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Preface to the Second Edition

Since the original publication of this book ten years ago, the available computer
power has increased by more than 2 orders of magnitude due to massive par-
allelism of computer processors and heterogeneous computer clusters. Today,
scientific computing is playing an ever more prominent role as a tool in scientific
discovery and engineering analysis.

In the second edition an introduction to the finite element method has
been added. The finite element method is a widely used technique for solving
partial differential equations (PDEs) in complex domains. As in the first edition,
numerical solution of PDEs is treated in Chapter 5, and the development there is
based on finite differences for spatial derivatives. This development is followed
in Chapter 6 by an introduction to more advanced transform methods for solving
PDEs: spectral methods and, now, the finite element method. These methods
are compared to the finite difference methods in several places throughout
Chapter 6.

Hopefully, most of the errors that remained in the 2007 reprint of the book
have now been corrected. Several exercises have also been added to all the
chapters. In addition, complete MATLAB programs used for all the worked
examples are available at www.cambridge.org/Moin. Students should find this
new feature helpful in attempting the exercises, as similar computer programs
are used in many of them. Working out the exercises is critical to learning
numerical analysis, especially using this book. The intention for including this
feature is for students to spend less time writing and debugging computer
programs and more time digesting the underlying concepts.

I thank all the students and teaching assistants who have provided valuable
feedback to me on the teaching of numerical analysis and the contents of this
book. In particular, I am grateful to Dr. Ali Mani who took a special interest
in this book and made significant technical contributions to the new edition.
Special thanks are due to Nick Henderson for compiling the examples programs
and Drs. Erich Elsen and Lawrence Cheung for their due diligence and help in

ix
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the preparation of this edition. Prof. Jon Freund suggested the addition of the
finite element section and gave me a draft of his notes on the subject to get me
started.

Parviz Moin
Stanford, California
March 2010



Preface to the First Edition

With the advent of faster computers, numerical simulation of physical phenom-
ena is becoming more practical and more common. Computational prototyping
is becoming a significant part of the design process for engineering systems.
With ever-increasing computer performance the outlook is even brighter, and
computer simulations are expected to replace expensive physical testing of de-
sign prototypes.

This book is an outgrowth of my lecture notes for a course in computational
mathematics taught to first-year engineering graduate students at Stanford. The
course is the third in a sequence of three quarter-courses in computational
mathematics. The students are expected to have completed the first two courses
in the sequence: numerical linear algebra and elementary partial differential
equations. Although familiarity with linear algebra in some depth is essential,
mastery of the analytical tools for the solution of partial differential equations
(PDEs) is not; only familiarity with PDEs as governing equations for physical
systems is desirable. There is a long tradition at Stanford of emphasizing that
engineering students learn numerical analysis (as opposed to learning to run
canned computer codes). I believe it is important for students to be educated
about the fundamentals of numerical methods. My first lesson in numerics in-
cludes a warning to the students not to believe, at first glance, the numerical
output spewed out from a computer. They should know what factors affect ac-
curacy, stability, and convergence and be able to ask tough questions before
accepting the numerical output. In other words, the user of numerical methods
should not leave all the “thinking” to the computer program and the person
who wrote it. It is also important for computational physicists and engineers
to have first-hand experience solving real problems with the computer. They
should experience both the power of numerical methods for solving non-trivial
problems as well as the frustration of using inadequate methods. Frustrating
experiences with a numerical method almost always send a competent numer-
ical analyst to the drawing board and force him or her to ask good questions

xi
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about the choice and parameters of the method, which should have been asked
before going to the computer in the first place. The exercises at the end of
each chapter are intended to give these important experiences with numerical
methods.

Along with mastering the fundamentals of numerical methods, the students
are expected to write their own programs to solve problems using standard
numerical methods. They are also encouraged to use standard (commercial)
software whenever possible. There are several software libraries with well-
documented programs for basic computational work. Recently, I have used the
Numerical Recipes by Press et al. (Cambridge) as an optional supplement to
my lectures. Numerical Recipes is based on a large software library that is well
documented and available on computer disks. Some of the examples in this
book refer to specific programs in Numerical Recipes.

Students should also have a simple (x, y) plotting package to display their
numerical results. Some students prefer to use MATLAB’s plotting software,
some use the plotting capability included with a spreadsheet package, and oth-
ers use more sophisticated commercial plotting packages. Standard well-written
numerical analysis programs are generally available for almost everything cov-
ered in the first four chapters, but this is not the case for partial differential
equations, discussed in Chapter 5. The main technical reason for this is the
large variety of partial differential equations, which requires essentially tailor-
made programs for each application.

No attempt has been made to provide complete coverage of the topics that
I have chosen to include in this book. This is not meant to be a reference book;
rather it contains the material for a first course in numerical analysis for future
practitioners. Most of the material is what I have found useful in my career
as a computational physicist/engineer. The coverage is succinct, and it is ex-
pected that all the material will be covered sequentially. The book is intended
for first-year graduate students in science and engineering or seniors with good
post-calculus mathematics backgrounds. The first five chapters can be cov-
ered in a one-quarter course, and Chapter 6 can be included in a one-semester
course.

Discrete data and numerical interpolation are introduced in Chapter 1, which
exposes the reader to the dangers of high-order polynomial interpolation. Cu-
bic splines are offered as a good working algorithm for interpolation. Chapter 2
(finite differences) and Chapter 3 (numerical integration) are the foundations
of discrete calculus. Here, I emphasize systematic procedures for construct-
ing finite difference schemes, including high-order Padé approximations. We
also examine alternative, and often more informative, measures of numeri-
cal accuracy. In addition to introducing the standard numerical integration
techniques and their error analysis, we show in Chapter 3 how knowledge of
the form of numerical errors can be used to construct more accurate numeri-
cal results (Richardson extrapolation) and to construct adaptive schemes that
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obtain the solution to the accuracy specified by the user. Usually, at this point
in my lectures, I seize the opportunity, offered by these examples, to stress the
value of a detailed knowledge of numerical error and its pay-offs even for the
most application-oriented students. Knowledge is quickly transferred to power
in constructing novel numerical methods.

Chapter 4 is on numerical solution of ordinary differential equations
(ODEs) – the heart of this first course in numerical analysis. A number of
new concepts such as stability and stiffness are introduced. The reader begins
to experience new tools in the arsenal for solving relatively complex problems
that would have been impossible to do analytically. Because so many inter-
esting applications are cast in ordinary differential equations, this chapter is
particularly interesting for engineers. Different classes of numerical methods
are introduced and analyzed even though there are several well-known powerful
numerical ODE solver packages available to solve any practical ODE without
having to know their inner workings. The reason for this extensive coverage of
a virtually solved problem is that the same algorithms are used for solution of
partial differential equations when canned programs for general PDEs are not
available and the user is forced to write his or her own programs. Thus, it is
essential to learn about the properties of numerical methods for ODEs in order
to develop good programs for PDEs.

Chapter 5 discusses numerical solution of partial differential equations and
relies heavily on the analysis of initial value problems introduced for ODEs.
In fact by using the modified wavenumber analysis, we can cast into ODEs
the discretized initial value problems in PDEs, and the knowledge of ODE
properties becomes very useful and no longer of just academic value. Once
again the knowledge of numerical errors is used to solve a difficult problem
of dealing with large matrices in multi-dimensional PDEs by the approximate
factorization technique. Dealing with large matrices is also a focus of numerical
techniques for elliptic partial differential equations, which are dealt with by
introducing the foundations of iterative solvers.

Demand for high accuracy is increasing as computational engineering ma-
tures. Today’s engineers and physicists are less interested in qualitative features
of numerical solutions and more concerned with numerical accuracy. A branch
of numerical analysis deals with spectral methods, which offer highly accu-
rate numerical methods for solution of partial differential equations. Chapter 6
covers aspects of Fourier analysis and introduces transform methods for partial
differential equations.

My early work in numerical analysis was influenced greatly by discus-
sions with Joel Ferziger and subsequently by the works of Harvard Lomax at
NASA–Ames. Thanks are due to all my teaching assistants who helped me
develop the course upon which this book is based; in particular, I thank Jon
Freund and Arthur Kravchenko who provided valuable assistance in prepara-
tion of this book. I am especially grateful to Albert Honein for his substantial
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help in preparing this book in its final form and for his many contributions
as my teaching assistant in several courses in computational mathematics at
Stanford.

Parviz Moin
Stanford, California
July 2000



1
Interpolation

Often we want to fit a smooth curve through a set of data points. Applications
might be differentiation or integration or simply estimating the value of the
function between two adjacent data points. With interpolation we actually pass
a curve through the data. If data are from a crude experiment characterized by
some uncertainty, it is best to use the method of least squares, which does not
require the approximating function to pass through all the data points.

1.1 Lagrange Polynomial Interpolation

Suppose we have a set of n + 1 (not necessarily equally spaced) data (xi, yi).
We can construct a polynomial of degree n that passes through the data:

P(x) = a0 + a1x + a2x2 + · · · + anxn.

The n + 1 coefficients of P are determined by forcing P to pass through the
data. This leads to n + 1 equations in the n + 1 unknowns, a0, a1, . . . , an:

yi = P(xi ) = a0 + a1xi + a2x2
i + · · · + anxn

i i = 0, 1, 2, . . . , n.

This procedure for finding the coefficients of the polynomial is not very
attractive. It involves solving a system of algebraic equations that is generally ill-
conditioned (see Appendix) for large n. In practice we will define the polynomial
in an explicit way (as opposed to solving a system of equations). Consider the
following polynomial of degree n associated with each point xj:

L j (x) = α j (x − x0)(x − x1) · · · (x − x j−1)(x − x j+1) · · · (x − xn),

where αj is a constant to be determined. In the product notation, Lj is written
as follows

L j (x) = α j

n∏
i=0
i �= j

(x − xi ).

1



2 INTERPOLATION

If x is equal to any of the data points except xj, then Lj(xi) = 0 for i �= j . For
x = xj,

L j (x j ) = α j

n∏
i=0
i �= j

(x j − xi ).

We now define α j to be

α j =

⎡⎢⎢⎣ n∏
i=0
i �= j

(x j − xi )

⎤⎥⎥⎦
−1

.

Then, L j will have the following important property:

L j (xi ) =
{

0 xi �= x j

1 xi = x j .
(1.1)

Next we form a linear combination of these polynomials with the data as weights:

P(x) =
n∑

j=0

y j L j (x). (1.2)

This is a polynomial of degree n because it is a linear combination of polynomi-
als of degree n. It is called a Lagrange polynomial. It is the desired interpolating
polynomial because by construction, it passes through all the data points. For
example, at x = xi

P(xi ) = y0L0(xi ) + y1L1(xi ) + · · · + yi Li (xi ) + · · · + yn Ln(xi ).

Since Li (xk) is equal to zero except for k = i, and Li (xi ) = 1,

P(xi ) = yi .

Note that polynomial interpolation is unique. That is, there is only one poly-
nomial of degree n that passes through a set of n + 1 points*. The Lagrange
polynomial is just a compact, numerically better behaved way of expressing the
polynomial whose coefficients could have also been obtained from solving a
system of algebraic equations.

For a large set of data points (say greater than 10), polynomial interpolation
for uniformly spaced data can be very dangerous. Although the polynomial is
fixed (tied down) at the data points, it can wander wildly between them, which
can lead to large errors for derivatives or interpolated values.

∗ The uniqueness argument goes like this: suppose there are two polynomials of degree n, Z1 and
Z2 that pass through the same data points, x0, x1, . . . , xn. Let Z = Z1 – Z2. Z is a polynomial of
degree n with n + 1 zeros, x0, x1, . . . , xn, which is impossible unless Z is identically zero.



1.1 LAGRANGE POLYNOMIAL INTERPOLATION 3

EXAMPLE 1.1 Lagrange Interpolation

Consider the following data, which are obtained from a smooth function also
known as Runge’s function, y = (1 + 25x2)−1:

xi −1.00 −0.80 −0.60 −0.40 −0.20 0.00 0.20 0.40 0.60 0.80 1.00

yi 0.038 0.058 0.100 0.200 0.500 1.00 0.500 0.200 0.100 0.058 0.038

We wish to fit a smooth curve through the data using the Lagrange polyno-
mial interpolation, for which the value at any point x is simply

P (x) =
n∑

j=0

y j

n∏
i=0
i �= j

x − xi

x j − xi
.

For example at the point (x = 0.7), the interpolated value is

P (.7) = 0.038
(0.7 + 0.8)(0.7 + 0.6) · · · (0.7 − 0.8)(0.7 − 1.0)

(−1.0 + 0.8)(−1.0 + 0.6) · · · (−1.0 − 0.8)(−1.0 − 1.0)

+ 0.058
(0.7 + 1.0)(0.7 + 0.6) · · · (0.7 − 0.8)(0.7 − 1.0)

(−0.8 + 1.0)(−0.8 + 0.6) · · · (−0.8 − 0.8)(−0.8 − 1.0)
+ · · ·
+ 0.038

(0.7 + 1.0)(0.7 + 0.8) · · · (0.7 − 0.6)(0.7 − 0.8)
(1.0 + 1.0)(1.0 + 0.6) · · · (1.0 − 0.6)(1.0 − 0.8)

= −0.226.

Evaluating the interpolating polynomial at a large number of intermediate
points, we may plot the resulting polynomial curve passing through the data
points (see Figure 1.1). It is clear that the Lagrange polynomial behaves
very poorly between some of the data points, especially near the ends of the
interval. The problem does not go away by simply having more data points
in the interval and thereby tying down the function further. For example, if
instead of eleven points we had twenty-one uniformly spaced data points in
the same interval, the overshoots at the ends would have peaked at nearly
60 rather than at 1.9 as they did for eleven points. However, as shown in the
following example, the problem can be somewhat alleviated if the data points
are non-uniformly spaced with finer spacings near the ends of the interval.

x

f(
x

)

 -1.0  -0.5 0   0.5   1.0
 -0.5

0

  0.5

  1.0

  1.5

  2.0
Lagrange Polynomial
Expected Behavior
Data Points

Figure 1.1 Lagrange polynomial interpolation of Runge’s function using eleven equally
spaced data points.



4 INTERPOLATION

EXAMPLE 1.2 Lagrange Interpolation With Non-equally Spaced Data

Consider the following data which are again extracted from the Runge’s func-
tion of Example 1.1. The same number of points are used as in Example 1.1,
but the data points xi are now more finely spaced near the ends (at the
expense of coarser resolution near the center).

xi −1.00 −0.95 −0.81 −0.59 −0.31 0.00 0.31 0.59 0.81 0.95 1.00

yi 0.038 0.042 0.058 0.104 0.295 1.00 0.295 0.104 0.058 0.042 0.038

The interpolation polynomial and the expected curve, which in this case (as
in Example 1.1) is simply the Runge’s function, are plotted in Figure 1.2. It
is apparent that the magnitudes of the overshoots at the ends of the inter-
val have been reduced; however, the overall accuracy of the scheme is still
unacceptable.

x

f(
x
)

-1.0 -0.5 0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

1.2

Lagrange Interpolation
Expected Behavior
Data Points

Figure 1.2 Lagrange polynomial interpolation of Runge’s function using eleven non-
equally spaced data points. The data toward the ends of the interval are more finely
spaced.

The wandering problem can also be severely curtailed by piecewise Lagrange
interpolation. Instead of fitting a single polynomial of degree n to all the data,
one fits lower order polynomials to sections of it. This is used in many practical
applications and is the basis for some numerical methods. The main problem
with piecewise Lagrange interpolation is that it has discontinuous slopes at
the boundaries of the segments, which causes difficulties when evaluating the
derivatives at the data points. Interpolation with cubic splines circumvents this
difficulty.

1.2 Cubic Spline Interpolation

Interpolation with cubic splines is essentially equivalent to passing a flexible
plastic ruler through the data points. You can actually hammer a few nails
partially into a board and pretend that they are a set of data points; the nails can
then hold a plastic ruler that is bent to touch all the nails. Between the nails, the
ruler acts as the interpolating function. From mechanics the equation governing
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x

g"
(x

)

0 1 2 3 4 5
0

1

2

3

4

5

Figure 1.3 A schematic showing the linearity of g′′ in between the data points. Also
note that with such a construction, g′′ is continuous at the data points.

the position of the curve y(x) traced by the ruler is

Cy(iv) = G,

where C depends on the material properties and G represents the applied force
necessary to pass the spline through the data. The force is applied only at the
data points; between the data points the force is zero. Therefore, the spline is
piecewise cubic between the data. As will be shown below, the spline interpolant
and its first two derivatives are continuous at the data points.

Let gi (x) be the cubic in the interval xi ≤ x ≤ xi+1 and let g(x) denote the
collection of all the cubics for the entire range of x. Since g is piecewise cubic
its second derivative, g′′, is piecewise linear. For the interval xi ≤ x ≤ xi+1, we
can write the equation for the corresponding straight line as

g′′
i (x) = g′′(xi )

x − xi+1

xi − xi+1
+ g′′(xi+1)

x − xi

xi+1 − xi
. (1.3)

Note that by construction, in (1.3) we have enforced the continuity of the second
derivative at the data points. That is, as shown in Figure 1.3, straight lines from
the adjoining intervals meet at the data points.

Integrating (1.3) twice we obtain

g′
i (x) = g′′(xi )

xi − xi+1

(x − xi+1)2

2
+ g′′(xi+1)

xi+1 − xi

(x − xi )2

2
+ C1 (1.4)

and

gi (x) = g′′(xi )

xi − xi+1

(x − xi+1)3

6
+ g′′(xi+1)

xi+1 − xi

(x − xi )3

6
+ C1x + C2. (1.5)

The undetermined constants C1 and C2 are obtained by matching the functional
values at the end points:

gi (xi ) = f (xi ) ≡ yi gi (xi+1) = f (xi+1) ≡ yi+1,

which give two equations for the two unknowns, C1 and C2. Substituting for C1
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and C2 in (1.5) leads to the spline equation used for interpolation:

gi (x) = g′′(xi )

6

[
(xi+1 − x)3

�i
− �i (xi+1 − x)

]

+ g′′(xi+1)

6

[
(x − xi )3

�i
− �i (x − xi )

]

+ f (xi )
xi+1 − x

�i
+ f (xi+1)

x − xi

�i
, (1.6)

where xi ≤ x ≤ xi+1 and �i = xi+1 − xi . In (1.6) g′′(xi ) and g′′(xi+1) are still
unknowns. To obtain g′′(xi ), we use the remaining matching condition, which
is the continuity of the first derivatives:

g′
i (xi ) = g′

i−1(xi ).

The desired system of equations for g′′(xi ) is then obtained by differentiating
gi (x) and gi−1(x) from (1.6) and equating the two derivatives at x = xi . This
leads to

�i−1

6
g′′(xi−1) + �i−1 + �i

3
g′′(xi ) + �i

6
g′′(xi+1)

= f (xi+1) − f (xi )

�i
− f (xi ) − f (xi−1)

�i−1
i = 1, 2, 3, . . . , N − 1. (1.7)

These are N – 1 equations for the N + 1 unknowns g′′(x0), g′′(x1), . . . , g′′(xN ).
The equations are in tridiagonal form and diagonally dominant, and therefore
they can be solved very efficiently. The remaining equations are obtained from
the prescription of some “end conditions.” Typical conditions are:

a) Free run-out (natural spline):

g′′(x0) = g′′(xN ) = 0.

This is the most commonly used condition. It can be shown that with this
condition, the spline is the smoothest interpolant in the sense that the integral
of g′′2 over the whole interval is smaller than any other function interpolating
the data.

b) Parabolic run-out:

g′′(x0) = g′′(x1)

g′′(xN−1) = g′′(xN ).

In this case, the interpolating polynomials in the first and last intervals are
parabolas rather than cubics (see Exercise 3).

c) Combination of (a) and (b):

g′′(x0) = αg′′(x1)

g′′(xN−1) = βg′′(xN ),

where α and β are constants chosen by the user.



1.2 CUBIC SPLINE INTERPOLATION 7

d) Periodic:

g′′(x0) = g′′(xN−1)

g′′(x1) = g′′(xN ).

This condition is suitable for interpolating in one period of a known periodic
signal.

The general procedure for spline interpolation is first to solve the system of
equations (1.7) with the appropriate end conditions for g′′(xi ). The result is then
used in (1.6), providing the interpolating function gi (x) for the interval xi ≤
x ≤ xi+1. In general, spline interpolation is preferred over Lagrange polynomial
interpolation; it is easy to implement and usually leads to smooth curves.

EXAMPLE 1.3 Cubic Spline Interpolation

We will now interpolate the data in Example 1.1 with a cubic spline. We
solve the tridiagonal system derived in (1.7). Since the data are uniformly
spaced, this equation takes a particularly simple form for g′′(xi):

1
6

g′′(xi−1) + 2
3

g′′(xi) + 1
6

g′′(xi+1) = yi+1 − 2yi + yi−1

�2
i = 1, 2, . . . , n − 1.

For this example, we will use the free run-out condition g′′(x0) = g′′(xn) = 0.

The cubic spline is evaluated at several x points using (1.6) and the g′′(xi)
values obtained from the solution of this tridiagonal system. The subroutine
spline in Numerical Recipes has been used in the calculation. The equiv-
alent function in MATLAB is also called spline. The result is presented in
Figure 1.4. Spline representation appears to be very smooth and is virtually
indistinguishable from Runge’s function.

x

f(
x

)

 -1.0  -0.5 0   0.5   1.0
0

 0.25

 0.50

 0.75

 1.00

 1.25

Cubic Spline
Data Points

Figure 1.4 Cubic spline interpolation of Runge’s function using the equally spaced
data of Example 1.1.

Clearly spline interpolation is much more accurate than Lagrange inter-
polation. Of course, the computer program for spline is longer and a bit more
complicated than that for Lagrange interpolation. However, once such programs
are written for general use, then the time taken to develop the program, or the
“human cost,” no longer enters into consideration.



8 INTERPOLATION

An interesting version of spline interpolation, called tension spline, can be
used if the spline fit wiggles too much. The idea is to apply some tension or pull
from both ends of the flexible ruler discussed at the beginning of this section.
Mathematically, this also leads to a tridiagonal system of equations for g′′

i , but
the coefficients are more complicated. In the limit of very large tension, all
the wiggles are removed, but the spline is reduced to a simple straight line
interpolation (see Exercise 6).

EXERCISES

1. Write a computer program for Lagrange interpolation (you may want to use
the Numerical Recipes subroutine polint or interp1 of MATLAB). Test
your program by verifying that P(0.7) = −0.226 in Example 1.1.

(a) Using the data of Example 1.1, find the interpolated value at x = 0.9.
(b) Use Runge’s function to generate a table of 21 equally spaced data points.

Interpolate these data using a Lagrange polynomial of order 20. Plot this
polynomial and comment on the comparison between your result and the
plot of Example 1.1.

2. Derive an expression for the derivative of a Lagrange polynomial of order n at
a point x between the data points.

3. Show that if parabolic run-out conditions are used for cubic spline interpolation,
then the interpolating polynomials in the first and last intervals are indeed
parabolas.

4. An operationally simpler spline is the so-called quadratic spline. Interpolation
is carried out by piecewise quadratics.

(a) What are the suitable joint conditions for quadratic spline?
(b) Show how the coefficients of the spline are obtained. What are suitable end

conditions?
(c) Compare the required computational efforts for quadratic and cubic

splines.

5. Consider a set of n + 1 data points (x0, f0), . . . , (xn, fn), equally spaced with
xi+1 − xi = h. Discuss how cubic splines can be used to obtain a numerical
approximation for the first derivative f ′ at these data points. Give a detailed
account of the required steps. You should obtain formulas for the numerical
derivative at the data points x0, . . . , xn and explain how to calculate the terms
in the formulas.

6. Tension splines can be used if the interpolating spline wiggles too much. In
this case, the equation governing the position of the plastic ruler in between
the data points is

y(iv) − σ 2 y′′ = 0

where σ is the tension parameter. If we denote gi (x) as the interpolating tension
spline in the interval xi ≤ x ≤ xi+1, then g′′

i (x) − σ 2gi (x) is a straight line in
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this interval, which can be written in the following convenient forms:

g′′
i (x) − σ 2gi (x) = [g′′(xi ) − σ 2 f (xi )]

x − xi+1

xi − xi+1

+ [g′′(xi+1) − σ 2 f (xi+1)]
x − xi

xi+1 − xi
.

(a) Verify that for σ = 0, the cubic spline is recovered, and σ → ∞ leads to
linear interpolation.

(b) Derive the equation for tension spline interpolation, i.e., the expression
for gi (x).

7. The tuition for 12 units at St. Anford University has been increasing from
1998 to 2008 as shown in the table below:

Year Tuition per year
1998 $21,300
1999 $23,057
2000 $24,441
2001 $25,917
2002 $27,204
2003 $28,564
2004 $29,847
2005 $31,200
2006 $32,994
2007 $34,800
2008 $36,030

(a) Plot the given data points and intuitively interpolate (draw) a smooth curve
through them.

(b) Interpolate the data with the Lagrange polynomial. Plot the polynomial and
the data points. Use the polynomial to predict the tuition in 2010. This is
an extrapolation problem; discuss the utility of Lagrange polynomials for
extrapolation.

(c) Repeat (b) with a cubic spline interpolation and compare your results.

8. The concentration of a certain toxin in a system of lakes downwind of an
industrial area has been monitored very accurately at intervals from 1993 to
2007 as shown in the table below. It is believed that the concentration has
varied smoothly between these data points.

Year Toxin Concentration
1993 12.0
1995 12.7
1997 13.0
1999 15.2
2001 18.2
2003 19.8
2005 24.1
2007 28.1
2009 ???
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(a) Interpolate the data with the Lagrange polynomial. Plot the polynomial and
the data points. Use the polynomial to predict the condition of the lakes in
2009. Discuss this prediction.

(b) Interpolation may also be used to fill “holes” in the data. Say the data from
1997 and 1999 disappeared. Predict these values using the Lagrange poly-
nomial fitted through the other known data points.

(c) Repeat (b) with a cubic spline interpolation. Compare and discuss your
results.

9. Consider a piecewise Lagrange polynomial that interpolates between three
points at a time. Let a typical set of consecutive three points be xi−1, xi , and
xi+1. Derive differentiation formulas for the first and second derivatives at
xi. Simplify these expressions for uniformly spaced data with � = xi+1 − xi .
You have just derived finite difference formulas for discrete data, which are
discussed in the next chapter.

10. Consider a function f defined on a set of N + 1 discrete points

x0 < x1 < · · · < xN .

We want to derive an (N + 1) × (N + 1) matrix, D (with elements dij), which
when multiplied by the vector of the values of f on the grid results in the deriva-
tive of f ′ at the grid points. Consider the Lagrange polynomial interpolation
of f in (1.2):

P(x) =
N∑

j=0

y j L j (x).

We can differentiate this expression to obtain P ′. We seek a matrix D such that

Df = P ′
N

where, P ′
N is a vector whose elements are the derivative of P(x) at the data

points. Note that the derivative approximation given by Df is exact for all
polynomials of degree N or less. We define D such that it gives the exact
derivatives for all such polynomials at the N + 1 grid points. That is, we want

D Lk(x j )︸ ︷︷ ︸
δk j

= L ′
k(x j ) j, k = 0, 1, 2, . . . , N

where δk j is Kronecker delta which is equal to one for k = j and zero for k �= j .
Show that this implies that

d jk = d

dx
Lk

∣∣∣∣
x=x j

, (1)

where d jk are the elements of D. Evaluate the right-hand side of (1) and show
that

d jk = L ′
k(x j ) = αk

N∏
l=0

l �= j,k

(x j − xl ) = αk

α j (x j − xk)
for j �= k, (2)
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and

d j j = L ′
j (x j ) =

N∑
l=0
l �= j

1

x j − xl
for j = k (3)

where, αj is defined in Section 1.1.
(HINT: Take the logarithm Lk(x).)

11. In this problem, we want to develop the two-dimensional spline interpolation
procedure, which has applications in many areas such as image processing,
weather maps, and topography analysis.

Consider f (x, y) defined on [0, 4] × [0, 4] given at the following points:

f (0, 0) = 0.0006 f (1, 0) = 0.2904 f (2, 0) = 0.5648 f (3, 0) = 0.2751
f (0, 1) = 0.2499 f (1, 1) = 1.7995 f (2, 1) = 2.8357 f (3, 1) = 1.2861
f (0, 2) = 0.4916 f (1, 2) = 2.4900 f (2, 2) = 3.8781 f (3, 2) = 1.8796
f (0, 3) = 0.2423 f (1, 3) = 0.9809 f (2, 3) = 1.6072 f (3, 3) = 0.8686.

Furthermore, assume that f has periodic boundary conditions. In other words,
the value of f and all of its derivatives are the same at (x, y) and (x + 4k, y +
4l) for all integer values of k and l. Let’s assume that we are interested in
the values of the function in a subregion of the domain defined by 1 ≤ x ≤ 2
and 1 ≤ y ≤ 2 (the area shown in the figure). In the first step, we focus on
interpolating f at a given point. For example, through the following steps we
can obtain estimates for f (1.5, 1.5).

(a) Use a contour plot routine (such as Matlab’s contour) over the given data
and obtain a rough estimate for f (1.5, 1.5).

(b) Let g(x, y) denote the cubic spline interpolation of f. In the first step use
one-dimensional splines in the x-direction. Compute gxx = ∂2g/∂x2 at the
data points. Plot g(x, i) for 0 ≤ x ≤ 4 and i = 0, 1, 2, 3 which is indicated
by the solid lines in the figure.
Hint: After computing gxx you can use (1.6) to compute the function in
between the data points.

(c) From part (b) obtain the values of g(1.5, i) for i = 0, 1, 2, 3. Now use a
one-dimensional spline in the y-direction to obtain g(1.5, y). Plot g(1.5, y)
for 1 ≤ y ≤ 2. What is the value of g(1.5, 1.5)?

We can use the same method to interpolate the data at any other point
in the domain. However, repeating the same procedure for each point is
not very cost effective, particularly if the system is large. A more effective
approach is to obtain two-dimensional polynomials for each subregion of
the domain. In this case these polynomials will be of the form:

P(x, y) = a00 + a10x + a01 y + a20x2 + a11xy + a02 y2 + a30x3

+ a21x2 y + a12xy2 + a03 y3 + a31x3 y + a22x2 y2

+ a13xy3 + a32x3 y2 + a23x2 y3 + a33x3 y3.
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(d) Use one-dimensional splines in the y-direction to obtain cubic polynomial
expressions for g(1, y) and g(2, y) for 1 ≤ y ≤ 2 (the dashed lines in the
figure). What are the numerical values of gyy(1, 1), gyy(1, 2), gyy(2, 1),
and gyy(2, 2)?

(e) In part (b) you obtained the gxx values at the grid points. Now treat these
values as input data (as your new f ) and repeat part (d). Obtain cubic
polynomial expressions for gxx (1, y) and gxx (2, y) for 1 ≤ y ≤ 2. What
are the values of gxxyy(1, 1), gxxyy(1, 2), gxxyy(2, 1), and gxxyy(2, 2)?

(f ) For a given y0 between 1 and 2, you have g(1, y0) and g(2, y0) from part
(d) and gxx (1, y0) and gxx (2, y0) from part (e). Using this information,
what will be the spline polynomial expression of g(x, y0) for 1 ≤ x ≤ 2?
If you substitute expressions obtained in parts (d) and (e) and do all of
the expansions, you will obtain a polynomial of the form presented above.
What is a33? (You do not need to calculate all of the coefficients.)

0 1 2 3 4

0

1

2

3

4

x

y

(g) From the expression obtained in part (f ) compute g(1.5, 1.5) and check if
you have the same answer as in part (c).
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2
Numerical Differentiation – Finite Differences

In the next two chapters we develop a set of tools for discrete calculus. This
chapter deals with the technique of finite differences for numerical differen-
tiation of discrete data. We develop and discuss formulas for calculating the
derivative of a smooth function, but only as defined on a discrete set of grid
points x0, x1, . . . , xN . The data may already be tabulated or a table may have
been generated from a complicated function or a process. We will focus on
finite difference techniques for obtaining numerical values of the derivatives at
the grid points. In Chapter 6 another more elaborate technique for numerical
differentiation is introduced. Since we have learned from calculus how to differ-
entiate any function, no matter how complicated, finite differences are seldom
used for approximating the derivatives of explicit functions. This is in contrast
to integration, where we frequently have to look up integrals in tables, and often
solutions are not known. As will be seen in Chapters 4 and 5, the main appli-
cation of finite differences is for obtaining numerical solution of differential
equations.

2.1 Construction of Difference Formulas Using Taylor Series

Finite difference formulas can be easily derived from Taylor series expansions.
Let us begin with the simplest approximation for the derivative of f (x) at the
point xj, we use the Taylor series:

f (x j+1) = f (x j ) + (x j+1 − x j ) f ′(x j ) + (x j+1 − x j )2

2
f ′′(x j ) + · · · . (2.1)

Rearrangement leads to

f ′(x j ) = f (x j+1) − f (x j )

�x j
− �x j

2
f ′′(x j ) + · · · (2.2)

where �x j = x j+1 − x j is the mesh size. The first term on the right-hand side
of (2.2) is a finite difference approximation to the derivative. The next term is

13
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the leading error term. In this book, we also use h to indicate the mesh size.
When the grid points are uniformly spaced, no subscript will be attached to h
or �x .

Formula (2.2) is usually recast in the following form for uniform mesh
spacing, h

f ′
j = f j+1 − f j

h
+ O(h), (2.3)

which is referred to as the first-order forward difference. This is the same
expression used to define the derivative in calculus, except that in calculus the
definition involves the limit, h → 0; but here, h is finite.

The exponent of h in O(hα) is the order of accuracy of the method. It is a
useful measure of accuracy because it gives an indication of how rapidly the
accuracy can be improved with refinement of the grid spacing. For example,
with a first-order scheme, such as in (2.3), if we reduce the mesh size by a factor
of 2, the error (called the truncation error) is reduced by approximately a factor
of 2. Notice that when we talk about the truncation error of a finite difference
scheme, we always refer to the leading error term with the implication that the
higher order terms in the Taylor series expansion are much smaller than the
leading term. That is, for sufficiently small h the higher powers of h, which
appear as coefficients of the other terms, get smaller. Of course, one should not
be concerned with the actual value of h in dimensional units; for example, h can
be in tens of kilometers in atmospheric dynamics problems, which may lead to
the concern that the higher order terms that involve higher powers of h become
larger. This apparent dilemma is quickly overcome by non-dimensionalizing
the dependent variable x in (2.1). Let us non-dimensionalize x with the domain
length L = xN − x0. L is actually cancelled out in the non-dimensionalization
of (2.1), but now we would be certain that the non-dimensional increment
x j+1 − x j is always less than 1, and hence, its higher powers get smaller.

Let us now consider some other popular finite difference formulas. By ex-
panding f j−1 about xj, we can get

f ′
j = f j − f j−1

h
+ O(h), (2.4)

which is also a first-order scheme, called the first-order backward difference
formula. Higher order schemes (more accurate) can be derived by Taylor series
of the function f at different points about the point xj. For example, the widely
used central difference formula can be obtained from subtraction of two Taylor
series expansions; assuming uniformly spaced data we have

f j+1 = f j + h f ′
j + h2

2
f ′′

j + h3

6
f ′′′

j + · · · (2.5)

f j−1 = f j − h f ′
j + h2

2
f ′′

j − h3

6
f ′′′

j + · · · , (2.6)
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which leads to

f ′
j = f j+1 − f j−1

2h
− h2

6
f ′′′

j + · · · . (2.7)

This is, of course, a second-order formula. That is, if we refine the mesh by a
factor of 2, we expect the truncation error to reduce by a factor of 4. In general,
we can obtain higher accuracy if we include more points. Here is a fourth-order
formula:

f ′
j = f j−2 − 8 f j−1 + 8 f j+1 − f j+2

12h
+ O(h4). (2.8)

The main difficulty with higher order formulas occurs near boundaries of the
domain. They require the functional values at points outside the domain, which
are not available. For example, if the values of the function f are known at points
x0, x1, . . . , xN and the derivative of f at x1 is required, formula (2.8) would
require the value of f at x−1 (in addition to x0, x1, x2, and x3) which is not
available. In practice, to alleviate this problem, we utilize lower order or non-
central formulas near boundaries. Similar formulas can be derived for second-
or higher order derivatives. For example, the second-order central difference
formula for the second derivative is derived by adding (2.5) and (2.6), the two
f ′

j terms are cancelled, and after a minor rearrangement, we get

f ′′
j = f j+1 − 2 f j + f j−1

h2
+ O(h2). (2.9)

2.2 A General Technique for Construction of Finite Difference Schemes

A finite difference formula is characterized by the points at which the functional
values are used and its order of accuracy. For example, the scheme in (2.9) uses
the functional values at j – 1, j, and j + 1, and it is second-order accurate.
Given a set of points to be used in a formula, called a stencil, it is desirable to
construct the formula with the highest order accuracy that involves those points.
There is a general procedure for constructing difference schemes that satisfies
this objective; it is best described by an actual example. Suppose we want
to construct the most accurate difference scheme that involves the functional
values at points j, j + 1, and j + 2. In other words, given the restriction on the
points involved, we ask for the highest order of accuracy that can be achieved.
The desired finite difference formula can be written as

f ′
j +

2∑
k=0

ak f j+k = O(?), (2.10)

where ak are the coefficients from the linear combination of Taylor series. These
coefficients are to be determined so as to maximize the order of the scheme,
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which at this point is displayed by a question mark. We take the linear combi-
nation of the Taylor series for the terms in formula (2.10) using a convenient
table shown below. The table displays the first four terms in the Taylor series
expansion of the functional values in the first column.

TAYLOR TABLE

fj f ′
j f ′′

j f ′′′
j

f ′
j 0 1 0 0

a0f j a0 0 0 0

a1f j+1 a1 a1h a1
h2

2 a1
h3

6

a2f j+2 a2 2ha2 a2
(2h)2

2 a2
(2h)3

6

The left-hand side of (2.10) is the sum of the elements in the first column of the
table; the first four terms of its right-hand side are the sum of the rows in the
next four columns of the table, respectively. Thus, (2.10) can be constructed by
summing the bottom four rows in the table:

f ′
j +

2∑
k=0

ak f j+k = (a0 + a1 + a2) f j + (1 + a1h + 2ha2) f ′
j

+
(

a1
h2

2
+ a2

(2h)2

2

)
f ′′

j +
(

a1
h3

6
+ a2

(2h)3

6

)
f ′′′

j + · · · . (2.11)

To get the highest accuracy, we must set as many of the low-order terms to zero
as possible. We have three free coefficients; therefore, we can set the coefficients
of the first three terms to zero:

a0 + a1 + a2 = 0

a1h + 2ha2 = −1

a1h2/2 + 2a2h2 = 0.

Solving these equations leads to

a1 = −2

h
a2 = 1

2h
a0 = 3

2h
.

Thus, the resulting (second-order) formula is obtained by substituting these
values for the coefficients in (2.10), after a minor rearrangement we obtain

f ′
j = −3 f j + 4 f j+1 − f j+2

2h
+ O(h2). (2.12)

The leading order truncation error is the first term on the right-hand side of
(2.11) that we could not set to zero; substituting for a1 and a2, it becomes

h2

3
f ′′′

j .
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Thus, the best we can do is a second-order formula, given the restriction that the
formula is to involve the functional values at j, j + 1, and j + 2. It is interesting
to note that the magnitude of the truncation error of this formula is twice that
of the second-order central difference scheme (2.7).

EXAMPLE 2.1 Accuracy of Finite Difference Schemes

We will consider three different finite difference schemes and investigate
their accuracy by varying the grid spacing, h. The first derivative of a known
function f will be approximated and compared with the exact derivative.
We take

f (x) = sin x
x3

.

The specific schemes under consideration are the first-, second-, and
fourth-order formulas given by (2.3), (2.7), and (2.8). These are numerically
evaluated at x = 4, and the absolute values of the differences from the exact
solution are plotted as a function of h in Figure 2.1. Since the approximation
errors are proportional to powers of h, it is instructive to use a log–log plot
to reveal the order of accuracy of the schemes. For each scheme, the curve
representing the log |error| vs. log h is expected to be a straight line with its
slope equal to the order of the scheme. The slopes of the curves in Figure 2.1
verify the order of each method.
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Figure 2.1 Truncation error vs. grid spacing for three finite difference schemes.

2.3 An Alternative Measure for the Accuracy of Finite Differences

Order of accuracy is the usual indicator of the accuracy of finite difference
formulas; it tells us how mesh refinement improves the accuracy. For example,
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mesh refinement by a factor of 2 improves the accuracy of a second-order finite
difference scheme by fourfold, and for a fourth-order scheme by a factor of 16.

Another method for measuring the order of accuracy that is sometimes more
informative is the modified wavenumber approach. Here, we ask how well does
a finite difference scheme differentiate a certain class of functions, namely
sinusoidal functions. Sinusoidal functions are representative because Fourier
series are often used to represent arbitrary functions. Of course, more points
are required to adequately represent high-frequency sinusoidal functions and
to differentiate them accurately. Given a set of points, or grid resolution, we
are interested in knowing how well a finite difference scheme can differentiate
the more challenging high-frequency sinusoidal functions. We expect that most
differencing schemes would do well for the low-frequency, slowly varying func-
tions. The solution of non-linear differential equations usually contains several
frequencies and the modified wavenumber approach allows one to assess how
well different components of the solution are represented.

To illustrate the procedure, consider a pure harmonic function of period L,

f (x) = eikx ,

where k is the wavenumber (or frequency) and can take on any of the following
values

k = 2π

L
n, n = 0, 1, 2, . . . , N/2.

With these values of k, each harmonic function would go through an integer
number of periods in the domain. The exact derivative is

f ′ = ik f. (2.13)

We now ask how accurately the second-order central finite difference scheme,
for example, computes the derivative of f for different values of k. Let us
discretize a portion of the x axis of length L with a uniform mesh,

x j = L

N
j, j = 0, 1, 2, . . . , N − 1.

On this grid, eikx ranges from a constant for n = 0, to a highly oscillatory
function of period equal to two mesh widths for n = N/2. The finite difference
approximation for the derivative is

δ f

δx

∣∣∣∣
j
= f j+1 − f j−1

2h
,

where h = L/N is the mesh size and δ denotes the discrete differentiation
operator. Substituting for f j = eikx j , we obtain

δ f

δx

∣∣∣∣
j
= ei2πn( j+1)/N − ei2πn( j−1)/N

2h
= ei2πn/N − e−i2πn/N

2h
f j .
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Figure 2.2 The modified wavenumbers for three finite difference schemes. h is the grid
spacing. The Padé scheme is introduced in the next section.

Thus,

δ f

δx

∣∣∣∣
j
= i

sin(2πn/N )

h
f j = ik ′ f j

where

k ′ = sin(2πn/N )

h
. (2.14)

The numerical approximation to the derivative is in the same form as the
exact derivative in (2.13) except that k is replaced with k′. In analogy with (2.13),
k′ is called the modified wavenumber for the second-order central difference
scheme. In an analogous manner, one can derive modified wavenumbers for any
finite difference formula. A measure of accuracy of a finite difference scheme
is provided by comparing the modified wavenumber k′ with k. This comparison
for three schemes is provided in Figure 2.2.

Note that the modified wavenumber in (2.14) (which is shown by the dash
line in Figure 2.2) is in good agreement with the exact wavenumber at small val-
ues of k. This is expected because for small values of k, f is slowly varying and
the finite difference scheme is sufficiently accurate for numerical differentiation.
For higher values of k, however, f varies rapidly in the domain, and the finite
difference scheme provides a poor approximation for its derivative. Although
more accurate finite difference schemes provide better approximations at higher
wavenumbers, the accuracy is always better for low wavenumbers compared to
that for high wavenumbers. Similarly, we can assess the accuracy of any formula
for a higher derivative using the modified wavenumber approach. For example,
since the exact second derivative of the harmonic function is −k2 exp(ikx), one
can compare the modified wavenumber of a finite difference scheme for the sec-
ond derivative, now labeled k ′2, with k2. As for the first derivative, a typical k ′2h2
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vs. kh diagram shows better accuracy for small wavenumbers (see Exercise 6). It
also turns out that the second-derivative finite difference formulas usually show
better accuracy at the high wavenumbers than the first-derivative formulas.

2.4 Padé Approximations

The Taylor series procedure for obtaining the most accurate finite difference
formula, given the functional values at certain points, can be generalized by
inclusion of the derivatives at the neighboring grid points in the formula. For
example, we can ask for the most accurate formula that includes f ′

j , f ′
j+1, and

f ′
j−1 in addition to the functional values f j , f j+1, and f j−1. That is, instead of

(2.10), we would write

f ′
j + a0 f j + a1 f j+1 + a2 f j−1 + a3 f ′

j+1 + a4 f ′
j−1 = O(?) (2.15)

and our task is then to find the five coefficients a0, a1, . . . , a4 to maximize
the order of this approximation. Before worrying about how to use (2.15) for
numerical differentiation, let us find the coefficients. We follow the Taylor table
procedure for the functional values as well as derivatives appearing in (2.15).
The Taylor table is

TAYLOR TABLE FOR A PADÉ SCHEME

f j f ′
j f ′′

j f ′′′
j f (iv)

j f (v)
j

f ′
j 0 1 0 0 0 0

a0f j a0 0 0 0 0 0

a1f j+1 a1 a1h a1
h2

2 a1
h3

6 a1
h4

24 a1
h5

120

a2f j−1 a2 −a2h a2
h2

2 −a2
h3

6 a2
h4

24 −a2
h5

120

a3f ′
j+1 0 a3 a3h a3

h2

2 a3
h3

6 a3
h4

24

a4f ′
j−1 0 a4 −a4h a4

h2

2 −a4
h3

6 a4
h4

24

As before, we now sum all the rows and set as many of the lower order terms
to zero as possible. We have five coefficients and can set the sum of the entries
in columns 2 to 6 to zero. The linear equations for the coefficients are

a0 + a1 + a2 = 0

a1h − a2h + a3 + a4 = −1

a1
h2

2
+ a2

h2

2
+ a3h − a4h = 0

a1
h

3
− a2

h

3
+ a3 + a4 = 0

a1
h

4
+ a2

h

4
+ a3 − a4 = 0.
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The solution of this system is

a0 = 0 a1 = − 3

4h
a2 = 3

4h
a3 = a4 = 1

4
.

Substitution into column 7 and (2.15) and some rearrangement leads to the
following Padé formula for numerical differentiation:

f ′
j+1 + f ′

j−1 + 4 f ′
j = 3

h
( f j+1 − f j−1) + h4

30
f v

j , (2.16)

where j = 1, 2, 3, . . . , n − 1.
This is a tridiagonal system of equations for f ′

j . There are n – 1 equations for
n + 1 unknowns. To get the additional equations, special treatment is required
near the boundaries. Usually, lower order one-sided difference formulas are
used to approximate f ′

0 and f ′
n . For example, the following third-order formulas

provide the additional equations that would complete the set given by (2.16)

f ′
0 + 2 f ′

1 = 1

h

(
−5

2
f0 + 2 f1 + 1

2
f2

)
(2.17)

f ′
n + 2 f ′

n−1 = 1

h

(
5

2
fn − 2 fn−1 − 1

2
fn−2

)
.

In matrix form, (2.16) and (2.17) are written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0 0 0 · · · 0
1 4 1 0 0 · · · 0
0 1 4 1 0 · · · 0
...

...
. . .

. . .
. . .

...
...

...
...

...
. . .

. . .
. . .

...
0 0 0 . . . 1 4 1
0 0 0 0 · · · 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f ′
0

f ′
1

f ′
2
...
...

f ′
n−1

f ′
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1

h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 5
2 f0 + 2 f1 + 1

2 f2

3( f2 − f0)
3( f3 − f1)

...

...
3( fn − fn−2)

5
2 fn − 2 fn−1 − 1

2 fn−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.18)

In choosing the boundary schemes, we consider two factors. First, in order
to avoid writing a special code to solve the system of equations, the bandwidth
of the matrix should not be increased. For example, the boundary scheme in
(2.18) preserves the tridiagonal structure of the matrix which allows one to use
a standard tridiagonal solver. Second, the boundary stencil should not be wider
than the interior stencil. For example, if the interior stencil at x1 involves only the
functional and derivative values at x0, x1, and x2, the boundary stencil should
not include x3. This constraint is derived from certain considerations in numer-
ical solution of differential boundary value problems using finite differences
(Chapter 4). The same constraint also applies to high-order standard non-Padé
type schemes. For this reason, the order of the boundary scheme is usually lower
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than that of the interior scheme. However, there is substantial evidence from
numerical tests that the additional errors due to a lower order boundary scheme
are confined to the points near the boundaries.

EXAMPLE 2.2 Padé Differentiation Using a Lower Order
Boundary Scheme

We will use the fourth-order Padé scheme (2.16) and the third-order bound-
ary schemes given by (2.17) to differentiate

f (x) = sin 5x 0 ≤ x ≤ 3.

Fifteen uniformly spaced points are used. The result is plotted in Figure 2.3.
Although relatively few grid points are used, the Padé scheme is remarkably
accurate. Note that the main discrepancies are near boundaries where lower
order schemes are used.

x

D
er

iv
at

iv
e

4th Order Pade Differentiation

0 1 2 3
-5.0

-2.5

0

2.5

5.0

7.5

Computed Derivative
Exact Derivative

Figure 2.3 Computed derivative of the function in Example 2.2 using a fourth-order
Padé scheme and exact derivative. The symbols mark the uniformly spaced grid points.

Note that despite its high order of accuracy, the Padé scheme (2.16) is
compact; that is, it requires information only from the neighboring points, j + 1
and j – 1. Furthermore, as can be seen from Figure 2.1, this scheme has a more
accurate modified wavenumber than the standard fourth-order scheme given by
(2.8). Padé schemes are global in the sense that to obtain the derivative at a
point, the functional values at all the points are required; one either gets the
derivatives at all the points or none at all.

Padé schemes can also be easily constructed for higher derivatives. For
example, for the three-point central stencil the following fourth-order formula
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can be derived using the Taylor table approach:

1

12
f ′′
i−1 + 10

12
f ′′
i + 1

12
f ′′
i+1 = fi+1 − 2 fi + fi−1

h2
. (2.19)

2.5 Non-Uniform Grids

Often the function f varies rapidly in a part of the domain, and it has a mild
variation elsewhere. In computationally intensive applications, it is considered
wasteful to use a fine grid capable of resolving the rapid variations of f ev-
erywhere in the domain. One should use a non-uniform grid spacing. In some
problems, such as boundary layers in fluid flow problems, the regions of rapid
variations are known a priori, and grid points can be clustered where needed.
There are also (adaptive) techniques that estimate the grid requirements as the
solution progresses and place additional grid points in the regions of rapid
variations. For now, we will just concern ourselves with finite differencing on
non-uniformly spaced meshes.

Typical finite difference formulas for the first and second derivatives are

f ′
j = f j+1 − f j−1

x j+1 − x j−1
(2.20)

and

f ′′
j = 2

[
f j−1

h j (h j + h j+1)
− f j

h j h j+1
+ f j+1

h j+1(h j + h j+1)

]
, (2.21)

where h j = x j − x j−1. Finite difference formulas for non-uniform meshes gen-
erally have a lower order of accuracy than their counterparts with the same sten-
cil but defined for uniform meshes. For example, (2.21) is strictly a first-order
approximation whereas its counterpart on a uniform mesh (2.9) is second-order
accurate. The lower accuracy is due to reduced cancellations in Taylor series
expansions because of the lack of symmetry in the meshes.

An alternative to the cumbersome derivation of finite difference formulas on
non-uniform meshes is to use a coordinate transformation. One may transform
the independent variable to another coordinate system that is chosen to account
for local variations of the function. Uniform mesh spacing in the new coordinate
system would correspond to non-uniform mesh spacing in the original (physical)
coordinate (see Figure 2.4). For example, the transformation

ζ = cos−1 x

transforms 0 ≤ x ≤ 1 to 0 ≤ ζ ≤ π
2 . Uniform spacing in ζ , given by

ζ j = π

2N
j j = 0, 1, 2, . . . , N ,
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j-1 j j+1

xj+1

xj

xj-1

ζ ζ ζ

Figure 2.4 Uniform mesh spacing in ζ corresponds to non-uniform mesh spacing in x.

corresponds to a very fine mesh spacing near x = 1 and a coarse mesh near
x = 0. In general, for the transformation

ζ = g(x)

we use the chain rule to transform the derivatives to the new coordinate system

d f

dx
= dζ

dx

d f

dζ
= g′ d f

dζ
(2.22)

d2 f

dx2
= d

dx

[
g′ d f

dζ

]
= g′′ d f

dζ
+ (g′)2 d2 f

dζ 2
. (2.23)

Finite difference approximations for uniform meshes are then used to approx-
imate d f/dζ and d2 f/dζ 2.

EXAMPLE 2.3 Calculation of Derivatives on a Non-uniform Mesh

Let f be a certain function defined on the grid points

x j = tanh−1
ζ j where ζ j = 0.9

(
2 j
N

− 1
)

, j = 0, . . . , N .

The value of f at x j is denoted by f j . The x mesh is non-uniform and was
constructed to have clustered points in the middle of the domain where f
is supposed to exhibit rapid variations. The x mesh is shown versus the ζ

mesh in Figure 2.5 for N = 18.
From (2.22), the first derivative of f at x j is

d f
d x

∣∣∣∣
x j

= g′(x j )
d f
dζ

∣∣∣∣
ζ j

.

The central difference approximation to

d f
dζ

∣∣∣∣
ζ j
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Figure 2.5 The non-uniform x mesh versus the uniform ζ mesh in Example 2.3.

is simply (f j+1 − f j−1)/(2�ζ ). In order to see this, let y1(x) describe f as a
function of x. Then f as a function of ζ is given by f = y1(x) = y1(g−1(ζ )) =
y2(ζ ), where y2 is the composition of y1 and g−1. Thus

d f
dζ

∣∣∣∣
ζ j

≈ y2(ζ j+1) − y2(ζ j−1)
2�ζ

= y1(x j+1) − y1(x j−1)
2�ζ

= f j+1 − f j−1

2�ζ

and

d f
d x

∣∣∣∣
x j

≈ sech2(x j )
f j+1 − f j−1

2�ζ
.

An expression for the second derivative of f is obtained similarly.
These numerical derivatives are valid for j = 1, . . . , N − 1. Derivatives

at j = 0 and N are obtained by using one-sided difference approximations to
d f/dζ and d2f/dζ 2.

EXERCISES

1. Consider the central finite difference operator δ/δx defined by

δun

δx
= un+1 − un−1

2h
.

(a) In calculus we have
duv

dx
= u

dv

dx
+ v

du

dx
.

Does the following analogous finite difference expression hold?

δ(unvn)

δx
= un

δvn

dx
+ vn

δun

δx
.
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(b) Show that

δ(unvn)

δx
= ūn

δvn

δx
+ v̄n

δun

δx

where an overbar indicates average over the nearest neighbors,

ūn = 1

2
(un+1 + un−1).

(c) Show that

φ
δψ

δx
= δ

δx
φ̄ψ − ψ

δφ

δx
.

(d) Derive a finite difference formula for the second-derivative operator that
is obtained from two applications of the first-derivative finite difference
operator. Compare the leading error term of this formula and the popular
second-derivative formula

un+1 − 2un + un−1

h2
.

Use both schemes to calculate the second derivative of sin 5x at x = 1.5.
Plot the absolute values of the errors as a function of h on a log–log
plot similar to Figure 2.1. Use 10−4 ≤ h ≤ 100. Discuss your plot.

2. Find the most accurate formula for the first derivative at xi utilizing known
values of f at xi−1, xi , xi+1, and xi+2. The points are uniformly spaced. Give
the leading error term and state the order of the method.

3. Verify that the modified wavenumber for the fourth-order Padé scheme for the
first derivative is

k ′ = 3 sin(k�)

�(2 + cos(k�))
.

