
load_smally:
mov word ptr smally, ax ;return to smally
mov word ptr smally[2], bx
mov word ptr smally[4], cx
mov word ptr smally[6], dx
get_atan:
sub
mov
shl
shl bx, 1
; note the arithmetic shift ;for sign extension
; negative powers of two ;require right shifts

```
;return x to smallx
```

; get y
;multiply by $2^{\wedge}$-i
; note the arithmetic shift
; for sign extension
;take to a negative power
;return to smally
; have to point into a dword ; table

## THE ELEMENTARY FUNCTIONS

```
 lea si, word ptr atan_array
 mov ax, word ptr [si] [bx]
 mov dx, word ptr [si] [bx][2]
 mov word ptr smallz, ax
 mov
 sub
 mov
 mov
test_Z:
mov
or
jns
negative:
mov
mov
mov
mov
mov
add
adc
adc
adc
mov
mov bx, word ptr smallx[2]
mov cx, word ptr smallx[4]
mov dx, word ptr smallx[6]
mov di, word ptr y
sub word ptr [di], ax
sbb word ptr [di][2], bx
sbb word ptr [di][4], cx
sbb word ptr [di][6], dx
mov ax, word ptrsmall Z
mov bx, word ptr small z[2]
```

mov

```
 ax, word ptr smally
 bx, word ptr smally[2]
 cx, word ptr smally[4]
dx, word ptr smally[6]
 di, word ptr x
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][41, cx
word ptr [di][6], dx
; smally is added x
 ax, word ptr smallx
```


## NUMERICAL METHODS

```
 mov cx, word ptr smallz [4]
 mov dx, word ptr smallz [6]
 mov di, word ptr z
 add word ptr [di], ax
 adc word ptr [di][2], bx
 adc word ptr [di][4], cx
 adc word ptr [di][6], dx
 jmp for_next
positive:
mov
mov
 ax, word ptr smally
 bx, word ptr smally[2]
 mov cx, word ptr smally[4]
 mov dx, word ptr smally[6]
mov di, word ptr x
sub word ptr [di], ax ;smally is subtracted
sbb word ptr [di][2], bx
sbb word ptr [di][4], cx
sbb word ptr [di][6], dx
mov ax, word ptr smallx
mov bx, word ptr smallx[2]
mov cx, word ptr smallx[4]
mov dx, word ptr smallx[6]
mov di, word ptry
add word ptr [di], ax
adc word ptr [di] [2], bx
adc word ptr [di][4], cx
adc word ptr [di][6], dx
mov ax, word ptr smallz
mov bx, word ptr smallz[2]
mov cx, word ptr smallz[4]
mov dx, word ptr smallz[6]
mov di, word ptr z ;and smallz is subtracted
 ;fromz
```


# THE ELEMENTARY FUNCTIONS 

```
 sbb word ptr [di][6], dx
for_next:
 inc byte ptr i ;bump exponent on each pass
 cmp byte ptr i, 32
 ja circular_exit
 jmp twist
circular_exit:
 ret
circular endp
```


## Polynomial Evaluations

One of the most popular and most accurate ways to develop the transcendentals is evaluation of a power series. These series are often expressed in the following forms: ${ }^{5}$
$\sin x=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+x^{9} / 9!\ldots+(-1)^{n+1} x^{2 n-1} /(2 n-1)!$
$\cos x=1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!+x^{8} / 8!\ldots+(-1)^{n+1} x^{2 n-2} /(2 n-2)!$
$\tan \mathrm{x}=\mathrm{x}+\mathrm{x}^{3} / 3+2 \mathrm{x}^{5} / 15+17 \mathrm{x}^{7} / 315+\ldots$
$e^{x}=1+x=x^{2} / 2!+\ldots+x^{n} / n!+\ldots$
$\ln (1+x)=x-x^{2} / 2+x^{3} / 3-\ldots+(-1)^{n+1}+x^{n} / n+\ldots$

A power-series polynomial of infinite degree could theoretically accommodate every wrinkle in the shape of a given function within a given domain. But it isn't reasonable to attempt a calculation of a series of infinite degree; instead, some method is used to determine when to truncate the series. Usually this is at the point in the series where the terms fail to contribute significantly to the result. Your application may only require accuracy to 16 bits, such as might be needed for

## NUMERICAL METHODS

graphics. It may be error limited, which means that the result is calculated using enough precision and to a great enough degree to account for any spikes that might occasionally occur in the more distant terms.

Since the power series are computed in truncated form, they are prone to an error from that truncation as well as any introduced by the arithmetic. A great deal of effort has gone into finding the source of those errors and limiting it. ${ }^{6}$ For most embedded applications (such as graphics subsystems, digital filtering and feedback control loops), the truncated Taylor Series provides adequate results.

The quadword fixed-point format used in this section has 32 fraction bits to work with. The terms contributing to bits outside that range (aside from guard digits, if you wish) are not computed even if an occasional spike might influence the rest of the computation. The $13^{\text {th }}$ term of the sine expansion above rounds up to set the least significant of our fraction bits.

An alternative to the doubleword integer and doubleword fraction format could be implemented for each of the functions. At most, sine and cosine functions need a l-bit integer, leaving 63 bits for at least 18 decimal digits. On the other hand, the exponential, $e^{x}$, will quickly lose any mantissa bits unless $x$ is less than one. You could rewrite these routines to maximize the precision of the data types you're using and provide greater accuracy; the results could be rounded and realigned for the rest of the fixed-point routines. You can do this without disturbing any de facto format you may have in place by doing the conversions and alignment within the calling function, as taylorsin below. Such handling is often the case anyway, since a particular series may require the arguments in a certain format to guarantee convergence. The sine and cosine functions presented here are examples of this: Their arguments should be constrained to $\pi / 2$ for the series to function most efficiently and accurately.

Power-series computations are not necessarily table driven, but the execution time of the evaluation is so much faster when you precompute the coefficients that you need a good reason not to. If you wish to compute the coefficients at runtime, it's most efficient if you maintain a copy of the previous powers and factorials and compute each new one based upon that.

Homer's Rule ${ }^{7}$ allows us to evaluate an N -degree polynomial with only $\mathrm{N}-1$ multiplications and N additions. To use it, we store the coefficients of the polynomial

## THE ELEMENTARY FUNCTIONS

in an array. If a degree or series of degrees is missing from the polynomials, their coefficients automatically become zero. To illustrate, assume a polynomial such as

$$
f(x)=5 x^{4}+3 x^{3}-4 x^{2}+2 x+1
$$

We put the coefficients in an array:

$$
\text { Poly_array word } 1,2,-4,3,5
$$

In the following pseudocode, as in the example, the coefficients of the series (or polynomial) are assumed to be computed in advance, incorporating the sign of the term with the value. They're stored in a table in reverse order of the polynomial expression; that is, the first element in the array is the degree zero term. Evaluation is then simply a matter of processing the polynomial. Upon entry to the algorithm, we make the result variable equal to the coefficient of the highest power (here it's 5). We take a pointer into the array, which is the degree of the polynomial, and use it to select each succeeding coefficient to add to the result variable after multiplying it by the value of x .

## taylorsin: Algorithm

```
1. Set an index to the degree of the polynomial (in this case 4).
 Use this to retrieve the coefficient of the highest power and set the
 result variable equal to that.
2. Multiply the value of x by the result variable,
 Decrement the index.
 If it goes negative, exit through step 3
 Retrieve the next coefficient and add it to the result variable,
 Continue at the beginning of step 2.
3. Horner's Method is complete. Exit.
```

In taylorsin, the sine approximation given above truncated at the $11^{\text {th }}$ degree for our example:

## NUMERICAL METHODS

$$
\sin x=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+x^{9} / 9!-x^{11} / 11!
$$

To process this expansion with Homer's Rule, we need a table of coefficients with 11 terms in it and zeros for those powers not represented in the expansion indecimal:

$$
\begin{gathered}
1,0,-.16666667,0, .00833333,0,-.00019841,0, .00000275,0, \\
-.00000003
\end{gathered}
$$

Even this can be avoided if we evaluate the expression $x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+x^{9} /$ $9!-x^{11} / 11$ ! separately with $x^{2}$ instead of $x$. This eliminates the necessity of processing all the zero coefficients.

With these terms stored in a table, the only thing left to do is evaluate the polynomial.

Actually, two routines are involved: polyeval can be made to work with any polynomial, while taylorsin is only an entry point. It tells the subroutine polyeval which table to use depending on the function to evaluate, the degree of the polynomial, and where to put the results and passes the argument. Each function requiring polynomial evaluation will require a routine such as taylorsin; this is where any other fixed-point manipulation-such as scaling, altering the placement of the radix point, or rounding-would be done.

## taylorsin: Listing

```
;*****
;taylorsin - Derives a sin by using a infinite series. This is in radians.
;Expects argument in quadword format; expects to returnthe same.
; Input must be }\leq\pi//2\mathrm{ .
taylorsin proc uses bx cx dx di si, argument:qword, sine:word
 invoke polyeval, argument, sine, addr polysin, 10
 ret
taylorsin endp
```

Polyeval does the work and can be made to evaluate any polynomial, given the proper coefficients. Here is how it works:

## THE ELEMENTARY FUNCTIONS

## Polyeval: Algorithm

1. Clear an accumulator and see that the output is clear. Set an index equal to the degree of the polynomial.
2. Using the index, point into the table of coefficients.

Add the value pointed at to the accumulator.
3. Multiply the accumulator by the argument, $x$.
4. Decrement the table pointer.

If it goes negative, exit through step 5.
Otherwise, continue with step 2.
5. Write the accumulator to the output and leave.

## Polyeval: Listing

```
; *****
 .data
polysin qword 100000000h, 0, 0ffffffffd5555555h, 0, 2222222h, 0,
 0fffffffffff2ff30h, 0, 2e3ch, 0, 0ffffffffffffff94h
 . code
```

```
; *****
```

; *****
;polyeval- Evaluates polynomials according to Horner's rule.
;polyeval- Evaluates polynomials according to Horner's rule.
;Expects to be passed a pointer to a table of coefficients,
;Expects to be passed a pointer to a table of coefficients,
;a number to evaluate, and the degree of the polynomial.
;a number to evaluate, and the degree of the polynomial.
;The argument conforms to the quadword fixed-point format.
;The argument conforms to the quadword fixed-point format.
polyeval procuses bx cx dx di si, argument:qword, output:word,
polyeval procuses bx cx dx di si, argument:qword, output:word,
coeff:word, n:byte
coeff:word, n:byte
local cf:qword, result[8]:word
local cf:qword, result[8]:word
pushf
pushf
cld
cld
sub ax, ax
sub ax, ax
mov byte ptr sign, al
mov byte ptr sign, al
mov cx, 4
mov cx, 4
lea
lea
di, word ptr cf
di, word ptr cf
rep stosw ;clear the accumulator

```
rep stosw ;clear the accumulator
```


## NUMERICAL METHODS

```
 lea di, word ptr result
 mov cx, 8
rep stosw
eval:
 mov si, word ptr coeff
 sub bx, bx
 mov bl, byte ptr n
 shl bx, 1
 shl bx, 1
 shl bx, 1
 add si, bx
 mov ax, word ptr [si]
 mov bx, word ptr [si] [2]
 mov cx, word ptr [si] [4]
 mov dx, word ptr [si] [6]
 lea di, word ptr cf
 add word ptr [di], ax
 adc word ptr [di] [2], bx ;add new coefficient to
 ;accumulator
 adc word ptr [di] [4], cx
 adc word ptr [di] [6], dx
x_by_y:
 invoke smul64, argument, cf, addr result
 lea si, word ptr result [4]
 lea di, word ptr cf
 mov cx, 4
rep movsw
chk_done:
 dec byte ptr n ;decrement pointer
 jns eval
polyeval_exit:
 mov di, word ptr output
 lea si, word ptr cf
 mov cx, 4
rep movsw ;write to the output
```


## THE ELEMENTARY FUNCTIONS

```
 popf
 ret
polyeval endp
```


## Calculating Fixed-Point Square Roots

Finding square roots can be an art. This section presents two techniques. The first, and perhaps the most traditional, is Newton's Method. The other is the technique you learned in school adapted, to binary arithmetic. In this section, we'll examine the square-root approximation in its simplest and most elemental form. Later, in the floating-point section, we'll combine these with other techniques to improve the first estimate and speed the overall convergence of the algorithm. There is no reason those techniques couldn't also be made to fit a fixed-point application.

Newton's Method for finding square roots is a favorite among programmers because of its speed. It's given by the equation $\mathrm{r}^{\prime}=(\mathrm{x} / \mathrm{r}+\mathrm{r}) / 2$, with $x$ being our radicand and $r$ the estimate. If you are interested, cube roots may be calculated $\mathrm{r}^{\prime}=$ $(\mathrm{r}+(3 * \mathrm{x}) / 2) /(\mathrm{r} * \mathrm{r}+\mathrm{x} /(2 * \mathrm{r})) / 2$. It is an iterative approach that eventually finds the root. There is no guarantee how many iterations it might take-that depends upon the quality of the initial guess-but it should about double the number of correct bits on each iteration.

Formulating that initial best guess is the problem. Resolving the routine can require an inordinate number of iterations if the first estimate is very far off. This routine is simple; it only knows that it has a 32 -bit input and that the greatest possible root of such an input is 16 bits. To improve first estimate, therefore, the routine shifts the radicand right until it fits within a 16 -bit word. Still, there is no way of telling how many iterations will be required. A loop counter with a large enough count would suffice but could easily require more iterations than would otherwise be necessary. Instead, a copy of the last estimate is saved and compared with the current estimate after each iteration. If everything proceeds smoothly, the routine exits when the estimates stop changing.

In some circumstances, however, the routine will hang, toggling between two possible roots. Another escape is provided for that contingency. A counter, cntr, is loaded with the maximum number of iterations. If that number is exceeded, the routine leaves with the last best estimate, which is probably close enough. An

## NUMERICAL METHODS

alternative would be to use another variable to define an error band and compare it with the difference between each new estimate and the last; exiting when the difference is less than the error (this-estimate -last_estimate<error).

## fx_sqr: Algorithm

1. Establish a limiton the number of iterations possible in cntr.

Check for negative or zero input.
If true, exit through step 3.
leave radicand in the register to be justified and make our first estimate.
2. Decrement the limit counter, cntr.

If there is a carry, exit with current estimate and the carry set through step 3.

If there is no carry, continue.
Test the estimate to see that it fits within sixteen bits.
If not, shift right until it does.
Store the estimate.
Divide the radicand by the estimate.
Add the result to the estimate.
Divide that by two.
Compare last estimate with current estimate.
If is different continue with the beginning of step 2.
Otherwise, go to step 3.
3. Write the result to the output and leave.

## fx_sqr: Listing

```
; *****
; accepts integers
; Remember that the powers follow the powers of two (the root of a double word
; is a word, the root of a word is a byte, the root of a byte is a nibble, etc.).
; new_estimate = (radicand/last_estimate+last_estimate)/2, last-estimate=
new-estimate.
fx_sqr proc uses bx cx dx di si, radicand:dword, root:word
```


## THE ELEMENTARY FUNCTIONS

local	estimate:word, cntr:byte	
mov	byte ptr cntr, 16	
sub	bx, bx	; to test radicand
mov	ax, word ptr radicand	
mov	dx, word ptr radicand [2]	
Or	$d x, d x$	
js	sign_exit	
je	zero_exit	
jmp	find_root	; not zero
zero_exit:		
or	ax, ax	; no negatives or zeros
jne	find_root	
sigr_exit:		; indicate error in the
		; operation
stc		
sub	ax, ax	
mov	dx, ax	
jmp	root_exit	
find_root:		
sub	byte ptr cntr, 1	
jc	root_exit	;will exit with carry
		; set and an approximate
		;root
find_root1:		
or	dx, dx	; must be zero
je	fits	; some kind of estimate
shr	dx, 1	
rcr	ax, 1	
jmp	find_root1	; cannot have a root
		;greater than 16 bits
		;for a 32-bit radicand!
fits:		
mov	word ptr estimate, ax	;store first estimate of root
sub	dx, dx	
mov	ax, word ptr radicand [2]	
div	word ptr estimate	
mov	bx, ax	;save quotient from division   ;of upper word
mov	ax, word ptr radicand	
div	word ptr estimate	; divide lower word
mov	dx, bx	; concatenate quotients

## NUMERICAL METHODS

```
 add ax, word ptr estimate ; (radicand/estimate +
 ;estimate)/2
 adc dx, 0
 shr dx, 1
 rcr ax, 1
 or dx, dx ;to prevent any modular aliasing
 jne find_root
 cmp ax, word ptr estimate ;is the estimate still changing?
 jne find_root
 clc
root_exit:
 mov di, word ptr root
 mov word ptr [di], ax
 mov word ptr [di][2], dx
 ret
fx_sqr endp
```

The next approach is based on the technique taught in school for doing square roots by hand. This method turns out to be much simpler in binary than in decimal because of its modulus of $2 .{ }^{8}$ It may not be faster than Newton's Method, but it's a good alternative for those processors without hardware division instructions.

## school_sqr: Algorithm

```
1. Determine that the radicand is positive and not zero.
 If so, continue with step 2.
 If not, signal the error and exit through step 5.
2. Set bit counter for 16.
 Set buffer to hold radicand and allow for shifts.
 Clear space for root.
3. Shift buffer left twice.
 Shift root left once.
 Subtract 2*root+l from root.
 If there is an underflow, restore the subtraction by means of
 addition and continue with step 4.
 Otherwise, increment the root and continue with step 4.
```


## THE ELEMENTARY FUNCTIONS

```
4. Decrement bit counter.
 If zero, exit through step 5.
 Otherwise, continue with step 3.
5. Write root to output and leave.
school_sqr: Listing
; ******
;accepts integers
school_sqr proc uses bx cx dx di si, radicand:dword, root:word
 local estimate:qword, bits:byte
 sub bx, bx
 mov ax, word ptr radicand
 mov dx, word ptr radicand [2]
 or dx, dx
 js sign-exit
 je zero-exit
 jmp setup ;notzero
zero_exit:
 or ax, ax ;no negatives or zeros
 jne setup
sign_exit: ;indicate error in the
 sub ax, ax
 ;operation; can't do
 ;negatives
 ;zero for fail
 stc
 jmp root_exit
setup:
 mov byte ptr bits, 16
 mov word ptr estimate, ax
 mov word ptr estimate [2], dx
 sub ax, ax
 mov word ptr estimate [4], ax
 mov word ptr estimate [6], ax
 mov bx, ax ;root
 mov cx, ax
 mov dx, ax ;intermediate
```

findroot:

## NUMERICAL METHODS

```
 shl word ptr estimate, 1
 rcl word ptr estimate[2], 1
 rcl word ptr estimate[4], 1
 rcl word ptr estimate[6], 1
 shl word ptr estimate, 1
 rcl word ptr estimate[2], 1
 rcl word ptr estimate[4], 1
 rcl word ptr estimate[6], 1
 shl ax, 1
 rcl bx, 1
 mov cx, ax
 mov dx, bx
 shl cx, 1
 rcl dx, 1
 add cx, 1
 adc dx, 0
subtract_root:
 sub word ptr estimate[4], cx
 sbb word ptr estimate[6], dx
 jnc r_plus_one
 add word ptr estimate[4], cx
 adc word ptr estimate[6], dx
 jmp continue_loop
r_plus_one:
 add ax, 1
 adc bx, 0
continue_loop:
 dec
 jne
 byte ptr bits
 jne findroot
 clc
root-exit:
 mov di, word ptr root
 mov word ptr [di], ax
 mov word ptr [di][2], bx
 ret
school_sqr endp
```


## THE ELEMENTARY FUNCTIONS

## Floating-Point Approximations

All the techniques explored so far in fixed point apply to floating-point arithmetic as well. Floating-point arithmetic is similar to fixed point except that it deals with real numbers with far greater range. And because of its extensive use in scientific and engineering applications, greater emphasis is placed on its ability to approximate the real world.

This section presents some concepts that can also be used in fixed-point routines, but they're most valuable in floating point because of its attention to accuracy. Two approximations will also be described- a sine function and square root-based on materials from Software Manual for the Elementary Functions by William J. Cody, Jr. and William Waite, published by Prentice-Hall, Inc. This small book is full of valuable information for those writing numerical software. The sine/cosine approximation uses a minimax polynomial approximation, and the square root uses Newton's Method with a much improved initial estimate.

## Floating-Point Utilities

The functions in this section use similar techniques to the fixed-point routines; that is, they use tables or arrays of coefficients and Homer's rule for evaluating polynomial approximations to the functions. The floating-point format also has some new tools and requires some new handling.

Many of the manipulations require argument reduction, which takes the floating point word apart and puts it back together again in a different fashion. Some new functions will be presented here for doing that. One is frxp, which, when passed a float $(x)$ returns its exponent $(n)$ and the float $(f)$ constrained to a value between .5 $\leq: \mathrm{f}<1$, where $f^{*} 2^{\mathrm{n}}=\mathrm{x}$. Because it is the power to which the fixed-point mantissa must be raised to represent that number, the exponent is useful in finding the square root of a number, as you'll see in flsqr.

## frxp: Algorithm

```
1. Point to the variable for the exponent.
2. Test the number to see if it's zero.
 If so, return zero as both the exponent and the mantissa.
```

NUMERICAL METHODS

```
 If not, continue with step 3.
3. Discard the sign bit and subtract 126D to get the exponent, write it
to exptr, and replace the exponent in the number with 126D.
4. Realign the float and write it to fraction.
5. Return.
```


## frxp: Listing

```
; *****
;Frxp performs an operation similar to the C function frexp. Used
;for floating-point math routines.
;Returns the exponent-bias of a floating-point number.
;does not convert to floating point first, but expects a single
;precision number on the stack.
;
;
frxp proc uses di, float:qword, fraction:word, exptr:word
 pushf
 cld
 mov di, word ptr exptr ;assign pointer to exponent
 mov ax, word ptr float[4] ;get upper word of float
 mov dx, word ptr float[2]
 sub cx, cx
 or cx, ax
 Or cx, dx
 je make_it_zero
 shl ax, 1
 sub ah, 7eh
 mov byte ptr [di],ah
 mov ah, 7eh
 shr ax, 1 ;replace sign
 mov word ptr float[4], ax
 mov di, word ptr fraction
 lea si, word ptr float ;write out new float
 mov cx, 4
rep movsw
frxp_exit:
 popf
 ret
make_it_zero
 sub ax, ax
```


# THE ELEMENTARY FUNCTIONS 

```
 mov byte ptr [di], al
 mov di, word ptr fraction
rep stosw
 jmp frxp_exit
frxp endp
```

Ldxp performs essentially the inverse of frxp. This routine takes a floating-point number as an argument and replaces the exponent, that is, it raises the mantissa to a new power. It computes input_float $* 2^{\text {new-exponent }}$ Its operation is simple:

## Idxp: Algorithm

```
1. Test the input floating point argument for zero.
 If it's zero, exit with zero as the result through step 6.
2. Save the sign and replace the current exponent with 126D.
3. Add the new exponent and test for overflow.
 If there is an overflow, exit through the overflow error exit, step 7.
4. Shift the sign back into place along with the exponent.
5. Write the new float to the output and leave.
6. Zero error exit; write zero out.
7. Overflow-error exit; write infinite out.
```


## Idxp: Listing

i $\star \star \star * *$
;Ldxp is similar to ldexp in $C$, it is used for math functions.
;Takes from the stack passed with it an input float (extended) and returns a
;pointer to a value to the power of two.

```
1dxp proc uses di, float:qword, power:word, exp:byte
 mov ax, word ptr float [4] ;get upper word of float
 mov dx, word ptr float [2] ;extended bits are not
 ; checked
 subb cx, cx
```


## NUMERICAL METHODS

```
 or cx, ax
 or cx, dx
 je return_zero
 shl ax, 1
 rcl cl, 1
 mov ah, 7eh
 add ah, byte ptr exp ;add new exponent
 jc
 shr cl, 1
 rcr word ptr ax, 1 ;position exponent
 mov word ptr float[4], ax
ldxp_exit:
 mov cx, 4
 mov di, word ptr power ;write the result out
 lea si, word ptr float
rep movsw
 ret
ld_overflow:
 mov word ptr float[4], 7f80h
 sub ax, ax
 mov word ptr float[2], ax
 mov word ptr float[0], ax
 jw ldxp_exit
return_zero:
 sub ax, ax
 mov di, word ptr power
 mov cx, 4
rep stosw
 jmp ldxp_exit
ldxp endp
```

The next three functions are all related. The first, $f l r$, implements the C function floor() and returns the largest floating-point mathematical integer not greater than the input.

## THE ELEMENTARY FUNCTIONS

## flr: Algorithm

1. Get the float, extract the exponent, and subtract 126D.

If there is an underflow, the number must be less than .5; exit through step 5.
2. Subtract the reduced exponent from 40D. This the mantissa portion plus extendedprecision.

If the result is less than the reduced exponent, we already have the floor (it's all integer); exit through step 3.

Otherwise, save the number of shifts in shift.
Shift the float right, shifting off the fraction bits, until the exponent is exhausted. What remains are integer bits.
3. Get the exponent back from shift.

Shift the float back into its proper position, this time without the fractionbits. This is the floor of the argument.
4. Leave, writing the result to the output.
5. Exit with a result of zero.

## flr: Listing

; ******
;floor greatest integer less than or equal to x ;single precision

flr	proc	uses bx dx di si,	
	local	shift : byte	
	mov	di, word ptr rptr	
	mov	bx, word ptr fp[0]	; get float with extended ;precision
	mov	ax, word ptr fp[2]	
	mov	dx, word ptr fp[4]	
	mov	cx, dx	
	and	cx, 7f80h	; get rid of sign and ;mantissa portion
	shl	cx, 1	
	mov	cl, ch	
	sub	ch, ch	
	sub	cl, 7eh	; subtract bias (-1) from
			;exponent

NUMERICAL METHODS

```
 jbe leave_with_zero
 mov ch, 40
 sub ch, cl
 jb already_floor
 mov byte ptr shift, ch
 mov cl, ch
 sub ch, ch
fix:
 shr dx, 1
 rcr ax, 1
 rcr bx, 1
 loop fix
 mov cl, byte ptr shift
re_position:
 shl bx, 1
 rcl ax, 1
 rcl dx, 1
 loop reposition
already-floor:
 mov word ptr [di][4], dx
 mov word ptr [di][2], ax
 mov word ptr [di][0], bx
 sub ax, ax
 mov wordptr [di][6], ax
flr_exit:
 ret
leave_with_one:
 lea si, word ptr one
 mov di, word ptr rptr
 mov cx, 4
rep movsw
 jmp flr_exit
leave_with_zero:
 sub ax, ax
 mov cx, 4
;shift the number the
;number of times indicated
;in the exponent
;position as fixed point
;realign float
;write to output
;floating-point one
-floating-point zero
```

;is it greater than the ;mantissa portion?
;there is no fractional ;part

# THE ELEMENTARY FUNCTIONS 

rep	mov   stosw   $j m p$
flr endp	

The complement to flr is flceil. This routine is similar to the C function ceil() that returns the smallest floating-point mathematical integer not less than the input argument.

## flceil: Algorithm

1. Get the float and check for zero.

If the input argument is zero, exit through step 6.
If the input is not zero, continue.
Extract the exponent and subtract 126D. If there is anunderflow, then the number must be less than . 5 ; exit through step 5 .
2. Subtract the reduced exponent from 40D. This is the mantissa portion plus extended precision.

If the result is less than the reduced exponent, we already have the ceiling (it's all integer); exit through step 3.

Otherwise, save the number of shifts in shift.
Shift the float right, shifting the fractionbits into the MSW of the floating-point data type until the exponent is exhausted. What remains are integer bits.

Test the MSW of the floating-point data type.
If it's zero, go to step 3.
If it's anything else, round the integer portion up and continue with step 3.
3. Get the exponent back from shift.

Shift the float back into its proper position, this time without the fraction bits. This is the floor of the argument.
4. Leave, writing the result to the output.
5. Exit with a result of one.
6. Exit with a result of zero.

## NUMERICAL METHODS

## flceil: Listing

```
; *****
;flceil least integer greater than or equal to x
;single precision
i
flceil proc uses bx dx di si, fp:qword, rptr:word
 local shift:byte
 mov di, word ptr rptr
 mov bx, word ptr fp[0] ;get float with extended
 mov ax, word ptr fp[2]
 mov dx, word ptr fp[4]
 sub cx, cx
 or cx, bx
 or cx, ax
 or cx, dx
 je leave_with_zero ;this is a zero
 mov cx, dx
 and cx, 7f80h
 shl cx, 1
 mov cl, ch
 sub ch, ch
 sub cl, 7eh ;subtract bias (-1) from
 ;exponent
 jb leave-with-one
 mov ch, 40
 sub ch, cl
 jb already_ceil
 mov byte ptr shift, ch
 mov cl, ch
 sub ch, ch
fix:
 shr dx, 1
 rcr ax, 1
 rcr bx, 1
 rcr word ptr [di] [6], 1 ;put guard digits in MSW of
 ;data type
```


## THE ELEMENTARY FUNCTIONS

```
 loop fix
 cmp word ptr [di][6],0h
 je not_quite_enough
 add bx, 1
 adc ax, 0
 adc dx, 0
not_quite_enough:
 mov cl, byte ptr shift
reposition:
 shl bx, 1
 rcl ax, 1
 rcl dx, 1
 loop re_position
already_ceil:
 mov word ptr [di][4], dx ;write to output
 mov word ptr [di][2], ax
 mov word ptr [di][0], bx
 sub ax, ax
 mov word ptr [di][6], ax
ceil-exit:
 ret
leave-with-one:
 lea si, word ptr one
 mov di, word ptr rptr
 mov cx, 4
rep movsw
 jmp ceil-exit
leave_with_zero:
 sub ax, ax ;a floating-point zero
 mov cx, 4
 mov di, word ptr rptr
rep stosw
 jmp short ceil_exit
flceil endp
```


## NUMERICAL METHODS

Finally, intrnd rounds the input argument to its closest integer. As used by Cody and Waite, ${ }^{9}$ this function returns an integer representing the mathematical integer closest to the input float. It employs no rounding logic; if the mantissa portion of the input float is greater than .5 , the next higher whole integer is returned. In this implementation, however, it returns a floating-point number representing the mathematical integer closest to the input. It was written that way to accommodate other routines in the floating-point package.

