
High Performance Data Management and

Processing

I590, Section 7462

Zdzis law Meglicki

April 29, 2004

2

Document version

$Id: I590.tex,v 1.197 2004/04/29 21:57:35 gustav Exp $

Contents

1 Introduction 7
1.1 The Focus of the Course . 7
1.2 Required Level of Skills . 8
1.3 Bring Your Laptop . 9
1.4 Using NetMeeting . 9

2 Supercomputers and Clusters 11
2.1 The Almighty PC . 11
2.2 Supercomputers and Clusters . 12
2.3 HPC Facilities at Public Supercomputer Centers 14
2.4 IU HPC Facilities . 15
2.5 Parallel Programming . 16

2.5.1 Data Parallel Paradigm 16
2.5.2 Message Passing Paradigm 18
2.5.3 Shared Memory Paradigm 18
2.5.4 Mixing Parallel Programming Paradigms 19
2.5.5 Scalability of Parallel Programming Paradigms 20

2.6 HPC and The Grid . 20
2.7 To Program Or Not To Program 23

3 Working with the AVIDD Cluster 27
3.1 Your AVIDD Account . 28
3.2 Connecting to the AVIDD Cluster 29
3.3 Finding Help and Documentation 34
3.4 Working with Data on AVIDD 36

3.4.1 The AVIDD GPFS . 36
3.4.2 IU HPSS . 39
3.4.3 Moving Data Between HPSS and GPFS 40

4 Working with PBS 59
4.1 PBS Configuration . 59
4.2 Submitting, Inspecting and Cancelling PBS Jobs 62
4.3 Specification of PBS Jobs . 67

4.3.1 Interactive PBS Jobs . 67

3

4 CONTENTS

4.3.2 Not Quite Interactive PBS Jobs 69
4.3.3 Simple PBS Directives . 69
4.3.4 Jobs Dependent On Other Jobs 73

4.4 Checkpointing and Resubmission 86
4.4.1 Timing a Job . 87
4.4.2 Restoring and Saving the State of a Job 91
4.4.3 Restoring, Timing and Saving a Job: the Complete Ap-

plication . 96
4.4.4 Combining the Application with PBS: Automatic Resub-

mission . 102

5 MPI and MPI-IO 107
5.1 Introduction . 107

5.1.1 The History of MPI . 107
5.1.2 MPI Documentation and Literature 108
5.1.3 What is in MPI? . 109
5.1.4 Programming Examples 110
5.1.5 Running MPI on the AVIDD Clusters 111

5.2 Basic MPI . 117
5.2.1 Hello World . 117
5.2.2 Greetings, Master . 122
5.2.3 Dividing the Pie . 128
5.2.4 Bank Queue . 131
5.2.5 Diffusion . 143
5.2.6 Interacting Particles . 159
5.2.7 The Random Pie . 172
5.2.8 Error Handling . 180

5.3 MPI IO . 192
5.3.1 Writing on MPI Files . 193
5.3.2 Reading from MPI Files 204
5.3.3 Writing Sequential Files with MPI-IO 215
5.3.4 File Views . 224
5.3.5 File Hints . 246
5.3.6 Asynchronous IO . 252

5.4 MPI Graphics and Process Visualization 253
5.4.1 Instrumenting MPI Programs with MPE 254
5.4.2 MPE Graphics . 261
5.4.3 Exercises . 273

6 The Assignment 275

7 HDF5 279
7.1 Introduction . 279
7.2 Structured versus Flat Files . 280
7.3 Creating and Structuring HDF5 Files 286

7.3.1 HDF5 File Creation . 286

CONTENTS 5

7.3.2 HDF5 Datasets . 288
7.3.3 Writing On and Reading From HDF5 Datasets 291
7.3.4 HDF5 Attributes . 294
7.3.5 HDF5 Groups . 297
7.3.6 HDF5 Groups and Datasets 298

7.4 Property Lists . 302
7.4.1 Modifying Property Lists 305
7.4.2 Create a File Family . 306
7.4.3 Create an MPI-IO File . 308
7.4.4 Create an Extendible Dataset 310
7.4.5 Create a Compressed Dataset 318
7.4.6 Activate Checksum for Error Detection 322

7.5 Hyperslab Selection . 325
7.5.1 Sequential Example . 326
7.5.2 Partitioning MPI-IO/HDF5 Datasets 333

7.6 Point Selection . 355
7.7 Compound Datatypes . 360
7.8 Iterating over HDF5 Groups . 367
7.9 What Else in HDF5? . 372

8 Other Parallel Libraries 373

9 Databases: From Small to Huge 377
9.1 PostgreSQL under Cygwin . 380
9.2 Talking to a PostgreSQL Data Base with psql 384
9.3 Talking to a PostgreSQL Data Base from C 391
9.4 Huge Data Bases . 395
Index . 399

6 CONTENTS

Chapter 1

Introduction

Welcome to I590, High Performance Data Management and Processing. This is
our first experimental course that is going to make use of the Indiana I-Light
infrastructure to deliver instruction to students at various IU campuses, most
notably, IUN, IUPUI and IUB.

This course is a part of the AVIDD program, which has been financed to the
tune of $3.25 million by the National Science Foundation, which contributed
$1.8 million, IBM, which provided a Shared University Research (SUR) grant
and by Indiana University, which paid the rest.

AVIDD stands for “Analysis and Visualization of Instrument Driven Data”,
the analysis and visualization in question to be carried out on the four AVIDD
clusters of IA32 and IA64 blades scattered amongst the three Indiana University
campuses, IUN, IUPUI and IUB and coupled to the IU’s High Performance
Storage System (HPSS).

1.1 The Focus of the Course

Using clusters for anything other than running lots of small jobs on the clusters’
individual nodes – this type of activity is nowadays called “capacity computing”
– is highly non-trivial and calls for considerable computing skills. This non-
trivial activity is often referred to as “supercomputing”, but it differs markedly
from supercomputing sensu stricte and is more broadly applicable too. Whereas
real supercomputing is concerned with number crunching first and foremost
and is best done on highly specialized machines that are not based on common
business CPUs, cluster “supercomputing” is often focused on manipulating very
large amounts of data as in data mining, for example, or in managing and
manipulating very large multi-tera-byte data bases.

A more general term, which is perhaps more appropriate, is “High Perfor-
mance Computing” or HPC for short. HPC is not “super”. It is a notch below,
but it is broader, both in terms of applicability and availability. Whereas su-
percomputers are rare, expensive (though not expensive in terms of $/GFLOPS

7

8 CHAPTER 1. INTRODUCTION

– this is the main point about these highly specialized machines) and avail-
able to a handful of institutions only, HPC systems such as clusters of various
sizes, including also clusters of SMPs, are very common. You will find them in
laboratories, corporate computing rooms, and at the Internet providers’ shops,
sometimes even in the hobbyists’ attics. Some vendors, e.g., IBM and Gateway,
offer access to their own clusters to customers who need to use such facilities
occasionally, but don’t want the bother of having to buy, configure and maintain
them in their own machine rooms.

So, who is this course for? This course is for people who need to learn
how to use clusters to manipulate very large data sets in the High Performance
Computing style, not “chunk by chunk” but the whole lot, all, at once. I
have emphasized the phrase “need to”. This is important, because such HPC
data manipulation is not easy. There is a lot of difficult stuff you will have to
learn. High Performance Computing on clusters is hard, tedious and wasteful
of researchers’ time. If you can do your job in other ways, without having to
use HPC techniques, do so. Resort to “capacity computing” if you can, if your
particular problem type, data structures and data processing methodologies let
you do this.

But if you’re interested in parallel data bases, data mining, or any other
activity that is concerned with analyzing, processing and modifying a single
gigantic data set, a data set that does not fit in the memory and on the disk of
a single computer, then this is the course for you.

Now, if you are interested primarily in the “capacity computing”, I can hear
you ask the question “Where am I going to learn how to do this?”. The point is
that if you have the required level of skills for this course (see section 1.2 that
talks about it) you already know how to do this. All you need here is to know
how to edit, compile, link and run a UNIX program, and how to write simple
UNIX shell scripts. You can then write a trivial shell script that distributes your
program with arbitrary initial data to an arbitrary number of cluster nodes, or
you can use the AVIDD batch queue system, PBS, to do the same in a way that
is more considerate of other users (and less vulnerable to skulker). If you would
like to learn how to do the latter, you can attend the course up to chapter 4
and then simply drop out.

1.2 Required Level of Skills

You may fear that given the difficulty of the subject you would be expected
to have very highly developed computer skills in order to attend this course.
Luckily this is not quite the case. The stuff we are going to talk about does not
depend on object oriented programming, recursive functions, symbol manipula-
tion, artificial intelligence, XML, Active Directory, Java and what not. This is
not to say that you cannot combine these techniques and elements of IT with
parallel programming in various ways. It’s up to you. But the basics of what
we are going to talk about depend on plain C (or plain Fortran) only. And so
plain C is the first pre-requisite for the course.

1.3. BRING YOUR LAPTOP 9

The other pre-requisite is UNIX. The AVIDD cluster is a Linux system. In
order to work with it you will have to know how to compile link and execute
programs under UNIX. You will have to know how UNIX is organized, how to
connect to it, how to find information, how to manipulate UNIX files, etc.

The laboratories we are going to use for the classes are Windows/PC labo-
ratories. This is because these are the most common computer laboratories at
IU, because Windows/PCs are the most commonly used laptops and desktops
and because we are going to use Microsoft NetMeeting a lot. So you need to
know how to use Windows/PCs too. This is the last pre-requisite.

1.3 Bring Your Laptop

Although we will use UITS computer laboratories, such as may be available
and suitable for this course, I do not assume that you are going to use these
laboratories in your future research work. Rather I expect that you will use
your office desktop, or your laptop, or your research laboratory server, or your
departmental server. Furthermore, we cannot expect every software component
we may need in the course to be available on these common use UITS PCs.
Consequently, if you have your own laptop and would like to bring it with you
and use in the course, you are welcome to do so.

I have remarked in the preamble that we may even consider delivering the
course directly to your home or office – this especially if we don’t have many
students enrolled. In this case, obviously, you will have to provide your own PC
(or a Mac).

1.4 Using NetMeeting

We are going to use Microsoft NetMeeting to deliver much of the course, espe-
cially to the remote audiences in Gary, Lafayette and, possibly, in Indianapolis
too. NetMeeting is available with Windows 2000 and XP, but it is a little hard
to find under XP, because it is no longer placed in the XP Programs menu.

To invoke NetMeeting under Windows 2000 bring up the following menu
cascade:

Start

Programs

Accessories

Communications

There in this last menu you will find NetMeeting. Simply select it and the
application should pop up.

Under Windows XP you will have to go to

My Computer

Fixed Disk (C:)

Program Files

10 CHAPTER 1. INTRODUCTION

NetMeeting

There you will find the icon called ”conf”. Double click on the icon to bring the
application up.

If this is the first time you use NetMeeting on this computer, you will be
asked some questions about who you are and which is going to be your Net-
Meeting server. Ignore the question about the server and answer the remaining
questions as well as you can.

In the end you should get the application window up. There are various
push-buttons in this window and a small video screen. If your computer has a
camera attached to it and the camera is configured correctly, you should be able
to click on the button with a little blue triangle in it. It is on the left hand side
just under the screen. If you hold the pointer over this button for a moment,
with the NetMeeting window selected, a little help balloon should appear with
the words “Start Video” in it. If you click on this button you should get to see
whatever the camera is looking at in the video screen.

To make a connection pull down the ”Call” menu in the top left corner of
the NetMeeting window and select ”New Call”. In the ”To:” field enter either
the full DNS name of the PC you want to connect to, e.g., woodlands.tqc.iu.edu,
or, if the PC doesn’t have a name, just its IP number, e.g., 129.79.15.18. In the
”Using:” field choose ”Network”. Then press ”Call”. If the user on, in this case,
woodlands.tqc.iu.edu, accepts your call the connection should be established.

In the bottom row of the NetMeeting window you will find push buttons,
which activate various functions, e.g., ”Chat” or ”Share Program”. We will use
the latter to show you how to do various things on the AVIDD cluster. We will
use the former to communicate in addition to the teleconference link.

You should take some time to play with NetMeeting and become familiar
with it.

NetMeeting is a very useful tool. It is not a Microsoft’s original invention.
It builds on earlier freeware experiments such as “mbone”, but it wraps it all
up in a neat package and is altogether more seamless and easier to use. I used
it on a number of occasions to deliver remote presentations from Bloomington
to various business meetings in Houston, Chicago, Urbana-Champaign, Wash-
ington DC, and other remote locations. Although you can use it to transmit
sound, in principle, it is not very suitable for this. NetMeeting sound is too
choppy. Consequently, the best way to use NetMeeting is to complement it
with a teleconference.

Chapter 2

Supercomputers and
Clusters

2.1 The Almighty PC

Present day PCs (and Macs) can be amazingly powerful and relatively inexpen-
sive.

I have emphasized the word relatively because you should not expect com-
puter vendors not to be after money in your pocket. And so, they keep prices
of their PCs always at the higher rather than lower side by a variety of means,
which include closing down older model lines and rolling out machines with
faster CPUs, more memory, more disk space, and larger displays, whether you,
dear user, need it or not. They have to keep their prices sufficiently low to
lure you into their shops, but not so high that you would find their equipment
unaffordable. There is some competition in this business that helps keep prices
down, but not enough. Nowadays we are down to two major US PC vendors,
Dell and HP, with Gateway, IBM and Apple mopping up crumbs that fall off
the table, two Japanese vendors that count, Toshiba and Sony, and Taiwanese
Acer.

Compare this to the glorious world of automobiles, where you have three
major US vendors, six Japanese vendors, three Koreans, three great German
companies, three French, two Swedish, four Italian and a plethora of British
exotica. Even though some of these have been bought by others, their distinct
production lines survive and compete offering a great variety of products to
people around the world.