4. A general Padé type boundary scheme (at i = 0) for the first derivative which
does not alter the tridiagonal structure of the matrix in (2.16) can be written as

f ′
0 + α f ′

1 = 1

h
(a f0 + b f1 + c f2 + d f3).

(a) Show that requiring this scheme to be at least third-order accurate would
constrain the coefficients to

a = −11 + 2α

6
, b = 6 − α

2
, c = 2α − 3

2
, d = 2 − α

6
.

Which value of α would you choose and why?
(b) Find all the coefficients such that the scheme would be fourth-order

accurate.

5. Modified wavenumbers for non-central finite difference schemes are complex.
Derive the modified wavenumber for the down-wind scheme given by (2.12).
Plot its real and imaginary parts separately and discuss your results.
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6. Modified wavenumber for second-derivative operators.
Recall that the second derivative of f = exp(ikx) is −k2 f . Application of
a finite difference operator for second derivative to f would lead to −k ′2 f,
where k ′2 is the ‘modified wavenumber’ for the second-derivative. The modi-
fied wavenumber method for assessing the accuracy of second-derivative finite
difference formulas is then to compare the corresponding k ′2 with k2 in a plot
such as in Figure 2.2 (but now, k ′2h2 and k2h2 vs. kh, 0 ≤ kh ≤ π).

(a) Use the modified wavenumber analysis to assess the accuracy of the central
difference formula

f ′′
j = f j+1 − 2 f j + f j−1

h2
.

(b) Use Taylor series to show that the Padé formula given by (2.19) is fourth-
order accurate.

(c) Use the modified wavenumber analysis to compare the schemes in (a) and
(b). (Hint: To derive modified wavenumbers for Padé type schemes, replace
f ′′

j with −k ′2 exp(ikx j ), etc.)
(d) Show that k ′2h2 − k2h2 = O(k6h6) for the fourth-order Padé scheme as

kh → 0. Show also that the lim
kh→0

k ′2
k2 = 1.

7. Padé operators.

(a) Show that the fourth-order Padé operator for second derivative can formally
be written as D2

1+ 1
12 h2 D2 , where D2 is the second-order central difference

operator for the second derivative.
(b) Show that the fourth-order Padé operator for the first derivative can be

written as D0

1+ 1
6 h2 D2 , where D0 is the second-order central difference operator

for the first derivative.
These formulations are useful when using Padé schemes to solve boundary
value problems (see the next problem).

8. In numerical solution of boundary value problems in differential equations, we
can sometimes use the physics of the problem not only to enforce boundary
conditions but also to maintain high-order accuracy near the boundary. For
example, we may know the heat flux through a surface or displacement of
a beam specified at one end. We can use this information to produce better
estimates of the derivatives near the boundary.

Suppose we want to numerically solve the following boundary value prob-
lem with Neumann boundary conditions:

d2 y

dx2
+ y = x3, 0 ≤ x ≤ 1

y′(0) = y′(1) = 0.

We discretize the domain using grid points xi = (i − 0.5)h, i = 1, . . . , N .
Note that there are no grid points on the boundaries as shown in the figure
below. In this problem, yi is the numerical estimate of y at xi. By using a finite
difference scheme, we can estimate y′′

i in terms of linear combinations of yi’s
and transform the ODE into a linear system of equations.
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Use the fourth-order Padé formula (2.19) for the interior points.

(a) For the left boundary, derive a third-order Padé scheme to approximate y′′
0

in the following form:

y′′
1 + b2 y′′

2 = a1 y1 + a2 y2 + a3 y3 + a4 y′
b + O(h3),

where y′
b = y′(0), which is known from the boundary condition at x = 0.

(b) Repeat the previous step for the right boundary.
(c) Using the finite difference formulae derived above, we can write the fol-

lowing linear relation:

A

⎡⎢⎢⎢⎢⎣
y′′

1
...
...

y′′
N

⎤⎥⎥⎥⎥⎦ = B

⎡⎢⎢⎢⎢⎣
y1
...
...

yN

⎤⎥⎥⎥⎥⎦ .

What are the elements of the matrices A and B operating on the interior
and boundary nodes?

(d) Use this relationship to transform the ODE into a system with yi ’s as
unknowns. Use N = 24 and solve this system. Do you actually have to
invert A? Plot the exact and numerical solutions. Discuss your result.
How are the Neumann boundary conditions enforced into the discretized
boundary value problem?

9. Consider the function:

f (x) = sin((4 − x)(4 + x)), 0 ≤ x ≤ 8.

Use a uniform grid with N + 1 points, where N = 32, to numerically compute
the second derivative of f as explained below:

(a) Derive a finite difference scheme for f ′′
j using the cubic spline formula

(1.7) in the text.
(b) Use Taylor series to find the order of accuracy of this scheme.
(c) Solve the resulting tridiagonal system for f ′′

j . Remember that the cubic
spline formula applies only to the interior points. To account for the bound-
ary points, derive a first-order one-sided scheme. For example, for the left
boundary, construct a first-order scheme for f ′′

0 using f0, f1, and f2. Plot
the exact and numerical solutions. Discuss your results.

(d) Use the fourth-order Padé scheme for f ′′
j given in (2.19) in the text. Use the

first-order one-sided schemes derived in the previous step for the bound-
ary points. Solve the resulting tridiagonal system and plot the exact and
numerical solutions. Discuss your results.
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(e) Investigate the accuracy of both schemes at x = 4 by varying the grid
spacing h. That is, for each scheme plot log |error| vs. log(h), where error
is the difference between the exact and numerical solution. Verify the order
of each method by calculating the slopes of the curves.

10. Nonuniform mesh.
Consider the function f (x) = 1 − x8 and a grid defined as follows:⎧⎨⎩

j = 0, 1, 2, . . . , N
ξ j = −1 + 2 j

N
x j = 1

a tanh(ξ j tanh−1[a]) 0 < a < 1.

The parameter a can be used to adjust the spacing of the grid points, with large
a placing more points near the boundaries. For this problem take a = 0.98 and
N = 32.

(a) Compute and plot the derivative of f with the central difference formula
(2.20) and the coordinate transformation method described in Section 2.5
and compare with the exact derivative in −1 ≤ x < 1. How would the
results change with a = 0.9?

(b) Repeat part (a) with the transformation:⎧⎨⎩
j = 0, 1, 2, . . . , N
ξ j = π j

N
x j = cos(ξ j ).

Which transformation would you choose, the one in part (a) or this one?
(c) How many uniformly spaced grid points would be required to achieve the

same accuracy as the transformation method in (a)? The maximum error
in the derivative over the domain for the uniform case should be less than
or equal to the maximum error over the domain for the transformed case.

FURTHER READING

Dahlquist, G., and Björck, Å. Numerical Methods. Prentice-Hall, 1974, Chapter 7.
Lapidus, L., and Pinder, George F. Numerical Solution of Partial Differential

Equations in Science and Engineering. Wiley, 1982, Chapter 2.



3
Numerical Integration

Generally, numerical methods for integration or quadrature are needed more
in practice than finite difference formulae for differentiation. The reason is
that while differentiation is always possible to do analytically (even though it
might sometimes be tedious) some integrals are difficult or impossible to do
analytically. Therefore, we often refer to tables to evaluate non-trivial integrals.
In this chapter we will introduce numerical methods that are used for evaluation
of definite integrals that cannot be found in the tables; that is, they are impossible
or too tedious to do analytically. Some of the elementary methods that are
introduced can also be used to evaluate integrals where the integrand is only
defined on a discrete grid or in tabular form.

Throughout the chapter, we will discuss methods for evaluation of the defi-
nite integral of the function f in the interval [a, b],

I =
∫ b

a
f (x) dx .

We will assume that the functional values are known on a set of discrete points,
x0 = a, x1, x2, . . . , xn = b. If f is known analytically, the user or the algorithm
would determine the location of the discrete points x j . On the other hand if the
data on f are available only in tabular form, then the locations of the grid points
are fixed a priori and only a limited class of methods are applicable.

3.1 Trapezoidal and Simpson’s Rules

For one interval, xi ≤ x ≤ xi+1, the trapezoidal rule is given by∫ xi+1

xi

f (x) dx ≈ �x

2
( fi + fi+1) (3.1)

where �x = xi+1 − xi . The geometrical foundation of this formula is that the
function f in the interval is approximated by a straight line passing through
the end points, and the area under the curve in the interval is approximated by

30
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xj xj+1

f(x)

Figure 3.1 Trapezoidal rule; approximating f by a straight line between x j and x j+1.

the area of the resulting trapezoid (see Figure 3.1). For the entire interval [a, b]
the trapezoidal rule is obtained by adding the integrals over all sub-intervals:

I ≈ h

⎛⎝1

2
f0 + 1

2
fn +

n−1∑
j=1

f j

⎞⎠ , (3.2)

where uniform spacing �x = h is assumed.
If we approximate f in each interval by a parabola rather than a straight line,

then the resulting quadrature formula is known as Simpson’s rule. To uniquely
define a parabola as a fitting function, it must pass through three points (or two
intervals). Thus, Simpson’s formula for the integral from xj to x j+2 is given by∫ x j+2

x j

f (x) dx ≈ �x

3

[
f (x j ) + 4 f (x j+1) + f (x j+2)

]
. (3.3)

Similarly, Simpson’s rule for the entire domain with uniform mesh spacing,
�x = h is given by

I ≈ h

3

⎛⎜⎜⎝ f0 + fn + 4
n−1∑
j=1

j=odd

f j + 2
n−2∑
j=2

j=even

f j

⎞⎟⎟⎠ . (3.4)

Note that in order to use Simpson’s rule for the entire interval of integration,
the total number of points (n + 1) must be odd (even number of panels).

Before we discuss the accuracy of these formulae, notice that they both can
be written in the compact form:

I =
∫ b

a
f (x) dx ≈

n∑
i=0

wi f (xi ) (3.5)

where wi are the weights. For example, for the trapezoidal rule w0 = wn = h
2

and wi = h for i = 1, 2, . . . , n − 1.

3.2 Error Analysis

We will now establish the accuracy of these formulas using Taylor series ex-
pansions. It turns out that it is easier to build our analysis around the so-called
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xj xj+1

f(x)

yj

Figure 3.2 Rectangle rule; approximating f in the interval between x j and x j+1 by its
value at the midpoint.

rectangle (or midpoint) rule of integration; the order of accuracy of the trape-
zoidal and Simpson rules are then easily derived from that of the rectangle rule.

Consider the rectangle rule (Figure 3.2) for the interval [xi , xi+1],∫ xi+1

xi

f (x) dx ≈ hi f (yi ), (3.6)

where yi = (xi + xi+1)/2 is the midpoint of the interval [xi , xi+1] and hi is its
width. Let’s replace the integrand with its Taylor series about yi

f (x) = f (yi ) + (x − yi ) f ′(yi ) + 1

2
(x − yi )

2 f ′′(yi )

+ 1

6
(x − yi )

3 f ′′′(yi ) + · · · .

Substitution in (3.6) leads to∫ xi+1

xi

f (x) dx = hi f (yi ) + 1

2
(x − yi )

2
∣∣∣∣xi+1

xi

f ′(yi )

+ 1

6
(x − yi )

3
∣∣∣∣xi+1

xi

f ′′(yi ) + · · · .

All the terms with even powers of (x − yi ) vanish, and we obtain∫ xi+1

xi

f (x) dx = hi f (yi ) + h3
i

24
f ′′(yi ) + 1

1920
h5

i f (iv)(yi ) + · · · . (3.7)

Thus, for one interval, the rectangle rule is third-order accurate.
Now let us perform an error analysis for the trapezoidal rule. Consider the

Taylor series expansions for the functional values appearing on the right-hand
side of (3.1):

f (xi ) = f (yi ) − 1

2
hi f ′(yi ) + 1

8
h2

i f ′′
i (yi ) − 1

48
h3

i f ′′′(yi ) + · · ·

f (xi+1) = f (yi ) + 1

2
hi f ′(yi ) + 1

8
h2

i f ′′
i (yi ) + 1

48
h3

i f ′′′(yi ) + · · · .
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Adding these two expressions and dividing by 2 yields,

f (xi ) + f (xi+1)

2
= f (yi ) + 1

8
h2

i f ′′(yi ) + 1

384
h4

i f (iv)(yi ) + · · · .

Now we can use this expression to solve for f (yi ) and then substitute it into
(3.7) ∫ xi+1

xi

f (x) dx = hi
f (xi ) + f (xi+1)

2
− 1

12
h3

i f ′′(yi )

− 1

480
h5

i f (iv) (yi ) + · · · . (3.8)

Thus, for one interval the trapezoidal rule is also third-order accurate, and its
leading truncation error is twice in magnitude but has the opposite sign of the
truncation error of the rectangle rule. This is a bit surprising since we would
expect approximating a function in an interval by a straight line (which is the
basis of the trapezoidal method) to be more accurate than approximating it by
a horizontal line passing through the function at the midpoint of the interval.
Apparently, error cancellations in evaluating the integral lead to higher accuracy
for the rectangle rule.

To obtain the order of accuracy for approximating the integral for the entire
domain, we can sum both sides of (3.8); assuming uniform spacing, i.e., hi = �,
we will have

I =
∫ b

a
f (x) dx =

n−1∑
i=0

∫ xi+1

xi

f (x) dx

= �

2

⎛⎝ f (a) + f (b) + 2
n−1∑
j=1

f j

⎞⎠ − �3

12

n−1∑
i=0

f ′′(yi )

− �5

480

n−1∑
i=0

f (iv) (yi ) + · · · . (3.9)

Now, we will apply the mean value theorem of integral calculus to the
summations. The mean value theorem states that for sufficiently smooth f
there exists a point x̄ in the interval [a, b] such that

n−1∑
i=0

f ′′(yi ) = n f ′′(x̄).

Similarly, there is a point ξ in [a, b], such that

n−1∑
i=0

f (iv)(yi ) = n f (iv)(ξ ).

Noting that n = (b − a)/� and using the results of the mean value theorem in
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(3.9), we obtain

I =
∫ b

a
f (x) dx = �

2

⎡⎣ f (a) + f (b) + 2
n−1∑
j=1

f j

⎤⎦
− (b − a)

�2

12
f ′′(x̄) − (b − a)

�4

480
f (iv) (ξ ) + · · · . (3.10)

Thus, the trapezoidal rule for the entire interval is second-order accurate. One
can easily show that the Simpson’s formula for one panel [xi , xi+2] can be
written as

S( f ) = 2

3
R( f ) + 1

3
T ( f ),

where R( f ) and T ( f ) denote rectangle and trapezoidal rules, respectively,
applied to the function f. Note that the midpoint of the interval [xi , xi+2] is
xi+1. Using (3.7) and (3.8) (modified for the interval [xi , xi+2]) and the mean
value theorem, we see that Simpson’s rule is fourth-order accurate for the entire
interval [a, b].

3.3 Trapezoidal Rule with End-Correction

This rule is easily derived by simply substituting in (3.8) for f ′′(yi ), the second-
order central difference formula, f ′′(yi ) = ( f ′

i+1 − f ′
i )/hi + O(h2

i ):

Ii = hi
fi + fi+1

2
− 1

12
h3

i

f ′
i+1 − f ′

i

hi
+ O

(
h5

i

)
.

Once again, to get a simple global integration formula, we will assume constant
step size, hi = h = const, and sum over the entire interval

I = h

2

n−1∑
i=0

( fi + fi+1) − h2

12

n−1∑
i=0

( f ′
i+1 − f ′

i ) + O(h4).

Cancellations in the second summation on the right-hand side lead to

I = h

2

n−1∑
i=0

( fi + fi+1) − h2

12
( f ′(b) − f ′(a)) + O(h4). (3.11)

Thus, the trapezoidal rule with end-correction is fourth-order accurate and can
be readily applied without much additional work, provided that the derivatives
of the integrand at the end points are known.

EXAMPLE 3.1 Quadrature

Consider the integral ∫ π

1

sin x
2x3

d x .
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We will numerically evaluate this integral using the trapezoidal rule (3.2),
Simpson’s rule (3.4), and trapezoidal rule with end-correction (3.11). This
integral has an analytical solution in terms of Si(x), sine integrals (see Hand-
book of Mathematical Functions, by Abramowitz & Stegun, p. 231), and may
be numerically evaluated to an arbitrary degree of accuracy for use as an
‘exact’ solution, allowing us to evaluate our quadrature techniques. The
results of the numerical calculations as well as percent errors† for the quadra-
ture techniques are presented below for n = 8 and n = 32 panels in the inte-
gration. The ‘exact’ solution is I = 0.1985572988. . . .

n = 8 Result % Error
Trapezoidal 0.204304 2.894303
Simpson 0.198834 0.139596
End-Correct. 0.198476 0.040948

n = 32 Result % Error
Trapezoidal 0.198921 0.183286
Simpson 0.198559 0.000661
End-Correct. 0.198557 0.000167

We see that the higher order Simpson’s rule and trapezoidal with end-
correction outperform the plain trapezoidal rule.

3.4 Romberg Integration and Richardson Extrapolation

Richardson extrapolation is a powerful technique for obtaining an accurate
numerical solution of a quantity (e.g., integral, derivative, etc.) by combining
two or more less accurate solutions. The essential ingredient for application
of the technique is knowledge of the form of the truncation error of the basic
numerical method used. We shall demonstrate an application of the Richardson
extrapolation by using it to improve the accuracy of the integral

I =
∫ b

a
f (x) dx

with the trapezoidal rule as the basic numerical method. This algorithm is known
as the Romberg integration.

† The percent error (% error) is the absolute value of the truncation error divided by the exact
solution and multiplied by 100:

%error =
∣∣∣∣ exact solution − numerical solution

exact solution

∣∣∣∣× 100.
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From our error analysis for the trapezoidal rule (3.10), we have

I = h

2

⎡⎣ f (a) + f (b) + 2
n−1∑
j=1

f j

⎤⎦ + c1h2 + c2h4 + c3h6 + · · · . (3.12)

Let the trapezoidal approximation with uniform mesh of size h be denoted
by Ĩ1

Ĩ1 = h

2

⎡⎣ f (a) + f (b) + 2
n−1∑
j=1

f j

⎤⎦ . (3.13)

The exact integral and the trapezoidal expression are related by

Ĩ1 = I − c1h2 − c2h4 − c3h6 − · · · . (3.14)

Now, suppose we evaluate the integral with half the step size h1 = h/2. Let’s
call this estimate Ĩ2

Ĩ2 = I − c1
h2

4
− c2

h4

16
− c3

h6

64
− · · · . (3.15)

We can eliminate O(h2) terms by taking a linear combination of (3.14) and
(3.15) to obtain

Ĩ12 = 4 Ĩ2 − Ĩ1

3
= I + 1

4
c2h4 + 5

16
c3h6 + · · · . (3.16)

This is a fourth-order approximation for I. In fact, (3.16) is a rediscovery
of Simpson’s rule. We have combined two estimates of I to obtain a more
accurate estimate; this procedure is called the Richardson extrapolation and can
be repeated to obtain still higher accuracy.

Let’s evaluate I with h2 = h1/2 = h/4; we obtain

Ĩ3 = I − c1
h2

16
− c2

h4

256
− c3

h6

4096
− · · · . (3.17)

To get another fourth-order estimate, we will combine Ĩ3 with Ĩ2:

Ĩ23 = 4 Ĩ3 − Ĩ2

3
= I + 1

64
c2h4 + 5

1024
c3h6 + · · · . (3.18)

Now that we have two fourth-order estimates, we can combine them and elim-
inate the O(h4) terms. Elimination of the O(h4) terms between (3.16) and
(3.18) results in a sixth-order accurate formula. This process can be continued
indefinitely. The essence of the Romberg integration algorithm just described
is illustrated in the following diagram. In typical Romberg integration subrou-
tines, the user specifies an error tolerance, and the algorithm uses the Richardson
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extrapolation as many times as necessary to achieve it.

Eqn. (3.18)

Eqn. (3.16)

O(h6)O(h4)O(h2)

~
I3

~
I2

~
I1

EXAMPLE 3.2 Romberg Integration

We will numerically evaluate the integral from Example 3.1 using the
Romberg integration. The basis for our integration will be the trapezoidal
rule. The integration will be set to automatically stop when the solution
varies less than 0.1% between levels – we may thus specify how accurate
we wish our solution to be. The table below shows the Romberg integration
in progress. The first column indicates the number of panels used to compute
the integral using the trapezoidal rule.

2 Ĩ1 = 0.278173
4 Ĩ2 = 0.220713 0.201560
8 Ĩ3 = 0.204304 0.198834 0.198653

16 Ĩ4 = 0.200009 0.198578 0.198560 0.198559

The % error of this calculation is 0.00074. We see that using only a second-
order method as a basis we are able to generate an O(h8) method and a
0.00074% error at the cost of only 17 function evaluations.

3.5 Adaptive Quadrature

Often it is wasteful to use the same mesh size everywhere in the interval of
integration [a, b]. The major cost of numerical integration is the number of
function evaluations required, which is obviously related to the number of mesh
points used. Thus, to reduce the computational effort, one should use a fine
mesh only in regions of rapid functional variation and a coarser mesh where
the integrand is varying slowly. Adaptive quadrature techniques automatically
determine panel sizes in various regions so that the computed result meets
some prescribed accuracy requirement supplied by the user. That is, with the
minimum number of function evaluations, we would like a numerical estimate
Ĩ of the integral such that ∣∣∣∣ Ĩ −

∫ b

a
f (x) dx

∣∣∣∣≤ ε

where ε is the error tolerance provided by the user.
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To demonstrate the technique, we will use Simpson’s rule as the base method.
Let’s divide the interval [a, b] into subintervals [xi , xi+1]. Divide this interval
into two panels and use Simpson’s rule to obtain

Si = hi

6

[
f (xi ) + 4 f

(
xi + hi

2

)
+ f (xi + hi )

]
.

Now, divide the interval into four panels, and obtain another estimate for the
integral

S(2)
i = hi

12

[
f (xi ) + 4 f

(
xi + hi

4

)
+ 2 f

(
xi + hi

2

)
+ 4 f

(
xi + 3hi

4

)
+ f (xi + hi )

]
.

The basic idea, as will be shown, is to compare the two approximations, Si and
S(2)

i , and obtain an estimate for the accuracy of S(2)
i . If the accuracy is acceptable,

we will use S(2)
i for the interval and start working on the next interval; otherwise,

the method further subdivides the interval. Let Ii denote the exact integral in
[xi , xi+1]. From our error analysis we know that Simpson’s rule is locally fifth-
order accurate,

Ii − Si = ch5
i f (iv)

(
xi + hi

2

)
+ · · · (3.19)

and for the refined interval, we simply add the two truncation errors

Ii − S(2)
i = c

(
hi

2

)5 [
f (iv)

(
xi + hi

4

)
+ f (iv)

(
xi + 3hi

4

)]
+ · · · .

Each of the terms in the bracket can be expanded in Taylor series about the
point (xi + hi/2):

f (iv)
(

xi + hi

4

)
= f (iv)

(
xi + hi

2

)
− hi

4
f (v)

(
xi + hi

2

)
+ · · ·

f (iv)
(

xi + 3hi

4

)
= f (iv)

(
xi + hi

2

)
+ hi

4
f (v)

(
xi + hi

2

)
+ · · · .

Thus,

Ii − S(2)
i = 2c

(
hi

2

)5 [
f (iv)

(
xi + hi

2

)]
+ · · · . (3.20)

Subtracting (3.19) from (3.20), Ii drops out and we obtain

S(2)
i − Si = 15

16
ch5

i f (iv)
(

xi + hi

2

)
+ · · · .

This is the key result, it states that the error in S(2)
i , as given by (3.20), is about

1/15 of the difference between Si and S(2)
i . The good news is that this difference
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can be computed; it is simply the difference between two numerical estimates
of the integral that we have already computed.

If the user-specified error tolerance for the entire interval is ε, the weighted
tolerance for the interval [xi , xi+1] is

hi

b − a
ε.

Thus, the adaptive algorithm proceeds as follows: If

1

15

∣∣∣S(2)
i − Si

∣∣∣ ≤ hi

b − a
ε, (3.21)

then S(2)
i is sufficiently accurate for the interval [xi , xi+1], and we move on to the

next interval. If condition (3.21) is not satisfied, the interval will be subdivided
further.

This is the essence of adaptive quadrature programs. Similar methodology
can be devised when other base methods such as the trapezoidal rule are
used (Exercise 14). As with the Richardson extrapolation, the knowledge of
the truncation error can be used to obtain estimates for the accuracy of the
numerical solution without knowing the exact solution.

EXAMPLE 3.3 Adaptive Quadrature

Consider the function

f (x) = 10e−50|x | − 0.01

(x − 0.5)2 + 0.001
+ 5 sin(5x).

The integral

I =
∫ 1

−1
f (x) d x

has the exact value of −0.56681975015. When evaluated using the adap-
tive quadrature routine QUANC8† (quad1 in MATLAB), with various error
tolerances ε, the following values are obtained.

ε Integral
10−2 −0.45280954
10−3 −0.53238036
10−4 −0.56779547
10−5 −0.56681371
10−6 −0.56681977
10−7 −0.56681974

† G. E. Forsythe, M. A. Malcolm, and C. B. Moler (1977), Computer Methods for Mathematical
Computations. Englewood Cliffs, N.J.: Prentice Hall. QUANC8 is available on the World Wide
Web; check, for example, http://www.netlib.org/.
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Figure 3.3 Distribution of adaptive quadrature points for the function in Example 3.3.

The quadrature points for the case ε = 10−5 are shown along with the
function f (x) in Figure 3.3. Note how the algorithm puts more points in
regions where greater resolution was needed for evaluation of the integral.

3.6 Gauss Quadrature

Recall that any quadrature formula can be written as

I =
∫ b

a
f (x) dx =

n∑
i=0

wi f (xi ). (3.22)

If the function f is given analytically, we have two important choices to make.
We have to select the location of the points xi and the weights wi . The main
concept underpinning Gauss quadrature is to make these choices for optimal
accuracy; the criterion for accuracy being the highest degree polynomial that
can be integrated exactly. You can easily verify that the trapezoidal rule in-
tegrates a straight line exactly and Simpson’s rule integrates a cubic exactly
(see Exercise 5). As we will show below, Gauss quadrature integrates a polyno-
mial of degree 2n + 1 exactly using only n + 1 points, which is a remarkable
achievement!

Let f be a polynomial of degree 2n + 1. Suppose we represent f by an nth-
order Lagrange polynomial, P. Let x0, x1, x2, . . . , xn be the points on the x-axis
where the function f is evaluated. Using Lagrange interpolation, we have:

P(x) =
n∑

j=0

f (x j )L (n)
j (x). (3.23)

This representation is exact if f were a polynomial of degree n. Let F be a poly-
nomial of degree n + 1 with x0, x1, . . . , xn as its roots,

F(x) = (x − x0) (x − x1) (x − x2) · · · (x − xn) .
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The difference f (x) − P(x) is a polynomial of degree 2n + 1 that vanishes
at x0, x1, . . . , xn because P was constructed to pass through f (x0), f (x1), . . . ,
f (xn) at the points x0, x1, . . . , xn . Thus, we can write the difference f (x) − P(x)
in the following form:

f (x) − P(x) = F(x)
n∑

l=0

ql x
l .

Integrating this equation results in∫
f (x) dx =

∫
P(x) dx +

∫
F(x)

n∑
l=0

ql x
ldx .

Suppose we demand that∫
F(x)xαdx = 0 α = 0, 1, 2, 3, . . . , n. (3.24)

In principle we can choose x0, x1, x2, . . . , xn such that these n + 1 conditions
are satisfied. Choosing the abscissa in this manner leads to the following ex-
pression for the integral:∫

f (x) dx =
∫

P(x) dx =
n∑

j=0

f (x j )w j ,

where

w j =
∫

L (n)
j (x) dx (3.25)

are the weights.
According to (3.24), F is a polynomial of degree n + 1 that is orthogonal to

all polynomials of degree less than or equal to n. Points x0, x1, . . . , xn are the
zeros of this polynomial. These polynomials are called Legendre polynomials
when x varies between –1 and 1. They are orthonormal, that is∫ 1

−1
Fn (x) Fm (x) dx = δnm

where

δnm =
{

0 if m �= n
1 if m = n,

and Fn is the Legendre polynomial of degree n. Their zeros are documented
in mathematical tables (see Handbook of Mathematical Functions, by
Abramowitz & Stegun) or in canned programs (see for example, Numerical
Recipes by Press et al. or MATLAB). Having the zeros, the weights w j can be
readily computed, and they are also documented in the Gauss quadrature tables
or obtained from canned programs. Many numerical analysis software libraries
contain Gauss quadrature integration subroutines.
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Note that we can always transform the interval a ≤ x ≤ b into −1 ≤ ξ ≤ 1
by the transformation

x = b + a

2
+ b − a

2
ξ.

Typically, to use Gauss–Legendre quadrature tables to evaluate the integral∫ b

a
f (x) dx,

one first changes the independent variable to ξ and obtains the weights wi and
the points on the abscissa, ξ0, ξ2, . . . , ξn from the tables (for the chosen n). The
integral is then approximated by

b − a

2

n∑
j=0

f
(

b + a

2
+ b − a

2
ξ j

)
w j . (3.26)

Note that in the tables in Abramowitz & Stegun, n denotes the number of points,
not n + 1.

EXAMPLE 3.4 Integration Using Gauss–Legendre Quadrature

Consider the integral ∫ 8

1

log x
x

d x .

The exact value is 1
2

(
log 8

)2 = 2.1620386. Suppose we evaluate this inte-
gral with five points using the Gauss–Legendre quadrature. The subroutine
gauleg in Numerical Recipes (gauss leg in MATLAB) gives the following
points and weights in the interval, 1 ≤ x ≤ 8:

i xi wi

1 1.3283706 0.8292441
2 2.6153574 1.6752003
3 4.5000000 1.9911112
4 6.3846426 1.6752003
5 7.6716294 0.8292441

Substituting these values into (3.26) results in the numerical estimate for
the integral, I ≈ 2.165234. The corresponding error is ε = 0.0032 (0.15%)
which is much better than the performance of the Simpson’s rule with
nine points (eight panels), i.e., ε = 0.013 (0.6%). Gauss quadrature with nine
points would result in ε = 0.000011 (0.05%).

There are several Gauss quadrature procedures corresponding to other or-
thogonal polynomials. These polynomials are distinguished by the weight
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functions, W, used in their statement of orthogonality:∫ b

a
Pm (x)Pn (x) W (x) dx = δmn (3.27)

and the range [a, b] over which the functions are orthogonal. For example,
Hermite polynomials are orthogonal according to∫ +∞

−∞
e−x2

Hm (x)Hn (x) dx = δmn.

The Gauss–Hermite quadrature can be used to evaluate integrals of the form

I =
∫ +∞

−∞
e−x2

f (x) dx ≈
n∑

i=0

wi f (xi ). (3.28)

This should lead to accurate results provided that f grows slower than ex2
as

|x | approaches infinity.

EXAMPLE 3.5 Gauss Quadrature Based on Hermite Polynomials

Consider the integral

I =
∫ +∞

−∞
e−x2

cos x d x .

The exact value is 1.38038845. Suppose we use the Gauss–Hermite quadra-
ture to evaluate the integral using seven nodes. A call to the gauher
FORTRAN subroutine in Numerical Recipes (gauss her in MATLAB)
produces the following abscissa and weights:

i xi wi

1 2.6519613 0.0009718
2 1.6735517 0.0545156
3 0.8162879 0.4256073
4 0.0000000 0.8102646
5 −0.8162879 0.4256073
6 −1.6735517 0.0545156
7 −2.6519613 0.0009718

Note that the weights rapidly vanish at higher values of |x |, this is probably
why no more points are needed beyond |x | = 2.652. Substituting these val-
ues into (3.28) results in I ≈ 1.38038850, which is in excellent agreement
with the exact value.

Although Gauss quadrature is very powerful, it may not be cost effective for
solution improvement. One improves the accuracy by adding additional points,
which would involve additional function evaluations. Function evaluations are
the major portion of the computational cost in numerical integration. In the case
of Gauss quadrature, the new grid points generally do not include the old ones
and therefore one needs to perform a complete new set of function evaluations.
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In contrast, adaptive techniques and the Romberg integration do not discard the
previous function evaluations but use them to improve the solution accuracy
when additional points are added.

EXERCISES

1. What is the relation between the fourth-order central Padé scheme for differ-
entiation and Simpson’s rule for integration? How can you use Simpson’s rule
to derive the fourth-order Padé scheme?
Hint: Start with

∫ xi+1

xi−1
f ′(x) dx .

2. Show that

N−1∑
i=1

ui
δv

δx

∣∣∣∣
i

= −
N−1∑
i=1

vi
δu

δx

∣∣∣∣
i

+ boundary terms.

What are the boundary terms? Compare this discrete expression to the rule of
integration by parts.

3. Using the error analysis for the trapezoidal and rectangle rules, show that
Simpson’s rule for integration over the entire interval is fourth-order accurate.

4. Explain why in Example 3.1, the trapezoidal rule with end-correction is slightly
more accurate than the Simpson’s rule.

5. Explain why the rectangle and trapezoidal rules can integrate a straight line
exactly and the Simpson’s rule can integrate a cubic exactly.

6. A common problem of mathematical physics is that of solving the Fredholm
integral equation

f (x) = φ(x) +
∫ b

a
K (x, t)φ(t) dt,

where the functions f (x) and K (x, t) are given and the problem is to obtain
φ(x).

(a) Describe a numerical method for solving this equation.
(b) Solve the following equation

φ(x) = πx2 +
∫ π

0
3(0.5 sin 3x − t x2)φ(t) dt.

Compare to the exact solution φ(x) = sin 3x .

7. Describe a method for solving the Volterra integral equation

f (x) = φ(x) +
∫ x

a
K (x, t)φ(t) dt.

Note that the upper limit of the integral is x. What is φ(a)?

8. Consider the integral∫ 1

0

[
100√

x + .01
+ 1

(x − 0.3)2 + .001
− π

]
dx .
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(a) Numerically evaluate this integral using the trapezoidal rule with n panels
of uniform length h. Make a log–log plot of the error (%) vs. n and discuss
the accuracy of the method. Take n = 8, 16, 32, . . . .

(b) Repeat part (a) using the Simpson’s rule and the trapezoidal rule with
end-correction.

(c) Evaluate the integral using an adaptive method with various error toler-
ances (you may want to use the Numerical Recipes subroutine odeint or
MATLAB’s functionquad8). How are the x points for function evaluations
distributed? Plot the integrand showing the positions of its evaluations on
the x axis.

9. Simpson’s rule was used to find the value of the integral I = ∫ 1
0 f (x) dx . The

results for two different step sizes are given in the table below

h I
0.2 12.045
0.1 11.801

Use this information to find a more accurate value of the integral I .

10. Use the Richardson extrapolation to compute f ′ (1.0) and f ′ (5.0) to five place
accuracy with f = (x + 0.5)−2 . Use the central difference formula

f ′(x) ≈ f (x + h) − f (x − h)

2h

and take the initial step size, ho = 0.5. Comment on the reason for the difference
in the convergence rates for the two derivatives.

11. Use the Gauss quadrature to integrate:

I =
∫ +∞

−∞
e−x2

cos αx dx

for α = 5. The exact solution is I = √
πe−α2/4. The example worked out in the

text corresponds to α = 1. For the present case of α = 5, discuss the number
of function evaluations required to get the same level of accuracy as in the
example.

12. Evaluate:

I =
∫ 2

0

e−x

√
x

dx

(a) To deal with the singularity of the integrand at x = 0, try the change of
variable x = t2.

(b) Use the midpoint rule to avoid the singularity at x = 0. Compare the two
methods in terms of accuracy and cost.

13. It has been suggested that to evaluate:

I =
∫ ∞

0
e−x2

dx



46 NUMERICAL INTEGRATION

(a) One can truncate the integration range to a finite interval, [0, R], such that
the integrand is “sufficiently small” at R (and bounded by a monotonically
decreasing function in the interval [R,∞]). Evaluate using R = 4.

(b) Change the independent variable to t = 1
1+x and compute the integral over

the finite domain in t. Compare your results in (a) and (b) with the exact
value, I =

√
π

2 .

14. Describe in detail an adaptive quadrature method that uses the trapezoidal rule
as its basic integration scheme. Show in detail the error estimate.

15. We would like to calculate
∫ π

0 sin(x) dx :

(a) Develop a quadrature method based on the cubic spline interpolation.
(b) Use this method to calculate the integral using 4, 8, 16, 32 intervals. Show

the error versus number of points in a log–log plot. What is the order of
accuracy of the method?

16. In this problem, we compare the performance of different integration strategies.
We would like to integrate:

I =
∫ +∞

−∞
f (x) dx, f (x) = e−x2

cos(2x).

(a) Use the Gauss–Hermite quadrature to evaluate the integral using eight
nodes. Compare your answer with the exact value of the integral (

√
π/e).

(b) Use the transformation ξ = tanh(ax) to map your domain into a finite
interval. Reformulate the integral in the new domain. What is the value of
the integrand in the limit of ξ = ±1?

(c) Use 17 points to discretize the ξ domain uniformly. Plot f (x) and show
the corresponding location of these points with a = 2 and a = 0.4. Which
value of a is more appropriate for mapping?

(d) Numerically evaluate the integral obtained in part (b) using the trapezoidal
rule with 17 points for a = 0.4. What is the error of the integral? Compare
your results with the result of Simpson’s rule. Explain why the trapezoidal
rule performs better than Simpson’s rule in this case. Hint: Plot the inte-
grand as a function of ξ and note its behavior at the boundaries.

17. Combine Simpson’s rule with the trapezoidal rule with end correction to obtain
a more accurate method for the integral of

∫ xi +h
xi −h f (x) dx . You may use the

values of f (xi − h), f (xi ), f (xi + h), f ′(xi − h), and f ′(xi + h). What is
the order of accuracy of your scheme? What will be the global scheme for∫ b

a f (x) dx based on this method?

18. Romberg integration.
In (3.16), we showed that the extrapolated value Ĩ12 is fourth-order accurate.
This was derived assuming that the coefficients ci’s in (3.14) and (3.15) were the
same. Strictly speaking, this assumption is not correct; however, even without
making this assumption we can show that Ĩ12 is fourth-order accurate. In (3.15)
replace ci ’s with c′

i , ci �= c′
i .
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(a) Show that the coefficients c1, c2, . . . , are as follows:

c1 = − (b − a)

12

n−1∑
i=0

f (2) (yi )

n
, c2 = − (b − a)

480

n−1∑
i=0

f (4) (yi )

n
, . . . ,

where yi is the midpoint of the interval [xi , xi+1] with width h.
(b) Similarly, find expressions for c′

1, c′
2, . . . , in terms of z j , j = 0, . . . ,

(2n − 1) , where the zj’s are the midpoints of intervals with width h/2.
That is, z2i = yi − (h/4) , z2i+1 = yi + (h/4) , i = 0, . . . , n − 1.

(c) Show that c′
1 = c1 + α1h2c2 + · · · , and hence the extrapolation formula is

indeed fourth-order accurate. What is α1?
Hint: Use Taylor series to expand f ′′(z2i+1) and f ′′(z2i ) about yi and sub-
stitute in the expression for c′

1.
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4
Numerical Solution of Ordinary

Differential Equations

In this chapter we shall consider numerical solution of ordinary differential
equations, ODEs. Here we will experience the real power of numerical analysis
for engineering applications, as we will be able to tackle some real problems.
We will consider both single and systems of differential equations. Since high-
order ODEs can be converted to a system of first-order differential equations,
our concentration will be on first-order ODEs. The extension to systems will
be straightforward. We will consider all classes of ordinary differential equa-
tions: initial, boundary and eigenvalue problems. However, we will emphasize
techniques for initial value problems because they are used extensively as the
basis of methods for the other types of differential equations. The material in
this chapter constitutes the core of this first course in numerical analysis; as we
shall see in Chapter 5, numerical methods for partial differential equations are
rooted in the methods for ODEs.

4.1 Initial Value Problems

Consider the first-order ordinary differential equation

dy

dt
= f (y, t) y(0) = y0. (4.1)

We would like to find y(t) for 0 < t ≤ t f . The aim of all numerical methods
for solution of this differential equation is to obtain the solution at time tn+1 =
tn + �t , given the solution for 0 ≤ t ≤ tn . This process, of course, continues;
i.e., once yn+1 = y(tn+1) is obtained, then yn+2 is calculated and so on until the
final time, t f .

We begin by considering the so-called Taylor series methods. Let’s expand
the solution at tn+1 about the solution at tn

yn+1 = yn + hy′
n + h2

2
y′′

n + h3

6
y′′′

n + · · · (4.2)

48



4.1 INITIAL VALUE PROBLEMS 49

where h = �t . From the differential equation (4.1), we have

y′
n = f ( yn, tn)

which can be substituted in the second term in (4.2). We can, in principle,
stop at this point, drop the higher order terms in (4.2), and get a second-order
approximation to yn+1 using yn. To get higher order approximations to yn+1,
we need to evaluate the higher order derivatives in (4.2) in terms of the known
quantities at t = tn . We will use the chain rule to obtain

y′′ = dy′

dt
= d f

dt
= ∂ f

∂t
+ ∂ f

∂y

dy

dt

= ft + f fy

y′′′ = ∂

∂t
[ ft + f fy] + ∂

∂y
[ ft + f fy] f

= ftt + 2 f fyt + ft fy + f f 2
y + f 2 fyy .

Since f is a known function of y and t, all the above partial derivatives can, in
principle, be computed. However, it is clear that the number of terms increases
rapidly, and the method is not very practical for higher than third order.

The method based on the first two terms in the expansion is called the Euler
method:

yn+1 = yn + h f ( yn, tn). (4.3)

In using the Euler method, one simply starts from the initial condition, y0, and
marches forward using this formula to obtain y1, y2, . . .. We will study the
properties of this method extensively as it is a very simple method to analyze.
From the Taylor series expansion it is apparent that the Euler method is second-
order accurate for one time step. That is, if the exact solution is known at time
step n, the numerical solution at time step n + 1 is second-order accurate.
However, as with the quadrature formulas, in multi-step calculations, the errors
accumulate, and the global error for advancing from the initial condition to the
final time t f is only first-order accurate.

Among the more accurate methods that we will discuss are the Runge–Kutta
formulas. With explicit Runge–Kutta methods the solution at time step tn+1 is
obtained in terms of yn, f ( yn, tn), and f ( y, t) evaluated at the intermediate
steps between tn and tn+1 = tn + �t (not including tn+1). The higher accuracy
is achieved because more information about f is provided due to the interme-
diate evaluations of f . This is in contrast to the Taylor series method where
we provided more information about f through the higher derivatives of f
at tn .
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Higher accuracy can also be obtained by providing information about f at
times t < tn . That is, the corresponding formulas involve yn−1, yn−2, . . . , and
fn−1, fn−2, . . .. These methods are called multi-step methods.

We will also distinguish between explicit and implicit methods. The preced-
ing methods were all explicit. The formulas that involve f ( y, t) evaluated at
yn+1, tn+1 belong to the class of implicit methods. Since f may be a non-linear
function of y, to obtain the solution at each time step, implicit methods usually
require solution of non-linear algebraic equations. Although the computational
cost per time step is higher, implicit methods offer the advantage of numerical
stability, which we shall discuss next.

4.2 Numerical Stability

So far, in the previous chapters, we have been concerned only with the accuracy
of numerical methods and the work required to implement them. In this section
the concept of numerical stability in numerical analysis is introduced, which is a
more critical property of numerical methods for solving differential equations.
It is quite possible for the numerical solution to a differential equation to grow
unbounded even though its exact solution is well behaved. Of course, there are
cases for which the exact solution grows unbounded, but for our discussion of
stability, we shall concentrate only on the cases in which the exact solution is
bounded. Given a differential equation

y′ = f ( y, t) (4.1)

and a numerical method, in stability analysis we seek the conditions in terms of
the parameters of the numerical method (mainly the step size h) for which the
numerical solution remains bounded. In this context we have three classes of
numerical methods:

Stable numerical scheme: Numerical solution does not grow unbounded (blow
up) with any choice of parameters such as the step size. We will have to see
what the cost is for such robustness.

Unstable numerical scheme: Numerical solution blows up with any choice of
parameters. Clearly, no matter how accurate they may be, such numerical
schemes would not be useful.

Conditionally stable numerical scheme: With certain choices of parameters the
numerical solution remains bounded. Hopefully, the cost of the calculation
does not become prohibitively large.

We would apply the so-called stability analysis to a numerical method to deter-
mine its stability properties, i.e., to determine to which of the above categories
the method belongs. The analysis is performed for a simpler equation than (4.1),
which hopefully retains some of the features of the general equation. Consider
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the two-dimensional Taylor series expansion of f ( y, t):

f ( y, t) = f ( y0, t0) + (t − t0)
∂ f

∂t
( y0, t0) + ( y−y0)

∂ f

∂y
( y0, t0)

+ 1

2!

[
(t − t0)2 ∂2 f

∂t2
+ 2(t − t0)( y − y0)

∂2 f

∂t∂y
+ ( y − y0)2 ∂2 f

∂y2

]
+ · · · .

Collecting only the linear terms and substituting in (4.1), we formally get

y′ = λy + α1 + α2t + · · · (4.4)

where λ, α1, α2 are constants. For example,

λ = ∂ f

∂y
( y0, t0).

Discarding the non-linear terms (those involving higher powers of ( y − y0),
(t − t0) or their product) on the right-hand side of (4.4) yields the linearization
of (4.1) about ( y0, t0). For convenience and feasibility of analytical treatment,
stability analysis is usually performed on the model problem, consisting of only
the first term on the right-hand side of (4.4),

y′ = λy, (4.5)

instead of the general problem (4.1). Here, λ is a constant. It turns out that
the inhomogeneous terms in the linearized equation (4.4) do not significantly
affect the results of the stability analysis (see Exercise 10). Note that the model
equation has an exponential solution, which is the most dangerous part of the
full solution of (4.1).

In our treatment of (4.5), we will allow λ to be complex

λ = λR + iλI

with the real part λR ≤ 0 to ensure that the solution does not grow with t.
This generalization will allow us to readily apply the results of our analysis to
systems of ordinary differential equations and partial differential equations. To
illustrate this point, consider the second-order differential equation

y′′ + ω2 y = 0.

The exact solution is sinusoidal

y = c1 cos ωt + c2 sin ωt.

We can convert this second-order equation to two first-order equations[
y1

y2

]′
=

[
0

−ω2
1
0

] [
y1

y2

]
.

The eigenvalues of the 2 × 2 matrix A,

A =
[

0
−ω2

1
0

]
,
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are λ = ±iω. Diagonalizing A with the matrix of its eigenvectors S,

A = S�S−1,

leads to the uncoupled set of equations

z′ = �z,

where

z = S−1

(
y1

y2

)

and � is the diagonal matrix with eigenvalues of A on the diagonal. The differ-
ential equations for the components of z are

z′
1 = iωz1 z′

2 = −iωz2.

This simple example illustrates that higher order linear differential equations
or systems of first-order linear differential equations can reduce to uncoupled
ordinary differential equations of the form of (4.5) with complex coefficients.
The imaginary part of the coefficient results in oscillatory solutions of the form
e±iωt , and the real part dictates whether the solution grows or decays. For our
stability analysis we will be concerned only with cases where λ has a zero or
negative real part.

4.3 Stability Analysis for the Euler Method

Applying the Euler method (4.3),

yn+1 = yn + h f ( yn, tn),

to the model problem (4.5) leads to

yn+1 = yn + λhyn

= yn(1 + λh).

Thus, the solution at time step n can be written as

yn = y0(1 + λh)n. (4.6)

For complex λ, we have

yn = y0(1 + λRh + iλI h)n = y0σ
n,

where σ = (1 + λRh + iλI h) is called the amplification factor. The numerical
solution is stable (i.e., remains bounded as n becomes large) if

|σ | ≤ 1. (4.7)
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Region of stability
for the exact solution

Re(λh)

Im(λh)

Figure 4.1 Stability diagram for the exact solution in the λRh − λI h plane.

Note that for λR ≤ 0 (which is the only case we consider) the exact solution,
y0eλt , decays. That is, in the (λRh − λI h) plane, the region of stability of the
exact solution is the left-hand plane as illustrated in Figure 4.1.

However, only a portion of this plane is the region of stability for the Euler
method. This portion is inside the circle

|σ |2 = (1 + λRh)2 + λ2
I h2 = 1. (4.8)

For any value of λh in the left-hand plane and outside this circle the numerical
solution blows up while the exact solution decays (see Figure 4.2). Thus, the
Euler method is conditionally stable. To have a stable numerical solution, we
must reduce the step size h so that λh falls within the circle. If λ is real (and
negative), then the maximum step size for stability is 2/ |λ|. That is, to get a
stable solution, we must limit the step size to

h ≤ 2

|λ| . (4.9)

Note that for real (and negative) λ, (4.7) is enforced for λh as low as −2. The
main consequence of this limitation on h is that it would require more time steps,
and hence more work, to reach the final time of integration, t f . The circle (4.8)

−2.0 λRh

λIhRegion of stability
for Explicit Euler

Figure 4.2 Stability diagram for the explicit Euler method.
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is only tangent to the imaginary axis. Therefore, the Euler method is always
unstable (irrespective of the step size) for purely imaginary λ. If λ is real and
the numerical solution is unstable, then we must have

|1 + λh| > 1,

which means that (1 + λh) is negative with magnitude greater than 1. Since

yn = (1 + λh)n y0,

the numerical solution exhibits oscillations with change of sign at every time
step. This oscillatory behavior of the numerical solution is usually a good indi-
cation of numerical instability.

EXAMPLE 4.1 Explicit Euler

We will solve the following ODE using the Euler method:

y ′ + 0.5y = 0

y (0) = 1 0 ≤ t ≤ 20.

Here λ is real and negative. The stability analysis of this section indicates
that the Euler method should be stable for h ≤ 4. The solution is advanced
by

yn+1 = yn − 0.5hyn

and the results for stable (h = 1.0) and unstable (h = 4.2) solutions are pre-
sented in Figure 4.3. We see that the solution with h = 4.2 is indeed unstable.
Also note the oscillatory behavior of the solution before blow-up.

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

 t

 y
(t

)

Explicit Euler,  h = 1
Explicit Euler,  h = 4.2
Exact

Figure 4.3 Numerical solution of the ODE in Example 4.1 using the Euler method.
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4.4 Implicit or Backward Euler

The implicit Euler scheme is given by the following formula:

yn+1 = yn + h f ( yn+1, tn+1). (4.10)

Note that in contrast to the explicit Euler, the implicit Euler does not allow us
to easily obtain the solution at the next time step. If f is non-linear, we must
solve a non-linear algebraic equation at each time step to obtain yn+1, which
usually requires an iterative algorithm. Therefore, the computational cost per
time step for this scheme is, apparently, much higher than that for the explicit
Euler. However, as we shall see below, the implicit Euler method has a much
better stability property. Moreover, Section 4.7 will show that at each step,
the requirement for an iterative algorithm may be avoided by the linearization
technique.

Applying the backward Euler scheme to the model equation (4.5), we obtain

yn+1 = yn + λhyn+1.

Solving for yn+1 produces

yn+1 = (1 − λh)−1 yn

or

yn = σ n y0,

where

σ = 1

1 − λh
.

Considering complex λ, we have

σ = 1

(1 − λRh) − iλI h
.

The denominator is a complex number and can be written as the product of its
modulus and phase factor,

σ = 1

Aeiθ
,

where

A =
√

(1 − λRh)2 + λ2
I h2, θ = − tan−1 λI h

1 − λRh
.

For stability, the modulus of σ must be less than or equal to 1; i.e.,

|σ | = |e−iθ |
A

= 1

A
≤ 1.
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This is always true because λR is negative and hence A > 1. Thus, the backward
Euler scheme is unconditionally stable. Unconditional stability is the usual
characteristic of implicit methods. However, the price is higher computational
cost per time step for having to solve a non-linear equation.

It should be pointed out that one can construct conditionally stable implicit
methods. Obviously, such methods are not very popular because of the higher
cost per step without the benefit of unconditional stability. Also note that nu-
merical stability does not necessarily imply accuracy. A method can be stable
but inaccurate. From the stability point of view, our objective is to use the max-
imum step size h to reach the final destination at time t = t f . Large time steps
translate to a lower number of function evaluations and lower computational
cost. Large time steps may not be optimum for acceptable accuracy, but are
strived for from the stability point of view.

EXAMPLE 4.2 Implicit (Backward) Euler

We now solve the ODE of Example 4.1 using the implicit Euler method. The
stability analysis for the implicit Euler indicated that the numerical solution
should be unconditionally stable. The solution is advanced by

yn+1 = yn

1 + 0.5h

and the results for h = 1.0 and h = 4.2 are presented in Figure 4.4. Both
solutions are now seen to be stable, as expected. The solution with h = 1.0
is more accurate. Note that the usual difficulty in obtaining the solution
at each time step inherent with implicit methods is not encountered here
because the differential equation in this example is linear.

t

y
(t

)

0  5 10 15 20

0

  0.5

  1.0

Implicit Euler (h = 1.0)
Exact
Implicit Euler (h = 4.2)

Figure 4.4 Numerical solution of the ODE in Example 4.2 using the implicit Euler
method.

4.5 Numerical Accuracy Revisited

We have shown that the numerical solution to the model problem

y′ = λy (4.5)
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is of the form

yn = y0σ
n. (4.11)

The exact solution is

y(t) = y0eλt = y0eλnh = y0(eλh)n. (4.12)

In analogy with the modified wavenumber approach of Chapter 2, one can often
determine the order of accuracy of a method by comparing the numerical and
exact solutions for a model problem, i.e., (4.11) and (4.12). That is, we compare
the amplification factor σ with

eλh = 1 + λh + λ2h2

2
+ λ3h3

6
+ · · · .

For example, the amplification factor of the explicit Euler is

σ = 1 + λh,

and the amplification factor for the backward Euler is

σ = 1

(1 − λh)
= 1 + λh + λ2h2 + λ3h3 + · · · .

Thus, both methods are able to reproduce only up to the λh term in the
exponential expansion. Each method is second-order accurate for one time
step, but globally first order. From now on, we will call a method αth order if its
amplification factor matches all the terms up to and including the λαhα/α! term
in the exponential expansion. The order of accuracy derived in this manner from
the linear analysis (i.e., from application to (4.5)) should be viewed as the upper
limit on the order of accuracy. A method may have a lower order of accuracy
for non-linear equations.

Often the order of accuracy by itself is not very informative. In particular, in
problems with oscillatory solutions, one is interested in the phase and amplitude
errors separately. To understand this type of error analysis, we will consider the
model equation with pure imaginary λ:

y′ = iωy y(0) = 1.

The exact solution is eiωt , which is oscillatory. The frequency of oscillations is
ω and its amplitude is 1. The numerical solution with the explicit Euler is

yn = σ n y0

where σ = 1 + iωh. It is clear that the amplitude of the numerical solution,

|σ | =
√

1 + w2h2

is greater than 1, which reconfirms that the Euler method is unstable for purely
imaginary λ. σ is a complex number and can be written as

σ = |σ |eiθ ,
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Exact Solution 
Numerical Solution

Amplitude
error

Phase lag

t

y

Figure 4.5 A schematic showing the amplitude and phase errors in the numerical
solution.

where

θ = tan−1 ωh = tan −1 Im(σ )

Re(σ )
.

A measure of the phase error (PE) (see Figure 4.5) is obtained from comparison
with the phase of the exact solution

PE = ωh − θ = ωh − tan−1 ωh.

Using the power series for tan–1,

tan−1 ωh = ωh − (ωh)3

3
+ (ωh)5

5
− (ωh)7

7
+ · · ·

we have

PE = (ωh)3

3
+ · · · , (4.13)

which corresponds to a phase lag. This is the phase error encountered at each
step. The phase error after n time steps is nPE.

4.6 Trapezoidal Method

The formal solution to the differential equation (4.1) with the condition y(tn) =
yn is

y(t) = yn +
∫ t

tn
f ( y, t ′) dt ′.