## intrnd: Algorithm

```
1. Subtract the value returned by flr from the input and take the
 absolute value of the result.
2. Compare the result with .5.
 If it's greater, get the flceil of the input.
 If it's equal to or less than, go to step 3.
3. Write the result to the output and return.
```


## intrnd: Listing

```
; ******
;intrnd is useful for the transcendental functions
;it rounds to the nearest integer according to the logic
;intrnd(x) =if((x-floor(x)) <.5) floor(x);
; else ceil(x);
intrnd proc uses bx dx di si, fp:qword, rptr:word
 local temp0:qword, temp1:qword,
 pushf
 cld
 sub ax, ax
 mov cx, 4
 lea di, word ptr temp0 ;prepare intermediate
 ;registers
rep stosw
 mov cx, 4
 lea di, word ptr temp1
rep stosw
 mov di, word ptr rptr ;clear the output
```


## THE ELEMENTARY FUNCTIONS

    and word ptr temp1[4], 7fffh ;cheap fabs
    cmp ax, 1 ;greater than .5?
    invoke flceil, p, addr temp0 ;get the ceiling of the
    invoke flceil, p, addr temp0 ;get the ceiling of the
    ;input

```
```

    mov CX, 4
    ```
```

    mov CX, 4
    rep stosw
rep stosw
invoke flr, fp, addr temp0
invoke flr, fp, addr temp0
invoke flsub, fp, tempo, addr templ
invoke flsub, fp, tempo, addr templ
invoke flcomp, temp1, one-half
invoke flcomp, temp1, one-half
jne intrnd_exit
jne intrnd_exit
do_ceil:
do_ceil:
intrnd_exit:
intrnd_exit:
mov ax, word ptr temp0[2]
mov ax, word ptr temp0[2]
mov dx, word ptr temp0[4]
mov dx, word ptr temp0[4]
mov di, word ptr rptr
mov di, word ptr rptr
mov word ptr [di][2], ax
mov word ptr [di][2], ax
mov word ptr [di][4], dx
mov word ptr [di][4], dx
popf
popf
ret
ret
intmd endp

```
```

intmd endp

```
```

Dealing with real numbers in a finite machine means we must deal with limitations. Two such limitations are Ymax and Eps. Ymax is the maximum allowable argument for the function that will produce accurate results with minimum error, and Eps is the smallest allowable argument. The values for these are chosen based on the size of the data types and the functions being approximated. They're important in the calculation of a number of elementary functions, notably flsin (discussed later).

## Square Roots

The first function presented here, flsqr, computes the square roots of floatingpoint numbers. Simply, this function finds the square root of the mantissa portion of the float and then the root of 2 exponent . It then reconstructs the float and returns.

To begin with, the function $f r x p$ is called to constrain the radicand to a small, relatively linear region, $.5 \leq x<1$ (this represents an exponent of -1 ). Within this

## NUMERICAL METHODS

region, all square roots adhere to the relationship, nput_raidcand < root < 1 , precisely, all roots must exist from about .7071067 to 1.0 . This makes it much easier to come up with an initial estimate that is very close. Just taking the mid-range value for the first estimate would improve it considerably. Recall that Newton's Method delivers about about twice the number of accurate bits for each iteration; that is, if the initial estimate is accurate to $x$ bits, after the first iteration, will have about $2^{*} x+1$ accurate bits. But even this can require an unknown number of iterations to converge, so the estimate must be improved.

The most popular solution is the formula for a straight line, $y=m^{*} x+b$. Calculating the values for $m$ and $b$ that provide the best fit to the square-root curve yields slightly different values depending on the approach you take. Cody and Waite use the values .59016 for $m$ and .41731 for $b$, which will always produce an initial estimate that's less than one percent in error. Solving for $y$ in the equation for a straight line yields the first estimate, and only two passes through Newton's Method produces a result for a 24-bit mantissa.

Finding the root of $2^{\text {exponent }}$ is simple if the exponent is even: divide by 2 , just as with logarithms. If the exponent is odd, however, it cannot be divided evenly by two, so it must first be incremented by one. To compensate for this adjustment, we divide the root of the input mantissa by sqrt(2). In other words, the exponent represents $\log$, of the input number; to find its root, simply divide by two. If the exponent must be incremented before the division, the root of that additional power must be removed from the mantissa to keep the result correct.

It's then a simple matter of reassembling the float using the new mantissa and exponent.

## Flsqr: Algorithm

```
1. Test input to see whether it is greater than zero.
 If it's equal to zero, or less, exit with error through step 7.
2. Use frxp to get the exponent from the input float, and to set its
 exponent to zero, constraining it to .5 \leq * \leq 1. Multiply this
 number, f, by .59016 and add .41731 for our first approximation.
```

3. Make two passes through $r=(x / r+r) / 2$.

## THE ELEMENTARY FUNCTIONS

```
4. Inspect the exponent, n, derived earlier with frxp.
 If it's odd, multiply our best estimate from Heron's formula by the
 square root of . 5 and increment n by 1.
 Even or odd, divide n by two.
5. Add n back into the exponent of the float.
6. Write the root to the output.
7. Leave.
```


## Flsqr: Listing

; $\star \star \star \star * *$
; flsqr

```
flsqr proc uses bx cx dx si di, fp0:qword, fp1:word
 local result:qword, temp0:qword, temp1:qword, exp:byte,
 xn:qword, f:qword, y0:qword,m:byte
 pushf
 cld
 lea di, word ptr xn
 sub ax, ax
 mov cx, 4
rep stosw
 invoke flcomp, fp0, zero ;error, entry value too
 ;large
 cmp ax, 1
 je ok
 cmp ax, 0
 je got-result
 mov di, word ptr fpl
 sub ax, ax
 mov cx, 4
rep stosw
 not ax
 and ax, 7f80h
 mov word ptr result[4], ax ;make it plus infinity
 jmp flsqr_exit
got-result:
```

```
 mov di, word ptr fpl
 sub
 mov
rep stosw
jmp
 flsqr_exit
ok:
 invoke frxp, fp0, addr f, addr exp ;get exponent
invoke flmul, f, y0b, addr temp0
invoke fladd, temp0, y0a, addr y0
heron:
 invoke fldiv, f, y0, addr temp0
 invoke fldiv, f, y0, addr temp0
 ;two passes through
 ;(x/r+r)/2 is all we need
 invoke fladd, y0, temp0, addr temp0
 mov ax, word ptr temp0[4]
 shl ax, 1
 sub ah, 1
 shr ax, 1
 mov word ptr temp0[4], ax ;subtracts one half
 ;by decrementing the
 ;exponent one
 invoke fldiv, f, temp0, addr temp1
 invoke fladd, temp0, temp1, addr temp0
 mov ax, word ptr temp0[4]
 shl ax, 1
 sub ah, 1
 shr ax, 1
 mov word ptr y0[4], ax
 mov ax, word ptr temp0[2]
 mov word ptr y0[2], ax
 mov ax, word ptr temp0
 mov word ptr y0, ax
 sub ax, ax
 mov word ptr y0[6], ax
chk_n:
 mov al, byte ptr exp
mov cl, al
sar al, 1
jnc evn
```


## THE ELEMENTARY FUNCTIONS

```
odd:
 invoke flmul, y0, sqrt_half, addr y0 ;adjustment for uneven
 mov al, cl
 inc al ;bump exponent on odd
 sar al, 1
 mov cl, al
evn:
```

```
 ;exponent
```

                                    ;exponent
    ;divide by two
    ;divide by two
    ```
;n/2->m
```

;n/2->m
power:
mov ax, word ptr y0[4]
shl ax, 1
add ah, cl
write_result:
shr ax, 1
mov word ptr y0[4], ax
lea si, word ptr y0
mov di, word ptr fpl
mov cx, 4
rep movsw
flsqr_exit:
popf
ret
flsqr endp

```

\section*{Sines and Cosines}

The final routine implements the sine function using a minimax polynomial approximation. A minimax approximation seeks to minimize the maximum error instead of the average square of the error, which can allow isolated error spikes. The minimax method keeps the extreme errors low but can result in a higher average square error. Ultimately, what this means is that the function is resolved using a power series whose coefficients have been specially derived to keep the maximum error to a minimum value.

This routine defines the input argument as some integer times \(\pi\) plus a fraction equal to or less than \(\pi / 2\). It expects to reduce the argument to the fraction \(f\), by removing any multiplies of \(\pi\) It then approximates the sine \((f)\) based on the

\section*{NUMERICAL METHODS}
evaluation of a small interval symmetric about the origin, \(f\), and puts the number back together as our result. It solves for the cosine by adding \(\pi / 2\) to the argument and proceeds as with the sine (see Figure 6-3).

In this function we again encounter Ymax and Eps. These limitations depend on the precision available to the arithmetic in the particular machine and help guarantee the accuracy of your results. According to Cody and Waite, Ymax should be no greater than \(\pi * 2^{(t / 2)}\) and Eps, no less than \(2^{(-t / 2)}\), where \(t\) is the number of bits available to present the significand \({ }^{9}\). In this example, \(t\) is 11 bits, but that doesn't take the extended precision into account.

The algorithm is a fairly straightforward implementation. If the input argument is in range, this function initially reduced it to \(x n\) initially by multiplying by \(1 / \pi\) (floating-point multiplication is generally faster than division) and calling intrnd to get the closest integer. Multiplying \(x n\) by \(\pi\) and subtracting the result from the absolute value of the input argument extracts a fraction, \(f\), which is the actual angle to be evaluated with Cody and Waite's minimax approximation.

The polynomial \(\mathrm{R}(\mathrm{g})\) is evaluated using a table of precomputed coefficients and Horner's rule, except that in this implementation, the usual loop (see Polyeval in the last section) was unrolled.
\[
R(g)=(((r 4 * g+r 3) * g+r 2) * g+r l) * g
\]
where \(g=f *\). The values \(r 4\) through \(r 1\) are coefficients stored in the table sincos.
After the evaluation, \(\mathrm{R}(\mathrm{g})\) is multiplied by \(f\) and \(f\) is added to it. The only thing left to do is adjust the sign of the result according to the quadrant. The pseudocode for this implementation of flsin is as follows.

\section*{flsin: Algorithm}
```

1. See that the input argument is no greater than Ymax.
If it is, exit with error through step 8.
2. Take the absolute value of the input argument.
Multiply by }1/\pi\mathrm{ to remove multiple components of }
Use intrnd to round to the closest integer, xn.
```

\section*{THE ELEMENTARY FUNCTIONS}

Test \(x n\) to see whether it's odd or even. If it's odd, there is a sign reversal; complement sign.
3. Reduce the argument to \(f\) through (|x|-xn*c1)-xn*c2 (in other words, subtract the rounded value \(x n\) multiplied by p from the input argument).
4. Compare \(f\) with Eps.

If it is less, we have our result, exit through step 8.
5. Square \(f,(f * f->g)\) and evaluate \(r(g)\)
6. Multiply \(f\) by \(R(g)\), then add \(f\).
7. Correct for sign; if sign is set, negate result.
8. Write the result to the output and leave.

\section*{Flsin: Listing}
```

; *****
.data
sincos qword 404900000000h, 3a7daa20968bh, Obe2aaaa8fdbeh, 3c088739cb85h,
0b94fb2227f1ah, 362e9c5a91d8h
.code
i ******
; flsin
flsin proc uses bx cx dx si di, fp0:qword, fp1:word, sign:byte
local result:qword, temp0:qword, temp1:qword,
y:qword, u:qword
pushf
cld
invoke flcomp, fp0, ymax ;error, entry value too
;large
cmp ax, 1
jl absx
error-exit:

```

\section*{NUMERICAL METHODS}
```

    lea di, word ptr result
    sub ax, ax
    mov cx, 4
    rep stosw
jmp
writeout
absx :
mov ax, word ptr fp0[4] ;make absolute
or ax, ax
jns deconstruct_exponent
and ax, 7fffh
mov word ptr fp0[4], ax
deconstruct_exponent:
invoke flmul, fp0, one_over_pi, addr result
;(x/pi)
invoke intrnd, result, addr temp0
mov ax, word ptr temp0[2] ; determine if integer
;has odd or even
mov dx, word ptr temp0[4] ; number of bits
mov cx, dx
and cx, 7f80h
shl cx, 1
mov cl, ch
sub ch, ch
sub cl, 7fh ;subtract bias (-1) from
exponent
js not-odd
inc cl
or cl, cl
je not-odd
extract_int:
shl ax, 1
rcl dx, 1
rcl word ptr bx, 1
loop extract_int ;position as fixed point
test dh, 1
je not_odd
not byte ptr sign
not_odd:

```

\section*{THE ELEMENTARY FUNCTIONS}
```

xpi:
invoke flsub, fp0, result, addr result
flmul, temp0, sincos[8*1], addr temp1
; intrnd(x/pi)*c2
invoke flsub, result, temp1, addr y
;Y
chk_eps:
invoke
invoke
or
jns
lea
sub
mov
rep stosw
jmp
writeout
r_g
invoke flmul, y, y, addr u
;evaluate r(g)
;((r4*g+r3)*g+r2)*g+rl)*g
invoke flmul, u, sincos[8*5], addr result
invoke fladd, sincos[8*4], result, addr result
invoke flmul, u, result, addr result
invoke fladd, sincos[8*3], result, addr result
invoke flmul, u, result, addr result
invoke fladd, sincos[8*2], result, addr result
invoke flmul, u, result, addr result

```

\section*{NUMERICAL METHODS}
```

                                    ;result== z
    fxr:
invoke flmul, result, y, addr result
invoke fladd, result, y, addr result
:r*r+f
handle_sign:
cmp byte ptr sign, -1
jne writeout
xor word ptr result[4], 8000h
;result * sign
writeout:
mov di, word ptr fpl
lea si, word ptr result
mov cx, 4
rep movsw
flsin_exit:
popf
ret
flsin endp

```

Deriving the elementary functions is both a science and an art. The techniques are given in books, but the art comes from experience with the arithmetic itself. Combining knowledge of how it behaves with science produces the best results.

\section*{THE ELEMENTARY FUNCTIONS}

1 Horden, Ira. An FFT Algorithm For MCS-96 Products Including Supporting Routines and Examples. Mt. Prospect, IL:Intel Corp., 1991, AP-275.

2 Feynman, Richard P. The Feynman Lectures On Physics. Reading, MA: Addison-Wesley Publishing Co., 1963, Volume I, Chapter 22.

3 Knuth, D. E. Fundamental Algorithms. Reading, MA: Addison-Wesley Publishing Co., 1973, Page 26, Exercise 28.

4 Jarvis, Pitts. Implementing CORDIC Algorithms. Dr. Dobb's Journal, October 1990, Pages 152-156.

5 Nielsen, Kaj L. Modern Trigonometry. New York, NY: Barnes \& Noble, 1966, Page 169

6 Acton, Forman S. Numerical Methods That Usually Work. Washington D.C.: Mathematical Association of America, 1990.

Hamming, R. W. Numerical Methods for Scientists and Engineers. New York, NY: Dover Publications, 1973.

7 Sedgewick, Robert. Algorithms in C. New York, NY: Addison-Welsley Publishing Co., 1990, Page 525.

8 Crenshaw, Jack W. Square Roots are Simple? Embedded Systems Programming, Nov. 1991, 4/11, Pages 30-52.

9 Cody, William J. and William Waite. Software Manual for the Elementary Functions. Englewood, NJ: Prentice-Hall, Inc., 1980.

\section*{APPENDIX A}

\section*{A Pseudo-Random Number Generator}

To test the floating-point routines in this book, I needed something that would generate an unpredictable and fairly uniform series of numbers. These routines are complex enough that a forgotten carry, incorrect two's complement, or occasional overflow could easily hide from an ordinary "peek and poke" test. Even with a random number generator, it took many hours and tests with a number of data ranges to find some of the ugliest bugs.

Of course, the standard C library has a random number generator, \(\operatorname{rand}()\), but the code for it was unavailable and there were no guarantees as to how it worked. Some random number generators have such a high serial correlation (sequential dependence) that if a sequence of numbers was mapped to \(x / y\) locations on a monitor, patterns would appear. With others, users were warned that although each number generated was guaranteed to be random individually, no sequence was guaranteed to be random.

Generating random numbers isn't as easy as it might sound. Random numbers and arbitrary numbers are very different; if you asked a friend for a random number, you would really receive an arbitrarily chosen number. To be truly random, a number must have an equal chance of being chosen out of some known range and precision.

Games of dice, cards, and the lottery all depend on a sequence of random numbers, and most use a means other than computers to generate them. People don't trust machines to generate random numbers because machines can become predictable and repetitive. But with the kind of simulations and testing needed to test the floating-point routines in this book, drawing each number from a pot would take far too long. Some other method had to be devised.

\section*{NUMERICAL METHODS}

One of the first techniques for generating random numbers was originated by John Von Neumann and called the middle-square method. \({ }^{1}\) It consisted of taking the seed, or previous random number, squaring it, and taking the middle digits. Unfortunately, this method had serious disadvantages that prevented it from being widely used. It didn't take much for it to get into a rut; if a zero found its way into these middle digits, for instance, there it would stay.

A number of pseudo-random number generators are in general use, though not all of them are well tested and not all of them are good. A good random number generator is difficult to define exactly. The one quality that these generators must possess is randomness. An instance of this is given in the chi-square test, presented later. Given a uniformly distributed, pseudo-random sequence of a certain length, \(n\), of numbers, all between 0 and some limit, \(l\), divided among \(l\) bins, an equal number of numbers in each bin would be highly suspicious.

The most popular pseudo-random number generator in use, and the one chosen for this book, is the multiplicative congruential method. This technique was first proposed by D. H. Lehmer \({ }^{1}\) in 1949. It is based on the formula
\[
X_{n+1}=\left(a X_{n}+c\right) \bmod m
\]

Each new number is produced from a number, \(\mathrm{X}_{\mathrm{n}}\), which is either the seed or the previous number, through multiplication and modular division. It requires a multiplier, \(a\), that must be equal to or greater than zero and less than the modulus, an additive or increment, c , that must also be equal to or greater than zero and less than the modulus, and a modulus, \(m\), that is greater than zero. Simply supplying numbers for these variables won't result in a good random number generator; the two "bad" generators described earlier were linear congruential generators.

Here are a few guidelines, summarized from the materials of Donald Knuth:
- The seed, \(X_{n}\), may be arbitrary and may, in fact, be the previously generated number in a pseudo-random sequence. Irandom, the pseudo-random number generator created for this book expects a double as the seed; in the demonstration routine spectral.c, the DOS timer tick is used.

\section*{A PSEUDO-RANDOM NUMBER GENERATOR}
- The modulus, \(m\), should be at least \(2^{30}\). Very often it is the word size (or a multiple thereof) of the computer, making division and extraction of the remainder trivial. The subroutine that actually produces the random number uses a modulus of \(2^{32}\). This means that after the seed is multiplied by \(a\), the least significant doubleword is the new random number. The result would be the same if the product of \(a * X\) were divided by 100000000 H .
- If you intend to run the random number generator on a binary computer, the multiplier, \(a\), should be chosen; \(a \bmod 8=5\). If the target machine is decimal, then a \(\bmod 200=21\). The multiplier and increment determine the period, or the length of the sequence before it starts again, and potency, or randomness, of the random number generator. The multiplier, \(a\), in irandom (presented later in this chapter) is 69069 D , which is congruent to \(5 \bmod 8\).
- The multiplier should be between .01 m and .99 m and should not involve a regular pattern. The multiplier in irand is actually less than \(.01 m\), but so was the multiplier in the original psuedo-random number generator proposed by Lehmer. In truth, it was chosen partly because of its size; the arithmetic was easier and faster. In tests described later in this appendix, this multiplier performed as well as those of two other generators.
- If you have a good multiplier, the value of c , the increment, is not important. It may be equal to one or even \(a\). In irandom, \(\mathrm{c}=0\).
- Beware of the least significant digits. They are not very random and should not be used for decisions. Avoid methods of scaling random numbers that involve modular operations, such as those found in the Microsoft C getrandom macro; the modular function will return the least random part of the number. Instead, treat the value returned by the random number generator as a fraction and use it to scale a user-determined maximum.

The technique chosen for the random number generator here is a combination of linear congruential and shuffling. In this sense, shuffling means that the random numbers are somehow moved around, or shuffled, before they're generated. This breaks up any serial correlation the sequence might have and provides a much longer, possibly infinite, period.

\section*{NUMERICAL METHODS}

The pseudo-random number generator here comprises three routines. The first is an initialization, rinit, in which an array of 256 doublewords is filled with numbers created using the routine congruent and a seed value.

The actual generation is done by irand. First, this routine creates a new random number based on the current seed, which is nothing more than the last number generated. It then uses the lower byte of the upper word of this new random number as an index into the array of 256 numbers created at initialization. A new random number is created to replace the one selected and the routine exits, returning the number from the array. The initialization routine, rinit, must be called before irandom if the user wishes to select their own seeds; otherwise, the value 1 is chosen. Pseudocode for each of the routines is as follows

\section*{rinit: Algorithm}
1. Point to the double word array in RAM. This will be the initial list of random numbers.
2. Place the input seed in the seed variable. In these routines, the timer tick is used as the seed.
3. Call the routine congruent 256 times to fill the array.
4. Exit.
; ******
;rinit - initializes random number generator based upon input seed
\begin{tabular}{lll}
& \\
a data & \\
a dword & 69069 \\
IMAX equ & 32767 \\
rantop word & IMAX \\
ran 1 dword & 256 dup (0) \\
xsubi dword & lh
\end{tabular}
```

;global iterative seed for
;random number generator, change
;this value to change default

```

\section*{A PSEUDO-RANDOM NUMBER GENERATOR}
```

init byte Oh
.code
rinit proc uses bx cx dx si di, seed:dword
lea di, word ptr ran1
mov ax, word ptr seed[2]
mov word ptr xsubi[2], ax ;put in seed variable
mov ax, word ptr seed
mov word ptr xsubi, ax
mov cx, 256
fill_array:
invoke congruent
mov word ptr [di], ax
mov word ptr [di][2], dx
add di, 4
loop fill_array
rinit_exit:
sub ax, ax
not ax
mov byte ptr init, al
ret
rinit endp

```

\section*{congruent: Algorithm}
1. Move the lower word of the seed, xsubi, into AX and multiply by the lower word of the multiplier, a. This will produce a result in DX:AX, with the upperword of the product in DX. (This routine performs a multipleprecisionmultiply. This is a standard polynomial multiply; it is a bit simpler and more direct because the multiplier is known.)
2. Save the lower word of this product in \(B X\) and the upper word in \(C X\).

\section*{NUMERICAL METHODS}
3. Place the upper word of the seed, xsubi, in AX and multiply by the lower word of the multiplier, a.
4. Add the lower word of the product of this last multiplication to the upper word of the product from the first multiplication, and propagate any carries.
5. Add to AX the lower word of xsubi, and to DX the upper word of xsubi. The multiplier used in this routine is 69069D, or 10dcdH. The multiplications performed prior to this step all involved the lower word, OdcdH. To multiply by 10000 H , you need only shift the multiplicand 16 places to the left and add it to the previous subproduct.
6. Replace DX with BX, the LSW of the multiple-precision product. The MSW is discarded because it is purely overflow from any carries that have propagated forward. Instead, the lesser words are used. They might be regarded as the fractional extension of any integer in the MSW.
7. Write \(B X\) to the LSW of the seed and AX to the MSW.
8. Return.
```

; ******
; congruent -performs simple congruential algorithm

```
```

congruent proc uses bx cx
mov ax, word ptr xsubi ;a*seed (mod2^32)
mul word ptr a
mov bx, ax ;lower word of result
mov cx, dx ;upper word
mov ax, word ptr xsubi[2]
mul word ptr a
add ax, cx
adc dx, 0
add ax, word ptr xsubi ;a multiplication by one is just
; an add, right?
adc dx, word ptr xsubi [2]
mov dx, bx
mov word ptr xsubi, bx

```

\section*{A PSEUDO-RANDOM NUMBER GENERATOR}
```

    mov word ptr xsubi [2], ax
    ret
    congruent endp

```

\section*{irandom: Algorithm}
1. Point to the array of random numbers.
2. Call congruent for a new number based upon the last seed.
3. Use the lower byte of the MSW of that number as an index into that array.
4. Get a new random number.
5. Replace the previously selected number with this new number.
6. Replace the seed with the previously selected number.
7. Scale the random number with rantop, a variable defining the maximum random number output by the routine.
```

;
; ******
;irandom- generates random floats using the linear congruential method
irandom proc uses bx cx dx si di
lea si, word ptr ran1
mov al, byte ptr init ;check for initialization
or al, al
jne already_initialized
invoke rinit, xsubi ;default to 1
already_initialized:
invoke congruent ;get a random number
and ax, Offh ;every fourth byte, right?
shl ax, 1
shl ax, 1 ;multiply by four
add si, ax
mov di, si ;so we can put one there too
invoke congruent
mov bx, word ptr [si]

```

\section*{NUMERICAL METHODS}
\begin{tabular}{|c|c|c|}
\hline mov & cx, word ptr [si][2] & ; get number from array \\
\hline mov & word ptr [di], ax & \\
\hline mov & word ptr [di] [2], dx & ;replace it with another \\
\hline mov & word ptr xsubi, bx & \\
\hline mov & word ptr xsubi[2], cx & ; seed for next random \\
\hline mov & ax, bx & \\
\hline mul & word ptr rantop & \begin{tabular}{l}
; scale output by rantop, the \\
; maximum size of the \\
; random number
\end{tabular} \\
\hline mov & ax, dx & \begin{tabular}{l}
;if rantop were made 0ffffH, \\
; the value could be used \\
; directly as a fraction
\end{tabular} \\
\hline ret & & \\
\hline irandom & endp & \\
\hline
\end{tabular}

The danger with a pseudo-random number generator is that it will look quite acceptable on paper but may fail to produce good numbers. Spectra1.c provides two ways to test irandom or any pseudo-random number generator. One is quite simple, allowing examination of the output in graphic format so that the numbers produced by irandom can be checked visually for any patterns or concentrations. Any serial correlations that might arise can be detected using this method, but it is no proof of \(k\)-space, or multidimensional, randomness.

The other test is the traditional Chi-square statistic. The output of this formula can give a probabilistic indication as to whether your random number generator is truly random. The actual formula is stated:
\[
\mathrm{v}=\sum_{1 \leq \mathrm{s} \leq l \mathrm{k}}\left(\mathrm{Y}_{\mathrm{s}}-\mathrm{np} \mathrm{p}_{\mathrm{s}}\right)^{2} / \mathrm{np} \mathrm{~s}_{\mathrm{s}}
\]
but for the purposes of this algorithm is stated:
\[
\mathrm{v}=\quad \mathrm{l} / \mathrm{n} \sum_{1 \leq \mathrm{s} \leq \mathrm{k}}\left(\mathrm{ys}_{-}^{2} / \mathrm{p}_{\mathrm{s}}\right)-\mathrm{n}
\]

\section*{A PSEUDO-RANDOM NUMBER GENERATOR}

This formula merely evaluates a sequence and produces a value indicating how much the sequence diverged from a probable or expected distribution.

Say you generate 1,000 numbers, \(a\), all of them less than \(100, b\). You then divide \(a\) among 100 bins, c , based on the value of the number; in other words, a random number of 55 would go into bin 55, and a number such as 32 would go in bin 32 . You would probably expect 10 numbers in each bin. Of course, a random number generator will seldom have an absolutely even distribution; it wouldn't be random if it did.

In fact, this statistic is only an indicator and can vary from sampling to sampling on the same generator. Tables can be used to interpret the numbers output by this formula. A good rule of thumb is that the statistic should be close, but not too close, to the number of bins-probably within \(2 * \sqrt{ }(\mathrm{~b}) .^{2}\)

This statistic can vary. While you could roll 10 sevens in a row, it simply won't happen very often. A statistic that varies widely from \(2 \mathbb{*}(b)\), consistently produces the same value, or is extremely close to \(b\) might be suspect. I tested Irandom -along with \(\operatorname{rand}()\), a "portable" pseudo-random number generator written in C and a thirdparty routine found little difference in this statistic. It always remained relatively close to \(b\), only occasionally straying outside \(2 \nVdash \sqrt{ }(\mathrm{~b})\).

Both the visual and the Chi-square test are incorporated into a program called spectral.c (no relation to Knuth's spectral test; it is so called merely because of its visual aspect). The program is simple: Pairs of random numbers are scaled and used as \(x\) and \(y\) coordinates for pixels on a graphics screen; 10,000 pixels are generated this way. Serial correlations can show up as a sawtooth pattern or other concentrations in the display. Otherwise, the display should show a fairly uniform array of white dots similar to a starry night.

After painting the screen, program retrieves the seed to generate a sequence of numbers for the Chi-square statistic. The result is then displayed.

\section*{spectral: Algorithm}
```

1. Prepare the screen, turn the cursor off, put the video in EGA graphics
mode, and retrieve a structure containing the current video configura-
tion.
```

\section*{NUMERICAL METHODS}
2. a) Use the timer tick as a seed and generate 20,000 pseudo-random numbers, using pairs as \(x / y\) locations on the graphics screen to turn pixels on. b) Use the same seed to generate the sequence for Chi-square analysis; output the result to the screen.
c) Print a message asking for a keystroke to continue, "q" to quit.
3. Return the screen to its previous state and exit to DOS.
```

\#include<conio.h>
\#include<stdio.h>
\#include<graph.h>
\#include<stdlib.h>
\#include<time.h>

```

_MRESNOCOLOR,
 _HRESBW, _TEXTMONO, _HERCMONO,
 _MRES16COLOR, _HRESIGCOLOR,
_ERESNOCOLOR,
 _ERESCOLOR, _VRES2COLOR,
_VRES16COLOR,
 _MRES256COLOR, _ORESCOLOR
 \};
extern int irandom (void);
extern void rinit (int);
extern uraninit (long);
extern double urand (void);
/*this routine scales a random number to a maximum without using a modular
operation*/
int get random (int max)
\{
 unsigned long \(a, b ;\)
 a=irandom();
 \(\mathrm{b}=\max ^{*} \mathrm{a}\);
 return (b/32768);
\}

\section*{A PSEUDO-RANDOM NUMBER GENERATOR}
```

void main ()
short j, ch, x, y, row, num = sizeof(modes) /
size of (modes[0]);
unsigned int i, e;
long g, c:
double rnum;
double result;
int n = 20000;
int r = 100;
insigned int f[l000];
unsigned int a, b, d;
int seed;
float chi;
float pi=22.0/7.0;
struct videoconfig vc;
_displaycursor(_GCURSOROFF);
_setvideomode(_ERESNOCOLOR);
_getvideoconfig(\&vc);
do{
do{
seed=(unsigned)time(NULL); /*use the timer tick as the
seed*/
rinit (seed);
_clearscreen(_GCLEARSCREEN);
for(i=0;i<l0000;i++) {
x=getrandom(vc.numxpixels);
y=getrandom(vc.numypixels);
_setpixel(x,y);

```

\section*{NUMERICAL METHODS}
```

rinit(seed);
for (a = 0; a < r; a++) f[a] = 0;
for (a = 0; a < n; a++) {
f[getrandom(r)]++;
for (a = 0, c = 0; a < r; a+t)
c += f[a] * f[a];
chi= ((float)r * (float)c/(float)n)-(float)n;
printf("\n(irandom) chi-square statistic for this set of
of random numbers is %f", chi);
printf("\npress a key to continue...");
) while((ch=getch()) != 'q');
}while(ch != 'q');
_displaycursor(_GCURSORON);
_setvideomode(_DEFAULTMODE);

```
\}

\section*{A PSEUDO-RANDOM NUMBER GENERATOR}

1 Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Publishing Co., 1981, Pages 1-178.

2 Sedgewick, Robert. Algorithms in C. Reading, MA: Addison-Wesley Publishing Co., 1990, Page 517.

\section*{APPENDIX B}

\section*{Tables and Equates}
```

Extended Precision Values Used in Elementary Functions
zero qword 000000000000h
one_half qword 3f0000000000h
one_over_pi qword 3ea2f9836e4eh
two_over_si qword 3f22f9836e4eh
half_pi qword 3fc90fdaa221h
one_over_ln2 qword 3fb8aa3b295ch
ln2 qword 3f317217f7dlh
sqrt_half qword 3f3504f30000h
expeps qword 338000000001h
eps qword 39ffffff70000h
ymax qword 45c90fdb0000h
big-x qword 42a000000000h
littlex qword 0c2a000000000h
Y0a qword 3ed5a9a80000h
Y0b qword 3f1714ba0000h
quarter qword 3e8000000000h

```

\section*{Constants for Cordic Functions}
\begin{tabular}{ll}
circulark & qword 9b74eda7h \\
hyperk & qword 1351e8755h
\end{tabular}

Common Values Written for Quadword Fixed Point
\(1 / \mathrm{p}=0.318309886=517 \mathrm{cc} 1 \mathrm{~b} 7 \mathrm{~h}\)
\(\mathrm{p}^{2}=9.869604401=9 \mathrm{de9e64dfh}\)
\(\div \mathrm{p}=1.772453851=1 \mathrm{c} 5 \mathrm{bf} 891 \mathrm{bh}\)
e \(=2.718281828=2 \mathrm{~b} 7 \mathrm{e} 15163 \mathrm{~h}\)
\(1 / \mathrm{e}=0.367879441=5 \mathrm{e} 2 \mathrm{~d} 58 \mathrm{~d} 9 \mathrm{~h}\)

\section*{NUMERICAL METHODS}
```

e2 = 7.389056099 = 763992e35h
p/180 = 0.017453293 = 477dla9h
\div2 = 1.414213562 = 16a09e668h
ln(p) = 1.144729886 = 1250d048eh
\div3 = 1.732050808 = lbb67ae86h
p = 3.141592654 = 3243f6a89h

```

Negative Powers of Two in Decimal
\(2^{-1}=.5 D\)
\(2^{-2}=.25 D\)
\(2^{-3}=.125 D\)
\(2^{-4}=.0625 D\)
\(2^{-5}=.03125 D\)
\(2^{-6}=.015625 D\)
\(2^{-7}=.0078125 \mathrm{D}\)
\(2^{-8}=.00390625 \mathrm{D}\)
\(2^{-9}=.001953125 \mathrm{D}\)
\(2^{-10}=.0009765625 \mathrm{D}\)
\(2^{-11}=.00048828125 \mathrm{D}\)
\(2^{-12}=.000244140625 D\)

\section*{Negative Powers of Ten in 32 bit Hex Format}
\(10^{-1}=.1999999 \mathrm{aH}\)
\(10^{-2}=.028 \mathrm{f} 5 \mathrm{c} 29 \mathrm{H}\)
\(10^{-3}=.00418037 \mathrm{H}\)
\(10^{-4}=.00068 \mathrm{db} 9 \mathrm{H}\)
\(10^{-5}=.0000 \mathrm{a} 7 \mathrm{c} 5 \mathrm{H}\)
\(10^{-6}=.000010 \mathrm{c} 6 \mathrm{H}\)
\(10^{-7}=.000001 \mathrm{adH}\)
\(10^{-8}=.0000002 \mathrm{aH}\)
\(10^{-9}=.00000004 \mathrm{H}\)

\section*{APPENDIX C}

\section*{FXMATH.ASM}
```

.dosseg
.model small, C, os-dos
include math.inc
i
.code
; ******
; add64 -Adds two fixed-point numbers. The radix point lies between
;word 2 and word 3.
;the arguments are passed on the stack along with a pointer to
;storage for the result
add64 proc uses ax dx es di, addendO:qword, addendl:qword, result:word
mov di,word ptr result
mov ax, word ptr addend0[0]
mov dx, word ptr addend0[2]
add ax, word ptr addend1[0]
adc dx, word ptr addendl[2]
mov word ptr [di], ax
mov word ptr [di][2], dx
mov ax, word ptr addend0[4] ;ax = low word, addend0
mov dx, word ptr addend0[6] ;dx = high word, addend0
adc ax, word ptr addendl[4] ;add low word, addend1
adc dx, word ptr addendl[6] ;add high word, addendl
mov word ptr [di][4], ax
mov word ptr [di][6], dx
ret
add64 endp

```

\section*{NUMERICAL METHODS}
```