But let’s get back to computers. Whatever competition there still is in this
business, is enough to keep pushing computer performance up and their prices
down enough to provide us with laptops with 3 GHz CPUs. I saw some people
write that their laptops had as much computing power today as supercomputers
had only ten years ago. Such statements make great advertising lines, but they
are quite incorrect. They are incorrect, because it is only the CPUs themselves

11

12 CHAPTER 2. SUPERCOMPUTERS AND CLUSTERS

that have computational power matching that of ten years old supercomputers.
Other PC components, like memory, system bus, IO interfaces, etc., lag well be-
hind those of even ten years old supercomputers, and so these laptops, although
quite useful, are not really in the supercomputer league. But they can perform
certain operations very quickly, especially the ones for which they are highly
optimized: fast screen redraw, fast searches on cached data, fast handling of
interrupts – the stuff that is important to PC users.

2.2 Supercomputers and Clusters

PCs can be delivered in various packages: desktops, laptops, desksides, blades
(for rack mounting), raw motherboards for embedded systems, headless boxes
for network management, and even wearable computers. A substantial number
of PC blades can be packed into a rack (up to 48 per rack) and linked with a high
bandwidth communication network to allow for a single very large computation
to be laid out on such a distributed system.

About seven or eight years ago some people came to the conclusion that this
would be the future of supercomputing, although initially they thought more in
terms of commodity processors other than IA32, e.g., POWER, Alpha, SPARC
or PA-RISC. Because important decision makers were amongst them, that view
had dire ramifications for the US supercomputer industry, which in effect all
but died overnight.

This made PC and UNIX workstation vendors deliriously happy, because
now they had this whole end of the market to themselves (pity they knew so
little about it) and they could sell a lot of rack mounted PCs and workstations
to universities, defense laboratories, exploration companies and design bureaus.

This made programmers and computer scientists very happy too, because
they knew better than anybody else how difficult such systems would be to
assemble, manage, use and program and so they sniffed many lucrative life-long
sine-cure jobs for themselves.

The only people who were unhappy about this turn of events were super-
computer users, who were suddenly faced with the demise of highly efficient and
easy to use machines, of various architectures, which they relied on to do first
class science without having to waste a lot of their own time on programming
equilibristics.

Three Japanese companies, Fujitsu, NEC and Hitachi, continued to build
real supercomputers, some based on vector other on scalar CPUs, but all quite
nicely balanced and with excellent IO and memory bandwidth, but they were
barred from the US market by legal means. They have been selling their ma-
chines in other countries with considerable success though.

And so things progressed at their own pace. Some applications were ported
to this new distributed programming model, some were abandoned, and some
new applications were developed too. Many people made good living out of it,
but, by and large, a lot of tax payers money and scientists time got wasted in
the process. Some of this money fed the dot-com boom of late 90s.

2.2. SUPERCOMPUTERS AND CLUSTERS 13

And then the Japanese commissioned the Earth Simulator, a system that
outperformed ten most powerful US clusters put together, was very efficient and
childishly easy to program, at least in comparison with American PC clusters.
This caused a great stir and uneasiness amongst the aforementioned important
decision makers as they were finally forced to see for themselves, what every
computational scientist was telling them all along: that PC clusters were no
match for real well designed supercomputers.

They responded in their usual way: they assembled numerous committees
to scrutinize the current context, reassess the US position in supercomputing
and to outline future directions. And so even more tax payers’ money got
wasted. But eventually DARPA announced the High Productivity Computing
Systems Program and awarded $50 millions each to Cray, IBM and Sun for the
development of novel supercomputer architectures that would scale to PFLOPS.

The systems proposed by these three companies are not PC clusters. They
are very, very different.

The Cray’s Cascade system derives from the earlier PFLOPS architecture
developed for Defense some five years ago as well as from the Cray MTA multi-
threaded architecture machine, previously known as “Tera”. Cascade is being
developed jointly with researchers from JPL, Caltech, Stanford and Notre Dame.
The Cascade machine will combine a lot of earlier ideas such as UMA and
NUMA SMPs, hybrid electrical and optical interconnect, lightweight threads
in memory and aggressively parallelizing compiler technology. But perhaps the
greatest innovation is going to be the use of processor in memory (PIM) chips.
Amongst the greatest handicaps of present day systems is movement of data
from memory to CPUs. This problem can be overcome by bringing CPUs to
data and computing directly in the memory. This is how PIM chips work.

IBM’s proposed machine is called PERCS, which stands for Productive,
Easy-to-use, Reliable Computing System. The system will reconfigure its hard-
ware dynamically, on the flight, to suit a problem at hand. IBM has the ambition
to make it into a new commercial computing architecture that may deal a blow
to the PC and PC clusters. This system will use some off-the-shelf components,
most notably IBM’s POWER5 (or later) processors, but much of the rest is
going to be quite new. They may use PIMs too.

Sun plans to base its machine on a quite revolutionary concept of clockless
computing. Computation in clockless computing unfolds at almost analog speed,
though it is still digital, but it is not halted by constant references to the system
clock. Every computational process runs as fast as it possibly can and stops
only when it needs to communicate with other processes.

But none of these three systems is going to be delivered any time soon,
and when they eventually do get to see the light of day, they’ll be restricted
to defense facilities, national laboratories and, perhaps, national supercomputer
centers. It is unlikely that you’ll see any of these machines (perhaps with the
notable exception of the IBM system) in your laboratory or on your desktop.

In the meantime the Earth Simulator remains the most powerful, the most
computationally efficient and the easiest to program of all supercomputers on
the planet. But, guess what. . . it is a cluster too. It is a cluster of 640 super-

14 CHAPTER 2. SUPERCOMPUTERS AND CLUSTERS

computers (NEC SX6), each of which is a 64 GFLOPS system. Because the
nodes of Earth Simulator are real supercomputers in their own right, not PCs,
the system delivers very high computational efficiency of between 40% and 60%
on production applications. It is this very high efficiency, more than its peak
performance, that made the US computational scientists stop and think.

Yet, the fact that the Earth Simulator is a cluster too is actually good
news. It means that whatever you are going to learn in this course is going to
be applicable not only to PC clusters, but also to systems such as the Earth
Simulator. It is going to be applicable to Cray X1 (and its successor the Black
Widow), to Cray Red Storm, to IBM SP, to clusters of IA64s and Opterons,
and even to IBM PERCS discussed above.

The computational methods and paradigms we are going to discuss in this
course are universal enough to be applicable to a very broad range of systems.
For this same reason we will stay away from any IA32 specifics.

2.3 HPC Facilities at Public Supercomputer Cen-

ters

Another result of decisions made in mid-1990s, apart from the near-death expe-
rience of the US supercomputer industry, was that American researchers ended
up with very limited access to well engineered supercomputers in their own
country.

Perhaps the only public computing facility that has been providing access to
such systems over the years is the Arctic Region Supercomputer Center (ARSC)
in Fairbanks, Alaska. Today the center operates a 272-processor Cray T3E, a
32-processor Cray SV1ex, an 8-processor NEC SX6 (which is re-badged for
the US market as Cray SX-6), and, the most recent acquisition, a 128-multi-
streaming-processor Cray X1. The latter is a highly efficient massively parallel
vector system, with 1.6 TFLOPS peak performance. This system should deliver
between 40% and 60% efficiency on production codes, which would make it
equivalent to, say, a 20 TFLOPS IA32 cluster. (They are going to install just
such a 20 TFLOPS IA32 cluster at NCSA, see below.) The Cray X1 at ARSC
is equipped in about 1 Peta Byte storage in the form of Sun disk array servers
and Storagetek tape silos (we have a similar storage system here at Indiana
University).

There are also some US Army computer centers that have well engineered
machines, but they are largely inaccessible to US researchers on account of being
dedicated to military work, so we won’t talk about those.

The three National Supercomputer Centers, Pittsburgh, Urbana-Champaign,
and San Diego, offer various clusters of scalar CPUs only.

Pittsburgh has a 512-processor Cray T3E and a cluster comprising 750 4-way
Alpha SMPs.

NCSA in Urbana-Champaign has (or is going to have soon) two IA32 clus-
ters, one with 484 2-way SMP nodes dedicated to computation and 32 2-way

2.4. IU HPC FACILITIES 15

SMP nodes dedicated to storage, and another one with 1,450 2-way nodes. The
latter is going to yield (when it is finally installed) 17.7 TFLOPS peak, which
may translate to perhaps about 1 TFLOPS deliverable on production codes –
close enough to the ARSC’s Cray X1.

You can think of our AVIDD cluster as being a smaller version of this large
NCSA IA32 cluster. Codes developed for AVIDD should run almost without
change on the NCSA 17.7 TFLOPS system.

NCSA also has two IA64 clusters, one with 128 2-way nodes dedicated to
computation and 4 2-way nodes dedicated to storage, and another one with 256
2-way nodes.

Finally SDSC (San Diego) has an aging IBM SP (it is a cluster too) with
1,152 POWER3 CPUs. But SDSC is in alliance with the University of Texas
and the University of Michigan, which contribute some fairly sizeable systems
of their own to the pool. For example, the University of Texas contributes an
IBM SP with 224 POWER4 CPUs, which is only a little less powerful than the
SDSC system, and the University of Michigan contributes four clusters, which
altogether add up to almost as much as the SDSC SP.

All in all these facilities are somewhat disappointing. Developing parallel
programs for the clusters of scalar CPUs is very tedious, debugging is cumber-
some and takes ages, and, worst of all, the codes more often than not end up
running very slowly and generating more heat than good science.

Because the fuddy daddies who got us into this morass are still at the helm
of the sinking boat, you should not expect things to change any time soon. It’s
going to be more of “steady as she goes”, until the DARPA project bears fruit
and we get some new toys to play with.

This situation gave rise to some concern and pointed questions in the Congress,
where Vincent Scarafino, the manager of numerically intensive computing at
Ford Motor, commented: “The federal government cannot rely on fundamental
economic forces to advance high-performance computing capability. The fed-
eral government should help with the advancement of high-end processor design
and other fundamental components necessary to develop well-balanced, highly
capable machines. U.S. leadership is currently at risk.”

The chairman of the congressional committee that looked into these matters,
Sherwood Boehlert, a representative from New York, stated that “Lethargy is
setting in [at the NSF] and I’m getting concerned. I don’t want to be second to
anybody.”

2.4 IU HPC Facilities

Indiana University is remarkably well equipped in HPC systems. You can view
a list of what is available at http://www.indiana.edu/˜rats/.

Our main research system is the IBM SP. It is a cluster system connected
by a special high bandwidth switch network, which provides point-to-point con-
nectivity at 150 MB/s between a variety of nodes, beginning with 136 4-way
POWER3+ SMPs, 4 16-way POWER3+ SMPs, and one 16-way POWER4

16 CHAPTER 2. SUPERCOMPUTERS AND CLUSTERS

SMP. This system also has a small number of other nodes, which “don’t quite
fit” and are used for auxiliary tasks. The General Parallel File System installed
on our SP provides nearly 3 TBs of storage. All CPUs mentioned here are 64-bit
CPUs, which can perform up to 4 double precision floating point operations in
a single clock cycle, albeit on special operations (add-multiply) only.

The whole system is gauged at about 1 TFLOPS peak. Because its nodes
are quite powerful SMPs (and the 16-way nodes are very powerful SMPs), the
system can be used to run a large number of shared memory jobs and this makes
it extremely useful in our environment.

The next system is made of the four AVIDD clusters. These are the clusters
that we are going to use in this course. There is a lot of spare computational
capacity on this system at present and, because it is so similar to the NCSA
clusters, it can be also used as a training and testing ground for the latter. Its
primary purpose is “Analysis and Visualization of Instrument Driven Data”,
hence its name, AVIDD, and the rationale for this course, “High Performance
Data Management and Processing”.

We are going to dedicate the whole chapter 3 to this cluster, so we are not
going to spend more time on it here.

Although we have HPC clusters at IU, we don’t have “real supercomputers”,
like Cray X1, NEC SX6, Cray T3E or Hitachi (University of Tokyo has one of
these that can run LINPACK at 1.7 TFLOPS) for the following reason. They
are very good for certain types of typical supercomputer jobs, but no good for a
very broad range of jobs. At our university we might perhaps have two or four
users who would benefit from such systems, but they would be pretty useless
to the vast majority of our users, who are not typical supercomputer users. On
the other hand clusters, although not efficient as supercomputers, can be used
to run just about anything, beginning with little sequential scalar jobs, or a
lot of little sequential jobs, and ending on parallel jobs of various sizes: some
requesting 16 CPUs only, some running on 64 2-way nodes.

2.5 Parallel Programming

2.5.1 Data Parallel Paradigm

The simplest parallel programming paradigm is data parallelism.

If you have, say, two one-dimensional arrays A and B, of equal size, say, N
double precision floating point numbers each, the traditional way to add such
arrays in the C-language would be

for (i = 0; i < n; i++) c[i] = a[i] + b[i];

You’d do it similarly in Fortran-77 or Pascal or any other sequential program-
ming language. But in Fortran-90 you can simply state:

C = A + B

2.5. PARALLEL PROGRAMMING 17

which corresponds closely to how you would write it in mathematics:

C = A+B

The operation of adding two arrays is explicitly parallel, i.e., you can perform
each addition c[i] = a[i] + b[i] independently. If you run a Fortran 90
compiler on a Cray X1 or NEC SX6, the compiler will automatically con-
vert program lines such as C = A + B into parallel operations that will execute
c[i] = a[i] + b[i] simultaneously (or almost simultaneously – depending on
the architecture of the machine) for all values of i.