At t = tn+1

yn+1 = yn +
∫ tn+1

tn
f ( y, t ′) dt ′.
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Approximating the integral with the trapezoidal method leads to

yn+1 = yn + h

2
[ f ( yn+1, tn+1) + f ( yn, tn)]. (4.14)

This is the trapezoidal method for the solution of ordinary differential equations.
When applied to certain partial differential equations it is often called the Crank–
Nicolson method. Clearly the trapezoidal method is an implicit scheme.

Applying the trapezoidal method to the model equation yields

yn+1 − yn = h

2
[λyn+1 + λyn]

or

yn+1 = 1 + λh
2

1 − λh
2

yn.

Expanding the amplification factor σ leads to

σ = 1 + λh
2

1 − λh
2

= 1 + λh + λ2h2

2
+ λ3h3

4
+ · · ·

which indicates that the method is second-order accurate. The extra accuracy
is obtained at virtually no extra cost over the backward Euler method.

Now, we will examine the stability properties of the trapezoidal method
by computing the modulus of σ for complex λ = λR + iλI . The amplification
factor becomes

σ = 1 + λRh
2 + i λI h

2

1 − λRh
2 − i λI h

2

.

Both the numerator and denominator are complex and can be written as Aeiθ

and Beiα, respectively, where

A =
√(

1 + λRh

2

)2

+ λ2
I h2

4

and

B =
√(

1 − λRh

2

)2

+ λ2
I h2

4
.

Thus,

σ = A

B
ei(θ−α)

or

|σ | = A

B
.
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Since we are only interested in cases where λR < 0, and for these cases A < B,
it follows that

|σ | < 1.

Thus, the trapezoidal method is unconditionally stable, which is expected since
it is an implicit method. Note, however, that for real and negative λ,

lim
h→∞

σ = −1,

which implies that for large time steps, the numerical solution σ n y0 oscillates
between y0 and –y0 from one time step to the next, but the solution will not
blow up.

Let us examine the accuracy of the trapezoidal method for oscillatory solu-
tions, λ = iω. In this case (λR = 0), A = B, and

|σ | = 1.

Thus, there is no amplitude error associated with the trapezoidal method. Since

σ = e2iθ θ = tan−1
(

ωh

2

)
,

the phase error is given by

PE = ωh − 2 tan−1 ωh

2
= ωh − 2

[
ωh

2
− (ωh)3

24
+ · · ·

]
= (ωh)3

12
+ · · ·

which is about four times better than that for the explicit Euler but of the same
order of accuracy.

EXAMPLE 4.3 A Second-Order Equation

We now consider the second-order equation

y ′′ + ω2y = 0 t > 0

y (0) = yo y ′(0) = 0,

and investigate the numerical solutions by the explicit Euler, implicit Eu-
ler, and trapezoidal methods. In Section 4.2 it was demonstrated how this
equation could be reduced to a coupled pair of first-order equations:

y ′
1 = y2 y ′

2 = −ω2y1.

In matrix form we have [
y1

y2

]′
=
[

0 1
−ω2 0

] [
y1

y2

]
.

These equations were then decoupled, giving

z′
1 = iωz1 z′

2 = −iωz2.

The stability of the numerical solution depends upon the eigenvalues iω
and −iω that decouple the system. We see that here the eigenvalues are
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Figure 4.6 Numerical solution of the ODE in Example 4.3.

imaginary and therefore predict the Euler solution to be unconditionally
unstable. We have also seen that both backward Euler and trapezoidal meth-
ods are unconditionally stable. We will show this to be the case by numerical
simulation of the equations. Solution advancement proceeds as follows.
For explicit Euler: [

y1

y2

]
n+1

=
[

1 h
−ω2h 1

] [
y1

y2

]
n

.

For implicit Euler: [
1 −h

ω2h 1

] [
y 1

y 2

]
n+1

=
[

y1

y2

]
n

.

For trapezoidal:[
1 −h

2
ω2 h

2 1

] [
y1

y2

]
n+1

=
[

1 h
2

−ω2 h
2 1

] [
y1

y2

]
n

.

Numerical results are plotted in Figure 4.6 for yo = 1, ω = 4, and time step
h = 0.15.

We see that the explicit Euler rapidly blows up as expected. The implicit
Euler is stable, but decays very rapidly. The trapezoidal method performs the
best and has zero amplitude error as predicted in the analysis of Section 4.6;
however, its phase error is evident and is increasing as the solution proceeds.

Although the numerical methods used in the previous example were intro-
duced in the context of a single differential equation, their application to a sys-
tem was a straightforward generalization of the corresponding single equation
formulas. It is also important to emphasize that the decoupling of the equations
using eigenvalues and eigenvectors was performed solely for the purpose of sta-
bility analysis. The equations are never decoupled in actual numerical solutions.
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4.7 Linearization for Implicit Methods

As pointed out in Section 4.4, the difficulty with implicit methods is that, in
general, at each time step, they require solving a non-linear algebraic equa-
tion, which often require an iterative solution procedure such as the Newton–
Raphson method. For non-linear initial value problems, iteration can be avoided
by the linearization technique. Consider the ordinary differential equation:

y′ = f ( y, t). (4.1)

Applying the trapezoidal method to this equation yields

yn+1 = yn + h

2
[ f (yn+1, tn+1) + f (yn, tn)] + O(h3). (4.15)

To solve for yn+1 would require solving a non-linear algebraic equation, and non-
linear equations are usually solved by iterative methods. However, by realizing
that (4.15) is already an approximate equation (to O(h3)), it would not make
sense to find its solution exactly or to within round-off error. Therefore, we will
attempt to solve the non-linear equation (4.15) to O(h3), which, hopefully, will
not require iterations.

Consider the Taylor series expansion of f ( yn+1, tn+1):

f ( yn+1, tn+1) = f ( yn, tn+1) + ( yn+1 − yn)
∂ f

∂y

∣∣∣∣
( yn,tn+1)

+ 1

2
f ( yn+1 − yn)2 ∂2 f

∂y2

∣∣∣∣∣
( yn ,tn+1)

+ · · · . (4.16)

But from Taylor series expansion for y we have

yn+1 − yn = O(h).

Therefore, replacing f ( yn+1, tn+1) in (4.15) with the first two terms in its Taylor
series expansion does not alter the order of accuracy of (4.15), which (for one
step) is O(h3). Making this substitution results in

yn+1 = yn + h

2

[
f ( yn, tn+1) + ( yn+1−yn)

∂ f

∂y

∣∣∣∣
( yn,tn+1)

+ f ( yn, tn)

]
+O(h3).

(4.17)

Rearranging and solving for yn+1, yields

yn+1 = yn + h

2

f ( yn, tn+1) + f ( yn, tn)

1 − h
2

∂ f
∂y

∣∣
( yn,tn+1)

. (4.18)

Thus, the solution can proceed without iteration while retaining the global
second-order accuracy. Clearly, as far as the linear stability analysis is con-
cerned, the linearized scheme is also unconditionally stable. However, one
should caution that in practice, linearization may lead to some loss of total
stability for non-linear f.
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EXAMPLE 4.4 Linearization

We consider the non-linear ordinary differential equation

y ′ + y (1 − y ) = 0 y (0) = 1
2

and its numerical solution by the trapezoidal method:

yn+1 = yn + h
2

[
yn+1( yn+1 − 1) + yn( yn − 1)

]
.

This, of course, is a non-linear algebraic equation for yn+1. Using the lin-
earization method developed in this section, where f is now y ( y − 1), we
arrive at the following linearized trapezoidal method:

yn+1 = yn + hyn( yn − 1)
1 − h

(
yn − 1

2

) .
Since the non-linearity is quadratic, we may also solve the resulting non-
linear algebraic equation directly and compare the direct implicit solution
with the linearized solution. The direct implicit solution is given by

yn+1 =
( 2

h + 1
)−

√( 2
h + 1

)2 − 4
( 2

h yn + yn( yn − 1)
)

2
.

These equations were advanced from time t = 0 to t = 1. The error in the so-
lution at t = 1 is plotted in Figure 4.7 versus the number of steps taken. The
slopes for both the trapezoidal and linearized trapezoidal methods clearly
show a second-order dependence upon number of steps, demonstrating that
second-order accuracy is maintained with linearization. The directly solved
trapezoidal method is slightly more accurate, but this is a problem-specific
phenomenon (for example, the linearized trapezoidal solution for y ′ + y 2 = 0
yields the exact solution for any h while the accuracy of the direct implicit
solution is dependent on h).
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Figure 4.7 Error in the solution of the ODE in Example 4.4.
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4.8 Runge–Kutta Methods

We noted in the Taylor series method, in Section 4.1, that the order of accuracy
of a method increases by including more terms in the expansion. The additional
terms involve various partial derivatives of f ( y, t), which provide additional
information on f at t = tn . Note that the analytical form of f is not transparent to
a time-stepping procedure, only numerical data at one or more steps are. There
are different methods of providing additional information about f . Runge–
Kutta (RK) methods introduce points between tn and tn+1 and evaluate f at
these intermediate points. The additional function evaluations, of course, result
in higher cost per time step; but the accuracy is increased, and as it turns out,
better stability properties are also obtained.

We begin by describing the general form of (two stage) second-order Runge–
Kutta formulas for solving

y′ = f ( y, t). (4.1)

The solution at time step tn+1 is obtained from

yn+1 = yn + γ1k1 + γ2k2, (4.19)

where the functions k1 and k2 are defined sequentially

k1 = h f ( yn, tn) (4.20)

k2 = h f ( yn + βk1, tn + αh), (4.21)

and α, β, γ1, γ2 are constants to be determined. These constants are determined
to ensure the highest order of accuracy for the method. To establish the order
of accuracy, consider the Taylor series expansion of y(tn+1) from Section 4.1:

yn+1 = yn + hy′
n + h2

2
y′′

n + · · · .

But

y′
n = f ( yn, tn),

and using the chain rule, we have already obtained

y′′ = ft + f fy,

where ft and fy are the partial derivatives of f with respect to t and y respec-
tively. Thus,

yn+1 = yn + h f ( yn, tn) + h2

2
( ftn + fn fyn ) + · · · . (4.22)

To establish the order of accuracy of the Runge–Kutta method as given by (4.19),
we must compare its estimate for yn+1 to that of the Taylor series formula (4.22).
For this comparison to be useful, we must convert the various terms in these
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expressions into common forms. Two-dimensional Taylor series expansion of
k2 (4.21) leads to

k2 = h[ f ( yn, tn) + βk1 fyn + αh ftn + O(h2)].

Noting that k1 = h f ( yn, tn) and substituting in (4.19) yields

yn+1 = yn + (γ1 + γ2)h fn + γ2βh2 fn fyn + γ2αh2 ftn + · · · . (4.23)

Comparison of (4.22) and (4.23) and matching coefficients of similar terms
leads to

γ1 + γ2 = 1

γ2α = 1

2

γ2β = 1

2
.

These are three non-linear equations for the four unknowns. Using α as a free
parameter, we have

γ2 = 1

2α
β = α γ1 = 1 − 1

2α
.

With three out of the four constants chosen, we have a one-parameter family of
second-order Runge–Kutta formulas:

k1 = h f ( yn, tn) (4.24a)

k2 = h f ( yn + αk1, tn + αh) (4.24b)

yn+1 = yn +
(

1 − 1

2α

)
k1 + 1

2α
k2. (4.24c)

Thus, we have a second-order Runge–Kutta formula for each value of α chosen.
The choice α = 1/2 is made frequently. In actual computations, one calculates
k1 using (4.24a); this value is then used to compute k2 using (4.24b) followed
by the calculation of yn+1 using (4.24c).

Runge–Kutta formulas are often presented in a different but equivalent
form. For example, the popular form of the second-order Runge–Kutta formula
(α = 1/2) is presented in the following (predictor–corrector) format:

y∗
n+1/2 = yn + h

2
f ( yn, tn) (4.25a)

yn+1 = yn + h f ( y∗
n+1/2, tn+1/2). (4.25b)

Here, one calculates the predicted value in (4.25a) which is then used in (4.25b)
to obtain the corrected value, yn+1.
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Now, let’s use linear analysis to gain insight into the stability and accuracy of
the second order Runge–Kutta method discussed above. Applying the Runge–
Kutta method in (4.24) to the model equation y′ = λy results in

k1 = λhyn

k2 = h(λyn + αλ2hyn) = λh (1 + αhλ) yn

yn+1 = yn +
(

1 − 1

2α

)
λhyn + 1

2α
λh (1 + αλh) yn

= yn

(
1 + λh + λ2h2

2

)
. (4.26)

Thus, we have a confirmation that the method is second-order accurate. For
stability, we must have |σ | ≤ 1, where

σ =
(

1 + λh + λ2h2

2

)
. (4.27)

A convenient way to obtain the stability boundary, i.e., |σ | = 1, of the method
is to set

σ =
(

1 + λh + λ2h2

2

)
= eiθ

and find the complex roots λh of this polynomial for different values of θ .
Recall that |eiθ | = 1 for all values of θ . The resulting stability region is shown
in Figure 4.8. On the real axis the stability boundary is the same as that of explicit
Euler (|λRh| ≤ 2); however, there is significant improvement for complex λ.
The method is also unstable for purely imaginary λ. In this case, substituting
λ = iω into (4.27) results in

|σ | =
√

1 + ω4h4

4
> 1, (4.28)

i.e., the method is unconditionally unstable for purely imaginary λ. However,
note that for small values of ωh, this method is less unstable than explicit Euler.

EXAMPLE 4.5 Amplification Factor

Let’s consider numerical solution of

y ′ = iωy y (0) = 1

using the explicit Euler method and a second-order Runge–Kutta scheme.
Suppose the differential equation is integrated for 100 time steps with ωh =
0.2; that is, the integration time is from t = 0 to t = 20/ω. Each numerical
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solution after 100 time steps can be written as

y = σ 100y0,

where σ is the corresponding amplification factor for each method. For the
Euler scheme, |σ | = √

1 + ω2h2 = 1.0198, and for the RK method, from (4.28),
we have |σ | = 1.0002. Thus, after 100 time steps, for the RK method we have
|y | = 1.02, i.e., there is only 2% amplitude error, whereas for the Euler
method we have |y | = 7.10!

The phase error for the second-order RK scheme is easily calculated from
the real and imaginary parts of σ for the case λ = iω:

PE = ωh − tan−1

(
ωh

1 − ω2h2

2

)
.

But

tan−1

(
ωh

1 − ω2h2

2

)
= ωh

(
1 + ω2h2

2
+ ω4h4

4
+ · · ·

)

−1

3

[
ωh

(
1 + ω2h2

2
+ ω4h4

4
+ · · ·

)]3

+ · · · = ωh + ω3h3

6
+ · · · .

Hence,

PE = −ω3h3

6
+ · · · , (4.29)

which is only a factor of 2 better than Euler, but of opposite sign. Negative
phase error corresponds to phase lead (see Example 4.6).

The most widely used Runge–Kutta method is the fourth-order formula.
This is perhaps the most popular numerical scheme for initial value problems.
The fourth-order formula can be presented in a typical RK format:

yn+1 = yn + 1

6
k1 + 1

3
(k2 + k3) + 1

6
k4, (4.30a)

where

k1 = h f ( yn, tn) (4.30b)

k2 = h f
(

yn + 1

2
k1, tn + h

2

)
(4.30c)

k3 = h f
(

yn + 1

2
k2, tn + h

2

)
(4.30d)

k4 = h f ( yn + k3, tn + h). (4.30e)
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Figure 4.8 Stability diagrams for second- and fourth-order Runge–Kutta methods.

Note that four function evaluations are required at each time step. Applying the
method to the model equation, y′ = λy, leads to

yn+1 =
(

1 + λh + λ2h2

2
+ λ3h3

6
+ λ4h4

24

)
yn, (4.31)

which confirms the fourth-order accuracy of the method. Again, the stability di-
agram is obtained by finding the roots of the following fourth-order polynomial
with complex coefficients:

λh + λ2h2

2
+ λ3h3

6
+ λ4h4

24
+ 1 − eiθ = 0,

for different values of 0 ≤ θ ≤ π . This requires a root-finder for polynomials
with complex coefficients. The resulting region of stability (Figure 4.8) shows a
significant improvement over that obtained by the second-order Runge–Kutta.
In particular, it has a large stability region on the imaginary axis. In fact there
are two small stable regions corresponding to positive Re(λ), where the exact
solution actually grows; that is, the method is artificially stable for the parame-
ters corresponding to these regions.
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EXAMPLE 4.6 Runge–Kutta

We solve the problem of Example 4.3 using second- and fourth-order Runge–
Kutta algorithms. The details for the second-order Runge–Kutta advance-
ment are

y (n+1/2)∗
1 = y (n)

1 + h
2

y (n)
2

y (n+1/2)∗
2 = y (n)

2 − h
2

ω2y (n)
1

y (n+1)
1 = y (n)

1 + hy (n+1/2)∗
2

y (n+1)
2 = y (n)

2 − hω2y (n+1/2)∗
1 .

Fourth-order Runge–Kutta advancement proceeds similarly. Again nu-
merical results are plotted in Figure 4.9 for yo = 1, ω = 4, and time step
h = 0.15.
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Figure 4.9 Numerical solution of the ODE in Example 4.3 using Runge–Kutta methods.

It can be seen that the second-order scheme is mildly unstable as pre-
dicted by the linear stability analysis. The fourth-order Runge–Kutta solu-
tion is stable as predicted and is highly accurate, showing to plotting accu-
racy, virtually no phase or amplitude errors.

The most expensive part of numerical solution of ordinary differential equa-
tions is the function evaluations. The number of steps (or the step size h) re-
quired to reach the final integration time t f is therefore directly related to the cost
of the computation. Hence, both the stability characteristics and the accuracy
come into play in establishing the cost-effectiveness of a numerical method.
The fourth-order Runge–Kutta scheme requires four function evaluations per
time step. However, it also has superior stability as well as excellent accuracy
properties. These characteristics, together with its ease of programming, have
made the fourth-order RK one of the most popular schemes for the solution of
ordinary and partial differential equations.
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Finally, note that the order of accuracy of the second- and fourth-order
Runge–Kutta formulas, discussed in this section, also corresponded to their
respective number of function evaluations (stages). It turns out that this trend
does not continue beyond fourth order. For example, a fifth-order Runge–Kutta
formula requires six function evaluations.

4.9 Multi-Step Methods

The Runge–Kutta formulas obtained higher order accuracy through the use
of several function evaluations. However, higher order accuracy can also be
achieved by using data from prior to tn; that is, if the solution and/or f at
tn−1, tn−2, . . . are used. This is another way of providing additional information
about f . Methods that use information from prior to step n are called multi-
step schemes. The apparent price for the higher order of accuracy is the use of
additional computer memory, which can be of concern for partial differential
equations, as discussed in Chapter 5. Multi-step methods are not self-starting.
Usually another method such as the explicit Euler is used to start the calculations
for the first or the first few time steps.

A classical multi-step method is the leapfrog method:

yn+1 = yn−1 + 2h f ( yn, tn) + O(h3). (4.32)

This method is derived by applying the second-order central difference formula
for y′ in (4.1). Thus, the leapfrog method is a second-order method. Starting
with an initial condition y0, a self-starting method like Euler is used to obtain
y1, and then leapfrog is used for steps two and higher. Applying leapfrog to the
model equation, y′ = λy, leads to

yn+1 − yn−1 = 2λhyn.

This is a difference equation for yn that cannot be solved as readily as the
schemes discussed up to this point. To solve it, we assume a solution of the
form

yn = σ n y0.

Substitution in the difference equation leads to

σ n+1 − σ n−1 = 2hλσ n.

Dividing by σ n−1, we will get a quadratic equation for σ

σ 2 − 2hλσ − 1 = 0,

which can be solved to yield

σ1,2 = λh ±
√

λ2h2 + 1.
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Having more than one root is the key characteristic of multi-step methods.
For comparison with the exponential solution to the model problem, we expand
the roots in powers of λh

σ1 = λh +
√

λ2h2 + 1 = 1 + λh + 1

2
λ2h2 − 1

8
λ4h4 + · · ·

σ2 = λh −
√

λ2h2 + 1 = −1 + λh − 1

2
λ2h2 + 1

8
λ4h4 + · · · .

The first root shows that the method is second-order accurate. The second root is
spurious and often is a source of numerical problems. Note that even for h = 0,
the spurious root is not equal to 1. It is also apparent that for λ real and negative,
the spurious root has a magnitude greater than 1 which leads to instability.

Since the difference equation for yn is linear, its general solution can be
written as a linear combination of its solutions, i.e.,

yn = c1σ
n
1 + c2σ

n
2 . (4.33)

That is, the solution is composed of contributions from both physical and spu-
rious roots. The constants c1 and c2 are obtained from the starting conditions
y0 and y1 by letting n = 0 and n = 1, respectively, in (4.33):

y0 = c1 + c2 y1 = c1σ1 + c2σ2.

Solving for c1 and c2 leads to

c1 = y1 − y0σ2

σ1 − σ2
c2 = σ1 y0 − y1

σ1 − σ2
.

Thus, for the model problem, if we choose y1 = σ1 y0, the spurious root is
completely suppressed. In general, we can expect the starting scheme to play
a role in determining the level of contribution of the spurious root. Even if the
spurious root is suppressed initially, round-off errors will restart it again. In the
case of leapfrog, the spurious root leads to oscillations from one step to the next.

Application of leapfrog to the case where λ = iω is pure imaginary leads to

σ1,2 = iωh ±
√

1 − ω2h2.

If |ωh| ≤ 1, then

|σ1,2| = 1.

In this case leapfrog has no amplitude error. This is the main reason for the use
of leapfrog method. If |ωh| > 1, then

|σ1,2| = |ωh ±
√

ω2h2 − 1|
and the method is unstable.

Finally, we present the widely used second-order Adams–Bashforth method.
This method can be easily derived by using the Taylor series expansion of yn+1:

yn+1 = yn + hy′
n + h2

2
y′′

n + h3

6
y′′′

n + · · · .
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Substituting

y′
n = f ( yn, tn),

and a first-order finite difference approximation for y′′
n

y′′
n = f ( yn, tn) − f ( yn−1, tn−1)

h
+ O(h)

leads to

yn+1 = yn + 3h

2
f ( yn, tn) − h

2
f ( yn−1, tn−1) + O(h3). (4.34)

Thus, the Adams–Bashforth method is second-order accurate globally. Ap-
plying the method to the model problem leads to the following second-order
difference equation for yn:

yn+1 −
(

1 + 3λh

2

)
yn + λh

2
yn−1 = 0.

Once again assuming solutions of the form yn = σ n y0 results in a quadratic
equation for σ with roots

σ1,2 = 1

2

⎡⎣1 + 3

2
λh ±

√
1 + λh + 9

4
λ2h2

⎤⎦ .

Using the power series expansion for the square root√
1 + λh + 9

4
λ2h2 = 1 + 1

2

(
λh + 9

4
λ2h2

)
− 1

8

(
λh + 9

4
λ2h2

)2

+ 3

48

(
λh + 9

4
λ2h2

)3

+ · · · ,

we obtain

σ1 = 1 + λh + 1

2
λ2h2 + O(h3)

and

σ2 = 1

2
λh − 1

2
λ2h2 + O(h3).

The spurious root for the Adams–Bashforth method appears to be less
dangerous. Observe that it approaches zero if h → 0. The stability region of
the Adams–Bashforth method is shown in Figure 4.10. It is oval-shaped in the
λRh − λI h plane. It crosses the real axis at –1, which is more limiting than the
explicit Euler and second-order Runge–Kutta methods. It is also only tangent to
the imaginary axis. Thus, strictly speaking, it is unstable for pure imaginary λ,
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Figure 4.10 Stability diagram for the second-order Adams–Bashforth method.

but it turns out that the instability is very mild. For example, if we use Adams–
Bashforth in the problem discussed in Example 4.5, we obtain |σ1|100 = 1.04,

which is only slightly worse than the second-order Runge–Kutta.

EXAMPLE 4.7 Multi-Step Methods

We solve the problem of Example 4.3 with the leapfrog and Adams–
Bashforth multi-step methods. The details for the leapfrog advancement
are given as

y (n+1)
1 = y (n−1)

1 + 2hy (n)
2

y (n+1)
2 = y (n−1)

2 − 2hω2y (n)
1 .

Implementation of the second-order Adams–Bashforth is similar. These
multi-step methods are not self-starting and require a single step method
to calculate the first time level. Explicit Euler was chosen for the start-up.
Once again, numerical results are plotted in Figure 4.11 for yo = 1, ω = 4,

and time step h = 0.1.
We see that the leapfrog method is stable and with very little ampli-

tude error. There is a slight amplitude error attributed to the explicit Eu-
ler calculation for the first time level. This error is not increased by the
leapfrog advancement as predicted by our analysis of the model problem.
The phase error for leapfrog is seen to be significant and increasing with
time. Adams–Bashforth gives a slowly growing numerical solution, which
is expected as it is mildly unstable for all problems with purely imaginary
eigenvalues.
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Figure 4.11 Numerical solution of the ODE in Example 4.3 using multi-step methods.

4.10 System of First-Order Ordinary Differential Equations

Recall that a higher order ordinary differential equation can be converted to a
system of first-order ODEs. Systems of ODEs also naturally appear in many
physical situations such as chemical reactions among several species or vibra-
tion of a complex structure with several elements. A system of ODEs can be
written in the generic form

y′ = f ( y, t) y(0) = y0 (4.35)

where y is a vector with elements yi and f ( y1, y2, y3, . . . , ym, t) is a vector
function with elements fi ( y1, y2, y3, . . . , ym, t), i = 1, 2, . . . , m.

From the applications point of view, numerical solution of a system of
ODEs, is a straightforward extension of the techniques used for a single ODE.
For example, application of the explicit Euler to (4.35) yields

y(n+1)
i = y(n)

i + h fi
(

y(n)
1 , y(n)

2 , . . . , y(n)
m , tn

)
i = 1, 2, 3, . . . , m.

The right-hand side can be calculated using data from the previous time step
and each equation can be advanced forward.

From the conceptual point of view, there is only one fundamental difference
between numerical solution of one ODE and that of a system. This is the
stiffness property that leads to some numerical problems in systems, but it is
not an issue with a single ODE. We shall discuss stiffness in connection with
the system of equations with constant coefficients

dy

dt
= Ay (4.36)

where A is an m × m constant matrix. Equation (4.36) is the model problem for
systems of ODEs. In the same manner that the model equation was helpful in
analyzing numerical methods for a single ODE, (4.36) is useful for analyzing
numerical methods for systems. From linear algebra we know that this system
will have a bounded solution if all the eigenvalues of A have negative real parts.
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This is analogous to the single-equation model problem, y′ = λy, where the
real part of λ was negative. Applying the Euler method to (4.36) leads to

yn+1 = yn + h A yn = (I + h A) yn

or

yn = (I + h A)n y0.

To have a bounded numerical solution, the matrix Bn = (I + h A)n should ap-
proach zero for large n. A very important result from linear algebra states:

The powers of a matrix approach zero for large values of the ex-
ponent if the moduli of its eigenvalues are less than 1. That is, if C
is a matrix and the moduli of its eigenvalues are less than 1, then

lim
n→∞ Cn → 0.

Therefore, the magnitudes of the eigenvalues of B must be less than 1. The
eigenvalues of B are

αi = 1 + hλi

where λi are the eigenvalues of the matrix A. Thus, for numerical stability, we
must have

|1 + λi h| ≤ 1.

The eigenvalue with the largest modulus places the most restriction on h. If the
eigenvalues are real (and negative), then

h ≤ 2

|λ|max
.

If the range of the magnitudes of the eigenvalues is large (|λ|max/|λ|min � 1)
and the solution is desired over a large span of the independent variable t, then
the system of differential equations is called a stiff system. Stiffness arises in
physical situations with many degrees of freedom but with widely different
rates of responses. Examples include a system composed of two springs, one
very stiff and the other very flexible; a mixture of chemical species with very
different reaction rates; and a boundary layer (with two disparate length scales).

Stiff systems are associated with numerical difficulties. Problems arise if
the system of equations is to be integrated to large values of the independent
variable t. Since the step size is limited by the part of the solution with the
“fastest” response time (i.e., with the largest eigenvalue magnitude), the number
of steps required can become enormous. In other words, even if one is interested
only in the long-term behavior of the solution, the time step must still be very
small. In practice, to circumvent stiffness, implicit methods are used. With
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implicit methods there is no restriction on the time step due to numerical sta-
bility. For high accuracy, one can choose small time steps to resolve the rapidly
varying portions of the solution (fast parts) and large time steps in the slowly
varying portions. There are stiff ODE solvers (such as Numerical Recipes’
stifbs, MATLAB’s ode23s, or lsode∗) that have an adaptive time-step
selection mechanism. These are based on implicit methods and automatically
reduce or increase the time step depending on the behavior of the solution.
Note that with explicit methods one cannot use large time steps in the slowly
varying part of the solution. Round-off error will trigger numerical instability
associated with the fast part of the solution, even if it is not a significant part of
the solution during any portion of the integration period.

EXAMPLE 4.8 A Stiff System (Byrne and Hindmarsh)

The following pair of coupled equations models a ruby laser oscillator

dn
dt

= −n (αφ + β) + γ

dφ

dt
= φ(ρn − σ ) + τ (1 + n)

with

α = 1.5 × 10−18 β = 2.5 × 10−6 γ = 2.1 × 10−6

ρ = 0.6 σ = 0.18 τ = 0.016

and

n(0) = −1 φ(0) = 0.

The variable n represents the population inversion and the variable φ repre-
sents the photon density. This problem is known to be stiff. We will compare
the performance of a stiff equation solution package (lsode) with a standard
fourth-order Runge–Kutta algorithm. The solution using lsode is plotted in
Figures 4.12 and 4.13.

Solving the same problem to roughly the same accuracy using a fourth-
order Runge–Kutta routine required about 60 times more computer time
than the stiff solver. We were unable to use large time steps to improve
the efficiency of the Runge–Kutta scheme in the slowly varying portion of
the solution because stability is limited by the quickly varying modes in the
solution even when they are not very active. The eigenvalue with the highest
magnitude still dictates the stability limit even when the modes supported
by the smaller eigenvalues are dominating the solution.

∗ A. C. Hindmarsh, “ODEPACK, a Systematized Collection of ODE Solvers,” Scientific Computing,
edited by R. S. Stepleman et al., (North-Holland, Amsterdam, 1983), p. 55. lsode is widely
available on the World Wide Web; check for example, http://www.netlib.org/.
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Figure 4.12 Numerical solution of the ODE system in Example 4.8 using lsode.
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Figure 4.13 Numerical solution of the ODE system in Example 4.8 using lsode.

We have pointed out that the difficulty with implicit methods is that, in
general, at each time step, they require solving a non-linear algebraic equation
that often requires an iterative solution procedure such as the Newton–Raphson
method. It was shown in Section 4.7 that for a single non-linear differential
equation, iteration can be avoided by the linearization technique. Linearization
can also be applied in conjunction with application of implicit methods to a
system of ODEs. Consider the system

du

dt
= f (u1, u2, . . . , um, t)

where bold letters are used for vectors. Applying the trapezoidal method results
in

u(n+1) = u(n) + h

2

[
f
(
u(n+1), tn+1

) + f
(
u(n), tn

)]
. (4.37)
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We would like to linearize f (u(n+1), tn+1). Taylor series expansion of the ele-
ments of f denoted by fi yields

fi
(
u(n+1), tn+1

) = fi
(
u(n), tn+1

) +
m∑

j=1

(
u(n+1)

j − u(n)
j

) ∂ fi

∂u j

∣∣∣∣∣
u(n),tn+1

+ O(h2)

i = 1, 2, . . . , m.

We can write this in matrix form as follows:

f
(
u(n+1), tn+1

) = f
(
u(n), tn+1

) + An
(
u(n+1) − u(n)) + O(h2)

where

An =

⎡⎢⎢⎣
∂ f1

∂u1

∂ f1

∂u2
· · · ∂ f1

∂um
...

∂ fm

∂u1

∂ fm

∂u2
· · · ∂ fm

∂um

⎤⎥⎥⎦
(u(n),tn+1)

is the Jacobian matrix. We now substitute this linearization of f (u(n+1), tn+1)
into (4.37). It can be seen that, at each time step, instead of solving a non-linear
system of algebraic equations, we would solve the following system of linear
algebraic equations:(

I − h

2
An

)
u(n+1) =

(
I − h

2
An

)
u(n) + h

2

[
f
(
u(n), tn

) + f
(
u(n), tn+1

)]
.

(4.38)

Note that the matrix A is not constant (its elements are functions of t) and should
be updated at every time step.

4.11 Boundary Value Problems

When data associated with a differential equation are prescribed at more than
one value of the independent variable, then the problem is a boundary value
problem. In initial value problems all the data (y(0), y′(0), . . .) are prescribed at
one value of the independent variable (in this case at t = 0). To have a boundary
value problem, we must have at least a second-order differential equation

y′′ = f (x, y, y′) y(0) = y0 y(L) = yL (4.39)

where f is an arbitrary function. Note that here the data are prescribed at x = 0
and at x = L. The same differential equation, together with data y(0) = y0 and
y′(0) = yp, would be an initial value problem.

There are two techniques for solving boundary value problems:

1. Shooting method. Shooting is an iterative technique which uses the standard
methods for initial value problems such as Runge–Kutta methods.
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2. Direct Methods. These methods are based on straightforward finite-
differencing of the derivatives in the differential equation and solving the
resulting system of algebraic equations.

We shall begin with the discussion of the shooting method.

4.11.1 Shooting Method

Let’s reduce the second-order differential in (4.39) to two first-order equations

u = y v = y′{
u′ = v

v′ = f (x, u, v).
(4.40)

The conditions are

u(0) = y0 and u(L) = yL .

To solve this system (with the familiar methods for initial value problems) one
needs one condition for each of the unknowns u and v rather than two for one
and none for the other. Therefore, we use a “guess” for v(0) and integrate both
equations to x = L. At this point, u(L) is compared to yL; if the agreement is
not satisfactory (most likely it will not be unless the user is incredibly lucky),
another guess is made for v(0), and the iterative process is repeated.

For linear problems this iterative process is very systematic; only two it-
erations are needed. To illustrate this point, consider the general second-order
linear equation

y′′(x) + A(x)y′(x) + B(x)y(x) = f (x)

y(0) = y0 y(L) = yL . (4.41)

Let’s denote two solutions of the equation as y1(x) and y2(x), which are obtained
using y1(0) = y2(0) = y(0) = y0, and two different initial guesses for y′(0).
Since the differential equation is linear, the solution can be formed as a linear
combination of y1 and y2

y(x) = c1 y1(x) + c2 y2(x) (4.42)

provided that

c1 + c2 = 1. (4.43a)

Next, we require that y(L) = yL , which, in turn, requires that

c1 y1(L) + c2 y2(L) = yL . (4.43b)

Note that y1(L) and y2(L) have known numerical values from the solutions
y1(x) and y2(x), which have already been computed. Equations (4.43) are two



80 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

yL

y1(L)

y2(L)

y(L)

y2′ (0)y3′ (0)y1′(0) y′(0)

Figure 4.14 Schematic of the functional relationship between y (L) and y ′(0). y ′
1(0)

and y ′
2(0) are the initial guesses leading to y1(L) and y2(L) respectively.

linear equations for c1 and c2; the solution is

c1 = yL − y2(L)

y1(L) − y2(L)
and c2 = y1(L) − yL

y1(L) − y2(L)
.

Substitution for c1 and c2 into (4.42) gives the desired solution for (4.41).
Unfortunately, when (4.39) is non-linear, we may have to perform several it-
erations to obtain the solution at L to within a prescribed accuracy. Here, we
shall demonstrate the solution procedure using the secant method which is a
well-known technique for the solution of non-linear equations. Consider y(L)
as a (non-linear) function of y′(0). This function can be described numerically
(and graphically) by several initial guesses for y′ and obtaining the correspond-
ing y(L)’s. A schematic of such a function is shown in Figure 4.14. Suppose that
we use two initial guesses, y′

1(0) and y′
2(0), and obtain the solutions y1(x) and

y2(x) with the values at L denoted by y1(L) and y2(L). With the secant method
we form the straight line between the points (y′

1(0), y1(L)) and (y′
2(0), y2(L)).

This straight line is a crude approximation to the actual curve of y(L) vs. y′(0)
between y′

1(0) ≤ y′(0) ≤ y′
2(0). The equation for this line is

y′(0) = y′
2(0) + m[y(L) − y2(L)],

where

m = y′
1(0) − y′

2(0)

y1(L) − y2(L)

is the reciprocal of the slope of the line. The next guess is the value for y′(0) at
which the above straight-line approximation to the function predicts yL . That
point is the intersection of the horizontal line from yL with the straight line,
which yields

y′
3(0) = y′

2(0) + m[yL − y2(L)].

In general, the successive iterates are obtained from the formula

y′
α+1(0) = y′

α(0) + mα−1[yL − yα(L)], (4.44a)



4.11 BOUNDARY VALUE PROBLEMS 81

where α = l, 2, 3, . . . is the iteration index and

mα−1 = y′
α(0) − y′

α−1(0)

yα(L) − yα−1(L)
(4.44b)

are the reciprocals of the slopes of the successive straight lines (secants). Iter-
ations are continued until y(L) is sufficiently close to yL . One may encounter
difficulty in obtaining a converged solution if y(L) is a very sensitive function
of y′(0).

EXAMPLE 4.9 Shooting to Solve the Blasius Boundary Layer

A laminar boundary layer on a flat plate is self-similar and is governed by

f ′′′ + f f ′′ = 0

where f = f (η) and η is the similarity variable. f and its derivatives are pro-
portional to certain fluid mechanical quantities: f α �, the stream function;
f ′ = u/U , where u is the local fluid velocity and U is the free stream fluid
velocity; and f ′′ ∝ τ , the shear stress. Boundary conditions for the equations
are derived from the physical boundary conditions on the fluid: “no-slip” at
the wall and free stream conditions at large distances from the wall. They
are summarized as

f ′(0) = f (0) = 0 f ′(∞) = 1.

We wish to solve for f and its derivatives throughout the boundary layer.
Since one of the boundary conditions is prescribed at η = ∞ we are required
to solve a non-linear boundary value problem. Solution proceeds by break-
ing the third-order problem into a coupled set of first-order equations. Taking
f1 = f ′′, f2 = f ′ and f3 = f gives the following set of ordinary differential
equations for the solution:

f ′
1 = −f1 f3

f ′
2 = f1

f ′
3 = f2.

The solution will be advanced from a prescribed condition at the wall, η = 0,
to η = ∞. Solutions have been found to converge very quickly for large η and
marching from η = 0 to η = 10 has been shown to be sufficient for accurate
solution. Two conditions are specified at the wall: f2 = 0 and f3 = 0. We
must repeatedly solve the whole system and iterate to find the value of f1(0)
that gives the required condition, f2 = 1 at η = ∞. Two initial guesses were
made for f1(0): f (0)

1 (0) = 1.0 and f (1)
1 (0) = 0.5. From these two initial guesses

two values for f2 at “infinity” were calculated: f (0)
2 (10) and f (1)

2 (10). Starting
from these two calculations the secant method may be used to iterate toward
an arbitrarily accurate value for f1(0) based on the following adaptation
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Figure 4.15 Numerical solution of the Blasius boundary layer equation in Exam-
ple 4.9.

of (4.44):

f (α+1)
1 (0) = f (α)

1 (0) + f (α)
1 (0) − f (α−1)

1 (0)

f (α)
2 (10) − f (α−1)

2 (10)

(
1 − f (α)

2 (10)
)
.

Fourth-order Runge–Kutta was used to march the solution from the wall to
η = 10 with a step of �η = 0.01. Eight secant iterations were necessary after
the initial guesses to guarantee convergence to 10 digits. The solutions for
f, f ′, and f ′′ are plotted in Figure 4.15. We see a “boundary layer shape”
in the plot for f ′ which is the flow velocity. The final solution for f ′′(0) is
0.469600 . . . , which agrees with the “accepted” solution.

4.11.2 Direct Methods

With direct methods, one simply approximates the derivatives in the differen-
tial equation with a finite difference approximation. The result is a system of
algebraic equations for the dependent variables at the node points. For linear dif-
ferential equations, the system is a linear system of algebraic equations; for non-
linear equations, it is a non-linear system of algebraic equations. For example,
a second-order approximation to the linear differential equation (4.41) yields

y j+1 − 2y j + y j−1

h2
+ A j

y j+1 − y j−1

2h
+ B j y j = f j

y( j=0) = y0 y( j=N ) = yL

where a uniform grid, x j = x j−1 + h, j = 1, 2, . . . , N − 1, is introduced be-
tween the boundary points x0 and xN . Rearranging the terms yields

α j y j+1 + β j y j + γ j y j−1 = f j , (4.45)

where

α j =
(

1

h2
+ A j

2h

)
β j =

(
B j − 2

h2

)
γ j =

(
1

h2
− A j

2h

)
j = 1, 2, . . . , N − 1.
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This is a tridiagonal system of linear algebraic equations. The only special
treatment comes at the points next to the boundaries j = 1 and j = N – 1. At
j = 1, we have

α1 y2 + β1 y1 = f1 − γ1 y0.

Note that y0, which is known, is moved to the right-hand side. Similarly, yN ap-
pears on the right-hand side. Thus, the unknowns y1, y2, . . . , yN−1 are obtained
from the solution of⎡⎢⎢⎢⎢⎣

β1 α1

γ2 β2 α2

. . .
. . .

. . .
γN−1 βN−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

y1

y2
...

yN−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
f1 − γ1 y0

f2
...

fN−1 − αN−1 yN

⎤⎥⎥⎥⎥⎦ .

Implementation of mixed boundary conditions such as

ay(0) + by′(0) = g

is also straightforward. For example, one can simply approximate y′(0) with a
finite difference approximation such as

y′(0) = −3y0 + 4y1 − y2

2h
+ O(h2),

and solve for y0 in terms of y1, y2, and g. The result is then substituted in the
finite difference equation 4.45 evaluated at j = 1. Because y0 now depends on
y1 and y2, the matrix elements in the first row are also modified. Higher order fi-
nite difference approximations can also be used. The only difficulty with higher
order methods is that near the boundaries they require data from points out-
side the domain. The standard procedure is to use lower order approximations
for points near the boundary. Moreover, higher order finite differences lead to
broader banded matrices instead of a tridiagonal matrix. For example, a pen-
tadiagonal system is obtained with the standard fourth-order central difference
approximation to equation (4.41).

Often the solution of a boundary value problem varies rapidly in a part of
the domain, and it has a mild variation elsewhere. In such cases it is wasteful
to use a fine grid capable of resolving the rapid variations everywhere in the
domain. One should use a non-uniform grid spacing (see Section 2.5). In some
problems, such as boundary layers in fluid flow problems, the regions of rapid
variation are known a priori, and grid points can be clustered where needed.
There are also (adaptive) techniques that estimate the grid requirements as the
solution progresses and place additional grid points in the regions of rapid
variation.

With non-uniform grids one can either use finite difference formulas writ-
ten explicitly for non-uniform grids or use a coordinate transformation. Both
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techniques were discussed in Section 2.5. Finite difference formulas for first and
second derivatives can be substituted, for example, in (4.41), and the resulting
system of equations can be solved. Alternatively, the differential equation can
be transformed, and the resulting equation can be solved using uniform mesh
formulas.

EXERCISES

1. Consider the equation

y′ + (2 + 0.01x2)y = 0

y(0) = 4 0 ≤ x ≤ 15.

(a) Solve this equation using the following numerical schemes: i) Euler, ii)
backward Euler, iii) trapezoidal, iv) second-order Runge–Kutta and v)
fourth-order Runge–Kutta. Use �x = 0.1, 0.5, 1.0 and compare to the ex-
act solution.

(b) For each scheme, estimate the maximum �x for stable solution (over the
given domain) and discuss your estimate in terms of results of part (a).

2. A physical phenomenon is governed by the differential equation

dv

dt
= −0.2v − 2 cos(2t)v2

subject to the initial condition v(0) = 1.

(a) Solve this equation analytically.
(b) Write a program to solve the equation for 0 < t ≤ 7 using the Euler explicit

scheme with the following time steps: h = 0.2, 0.05, 0.025, 0.006. Plot the
four numerical solutions along with the exact solution on one graph. Set
the x axis from 0 to 7 and the y axis from 0 to 1.4. Discuss your results.

(c) In practical problems, the exact solution is not always available. To obtain
an accurate solution, we keep reducing the time step (usually by a factor of
2) until two consecutive numerical solutions are nearly the same. Assuming
that you do not know the exact solution for the present equation, do you
think that the solution corresponding to h = 0.006 is accurate (to plotting
accuracy)? Justify your answer. In case you find it not accurate enough,
obtain a better one.

3. Discuss the stability of the real and spurious roots of the second-order Adams–
Bashforth method and plot them. How would you characterize the behavior of
the spurious root in the right half-plane where the exact solution is unbounded?
Show that the stability diagram in Figure 4.10 is the intersection of the regions
of stability of both roots.

4. Suppose we use explicit Euler to start the leapfrog method. Obtain expressions
for c1 and c2 in terms y0 and λh, in (4.33). Use power series expansions to show
that the leading term in the expansion of c2 is O(h2). Discuss the power series
expansion of c1.
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5. The second-order Runge–Kutta scheme requires two function evaluations per
step. With the same number of function evaluations one can also take two Euler
steps of half the step size. Compare the accuracy of these two advancement
procedures. Does the answer depend on the nature of the right hand side
function f ?

6. A physical phenomena is governed by a simple differential equation:

dv

dt
= −α(t)v + β(t),

where

α(t) = 3t

(1 + t)
β(t) = 2(1 + t)3e−t .

Assume an initial value v(0) = 1.0, and solve the equation for 0 < t < 15 using
the following numerical methods
(a) Euler
(b) Backward Euler
(c) Trapezoidal method
(d) Second-order Runge–Kutta
(e) Fourth-order Runge–Kutta

Try time steps, h = 0.2, 0.8, 1.1. On separate plots, compare your results with
the exact solution. Discuss the accuracy and stability of each method. For each
scheme, estimate the maximum �t for stable solution (over the given time
domain and over a very long time).

7. Choosing a method.
The proper comparison of numerical methods should involve both the cost
incurred as well as accuracy. Function evaluations are usually by far the most
expensive part of the calculation. Let M be the total number of function evalua-
tions allowed (reflecting a fixed computer budget) and suppose the calculation
must reach time t = T . Given these two constraints the problem is to find
the method that would maximize the accuracy (phase and amplitude) of the
solution at time t = T . Occasionally, an additional constraint, that we do not
consider here, related to storage requirements must also be included.

Note that a method which uses two evaluations/step must take M/2 steps of
size 2h to reach T , in this case the expression for amplitude error is 1 − |σ | M

2

and the phase error is M
2 (2ωh − tan−1( σI

σR
)). Let T = 50 and ω = 1, plot these

expressions for the following methods for M in the range 100–1000:

(i) Explicit Euler
(ii) RK2

(iii) RK4
(iv) Linearized trapezoidal
(v) Leapfrog

Which method would you most likely choose?
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8. Consider a simple pendulum consisting of mass m attached to a string of length
l. The equation of motion for the mass is

θ ′′ = −g

l
sin θ,

where positive θ is counterclockwise. For small angles θ, sin θ ≈ θ and the
linearized equation of motion is

θ ′′ = −g

l
θ.

The acceleration due to gravity is g = 9.81 m/sec2, and l = 0.6 m. Assume
that the pendulum starts from rest with θ(t = 0) = 10◦.

(a) Solve the linearized equation for 0 ≤ t ≤ 6 using the following numerical
methods:

(i) Euler
(ii) Backward Euler

(iii) Second-order Runge–Kutta
(iv) Fourth-order Runge–Kutta
(v) Trapezoidal method

Try time steps, h = 0.15, 0.5, 1. Discuss your results in terms of what you
know about the accuracy and stability of these schemes. For each case, and
on separate plots, compare your results with the exact solution.

(b) Suppose mass m is placed in a viscous fluid. The linearized equation of
motion now becomes

θ ′′ + cθ ′ + g

l
θ = 0.

Let c = 4 sec–1. Repeat part (a) with methods (i) and (iii) for this problem.
Discuss quantitatively and in detail the stability of your computations as
compared to part (a).

(c) Solve the non-linear undamped problem with θ(t = 0) = 60◦ with a
method of your choice, and compare your results with the correspond-
ing exact linear solution. What steps have you taken to be certain of the
accuracy of your results? That is, why should your results be believable?
How does the maximum time step for the non-linear problem compare
with the prediction of the linear stability analysis?

9. Consider the pendulum problem of Exercise 8. Recall that the linearized equa-
tion of motion is

θ ′′ = −g

l
θ.

The pendulum starts from rest with θ(t = 0) = 10◦.
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(a) Solve the linearized equation for 0 ≤ t ≤ 6 using the following multi-step
methods:

(i) Leapfrog
(ii) Second-order Adams–Bashforth

Try time steps, h = 0.1, 0.2, 0.5. Discuss your results in terms of what
you know about the accuracy and stability of these schemes. For each case,
and on separate plots, compare your results with the exact solution.

(b) The linearized damped equation of motion is

θ ′′ + cθ ′ + g

l
θ = 0.

Let c = 4 sec–1. Repeat part (a) for this problem. Discuss quantitatively
and in detail the stability of your computations as compared to part (a).
Do your results change significantly using different start-up schemes (e.g.,
explicit Euler vs. second-order Runge–Kutta)?

10. Consider the Euler method applied to a differential equation y′ = f ( y, t) with
the initial condition y(0) = y0. To perform stability analysis, we linearized the
differential equation to get:

y′ = λy + c1 + c2t

and neglected the inhomogeneous terms to obtain the model problem y′ = λy,
where Real{λ} < 0. We will now study the effects of the inhomogeneous terms
in the linearized equation on the stability analysis:

(a) Apply the Euler method to derive a difference equation of the form:

yn+1 = αyn + βn + γ.

What are α, β, and γ ?
(b) Use the transformation zn = yn+1 − yn to derive the following difference

equation:

zn+1 = αzn + β.

Solve this difference equation by writing zn in terms of z0.
(c) Express the numerical solution yn in terms of y0 using the result from part

(b). Show that the stability of the error (the difference between the exact
and difference solution) depends only on λ.

11. Linearization and stability.

(a) Consider the trapezoidal method and show that as far as linear stability
analysis is concerned, the use of (4.18) does not alter the unconditional
stability property for implicit time advancement of linear problems.

(b) Describe in detail how to solve the differential equation

y′ = esin( y) + t y y(0) = 1

for 0 < t ≤ 5 using a second-order implicit scheme without iterations.
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12. Fully implicit vs. linearized implicit.
Consider the ODE

dy

dt
= ey−t y(0) = y0.

Its analytical solution is

y(t) = − ln(e−y0 + e−t − 1).

(a) Derive the linearized implicit Euler scheme.
(b) Use the analytic solution to derive exact expressions for the leading terms

in the time discretization error and the linearization error.
(c) For y0 = −1 × 10−5 and h = 0.2, plot the errors. Solve the system using

the fully implicit and linearized implicit methods and plot their solutions
against the analytical solution.

(d) Repeat part (c) with y0 = −1. Comment on the sensitivity of the linearized
solution to the initial condition.

13. Phase error.

(a) Show that the leading term in the power series expansion of the phase error
for the leapfrog scheme is − 1

6ω3h3. Consider phase error in conjunction
with only the real root, assuming that the spurious root is suppressed.

(b) What would the phase error be in the numerical solution of y′ = iωy using
the leapfrog method with ωh = 0.5 after 100 time steps?

(c) In order to reduce the phase error, it has been suggested to use the fol-
lowing sequence in advancing the solution: take two time steps using the
trapezoidal method followed by one time step of leapfrog. What is the
rationale behind this proposal? Try this scheme for the problem in part (b)
and discuss the results.

14. Double Pendulum (N. Rott)
A double pendulum is shown in the figure. One of the pendulums has a space
fixed pivot (SFP) and the pivot for the other pendulum (BFP) is attached to the
body of the first pendulum. The line connecting the two pivots is of length b
and forms an angle β0 with the vertical, in equilibrium. The total mass of the
two elements is mt, while the BFP pendulum has a mass mc with a distance c
between its center of gravity and its pivot. With mc concentrated at BFP, the
distance of the center of gravity of the total mass from the SFP is a and the
moment of inertia of the two bodies is It. The moment of inertia of the BFP
pendulum about its pivot is Ic. The position angles of the two pendulums with
respect to the vertical are α and γ , as shown in the figure.
The equations of motion are (neglecting friction):

It α̈ + amt g sin α + bcmc[C γ̈ + Sγ̇ 2] = 0

Icγ̈ + cmcg sin γ + bcmc[C α̈ − Sα̇2] = 0

where

C = cos β0 cos(α − γ ) − sin β0 sin(α − γ )

S = sin β0 cos(α − γ ) + cos β0 sin(α − γ ).
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Double pendulum: SFP = space-fixed pivot; BFP = body-fixed pivot.

The following nomenclature is introduced:

amt g

It
= λ2 cmcg

Ic
= ω2

bcmc

Ic
= ω2

g
b = ξ

bcmc

It
= λ2

g
b

cmc

amt
= η.

Here λ and ω are the frequencies of the uncoupled modes, while ξ and η are
two interaction parameters. Let

β0 = π

2
, λ = 2.74 rad/s, ω = 5.48 rad/s,

ξ = 0.96, η = 0.24.

Exchange of Energy
The pendulum system exhibits an interesting coupling when properly “tuned.”
In a tuned state the modal frequencies are in the ratio 1:2 (here ω = 2λ). Then
for particular sets of initial conditions, some special interaction takes place in
which the two pendulums draw energy from each other at a periodic rate. In
that case, when one pendulum oscillates with maximum amplitude, the other
stands almost still and the process reverses itself as the energy passes from one
pendulum to the other. This phenomenon of energy exchange is periodic if the
pendulums are properly tuned. Note that this peculiar motion happens only for
well-chosen initial conditions and is usually associated with low energy. Try

α0 = 0, α̇0 = 0, γ0 = π

12
, γ̇0 = π.

Use either your own program, or a canned routine (e.g. Numerical Recipes’
odeint or MATLAB’s ode45) to solve this system. It is important to exper-
iment with different time steps or tolerance settings (in the canned routines)
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to ensure that the solution obtained is independent of time step (to plotting
accuracy).

Plot the angular deflections (α, γ ) and velocities (α̇, γ̇ ). Determine the pe-
riod of energy exchange. Now, pick another set of initial conditions for which
periodic energy exchange occurs and find out if the period of energy exchange
remains the same. In either case, you should plot the two angles versus time on
the same graph in order to reveal the phenomenon of energy exchange. Note
that the equations of motion should be solved for a sufficiently long time to
exhibit the global periodic nature of the solution.

Chaotic Solution
This system has three degrees of freedom (two angles and two angular veloc-
ities make four, but since the system is conservative, the four states are linked
in the total energy conservation equation). It is possible for such a system to
experience chaotic behavior. Chaotic or unpredictable behavior is usually as-
sociated with sensitivity to the initial data. In other words, chaotic behavior
implies that two slightly different initial conditions give rise to solutions that
differ greatly. In our problem, chaotic solutions are associated with high-energy
initial conditions. Try

α0 = π

2
, α̇0 = 5 rad/s, γ0 = 0, γ̇0 = 0.

Simulate the system and plot the two angles versus time. How is the solution
different from that of the previous section? Now vary the initial angular velocity
α̇0 by 1/2%, i.e. try

α0 = π

2
, α̇0 = 5.025 rad/s, γ0 = 0, γ̇0 = 0.

Plot the angles versus time for the two cases on the same graph and com-
ment on the effect of the small change in the initial conditions. Sensitivity
to initial conditions implies sensitivity to truncation and round-off errors as
well. Continue your simulations to a sufficiently large time, say t = 100 sec,
and comment on whether your solution is independent of time step (and hence
reliable for large times).