;
;* sub64
;arguments passed on the stack; pointer returned to result
sub64 proc uses dx es di,
sub0:qword, sub1:qword, result:word
di,word ptr result
mov ax, word ptr sub0 [0] ;ax = low word, sub0
mov dx, word ptr sub0 [2] ;dx = high word, sub0
sub ax, word ptr sub1 [0]
sbb dx, word ptr sub1 [2]
mov word ptr [di][0],ax
mov word ptr [di] [2],dx
mov ax, word ptr sub0 [4] ;ax = low word, sub0
mov dx, word ptr sub0 [6] ;dx = high word, sub0
sbb ax, word ptr sub1 [4] ;subtract low word,;sub1
sbb dx, word ptr sub1 [6] ;subtract high word, sub1
mov word ptr [di][4],ax
mov word ptr [di][6],dx
mov a,0
jnc no-flag
not ax
no-flag:
ret ;result returned as dx:ax
sub64 endp
;
;* sub128
;arguments passed on the stack; pointer returned to result
sub128 proc uses ax dx es di,
sub0:word, sub1:word, result:word
mov di,word ptr sub0
mov si,word ptr sub1
mov ax, word ptr [di] [0] ;ax = low word, [di]
mov dx, word ptr [di][2] ;dx = high word, [di]
sub ax, word ptr [si] [0] ;subtract low word, [si]

```
```

        sbb dx, word ptr [si][2]
        mov word ptr [di],ax
        mov word ptr [di][2],dx
        mov ax, word ptr [di][4]
        mov dx, word ptr [di][6]
        sbb ax, word ptr [si][4]
        sbb dx, word ptr [si] [6]
        mov word ptr [di][4],ax
        mov word ptr [di][6],dx
        mov ax, word ptr [di][8]
        mov dx, word ptr [di][10]
        sbb ax, word ptr [si][8]
        sbb dx, word ptr [si] [10]
        mov word ptr [di][8],ax
        mov word ptr [di][10],dx
        mov ax, word ptr [di][12]
        mov dx, word ptr [di][14]
        sbb ax, word ptr [si][12]
        sbb dx, word ptr [si][14]
        mov word ptr [di] [12],ax
        mov word ptr [di][14],dx
        mov si,di
        mov di,word ptr result
        mov cx,8
    rep movsw
ret ;result returned as dx:ax
sub128 endp
;
;*mullong - Multiplies two unsigned fixed point values. The
;arguments and a pointer to the result are passed on the stack.
mullong proc uses ax dx es di,
smultiplicand:dword, smultiplier:dword, result:word
mov di,word ptr result ;small model pointer is
;near
mov ax, word ptr smultiplicand[2] ;multiply multiplicand
;high word

```

\section*{NUMERICAL METHODS}
```

mul word ptr smultiplier[2] ;by multiplier high word
mov word ptr [di][4], ax
mov word ptr [di] [6], dx
mov ax, word ptr smultiplicand[2] ;multiply multiplicand
;high word
mul word ptr smultiplier[0] ;by multiplier low word
mov word ptr [dil[2], ax
add word ptr [di][4], dx
adc word ptr [di][6], 0 ;add any remnant carry
mov ax, word ptr smultiplicand[0] ;multiply multiplicand
;low word
mul word ptr smultiplier[2] ;by multiplier high word
add word ptr [di][2], ax
adc word ptr [di][4], dx
adc word ptr [di][6], 0 ;add any remnant carry
mov ax, word ptr smultiplicand[0] ;multiply multiplicand
;low word
mul word ptr smultiplier[0]
;by multiplier low word
mov word ptr [di][0], ax
add word ptr [di][2], dx
adc word ptr [di][4], 0 ;add any remnant carry
adc word ptr [di][6], 0
ret

```
mullong endp
```

; ******
;* Mu164 - Multiplies two unsigned quadword integers. The
;* procedure allows for a product of twice the length of the multipliers,
;* thus preventing overflows.
mu164 proc uses ax dx,
multiplicand:qword, multiplier:qword, result:word
mov di,word ptr result
mov ax, word ptr multiplicand[6] ;multiply multiplicand
;highword
;by multiplier high word

```
```

mov word ptr [di][12], ax
mov word ptr [di][14], dx
mov
mov
mov
add
adc
mov
mov
mov
add
adc
adc
mov
mov
mov
add
jnc
adc
adc
adc
;
@@:

$\mathrm{m} \circ \mathrm{v}$	ax, word ptr multiplicand[4]	;multiply multiplicand   ;low word
mul	word ptr multiplier[6]	;by multiplier low word
add	word ptr [di][10], ax	
adc	word ptr [di][12], dx	
adc	word ptr [di][14], 0	
mov	ax, word ptr multiplicand[4]	;multiply multiplicand   ;high word
mul	word ptr multiplier[4]	;by multiplier high word
add	word ptr [di][8], ax	
adc	word ptr [di] [10], dx	
adc	word ptr [di] [12], 0	

```

\section*{NUMERICAL METHODS}
\begin{tabular}{lll}
adc & word ptr [di] [14], 0 & \\
mov & ax, word ptr multiplicand[4] & \begin{tabular}{l}
; multiply multiplicand \\
;high word
\end{tabular} \\
mul & word ptr multiplier[2] & ;by multiplier low word \\
add & word ptr [di][6], ax & \\
adc & word ptr [di][8], dx & \\
jnc & @f & \\
adc & word ptr [di][10], 0 & \\
adc & word ptr [di][12], 0 &
\end{tabular}
\begin{tabular}{lll}
mov & ax, word ptr multiplicand[4] & \begin{tabular}{l}
; multiply multiplicand \\
;high word
\end{tabular} \\
mul & word ptr multiplier[0] & ;by multiplier low word \\
mov & word ptr [di][4], ax & \\
add & word ptr [di][6], dx & \\
jnc & @f & \\
adc & word ptr [di][8], 0 & \\
adc & word ptr [di][10], 0 & \\
adc & word ptr [di][12], 0 &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline mov & ax, word ptr multiplicand[2] & \begin{tabular}{l}
; multiply multiplicand \\
;low word
\end{tabular} \\
\hline mul & word ptr multiplier[6] & ;by multiplier high word \\
\hline add & word ptr [di][8], ax & \\
\hline adc & word ptr [di][10], dx & \\
\hline adc & word ptr [di][12], 0 & ; add any remnant carry \\
\hline adc & word ptr [di][14], 0 & ; add any remnant carry \\
\hline mov & ax, word ptr multiplicand[2] & \begin{tabular}{l}
; multiply multiplicand \\
;low word
\end{tabular} \\
\hline mul & word ptr multiplier[4] & ;by multiplier low word \\
\hline add & word ptr [di][6], ax & \\
\hline adc & word ptr [di][8], dx & \\
\hline jnc & @ f & \\
\hline adc & word ptr [di][10], 0 & ; add any remnant carry \\
\hline adc & word ptr [di][12], 0 & ; add any remnant carry \\
\hline adc & word ptr [di][14], 0 & ; add any remnant carry \\
\hline
\end{tabular}
\begin{tabular}{lll}
mov & ax, word ptr multiplicand[2] & \begin{tabular}{l}
; multiply multiplicand \\
;low word
\end{tabular} \\
mul & word ptr multiplier[2] & ;by multiplier high word \\
add & word ptr [di][4], ax & \\
adc & word ptr [di][6], dx & \\
jnc & \(@ f\) & ;add any remnant carry \\
adc & word ptr [di][8], 0 & ;add any remnant carry \\
adc & word ptr [di][10], 0 & ;add any remnant carry \\
adc & word ptr [di][12], 0 & ;add any remnant carry
\end{tabular}
mov
mul
mov
add
jnc
adc
adc
adc
adc
adc
mov
mul
add
adc
jnc
adc
adc
adc
©0:
\begin{tabular}{lll}
mov & ax, word ptr multiplicand[0] & \begin{tabular}{l}
; multiply multiplicand \\
;low word
\end{tabular} \\
mul & word ptr multiplier[4] & ;by multiplier low word \\
add & word ptr [di][4], ax & \\
adc & word ptr [di][6], dx & \\
jnc & @f & \\
adc & word ptr [di][8], 0 & ;add any remnant carry
\end{tabular}

\section*{NUMERICAL METHODS}
```

adc word ptr [di][10], 0 ;add any remnant carry
adc word ptr [di][12], 0 ;add any remnant carry
adc
word ptr [di][l4], 0 ;add any remnant carry
@@:
mul
add
adc
jnc
adc
adc
adc
adc
adc
ax, word ptr multiplicand[0]; multiply multiplicand ;low word

```
```

mov

```
```

mov

```
```

word
word ptr [di][6], 0 ;add any remnant carry
word ptr [di][8], 0 ;add any remnant carry
word ptr [di][10], 0 ;add any remnant carry
word ptr [di][12], 0 ;add any remnant carry
word ptr [di][14], 0 ;add any remnant carry
@0:

mov	ax, word ptr multiplicand[0]; multiply   ;low word	
mul	word ptr multiplier[0]	;by multiplier low word
mov	word ptr [di][0], ax	
add	word ptr [di][2], dx	
jnc	@f	
adc	word ptr [di][4], 0	;add any remnant carry
adc	word ptr [di][6], 0	;add any remnant carry
adc	word ptr [di][8], 0	;add any remnant carry
adc	word ptr [di][10], 0	;add any remnant carry
adc	word ptr [di][12], 0	;add any remnant carry
adc	word ptr [di][14], 0	;add any remnant carry

@@ :
ret
mu164 endp
;******
; classic multiply

```
cmul proc uses bx cx dx si di, multiplicand:dword, multiplier:dword, product:word
local numbits:byte,mltpend:qword
```

    pushf
    cld
    sub ax, ax
    lea si, word ptr multiplicand
    lea di, word ptr mltpend
    mov cx, 2
    rep movsw
stosw
stosw ;clear upper words
mov bx, ax
mov cx, ax
mov dx, ax
mov byte ptr numbits, 32
test_multiplier:
shr word ptr multiplier[2], 1
rcr word ptr multiplier,1
jnc decrement_counter
add ax, word ptr mltpend
adc bx, word ptr mltpend[2]
adc cx, word ptr mltpend[4]
adc dx, word ptr mltpend[6]
decrement_counter:
shl word ptr mltpend, 1
rcl word ptr mltpend[2], 1
rcl word ptr mltpend[4], 1
rcl word ptr mltpend[6],1
dec byte ptr numbits
jnz test_multiplier
exit:
mov di, word ptr product
mov word ptr [di], ax
mov word ptr [di][2], bx
mov word ptr [di][4], cx
mov word ptr [di][6], dx
popf
ret
cmul endp

```

\section*{NUMERICAL METHODS}
```

; ******
; classic multiply (slightly faster)
; one quad word by another, passed on the stack, pointers returned
; to the results.
: composed of shift and add instructions
fast_cmul proc uses bx cx dx si di, multiplicand:qword,
multiplier:qword, product:word
local numbits:byte
pushf
cld
sub ax, ax
mov di, word ptr product
lea si, word ptr multiplicand
mov cx, 4
rep movsw ;clear the product
sub di, 8 ;point to base of product
lea si, word ptr multiplier ;number of bits
mov byte ptr numbits, 40h
sub ax, ax
mov bx, ax
mov cx, ax
mov dx. ax
test_for_zero:
test word ptr [di], 1
jne add-multiplier
jmp short shift
add_multiplier:
add ax, word ptr [si]
adc bx, word ptr [si][2]
adc cx, word ptr [si][4]
adc dx, word ptr [si][6]
shift:
shr dx, 1
rcr cx, 1
rcr bx, 1
rcr ax, 1

```
```

    rcr word ptr [di][6], 1
    rcr word ptr [di][4], 1
    rcr word ptr [di][2], 1
    rcr word ptr [di] [0], 1
    dec byte ptr numbits
    jz exit
    jmp short test_for_zero
    exit:
mov word ptr [di][8], ax
mov word ptr [di][10], bx
mov word ptr [di][12], cx
mov word ptr [di][14], dx
popf
ret
fast_cmul endp
; ******
; booth
; unsigned multiplication technique based upon the booth method
;
i
booth proc uses bx cx dx, multiplicand:dword, multiplier:dword,
product:word
local mltpend:qword
pushf
cld
sub ax, ax
lea si, word ptr multiplicand
lea di, word ptr mltpend
mov cx, 2
rep movsw
stosw
stosw ;clear upper words
mov bx, ax
mov cx, ax
mov dx, ax
clc

```

\section*{NUMERICAL METHODS}
```

check_carry:
jc carry_set
test word ptr multiplier, 1 ;test bit 0
jz shift_multiplicand
sub_multiplicand:
sub ax, word ptr mltpend
sbb bx, word ptr mltpend[2]
sbb cx, word ptr mltpcnd[4]
sbb dx, word ptr mltpend[6]
shift_multiplicand:
shl word ptr mltpend, 1
rcl word ptr mltpend[2], 1
rcl word ptr mltpcnd[4], 1
rcl word ptr mltpend[6], 1
or word ptr multiplier[2], 0 ;early-out mechanism
jnz shift_multiplier
or word ptr multiplier, 0
jnz shift_multiplier
jmp short exit
shift_multiplier
shr word ptr multiplier[2], 1
rcr word ptr multiplier, 1
jmp short check_carry
exit:
mov di, word ptr product
mov word ptr [di], ax
mov word ptr [di][2], bx
mov word ptr [di][4], cx
mov word ptr [di][6], dx
popf
ret
carry_set:
test word ptr multiplier, 1 ;test bit 0
jnz shift-multiplicand
add_multiplicand:

```
add ax, word ptr mltpend
adc bx, word ptr mltpend[2]
adc cx, word ptr mltpend[4]
adc \(d x\), word ptr mltpend[6]
jmp short shift-multiplicand
booth endp
```

; ******
; bit pair encoding
; unsigned corollary to the booth method
bit_pair proc uses bx cx dx, multiplicand:dword, multiplier:dword,
product:word
local mltpcnd:qword
pushf
cld
sub ax, ax
lea si, word ptr multiplicand
lea di, word ptr mltpend
mov cx, 2
rep movsw
stosw
stosw ;clear upper words
mov bx, ax
mov cx, ax
mov dx, ax
clc
check_carry:
jc carry_set ;test bit n-1
test word ptr multiplier, 1 ;test bit 0
jz shiftorsub
test word ptr multiplier, 2 ;test bit 1
jnz sub_multiplicand
jmp add_multiplicand

```

\section*{NUMERICAL METHODS}
```

shiftorsub:
test word ptr multiplier, 2
jz shift_multiplicand
subx2_multiplicand:
;cheap-inline multiply
sub_multiplicand:
sub ax, word ptr mltpend
sbb bx, word ptr mltpend[2]
sbb cx, word ptr mltpend[4]
sbb dx, word ptr mltpend[6]
shift_multiplicand:
shl word ptr mltpend, 1
rcl word ptr mltpend[2],1
rcl word ptr mltpend[4], 1
rcl word ptr mltpend[6], 1
shl word ptr mltpend, 1
rcl word ptr mltpend[2], 1
rcl word ptr mltpend[4], 1
rcl word ptr mltpend[6], 1
or word ptr multiplier[2], 0
jnz shift_multiplier
or word ptr multiplier, 0
jnz shift_multiplier
jmp short exit
shift_multiplier:
shr word ptr multiplier[2], 1
rcr word ptr multiplier, 1
shr word ptr multiplier[2],1
rcr word ptr multiplier, 1
jmp short check_carry
exit:
mov ll, word ptr product

```
```

    mov word ptr [di][2], bx
    mov word ptr [di][4], cx
    mov word ptr [di][6], dx
    popf
    ret
    carry_set:
test word ptr multiplier, 1
jnz addorsubx2
jmp short addor subxl
addx2_multiplicand:
add ax, word ptr mltpend ;cheap in_line multiply
adc bx, word ptr mltpend[2]
adc cx, word ptr mltpend[4]
adc dx, word ptr mltpend[6]
add_multiplicand:
add
ax, word ptr mltpend
adc bx, word ptr mltpend[2]
adc cx, word ptr mltpcnd[4]
adc dx, word ptr mltpend[6]
jmp short shift_multiplicand
addorsubx2:
test word ptr multiplier, 2 ;test bit 1
jnz shift_multiplicand
jmp short addx2_multiplicand
addorsubx1:
test word ptr multiplier, 2 ;test bit 1
jnz sub_multiplicand
jmp short add_multiplicand
bit_pair endp
; ******
; classic divide
; One quadword by another, passed on the stack, pointers returned
; to the results.
; Composed of shift and sub instructions.
; Returns all zeros in remainder and quotient if attempt is made to divide
; zero. Returns all ff's inquotient and dividend in remainder if divide by

```

\section*{NUMERICAL METHODS}
```

;zero is attempted.
cdiv proc uses bx cx dx si di, dvdnd:qword, dvsr:qword,
qtnt:word, rmndr:word
pushf
cld
sub ax, ax
mov di, word ptr qtnt
mov cx, 4
rep stosw
mov cx, 4
lea si, word ptr dvdnd
mov di, word ptr qtnt
rep movsw
sub di, 8
mov si, 64
sub ax, ax
mov bx, ax
mov cx, ax
mov dx, ax
shift:

shl	word ptr [di], 1
rcl	word ptr [di][2], 1
rcl	word ptr [di][4], 1
rcl	word ptr [di][6], 1
rcl	
rcl	ax,
rcl	$b x, 1$
rcl	$c x, 1$
	$d x, 1$

;clear the quotient
;dvdnd and qtnt share same
;memory space
;number of bits
;shift dividend into
;the remainder
compare:

cmp	dx, word ptr dvsr[6]
jb	test_for_end
cmp	cx, word ptr dvsr[4]
jb	test_for_end
cmp	bx, word ptr dvsr[2]
$j b$	test_for_end
cmp	ax, word ptr dvsr[0]
$j b$	test_for_end

```
```

        sub ax, word ptr dvsr
    sbb bx, word ptr dvsr[2]
    sbb cx, word ptr dvsr[4]
    sbb dx, word ptr dvsr[6]
    add word ptr [di], 1
    adc word ptr [di][2], 0
    adc word ptr [di][4], 0
    adc word ptr [di][6], 0
    test_for_end:
dec si
jnz shift
mov di, word ptr rmndr
mov word ptr [di], ax
mov word ptr [di][2], bx
mov word ptr [di][4], cx
mov word ptr [di][6], dx
exit:
popf
ret
cdiv endp
;******
;div32
;32 by 32 bit divide
;arguments are passed on the stack along with pointers to the
;quotient and remainder
div32 proc uses ax dx di si,
dvdnd:dword, dvsr:dword, qtnt:word, rmndr:word
local workspace[8]:word
sub ax, ax
mov dx, ax
mov cx, 2
lea si, word ptr dvdnd
lea di, word ptr workspace
rep movsw
mov cx, 2

```
```

    lea si, word ptr dvsr
    lea di, word ptr workspace[4]
    rep movsw
mov
cmp
jne
cmp
jne
jmp
do_divide:
cmp
jne
cmp
je
mov
mov
div
mov
mov
div
mov
mov
xor
mov
jmp
shift:
rcr
shr
rcr
cmp
jne
divide:
mov
mov
dx, word ptr dvdnd[2]

```
shr
```

;see if it is small enough
;check for divide by zero
;as long as dx is zero,
;there is
;no overflow possible in
;this division

```
;zero dividend
; normalize both dvsr and ; dvdnd
```

here
div word ptr dvsr
mov word ptr [di] [0], ax
get_remainder:
mov bx, di
lea di, word ptr workspace[8]
reconstruct:
mov
mul
mov
mov
mov ax, word ptr workspace[6]
mul word ptr [bx]
add word ptr [di][2], ax
mov ax, word ptr workspace[0]
mov dx, word ptr workspace[2]
sub ax, word ptr [di] [0]
sbb dx, word ptr [di] [2]
jnc div_ex
mov
mov dx, word ptr [bx][2]
sub word ptr [bx], 1
sbb word ptr [bx][2], 0
jmp short reconstruct
div_ex:
mov
mov word ptr [di], ax
mov word ptr [di][2], dx
clc
exit:
ret
div_by_zero:
;approximate quotient
word ptr [bx]
word ptr [di][0], ax
word ptr [di][2], dx
ax, word ptr [bx]

```

\section*{NUMERICAL METHODS}
```

    not ax
    mov word ptr [di][0], ax
    mov word ptr [di][2], ax
    stc
    jmp
    exit
    zero_div:
mov word ptr [di][0], ax
mov word ptr [di][2], ax
stc
jmp
exit
div32 endp
; ******
;The dividend and divisor are passed on the stack;the doubleword fixed-
;point result is returned in DX:AX. DX contains the integer portion, AX the
;fractional portion.
.data
roundup db 3fH, 0fH,1H, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.code
newt proc uses si di,
dividend:word, divisor:word
local shifted_bits:byte, pass_count:byte
sub ax,ax
mov byte ptr shifted_bits, al
mov byte ptr pass_count, 4
mov cx, ax
mov ax, word ptr divisor
normalize:
or ax, ax
js top_end
shl ax, 1
inc cl
cmp cl, Ofh
jg divide_by_zero ;the divisor must be
;zero
jmp short normalize

```
```

top_end:
mov byte ptr shifted_bits, cl
mov es, ax ;store normalized
mov ax, word ptr divisor
test ax, 0f8h
jnz shift_right
test al, 7h
jz divide_by_zero
jmp short shift_left
shift_right:
shr word ptr ax, 1
test ax, 0f8h
je divisor-justified
jmp short shift_right
shift-left:
test ax, 4h
jne divisor_justified
shl word ptr ax, 1
je divisor_justified
jmp short shift_left
divisor_justified:
mov si, offset roundup
sub bx, bx
mov cx, ax
mov ax, 32
div cl
sub ah, ah
mov cl, 4
div cl
mov ch, al
sub al, al
div cl
mov ah, ch
mov cx, es
mov bx, ax
pass:

mul	ax
mov	al, ah

```
;z squared
;adjust for 16-bit ;fixed point
```

    mov
        ah, dl
    mul cx
    mov ax, dx
    shl bx, 1
    sub bx, ax
    add
    adc
    mov
    inc
    dec
    jnz
        ax, bx
        si
        byte ptr pass_count
        pass
    prepare_shift:
mov ax, word ptr dividend
mul bx
sub cx, cx
mov cl, byte ptr shifted_bits
sub cl, 8
jns adjust_left
neg cl
adjust_right:
shr dx, 1
rcr ax, 1
loop adjust_right
jmp short exit
adjust_left:
shl
ax, 1
rcl dx, 1
loop adjust_left
exit:
ret
oops:
divide_by_zero:

```
```

    sub ax, ax ;error of some sort
    not ax
jmp short exit
newt endp
; ******
circle proc uses bx cx dx si di, x-coordinate:dword, y-coordinate:dword,
increment:word
local x:dword, y:dword, x_point:word, y_point:word, count
mov ax, word ptr x-coordinate
mov dx, word ptr x_coordinate[2]
mov word ptr x, ax
mov word ptr x[2], dx
mov ax, word ptr y-coordinate
mov dx, word ptr y-coordinate[2]
mov word ptr y, ax
mov word ptr y[2], dx ;load local variables
sub ax, ax
mov x_point, ax ;x coordinate
mov y_point, ax iy coordinate
mov ax, 4876h
mov dx, 6h ;2*pi
mov cx, word ptr increment ;make this a negative
;power of two
get_num_points:
shl
ax, 1
;2*pi radians
rcl dx, 1
loop get_num_points
mov count, dx ;divide by l0000h
set_point:
mov ax, word ptr x
mov dx, word ptr x[2]
add ax, 8000h ;add .5 to round up
jnc store_x ;to integers

```

\section*{NUMERICAL METHODS}
```

    adc dx, Oh
    store_x:
store_y:
mov

```
mov
mov
mov
add
jnc
adc
mov
mov
update_x:
sar
rcr
loop
sub
sbb
mov
mov
mov
update_y:
sar dx, 1
rcr
loop
add
adc
dec
jnz
dx, \(\quad 1\)
ax, 1
update_x
ax, 1
update_y
count
```

ax, word ptr y
dx, word ptr y [2]
cx, word ptr increment
word ptr $x, ~ a x$
word ptr $x$ [2], $d x$
ax, word ptr x
dx, word ptr x [2]
cx, word ptr increment
word ptr y, ax
word ptry [2], dx
set_point

```
;add. 5
store_y
\(\mathrm{dx}, \quad 0 \mathrm{~h}\)
y_point, dx
> ;your routine for writing
> ; to the screen goes here
> ; and uses x_point and
> ;y_point as screen coordi ; nates

; please note the arithmetic ; shifts
; to preserve the correct ; quadrant
; new \(x\) equals \(x-y\) *
;increment
; new y equals y + x * ;increment
ret
circle endp
```

; ******

```
```

line proc uses bx cx dx si di, xstart:word, ystart:word, xend:word,
yend:word
local x:word, y:word, decision:word, x_dif:word, y_dif:word,
xstep_diag:word,
ystep_diag:word, xstep:word, ystep:word, diag_incr:word,
incr:word

```
mov
mov
mov mov
direction:
mov
sub
jns
neg
mov
jmp
large_x:
mov
store_xdif:
mov
mov
sub
jns
neg
mov
ax, word ptr xstart
word ptr x, ax ;initialize local variables
ax, word ptr ystart
word ptry, ax
ax, word ptr xend
ax, word ptr xstart
large_x
ax
word ptr xstep_diag, -1
short store_xdif
word ptr xstep_diag, 1
x_dif, ax
ax, word ptr yend
;y distance
ax, word ptr ystart
large_y ;which direction?
ax
word ptr ystep_diag, -1

\section*{NUMERICAL METHODS}
```

large_y:
mov
store_ydif:
mov word ptr y_dif, ax ;direction is determinedby
signs
octant:
mov
mov
cmp
jg
mov
mov
sub
mov
mov ax, word ptr ystep_diag
mov word ptr ystep, ax
jmp
bigger_x:
mov
mov
sub
mov
setup_inc:
mov
shl
mov
sub
mov
sub
mov
mov
mov
mov

```
jmp
short store_ydif
mov
mov
cmp
jg
mov
mov
sub
mov
mov
mov
jmp
bigger_x:
mov
mov
sub
mov
setup_inc:
mov
shl
mov
sub
mov
sub
mov
mov
mov
mov
ax, word ptr x_dif
bx, word ptr y_dif
ax, bx
bigger_x
y_dif, ax
x_dif, bx
ax, ax
word ptr xstep, ax
ax, word ptr ystep_diag
word ptr ystep, ax
setup_inc
ax, word ptr xstep_diag
word ptr xstep, ax
ax, ax
word ptr ystep, ax
ax, word ptr y_dif
ax, 1
word ptr incr, ax
ax, word ptr x_dif
word ptr decision, ax
ax, word ptr \(x\)-dif
word ptr diag_incr, ax
ax, word ptr decision
bx, word ptr \(x\)
cx, word ptr x_dif
; direction is determinedby
; the axis with greater ; difference
;becomes our reference
; we have a bigger y move ; than \(x\)
; \(x\) won't change on ;nondiagonal steps, iy changes every step
; x changes every step, y ;changes only
;on diagonal steps
;calculate decision ;variable
;we will do it all in the ; registers
 mov \(d x\), word ptr y
line_loop:
;Put your routine for turning pixels on here. Be sure to push \(a x, c x, d x\), and \(b x\) ; before destroying them, they are used here. The value for the \(x\) coordinate is in ;bx and the value for they coordinate is in \(d x\).
```

        or ax, ax
        jns dpositive
        ;calculate new position and
        add bx, word ptr xstep
        ;update the decision
        ;variable
        add dx, word ptr ystep
        add ax, incr
        jmp short chk_loop
    dpositive:
add bx, word ptr xstep_diag
add dx, word ptr ystep_diag
add ax, word ptr diag_incr
chk_loop:
loop line_loop
ret
line endp
;
;
; ******
;smul64- signed mul64
smul64 proc uses bx cx dx di si, operand0:qword, operand1:qword, result:word
local sign:byte
sub ax, ax
mov byte ptr sign, al
mov ax, word ptr operand0 [6]
or ax, ax
jns chk_second
not byte ptr sign

```

\section*{NUMERICAL METHODS}
```

    not word ptr operand0[6]
    not word ptr operand0[4]
    not word ptr operand0[2]
    neg word ptr operand0[0]
    jc chk_second
    add word ptr operand0[2], 1
    adc word ptr operand0[4], 0
    adc word ptr operand0[6], 0
    chk_second:
mov ax, word ptr operand1[6]
or ax, ax
jns multiply_already
not byte ptr sign
not word ptr operand1[6]
not word ptr operand1[4]
not word ptr operand1[2]
neg word ptr operand1[0]
jc chk_second
add word ptr operand1[2]
adc word ptr operand1[4],0
adc word ptr operand1[6],0
multiply_already
invoke mu164, operand0, operand1, result
test byte ptr sign, -1
je leave-already
mov di, word ptr result
not word ptr [di][14]
not word ptr [di][12]
not word ptr [di][10]
not word ptr [di][8]
not word ptr [di][6]
not word ptr [di][4]
not word ptr [di][2]
neg word ptr [di][0]
jc leave_already
add word ptr [di][2], 1
adc word ptr [di][4], 0
adc word ptr [di][6], 0
adc word ptr [di][8], 0

```
```

    adc word ptr [di][10], 0
    adc word ptr [di][12], 0
    adc word ptr [di][14], 0
    leave_already:
ret
smul64 endp
i
;divmul- division by iterative multiplication
;Underflow and overflow are determined by shifting. if the dividend shifts
;out on any attempt to normalize then we have 'flowed' in which ever
;direction it shifted out.
divmul procuses bx cx dx di si, dividend:qword, divisor:qword, quotient:word
local temp[8]:word, dvdnd:qword, dvsr:qword, delta:qword,
divmsb:byte, lp:byte, tmp:qword
cld ;upward
sub cx, cx
mov byte ptr lp, 6 ;should only take six
;passes
lea di, word ptr dvdnd
mov ax, word ptr dividend[0]
mov dx, word ptr dividend[2]
or cx, ax
or cx, dx
mov word ptr [di][0], ax
mov word ptr [di][2], dx
mov ax, word ptr dividend[4]
mov dx, word ptr dividend[6]
mOV word ptr [di][4], ax
mov word ptr [di][6], dx
or cx, ax
or cx, dx
je ovrflw ;zero dividend
sub cx, cx
lea di, word ptr dvsr

```
```

    mov ax, word ptr divisor[0]
    mov dx, word ptr divisor[2]
    or
    or
    mov
    mov
    mov
    mov
    mov
    mov
    or
    or
    je
    sub
    mov
    find_msb:
dec
dec
cmp
je
mov
sub
cmp
jb
ja
test
jne
shift_left:
dec
shl
test ah, 80h
jne norm_dvsr
jmp shift-left ;count the number of shifts
;to normalize
shift_right:
inc cx
shr ax, 1
or ax, ax
je norm_dvsr
jmp shift-right
;zero divisor
;look for MSB of divisor
;di is pointing at dvsr
;get MSW
;save shifts here
;see if already normalized
;normalized?
;its already there
; count the number of shifts

```
```