A lot of scientific and engineering computing can be expressed efficiently in
this data-parallel paradigm. All field problems like electrodynamics, fluid dy-
namics and chromodynamics fit in this category. Weather and climate modeling
codes do too. Gene matching and searching codes can be expressed in terms of
data parallelism as well. Basically anything that operates on very large arrays
of data submits to data parallelization easily.

Data parallel languages provide various constructs for conditional differen-
tiation of some operations on various parts of arrays, e.g., masking, and for
shifting the content of the arrays in a way that is similar to shifting the content
of the register, i.e., you can shift arrays left and right, you can rotate them, or
shift with padding.

Data parallel programs are very easy to understand and to debug because
their logic is essentially sequential. But it is also this sequential logic that results
in some inefficiencies. Suppose you want to set values in the B array to zero
for all such is for which c[i] == 1. The Fortran-90 statement to do this is

where (c .eq. 1)

b = 0

end where

If c[i] == 1 for just a handful of is, this operation will be performed on only
a handful of processors that are responsible for the b[i] involved, whereas all
the other processors will idle for the duration of this operation. If the operation
is very involved, e.g., there may be some very complex and long computation
going on within the confines of the where statement, the idling processors may
end up doing nothing for a long time.

Nevertheless, there is a lot to be said in favor of data parallelism. It is
much more universal than many computer scientists are prepared to admit,
and because it is so easy to use, it should be provided to supercomputer users,
especially the ones writing their own codes. Data parallelism is very highly
scalable too. We will probably see the return of data parallel computing in
context of petaflops systems. The PIM (Processor in Memory) architecture is
very similar to the Connection Machine (see below).

Data parallel programs run best on vectors and massively parallel machines,
like the the Connection Machine. They can run, although not as efficiently,
on SMPs and clusters too, but then, not much will run on clusters efficiently
anyway. There is a special variant of data parallel Fortran for clusters, called

18 CHAPTER 2. SUPERCOMPUTERS AND CLUSTERS

High Performance Fortran (HPF). The best HPF compilers can be bought from
The Portland Group Compiler Technology.

For more information on HPF see, e.g., the High Performance Fortran page
at the Rice University. Also see a brief tutorial about HPF, which was included
in the P573 course.

2.5.2 Message Passing Paradigm

Message passing parallel programming paradigm is very flexible, universal, can
be highly efficient, and is absolutely ghastly to use. But since the former three
outweigh the latter, message passing wins and is currently used by most parallel
production codes.

As was the case with data parallel programming, message passing program-
ming is a paradigm and can be implemented on systems with various architec-
tures. You can use message passing on clusters, on SMPs, even on single CPU
machines and on fancy supercomputers like Cray T3E and Cray X1.

In message passing paradigm your computer program can be logically split
into as many different processes as you need. You can even have more processes
than you have CPUs, but usually you try to match these two numbers together.
The processes can all run quite different codes and they can run on CPUs
that are geographically distant. For example you can have one process run in
Bloomington and another one run in Gary.

The processes exchange data with one another by sending messages. A
process can send a message in such a way that it doesn’t care if the message
has been received by anybody. So the messages that have been sent, don’t need
to be received. But usually they are and there are special function calls for
receiving messages too.

The most commonly used library for message passing is called the Message
Passing Interface. Two popular freeware implementations of it exist, one de-
veloped by the Argonne National Laboratory, called MPICH, and another one
developed by the Ohio Supercomputer Center, but currently maintained by the
LAM organization and the LAM team at . . . Indiana University.

MPI is huge. There are hundreds of functions in it for doing various things.
We are going to study and use some of them in this course, with special emphasis
on functions for doing parallel IO.

Because MPI is so flexible and universal, data parallel languages for clusters
are often implemented on top of MPI, i.e., the compiler automatically converts
a data parallel code to an MPI code. This is how the Portland Group HPF
compiler works and this is how the IBM HPF compiler for SP works too.

2.5.3 Shared Memory Paradigm

The shared memory paradigm is really restricted to shared memory systems,
SMPs, although it is possible to simulate it on distributed memory systems too,
albeit not without some cost. The basic idea here is that you can have a normal
UNIX program, which spawns threads. The threads are each given separate

2.5. PARALLEL PROGRAMMING 19

CPUs to run on, if such are available. They can communicate with each other
by writing data to shared memory and then reading data from it.

Recall that when a traditional fork is called under UNIX, it copies the
whole process into separate memory location and the processes, in principle,
don’t share memory. But threads do.

Some operating systems, e.g., Dynix, used to let forked processes share mem-
ory too.

Communicating through shared memory can be very fast, but it can be also
quite troublesome. To begin with, what if two processes both try to write on the
same memory location at the same time? The result of such operation would
be unpredictable. So the shared memory paradigm introduces a concept of a
memory lock. A process that wants to write on a shared memory location or
that wants to read from it, can lock it, so that no other process can access it
for writing at the same time.

But this solution causes other problems, of which the possibility of a deadlock
is most severe. A deadlock can occur if process A locks a memory location,
forgets to unlock it or perhaps just postpones to unlock it for some reason and
goes to write on another memory location, which just has been locked in the
same way by process B, which is currently waiting for the memory location
on which A has just written to get unlocked before it will unlock the one A is
waiting for. Both processes will end up waiting forever. This is a deadlock.

Deadlocks can be avoided if certain rules are followed, but they still happen
nevertheless.

Message passing programming can be implemented very efficiently on top
of shared memory. In this case chunks of shared memory are used to store
messages. Message sending is implemented as writing to the chunk, and message
reading is implemented as reading from it. If this is done right, deadlocks can
be avoided.

Data parallel programming can be implemented on top of shared memory
too, with multiple processors of an SMP taking care of separate chunks of arrays
that reside in shared memory. So SMPs are very good for Fortran 90 programs.

Various utilities exist that simplify shared memory programming, so that you
don’t have to spawn threads explicitly. For example, OpenMP lets programmers
parallelize loop execution by inserting compiler directives in front of the loops.
This helps programmers parallelize legacy applications that were written in
sequential languages like C and Fortran 77.

2.5.4 Mixing Parallel Programming Paradigms

You can mix various programming paradigms in the same program. For ex-
ample, you can use Fortran 90 in order to express data parallelism on an SMP
node, and then mix it with MPI library calls in order to make processes running
on SMP nodes communicate with each other. If the problem-on-the-node is not
data parallel, but can be parallelized by some other means, you can resort to
multi-threading on the node and MPI communication between the nodes, or you

20 CHAPTER 2. SUPERCOMPUTERS AND CLUSTERS

can multi-thread implicitly by inserting OpenMP directives in your on-the-node
program.

Programs written by mixing explicit multi-threading and MPI are perhaps
the most horrible to analyze and write. Yet they are the ones that are going to
run most efficiently on clusters of SMPs.

2.5.5 Scalability of Parallel Programming Paradigms

Parallel programming and parallel program execution can be often very disap-
pointing. You may invest a lot of very hard work in a project, only to discover
that your parallel program doesn’t run any faster than its sequential sibling.
The reason for this is that the cost of communication, especially the cost of
communication in a cluster, is extremely high. So you always have to balance
amount of work to be carried out on a single node, versus amount of data that
has to be exchanged between the nodes. The more work on the node and the
less data to exchange, the better.

Communication problems are also at the root of poor scalability of parallel
programs. Even if your program does perform up to the expectations, you may
discover that your speed-up will no longer be satisfactory when the number of
nodes, the program runs on, gets too large. Most production codes are written
to run on 16 or 32 nodes maximum. Some may still scale to 64. But I haven’t
seen many production codes that would run well on, say, 1024 cluster nodes.
The cost of communication and synchronization for this many nodes would be
prohibitive.

The present day parallel programming paradigms, perhaps with the notable
exception of the data parallel paradigm, are not scalable beyond tens, or at best
low hundreds, of processes.

But the data parallel paradigm can be laid out on machines with tens of
thousands of CPUs. For example, the Connection Machine CM2 used to have
up to 64,000 CPUs. This paradigm, as I have remarked above, should map
on the PIM systems too. We will almost certainly see some form of it on the
petaflops systems that are currently being developed.

2.6 HPC and The Grid

The latest fashion in some academic IT circles is “The Grid”, and many people
have a quite incorrect view that “The Grid” in some way is deeply connected
to high performance computing, or even that it is high performance computing
in its latest guise.

“The Grid” is not related to high performance computing.
High performance computing and supercomputing have been around for tens

of years without “The Grid” and they will continue to be around for tens of
years without it.

The other view, which is also quite incorrect, is that there is just one “Grid”,
which is also “The Grid”, and that this grid is based on “Globus”, which is a

2.6. HPC AND THE GRID 21

collection of utilities and libraries developed by various folks, but mostly by
folks from the University of Chicago and the Argonne National Laboratory.

Many people, who actually know something about distributed computing,
pointed out that what is called “The Grid” nowadays, was called “Distributed
Computing” only a decade ago. It is often the case in Information Technology,
especially in academia, that old washed out ideas are being given new names
and flogged off yet again by the same people who failed to sell them under the
old names.

There are some successful examples of grids in place today. The most suc-
cessful one, and probably the only one that will truly flourish in years to come,
is the Microsoft “.NET Password” program. It works like this: when you start
up your PC running windows, “MSN Messenger” logs you in with the “.NET
Password”. This way you acquire credentials, which are then passed to all other
WWW sites that participate in the “.NET Password” program. For example,
once I have been authenticated to “.NET Password”, I can connect to Ama-
zon.com, Nature, Science, Monster, The New York Times, and various other
well known sites, which recognize me instantaneously and provide me with cus-
tomized services.

Another example of a grid is AFS, the Andrew File System. AFS is a
world-wide file system, which, when mounted on a client machine, provides its
user with transparent access to file systems at various institutions. It can be
compared to the World Wide Web, but unlike WWW, AFS provides access to
files on the kernel and file system level. You don’t need to use a special tool
such as a WWW browser. If you have AFS mounted on your computer, you can
use native OS methods in order to access, view, modify, and execute files that
live at other institutions. User authentication and verification is based on MIT
Kerberos and user authorization is based on AFS Access Control Lists (ACLs).

Another example of a grid is the grid that is currently being built by CERN
and that is going to be used by Europe’s high energy physicists and their collab-
orators. They have their own highly specialized protocols, libraries and utilities
that are built on top of “Globus”, but the latter is used as a low-level library
only. Recall that it was CERN where WWW was invented in the first place.

Another example of non-Globus Grid software developed in Europe is Uni-
core. It was developed by Forschungszentrum Jülich, GmbH in cooperation with
other German software companies, the supercomputer centers in Stuttgart, Mu-
nich, Karlsruhe, and Berlin, the European Centre for Medium-Range Weather
Forecast in Reading, UK, and various hardware companies, such as Fujitsu, Hi-
tachi, NEC, Siemens, as well as some American partners, HP, IBM and Sun
Microsystems.

Europeans want to do things their own way and for various reasons eschew
being dependent on American technology, including Information Technology.

A yet another example of Grid software is Legion, developed by researchers
from the University of Virginia under various contracts with DoE, DoD and
DARPA. Legion is much more usable and more functional than Globus and
provides numerous higher level utilities and abstractions. An insightful compar-
ison between Legion and Globus can be found in “A philosophical and technical

22 CHAPTER 2. SUPERCOMPUTERS AND CLUSTERS

comparison of Legion and Globus” by Grimshaw, Humphrey and Natrajan, IBM
Journal of Research and Development, vol. 47, no. 2.

Why grid and high performance computing are not the same thing?
The purpose of the grid is to provide users with connection to various com-

puting and storage resources usually at other institutions.
There is no need for grid protocols within an institution, because other

site-wide authentication and verification methods such as Kerberos or Active
Directory work better in this context. So grid is for long-haul connections.

Long-haul connections always have very high latencies. This is caused, first,
by the speed of light, which by supercomputer standards is very low, and, sec-
ond, by the fact that you have to pass through numerous routers, switches and
sometimes even firewalls on your way between the institutions and they add
even more latency to the connection, while in some cases restricting the avail-
able bandwidth severely (e.g., the firewalls). High latency kills high performance
computing. The only jobs that are relatively immune to it are ”high capacity
computing” jobs, i.e., trivially parallelizable jobs, which run as numerous small
programs on a large number of computers and which don’t communicate with
each other. But ”high capacity computing” is not high performance computing,
neither is it supercomputing, where intense communication between processes
running on various parts of the system is frequent and often synchronized.

The I-light link between Bloomington and Indianapolis is not “as crow flies”.
It goes around quite a lot and its total length is about 80 miles. Were it not
for switches and routers, it would take about 0.5 ms for the light signal to
traverse this distance. In reality it takes much longer. But let’s stay with
this ideal number of 0.5 ms. In this time a 1 TFLOPS supercomputer can
perform 500,000,000 floating point operations. If a program running on an
IA32 cluster at IUB and IUPUI has to synchronize operations frequently, every
time it needs to do so we’ll lose billions of floating point operations waiting for
the synchronization to complete.

The other problem with long-haul connections is that effective bandwidths
on such connections for large data transfers are usually very low, even if the
lines are advertised as high bandwidth ones and even if there are no firewalls.
It is enough that a very small fraction of packets get dropped on some routers
to bring the effective transfer rates down from the nominal hundreds of MB/s
to mere five or so. We have seen some long-haul transcontinental transfer rate
records established recently. For example, between SLAC and the Edinburgh
University (40 MB/s) and between Caltech and CERN (80 MB/s). But 40 MB/s
or 80 MB/s is very little by high performance computing standards. Here we
need transfer rates of GB/s or better.

But let’s get back to “The Grid”. Assume that we have it in place. “The
Grid” will provide us with tools to access, say, NCSA, SDSC, PSC, ARSC and
some other supercomputer centers. The tools in question may even be quite
nice given another 20 years of development. You’ll click some push buttons,
turn some dials and. . . you’ll be there. Now what? You got connected to, say,
NCSA, and you still have to write a supercomputer program to run on the
NCSA cluster utilizing all its nodes in parallel and communicating frequently

2.7. TO PROGRAM OR NOT TO PROGRAM 23

between various processes. “The Grid” is of no help here. It doesn’t tell you
how to do this.