15. Consider the following family of implicit methods for the initial value problem,
y′ = f (y)

yn+1 = yn + h[θ f ( yn+1) + (1 − θ) f ( yn)],

where θ is a parameter 0 ≤ θ ≤ 1. The value of θ = 1 yields the backward
Euler scheme, and θ = 1/2 yields the trapezoidal method. We have pointed
out that not all implicit methods are unconditionally stable. For example, this
scheme is conditionally stable for 0 ≤ θ < 1/2. For the case θ = 1/4, show
that the method is conditionally stable, draw its stability diagram, and compare
the diagram with the stability diagram of the explicit Euler scheme. Also, plot
the stability diagram of the method for θ = 3/4, and discuss possible features
of the numerical solution when this method is applied to a problem with a
growing exact solution.
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16. Non-linear differential equations with several degrees of freedom often exhibit
chaotic solutions. Chaos is associated with sensitive dependence to initial con-
ditions; however, numerical solutions are often confined to a so-called strange
attractor, which attracts solutions resulting from different initial conditions to
its vicinity in the phase space. It is the sensitive dependence on initial conditions
that makes many physical systems (such as weather patterns) unpredictable,
and it is the attractor that does not allow physical parameters to get out of hand
(e.g., very high or low temperatures, etc.) An example of a strange attractor is
the Lorenz attractor, which results from the solution of the following equations:

dx

dt
= σ ( y − x)

dy

dt
= r x − y − xz

dz

dt
= xy − bz.

The values of σ and b are usually fixed (σ = 10 and b = 8/3 in this problem)
leaving r as the control parameter. For low values of r, the stable solutions
are stationary. When r exceeds 24.74, the trajectories in xyz space become
irregular orbits about two particular points.

(a) Solve these equations using r = 20. Start from point (x, y, z) = (1, 1, 1),
and plot the solution trajectory for 0 ≤ t ≤ 25 in the xy, xz, and yz planes.
Plot also x, y, and z versus t. Comment on your plots in terms of the
previous discussion.

(b) Observe the change in the solution by repeating (a) for r = 28. In this
case, plot also the trajectory of the solution in the three-dimensional xyz
space (let the z axis be in the horizontal plane; you can use the MATLAB
command plot3(z,y,x) for this). Compare your plots to (a).

(c) Observe the unpredictability at r = 28 by overplotting two solutions versus
time starting from two initially nearby points: (6, 6, 6) and (6, 6.01, 6).

17. In this problem we will numerically examine vortex dynamics in two dimen-
sions. We assume that viscosity is negligible, the velocity field is solenoidal
(∇ · u = 0), and the vortices may be modeled as potential point vortices. Such
a system of potential vortices is governed by a simple set of coupled equations:

dx j

dt
= − 1

2π

N∑
i=1
i �= j

ωi ( y j − yi )

r2
i j

(1a)

dy j

dt
= 1

2π

N∑
i=1
i �= j

ωi (x j − xi )

r2
i j

(1b)

where (x j , y j ) is the position of the jth vortex, ω j is the strength and rotational
direction of the jth vortex (positive ω indicates counter-clockwise rotation),
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ri j is the distance between the jth and ith vortices,

ri j =
√

(xi − x j )2 + ( yi − y j )2, (2)

and N is the number of vortices in the system. For example, in the case of
N = 2 and ω1 = ω2 = 1, the equations (1a, 1b, 2) become

dx1

dt
= − 1

2π

( y1 − y2)

r2

dy1

dt
= 1

2π

(x1 − x2)

r2

dx2

dt
= − 1

2π

( y2 − y1)

r2

dy2

dt
= 1

2π

(x2 − x1)

r2

r12 =
√

(x1 − x2)2 + ( y1 − y2)2.

Equations (1a) and (1b) may be combined into a more compact form if written
for a complex independent variable zj with xj = Real[z j ] and yj = Imag[z j ]:

dz∗
j

dt
= 1

2π i

N∑
l=1
l �= j

ωl

z j − zl
. (3)

The ∗ indicates complex conjugate.
The system has 2N degrees of freedom (each vortex has two coordinates that

may vary independently). There exist four constraints on the motion of the vor-
tices that may be derived from the flow physics. They are (at a very basic level)
conservation of x and y linear momentums, conservation of angular momen-
tum, and conservation of energy. Conservation of energy is useful as it can give
a simple measure of the accuracy of a numerical solution. It may be posed as

N∏
j=1

N∏
i=1
i �= j

√
ri j = const. (4)

For N = 4 there are four unconstrained degrees of freedom or two uncon-
strained two-dimensional points of the form (p, q). Such a system may poten-
tially behave chaotically. We will now explore this.

(a) Take N = 4 and numerically solve the evolution of the vortex positions.
You may solve either Equation (1) or (3). Equation (3) is the more el-
egant way of doing it but requires a complex ODE solver to be writ-
ten (same as a real solver but with complex variables). A high-order ex-
plicit scheme is recommended (e.g. fourth-order Runge–Kutta). Numerical
Recipes’ odeint or MATLAB’s ode45 might be useful. Use as an initial
condition (x, y) = (±1, ±1); that is, put the vortices on the corners of a
square centered at the origin. Take ω j = 1 for each vortex. Solve for a suf-
ficiently long time to see if the vortex motion is “regular.” Use the energy
constraint equation (4) to check the accuracy of the solution. Plot the time
history of the position of a single vortex in the xy plane.

(b) Perturb one of the initial vortex positions. Move the (x, y) = (1, 1) point
to (x, y) = (1, 1.01) and repeat part (a).



EXERCISES 93

(c) Consider a case now where the vortices start on the corners of a rectangle
with aspect ratio 2: (x, y) = (±2, ±1). Repeat (a).

(d) Again perturb one initial position. Move the (x, y) = (2, 1) point to
(x, y) = (2, 1.01) and repeat part (a).

(e) Chaotic systems usually demonstrate a very high dependence upon initial
conditions. The solutions from similar but distinct initial conditions
often diverge exponentially. Place all vortices in a line: (x, y)k =
(−1, 0), (ε, 0), (1, 0), (2, 0) and accurately solve the problem from time
0 to 200 for ε = 0 and ε = 10−4. Make a semi-log plot of the distance
between the vortices starting at (0, 0) and (ε, 0) versus time for these two
runs. Justify the accuracy of the solutions.

18. Runge–Kutta–Nyström methods.
The governing equation describing the motion of a particle due to a force f ,
is given by:

x ′′ = f (x, x ′, t)

where x(t) is the position of the particle. Suppose that, like gravity, the force
has no velocity or explicit time dependence, i.e., f = f (x(t)). We will derive
a third-order Runge–Kutta scheme for this special case that uses only two
function evaluations.

Consider the following Runge–Kutta scheme:

xn+1 = xn + vnh + (α1k1 + α2k2)h2

vn+1 = vn + (β1k1 + β2k2)h

where

k1 = f (xn + ζ11vnh)

k2 = f (xn + ζ21vnh + ζ22k1h2)

and v = dx
dt .

(a) How is this expression for k1 different from ones given in the text?
(b) Use the approach in Section 4.8 to find the unknown coefficients for the

scheme. For third-order accuracy you should get six equations for the seven
unknowns. With symbolic manipulation software these equations can be
solved in terms of one of the unknowns. To facilitate a solution by hand,
set ζ11 = 0.

19. The following scheme has been proposed for solving y′ = f ( y):

yn+1 = yn + ω1k1 + ω2k2,

where

k1 = h f ( yn)

k0 = h f ( yn + β0k1)

k2 = h f ( yn + β1k0)
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with h being the time step.

(a) Determine the coefficients ω1, ω2, β0, and β1 that would maximize the
order of accuracy of the method. Can you name this method?

(b) Applying this method to y′ = αy, what is the maximum step size h for α

pure imaginary?
(c) Applying this method to y′ = αy, what is the maximum step size h for α

real negative?
(d) With the coefficients derived in part (a) draw the stability diagram in the

(hλR, hλI ) plane for this method applied to the model problem y′ = λy.

20. The following scheme has been proposed for solving y′ = f ( y):

y∗ = yn + γ1h f ( yn)

y∗∗ = y∗ + γ2h f ( y∗) + ω2h f ( yn)

yn+1 = y∗∗ + γ3h f ( y∗∗) + ω3h f ( y∗)

where

γ1 = 8/15, γ2 = 5/12, γ3 = 3/4, ω2 = −17/60,

ω3 = −5/12,

with h being the time step.

(a) Give a word description of the method in terms used in this chapter.
(b) What is the order of accuracy of this method?
(c) Applying this method to y′ = αy, what is the maximum step size h for α

pure imaginary and for α negative real?
(d) Draw a stability diagram in the (hλR, hλI ) plane for this method applied

to the model problem y′ = λy.

21. Chemical reactions often give rise to stiff systems of coupled rate equations.
The time history of a reaction of the following form:

A1 → A2

A2 + A3 → A1 + A3

2A2 → 2A3

is governed by the following rate equations

Ċ1 = −k1C1 + k2C2C3

Ċ2 = k1C1 − k2C2C3 − 2k3C2
2

Ċ3 = 2k3C2
2

where k1, k2, and k3 are reaction rate constants given as

k1 = 0.04, k2 = 10.0, k3 = 1.5 × 103,

and the Ci are the concentrations of species Ai . Initially, C1(0) = 0.9, C2(0) =
0.1, and C3(0) = 0.

(a) What is the analytical steady state solution? Note that these equations
should conserve mass, that is, C1 + C2 + C3 = 1.
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(b) Evaluate the eigenvalues of the Jacobian matrix at t = 0. Is the problem
stiff?

(c) Solve the given system to a steady state solution (t = 3000 represents
steady state in this problem) using

(i) Fourth-order Runge–Kutta (use (b) to estimate the maximum time
step).

(ii) A stiff solver such as Numerical Recipes’ stifbs , lsode , or
MATLAB’s ode23s.

Make a log–log plot of the concentrations Ci vs. time. Compare the com-
puter time required for these two methods.

(d) Set up the problem with a linearized trapezoidal method. What advantages
would such a scheme have over fourth-order RK?

22. In this problem, we will consider a chemical reaction taking place in our bod-
ies during food digestion. Such chemical reactions are mediated by enzymes,
which are biological catalysts. In such a reaction, an enzyme (E) combines
with a substrate (S) to form a complex (ES). The ES complex has two possible
fates. It can dissociate to E and S or it can proceed to form product P. Such
chemical reactions often give rise to stiff systems of coupled rate equations.
The time history of this reaction

E +S
k1

k2

ES
k3← ←← E +P

is governed by the following rate equations

dCS

dt
= −k1CSCE + k2CES

dCE

dt
= −k1CSCE + (k2 + k3)CES

dCES

dt
= k1CSCE − (k2 + k3)CES

dCP

dt
= k3CES

where k1, k2, and k3 are reaction rate constants. The constants for this reaction
are

k1 = 2.0 × 103 k2 = 1.0 × 10−3 k3 = 10.0,

and the Ci are the concentrations. Initially, CS = 1,CE = 5.0 × 10−5, CES =
0.0, CP = 0.0.

(a) Solve the given system of equations to the steady state using:

(i) Fourth-order Runge–Kutta.
(ii) A stiff solver such as Numerical Recipes’ stifbs , lsode , or

MATLAB’s ode23s.

Make a log–log plot of the results. Compare the computer time required
for these two methods.

(b) Set up and solve the problem with a linearized trapezoidal method. What
advantages would such a scheme have over fourth-order RK?
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23. Consider the following three-tube model of a kidney (Ivo Babuska)

y′
1 = a( y3 − y1)y1/y2

y′
2 = −a( y3 − y1)

y′
3 = [b − c( y3 − y5) − ay3( y3 − y1)] /y4

y′
4 = a( y3 − y1)

y′
5 = −c( y5 − y3)/d

where

a = 100, b = 0.9, c = 1000, d = 10.

Solute and water are exchanged through the walls of the tubes. y1, y5, and y3

represent the concentration of the solute in tubes 1, 2, and 3, respectively. y2

and y4 represent the flow rates in tubes 1 and 3. The initial data are

y1(0) = y2(0) = y3(0) = 1.0

y4(0) = −10, y5(0) = 0.989

(a) Use a stiff ODE solver (such as Numerical Recipes’ stifbs, lsode,
or MATLAB’s ode23s) to find the solution for 0 ≤ t ≤ 1. What kind of
gradient information did you specify, if any?

(b) Use an explicit method such as the fourth-order Runge–Kutta method and
compare the computational effort to that in part (a).

(c) Set up the problem with a second-order implicit scheme with linearization
to avoid iterations at each time step.

(d) Solve your setup of part (c). Compare with the other methods. It is advisable
to make all your plots on a log–linear scale for this problem.

24. Consider the problem of deflection of a cantilever beam of varying cross section
under load P. The differential equation for the deflection y is

d2

dx2

(
EI

d2 y

dx2

)
= P,

where x is the horizontal distance along the beam, E is Young’s modulus, and
I (x) is the moment of inertia of the cross section. The fixed end of the beam
at x = 0 implies y(0) = y′(0) = 0. At the other end, x = l, the bending and
shearing moments are zero, that is y′′(l) = y′′′(l) = 0. For the beam under
consideration the following data are given:

I (x) = 6 × 10−4e−x/ l m4

E = 230 × 109 Pa

l = 5 m

P = 104x N/m.

Compute the vertical deflection of the beam, y(x). What is the maximum
deflection? Where is the maximum curvature in the beam?

It is recommended that you solve this problem using a shooting method.
The fourth-order problem should be reduced to a system of four first-order
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equations in

φ =

⎡⎢⎢⎣
y1

y2

y3

y4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
y
y′

y′′

y′′′

⎤⎥⎥⎦ .

The general solution can be written as

φ = ψ +
4∑

i=1

ci u
(i)

where ψ is the particular solution obtained by shooting with homogeneous
conditions. The u(i) are the solutions of the homogeneous equation with initial
conditions ei , where the ei are the Cartesian unit vectors in four dimensions.
Show that only three “shots” are necessary to solve the problem and that one
only needs to solve a 2 × 2 system of equations to get c3 and c4. In addi-
tion, explain why with this procedure only one shot will be necessary for each
additional P that may be used.

25. The goal of this problem is to compute the self-similar velocity profile of a com-
pressible viscous flow. The flow is initiated as two adjacent parallel streams that
mix as they evolve. After some manipulation and a similarity transformation,
the thin shear layer equations (the boundary layer equations) may be written as
the third-order ordinary differential equation:

f ′′′ + f f ′′ = 0 (1)

where f = f (η), η being the similarity variable. The velocity is given by
f ′ = u/U1, U1 being the dimensional velocity of the high-speed fluid. U2 is
the dimensional velocity of the low-speed fluid. The boundary conditions are

f (0) = 0 f ′(∞) = 1 f ′(−∞) = U2

U1
.

This problem is more difficult than the flat-plate boundary layer example in
the text because the boundary conditions are specified at three different loca-
tions. A very accurate solution, however, may be calculated if you shoot in the
following manner:

(a) Guess values for f ′(0) and f ′′(0). These, with the given boundary condition
f (0) = 0, specify three necessary conditions for advancing the solution nu-
merically from η = 0. Choose f ′(0) = (U1 + U2)/(2U1), the average of the
two streams.

(b) Shoot to η = ∞. (For the purposes of this problem ∞ is 10. This can be
shown to be sufficient by asymptotic analysis of the equations.)

(c) Now here’s where we get around the fact that we have a three-point bound-
ary value problem. We observe that g(aη) = f (η)/a also satisfies Equation
(1). If we choose a = f ′(10), which was obtained in (b), the equation recast
in g and the corresponding boundary conditions at zero and ∞ are satisfied.

(d) Now take the initial guesses, divide by a and solve for the lower half of
the shear layer in the g variable. You have g(0) = 0, g′(0) = f ′(0)/a, and
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g′′(0) = f ′′(0)/a giving the required initial condition for advancing the
solution in g from η = 0 to η = −10.

(e) Compare the value of g′(−10) to the boundary condition f ′(−∞) =
U2/U1. Use this difference in a secant method iteration specifying new
values of f ′′(0) until g′(−10) = U2/U1 is within some error tolerance.

As iteration proceeds, fixing g′(−10) to the boundary condition for
f ′(−10) in (e) forces a to approach 1 thus making g ≈ f , the solution.
However, a will not actually reach 1, because we do not allow our f ′(0)
guess to vary. The solution for g, though accurate, may be further refined
using step (f ).

(f) Use your final value for g′(0) as the fixed f ′(0) value in a new iteration.
Repeat until you have converged to a = 1 and evaluate.

Take U1 = 1.0 and U2 = 0.5, solve, and plot f ′(η). What was your final
value of a? Use an accurate ODE solver for the shooting. (First reproduce the
Blasius boundary layer results given in Example 4.9 in the text. Once that is
setup, then try the shear layer.) How different is the solution after (f ) than
before with f ′(0) = (U1 + U2)/(2U1)?

26. The diagram shows a body of conical section fabricated from stainless steel
immersed in air at a temperature Ta = 0. It is of circular cross section that varies
with x. The large end is located at x = 0 and is held at temperature TA = 5.
The small end is located at x = L = 2 and is held at TB = 4.

Conservation of energy can be used to develop a heat balance equation at any
cross section of the body. When the body is not insulated along its length and
the system is at a steady state, its temperature satisfies the following ODE:

d2T

dx2
+ a(x)

dT

dx
+ b(x)T = f (x), (1)

where a(x), b(x), and f (x) are functions of the cross-sectional area, heat trans-
fer coefficients, and the heat sinks inside the body. In the present example, they
are given by

a(x) = − x + 3

x + 1
, b(x) = x + 3

(x + 1)2
, and f (x) = 2(x + 1) + 3b(x).

(a) In this part, we want to solve (1) using the shooting method.

(i) Convert the second-order differential equation (1) to a system of 2
first-order differential equations.
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(ii) Use the shooting method to solve the system in (i). Plot the tempera-
ture distribution along the body.

(iii) If the body is insulated at the x = L end, the boundary condition
becomes dT/dx = 0. In this case use the shooting method to find
T (x) and in particular the temperature at x = L. Plot the temperature
distribution along the body.

(b) We now want to solve (1) directly by approximating the derivatives with
finite difference approximations. The interval from x = 0 to x = L is dis-
cretized using N points (including the boundary points):

x j = j − 1

N − 1
L j = 1, 2, . . . , N .

The temperature at point j is denoted by Tj .

(i) Discretize the differential equation (1) using the central difference
formulas for the second and first derivatives. The discretized equation
is valid for j = 2, 3, . . . , N – 1 and therefore yields N – 2 equations for
the unknowns T1, T2, . . . , TN.

(ii) Obtain two additional equations from the boundary conditions (TA = 5
and TB = 4) and write the system of equations in matrix form AT = f.
Solve this system with N = 21. Plot the temperature using symbols on
the same plot of part (a)(ii).

27. Mixed boundary conditions.
With the implementation of boundary conditions in boundary value problems,
it is important to preserve the structure of the matrix created by the interior
stencil. This often facilitates the solution of the resulting linear equations.
Consider the problem in Section 4.11.2 with a mixed boundary condition:

ay(0) + by′(0) = g

(a) Use the technique suggested in Section 4.11.2 to implement this boundary
condition for the problem given by (4.41) and find the new entries in the
first row of the matrix.

(b) Alternatively, introduce a ghost point y−1 whose value is unknown. Using
the equation for the boundary condition and the differential equation eval-
uated at the point j = 0, eliminate y−1 to obtain an equation solely in terms
of y0 and y1. What are the entries in the first row of the matrix?

28. Consider the following eigenvalue problem:

∂2φ

∂x2
+ k2 f (x)φ = 0,

with the boundary conditions φ(0) = φ(1) = 0. k is the eigenvalue and φ is
the eigenfunction. f (x) is given and known to vary between 0.5 and 1.0. We
would like to find positive real values of k that would allow nonzero solutions
of the problem.

(a) If one wants to use the shooting method to solve this problem, how should
the ODE system be set up? What initial condition(s) should be used? What
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will be the shooting parameter? Note: recall that if φ is an eigenfunction
then cφ is also an eigenfunction. What is the implication of this on the
value of the initial condition for shooting?

(b) What type of ODE solver would you recommend for this system?
(c) Suppose that you are interested in the eigenvalue, k, closest to 10 and you

know that this value is between 9.0 and 11.0. What value of �x would you
use to solve the ODE system using your recommended method?
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5
Numerical Solution of Partial

Differential Equations

Most physical phenomena and processes encountered in engineering problems
are governed by partial differential equations, PDEs. Disciplines that use par-
tial differential equations to describe the phenomena of interest include fluid
mechanics, where one is interested in predicting the flow of gases and liquids
around objects such as cars and airplanes, flow in long distance pipelines, blood
flow, ocean currents, atmospheric dynamics, air pollution, underground disper-
sion of contaminants, plasma reactors for semiconductor equipments, and flow
in gas turbine and internal combustion engines. In solid mechanics, problems
encountered in vibrations, elasticity, plasticity, fracture mechanics, and struc-
ture loadings are governed by partial differential equations. The propagation of
acoustic and electromagnetic waves, and problems in heat and mass transfer are
also governed by partial differential equations.

Numerical simulation of partial differential equations is far more demand-
ing than that of ordinary differential equations. Also the diversity of types
of partial differential equations precludes the availability of general purpose
“canned” computer programs for their solutions. Although commercial codes
are available in different disciplines, the user must be aware of the workings
of these codes and/or perform some complementary computer programming
and have a basic understanding of the numerical issues involved. However, with
the advent of faster computers, numerical simulation of physical phenomena
is becoming more practical and more common. Computational prototyping is
becoming a significant part of the design process for engineering systems. With
ever increasing computer performance the outlook is even brighter, and com-
puter simulations are expected to replace expensive physical testing of design
prototypes.

In this chapter we will develop basic numerical methods for the solution of
PDEs. We will consider both initial (transient) and equilibrium problems. We
will begin by demonstrating that numerical methods for PDEs are straightfor-
ward extensions of methods developed for initial and boundary value problems
in ODEs.

101
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5.1 Semi-Discretization

A partial differential equation can be readily converted to a system of ordinary
differential equations by using finite difference approximations for derivatives
in all but one of the dimensions. Consider, for example, the one-dimensional
diffusion (also referred to as the heat equation) equation for φ(x, t):

∂φ

∂t
= α

∂2φ

∂x2
. (5.1)

Suppose the boundary and initial conditions are

φ(0, t) = φ(L , t) = 0 and φ(x, 0) = g(x).

We discretize the coordinate x with N + 1 uniformly spaced grid points

x j = x j−1 + �x j = 1, 2, . . . , N .

The boundaries are at j = 0 and j = N, and j = 1, 2, . . . , N – 1 represent
the interior points. If we use the second-order central difference scheme to
approximate the second derivative in (5.1) we get

dφ j

dt
= α

φ j+1 − 2φ j + φ j−1

�x2
j = 1, 2, 3, . . . , N − 1 (5.2)

where φ j = φ(x j , t). This is a system of N – 1 ordinary differential equations
that can be written in matrix form as

dφ

dt
= Aφ, (5.3)

where φ j are the (time-dependent) elements of the vector φ(t), and A is an
(N − 1) × (N − 1) tridiagonal matrix:

A = α

�x2

⎡⎢⎢⎢⎢⎣
−2 1
1 −2 1

. . .
. . .

. . .
1 −2

⎤⎥⎥⎥⎥⎦ .

Since A is a banded matrix, it is sometimes denoted using the compact notation

A = α

�x2
B[1, −2, 1].

We have now completed semi-discretization of the partial differential equa-
tion (5.1). The result is a system of ordinary differential equations that can be
solved using any of the numerical methods introduced for ODEs such as Runge–
Kutta formulas or multi-step methods. However, when dealing with systems,
we have to be concerned about stiffness (Section 4.10). Recall that the range
of the eigenvalues of A determines whether the system is stiff. Fortunately for
certain banded matrices, analytical expressions are available for the eigenvalues
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and eigenvectors. For example, eigenvalues of A can be obtained from a known
formula for the eigenvalues of a tridiagonal matrix with constant entries. Note
that the diagonal and sub-diagonals of A are –2, 1, and 1 respectively, which
do not change throughout the matrix. This result is described in the following
exercise from linear algebra.

EXERCISE

Let T be an (N − 1) × (N − 1) tridiagonal matrix, B[a, b, c]. Let D(N−1) be the
determinant of T.

(i) Show that D(N−1) = bD(N−2) − acD(N−3).
(ii) Show that D(N−1) = r (N−1)/ sin θ sin(Nθ), where r =√

ac and 2r cos θ = b.

Hint: Use induction.
(iii) Show that the eigenvalues of T are given by

λ j = b + 2
√

ac cos α j , (5.4)

where

α j = jπ

N
j = 1, 2, . . . , N − 1.

Therefore, according to this result, the eigenvalues of A are

λ j = α

�x2

(
−2 + 2 cos

π j

N

)
j = 1, 2, . . . , N − 1.

The eigenvalue with the smallest magnitude is

λ1 = α

�x2

(
−2 + 2 cos

π

N

)
.

For large N, the series expansion for cos (π/N ),

cos
π

N
= 1 − 1

2!

(
π

N

)2

+ 1

4!

(
π

N

)4

+ · · · ,

converges rapidly. Retaining the first two terms in the expansion results in

λ1 ≈ − π2α

N 2�x2
. (5.5)

Also, for large N we have

λN−1 ≈ −4
α

�x2
. (5.6)

Therefore, the ratio of the eigenvalue with the largest modulus to the eigenvalue
with the smallest modulus is ∣∣∣∣λN−1

λ1

∣∣∣∣ ≈ 4N 2

π2
.

Clearly, for large N the system is stiff.
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The knowledge of the eigenvalues also provides insight into the physical
behavior of the numerical solution. Notice that all the eigenvalues of A are real
and negative. To see how the eigenvalues enter into the solution of (5.3), we
diagonalize A using the standard eigenvector diagonalization procedure from
linear algebra (Appendix); i.e., let

A = S�S−1, (5.7)

where � = S−1 AS is the diagonal matrix with the eigenvalues of A on the
diagonal; S is the matrix whose columns are the eigenvectors of A. Note that
since A is symmetric, we are always guaranteed to have a set of orthogonal
eigenvectors, and the decomposition in (5.7) is always possible. Substituting
this decomposition for A into (5.3) yields

dψ

dt
= �ψ, (5.8)

where ψ = S−1φ. Since � is diagonal the equations are uncoupled and the
solution can be obtained readily

ψ j (t) = ψ j (0)eλ j t (5.9)

where ψ j (0) can be obtained in terms of the original initial conditions from
ψ(0) = S−1φ(0). The solution for the original variable is φ = Sψ , which can
be written as (see Appendix)

φ = ψ1S(1) + ψ2S(2) + · · · + ψN−1S(N−1), (5.10)

where S( j) is the j th column of the matrix of eigenvectors S. Note that the
solution consists of a superposition of several “modes”; the eigenvalues of A
determine the temporal behavior of the solution (according to (5.9)) and its
eigenvectors determine its spatial behavior. A key result of this analysis is that
the negative real eigenvalues of A result in a decaying solution in time, which
is the expected behavior for the diffusion equation. The rate of decay is related
to the magnitude of the eigenvalues.

EXAMPLE 5.1 Heat Equation

We will examine the stability of numerical solutions of the inhomogeneous
heat equation

∂T
∂t

= α
∂2T
∂x2

+ (π2 − 1)e−t sin πx 0 ≤ x ≤ 1; t ≥ 0,

with the initial and boundary conditions

T (0, t ) = T (1, t ) = 0 T (x, 0) = sin πx .

As shown in this section, this equation is first discretized in space using
the second-order central difference scheme resulting in the following cou-
pled set of ordinary differential equations with time as the independent
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t = 1.5
t = 2.0

Figure 5.1 Numerical solution of the heat equation in Example 5.1 using �t = 0.001.

variable:
d T

dt
= α

�x2
B[1, −2, 1]T + f .

The vector f is the inhomogeneous term and has the components

f j = (π2 − 1)e−t sin πx j .

Note that if non-zero boundary conditions were prescribed, then the known
boundary terms would move to the right-hand side, resulting in a change in
f1 and fN −1. Recall that the PDE has been converted to a set of ODEs. There-
fore, the stability of the numerical solution depends upon the eigenvalue of
the system having the largest magnitude, which is known (from (5.6)) to be

λN −1 ≈ −4
α

�x2
.

Suppose we wish to solve this equation with the explicit Euler scheme.
We know from Section 4.10 that for real and negative λ

�tmax = 2
|λ|max

= �x2

2α
.

Taking α = 1 and �x = 0.05 (giving N = 21 grid point over the x do-
main), we calculate �tmax = 0.00125. Results for �t = 0.001 are plotted in
Figure 5.1.

The numerical solution is decaying as predicted. On the other hand,
selecting �t = 0.0015 gives the numerical solution shown in Figure 5.2,
which is clearly unstable as predicted by the stability analysis.

Now, let us consider a semi-discretization of the following first-order wave
equation

∂u

∂t
+ c

∂u

∂x
= 0 0 ≤ x ≤ L t ≥ 0, (5.11)

with the boundary condition u(0, t) = 0. This is a simple model equation for
the convection phenomenon. The exact solution of this equation is such that an
initial disturbance in the domain (as prescribed in the initial condition u(x, 0))
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x

T
(x

)

0  0.25  0.50  0.75  1.00
0

 0.25

 0.50

 0.75

 1.00

 1.25 t = 0.0000
t = 0.1500
t = 0.1530
t = 0.1545
t = 0.1560

Figure 5.2 Numerical solution of the heat equation in Example 5.1 using �t = 0.0015.
Note that the precise evolution of the unstable solution is triggered by roundoff error
and may be hardware dependent.

simply propagates with the constant convection speed c in the positive or neg-
ative x direction depending on the sign of c. For the present case, we assume
that c > 0. Semi-discretization with the central difference formula leads to

du j

dt
+ c

u j+1 − u j−1

2�x
= 0. (5.12)

In matrix notation we have

du

dt
= − c

2�x
Bu

where, B = B[−1, 0, 1] is a tridiagonal matrix with 0’s on the diagonal and
–1’s and 1’s for the sub- and super-diagonals respectively. From analytical
considerations, no boundary condition is prescribed at x = L, however, a special
numerical boundary treatment is required at x = L owing to the use of central
spatial differencing in the problem. A typical well behaved numerical boundary
treatment at x = L slightly modifies the last row of B, but for the present
discussion we are not going to concern ourselves with this issue. Using (5.4),
the eigenvalues of B are

λ j = − c

�x

(
i cos

π j

N

)
j = 1, 2, . . . , N − 1

where, we have assumed that B is (N – 1) × (N – 1). Thus, the eigenvalues of
the matrix resulting from semi-discretization of the convection equation, (5.11),
are purely imaginary, i.e., λ j = iω j , where, ω j = − c

�x (cos π j
N ). An eigenvector

decomposition analysis similar to that done above for the diffusion equation
leads to the key conclusion that the solution is a superposition of modes,
where each mode’s temporal behavior is given by eiω j t , which has oscillatory
or sinusoidal (non-decaying) character.

This is a good place to pause and reflect on the important results deduced
from semi-discretization of two important equations. Spatial discretizations
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of (5.1) and (5.11) have led to important insights into the behaviors of the
respective solutions. These two equations are examples of two limiting cases,
one with a decaying solution (negative real eigenvalues) and the other with
oscillatory behavior (imaginary eigenvalues). Diagonalizations of the matrices
arising from discretizations uncoupled the systems into equations of the form

y′ = λy.

This of course, is the familiar model equation used in Chapter 4 for the analysis
of numerical methods for ordinary differential equations. This model acts as
an important bridge between numerical methods for ODEs and the time ad-
vancement schemes for PDEs. It is through this bridge that virtually all the
results obtained for ODEs will be directly applicable to the numerical solution
of time-dependent PDEs.

Recall that the analysis of ODEs was performed for complex λ. In the case
of ODEs we argued that λ must be complex to model sinusoidal behavior arising
from higher order ODEs. Here we see that the real and imaginary parts of λ

model two very different physical systems, namely diffusion and convection.
The case with λ real and negative is a model for the partial differential equa-
tion (5.1), and the case with λ purely imaginary is a model for (5.11). Thus,
when applying standard time-step marching methods to these partial differen-
tial equations, the results derived for ODEs should be applicable. For example,
recall that application of the Euler scheme to y′ = λy was unstable for purely
imaginary λ. Thus, we can readily deduce that application of the explicit Euler
to the convection equation (5.11), with second-order central spatial differenc-
ing (5.12), will lead to an unconditionally unstable numerical solution, and the
application of the same scheme to the heat equation (5.1) is conditionally stable.

In the heat equation case, the maximum time step is obtained from the
requirement (Section 4.10)

|1 + �tλi | ≤ 1 i = 1, 2, 3, . . . , N − 1,

which leads to

�t ≤ 2

|λ|max

where |λ|max is the magnitude of the eigenvalue with the largest modulus of the
matrix obtained from semi-discretization of (5.1). Using the expression for this
largest eigenvalue given in (5.6) leads to

�t ≤ �x2

2α
. (5.13)

This is a rather severe restriction on the time step. It implies that increasing the
spatial accuracy (reducing �x) must be accompanied by a significant reduction
in the time step.
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EXAMPLE 5.2 Convection Equation

We consider numerical solutions of the homogeneous convection equation

∂u
∂t

+ c
∂u
∂x

= 0 x ≥ 0, t ≥ 0,

with the initial and boundary conditions

u(0, t ) = 0 u(x, 0) = e−200(x−0.25)2
.

Although the proper spatial domain for this partial differential equation
is semi-infinite as indicated earlier, numerical implementation requires a
finite domain. Thus, for this example, we arbitrarily truncate the domain
to 0 ≤ x ≤ 1. Numerical formulation starts by first discretizing the PDE in
space using a second-order central difference scheme, giving the following
system of coupled ordinary differential equations

du
dt

= − c
2�x

B[−1, 0, 1]u.

The coefficient matrix on the right hand side is a skew-symmetric ma-
trix and therefore has purely imaginary eigenvalues. Explicit Euler is un-
stable for systems with purely imaginary eigenvalues, and therefore we ex-
pect an unconditionally unstable solution if explicit Euler is used for the
time marching scheme in this problem. Nevertheless, we will attempt a nu-
merical solution using second-order central differencing in the interior of
the domain. A one-sided differencing scheme is used on the right bound-
ary to allow the waves to pass smoothly out of the computational domain.
The solution with c = 1, �x = 0.01, and �t = 0.01 is plotted in Figure 5.3.
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Figure 5.3 Numerical solutions of the convection equation in Example 5.2 using
the explicit Euler time advancement and second-order central difference in space.
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Figure 5.4 Numerical solutions of the convection equation in Example 5.2 using
fourth-order Runge–Kutta time advancement, and second-order central difference in
space.

We see that the numerical solution is indeed unstable and the instability
sets in even before the disturbance reaches the artificial outflow boundary
at x = 1.

The stability diagram for the fourth-order Runge–Kutta scheme includes
a portion of the imaginary axis (see Figure 4.8) and therefore, we expect this
method to be conditionally stable for the convection equation considered
in this example (having purely imaginary eigenvalues). Results of a fourth-
order Runge–Kutta calculation with c = 1, �x = 0.01, and �t = 0.01 are
given in Figure 5.4.

This appears to be an accurate solution, showing the initial disturbance
propagating out of the computational domain with only a small amplitude
error which could be reduced by refining the time step and/or the spatial
grid spacing. We will further discuss our choice of the time step for this
example in the following sections.

5.2 von Neumann Stability Analysis

The preceding stability analysis uses the eigenvalues of the matrix obtained
from a semi-discretization of the partial differential equation at hand. Different
spatial differencing schemes lead to different stability criteria for a given time
advancement scheme. We shall refer to this type of analysis as the matrix stability
analysis. Since boundary conditions are implemented in the semi-discretization,
their effects are accounted for in the matrix stability analysis. The price paid for
this generality is the need to know the eigenvalues of the matrix that arises from
the spatial discretization. Unfortunately, analytical expressions for the eigen-
values are only available for very simple matrices, and therefore, the matrix
stability analysis is not widely used.
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Experience has shown that in most cases, numerical stability problems arise
solely from the (full) discretization of the partial differential equation inside the
domain and not from the boundary conditions. von Neumann’s stability analysis
is a widely used (back of an envelope) analytical procedure for determining the
stability properties of a numerical method applied to a PDE that does not account
for the effects of boundary conditions. In fact, it is assumed that the boundary
conditions are periodic; that is, the solution and its derivatives are the same at
the two ends of the domain. The technique works for linear, constant coefficient
differential equations that are discretized on uniformly spaced spatial grids.

Let’s demonstrate von Neumann’s technique by applying it to the discrete
equation

φ
(n+1)
j = φ

(n)
j + α�t

�x2

(
φ

(n)
j+1 − 2φ

(n)
j + φ

(n)
j−1

)
. (5.14)

Equation (5.14) results from approximating the spatial derivative in (5.1) with
the second-order central difference and using the explicit Euler for time ad-
vancement. The key part of von Neumann’s analysis is to assume a solution of
the form

φ
(n)
j = σ neikx j (5.15)

for the discrete equation (5.14). Note that the assumption of spatial periodicity
is already worked into the form of the solution in (5.15); the period is 2π/k. To
check whether this solution works, we substitute (5.15) into (5.14) and obtain

σ n+1eikx j = σ neikx j + α�t

�x2
σ n(eikx j+1 − 2eikx j + eikx j−1

)
.

Noting that

x j+1 = x j + �x and x j−1 = x j − �x

and dividing both sides by σ neikx j leads to

σ = 1 +
(

α�t

�x2

)
[2 cos(k�x) − 2]. (5.16)

For stability, we must have |σ | ≤ 1 (otherwise, σ n in (5.15) would grow
unbounded): ∣∣∣∣1 +

(
α�t

�x2

)
[2 cos(k�x) − 2]

∣∣∣∣ ≤ 1.

In other words, we must have

−1 ≤ 1 +
(

α�t

�x2

)
[2 cos(k�x) − 2] ≤ 1.
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The right-hand inequality is always satisfied since [2 cos(k�x) − 2] is always
less than or equal to zero. The left-hand inequality can be recast as(

α�t

�x2

)
[2 cos(k�x) − 2] ≥ −2

or

�t ≤ �x2

α[1 − cos(k�x)]
.

The worst (or the most restrictive) case occurs when cos(k�x) = −1. Thus,
the time step is limited by

�t ≤ �x2

2α
.

This is identical to (5.13), which was obtained using the matrix stability analysis.
However, the agreement is just a coincidence; in general, there is no reason to
expect such perfect agreement between the two methods of stability analysis
(each of which assumed different boundary conditions for the same PDE).

In summary, the von Neumann analysis is an analytical technique that is
applied to the full (space–time) discretization of a partial differential equation.
The technique works whenever the space-dependent terms are eliminated after
substituting the periodic form of the solution given in (5.15). For example, if in
(5.1), α were a known function of x, then the von Neumann analysis would not,
in general, work. In this case σ would have to be a function of x and the simple
solution given in (5.16) would no longer be valid. The same problem would
arise if a non-uniformly spaced spatial grid were used. Of course, in these cases
the matrix stability analysis would still work, but (for variable α or non-uniform
meshes) the eigenvalues would not be available via an analytical formula such
as (5.4) moreover, one would have to resort to well-known numerical techniques
to estimate the eigenvalue with the highest magnitude for a given N. However,
in case such an estimate is not available, experience has shown us that using
the maximum value of α(x) and/or the smallest �x in (5.13) gives an adequate
estimate for �tmax.

5.3 Modified Wavenumber Analysis

In Section 2.3 the accuracies of finite difference operators were evaluated by nu-
merically differentiating eikx and comparing their modified wavenumbers with
the exact wavenumber. In this section, the modified wavenumbers of differenc-
ing schemes are used in the analysis of the stability characteristics of numerical
solutions of partial differential equations. This is the third method of stability
analysis for PDEs discussed in this chapter.

The modified wavenumber analysis is very similar to the von Neumann
analysis; in many ways it is more straightforward. It is intended to readily
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expand the range of applicability of what we have learned about the stability
properties of a time-marching scheme for ordinary differential equations to
the application of the same time-advancement method to partial differential
equations.

Consider the heat equation (5.1). Assuming a solution of the form

φ(x, t) = ψ(t)eikx

and substituting into (5.1) leads to

dψ

dt
= −αk2ψ. (5.17)

In the assumed form of the solution, k is the wavenumber. In practice, instead of
using the analytical differentiation that led to (5.17), one uses a finite difference
scheme to approximate the spatial derivative. For example, using the second-
order central finite difference scheme, we have

dφ j

dt
= α

φ j+1 − 2φ j + φ j−1

�x2
j = 1, 2, 3, . . . , N − 1. (5.18)

Let’s assume that

φ j = ψ(t)eikx j

is the solution for the (semi-) discretized equation (5.18). Substitution in (5.18)
and division by eikx j leads to

dψ

dt
= − 2α

�x2
[1 − cos(k�x)]ψ

or

dψ

dt
= −αk ′2ψ, (5.19)

where

k ′2 = 2

�x2
[1 − cos(k�x)].

By analogy to equation (5.17), k′ is called the modified wavenumber, which
was first introduced in Section 2.3. Application of any other finite difference
scheme instead of the second-order scheme used here would have also led to the
same form as (5.19), but with a different modified wavenumber. As discussed in
Section 2.3, each finite difference scheme has a distinct modified wavenumber
associated with it.

Now, we can apply our knowledge of numerical analysis of ODEs to (5.19).
The key observation is that (5.19) is identical to the model ordinary differential
equation y′ = λy, with λ = −αk ′2. In Chapter 4, we extensively studied the
stability properties of various numerical methods for ODEs with respect to this
model equation. Now, using the modified wavenumber analysis, we can readily
obtain the stability properties of any of those time-advancement methods when
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applied to a partial differential equation. All we have to do is replace λ with
−αk ′2 in our ODE analysis. For example, recall from Section 4.3 that when the
explicit Euler method was applied to y′ = λy, with λ real and negative, the time
step was bounded by

�t ≤ 2

|λ| .

For the heat equation, this result is used as follows. If the explicit Euler time-
marching scheme is applied to the partial differential equation (5.1) in conjunc-
tion with the second-order central difference for the spatial derivative, the time
step should be bounded by

�t ≤ 2
2α

�x2 [1 − cos(k�x)]
.

The worst case scenario (i.e., the maximum limitation on the time step) occurs
when cos(k�x) = −1, which leads to (5.13), which was obtained with the von
Neumann analysis.

The advantage of the modified wavenumber analysis is that the stability
limits for different time-advancement schemes applied to the same equation are
readily obtained. For example, if instead of the explicit Euler we had used a
fourth-order Runge–Kutta scheme, the stability limit would have been

�t ≤ 2.79�x2

4α
,

which is obtained directly from the intersection of the stability diagram for the
fourth-order Runge–Kutta with the real axis (see Figure 4.8). Similarly, since
−αk ′2 is real and negative, it is readily deduced that application of the leapfrog
scheme to (5.1) would lead to numerical instability.

As a further illustration of the modified wavenumber analysis, consider
the convection equation (5.11). Suppose, the second-order central difference
scheme is used to approximate the spatial derivative. In the wavenumber space
(which we reach by assuming solution of the form φ j = ψ(t)eikx j ), the semi-
discretized equation is written as

dψ

dt
= −ik ′cψ, (5.20)

where

k ′ = sin(k�x)

�x
(5.21)

is the modified wavenumber (for the second-order central difference scheme)
that was derived in Section 2.3. Thus, in the present case the corresponding
λ in the model equation, y′ = λy, is −ik ′c, which is purely imaginary. Thus,
we would know, for example, that time advancement with the explicit Euler or
second-order Runge–Kutta would lead to numerical instabilities. On the other
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hand if the leapfrog method is used, the maximum time step would be given by

�tmax = 1

k ′c
= �x

c sin(k�x)
.

Again we will consider the worst case scenario, which leads to

�tmax = �x

c
or

c�t

�x
≤ 1. (5.22)

The non-dimensional quantity c�t/�x is called the CFL number, which is
named after the mathematicians Courant, Friedrich, and Lewy. In numerical
solutions of wave or convection type equations, the term “CFL number” is
often used as an indicator of the stability of a numerical method. For example, if
instead of leapfrog we had applied a fourth-order Runge–Kutta (in conjunction
with the second-order finite difference for the spatial derivative) to (5.11), then
in terms of the CFL number, the stability restriction would have been expressed
as (see Figure 4.8)

CFL ≤ 2.83. (5.23)

One of the useful insights that can be deduced from the modified wavenum-
ber analysis is the relationship between the maximum time step and the accuracy
of the spatial differencing, which is used to discretize a partial differential equa-
tion. We have seen in examples of both the heat and convection equations, that
the maximum time step allowed is limited by the worst case scenario, which
is inversely proportional to the maximum value of the corresponding modified
wavenumber. In Figure 2.2 the modified wavenumbers for three finite difference
schemes were plotted. Note that the more accurate schemes have higher peak
values for their modified wavenumbers. This means that in general, the more
accurate spatial differencing schemes impose more restrictive constraints on the
time step. This result is, of course, in accordance with our intuition; the more
accurate schemes do a better job of resolving the high wavenumber components
(small scales) of the solution, and the small scales have faster time scales that
require smaller time steps to capture them.

EXAMPLE 5.3 Modified Wavenumber Stability Analysis

We will use the modified wavenumber analysis to determine the stability
of the numerical methods in Examples 5.1 and 5.2. Applying a modified
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wavenumber analysis to the heat equation of Example 5.1 results in the
following ordinary differential equation

dψ

dt
= −αk ′2ψ.

If the second-order spatial central differencing is used, the worst case (or the
largest value) of k′2 is

k ′2 = 4
�x2

.

Now using the stability limits we found in our treatment of ordinary differ-
ential equations we can predict the stability of various marching methods
applied to this partial differential equation. For the application of the ex-
plicit Euler method we get a time-step constraint of

�t ≤ �x2

2α
,

which is identical to that of the more general (and difficult) eigenvalue
analysis. For the numerical values of Example 5.1 this constraint results
in �t ≤ 0.00125. For fourth-order Runge–Kutta we predict that

�t ≤ 2.79�x2

4α
= 0.00174

for stable solution. Since the modified wavenumber for this particular equa-
tion and the differencing scheme used is a negative real number, we would
predict that marching with leapfrog would result in an unstable solution.

Similarly, we may analyze the stability of the numerical solution of the
convection equation in Example 5.2. A modified wavenumber analysis of
the equation yields

dψ

dt
= −ick ′ψ.

For the second-order central differencing scheme, the worst case (i.e., the
largest) modified wavenumber is

k ′ = 1
�x

.

Since −ick ′ is pure imaginary we know that the Euler method would be un-
stable. Similarly, the time-step advancement by fourth-order Runge–Kutta
should be limited by (see Figure 4.8)

�t ≤ 2.83�x
c

.

Taking �x = 0.01 and c = 1 as in Example 5.2 gives �t ≤ 0.028. The time
step used with leapfrog would be limited by

�t ≤ �x
c

= 0.01.
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In summary, the modified wavenumber analysis offers a useful procedure for
the stability analysis of time-dependent partial differential equations. It readily
applies the results derived for ODEs to PDEs. The domain of applicability of the
modified wavenumber analysis is nearly the same as that for the von Neumann
analysis, i.e., linear, constant-coefficient PDEs with uniformly spaced spatial
grid. The modified wavenumber analysis can be applied to problems where the
space and time discretizations are clearly distinct, for example, if one uses a
third-order Runge–Kutta scheme for time advancement and a second-order fi-
nite difference for spatial discretization. However, some numerical algorithms
for PDEs are written such that the temporal and spatial discretizations are in-
termingled (see for example, Exercises 5 and 7(c) at the end of this chapter and
the Du Fort–Frankel scheme (5.30) in Section 5.6). For such schemes the von
Neumann analysis is still applicable, but the modified wavenumber analysis
is not.

5.4 Implicit Time Advancement

We have established that semi-discretization of the heat equation leads to a stiff
system of ODEs. We have also seen that for the heat equation, the stability limits
for explicit schemes are too stringent. For these reasons implicit methods are
preferred for parabolic equations. A popular implicit scheme is the trapezoidal
method (introduced in Section 4.6 for ODEs), which is often referred to as the
Crank–Nicolson method when applied to the heat equation,

∂φ

∂t
= α

∂2φ

∂x2
. (5.1)

Application of the trapezoidal method to (5.1) leads to

φ
(n+1)
j − φ

(n)
j

�t
= α

2

[
∂2φ(n+1)

∂x2
+ ∂2φ(n)

∂x2

]
j

j = 1, 2, 3, . . . , N − 1.

The subscript j refers to the spatial grid and the superscript n refers to the
time step. Approximating the spatial derivatives with the second-order finite
difference scheme on a uniform mesh yields

φ
(n+1)
j − φ

(n)
j = α�t

2

[
φ

(n+1)
j+1 − 2φ

(n+1)
j + φ

(n+1)
j−1

�x2
+ φ

(n)
j+1 − 2φ

(n)
j + φ

(n)
j−1

�x2

]
.

Let β = α�t/2�x2. Collecting the unknowns (terms with the superscript
(n + 1)) on the left-hand side results in the following tridiagonal system of
equations:

−βφ
(n+1)
j+1 + (1 + 2β)φ(n+1)

j − βφ
(n+1)
j−1 = βφ

(n)
j+1 + (1 − 2β)φ(n)

j + βφ
(n)
j−1.
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Thus, at every time step a tridiagonal system of equations must be solved. The
right-hand side of the system is computed using data from the current time
step, n, and the solution at the next step, n + 1, is obtained from the solution
of the tridiagonal system. In general, application of an implicit method to a
partial differential equation requires solving a system of algebraic equations.
In one dimension, this does not cause any difficulty since the resulting matrix
is a simple tridiagonal and requires on the order of N arithmetic operations to
solve (see Appendix).

We can investigate the stability properties of this scheme using the von
Neumann analysis or the equivalent modified wavenumber analysis. Recall that
when applied to the model equation y′ = λy, the amplification factor for the
trapezoidal method was (see Section 4.6)

σ = 1 + λ�t/2

1 − λ�t/2
.

Using the modified wavenumber analysis, the amplification factor for the trape-
zoidal method applied to the heat equation is obtained by substituting −αk ′2

for λ in this equation. Here, k ′ is the modified wavenumber which was derived
in (5.19):

k ′2 = 2

�x2
[1 − cos(k�x)].

Thus,

σ = 1 − α�t
�x2 [1 − cos(k�x)]

1 + α�t
�x2 [1 − cos(k�x)]

.

Since 1 − cos(k�x) ≥ 0, the denominator of σ is larger than its numerator, and
hence |σ | ≤ 1. Thus, we do not even have to identify the worst case scenario,
the method is unconditionally stable.

Notice that for large α�t/�x2, σ approaches –1, which leads to temporal
oscillations in the solution. However, the solution will always remain bounded.
These undesirable oscillations in the solution are the basis for a controversial
characteristic of the Crank–Nicolson method. To some, oscillation is an indi-
cator of numerical inaccuracy and is interpreted as a warning: even though the
method is stable, the time step is too large for accuracy and should be reduced.
This warning feature is considered a desirable property. Others feel that it is
more important to have smooth solutions (though possibly less accurate)
because in more complex coupled problems (e.g., non-linear convection–
diffusion) the oscillations can lead to further complications and inaccuracies.

A less accurate implicit method that does not lead to temporal oscillations
at large time steps is the backward Euler method. Application of the backward
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Euler time advancement and central space differencing to (5.1) results in

φ
(n+1)
j − φ

(n)
j = α�t

[
φ

(n+1)
j+1 − 2φ

(n+1)
j + φ

(n+1)
j−1

�x2

]
.

Let γ = α�t/�x2. Collecting the unknowns on the left-hand side results in the
following tridiagonal system of equations:

−γφ
(n+1)
j+1 + (1 + 2γ )φ(n+1)

j − γφ
(n+1)
j−1 = γφ

(n)
j j = 1, 2, 3, . . . , N − 1.

Thus, the cost of applying the backward Euler scheme, which is only first-order
accurate, is virtually the same as that for the second-order accurate Crank–
Nicolson method. In both cases the major cost is in solving a tridiagonal system.
Recall from Section 4.4 that the amplification factor for the backward Euler
method when applied to y′ = λy is

σ = 1

1 − λ�t
.

Thus, for the heat equation, the amplification factor is

σ = 1

1 + 2α�t
�x2 [1 − cos(k�x)]

.

The denominator is always larger than 1, and therefore, as expected, application
of the backward Euler scheme to the heat equation is unconditionally stable.
However, in contrast to the Crank–Nicolson scheme, σ −→ 0 as �t becomes
very large, and the solution does not exhibit undesirable oscillations (although
it would be inaccurate).

EXAMPLE 5.4 Crank–Nicolson for the Heat Equation

We consider the same inhomogeneous heat equation as in Example 5.1. Tak-
ing β = α�t/2�x2, the tridiagonal system for the Crank–Nicolson time ad-
vancement of this equation is

−βT (n+1)
j+1 + (1 + 2β)T (n+1)

j − βT (n+1)
j−1

= βT (n)
j+1 + (1 − 2β)T (n)

j + βT (n)
j−1 + �t

f (n)
j + f (n+1)

j

2
,

where, as before, f is the inhomogeneous term

f (n)
j = (π2 − 1)e−tn sin πx j .

Crank–Nicolson is unconditionally stable and we may therefore take a much
larger time step than the �t = 0.001 used in Example 5.1. Taking α = 1 and
�t = 0.05, a very accurate solution to time t = 2.0 is calculated with only
a fiftieth of the number of time steps taken in Example 5.1 (see Figure 5.5).
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Figure 5.5 Numerical solution of the heat equation in Example 5.1 using the Crank–
Nicolson method with �t = 0.05.

The price paid for this huge decrease in the number of time steps is the
cost of solving a tridiagonal system at each time step. However, algorithms
for performing this task are very efficient (see Appendix), and in this exam-
ple Crank–Nicolson offers a more efficient solution. This solution agrees to
within a couple of percentage points with the exact solution. Larger time
steps will give stable but less accurate solutions.

5.5 Accuracy via Modified Equation

We typically think of a numerical solution of a PDE as a set of numbers defined
on a discrete set of space and time grid points. We can also think of the numerical
solution as a continuous differentiable function that has the same values as the
numerical solution on the computational grid points. In this section we will refer
to this interpolant as the numerical solution. Since the numerical solution is an
approximation to the exact solution, it does not exactly satisfy the continuous
partial differential equation at hand, but it satisfies a modified equation. We shall
derive the actual equation that a numerical solution satisfies and show how this
knowledge can be used to select the numerical parameters of a method, resulting
in better accuracy. In the next section we will show how this approach is used
to identify an inconsistent numerical method.

Consider the heat equation (5.1). Let φ̃ be the exact solution and φ be a
continuous and differentiable function that assumes the same values as the
numerical solution on the space–time grid. As an example, consider the dis-
cretization resulting from the application of the explicit Euler and second-order
spatial differencing to (5.1):

φ
(n+1)
j − φ

(n)
j

�t
= α

φ
(n)
j+1 − 2φ

(n)
j + φ

(n)
j−1

�x2
. (5.24)
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Let L[φ] be the difference operator:

L
[
φ

(n)
j

] = φ
(n+1)
j − φ

(n)
j

�t
− α

φ
(n)
j+1 − 2φ

(n)
j + φ

(n)
j−1

�x2
. (5.25)

Note that L[φ j ] = 0 if φ satisfies (5.24). Given a function φ and a set of grid
points in space and time, L[φ(n)

j ] is well defined. To obtain the modified equa-
tion, every term in (5.25) is expanded in Taylor series about φ

(n)
j , and the

resulting series are substituted in (5.25). For example,

φ
(n+1)
j = φ

(n)
j + �t

∂φ
(n)
j

∂t
+ �t2

2

∂2φ
(n)
j

∂t2
+ · · · .

Thus,

φ
(n+1)
j − φ

(n)
j

�t
= ∂φ

(n)
j

∂t
+ �t

2

∂2φ
(n)
j

∂t2
+ · · · .