;to normalize

```
norm_dvsr:
 test word ptr [di][6], 8000h
 jne norm_dvdnd ;we want to keep
 shl word ptr [di][0], 1
 rcl word ptr [di][2], 1
 rcl word ptr [di][4], 1
 rcl word ptr [di][6], 1
 jmp
norm_dvdnd:
 cmp bl, 4h
 jbe chk_2
 add cl, 10h
 jmp
chk_2:
 cmp
 bl, 2 h
 jae ready_dvdnd
 sub cl, 10h
of shift
ready_dvdnd:
 lea di, word ptr dvdnd
 or
 cl, cl
 je makedelta
 or cl, cl
 jns do_dvdnd_right
 neg cl
 sub ch, ch
 jmp do_dvdnd_left
do_dvdnd_right:
 shr word ptr [di][6], 1
 rer word ptr [di][4], 1
 rer word ptr [di][2], 1
 rer word ptr [di][0], 1
 loop do_dvdnd_right ;this should normalize dvsr
 sub ax, ax
 or
 ax, word ptr [di][6]
 or ax, word ptr [di][4]
; no error on underflow
;unless it becomes zero,
;there may still be some
;usable infonnation

\section*{NUMERICAL METHODS}
\begin{tabular}{|c|c|}
\hline or & ax, word ptr [di][2] \\
\hline or & ax, word ptr [di][0] \\
\hline jne & setup \\
\hline mov & di, word ptr quotien \\
\hline mov & cx, 4 \\
\hline rep stosw & \\
\hline jmp & divmul_exit \\
\hline do_dvdnd_left & \\
\hline shl & word ptr [di][0], 1 \\
\hline rcl & word ptr [di][2], 1 \\
\hline rcl & word ptr [di][4], 1 \\
\hline rcl & word ptr [di][6], 1 \\
\hline jc & ovrflw \\
\hline loop & do_dvdnd_left \\
\hline
\end{tabular}
;if it is now a zero, that
;is the result
setup:
 mov si, di
 mov di, word ptr quotient
 mov cx, 4
rep movsw
makedelta:
lea
lea
mov
rep movsw
not
word ptr delta[6]
not word ptr delta[4]
not word ptr delta[2]
neg word ptr delta
jc mloop
add word ptr delta[2], 1
adc word ptr delta[4], 0
adc word ptr delta[6], 0
;put shifted dividend into ;quotient
;this could be done with ;a table
; move normalized dvsr ;into delta
; attempt to develop with ;2's comp
mloop:
```

    invoke mul64, delta, dvsr, addr temp
    lea si, word ptr temp[8]
    lea di, word ptr tmp
    mov cx, 4
    rep movsw
invoke add64, tmp, dvsr, addr dvsr
lea di, word ptr divisor
mov si, word ptr quotient
mov cx, 4
rep movsw
invoke mul64, delta, divisor, addr temp
sub ax, ax
cmp word ptr temp[6], 8000h ;an attempt to round;
;please bear with me
;.5 or above rounds up
;double duty
lea di, word ptr tmp
mov cx, 4
rep movsw
invoke add64, divisor, tmp, quotient
dec byte ptr lp
je divmul_exit
jmp makedelta ;six passes for 64 bits
ovrflw:
sub ax, ax
not ax
mov cx, 4
mov di, word ptr quotient
rep stosw
divmul_exit
divmul_exit:

```

\section*{NUMERICAL METHODS}
```

    popf
    ret
    divmul endp
; ******
;divnewt- division by raphson-newton zero's approximation
divnewt proc uses bx cx dx di si, dividend:qword, divisor:qword,
quotient:word
local temp[8]:word, proportion:qword, shift:byte, qtnt_adjust:byte,
lp:byte, tmp:qword, unity:qword
cld
sub cx, cx
mov byte ptr lp, 3 ;should only take three
mov qtnt_adjust, cl
or cx, word ptr dividend[0]
or cx, word ptr dividend[2]
or cx, word ptr dividend[4]
or cx, word ptr dividend[6]
je ovrflw ;zero dividend
sub cx, cx
or cx, word ptr divisor[0]
or cx, word ptr divisor [2]
or cx, word ptr divisor[4]
or cx, word ptr divisor[6]
je ovrflw ;zero divisor
sub ax, ax
mov bx, 8
find_msb: ;look for MSB of divisor
lea di, word ptr divisor
dec bx
dec bx
cmp word ptr [di][bx], ax ;di is pointing at divisor
je find_msb

```
```

mov byte ptr qtnt_adjust, bl
mov ax, word ptr [di][bx]
sub
cmp
jb shift_left
ja
test
jne
shift_left:
dec cx
shl ax, 1
test ah, 80h
jne save_shift
jmp shift_left
shift_right:
inc cx
shr ax, 1
or ax, ax
je save_shift
jmp shift_right
save_shift:
mov
sub
shift_back:
cmp
je norm_dvsr
shr word ptr [di][6], 1
rcr word ptr [di][4], 1
rcr word ptr [di][2], 1
rcr word ptr [di][0], 1
jmp
norm_dvsr:
test word ptr [di][4], 8000h
jne make_first
shl word ptr [di][0], 1
;the divisor
rcl
byte ptr shift, cl
ax, ax
word ptr [di][6], ax
;we will put radix point at
;word three

```

NUMERICAL METHODS
```

    rcl word ptr [di][4], 1
    jmp norm_dvsr
make_first:
mov dx, 1000h
sub ax, ax
mov bx, word ptr [di][4]
div bx
sub dx, dx
mov cx, 4
correct_dvsr:
shl ax, 1
rcl dx, 1
loop correct_dvsr
mov word ptr divisor[4], ax
mov word ptr divisor[6], dx
sub cx, cx
mov word ptr divisor[2], cx
mov word ptr divisor[0], cx
shr dx, 1
rcr ax, 1
mul bx
shl ax, 1
rcl dx, 1
mov word ptr unity[4], dx
sub cx, cx
mov word ptr unity[6], cx
mov word ptr unity[2], cx
mov word ptr unity, cx
makeproportion:
mov word ptr proportion[4], dx
sub ax, ax
;for maximum
;don't want to waste time
;with a big shift when a
;little one will suffice
;reconstruct for first
; attempt
;don't want to waste time
;with a big shift when a
;little one will suffice

```
;this could be done with ;a table
```

    mov word ptr proportion[6], ax
    mov word ptr proportion[2], ax
    mov word ptr proportion, ax
    invert_proportion:
not word ptr proportion[6]
not word ptr proportion[4]
not word ptr proportion[2]
neg word ptr proportion ;attempt to develop with
jc mloop
add word ptr proportion[2], 1
adc word ptr proportion[4], 0
adc word ptr proportion[6], 0
mloop:
and word ptr proportion[6], 1
invoke mul64, proportion, divisor, addr temp
lea si, word ptr temp[6]
lea di, word ptr divisor
mov cx, 4
movsw
invoke mul64, proportion, unity, addr temp
lea si, word ptr temp[6]
lea di, word ptr unity
mOV cx, 4
movsw
lea si, word ptr temp[6]
lea di, word ptr proportion
mov cx, 4
movsw
dec byte ptr lp
je div_newt_shift
jmp invert_proportion ;six passes for 64 bits
ovrflw:
sub ax, ax
not ax
mov cx, 4

```

\section*{NUMERICAL METHODS}

\begin{tabular}{|c|c|}
\hline cmp & bl, Oah \\
\hline jae & write_zero \\
\hline mov & cx, 4 \\
\hline rep movsw & \\
\hline jmp & divnewt_exit \\
\hline write_zero: & \\
\hline mov & cx, 3 \\
\hline rep movsw & \\
\hline sub & ax, ax \\
\hline stosw & \\
\hline divnewt_exit: & \\
\hline popf & \\
\hline ret & \\
\hline divnewt & endp \\
\hline ; end & \\
\hline
\end{tabular}

\section*{APPENDIX D}

\section*{FPMATH.ASM}
```

.DOSSEG
.MODEL small, c, os_dos
include math.inc
;
.data
;
.code
i; ******
;does a single-precision fabs
fp_intrnd proc uses si di, fp0:dword, fpl:word
local flp0:qword, result:qword
pushf
cld
xor ax,ax
lea di,word ptr flp0
mov cx,4
rep stosw
lea si,word ptr fp0
lea di,word ptr flp0[2]
mov cx,2
rep movsw
invoke intrnd, flp0, addr result
mov ax, word ptr result[2]

```

\section*{NUMERICAL METHODS}
```

    mov dx, word ptr result[4]
    mov di, word ptr fpl
    mov word ptr [di], ax
    mov word ptr [di][2], dx
    popf
    ret
    fp_intrnd endp
; ******
;intrnd is useful for the transcendental functions
; it rounds to the nearest integer according to the following logic:
; intrnd(x) = if((x-floor(x)) <.5) floor(x);
i else ceil(x);
intrnd proc uses bx dx di si, fp:qword, rptr:word
local temp0:qword, templ:qword, sign:byte
pushf
cld
sub ax, ax
mov cx, 4
lea di, word ptr temp0
rep stosw
mov cx, 4
lea di, word ptr temp1
rep stosw
mov di, word ptr rptr
mov cx, 4
rep stosw
invoke flr, fp, addr temp0
invoke flsub, fp, temp0, addr temp1
and word ptr temp1[4], 7fffh;cheap fabs
invoke flcomp,temp1, one_half
cmp ax, 1
jne intrnd_exit
do_ceil:
invoke flceil, fp, addr temp0

```
```

intrnd_exit:
mov ax, word ptr temp0[2]
mov dx, word ptr temp0[4]
mov di, word ptr rptr
mov word ptr [di][2], ax
mov word ptr [di][4], dx
popf
ret
intrnd endp
;
;******
;implements floor function
;by calling flr
i
fp_floor proc uses si di, fp0:dword, fpl:word
local flp0:qword, result:qword
pushf
cld
xor ax,ax
lea di,word ptr flp0
mov cx,4
rep stosw
lea si,word ptr fp0
lea di,word ptr flp0[2]
mov cx,2
rep movsw
invoke flr, flP0, addr result
mov ax, word ptr result[2]
mov dx, word ptr result[4]
mov di, word ptr fpl
mov word ptr [di], ax
mov word ptr [di][2], dx
popf
ret

```

\section*{NUMERICAL METHODS}
```

fp_floor endp

```

\section*{; ******}
;implements ceil function
;by calling flceil
;
fp_ceil proc uses si di, fp0:dword, fp1:word
 local flp0:qword, result:qword
 pushf
 cld
 xor ax,ax
 lea di,word ptr flp0
 mov cx,4
rep stosw
 lea si,word ptr fp0
 lea di,word ptr flp0[2]
 mov cx,2
rep movsw
 invoke flceil, flp0, addr result
 mov ax, word ptr result[2]
 mov \(d x\), word ptr result[4]
 mov di, word ptr fp1
 mov word ptr [di], ax
 mov word ptr [di][2], dx
 popf
 ret
fp_ceil endp
; ******
;floor greatest integer less than or equal to \(x\)
;single precision
flr proc uses bx dx di si, fp:qword, rptr:word
```

    local shift:byte
    mov di, word ptr rptr
    mov bx, wordptr fp[0]
    ax, word ptr fp[2]
    mov dx, word ptr fp[4]
    mov cx, dx
    and cx, 7f80h
    shl cx, 1
    mov cl, ch
    sub ch, ch
    sub cl, 7eh
    jbe leave_with_zero
    mov ch, 40
    sub ch, cl
    jb already-floor
    mov byte ptr shift, ch
    mov cl, ch
    sub ch, ch
    fix:
shr dx, 1
rcr ax, 1
rcr bx, 1
loop fix
mov cl, byte ptr shift
re_position:
shl bx, 1
rcl ax, 1
rcl dx, 1
loop re_position
already_floor:
mov word ptr [di][4], dx
mov word ptr [di][2], ax
mov word ptr [di][0], bx
sub ax, ax
;get float with extended
;precision
;get rid of sign and mantissa
;portion
;subtract bias (-1) from
;exponent
;is it greater than the
;mantissa portion?
;there is no fractional part
;shift the number the amount
;of times
;indicated in the exponent
;position as fixed point

```

\section*{NUMERICAL METHODS}
```

    mov word ptr [di][6], ax
    fir_exit:
ret
leave_with_one:
lea si, word ptr one
mov di, word ptr rptr
mov cx, 4
rep movsw
jmp fir_exit
leave_with_zero:
sub ax, ax
mov cx, 4
mov di, word ptr rptr
rep stosw
jmp short fir_exit
flr endp
i; ******
;flceil least integer greater than or equal to x
;single precision
i
;
flceil proc uses bx dx di si, fp:qword, rptr:word
local shift:byte
mov di, word ptr rptr
mov bx, word ptr fp[0] ;get float with extended
mOV ax, word ptr fp[2]
mov dx, word ptr fp[4]
sub cx, cx
or cx, bx
or cx, ax
or cx, dx
je leave_with_zero;this is a zero
mov cx, dx
and cx, 7f80hq ;get rid of sign and mantissa
;portion
shl cx, 1
mov cl, ch

```
```

    sub ch, ch
    sub cl, 7eh
    leave_with_one
    jbe ch, 40
    sub ch, cl
    jb already_ceil
    mov byte ptr shift, ch
    mov cl, ch
    sub ch, ch
    fix:
shr dx, 1
rcr ax, 1
rcr bx, 1
rcr word ptr [di][6], 1 ;put guard digits in MSW of
loop fix
cmp word ptr [di][6],0h
je not_quite_enough
add bx, 1 ;roundup
adc ax, o
adc dx, 0
not_quite_enough:
mov cl, byte ptr shift
re_position:
shl
bx, 1
rcl ax, 1
rcl dx, 1
loop re_position
already_ceil:
mov word ptr [di][4], dx
mov word ptr [di][2], ax
mov word ptr [di][0], bx
sub ax, ax
mov word ptr [di][6], ax
ceil-exit:
ret

```

\section*{NUMERICAL METHODS}
```

    ret
    leave_with_one:
lea si, word ptr one
mov di, word ptr rptr
mov cx, 4
rep movsw
jmp ceil_exit
leave_with_zero:
sub ax, ax
mov cx, 4
mov di, word ptr rptr
rep stosw
jmp short ceil_exit
; ******
round proc uses bx dx di, fp:qword, rptr:word
mov ax,word ptr fp[0]
mov bx,word ptr fp[2]
mov dx,word ptr fp[4]
cmp ax,8000h
jb round_ex ;less than half
jne needs_rounding
test bx,l
je round_ex
jmp short needs_rounding
xor bx,l ;round to even if odd
;and odd if even
;round down if odd and up if
;even
jmp round_ex
needs_rounding:
and dx,7fh
add bx,lh
adc dx,0
test dx,80h ;if this is a one, there will
;be an
;overflow
mov ax, word ptr fp[4]

```
```

    and ax,0ff80h ;get exponent andsign
    add ax,80h
    jo over_flow
    or dx,ax
    jmp short round_ex
    renorm:
mov ax,word ptr fp[4]
and ax,0ff80h ;get exponent and sign
or dx,ax
round_ex:
sub ax, ax
round_exl:
mov di,word ptr rptr
mov word ptr [di][0],ax
mov word ptr [di][2],bx
mov word ptr [di][4],dx
sub ax, ax
mov word ptr [di][6], ax
ret
over_flow:
xor ax,ax
mov bx,ax ;return a quiet NAN if
not ax
mov dx,ax
xor dx, 7fH
jmp short round_exl
round endp
; ; ******
;does a single-precision fabs
i
fp_abs proc uses si di, fp0:dword, fpl:word
local flp0:qword, result:qword
xor ax,ax
lea di,word ptr flp0
mov cx,4
rep stosw

```

\section*{NUMERICAL METHODS}
```

    lea si,word ptr fp0
    lea di,word ptr flp0[2]
    mov cx,2
    rep movsw
invoke flabs, flp0, addr result
mov ax, word ptr result[2]
mov dx, word ptr result[4]
mov di, word ptr fp1
mov word ptr [di], ax
mov word ptr [di][2], dx
ret
fp_absendp
; ******
; extended-precision absolute value (fabs)
i
flabs proc uses bx cx dx si di, fp0:qword, result:word
mov di, word ptr result
mov ax, word ptr fp0
mov word ptr [di], ax
mov ax, word ptr fp0[2]
mov word ptr [di][2], ax
mov ax, word ptr fp0[4]
and ax, 7fffh ;strip sign, make positive
mov word ptr [di] [4], ax
ret
flabs endp
;
i
;does a floating-point compare
;returns with answer in ax
fp_comp proc uses si di,
fp0:dword, fpl:dword
local flp0:qword, flp1:qword

```
```

    xor ax,ax
    lea di,word ptr flp0
    mov cx,4
    rep stosw
lea di,word ptr flpl
mov cx,4
rep stosw
lea si,word ptr fp0
lea di,word ptr flp0[2]
mov cx,2
rep movsw
lea si,word ptr fp1
lea di,word ptr flp1[2]
mov cX,2
rep movsw
invoke flcomp, flp0, flp1
ret
fp_camp endp
i****
;internal routine for comparison of floating-point values
i
flcomp proc uses cx si di,
fp0:qword, fpl:qword
pushf
std
lea si,word ptr fp0[4]
lea di,word ptr fp1[4]
test word ptr fp0[4],8000h ;is the first positive.
je plus_l iyes
test word ptr fpl[4],8000h
je second_gtr ;second not negative, there
xchg di,si

```

NUMERICAL METHODS
```

compare:
mov cx,3
repe cmpsw
ja
jb second_gtr
jmp short both-same
i
plus_l:
test word ptr fp1[4],8000h
je compare
jmp first_gtr
i
second_gtr:
mov ax,-1
jmp short fpcmp_ex
first_gtr:
mov ax,1
jmp short fpcmp_ex
both-same:
sub ax,ax
fpcmp_ex:
popf
ret
flcompendp
i *******
i
fp_sub proc uses si di,
fp0:dword, fp1:dword, rptr:word
local flp0:qword, flp1:qword, result:qword
pushf
cld
xor ax,ax
lea di,word ptr result
mov cx,4
rep stosw
lea di,word ptr flp0
mov cx,4
rep stosw

```
```

    lea di,word ptr flp1
    mov Cx,4
    rep stosw
lea si,word ptr fp0
lea di,word ptr flp0[2]
mov cx,2
rep movsw
lea si,word ptr fp1
lea
mov
di,wordptr flp1[2]
cx,2
rep movsw
invoke flsub, flp0, flp1, addr result
;pass pointer to called
;routine
invoke round, result, addr result
lea si,word ptr result[2]
mov di,rptr
mov cx,2
movsw
popf
ret
fp_sub endp
i;***
;internal
;
;
flsub proc uses bx cx dx si di,
fp0:qword, fp1:qword, rptr:word
xor
invoke fladd, fp0, fp1, rptr ;pass pointer to called
;routine
flsub endp

```

\section*{NUMERICAL METHODS}
```

;
;*******
fp_add proc uses bx cx dx si di,
fp0:dword, fpl:dword, rptr:word
local flp0:qword, flpl:qword, result:qword
pushf
cld
xor ax,ax
lea di,word ptr result
mov cx,4
rep stosw
lea di,word ptr flp0
mov cx,4
rep stosw
lea di,word ptr flp1
mov cx,4
rep stosw
lea si,word ptr fp0
lea di,word ptr flp0[2]
mov cx,2
rep movsw
lea si,word ptr fp1
lea di,word ptr flp1[2]
mov cx,2
rep movsw
invoke fladd, flp0, flp1, addr result
invoke round, result, addr result
lea si,word ptr result [2]
mov di,rptr
mov cx,2
movsw
popf
ret
fp_addendp

```
```

;***
;internal
fladd proc }\begin{array}{ll}{\mathrm{ uses bx cx dx si di,}}<br>{}\&{fp0:qword, fp1:qword, rptr:word}
pushf
std
; decrement
xor ax,ax
;clear appropriate variables
lea di,word ptr opa[6] ;larger operand
mov cx,4
rep stosw word ptr [di]
lea di,word ptr opb[6] ;smaller operand
mov cx,4
rep stosw word ptr [di]
mov byte ptr sign0, al
mov byte ptr sign1, al
mov byte ptr flag,al
mov byte ptr sign,al ;clear sign
chk_fp0:
sub bx, bx ;check for zero
mov ax, word ptr fp0[4]
and ax, 7fffh
cmp ax, bx
jne chk_fpl
mov ax, word ptr fp0[2}
cmp ax, bx
jne chk_fpl
mov ax, word ptr fp0
cmp ax, bx
jne chk_fpl

```

\section*{NUMERICAL METHODS}
```

    lea si,word ptr fp1[6] ;return other addend
    jmp short leave_with_other
    chk_fp1:
mov ax, word ptr fp1[4] ;check for zero
and ax, 7fffh
cmp ax, bx
jne do_add
mov ax, word ptr fp1[2]
cmp ax, bx
jne do_add
mov ax, word ptr fp1
cmp ax, bx
jne do_add
lea si,word ptr fp0[6] ;return other addend

```

```

    and word ptr fp0[4], 7fh
    or word ptr fp0[4], 80h
    mov ax, word ptr fpl
    mov bx, word ptr fp1[2]
    mov dx, word ptr fp1[4]
    and dx,7fh
    or dx,80h
    mov word ptr fp1[4], dx
    find_largest:
cmp byte ptr diff,0
je cmp_rest
test byte ptr diff,80h ;test fornegative
je numa_bigger
jmp short numb_bigger
cmp_rest:
cmp dx, word ptr fp0[4]
ja numb_bigger
jb numa_bigger
cmp bx, word ptr fp0[2]
ja numb_bigger
jb numa_bigger
cmp ax, word ptr fp0[0]
jb numa_bigger
numb_bigger:
sub ax, ax
mov al,byte ptr diff
neg al
mov byte ptr diff,al
cmp al,40
jna in_range
;*********************
lea si, word ptr fp1[6
leave-with-largest:
mov di, word ptr rptr
add di,6
mov cx,4

```
```

;save difference

```
;save difference
;do range test
;do range test
;this is an exit!!!!!
;this is an exit!!!!!
;this is a range error
;this is a range error
;operands will not line up
;operands will not line up
;for a valid addition
;for a valid addition
;leave with largest operand
;leave with largest operand
;that is where the signifi
```

;that is where the signifi

```

NUMERICAL METHODS
```

                                    ;cance
                                    ;is anyway
                                    ;save exponent of largest
                                    ;value
                                    ;load opa with largest
                                    ; operand
                                    ;set to load opb
    numa_bigger:
sub ax, ax
mov al,byte ptr diff
cmp al,40
jae range_errora ;do range test
mov al,byte ptr exp0
mOV byte ptr exponent,al ;save exponent of largest
;value
mov al, byte ptr sign1
mov byte ptr signb, al
mov al, byte ptr sign0
mov byte ptr signa, al
lea si, word ptr fp0[6] ;1oad opa with largest

```
```

                                    ;operand
    ;set to load opb
;align operands
;ah contains \# of bytes, al \#
;of bits
;reset pointer below initial
;zeros

```

\section*{NUMERICAL METHODS}
```

;signs alike
opb_negative:
;signs disagree
not word ptr opb[6];do2's complement
not word ptr opb[4]
not word ptr opb[2]
neg word ptr opb[0]
jc just_add
add word ptr opb[2],1
adc word ptr opb[4],0
adc word ptr opb[6],0
jmp just_add
just_add:
invoke add64, opa, opb, rptr
handle_sign:
mov si, word ptr rptr
mov dx, word ptr [si][4]
mov bx, word ptr [si][2]
mov ax, word ptr [si][0]
norm:
sub cx, cx
cmp ax,cx
jne not_zero
cmp bx,cx
jne not-zero
cmp dx,cx
jne not_zero
jmp write_result ;exit with a zero
not_zero:
mov cx,64
cmp dx,Oh
je rotate_result_left
cmp dh,00h
jne rotate_result_right
test dl,80h
je rotate_result_left
jmp short done_rotate
rotate_result_right:

```
```

    shr dX,l
    rcr bx,l
    rcr ax,1
    inc byte ptr exponent ;decrement exponent with each
                                    ;shift
    test dx,0ff00h
    je done_rotate
    loop rotate_result_right
    rotate_result_left:
shl ax,1
rcl bx,l
rcl dx,l
dec byte ptr exponent ;decrement exponent with each
;shift
;insert exponent
;sign of the result of the
;operation
;sign of the larger operand
;negative

```
```

;*******
i
fp_div proc c uses si di,
fp0:dword, fp1:dword, rptr:word
local flp0:qword, flp1:qword, result:qword
pushf
cld
xor ax,ax
lea di,word ptr result
mov cx,4
rep stosw
lea di,word ptr flp0
mov cx,4
rep stosw
lea di,word ptr flp1
mov cx,4
rep stosw
lea si,word ptr fp0
lea di,word ptr flp0[2]
mov cx,2
rep movsw
lea si,word ptr fp1
lea di,word ptr flp1[2]
mov cx,2
rep movsw
invoke fldiv, flp0, flp1, addr result ;pass pointer to called
;routine
invoke round, result, addr result
lea si,word ptr result[2]
mov di,rptr
mov cx,2
movsw

```
```

    popf
    ret
    fp_div endp
;***
;
fldiv proc C uses bx cx dx si di,
fp0:qword, fp1:qword, rptr:word
local qtnt:qword, sign:byte, exponent:byte, rmndr:qword
pushf
std
xor ax,ax
mov byte ptr sign, al ;begin error and situation
;checking
lea si,word ptr fp0 ; ; ame a pointer to each fp
lea bx,word ptr fp1
mov ax,word ptr [si][4]
shl ax,1
and ax,Off00h ;check for zero
jne chk_b
jmp return_infinite;infinity
chk_b:
mov dx,word ptr [bx][4]
sh1 dx,l
and dx,0ff00h
jne b_notz
jmp divide_b_zero ;infinity, divide by zero is
;undefined
b_notz:
cmp dx,Off00h
jne check_identity
jmp make_zero ;divisor is infinite
check-identity:
mov di,bx
add di,4 ;will decrement selves

```

\section*{NUMERICAL METHODS}
```

    add si,4
    mov cx,3
    repe cmpsw
jne not-same ;these guys are the same
mov ax,word ptr dgt[8];return a one
mov bx,word ptr dgt[10]
mov dx,word ptr dgt[12]
mov di,word ptr rptr
mov word ptr [di],ax
mov word ptr [di][2],bx
mov word ptr [di][4],dx
sub ax,ax
mov word ptr [di][6],ax
jmp fldivex
not_same:
lea si,word ptr fp0
lea bx,word ptr fp1
sub ah,dh
add ah,77h
mov byte ptr exponent,ah
mov dx, word ptr [si][4]
or dx, dx
jns a_plus
not byte ptr sign
a_plus:
mov dx,word ptr [bx][4]
or dx, dx
jns restore_missing_bit
not byte ptr sign
restore-missing-bit: ;line up operands for divi
;sion
and word ptr fp0[4], 7fh
or word ptr fp0[4],80h
mov dx, word ptr fp1[4]
and dx, 7fh
or dx, 80h
cmp dx, word ptr fpO[4] ;see if divisor is greater
;than

```
```

    rcr word ptr fp0[2], 1
    rcr word ptr fp0[0], 1
    store_dvsr:
mov word ptr fp1[4], dx
divide:
invoke div64, fp0, fp1, addr fp0
mov dx, word ptr fp0[2]
mov bx, word ptr fpO[0]
sub ax, ax
sub cx,cx
cmp ax,cx
jne not_zero
cmp bx,cx
jne not-zero
cmp dx,cx
jne not_zero
jmp fix_sign ;exit with a zero
not_zero:
mov cx,64
cmp dx,Oh
je rotate_result_left
cmp dh,00h
jne rotate_result_right
test dl,80h
je rotate_result_left
jmp short done_rotate
rotate_result_right:
shr dx,l
rcr bx,l
rcr ax,1
test dx,0ff00h
je done_rotate
inc byte ptr exponent ;decrement exponent with each
;shift
loop rotate_result_right
rotate_result_left:
shl word ptr qtnt,1
rcl ax,1
rcl bx,l
rcl dx,l
test dx,80h

```
```

    jne done_rotate
    dec byte ptr exponent ;decrement exponent with each
    ;shift
    ;insert exponent
    fix-sign:
mov di,word ptr rptr
mov word ptr [di],ax
mov word ptr [di][2],bx
mov word ptr [di][4],dx
sub ax,ax
mov word ptr [di][6],ax
fldivex:
popf
ret
return_infinite:
sub ax, ax
mov bx, ax
not ax
mov dx, ax
and dx, 0f80h
jmp short fix_sign
divide_by_zero:
sub ax,ax
not ax
jmp short finish-error
make_zero:
xor
ax,ax
finish-error:
mov di,word ptr rptr
add di,6
mov cx,4
rep stos word ptr [di]

```
```

    jmp short fldivex
    fldiv endp

```
```

; ******

```
; ******
i
i
fp_mul proc c uses si di,
fp_mul proc c uses si di,
 fp0:dword, fp1:dword, rptr:word
 local flp0:qword, flp1:qword, result:qword
 pushf
 cld
 xor ax,ax
 lea di,word ptr result
 mov cx,4
rep stosw
 lea di,word ptr flp0
 mov cx, 4
rep stosw
 lea di,word ptr flp1
 mov cx, 4
rep stosw
 lea si,word ptr fp0
 lea di,word ptr flp0[2]
 mov cx, 2
rep movsw
 lea si,word ptr fp1
 lea di,word ptr flp1[2]
 mov cx,2
 movsw
 invoke flmul, flp0, flp1, addr result ;pass pointer to called
 ;routine
 invoke round, result, addr result
 lea si,word ptr result [2]
 mov di,rptr
```


## NUMERICAL METHODS

```
 mov cx,2
rep movsw
 popf
 ret
fp_mul endp
;
;***
;
;
flmul proc C uses bx cx dx si di,
 fp0:gword, fp1:gword, rptr:word
 local result[6]:word,sign:byte, exponent:byte
 pushf
 std
 sub ax,ax
 mov byte ptr sign,al
 lea di,word ptr result[10]
 mov cx,6
rep stosw
 lea si,word ptr fp0 ;name a pointer to each fp
 lea bx,word ptr fp1
 mov ax,word ptr [si][4]
 shl ax,1
 and ax,0ff00h ;check for zero
 jne is_a_inf
 jmp make_zero ;zero exponent
is_a_inf:
 cmp ax,0ff00h
 jne is_b_zero
 jmp return_infinite ;multiplicand is infinite
is_b_zero:
 mov dx,word ptr [bx][4]
 shl dx,l
 and dx,0ff00h ;check for zero
 jnz is_b_inf
 jmp make_zero ;zero exponent
is_b_inf:
 cmp dx,0ff00h
 jne get_exp
```

```
 jmp return-infinite ;multiplicand is infinite
;
get_exp:
 sub ah, 77h
 add ah, dh ;add exponents
 mov byte ptr exponent,ah ;save exponent
 mov dx,word ptr [si][4]
 or dx, dx
 jns a_plus
 not byte ptr sign
a_plus:
 mov dx,word ptr [bx][4]
 or dx, dx
 jns restore_missing_bit
 not byte ptr sign
restore_missing_bit:
 and word ptr fp0[4], 7fh ;remove the sign and exponent
 or word ptr fp0[4], 80h
 and word ptr fp1[4], 7fh
 or word ptr fp1[4], 80h
 invoke mu164a, fp0, fp1, addr result ;multiply
 mov dx,word ptr result [10]
 mov bx,word ptr result[8]
 mov ax,word ptr result[6]
 sub cx,cx
 cmp word ptr result[4], cx
 jne not_zero
 cmp ax,cx
 jne not_zero
 cmp bx,cx
 jne not_zero
 cne dx,cx
 jne not_zero
 jmp fix_sign ;exit with a zero
not_zero:
 mov cx,64
 cmp dx,Oh
 je rotate_result_left
 cmp dh,00h
```


## NUMERICAL METHODS

```
 jne rotate_result_right
 test dl,80h
 je rotate_result_left
 jmp short done_rotate
rotate_result_right:
 shr dx,l
 rcr bx,l
 rcr ax,1
 test dx,0ff00h
 je done_rotate
 inc byte ptr exponent
 loop rotate_result_right
rotate_result_left:
 shl word ptr result[2], 1
 rcl word ptr result[4], 1
 rcl ax,1
 rcl bx,l
 rcl dx,l
 test dx,80h
 jne done_rotate
 dec byte ptr exponent ;decrement exponent with each
 ;shift
 loop rotate_result_left
done_rotate:
 and dx,7fh
 shl dx, 1
 or dh, byte ptr exponent ;insert exponent
 shr dx, 1
 mov cl,byte ptr sign
 or cl,cl
 je fix_sign
 or dx,8000h
fix_sign:
 mov di,word ptr rptr
 mov word ptr [di], ax
 mov word ptr [di][2], bx
 mov word ptr [di][4], dx
 sub ax, ax
 mov word ptr [di][6], ax
fp_mulex:
 popf
 ret
```

```
return_infinite:
 sub ax, ax
 mov bx, ax
 not ax
 mov dx, ax
 and fix,0f80h ;infinity
 jmp short fix_sign
make_zero:
 xor ax,ax
finish_error:
 mov di, word ptr rptr
 add di, 6
 mov cx, 4
rep stos word ptr [di]
 jmp short fp_mulex
flmul endp
;******
; cylinder- finds the volume of a cylinder using the floatingpoint rou-
 ;tines in this module.
; volume = pi * r * r h
 .data
pi qword 404956c10000H
 .code
i
cylinder proc uses bx cx dx si di,
 radius:dword, height:dword, area:word
 local result:qword, r:qword, h:qword
 sub ax, ax ;clear space for intermediate
 ;variables
 mov cx, 4
 lea di,word ptr r
rep stosw
 mov cx, 4
 lea di, word ptr h
rep stosw
 mov ax, word ptr radius[0] ;move IEEE format to extended
 ;format
```