This course, however, will. Think of this in the following terms: this course
is about what you need to do once you have connected to a supercomputer
resource. You may have connected using “The Grid”, or using ssh, or using
Kerberized telnet, or using simply a telephone line. But now you are there and
you have to reach for tools other than ssh, “The Grid”, or the telephone line,
in order to construct, submit and run a supercomputer job.

2.7 To Program Or Not To Program

To program or not to program?
The answer is, not to program, if you don’t have to. Programming is a

tedious activity and, unless you are a professional programmer and make your
living doing this, there is nothing for you to gain from such an exercise. Because
of the tedium involved and because of the enormous amount of labour required
to write even simple applications, programming jobs, like blue-collar jobs, end
up going overseas to cheap labour countries, most often to India nowadays.
So, even if you have been thinking about becoming a professional programmer,
think again and revise your options.

If you can solve your research problems by running an off-the-shelf (com-
mercial or free) application on your laptop or desktop PC, do so. Focus on your
research mission, not on computing. The latter is only a tool and it is only one
of many you will have to use in your research.

If your laptop or your desktop PC don’t have enough power to solve your
computational problem, use your laboratory or your departmental server. A
recent review of how US researchers use computers showed that their laboratory
and departmental servers are by far the most important systems in their work.

If your laboratory server is not powerful enough to solve your computa-
tional problem, use central computing facilities provided by your university, or,
if your university doesn’t provide such, use systems provided by the national
supercomputer centers. This is what they are for.

In all cases try to use off-the-shelf software if available. Only if your problem
is so exotic that there is nothing out there in the software world to help you out,
you may really have to sit down and write your own program. But before you do,
think again. Can your problem be solved by laboratory experimentation? Think
of Nature and your laboratory bench as a computer that is much faster and
much more accurate than any man-made computer. Can you solve the problem
analytically, without having to resort to numerics? Laboratory and analytical
results are always going to be more convincing than numerical simulations.

Most research domains have developed various codes for reduction of ex-
perimental data in their related disciplines. For example, astronomers have the
IRAF package that they can all use to process astronomical images. High energy
physicists have numerous applications for data processing developed at and dis-
tributed by CERN. Geneticists have developed numerous codes related to their

24 CHAPTER 2. SUPERCOMPUTERS AND CLUSTERS

work too. There are commercial engineering codes for just about everything
that engineers work on nowadays. There are codes for car crash simulations,
codes for designing and testing designs of integrated circuits, codes for structural
engineering, water engineering and what not.

But let us go back to the case mentioned above. You’re stuck, you have to
carry out some complex numerical computation, there is no off-the-shelf code
that you can use (you have checked, haven’t you?), there is no laboratory pro-
cedure you can resort to in order to attack the problem and the problem is
analytically intractable (you asked your friend, who is a mathematician and she
told you so; never mind you weren’t nice to her when she was your girlfriend. . .).
So, what are you to do?

The first thing you should try is to use one of those so-called problem solv-
ing environments like Matlab or Mathematica. They are designed to minimize
programming effort and to maximize problem solving efficiency. With these
environments you can probably attack any problem that can be solved on your
own laptop, desktop or laboratory server.

If this doesn’t do, if the computation is going to be truly massive, or if the
computation is of the data base variety (Matlab and Mathematica don’t do data
bases), only then look towards SMPs or clusters. But look towards SMPs first.
They are easier to use. They are fabulous data base servers. You can run data
parallel programs on them.

Alternatively if you can attack your problem by “capacity computing”, i.e.,
by running a lot of relatively small jobs on separate machines, use a cluster. A
lot of stuff is tractable by “capacity computing”. High energy physics resorts to
“capacity computing” for most of its data reduction procedures. SETI, Search
for Extra Terrestrial Intelligence, is another example. Car crash analysis: if you
have to simulate car crashes under every possible angle, distribute the jobs over
a cluster.

If neither of the above applies, an SMP is not powerful enough, your problem
cannot be attacked by “capacity computing”, well, how about getting an account
on the ARSC’s Cray X1 and trying to solve the problem by data parallel means
on that machine?

Do I hear it right? Are you saying that your problem is huge and that it
is not data parallel and that it cannot be solved by laboratory experimentation
and that it is analytically intractable and that there is no SMP around powerful
enough, and that it cannot be tackled by “capacity computing” either?

Let me ask this: “Is there enough money in it to bother?” And if there is,
are you going to get any of it?

To be frank, the only problem of this type that I know of is data mining and
parallel data bases, i.e., operations on gigantic data bases that are so large that
they just can’t be squeezed into a single SMP, however large.

Most computational problems that currently run on clusters deployed at the
National Supercomputer Centers would probably run better on systems such
as Cray X1 or the Earth Simulator. But parallel data base problems and data
mining problems would not.

2.7. TO PROGRAM OR NOT TO PROGRAM 25

So, this is a yet another rationale for this course, “High Performance Data
Management and Processing”.

26 CHAPTER 2. SUPERCOMPUTERS AND CLUSTERS

Chapter 3

Working with the AVIDD
Cluster

AVIDD est omnis divisus in partes quartes quarum una in Bloomington, alia in

Indianapolis, tertia in Gary locatur. Pars quarta quoque in Indianapolis locatur,

sed restricta est.

This is how Julius Caesar might have described the AVIDD cluster before
vanquishing it, burning it to cinder and enslaving its administrators: it is made
of four parts, of which the first resides in Bloomington, another in Indianapolis
and the third one in Gary. The fourth part lives in Indianapolis too, but is
accessible to IU Computer Science researchers only.

The IUB component of the cluster has 97 computational nodes, 4 file serving
nodes (too few for a cluster of this size and, especially, for a cluster dedicated
to IO, and 3 head nodes. The IUPUI component is similarly configured, i.e., it
has 97 computational nodes, 4 file serving nodes and 3 head nodes.

The IUN component has only 8 nodes. It is supposed to be used for teaching,
e.g., for a course like I590, but I cannot reach it from Bloomington (it may be
fire-walled) and so I didn’t have a chance to look at it yet.

All AVIDD nodes we are going to work with are 2-way IA32 (Pentium 4)
SMPs and run Linux 2.4. So, in effect, we have 194 CPUs dedicated to compu-
tations on each of the two major IA32 components and you can submit jobs that
span both components, utilizing all 388 CPUs. These CPUs run at 2.4 GHz,
and their floating-point unit registers are 128-bit long. They support streaming
SIMD (Single Instruction Multiple Data) instructions. This means that you
can perform, in theory, up to 931.2 quadruple precision floating point opera-
tions per second on the whole 2-component cluster, or double that in double
precision, if you pack your instructions and data movement within the floating
point processor very cleverly.

This performance will collapse dramatically if you have to feed your data
into the floating-point unit from the memory of the computer, because, first,
the memory bus is only 32-bits wide, and second, it’s going to take great many

27

28 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

cycles to move a 32-bit wide word from memory to the CPU. Nevertheless, our
very clever computer scientists managed to wrench more than a TFLOPS per-
formance from the combined 4-component cluster on a LINPACK benchmark.
On a normal off-the-shelf parallel application, running on the whole cluster, you
should expect about 5% of this, i.e., about 50 GFLOPS. With a lot of optimiza-
tion you may be able to get it up to about 80 GFLOPS. The trick is to load
as much data as possible into these 128-bit long registers of the floating point
unit, and then keep the data there as you compute on it, while moving data in
the background between memory and higher level caches.

We will not go into any of this, because it is a complete waste of time. . .
unless you are a well paid professional programmer optimizing a commercial applica-
tion for a commercial customer.
Always read the small print at the bottom of the page!

This is where you may find some really interesting stuff, like the fact that I am an alien in a human shape, with

a body made of organic stuff that is quite worn out by now so that it is discolored, wrinkled and falls off in

places. We arrived here in the Solar System shortly after what you call World War II and have been here ever

since. My real body looks a little like a large octopus and was engineered to be resistant to vacuum, high radiation

doses, temperature extremes and weightlessness, and right at this moment it is floating in front of a servo-robot

manipulator in a spaceship hidden at the Lagrange point behind your moon. The manipulator is tele-linked to the

body you see in front of you in the class. There is a slight delay between my instructions and the body’s responses

that may seem to you like your professor has slow reactions and is absent minded. Since this is typical of your

faculty in general, we never had to do much about it.

3.1 Your AVIDD Account

There are two ways to obtain an account on the AVIDD cluster.
If you are an IU faculty or staff, connect to https://itaccounts.iu.edu/. Then

click on “Faculty or Staff”, click on “Create more IU computing accounts. . .”
too and press “Continue” at the bottom of the page. The system will bring up
a login page. You will have to type your IU-wide user name and your IU-wide
password and press the “Continue” button again.

If you do not have an IU-wide user name and password, go back to

https://itaccounts.iu.edu/ and request an IU-wide account for yourself.

You won’t be able to do much, in terms of IT at IU, without it. Of course,

depending on the nature of your work at IU, you may or may not need

access to IU IT facilities. It is quite possible to function without IT alto-

gether, or to use external IT facilities, e.g., Microsoft’s Hotmail or AOL,

and your own private laptop. If you are in this category you can still ob-

tain an AVIDD account. But in this case you will have to contact AVIDD

administrators directly. To do so send a courriel (“courriel” is an official

French term for e-mail – Pretentious? Moi?) to George W. M. Turner,

who is really Santa Claus, but he moonlights as the AVIDD administrator.

After you’ve been logged on, you’ll be transferred to the “Account Manage-
ment Service” page, where you’ll find a couple of choices. Choose “create more

3.2. CONNECTING TO THE AVIDD CLUSTER 29

accounts”. This will transfer you to a yet another page titled “Select account
to request”. There, near the top, you’ll find the “AVIDD Linux cluster” entry
in the “Research only Systems Group” . Click on it, type your IU-wide network
password again in the field at the bottom of the page and press the “Create
Account” button.

This procedure will not work, if you are an undergraduate student, because
the AVIDD cluster will not be listed for you. In this case you need to go to
http://www.indiana.edu/˜rats/application.shtml and fill the form there. In the
“Additional comments for processing” section specify the name of the course,
I590. The account will be valid for the duration of the Fall Semester 2003
only. The account creation process will take one business day to complete if
everything is in order.

3.2 Connecting to the AVIDD Cluster

The only way to connect to the AVIDD cluster from your desktop or laptop is
to use the so called “secure shell” and related utilities.

Standard telnet and Kerberized telnet connections to the cluster are dis-
abled, as are the Berkeley r-tools, i.e., rsh, rlogin and the like. FTP and Ker-
berized FTP do not work on the AVIDD cluster either, so you cannot transfer
your data to it this way. You will have to use scp instead.

So in this section we’re going to learn about using slogin and scp.
Slogin and scp are commonly distributed with Linux. But they are not

distributed with Windows and proprietary UNIXes. I don’t know about MacOS-
X. Most researchers and students working with AVIDD will be either Linux or
Windows users anyway. If you’re a Linux user, you probably know all about
slogin and scp already, so you can skip most of this section and go to chapter 4
right now. The only thing you need to know is that the front-end node on the
AVIDD cluster is called bh1.avidd.iu.edu.

If you don’t know all about slogin, or if you’re a Windows user and do not
know anything about it at all, read on.

The best way to get hold of slogin and scp under Windows is to install
Cygwin. Cygwin is a full Linux emulator that runs under Windows. In some
ways it is even more than Linux, because it provides its users with seamless
access to all Windows facilities and then gives them almost all of Linux on
top. Cygwin even provides access to NTFS ACLs (the Cygwin commands that
manipulate NTFS ACLs are setfacl and getfacl) and to Microsoft Dfs. For
example, the commands

$ cd //tqc.iu.edu/dfs/home

$ getfacl gustav

file: gustav

owner: gustav

group: ovpit

user::rwx

group::r-x

other:r-x

30 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

mask:rwx

$ cd /cygdrive/c/winnt

put me in the Microsoft Dfs directory \\tqc.iu.edu\dfs\home first, then I list
NTFS/Dfs ACLs on the sub-directory “gustav” and finally I go to C:\WINNT.

Cygwin comes with the secure shell and related utilities, X11 server and
applications, GNU compilers, emacs, make, TeX, inetd utilities (you can run
your own telnet and ftp servers), PostgreSQL data base, exim mail server and
Apache WWW server. It’s all there and it’ll cost you nothing. If you wanted
to buy all this functionality, you’d end up spending thousands of dollars on
software.

How do you go about installing Cygwin? It’s easy. Go to

http://www.redhat.com/download/cygwin.html

and press “Download Now!”. This will download a small file called “setup.exe”.
When you execute this file, you will be guided through various steps, in-
cluding the download of binaries and documentation, and then unpacking
and installation of the whole package on your PC. You will use the same
binary to install Cygwin upgrades and patches down the road.

You don’t have to download and install the whole lot. It’s up to you
how much of the package you really need and want to have. But I have
installed all of Cygwin on myWindows 2000 PC and use pretty much most
of it too. The whole Cygwin will take about 900MB of disk space on your
C drive. If you intend to work with IU clusters a lot, if you plan on doing
a lot of scientific work and if you want to do it all from your Windows
box but without having to go through a double-boot, I recommend that
you install Cygwin.

I am one of these weird and perverted individuals who are not very
fanatical about UNIX, Linux, Windows, Macs and the rest. To me it’s all
overpriced trash, unless it’s free (like Linux or Cygwin), in which case it
is free trash. Quite ruthlessly I’ll reach for anything I can get my hands
on, to get the job done as quickly and with as little fuss as possible.
This usually implies a mixture of commercial software and freeware. Not
all commercial software is worth spending money on, but then not all
freeware is going to do the job either. You just have to mix and match,
weighing your money, skills and requirements in the process.