Similarly,

φ
(n)
j+1 − 2φ

(n)
j + φ

(n)
j−1

�x2
= ∂2φ(n)

∂x2

∣∣∣∣∣
j

+ �x2

12

∂4φ(n)

∂x4

∣∣∣∣∣
j

+ · · · .

Substitution in (5.25) leads to

L
[
φ

(n)
j

] −
⎛⎝∂φ

(n)
j

∂t
−α

∂2φ(n)

∂x2

∣∣∣∣∣
j

⎞⎠ = −α
�x2

12

∂4φ(n)

∂x4

∣∣∣∣∣
j

+ �t

2

∂2φ
(n)
j

∂t2
+ · · · .

(5.26)

This equation was derived without reference to a specific set of space–time grid
points. In other words, the indices j and n are generic, and equation (5.26)
applies to any point in space and time. That is,

L[φ] −
(

∂φ

∂t
− α

∂2φ

∂x2

)
= −α

�x2

12

∂4φ

∂x4
+ �t

2

∂2φ

∂t2
+ · · · (5.27)

Let φ be the solution of the discrete equation (5.24). Then, L[φ] = 0, and it
can be seen that the numerical solution actually satisfies the following modified
differential equation instead of (5.1).

∂φ

∂t
− α

∂2φ

∂x2
= α

�x2

12

∂4φ

∂x4
− �t

2

∂2φ

∂t2
+ · · ·

Note that as �t and �x approach zero, the modified equation approaches the
exact PDE. The modified equation also shows that the numerical method is
first-order accurate in time and second-order in space. Furthermore, if either
the time step or the spatial mesh size is reduced without reducing the other,
one simply gets to the point of diminishing returns, as the overall error remains
finite. However, there may be a possibility of cancelling errors by a judicious



5.6 DU FORT–FRANKEL METHOD: AN INCONSISTENT SCHEME 121

choice of the time step in terms of the spatial step. We shall explore this
possibility next.

If φ̃ is the exact solution of the PDE in (5.1), then

∂φ̃

∂t
= α

∂2φ̃

∂x2
(5.28)

and

L[φ̃] = ε �= 0,

where

ε = −α
�x2

12

∂4φ̃

∂x4
+ �t

2

∂2φ̃

∂t2
+ · · · .

But, since φ̃ satisfies (5.28), we have

∂2φ̃

∂t2
= α

∂3φ̃

∂t∂x2
= α2 ∂4φ̃

∂x4
.

Therefore,

ε =
(

−α
�x2

12
+ α2 �t

2

)
∂4φ̃

∂x4
+ · · · .

Thus, we can increase the accuracy of the numerical solution by setting the term
inside the parenthesis to zero, i.e.,

α
�x2

12
= α2 �t

2
.

In other words, by selecting the space and time increments such that

α�t

�x2
= 1

6
,

we could significantly increase the accuracy of the method. This constraint is
within the stability limit derived earlier (i.e., α�t/�x2 ≤ 1/2), but is rather
restrictive, requiring a factor of 3 reduction in time step from the stability limit
which is rather stiff to begin with.

5.6 Du Fort–Frankel Method: An Inconsistent Scheme

An interesting application of the modified equation analysis arises in the study of
a numerical scheme developed by Du Fort and Frankel for the solution of the heat
equation. We will first derive the method and then analyze it using its modified
equation. The method is derived in two steps. Consider the combination of the
leapfrog time advancement (Section 4.9) and the second-order central spatial
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differencing

φ
(n+1)
j − φ

(n−1)
j

2�t
= α

�x2

[
φ

(n)
j+1 − 2φ

(n)
j + φ

(n)
j−1

] + O(�t2, �x2). (5.29)

This scheme is formally second-order accurate in both space and time. However,
it is unconditionally unstable (see Example 5.3). The Du Fort–Frankel scheme
is obtained by substituting for φ

(n)
j , in the right-hand side of (5.29), the following

second-order approximation

φ
(n)
j = φ

(n+1)
j + φ

(n−1)
j

2
+ O(�t2).

Rearranging terms results in

(1 + 2γ )φ(n+1)
j = (1 − 2γ )φ(n−1)

j + 2γφ
(n)
j+1 + 2γφ

(n)
j−1, (5.30)

where γ = α�t/�x2. It turns out that this method is unconditionally stable! In
other words, the Du Fort–Frankel scheme has the same stability property as for
implicit methods, but with a lot less work per time step. Recall that application
of an implicit method requires matrix inversions at each time step, whereas this
method does not. As we shall see, this is too good to be true.

Let us derive the modified equation for the Du Fort–Frankel scheme. Sub-
stituting Taylor series expansions for φ

(n)
j+1, φ

(n)
j−1, φ

(n+1)
j , and φ

(n−1)
j into (5.30)

and performing some algebra leads to

∂φ

∂t
− α

∂2φ

∂x2
= −�t2

6

∂3φ

∂t3
+ α�x2

12

∂4φ

∂x4
− α�t2

�x2

∂2φ

∂t2
− α�t4

12�x2

∂4φ

∂t4
+ · · · .

This is the modified equation for the Du Fort–Frankel scheme for the heat
equation. It reveals a fundamental problem on the right-hand side. The difficulty
is due to the third and some of the subsequent terms on the right-hand side.
For a given time step, if we refine the spatial mesh, the error actually increases!
Thus, one cannot increase the accuracy of the numerical solution by arbitrarily
letting �x → 0 and �t → 0. For example, the third term approaches zero only
if �t approaches zero faster than �x does. For this reason the Du Fort–Frankel
scheme is considered to be an inconsistent numerical method.

EXAMPLE 5.5 Du Fort–Frankel

Again considering the heat equation of Example 5.1 and taking γ = α�t/�x2

the advancement algorithm for Du Fort–Frankel is

(1 + 2γ )T (n+1)
j = 2γT (n)

j+1 + (1 − 2γ )(n−1)
j + 2γT (n)

j−1 + 2�t f (n)
j ,

where f is the inhomogeneous term,

f (n)
j = (π2 − 1)e−tn sin πx j .
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Figure 5.6 Numerical solution of the heat equation in Example 5.1 using the Du Fort–
Frankel method with �t = 0.025, �x = 0.05.

Taking α = 1 and �t = 0.025, we repeat the calculation of Example 5.4 us-
ing the Du Fort–Frankel time advancement. This solution has comparable
accuracy to the Crank–Nicolson method with twice the number of time steps
(see Figure 5.6).

Like Crank–Nicolson, the Du Fort–Frankel scheme is unconditionally
stable, but has the advantage of being of explicit form, so matrix inversions
are not necessary to advance the solution and it is therefore simpler to pro-
gram and cheaper to solve (on a per time-step basis). However, this sec-
tion shows that the method is inconsistent. With larger choices of �t with
respect to �x , the coefficients of some of the error terms in the modified
equation are no longer small and one actually solves a different partial dif-
ferential equation. For example, taking �t = 2�x = 0.1 the solution is sta-
ble but grossly incorrect (resulting in negative temperatures!) as shown in
Figure 5.7.
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Figure 5.7 Numerical solution of the heat equation in Example 5.1 using the Du Fort–
Frankel method with �t = 0.1, �x = 0.05.
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5.7 Multi-Dimensions

Up to this point we have considered partial differential equations in one space di-
mension and time. Most physical problems are posed in two- or three-
dimensional space. In this and the following sections we will explore some
of the main issues and algorithms for solving partial differential equations in
multi-dimensional space and time. We will see that as far as implementation of
a numerical scheme is concerned, higher dimensions do not cause additional
complications, as long as explicit time advancement is used. However, straight-
forward applications of implicit schemes lead to large systems of equations that
can easily overwhelm computer memory requirements. In Section 5.9 we will
introduce a clever algorithm to circumvent this problem.

Consider the two-dimensional heat equation

∂φ

∂t
= α

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
. (5.31)

with φ prescribed on the boundaries of a rectangular domain. For numerical
solution, we first introduce a grid in the xy plane as in Figure 5.8. Let φ

(n)
l, j

denote the value of φ at the grid point (l, j) at time step n. We use M + 1 grid
points in x and N + 1 points in y. The boundary points are at l = 0, M and
j = 0, N .

Application of any explicit numerical method is very straightforward. For
example, consider the explicit Euler in conjunction with the second-order central

Figure 5.8 Discretization of the domain in the xy plane.
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finite difference approximation for the spatial derivatives

φ
(n+1)
l, j − φ

(n)
l, j

�t
= α

[
φ

(n)
l+1, j − 2φ

(n)
l, j + φ

(n)
l−1, j

�x2
+ φ

(n)
l, j+1 − 2φ

(n)
l, j + φ

(n)
l, j−1

�y2

]
l = 1, 2, . . . , M − 1 j = 1, 2, . . . , N − 1, n = 0, 1, 2, · · · . (5.32)

Given an initial condition on the grid points, denoted by φ
(0)
l, j , for each l and

j one simply marches forward in time to obtain the solution at the subsequent
time steps. When l = 1 or l = M – 1, or j = 1 or j = N – 1, boundary values are
required, and their values from the prescribed (in this case Dirichlet) boundary
conditions are used. For example, for n = 0, all the terms with superscript 0
are obtained from the initial condition; equation (5.32) is then used to calculate
φ

(1)
l, j for all the interior points. Next, φ

(1)
l, j is used to compute φ

(2)
l, j , and so on.

Note that boundary conditions can be functions of time. Thus, at t = n�t , the
prescribed boundary data, φ

(n)
l,N , for example, are used when needed.

The stability properties of this scheme can be analyzed in the same man-
ner as in the one-dimensional case. Considering solutions of the form φ =
ψ(t)eik1x+ik2 y , the semi-discretized version of (5.31) transforms to

dψ

dt
= −α

(
k ′2

1 + k ′2
2

)
ψ (5.33)

where, k ′
1 and k ′

2 are the modified wavenumbers corresponding to x and y
directions respectively:

k ′2
1 = 2

�x2
[1 − cos(k1�x)]

(5.34)

k ′2
2 = 2

�y2
[1 − cos(k2�y)].

Since −α(k ′2
1 + k ′2

2 ) is real and negative and we are using the explicit Euler
time advancement, for stability we must have

�t ≤ 2

α
[ 2

�x2 [1 − cos(k1�x)] + 2
�y2 [1 − cos(k2�y]

] .
The worst case is when cos(k1�x) = −1 and cos(k2�y) = −1. Thus,

�t ≤ 1

2α
( 1

�x2 + 1
�y2

) . (5.35)

This is the basic stability criterion for the heat equation in two dimensions. It
is the stability limit for the numerical method consisting of the explicit Euler
time advancement and second-order central differencing for spatial derivatives.
As in Section 5.3, we can readily obtain the stability limits for different time
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advancement schemes or spatial differencing using the modified wavenumber
analysis. In the special case, �x = �y = h, we obtain

�t ≤ h2

4α
, (5.36)

which is two times more restrictive than the one-dimensional case. Similarly,
in three-dimensions one obtains

�t ≤ h2

6α
. (5.37)

5.8 Implicit Methods in Higher Dimensions

As in the case of the one-dimensional heat equation, the predicament of severe
time-step restriction with explicit schemes suggests using implicit methods. In
addition, we have shown in Section 5.7 that the stability restriction in multi-
dimensional problems is more severe than that in one dimension. Thus, we are
very motivated to explore the possibility of using implicit methods for multi-
dimensional problems.

As an example, consider application of the Crank–Nicolson scheme to the
two-dimensional heat equation:

φ(n+1) − φ(n)

�t
= α

2

[
∂2φ(n+1)

∂x2
+ ∂2φ(n+1)

∂y2
+ ∂2φ(n)

∂x2
+ ∂2φ(n)

∂y2

]
. (5.38)

Using second-order finite differences in space and assuming �x = �y = h,

we obtain:

φ
(n+1)
l, j − φ

(n)
l, j = α�t

2h2

[
φ

(n+1)
l+1, j − 2φ

(n+1)
l, j + φ

(n+1)
l−1, j + φ

(n+1)
l, j+1 − 2φ

(n+1)
l, j + φ

(n+1)
l, j−1

]
+ α�t

2h2

[
φ

(n)
l+1, j − 2φ

(n)
l, j + φ

(n)
l−1, j + φ

(n)
l, j+1 − 2φ

(n)
l, j + φ

(n)
l, j−1

]
.

(5.39)

Let β = α�t/2h2, collecting the unknowns on the left-hand side yields

−βφ
(n+1)
l+1, j + (1 + 4β)φ(n+1)

l, j − βφ
(n+1)
l−1, j − βφ

(n+1)
l, j+1 − βφ

(n+1)
l, j−1

= βφ
(n)
l+1, j + (1 − 4β)φ(n)

l, j + βφ
(n)
l−1, j + βφ

(n)
l, j+1 + βφ

(n)
l, j−1. (5.40)

This is a gigantic system of algebraic equations for φ
(n+1)
l, j , (l = 1, 2, . . . ,

M – 1; j = 1, 2, . . . , N – 1).
The best way to see the form of the matrix and gain an appreciation for the

problem at hand is to write down a few of the equations. We will first order the
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elements of the unknown vector φ as follows

φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1,1

φ2,1

φ3,1
...

φM−1,1

φ1,2

φ2,2

φ3,2
...

φM−1,2
...
...

φ1,N−1

φ2,N−1

φ3,N−1
...

φM−1,N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)

(5.41)

Note that φ is a vector with (M − 1) × (N − 1) unknown elements correspond-
ing to the number of interior grid points in the domain. Now, let us write down
some of the algebraic equations. For l = 1 and j = 1, equation (5.40) becomes

−βφ
(n+1)
2,1 + (1 + 4β)φ(n+1)

1,1 − βφ
(n+1)
0,1 − βφ

(n+1)
1,2 − βφ

(n+1)
1,0 = F (n)

1,1 ,

(5.42)

where F (n)
1,1 is the right-hand side of equation (5.40), which is known because

every term in it is evaluated at time step n. Next, we note that φ
(n+1)
0,1 and φ

(n+1)
1,0

in (5.42) are known from the boundary conditions and therefore should be
moved to the right-hand side of (5.42). Thus, the equation corresponding to
l = 1, j = 1 becomes

−βφ
(n+1)
2,1 + (1 + 4β)φ(n+1)

1,1 − βφ
(n+1)
1,2 = F (n)

1,1 + βφ
(n+1)
0,1 + βφ

(n+1)
1,0 .

The next equation in the ordering of φ shown in (5.41) is obtained by letting
l = 2, j = 1 in (5.40). Again, after moving the boundary term to the right-hand
side we get

−βφ
(n+1)
3,1 + (1 + 4β)φ(n+1)

2,1 − βφ
(n+1)
1,1 − βφ

(n+1)
2,2 = F (n)

21 + βφ
(n+1)
2,0 .

This process is continued for all the remaining l = 3, 4, . . . , (M – l) and j = 1.
Next, j is set equal to 2 and all the equations in (5.40) corresponding to l =
1, 2, 3, . . . , (M – 1) are accounted for. The process continues until j = (N – 1).
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After writing a few of these equations in matrix form, we see that a pattern
emerges. The resulting [(M − 1) × (N − 1)] × [(M − 1) × (N − 1)] matrix is
of block-tridiagonal form

A =

⎡⎢⎢⎢⎢⎣
B C
A B C

. . .
. . .

. . .
A B

⎤⎥⎥⎥⎥⎦ , (5.43)

where A, B, and C are (M – 1) × (M – 1) matrices, and there are N such B
matrices on the diagonal. In the present case, A and C are diagonal matrices
whereas B is tridiagonal,

B =

⎡⎢⎢⎢⎢⎣
1 + 4β −β

−β 1 + 4β −β

. . .
. . .

. . .
−β 1 + 4β

⎤⎥⎥⎥⎥⎦ A, C =

⎡⎢⎢⎢⎢⎣
−β

−β

. . .
−β

⎤⎥⎥⎥⎥⎦ .

Clearly, A is very large. For example, for M = 101 and N = 101, A has 108

elements. However, A is banded, and there is no need to store the zero elements
of the matrix outside its central band of width 2M ; in this case the required mem-
ory is reduced to 2(M − 1)2(N − 1). For the present case of uniform mesh spac-
ings in both x and y directions, there are other tricks that can be used to reduce
the required memory even further (one such method is described in Chapter 6).
However, for now, we are not going to discuss these options further and opt
instead for an alternative approach that is also applicable to higher dimensional
problems and has more general applicability, including to differential equations
with non-constant coefficients and non-uniform mesh distributions.

5.9 Approximate Factorization

The difficulty of working with large matrices resulting from straightforward
implementation of implicit schemes to PDEs in higher dimensions has led to
the development of the so-called split or factored schemes. As the name implies,
such schemes split a multi-dimensional problem to a series of one-dimensional
ones, which are much easier to solve. Of course, in general, this conversion
cannot be done exactly and some error is incurred. However, as we will show
below, the splitting error is of the same order as the error already incurred in
discretizing the problem in space and time. That is, the splitting approximation
does not erode the order of accuracy of the scheme. This is the second time
that we use this clever “trick” of numerical analysis; the first time was in the
implicit solution of non-linear ordinary differential equations by linearization.
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In the case of interest here, we note that the large matrix in (5.43) is obtained
after making a numerical approximation to the two-dimensional heat equation
by the Crank–Nicolson scheme. Therefore, one is not obligated to solve an
approximate system of equations exactly. It suffices to obtain the solution to
within the error already incurred by the spatial and temporal discretizations.
Thus, we are going to circumvent large matrices while maintaining the same
order of accuracy.

Consider application of the Crank–Nicolson method and the second-order
spatial differencing to the two-dimensional heat equation (with homogeneous
Dirichlet boundary conditions). Let’s rewrite equation (5.39) in the operator
notation

φ(n+1) − φ(n)

�t
= α

2
Ax

[
φ(n+1) + φ(n)] + α

2
Ay

[
φ(n+1) + φ(n)]

+ O(�t2) + O(�x2) + O(�y2), (5.44)

where Ax and Ay are the difference operators representing the spatial derivatives
in x and y directions respectively. For example, Axφ is a vector of length
(N − 1) × (M − 1) with elements defined as

φi+1, j − 2φi, j + φi−1, j

�x2
i = 1, 2, . . . , M − 1 j = 1, 2, . . . , N − 1.

We are also keeping track of errors to ensure that any further approximations
that are going to be made will be within the order of these original errors.
Equation (5.44) can be recast in the following form:

[
I − α�t

2
Ax − α�t

2
Ay

]
φ(n+1) =

[
I + α�t

2
Ax + α�t

2
Ay

]
φ(n)

+�t[O(�t2) + O(�x2) + O(�y2)].

Each side can be rearranged into a partial factored form as follows:

(
I − α�t

2
Ax

)(
I − α�t

2
Ay

)
φ(n+1) − α2�t2

4
Ax Ayφ

(n+1)

=
(

I + α�t

2
Ax

)(
I + α�t

2
Ay

)
φ(n) − α2�t2

4
Ax Ayφ

(n)

+ �t[O(�t2) + O(�x2) + O(�y2)].
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Taking the “cross terms” to the right-hand side and combining them leads to(
I − α�t

2
Ax

)(
I − α�t

2
Ay

)
φ(n+1) =

(
I + α�t

2
Ax

)(
I + α�t

2
Ay

)
φ(n)

+ α2�t2

4
Ax Ay

(
φ(n+1) − φ(n)) + �t

[
O(�t2) + O(�x2) + O(�y2)

]
.

Using Taylor series in t, it is easy to see that, φ(n+1) − φ(n) = O(�t). Thus, as
with the overall error of the scheme, the cross terms are O(�t3) and can be
neglected without any loss in the order of accuracy. Hence, we arrive at the
factored form of the discrete equations(

I − α�t

2
Ax

)(
I − α�t

2
Ay

)
φ(n+1) =

(
I + α�t

2
Ax

)(
I + α�t

2
Ay

)
φ(n).

(5.45)

This equation is much easier and more cost effective to implement than the large
system encountered in the non-factored form. Basically, the multi-dimensional
problem is reduced to a series of one-dimensional problems.

This is how the factored algorithm works. It is implemented in two steps.
Let the (known) right-hand side of (5.45) be denoted by f, and let

z =
(

I − α�t

2
Ay

)
φ(n+1). (5.46)

Then, z can be obtained from the following equation, which is obtained directly
from (5.45): (

I − α�t

2
Ax

)
z = f.

This equation can be recast into index notation

zi, j −
(

α�t

2

)
zi−1, j − 2zi, j + zi+1, j

�x2
= f (n)

i, j

or

− α�t

2�x2
zi+1, j +

(
1 + α�t

�x2

)
zi, j − α�t

2�x2
zi−1, j = fi, j . (5.47)

Thus, for each j = 1, 2, . . . , N – 1, a simple tridiagonal system is solved
for zi, j . In the computer program that deals with this part of the problem, the
tridiagonal solver is called within a simple loop running over the index j.
After calculating z, we obtain φ(n+1) from (5.46):(

I − α�t

2
Ay

)
φ(n+1) = z.
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In index notation, we have

− α�t

2�y2
φ

(n+1)
i, j+1 +

(
1 + α�t

�y2

)
φ

(n+1)
i, j − α�t

2�y2
φ

(n+1)
i, j−1 = zi, j . (5.48)

For each i = 1, 2, . . . , M – 1, a tridiagonal system of equations is solved for
φ

(n+1)
i, j . This part is implemented in the computer program in an identical fashion

to that used to solve for z, except that the loop is now over the index i.
Thus, with the factored algorithm, instead of solving one large system of size

(M − 1)2 × (N − 1)2, one solves (N − 1) tridiagonal systems of size (M − 1)
and (M − 1) tridiagonal systems of size (N − 1). The number of arithmetic
operations is on the order of M N , and the memory requirement is virtually
negligible.

There is an important point that needs to be addressed with regard to the
solution of the system (5.47). When i = 1 or M , boundary values for z are
required in the form of z0, j or zM, j . However, boundary conditions are only
prescribed for φ, the original unknown in the heat equation. We can obtain the
required boundary conditions for z from (5.46), the equation defining z. For
example, at the x = 0 boundary, z0, j is computed from

z0, j = φ
(n+1)
0, j − α�t

2

φ
(n+1)
0, j+1 − 2φ

(n+1)
0, j + φ

(n+1)
0, j−1

�y2
j = 1, 2, . . . , N − 1.

Note that φ
(n+1)
0, j ’s are prescribed as (time dependent) Dirichlet boundary

conditions for the heat equation. Similarly, boundary values of z can be obtained
at the other boundary, xN . If for example, φ(x = 0, y, t) is not a function of y
along the left (x = 0) boundary, then z would be equal to φ at the boundary.
But, if the prescribed boundary condition happens to be a function of y, then
z at the boundary differs from φ by an O(�t) correction proportional to the
second derivative of φ on the boundary.

In three dimensions, the use of approximate factorization becomes an essen-
tial necessity. Straightforward application of implicit methods without splitting
or factorization in three dimensions is virtually impossible. Fortunately, the
extension of the approximate factorization scheme described in this section to
three dimensions is trivial. The factored form of the Crank–Nicolson algorithm
applied to the 3D heat equation is(

I − α�t

2
Ax

)(
I − α�t

2
Ay

)(
I − α�t

2
Az

)
φ(n+1)

=
(

I + α�t

2
Ax

)(
I + α�t

2
Ay

)(
I + α�t

2
Az

)
φ(n) (5.49)

which is second order in space and time. The scheme can be implemented in
the same manner as in 2D by introducing suitable intermediate variables with
the corresponding boundary conditions.
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EXAMPLE 5.6 Approximate Factorization for the Heat Equation

Consider the following inhomogeneous two-dimensional heat equation

∂φ

∂t
=
(

∂2φ

∂x2
+ ∂2φ

∂y 2

)
+ q(x, y ),

with homogeneous initial and boundary conditions

φ(x, y , 0) = 0 φ(±1, y , t ) = 0 φ(x, ±1, t ) = 0

and

q(x, y ) = 2(2 − x2 − y 2).

Suppose, we wish to integrate this equation to the steady state (i.e., to the
point where ∂φ/∂t = 0). In fact, if the steady state solution is the only thing
we are interested in, then the accuracy of the transient part of the solu-
tion is not important, and we can take large time steps to decrease the cost
of the solution. An implicit method is therefore desirable. We choose the
Crank–Nicolson scheme and use an approximate factorization to avoid solv-
ing a large system. The source term q is not a function of time and therefore
q(n+1) = q(n) and the factorized system for advancing in time is (with α = 1)(

I − �t
2

Ax

)(
I − �t

2
Ay

)
φ(n+1) =

(
I + �t

2
Ax

)(
I + �t

2
Ay

)
φ(n) + �tq.

The solution proceeds as follows. The right-hand side consists of known
terms and therefore may be evaluated explicitly in steps. Taking

ξ (n) =
(

I + �t
2

Ay

)
φ(n),

we may evaluate ξ (n) at all points (i, j) by

ξ
(n)
i, j = φ

(n)
i, j + �t

2�y 2

(
φ

(n)
i, j+1 − 2φ

(n)
i, j + φ

(n)
i, j−1

)
.

Then, taking

r (n) =
(

I + �t
2

Ax

)
ξ (n) + �tq,

the right-hand side r is calculated by

r (n)
i, j = ξ

(n)
i, j + �t

2�y 2

(
ξ

(n)
i+1, j − 2ξ

(n)
i, j + ξ

(n)
i−1, j

)
+ �tqi, j .

We are left with the following set of equations to solve for φ at the next time
level (n + 1): (

I − �t
2

Ax

)(
I − �t

2
Ay

)
φ(n+1) = r (n).
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t = 0.0 t = .25 t = 1.0 
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11

Figure 5.9 Numerical solution of 2D heat equation using the approximate factorization
technique with �t = 0.05 and M = N = 20. The solution at t = 1 is near steady state.

This is solved in two phases as outlined in the text. First we define

η(n+1) =
(

I − �t
2

Ay

)
φ(n+1)

and solve the tridiagonal systems

η
(n+1)
i, j − �t

2�x2

(
η

(n+1)
i+1, j − 2η

(n+1)
i, j + η

(n+1)
i−1, j

)
= ri, j i = 1, 2, . . . , M − 1,

for j = 1, 2, . . . , N − 1. Boundary conditions are needed for η, and for this
problem, they are simply η0, j = ηM , j = 0. Then using the definition of η(n+1)

we solve M − 1 tridiagonal systems to calculate φ(n+1)

φ
(n+1)
i, j − �t

2�y 2

(
φ

(n+1)
i, j+1 − 2φ

(n+1)
i, j + φ

(n+1)
i, j−1

)
= η

(n+1)
i, j j = 1, 2, . . . , N − 1,

for i = 1, 2, . . . , M − 1. Boundary conditions (φi,0 = φi,N = 0) are applied to
φ and we have obtained the solution φ at the time level (n + 1). The first set of
numerical parameters chosen are �t = 0.05 and M = N = 20, for which the
results are plotted in Figure 5.9. By the time t = 1 (20 time steps) the solution
has converged to within ∼3% of the exact solution, φ = (x2 − 1)(y 2 − 1).

Taking �t = 1, the solution converges to within ∼1% of the exact steady
state solution in only four time steps. This solution is no longer time accu-
rate, but if we are concerned only with the steady state solution, approximate
factorization offers a very quick means of getting to it.

5.9.1 Stability of the Factored Scheme

We will now show that the factored version of the implicit scheme is also
unconditionally stable. Thus, at least for the heat equation, factorization does
neither affect the order of accuracy nor the stability of the scheme. Both the
von Neumann or the modified wavenumber analysis would work. With the
wavenumber analysis, one assumes a solution of the form,

φ
(n)
l j = ψneik1xl eik2 y j
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for (5.45). The spatial derivative operators in (5.45) are replaced by the corre-
sponding modified wavenumbers, −k ′2

1 ,−k ′2
2 given by equation (5.34),(

1 + α�t

2
k ′2

1

)(
1 + α�t

2
k ′2

2

)
ψn+1 =

(
1 − α�t

2
k ′2

1

)(
1 − α�t

2
k ′2

2

)
ψn.

Thus, the amplification factor is∣∣∣∣∣ψn+1

ψn

∣∣∣∣∣ =
∣∣∣∣∣
(
1 − α�t

2 k ′2
1

) (
1 − α�t

2 k ′2
2

)(
1 + α�t

2 k ′2
1

) (
1 + α�t

2 k ′2
2

) ∣∣∣∣∣ ≤ 1

which is always less than or equal to 1, implying that the method is uncondi-
tionally stable.

5.9.2 Alternating Direction Implicit Methods

The original split type method was introduced by Peaceman and Rachford in
1955∗. Their method for an implicit solution of the 2D heat equation is of the
operator splitting form rather than the factored form introduced earlier in this
section. For reasons that will become apparent shortly, their method is called the
alternating direction implicit (ADI) method. We will show that the ADI scheme
is an equivalent formulation of the factored scheme. The following derivation
of the ADI scheme is within the general scope of fractional step methods, where
different terms in a partial differential equation are advanced with different time
advancement schemes.

Consider the two-dimensional heat equation (5.31):

∂φ

∂t
= α

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
. (5.50)

The ADI scheme for advancing this equation from step tn to tn + �t begins with
splitting it into two parts: first, the equation is advanced by half the time step by
a “mixed” scheme consisting of the backward Euler scheme for the ∂2φ/∂x2

term and explicit Euler for ∂2φ/∂y2; next, starting from the newly obtained
solution at tn+1/2 the roles are reversed and the backward Euler is used for the
y derivative term and the explicit Euler for the x derivative term:

φ(n+1/2) − φ(n) = α�t

2

(
∂2φ(n+1/2)

∂x2
+ ∂2φ(n)

∂y2

)
(5.51)

φ(n+1) − φ(n+1/2) = α�t

2

(
∂2φ(n+1/2)

∂x2
+ ∂2φ(n+1)

∂y2

)
. (5.52)

The advantage of this procedure is that at each sub-step, one has a one-
dimensional implicit scheme that involves a simple tridiagonal solution as

∗ Peaceman, D. W., and Rachford, H. H., Jr. SIAM J., 3, 28, 1955.
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opposed to the large block-tridiagonal scheme in (5.43). Note that the method
is not symmetric with respect to x and y. In practice, to avoid the preferential
accumulation of round-off errors in any given direction, the ordering of implicit
and explicit treatments of the x and y derivatives are reversed at each time step.
For example, if equations (5.51) and (5.52) are used to advance from time step
n to n + 1, then to advance from n + 1 to n + 3/2, backward Euler is used
to advance the y derivative term and explicit Euler for the x derivative term;
and then from n + 3/2 to n + 2, explicit Euler is used for the y derivative and
backward Euler for the x derivative terms.

It is easy to show that the ADI scheme is equivalent to the factored scheme
in (5.45). To do this we will first write the equations (5.51) and (5.52) using the
operator notation introduced earlier:(

I − α�t

2
Ax

)
φ(n+1/2) =

(
I + α�t

2
Ay

)
φ(n) (5.53)

(
I − α�t

2
Ay

)
φ(n+1) =

(
I + α�t

2
Ax

)
φ(n+1/2). (5.54)

Equation (5.53) can be solved for φ(n+1/2),

φ(n+1/2) =
(

I − α�t

2
Ax

)−1 (
I + α�t

2
Ay

)
φ(n),

which is then substituted in (5.54) to yield

(
I − α�t

2
Ay

)
φ(n+1) =

(
I + α�t

2
Ax

)(
I − α�t

2
Ax

)−1 (
I + α�t

2
Ay

)
φ(n).

Since the (I + α�t/2Ax ) and (I − α�t/2Ax ) operators commute, we will
recover (5.45):(

I − α�t

2
Ax

)(
I − α�t

2
Ay

)
φ(n+1) =

(
I + α�t

2
Ax

)(
I + α�t

2
Ay

)
φ(n).

Finally, we have to address the implementation of boundary conditions. In (5.53)
boundary conditions are required for φ(n+1/2) at the two x boundaries. We refer to
these boundary conditions by φB , where B can be either boundary. Peaceman
and Rachford suggested using the prescribed boundary conditions for φ at
t = tn+1/2. Another boundary condition that is more consistent with the splitting
algorithm is derived as follows.

Equations (5.53) and (5.54) are rewritten as

φ(n+1/2) − α�t

2
Axφ

(n+1/2) =
(

I + α�t

2
Ay

)
φ(n)
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and

φ(n+1/2) + α�t

2
Axφ

(n+1/2) =
(

I − α�t

2
Ay

)
φ(n+1).

Adding these two equations and evaluating at the boundaries, we obtain

φ
(n+1/2)
B = 1/2

[(
I + α�t

2
Ay

)
φ

(n)
B +

(
I − α�t

2
Ay

)
φ

(n+1)
B

]
.

If there are no variations in the boundary conditions along the y direction,
then the boundary condition at the intermediate step is the arithmetic mean
of the boundary values at time steps n and n + 1, which is a second-order
approximation to the exact condition, φ(xB,y, tn+1/2).

5.9.3 Mixed and Fractional Step Methods

Using different time advancement schemes to advance different terms in a partial
differential equation has been a very powerful tool in numerical solution of com-
plex differential equations. In the case of ADI we used this approach to avoid
large matrices arising from implicit time advancement of multi-dimensional
equations. This approach has also been very effective in the numerical solution
of differential equations where different terms may have different characteristics
(such as linear and non-linear) or different time scales. In such cases, it is most
cost effective to advance the different terms using different methods.

For example, consider the Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (5.55)

This equation has a non-linear convection-like term and a linear diffusion term.
Based on our experiences with simple linear convection and diffusion equations,
we know that some numerical methods are suitable for one term and not for
the other. For example, the leapfrog method would probably be a good scheme
for a term that has convection behavior and would not be a good choice for the
diffusion phenomenon. Therefore, if we choose to advance the entire equation
with leapfrog, we would probably encounter numerical instabilities. Numerical
experiments have shown that this is indeed the case. Thus, it would be better to
advance just the convection term with leapfrog and use another scheme for the
diffusion term.

In another example, the value of ν may be such that the stability criterion for
the diffusive part of the equation as given in (5.13) would impose a particularly
severe restriction on the time step, which would call for an implicit scheme.
But, we may not want to deal with non-linear algebraic equations, and therefore
we would not want to apply it to the convection term. Let’s consider explicit
time advance for the convection term and an implicit scheme for the diffusion
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term. In fact a popular scheme for the Burgers equation is a combination of
time advancement with the Adams–Bashforth method (Chapter 4), which is an
explicit scheme, and the trapezoidal method for the diffusion term. This scheme
is written as follows:

u(n+1)−u(n) =−�t

2

(
3u(n) ∂u(n)

∂x
− u(n−1) ∂u(n−1)

∂x

)
+ ν�t

2

(
∂2u(n+1)

∂x2
+ ∂2u(n)

∂x2

)
,

which can be rearranged as

ν

2

∂2u(n+1)

∂x2
− u(n+1)

�t
= −u(n)

�t
+ 1

2

(
3u(n) ∂u(n)

∂x
− u(n−1) ∂u(n−1)

∂x

)
− ν

2

∂2u(n)

∂x2
.

This is a second-order algorithm in time. Now, we can use a suitable differencing
scheme for the spatial derivatives and then must solve a banded matrix at each
time step. Because of explicit treatment of the non-linear terms, they appear
only on the right-hand side and hence cause no difficulty.

Finally, for an interesting illustration of fractional step methods, we will
consider an example of the so-called locally one dimensional (LOD) schemes.
The motivation for using such schemes is the same as the approximate factor-
ization or ADI, that is, to reduce a complex problem to a sequence of simpler
ones at each time step. For example, the two-dimensional heat equation (5.31)
is written as the following pair of equations:

1

2

∂u

∂t
= α

∂2u

∂x2
(5.56)

1

2

∂u

∂t
= α

∂2u

∂y2
. (5.57)

In advancing the heat equation from step tn to step tn+1, equation (5.56) is
advanced from tn to tn+1/2, and (5.57) from tn+1/2 to tn+1. If the Crank–Nicolson
scheme is used to advance each of the equations (5.56) and (5.57) by δt/2, then
it is easy to show that this LOD scheme is identical to the ADI scheme of
Peaceman and Rachford given by equations (5.53) and (5.54); the LOD scheme
is just another formalism and a way of thinking about the fractional or split
schemes.

5.10 Elliptic Partial Differential Equations

Elliptic equations usually arise from steady state or equilibrium physical prob-
lems. From the mathematical point of view, elliptic equations are boundary
value problems where the solution is inter-related at all the points in the do-
main. That is, if a perturbation is introduced at one point, the solution is affected
instantly in the entire domain. In other words information propagates at infinite
speed in the domain of an elliptic problem. Elliptic problems are formulated
in closed domains, and boundary conditions are specified on the boundary.
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Standard elliptic equations include the Laplace equation,

∇2φ = 0, (5.58)

the Poisson equation,

∇2φ = f, (5.59)

and the Helmholtz equation,

∇2φ + α2φ = 0. (5.60)

Boundary conditions can be Dirichlet, where φ is prescribed on the boundary;
Neumann, where the normal derivative of φ is prescribed on the boundary; or
mixed where a combination of the two is prescribed, e.g.,

c1φ + c2
∂φ

∂n
= g, (5.61)

where n indicates the coordinate normal to the boundary.
The numerical treatment of problems (5.58)–(5.60) are essentially identical,

and for the subsequent discussion we will consider the Poisson equation in
two-dimensional Cartesian coordinates. Without loss of generality, the problem
is discretized in a rectangular domain in the (x, y) plane using a uniformly
spaced mesh. Suppose there are M + 1 grid points in the x direction (xi, i =
0, 1, 2, 3, . . . , M), with M – 1 interior points, and the boundaries are located at
x0 and xM respectively. Similarly, N + 1 points are used in the y direction. The
second derivatives in the ∇2 are approximated by second-order finite difference
operators. For simplicity we will assume that �x = �y = �. The equations for
φi, j become

φi+1, j − 4φi, j + φi−1, j + φi, j+1 + φi, j−1 = �2 fi, j , (5.62)

for i = 1, 2, . . . , M – 1 and j = 1, 2, . . . , N – 1.
Special treatment is required for points adjacent to the boundaries to in-

corporate the boundary conditions. For example, for i = 1 and for any j =
2, 3, . . . , N – 1, equation (5.62) becomes

φ2, j − 4φ1, j + φ1, j+1 + φ1, j−1 = �2 f1, j − φ0, j , (5.63)

where we assume that φ0, j is prescribed through Dirichlet boundary conditions
and hence it is moved to the right-hand side. Thus, non-zero Dirichlet boundary
conditions simply modify the right-hand side of (5.62). If the unknown φi, j is
ordered with first increasing i, that is,

[φ1,1, φ2,1, φ3,1, . . . , φM−1,1, φ1,2, φ2,2, φ3,2, . . .]
T ,

then the system of equations can be written in the form

Ax = b, (5.64)
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Figure 5.10 System of linear equations arising from discretizing (5.62) with M = 6,
N = 4.

which is displayed in Figure 5.10 for the special case of (M = 6, N = 4)
and Dirichlet boundary conditions. The matrix A is a block-tridiagonal matrix
similar to the one obtained in Section 5.8. The blocks are (M – 1) × (M – 1)
matrices, and there are (N – 1) of them on the main diagonal. Discretization
with higher order schemes would lead to other block banded matrices, such as
the block pentadiagonal obtained with the fourth-order central differencing.

If Neumann or mixed boundary conditions were used, then some of the
matrix elements in Figure 5.10 in addition to the right-hand-side vector would
have to be modified. To illustrate how this change in the system comes about,
suppose that the boundary condition at x = 0 is prescribed to be ∂φ/∂x = g(y),
and suppose we use a second-order one-sided difference scheme to approximate
this condition:

−3φ0, j + 4φ1, j − φ2, j

2�
= g j .

By solving for φ0, j using this expression, substituting in (5.63), and rearranging,
we obtain

2

3
φ2, j − 8

3
φ1, j + φ1, j+1 + φ1, j−1 = �2 f1, j −2

3
�g j .

It can be seen that the coefficients of φ2, j and φ1, j and therefore the corre-
sponding elements of matrix A have changed in addition to the right-hand–side
vector.
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For this particular case of the Poisson equation in two-dimensions and with
uniform mesh, the diagonal blocks are tridiagonal matrices and the sub- and
super-diagonal blocks are diagonal with constant elements throughout. This
property has been used to deduce efficient direct methods of solution. (A class
of these methods based on Fourier expansions will be introduced in Chapter 6.)
Such methods are not readily applicable for general elliptic problems in complex
geometry (as opposed to, say, rectangular) with non-uniform meshes. Moreover,
the matrix A is often too large for direct inversion techniques. Alternatives to
direct methods are the highly popular iterative methods, which we will discuss
next.

5.10.1 Iterative Solution Methods

In this and the subsequent sections, we consider the solution of equation (5.64)
by iterative techniques. In fact the methodology that will be developed is for
solving general systems of linear algebraic equations, Ax = b, which may or
may not have been derived from a particular partial differential equation. In
solving a system of algebraic equations iteratively, one begins with a “guess”
for the solution, and uses an algorithm to iterate on this guess which hopefully
improves the solution. In contrast to Gauss elimination where the exact solu-
tion of a system of linear equations is obtained (to within computer round-off
error), with iterative methods an approximate solution to a prescribed accuracy
is sought. In the problems of interest in this chapter, where the system of al-
gebraic equations is obtained from numerical approximation (discretization) of
a differential equation, the choice of iterative methods over Gauss elimination
is further justified by realizing that the equations represent an approximation
to the differential equation and therefore it would not be necessary to obtain
the exact solution of approximate equations. The expectation is that accuracy
improves by increasing the number of iterations; that is, the method converges
to the exact solution as the number of iterations increases. Moreover, matrices
obtained from discretizing PDEs are usually sparse (a lot more zero than non-
zero elements) and iterative methods are particularly advantageous in memory
requirements with such systems.

Consider (5.64), and let A = A1 – A2. Equation (5.64) can be written as

A1x = A2x + b. (5.65)

An iterative solution technique is constructed as follows:

A1x(k+1) = A2x(k) + b, (5.66)

where k = 0, 1, 2, 3, . . . is the iteration index. Starting from an initial guess
for the solution x(0), equation (5.66) is used to solve for x(1), which is then
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used to find x(2), and so on. For the algorithm (5.66) to be viable, the following
requirements must be imposed:

1. A1 should be easily “invertible.” Otherwise, at each iteration we are faced
with solving a system of equations that can be as difficult as the original
system, Ax = b.

2. Iterations should converge (hopefully rapidly), that is,

lim
k→∞

x(k) = x.

We will first establish a criterion for convergence. Let the error at the kth
iteration be denoted by ε(k):

ε(k) = x − x(k).

Subtracting (5.65) from (5.66) leads to

A1ε
(k+1) = A2ε

(k)

or

ε(k+1) = A−1
1 A2ε

(k).

From this expression we can easily deduce that the error at iteration k is related
to the initial error via

ε(k) = (
A−1

1 A2
)k
ε(0). (5.67)

For convergence we must have

lim
k→∞

ε(k) = 0.

We know from linear algebra (see Appendix) that this will happen if

ρ = |λi |max ≤ 1, (5.68)

where λi are the eigenvalues of the matrix A−1
1 A2. ρ is called the spectral radius

of convergence of the iterative scheme and is related to its rate of convergence.
The performance of any iterative scheme and its rate of convergence are directly
connected to the matrix A and its decomposition into A1 and A2.

5.10.2 The Point Jacobi Method

The simplest choice for A1 is the diagonal matrix D consisting of the diagonal
elements of A, aii . Surely, a diagonal matrix satisfies the first requirement
that it be easily invertible. For the matrix of Figure 5.10, A1 would be the
diagonal matrix with –4 on the diagonal. A−1

1 is readily computed to be the
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diagonal matrix with −1/4 on the diagonal. A2 can be deduced from the matrix
of Figure 5.10 by replacing every 1 with –1 and each –4 with zero. Thus,
application of the point Jacobi method to the system of equations in Figure 5.10
leads to the following iterative scheme:

φ(k+1) = −1

4
A2φ

(k) − 1

4
R, (5.69)

where R is the right-hand vector in Figure 5.10. Using the index notation,
equation (5.69) can be written as follows:

φ
(k+1)
i j = 1

4

[
φ

(k)
i−1, j + φ

(k)
i+1, j + φ

(k)
i, j−1 + φ

(k)
i, j+1

]
− 1

4
Ri j , (5.70)

where the indices i and j are used in the same order as in the φ column of
Figure 5.10. Starting with an initial guess φ

(0)
i j , subsequent approximations,

φ
(1)
i j , φ

(2)
i j , . . . , are easily computed from (5.70). Note that application of the

point Jacobi does not involve storage or manipulation with any matrices. One
simply updates the value of φ at the grid point (i j) using a simple average of the
surrounding values (north, south, east, and west) from the previous iteration.

For convergence, the eigenvalues of the matrix A−1
1 A2 = −1/4A2 must be

computed. For this particular example, it can be shown using a discrete analog of
the method of separation of variables (used to solve partial differential equations
analytically) that the eigenvalues are

λmn = 1

2

[
cos

mπ

M
+ cos

nπ

N

]
m = 1, 2, 3, . . . , M − 1

n = 1, 2, 3, . . . , N − 1. (5.71)

It is clear that |λmn| < 1 for all m and n, and the method converges. The
eigenvalue with the largest magnitude determines the rate of convergence∗. For
large M and N, we expand the cosines in equation (5.71) (with n = m = 1) in
power series, and to leading order we get

|λ|max = 1 − 1

4

[
π2

M2
+ π2

N 2

]
+ · · ·

Thus, for large M and N , |λ|max is only slightly less than 1, and the convergence
is very slow. This is why the point Jacobi method is rarely used in practice, but
it does provide a good basis for development and comparison with improved
methods.

∗ This can be seen by diagonalization of the matrix A−1
1 A2. For defective systems (matrices without

a complete set of eigenvectors), unitary triangularization can be used to prove the same result.
The reader is referred to the Appendix and standard textbooks in linear algebra for these matrix
transformations.
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EXAMPLE 5.7 Number of Iterations for Specified Accuracy

How many iterations are required to reduce the initial error in the solution
of a Poisson equation by a factor of 10–m using the point Jacobi method? Let
n be the required number of iterations and B = A−1

1 A2 in (5.67). Taking the
norm of both sides of (5.67) and using the norm properties (see Appendix),
we obtain ∥∥ε(n)

∥∥ = ∥∥Bnε(0)
∥∥

≤ ∥∥Bn
∥∥

2

∥∥ε(0)
∥∥

≤ ∥∥B
∥∥n

2

∥∥ε(0)
∥∥.

Since B is symmetric, it can be shown that ‖B‖2 = |λ|max . Thus∥∥ε(n)
∥∥ ≤ |λ|nmax

∥∥ε(0)
∥∥.

To reduce the error by factor of 10–m, we should have

|λ|nmax ≤ 10−m.

Taking the logarithms of both sides and solving for n

n ≥ −m
log |λ|max

,

where we have taken into account that log |λi | < 0 by reversing the direction
of the inequality. For example, suppose in a rectangular domain we use
M = 20 and N = 20, then

λmax = cos
π

20
= 0.988.

To reduce the initial error by a factor of 1000, i.e., m = 3, we require 558
iterations. For M = N = 100, about 14000 iterations would be required to
reduce the error by a factor of 1000.

In the next two sections we will discuss methods that improve on the point
Jacobi scheme.

5.10.3 Gauss–Seidel Method

Consider the point Jacobi method in equation (5.70), which is a recipe for
computation of φ

(k+1)
i, j given all the data at iteration k. Implementation of (5.70)

in a computer program consists of a loop over k and two inner loops over indices
i and j. Clearly, φ

(k+1)
i−1, j and φ

(k+1)
i, j−1 are computed before φ

(k+1)
i, j . Thus, in equation

(5.70) instead of using φ
(k)
i−1, j and φ

(k)
i, j−1, one can use their updated values, which

are presumably more accurate. This gives us the formula for the Gauss–Seidel
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method:

φ
(k+1)
i j = 1

4

[
φ

(k+1)
i−1, j + φ

(k)
i+1, j + φ

(k+1)
i, j−1 + φ

(k)
i, j+1

]
− 1

4
Ri j . (5.72)

In the matrix splitting notation of Section 5.10.1,

A = A1 − A2,

where for Gauss–Seidel

A1 = D − L and A2 = U, (5.73)

D is the diagonal matrix consisting of the diagonal elements of A, L is the lower
triangular matrix consisting of the negative of the lower triangular elements of
A, and U is an upper triangular matrix consisting of the negative of the upper
triangular elements of A. The matrices L and U are not to be confused with the
usual LU decomposition of A discussed in the context of Gauss elimination in
linear algebra (see Appendix). Since A1 is lower triangular, the requirement (1)
in Section 5.10.1 is met (even though more operations are required to invert a
lower triangular matrix than a diagonal one). It turns out that for the discrete
Poisson equation considered in Section 5.10, the eigenvalues of the matrix
A−1

1 A2 are simply squares of the eigenvalues of the point Jacobi method, i.e.,

λmn = 1

4

[
cos

mπ

M
+ cos

nπ

N

]2

m = 1, 2, 3, . . . , M − 1

n = 1, 2, 3, . . . , N − 1. (5.74)

Thus, the Gauss–Seidel method converges twice as fast as the point Jacobi
method (see Example 5.7) and hence would require half as many iterations as
the point Jacobi method to converge to within a certain error tolerance.

5.10.4 Successive Over Relaxation Scheme

One of the most successful iterative methods for the solution of a system of al-
gebraic equations is the successive over relaxation (SOR) method. This method
attempts to increase the rate of convergence of the Gauss–Seidel method by
introducing a parameter into the iteration scheme and then optimizing it for fast
convergence. We have already established that the rate of convergence depends
on the largest eigenvalue of the iteration matrix, A−1

1 A2. Our objective is then to
find the optimal parameter to reduce as much as possible the largest eigenvalue.
Consider the Gauss–Seidel method for the solution of (5.66) with A1 and A2

given by (5.73):

(D − L)φ(k+1) = Uφ(k) + b. (5.75)
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Let the change in the solution between two successive iterations be denoted by

d = φ(k+1) − φ(k).

Thus, for Gauss–Seidel, or for that matter, any iterative method, we have the
following identity:

φ(k+1) = φ(k) + d.

We now attempt to increase (accelerate) the change between two successive
iterations by using an acceleration parameter; that is,

φ(k+1) = φ(k) + ωd, (5.76)

where ω > 1 is the acceleration or “relaxation” parameter. Note that if ω were
less than 1 we would be decelerating (reducing) the change at each iteration;
with ω = 1 the Gauss–Seidel method is recovered. Thus, in SOR one first uses
the Gauss–Seidel method (5.75) to compute an intermediate solution, φ̃:

Dφ̃(k+1) = Lφ(k+1) + Uφ(k) + b. (5.77)

We do not yet accept this as the solution at the next iteration; we want to increase
the incremental change from the previous iteration. The SOR solution at the
next iteration is then given by

φ(k+1) = φ(k) + ω
(
φ̃(k+1) − φ(k)), (5.78)

where the relaxation parameter ω is yet to be determined and hopefully op-
timized. To study the convergence properties of the method, we eliminate φ̃(k+1)

between equations (5.77) and (5.78) and solve for φ(k+1):

φ(k+1) = (I − ωD−1L)−1[(1 − ω)I + ωD−1U ]︸ ︷︷ ︸
GSOR

φ(k)+(I −ωD−1L)−1ωD−1b.

Convergence is dependent on the eigenvalues of the matrix GSOR which is
the iteration matrix, A−1

1 A2, for SOR. It can be shown that for the discretized
Poisson operator, the eigenvalues are given by

λ
1
2 = 1

2

(
± |μ| ω ±

√
μ2ω2 − 4(ω − 1)

)
, (5.79)

where μ is an eigenvalue of the point Jacobi matrix, G J = D−1(L + U ).
To optimize convergence, one should select the relaxation parameter ω to

minimize the largest eigenvalue λ (we choose plus signs in (5.79)). It turns
out that dλ/dω = 0 does not have a solution, but the corresponding func-
tional relationship (5.79) has an absolute minimum when dλ/dω is infinite (see
Figure 5.11). At this point, the argument under the square root in (5.79) is zero.
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Figure 5.11 The eigenvalues λ of the matrix GSOR plotted versus ω according to (5.79)
with μmax = 0.9945. This value of μmax corresponds to a 31 × 31 mesh and is obtained
from (5.71) using M = N = 30 and m = n = 1.

Thus, the minimum of the largest eigenvalue occurs at

ωopt = 2

1 +
√

1 − μ2
max

(5.80)

where μmax is the largest eigenvalue of the Point–Jacobi method. Recall that
|μmax| is just slightly less than 1 and therefore ωopt is just under 2. The optimum
value of ω usually used is between 1.7 and 1.9. The precise value depends
on μmax and therefore on the number of grid points used. For problems with
irregular geometry and non-uniform mesh, ωopt cannot be obtained analytically
but must be found by numerical experiments. For example, to solve a Poisson
equation several times with different right-hand sides, first obtain ω by numer-
ical experiments and then use it for the “production runs.”

EXAMPLE 5.8 Iterative Solution of an Elliptic Equation

We again consider the problem of Example 5.6, but now we will solve it by
iteration rather than time advancing the solution to steady state. The steady
state PDE is the Poisson equation

−∇2φ = q q = 2(2 − x2 − y 2)

with the boundary conditions

φ(±1, y ) = 0 φ(x, ±1) = 0.

No initial condition is required as the problem is no longer time dependent.
We will choose as an initial guess for our iterative solution φ(0)(x, y ) = 0.
The problem will be solved with the point Jacobi, Gauss–Seidel, and SOR
algorithms. Spatial derivatives are calculated with second-order central dif-
ferences (�x = �y = �).

φi+1, j − 2φi, j + φi−1, j

�2
+ φi, j+1 − 2φi, j + φi, j−1

�2
= −qi, j .
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With k specifying the iteration level, the different algorithms are

1. Point Jacobi

φ
(k+1)
i, j = 1

4

[
φ

(k)
i+1, j + φ

(k)
i−1, j + φ

(k)
i, j+1 + φ

(k)
i, j−1

]+ �2

4
qi, j .

2. Gauss–Seidel

φ
(k+1)
i, j = 1

4

[
φ

(k)
i+1, j + φ

(k+1)
i−1, j + φ

(k)
i, j+1 + φ

(k+1)
i, j−1

]+ �2

4
qi, j .

3. Successive over relaxation

φ̃i, j = 1
4

[
φ

(k)
i+1, j + φ

(k+1)
i−1, j + φ

(k)
i, j+1 + φ

(k+1)
i, j−1

]
+ �2

4
qi, j

φ
(k+1)
i, j = φ

(k)
i, j + ω

(
φ̃i, j − φ

(k)
i, j

)
.

The number of iterations needed to bring each solution to within 0.01% of
the exact solution are shown in the table:

Method Iterations
Point Jacobi 749
Gauss–Seidel 375
SOR (ω = 1.8) 45

The SOR method is probably the first example of a procedure where the
convergence of an iterative scheme is enhanced by clever manipulation of the
eigenvalues of the iteration matrix, A−1

1 A2. A variant of this procedure, referred
to as pre-conditioning, has received considerable attention in numerical analy-
sis. In its simplest form, one pre-multiplies the system of equations at hand by a
carefully constructed matrix that yields a more favorable eigenvalue spectrum
for the iteration matrix.