## NUMERICAL METHODS

```
 mov dx, word ptr radius[2]
 mov word ptr r[2], ax
 mov word ptr r[4], dx
 mov ax, word ptr height[0]
 mov dx, word ptr height[2]
 mov word ptr h[2], ax
 mov word ptr h[4], dx
 invoke flmul, r, r, addr result
 flmul, pi, result, addr result
 flmul, h, result, addr result
 round, result, addr result
 di, word ptr area
 mov ax, word ptr result[2] ;move result back to IEEE
 ;format
 mov dx, word ptr result[4]
 mov word ptr [di],ax
 mov word ptr [di][2],dx
 ret
cylinder endp
; ******
; fixed-point support for floating-point routines
; ******
;Multiplies operands by ten, returning result in multiplicand
;and overflow byte in ax. Used for binary-to-decimal conversions
;multiplicand is a pointer to a double.
multen proc uses bx cx dx di si, multiplicand:word
mov di,word ptr multiplicand
mov dx,word ptr [di]
mov cx,word ptr [di][2]
sub ax,ax
shl dx,1 ;multiply by two
rcl cx, 1
```

```
 rcl ax, 1
 mov word ptr [di],dx ;save result
 mov word ptr [di][2],cx
 mov word ptr [di][4],ax
 shl dx,l ;multiply by four
 rcl cx, 1
 rcl ax,1
 shl dx,l ;now make it eight
 rcl cx, 1
 rcl ax,1
 add dx,word ptr [di] ;add back the two to make ten
 adc cx,word ptr [di][2]
 adc ax,word ptr [di][4]
 mov word ptr [di],dx;go home
 mov word ptr [di][2],cx
 ret
multen endp
; ******
;div64
;will divide a quadword operand by adivisor using linear interpolation.
;dividend occupies upper three words of a 6-word array
;divisor occupies lower three words of a 6-word array
;used by floating-point division only
div64 proc uses es ds,
 dvdnd:qword, dvsr:qword, qtnt:word
 local result:tbyte, tmp0:qword,
 tmp1:qword, opa:qword, opb:qword
 pushf
 cld
 sub ax, ax
 lea di, word ptr result
 mov cx, 4
```


## NUMERICAL METHODS

```
rep stosw
 lea di, word ptr tmp0;quotient
 mov
rep stosw
setup:
 mov
continue_setup:
 lea si, word ptr dvdnd
 lea di, word ptr tmpo
 dx, dx
 mov ax, word ptr [si][3]
 div bx
 mov word ptr [di][4], ax ;result goes into quotient
 mov ax, word ptr [si][l]
 div bx
 mov word ptr [di][2], ax ;result goes into quotient
 sub ax, ax
 mov ah, byte ptr [si]
 div bx
 mov word ptr [di][0], ax ;result goes into quotient
chk_estimate:
 invoke mu164a, tmp0, dvsr, addr result
 lea di, word ptr tmp0
 mov ax, word ptr result[7]
 cmp ax, word ptr dvdnd[3]
 jle div_exit
 sub ax, ax
 sub word ptr [di], 1
 sbb word ptr [di][2],ax
 sbb word ptr [di][4],ax
 mov word ptr [di][6],ax ;don't need a remainder for
 ;this divide
div_exit:
 mov si, di
 mov di, word ptr qtnt
 inc di
 inc di
 mov cx, 4
```

```
rep
movsw
 popf
 ret
div64 endp
; ******
;*Mu164a -Multiplies two unsigned 5-byte integers. The
;* procedure allows for a product of twice the length of the multipliers,
;* thus preventing overflows.
mu164a proc uses ax dx,
 multiplicand:qword, multiplier:qword, result:word
 mov di,word ptr result
 sub cx, cx
;
 mov ax, word ptr multiplicand[4] ;multiply multiplicand MSW
 mul word ptr multiplier[4] ;by multiplier high word
 mov word ptr [dil[8], ax
 mov ax, word ptr multiplicand[4] ;multiply multiplicand MSW
 mul word ptr multiplier[2] ;by second MSW
 mov word ptr [di][6], ax ;of multiplier
 add word ptr [di][8], dx
 mov ax, word ptr multiplicand[4] ;multiply multiplicand high
 ;word
 mul word ptr multiplier[0] ;by third MSW
 mov word ptr [di][4], ax ;of multiplier
 add word ptr [di][6], dx
 adc word ptr [di][8], cx ;propagate carry
;
\begin{tabular}{lll}
mov & ax, word ptr multiplicand[2] & ; multiply second MSW \\
mul & word ptr multiplier[4] & ;of multiplicand by MSW \\
add & word ptr [di][6], ax & ;of multiplier \\
adc & word ptr [di][8], dx & \\
mov & & \\
mul & ax, word ptr multiplicand[2] & ;multiply second MSW of \\
add & word ptr multiplier[2] & ;multiplicand by second MSW \\
adc & word ptr [di][4], ax & ;of multiplier
\end{tabular}
```

```
word ptr [di][8], cx ;add any remnant carry
mov
mul
mov
add
adc
adc
mov
mul
add
adc
adc
mov
mul
add
adc
adc
adc
mov
mul
mov
add
adc
adc
adc
 ret
mul64a endp
```



adc
word ptr [di][8], cx ;add any remnant carry
ax, word ptr multiplicand[2]
; multiply second MSW word ptr multiplier[0]
word ptr [di][2], ax
word ptr [di][4], dx
word ptr [di][6], cx word ptr [di][8], cx ;add any remnant carry
ax, word ptr multiplicand[0]
word ptr multiplier[4]
word ptr [di][4], ax
word ptr [di][6], dx word ptr [di][8], cx ;add any remnant carry
ax, word ptr multiplicand[0] ; multiply multiplicand LSW word ptr multiplier[2] ;by second MSW word ptr [di][2], ax of multiplier word ptr [di][4], dx word ptr [di][6], cx ;add any remnant carry word ptr [di][8], cx ;add any remnant carry
ax, word ptr multiplicand[0] word ptr multiplier[0] word ptr [di][0], ax word ptr [di][2], dx word ptr [di][4], cx ;add any remnant carry word ptr [di][6], cx ;add any remnant carry word ptr [di][8], cx ;add any remnant carry

## APPENDIX E

## IO.ASM

```
.dosseg
.model small, c, os_dos
include math.inc
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{. data} \\
\hline \multicolumn{3}{|l|}{i} \\
\hline inf byte & "infinite", 0 & \\
\hline zro byte & "0.0", 0 & \\
\hline hundred & byte & 64 h \\
\hline iten word & Oah & \\
\hline powers equ & one & \\
\hline maxchar & equ & 8 \\
\hline
\end{tabular}
```

    . code
    ; ******
; dectohex
; pointer to a packed $B C D$ is used to convert to binary
i
dectohex proc uses ax bx cx si di, dntgr:word
local double:dword
xor ax, ax
mov si,word ptr dntgr
mov cx,4
cnvt_int:
mov al,byte ptr [si]
a am
;expand to unpacked form

## NUMERICAL METHODS

```
 push ax
 xchg ah,al ;get high nibble
 sub ah,ah
 add bx,ax
 call near ptr mten ;multiply by ten
 pop ax
 sub ah,ah
 add bx,ax
 call near ptr mten ;multiply by ten
 loop cnvt_int
 ret
mten:
 shl bx,1
 rcl dx,1
 mov word ptr double,bx
 mov word ptr double[2],dx
 shl bx,l
 rcl dx,l
 shl bx,l
 rcl dx,l
 add bx,word ptr double
 adc dx,word ptr double[2]
 retn
dectohex endp
; ******
;converts single-precision floating point to an ASCII string
; caller is responsible for array bounds of ASCII string
; callable from C
ftoasc proc uses si di, fp:dword, rptr:word
 local flp:qword
 cld
 xor ax,ax
```

```
 lea di,word ptr flp
 mov cx,4
rep stosw
 lea si,word ptr fp
 lea di,word ptr flp[2]
 mov cx,2
rep movsw
 invoke fta, flp, rptr
 ret
ftoasc endp
i***
; conversion of floating point to ASCII
i
fta proc uses bx cx dx si di, fp:qword, sptr:word
 local sinptr:byte, fixptr:qword, exponent:byte,
 leading_zeros:byte, ndg:byte
 pushf
 std
 xor ax,ax
 lea di,wordptr fixptr[6]
 mOV cx,4
rep stosw
 mov byte ptr [sinptr],al ;clear the sign
 mov byteptr [leading_zeros],al
 mOV byte ptr [ndg],al
 mov byte ptr [exponent],al
ck_neg:
 test word ptr fp[4],8000h :get the sign
 je gtr_0
 xor word ptr fp[4],8000h ;make positive
 not byte ptr [sinptr] ;it is negative
```


## NUMERICAL METHODS

```
;***
gtr_0:
 invoke flcomp, fp, one
 cmp ax,1h
 je less_than_ten
 dec byte ptr [ndg]
 cmp byte ptr [ndg],-37
 jl zero_result
 invoke flmul, fp, ten, addr fp
 jmp short gtr_0
less_than_ten
 invoke flcomp, fp, ten
 cmp ax, -1
 je norm_fix
 inc byte ptr [ndg]
 cmp byte ptr [ndg],37
 53 infinite_result
 invoke fldiv, fp, ten, addr fp
 jmp short less_than_ten
Rnd:
 invoke round, fp, addr fp ;fixup for translation
norm_fix:
 mov
 mov bx,word ptr fp[2]
 mov dx,word ptr fp[4]
 shl
 dx,l
get_exp:
 mov
 byte ptr exponent, dh
 byte ptr exponent, 7fh ;remove bias
 mov
 sub
 cx,8h
 cl,byte ptr exponent
 js
 lea
do_shift:
 ax,word ptr fp[0]
 *
```

mov
sub
mov
sub
js
lea
do_shift:
round, fp, addr fp
;fixup for translation
;this is for ASCII conversion ;dump the sign bit
;remove bias
; could come out zero
; but this is as far as I
; can go

```
 stc
 rcr
 sub
 je
shift_fraction:
 shr dl,1
 rcr bx,1
 rcr ax, 1
 loop shift_fraction
put-upper:
 mov word ptr [di], ax
 mov word ptr [di][2],bx
 mov al,dl
 mov byte ptr fixptr[4],dl
 xchg ah,al
 sub dx,dx
 mov di,word ptr sptr
 cld
 inc
 mov
 cmp
 jne
 mov
put_sign:
 stosb
 lea si, byte ptr fixptr[3]
write_integer:
 xchg ah,al
 aam
 xchg
 or
 al,'0
 call
 near ptr str_wrt
 xchg
 al,ah
 or
 call
 al,'0'
 near ptr str_wrt
```

;restore hidden bit
; shift significand into
;fractional part
;write integer portion
; reverse direction of write
;is it a minus?
;al contains integer
;portion

NUMERICAL METHODS

```
 inc dx
 dec
 si
do_decimal:
 mov
 stosb
do_decimal1:
 invoke multen, addr fixptr ; convert binary fraction
 or al,'O'
 call nearptr str_wrt
 inc dx
 cmp dx,maxchar
 je do_em
 jmp short do_decimal1
do_exp:
 sub ax,ax
 cmp al,byte ptr ndg
 jne write_exponent
 jmp short last_byte
write_exponent:
 mov
 al,'e'
 stosb
 mov al,byte ptr ndg
 or al,al
 jns finish_exponent
 xchg al,ah
 mov al,'-'
 stosb
 neg ah
 xchg al,ah
 sub ah,ah
finish_exponent:
 cbw
 aam ;cheap conversion
 xchg ah,al
 or al,'0'
 stosb
 xchg ah,al
```

```
 or al,'O'
 stosb
last_byte:
 sub al,al
 stosb
 popf
fta_ex:
 ret
infinite_result:
 mov di,word ptr sptr
 mov si,offset inf
 mov cx, g
rep movsb
 mov ax, -1
 jmp short fta_ex
zero_result:
 mov di,word ptr sptr
 mov si,offset zro
 mov cx, 9
rep movsb
 mov ax,-1
 jmp short fta_ex
strwrt:
 cmp al,'0'
 jne putt
 test byte ptr leading_zeros,-1
 je nope
putt:
 test byte ptr leading_zeros,-1
 jne pmt
 not leading_zeros
pmt:
 stosb
nope:
 retn
fta endp
i
```


## NUMERICAL METHODS

```
;

;Unsigned conversion from floating-point notation to integer (long).
;This is in fixed-point format; the upper two words are the integer
; and the lower two are the fraction.
;
ftofx proc uses si di, fp:dword, fixptr:word
 local flp:qword
 cld
 xor ax,ax
 lea di,word ptr flp
 mov cx,4
rep stosw
 lea si,word ptr fp
 lea di,word ptr flp[2]
 mov cx,2
rep movsw
 invoke ftfx, flp, fixptr
 ret
ftofx endp
;******
;unsigned conversion from ascii string to short real
atf proc uses si di, string:word, rptr:word ;one word for near pointer
 local exponent:byte, fp:qword, numsin:byte, expsin:byte,
 dp_flag:byte, digits:byte, dp:byte
 pushf
 std
 xor ax,ax
 lea di,word ptr fp[6] ;clear the floating
 ;variable
```

```
 mov cx,8
rep stosw word ptr [di]
 mov si,string
do_numbers:
 mov byte ptr [exponent],al
 mov byte ptr dp_flag,al
 mov byte ptr numsin,al
 mov byte ptr expsin,al
 mov byte ptr dp,al
 mov byte ptr digits,8h ;count of total digits;
 ;rounding digit is eight
 ;it is a negative number
 not [numsin]
 inc si
 mov bl,es:[si]
 jmp not_sign
not_minus:
 cmp
not_sign:
 cmp
 bl,'.'
 jne not_dot
 test byte ptr [dp],80h
 jne end_o_cnvt
 not dp_flag
 inc si
 mov bl,[si]
;check for decimal point
```


## NUMERICAL METHODS

```
not_dot:
```

cmp
jb
cmp
ja
invoke
mov
sub
sub
shl
shl
shl
invoke
test
je
dec
no_dot_yet:
inc
dec
jc
mov
jmp
not_a_num:
mov
or
cmp bl,'e'
je chk_exp
jmp
end_o_cnvt
; get legitimate number
;multiply floating point ;accumulator by 10.0
;clear upper byte
;multiply index for proper ;offset
; have we encountered a ; decimal point yet?
; check for decimal point ;looks like we may have an ; exponent

```
chk_exp:
```

chk_exp:

```
chk_exp:
 inc
 inc
 inc
 si
 si
 si
 mov bl, [si]
 mov bl, [si]
 mov bl, [si]
 cmp bl,'-'
 cmp bl,'-'
 cmp bl,'-'
 jne chk_plus
```

    jne chk_plus
    ```
 jne chk_plus
```

```
 not [expsin]
 jmp short chk_expl
chk_plus:
 cmp
 jne
chk_exp1:
 inc si
 mov bl, [si]
chk_exp2:
 cmp
 jb
 cmp
 ja
 sub
 mov
 mul
 mov
 mov
 sub
 or
 jmp
end_o_cnvt:
 sub cx,cx
 mov al,byte ptr [expsin]
 mov cl,byte ptr [dp]
 or al,al
 jns pos_exp
 sub cl,byte ptr [exponent]
 jmp short chk_numsin
pos_exp:
 add cl,byte ptr [exponent] ;exponent
chk_numsin:
 cmp word ptr numsin,0ffh
 jne chk_expsin
 or word ptr fp[4],8000h ;if exponent negative,
chk_expsin:
 xor ax,ax
 or cl,cl
```


## NUMERICAL METHODS

| jns | do_pospow | ;make exponent positive |
| :---: | :---: | :---: |
| neg | cl |  |
| do_negpow: |  |  |
| or | cl, cl | ; is exponent zero yet? |
| je | atf_ex |  |
| inc | ax |  |
| test | cx,1h | ; check for one in lsb |
| je | do_negpowa |  |
| mov | $b x, a x$ |  |
| push | ax |  |
| shl | bx, 1 |  |
| shl | bx, 1 |  |
| shl | bx, 1 |  |
| invoke | fldiv, fp, powers[bx], addr fp | ; divide by power of two |
| pop | ax |  |
| do_negpowa: |  |  |
| shr | cx, 1 |  |
| jmp | short do_negpow |  |
| do_pospow: |  |  |
| or | $\mathrm{cl}, \mathrm{cl}$ | ;is exponent zero yet? |
| je | atf_ex |  |
| inc | ax |  |
| test | cx, 1 h | ; check for one in lsb |
| je | do_pospowa |  |
| mov | bx, ax |  |
| push | ax |  |
| shl | bx, 1 |  |
| shl | bx, 1 |  |
| invoke | flmul, fp, powers[bx], addr fp | ;multiply by power of two |
| pop | ax |  |
| do_pospowa: |  |  |
| shr | cx, 1 |  |
| jmp | shortdo_pospow |  |
| atf_ex: |  |  |
| invoke | round, fp, addr fp |  |
| mov | di,word ptr rptr |  |
| mov | ax,word ptr fp |  |

```
 mov bx,word ptr fp[2]
 mov dx,word ptr fp[4]
 mov word ptr [di],bx
 mov word ptr [di][2],dx
 popf
 ret
atf endp
; ******
;Unsigned conversion from quadword fixed-point to short real.
;The intention is to accommodate long and int conversions as well.
;Binary is passed on the stack and rptr is a pointer
;to the result.
ftf proc uses si di, binary:qword, rptr:word ;one word for near
 ;pointer
 local exponent:byte, numsin:byte
 pushf
 xor ax, ax
;
 mov di, word ptr rptr ;point at future float
 add di, 6
 lea si, byte ptr binary[0] ;point to quadword
 mov bx, 7 index
i
do_numbers:
 mOV byte ptr [exponent], al
 mov byte ptr numsin, al
 mov dx, ax
;
do_num:
 mov al, byte ptr [si][bx]
 or al, al
;record sign
 jns find_top
 not byte ptr numsin ;this one is negative
 not word ptr binary[6]
```

NUMERICAL METHODS

| not | word ptr binary[4] |
| :--- | :--- |
| not | word ptr binary[2] |
| neg | word ptr binary[0] |
| jc | find_top |
| add | word ptr binary[2], 1 |
| adc | word ptr binary[4], 0 |
| adc | word ptr binary[6], 0 |

find_top:
cmp
je
mov
or
jne
dec
jmp
found_it:
mov
cmp
cmp je
shift_left
std mov sub shl shl shl
neg mov inc
cx, 4
cx, bx
cx, 1
cx, 1
cx, 1
cx
byte ptr [exponent], cl
di, byte ptr binary[4]
si, byte ptr binary
si, bx
cx, bx
cx
; we traversed the entire ; number
; move index
; test for MSB
;points to MSB
;target
;times 8

```
rep movsb
 mov cx, 4
 sub cx, bx
 sub ax, ax
rep stosb
 jmp short final_right
shift_right:
 cld
 mov cx, bx ;points to MSB
 sub cx, 4
 lea si, byte ptr binary[4]
 mov di, si
 sub di, cx
 shl cl, 1
 shl cl, 1
 shl cl, 1
 mov byte ptr [exponent], cl
 mov cx, bx
 sub cx, 4
 inc cx
rep movsb
 sub
 bx, 4
 mov cx, 4
 sub cx, bx
 sub ax, ax
 lea di, word ptr binary
rep stosb
final_right:
 lea si, byte ptr binary[4]
final_right1:
 mov
 test
 al, dl
 jne aligned
 dec byte ptr exponent
```


## NUMERICAL METHODS

```
 shl word ptr binary[0], 1
rcl word ptr binary[2], 1
rcl word ptr binary[4], 1
jmp short final_right1
aligned:
 shl al, 1
 ;clearbit
 ah, 86h
 ah, byte ptr exponent
 numsin,dh
 positive
 stc
 jmp short get_ready_to_go
positive:
 clC
get-ready_to_go:
 rcr ax, 1
 mov
 word ptr binary[4], ax
ftf_ex:
 invoke round, binary, rptr
exit:
 popf
 ret
make_zero:
 std
 sub ax, ax ;zero it all out
 mov cx, 4
rep stosw
 jmp short exit
ftf endp
;
; ***
```


## IO.ASM

```
;Conversion of floating point to fixed point
;float enters as quadword
;pointer, sptr, points to result
;This could use an external routine as well. When the float
;enters here, it is in extended format
ftfx proc uses bx cx dx si di, fp:qword, sptr:word
 local sinptr:byte, exponent:byte
 pushf
 std
 xor ax,ax
 mov byte ptr [sinptr],al ;clear the sign
 mov byte ptr [exponent],al
 mov di,word ptr sptr ;point to result
i
; ***
i
do_rnd:
 invoke round, fp, addr fp ;fixup for translation
i
set_sign:
 mov ax,word ptr fp[0]
 mov bx,word ptr fp[2]
 mov dx,word ptr fp[4]
 or dx,dx
 jns get_exponent
 not byte ptr [sinptr] ;it is negative
get_exponent:
 sub cx,cx
 shl dx,l
 sub dh,86h ;remove bias from exponent
 mov byte ptr exponent, dh
 mov cl,dh
 and dx,0ffh ;save number portion
 stc
 rcr dl,1 ;restore hidden bit
```


## NUMERICAL METHODS

```
;
which_way:
 or cl,cl
 jns shift_left
 neg
shift_right:
 cmp
 ja make_zero
make_fraction:
 shr dx,1
 rcr bx,1
 rcr ax,1
 loop make_fraction
 mov word ptr [di][0],ax
 mOV word ptr [di][2],bx
 mov word ptr [di][4],dx
 jmp short print_result
shift_left:
 cmp
 cl,18h
 make_max
big
make_integer:
 shl bx,1
 rcl dx,1
 rcl ax,1
 loop make_integer
 mov word ptr [di][6],ax
 mov word ptr [di][4],dx
 mov word ptr [di][2],bx
print_result:
 test byte ptr [sinptr], Offh
 je exit
 not word ptr [di][6] ;two's complement
 not word ptr [di][4]
 not word ptr [di][2]
 neg word ptr [di][0]
 jc exit
;failed significance, too
```

```
;no significance, too small
```

```
;no significance, too small
```

```
add word ptr [di][2],1
adc word ptr [di][4],0
adc word ptr [di][6],0
exit:
 popf
 ret
make_zero:
 sub ax,ax
 mov cx,4
rep stosw
 jmp short exit
make_max:
 sub ax,ax
 mov cx,2
rep stosw
 not a x
 stosw
 and word ptr [di][4], 7f80h
 not ax
 stosw
 jmp short exit
ftfx endp
;
;***
; dnt_bn - decimal integer to binary conversion routine
;unsigned
;It is expected that decptr points at a string of ASCII decimal digits.
;Each digit is taken in turn and converted until eight have been converted
;or until a nondecimal number is encountered.
;This might be used to pull a number from a communications buffer.
;Returns with no carry if successful and carry set if not.
dnt_bn proc uses bx cx dx si di, decptr:word, binary:word
```

NUMERICAL METHODS

decimal_conversion:
mov al,byte ptr [si]
cmp
jb
cmp
ja
call
xor
add
adc dx,0
inc si
loop decimal_conversion
oops:
stc
ret
work-done:
mov di, word ptr binary
mov word ptr [di],bx
mov word ptr [di][2],d
clc
ret
times_ten:
push ax
push cx
shl bx,l
rcl dx,l
mov
$a x, b x$
;check for decimal digit
;if it gets past here, it must ; be OK
; convert to number
;propagate any carries
;more than eight digits or ; something
;store result

```
 mov cx,dx
 shl bx,l
 rcl dx,l
 shl bx,l
 rcl dx,l
 add bx,ax
 adc dx,cx
 ;multiply by ten
 pop cx
 pop ax
 retn
dnt_bn endp
;***
;bn-dnt - a conversion routine that converts binary data to decimal
;A double word is converted. Up to eight decimal digits are
;placed in the array pointed at by decptr. If more are required to adequately
; convert this number, the attempt is aborted and an error flagged.
bn_dnt proc uses bx cx dx si di, binary:dword, decptr:word
 lea si,word ptr binary ;get pointer to the MSBb of
 ;the decimal
 ;value
 mov di,word ptr decptr ;string of decimal ASCII
 ;digits
 mov cx, 9
 add di,cx
 ;point to the end of the
 ;string
 ;this is for correct
 ordering
 sub bx,bx
 mov dx,bx
 mov byte ptr [di],bl ; see that string is
 ;zero-terminated
 dec di
```

NUMERICAL METHODS

```
binary_conversion:
 sub dx,dx
 mov ax,word ptr [si][2]
 or ax,ax
 je chk_empty
 div iten ;divide by ten
 mov word ptr [si][2],ax
 or dx,dx
 je chk_empty
divide_lower:
 mov ax, word ptr [si]
 or ax,ax
 jne not_zero
 or dx, ax
 je put_zero
not_zero:
 div iten
put_zero:
 mov word ptr [si],ax
 or dl,'O'
 mov byte ptr [di],dl
 dec di
 loop binary_conversion
oops:
 mov
 ax,-1
 stc
 ret
chk_empty:
 or dx,dx
 je still_nothing
 jmp short divide_lower
still_nothing:
 mov
 ax,word ptr [si]
 or ax,ax
 je empty
 jmp short not_zero
```

```
empty:
 inc di
 mov si,di
 mov di, word ptr decptr
 mov cx,9
rep movsw
finished:
 sub
 ax,ax
 clc
 ret
bn_dnt endp
;**
;bfc_dc -A conversion routine that converts a binary fraction (doubleword)
;To decimal ASCII representation pointed to by the string pointer, decptr.
;Set for eight digits; it could be longer.
bfc_dc proc uses bx cx dx si di bp, fraction:dword, decptr:word
 local sva:word, svb:word, svd:word
 mov di,word ptr decptr ;point to ASCII output
;string
 mov bx,word ptr fraction
 mov dx,word ptr fraction[2] ;get fractional part
 mov
 cx,8
;digit counter
 sub
 ax,ax
 mov byte ptr [di],'.' ;to begin the ASCII
 ;fraction
 inc di
decimal_conversion:
\begin{tabular}{lll}
or & \(a x, d x\) & ;check for zero operand \\
or & \(a x, b x\) & ; check for zero operand
\end{tabular}
```

```
 sub
 shl bx,1
 rcl dx,1
rcl ax,1
 ;times 2 multiple
mov word ptr svb,bx
mov word ptr svd,dx
mov word ptr sva,ax
 shl bx,1
 rcl dx,1
 rcl ax,1
 shl bx,1
 rcl dx,1
 rcl ax,1
 add bx,word ptr svb
 adc dx,word ptr svd ;multiply by ten
 adc ax,word ptr sva
 or al,'0'
mov byte ptr [di],al
inc di
sub ax,ax
loop decimal_conversion
work_done:
 mov byte ptr [di],al ;end string with a null
clc
 ret
bfc_dc endp
;
;
;***
;dfc_bn - A conversion routine that converts an ASCII decimal fraction
;to binary representation. Decptr points to the decimal string to be converted.
;The conversion will produce a double word result.
```

```
;The fraction is expected to be padded to the right if it does not
;fill eight digits.
i
dfcbn proc uses bx cx dx si di, decptr:word, fraction:word
 pushf
 cld
 mov di, word ptr decptr
 sub ax,ax
 mov cx,9
repne scasb
 dec di
 dec di
 mov si,di
 mov di, word ptr fraction
 mov word ptr [di],ax
 mov word ptr [di][2], ax
 mov cx,8
 sub dx,dx
binary_conversion:
 mov ax, word ptr [di][2]
 mov dl, byte ptr [si]
 cmp dl, '0' ;check for decimal digit
 jb oops
 cmp dl, 'g'
 ja oops
 xor dl, '0'
 dec si
 sub
```


## NUMERICAL METHODS

```
or bx,dx
or bx,ax
jz no_div0
div iten
no_div0:
 mov
 word ptr [di][2],ax
 mov ax,word ptr [di]
sub bx,bx
or bx,dx
or bx,ax
jz no_div1
div iten
no_divl:
 mov word ptr [di],ax
 sub dx,dx
 loop binary_conversion
work_done:
 popf
 sub ax,ax
 clc
 ret
oops:
 popf
 mov
 ax,-1
 stc
 ret
dfc_bn endp
:
;
; ******
;table conversion routines
```


count:

```
chk_frac:
cntnu:
```

    cmp
    je
        cmp
        je
        cmp
        jb
        cmp
        ja
    inc
    cmp
    ja
    inc
    mov
    or
    jne
    jmp short count
    fnd_dot:
mov
inc
mov dl,13h
xchg ch,dl
jmp short cntnu
negative:
not sign
not sign
positive:
inc si
mov word ptr fxptr,si
mov al, byte ptr [si]
jmp short count
gotnumber:
sub
xchg $\mathrm{cl}, \mathrm{dh}$
dec
shl word ptr cx, 1
ch, ch
inc si
cl, dh
cl(
dh, cl
dh
word ptr fxptr,si
jmp short count


## NUMERICAL METHODS

```
jmp
do_sign:
 mov al,byte ptr sign
 or al,al
 je exit
 not word ptr [di][6]
 not word ptr [dil[4]
 not word ptr [di][2]
 neg word ptr [di]
 jc exit
 add word ptr [di][2],1
 adc word ptr [di][4],0
 adc word ptr [di][6],0
exit:
 ret
not_a_number:
 sub ax,ax
 not ax
too_big:
 stc
 jmp short exit
tb_dcbn endp
;converts binary to ASCII decimal
tb_bndc proc uses bx cx dx si di,
 sptr:word, fxptr:word
 local leading_zeros:byte
 mov si, word ptr fxptr ;point to input fix point
 mov di, word ptr sptr
 lea bx, word ptr int_tab
 sub ax,ax
 mov byte ptr leading_zeros, al ;assume positive
```

```
mov ax, word ptr [si][6]
or ax,ax
jns positive
mov byte ptr [di],'-'
inc di
not word ptr [si][6] ;complement
not word ptr [si][4]
not word ptr [si][2]
neg word ptr [si][0]
jc
add
adc
adc
positive:
 mov dx, word ptr [si][6]
mov ax, word ptr [si][4]
sub
 Cx,Cx
walk_tab:
ja
jb
cmp
jae
pushptr:
 cmp
je
mov
cntnu:
 inc
skip_zero:
 inc bx
 inc bx
 inc bx
 inc bx
 cmp
 jae handle_fraction
 jmp shortwalk_tab
```


## NUMERICAL METHODS

```
gotnumber:
 sub cx,cx
 inc leading_zeros
cnvrt_int:
 call near ptr index
 jmp short cntnu
handle_fraction:
 cmp byte ptr leading_zeros,0
 jne do_frac
 mov byte ptr [di], '0'
 inc di
do frac:
 mov
 word ptr [di],'.'
 di
get_frac:
 mov dx, word ptr [si][2]
 mov ax, word ptr [si][0]
 sub cx,cx
walk_tabl:
 cmp dx, word ptr [bx][2]
 ja small_enuf
 jb pushptr1
 cmp ax, word ptr [bx]
 jae small_enuf
pushptr1:
 mov byte ptr [di],'0'
skip_zerol:
 inc di
 inc bx
 inc bx
 inc bx
 inc bx
 cmp bx, offset word ptr tab_end
 jae exit
 jmp short walk_tab1
small_enuf:
 sub cx,cx
small_enuf1:
```

```
 call near ptr index
 jmp short skip_zerol
exit:
 inc di
 sub cl,cl
 mov byte ptr [si],cl ;end of string
 ret
index:
 inc cx
 sub ax, word ptr [bx]
 sbb dx, word ptr [bx][2]
 jnc index ;subtract until a carry
 dec cx
 add ax, word ptr [bx]
 adc dx, word ptr [bx][2]
 or cl,'O' ;make it ASCII
 mov byte ptr [di],cl
 retn
tb_bndc endp
; ******
;hex to ascii conversion using xlat
;simple and common table driven routine to convert from hexidecimal
;notation to ascii
;quadword argument is passed on the stack, with the result returned
;in a string pointed to by sptr
.data
hextab byte '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a',
 'b', 'c', 'd', 'e', 'f'
 .code
hexasc proc uses bx cx dx si di, hexval:qword, sptr:word
```


## NUMERICAL METHODS

```
lea si, byte ptr hexval[7]
mov di, word ptr sptr
mov bx, offset byte ptr hextab
mov
cx,8
make_ascii:
 mov
 mov
 shr
 shr
 shr
 shr
 and
 xchg
 xlat
 mov
 inc
 xchg
 xlat
 mov
 inc
 dec
 loop make_ascii
 sub
 mov
 al, al
 byte ptr [di],al
 ret
hexasc endp
;
 end
```


## APPENDIX F

## TRANS.ASM and TABLE.ASM

## TRANS.ASM

.model small, c, os_dos

|  | include math.inc |  |
| :--- | :--- | :--- |
| inf |  |  |
| nro data | byte | "infinite", 0 |
| byte | "0.0",0 |  |


| zero | qword | 000000000000 h |
| :--- | :--- | :--- |
| one_over_pi | qword | $3 e a 2 f 9836 e 4 \mathrm{eh}$ |
| two_over_pi | qword | $3 f 22 f 9836 e 4 \mathrm{eh}$ |
| half_pi | qword | $3 f c 90 f d a 221 \mathrm{~h}$ |
| one_over_ln2 | qword | $3 f b 8 a a 3 b 295 \mathrm{ch}$ |
| ln2 | qword | $3 f 317217 f 7 d 1 \mathrm{~h}$ |
| sqrt_half | qword | $3 f 3504 f 30000 \mathrm{~h}$ |
| expeps | qword | 338000000001 h |
| eps | qword | $39 f f f f f 70000 \mathrm{~h}$ |
| ymax | qword | $45 \mathrm{c} 90 f d b 0000 \mathrm{~h}$ |
| big_x | qword | $42 a 00000000 \mathrm{~h}$ |
| littlex | qword | 0 c 2 a 000000000 h |
| y0a | qword | $3 e d 5 a 9 a 80000 \mathrm{~h}$ |
| y0b | qword | $3 f 1714 b a 0000 \mathrm{~h}$ |
| quarter | qword | $3 e 8000000000 \mathrm{~h}$ |
| circulark | qword | $9 b 74 e d a 7 h$ |
| hyperk | qword | $1351 e 8755 \mathrm{~h}$ |

## NUMERICAL METHODS