So, let us assume that you already have Cygwin installed and there is going
to be this little icon on your Windows desktop that looks like a black C with
a green something inside it. Press on this icon and, assuming that you have
configured everything correctly (and this is going to take some tinkering) you’ll
get a window that looks rather slyly like a Linux window (even though it runs
under Windows) with the bash prompt, e.g.,

gustav@WOODLANDS:../gustav 14:17:11 !516 $

My prompt tells me the name of the machine I’m on, the directory I’m in (but
not the full path name, just the last segment in the path), the time of the day
and the number of the command I am about to issue. But for the sake of brevity

3.2. CONNECTING TO THE AVIDD CLUSTER 31

I’m going to truncate it just to the name of the machine and the dollar in the
examples that follow.

In this course we are going to use IUB and IUPUI clusters. To connect
to one or the other, you have to slogin to either avidd-b.iu.edu (this is the
Bloomington cluster) or to avidd-i.iu.edu (this is the IUPUI cluster). In both
cases, you’ll end up in the same home directory, which is going to be mounted
on both clusters.

Let us begin with the Bloomington cluster. If this is your first connection,
here is what it is going to look like:

WOODLANDS $ slogin avidd-b.iu.edu

gustav@avidd-b.iu.edu’s password:

generating ssh file /N/B/gustav/.ssh/id_rsa ...

Generating public/private rsa key pair.

Created directory ’/N/B/gustav/.ssh’.

Your identification has been saved in /N/B/gustav/.ssh/id_rsa.

Your public key has been saved in /N/B/gustav/.ssh/id_rsa.pub.

The key fingerprint is:

ed:84:29:8d:22:70:7d:5f:09:eb:c5:3b:ff:54:61:7b gustav@bh1

adding id to ssh file /N/B/gustav/.ssh/authorized_keys

[gustav@bh1 gustav]$

Observe that once you have made the connection you end up on the host called
bh1. To be more precise, avidd-b.iu.edu evaluates to bh1.uits.indiana.edu

and avidd-i.iu.edu evaluates to ih1.uits.iupui.edu. These two are called
the head nodes of the two respective clusters. They are the nodes to which you
connect from the outside in order to submit your AVIDD jobs. Such head nodes
are also called front-end nodes.

The head nodes have more than just one network interface. The in-

terfaces that correspond to avidd-i.iu.edu and avidd-b.iu.edu are on

the public campus network. They are Gigi interfaces. These nodes can

be seen on other networks too. There is a “cluster” network there, and

a Myrinet network. The latter is used to run MPI jobs and to support

GPFS, the General Parallel File System.

In order to make this first connection I had to type my AVIDD password
explicitly. This is tedious, especially if you need to make new connections fre-
quently and if you have a complicated password, and it is not very secure either,
because the password travels over the network albeit in an encrypted form.

There is a simple way to change this by reconfiguring ssh on your PC and
on the AVIDD cluster to work with DSA or RSA keys instead of passwords.
This is more secure and more convenient too.

The procedure is as follows.
First you have to generate your own private/public key pair. You do this

by calling a program ssh-keygen. This program will generate the keys and it
will place them in the .ssh directory in your Cygwin home (which is like Linux
home; on my PC I have simply linked it to the Windows’ “My Documents”).

32 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

You can generate RSA or DSA keys with ssh-keygen. DSA keys are more
secure, so I recommend the latter. Issue the command:

WOODLANDS $ ssh-keygen -t dsa

The command will ask you for the DSA passphrase. The passphrase can be
as long as you wish. Here is the first feature that makes the DSA system
more secure than UNIX or Linux passwords, which are usually limited to just
eight characters or so (if you have more than eight characters in your Linux
password, the characters beyond eight may be ignored). Every character in
your DSA passphrase matters, e.g., I have 43 characters in one of my favourite
passphrases.

The private key will be stored on ˜/.ssh/id dsa and the public key will be
stored on ˜/.ssh/id dsa.pub. You can show your public key to the world safely.
Without its private partner it’s useless. In particular you can transfer it to the
AVIDD cluster and append it to the file ˜/.ssh/authorized keys. The easiest
way to do this is to copy it from your local laptop window and then paste it into
the AVIDD window, in which you are editing authorized keys. Make sure the
pasted text is a single line. It may happen that the copy/paste process inserts
newlines in the string. If it does, simply remove them. This is what my public
DSA key looks like:

ssh-dss AAAAB3NzaC1kc3MAAACBAKykdA8AG7Vazhia9fI+uKgsyQzQSCK5LhaQy9XwmEk80hJ/Pg3T

4m+yZ1CS93GM2Z2HXEIbCe39piNgg5d+0mhxaRHP48TUZhqX8pgU4vG89o/LqWmUSDAElbnyjL7VHfIl

LCZ465dTJezZpAYLz1B+JU20CKjN4y46rzJsMMznAAAAFQDv1+pusBscm1hq0/Gxiz8E7o+eGQAAAIBc

6fDEDraImCtSty124Wi7rEamNDIabswcObhMCm93HrO9VoNoO97A7c7shvsObbdfwUDCMtYSwkaeHB4o

VRR/ULL9FWcxzbv3HFw81PTx1CFcyL2+u8e/1d2itpAruTzcs0QZNQldBRjpMpUz52TSD89WV0ZE1Lox

58LKRy4ixAAAAIATq0aL2bbrXu2tK1QuMXYqFHSQUIXMWiQTW7ARJ8mu/EZ92MXvhRYBQYaSXkcq7HHq

qhpV3//sGhv28G5gxxFAIynD9xB7UxH44K0F8vl/KmF3Hldn74m3WWhn6+Xz6JOttRRZa7ZGAzrNkwu4

TD3k3y4hyw4M7p/fhftJ8/o0RA== gustav@WOODLANDS

Although the text printed above is spread over eight lines, it is, in fact, a single
line.

Once you have done all this, you can carry out various transactions with the
AVIDD cluster as follows.

WOODLANDS $ ssh-agent bash

WOODLANDS $ ssh-add

Enter passphrase for /home/gustav/.ssh/id_dsa:

Identity added: /home/gustav/.ssh/id_dsa (/home/gustav/.ssh/id_dsa)

WOODLANDS $ slogin avidd-b.iu.edu

[gustav@bh1 gustav]$ ^D

Connection to avidd-b.iu.edu closed.

WOODLANDS $ ssh avidd-b.iu.edu date

Thu Aug 7 15:10:46 EST 2003

WOODLANDS $ ssh avidd-b.iu.edu ls

src

WOODLANDS $ scp avidd-b.iu.edu:.bashrc bashrc-avidd

.bashrc 100% 124 2.3KB/s 00:00

WOODLANDS $

Let me explain what happens here. First I have invoked the program ssh-agent

and asked it to execute my login shell, bash. The agent is going to hoard my keys

3.2. CONNECTING TO THE AVIDD CLUSTER 33

and pass them on to any secure shell transactions transparently, i.e, without me
having to type them in explicitly over and over. Once the ssh-agent has forked
a new agent-supervised shell for me, I have invoked the command ssh-add in
order to add my keys to the agent’s cache. This is the only time I actually have
to type the passphrase. Now I have issued the slogin command and got right
to avidd-b.iu.edu without having to type my passphrase. I can also issue ssh
commands without having to type the passphrase and check the date or the
content of my home directory on the AVIDD cluster. The last command, scp,
transfers the content of my .bashrc file on the AVIDD cluster to bashrc-avidd on
my local machine. Again, I am not asked for the password or for the passphrase.
The ssh agent takes care of this behind my back.

A useful command to execute in the ssh agent supervised shell is

WOODLANDS $ xterm -sb -sl 300 -n avidd -T avidd -e slogin avidd-b.iu.edu &

This command brings up an X11 window on your display with a shell running on
the AVIDD cluster. Observe that the xterm program runs locally on your PC,
not on the cluster. Exiting the AVIDD shell closes the window automatically.

For this to work, you must have X11 server running on your PC. You can
use the one that comes with Cygwin. Its latest version is very good, almost as
good as quite expensive commercial offerings, although it still has a couple of
glitches here and there and may even hang on you after a day-full of activity.

Here is how I use it on my home computer. First I have copied a file
/usr/X11R6/bin/startxwin.sh to my own private ~/bin and modified it to
look as follows:

#!/bin/sh

export DISPLAY=127.0.0.1:0.0

PATH=/usr/X11R6/bin:$PATH

rm -f /tmp/.X11-unix/X0

XWin -multiwindow -clipboard &

emacs &

xclock &

exit

I have stripped numerous comment lines off this script to make it shorter. The
script cleans the X11 socket from the /tmp/.X11-unix directory (the original
script tries to remove the whole directory, but this can fail sometimes, especially
if other users run X11 and Cygwin programs on the same system too), then in-
vokes the X11 Cygwin server, called XWin, with -multiwindow and -clipboard

options. The first option combines X11 and native Windows displays into one,
so that X11 applications can be managed the same way Windows applications
are managed and so that you don’t get a separate X11 root window in the back-
ground. The second option lets you copy and paste between Windows and X11
applications. Then I call emacs and xclock and the script exits. If everything
works just fine, you should see the Emacs and the Clock windows pop up and
you should also see a large X appear in the right corner of the task bar.

I usually run startxwin.sh under the ssh-agent. This way every X11
application carries my DSA keys with it. I can invoke these applications from
my Emacs shell.

I connect to the AVIDD cluster using the following command:

34 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

$ xterm -sb -sl 300 -e slogin -X avidd-b.iu.edu &

The -X option will set up X11 environment for me automatically on the other
side. The DISPLAY over there will be defined in terms of a socket local to the
AVIDD head node. This file is readable to you only and it lives in the /tmp

directory. Data sent to the socket will be encrypted and transmitted to your
Cygwin X11 server, to be displayed on your screen. This is probably the safest
way to use X11, because the data streams are going to be encrypted and because
you don’t enable access to your X11 display to all users on the AVIDD head
node.

Note Secure shell installed on the AVIDD cluster is Open SSH version 3.6.1
patch 1. You get exactly the same secure shell with Cygwin, which should
not be surprising, because Cygwin is Linux for Windows. But there are
various other Secure Shells around, some free some commercial. I have
Secure Shell 2 (ssh2) installed on one of my systems, and it has a differ-
ent format for its authorization file, public keys, etc. ssh2 format, copied
directly from an ssh2 public key file and pasted onto the Open SSH au-
thorization file will not work. You may even end up locking yourself off
the AVIDD head node altogether.

The -X option will work only between OpenSSH on your workstation and
on the AVIDD cluster. It does not work on connecting to, e.g., SSH2
servers on other machines.

3.3 Finding Help and Documentation

Once you have connected to the AVIDD head node successfully, you may need
to look up system documentation at times.

AVIDD is a very standard Linux and so documentation can be found in
all the standard places. First there is a man directory in /usr. This is one of
the traditional UNIX locations for this directory and it is frequently linked to
/usr/share/man on other systems, but not on the AVIDD cluster. You will
find manual entries in this directory that refer to GPFS the General Parallel
File System. The most important ones talk about manipulating ACLs, Access
Control Lists, on GPFS.

Most standard Linux commands, including GNU compilers, have their man-
ual entries in /usr/share/man. However, X11 applications and libraries live in
a separate directory tree of their own in /usr/X11R6 and there they have their
own manual directory in /usr/X11R6/man.

There is also a directory tree in /usr called local and some system ap-
plications are installed there together with their documentation. You will
find their manual entries in /usr/local/share/man. There is also a directory
/usr/local/man, which contains documentation for the PBS system, installed
in /usr/pbs.

Program man reads file /etc/man.config (you can read it too) in order
to find about locations of various manuals. If a directory that contains some

3.3. FINDING HELP AND DOCUMENTATION 35

manuals, e.g., /usr/local/share/man, is not mentioned on that file, you will
have to invoke the command with the -M switch, e.g.,

$ man -M /usr/local/share/man root

Apart from manual entries there are also additional documents and some-
times even tutorials in various doc directories. There is a doc directory in
/usr/share and another one in /usr/local/share.

The GNU project distributes its documentation in the info format for read-
ing with emacs and with a stand-alone program info. There may be more than
one info directories on a system, in which case they should be declared on a file
called default.el in the main Emacs Lisp directory. The main Emacs Lisp di-
rectory on the AVIDD head nodes is /usr/share/emacs/21.2/lisp, but there
is no default.el there (at the time I’m writing this section). If you need to
add more info directories, you can redefine the emacs info directory list in your
.emacs file as follows:

(setq Info-default-directory-list

’("/usr/share/info/"

"/usr/share/texmf/info/"))

or you can append a directory to the existing path like this:

(setq Info-default-directory-list

(nconc Info-default-directory-list

(list "/usr/share/maxima/info")))

A source of great wisdom is always the /etc/motd file. This file will flash
on every connection to the cluster unless you create a file .hushlogin in your
AVIDD home directory.

There is also a WWW page that describes the AVIDD cluster and you will
find it at http://www.indiana.edu/˜rats/research/avidd/index.shtml. There is
a nice photograph of one of the blade racks on this page too.

I asked the AVIDD administrators to mount this page at a more
obviousWWW location, e.g., www.avidd.iu.eduor just avidd.iu.edu,
but I was told by a gentleman named Craig Stewart that “doing
something with web addresses as you suggest becomes entirely be-
yond our capabilities.” So there.

Other very important systems, like MPI, have their own directory trees. For
example, the Argonne MPI system, MPICH, lives in /usr/local/mpich and
extensive MPI documentation can be found in /usr/local/mpich/gcc/doc or
in /usr/local/mpich/intel70/doc (depending on whether you want to use
GNU or Intel compiler for your MPI applications). Corresponding manual
pages live in /usr/local/mpich/gcc/man and /usr/local/mpich/intel70/man
respectively.