5.10.5 Multigrid Acceleration

One of the most powerful acceleration schemes for the convergence of iterative
methods in solving elliptic problems is the multigrid algorithm. The method
is based on the realization that different components of the solution converge
to the exact solution at different rates and hence should be treated differently.
Suppose the residual or the error vector in the solution is represented as a
linear combination of a set of basis vectors which when plotted on the grid
would range from smooth to rapidly varying (just like low- and high-frequency
sines and cosines). It turns out that, as the examples below will demonstrate,
the smooth component of the residual converges very slowly to zero and the
rough part converges quickly. The multigrid algorithm takes advantage of this
to substantially reduce the overall effort required to obtain a converged solution.
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Recall that our objective was to solve the equation

Aφ = b,

where A is a matrix obtained from a finite difference approximation to a dif-
ferential equation. Let ψ = φ(n) be an approximation to the solution φ, which
is obtained from an iterative scheme after n iterations. The residual vector r is
defined as

Aψ = b − r. (5.81)

The residual approaches zero if the approximate solution ψ approaches the
exact solution φ. Subtracting these two equations leads to an equation for the
error ε = φ − ψ in terms of the residual r

Aε = r, (5.82)

which is called the residual equation. Clearly, as the residual goes to zero, so
does the error and vice versa. Accordingly, we often talk about driving the resid-
ual to zero in our iterative solution process, and we measure the performance
of a given solution procedure in terms of the number of iterations required to
drive the residual to zero.

For illustration purposes, consider the one-dimensional boundary value
problem:

d2u

dx2
= sin kπx 0 ≤ x ≤ 1 (5.83)

u(0) = u(1) = 0.

The integer k is called the wavenumber and is an indicator of how many
oscillations the sine wave would go through in the domain. Higher values of
k correspond to more oscillations or “rougher” behavior. The exact solution
is, of course, u = −1/k2π2 sin kπx ; but we will pretend we don’t know this
and embark on solving the problem using a finite difference approximation on
N + 1 uniformly spaced grid points of size h = 1/N :

u j+1 − 2u j + u j−1

h2
= sin kπx j j = 1, 2, . . . , N − 1 (5.84)

u0 = uN = 0.

Suppose, as we would do in real world non-trivial problems, we start the iterative
process with a completely ignorant initial guess, u(0) = 0. From (5.81), the
initial residual is r j = sin kπ jh. We will use the Gauss–Seidel as the basic
iteration scheme which, when applied to the original equation, takes the form

u(n+1)
j = 1

2

[
u(n)

j+1 + u(n+1)
j−1 − h2 sin kπ jh

]
,

where n is the iteration index.
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Figure 5.12 The maximum absolute value of the residual r (at the grid points) against
the number of iterations for the solution of (5.84) with N = 64, using several values of k.

Figure 5.12 shows the evolution of the maximum residual, r = b − Au(n),
with the number of iterations for different values of wavenumber k. It is clear
that the convergence is faster for higher values of k. That is, the residual, and
hence the error, goes to zero faster for more rapidly varying right-hand sides.
Now, consider a slightly more complicated right-hand side for (5.83):

d2u

dx2
= 1

2
[sin πx + sin 16 πx] (5.85)

u(0) = u(1) = 0.

The residual as a function of the number of iterations is shown in Figure 5.13.
Notice that, initially, the residual goes down rapidly and then it virtually stalls.
This type of convergence history is observed frequently in practice when stan-
dard iterative schemes are used. The reason for this behavior is that the rapidly
varying part of the residual goes to zero quickly and the smooth part of it re-
mains and as we have seen in the previous example, diminishes slowly. The
initial residual, which is the same as the right-hand side of the differential equa-
tion, and its profile after 10 and 100 iterations are shown in Figure 5.14. Clearly
only the smooth part of the residual has remained after 100 iterations.

Perhaps the key observation in the development of the multigrid algorithm
is that a slowly varying function on a fine grid would appear as a more rapidly
varying function (or rougher) on a coarse grid. This can be illustrated quantita-
tively by considering sin kπx evaluated on N + 1 grid points in 0 ≤ x ≤ 1:

sin kπx j = sin kπ jh = sin
kπ j

N
.

Let N be even. The range of wavenumbers k that can be represented on this grid
is 1 ≤ k ≤ N − 1. A sine wave with wavenumber k = N/2 has a wavelength
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Figure 5.13 The maximum absolute value of the residual r (at the grid points) against
the number of iterations for the solution of the finite difference approximation to (5.85)
with N = 64.

equal to four grid points, where the grid points are at the maxima, minima, and
the zero crossings. Let k = km be in the first half of wavenumbers allowed, i.e.,
1 ≤ km ≤ N/2. The values of sin kmπx j evaluated at the even-numbered grid
points are

sin
2kmπ j

N
= sin

kmπ j

N/2
,

which is identical to the same function discretized on the coarse grid of N/2 + 1
points, but now km belongs to the upper half of the wavenumbers allowed on
this coarse grid. Therefore, a relatively low wavenumber sine function on a fine

Figure 5.14 The residual at iteration numbers 0, 10, and 100 for the solution of the
finite difference approximation to 5.85 with N = 64.
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grid appears as a relatively high wavenumber sine function on a coarse grid of
half the size.

Thus, according to our earlier observations of the convergence rates of it-
erative solutions, we might get faster convergence on the smooth part of the
solution, if we transfer the problem to a coarse grid. And since the smooth
part of the solution does not require many grid points to be represented, such a
transfer would not incur a large error. This is the multigrid strategy: as soon as
the convergence of the residual stalls (as in Figure 5.13), the iterative process is
transferred to a coarse grid. On the coarse grid, the smooth part of the residual
is annihilated faster and cheaper (because of fewer grid points); after this is
accomplished, one can interpolate the residual back to the fine grid and work
on the high wavenumber parts. This back and forth process between the fine
and coarse grids continues until overall convergence is achieved. In transferring
data from fine grid to coarse grid (called restriction) we can simply take every
other data point. For transfer between coarse and fine grid (called prolongation)
we can use a straightforward linear interpolation.

The basic dual-grid multigrid algorithm is summarized below:

1. Perform a few iterations on the original equation, Aφ = b, on the fine grid
with the mesh spacing h. Let the resulting solution be denoted by ψ. Cal-
culate the residual r = b − Aψ on the same grid.

2. Transfer the residual to a coarse grid (restriction) of mesh spacing 2h, and on
this grid iterate on the error equation Aε = r , with the initial guess ε0 = 0.

3. Interpolate (prolongation) the resulting ε to the fine grid. Make a correction
on the previous ψ by adding it to ε, i.e., ψnew = ψ + ε. Use ψnew as the
initial guess to iterate on the original problem, Aφ = b.

4. Repeat the process.

Another point that comes to mind is why stop at only one coarse grid? After
a few iterations on a coarse grid where some of the low-frequency components
of the residual are reduced, we can move on to yet a coarser grid, perform a few
iterations there and so on. In fact the coarsest grid that can be considered is a
grid of one point where we can get the solution directly and then work backward
to finer and finer grids. When we return to the finest grid, and if the residual
has not sufficiently diminished, we can repeat the whole process again. This
recursive thinking and the use of a hierarchy of grids (each half the size of the
previous one) is a key part of all multigrid codes. Three recursive approaches
to multigrid are illustrated in Figure 5.15. Figure 5.15(a) shows the recursive
algorithm that we just discussed and is referred to as the V cycle. The other two
sketches in Figure 5.15 illustrate the so-called W cycle and the full multigrid
cycle (FMC). In FMC one starts the problem on the coarsest grid and uses the
result as the initial condition for the finer mesh and so on. After reaching the
finest grid one usually proceeds with the W cycle.
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Figure 5.15 Grid selection for (a) V cycle, (b) W cycle, and (c) full multigrid cycle
(FMC) algorithms. R refers to restriction or transfer from fine to coarse grid, P refers to
prolongation or transfer from coarse to fine grid.

EXAMPLE 5.9 One-Dimensional V Cycle Multigrid

We now solve the boundary value problem in (5.85) using a V cycle multi-
grid algorithm with Gauss–Seidel as the basic iteration scheme. The finest
grid has N = N0 = 64, the coarsest grid has N = 2 (one unknown), and each
of the other grids has half the value of N of the previous one. At each grid,
the iteration formula is

ε
(n+1)
j = 1

2

[
ε

(n)
j+1 + ε

(n+1)
j−1

]
− h2

2
r j j = 1, · · · , N − 1, (5.86)

where n is the iteration index and h = 1/N . The initial guess is u(0) = 0,
for N = 64. At each node of the V cycle, only one Gauss–Seidel iteration is
performed, meaning that n takes only the value zero in the formula above.
The residual r is restricted from a grid of mesh spacing h to a grid of mesh
spacing 2h according to

r2h
j = 1

4

(
rh

2 j−1 + 2rh
2 j + rh

2 j+1

)
j = 1, . . . , N /2 − 1,

where N /2 + 1 is the total number of points on the coarser grid; the su-
perscripts indicate the grid of the corresponding mesh spacing. Working
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Figure 5.16 The maximum absolute value of the residual r (at the grid points) after
each V cycle in Example 5.9.

backward to finer grids, the error is interpolated linearly

εh
2 j = ε2h

j j = 0, . . . , N

εh
2 j+1 =

ε2h
j + ε2h

j+1

2
j = 0, . . . , N − 1,

where 2N + 1 is the total number of points on the finer grid. The whole V
cycle is repeated 15 times. The maximum absolute value of the residual at
the end of each V cycle is plotted in Figure 5.16. The number of times the
right-hand side of (5.86) is evaluated in one V cycle is

2[(N0 − 1) + (N0/2 − 1) + · · · + (N0/16 − 1)] + (N0/32 − 1),

which is (125/32)N0 − 11 = 239 for N0 = 64. We see from Figure 5.16 that
it takes five V cycles for the maximum value of the residual to drop below
10−3. If the calculations used to obtain Figure 5.13 (Gauss–Seidel scheme
without multigrid) were continued, we would need 2580 iterations for the
residual to drop below 10−3. This means (2580 × 63)/(5 × 239) ≈ 136 times
more work. The power of multigrid acceleration is evident.

Note that if the residual r is restricted by simply taking every other point
from the finer grid,

r2h
j = rh

2 j j = 1, . . . , N /2 − 1,

we would need more iterations for the residual to drop to a certain value. In
the present example the residual would drop below 10−12 after 27 V cycles,
compared to 15 V cycles in Figure 5.16.
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EXAMPLE 5.10 V Cycle Multigrid for the Poisson Equation

We apply the V cycle multigrid algorithm to the Poisson equation of Ex-
ample 5.8. We use the same procedure as in the previous example with the
following changes. The finest grid has 33 × 33 total points. Three Gauss–
Seidel iterations are performed at each node of the V cycle. The residual r
is restricted according to

r2h
i j = 1

16

[
rh

2i−1,2 j−1 + rh
2i+1,2 j−1 + rh

2i−1,2 j+1 + rh
2i+1,2 j+1

+ 2
(
rh

2i,2 j−1 + rh
2i,2 j+1 + rh

2i−1,2 j + rh
2i+1,2 j

)+ 4rh
2i,2 j

]
i, j = 1, . . . , N /2 − 1.

The error is interpolated according to

εh
2i,2 j = ε2h

i j

εh
2i+1,2 j = 1

2

(
ε2h

i j + ε2h
i+1, j

)
εh

2i,2 j+1 = 1
2

(
ε2h

i j + ε2h
i, j+1

)
εh

2i+1,2 j+1 = 1
4

(
ε2h

i j + ε2h
i+1, j + ε2h

i, j+1 + ε2h
i+1, j+1

)
.

Twenty-five fine grid iterations (one initial Gauss–Seidel iteration and four
V cycles) were needed to bring the solution to within 0.01% of the exact
solution. In Example 5.8, the Gauss–Seidel scheme needed 375 iterations.

There is a lot more to multigrid than we can discuss in this book in terms
of variations to the basic algorithm, programming details, and analysis. Fortu-
nately, a wealth of literature exists on multigrid methods as applied to many
partial differential equations that the reader can consult.

A side benefit of our discussions in this section was the preview provided
of the power of a tool of analysis that one has when thinking about the various
components of the algorithm and their dynamics in terms of Fourier modes. In
the next chapter, we will introduce a new brand of numerical analysis based on
Fourier and other modal decompositions.

EXERCISES

1. Use the modified wavenumber analysis to show that the application of the
second-order one-sided spatial differencing scheme

∂2φ

∂ x2

∣∣∣∣
j

= −φ j+3 + 4φ j+2 − 5φ j+1 + 2φ j

�x2

to the heat equation would lead to numerical instability.
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2. Give the details of a second-order numerical scheme for the 1D heat equation
in the domain 0 ≤ x ≤ 1 with the following boundary conditions (encountered
in problems with mixed convection and conduction heat transfer):

φ = 1 at x = 0, and aφ + b
∂φ

∂x
= c at x = 1.

Formulate the problem for both explicit and implicit time advancements. In
the latter case show how the derivative boundary condition would change the
matrix elements. In the text we discussed a similar problem where derivative
boundary conditions were evaluated using one-sided finite differences.
Note: Another method of implementing derivative boundary conditions is by
placing a “ghost” point outside the domain (in this case, just outside of
x = 1), the equations and boundary conditions are then enforced at the physical
boundary.

3. Use the von Neumann analysis to show that the Du Fort–Frankel scheme is
unconditionally stable. This problem cannot be done analytically, the von Neu-
mann analysis leads to a quadratic equation for the amplification factor. The
amplification factor is a function of γ = α�t/�x2 and the wavenumber. Sta-
bility can be demonstrated by plotting the amplification factor for different
values of γ as a function of wavenumber.

4. Suppose the 1D convection equation (5.11) is advanced in time by the leapfrog
method and for spatial differencing either the second-order central differencing
or the fourth-order Padé scheme is used. Compare the maximum CFL num-
bers for the two spatial differencing schemes. How does CFLmax change with
increasing spatial accuracy?

5. Stability analysis: effect of mixed boundary conditions.
Consider the unsteady heat equation in one-dimensional domain, 0 < x < L .

∂θ

∂t
= ∂2θ

∂x2

With boundary conditions:

θ(0) = 0

αθ(L) + ∂θ

∂x

∣∣∣
x=L

= 0.

Discuss the effect of mixed boundary conditions on numerical stability com-
pared to pure Dirichelet boundary conditions. You may use second-order central
finite difference for the spatial derivative and explicit Euler for time advance-
ment. How is the maximum step allowed, affected by values of α? It would
be reasonable to consider 0 ≤ α ≤ 10. Does the number of spatial grid points
used, affect your conclusions?

(a) Use second-order one-sided difference to approximate the normal deriva-
tive at x = L .

(b) Use a ghost point and central difference for the normal derivative at x = L .
(c) Based on your results in (a) and (b) which method of computation of the

derivative at the boundary is preferred?
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6. The following numerical method has been proposed to solve ∂u
∂t = c ∂u

∂x :

1

�t

[
u(n+1)

j − 1

2

(
u(n)

j+1 + u(n)
j−1

)] = c

2�x

[
u(n)

j+1 − u(n)
j−1

]
.

(a) Find the range of CFL number c�t/�x for which the method is stable.
(b) Is the method consistent (i.e., does it reduce to the original PDE as �x ,

�t → 0)?

7. The Douglas Rachford ADI scheme for the 3D heat equation is given by

(I − α�t Ax )φ∗ = [I + α�t(Ay + Az)]φ
(n)

(I − α�t Ay)φ∗∗ = φ∗ − α�t Ayφ
(n)

(I − α�t Az)φ
(n+1) = φ∗∗ − α�t Azφ

(n).

What is the order of accuracy of this scheme?

8. Consider the two-dimensional heat equation with a source term:

∂φ

∂t
= α

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
+ S(x, y)

with Dirichlet boundary conditions. We are interested in finding the steady
state solution by advancing in time. To do so we must pick a time step. Of
course, one would hope that the steady state solution does not depend on �t .
Furthermore, since we are not interested in temporal accuracy and would like
to get to the steady state as fast as possible, we choose the backward Euler
scheme in conjunction with approximate factorization for time advancement.
Hint: The modified equation analysis is not necessarily the best approach in
answering the questions below.

(a) What is the order of accuracy of this scheme?
(b) Is the steady state solution independent of time step? Is your answer a

consequence of the choice of backward Euler or approximate factorization?
(c) If we used a very fine mesh in the x- and y-directions and used very large

time steps, what is the actual differential equation that the steady state
solution satisfies?

(d) Suppose instead of backward Euler we used the trapezoidal method with the
approximate factorization. Does your answer in part (b) change? Explain.

(e) Suppose with the scheme in part (d) we try to reach steady state with very
large time steps. Are we going to get there quickly? Explain.

9. Consider the convection–diffusion equation

∂T

∂t
+ u

∂T

∂x
= α

∂2T

∂x2
0 ≤ x ≤ 1,

with the boundary conditions

T (0, t) = 0 T (1, t) = 0.

This equation describes propagation and diffusion of a scalar such as temper-
ature or a contaminant in, say, a pipe. Assume that the fluid is moving with a
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constant velocity u in the x direction. For the diffusion coefficient α = 0, the so-
lution consists of pure convection and the initial disturbance simply propagates
downstream. With non-zero α, propagation is accompanied by broadening and
damping.

Part 1. Pure convection (α = 0)
Consider the following initial profile

T (x, 0) =
{

1 − (10x − 1)2 for 0 ≤ x ≤ 0.2,

0 for 0.2 < x ≤ 1.

Let u = 0.08. The exact solution is

T (x, t) =
{

1 − [10(x − ut) − 1]2 for 0 ≤ (x − ut) ≤ 0.2,

0 otherwise

(a) Solve the problem for 0 < t ≤ 8 using

(i) Explicit Euler time advancement and the second-order central differ-
ence for the spatial derivative.

(ii) Leapfrog time advancement and the second-order central difference
for the spatial derivative.

Plot the numerical and exact solutions for t = 0, 4, 8. You probably need
at least 51 points in the x direction to resolve the disturbance. Discuss your
solutions and the computational parameters that you have chosen in terms
of what you know about the stability and accuracy of these schemes. Try
several appropriate values for u�t/�x .

(b) Suppose u was a function of x:

u(x) = 0.2 sin πx .

In this case, how would you select your time step in (a)(ii)?
(c) With the results in part (a)(i) as the motivation, the following scheme,

which is known as the Lax–Wendroff scheme, has been suggested for the
solution of the pure convection problem

T (n+1)
j = T (n)

j − γ

2

(
T (n)

j+1 − T (n)
j−1

) + γ 2

2

(
T (n)

j+1 − 2T (n)
j + T (n)

j−1

)
,

where γ = u�t/�x . What are the accuracy and stability characteristics of
this scheme? Repeat part (a)(i) with the Lax–Wendroff scheme using γ =
0.8, 1, and 1.1. Discuss your results using the modified equation analysis.

Part 2. Convection–diffusion.
Let α = 0.001.

(d) Using the same initial and boundary conditions as in Part 1, solve the
convection–diffusion equation. Repeat part (a)(i) and (ii) with the addition
of the second-order central difference for the diffusion term. Discuss your
results and your choices for time steps. How has the presence of diffusion
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term affected the physical behavior of the solution and stability properties
of the numerical solutions?

(e) Suppose in the numerical formulation using leapfrog the diffusion term is
lagged in time; that is, it is evaluated at step n – 1 rather than n. Obtain
the numerical solution with this scheme. Consider different values of
α�t/�x2 in the range 0 to 1, and discuss your results.

10. Consider the two-dimensional Burgers equation, which is a non-linear model
of the convection–diffusion process

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

(
∂2u

∂ x2
+ ∂2u

∂ y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= ν

(
∂2v

∂ x2
+ ∂2v

∂ y2

)
.

We are interested in the steady state solution in the unit square, 0 ≤ x ≤ 1, 0 ≤
y ≤ 1 with the following boundary conditions

u(0, y) = u(1, y) = v(x, 1) = 0, v(x, 0) = 1

u(x, 0) = u(x, 1) = sin 2πx, v(0, y) = v(1, y) = 1 − y.

The solutions of the Burgers equation usually develop steep gradients like
those encountered in shock waves. Let ν = 0.015.

(a) Solve this problem using an explicit method. Integrate the equations until
steady state is achieved (to plotting accuracy). Plot the steady state veloc-
ities u, v. (If you have access to a surface plotter such as in MATLAB,
use it. If not, plot the velocities along the two lines: x = 0.5 and y = 0.5.)
Make sure that you can stand behind the accuracy of your solution. Note
that since we seek only the steady state solution, the choice of the initial
condition should be irrelevant.

(b) Formulate the problem using a second-order ADI scheme for the diffusion
terms and an explicit scheme for the convection terms. Give the details
including the matrices involved.

11. Consider the convection–diffusion equation

ut + cux = αuxx 0 ≤ x ≤ 1

u(x, 0) = exp
[−200(x − 0.25)2] u(0, t) = 0.

Take α = 0 and c = 1 and solve using second-order central differences in x and
Euler and fourth-order Runge–Kutta time advancements. Predict and verify the
maximum �t for each of these schemes. Repeat using upwind second-order
spatial differences. How would the stability constraints change for non-zero α

(e.g., α = 0.1)? Plot solutions at t = 0, 0.5, 1.

12. Seismic imaging is being used in a wide variety of applications from oil explo-
ration to non-intrusive medical observations. We want to numerically exam-
ine a one-dimensional model of a seismic imaging problem to see the effects
that variable sound speeds between different media have on the transmis-
sion and reflection of an acoustic wave. The equation we will consider is the
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one-dimensional homogeneous scalar wave equation:

∂2u

∂t2
− c2(x)

∂2u

∂ x2
= 0 t ≥ 0, −∞ < x < ∞, (1)

with initial conditions

u(x, 0) = uo(x) ut (x, 0) = 0

where c > 0 is the speed of sound. The x domain for this problem is infinite.
To cope with this numerically we truncate the domain to 0 ≤ x ≤ 4. However,
to do this we need to specify some conditions at the domain edges x = 0 and
x = 4 such that computed waves will travel smoothly out of the computational
domain as if it extended to infinity. A “radiation condition” (the Sommerfeld
radiation condition) would specify that at ∞ all waves are outgoing, which is
necessary for the problem to be well posed. In one-dimensional problems, this
condition may be exactly applied at a finite x: we want only outgoing waves
to be supported at our domain edges. That is, at x = 4 we want our numerical
solution to support only right-going waves and at x = 0 we want it to support
only left-going waves. If we factor the operators in the wave equation we will
see more explicitly what must be done (assuming constant c for the moment)(

∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0. (2)

The right-going portion of the solution is(
∂

∂t
+ c

∂

∂x

)
u = 0 (3)

and the left-going portion of the solution is(
∂

∂t
− c

∂

∂x

)
u = 0. (4)

So at x = 4 we need to solve equation (3) rather than equation (1) to ensure only
an outgoing (right-going) solution. Likewise, at x = 0 we will solve equation
(4) rather than equation (1).

For time advancement it is recommended that equation (1) be broken into
two first-order equations in time:

∂u1

∂t
= u2 and

∂u2

∂t
= c2(x)

∂2u1

∂x2
.

The boundary conditions become

∂u1

∂t

∣∣∣∣
x=0

= c(0)
∂u1

∂x

∣∣∣∣
x=0

∂u1

∂t

∣∣∣∣
x=4

= −c(4)
∂u1

∂x

∣∣∣∣
x=4

.

Second-order differencing is recommended for the spatial derivative (first order
at the boundaries). This problem requires high accuracy for the solution and
you will find that at least N = 400 points should be used. Compare a solution
with fewer points to the one you consider to be accurate. Use an accurate
method for time advancement; fourth-order Runge–Kutta is recommended.
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What value of c should be used for an estimate of the maximum allowable �t
for stable solution? Estimate the maximum allowable time step via a modified
wavenumber analysis. Take u(x, t = 0) = exp[−200(x − 0.25)2] and specify
c(x) as follows:

(a) Porous sandstone: c(x) = 1.
(b) Transition to impermeable sandstone: c(x)=1.25−0.25 tanh[40(0.75−

x)].
(c) Impermeable sandstone: c(x) = 1.5.
(d) Entombed alien spacecraft: c(x) = 1.5 − exp[−300(x − 1.75)2].

Plot u(x) for several (∼8) different times in the calculation as a wave is allowed
to propagate through the entire domain.

13. Consider a two-dimensional convection–diffusion equation

∂�

∂t
+ U (x, y)

∂�

∂x
+ V (x, y)

∂�

∂y
= α

(
∂2�

∂x2
+ ∂2�

∂y2

)
,

where −1 ≤ y ≤ 1 and 0 ≤ x ≤ 10. This equation may be used to model ther-
mal entry problems where a hot fluid is entering a rectangular duct with a cold
wall and an insulated wall. Appropriate boundary conditions for such a prob-
lem are shown in the following figure. Set up the problem using a second-order
approximate factorization technique. Discuss the advantages of this technique
over explicit and unfactored implicit methods.

0 10 x

(0, y) = (1 − y2)2

y = 1

y = −1

∂x = 0

∂y = 0

= 0

14. Consider the paraxial Helmholtz equation,

∂φ

∂y
= −i

2k

∂2φ

∂x2
,

which is similar to the heat equation except that the coefficient is imaginary. In
this equation, φ is a complex variable representing the phase and amplitude of
the wave and k is the wave number equal to 2π/λ, where λ is the wavelength.
Having a single-frequency wave source at y = 0 (a laser beam aperture, for
example), this equation describes spatial evolution of the wave as it propagates
in the y-direction. Note that in this equation, y is the time-like variable and
therefore an initial condition is required to close the equation. Consider the
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following initial condition for the problem:

φ(x, 0) = exp

[
− (x − 5)2

4

]
+ exp

[
− (x − 15)2

4
+ 10i x

]
.

Assume k = 10 and note that i = √−1. This condition corresponds to two
beam sources at x = 5 and x = 15 with the later beam making an angle of
10/k radians with the x-axis. Furthermore, assume a finite domain in the
x-direction defined by 0 ≤ x ≤ 20 with the following boundary conditions:

φ(0, y) = φ(20, y) = 0.

(a) Consider second-order central difference for discretization in the x-
direction. What value of �x would you choose? (Hint: Plot the initial
condition.)

(b) What method would you choose to advance the equation in the y-direction?
Using �x from part (a), what will be the maximum stable �y?

(c) Using second-order central difference in the x-direction and an appropriate
method of your choice for y, obtain the solution of the paraxial wave
equation for 0 ≤ y ≤ 35.

(d) One method of checking the accuracy of numerical solutions is by exam-
ining the numerical validity of the conservation principles. One of the
conserved quantities in the described system is the energy of the wave,
E = ∫ 20

0 φφ∗dx which is a real positive number and φ∗ is the complex
conjugate of φ. Show analytically that this quantity is conserved. (Hint:
First obtain a PDE for φ∗, then add the new PDE to the original one with the
weights of φ and φ∗, respectively. Integration by parts would be helpful.)
To check the accuracy of your solution compare the energy of the solution
at y = 35 with the initial energy. Does the error in energy decrease as you
refine your grid?

(e) Plot |φ|2 as a function of x and y using a contour plot routine, such as
pcolor in Matlab. What you should observe is reflection of one source
and its interference with the other source as it propagates through the
domain.

15. Consider the convection equation

∂T

∂t
+ u

∂T

∂x
= 0 0 ≤ x ≤ 10,

with the boundary condition

T (0, t) = 0.

This equation describes the pure convection phenomenon; i.e., an initial dis-
turbance simply propagates downstream with the velocity u.

Consider the following initial profile

T (x, 0) =
{

cos2(πx) − cos(πx) for 0 ≤ x ≤ 2,

0 for 2 < x ≤ 10.



162 NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

The exact solution is

T (x, t) =
{

cos2[π(x − ut)] − cos[π(x − ut)] for 0 ≤ (x − ut) ≤ 2,

0 otherwise

Let u = 0.8. Solve the problem for 0 < t ≤ 8 using

(a) Explicit Euler time advancement and the second-order central difference
for the spatial derivative.

(b) Explicit Euler time advancement and the second-order upwind difference
for the spatial derivative.

(c) Leapfrog time advancement and the second-order central difference for the
spatial derivative.

Plot the numerical and the exact solutions for t = 0, 4, 8. You probably need at
least 101 points in the x direction to resolve the disturbance. Try two or three
different values of γ = u�t/�x . Compare and discuss your solutions and the
computational parameters that you have chosen in terms of what you know
about the stability and accuracy of these schemes.

For method (c), perform the modified equation analysis and solve the equa-
tion with the value of γ = 1 using second-order Runge–Kutta method for the
start-up step. Discuss your results.

16. The heat equation with a source term is

∂T

∂t
= α

∂2T

∂x2
+ S(x) 0 ≤ x ≤ Lx .

The initial and boundary conditions are

T (x, 0) = 0 T (0, t) = 0 T (Lx , t) = Tsteady(Lx ).

Take α = 1, Lx = 15, and S(x) = −(x2 − 4x + 2)e−x . The exact steady solu-
tion is

Tsteady(x) = x2e−x .

(a) Verify that Tsteady(x) is indeed the exact steady solution. Plot Tsteady(x).
(b) Using explicit Euler for time advancement and the second-order central

difference scheme for the spatial derivative, solve the equation to steady
state on a uniform grid. Plot the exact and numerical steady solutions for
Nx = 10, 20.

(c) Repeat your calculations using the non-uniform grid x j = Lx [1 −
cos( π j

2Nx
)], j = 0, . . . , Nx and an appropriate finite difference scheme for

non-uniform grid.
(d) Transform the differential equation to a new coordinate system using the

transformation

ζ = cos−1

(
1 − x

Lx

)
.

Solve the resulting equation to the steady state and plot the exact and nu-
merical steady solutions for Nx = 10, 20.

(e) Repeat (c) using the Crank–Nicolson method for time advancement. Show
that you can take fewer time steps to reach steady state.
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For each method, find the maximum time step required for stable solution. Also,
for each method with Nx = 20, plot the transient solutions at two intermediate
times, e.g., at t = 2 and t = 10. Compare and discuss all results obtained in
terms of accuracy and stability. Compare the number of time steps required for
each method to reach steady state.

17. The forced convection–diffusion equation

∂φ

∂t
− u

∂φ

∂x
= α

∂2φ

∂x2
+ S(x) 0 ≤ x ≤ 1

has the following boundary conditions:

φ(0, t) = 0
∂φ

∂x
(1, t) = 1.

(a) We would like to use the explicit Euler in time and the second-order cen-
tral difference in space to solve this equation numerically. Using matrix
stability analysis, find the stability condition of this method for arbitrary
combinations of u, α, and �x . Note that u and α are positive constants.
What is the stability condition for �x � 1 (i.e., �x is much less than 1)?

(b) Let α = 0, u = 1, and S(x) = 0. Suppose we use fourth-order Padé scheme
for the spatial derivative and one of the following schemes for the time ad-
vancement:

(i) Explicit Euler
(ii) Leapfrog

(iii) Fourth-order Runge–Kutta

Based on what you know about these schemes obtain the maximum time
step for stability. Hint: Although the matrix stability analysis is probably
the easiest method to use in (a), it may not be the easiest for (b).

(c) How would you find the maximum time step in (b) if instead of u = 1 you
had u = sin πx?

18. The well-known non-linear Burgers equation is

∂u

∂t
+ u

∂u

∂x
= α

∂2u

∂x2
0 ≤ x ≤ 1.

The boundary conditions are

u(0, t) = 0 u(1, t) = 0.

We would like to solve this problem using an implicit second-order method in
time and a second-order method in space. Write down the discrete form of the
equation. Develop an algorithm for the solution of this equation. Show how you
can avoid iterations in your algorithm. Give all the details including matrices
involved.
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19. The following iterative scheme is used to solve Ax = b:

x(k+1) = (I + αA)x(k) − αb,

where α is a real constant, and A is the following tridiagonal matrix that has
resulted from a finite difference approximation:

A =

⎡⎢⎢⎢⎣
−2 1
1 −2 1

. . .
. . .

. . .
1 −2

⎤⎥⎥⎥⎦ .

Under what conditions on α does this algorithm converge?

20. The following is a 1D boundary value problem:

d2u

dx2
+ α

du

dx
+ βu = f (x)

u(0) = uo u(L) = uL .

(a) Set up the system of equations required to solve this boundary value prob-
lem directly using second-order central differences.

(b) Suppose we wish to use the Point–Jacobi method to solve this system. With
β(�x)2 = 3, state the conditions on α�x necessary for convergence.

(c) Approximately how many iterations are necessary to reduce the error to
0.1% of its original value for β(�x)2 = 3 and α�x = 1.75?

(d) If a shooting method were to be used, how many shots would be necessary
to solve this problem?

21. The equation Ax = f is solved using two iterative schemes of the form

A1x(k+1) = A2x(k) + f ,

where

A =
[

a b
c d

]
and A1 − A2 = A.

The two schemes are given by

(i) A1 =
[

a 0
0 d

]
(ii) A1 =

[
a b
0 d

]
.

What is the condition among the elements of A so that both schemes would
converge? Compare the convergence rates of the two schemes.

22. The steady state temperature distribution u(x, y) in the rectangular copper
plate below satisfies Laplace’s equation:

∂2u

∂x2
+ ∂2u

∂y2
= 0.
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0
2 x

u = 0 u = y

1

y

The upper and lower boundaries are perfectly insulated ( ∂u
∂y = 0); the left side

is kept at 0◦C, and the right side at f (y) = y◦C. The exact solution can be
obtained analytically using the method of separation of variables and is given
by

u(x, y) = x

4
− 4

∞∑
n=1

n odd

1

(nπ)2 sinh 2nπ
sinh nπx cos nπy.

In this exercise we will find numerical approximations to the steady state
solution.

(a) First write a program to compute the steady state solution to the second-
order finite difference approximation of the heat equation using the Jacobi
iteration method. You should use Nx and Ny uniformly spaced points in the
horizontal and vertical directions, respectively (this includes the points on
the boundaries).

(b) Now with Nx = 11 and Ny = 11 apply the Jacobi iteration to the discrete
equations until the solution reaches steady state. To start the iterations,
initialize the array with zeroes except for the boundary elements corre-
sponding to u = y.

You can monitor the progress of the solution by watching the value of the
solution at the center of the plate: (x, y) = (1, 0.5). How many iterations
are required until the solution at (1, 0.5) steadily varies by no more than
0.00005 between iterations? At this point, how does the numerical approx-
imation compare to the analytical solution? What is the absolute error?
What is the error in the numerical approximation relative to the analytical
solution (percentage error)?

Plot isotherms of the numerical and exact temperature distributions
(say, 16 isotherms). Use different line styles for the numerical and analytical
isotherms and put them on the same axes, but be sure to use the same tem-
perature values for each set of isotherms (that is, the same contour levels).

Repeat the same steps above with Nx = 21 and Ny = 21.
(c) Repeat (b) using the Gauss–Seidel iteration and SOR. Compare the perfor-

mance of the methods.
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6
Discrete Transform Methods

Transform methods can be viewed as semi-analytical alternatives to finite differ-
ences for spatial differentiation in applications where high degree of accuracy is
required. This chapter is an introduction to transform methods, also referred to
as spectral methods, for solution of partial differential equations. We shall begin
with the discrete Fourier transform, which is applied to numerical differentia-
tion of periodic data and for solving elliptic PDEs in rectangular geometries.
Discrete Fourier transform is also used extensively in signal processing, but
this important application of transform methods will not be discussed here. For
non-periodic data we will use transform methods based on Chebyshev polyno-
mial expansions. Once the basic machinery for numerical differentiation with
transform methods is developed, we shall see that their use for solving partial
differential equations is straightforward.

6.1 Fourier Series

Consider the representation of a continuous periodic function f as a combina-
tion of pure harmonics

f (x) =
∞∑

k=−∞
f̂keikx , (6.1)

where f̂k is the Fourier coefficient corresponding to the wavenumber k. Here
the k values are integers because the period is taken to be 2π . In Fourier analysis
one is interested in knowing what harmonics contribute to f and by how much.
This information is provided by f̂k . The Fourier series for the derivative of f (x)
is obtained by simply differentiating (6.1)

f ′(x) =
∞∑

k=−∞
ik f̂keikx . (6.2)

By analogy with the Fourier transform of f in (6.1), the Fourier coefficients of
f ′ are ik f̂k . In this section the machinery for calculating f̂k will be developed

167
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for discrete data. Once f̂k is obtained, it is simply multiplied by ik to obtain the
Fourier coefficients of f ′. The result is then substituted in the discrete version
of (6.2) to compute f ′.

6.1.1 Discrete Fourier Series

If the periodic function f is defined only on a discrete set of N grid points,
x0, x1, x2, . . . , xN−1, then f can be represented by a discrete Fourier transform.
Discrete Fourier transform of a sequence of N numbers, f0, f1, f2, . . . , fN−1

is defined by

f j =
N
2 −1∑

k=− N
2

f̂keikx j j = 0, 1, 2, . . . , N − 1 (6.3)

where

f̂− N
2
, f̂− N

2 +1, . . . , 0, . . . , f̂ N
2 −1

are the discrete Fourier coefficients of f. Here, we take N to be even and
the period of f to be 2π . A consequence of 2π periodicity is having integer
wavenumbers. The sequence f j consists of the values of f evaluated at equidis-
tant points along the axis x j = jh with the grid spacing h = 2π/N . Note that
f is assumed to be a periodic function with f0 = fN , and thus, the sequence
f0, f1, . . . , fN−1 does not involve any redundancy. In the more general case of
period of length L the wavenumbers appearing in the argument of the exponen-
tial would be (2π/L)k instead of k, and the grid spacing becomes h = L/N ,
which results in an identical expression for the arguments of the exponentials as
in the 2π periodic case. Thus, the actual period does not appear in the expression
for the discrete Fourier transform of f, but it does appear in the expression for
its derivative (see (6.2)).

Equation (6.3) constitutes N algebraic equations for the unknown (complex)
Fourier coefficients f̂k . However, instead of using Gauss elimination, or some
other solution technique from linear algebra to solve this system, it is much
easier and more efficient, to use the discrete orthogonality property of the
Fourier series to get the Fourier coefficients. Therefore, we will first establish
the discrete orthogonality of Fourier series. Consider the summation

I =
N−1∑
j=0

eikx j e−ik ′x j =
N−1∑
j=0

eih(k−k ′) j .

If h(k − k ′) is not a multiple of 2π , then I is a geometric series with the multiplier
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eih(k−k ′). Thus, for k − k ′ �= m N (m is an integer),

I = 1 − eih(k−k ′)N

1 − eih(k−k ′) .

Since h = 2π/N , the numerator is zero and we have the following statement of
discrete orthogonality:

N−1∑
j=0

eikx j e−ik ′x j =
{

N ,

0,

if k = k ′ + m N , m = 0,±1,±2, . . .

otherwise.
(6.4)

Now, we will use this important result to obtain the Fourier coefficients f̂k .
Multiplying both sides of (6.3) by e−ik ′x j and summing from j = 0 to N − 1
results in

N−1∑
j=0

f j e
−ik ′x j =

N
2 −1∑

k=− N
2

N−1∑
j=0

f̂kei x j (k−k ′).

Using the orthogonality property (6.4), we have

f̂k = 1

N

N−1∑
j=0

f j e
−ikx j k = − N

2
,

N

2
+ 1, . . . ,

N

2
− 1. (6.5)

Equations (6.3) and (6.5) constitute the discrete Fourier transform pair for the
discrete data, f j . Equation (6.5) is sometimes referred to as the forward trans-
form (from the physical space x to the Fourier space k) and (6.3) is referred to as
the inverse transform (for recovering the function from its Fourier coefficients).

6.1.2 Fast Fourier Transform

For complex data, straightforward summations for each transform ((6.3) or
(6.5)) requires about 4N 2 arithmetic operations (multiplications and additions),
assuming that the values of the trigonometric functions are tabulated. An inge-
nious algorithm, developed in the 1960s and called the fast Fourier transform
(FFT), reduces this operations count to O(N log2 N ). This is a dramatic reduc-
tion for large values of N. The original algorithm was developed for N = 2m ,
but algorithms that allow more general values of N have since been developed.
The fast Fourier transform algorithm has been the subject of many articles and
books and therefore will not be presented here. Very efficient FFT computer
programs are also available for virtually all computer platforms used for scien-
tific computing. For example, Numerical Recipes has a set of programs for the
general FFT algorithm and several of its useful variants for real functions and
for sine and cosine transforms, which are mentioned later in this chapter.
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6.1.3 Fourier Transform of a Real Function

Whether f is real or complex the Fourier coefficients of f are generally com-
plex. However, when f is real, there is a useful relationship relating its Fourier
coefficients corresponding to negative and positive wavenumbers. This prop-
erty reduces the storage requirements; the original N real data points f j are
equivalently represented by N/2 complex Fourier coefficients. We can easily
derive this relationship by revisiting (6.5). Changing k to −k in (6.5) produces

f̂−k = 1

N

N−1∑
j=0

f j e
ikx j . (6.6)

Taking the complex conjugate of this expression and noting that since f is real
it is equal to its own complex conjugate, we obtain

f̂ ∗
−k = 1

N

N−1∑
j=0

f j e
−ikx j . (6.7)

Comparison with (6.5) leads to this important result for real functions

f̂−k = f̂ ∗
k . (6.8)

As mentioned in the previous section, there are fast transform programs for real
functions that take advantage of this property to reduce the required memory
and execution time.

EXAMPLE 6.1 Calculation of Discrete Fourier Transform

(a) Consider the periodic function f (x) = cos 3x with period 2π , defined on
the discrete set of points x j = (2π/N ) j, where j = 0, . . . , N − 1. Since

f j = cos 3x j =
N
2 −1∑

k=− N
2

f̂ keikx j =
N
2 −1∑

k=− N
2

f̂ k (cos kx j + i sin kx j ),

calculation of the Fourier coefficients is straightforward and obtained by
inspection. They are given by

f̂ k =
{

1/2
0

if k = ±3,

otherwise.

The result is independent of the number of discrete points N as long as
N ≥ 8.

(b) Consider now the periodic square function (Figure 6.1), which is given
by

f (x) =
{

1
−1

if 0 ≤ x < π

if π ≤ x < 2π,

and defined on the same discrete set of points. Let N = 16. Instead of
directly using (6.5) to calculate the Fourier coefficients, we use Numerical
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f (x)

x0 2ππ

1

−1

−π

Figure 6.1 Periodic square function in Example 6.1(b).

Recipes’ realft fast Fourier transform subroutine for real functions.
The magnitudes of the Fourier coefficients are shown in Figure 6.2 and
the coefficients corresponding to the positive wavenumbers are tabulated
below. Fourier coefficients for negative wavenumbers are given by f̂ −|k| =
ˆf ∗
|k| because f (x) is real.

k Re( f̂ k) Im( f̂ k ) | f̂ k |
0 0 0 0
1 0.125 −0.628 0.641
2 0 0 0
3 0.125 −0.187 0.225
4 0 0 0
5 0.125 −0.084 0.150
6 0 0 0
7 0.125 −0.025 0.127
8 0 0 0

Using (6.5), it can be shown that if f j is an odd function then its discrete

-8 -6 -4 -2  2  4  6  8

0.2

0.4

0.6

k

f (k)| ^| |

Figure 6.2 The magnitudes of the Fourier coefficients of the square function in Exam-
ple 6.1(b).
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Fourier transform f̂ k is imaginary and odd. The square function in this
example can be made odd by redefining its values at 0 and π to be zeros
instead of 1 and −1. In this case, the real part of the Fourier coefficients
would be zero and the imaginary part would be unaltered compared to
the original case.

6.1.4 Discrete Fourier Series in Higher Dimensions

The results and methodology of discrete Fourier transform can be extended to
multiple dimensions in a straightforward manner. Consider the function f (x, y)
which is doubly periodic in the x and y directions and discretized using N1

grid points in x and N2 grid points in y. The two-dimensional Fourier series
representation of f is given by

f (xm, yl) =
N1
2 −1∑

k1=− N1
2

N2
2 −1∑

k2=− N2
2

f̂k1,k2e
ik1xm eik2 yl

m = 0, 1, 2, . . . , N1 − 1 l = 0, 1, 2, . . . , N2 − 1, (6.9)

where f̂ is the (complex) Fourier coefficient of f corresponding to wavenum-
bers k1 and k2 in the x and y directions respectively. Using the orthogonality
result (6.4) for each direction, we obtain

f̂k1,k2 = 1

N1

1

N2

N1∑
m=0

N2∑
l=0

fm,le
−ik1xm e−ik2 yl (6.10)

k1 = − N1

2
,− N1

2
+ 1, . . . ,

N1

2
− 1 and k2 = − N2

2
,− N2

2
+ 1, . . . ,

N2

2
− 1.

If f is real, it can be easily shown as in the previous section that

f̂ ∗
−k1,−k2

= f̂k1,k2 .

Thus, Fourier coefficients in one half (not one quarter) of the (k1, k2) space are
sufficient to determine all the Fourier coefficients in the entire (k1, k2) plane.
All these results can be generalized to higher dimensions. For example, in three
dimensions

f̂ ∗
−k = f̂k

where k = (k1, k2, k3) is the wavenumber vector.
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6.1.5 Discrete Fourier Transform of a Product of Two Functions

The following is an important result that will be used later for the solution of
non-linear equations by transform methods. Let

H (x) = f (x)g(x).

Our objective is to express the Fourier transform of H in terms of the Fourier
transforms of f and g. The discrete Fourier transform of H is

Ĥm = ( f̂ g)m = 1

N

N−1∑
j=0

f j g j e
−imx j .

Substituting for f j and g j their respective Fourier representations, we obtain

Ĥm = 1

N

N−1∑
j=0

∑
k

∑
k ′

f̂k ĝk ′eikx j eik ′x j e−imx j . (6.11)

The sum over j is non-zero only if k + k ′ = m or m ± N (recall that, x j =
(2π N ) j). The part of the summation corresponding to k + k ′ = m ± N is
known as the aliasing error and should be discarded because the Fourier expo-
nentials corresponding to these wavenumbers cannot be resolved on the grid of
size N. Thus, using the definition (6.5) the Fourier transform of the product is

Ĥm =
N/2−1∑

k=−N/2

f̂k ĝm−k . (6.12)

This is the convolution sum of the Fourier coefficients of f and g. The inverse
transform of Ĥm is sometimes used as the means to calculate the product
of f and g. If we simply multiplied f and g at each grid point, the resulting
discrete function would be “contaminated” by the aliasing errors and would
not be equal to the inverse transform of Ĥm in (6.12). Aliasing errors are
simply ignored in many calculations, in part because the alternative, alias-free
method of calculation of the product via (6.12) is expensive, requiring O(N 2)
operations, and aliasing errors are usually small if sufficient number of grid
points are used. However, in some large-scale computations aliasing errors have
led to very inaccurate solutions. We will illustrate the effect of aliasing error in
the following example.

EXAMPLE 6.2 Discrete Fourier Transform of a Product–Aliasing

Consider the functions f (x) = sin 2x and g(x) = sin 3x defined on the grid
points x j = (2π/N ) j , where j = 0, . . . , N − 1. For N ≥ 8, their discrete
Fourier transforms are

f̂ k =
{∓i/2

0
if k = ±2
otherwise,

and ĝk =
{∓i/2

0
if k = ±3
otherwise.
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Figure 6.3 The magnitude of the Fourier coefficient Ĥk for N = 8 and N = 6 in Exam-
ple 6.2.

Using trigonometric identities, their product H (x) = f (x)g(x) is equal to
0.5(cos x − cos 5x).

We want to calculate the discrete Fourier transform of H (x) using discrete
values of f and g. For N = 16, using (6.12) or simply multiplying f and g
at each grid point and inverse transforming, we obtain

Ĥk =
⎧⎨
⎩

1/4 if k = ±1
−1/4 if k = ±5

0 otherwise,

which is the Fourier transform of the discrete function 0.5(cos x j − cos 5x j ).
Thus the exact Fourier coefficients of H (x) are recovered.

We use now a smaller number of points (N = 8) to calculate the discrete
Fourier coefficients of H (x). Equation (6.12) gives

Ĥk =
{

1/4 if k = ±1
0 otherwise,

which corresponds to the discrete function 0.5 cos xj. The 8-point grid is able
to resolve Fourier modes up to the wavenumber k = N /2 = 4. Therefore,
the part of H (x) corresponding to k = 5 is lost when representing H (x)
discretely. The error involved is the truncation error since it results from
truncating the Fourier series.

If we multiply f and g at each grid point and Fourier transform the result,
we obtain

Ĥk =
⎧⎨
⎩

1/4 if k = ±1
−1/4 if k = ±3

0 otherwise,
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which is the Fourier transform of the discrete function 0.5(cos x j − cos 3x j )!
We notice the appearance of a new mode: cos 3x j . This is the aliasing error
that has contaminated the results. It is the alias or misrepresentation of the
cos 5x mode that appears (uses the alias) as cos 3x . This is illustrated in
Figure 6.3.

6.1.6 Discrete Sine and Cosine Transforms

If the function f is not periodic, transforms based on other than harmonic
functions are usually more suitable representations of f. For example, if f is
an even function (i.e., f (x) = f (−x)), expansion based on cosines would be a
more suitable representation for f.

Consider the function f defined on an equidistant set of N + 1 points on the
interval 0 ≤ x ≤ π on the real axis. Discrete cosine transform of f is defined
by the following pair of relations

f j =
N∑

k=0

ak cos kx j j = 0, 1, 2, . . . , N (6.13)

ak = 2

ck N

N∑
j=0

1

c j
f j cos kx j k = 0, 1, 2, . . . , N , (6.14)

where

cl =
{

2 if l = 0, N

1 otherwise,

and x j = jh with h = π/N . Note that in contrast to the periodic Fourier trans-
form, the values of f at both ends of the interval, f0 and fN , are included.
Relation (6.13) is the definition of cosine transform for f . As in Fourier
transforms, (6.14) is derived using the discrete orthogonality property of the
cosines:

N∑
j=0

1

c j
cos kx j cos k ′x j =

{
0 if k �= k ′

1
2 ck N if k = k ′.

(6.15)

Discrete orthogonality of cosines given in (6.15) can be easily derived by sub-
stituting complex exponential representations for cosines in (6.15) and using
geometric series, as was done in the Fourier case. Derivation of both equations
(6.14) and (6.15) are left as exercises at the end of this chapter. Similarly, if f
is an odd function (i.e., f (x) = − f (−x)), then it is best represented based on
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sine series. The sine transform pair is given by

f j =
N∑

k=0

bk sin kx j j = 0, 1, 2, . . . , N (6.16)

bk = 2

N

N∑
j=0

f j sin kx j k = 0, 1, 2, . . . , N . (6.17)

Note that the sin kx j term is zero at both ends of the summation index; they are
included here to maintain similarity with the cosine transform relations.

EXAMPLE 6.3 Calculation of the Discrete Sine and Cosine Transforms

Consider the function f (x) = x2/π2, defined on the discrete points x j =
(π/N ) j, where j = 0, . . . , N. Let N = 16. We use Numerical Recipes’ cosft1
and sinft which are fast cosine and sine transform routines. The magni-
tudes of the coefficients are plotted in Figure 6.4. It is clear that the coeffi-
cients of the cosine expansion decay faster than those of the sine expansion.
The sine expansion needs more terms to approximate the function on the
whole interval as accurately as the cosine approximation because f (π ) �= 0.
The odd periodic continuation of f (x) is discontinuous at x = π ± 2nπ , n
integer; the even continuation is not discontinuous (its slope is). The dis-
continuity slows the convergence of the expansion.
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Figure 6.4 Magnitude of the cosine and sine transform coefficients for f (x) = x2/π2

in Example 6.3.

6.2 Applications of Discrete Fourier Series

6.2.1 Direct Solution of Finite Differenced Elliptic Equations

In this section we will give an example of a novel application of transform
methods for solving elliptic partial differential equations. Consider the Poisson
equation

∂2φ

∂x2
+ ∂2φ

∂y2
= Q(x, y)
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with φ = 0 on the boundaries of a rectangular domain. Suppose we seek a
finite difference solution of this equation using a second-order finite difference
scheme with M + 1 points in the x direction (including the boundaries) and
N + 1 points in the y direction. Let the uniform mesh spacing in the x direction
be denoted by �1 and the mesh spacing in the y direction by �2. The finite
difference equations are

φi+1, j − 2φi, j + φi−1, j + �2
1

�2
2

(φi, j+1 − 2φi, j + φi, j−1) = �2
1 Qi, j , (6.18)

where

i = 1, 2, . . . , M − 1 and j = 1, 2, . . . , N−1

are the mesh points inside the domain. This is a system of linear algebraic
equations for the (N − 1) × (M − 1) unknowns. As pointed out in Section 5.10,
for typical values of M and N, this system of equations is usually too large for a
straightforward application of Gauss elimination. Here, we shall use sine series
and the fast sine transform algorithm to obtain the solution of this system of
algebraic equations.

Assume a solution of the form

φi, j =
M−1∑
k=1

φ̂k, j sin
[
πki

M

]
i = 1, 2, . . . , M − 1, j = 1, 2, . . . , N − 1.

(6.19)

Whether this assumed solution would work will be determined after substitution
into (6.18). Note that the assumed solution does not include the boundaries, but
it is consistent with the homogeneous boundary conditions. The sine transform
of the right-hand side is similarly expressed as

Qi, j =
M−1∑
k=1

Q̂k, j sin
[
πki

M

]
i = 1, 2, . . . , M − 1, j = 1, 2, . . . , N − 1.

Substituting these representations in the finite differenced equation (6.18), we
obtain

M−1∑
k=1

φ̂k, j

{
sin

[
πk(i − 1)

M

]
− 2 sin

[
πki

M

]
+ sin

[
πk(i − 1)

M

]}

+
M−1∑
k=1

(
�2

1

�2
2

) {
φ̂k, j+1 − 2φ̂k, j + φ̂k, j−1

}
sin

[
πki

M

]

= �2
1

M−1∑
k=1

Q̂k, j sin
[
πki

M

]
. (6.20)
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Using trigonometric identities, we have

sin
[
πk(i + 1)

M

]
− 2 sin

[
πki

M

]
+ sin

[
πk(i − 1)

M

]
= sin

[
πki

M

] [
2 cos

πk

M
− 2

]
.

By equating the coefficients of sin πki/M in (6.20) (which amounts to using
the discrete orthogonality property of the sines), we will obtain the following
equation for the coefficients of the sine series:

φ̂k, j+1 +
[
�2

2

�2
1

(
2 cos

πk

M
− 2

)
− 2

]
φ̂k, j + φ̂k, j−1 = �2

2 Q̂k, j . (6.21)

For each k, this is a tridiagonal system of equations that can be easily solved.
Thus, the procedure for solving the Poisson equation can be summarized

as follows. First, for each j = 1, 2, . . . , (N – 1) the right-hand side function,
Qi, j in (6.18), is sine transformed to obtain Q̂k, j :

Q̂k, j = 2

M

M−1∑
i=1

Qk, j sin
[
πki

M

]
k = 1, 2, . . . , M − 1, j = 1, 2, . . . , N − 1.

Then, the tridiagonal system of equations (6.21) is solved for each k = 1, 2, . . . ,
(M – 1). Finally, φi, j is obtained from (6.19) using discrete fast sine transform.

Thus, the two-dimensional problem has been separated into (M − 1) one-
dimensional problems. Since each sine transform requires O(M log2 M) opera-
tions and each tridiagonal system O(N ) operations, overall, the method requires
O(N M log2 M) operations. It is a direct and a low-cost method for elliptic equa-
tions. However, the class of problems for which it works is limited. One must
have a uniform mesh in the direction of transform (in this case, the x direction)
and the coefficients in the PDE may not be a function of the transform direction.
Non-uniform meshes and non-constant coefficients may be used in the other
direction(s).

It should be emphasized that this solution procedure is simply a method
for solving the system of linear equations (6.18). It is not a spectral numer-
ical solution of the Poisson equation. Spectral methods is the subject of the
remaining sections of this chapter. Furthermore, the sine series only involves
the interior points. However, the fact that the representation for φ is also con-
sistent with the boundary conditions is a key to the success of the method. For
non-homogeneous boundary conditions, a change of variables must be intro-
duced which would transform the inhomogeneity to the right-hand side term.
For problems with Neumann boundary conditions, cosine series can be used
instead of sine series.
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EXAMPLE 6.4 Poisson Equation With Non-homogeneous Boundary
Conditions

Consider the Poisson equation

∂2ψ

∂x2
+ ∂2ψ

∂y 2
= 30(x2 − x) + 30(y 2 − y ) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

with ψ(0, y ) = sin 2πy and ψ = 0 on the other boundaries of the square
domain. The exact solution is

ψ(x, y ) = 15(x2 − x)(y 2 − y ) − sin 2πy
sinh 2π (x − 1)

sinh 2π
.