```
plus qword 3f800000000h
minus
\begin{tabular}{lll}
hundred & byte & 64 h \\
iten & word & \(0 a h\) \\
maxchar & equ & 8 \\
; & &
\end{tabular}
.code
;
;*****
;taylorsin - derives a sin by using a infinite series. this is in radians. ;expects argument in quadword format, expects to return the same ;input must be \(x^{\wedge} 2<1\)
;
taylorsin proc uses bx cx dx di si, argument:qword, sine:word
```

invoke polyeval, argument, sine, addr polysin, 10
ret
taylorsin endp
; ******
; polyeval- evaluates polynomials according to Horner's rule ;expects to be passed a pointer to a table of coefficients, ; a number to evaluate, and the degree of the polynomial
;the argument conforms to the quadword fixedpoint format
polyeval proc uses bx cx dx di si, argument:qword, output :word, coeff:word, $n$ :byte
local cf:qword, result[8]:word
pushf
cld
sub ax, ax

|  | mov | cx, 4 |  |
| :---: | :---: | :---: | :---: |
|  | lea | di, word ptr cf |  |
| rep | stosw |  | ;clear the accumulator |
|  | lea | di, word ptr result |  |
|  | mov | cx, 8 |  |
| rep | stosw |  |  |
| eval: |  |  |  |
|  | mov | si, word ptr coeff | ;point at table |
|  | sub | bx, bx |  |
|  | mov | bl, byte ptr n | ;point at coefficient of $n$ ; degree |
|  |  |  | ; this is the beginning of our ; approximation |
|  | shl | bx, 1 |  |
|  | shl | bx, 1 |  |
|  | shl | bx, 1 | ;multiply by eight for the ; quadword |
|  | add | si, bx |  |
|  | mov | ax, word ptr [si] |  |
|  | mov | bx, word ptr [si][2] |  |
|  | mov | cx, word ptr [si][4] |  |
|  | mov | dx, word ptr [si][6] |  |
|  | lea | di, word ptr cf |  |
|  | add | word ptr [di], ax |  |
|  | adc | word ptr [di][2], bx | ; add new coefficient to ; accumulator |
|  | adc | word ptr [di][4], cx |  |
|  | adc | word ptr [di][6], dx |  |
|  | invoke | smul64, argument, cf, | sult |
|  | lea | si, word ptr result [4] |  |
|  | lea | di, word ptr cf |  |
|  | mov | cx, 4 |  |
| rep | movsw |  |  |
|  | dec | byte ptr n | ; decrement pointer |
|  | jns | eval |  |

## NUMERICAL METHODS

```
polyeval_exit:
 mov di, word ptr output
 lea si, word ptr cf
 mov cx,4
rep movsw ;write to the output
 popf
 ret
polyeval endp
;
;log using a table and linear interpolation
;logarithms of negative numbers require imaginary numbers
;natural logs can be derived by multiplying result by 2.3025
;
lgl0 proc uses bx cx si di, argument:word, logptr:word
 local powers_of_two:byte
 pushf
 std ;increment down for zero check
 ;to come
 sub ax,ax
 mov cx, 4
 mov di, word ptr logptr ;clear log output
 add di, 6
rep stosw
 mov si, word ptr logptr ;point at output which is zero
 add si, 6 ;most significant word
 mov di, word ptr argument ;point at input
 add di, 6 ;most significant word
 mov ax, word ptr [di]
 or ax, ax
 js exit ;we don't do negatives
 sub ax, ax
 mov cx, 4
repe cmpsw ;find the first nonzero, or
 ;return
```


## TRANS.ASM AND TABLE.ASM

```
; zero
 je exit
reposition_argument:
 mov si, word ptr argument
 add si, 6
 mov di, si
 inc cx
 mov ax, 4
 sub ax, cx
 shl ax, 1
 sub si, ax
 shl ax, 1
 shl ax, 1
 shl ax, 1
 mov bl, al
rep movsw
 mov si, word ptr argument
 mov ax, word ptr [si][6]
keep_shifting:
 or
 ax, ax
 js done_with_shift
 shl word ptr [si][0], 1
 rcl word ptr [si][2], 1
 rcl word ptr [si][4], 1
 rcl ax, 1
 inc b
 jmp short keep-shifting
done_with_shift
 mov word ptr [si][6],ax ;ax will be a pointer
 mov byte ptr powers_of_two, bl
 sub bx, bx
 mov bl, ah
 shl bl, 1
;will point into }127\mathrm{ entry table
;get rid of top bit to form
 ;actual pointer
 add bx, offset word ptr logl0_t.bl
 ;linear interpolation
 mov ax, word ptr [bx] ;get first approximation (floor)
```


## NUMERICAL METHODS

```
 inc bx
 inc bx
 mov bx, word ptr [bx
 bx, ax
xchg ax, bx
mul byte ptr [si][6]
mov
sub
add
al, ah
ah, ah
ax, bx
get_power:
 mov
 sub
 sub
 shl
 sh]
lea
add
sub
add
adc
mov
mov
mov
 sub
mov word ptr [di],cx
mov word ptr [di][6],cx
exit:
 popf
 ret
lgl0 endp
```


# TRANS.ASM AND TABLE.ASM 

```
;sqrt using a table and linear interpolation
;this method has real problems as the powers increase
sqrtt proc uses bx cx si di, argument:word, sqrptr:word
 local powers-of_two:byte
 pushf
 std ;increment up
 sub ax, ax
 mov cx, 4
 mov di, word ptr sqrptr ;clear sqrt output
 add di, 6
rep stosw
 mov si, word ptr sqrptr ;clear sqrt output
 add si, 6
 mov di, word ptr argument ;pointer to input
 add di, 6
 mov ax, word ptr [di]
 or ax, ax
 js exit ;we don't do negatives
 sub ax, ax
 mov cx, 4
repe cmpsw ;find the first nonzero, or
 ;return
 ;zero
 je exit
reposition_argument:
 mov si, word ptr argument
 add si, 6
 mov di, si ;shift the one eight times
 inc cx
 ;this was a zero
 mov ax, 4
 sub ax, cx ;determine number of emptywords
 shl ax, 1
 sub si, ax
 shl ax, 1
```

```
 shl ax, 1
 shl ax, 1
 mov bl, al
rep movsw
 mov
 mov
keep_shifting:
 or ax, ax
 js done_with_shift
 shl word ptr [si][0], 1
 rcl word ptr [si][2], 1
 rcl word ptr [si][4], 1
 rcl ax, 1
 inc bl
 jmp short keep_shifting
done_with_shift
 mov word ptr [si][6],ax
 mov byte ptr powers_of_two, bl
 sub bx, bx
 mov bl, ah
 shl bl, 1
 add bx, offset word ptr sqr_tbl
 linear interpolation
 mov ax, word ptr [bx]
 inc bx
 inc bx
 mov bx, word ptr [bx]
 sub bx, ax
 xchg ax, bx
 mul byte ptr [si][6] ;multiply by fraction bits
 mov al, ah
 sub ah, ah
 add ax, bx
 ;add interpolated value to
 ;original
 mov bl, byte ptr powers_of_two
 sub bh, bh
 shl bx,1
;factor out fractional places
```

```
 lea si, word ptr sqr_power
 add si, bx
 sub dx, dx
 mul word ptr [si] ;multiply by inverse of root
 mov di, word ptr sqrptr
 mov word ptr [di][2],ax
 mov word ptr [di][4],dx
 sub cx,cx
 mov word ptr [di],cx
 mov word ptr [di][6],cx
exit:
 popf
 ret
sqrtt endp
;
;sines and cosines using a table and linear interpolation
;(degrees)
dcsin proc uses bx cx si di, argument:word, cs_ptr:word, cs_flag:byte
 local powers_of_two:byte, sign:byte
 pushf
 std ;increment down
 sub ax, ax
 mov byte ptr sign, al ;clear sign flag
 mov cx,4
 mov di, word ptr cs_ptr ;clear sin/cos output
 add di,6
rep stosw
 add di, 8
 mov si, di
 mov di, word ptr argument
 add di, 6
 mov cx, 4
```


## NUMERICAL METHODS

```
repe cmpsw
 je zero-exit
 jmp prepare-arguments
zero_exit:
 cmp byte ptr cs_flag, al
 jne
cos_0
exit
cos_0:
 inc ax
 inc ax
 add si,ax
 dec ax
 mov word ptr [si][4],ax
 jmp
exit
prepare_arguments:
\begin{tabular}{ll}
mov & si, word ptr argument \\
mov & ax, word ptr [si][4] \\
sub & \(d x, d x\) \\
mov & \(c x, 360\) \\
idiv & \(c x\) \\
& \\
or & \(d x, d x\) \\
jns & quadrant \\
add & \(d x, 360\)
\end{tabular}
;sin(0) = 0
;point di at base of output
;make ax a one
; cos(0) = 1
; one
;get integer portion of angle
;modular arithmetic to reduce
;angle
;we want the remainder
;angle has gotta be positive for
;this
;to work
;we will use this to compute the
;value of the function
;put angle in ax
;and this to compute the sign
;ax holds an index to the
;quadrant
;what do we want
```

; find the first nonzero, or ; return

```
;ax is zero
```

```
;ax is zero
```

```
je
do-sin
cos_range:
 cmp ax, 0
 jg cchk_180
 jmp walk_up
cchk_180:
 cmp
 jg
 not
 neg
 add
 jmp
cchk_270:
 cmp
 jg
 not
 sub
 jmp
clast_90:
 neg bx
 add bx, 360
 jmp walk_back
do_sin:
 cmp
 jg
 neg
 add
 jmp walk_back
schk_180:
 cmp
 ax, 1
 jg
 schk_270
 ;find the range of the argument
 ;use decrementing method
```

cchk_180:
cmp
jg
not
neg
add
jmp
cchk_270:
cmp
jg
not
sub
jmp
clast_90:
neg bx
add
bx, 360
jmp
do_sin:
cmp
jg
neg
add
jmp
-
ax, 0
schk_180
bx
bx, 90
walk_back 70
;find the range of the argument
; use decrementing method

## NUMERICAL METHODS

```
 sub bx, 90
 jmp walk_up
schk_270:
 cmp ax, 2
jg
 not
 neg
 add
 jmp walk_back
slast_90:
 not
 sub
 jmp
;
;
walk_up:
 shl bx, 1
 add bx, offset word ptr sine_tbl
 mov dx, word ptr [bx] ; get cos/sine of angle
 mov ax, word ptr [si][2]
 or ax, ax
 je write_result
 inc bx
 inc bx
 mov cx, dx
 mov ax, word ptr [bx]
 sub ax, dx
 jnc pos_res0
 neg ax
 mul word ptr [si][2]
 not dx
 neg ax
 jc leave_walk_up
 inc dx
```


## TRANS.ASM AND TABLE.ASM

```
 jmp leave-walk-up
pos_res0:
 mul word ptr [si][2]
leave_walk_up:
 add dx, cx
 jmp write_result
walk_back:
 shl bx, 1 ;point into table
 add bx, offset word ptr sine_tbl
 mov dx, word ptr [bx] ;get cos/sine of angle
 mov ax, word ptr [si][2]
 or ax, ax
 je write_result
 dec bx
 dec bx
 mov cx, dx
 mov ax, word ptr [bx] ;get next incremental cos/sine
 sub ax, dx
 jnc pos_res1
 neg ax
 mul word ptr [si][2] ;multiply by fraction bits
 not dx
 neg ax
 jc leave-walk-back
 inc dx
 jmp leave-walk-back
pos_res1:
 mul word ptr [si][2]
leave_walk_back:
 add dx, cx
 ;by fraction bits and add in
 ;angle
write_result:
 mov di, word ptr cs_ptr
 mov word ptr [di], ax ;stuff result into variable
 mov word ptr [di][2], dx ;setup output for qword fixed
 ;point
```


## NUMERICAL METHODS

```
 sub ax, ax
 mov word ptr [di][4], ax
mov word ptr [di][6], ax
cmp byte ptr sign, al
je exit
not word ptr [di][6]
not word ptr [di][4]
not word ptr [di][2]
neg word ptr [di][0]
jc exit
add word ptr [di][2],1
adc word ptr [di][4],ax
adc word ptr [di][6],ax
exit:
 popf
 ret
dcsin endp
i
; ******
;gets exponent of floating point word
;
fr_xp proc uses si di, fp0:dword, fp1:word, exptr:word
 local flp0:qword, flp1:qword
 pushf
 cld
 xor ax,ax
 lea di,word ptr flp0
 mov cx,4
rep stosw
 lea si,word ptr fp0
```


# TRANS.ASM AND TABLE.ASM 

```
 lea di,word ptr flp0[2]
 mov cx,2
rep movsw
 invoke frxp, flp0, addr flp1, exptr
 lea si,word ptr flp1[2]
 mov di,word ptr fp1
 mov cx,2
rep movsw
 popf
 ret
fr_xp endp
```

;frxp performs an operation similar to the $c$ function frexp. used ;for floating point math routines.
;returns the exponent -bias of a floating point number. ;it does not convert to floating point first, but expects a single ;precision number on the stack.


## NUMERICAL METHODS

```
 mov ah, 7eh
 shr cl, 1 ;replace the sign
 rcr ax, 1
 mov word ptr float[4], ax
 mov di, word ptr fraction
 lea si, word ptr float
 mov cx, 4
rep movsw
frxp_exit:
 popf
 ret
make_it_zero:
 sub ax, ax
 mov byte ptr [di], al
 mov di, word ptr fraction
rep stosw
 jmp frxp_exit
frxp endp
; ******
;creates float from fraction and exponent
;
ld_xp proc uses si di, fp0:dword, power:word, exp:byte
 local flp0:qword, result:qword
 pushf
 cld
 xor ax,ax
 lea di,word ptr flp0
 mov cx,4
rep stosw
 lea si,word ptr fp0
 lea di,word ptr flp0[2]
 mov cx,2
rep movsw
```


## TRANS.ASM AND TABLE.ASM

```
 invoke ldxp, flp0, addr result, exp
lea si,word ptr result[2]
mov di,word ptr power
mov cx,2
rep movsw
 popf
 ret
ld_xp endp
;ldxp is similar to ldexp in c, it is used for math functions
;takes from the stack, an input float(extended and returns a pointer to
;a value to
;the power of two
;passed with it.
ldxp proc uses di, float:qword, power:word, exp:byte
 mov ax, word ptr float[4] ;get upper word of float
 mov dx, word ptr float[2] ;extended bits are not checked
 sub cx, cx
 or cx, ax
 or cx, dx
 je return_zero
 shl ax, 1 ;save the sign
 rcl cl, 1
 mov ah, 7eh
 add ah, byte ptr exp
 jc ld_overflow
 shr cl, 1 ;return the sign
 rcr word ptr ax, 1 ;position exponent
 mov word ptr float[4], ax
ldxp_exit:
```


## NUMERICAL METHODS

```
 mov cx, 4
 mov di, word ptr power
 lea si, word ptr float
rep movsw
 ret
 ret
ld_overflow:
 mov word ptr float[4], 7f80h
 sub ax, ax
 mov word ptr float[2], ax
 mov word ptr float[0], ax
 jmp ldxp_exit
return_zero:
 sub ax, ax
 mov di, word ptr power
 mov cx, 4
rep stosw
 jmp ldxp_exit
ldxp endp
i; ******
; FX_SQR
;accepts integers.
;Remember that the powers follow the powers of two, i.e., the root of a double
word
;is a word, the root of a word is a byte, the root of a byte is a nibble, etc.
;new_estimate = (radicand/last_estimate+last_estimate)/2,last_estimate=
new_estimate.
fx_sqr proc uses bx cx dx di si, radicand:dword, root:word
 local estimate:word, cntr:byte
 byte ptr cntr, 16
 bx, bx ;to test radicand
```

| mov | ax, word ptr radicand |  |
| :---: | :---: | :---: |
| mov | dx, word ptr radicand[2] |  |
| or | dx, dx |  |
| js | sign_exit |  |
| je | zero_exit |  |
| jmp | find_root | ; not zero |
| zero_exit: |  |  |
| or | ax, ax | ; no negatives or zeros |
| jne | find_root |  |
| sign_exit: |  | ;indicate error in the operation |
| stc |  |  |
| sub | ax, ax |  |
| mov | $d x, a x$ |  |
| jmp | root_exit |  |
| find_root: |  |  |
| sub | byte ptr cntr, 1 |  |
| jc | root-exit | ;will exit with carry set and an ;approximate root |
| find_root1: |  |  |
| or | dx, dx | ;must be zero |
| je | fits | ; some kind of estimate |
| shr | dx, 1 |  |
| rcr | ax, 1 |  |
| jmp | find_root1 | ; cannot have a root greater |
|  |  | ;than 16 bits foe |
|  |  | ;a 32 bit radicand! |
| fits: |  |  |
| mov | word ptr estimate, ax | ; store first estimate of root |
| sub | dx, dx |  |
| mov | ax, word ptr radicand[2] |  |
| div | word ptr estimate |  |
| mov | bx, ax | ; save quotient from division of ; upperword |
| mov | ax, word ptr radicand |  |
| div | word ptr estimate | ; divide lower word |
| mov | $\mathrm{dx}, \mathrm{bx}$ | ; concatenate quotients |
| add | ax, word ptr estimate | ;(radicand/estimate+estimate)/ |
|  |  | ;2 |

## NUMERICAL METHODS

```
adc dx, 0
shr dx, 1
rcr ax, 1
or dx, dx ;to prevent any modular aliasing
jne find_root
cmp ax, word ptr estimate
;is the estimate still changing?
jne find_root
clc ;clear the carry to indicate
;success
root_exit:
 mov di, word ptr root
 mov word ptr [di], ax
 mov word ptr [di][2], dx
 ret
fx_sqr endp
i
; ******
 school_sqr
;accepts integers
school_sqr proc uses bx cx dx di si, radicand:dword, root:word
 local estimate:qword, bits:byte
 sub bx, bx
 mov ax, word ptr radicand
 mov dx, word ptr radicand[2]
 or dx, dx
 js sign_exit
 je zero_exit
 jmp setup ;not zero
zero_exit:
 or ax, ax ; no negatives or zeros
 jne setup
sign_exit: ;indicate error in the operation
 sub ax, ax
;can't do negatives
```


## TRANS.ASM AND TABLE.ASM

| mov | $d x, a x$ | ;zero for fail |
| :--- | :--- | :--- |
| stc |  |  |
| jmp | root_exit |  |

setup:

| mov | byte ptr bits, 16 |
| :--- | :--- |
| mov | word ptr estimate, ax |

mov word ptr estimate[2], dx
sub ax, ax
mov word ptr estimate[4], ax
mov word ptr estimate[6], ax
mov
mov
mov
findroot:

| shl | word ptr estimate, 1 |
| :--- | :--- |
| rcl | word ptr estimate[2], 1 |
| rcl | word ptr estimate[4], 1 |
| rcl | word ptr estimate[6], |

shl word ptr estimate, 1
rcl word ptr estimate[2], 1
rcl word ptr estimate[4], 1
rcl word ptr estimate[6], 1
shl ax, 1
rcl bx, 1
mov cx, ax
mov $d x, b x$
shl cx, 1
rcl $d x, 1$
add cx, 1
adc $d x, 0$
subtract_root:
sub
word ptr estimate[4], cx
sbb word ptr estimate[6], dx
jnc r_plus_one

## NUMERICAL METHODS

```
 add word ptr estimate[4], cx
 adc word ptr estimate[6], dx
 jmp continue_loop
r-plus-one:
 add ax, 1
 adc bx, 0 ;r+=l
continue_loop:
 dec byte ptr bits
 jne findroot
 clc
root_exit:
 mov di, word ptr root
 mov word ptr [di], ax
 mov word ptr [di][2], bx
 ret
school_sqr endp
; ******
; fp-cos
fp_cos proc uses si di, fp0:dword, fp1:word
 local flp0:qword, result:qword, sign:byte
 pushf
 cld
 xor ax,ax
 lea di,word ptr flp0
 mov cx,4
rep stosw
 lea si,word ptr fp0
 lea di,word ptr flp0[2]
 mov cx,2
rep movsw
```

```
 sub al, al
 mov byte ptr sign, al
 invoke fladd, flp0, half_pi, addr flp0
 mov ax, word ptr flp0[4]
 or ax, ax
 jns positive
 not byte ptr sign ;is it less than zero?
 ;positive:
 invoke flsin, flp0, addr result, sign
 mov ax, word ptr result[2]
 mov dx, word ptr result[4]
 mov di, word ptr fp1
 mov word ptr [di], ax
 mov word ptr [di][2], dx
 popf
 ret
fp_cos endp
i
;*******
;fp_sin
i
i
fp_sin proc uses si di, fp0:dword, fp1:word
 local flp0:qword, result:qword, sign:byte
 pushf
 cld
 xor ax,ax
 lea di,word ptr flp0
 mov cx,4
rep stosw
```


## NUMERICAL METHODS

```
 lea si,word ptr fp0
 lea
 mov
 rep movsw
 sub
 mov
 mov
 or
 jns
 not byte ptr sign
 byte ptr sign ;is it less than zero?
 ;positive:
 invoke
 invoke round, result, addr result
 mov ax, word ptr result[2]
 mov dx, word ptr result[4]
 mov di, word ptr fpl
 mov word ptr [di], ax
 mov word ptr [di][2], dx
 popf
 ret
fp_sinendp
i
;******
;flsin
i
flsin proc uses bx cx dx si di, fp0:qword, fp1:word, sign:byte
 local result:qword, temp0:qword, temp1:qword,
 y:qword, u:qword
 pushf
 cld
```



## NUMERICAL METHODS

```
 inc cl
 or cl, cl
 je
 xpi
extract_int:
 shl
 rcl
 rcl
 loop extract_int ;position as fixedpoint
 test dh, 1
 je xpi
 not byte ptr sign
not_odd:
xpi:
 invoke flsub, fp0, result, addr result
 ; |x|-intrnd(x/pi)
 invoke flmul, temp0, sincos[8*1], addr temp1
 ;intrnd(x/pi)*c2
 invoke flsub, result, temp1, addry
 iY
chk_eps:
 invoke flabs, y, addr temp0 ;is the argument less than eps?
 invoke flcomp, temp0, eps
 or ax, ax
 jns r_g
 lea di, word ptr result
 sub ax, ax
 mov cx, 4
rep stosw
 jmp
 writeout
```


## TRANS.ASM AND TABLE.ASM

```
r_g:
```

invoke flmul, y, y, addr u

$$
\begin{aligned}
& \text {; evaluater }(g) \\
& \text {; }((r 4 * g+r 3) * g+r 2) * g+r l) * g
\end{aligned}
$$

invoke flmul, u, sincos[8*5], addr result
invoke fladd, sincos[8*4], result, addr result
invoke flmul, u, result, addr result
invoke fladd, sincos[8*3], result, addr result
invoke flmul, u, result, addr result
invoke fladd, sincos[8*2], result, addr result
invoke flmul, u, result, addr result

```
 ;result == z
```

fxr:
invoke flmul, result, y, addr result
invoke fladd, result, y, addr result

$$
; r^{*} r+f
$$

handle_sign:
cmp byte ptr sign, -1
jne writeout
xor
word ptr result[4], 8000h
;result * sign
writeout:
mov
lea
di, word ptr fp1
si, word ptr result
cx, 4

```
rep movsw
```

flsin_exit:
popf
ret
flsin endp

```
;*******
; fp_tan
i
fp_tan proc uses si di, fp0:dword, fp1:word
 local flp0:qword, result:qword
 pushf
 cld
 xor ax,ax
 lea di,word ptr flp0
 mov cx,4
rep stosw
 lea si,word ptr fp0
 lea di,word ptr flp0[2]
 mov cx,2
rep movsw
 invoke fltancot, flp0, addr result
 mov ax, word ptr result[2]
 mov dx, word ptr result[4]
 mov di, word ptr fpl
 mov word ptr [di], ax
 mov word ptr [di][2], dx
 popf
 ret
fp_tanendp
i
;*******
;fltancot
```


## TRANS.ASM AND TABLE.ASM

```
fltancot proc uses bx cx dx si di, fp0:qword, fp1:word
 local flp0:qword, result:qword, temp0:qword, temp1:qword,
 sign:byte, xnum:qword, xden:qword, xn:qword, f:qword,
 g:qword, fxpg:qword, qg:qword
 pushf
 cld
 sub ax, ax
 mov byte ptr sign, al ;clear the sign flag
 lea di, word ptr g
 mov cx, 4
rep stosw ;place input argument in
;variable
 lea di, word ptr f
 mov cx, 4
rep stosw
 shl word ptr fp0[4], 1
 rcl byte ptr sign, 1
 shr word ptr fp0[4], 1 ;absolute value for comparison
 invoke flcomp, fp0, ymax ;error,entry value too large
 cmp ax, 1
 jl continue
 lea di, word ptr result
 sub ax, ax
 mov cx, 4
rep stosw
 jmp fltancot_exit
```

continue:

```
shl word ptr fp0[4], 1
 shr byte ptr sign, 1
 rcr word ptr fp0[4], 1 ;restore sign
```

NUMERICAL METHODS

```
 invoke flmul, fp0, two-over-pi, addr result
 ;x*2/pi
 invoke intrnd, result, addr xn
 ax, word ptr xn[2] ;determine if integer has odd
 ;or even
 mov dx, word ptr xn[4] ; number of bits
 mov
 and
 cx, 7f80h
 ;get rid of sign and
 ;mantissa portion
 shl cx, 1
 mov cl, ch
 sub ch, ch
 or cl, cl
 je not-odd
 sub cl, 7fh
 not-odd
 cl
 cl, cl
 not-odd
 dx, 7fh
 dx, 80h ;restore hidden bit
extract_int:
 shl ax, 1
 rcl dx, 1
 rcl word ptr bx, 1
 loop extract_int ;position as fixedpoint
 test dh, 1
 je not_odd
 mov byte ptr sign, -1
not_odd:
invoke flmul, xn, tancot[8*0], addr temp0
invoke flsub, fp0, temp0, addr temp0
 ;(x-xn* c1)
invoke flmul, xn, tancot[8*1], addr temp1
```

```
 ;xn*c2
 invoke flsub, temp0, temp1, addr f
 ; (x-xn*c1)-xn*c2
 invoke flabs, f, addr temp1 ;|f|<eps?
 invoke flcomp, temp1, eps
 or
 jns
 lea
 lea
 mov
 movsw
 lea
 lea
 mov
 movsw
 jmp
 compute-result
compute:
 invoke flmul, f, f, addr g ;f*f->g
 invoke flmul, g, tancot[8*3], addr temp0
 invoke flmul, f, temp0, addr temp0
 invoke fladd, temp0, f, addr fxpg
 ; fxpg=(p 2 * g+pl)* g*f
 ;+ f
 invoke flmul, g, tancot[8*6], addr temp0
 invoke fladd, temp0, tancot[8*5], addr temp0
 invoke flmul, g, temp0, addr temp0
 invoke fladd,temp0,tancot[8*4], addr qg
 ;qg = (q2 * g + q1) * g +q0
 lea si, word ptr fxpg
 lea di, word ptr xnum
 mov cx, 4
rep movsw
 lea si, word ptr qg
```


## NUMERICAL METHODS

```
 lea di, word ptr xden
 mov
 cx, 4
rep
 movSw
compute_result:
 mov
 or
 je
 xor
 jmp
xden_xnum:
 invoke
 jmp
xnum_xden:
 invoke fldiv, xnum, xden, fpl
fltancot_exit:
 popf
 ret
fltancot endp
;
;******
 ;fp_sqr
fp_sqr proc uses si di, fp0:dword, fp1:word
 local flp0:qword, result:qword
 pushf
 cld
 xor
 lea di,word ptr flp0
```

```
 mov cx,4
 stosw
 lea si,word ptr fp0
 lea di,word ptr flp0[2]
 mov cx,2
 movsw
 invoke flsqr, flp0, addr result
 invoke round, result, addr result
 mov ax, word ptr result[2]
 mov dx, word ptr result[4]
 mov di, word ptr fp1
 mov word ptr [di], ax
 mov word ptr [di][2], dx
 popf
 ret
fp_sqr endp
i
; ******
; flsqr
```

```
flsqr proc uses bx cx dx si di, fp0:qword, fp1:word
```

flsqr proc uses bx cx dx si di, fp0:qword, fp1:word
local result:qword, temp0:qword, temp1:qword, exp:byte,
local result:qword, temp0:qword, temp1:qword, exp:byte,
xn:qword, f:qword, yO:qword, m:byte
xn:qword, f:qword, yO:qword, m:byte
pushf
cld
lea di, word ptr xn

```

NUMERICAL METHODS
```

    sub ax, ax
    mov
    cx, 4
    rep stosw
invoke flcomp, fp0, zero ;error, entry value too large
cmp
je
cmp
je
mov
sub
mov
ax, 1
ok
ax, 0
got-result
di, word ptr fp1
ax, ax
cx, 4
rep stosw
not ax
and
mov
jmp
got_result:
mov
sub
mov
rep stosw
jmp
flsqr_exit
ok:
invoke frxp, fp0, addr f, addr exp ;get exponent
invoke flmul, f, y0b, addr temp0
invoke fladd, temp0, y0a, addry
heron:
;two passes through
invoke fldiv, f, y0, addr temp0 ;(x/r+r)/2 is all we need
invoke fladd, y0, temp0, addr temp0
mov
ax, word ptr temp0[4]
shl
ax, 1
sub ah, 1 ; should always be safe
shr ax, 1
mov word ptr temp0[4], ax ;subtracts one half by

```

\section*{TRANS.ASM AND TABLE.ASM}
```

                                    ;decrementing the exponent
                                    ;one
    invoke fldiv, f, temp0, addr temp1
    invoke fladd, temp0, temp1, addr temp0
    mov
    shl
    sub
    shr
    mov
    mov
    mov
    mov
mov
sub
mov
chk_n:
mov
mov
al, byte ptr exp
cl, al
sar al, 1
jnc
word ptr yO[2], ax
ax, word ptr temp0
word ptr y0, ax
ax, ax
word ptr y0[6], ax
evn
odd:
invoke
flmul, y0, sqrt_half, addr y0
;adjustment for uneven
;exponent
mov al, cl
inc
al
sar al, 1
evn:
mov cl, al
;n/2->m
power:

```
mov
shl
add
write_result:
shr
mov
ax, 1
word ptr y0[4], ax
ax, word ptr y0[4]
ax, 1
ah, cl
```

; decrementing the exponent ; one
; should always be safe
; subtracts one half by ; decrementing the exponent ; one
;arithmetic shift
odd:
invoke
flmul, y0, sqrt_half, addr y0 ;exponent
mov al, cl
inc al
sar al, 1
mov cl, al
; $\mathrm{n} / 2->\mathrm{m}$
power:

```

\section*{NUMERICAL METHODS}
```

    lea si, word ptr y0
    mov di, word ptr fp1
    mov cx, 4
    rep movsw
flsqr_exit:
popf
ret
flsqr endp
;
;*******
;lgb - log to base 2
;input argument must be be l<= x < 2
;multiply the result by . 301029995664 (4d104d42h) to convert to base 10
;higher powers of 2 can be derivedby counting the number of shifts required
;to bring the number between 1 and 2, calculating that lgb then adding, as the
;integer portion, the number of shifts as that is the power of the number.
lgb proc uses bx cx dx di si, argument:qword, result:word
local k:byte, z:qword
mov di,word ptr result
sub ax,ax
mov c x , 4
rep stosw
mov byte ptr k, al ;make k == 1
mov ax, word ptr argument
mov bx, word ptr argument[2]
mov dx, word ptr argument[4]
shr dx, 1 ;z=argument/2
rcr bx, 1
rcr ax, 1 ;scale argument for z

```
```

        lea di, word ptr z
        mov word ptr [di], ax
        mov word ptr [di][2], bx
        mov word ptr [di][4], dx
    xl:
    mov ax, word ptr argument
    mov bx, word ptr argument[2]
    mov dx, word ptr argument [4]
    sub cx, cx
    cmp ax, cx
    jne not_done_yet
    cmp bx, ax
    jne not_done_yet
    inc cx
    cmp dx, ax
    jne not_done_yet
    jmp logb_exit
    not_done_yet:
sub ax, word ptr z ;x-z<l?
sbb bx, word ptr z[2]
jc shift
reduce:
mov
mov word ptr argument[2], bx
mov word ptr argument[4], dx
sub cx, cx
mov cl, byte ptr k
shiftk:
shr dx, 1
rcr bx, 1
rcr ax, 1
loop shiftk
mov word ptr z, ax ;z<-argument<<k