LAM MPI, a system developed at the Ohio Supercomputer Center, which is
currently maintained by Indiana University, lives in /usr/local/lam-7.0 and
you will find its man pages there too.

36 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

HDF-4.1 with its man pages can be found in /usr/local/hdf.
HDF5, ROMIO (a version of MPI IO that works with MPICH) and parallel

DB2 are not installed on the AVIDD cluster yet. But I’ll put a note here as
soon we have the software.

3.4 Working with Data on AVIDD

When you login on a head node of the AVIDD cluster, you land in your HOME
directory, which is most likely to live on the NFS, which is currently served from
bf4 (in Bloomington) and if4 (in Indianapolis).

NFS is a convenience file system, but NFS IO is notoriously poor. You will
not notice it on simple file editing operations, but you will notice it if you try
to run any IO intensive jobs against it. Another thing you’ll notice is that there
isn’t all that much space there: a mere 100 GBs on each server, which is peanuts
by HPC standards.

It is not much even by PC standards. You can buy a desktop with a 160 GBs
drive nowadays, and larger drives are in the works. They don’t cost much and,
incidentally, if you don’t have enough space for your every-day data on your
desktop or on your laboratory machine, simply go to Circuit City and buy as
much as you need. We’re talking about a few hundred dollars at most. A few
years down the road, we’re going to have TBs of disk space in our desktops and
hundreds of GBs in our laptops.

OK, but let’s get back to today. If you have a very large data set and want
to analyze it on the AVIDD cluster, the place to put the fileset is on GPFS.
GPFS is mounted on /N/gpfsb in Bloomington and on /N/gpfsi in Indianapolis
and there is about 1.7 TBs on each.

If you have so much data that only a portion of it is going to fit on GPFS,
you should keep the rest on HPSS, the High Performance Storage System. HPSS
provides several peta-bytes (PBs) of space on tape cartridges, which live inside
two robotic Storagetek silos: one in Indianapolis and another one in Blooming-
ton.

In the next three sections we are going to discuss first the GPFS and then
the HPSS and finally the way to move data between one and the other.

3.4.1 The AVIDD GPFS

GPFS is a truly parallel file system. In case of the AVIDD cluster the Blooming-
ton component of GPFS is served by bf1, bf2, bf3, and bf4 and the Indianapolis
component is served by if1, if2, if3, and if4.

What does truly parallel mean in this context? It means that every file
that’s written on GPFS ends up being striped over four different machines, in
our case. The striping is much like striping of data on a disk array, but here the
difference is that the GPFS “disk array” is assembled from disk arrays attached
to several machines. This has the advantage of overcoming IO limitations of a
single server.

3.4. WORKING WITH DATA ON AVIDD 37

Our experience with PC blades tells us that an IA32 server with a disk
array attached to it can write at something about 15 MB/s on the array and
it can read at up to 40 MB/s from the array. So if you have a very large file
that is striped over four such servers, you should expect four times the above
performance, i.e., 60 MB/s on the writes and 160 MB/s on the reads. And this
is indeed, more or less, what we see on the AVIDD cluster (actually this is more
rather than less, but we’re within the right order of magnitude here).

60 MB/s on the writes does not amount to much. This is not high perfor-
mance computing. For high performance computing we would need at least ten
times more, which means 40 GPFS servers at IUB and another 40 at IUPUI.
But for the time being we don’t have projects in place that need this level of
performance and so we have only four servers at each site. Still, this is enough
for us to learn about this technology, and if you ever need much higher levels of
performance, you can always get an account at the PSC, or NCSA, or SDSC.

SDSC is especially well equipped for data intensive work and they have
demonstrated transfers from their tape silos at 828 MB/s. NCSA engineers
tested a system with 40 GPFS servers on their IA32 cluster, getting expected
performance, but they reduced the number of GPFS server nodes to four at
present, and in future they’re going to use a different solution, based on disks
attached to a Storage Area Network (SAN) and PVFS, which is a freeware
parallel file system from Clemson University in South Carolina.

Note that in order to have very high IO transfer rates to parallel processes
running on clusters you must have a parallel file system. Whether this file
system is served from disk arrays on SAN or from disk arrays directly attached
to some server nodes is another issue.

But let’s get back to AVIDD. The directory /N/gpfsb is writable to all. So
the first thing you need to do is to create your own subdirectory there:

[gustav@bh1 gustav]$ cd /N/gpfsb

[gustav@bh1 gpfsb]$ mkdir gustav

[gustav@bh1 gpfsb]$

From this point on you can use this directory like a normal UNIX file system.
This, in particular, is where you should run your parallel jobs from.

GPFS files are protected by the usual UNIX permissions, i.e., read (r), write
(w) and execute (x) for the user, group and others. GPFS on the SP also
supports additional controls in the form of Access Control Lists, ACLs. These
can be manipulated with the ”mm” commands, like mmeditacl, mmgetacl and
mmputacl, which are described in /usr/man/man1, but these commands don’t
seem to work on the AVIDD GPFS. The IA32 version of GPFS is quite restricted
compared to the fully functional GPFS you get on the SP.

Although AVIDD GPFS delivers only 60/160 MB/s on writes/reads, there
are situations when you may notice much higher transfer rates, especially on
writes. How can this be? The answer is memory caching. UNIX never writes
data on the media directly. When you open a file, write on it, close it, even
when you flush (UNIX programmers should know what this means), the data
does not go the disks. Even when UNIX thinks that it has pushed the data to

38 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

the disk, the data may be still stuck in the disk’s own memory cache. These
multiple levels of memory caches, both on UNIX, on GPFS, and on the physical
disk arrays themselves serve to mask the slowness with which data is written on
the actual physical media compared to the speed with which it can be handled
internally within the computer. Because GPFS server nodes and computational
nodes all have a lot of memory (I think they have at least 2 GB each), they
can cache a lot of IO, perhaps even hundreds of MBs. So if you write just a
100 MBs of data to GPFS, you may discover that the write has occurred at
memory speeds, not disk speeds. The only time you actually get to see the real
IO transfer rate is when you write a very, very large file. Then all the memory
caches overflow and data eventually has to be written on the physical media.
As you keep pushing the data from your program you will see the transfer rate
drop and drop until it reaches the real disk write speed eventually.

Another trick that hardware vendors employ is automatic data compression
on disk arrays. This is often done by a special chip that is embedded in the
array controller. The effect of this is that if you write a file of, say, zeros on the
drive, the transfer rate is going to be phenomenal, even with all the memory
caching out of the way. So, if you want to test real IO in this context, you need
to write strings of random numbers or characters on the drive. Such strings
cannot be compressed.

All this memory caching and automatic data compression are good things
and there is a way to make use of them even when you work with very large files.
The way is to process a file on a very large number of GPFS clients. If you write
a file in parallel from, say, 40 GPFS clients, even if the file is 10 GBs long, you’ll
end up writing only 250 MBs per client. This amount of data is probably going
to be cached in the client’s memory while your program executes and closes the
file. The data will take much longer to flow to the media, of course, but all this
is going to take place in the background and you will not have to wait for it.
As far as you are concerned, you will probably have written this file at several
hundreds of MBs per second.

Physical writes are always slower than physical reads. There are physical
reasons for this. When you read data from a disk, you need to find where
the data is. This is usually a pretty fast process, based on hashed tables or
something similar. Eventually you get to the data, the head lowers and reads
the data from the disk surface. The data then flows to the user. When you
write data on the disk, the process is slower because, first, you have to locate
where the best free space is, then you have to add new records to the hashed
table and this is a slower process than just locating existing data, and finally
you have to write data on the media. The writing process is more involved:
stronger magnetic fields have to be applied, there is a lot of checking, if there
are some errors, then the writes are repeated and portions of the disk may have
to be marked as bad, and so on.

Virtual writes are always faster than virtual reads. The reason for this is
that virtual writes only write data on memory and so they can be very fast. But
virtual reads almost always have to read data from the disk physically, unless
the data has been read very recently, and is still cached in the disk’s controller.

3.4. WORKING WITH DATA ON AVIDD 39

3.4.2 IU HPSS

The High Performance Storage System, HPSS, is a hierarchical massive data
storage system, which can store many PBs of data on tape cartridges mounted
inside automated silos, and which can transfer the data at more than one GB/s,
if appropriately configured. HPSS is designed specifically to work with very
large data objects and to serve clusters with parallel file systems such as GPFS
(see section 3.4.1).

HPSS is used by Trilab, i.e., LANL, LLNL and Sandia, BAE Systems (they
have more than twenty HPSS installations), SDSC NASA, Oak Ridge, Argonne
(ANL), National Climatic Data Center (NCDC), National Centers for Environ-
mental Prediction (NCEP), Brookhaven, JPL, SLAC, three research institutes
in Japan, KEK, RIKEN, and ICRR), one research institute in Korea, KISTI, Eu-
ropean Centre for Medium Range Weather Forecast (ECMWF), French Atomic
Energy Commission (CEA) and Institut National De Physique Nucleaire Et
De Physique Des Particules (IN2P3), The University of Stuttgart in Germany,
Indiana University, of course, and some other large customers. Although the
number of HPSS users is not very large, the amount of data these users keep on
HPSS is more than 50% of all world’s data, sic! HPSS is a very serious system
for very serious Men in Black. It is not your average off-the-shelf Legato.

HPSS has been a remarkable success at Indiana University, even though we
have not made much use of it in the high performance computing context yet.
But HPSS is very flexible and it can be used for a lot of things.

Yet, as with any other system of this type, and there aren’t that many, you
must always remember that HPSS is a tape storage system when you work with
it, even though it presents you with a file system interface when you make a
connection to it with ftp, or hsi or pftp. This has some important ramifications.

As GPFS is a truly parallel file system, HPSS is a truly parallel massive data
storage system. This is why the two couple so well.

HPSS files can be striped over devices connected to multiple HPSS servers.
It is possible to establish data transfer configuration between HPSS and GPFS
in such a way that the file is moved in parallel between HPSS servers and GPFS
servers. This operation is highly scalable, i.e., you can stripe an HPSS file and
its GPFS image over more and more servers and the data transfer rate will
scale linearly with the number of servers added. But such scalability is costly,
since every new server and disk array you add costs at least a few thousand
dollars. Still, a few thousand dollars for a GPFS or an HPSS server is very
little compared to what such systems used to cost in the past. For example
a Convex machine that used to be amongst the best servers for the UniTree
massive data storage system used to cost several hundred thousand dollars, it
had to be connected to other supercomputers by a HIPPI bus, and data transfer
rates would peak at about 40 MB/s. With 16 well tuned and well configured
HPSS PC servers and 16 equally well tuned and well configured GPFS servers
you should be able to move data at 360 MB/s in each direction. Note that
whichever direction you move the data in, you’re always slowed down to the
write speed on the other side. I have seen inexpensive PC attached IDA disk

40 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

arrays that supported writes at 20 MB/s. So, 20× 16 = 360.
In our case the situation is somewhat unbalanced. We have a somewhat

better IO at the HPSS side and a somewhat worse IO at the AVIDD side, and
only 4 servers at each side and so we end up with about 40 MB/s on writes to
GPFS and 80 MB/s on writes to HPSS.

But first things first.

Your HPSS Account

To get an HPSS account proceed the same way you did with the AVIDD account,
i.e., go to http://itaccounts.iu.edu/, click on who you are (e.g., Student or
Faculty), click on “Create more IU computing accounts”, and press “Continue”.

A new page will appear, where you will have to log in. Type your IU network
ID, your IU network password and press “Continue” again.

You get to another page. Press on “create more accounts”, and now various
options appear, amongst them should be “MDSS”, which stands for “Massive
Data Storage System”, which is how we refer to our IU HPSS (because this is
what it is, whereas HPSS is a particular system that is used to provide this
service).

This will work only if you are a staff, a faculty or a postgraduate student.
If you are an undergraduate student, you will have to ask your academic

supervisor to request the MDSS account for you for the duration of this course.
In case of any problems with HPSS, send e-mail to Storage Administrators.

Finding Information about HPSS

Information about IU HPSS and other storage services at Indiana University is
provided on http://storage.iu.edu.

Connect to this WWW site to read the latest announcements, to learn about
services available, to get access to available documentation, tutorials and work-
shops. In particular have a look at the IU MDSS and CFS Tutorial penned by
Anurag Shankar and myself. The tutorial covers quite a lot of stuff and provides
some useful hints and advice about using the system, all on just a few easy-to-
read pages. You can download the PDF version of the tutorial for printing with
Adobe Acrobat too.

The stuff that is going to be of particular importance to us is Parallel FTP
and Multinoded Transfers. You should study it before moving on to the next
section.

The tutorial has been written for the IU SP and things may work a little
differently between HPSS and AVIDD. We are going to discuss this and illustrate
with hands-on examples next.

3.4.3 Moving Data Between HPSS and GPFS

I am now going to explain to you how to move data between AVIDD GPFS and
HPSS.

3.4. WORKING WITH DATA ON AVIDD 41

But before we get to this topic we are going to have a simple IO programming
exercise first. We are going to concoct a program that writes a file full of random
numbers. The program works similarly to a popular UNIX tool called mkfile,
but whereas mkfile writes a file full of nulls, which can be misleading if you
want to test IO, because of hardware implemented data compression on disk
arrays, our program randomizes the output.

Program mkrandfile

Here is what the program looks like

/*

* Create a file containing random pattern of specified length.