Let us solve the equation numerically using sine transform in the x direction.
The dependent variable should have homogeneous boundary conditions at
x = 0 and x = 1. Introducing a new variable φ(x, y ) given by

φ(x, y ) = ψ(x, y ) + (x − 1) sin 2πy

results in a new Poisson equation

∂2φ

∂x2
+ ∂2φ

∂y 2
= 30(x2 − x) + 30(y 2 − y ) − 4π2(x − 1) sin 2πy ,

with φ(0, y ) = φ(1, y ) = φ(x, 0) = φ(x, 1) = 0. We now solve this equation
for M = N = 32 (�1 = �2 = 1/M ). For each j in (6.18), we use Numerical
Recipes’ sinft to obtain Q̂k, j , where k = 1, 2, . . . , (M − 1). For each k, we
solve the tridiagonal system of equations (6.21). Finally, φ̂k, j is transformed
to φi, j using sinft again. The solution of the original equation is then given
by

ψi, j = φi, j − (xi − 1) sin 2πy j .

Both numerical and exact solutions are plotted in Figure 6.5. The two plots
are indistinguishable; the maximum error is 0.001.
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Figure 6.5 Numerical and exact solutions of the Poisson equation in Example 6.4.
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6.2.2 Differentiation of a Periodic Function Using Fourier Spectral Method

The modified wavenumber approach discussed in Chapter 2 naturally points to
the development of a highly accurate alternative to finite difference techniques:
spectral numerical differentiation. Consider a periodic function f (x) defined on
N equally spaced grid points, x j = j�, and j = 0, 1, 2, . . . , N − 1. The spec-
tral derivative of f is computed as follows. First, the discrete Fourier transform
of f is computed as in (6.5)

f̂k = 1

N

N−1∑
j=0

f j e
−ikx j

where,

k = 2π

L
n n = −N/2, −N/2 + 2, . . . , N/2 − 1.

Then, the Fourier transform of the derivative approximation is computed by
multiplying the Fourier transform of f by ik

D̂ fk = ik f̂k n = −N/2,−N/2 + 2, . . . , N/2 − 1.

In practice, the Fourier coefficient of the derivative corresponding to the oddball
wavenumber is set to zero, i.e., D̂ f −N/2 = 0. This ensures that the derivative
remains real in physical space (see Section 6.1.3), and it is only an issue when
N is even.

Finally, the numerical derivative at a typical point j is obtained from inverse
transformation

∂ f

∂x

∣∣∣∣
j

=
N/2−1∑

k=−N/2

D̂ f keikx j .

It is easy to see that this procedure yields the exact derivative of the harmonic
function f (x) = eikx at the grid points if |k| ≤ N/2 − 1. In fact, the spec-
tral derivative is more accurate than any finite difference scheme for periodic
functions. The major cost involved is that of using the fast Fourier transform.

EXAMPLE 6.5 Differentiation Using the Fourier Spectral Method and
Second-Order Central Difference Formula

(a) Consider the harmonic function f (x) = cos 3x defined on the discrete
points x j = (2π/N ) j , where j = 0, . . . , N − 1. Its Fourier coefficients
were calculated in Example 1(a). The Fourier coefficients of the deriva-
tive are given by D̂ f k = ik f̂ k . They are therefore

D̂ f k =
⎧⎨
⎩

−(3/2)i if k = −3
(3/2)i if k = 3

0 otherwise.
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Figure 6.6 Numerical derivative of cos 3x in Example 6.5(a) using Fourier spectral
method and second-order central finite difference formula (FD).

The corresponding inverse transform is D f j = −3 sin 3x j , which is the
exact derivative of f (x) = cos 3x at the grid points. This exact answer is
obtained as long as N ≥ 8 (because N /2 − 1 ≥ 3). For comparison, the
second-order central difference formula (2.7) is also used to compute the
derivative. Results are plotted in Figure 6.6 for N = 8 and 16 points. It is
clear that the finite difference method requires many more points to give
a result as accurate as the spectral method.

(b) Consider now the function f (x) = 2πx − x2 defined on the same discrete
set of points. We compute the Fourier coefficients of f j using Numeri-
cal Recipes’ realft, multiply f̂ k by ik, set the Fourier coefficient corre-
sponding to −N /2 to zero, and finally inverse transform using realft to
obtain the numerical derivative of f j . Results are plotted in Figure 6.7 for
N = 16. The finite difference derivative (computed at the interior points)
is exact since its truncation error for a quadratic is zero (see (2.7)). The
spectral derivative is less accurate especially near the boundaries where
the periodic continuation of f (x) is discontinuous.
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Figure 6.7 Numerical derivative of 2πx − x2 in Example 6.5(b) using Fourier spectral
method and second-order finite differences (FD), with N = 16.
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6.2.3 Numerical Solution of Linear, Constant Coefficient Differential
Equations with Periodic Boundary Conditions

The Fourier differentiation technique is easily applied to the numerical solution
of partial differential equations with periodic boundary conditions. Below we
will present two examples, one for an elliptic equation, and another for an
unsteady initial boundary value problem.

EXAMPLE 6.6 Poisson Equation

Consider the Poisson equation

∂2P
∂x2

+ ∂2P
∂y 2

= Q(x, y ) (6.22)

in a periodic rectangle of length L1 along the x axis and width L2 along the
y direction. Let us discretize the space with M uniformly spaced grid points
in x and N grid points in y. The solution at each grid point is represented as

Pl, j =
M
2 −1∑

n1=− M
2

N
2 −1∑

n2=− N
2

P̂k1,k2e
ik1xl eik2 y j

l = 0, 1, 2, . . . , M − 1 j = 0, 1, 2, . . . , N − 1, (6.23)

where

xl = lh1, h1 = L1

M
, y j = jh2, h2 = L2

N
, k1 = 2π

L1
n1, k2 = 2π

L2
n2.

Substituting (6.23) and the corresponding Fourier series representation for
Ql, j into (6.22) and using the orthogonality of the Fourier exponentials, we
obtain

−k2
1 P̂k1,k2 − k2

2 P̂k1,k2 = Q̂k1,k2 , (6.24)

which can be solved for P̂k1,k2 to yield

P̂k1,k2 = − Q̂k1,k2

k2
1 + k2

2
. (6.25)

This is valid when k1 and k2 are not both equal to zero. The solution of the
Poisson equation (6.22) with periodic boundary conditions is indeterminant
to within an arbitrary constant. We can therefore set

P̂0,0 = c,

where c is an arbitrary constant. Recall that P̂0,0 is simply the average of P
over the domain (see 6.10). The inverse transform of P̂k1,k2 yields the desired
solution Pl, j . Note that if we sum both sides of the Poisson equation with
periodic boundary conditions over the domain, we get∑

xl

∑
yj

Q(xl, y j ) = 0.
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Thus, the prescribed Q should satisfy this condition for the well posedness
of the equation. An equivalent presentation of this condition is Q̂0,0 = 0
(see (6.10)). This consistency condition can also be deduced from (6.24) by
setting both wavenumbers equal to zero.

EXAMPLE 6.7 Initial Boundary Value Problem

(a) Consider the convection–diffusion equation

∂u
∂t

+ ∂u
∂x

= ν
∂2u
∂x2

+ f (x, t ) (6.26)

in the domain 0 ≤ x ≤ L, with periodic boundary conditions in x, and
with initial condition u(x, 0) = u0(x). Since u is periodic in space, we
will expand it in discrete Fourier series

u(x j , t ) =
N
2 −1∑

n=− N
2

ûk (t )eikx j .

Substitution into (6.26) and using the orthogonality of the Fourier expo-
nentials yields

dûk

dt
= −(ik + νk2)ûk + ˆfk (t ).

This is an ordinary differential equation that can be solved for each
k = (2π/L)n, with n = 0, 1, 2, . . . , N /2 − 1, using a time advancement
scheme. Here, we are assuming that u is real and therefore we need to
carry only half the wavenumbers. The solution at any time t is obtained
by inverse Fourier transformation of ûk (t ).

(b) As a numerical example, we solve

∂u
∂t

+ ∂u
∂x

= 0.05
∂2u
∂x2

,

on 0 ≤ x ≤ 1 with

u(x, 0) =
{

1 − 25(x − 0.2)2 if 0 ≤ x < 0.4
0 otherwise.

Let N = 32. We first use Numerical Recipes’ realft to inverse trans-
form u(x j , 0) and obtain ûk (0), k = 2πn, n = 0, 1, 2, . . . , N /2 − 1. Next
we advance in time the differential equation

dûk

dt
= −(ik + 0.05k2)ûk

for each k using a fourth-order Runge–Kutta scheme. This equation is
exactly the model equation we studied in Chapter 4, i.e., y ′ = λy .
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Figure 6.8 |σ | versus h for k = 2πn, n = 1, 5, 8, 11, 13, 14, 15, in Example 6.7(b).

For stability, the time step h is chosen such that λh = −(ik + 0.05k2)h
falls inside the stability diagram of Figure 4.8. For fourth-order Runge–Kutta
this means that

|σ | =
∣∣∣∣1 + λh + λ2h2

2
+ λ3h3

6
+ λ4h4

24

∣∣∣∣ ≤ 1.

If we plot |σ | versus h for each k (see Figure 6.8), we find that as h increases,
|σ | becomes greater than 1 for the largest k value first, k = 2π (N /2 − 1).
From the plot, the maximum value of h that can be used is 0.00620. In our
calculation we used h = 0.006.

The solution is plotted in Figure 6.9 for t = 0.25, 0.5, and 0.75. The
solution propagates and diffuses in time, in accordance with the properties
of the convective–diffusion equation.

x

u(
x,

t)

0 0.25 0.50 0.75 1.00

0

0.2
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0.6

0.8

1.0 t=0
t=0.25
t=0.5
t=0.75

Figure 6.9 Numerical solution of the convective–diffusion equation in Exam-
ple 6.7(b).
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6.3 Matrix Operator for Fourier Spectral Numerical Differentiation

Up to this point we have described Fourier spectral numerical differentiation
in terms of several steps: FFT of the function f , setting the oddball Fourier
coefficient to zero, multiplying by ik, and inverse transforming back to the
physical space. In some applications it is convenient or even necessary to
have a compact representation of the spectral Fourier derivative operator in the
physical space rather than the wave space. In this section we shall develop a
physical space operator in the form of a matrix for numerical differentiation of a
periodic discrete function and give an example of its application. This operator
is, of course, completely equivalent to the familiar wave-space procedure.

Let u be a function defined on the grid

x j = 2π j

N
j = 0, 1, 2, . . . , N − 1.

Discrete Fourier transform of u is given by the following pair of equations:

ûk = 1

N

N−1∑
j=0

u(x j )e
−ikx j (6.27)

and

u(x j ) =
N/2−1∑

k=−N/2

ûkeikx j .

Recall that the spectral derivative of u at the grid points is given by

(Du) j =
N/2−1∑

k=−N/2+1

ikûkeikx j ,

where the Fourier coefficient corresponds to the oddball wavenumber equal to
zero (see Section 6.2.2). Substituting for ûk from (6.27) yields

(Du)l = 1

N

N/2−1∑
k=−N/2+1

N−1∑
j=0

iku(x j )e
−ikx j eikxl = 1

N

∑
k

∑
j

iku j e
2π ik

N (l− j)

l = 0, 1, 2, . . . , N − 1.

Let

dl j = 1

N

N/2−1∑
k=−N/2+1

ike
2π ik

N (l− j) l, j = 0, 1, 2, . . . , N − 1. (6.28)

Then the derivative of u at each grid point is given by

(Du)l =
N−1∑
j=0

dl j u j l = 0, 1, 2, . . . , N − 1. (6.29)
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The right-hand side of this expression is in the form of multiplication of an
N × N matrix D with elements dl j , and the vector u with elements u j . The
matrix D is the physical space differentiation operator that we were after. We can
simplify the expression for dl j into a compact trigonometric expression without
a summation. To evaluate the sum in (6.28), we first consider the geometric series

S =
N/2−1∑

k=−N/2+1

eikx = ei(−N/2+1)x + ei(−N/2+2)x + · · · + ei(N/2−1)x

= ei(−N/2+1)x
[
1 + eix + e2i x + · · · + ei(N−2)x

]
= ei(−N/2+1)x 1 − ei(N−1)x

1 − eix

= ei(−N/2+1)x − ei(N/2)x

1 − eix

= ei(−N/2+1/2)x − ei(N/2−1/2)x

e−i x/2 − eix/2

=
sin

(
N−1

2 x
)

sin x
2

.

This expression can be differentiated to yield the desired sum

d S

dx
=

N/2−1∑
k=−N/2+1

ikeikx =
(

N−1
2

)
cos

(
N−1

2 x
)

sin x
2 − 1

2 cos x
2 sin

(
N−1

2 x
)

(
sin x

2

)2 .

The result can be further simplified by using the trigonometric identities

sin
(

N x

2
− x

2

)
= sin

N x

2
cos

x

2
− cos

N x

2
sin

x

2

cos
(

N x

2
− x

2

)
= cos

N x

2
cos

x

2
+ sin

N x

2
sin

x

2
,

and noting that in (6.28) we could make the following substitution:

x = 2π

N
(l − j).

After these substitutions and simplifications, we finally arrive at

d S

dx
= N

2
(−1)l− j cot

[
π (l − j)

N

]
.

Thus, the matrix elements for Fourier spectral differentiation are

dl j =
{

1
2 (−1)l− j cot

[
π(l− j)

N

]
if l �= j

0 if l = j.
(6.30)

This result for the diagonal elements of the matrix is obtained directly from (6.28).
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The problem of Fourier spectral differentiation has thus been converted to a
matrix multiplication in physical space as in (6.29), and transformation to the
wave space is not necessary. Recall from linear algebra (see Appendix) that
multiplication of a full matrix and a vector requires O(N 2) operations, which
is more expensive than the O(N log2 N ) operations for the Fourier transform
method. However, in some applications such as the numerical solution of dif-
ferential equations with non-constant coefficients, having a derivative operator
in the physical space is especially useful. Finite difference operators can also
be written in matrix form, but they always lead to banded matrices. The fact
that the Fourier spectral derivative operator is essentially a full matrix reflects
the global or fully coupled nature of spectral differentiation: the derivative of a
function at any grid point is dependent on the functional values at all the grid
points.

EXAMPLE 6.8 Burgers Equation

We illustrate the use of the derivative matrix operator by solving the non-
linear Burgers equation

∂u
∂t

+u
∂u
∂x

= ∂2u
∂x2

,

on 0 ≤ x ≤ 2π, 0 < t ≤ 0.6 with u(x, 0) = 10 sin(x) and periodic boundary
conditions. Using explicit Euler for time advancement yields the discretized
form of the equation as

u(n+1) = u(n) + h(D2u(n) − UDu(n)),

where u(n) is a column vector with elements u(n)
j and j = 0, . . . , N − 1, D is

a matrix whose elements are dlj from (6.30), and U is a diagonal matrix
formed from the elements of u(n).

We estimate the time step h by performing stability analysis on the fol-
lowing linearized form of the Burgers equation:

∂u
∂t

+umax
∂u
∂x

= ∂2u
∂x2

,

where umax is the maximum absolute value of u(x, t ) over the given domain.
We assume that the maximum value of u(x, t ) occurs at t = 0; that is, umax =
10. This assumption will be verified later by checking that the numerical
solution of u does not exceed 10. Substituting the mode ûk (t )eikx for u, we
have

dûk

dt
= λûk , where λ = −k(k + iumax).

For stability of the explicit Euler method, the condition |1 + λh| ≤ 1 must be
satisfied. This is equivalent to (1 + hλR)2 + (hλI )2 ≤ 1 or

h ≤ −2
λR

|λ|2 .
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Figure 6.10 Numerical solution of the Burgers equation in Example 6.8.

Substituting −k(k + iumax) for λ gives

h ≤ 2
k2 +u2

max
.

The worst case scenario corresponds to the maximum value of |k|, i.e., N /2.
For N = 32 and umax = 10, we obtain h ≤ 0.0056. We use h = 0.005 in the
present calculations. Solutions at t = 0.1, 0.2, 0.4, and 0.6 are shown in
Figure 6.10.

The exact solution can be obtained from E. R. Benton and G. W. Platzman,
“A table of solutions of the one dimensional Burgers equation,” Q. Appl.
Math. 30 (1972), p. 195–212, case 5. It is plotted in Figure 6.10 with dashed
lines. The agreement is very good. In fact a similar agreement with the exact
solution can be obtained with only N = 16.

The solution illustrates the main feature of the Burgers equation, which
consists of a competition between convection and diffusion phenomena.
The former causes the solution to steepen progressively with time, whereas
the latter damps out high gradients. As a result, the solution first steepens
and then slowly decays, as shown in Figure 6.10.

6.4 Discrete Chebyshev Transform and Applications

Discrete Fourier series are not appropriate for representation of non-periodic
functions. When Fourier series are used for non-periodic functions, the con-
vergence of the series with increasing number of terms is rather slow. In the
remaining sections of this chapter we will develop the discrete calculus tools
for non-periodic functions, using transform methods.
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An arbitrary but smooth function can be represented efficiently in terms of a
series of a class of orthogonal polynomials which are the eigenfunctions of the
so-called singular Sturm–Liouville differential equations. Sines and cosines are
examples of eigenfunctions of non–singular Sturm–Liouville problems. One
of the advantages of using these polynomial expansions to approximate arbi-
trary functions is their superior resolution capabilities near boundaries. A rich
body of theoretical work has established the reasons for excellent convergence
properties of these series, which is outside the scope of this book. We will only
use one class of these polynomials called Chebyshev polynomials.

An arbitrary smooth function, u(x) defined in the domain −1 ≤ x ≤ 1 is
approximated by a finite series of Chebyshev polynomials:

u(x) =
N∑

n=0

anTn(x). (6.31)

Chebyshev polynomials are solutions (eigenfunctions) of the differential
equation

d

dx

[√
1 − x2

dTn

dx

]
+ λn√

1 − x2
Tn = 0,

where the eigenvalues λn = n2. The first few Chebyshev polynomials are

T0 = 1, T1 = x, T2 = 2x2 − 1, T3 = 4x3 − 3x, . . . . (6.32)

A key property of the Chebyshev polynomials is that they become simple
cosines with the transformation of the independent variable x = cos θ , which
maps −1 ≤ x ≤ 1 into 0 ≤ θ ≤ π . The transformation is

Tn(cos θ ) = cos nθ. (6.33)

This is the most attractive feature of Chebyshev polynomial expansions because
the representation is reverted to cosine transforms, and in the discrete case one
can take advantage of the FFT algorithm. Using a trigonometric identity, the
following recursive relation for generating Chebyshev polynomials can be easily
derived:

Tn+1(x) + Tn−1(x) = 2xTn(x) n ≥ 1. (6.34)

Other important properties of Chebyshev polynomials are

|Tn(x)| ≤ 1 in −1 ≤ x ≤ 1, and

Tn(±1) = (±1)n.

To use Chebyshev polynomials for numerical analysis, the domain −1 ≤ x ≤ 1
is discretized using the “cosine” mesh:

x j = cos
π j

N
j = N , N − 1, . . . , 1, 0. (6.35)
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It turns out that these grid points are the same as a particular set of Gauss
quadrature points discussed in Chapter 2. If the problem is defined on a different
domain than −1 ≤ x ≤ 1, the independent variable should be transformed to
−1 ≤ x ≤ 1. For example, the domain 0 ≤ x < ∞ can be mapped into −1 ≤
ψ < 1 by the transformation:

x = α
1 + ψ

1 − ψ
, ψ = x − α

x + α
,

where α is a constant parameter of the transformation.
As a direct consequence of the discrete orthogonality of cosine expansions,

Chebyshev polynomials are discretely orthogonal under summation over xn =
cos(πn/N ). That is

N∑
n=0

1

cn
Tm(xn)Tp(xn) =

⎧⎪⎨⎪⎩
N if m = p = 0, N
N/2 if m = p �= 0, N
0 if m �= p,

where

cn =
{

2 if n = 0, N
1 otherwise.

The discrete Chebyshev transform representation of a function u defined on a
discrete set of points given by the cosine distribution in (6.35) is defined as

u j =
N∑

n=0

anTn(x j ) =
N∑

n=0

an cos
nπ j

N
j = 0, 1, 2, . . . , N (6.36)

where the coefficients are obtained using the orthogonality property by multi-
plying both sides of (6.36) by (1/c j )Tp(x j ) and summing over all j:

an = 2

cn N

N∑
j=0

1

c j
u j Tn(x j ) = 2

cn N

N∑
j=0

1

c j
u j cos

nπ j

N

n = 0, 1, 2, . . . , N . (6.37)

Comparing (6.36) to (6.13), the Chebyshev coefficients for any function u in the
domain −1 ≤ x ≤ 1 are exactly the coefficients of the cosine transform obtained
using the values of u at the cosine mesh (6.35); i.e., u j = u[cos (π j/N )].
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EXAMPLE 6.9 Calculation of the Discrete Chebyshev Coefficients

We calculate the Chebyshev coefficients of x4 and 4(x2 − x4)e−x/2 on − 1 ≤
x ≤ 1 using Numerical Recipes’ cosft1. As long as N ≥ 4, the coefficients
for x4 are {

a0 = 0.375, a2 = 0.5, a4 = 0.125
an = 0 otherwise.

We can validate this result as follows. Using (6.32) and (6.34), T4 is given by

T4 = 2x T3 − T2 = 2x(4x3 − 3x) − T2 = 8x4 − 6x2 − T2.

Substituting T2 + T0 for 2x2 gives

x4 = 0.375T0 + 0.5T2 + 0.125T4,

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
0

0.25

0.5

0.75
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1.25

1.5

 u
(x

)

 x

Figure 6.11 The function u(x) = 4(x2 − x4)e−x/2 in Example 6.9.

which is in accordance with the coefficients obtained using cosft1. The
function u(x) = 4(x2 − x4)e−x/2 is plotted in Figure 6.11 and the magnitude
of its Chebyshev coefficients for N = 8 are plotted in Figure 6.12. Strictly,

Figure 6.12 The magnitudes of the Chebyshev coefficients of 4(x2 − x4)e−x/2 in Ex-
ample 6.9.
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since u is not a polynomial it would have an infinite number of non-zero
Chebyshev coefficients. However, the coefficients an are negligible for n ≥ 7;
i.e., only seven Chebyshev polynomials are needed to accurately represent
4(x2 − x4)e−x/2.

6.4.1 Numerical Differentiation Using Chebyshev Polynomials

The next step in the development of Chebyshev calculus is to derive a procedure
for numerical differentiation of a function defined on the grid (6.35). Our objec-
tive is to obtain a recursive relationship between the coefficients of the Cheby-
shev transforms of a function and its derivative. In the case of Fourier expan-
sion for a periodic function, this procedure was simply to multiply the Fourier
transform of the function by ik. This is a bit more involved for Chebyshev
representation, but not too difficult. Having the coefficients of the Chebyshev
transform of the derivative, we obtain the derivative in the physical space on
the grid (6.35) by inverse transformation.

We will first derive a useful identity relating the Chebyshev polynomials
and their first derivatives. Recall from the definition of Chebyshev polynomials
(6.35):

Tn(x) = cos nθ x = cos θ.

Differentiating this expression

dTn

dx
= d cos nθ

dθ

dθ

dx
= n sin nθ

sin θ
,

and using the trigonometric identity

2 sin θ cos nθ = sin(n + 1)θ − sin(n − 1)θ,

we obtain the desired identity relating Chebyshev polynomials and their deriva-
tives

2Tn(x) = 1

n + 1
T ′

n+1 − 1

n − 1
T ′

n−1 n > 1. (6.38)

Now consider the Chebyshev expansions of the function u and its derivative:

u(x) =
N∑

n=0

anTn (6.31)

u′(x) =
N−1∑
n=0

bnTn, (6.39)

where an are the coefficients of u and bn are the coefficients of its derivative.
Note that since u is represented as a polynomial of degree N, its derivative can
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be a polynomial of degree at most N – 1. Differentiating (6.31) and equating
the result to (6.39) gives

N−1∑
n=0

bnTn =
N∑

n=0

anT ′
n.

Substituting for Tn using (6.38), we have

b0T0 + b1T1 +
N−1∑
n=2

bn
1

2

[
T ′

n+1

n + 1
− T ′

n−1

n − 1

]
=

N∑
n=0

anT ′
n. (6.40)

Equating the coefficients of T ′
n , we finally obtain

bn−1

2n
− bn+1

2n
= an

or

bn−1 − bn+1 = 2nan n = 2, 3, . . . , N − 1, (6.41)

where it is understood that bN = 0 (see (6.39)). So far, we have N – 2 equations
for N unknowns. Equating the coefficients of T ′

N on both sides of (6.40) yields

bN−1 = 2NaN ,

which is the same as we would obtain from (6.41), if we were to extend its
range to N noting that bN+1 = 0. We still need one more equation. Noting that
T ′

1 = T0 and T ′
2 = 4T1 from (6.40), we have

b0T ′
1 + 1

4
b1T ′

2 − b2

2
T ′

1 − 1

4
b3T ′

2 + · · · =
N∑

n=0

anT ′
n.

Equating the coefficients of T ′
1 from both sides gives

b0 − 1

2
b2 = a1.

Hence, equation (6.41) can be generalized to yield all bn as follows:

cn−1bn−1 − bn+1 = 2nan n = 1, 2, . . . , N (6.42)

with bN = bN+1 = 0.
In summary, to compute the derivative of a function u defined on the grid

(6.35), one first computes its Chebyshev transform using (6.37), then the coef-
ficients of its derivative are obtained from (6.42) by a straightforward marching
from the highest coefficient to the lowest, and finally, the inverse transformation
(6.36) is used to obtain u′ at the grid points given by the cosine distribution.
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A formal solution for the coefficients bn in (6.42) can be written as

bm = 2

cm

N∑
p=m+1

p+m odd

pap. (6.43)

The derivation of this equation is left as an exercise at the end of this chapter.

EXAMPLE 6.10 Calculation of Derivatives Using Discrete Chebyshev
Transform

We want to calculate the derivatives of x4 and 4(x2 − x4)e−x/2 defined on
the cosine mesh inside the interval −1 ≤ x ≤ 1. We first calculate the coef-
ficients bn using (6.42) and the Chebyshev transform coefficients an already
computed in Example 6.9. We then inverse transform bn using cosft1,
which is equivalent to (6.36), to obtain the derivative at the cosine mesh.
For x4 we obtain: {

b1 = 3 b3 = 1
bn = 0 otherwise.

This means that the derivative at the grid points is 3T1(x j ) + T3(x j ). From
(6.32), this is equal to 4x3

j which is the exact derivative of x4 at the grid
points.

The coefficients of the derivative of 4(x2 − x4)e−x/2 are computed and
used to calculate the derivative, which is plotted in Figure 6.13 for N = 5.
The results show good agreement with the exact derivative. For comparison,
the derivative using second-order finite differences are also shown in Fig-
ure 6.13. In calculating the finite difference derivative, we use (2.7) for the
interior grid points, (2.12) for the left boundary point, and

u′
j = 3uj − 4uj−1 +uj−2

2h

at the right boundary point.
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Figure 6.13 The derivative of 4(x2 − x4)e−x/2 using Chebyshev transform and central
finite differences with N = 5 in Example 6.10.
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6.4.2 Quadrature Using Chebyshev Polynomials

Equation (6.38) can also be used to derive a quadrature formula in a manner
analogous to numerical differentiation. Integrating both sides of (6.38) leads to

∫
Tn(x)dx =

⎧⎪⎪⎨⎪⎪⎩
T1 + α0 if n = 0
1
4 (T0 + T2) + α1 if n = 1
1
2

[
1

n+1 Tn+1 − 1
n−1 Tn−1

]
+ αn, otherwise,

where αi are the integration constants. If u is represented by (6.31) and its
definite integral g(x) = ∫ x

−1 u(ξ ) dξ is represented by another Chebyshev
expansion with coefficients dn, then

g(x) =
∫ x

−1
u(ξ ) dξ =

N+1∑
n=0

dnTn =
N∑

n=0

an

∫
Tn(x) dx

= a0T1 + a1

4
(T0 + T2)

+
N∑

n=2

{
an

2

[
1

n + 1
Tn+1 − 1

n − 1
Tn−1

]
+ αn

}
+ α0 + α1.

Equating the coefficients of the same Chebyshev polynomials from both sides
leads to the following recursive equation for the coefficients of the integral

dn = 1

2n
(cn−1an−1 − an+1) n = 1, 2, . . . , N + 1, (6.44)

where it is understood that aN+1 = aN+2 = 0. All the integration constants and
the coefficient of T0 on the right-hand side can be combined into one integration
constant that is equal to d0. To obtain d0, we note that g(−1) = 0, which leads to

N+1∑
n=0

dn(−1)n = 0,

which can be solved for d0 to yield

d0 = d1 − d2 + d3 − · · · + (−1)N+2dN+1. (6.45)

EXAMPLE 6.11 Calculation of Integrals Using Discrete Chebyshev
Transform

We calculate the integrals

I1 =
∫ π

1

sin x
2x3

d x and I2 =
∫ 8

1

log x
x

d x
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of Examples 3.1 and 3.4, respectively. The intervals of both integrals are
transformed to [−1, 1] by using the transformations or change of variables:

y = 2x − (π + 1)
π − 1

in I1, and y = 2x − 9
7

in I2.

The integrals then become

I1 =
∫ 1

−1

π − 1
4

sin[0.5(π − 1)y + 0.5(π + 1)]
[0.5(π − 1)y + 0.5(π + 1)]3

dy

and

I2 =
∫ 1

−1

7
2

log(3.5y + 4.5)
3.5y + 4.5

dy .

These integrals are of the form g(x) = ∫ x
−1 u(ξ ) dξ . We first calculate an, the

Chebyshev transform of the integrandu(ξ ), using cosft1. We then calculate
dn, the coefficients of its integral g(x), from (6.44) and (6.45). Finally, we
inverse transform dn using cosft1 to obtain g(x) which can be evaluated at
x = 1. In this case, we do not even need to inverse transform dn to get g(x)
and then g(1); g(1) is simply equal to

∑N +1
n=0 dn. The resulting % error in I1 is

6.07 × 10−3 for N = 8 and 4.56 × 10−7 for N = 16, which is much lower than
the error of any method in Example 3.1. The error ε in I2 is 1.04 × 10−3 for
N = 8 and 2.43 × 10−6 for N = 16. Comparing to Example 3.4, the Chebyshev
quadrature performance is better than the performance of Simpson’s rule but
not as good as that of Gauss–Legendre quadrature.

6.4.3 Matrix Form of Chebyshev Collocation Derivative

As with Fourier spectral differentiation discussed in Section 6.3, it is sometimes
desirable to have a physical space operator for numerical differentiation using
Chebyshev polynomials. Consider the function f (x) in the interval−1 ≤ x ≤ 1.
We wish to compute the derivative of f on the set of collocation points xn =
cos πn/N , with n = 0, 1, 2, . . . , N . The discrete Chebyshev representation of
f is given by

f (x) =
N∑

p=0

apTp(x)

and

ap = 2

Ncp

N∑
n=0

1

cn
Tp(xn) fn cn =

{
2 n = 0, N
1 otherwise

p = 0, 1, 2, 3, . . . , N .
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This expression can be written in matrix form for the vector of Chebyshev
coefficients:

a =

⎡⎢⎢⎢⎢⎣
a0

a1
...

aN

⎤⎥⎥⎥⎥⎦ = T̂ f ,

where

T̂ = 2

N

⎡⎢⎢⎢⎢⎢⎢⎣

T0(x0)
4

T0(x1)
2 · · · T0(xN )

4
T1(x0)

2 T1(x1) · · · T1(xN )
2

...
...

...
...

TN (x0)
4

TN (x1)
2 · · · TN (xN )

4

⎤⎥⎥⎥⎥⎥⎥⎦ .

Similarly the derivative of f is given by

f ′(xn) =
N∑

p=0

bpTp(xn)

or

f ′ = T b,

where

T =

⎡⎢⎢⎢⎢⎢⎢⎣
T0(x0) T1(x0) · · · TN (x0)

T0(x1) T1(x1) · · · TN (x1)

...
...

...
...

T0(xN ) T1(xN ) · · · TN (xN )

⎤⎥⎥⎥⎥⎥⎥⎦ .

Recall that using (6.43), we can explicitly express the Chebyshev coefficients
of f in terms of the Chebyshev coefficients of f ′:

bp = 2

cp

N∑
n=p+1

n+p odd

nan.

Again, in vector form this expression can be written as

b = Ga,

where

G pn =
{

0 if p ≥ n or p + n even,
2n
cp

otherwise.

Thus, we have the following expression for f ′ at the collocation points:

f ′ = T Ga = T GT̂ f = D f ,
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where

D = T GT̂ . (6.46)

The (N + 1) × (N + 1) matrix D is the desired physical space operator for
Chebyshev spectral numerical differentiation. Multiplication of D by the vector
consisting of the values of f on the grid results in an accurate representation of
f ′ at the grid points. However, expression (6.46) for D is not very convenient
because it is given formally in terms of the product of three matrices. It turns
out that one can derive an explicit and compact expression for the elements of
D using Lagrange polynomials as discussed in Chapter 1. This derivation is
algebraically very tedious and is left as exercises for the motivated reader at the
end of this chapter (Exercises 18 and 19); we simply state the result here. The
elements of the (N + 1) × (N + 1) Chebyshev collocation derivative matrix
D are

d jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c j (−1) j+k

ck (x j −xk ) j �= k

−x j

2(1−x2
j )

j = k, j �= 0, N

2N 2+1
6 j = k = 0

− 2N 2+1
6 j = k = N ,

(6.47)

where x j are the locations of the grid points given by (6.35) and

c j =
{

2 if j = 0, N
1 otherwise.

EXAMPLE 6.12 Calculation of Derivatives Using Chebyshev Derivative
Matrix Operator

We use the Chebyshev derivative matrix operator to differentiate u(x) =
4(x2 − x4)e−x/2 of Example 6.10. Let the vectors x and u represent the col-
location points xn = cos (πn/N ), n = 0, 1, 2, . . . , N , and the values of u at
these points, respectively. For N = 5, x and u are

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.000
0.809
0.309

−0.309
−0.809
−1.000

⎤
⎥⎥⎥⎥⎥⎥⎦

, u =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0.604
0.296
0.403
1.355
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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The matrix operator D, whose elements are obtained from (6.47), is

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

8.500 −10.472 2.894 −1.528 1.106 −0.500
2.618 −1.171 −2.000 0.894 −0.618 0.276

−0.724 2.000 −0.171 −1.618 0.894 −0.382
0.382 −0.894 1.618 0.171 −2.000 0.724

−0.276 0.618 −0.894 2.000 1.171 −2.618
0.500 −1.106 1.528 −2.894 10.472 −8.500

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We multiply D by u to obtain the derivative of u at the collocation points:

u′ = Du =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4.581
−1.776

1.717
−2.703

2.502
12.813

⎤
⎥⎥⎥⎥⎥⎥⎦

.

These values are exactly the ones obtained in Example 6.10 (see Figure 6.13).

EXAMPLE 6.13 Convection Equation with Non-constant Coefficients

We solve the equation

ut + 2xux = 0 u(x, 0) = sin 2πx,

on the domain −1 ≤ x ≤ 1 using the matrix form of the Chebyshev colloca-
tion derivative to calculate the spatial derivatives. This is a one-dimensional
wave equation with characteristics going out of the domain at both ends and
thus there is no need for boundary conditions. Using the explicit Euler
scheme for time advancement, the discretized form of the equation is

un+1 = un + h(−2X Dun),

where un is a column vector with elementsun
j , j = 0, . . . , N − 1; D is a matrix

whose elements are dlj from (6.47); and X is a diagonal matrix with x j ,
j = 0, . . . , N − 1, on its diagonal.

For N = 16 and h = 0.001, solutions at t = 0.3 and 0.6 are shown in
Figure 6.14. The agreement with the exact solution (sin(πxe−2t )) is very
good. Similar agreement can also be obtained with N = 8. From Figure 6.14,
we see that the solution at the origin does not move. This is expected since
the wave speed, x, is zero at x = 0. Also, the parts of the wave to the right and
left of the origin propagated to the right and left, respectively. The wave shape
is distorted since the speed of propagation is different from point to point.
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Exact

Figure 6.14 Numerical solution of the convection equation in Example 6.13.

6.5 Method of Weighted Residuals

The method of weighted residuals provides a framework for solving partial
differential equations with transform methods. It is as a generalization of the
methods discussed earlier where the numerical solution is expressed as a linear
combination of a set of basis functions. The task at hand is to solve for the
expansion coefficients by enforcing the differential equation in a weighted
global or integral sense rather than by enforcing it at each spatial grid point.

A general statement of the problem we desire to solve is typically

L(u) = f (x, t) for x ∈ D (6.48)

with the general boundary conditions

B(u) = g(x, t) on ∂D. (6.49)

Here, the operator L(u) contains some spatial derivatives, such as a simple
differential operatorL(u) = d2u

dx2 + u, or a convective–diffusive operatorL(u) =
∂u
∂t + V ∂u

∂x − ν ∂2u
∂x2 , and may either be linear or nonlinear in u.

The solution u(x, t) is approximated by the function ũ(x, t), which is
assumed to be expressible as a combination of basis functions, φn:

ũ =
N∑

n=0

cn(t)φn(x). (6.50)

The choice of basis functions used in the expansion depends on the application
and the type of equation one wishes to solve. Frequently used choices for φn(x)
include complex exponentials eikn x, polynomials xn, eigenfunctions of singular
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Sturm–Louiville problems discussed in previous sections, or some variation
thereof.

In general, the approximated solution ũ does not satisfy the original equation
(6.48) exactly. Instead, the method of weighted residuals aims to find the solution
ũ which minimizes the residual R = L(ũ) − f of (6.48) in the weighted integral
sense: ∫

D
wi R dx = 0 i = 0, 1, . . . , N ,

for some weight functions wi (x). Inserting the expansion of the approximated
solution (6.50) into the residual gives∫

D
wi (x)

[
L

(
N∑

n=0

cnφn

)
− f

]
dx = 0. (6.51)

For operators L(u) that contain spatial differential operators, and for suffi-
ciently differentiable weight functions wi (x), integration by parts turns equation
(6.51) into the weak form of the original equation (6.48), which is the form ulti-
mately used in the finite element method. A variety of weight functions wi (x)
can be selected to solve equation (6.51). For weight functions (also called
test functions) which are taken from the same space of functions as ũ, the
method of weighted residuals is also known as the Galerkin method. Insert-
ing wi (x) = φi (x) into (6.51) gives the following system of equations for the
unknown coefficients, cn:∫

D
φi

[
L

(
N∑

n=0

cnφn

)
− f

]
dx = 0 i = 0, 1, . . . , N .

The Fourier spectral method used to solve equation (6.26) is an example of the
Galerkin method with test functions φk(x) = (eikx )∗ = e−ikx .

In mathematical terms, the objective of the Galerkin method is to minimize
the L2 error by making the error orthogonal to the approximation subspace
spanned by φi . This is the approach commonly used in deriving the finite
element method.

6.6 The Finite Element Method

Although the finite element method can be developed from several different
approaches, including variational or Rayleigh–Ritz procedure; only the method
of weighted residuals is introduced below owing to its close connection to
spectral methods described earlier. We first consider one-dimensional linear
problems to simplify the analysis and to obtain a better understanding of the
finite element method. However, the main advantage of the finite element
method is in solving multi-dimensional problems in geometrically complex
domains. Two-dimensional formulations will be discussed in Section 6.7.
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Figure 6.15 A schematic of the discretized domain, showing the placement of nodes
xj and elements 1, 2, . . . , N.

6.6.1 Application of the Finite Element Method to a Boundary Value Problem

For a simple illustration of the finite element method, we first consider the
one-dimensional boundary value problem

d2

dx2
u(x) + u(x) = f (x) (6.52)

inside the domain 0 ≤ x ≤ 1. We consider the case of general, or natural,
boundary conditions at x = 0 and x = 1 expressed in the form

αu(0) + du

dx

∣∣∣∣
x=0

= A

βu(1) + du

dx

∣∣∣∣
x=1

= B. (6.53)

Discretization of the domain in x is accomplished by placing N − 1 nodes
in the interior, with node j located at xj, as shown in Figure 6.15. The nodes
also subdivide the domain into N elements, where the jth element occupies the
region x j−1 ≤ x ≤ x j and has the width � j = x j − x j−1. In general, the nodes
can be nonuniformly spaced throughout the domain, so each element may be of
a different size. Although many choices of basis functions, φ j (x), are possible,
the simplest choice is piecewise linear functions defined by

φ j (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 x < x j−1

x−x j−1

x j −x j−1
x j−1 ≤ x < x j

x−x j+1

x j −x j+1
x j ≤ x < x j+1

0 x ≥ x j+1

j = 1, 2, . . . , N − 1. (6.54a)

with the functions φ0 and φN given by

φ0(x) =
{

x−x1
x0−x1

x0 ≤ x < x1

0 x1 ≤ x
(6.54b)

φN (x) =
{

0 x < xN−1
x−xN−1

xN −xN−1
xN−1 ≤ x ≤ xN .

(6.54c)

Higher-order polynomial versions of φ j can also be constructed. However,
the definition given by (6.54a)–(6.54c) satisfies the critical requirements for
approximation functions: that they are continuous and differentiable within each
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Figure 6.16 The series of approximating functions φ
(m)
j (x).

element. Polynomial approximation functions can be considered as Lagrange
polynomials, and can be derived in a similar manner.

The fact that each basis function is nonzero only in two elements makes
the subsequent computational procedures much simpler. The portion of φ j (x)

that resides on element m is denoted by φ
(m)
j (x), so definition (6.54a) can be

re-expressed as

φ
( j)
j (x) = x−x j−1

x j −x j−1
, φ

( j+1)
j (x) = x−x j+1

x j −x j+1
, φ

(m)
j (x) = 0 for m �= j, j +1.

(6.55)

Thus, in a given element m, only two nonzero functions exist: φ
(m)
m−1(x) and

φ(m)
m (x). A diagram of the sequence of φ j (x) functions is shown in Figure 6.16.

With this choice of basis functions, the numerical solution for u(x) is
expressed as:

u(x) ≈ ũ =
N∑

j=0

u jφ j (x), (6.56)

where uj are the values of ũ(x) at the nodes xj since φ j (x j ) = 1. For general
basis functions, however, the coefficients, uj, are not necessarily the same as
the nodal values of the solution. The solution to (6.52) can be found in terms
of the method of weighted residuals∫ 1

0

(
d2ũ

dx2
+ ũ − f

)
wi dx = 0 i = 0, 1, . . . , N .
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Since first derivative of ũ is discontinuous, but integrable (due to piecewise
linearity of the basis functions), integration by parts can be used to avoid
singularities in the weak form of the equations[

dũ

dx
wi

]1

0
−

∫ 1

0

dũ

dx

dwi

dx
dx +

∫ 1

0
ũwi dx −

∫ 1

0
f wi dx = 0. (6.57)

Following the method of weighted residuals, the approximated form of the
solution given by (6.56) is substituted into the integrals of (6.57), yielding[

dũ

dx
wi

]1

0
−

∫ 1

0

⎛⎝ d

dx

N∑
j=0

u jφ j

⎞⎠ dwi

dx
dx

+
∫ 1

0

⎛⎝ N∑
j=0

u jφ j

⎞⎠wi dx −
∫ 1

0
f wi dx = 0.

With the Galerkin method, the choice of weight function wi is selected from
the same set of interpolating polynomials listed above, so wi (x) = φi (x). This
produces a set of N + 1 equations for the unknown coefficients, uj, and du

dx at
the boundaries.[

dũ

dx
φi

]1

0
−

N∑
j=0

u j

∫ 1

0

dφ j

dx

dφi

dx
dx +

N∑
j=0

u j

∫ 1

0
φ jφi dx =

∫ 1

0
f φi dx

i = 0, 1, . . . , N . (6.58)

With the boundary conditions given by (6.53) the system can now be closed with
N + 3 equations for N + 3 unknowns. Incorporating the boundary conditions
(6.53), equation (6.58) is re-written as:

αu0δi0 − βuN δi N −
N∑

j=0

u j

∫ 1

0

dφ j

dx

dφi

dx
dx +

N∑
j=0

u j

∫ 1

0
φ jφi dx

=
∫ 1

0
f φi dx − Bδi N + Aδi0 i = 0, 1, . . . , N , (6.59)

where we have used the Kronecker delta symbol δi j to represent φi (0) = δi0

and φi (1) = δi N .
In the case of Dirichlet boundary conditions, where the values at the end-

points are specified as u(0) = u0 = a and u(1) = uN = b, equation (6.58) pro-
duces a set of N + 1 equations. However, for these boundary conditions, the
unknowns are the N − 1 nodal values uj in the interior of the domain, plus the
values of the derivatives at the boundaries: du

dx |x=0 and du
dx |x=1.

The systematic procedure of solving equation (6.59) follows by computing
the integral quantities in terms of known parameters. Noting that this proce-
dure requires different treatments for different boundary conditions, here, for
simplicity, we only describe it for the case of homogeneous Dirichlet boundary
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conditions, u0 = uN = 0. In this case, the internal uj values could be obtained
by directly solving equation (6.58) for i = 1, 2, . . . , N − 1:

−
N−1∑
j=1

u j

∫ 1

0

dφ j

dx

dφi

dx
dx +

N−1∑
j=1

u j

∫ 1

0
φ jφi dx =

∫ 1

0
f φi dx

i = 1, 2, . . . , N − 1, (6.60)

which is a set of N − 1 equations for the N − 1 interior uj coefficients. Note
that the boundary term [ dũ

dx φi ]1
0 vanishes for these values of i.

In general, the function f (x) is supplied either analytically or given dis-
cretely at the nodes, xj. If the analytical form of f (x) is supplied, then the
integral on the right-hand side of equation (6.60) can be computed directly.
However, if the function is given only at the points x j , we may use the follow-
ing representation of f :

f (x) ≈
N∑

j=0

f jφ j (x), (6.61)

where f j = f (x j ). This allows equation (6.60) to be expressed in the more
compact form

N−1∑
j=1

(−Di j + Ci j )u j =
N∑

j=0

Ci j f j i = 1, 2, . . . , N − 1, (6.62)

where the symmetric matrices Di j and Ci j are defined by the integrals

Di j =
∫ 1

0

dφi

dx

dφ j

dx
dx, (6.63a)

and

Ci j =
∫ 1

0
φiφ j dx . (6.63b)

The task of computing these matrices is now straightforward, given the func-
tional form of φi (x) in (6.54a). For instance, to compute Di j , we first note
that φi vanishes outside the region xi−1 ≤ x ≤ xi+1, allowing us to restrict the
integration to the elements i and i + 1.

Di j =
∫ 1

0

dφi

dx

dφ j

dx
dx

=
∫ xi+1

xi−1

dφi

dx

dφ j

dx
dx

=
∫ xi

xi−1

dφ
(i)
i

dx

dφ
(i)
j

dx
dx︸ ︷︷ ︸

element i

+
∫ xi+1

xi

dφ
(i+1)
i

dx

dφ
(i+1)
j

dx
dx︸ ︷︷ ︸

element i+1

.
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Since the basis functions are linear inside each element, the integrands are con-
stant for each integral. From (6.55) these constants can be computed yielding:

Di j = dφ
(i)
j

dx
− dφ

(i+1)
j

dx
.

The nonzero elements of Di j are

Di−1,i = − 1

�i

Di,i = 1

�i
+ 1

�i+1

Di+1,i = − 1

�i+1
.

The calculation of the matrix Ci j proceeds in an analogous manner and is
deferred to the exercises at the end of this chapter. The nonzero matrix elements
are:

Ci−1,i = �i

6

Ci,i = �i

3
+ �i+1

3
(6.64)

Ci+1,i = �i+1

6
.

Combining both Di j and Ci j into a single tridiagonal matrix Ai j = Ci j − Di j

allows us to express equation (6.62) in the canonical form

Au = b. (6.65)

The entries of the banded matrix Ai j are then given by

A j, j−1 = 1

� j
+ � j

6
(6.66a)

A j, j = −
(

1

� j
+ 1

� j+1

)
+ � j

3
+ � j+1

3
(6.66b)

A j, j+1 = 1

� j+1
+ � j+1

6
(6.66c)

and the right-hand side is given by

b j = � j

6
f j−1 +

(
� j

3
+ � j+1

3

)
f j + � j+1

6
f j+1. (6.66d)

The solution of the (N − 1) × (N − 1) tridiagonal system (6.65) results in the
values of uj at the internal node points.
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EXAMPLE 6.14 One-Dimensional Boundary Value Problem

Consider the solution to the differential equation

d2

d x2
u(x) +u(x) = x3 (6.67)

over the domain 0 ≤ x ≤ 1 and boundary conditions u(0) = 0 and u(1) = 0.
The exact solution is

u(x) = −6x + x3 + 5 csc(1) sin(x).

Using a uniform mesh with N elements gives a mesh spacing of � = 1/N ,
and grid points located at x j = j�, resulting in f j = (

j�
)3. The solutionuj to

the tridiagonal system (6.65) is plotted in Figure 6.17 for N = 4, N = 8, and
N = 16 along with the exact solution. With eight elements the agreement
with the exact solution is already very good.

0 0.2 0.4 0.6 0.8 1
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

x

u(x)

N=4
N=8
N=16
exact

Figure 6.17 The solution uj to equation (6.67) for N = 4 N = 8, and N = 16, compared
with the exact solution.

6.6.2 Comparison with Finite Difference Method

If the mesh spacing is uniform, such that � j = �, then equations (6.65) and
(6.66a)–(6.66d) can be condensed into

(
1

�
+ �

6

)
u j−1 +

(
− 2

�
+ 2�

3

)
u j +

(
1

�
+ �

6

)
u j+1

= �

6
f j−1 + 2�

3
f j + �

6
f j+1 j = 1, 2, . . . , N − 1. (6.68)
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We can rearrange (6.68) into the following form:

u j+1 − 2u j + u j−1

�2
+

[
1

6
u j+1 + 2

3
u j + 1

6
u j−1

]
= 1

6
f j−1 + 2

3
f j + 1

6
f j+1.

(6.69)

This discrete version of the original differential equation (6.52) contains three
major terms: a second-order difference of d2u

dx2 | j , plus the weighted averages of
u j and f j . In operator notation, this could be expressed as

D2[u j ] + W [u j ] = W [ f j ], (6.70)

where the second-order central finite difference operator, D2, is the product of
the forward difference operator, D+[a j ] = a j+1−a j

�
, and the backward difference

operator, D−[a j ] = a j −a j−1

�
, and is given by,

D2[a j ] = a j+1 − 2a j + a j−1

�2
,

and the weighted averaging operator is denoted by

W [a j ] = a j+1 + 4a j + a j−1

6
.

The order of accuracy of (6.69) can be established by obtaining its associated
modified equation, similar to what we described in Section 5.5. Taylor series
expansion of f j−1 and f j+1 result in:

W [ f j ] = 1

6
f j−1 + 2

3
f j + 1

6
f j+1 = f j + �2

6
f ′′

j + O(�4),

and the second-order finite difference of d2u
dx2 | j is expanded as

D2[u j ] = u j+1 − 2u j + u j−1

�2
= u′′

j + �2

12
u(iv)

j + O(�4).

Collecting all the terms gives

D2[u j ] + W [u j ] − W [ f j ] − (u′′
j + u j − f j )

= �2
(

1

12
u(iv)

j + 1

6
u′′

j − 1

6
f ′′

j

)
+ O(�4) (6.71)

If u j satisfies the discretized equation in (6.70), it will satisfy the exact differ-
ential equation with an error term proportional to �2,

u′′
j + u j − f j = −�2

(
1

12
u(iv)

j + 1

6
u′′

j − 1

6
f ′′

j

)
+ O(�4), (6.72)

showing that the finite element formulation is second-order accurate. The right-
hand side of (6.71) can be further simplified. Taking the second derivative
of (6.72) results in u′′

j − f ′′
j = −u(iv)

j + O(�2) which can be substituted to
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simplify the right-hand side of (6.71).

D2[u j ] + W [u j ] − W [ f j ] − (u′′
j + u j − f j ) = −�2

[
1

12
u(iv)

j

]
+ · · · .

(6.73)

For comparison, a similar analysis for the standard finite difference discretiza-
tion of (6.52) (without the weighted averaging) would give

D2[u j ] + u j − f j − (u′′
j + u j − f j ) = �2

[
1

12
u(iv)

j

]
+ · · · , (6.74)

showing that the two methods are equivalent with respect to order of accuracy;
even the magnitudes of the leading order error terms are the same. The finite
element method uses the weighted average of u and f instead of their local
values. It is interesting that the method obtained from averaging (6.73) and
(6.74) would be fourth-order accurate without any additional effort.

6.6.3 Comparison with a Padé Scheme

A similar comparison can be made between finite element and Padé schemes.
Using the difference operator D2/(1 + 1

12�2 D2) to represent Padé differentia-
tion (see Exercise 7 in Chapter 2), equation (6.52) can be discretized as

D2[u j ]

1 + 1
12�2 D2

+ u j = f j .

Multiplying both sides by the operator (1 + �2

12 D2) gives

D2[u j ] +
[

1 + �2

12
D2

]
u j =

[
1 + �2

12
D2

]
f j ,

which can be expanded in terms of a tridiagonal system at every point j

u j+1−2uj + u j−1

�2
+

[
1

12
u j+1+ 5

6
u j + 1

12
u j−1

]
= 1

12
f j−1+ 5

6
f j + 1

12
f j+1.

(6.75)

Notice that equation (6.75), which used the fourth-order Padé scheme for the
second derivative in (6.52), also involves a second-order difference operator D2

and a weighted averaging operator WP:

D2[u j ] + WP [u j ] = WP [ f j ].

While the D2 operator is identical to the one used by the finite element method,
the weighted averaging operator WP involves different coefficients. Also note
that the result for Padé is the same as the average of (6.71) and (6.74), confirming
its fourth-order accuracy.
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6.6.4 A Time-Dependent Problem

Consider the constant coefficient convection equation

∂u

∂t
+ c

∂u

∂x
= 0 (6.76)

over the domain 0 ≤ x ≤ 1, with N + 1 grid points including the two bound-
aries. The finite element solution to (6.76) can be constructed by using the
method of weighted residuals and integrating by parts with test functions wi (x)
to obtain∫ 1

0

∂ ũ

∂t
wi dx + cũwi |10 − c

∫ 1

0
ũ
∂wi

∂x
dx = 0 i = 0, 1, . . . , N . (6.77)

The function ũ(x, t) can be represented in terms of linear interpolating functions
φ j :

ũ(x, t) =
N∑

j=0

u j (t)φ j (x).

Substituting into (6.77) and using the Galerkin formulation, the system of
equations becomes

N∑
j=0

du j

dt

∫ 1

0
φ jφi dx − c

N∑
j=0

u j

∫ 1

0
φ j

dφi

dx
dx − cu0δi0 + cuN δi N = 0

i = 0, 1, . . . , N .

Consolidating all of the interpolation integrals into the matrices Ci j and D′
i j

gives ∑
j

(
du j

dt
Ci j − cu j D′

i j

)
− cu0δi0 + cuN δi N = 0, (6.78)

where D′
i j is a tridiagonal matrix with nonzero entries given by

D′
i,i−1 = 1

2
, D′

i,i+1 = −1

2
,

and Ci j’s were given in Section 6.6.1. This leads to N + 1 equations for N + 1
unknown nodal values, uj. However, to obtain a well-posed system one of the
boundary equations should be replaced by a boundary condition. Assuming
c > 0, the nodal value of u at the left boundary should be prescribed. For the
interior nodes with uniform mesh spacing, �, the finite element formulation of
(6.76) leads to the following tridiagonal system[

1

6

du

dt

∣∣∣∣
j+1

+ 2

3

du

dt

∣∣∣∣
j
+ 1

6

du

dt

∣∣∣∣
j−1

]
+ c

2�

(
u j+1 − u j−1

) = 0

j = 1, 2, . . . , N − 1. (6.79)
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Compared to a straightforward application of central difference scheme, appar-
ently, the finite element method leads to a weighted average of the time derivative
scheme.