```

\section*{NUMERICAL METHODS}
```

    mov word ptr z[2], bx
    mov word ptr z[4], dx
    sub
    mov
    cmp
    ja
    dec
    shl
    shl
    shl bx, 1
    lea si, word ptr log2
    mov ax, word ptr [si][bx]
    mov cx, word ptr [si][bx][2]
    mov dx, word ptr [si][bx][4] ;get log of power
    mov di, word ptr result
    add word ptr [di], ax
    adc word ptr [di][2], cx
    adc word ptr [di][4], dx
    jmp xl
    shift:
shr word ptr z[4], 1
rcr word ptr z[2], 1
rcr word ptr z, 1
inc byte ptr k
jmp xl
logb_exit:
ret
lgb endp
;
; ******
;pwrb - base 10 to power

```

\section*{TRANS.ASM AND TABLE.ASM}
```

;input argument must be be l<= x <2
pwrb proc uses bx cx dx di si, argument:qword, result:word
local k:byte, z:qword
mov di, word ptr result iy
sub ax, ax
mov cx, 2
rep stosw ;make y one
inc ax
stosw
dec ax
stosw
mov byte ptr k, al ;make k = 0
x0:
mov ax, word ptr argument
mov cx, word ptr argument[2]
mov dx, word ptr argument[4] ;argument 0<= x < 1
sub bx, bx
cmp ax, bx ;testfor 0.0
jne not_done_yet
cmp cx, bx
jne not_done_yet
cmp dx, bx
jne not_done_yet
jmp pwrb_exit
not_done_yet
sub bx, bx
mov bl, byte ptr k
cmp bl, 20h
ja pwrb_exit
shl bx, 1
shl bx, 1
shl bx, 1 ;point into table of qwords
lea si, word ptr power10

```

\section*{NUMERICAL METHODS}
```

    cmp dx, word ptr [si][bx][4]
    jb increase
    ja reduce
    cmp cx, word ptr [si][bx][2]
    jb increase
    ja reduce
    cmp ax, word ptr [si][bx]
    jb increase
    reduce:
sub ax, word ptr [si][bx]
sbb cx, word ptr [si][bx][2]
sbb dx, word ptr [si][bx][4]
mov word ptr argument, ax ;x<-x-z
mov word ptr argument[2], cx
mov word ptr argument[4], dx
sub cx, cx
mov cl, byte ptr k
mov si, word ptr result
mov ax, word ptr [si]
mov bx, word ptr [si][2]
mov dx, word ptr [si][4]
cmp cl, O
je no_shiftk
shiftk:
shr dx, 1
rcr bx, 1
rcr ax, 1
loop shiftk
no_shiftk:
add word ptr [si], ax ;z<-argument<<k
adc word ptr [si][2], bx
adc word ptr [si][4], dx
jmp x0

```
increase:
```

inc byte ptr k
jmp x0

```
pwrb_exit:
 ret
pwb endp
;******
; circular- implementation of the circular routine, a subset of the CORDIC devices
;
;
circular proc uses bx cx dx di si, x:word, y:word, z:word
 local smallx:qword, smally:qword, smallz:qword, i:byte,
 shifter:word
 lea di, word ptr smallx
 mov si, word ptr \(x\)
 mov cx, 4
rep movsw
 lea di, word ptr smally
 mov si, word ptry
 mov cx, 4
rep movsw
 lea di, word ptr smallz
 mov si, word ptr z
 mov cx, 4
rep movsw
```

    sub ax, ax
    mov byte ptr i, al ;i=0
    ```

\section*{NUMERICAL METHODS}
```

    mov bx, ax
    mov cx, ax
    twist:
sub ax, ax
mov al, i
mov word ptr shifter, ax
mov si, word ptr x ;multiply by 2^-i
mov ax, word ptr [si]
mov bx, word ptr [si][2]
mov cx, word ptr [si][4]
mov dx, word ptr [si][6]
cmp word ptr shifter, 0
je load_smallx
shiftx:
sar dx, 1
rcr cx, 1
rcr bx, 1
rcr ax, 1
dec word ptr shifter
jnz shiftx
load_smallx:
mov word ptr smallx, ax
mov word ptr smallx[2], bx
mov word ptr smallx[4], cx
mov word ptr smallx[6], dx
sub ax, ax
mov al, i
mov word ptr shifter, ax
mov si, word ptr y
mov ax, word ptr [si]
mov bx, word ptr [si][2]
mov cx, word ptr [si][4]
mov dx, word ptr [si][6]
cmp word ptr shifter, 0
;note the arithmetic shift
;for sign extension
; x=x>>i
;multiply by 2^-i

```
```

    je
    load_smally
    shifty:
sar dx, 1
rcr cx, 1
rcr bx, 1
rcr ax, 1
dec word ptr shifter
jnz shifty
load_smally:
mov word ptr smally, ax
mov word ptr smally[2], bx
mov word ptr smally[4], cx
mov word ptr smally[6], dx
get_atan:
sub bx, bx
mov bl, i
shl bx, 1
shl bx, 1
lea si, word ptr atan_array
mov ax, word ptr [si][bx]
mov dx, word ptr [si][bx] [2]
mov word ptr smallz, ax
mov word ptr smallz[2], dx
sub ax, ax
mov word ptr smallz[4], ax
mov word ptr smallz[6], ax
test_Z:
mov si, word ptr z
mov ax, word ptr [si][6]
or ax, ax
jns positive
negative:
mov ax, word ptr smally
mov bx, word ptr smally[2]
mov cx, word ptr smally[4]
mov dx, word ptr smally[6]
;got to point into a dword table
;z=atan[i]
; note the arithmetic shift
;for sign extension
;Y=Y>>i
[2]

```

\section*{NUMERICAL METHODS}
mov
add
adc
adc
adc
mov
mov
mov
mov
mov
sub
sbb
sbb
sbb
mov
mov
ax, word ptr smallz
mov
mov
mov
mov
add
adc
adc
adc
jmp
positive:
\begin{tabular}{ll}
mov & ax, word ptr smally \\
mov & bx, word ptr smally [2] \\
mov & cx, word ptr smally [4] \\
mov & dx, word ptr smally[6] \\
mov & di, word ptr \(x\) \\
sub & word ptr [di], ax \\
sbb & word ptr [di][2], bx
\end{tabular}
di, word ptr x
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx
ax, word ptr smallx
bx, word ptr smallx[2]
cx, word ptr smallx[4]
dx, word ptr smallx[6]
di, word ptr y
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx
bx, word ptr smallz[2]
cx, word ptr smallz[4]
dx, word ptr smallz[6]
di, word ptr z
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx
for_next
mov
mov
ox, word ptr smally [2]
cx, word ptr smally[4]
word per [di] [2], bx
```

            sbb word ptr [di][4], cx
            sbb word ptr [di][6], dx
            ax, word ptr smallx
            mov bx, word ptr smallx[2]
            mov cx, word ptr smallx[4]
            mov dx, word ptr smallx[6]
            mov di, word ptr y
                    add word ptr [di], ax
                    adc word ptr [di][2], bx
                    adc word ptr [di][4], cx
                    adc word ptr [dil[6], dx
                                    ;Y += x
                    mov ax, word ptr smallz
                    mov bx, word ptr smallz[2]
                    mov cx, word ptr smallz[4]
                    mov dx, word ptr smallz[6]
                    mov di, word ptr z
                    sub word ptr [di], ax
                    sbb word ptr [di][2], bx
                    sbb word ptr [di][4], cx
                    sbb word ptr [di][6], dx
                        ;x -= y
    for_next:
inc byte ptr i ;bump exponent
cmp byte ptr i, 32
ja circular-exit
jmp twist
circular-exit
ret
circular endp
i
;******
;icirc- implementation of the inverse circular routine, a subset of the cordic
;devices
;

```

\section*{NUMERICAL METHODS}
```

;
;
icirc proc uses bx cx dx di si, x:word, y:word, z:word
local smallx:qword, smally:qword, smallz:qword, i:byte,
shifter:word
lea di, word ptr smallx
mov si, word ptr x
mov cx, 4
rep movsw
lea di, word ptr smally
mov si, word ptry
mov cx, 4
rep movsw
lea di, word ptr smallz
mov si, word ptr z
mov cx, 4
rep movsw
sub ax, ax
mov byte ptr i, al ;i=0
mov bx, ax
mov cx, ax
twist:
sub ax, ax
mov al, i
mov word ptr shifter, ax
mov si, word ptr x ;multiply by2^-i
mov ax, word ptr [si]
mov bx, word ptr [si][2]
mov cx, word ptr [si][4]
mov dx, word ptr [si][6]
cmp word ptr shifter, 0

```
```

    je load_smallx
    shiftx:
sar dx, 1
rcr cx, 1
rcr bx, 1
rcr ax, 1
dec word ptr shifter
jnz shiftx
load_smallx:
mov word ptr smallx, ax
mov word ptr smallx[2], bx
mov word ptr smallx[4], cx
mov word ptr smallx[6], dx
sub ax, ax
mov al, i
mov word ptr shifter, ax
mov si, word ptry
mov ax, word ptr [si]
mov bx, word ptr [si][2]
mov cx, word ptr [si][4]
mov dx, word ptr [si][6]
cmp word ptr shifter, 0
je load_smally
shifty:
sar dx, 1
rcr cx, 1
rcr bx, 1
rcr ax, 1
dec word ptr shifter
jnz shifty
load_smally:
mov word ptr smally, ax
mov word ptr smally[2], bx
mov word ptr smally[4], cx
mov word ptr smally[6], dx ;y=Y>>i
get_atan:

```

\section*{NUMERICAL METHODS}
```

    sub bx, bx
    mov bl, i
shl bx, 1
shl bx, 1
lea si, word ptr atan_array
mov ax, word ptr [si][bx]
mov dx, word ptr [si][bx][2]
mov word ptr smallz, ax
mov word ptr smallz[2], dx
sub ax, ax
mov word ptr smallz[4], ax
mov word ptr smallz[6], ax
test_Y:
mov
mov
or ax, ax
js
negative:
mov
mov bx, word ptr smally[2]
mov cx, word ptr smally[4]
mov dx, word ptr smally[6]
mov di, word ptr x
add word ptr [di], ax
adc word ptr [di][2], bx
adc word ptr [di][4], cx
adc word ptr [di][6], dx
mov ax, word ptr smallx
mov bx, word ptr smallx[2]
mov cx, word ptr smallx[4]
mov dx, word ptr smallx[6]
mov di, word ptr y
sub word ptr [di], ax
sbb word ptr [di][2], bx

```
sbb
sbb
mov ax, word ptr smallz
mov bx, word ptr smallz[2]
mov cx, word ptr smallz[4]
mov dx, word ptr smallz[6]
mov di, word ptr z
add word ptr [di], ax
adc word ptr [di][2], bx
adc word ptr [di][4], cx
adc word ptr [di][6], dx
jmp
positive:
```

mov ax, word ptr smally
mov bx, word ptr smally[2]
mov cx, word ptr smally[4]
mov dx, word ptr smally[6]
mov di, word ptr x
sub word ptr [di], ax
sbb word ptr [dil[2], bx
sbb word ptr [di][4], cx
sbb word ptr [di][6], dx
mov ax, word ptr smallx
mov bx, word ptr smallx[2]
mov cx, word ptr smallx[4]
mov dx, word ptr smallx[6]
mov di, word ptr y
add word ptr [di], ax
adc word ptr [di][2], bx
adc word ptr [di][4], cx
adc word ptr [di][6], dx ;Y += x
mov ax, word ptr smallz
mov bx, word ptr smallz[2]

```

\section*{NUMERICAL METHODS}
```

mov cx, word ptr smallz[4]
mov dx, word ptr smallz[6]
mov di, word ptr z
sub word ptr [di], ax
sbb word ptr [di][2], bx
sbb word ptr [di][4], cx
sbb word ptr [di][6], dx ;x -= y
for_next:
inc byte ptr i
cmp byte ptr i, 32
ja icircular_exit
jmp twist
icircular_exit:
ret
icirc endp

```
```

; ******

```
; ******
;hyper- implementation of the hyperbolic routine, a subset of the cordic devices
;hyper- implementation of the hyperbolic routine, a subset of the cordic devices
;
;
hyper proc uses bx cx dx di si, x:word, y:word, z:word
hyper proc uses bx cx dx di si, x:word, y:word, z:word
 local smallx:qword, smally:qword, smallz:qword, i:byte,
 local smallx:qword, smally:qword, smallz:qword, i:byte,
 shifter:word
 shifter:word
 lea di, word ptr smallx
 lea di, word ptr smallx
 mov si, word ptr x
 mov si, word ptr x
 mov cx, 4
 mov cx, 4
 rep movsw
 rep movsw
 lea di, word ptr smally
 lea di, word ptr smally
 mov si, word ptr y
 mov si, word ptr y
 mov cx, 4
```

    mov cx, 4
    ```
```

rep movsw
lea di, word ptr smallz
mov si, word ptr z
mov cx, 4
rep movsw
sub al, al
inc al
mov byte ptr i, al ;i=1
twister:
call near ptr twist
for_next:
cmp byte ptr i, 4
jne chk_13
call near ptr twist
chk_13:
cmp
byte ptr i, 13
jne chk_max ;add in repeating term
call near ptr twist
chk_max:
inc
byte ptr i
cmp byte ptr i, 32
ja hyper_exit
jmp twister
hyper_exit:
ret
twist:
sub ax, ax
mov al, i
mov word ptr shifter, ax
mov si, word ptr x
mov ax, word ptr [si]
mov bx, word ptr [si][2]

```

\section*{NUMERICAL METHODS}
```

    mov cx, word ptr [si][4]
    mov dx, word ptr [si][6]
    shiftx:
sar dx, 1
rcr cx, 1
rcr bx, 1
rcr ax, 1
dec word ptr shifter
jnz shiftx
load_smallx:
mov word ptr smallx, ax
mov word ptr smallx[2], bx
mov word ptr smallx[4], cx
mov word ptr smallx[6], dx
;x=X>>i
sub ax, ax
mov al, i
mov word ptr shifter, ax
mov si, word ptry
mov ax, word ptr [si]
mov bx, word ptr [si][2]
mov cx, word ptr [si][4]
mov dx, word ptr [si][6]
shifty:
sar dx, 1
rcr cx, 1
rcr bx, 1
rcr ax, 1
dec word ptr shifter
jnz shifty
load_smally:
mov word ptr smally, ax
mov word ptr smally[2], bx
mov word ptr smally[4], cx
mov word ptr smally[6], dx
; Y=Y>>i
get_atan:

```
```

    sub bx, bx
    mov bl, i
    shl
    shl
    lea
    mov
mov
mov
word ptr smallz, ax
mov word ptr smallz[2], d
sub
mov
mov
test_Z:
mov
mov
or
jns
negative:
mov
mov
mov
sub
sbb
sbb
sbb
mov
mov
mov
mov
mov
sub
sbb
sbb
ax, word ptr smallx
bx, word ptr smallx[2]
cx, word ptr smallx[4]
dx, word ptr smallx[6]
di, word ptr y
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx

```
mov
mov
ax, word ptr smally
bx, word ptr smally[2]
cx, word ptr smally[4]
dx, word ptr smally[6]
di, word ptr x
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx
ax, word ptr smallx
bx, word ptr smallx[2]
cx, word ptr smallx[4]
dx, word ptr smallx[6]
di, word ptr y
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cx
; got to point into a dword table ; z=atanh[i]
ax, ax
word ptr smallz[4], ax
word ptr smallz[6], ax
si, word ptr z
ax, word ptr [si][6]
ax, ax
positive
negative:
; \(x\) - \(=y\)
\begin{tabular}{lll}
sbb & word ptr [di][6], dx & ;Y -= x \\
mov & ax, word ptr smallz & \\
mov & bx, word ptr smallz[2] & \\
mov & cx, word ptr smallz[4] & \\
mov & dx, word ptr smallz[6] & \\
mov & di, word ptr z & \\
add & word ptr [di], ax & \\
adc & word ptr [di][2], bx & \\
adc & word ptr [di][4], cx & \\
adc & word ptr [di][6], dx &
\end{tabular}
positive:
mov
mov
mov
mov
mov
add
adc
adc
adc
mov
mov
mov
mov
mov
add
adc
adc
adc
mov ax, word ptr smallz
mov bx, word ptr smallz[2]
mov cx, word ptr smallz[4]
mov \(d x\), word ptr smallz[6]
mov di, wordptr z

\section*{TRANS.ASM AND TABLE.ASM}
```

    sub word ptr [di], ax
    sbb word ptr [di][2], bx
    sbb word ptr [di][4], cx
    sbb word ptr [di][6], dx ;x -= y
    twist_exit:
retn
hyper endp
; ;******
;ihyper- implementation of the inverse hyperbolic routine, a subset of the
;CORDIC devices.
;
ihyper proc uses bx cx dx di si, x:word, y:word, z:word
local smallx:qword, smally:qword, smallz:qword, i:byte,
shifter:word
lea di, word ptr smallx
mov si, word ptr x
mov cx, 4
rep movsw
lea di, word ptr smally
mov si, word ptr y
mov cx,4
rep movsw
lea di, word ptr smallz
mov si, word ptr z
mov cx, 4
rep movsw

```
sub al, al
inc al

\section*{NUMERICAL METHODS}
```

    mov byte ptr i, al ;i=0
    twister:
call near ptr twist
for_next:
cmp byte ptr i, 4
jne chk_13
call near ptr twist
chk_13:
cmp byte ptr i, 13
jne chk_max ;add in repeating term
call near ptr twist
chk_max:
inc byte ptr i
cmp byte ptr i, 32
ja ihyper_exit
jmp twister
ihyper_exit:
ret
;
twist:
sub ax, ax
mov al, i
mov word ptr shifter, ax
mov si, word ptr x
mov ax, word ptr [si]
mov bx, word ptr [si][2]
mov cx, word ptr [si][4]
mov dx, word ptr [si][6]
shiftx:
sar dx, 1
rcr cx, 1
rcr bx, 1
rcr ax, 1
dec word ptr shifter
jnz shiftx

```
```

load_smallx:
mov word ptr smallx, ax
mov word ptr smallx[2], bx
mov word ptr smallx[4], cx
mov word ptr smallx[6], dx ;x=X>>i
sub ax, ax
mov al, i
mov word ptr shifter, ax
mov si, word ptr y
mov ax, word ptr [si]
mov bx, word ptr [si][2]
mov cx, word ptr [si][4]
mov dx, word ptr [si][6]
shifty:
sar dx, 1
rcr cx, 1
rcr bx, 1
rcr ax, 1
dec word ptr shifter
jnz shifty
load_smally:
mov word ptr smally, ax
mov word ptr smally[2], bx
mov word ptr smally[4], cx
mov word ptr smally[6], dx
get_atan:
sub bx, bx
mov bl, i
shl
bx, 1
shl bx, 1 ;got to point into a dword table
lea si, word ptr atanh_array
mov ax, word ptr [si][bx]
mov dx, word ptr [si][bx][2]
mov word ptr smallz, ax
word ptr smallz[2], dx ;z=atanh[i]

```

\section*{NUMERICAL METHODS}
```

    sub ax, ax
    mov word ptr smallz[4], ax
    mov word ptr smallz[6], ax
    test_Y:
mov si, word ptr y
mov ax, word ptr [si][6]
or ax, ax
js positive
negative:
mov
mov
mov cx, word ptr smally[4]
mov
mov
sub
sbb
sbb word ptr [di][4], cx
sbb word ptr [di][6], dx
mov
mov
mov cx, word ptr smallx[4]
mov
mov di, word ptr y
sub
sbb
sbb
sbb
mov
mov
mov cx, word ptr smallz[4]
mov

```
```

ax, word ptr smally
bx, word ptr smally[2]
di, word ptr x
word ptr [di], ax
sbb word ptr [di][2], bx
;x -= Y
word ptr smallx
ov bx, word ptr smallx[2]
dx, word ptr smallx[6]
ptr[ai], ax
word ptr [di][2], bx
ax, word ptr smallz
mov bx, word ptr smallz[2]
cx, word ptr smallz[4]
dx, word ptr smallz[6]

```
```

    adc word ptr [di][2], bx
    adc word ptr [di][4], cx
    adc word ptr [di][6], dx
    jmp twist-exit
    positive:
mov
mov
ax, word ptr smally
bx, word ptr smally[2]
mov cx, word ptr smally[4]
mov dx, word ptr smally[6]
mov di, word ptr x
add
word ptr [di], ax
adc word ptr [di][2], bx
adc word ptr [di][4], cx
adc
mov
mov
bx, word ptr smallx[2]
mov cx, word ptr smallx[4]
mov dx, word ptr smallx[6]
mov di, word ptr y
add word ptr [di], ax
adc word ptr [di][2], bx
adc word ptr [di][4], cx
adc word ptr [di][6], dx
mov
mov bx, word ptr smallz[2]
ax, word ptr smallz
mov cx, word ptr smallz[4]
mov dx, word ptr smallz[6]
mov di, word ptr z
sub word ptr [di], ax
sbb word ptr [di][2], bx
sbb word ptr [di][4], cx
sbb word ptr [di][6], dx ;z -= z
twist_exit:
retn
ihyper endp

```

\section*{NUMERICAL METHODS}
```

; ******
;rinit - initializes random number generator based uponinput seed
;
;
;
.data
IMAX equ 32767
rantop word IMAX
ran1 dword 256 dup (0)
xsubi dword lh
init byte Oh
.code
rinit proc uses bx cx dx si di, seed:dword
lea di, word ptr ran1
mov ax, word ptr seed[2]
mov word ptr xsubi[2], ax ;put in seed variable
mov ax, word ptr seed ;get seed
mov word ptr xsubi, ax
mov cx, 256
fill-array:
invoke congruent
mov word ptr [di], ax
mov word ptr [di][2], dx
add di, 4
loop fill-array
rinit_exit:

```
```

        sub ax, ax
        not ax
        mov byte ptr init, al
        ret
    rinit endp
;
; ******
;congruent -performs simple congruential algorithm
;
;
congruent proc uses bx cx
mov ax, word ptr xsubi ;a*seed (mod2^32)
mul word ptr a
mov bx, ax ;lower word of result
mov cx, dx
mov ax, word ptr xsubi[2]
mul word ptr a
add ax, cx
adc dx, 0
add ax, word ptr xsubi ;a multiplication by one is just
;an add, right?
adc dx, word ptr xsubi[2]
mov dx, bx
mov word ptr xsubi, bx
mov word ptr xsubi[2], ax
ret
congruent endp
;******
;irandom- generates random floats using the linear congruential method
irandom proc uses bx cx dx si di

```

\section*{NUMERICAL METHODS}
```

    lea si, word ptr ran1
    mov al, byte ptr init
    or al, al
    jne already-initialized
    invoke rinit, xsubi ;default to 1
    already_initialized:
invoke congruent
and ax, Offh
shl ax, 1
shl ax, 1
add si, ax
mov di, si
invoke congruent
mov bx, word ptr [si]
mov cx, word ptr [si][2]
mov word ptr [di], ax
mov word ptr [di][2], dx ;replace it with another
mov word ptr xsubi, bx
mov word ptr xsubi[2], cx ;seed for next random
mov ax, bx
mul word ptr rantop
mov ax, dx
ret
irandom endp

```
 end

\section*{TABLE.ASM}
```

.dosseg
.model small, C, OS_dos
include math.inc

```
. data
; sines (degrees)
sine_tbl word Offffh, 0fff6h, 0ffd8h, Offa6h, 0ff60h, 0ff06h,
 Ofe98h, Ofe17h, Ofd82h, Ofcdgh, Ofc1ch, 0fb4bh,
 Ofa67h, 0f970h, 0f865h, Of746h, 0f615h, 0f4dOh,
 Of378h, \(0 f 20 \mathrm{dh}, 0 £ 08 \mathrm{fh}, 0\) eeffh, \(0 e d 5 \mathrm{bh}, 0 \mathrm{eba6h}\),
 Oegdeh, 0e803h, 0e617h, 0e419h, 0e208h, Odfe7h,
 0ddb3h, 0db6fh, 0d919h, 0d6b3h, 0d43bh, 0d1b3h,
 0cf1bh, 0cc73h, 0cgbbh, 0c6f3h, 0c41bh, 0c134h,
 Obe3eh, 0bb39h, 0b826h, 0b504h, 0b1d5h, Oae73h
 word 0ab4ch, 0a7f3h, 0a48dh, 0a1lbh, 09d9bh, 09a10h,
 09679h, 092d5h, 08f27h, 08b6dh, 087a8h, 083d9h,
 08000h, 07c1ch, 0782fh, 07438h, 07039h, 06c30h,
 \(0681 \mathrm{fh}, 06406 \mathrm{~h}, 05 \mathrm{fe} 6 \mathrm{~h}, 05 \mathrm{bbeh}, 0578 \mathrm{eh}, 05358 \mathrm{~h}\),
 04f1bh, 04ad8h, 04690h, 04241h, 03deeh, 03996h,
 03539h, 030d8h, 02c74h, 0280ch, 023a0h, 01f32h,
 01acah, 0164fh, 011dbh, 00d65h, 008efh, 00477h,
 Oh
; \(\log (x / 128)\)
log10_tbl word \(00000 \mathrm{~h}, 000 \mathrm{ddh}, 001 \mathrm{~b} 9 \mathrm{~h}, 00293 \mathrm{~h}\),
 0036bh, 00442h, 00517h, 005ebh, 006bdh, 0078eh,
 0085dh, 0092ah, 009f6h, 00ac1h, 00b8ah, 00c51h,
 00d18h, 00dddh, 00ea0h, 00f63h, 01024h, 010e3h,
 011a2h, 0125fh, 0131bh, 013d5h, 0148fh, 01547h,
 015feh, 016b4h, 01769h, 0181ch, 018cfh, 01980h
 word 01a30h, 01adfh, 01b8dh, 01c3ah, 01ce6h, 01dg1h,

\section*{NUMERICAL METHODS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
01e3bh \\
02222h \\
025e7h
\end{tabular} & 01ee4h, 022c5h, 02685h & 01 f8ch, 02367h, 02721h, & & 020d9h 024a9h, 02858h & 0217eh, 02548h, 028f3h \\
\hline word & \begin{tabular}{l}
0298ch \\
02d14h \\
03080h \\
033d1h \\
0370ah
\end{tabular} & \begin{tabular}{l}
02a25h \\
02da8h, \\
0310fh, \\
0345ch, \\
03792h,
\end{tabular} & 02abdh, 02e3bh, 0319eh, 034e7h, 03818h, & 02b54h, 02ecdh, 0322ch, 03571h, 0389eh, & 02beah, \(02 f 5 f h\), 032b9h, 035fah, 03923h & \begin{tabular}{l}
02c7fh, \\
02ff0h, \\
03345h, \\
03682h, \\
039a8h
\end{tabular} \\
\hline word & \begin{tabular}{l}
03a2ch \\
03d38h \\
0402fh \\
04312h \\
045e3h
\end{tabular} & \begin{tabular}{l}
03ab0h, \\
03db8h, \\
040ach, \\
0438ch, \\
04659h
\end{tabular} & \begin{tabular}{l}
03b32h, \\
03e37h, \\
04128h, \\
04405h, \\
046cfh,
\end{tabular} & \begin{tabular}{l}
03bb5h, \\
03eb6h, \\
041a3h, \\
0447dh, \\
04744h
\end{tabular} & 03c36h, 03f34h, 0421eh, 044f5h, 047b9h & \begin{tabular}{l}
03cb7h, \\
\(03 f b 2 h\), \\
04298h, \\
0456ch, \\
0482eh
\end{tabular} \\
\hline word & \[
\begin{aligned}
& 048 \mathrm{a} 2 \mathrm{~h} \\
& 04 \mathrm{~b} 50 \mathrm{~h}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 04915h, } \\
& \text { 04bc0h, }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 04988h, } \\
& 04 \mathrm{c} 31 \mathrm{~h},
\end{aligned}
\] & \begin{tabular}{l}
049fbh, \\
\(04 c a 0 h\),
\end{tabular} & \begin{tabular}{l}
04a6dh, \\
04d10h
\end{tabular} & 04adeh \\
\hline
\end{tabular}
```

;log(2**x)
log10_power dword 000000h, 004d10h, 009a20h, 00e730h, 013441h, 018151h,
01ce61h, 021b72h, 026882h, 02b592h, 0302a3h, 034fb3h,
039cc3h, 03e9d3h, 0436e4h, 0483f4h, 04d104h, 051e15h,
056b25h, 05b835h, 060546h, 065256h, 069f66h, 06ec76h,
073987h, 078697h, 07d3a7h, 0820b8h, 086dc8h, 08bad8h,
0907e9h, 0954f9h

```
; sqrt (\(\mathrm{x}+128\)) *2**24
;these are terribly rough, perhaps combined with Euclid's method ;they would produce high quality numbers
word0b504h, 0b5b9h, 0b66dh, 0b720h, 0b7d3h, 0b885h, 0b936h, 0b9e7h, Oba97h, Obb46h, ObbfSh, Obca3h, Obd50h, Obdfdh, Obeagh, Obf55h, 0c000h, 0c0aah, 0c154h, 0c1fdh, 0c2a5h, 0c34eh, 0c3f5h, 0c49ch, 0c542h, 0c5e8h, 0c68eh, 0c732h, 0c7d7h, 0c87ah
word 0cg1dh, 0c9c0h, 0ca62h, 0cb04h, 0cba5h, 0cc46h, 0cce6h, 0cd86h, 0ce25h, 0cec3h, 0cf62h, 0d000h,

\section*{TRANS.ASM AND TABLE.ASM}

; sqrt (2**x)
sqr_power word
\(00 f f f f h, ~ 00 b 504 \mathrm{~h}, 008000 \mathrm{~h}, ~ 005 \mathrm{a} 82 \mathrm{~h}, 004000 \mathrm{~h}, 002 \mathrm{~d} 41 \mathrm{~h}\),
\(002000 \mathrm{~h}, 0016 \mathrm{aOh}, 001000 \mathrm{~h}, ~ 000 \mathrm{~b} 50 \mathrm{~h}, 000800 \mathrm{~h}, 005 \mathrm{a} 8 \mathrm{~h}\),
\(000400 \mathrm{~h}, 0002 \mathrm{dhh}, 000200 \mathrm{~h}, 00016 \mathrm{~h}, 000100 \mathrm{~h}, 0000 \mathrm{~b} 5 \mathrm{~h}\),
\(000080 \mathrm{~h}, 00005 \mathrm{hh}, 00004 \mathrm{~h}, 00002 \mathrm{dh}, 000020 \mathrm{~h}, 000016 \mathrm{~h}\),
\(000010 \mathrm{~h}, 00000 \mathrm{bh}, 000008 \mathrm{~h}, 000006 \mathrm{~h}, 000004 \mathrm{~h}, 000002 \mathrm{~h}\),
\(000002 \mathrm{~h}, 000001 \mathrm{~h}, 000001 \mathrm{~h}\)

\section*{NUMERICAL METHODS}
\begin{tabular}{|c|c|c|}
\hline atan_array & dword & ```
0c90fdaa2h, 76b19c16h, 3eb6ebf2h, 1fd5ba9bh, Offaaddch,
7ff556fh, 3ffeaabh, 1fffd55h,
Offffabh, 7ffff5h, 3fffffh, 200000h, 100000h, 80000h,
40000h, 20000h, 10000h, 8000h,
4000h, 2000h, 1000h, 800h, 400h, 200h, 100h, 80h, 40h,
20h, 10h, 8h, 4h, 2h, 1h
``` \\
\hline power2 & qword & 100000000h, 95c01a3ah, 5269e12fh, 2b803473h, 1663f6fah, 0b5d69bah, 5b9e5a1h, 2dfca16h, 1709c46h, 5c60aah, 2e2d71h, 171600h, 0b8adlh, 5c55dh, 2e2abh, 17155h, 0b8aah, 5c55h, 2e2ah, 1715h, 0b8ah, 5c5h, 2e2h, 171h, 0b8h, 5ch, 2eh, 17h, 0bh, 5h, 2h, 1h \\
\hline \(\log 2\) & qword & 100000000h, 6a3fe5c6h, 31513015h, 17d60496h, 0bb9ca64h, 5d0fba1h, 2e58f74h, 1720d9ch, 0b8d875h, 5c60aah, 2e2d71h, 171600h, 0b8ad1h, 5c55dh, 2e2abh, 17155h, 0b8aah, 5c55h, 2e2ah, 1715h, 0b8ah, 5c5h, 2e2h, 171h, 0b8h, 5ch, 2eh, 17h, 0bh, 5h, 2h, 1h \\
\hline power10 & qword & \begin{tabular}{l}
4d104d42h, 2d145116h, 18cf1838h, 0d1854ebh, 6bd7e4bh, 36bd211h, 1b9476ah, \\
Odd7ea4h, 6ef67ah, 378915h, 1bc802h, 0de4dfh, 6f2a7h, 37961h, 1bcb4h, 0de5bh, \\
6f2eh, 3797h, 1bcbh, 0de6h, 6f3h, 379h, 1bdh, Odeh, 6fh, 38h, 1ch, 0eh, 7h, 3h, 2h, 1h
\end{tabular} \\
\hline alg & qword & ```
3f3180000000h, 0b95e8082e308h, 3ede5bd8a937h,
Obeee08307e16h, 3c5ed689e495h, 0c0b286223e39h,
3f8000000000h
``` \\
\hline xp & qword & ```
3f3000000000h, 3bb90bfbe8efh, 3e8000000000h,
3b885307cc09h, 3f0000000000h,
3d4cbf5b2122h
``` \\
\hline sincos & qword & ```
4049000000000h, 3a7daa20968bh, Obe2aaaa8fdbeh,
3c088739cb85h, 0b94fb2227f1ah,
362e9c5a91d8h
``` \\
\hline tancot & qword & \(3 \mathrm{fc} 90000000 \mathrm{~h}, 39 \mathrm{fdaa} 2168 \mathrm{ch}, 3 \mathrm{f} 8000000000 \mathrm{~h}\), \\
\hline
\end{tabular}