*

* %Id: mkrandfile.c,v 1.1 2003/09/11 19:32:16 gustav Exp %

*

* %Log: mkrandfile.c,v %

* Revision 1.1 2003/09/11 19:32:16 gustav

* Initial revision

*

*/

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<errno.h>

#define ARRAY_LENGTH 1048576

main(argc, argv)

int argc;

char *argv[];

{

FILE *fp;

int junk[ARRAY_LENGTH], block, i, number_of_blocks = 0;

/* variables for reading the command line */

extern char *optarg;

char *name = NULL;

int c;

/* error handling */

extern int errno;

while ((c = getopt(argc, argv, "f:l:h")) != EOF)

switch(c) {

case ’f’:

name = optarg;

(void)printf("writing on %s\n", name);

42 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

break;

case ’l’:

sscanf (optarg, "%d", &number_of_blocks);

(void)printf("writing %d blocks of %d random integers\n",

number_of_blocks, ARRAY_LENGTH);

break;

case ’h’:

printf ("synopsis: %s -f <file> -l <length>\n", argv[0]);

exit(0);

case ’?’:

printf ("synopsis: %s -f <file> -l <length>\n", argv[0]);

exit(1);

}

if (number_of_blocks < 1) {

printf ("initialize number of blocks with -l option\n");

printf ("use -h for help\n");

exit(2);

}

if (name == NULL) {

printf ("initialize file name with -f option\n");

printf ("use -h for help\n");

exit(2);

}

if (! (fp = fopen(name, "w"))) {

perror (name);

exit(3);

}

srand(28);

for (block = 0; block < number_of_blocks; block++){

for (i = 0; i < ARRAY_LENGTH; junk[i++] = rand());

if (fwrite(junk, sizeof(int), ARRAY_LENGTH, fp) != ARRAY_LENGTH) {

perror (name);

exit (4);

}

}

if (fclose(fp) != 0) {

perror (name);

exit (5);

}

exit (0);

}

Let me explain what the program does and how. This is also going to brush
up on your C and UNIX programming skills.

3.4. WORKING WITH DATA ON AVIDD 43

The program begins by calling a standard UNIX function getopt, which
reads the command line. The string "f:l:h" tells getopt what option switches
we expect to see on the command line. And so, we expect to see -f followed by
an argument, then -l followed by an argument (the presence of the argument
is indicated by ":"), and -h, which doesn’t have a following argument.

The options can appear on the command line in any order. This is a nice
thing about getopt. And it is not necessary to use all the options either.

The switch statement that is inside the while loop processes various cases.
And so, if the option character is "f" (the minus sign in front of the option
character is always implied by getopt), then the argument that follows -f, and
this argument is always going to be a string, is going to be the name of the file
on which we are going to write our randomized integers. Observe that name is
just a pointer to a character, and it is initialized to NULL. We don’t have to copy
the content of the string pointed to by optarg, the latter being a pointer to a
character too. Instead we simply request that name should point at the same
memory location as optarg. This way we can use the name of the file passed
to the program on the command line, by referring to it as name.

If the option character is "l", the option (-l) should be followed by an
integer. This integer is going to be interpreted as the number of blocks of one
million integers each to be written on the file. But recall that optarg is always
a string. So here we have to convert this string to an integer. This can be done
in various ways, most of them quite cumbersome, but there is one easy and
relatively safe way to do this. I use function sscanf, which scans a string the
same way that scanf scans an input line. The string in question is pointed to
by optarg, and we expect the format to be "%d", which means “an integer”.
The last parameter in the call to sscanf is the address of number_of_blocks.
Function sscanf will go there and will write the value of the integer in that
location. If sscanf does not find an integer in optarg it won’t write anything
there, in which case number_of_blocks will retain its original value of zero.

The last option defined by "f:l:h" is -h. This option does not take an
argument. If it is encountered on the command line, the program will pring the
brief synopsis on standard output and it will exit the program cleanly, i.e., with
the exit status zero, right there and then.

If function getopt encounters any other option on the command line, it is
going to return "?" and the last case of the switch statement, will print the
synopsis of the program on standard output and will exit the program raising
an error flag, i.e., the exit status will be set to one.

Having collected the information from the command line, we are now going
to check two things, just in case. The first one is the value of number_of_blocks.
This value may be incorrect if, e.g., it has not been specified on the command
line, then it would be zero, or if it has been specified incorrectly, e.g., made
negative. If any of the two conditions holds, we’re going to exit with the exit
status set to 2. The second thing we’re going to check is if we have the name of
the file. If the user has not specified the name of the file on the command line,
name will stay set to NULL. If we detect this condition, we’re going to exit the
program with the exit status set to 2 too.

44 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

These two simple checks do not exhaust countless possibilities that the user
may get something wrong. For example the user may type a weird file name,
which may be either too long or it may contain some control codes, or the
number of blocks requested may be too large. Some of the problems may be
captured by checks in the remainder of the program, but some may remain
undetected until it is too late and something horrible happens. This is how
security bugs are born. The command line reading procedure in our program is
somewhat fragile, but it will do for now.

Having obtained all the information from the command line and having
checked that it is sensible, we are now going to open the file for writing. The
statement that does it is

if (! (fp = fopen(name, "w"))) {

perror (name);

exit(3);

}

Observe that we don’t just open the file. We attempt to open it and then
immediately check if we’ve been successful or not. If the attempt is unsuccess-
ful, function fopen is going to return NIL, which becomes false when cast on
BOOLEAN. The negation operator, "!", will make it into true and the clause fol-
lowing the if statement will be executed. Inside this clause function perror

is going to print the name of the file, pointed to by name, followed by a colon
and by a brief explanation of the error condition encountered. Then we abort
having set the exit status to 3. It is here that we can trap an incorrectly entered
file name. The failure to open the file may be due to many reasons though.
Amongst them may be, e.g., that there is already a write protected file of this
name, or that the user has no write permission on the directory in which the
program executes.

If fopen returns anything but NIL, this is interpreted as true, the negation
operator "!" makes it into false, and then we go the remainder of the program.

The remainder is short and sweet. We seed the random number generator
with 28 (nothing special about this number) and then write the random numbers
generated by function rand on the file. Observe that we don’t write a character
at the time. Instead we collect about a million of random integers on an array
called junk, and only after the array is full, we push its content onto the file in
a single long write. This is the most efficient way of writing data: large blocks,
not little drops. But then recall that the blocks in our program are not so large
as to overwrite output buffers. A million of integers fill 4 MBs only, which is
nothing.

Function fwrite is called in a way reminiscent of fopen. This function re-
turns the number of items of size sizeof(int) it has managed to write. This
number should be equal to ARRAY_LENGTH if the write has been successful. Oth-
erwise, we have a write error. For example, we may have run out of disk space,
or out of quota, and then the number is going to be less than ARRAY_LENGTH.
If we detect that fwrite has not written as many integers as it should have,

3.4. WORKING WITH DATA ON AVIDD 45

we call function perror, which should tell us what happened, and then abort
having set the exit status to 4.

The last operation the program does is closing the file. Function fclose

should return zero if there are no problems, otherwise it is going to return some
error code. We don’t analyze the error code, relying on function perror instead.
If we have encountered an error condition at this stage, we abort the program
having set the exit status to 5.

Otherwise, i.e., if everything has gone just fine, we exit the program cleanly,
and set the exit status to zero.

We are going to make and install this program by calling UNIX make. But
before we can do this we have to edit Makefile first. And here it is:

#

%Id: Makefile,v 1.1 2003/09/11 19:31:57 gustav Exp %

#

%Log: Makefile,v %

Revision 1.1 2003/09/11 19:31:57 gustav

Initial revision

#

DESTDIR = /N/B/gustav/bin

MANDIR = /N/B/gustav/man/man1

CC = cc

TARGET = mkrandfile

all: $(TARGET)

$(TARGET): $(TARGET).o

$(CC) -o $@ $(TARGET).o

$(TARGET).o: $(TARGET).c

$(CC) -c $(TARGET).c

install: all $(TARGET).1

[-d $(DESTDIR)] || mkdirhier $(DESTDIR)

install $(TARGET) $(DESTDIR)

[-d $(MANDIR)] || mkdirhier $(MANDIR)

install $(TARGET).1 $(MANDIR)

clean:

rm -f *.o $(TARGET)

clobber: clean

rcsclean

Our target all is defined as being $(TARGET), which here evaluates to
mkrandfile. Observe that this Makefile is quite general and you can reuse
it for simple programs with other names too.

To make it we have to have $(TARGET).o, i.e., mkrandfile.o first. Once we
have it, we link it by calling

46 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

$(CC) -o $@ $(TARGET).o

which evaluates to

cc -o mkrandfile mkrandfile.o

because $@ always evaluates to the target itself.
To make mkrandfile.o, we must have the source file, mkrandfile.c. Once

we have made any changes to it, we compile it with the command

$(CC) -c $(TARGET).c

which evaluates to

cc -c mkrandfile.c

This command creates mkrandfile.o, but it doesn’t link it.
The installation is done by calling UNIX program install, which works a

little like copy, but it can do some checking, set permissions, ownership, etc.
Here we install our application in the directory pointed to by $(DESTDIR),
which is simply a bin subdirectory in my home directory on the AVIDD cluster.
We also install the manual page that describes the program in the man/man1

subdirectory of my home directory.
Observe that we check if the directories exist in the first place, and we make

them if they don’t. The program mkdirhier, which belongs in the X11 (X11R6
in case of AVIDD) toolkit, will make the whole directory hierarchy if needed.

All three files, mkrandfile.c, mkrandfile.1 and Makefile are under the
RCS control. RCS stands for Revision Control System and it helps maintain
the codes in an orderly fashion. All changes made to the code are remembered
and can be reversed. RCS maintains the log and version number for every file
under its management too.

Here’s how it works:

[gustav@bh1 mkrandfile]$ pwd

/N/B/gustav/src/mkrandfile

[gustav@bh1 mkrandfile]$ ls

RCS

[gustav@bh1 mkrandfile]$ make

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/mkrandfile.c,v mkrandfile.c

RCS/mkrandfile.c,v --> mkrandfile.c

revision 1.1

done

cc -c mkrandfile.c

cc -o mkrandfile mkrandfile.o

[gustav@bh1 mkrandfile]$ make install

3.4. WORKING WITH DATA ON AVIDD 47

co RCS/mkrandfile.1,v mkrandfile.1

RCS/mkrandfile.1,v --> mkrandfile.1

revision 1.1

done

[-d /N/B/gustav/bin] || mkdirhier /N/B/gustav/bin

install mkrandfile /N/B/gustav/bin

[-d /N/B/gustav/man/man1] || mkdirhier /N/B/gustav/man/man1

install mkrandfile.1 /N/B/gustav/man/man1

[gustav@bh1 mkrandfile]$ ls

Makefile RCS mkrandfile mkrandfile.1 mkrandfile.c mkrandfile.o

[gustav@bh1 mkrandfile]$ make clobber

rm -f *.o mkrandfile

rcsclean

rm -f Makefile

rm -f mkrandfile.c

rm -f mkrandfile.1

[gustav@bh1 mkrandfile]$

The source lives in the /N/B/gustav/src/mkrandfile/RCS directory. The di-
rectory right above it is empty with the exception of the RCS subdirectory.
The command make recognizes the presence of RCS and checks out the required
files with the RCS command co. The first file to be checked out is, of course,
Makefile. Then the file is analyzed and make commences to execute instructions
in it. The source is compiled then linked. make install installs the binary and
the manual entry in the appropriate directories, after it has checked that they
exist in the first place.

The make process leaves various files in the source directory, i.e., the direc-
tory that is above the RCS subdirectory. The command make clobber calls
make clean first. This deletes the object file and the executable. Then the
RCS command rcsclean deletes images of files that are already archived in the
RCS subdirectory.

The manual file is written in UNIX troff. troff is a rather ancient text
processor (more than 30 years old). But it is so firmly embedded in UNIX and
UNIX tradition (UNIX was developed specially for troff) that it is impossible,
or at least unwise, to untangle the two.

Here is what the manual page source looks like:

.\" Process this file with

.\" groff -man -Tascii mkrandfile.1

.\"

.\" %Id: mkrandfile.1,v 1.2 2003/09/11 21:05:30 gustav Exp %

.\"

.\" %Log: mkrandfile.1,v %

.\" Revision 1.2 2003/09/11 21:05:30 gustav

.\" Filled the whole of TH.

.\"

.\" Revision 1.1 2003/09/11 19:32:07 gustav

.\" Initial revision

48 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

.\"

.TH MKRANDFILE 1 "SEPTEMBER 2003" I590/7462 "I590 Programmer’s Manual"

.SH NAME

mkrandfile \- create a file full of randomized integers

.SH SYNOPSIS

.B mkrandfile

-f \fIfilename\fR

-l \fIsize\fR

[-h]

.SH DESCRIPTION

.B mkrandfile

creates a file full of randomized integers. Can be used to create

files for disk-based benchmarks.

.SH OPTIONS

.IP \fB-f\fR

must be followed by output filename. e.g. foo

.IP \fB-l\fR

must be followed by number of 4MB blocks. e.g. 100

.IP \fB-h\fR

Print a brief help message

.SH DIAGNOSTICS

Self explanatory and numerous.

.SH EXAMPLES

$ mkrandfile -f /N/gpfs/gustav/tryme -l 10

.br

writing on /N/gpfs/gustav/tryme

.br

writing 10 blocks of 1048576 random integers

.br

$ ls -l /N/gpfs/gustav/tryme

.br

-rw-r--r-- 1 gustav ucs 41943040 Aug 29 14:22 /N/gpfs/gustav/tryme

.br

.SH BUGS

Command line processing may be brittle.

.SH AUTHOR

Zdzislaw Meglicki <gustav@indiana.edu>

Read man 7 man on AVIDD to learn about the meaning of troff and man

directives used in the above listing.

3.4. WORKING WITH DATA ON AVIDD 49

Having made and installed the program, you can bring up its man page by
typing:

[gustav@bh1 gustav]$ man mkrandfile

MKRANDFILE(1) I590 Programmer’s Manual MKRANDFILE(1)

NAME

mkrandfile - create a file full of randomized integers

SYNOPSIS

mkrandfile -f filename -l size [-h]

DESCRIPTION

mkrandfile creates a file full of randomized integers.