It is interesting to compare this result with the application of the Padé
scheme to equation (6.76). Using the fourth-order Padé scheme for the spatial
derivative in (6.76) leads to

du j

dt
+ c

D0
[
u j

]
1 + �2

6 D2
= 0,

where the central difference operator D0
[
u j

] = (u j+1 − u j−1)/2�. Multiply-

ing both sides by [1 + �2

6 D2][
1 + �2

6
D2

]
du j

dt
+ cD0

[
u j

] = 0,

and expanding the operators D2 and D0 and collecting terms, leads to the same
system as the finite element method:[

1

6

du

dt

∣∣∣∣
j+1

+ 2

3

du

dt

∣∣∣∣
j
+ 1

6

du

dt

∣∣∣∣
j−1

]
+ c

2�

(
u j+1 − u j−1

) = 0.

Thus, the finite element formulation with linear elements appears to be fourth-
order accurate for this problem. This remarkable result appears to be coinci-
dental.

The One-Dimensional Heat Equation

As another example of the application of the one-dimensional finite element
method consider the time-dependent heat equation

∂u

∂t
− α

∂2u

∂x2
= 0, (6.80)

on a uniform grid with elements of width �x. By strict analogy with the
formulation of the boundary value problem in Sections 6.6.1 and 6.6.2, we can
readily write the resulting discrete equations of the finite element method

W
[

du j

dt

]
− αD2 [

u j
] = 0,

or

1

6

du

dt

∣∣∣∣
j−1

+ 2

3

du

dt

∣∣∣∣
j
+ 1

6

du

dt

∣∣∣∣
j+1

= α
u j+1 − 2u j + u j−1

�x2
.
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For time advancement, the Crank–Nicolson scheme leads to

1

6

(
un+1

j−1 − un
j−1

)
+ 2

3

(
un+1

j − un
j

)
+ 1

6

(
un+1

j+1 − un
j+1

)
(6.81)

= β
(

un+1
j+1 − 2un+1

j + un+1
j−1

)
+ β

(
un

j+1 − 2un
j + un

j−1

)
where β = α�t/2�x2, and the subscript on u refers to the spatial grid, and the
superscript refers to the time step. Equation (6.81) can be rearranged to yield a
tridiagonal system for the solution at the next time step n + 1.(

1

6
− β

)
un+1

j−1 +
(

2

3
+ 2β

)
un+1

j +
(

1

6
− β

)
un+1

j+1

=
(

1

6
+ β

)
un

j−1 +
(

2

3
− 2β

)
un

j +
(

1

6
+ β

)
un

j+1 (6.82)

EXAMPLE 6.15 Unsteady Heat Equation

Consider the one-dimensional heat equation

∂u
∂t

− α
∂2u
∂x2

= 0

on the domain 0 ≤ x ≤ 1 with Dirichlet boundary conditions, u(x = 0, t ) =
u(x = 1, t ) = 0, and the initial condition u(x, t = 0) = sin(πx). The exact
solution is u(x, t ) = sin(πx)e−απ2t . For the finite element solution to the
problem, we employ a grid with N uniform elements of size �x = 1/N . The
tridiagonal system (6.82) can be used to solve forun

i . For N = 8, α = 0.1, �t =
0.1, the solution is plotted in Figure 6.18 along with the exact solution.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.0

t=0.5

t=1.0

t=1.5

x

u
(x

,t
)

N=8
exact

Figure 6.18 The solution to the one-dimensional heat equation for N = 8 at times t = 0,
0.5, 1.0, and 1.5.
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n

(a) (b)

Figure 6.19 (a) A schematic of the two-dimensional domain A with boundary �, and
(b) a possible mesh used to discretize the domain.

6.7 Application to Complex Domains

The procedures outlined for the one-dimensional problems can be extended
naturally to two dimensions. However, while the formulation still remains man-
ageable, much of the simplicity in one dimension disappears when the details
of the geometry and basis functions are taken into account.

Consider the Poisson equation

∇2u = q(x) (6.83)

in the two-dimensional domain shown in Figure 6.19a with homogeneous Neu-
mann boundary conditions, such that ∂u

∂n = 0 on the boundary �. The domain is
discretized into a series of nodal points and two-dimensional elements, such as
triangles or quadrilaterals, connecting them. For simplicity, we consider only
triangular elements in this discussion, with node points located at the vertices
of the triangles (see Figure 6.19b). On this discretized mesh, we aim to find the
value of the approximated solution ũ(x) at each nodal point.

Following the method of weighted residuals, the residual R = ∇2ũ − q is
first integrated over the domain with a weighting function wi (x, y).∫

A
wi

[
∇2ũ − q

]
dA = 0. (6.84)

The term in the integrand involving the Laplacian can be replaced with the
following identity

∇ · (wi∇ũ) − (∇wi ) · (∇ũ) = wi∇2ũ. (6.85)

In addition, the divergence theorem acting on the first term of (6.85) yields the
following boundary term∫

A
∇ · (wi∇ũ) dA =

∫
�

wi
∂ ũ

∂n
d�, (6.86)

where ∂
∂n is the derivative in the direction normal to the boundary and pointing

outward. Note that equation (6.86) is equivalent to applying integration by parts
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to equation (6.84). Inserting both (6.85) and (6.86) into (6.84), yields the weak
formulation of the problem:

−
∫
A

(∇ũ) · (∇wi ) dA +
∫

�

∂ ũ

∂n
wi d� =

∫
A

wi q dA. (6.87)

Returning to the homogeneous Neumann boundary conditions, ∂ ũ
∂n = 0 on the

boundary �, the second term in (6.87) vanishes. For inhomogeneous Neumann
boundary conditions, a finite flux ∂ ũ

∂n = f is specified on the boundary of the
domain, which can be absorbed into the inhomogeneous term

∫
A wi q dA.

To express equation (6.87) in two-dimensional Cartesian coordinates, the
gradients of ũ and wi are written explicitly as

(∇ũ) · (∇wi ) = ∂ ũ

∂x

∂wi

∂x
+ ∂ ũ

∂y

∂wi

∂y
.

Similar to the one-dimensional problems (i.e., 6.56), the approximate solution
can be expressed as a linear combination of basis functions φ j (x, y)

ũ(x, y) =
N∑

j=1

u jφ j (x, y), (6.88)

where the coefficients u j are the values of the solution at the nodal points
(x j , y j ) and N is the number of basis functions (same as number of nodes).
Note that N is typically smaller than the number of elements for triangular
mesh. As in the Galerkin method, the weighting function is also selected from
the same space of basis functions

wi (x, y) = φi (x, y) i = 1, 2, . . . , N . (6.89)

In cases where the inhomogeneous term, q(x, y), is given discretely at the nodal
points, the right-hand side can also be expressed as

q(x, y) =
N∑

j=1

q jφ j (x, y). (6.90)

Substituting equations (6.88)–(6.90) into (6.87), we arrive at the finite element
formulation for the Poisson equation:

−
N∑

j=1

u j

∫
A

(
∂φi

∂x

∂φ j

∂x
+ ∂φi

∂y

∂φ j

∂y

)
dx dy =

N∑
j=1

q j

∫
A

φi (x, y)φ j (x, y) dx dy

i = 1, 2, . . . , N (6.91)

where the summation is over all basis functions. As we shall see in Sec-
tion 6.7.1, the basis functions are constructed such that they are nonzero only
in the neighborhood of their corresponding node. This can be used to simplify
equation (6.91) in a systematical routine. For example, for each i the domain
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of integration can be limited to the neighborhood of node i. Furthermore, the
summation index j can be limited to those nodes whose basis functions overlap
with that of node i. The integral on the left-hand side of (6.91) is termed the
Stiffness matrix

Ki j =
∫
A

(
∂φi

∂x

∂φ j

∂x
+ ∂φi

∂y

∂φ j

∂y

)
dx dy, (6.92a)

while the integral on the right-hand side is termed the Mass matrix

Mi j =
∫
A

φi (x, y)φ j (x, y) dx dy. (6.92b)

Ki j and Mi j are analogous to matrices Di j and Ci j in one-dimensional case dis-
cussed earlier. These matrices allow equation (6.91) to be expressed compactly
as

−
N∑

j=1

Ki j u j =
N∑

j=1

Mi j q j i = 1, 2, . . . , N . (6.93)

This amounts to solving an N × N system for N unknown nodal values of uj.
Once a particular mesh geometry is specified and the basis functions φi defined,
then both Ki j and Mi j can be calculated and equation (6.93) be solved for the
values uj.

6.7.1 Constructing the Basis Functions

In constructing the basis functions φi (x, y), the simplest and most convenient
choice is to select piecewise linear functions on triangular elements. Following
the same idea as in one-dimensional cases, each basis function is equal to one
at a single node and is nonzero only on elements sharing that node. These
properties uniquely determine N continuous basis functions corresponding to
N nodes. Figure 6.20 shows a schematic of these functions. Separate linear
relations are used to define basis functions on each triangular element. The
coordinates of the nodes of each element can be employed to define these linear
functions.

φi (x, y) =

⎧⎪⎨⎪⎩
(x−x j )(yk−y j )−(y−y j )(xk−x j )

(xi −x j )(yk−y j )−(yi −y j )(xk−x j )
if (x, y) is in the element defined

by nodes i, j, k
0 otherwise. (6.94)

Note in Figure 6.20 if (x, y) is in any of the five triangles with common vertex
1, then φ1(x, y) would be nonzero. To use equation (6.94) to evaluate φ1 in each
one of these triangles, (xi , yi ) should be replaced by the coordinates of node 1
and (x j , y j ) and (xk, yk) should be replaced by coordinates of the two other
nodes of the triangle.

Similar to the notation given in the one-dimensional case, φm
i is used to

denote the i th basis function evaluated in the element m. φm
i is nonzero only
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Figure 6.20 A schematic discretization of domain using triangular elements. Shown
are 10 nodes and 9 elements and basis functions corresponding to nodes 1 and 2.

if node i is at the boundary of element m and can be written in the following
form:

φm
i (x, y) = am

i x + bm
i y + cm

i , (6.95)

where coefficients am
i , bm

i , and cm
i are obtained from the coordinates of the

element m nodes according to equation (6.94).
The next natural step would be to compute the matrices Ki j and Mi j by

evaluating the integrals of equations (6.92a) and (6.92b). These integrals can
be evaluated separately in each element and then summed over elements with
nonzero contribution. Using equation (6.95) in the expression of the Stiffness
matrix yields

Ki j =
∑

m

Am
(
am

i am
j + bm

i bm
j

)
, (6.96)

where Am is the area of element m.
Some benefits can be gained by using local coordinates to evaluate these

integrals. For example, the following integral which contributes to Mi j∫
m

φm
i φm

j dx dy, (6.97)

can be evaluated using the coordinates ξ and η instead of x and y. Assuming
i �= j , the following choices for ξ and η simplifies the integration domain
in (6.97)

ξ (x, y) = am
i x + bm

i y + cm
i = φm

i (x, y),

η(x, y) = am
j x + bm

j y + cm
j = φm

j (x, y).

Under this transformation, the integration domain maps to a triangle defined by
coordinates (0,0), (1,0), and (0,1) as shown in Figure 6.21. The new expression
of the integral is ∫ 1

0

∫ 1−η

0
ξη

dξ dη

|am
i bm

j − bm
i am

j | i �= j.
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m

Figure 6.21 Element m with its nodes i, j , and k can be transformed to a simpler
triangle using ξ = φm

i and η = φm
j as the new coordinates.

The constant coefficient in the denominator is the determinant of the Jacobian
matrix. Using this expression which can be evaluated analytically, Mi j can be
easily computed.

Mi j = 1

12

∑
i, j∈m

Am i �= j. (6.98a)

Similarly one can show that

Mii = 1

6

∑
i∈m

Am . (6.98b)

In general, depending on the original partial differential equation, different
integrals need to be evaluated to reduce the problem to a system of algebraic
equations and transformation typically makes this task simpler.

EXAMPLE 6.16 Two-Dimensional Poisson Equation

Consider the Poisson equation

∇2u = −2π2 sin(πx) sin(πy ), (6.99)

over the domain shown in Figure 6.22 with nonhomogeneous Dirichlet
boundary conditions given in the figure. The exact solution to this equa-
tion is u = sin(πx) sin(πy ).

To obtain a finite element solution, first we need to decompose the
domain into triangular elements. For this purpose simple meshing soft-
ware such as Matlab’s PDE toolbox routines, which are widely available can
be used. A typical meshing routine outputs all the necessary information
required for computing the mass and stiffness matrices. This information
includes the coordinates of each node and the nodes of each element. For
instance, the mesh shown in Figure 6.22 is linked with the following output
for nodal coordinates:

(x1, y1) = (0.3836, 0.3766)
(x2, y2) = (0.3736, 0.6364)
(x3, y3) = (0.6264, 0.3966)

...
(x24, y24) = (1.0, 0.5).
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Figure 6.22 A schematic of the geometry and boundary conditions used in Example
6.3. The element and nodal indices are shown on the right. Thirty-three elements are
defined by 11 interior nodes and 13 nodes at the boundary.

The nodal indices of elements are typically given in a matrix format. In
this example, a 33 × 3 integer matrix is generated by the meshing routine
corresponding to nodal indices of the 33 triangular elements. The first few
lines of this matrix are: ⎡

⎢⎢⎢⎢⎣
1 2 3
1 3 5
1 5 6
1 6 7

. . .

⎤
⎥⎥⎥⎥⎦ .

In other words, the first element involves nodes 1,2, and 3; the second
element involves nodes 1, 3, 5, etc.

The area of each element can be computed from this information. For the
element m with nodes i, j, k the area is:

Am = |(x j − xi)(yk − yi) − (y j − yi)(xk − xi)|/2.

For example, the area of the first element is 0.03164. Next, equation (6.94)
is used to compute the basis functions in each element.

φ1
1 = −3.7897x − 3.9950y + 3.9582

φ1
2 = −0.3161x + 3.8369y − 1.3238.

· · ·
In other words, (a1

1, b1
1) = (−3.7897, −3.9950), (a1

2, b1
2) = (−0.3161, 3.8369),

etc. In a typical computer program, by looping through all triangular ele-
ments the necessary information can be computed and stored for subsequent
use.

Each triangular element contributes into nine different elements of matri-
ces Kij and Mij . For example, element 5 contributes into K11, K12, K17, K21,
K22, K27, K71, K72, and K77. By looping through all triangles these contri-
butions can be summed to obtain elements of matrices Kij and Mij . For
example, from equation (6.96) the contribution of element 1 to K12 is

A1(a1
1a1

2 +b1
1b1

2) = 0.03164 × (3.7897×0.3161−3.9950×3.8369)=−0.4471.
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Kij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × 0 × × × 0 0 0 0
× × × 0 0 0 × × × × 0
× × × × × 0 0 0 0 × ×
0 0 × × × 0 0 0 0 0 ×
× 0 × × × × 0 0 0 0 0
× 0 0 0 × × × 0 0 0 0
× × 0 0 0 × × × 0 0 0
0 × 0 0 0 0 × × × 0 0
0 × 0 0 0 0 0 × × × 0
0 × × 0 0 0 0 0 × × ×
0 0 × × 0 0 0 0 0 × ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 6.23 Nonzero elements of Kij indicated by “×’’ for 1 ≤ i, j ≤ 11.

Following this procedure, the complete 24 × 24 matrices Kij and Mij can
be computed. Then equation (6.93) can be used to solve for the 11 interior
nodal values

−
24∑
j=1

Kijuj =
24∑
j=1

Mijqj i = 1, 2, . . . , 11.

The boundary values,u12,u13, . . . ,u24, are already known from the boundary
condition given in Figure 6.21. This leads to the following 11 × 11 system
for the unknown coefficients u1,u2, . . . ,u11.

−
11∑
j=1

Kijuj =
24∑

j=12

Kijuj +
24∑
j=1

Fijqj i = 1, 2, . . . , 11. (6.100)

The nonzero elements of the left-hand side matrix are shown in Figure 6.23.
One can see that equation (6.100) does not lead to a banded matrix system as
in one-dimensional cases. For large number of elements, however, most of
the matrix elements are zero and sparsity of the system could be leveraged
to speed up the solution algorithm.

The solution field and its comparison with the exact solution are shown
in Figure 6.24. By using only 11 interior points in a two-dimensional domain
the finite element method has reasonably well predicted the solution to the
Poisson equation. The grid convergence of the solution is established by
repeating this procedure using 448 elements.

Simple partial differential equations, such as the one described in this
example, can be solved conveniently using widely available packages such
as MATLAB’s PDE toolbox without the requirement of programing a code
to compute finite element matrices. For example, MATLAB’s pdetool com-
mand provides a graphical interface through which a user can define a
two-dimensional geometry using a combination of drawing tools and input-
ing the coordinates of boundary nodes. After the geometry is defined, the
boundary condition for each edge can be selected from a menu. The user
can specify inhomogeneous Neumann, Dirichlet or mixed boundary condi-
tions. In another menu, the user can select the partial differential equation
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Figure 6.24 (a) Finite element solution to equation (6.99) using 33 elements. (b) Two
contours of the solutions using 33 and 448 elements in comparison with the exact
solution.

to be solved from a list of canonical elliptic PDE’s. The mesh generation
is done automatically; however, the user can specify parameters such as
the maximum mesh size and growth rate to control the mesh. After these
inputs are provided to Matlab, the PDE toolbox will use its own routines
to form the stiffness and mass matrices and the solution will be computed
automatically.

EXAMPLE 6.17

In this example, we use Matlab’s pdetool to solve the heat equation in a
complex geometry. Consider the steady heat equation

∇2u = 0,

in the domain shown in Figure 6.25 with an interior and an exterior bound-
ary. The interior boundary is specified in polar coordinates (r, θ )∗

r = 0.3 + 0.1 sin (θ ) + 0.15 sin (5θ ),

with the Dirichlet boundary condition u = 1, and the exterior boundary

r = 1 + 0.2 cos (θ ) + 0.15 sin (4θ ),

has the homogeneous Dirichlet condition, u = 0. Both boundaries are dis-
cretized using 100 edge elements as shown in Figure 6.25. A small Matlab
program was written to compute these coordinates and then this program
was read as a macro using Matlab’s pdetool. The default-generated mesh,
with 1676 triangular elements, is shown in the figure together with the con-
tour plots of the solution.

∗ Orszag, S. A. 1980 J. Comp. phys. 37, 70–92.
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Figure 6.25 A MATLAB-generated mesh for problem of Example 6.4 and contours of
the finite element solution.

EXERCISES

1. Show that the Fourier coefficients of the discrete convolution sum

c j =
N−1∑
n=0

fng j−n = ( f ∗ g) j

are given by
ĉk = N f̂k ĝk .

2. Consider the triple product defined by

Bmn =
N−1∑
j=0

u j u j+mu j+n.

Show that the bi-spectrum, B̂k1k2, the two-dimensional Fourier coefficients of
Bm n are given by

B̂k1k2 = Nûk1 ûk2 û∗
(k1+k2).

3. Aliasing.

(a) Compute the Fourier transform of the product y1 y2 using 32 grid points in
the interval (0, 2π) and discuss any resulting aliasing error.

y1(x) = sin(2x) + 0.1 sin(15x)

y2(x) = sin(2x) + 0.1 cos(15x)

(b) Compute the Fourier transform of

(i) y(x) dy(x)
dx

(ii) d
dx

(
y2(x)

2

)
where

y(x) = sin(2x) + 0.01 sin(15x)

and show that the difference is due to aliasing. Note that analytically they
are equal.
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4. The discrete cosine series is defined by

f j =
N∑

k=0

ak cos(kx j ) j = 0, 1, 2, . . . , N ,

where x j = π j/N . Prove that the coefficients of the series are given by

ak = 2

N

1

ck

N∑
j=0

1

c j
f j cos(kx j ) k = 0, 1, 2, . . . , N ,

where

c j =
{

2 j = 0, N
1 otherwise.

5. Given H (x) = f (x)g(x), express the discrete cosine transform of H in terms
of the discrete cosine transforms of f and g.

6. Use an FFT routine to compute the Fourier coefficients of

f (x) = cos
nπx

L
0 ≤ x < L ,

with N = 8, L = 7, and n = 2, 3. Use an FFT routine to compute the inverse
transform of the coefficients to verify that the original data are recovered.

7. Compute the Fourier coefficients using FFT of

f (x) = cos(2x) + 1

2
cos(4x) + 1

6
cos(12x) 0 ≤ x < 2π,

for N = 8, 16, 32, and 64.

8. Consider the function f (x) defined as follows:

f (x) =
{

e−x for 0 ≤ x < L
0 otherwise.

Obtain the Fourier coefficients using FFT. Discuss the importance of L and N.
In addition, compare the computational time of using the fast Fourier transform
to the computational time of the brute-force (O(N 2)) Fourier transform. (Graph
the computational time on a log–log plot.) To get good timing data, you may
have to call the FFT routine several times for each value of N.

9. Differentiate the following functions using FFT and second-order finite differ-
ences. Show your results, including errors, graphically. Use N = 16, 32.

(a) f (x) = sin 3x + 3 cos 6x 0 ≤ x < 2π .
(b) f (x) = 6x − x2 0 ≤ x < 2π .

10. Consider the ODE

f ′′ − f ′ − 2 f = 2 + 6 sin 6x − 38 cos 6x,

defined on 0 ≤ x ≤ 2π with periodic boundary conditions. Solve it using
FFT and a second-order central finite difference scheme with N = 16, 64.
Compare the results. For the finite difference calculations you may use f (0) =
f (2π) = 0.
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11. Discuss how to solve the following equation using the Fourier spectral method:

uxx + (sin x)ux = −(sin x + sin 2x)ecos x ,

on 0 ≤ x ≤ 2π with periodic boundary conditions. Derive a set of algebraic
equations for the Fourier coefficients. Be sure to carefully consider the bound-
ary conditions and verify that the resulting matrix equation is non-singular.

12. Write a program that computes the Chebyshev transform of an arbitrary func-
tion, and test your program by transforming 1, x3, and x6. Use your program to
compute and plot the Chebyshev expansion coefficients for

(a) f (x) = xe−x/2.

(b) f (x) =
{+1

−1
−1 ≤ x ≤ 0
0 < x ≤ 1.

Use N = 4, 8, and 16.

13. Write a program to calculate the derivative of an arbitrary function using the
Chebyshev transform. Test your program by differentiating polynomials and
use it to differentiate the functions in Exercise 11. Take N = 4, 8, 16, 32 and
compare to the exact answers.

14. Use mathematical induction to show that

bm = 2

cm

N∑
p=m+1
p+m odd

pap,

where ap are the Chebyshev coefficients of some function f (x) and bm are the
Chebyshev coefficients of f ′(x).

15. Use the Chebyshev transform program in Exercise 11 to calculate the integral
of an arbitrary function. Test your program by integrating polynomials and use
it to integrate the functions in Exercise 11. Take N = 4, 8,16, 32 and compare
to the exact values.

16. Use the matrix form of the Chebyshev collocation derivative to differentiate
f (x) = x5 for −1 ≤ x ≤ 1. Compare to the exact answer.

17. Solve the convection equation

ut + 2ux = 0,

for u(x, t) on the domain −1 ≤ x ≤ 1 subject to the boundary and initial con-
ditions

u(−1, t) = sin π t u(x, 0) = 0.

The exact solution is

u =
{

0
sin π(t − x+1

2 )
x ≥ −1 + 2t
−1 ≤ x ≤ −1 + 2t.

Use the discrete Chebyshev transform and second-order finite difference meth-
ods. Plot the solution at several t. Plot the rms of the error at t = 7/8 versus
N. Compare the accuracy of the two methods.
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18. Show that the interior N – 1 Chebyshev grid points given by (6.35) are the
zeros of T ′

N which is a polynomial of degree N – 1.

19. In this exercise we will go through the key steps leading to expression (6.47)
for the elements of the Chebyshev derivative matrix. We will begin by using
the results from Exercise 10 of Chapter 1. Let φN+1(x) be a polynomial of
degree N + 1:

φN+1(x) =
N∏

l=0

(x − xl).

Show that the matrix elements obtained in Exercise 10 of Chapter 1 can be
recast in the following form:

d jk = φ′
N+1(x j )

φ′
N+1(xk)(x j − xk)

j �= k. (1)

If x0 = 1, xN = −1, and the remaining x j are the zeros of the polynomial
QN−1(x), then

φN+1(x) = (1 − x2) QN−1. (2)

Show that

d jk =
(
1 − x2

j

)
Q′

N−1(x j )(
1 − x2

k

)
Q′

N−1 (xk) (x j − xk)
j �= k and j, k �= 0, N (3)

For j = k, again referring to Exercise 10 of Chapter 1, we want to evaluate

d j j =
N∑

l=0
l �= j

1

x j − xl
.

Let φN+1(x) = (x − x j )g(x), and let xk(k = 0, 1, 2, . . . , N except for k = j)
be the zeros of g. Show that

g′(x j )

g(x j )
= φ′′

N+1(x j )

2φ′
N+1(x j )

, (4)

and hence

d j j = φ′′
N+1(x j )

2φ′
N+1(x j )

.

For Chebyshev polynomials, x0 = −1, xN = 1, and the remaining x j are the
zeros of T ′

N (see Exercise 17). Using the fact that QN−1 in (2) is simply equal
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to T ′
N , you should now be able to derive the matrix elements given in (6.47),

i.e.,

d jk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c j (−1) j+k

ck (x j −xk ) j �= k

−x j

2(1−x2
j )

j = k, j �= 0, N

2N 2+1
6 j = k = 0

− 2N 2+1
6 j = k = N .

20. From the definition Ci j = ∫ 1
0 φiφ j dx obtain the Ci j matrix for linear basis

functions and verify your results by comparing with (6.64).

21. Use an appropriate discretization in time for (6.79) and derive a full dis-
cretized scheme for constant coefficient convection equation. How would you
use Runge–Kutta-type schemes for time integration?

22. (a) Derivation of finite element formulation for the convection equation (6.76)
presented in Section 6.6.4 involves integration by parts (see (6.77)). Show
that derivation without integration by parts results in the same finite element
formulation. (b) For the case c = 1 use 16 elements to discretize the domain
and obtain the finite element formulation. Show that if no boundary condition
is used, this solution can become unbounded in time.

23. Compare the finite element formulation of the heat equation (6.80) with the
fourth-order Padé formulation. What is the spatial accuracy of the finite element
formulation with linear elements for this problem and how does it compare
with that for the convection equation (6.76)?

24. (a) In an axisymmetric configuration the heat equation is

∂u

∂t
= 1

r

∂

∂r

(
r
∂u

∂r

)
defined in the domain 0.5 ≤ r ≤ 1 with the boundary conditions ∂u

∂r = 0 at
r = 0.5 and u = 0 at r = 1. Develop a finite element formulation to solve this
problem. For the initial condition u(r, t = 0) = 1 use your formulation and
obtain a numerical solution to the system.
(b) Use Matlab’s PDE toolbox to solve this problem in the two-dimensional
domain with triangular mesh. Compare your result with that of part (a) at time
t = 0.1.

25. Consider the Poisson equation

∇2u + f = 0

on the triangular domain shown in Figure 6.26. The source term f is taken to be
constant over the entire domain. Homogeneous Neumann boundary conditions
are imposed on two sides of the triangle, while a Dirichlet boundary condition
is imposed on the third. The domain is discretized into six nodes and four equal
elements, each one being an isosceles right triangle with height 1/2 and length
1/2. Use the finite element method to formulate the problem and obtain the
solutions for the six nodal values.
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(a) (b)

Figure 6.26 (a) A schematic of the geometry and boundary conditions used in Exer-
cise 25, and (b) triangular elements used to discretize the geometry.
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APPENDIX

A Review of Linear Algebra

This appendix contains a brief review of concepts in linear algebra used in the
main body of the text. Although numerical linear algebra lies at the foundation
of numerical analysis, it should be the subject of a separate course. The intent of
this appendix is to provide a convenient brush up on elementary linear algebra
for the reader who has been previously exposed to this very important subject.

A.1 Vectors, Matrices and Elementary Operations

A vector is an ordered array of numbers or algebraic variables. In column form
the vector c is represented as

c =

⎡⎢⎢⎢⎢⎢⎢⎣
c1

c2

c3
...

cn

⎤⎥⎥⎥⎥⎥⎥⎦ .

The vector c has n elements and has dimension n. The row vector c is simply
written as

c = [c1, c2, c3, . . . , cn].

The inner product (or scalar product) of two n-dimensional real vectors u and
v is defined as

(u, v) = u1v1 + u2v2 + · · · + unvn =
n∑

i=1

uivi .

The length or the norm of the real vector u is the square root of its inner product
with itself:

‖u‖ = √
(u, u) =

√
u2

1 + u2
2 + · · · + u2

n.

227
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The vectors u1, u2, u3, . . . , un are said to be linearly independent when it is
impossible to represent any one of them as a linear combination of the others.
In other words if a1u1 + a2u2 + · · · + anun = 0 and the ai are constant, then
all ai must be zero.

A matrix is a doubly ordered array of elements. An m × n matrix A has m
rows and n columns and is written as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
...
...

am1 am2 am3 . . . amn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix elements are ai j , where i = 1, 2, . . . , m, and j = 1, 2, . . . , n. If v
is a vector of dimension n, the product of the m × n matrix A and the vector v
is a vector u of dimension m, which in vector form is written as

Av = u.

The elements of u are

ui =
n∑

j=1

ai jv j i = 1, 2, . . . , m. (A.1)

Vector u can also be written as a linear combination of the columns of A, which
are designated by ai:

u = v1a1 + v2a2 + · · · + vn an.

The product of A and an n × l matrix B is the m × l matrix C with elements
computed as follows:

ci j =
n∑

k=1

aikbk j i = 1, 2, . . . , m j = 1, 2, . . . , l.

In general matrix multiplication is not commutative. That is, if A and B are
n × n square matrices, in general, AB �= BA.

The identity matrix, denoted by I, is a square matrix whose diagonal ele-
ments are 1 and off-diagonal elements are zero. The inverse of a square matrix
A, denoted by A−1, is defined such that AA−1 = I . A singular matrix does not
have an inverse. The transpose of a matrix A, denoted by AT , is obtained by ex-
changing the rows with columns of A. That is, the elements of AT are aT

i j = a ji .
A symmetric matrix A is equal to its transpose, i.e., A = AT . If A = −AT then
A is called anti-symmetric or skew-symmetric.

Application of most numerical discretization operators to differential equa-
tions leads to banded matrices. These matrices have non-zero elements in a
narrow band around the diagonal of the matrix, and the rest of the elements are
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zero. A tridiagonal matrix has a non-zero diagonal and two adjacent sub- and
super-diagonals:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
b1 c1

a2 b2 c2

. . .
. . .

. . .
an−1 bn−1 cn−1

bn cn

⎤⎥⎥⎥⎥⎥⎥⎦ .

The notation B[ai , bi , ci ] is sometimes used to denote a tridiagonal matrix.
Similarly a pentadiagonal matrix can be denoted by

B[ai , bi , ci , di , ei ],

where ci are the diagonal elements. An n × n tridiagonal matrix can be stored
using 3n words as compared to n2 for a full matrix. As will be pointed out
later, working with tridiagonal and other banded matrices is particularly cost
effective.

The determinant of a 2 × 2 matrix is defined as

det

[
a11 a12

a21 a22

]
= a11a22 − a12a21.

For an n × n matrix the determinant can be calculated by the so-called row or
column expansions:

det A =
n∑

j=1

(−1)i+ j ai j Mi j for any i,

or

det A =
n∑

i=1

(−1)i+ j ai j Mi j for any j .

Mi j is called the co-factor of the element ai j , it is the determinant of the matrix
formed from A by eliminating the row and column to which ai j belongs. This
formula is recursive; it is used on the subsequent smaller and smaller matrices
until only 2 × 2 matrices remain for which their determinant is already given.

In modern linear algebra, the determinant is primarily used in analysis and
to test for the singularity of a square matrix. A square matrix is singular if its
determinant is zero. It can be shown that the determinant of the product of two
matrices is equal to the product of their determinants. That is, if A and B are
square n × n matrices, then

det(AB) = det(A) det(B).

Thus, if any one of the two matrices is singular, their product is also singular.
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A.2 System of Linear Algebraic Equations

A system of n algebraic equations in n unknowns is written as

Ax = b,

where A is an n × n matrix, x is the n dimensional vector of unknowns and b is
the n dimensional right-hand side vector. If A is non-singular, the formal solu-
tion of this system is x = A−1b. However, the formal solution which involves
computation of the inverse is almost never used in computer solution of a system
of algebraic equations. Direct numerical solution using computers is performed
by the process of Gauss elimination which is a series of row operations. First, a
set of row operations, called the forward sweep, uses each diagonal element as
pivot to eliminate the elements of the matrix below the diagonal. Next, backward
substitution is used to obtain the solution vector, starting from xn to x1.

The matrix A has a unique decomposition into upper and lower triangular
matrices

A = LU,

where L is lower and U is upper triangular matrices. The elements of L and U
are readily obtained from Gauss elimination. If the system of equations Ax = b
is to be solved several times with different right-hand sides, then it would be
cost effective to store L and U matrices and use them for each right-hand
side. This is because the Gauss elimination process for triangular matrices does
not require the forward sweep operations and therefore is much less expensive
(see Section A.3). Suppose A is decomposed, then the system of equations is
written as

LU x = b.

Let y = U x, then the equations are solved by first solving for y

L y = b

and then for x using

U x = y.

Both of these steps involve only triangular matrices, which are significantly
cheaper to solve.

A.2.1 Effects of Round-off Error

Round-off error is always present in computer arithmetic and can be particularly
damaging when solving a system of algebraic equations. There are usually two
types of problems related to the round-off error: one is related to the algorithm,
i.e., the way Gauss elimination is performed, and the other is due to the matrix
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itself. In the elimination process, one ensures that each diagonal element (pivot)
has a larger magnitude than all the elements below it, which are eliminated in
the forward sweep. This is accomplished by scaling the elements of each row
(including the right-hand side vector) so that the largest element in each row is
equal to 1, and by row exchanges. This process is called pivoting and is used in
most software packages.

Ill-conditioning refers to the situation where the matrix in the system of
algebraic equations is nearly singular. In this case, slight errors in the right-hand
side vector (which could be due to round-off error or experimental error) can
amplify significantly. In other words, a small perturbation to the right-hand side
vector can result in a significant change in the solution vector. The condition
number of the matrix is a good indicator of its “condition.” The condition
number of A is defined as

γ (A) = ‖A‖ · ‖A−1‖,

where ‖A‖ is the norm of A. There are many ways to define the norm of
a matrix. One example is the square root of the sum of the squares of its
elements. If A and B are square matrices of the same size, x is a vector,
and α is a real number, the norm must satisfy these properties: ‖A‖ ≥ 0,
‖αA‖ = |α| ‖A‖, ‖A + B‖ ≤ ‖A‖ + ‖B‖, ‖AB‖ ≤ ‖A‖ · ‖B‖, and ‖Ax‖ ≤
‖A‖ · ‖x‖. The matrix norm associated with the vector norm defined earlier is
denoted by ‖A‖2 and is equal to the square root of the maximum eigenvalue of
AT A.

The condition number is essentially the amplification factor of errors in the
right-hand side. Generally, round-off errors can cause problems if the condition
number is greater than the relative accuracy of computer arithmetic. For exam-
ple, if the relative accuracy of the computer is in the fifth decimal place, then
the condition number of 105 or larger is cause for alarm.

A.3 Operations Counts

One of the important considerations in numerical linear algebra is the number
of arithmetic operations required to perform a task. It is easy to count the
number of multiplications, additions (or subtractions), and divisions for any
algorithm. In the following we assume that all matrices are n × n and vectors
have dimension n.

It can be easily verified from (A.1) that multiplication of a matrix and a
vector requires n2 multiplications and n(n − 1) additions. For large n we would
say that multiplication of a matrix and a vector requires O(n2) of both additions
and multiplications. Similarly, multiplication of two matrices requires O(n3) of
both additions and multiplications.
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With a bit more work it can be shown that solving a system of algebraic
equations by Gauss elimination requires

� 1
3 n3 + 1

2 n2 − 5
6 n of both additions and multiplications, and

� 1
2 n(n + 1) divisions.

Thus, for large n the Gauss elimination process for an arbitrary full ma-
trix requires O(n3) operations which is substantial. However, most of the work
is done in the forward sweep. Of the total number of operations, the forward
elimination process alone requires 1

3 (n3 − n) additions and multiplications and
1
2 n(n − 1) divisions. Thus the backward elimination requires only O(n2) oper-
ations which is an insignificant part of the overall work for large n. This is why
once a matrix is decomposed into LU , the solution process for different right-
hand side vectors is rather inexpensive. There is also a significant reduction in
the number of operations when solving systems with banded matrices. In Gauss
elimination one simply takes advantage of the presence of zero elements and
does not operate on them. For example, solving a system with a tridiagonal
matrix requires 3(n − 1) additions and multiplications and 2n − 1 divisions.
This is a tremendous improvement over a general matrix.

A.4 Eigenvalues and Eigenvectors

If A is an n × n matrix, the eigenvalues of A are defined to be those numbers λ

for which the equation

Ax = λx

has a non-trivial solution x. The vector x is called an eigenvector belonging
to the eigenvalue λ. The eigenvalues are the solutions of the characteristic
equation,

det(A − λI ) = 0.

The characteristic equation is a polynomial of degree n. The eigenvalues can
be complex and may not be distinct. The characteristic equation can be used to
show that the determinant of A is the product of its eigenvalues

det(A) = λ1λ2λ3 . . . λn.

From this result it can be seen that a singular matrix must have at least one zero
eigenvalue. In practice one does not actually use the characteristic equation
to find the eigenvalues; the so-called QR algorithm is usually the method of
choice and is the basis for computer programs available in numerical analysis
libraries for computing eigenvalues and eigenvectors. If an n × n matrix has n
distinct eigenvalues, λ1, λ2, . . . , λn , then it has n linearly independent eigenvec-
tors, x1x2, . . . , xn . Moreover, the eigenvector x j belonging to eigenvalue λ j

is unique apart from a non-zero constant multiplier. However, an n × n matrix
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may have n linearly independent eigenvectors, even if it does not have n distinct
eigenvalues.

Two matrices A and B are called similar if there exists a non-singular matrix
T such that:

T −1 AT = B.

Similar matrices have the same eigenvalues with the same multiplicities. If A
has n linearly independent eigenvectors, then it is similar to a diagonal matrix,
which according to the similarity rule, has the eigenvalues of A on the diagonal:

S−1 AS = � =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

. . .
...

. . .
0 0 0 . . . λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The columns of the matrix S are the eigenvectors of A. This similarity trans-
formation is an important result that is often used in numerical analysis. This
transformation is also sometimes referred to as the diagonalization of A, which
can be used to uncouple linear systems of coupled differential or difference
equations. From the similarity transformation we can obtain an expression for
powers of matrix A

Ak = S�k S−1.

Thus, if the moduli of the eigenvalues of A are less than 1, then

lim
k→∞

Ak → 0.

This important result is true for all matrices, whether they are diagonalizable or
not, as long as the magnitudes of the eigenvalues are less than 1.

Symmetric matrices arise frequently in numerical analysis and in model-
ing physical systems and have special properties which are often exploited.
The eigenvalues of a symmetric matrix are real and eigenvectors belonging to
different eigenvalues are orthogonal. An n × n symmetric matrix has n indepen-
dent eigenvectors and therefore is always diagonalizable. If the eigenvectors are
properly normalized so that they become orthonormal, then S−1 in the similarity
transformation is simply ST .
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homogeneous, 97, 129, 132, 177, 179
mixed, 99, 138, 139, 155
natural, 202
Neumann, 27, 28, 138, 139, 178, 213, 214
non-homogeneous, 178
periodic, 110, 182, 183
radiation, Sommerfeld, 159

boundary value problems, numerical
solution of, 78–84

direct methods, 79, 82–84
discrete Fourier transform methods, 222
finite element method, 202, 207–209
Gauss–Seidel method, 148–149
secant method for non-linear equations,

80, 82
shooting method, 78–82

for linear equations, 79–80
V-cycle multigrid based on Gauss–Seidel

iteration, 152–153
Burgers equation, 163

fractional step method, 136–137
solution using discrete Fourier transform,

187–188
two-dimensional, 158

CFL number, see convection equation
chaotic problems, 90–92
characteristic equation, for obtaining

eigenvalues, 232
Chebyshev polynomials

advantages in approximating functions,
189

cosine transformation, 189
recurrence formula, 189

Chebyshev transform, discrete, 188–189
coefficients, 190
for differentiation, see differentiation,

spectral
orthogonality, 190
solving linear non-constant coefficient

PDEs using, 199
chemical reaction problems, 95
computational prototyping, 101
condition number, of a matrix, 231
convection equation

behavior of exact solution, 106
CFL number, 114
explicit Euler

numerical solution example, 108
stability (time-step selection), 107, 113

finite element method, 210
fourth-order Runge–Kutta

numerical solution example, 108
stability (time-step selection), 109, 114

insight into physical behavior, 105, 106,
107

Lax–Wendroff scheme, 157
leapfrog, stability (time-step selection),

114, 155
second-order Runge–Kutta, stability

(time-step selection), 113

235
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convection equation (cont.)
semi-discretization, 105
solution by discrete Chebyshev transform,

199, 223
Sommerfeld radiation condition, 159

convection–diffusion equation, 156–158,
183–184

forced, 163
solution using

discrete Fourier transform, 183–184
finite differences, 156–158

two-dimensional, 160
cosine transform, discrete, 175–176, 178,

189, 190
of product of two functions, 222
orthogonality property, 175, 190

Crank–Nicolson method, see diffusion
equation, one, two, & three space
dimensions

cubic spline, 4–8, see also interpolation
in differentiation, 8

differentiation, finite difference
approximations, 13

accuracy
order, definition of, 14
using modified wavenumber, 17–20

boundary schemes, selection of, 15, 21
construction using Taylor table, 15–17,

20–21, 23
derivation from Taylor series, 13–15
error

leading term, 14
truncation, 14–17

first derivative, schemes for
backward difference, 14, 21
central difference, 14, 15, 18, 21
first order, 14
forward difference, 14, 16, 21
fourth order, 15, 21
Padé, 21
second order, 15, 16, 18
third order, 21

modified wavenumber
as a measure of accuracy, 17–20
for various finite difference schemes, 19,

26, 27
need for non-dimensionalization, 14
on non-uniform grids, 23–25

adaptive techniques, 23, 83
boundary layers, 23
coordinate transformation, 23

Padé approximations, 20, 23, 26
second derivative, schemes for

central difference, 15
fourth order, 23
Padé, 23
second order, 15

differentiation, spectral
derivative matrix operator based on

discrete Chebyshev transform, 192–195
discrete Fourier transform, 185–188

using discrete Chebyshev transform,
192–195, 223, 224

using discrete Fourier transform, periodic
functions, 180–181, 185–188

oddball wave number coefficient set to
zero, 180, 185

using finite differences, see differentiation,
finite difference approximations

diffusion equation, one space dimension
backward Euler method, 117–118

stability (time-step selection), 118
Crank–Nicolson (trapezoidal) method,

116–117
numerical solution example, 118
stability (time-step selection), 117

diffusion equation, 102, 104, 106
Du Fort–Frankel scheme, 116, 121–123

accuracy via modified equation, 122
numerical solution example, 122

explicit Euler
accuracy via modified equation,

119–121
numerical solution example, 104
stability (time-step selection), 105, 107,

113
finite element method, 211

numerical solution example, 212
heat equation, 102, 104–107, 112–113,

115–119, 121–123, 154–155, 162,
211–212, 225

insight into physical behavior, 104,
107

leapfrog, 121
stability (time-step selection), 113

semi-discretization, 102
diffusion equation, two space dimensions

alternating direction implicit method
(ADI), 134–136

equivalence to factored form of
Crank–Nicolson scheme, 134

implementation of boundary conditions,
135
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Crank–Nicolson scheme, 126–129
explicit Euler, 124–126

stability, 125
factored form of Crank–Nicolson scheme,

129–134
implementation of boundary conditions,

131
neglecting the cross terms, 130
numerical solution example, 132
stability, 133

finite element method, 213–221
numerical solution example, 220–221

heat equation, 124–126, 129, 131–134,
137, 156, 165, 220, 225

locally one dimensional scheme (LOD),
137

steady state, 132, 146
diffusion equation, three space dimensions

Douglas Rachford ADI scheme, 156
explicit Euler, stability, 126
factored form of Crank–Nicolson scheme,

131
heat equation, 156

Du Fort–Frankel method, see diffusion
equation, one space dimension

eigen values and eigenvectors, 232–233
and convergence of iterative methods, 142,

144, 145, 147
and decoupling of systems of ODEs, 52,

60, 104
and matrix diagonalization, 52, 104, 142,

233
and stiff systems of ODEs, 75, 103
characteristic equation, 232
QR algorithm, 232
spectral radius, 141

eigenvalue problem, 48, 51, 52, 75, 76,
99–100

elliptic PDEs, 137
boundary conditions for, 138
examples of, 138
numerical solution of, see partial

differential equations
occurrence of, 137

equilibrium problems, see elliptic PDEs

finite difference approximations, see
differentiation, finite difference
approximations

finite element method, 201–202
basis function, 215

comparison with finite difference method,
207

comparison with Padé scheme, 209
complex domain application, 213
mass matrix, 215
stiffness matrix, 215

Fourier series (transform), discrete, 168–188
fast Fourier transform (FFT), 169, 185,

189
for differentiation, see differentiation,

spectral
forward transform, 169
in higher dimensions, 172
inverse transform, 169
of product of two functions, 173–174

aliasing error, 173, 221
convolution sum, 173

of real functions, 170
orthogonality property, 168–169, 175, 178
solving linear constant coefficient PDEs

using, 182–184
solving nonlinear PDEs using, 187–188

Fourier series, continuous, 167

Galerkin method, 201, 204, 214
Gauss elimination, 140, 144, 168, 177, 230

backward substitution, 230
forward sweep, 230
LU decomposition, 144, 230, 232
operations counts, 232
pivoting, 231
round-off error, 230
scaling, 231

Gauss quadrature, see integration
Gauss–Seidel method, see iterative methods
ghost point, 99, 155–156

heat equation, see diffusion equation
Helmholtz equation, 138
Hermite polynomials

and Gauss quadrature, 43

index notation, for discrete equations, 130,
131, 142

initial value problems, numerical solution of,
48–78

accuracy vs. stability, 56
Adams–Bashforth method, 71–73, 84, 137
amplification factor, 52, 57, 59, 66
amplitude error, 60, 61, 67, 69, 71, 73, 109
choosing method, 85
definition of, 57–58
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initial value problems (cont.)
error analysis, 56–58
Euler method, 49, 52–54, 57, 60, 61, 66,

67, 70, 72–75, 105, 107, 108, 110,
113, 115, 119, 124, 125, 134, 135,
187, 199

explicit methods, 50
function evaluations, number of, 68–70
implicit (backward) Euler method, 55–57,

61, 117–118, 134–135
implicit methods, 50, 55, 56, 59, 61, 76,

116
linearization for, 62–63, 77–78

leapfrog method, 70–71, 73, 84, 88,
113–136, 121, 136

model problem for stability and accuracy,
51

solution by various methods, 52, 55–57,
59, 66, 68, 70, 72

multi-step methods, 50, 70–73
spurious roots for, 71, 72

ODE solvers, 76
with adaptive time-step, 76

order of accuracy
from the amplification factor, 57
of various methods, 49, 64

phase error, 57–58, 60, 61, 67, 69, 73, 85,
88

predictor–corrector, 65
Runge–Kutta methods, 49, 64–70

fourth order, 67, 109, 113–115, 156
second order, 64, 113
third order, 116

Runge–Kutta, Nyström methods, 93
stability analysis, 50–52

of various methods, 52–56, 59, 62, 66,
68, 71–72, 75

stability diagrams, 53, 68, 73, 109, 113,
184

system of ODEs, 74–78
Jacobian matrix, 78
linearization of implicit methods for,

77–78
model problem for, 74
stiff, 69–73, 87, 96, 102, 103, 116

Taylor series methods, 48, 49
trapezoidal method, 58–63, 77, 87,

116–118, 126, 137
linearized, 63

integral equation
Fredholm, 44
Volterra, 44

integration, numerical, 30
adaptive quadrature, 37–40

error tolerance, 37, 39
error analysis, 31–34
function evaluations, number of, 37,

43–45
Gauss quadrature, 40–43, 190

Gauss–Hermite quadrature, 43, 46
Gauss–Legendre quadrature, 42, 196
weights, 42, 43

midpoint rule, 32–34
order of accuracy of the approximations,

32–34, 33, 35
rectangle rule, 32–34
Richardson extrapolation, 35–37, 39
Romberg integration, 35–37

error tolerance, 36
Simpson’s rule, 31, 34–36, 38, 40, 42, 45,

196
trapezoidal rule, 30, 32–35, 37, 39, 40

with end-correction, 34
truncation error of the approximations,

33–35, 38, 39
using discrete Chebyshev transform,

195–196
interpolation, 1–11

applications of, 1
cubic spline, 4–8

end-conditions, 6–7
formula, 6
natural, 6
tension, 8
two-dimensional, 11

cubic spline vs. Lagrange polynomial, 7
Lagrange polynomial, 1–4

formula, 2
piecewise, 4, 10
uniqueness of, 2n
wandering problem for high order,

2–4
use of least squares, 1

iterative methods for linear algebraic
systems, 140, 154, see also Poisson
equation

acceleration parameter, 145
convergence

acceleration, 144, 145, 147, 152
criterion, 141
spectral radius, 141

Gauss–Seidel, 143–144, 147–149, 152,
154

convergence, 144
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multigrid acceleration, see multigrid
acceleration for linear algebraic
systems 101

point Jacobi, 141–143, 147
convergence, 142

pre-conditioning, 147
successive over relaxation (SOR),

144–147
convergence, 145
relaxation parameter, 145

Jacobi method, see iterative methods

Lagrange polynomial, 1–4
and Gauss quadrature, 40
in differentiation, 10–11
in interpolation, see interpolation

Laplace equation, 138, 164
Legendre polynomial

and Gauss quadrature, 41, 196
linear algebra, review of, 227–233
linear independence, 228
LU decomposition, see Gauss elimination

mass matrix, 215
matrix, 228–229

anti-symmetric, 108, 228
banded, 83, 102, 128, 137, 139, 187, 228,

232
block-tridiagonal, see block-tridiagonal

matrix
condition number, 231
determinant, 229, 232
diagonalization, 52, 104, 107, 142,

233
identity, 228
ill-conditioned, 231
inverse, 228
LU decomposition, see Gauss

elimination
multiplication with a matrix, 228

operations counts, 231
multiplication with a vector, 228

operations counts, 231
norm, see norm 231
pentadiagonal, 83, 139, 229
power, 75, 233
similar matrices, 233
singular, 228, 143, 231, 232
skew-symmetric, 108, 228
sparse, 140
symmetric, 104, 143, 228, 233

transpose, 228
tridiagonal, see tridiagonal system

(matrix)
modified wavenumber

for various finite difference schemes, see
differentiation, finite difference
approximations

in stability analysis, see stability analysis
for transient PDEs

multigrid acceleration for linear algebraic
systems, 47–154

algorithm, 151
full multigrid cycle (FMC), 153
key concept, 149
prolongation, 151, 152
residual, 147, 148

equation, 148
restriction, 151, 152
V cycle, 151, 152, 154
W cycle, 151

nonuniform meshes, 23–25, 111, 128, 140,
146, 178

norm
matrix, 143, 231
vector, 143, 227, 231

operations counts, 231–232
for Gauss elimination, 232
for matrix operations, 231

operator notation, for discrete equations,
129, 135

ordinary differential equation (ODE),
numerical solution of, 48

boundary value problems, see boundary
value problems, numerical solution
of

initial value problems, see initial value
problems, numerical solution of

orthogonality of polynomials, 43

paraxial Helmholtz equation, 160–161
partial differential equation (PDE),

numerical solution of
equilibrium problems (elliptic PDEs)

discrete Fourier transform methods,
182–183

discrete sine transform combined with
finite difference methods, 176–180

finite difference methods, direct, 140
finite difference methods, iterative, see

iterative methods
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partial differential equation (cont.)
transient problems

discrete Chebyshev transform methods,
199, 223

discrete Fourier transform methods,
183–184, 187–188

finite difference methods, see transient
PDEs, finite difference solutions

pendulum, 86
double, 88

pivot, 230, 231
Poisson equation, 213

discrete Fourier transform method,
numerical solution example, 182

discrete sine transform method, 176–180
numerical solution example, 179

discretization, 138
implementation of boundary conditions,

139
finite element method, 213–220

Neumann boundary condition, 213,
215

numerical solution example, 217
Gauss–Seidel scheme, 144

eigenvalues and convergence, 144
numerical solution example, 146

multigrid, V cycle
numerical solution example, 154

point Jacobi scheme, 142–143
eigenvalues and accuracy, 143
eigenvalues and convergence, 142
numerical solution example, 146

successive over relaxation SOR scheme
eigenvalues and convergence, 145
numerical solution example, 146

QR algorithm, 232
quadrature, see integration

Richardson extrapolation, 35
in numerical differentiation, 45
in numerical integration, see integration

secant method
in shooting method for boundary value

problems, 80
shear layer, compressible, 97
shooting method, see boundary value

problems
sine transform, discrete, 176

solving finite differenced Poisson equation
using, 177–180

SOR, see iterative methods
spline, cubic, see interpolation
stability analysis for ODEs, see initial

value problems, numerical solution
of

stability analysis for transient PDEs
matrix, 102–109

advantages, 109
modified wavenumber, 111–117, 125, 126,

133
advantages, 111, 113
domain of applicability, 116

von Neumann, 109–111, 113, 117, 133
domain of applicability, 111

stencil, 15
successive over relaxation scheme, see

iterative methods
system of linear algebraic equations,

230–231
condition number, 231
ill-conditioned, 1, 231
round-off error, 230–231
solution by Gauss elimination, see Gauss

elimination
solution by iterations,

see iterativemethods
tridiagonal, see tridiagonal system

(matrix)
system of ODEs

decoupling, 52, 60, 104
numerical solution, see initial value

problems 78
resulting from high-order ODEs, 48, 51,

60, 81, 86, 87, 96–99
resulting from semi-discretization of

PDEs, 102, 105–106, 108
stiff, see system of ODEs under initial

value problems

transient PDEs, finite difference solutions,
101–137, see also diffusion,
convection, convection–diffusion, &
Burgers equations

accuracy via modified equation, 119–121
explicit methods, 105–116, 124–126, 183,

187, 199
implicit methods, 116–119, 126–128

alternating direction implicit (ADI)
methods, 134–136

factored (split) schemes, 128–134
fractional step methods, 136–137

in three space dimensions, 131, 155
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in two space dimensions, 124–137
inconsistent scheme, 121–124
locally one dimensional (LOD) schemes,

137
semi-discretization, 102
stability analysis (time-step selection), see

stability analysis for transient PDEs
trapezoidal

method for ODEs and PDEs, see initial
value problems

rule for integration, see integration
tridiagonal system (matrix), 102, 105, 229,

232
eigenvalues of, 103
in ADI schemes, 134
in boundary value problems, 83
in cubic spline interpolation, 6, 8

in factored schemes, 130
in finite-differenced Poisson equation, 178
in implicit methods for PDEs, 116, 118
in Padé schemes, 21

vector, 227–228
column, 227
inner (scalar) product, 227
norm, see norm
row, 227

vortex dynamics problem, 91

wave equation, see convection equation
wave number, 18, 148

modified, see modified wavenumber
weighted residuals method, 200–201

basis functions, 200