\section*{TRANS.ASM AND TABLE.ASM}

\section*{APPENDIX G}

\section*{Math.C}
```

\#include<io.h>
\#include<conio.h>
\#include<stdio.h>
\#include <fcntl.h> /* O_constant definitions */
\#include<sys\types.h>
\#include <sys\stat.h> /* S_constant definitions */
\#include<malloc.h>
\#include<errno.h>
\#include<math.h>
\#include<float.h>
\#include<stdlib.h>
\#include<time.h>
\#include<string.h>
\#define TRUE 1
\#define FALSE 0
union{
float realsmall;
double realbig;
int smallint;
long bigint;
char bytes[16];
int words[8];
long dwords[4];
}operand0;
union{
float realsmall;
double realbig;
int smallint;

```

\section*{NUMERICAL METHODS}
```

    long bigint;
    char bytes[16];
    int words[8];
    long dwords[4];
    }operand1;
union{
float realsmall;
double realbig;
int smallint;
long bigint;
char bytes[16];
int words[8];
long dwords[4];
}operand2;
union{
float realsmall;
double realbig;
int smallint;
long bigint;
char bytes[16];
int words[8];
long dwords[4];
}answer0;
union{
float realsmall;
double realbig;
int smallint;
long bigint;
char bytes[16];
int words[8];
long dwords[4];
}answer1;
/*doubles are used to indicate to C to push a quadword parameter, please see*/
/*the unions above for more information on how to manipulate these parameters*/
extern void lgb(union answr, double *);
extern void pwrb(double, double *);

```
```

extern int irandom(void);
extern void rinit(int);
extern void divnewt(double, double, double*);
extern void divmul(double, double, double*);
extern void ftf(double, double*);
extern void ftfx(double, double*);
extern void taylorsin(double, double*);
extern void ihyper(double *, double *, double *);
extern void hyper(double *, double *, double *);
extern void icirc(double *, double *, double *);
extern void circular(double *, double *, double *);
extern void fp_sqr(float, float*);
extern void fp_tan(float, float*);
extern void fp_cos(float, float*);
extern void fp_sin(float, float*);
extern void fp_mul(float, float, float *);
extern void fp_div(float, float, float *);
extern void fp_add(float, float, float *);
extern void fp_sub(float, float, float *);
extern void fp_abs(float, float*);
extern void lg10(double *, double *);
extern void sqrtt(double *, double *);
extern void dcsin(double *, double *, unsigned char);
extern atf(char*string, float *asm_val);
extern ftofx(float, long*);
extern ftoasc(float, char*);
extern fr_xp(float, float *, char *);
extern ld_xp(float, float*, char);
extern fx_sqr(long, long*);
extern school_sqr(long, long*);
extern dnt_bn(char *, int *);
extern dfc_bn(char *, int *);
extern bn_dnt(unsigned long int, char *);
extern bfc_dc(unsigned long int, char *);
extern fp_intrnd(float, float*);
extern fp_ceil(float, float*);
extern fp_floor(float, float*);

```

\section*{NUMERICAL METHODS}
```

int binary_integer;
char decimal_string0[20];
char decimal_string1[20];
char string0[25], string1[25];
long radicand;
long root;
char exponent;
float temp;
float value;
float mantissa;
float asm_val0, asm_val1;
float floor_test;
float ceil_test;
float intrnd_test;
float asm_mul;
float tst_asm_mul;
float asm_div;
float asm_add;
float asm_sub;
float mul_tst;
float asm_mul_tst;
float div_tst;
float add_tst;
float sub_tst;
float fpsin;
float fpsqr;
float fplog;
float fplog10;
/*this routine scales a random number to a maximum without using a modular
operation*/
int get random(int max)
{
unsigned long a, b;
a = irandom();
b = max*a;
return(b/32768);
}

```
```

float fp_numa;
float fp_numb;
float fp_numc;
float fp_numd;
long numa, numb, numc, numd;
double dwrd;
double test;
float nt;
char *buf;
int ad_buf, ch, j;
double error;
unsigned long temporary;
unsigned count = 0x1000, cnt = 0, errcnt,
passes, maxpass, cycle_cnt;
dwrd=4294967296.0; /*2^32*/
nt = 65536; /*2^16*/
ad_buf = open( "tstdata", O_TEXT | O_WRONLY | O_CREAT
O_TRUNC, S_IREAD | S_IWRITE );
if( ad_buf == -1 ) {
perror("\nopen failed");
exit(-1);
}
/* allocate a file buffer.*/
If( (buf = (char*)malloc( (size_t)count )) ==NULL) {
perror("\nnot enuf memory");
exit(-1);
cycle_cnt = 0;
do{
rinit((unsigned int)time(NULL) );

```
```

maxpass=1000;
error= 0.00001; /*a zero error can result in errors of +0.0 or -0.0
reported*/
errcnt = 0; /*smaller errors sometimes exceedthe
precisionof a single real*/
passes = 0;
do{
getrandom(irandom());
while((numa=getrandom(irandom())) == 0);
if((irandom() * .001) >15) fp_numa = (float)numa * -1.0;
else fp_numa = (float)numa;
while((numb = getrandom(irandom())) == 0);
if((irandom0 * .001) >15) fp_numb = (float) numb * -1.0;
else fp_numb = (float) numb;
while((numc = irandom()) == 0);
fp_sqr((float) numc, \&fp_numc);
fp_numa *= fp_numc;
while((numd = irandom()) == 0);
fp_sqr((float) numd, \& fp_numd);
fp_numb *= fp_numd;
sprintf(buf,"\ntwo random floats are fp_numa %f and
fp_numb %f", fp_numa, fp_numb);
if(count = write( ad_buf, buf, strlen(buf) ) == - 1)
perror("couldn't write");
test=(double) fp_numa;
gcvt((double) fp_numa, 8, string0); /*needed to test asm
conversions*/
gcvt((double) fp_numb, 8, string1);
sprintf(buf,"\nstring0 (fp_numa): %s, string1 (fp_numb): %s",
string0, string1);
if(count = write( ad_buf, buf, strlen(buf) ) == - 1)
perror("couldn't write");
atf(string0, \&asm_va10); /*convert string to float*/

```
```

atf(string1, \&asm_val1);
sprintf(buf,"\nasm_val0(string0) :%fandasm-val1(stringl): %f",
fp_numa, fp_numb);
if(count = write( ad_buf, buf, strlen(buf) ) == - 1)
perror("couldn't write");
mul_tst=fp_numa*fp_numb;
asm_mul_tst = asm_val0*asm_val1;
div_tst = fp_numa/fp_numb;
add_tst = fp_numa+fp_numb;
sub_tst = fp_numa-fp_numb;
fp_mul(asm_val0, asm_vail, \&asm_mul);
fp_mul(fp3uma, fp_numb, \&tst_asm_mul);
fp_div(asm_val0, asm_val1, \&asm_div);
fp_add(asm_val0, asm_val1, \&asm_add);
fp_sub(asm_val0, asm_vall, \&asm_sub);
sprintf(buf,"\nfp_numa*fp_numb, msc = %f, asm = %f,
difference = %f", mul_tst, asm_mul, mul_tst-asm_mul);
if(count = write( ad_buf, buf, strlen(buf) ) == - 1)
perror("couldn't write");
sprintf(buf,"\nfp_numa/fp_numb, msc = %f, asm = %f,
difference = %f", div_tst, asm_div, div_tst-asm_div);
if(count = write( ad_buf, buf, strlen(buf) ) == - 1)
perror("couldn't write");
sprintf(buf,"\nfp_numa+fp_numb, msc = %f, asm = %f,
difference = %f", add_tst, asm_add, add_tst-asm_add);
if(count = write( ad_buf, buf, strlen(buf) ) == - 1)
perror("couldn't write");
sprintf(buf,"\nfp_numa-fp_numb, msc = %f, asm = %f,
difference = %f", sub_tst, asm_sub, sub_tst-asm_sub);
if(count = write( ad_buf, buf, strlen(buf) ) == - 1)
perror("couldn't write");
temp = (float)getrandom(100);
fp_sqr(temp, \&fpsqr);
sprintf(buf,"\nsqrt(%f),msc = %f, asm = %f", temp,
(float) sqrt((double)temp),fpsqr) ;

```

\section*{NUMERICAL METHODS}
```

if(count=write( ad_buf, buf, strlen(buf)) == - 1)
perror("couldn't write");
fp_sin(temp, \&fpsin);
sprintf(buf,"\nfp_sin(%f), msc = %f, asm = %f", temp,
(float)sin((double)temp), fpsin);
if(count = write( ad_buf, buf, strlen(buf) 1 == - 1)
perror("couldn't write");
/*error reporting*/
sprintf(buf,"\niteration: %x", cnt++);
if(count = write( ad_buf, buf, strlen(buf) 1 == - 1)
perror("couldn't write");
sprintf(buf,"\nfp-numais %f and fp_numb is %f", fp_numa, fp_numb);
if(count = write( ad_buf, buf, strlen(buf) 1 == - 1)
perror("couldn't write");
sprintf(buf,"\nstring0 is %s and string1 is %s", string0, string1);
if(count = write( ad_buf, buf, strlen(buf)) == - 1)
perror("couldn't write");
if((fabs((double)mul_tst-(double)asm_mul)) >error) {
errcnt++;
sprintf(buf,"\nmsc multiplication says %f, I say %f, error= %f",
mul_tst, asm_mul, mul_tst-asm_mull;
if(count = write( ad_buf, buf, strlen(buf)) == - 1)
perror("couldn't write");
if((fabs((double)div_tst-(double)asm_div)) >error) {
errcnt++;
sprintf(buf,"\nmsc division says %f, I say %f, error= %f",
div_tst, asm_div, div_tst-asm_div);
if(count = write( ad_buf, buf, strlen(buf)) == - 1)
perror("couldn't write");

```
```

if((fabs((double)sub_tst-(double)asm_sub)) >error) {
errcnt++;
sprintf(buf,"\nmsc subtraction says %f, I say %f, error= %f",
sub_tst, asm_sub, sub_tst-asm_sub);
if(count = write( ad_buf, buf, strlen(buf) ) == - 1)
perror("couldn't write");
if((fabs((double)add_tst-(double)asm_add)) >error) {
errcnt++;
sprintf(buf,"\nmsc addition says %f, I say %f, error= %f",
add_tst, asm_add, add_tst-asm_add);
if(count = write( ad_buf, buf, strlen(buf) ) == - 1
perror("couldn't write");

```
```

printf(".");

```
printf(".");
sprintf(buf,"\n");
sprintf(buf,"\n");
if(count = write(ad_buf, buf, strlen(buf)) == - 1
if(count = write(ad_buf, buf, strlen(buf)) == - 1
 perror("couldn't write");
 perror("couldn't write");
passes++;
passes++;
 }while(!kbhit() && ! (passes == maxpass));
 }while(!kbhit() && ! (passes == maxpass));
 cycle_cnt++;
 cycle_cnt++;
 }while(!errcnt && !kbhit());
 }while(!errcnt && !kbhit());
printf("\nerrors: %d cycles: %d pass: %d", errcnt, cycle_cnt,
printf("\nerrors: %d cycles: %d pass: %d", errcnt, cycle_cnt,
 passes);
 passes);
close(ad_buf);
close(ad_buf);
free(buf);
```

free( buf );

```

\section*{Glossary}

\section*{abscissa}

On the Cartesian Axes, it is the distance from a point to the \(y\) axis.

\section*{accumulator}

A general purpose register on many microprocessors. It may be the target or destination operand for an instruction, and will often have specific instructions that affect it only.

\section*{accuracy}

The degree of correctness of a quantity or expression.

\section*{add-with-carry}

To add a value to a destination variable with the current state of the carry flag.

\section*{addend}

A number or quantity added to another.

\section*{addition}

The process of incrementing by a value, or joining one set with another.
additional numbering systems
Numbering systems in which the symbols combine to form the next higher group. An example of this is the Roman system. See Chapter 1.

\section*{algorithm}

A set of guidelines or rules for solving a problem in a finite number of steps.

\section*{align}

To arrange in memory or a register to produce a proper relationship.

\section*{arithmetic}

Operations involving addition, subtraction, multiplication, division, powers and roots.

\section*{ASCII}

The American Standard Code for Information Interchange. A seven bit code used for the interpretation of a byte of data as a character.

\section*{associative law}

An arithmetic law which states that the order of combination or operation of the operands has no influence on the result. The associative law of multiplication is \(\left(a^{*} b\right) * c=a^{*}\left(b^{*} c\right)\).

\section*{atan}

Arctangent. This is the angle for which we have the tangent.

\section*{atanh}

The Inverse Hyperbolic Tangent. This

\section*{NUMERICAL METHODS}
is the angle for which we have the hyperbolic tangent.

\section*{augend}

A number or quantity to which another is added.

\section*{base}

A grouping of counting units that is raised to various powers to produce the principal counting units of a numbering system.

\section*{binary}

A system of numeration using base 2 . bit-Binary digIT.

\section*{Boolean}

A form of algebra proposed by George Boole in 1847. This is a combinatorial system allowing the processing of operands with operators such as AND, OR, NOT, IF, THEN, and EXCEPT.

\section*{byte}

A grouping of bits the computer or CPU operates upon as a unit. Generally, a byte comprises 8 bits.

\section*{cardinal}

A counting number, or natural number indicating quantity but not order.

\section*{carry flag}

A bit in the status register of many microprocessors and micro controllers indicating whether the result of an operation was to large for the destination data type. An overflow from an un-
signed addition or a borrow from an unsigned subtraction might cause a carry.

\section*{ceil}

The least integer greater than or equal to a value.

\section*{coefficient}

A numerical factor, such as 5 in \(5 x\). complement- An inversion or a kind of negation. A one's complement results in each zero of an operand becoming a one and each one becoming a zero. To perform a two's complement, first one's complement the operand, then increment by one.

\section*{commutative law}

An arithmetic law which states that the order of the operands has no influence on the result of the operation. The commutative law of addtition is
\(a+b=b+a\).

\section*{congruence}

Two numbers or quantities are congruent, if, after division by the same value, their remainders are equal.

\section*{coordinates}

A set of two or more numbers determining the position of a point in a space of a given dimension.

\section*{CORDIC}

COrdinate Rotation Digital Computer. The CORDIC functions are a group of algorithms that are capable of computing high quality approximations of the
transcendental functions and require very little in the way of arithmetic power from the processor.

\section*{cosine}

In the triangle, the ratio \(x / r\) is a function of the angle \(\theta\) known as the cosine.

Figure 1. A Right Triangle.

\section*{decimal}
having to do with base 10 .

\section*{decimal-point}

Radix point for base 10.
denominator
The divisor in a fraction.

\section*{denormal}

A fraction with a minimum exponent and leading bit of the significand zero.
derivative
The instantaneous rate of change of a function with respect to a variable.

\section*{distributive law}

An arithmetic law that describes a connection between operations. This distributive law is as follows: \(a *(b+c)=a * b+a * c\). Note that the multiplication is distributed over the addition.

\section*{dividend}

The number to be divided.

\section*{division}

Iterative subtraction of one operand from another.

\section*{divisor}

The number used to divide another, such as the dividend.

\section*{double-precision}

For IEEE floating point numbers, it is twice the single precision format length or 64 bits.

\section*{doubleword (dword)}

Twice the number of bits in a word. On the 8086 , it is 32 bits.

\section*{exception}

In IEEE floating point specification, an exception is a special case that may require attention. There are five exceptions and each has a trap that may be enabled or disabled. The exceptions are:
- Invalid operation, including addition or subtraction with \(\infty\) as an operand, multiplication using \(\infty\) as an operand, \(\infty / \infty\) or \(0 / 0\), division

\section*{NUMERICAL METHODS}
with invalid operands, a remainder operation where the divisor is zero or unnormalized or the dividend is infinite.
- Division by zero.
- Overflow. The rounded result produced a legal number but an exponent too large for the floating point format.
- Underflow. The result is too small for the floating point format. Inexact result without an invalid operation exception. The rounded result is not exact.

\section*{far}

A function or pointer is defined as \(f a r\) if it employs more than a word to identify it. This usually means that it is not within the same 64 K segment with the function or routine referencing it.

\section*{fixed-point}

A form of arithmetic in which the radix point is always assumed to be in the same place.

\section*{floating-point}

A method of numerical expression, in which the number is represented by a fraction, a scaling factor (exponent), and a sign.

\section*{floor}

The greatest integer less than or equal to a value.

\section*{fraction}

The symbolic (or otherwise) quotient of two quantities.

\section*{guard digits}

Digits to the right of the significand or significant bits to provide added precision to the results of arithmetic computations.

\section*{hidden bit}

The most significant bit of the floating point significand. It exists, but is not represented, just to the left of the radix point and is always a one (except in the case of the denormal).

\section*{integer (int)}

A whole number. A word on a personal computer, 16 bits.

\section*{interpolate}

To determine a value between two known values.

\section*{irrational number}

A number that can not be represented exactly in a particular base.

\section*{K-space}

K-spaces are multi-dimensional or kdimensional where K is an integer.

\section*{linear congruential}

A method of producing pseudo-random numbers using modular arithmetic.

\section*{linear interpolation}

The process of approximating \(f(x)\) by fitting a straight line to a function at the
desired point and using proportion to estimate theposition of the unknown on that line. See Chapter 6.

\section*{logarithm (log)}

In any base, x , where \(x^{n}=b, \mathrm{n}\) is the logarithm of b to the base x . Another notation is \(n=\log , x\).

\section*{long}

A double word. On a personal computer, 32 bits.

\section*{long real}

The long real is defined by IEEE 754 as a double precision floating-point number.

\section*{LSB}

Least Significant Bit.

\section*{LSW}

Least Significant Word.
mantissa
The fractional part of a floating point number.

\section*{minimax}

A mathematical technique that produces a polynomial approximation optimized for the least maximum error.

\section*{minuend}

The number you are subtracting from.

\section*{modulus}

The range of values of a particular systern. This is the basis of modular arithmetic, such as used in telling time. For
example, 4 A.M. plus 16 hours is 8 P.M.
\(((4+16) \bmod 12=8)\).
MPU
Micro-Processor- Unit.

\section*{MSB}

Most Significant Bit.

\section*{MSW}

Most significant Word.

\section*{multiplicand}

The number you are multiplying.

\section*{multiplication}

Iterative addition of one operand with another.

\section*{multiplier}

The number you are multiplying by.

\section*{multiprecision}

Methods of performing arithmetic that use a greater number of bits that provided in the word size of the computer.

\section*{NAN}

These can be either Signaling or Quiet according to the IEEE 754 specification. A NAN (Not A Number) is the result of an operation that has not mathematical interpretation, such as \(0 \div 0\).

\section*{natural numbers}

All positive integers beginning with zero.

\section*{near}

A function or pointer is defined as near if it is within a 64 K segment with the
function or routine referencing it. Thus, it requires only a single 16 bit word to identify it.

\section*{negative}

A negative quantity, minus. Beginning at zero, the number line stretches in two directions. In one direction, there are the natural numbers, which are positive integers. In the other direction, there are the negative numbers. The opposite of a positive number.

\section*{nibble}

Half a byte, typically four bits.

\section*{normalization}

The process of producing a number whose left most significant digit is a one.

\section*{number ray}

An illustration of the basic concepts associated with natural numbers. Any two natural numbers may have only one of the following relationships: \(\mathrm{n}_{1}<\) \(\mathrm{n}_{2} \mathrm{n}_{1}=\mathrm{n}_{2}, \mathrm{n}_{1}>\mathrm{n}_{2}\) See Chapter 1.

\section*{numeration}

System for counting or numbering.

\section*{numerator}
- The dividend in a fraction.
- Octal
- Base 8.
- One's-complement
- A bit by bit inversion of a number.

All ones are made zeros and zeros are made ones.
operand
A number or value with which or upon which an operation is performed.

\section*{ordinal}

A number that indicates position, such as first or second.

\section*{ordinate}

On the Cartesian Axes, it is the distance from a point to the x axis.

\section*{overflow}

When a number grows to great through rounding or another arithmetic process for its data type, it overflows.

\section*{packed decimal}

Method for storage of decimal numbers in which each of the two nibbles in a hexadecimal byte are used to hold decimal digits.

\section*{polynomial}

An algebraic function of summed terms, where each term consists of a constant multiplier (factor) and at least one variable raised to an integer power. It is of the form:
\(f(x)=a_{n} x^{n}+a_{n}-1 x^{n-1}+\ldots+a_{1} x+a_{0}\)

\section*{positional numbering systems}

A numbering system in which the value of a number is based upon its position, the value of any position is equal to the number multiplied by the base of the system taken to the power of the position. See Chapter 1.

\section*{positive}

Plus. Those numbers to the right of zero on the number line. The opposite of a negative number.

\section*{power}

Multiplying a value, x , by itself \(n\) number of times raises it the the power \(n\). The notation is \(\mathrm{x}^{\mathrm{n}}\).

\section*{precision}

Number of digits used to represent a value.

\section*{product}

The result of a multiplication.

\section*{quadword (qword)}

Four words. On an 8086, this would be 64 bits.

\section*{quotient}

The result of a division.

\section*{radicand}

The quantity under the radical. Three is the radicand in the expression \(\sqrt{3}\), which represents the square root of three.

\section*{radix}

The base of a numbering system.
radix point
The division in a number between its integer portion and fractional portion. In the decimal system, it is the decimal point.

\section*{rational number}

A number capable of being represented exactly in a particular base.

\section*{real number}

A number possessing a fractional extension.

\section*{remainder}

The difference between the dividend and the product of the divisor and the quotient.

\section*{resolution}

The constituent parts of a system. This has to do with the precision the arithmetic uses to represent values, the greater the precision, the more resolution.

\section*{restoring division}

A form of division in which the divisor is subtracted from the dividend until an underflow occurs. At this point, the divisor is added back into the dividend. The number of times the divisor could be subtracted without underflow is returned as the quotient and the last minuend is returned as the remainder.

\section*{root}

The \(n\)th root of a number, x , (written: \(a=\sqrt[n]{x}\) is that number when raised to the \(n t h\) power is equal to the original number \(\left(x=a^{n}\right)\).

\section*{rounding}

A specified method of reducing the number of digits in a number while adjusting the remaining digits accordingly.

\section*{scaling}

A technique that brings a number within certain bounds by multiplication or division by a factor. In a floating point number, the significand is always between 1.0 and 2.0 and the exponent is the scaling factor.

\section*{seed}

The initial input to the linear congruential psuedo-random number generator.

\section*{short real}

The short real is defined by IEEE 754 as a single precision floating point number.

\section*{sign-extension}

The sign of the number-one for negative, zero for positive-fills any unused bits from the MSB of the actual number to the MSB of the data type. For example, -9 H , in two's complement notation is f 7 H expressed in eight bits and fff7H in sixteen. Note that the sign bit fills out the data type to the MSB.

\section*{significant digits}

The principal digits in a number.

\section*{significand}

In a floating point number, it is the leading bit (implicit or explicit) to the immediate left of the radix point and the fraction to the right.

\section*{sine}

In Figure one, it is the ratio \(\mathrm{y} / \mathrm{r}\).
single-precision
In accordance with the IEEE format, it is a floating point comprising 32 bits, with a 24 bit significand, eight bit exponent, and sign bit.

\section*{subtraction}

The process opposite to addition. Deduction or taking away.

\section*{subtrahend}

A number you subtract from another.

\section*{sum}

The result of an addition.

\section*{tangent (tan)}

In figure one, the ratio \(y / x\) denotes the tangent.

\section*{two's complement}

A one's complement plus one.

\section*{under flow}

This occurs when the result of an operation requires a borrow.

\section*{whole number}

An integer.

\section*{word}

The basic precision offered by a computer. On an 8086, it is 16 bits.

\section*{Index}

\section*{Symbols}

32-bid operands 49
\(3 \times 256+14 \times 16+7 \times 1\) 10
4 -bid quantities 46

\section*{A}
accuracy 88.124
add64 36
addition 21, 33, 136, 164
additional system 8
arbitrary numbers 281
ASCII 164 179, 182. 187 192. 200
ASCII Adjust 30
ASCII Adjust After Addition 16
ASCII Adjust After Multiply 16
ASCII Adjust After Subtraction 164
ASCII Adjust before Division 164
ASCII to Single-Precision Float 122 associative laws 126
atf 105. 193
auxiliary carry 25, 40
auxiliary carry flag 42, 164

\section*{B}
base 10.85
bfc_dc 173
binary arithmetic 12
binary byte 51
binary division 63
binary multiplication 46
binary-to-decimal 187
bit pair encoding 56
bit-pair 57. 58
bn_dnt 166
Booth 54. 55
branching 26
Bresenham 0

\section*{C}

C 200
carry 24
carry flag 34, 92
Cartesian coordinate system 239
cdiv 67
ceil 265
Chi-square 288
chop 50
circle 95
circle: 98
circular 239242
circular functions 230
close 289
cmul 49
cmul2 5
coefficients 9
congruence 16
congruent 284,285
conversion 163
CORDIC 237
core routines 134
errors
multiplication 135
subtraction 135
addition 135
division 135
cosine 16,89 , \(26,225,224,241,274\)

\section*{D}
daa \(\lcm{64}\)
dcsin 225
decimal 164
decimal addition and subtraction 40
decimal adjust 42
decimal and ASCII instructions 30
decimal arithmetic 164
decimal integers 85
denormal arithmetic 124
denormals 125
dfc_bn 176
diminished-radix complement 18
div32 74
div64 78
divide 154
division 21, 63, 114, 165, 175, 43, 85, 147

\section*{NUMERICAL METHODS}
division by inversion 105
division by multiplication 114
divisor 108
divmul \(16 \boxed{14}\)
divnewt 108109
dnt_bn 170
drawing circles 05

\section*{}
elementary functions 217
error 88, 89, 84,178
error checking 63, 147
errors 64
exponent 129
extended precision 131
external routines 132]

\section*{F}
faster shift and add 50
finite divided difference approximation 218 fixed point \(15,17.33 .86\)
floating point 8 15 17 86
FLADD 136
FLADD Routine 140
FLADD: The Epilogue 144
FLADD: The Prologue 138
flceil 265
FLDIV 1.54
FLMUL 147
floating-point arithmetic 123
floating-point conversions 192
floating point divide 78
floor 262
flr 263
f1sin 274
flsqr 270
four-bit multiply 47
fp_add 132
fraction 25
fractional arithmetic 15, 33, 87] 88
fractional conversions 165
fractional multiply 80
frxp 259
Fta 202
fta 200
ftf 207
ftfx 212
fx_sqr 254

\section*{G}

General Purpose Interface Bus 163 guard bits 92
guard digits 89248

\section*{H}
hardware division 69 hardware multiply 6
hex 179
hexasc: 180
hidden bit 124125
Homers rule 248, 259, 274
hyperbolic functions 239

\section*{I}

IEEE754 17818187 [137 159711

\section*{IEEE \(8.54-125\)}
input 163
Instructions 26
addition 26 add 26 add-with-carry 27
division 28
divide 28 modulus 28 signed divide 28 signed modulus 28
multiplication 27 multiply 27 signed multiply 27
negation and signs 28 one's complement 28
sign extension 29 two's complement 28
shifts, rotates and normalization 29 arithmetic shift. 29 normalization 29
rotate 29
rotate-through-carry 29
subtraction 27
compare 27
subtract 27
subtract-with-carry 27
integer conversions 165
integers 33
ints 206
irand 284
irandom 287
irrational 12

\section*{J}
jamming 6

\section*{K}
k-space 288

\section*{L}
laccum 103
Least Significant Bit 12.26
ldxp 261
\(\lg 10 \quad 219\)
line 101
line-Drawing 100
linear congruential method 16
linear interpolation 27\(] 217\)
logarithm
logarithms 219
Long real 17
long real 86
longs 206
look-up tables 217
loop counter 48

\section*{M}
mantissa \(\lcm{129}\)
memory location 51
Microprocesors 22
Buswidth 22
Data type 24
flags 24 auxiliary carry 25 carry 24 overflow 24 overflow trap 25 Parity 25 \(\operatorname{sign} 24\) sticky bit 25
zero 24
middle-square method 282
\(\operatorname{minimax} 274\)
minimax polynomial 250
modular 8.5
modular arithmetic 16
modularity 125
Most Significant Bit (MSB) 18 mu132 62. 63
mu164a 15
multiplication 21, 27, 43, 61, 147, 169,172
multiplication and division 42
multiprecision arithmetic 35
multiprecision division 71
multiprecision subtraction 37
multiword division 73

\section*{N}
natural numbers 8
negation and signs 28
Newton-Raphson Iteration 105
Newton's Method 253, 270
normalization 72, 147, 200
normalize 104, 128
normalizing 192
Not a Number 129
number line 7 [4] 18
number ray
numeration 7

\section*{\(\square\)}

One's complement 19, 20 28
original dividend 73
original divisor 72
output 163
overflow 24, 39 64, 65, 25
overflow flag 39
overflow trap 25

\section*{P}
packed binary 40
Polyeval 251]
Polynomial 247
polynomial 1311751248
polynomial interpretation 50

\section*{NUMERICAL METHODS}
polynomials 24
positional arithmetic 34
positional notation 50
positional number theory 47
positional numbering system 8.5
positional representation 8
potency 283
power 21
power series 247,274
powers 2, 12, 13, 233, 239
proportion 108
Pseudo-Random Number Generator 28
Pwrb 234

\section*{Q}
quantities 33
quotient 67

\section*{R}
radix complement 18
radix conversions 165
radix point 12
irrational 12
random numbers 281
range 86
real number 85
resolution 179
restoring division 188
rinit 284
root 21239
rotation matrix 239
round 160, 172
round to nearest 91.159
rounding 25, 89] 90,159

\section*{S}
scaling 93
school_sqr 256
seed 282
shift-and-add algorithm 47
shifts, rotates and normalization 29
short real 17.86
shuffling 283
sign 18. 24
sign digit 21
sign-magnitude 18, 21, 32
signed 20, 44
signed addition and subtraction 38
signed arithmetic 28, 38
signed magnitude 129
signed numbers 43
signed-operation 44
significant bits 87
sine 89. 241, 259
sines 16, 96.125224
single-precision 206
single-precision float to ASCII 200
skipping ones and zeros 53
software division 65
spectral 289
spectral.c \(282,288,289\)
square root \(133,233,253,259,269\)
sticky bit 25
sub64 37
subtraction 21 34, 125, 136, 137, 164
Sutherland, Ivan 95
symbolic fraction 85

\section*{T}
table-driven conversions 179
tables 179. 233
\(\tan 239240\)
taylorsin \(\quad 249\)
tb_bndc 188
tb_dcbn 182
The Radix Point 89
the sticky bit 92
time-critical code 53
truncation 60
two's complement 192 27, 28

\section*{V}

Von Neumann, John 282

\section*{W}
whole numbers 86

\section*{Z}
zero 24

\section*{Numerical Methods}

Numerical Methods brings together in one source, the mathematical techniques professional assembly-language programmers need to write arithmetic routines for real-time embedded systems.

This book presents a broad approach to microprocessor arithmetic, covering everything from data on the positional number system to algorithms for developing elementary functions. Fixed point and floating point routines are developed and thoroughly discussed, teaching you how to customize the routines or write your own, even if you are using a compiler.

Many of the explanations in this book are complemented with interesting
techniques and useful 8086 and pseudo-code examples. These include algorithms for drawing circles and lines without resorting to trigonometry or floating point, making the algorithms very fast and efficient, In addition, there are examples highlighting various techniques for performing division on large operands such as linear interpolation, the Newton-Raphson iteration, and iterative multiplication.

The companion disk (in MS/PC-DOS format) contains the routines presented in the book plus a simple C shell that can be used to exercise them.

\section*{Why this book is for you-See page 1}

M\&T Books
411 Borel Avenue
San Mate., CA 94402
\begin{tabular}{ll|}
\hline LEVEL & ADVANCED \\
TOPIC & PROGRAMMING/NUMERICS \\
SOFTWARE & ASSEMBLYLANGUAGE \\
HARDWARE & PC \\
\hline
\end{tabular}

Don Morgan is a professional programmer and consultant with more than 20 years of programming experience. He is also a contributor to Dr. Dobb's Journal and resides in Simi Valley, CA.
```