Can be used to create files for disk-based benchmarks.

OPTIONS

-f must be followed by output filename. e.g. foo

-l must be followed by number of 4MB blocks. e.g.

100

-h Print a brief help message

DIAGNOSTICS

Self explanatory and numerous.

EXAMPLES

$ mkrandfile -f /N/gpfs/gustav/tryme -l 10

writing on /N/gpfs/gustav/tryme

writing 10 blocks of 1048576 random integers

$ ls -l /N/gpfs/gustav/tryme

-rw-r--r-- 1 gustav ucs 41943040 Aug 29 14:22

/N/gpfs/gustav/tryme

BUGS

Command line processing may be brittle.

AUTHOR

Zdzislaw Meglicki <gustav@indiana.edu>

I590/7462 SEPTEMBER 2003 MKRANDFILE(1)

[gustav@bh1 gustav]$

Let me summarize what we have done in this section. First we have written
and discussed a very, very, very simple UNIX C program, which we are going
to use to generate a very large file of random integers in the following sections.
We have also written a Makefile and a man page for this program. Finally, we

50 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

have run make to compile, link and install the program and its man page.
The three files: the source code, the Makefile and the manual page, together

constitute the application. If any one of the three is missing, the job is botched.
The job can be botched, of course, in many other ways too, e.g., the program
may have bugs, the manual may not format correctly, and the Makefile may
have incorrect instructions in it. But you must always remember that it is not
enough to just write the program. You must provide the means of making it
into an application and you must provide documentation for it too.

Exercises

1 Function sscanf returns the number of input items assigned. These may be
fewer than what the code provides for, or even zero. Use the return value
of function sscanf to capture a possible input error in the ’l’ case of the
getopt while loop and exit the program, raising an error flag, if such has
been detected.

2 Implement a command line option that lets the user change the value of
ARRAY_LENGTH.

Hint 1 ARRAY_LENGTH must be replaced with a variable.

Hint 2 Because ARRAY_LENGTH is now a variable, junk can no longer be a
statically sized array. Instead you will have to allocate it dynamically
with, e.g., malloc.

Hint 3 You must check if malloc has been successful, before you can do
anything else.

3 The listings in the previous section present RCS identification strings bor-
dered by percent signs. They should actually be bordered by dollar signs,
but this results in unfortunate interference with the RCS system used to
maintain this document. Read man 7 co on the AVIDD cluster to learn
about RCS keywords. Add option -v that prints the version of the pro-
gram (its revision number) as generated automatically by RCS.

4 Amend the manual page to reflect the enhancements made to the program.

5 Use the new program to check if GPFS I/O depends on the size of the junk

array. Is there an optimum value?

Using PFTP on AVIDD

PFTP is a program very similar to FTP, but it can move data in parallel between
parallel file systems such as GPFS and parallel massive data storage systems
such as HPSS. PFTP clients are installed in /usr/local/hpss both on the IUB
and on the IUPUI head nodes.

There are two PFTP clients in that directory, a kerberized version, which is
called

3.4. WORKING WITH DATA ON AVIDD 51

krb5_gss_pftp_client

and a non-kerberized one, which is called

pftp_client

The kerberized version is secure and this is what you should use normally, but
it doesn’t work correctly at present due to some configuration glitches that still
have to be resolved. But I will show you briefly how it should work.

In order to use the Kerberized version of PFTP you have to acquire your Ker-
beros credentials in the HPSS cell first. The name of the cell is dce1.indiana.edu.
To acquire the credentials use the program kinit:

[gustav@bh1 gustav]$ kinit gustav@dce1.indiana.edu

Password for gustav@dce1.indiana.edu:

[gustav@bh1 gustav]$ klist

Ticket cache: FILE:/tmp/krb5cc_43098

Default principal: gustav@dce1.indiana.edu

Valid starting Expires Service principal

09/04/03 15:18:52 09/05/03 01:18:52 krbtgt/dce1.indiana.edu@dce1.indiana.edu

Kerberos 4 ticket cache: /tmp/tkt43098

klist: You have no tickets cached

[gustav@bh1 gustav]$

You can check the status of your Kerberos credentials with the command klist,
as I have done in the example above.

Once you have acquired the credentials, you can connect to HPSS as follows:

[gustav@bh1 gustav]$ krb5_gss_pftp_client hpss.iu.edu 4021

Parallel block size set to 4194304.

Connected to hpss.iu.edu.

[Message of the day comes here. It may be out of date.]

220 hpss01.ucs.indiana.edu FTP server

(HPSS 4.3 PFTPD V1.1.1 Fri Jul 19 13:59:25 EST 2002) ready.

334 Using authentication type GSSAPI; ADAT must follow

GSSAPI accepted as authentication type

GSSAPI authentication succeeded

Preauthenticated FTP to hpss.iu.edu as gustav:

232 GSSAPI user /.../dce1.indiana.edu/gustav is authorized as

/.../dce1.indiana.edu/gustav

230 User /.../dce1.indiana.edu/gustav logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

[Other messages come here.]

Multinode is Disabled.

ftp> pwd

257 "/.../dce1.indiana.edu/fs/mirror/g/u/gustav" is current directory.

ftp> quit

221 Goodbye.

[gustav@bh1 gustav]$

52 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

Program krb5_gss_pftp_client passes your Kerberos credentials, in a very
secure fashion – your Kerberos password never travels over the network and you
don’t have to type it in explicitly anyway – to the PFTP authentication helper
that runs, in this case, on hpss01.ucs.indiana.edu, and the latter completes your
authentication and authorization.

You can keep your Kerberos credentials as long as you need, but eventually
they will expire after some 10 hours or so anyway. It is a good practice to
destroy the credentials before you quit the system. To do so issue the command
kdestroy:

[gustav@bh1 gustav]$ kdestroy

[gustav@bh1 gustav]$ klist

klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_43098)

Kerberos 4 ticket cache: /tmp/tkt43098

klist: You have no tickets cached

[gustav@bh1 gustav]$

Kerberos credentials acquired with kinit survive the logout process. The reason
for this is to let you leave a background process that may depend on the cre-
dentials. Of course, if you have such process running, you should not destroy
the credentials.

Connecting with pftp_client instead of krb5_gss_pftp_client is much
the same, with the single exception of having to type in your HPSS password
manually. The password is transmitted over the network without encryption.
This is the principal reason for using the Kerberized version.

The IUPUI cluster and the IUPUI HPSS component are better configured
for moving data in between at present, and so we’ll switch to the IUPUI cluster
in the following examples.

But before we go any further, let us create a nice, large file containing
randomized integers on GPFS:

[gustav@ih1 gustav]$ cd /N/gpfs/gustav

[gustav@ih1 gustav]$ mkrandfile -h

synopsis: mkrandfile -f <file> -l <length>

[gustav@ih1 gustav]$ time mkrandfile -f test -l 1000

writing on test

writing 1000 blocks of 1048576 random integers

real 5m19.838s

user 0m39.450s

sys 0m24.090s

[gustav@ih1 gustav]$ ls -l

total 4096000

-rw-r--r-- 1 gustav ucs 4194304000 Sep 4 15:46 test

[gustav@ih1 gustav]$

It took 5 minutes and 20 seconds to write this 4 GB file on GPFS, which
yields about 13 MB/s. Some of this time was spent calling the random number
generation function, but that should be much faster than IO. What transfer
rate are we going to get on reading it?

[gustav@ih1 gustav]$ time cat test > /dev/null

3.4. WORKING WITH DATA ON AVIDD 53

real 0m29.001s

user 0m0.130s

sys 0m15.730s

[gustav@ih1 gustav]$

This time it only took 29 seconds, which yields transfer rate of about 144 MB/s.
This is very fast and we might suspect that the file is either buffered or that
UNIX cheats on the> /dev/null redirection and simply drops the file without
reading.

It is easy to check on the latter as follows:

[gustav@ih1 gustav]$ time cat test > test1

real 6m20.750s

user 0m0.040s

sys 0m21.780s

[gustav@ih1 gustav]$

Here we read 4 GBs and as we do so, we write 4 GBs at the same time. If the
144 MB/s transfer rate was real, we should be able to do this in less than 5
minutes and 20 seconds (for writing) plus 30 seconds (for reading), which is 5
minutes and 50 seconds. We do it actually in 6 minutes and 20 seconds, i.e, 30
seconds longer. This is close enough, the more so as data flows through various
memory buffers in this process and there is some time-consuming data copying
involved. We can therefore guess that UNIX does not cheat on > /dev/null

and the reading indeed proceeds at about 144 MB/s.
Because there are four GPFS servers on the IUPUI AVIDD component, this

yields about 36 MB/s per server, which is quite normal for reading from disk
arrays.

Why then is writing to GPFS so slow compared to reading?
The reason for this is that writing is by necessity sequential. The system

does not know a priori how long the file is going to be. The system receives
data sequentially from the generating process and it writes it sequentially, as
files are usually written, sending portions of data first to the first GPFS server,
then to the second one, then to the third, fourth and then back to the first one,
as the file gets striped over GPFS. In order to speed up this process, we would
have to write the file in parallel – not sequentially – and we are going to learn
how to do this down the road.

But let us get back to HPSS and let us now transfer the file from GPFS to
HPSS. Here is how I go about it:

[gustav@ih1 gustav]$ cd /N/gpfs/gustav

[gustav@ih1 gustav]$ ls -l

total 8192000

-rw-r--r-- 1 gustav ucs 4194304000 Sep 4 15:46 test

-rw-r--r-- 1 gustav ucs 4194304000 Sep 4 15:59 test1

So, here I went to GPFS on AVIDD-I (the IUPUI cluster) and checked that my
4GB files are there. Now I am going to connect to HPSS using pftp_client:

[gustav@ih1 gustav]$ pftp_client hpss.iu.edu

Parallel block size set to 4194304.

Connected to hpss.iu.edu.

54 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

[message of the day]

220 hpss-s12.uits.iupui.edu FTP server

(HPSS 4.3 PFTPD V1.1.1 Wed Sep 11 15:18:05 EST 2002) ready.

Name (hpss.iu.edu:gustav): gustav

331 Password required for /.../dce1.indiana.edu/gustav.

Password:

230 User /.../dce1.indiana.edu/gustav logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

[other messages]

Multinode is Disabled.

OK, so now I’m in. I land in my HPSS home directory, which is linked to our
institutional DFS. This directory is not suitable for very large files – you must
never put anything as large as 4GB there. Instead I switch to the so called
“hpssonly” directory, where I can place files of arbitrary size.

ftp> pwd

257 "/.../dce1.indiana.edu/fs/mirror/g/u/gustav" is current directory.

ftp> cd /:/hpssonly/g/u/gustav

250 CWD command successful.

Now I am going to activate the multinode transfer mode. This means that the
data will flow in parallel. There is a file in /usr/local/etc, called HPSS.conf,
which specifies the configuration and the nodes through which data should flow
directly.

ftp> multinode

Processing the multinode list, please wait.....

Multinode is on.

It is not enough to request multinode transfer mode. You have to specify how
many data streams you want to have in the transfer. In our case we have four
HPSS servers and four GPFS servers, so we need four parallel data streams:

ftp> setpwidth 4

Parallel stripe width set to (4).

Processing the multinode list, please wait.....

Now we need to request the HPSS Class of Service. This class is actually a
default when you make a connection to HPSS from AVIDD-I. It is a striped
class of service, over four HPSS servers, and it is configured to handle very large
files:

ftp> quote site setcos 45

200 COS set to 45.

Finally, we request the transfer itself. Observe that we don’t put the file, as we
would if we worked with a normal FTP. Instead we pput it. pput is the parallel
version of put. You can see responses from four PFTP client nodes and the
transfer commences.

ftp> pput test

200 Command Complete (4194304000, test, 0, 4, 4194304).

Processing the multinode list, please wait.....

200 Command Complete.

3.4. WORKING WITH DATA ON AVIDD 55

200 Command Complete.

200 Command Complete.

200 Command Complete.

150 Transfer starting.

226 Transfer Complete.(moved = 4194304000).

4194304000 bytes sent in 37.12 seconds (107.75 Mbytes/s)

200 Command Complete.

The transfer rate was nearly 108 MB/s. This is very fast for FTP. In fact, you
could not get such a high transfer rate with a normal sequential FTP.

Let us check that the file is indeed in HPSS:

ftp> ls -l

200 PORT command successful.

150 Opening ASCII mode data connection for file list.

-rw-r----- 1 gustav 1000 365684740 Oct 9 2001 FRIDAYZONE1.MPG

-rw-r----- 1 gustav 1000 361170948 Oct 9 2001 FRIDAYZONE2.MPG

-rw-r----- 1 gustav 1000 1164392 Jul 17 1999 IU-HPSS.tar.gz

drwxr-x--- 2 gustav 1000 512 Jul 10 2001 MPIO

drwxr-x--- 2 gustav 1000 512 Feb 13 2001 new

-rw-r----- 1 gustav ovpit 4194304000 Sep 4 16:57 test

226 Transfer complete.

391 bytes received in 0.08 seconds (4.90 Kbytes/s)

ftp> quit

221 Goodbye.

[gustav@ih1 gustav]$

Well, it is there, all 4 GBs of it.
Now, how to get it back?
Proceed as before, but this time use pget instead of pput. Here is the

example. I begin by going back to my GPFS directory and delete files test and
test1 from it, then connect to HPSS as before.

[gustav@ih1 gustav]$ cd /N/gpfs/gustav

[gustav@ih1 gustav]$ ls

test test1

[gustav@ih1 gustav]$ rm *

[gustav@ih1 gustav]$ pftp_client hpss.iu.edu

Parallel block size set to 4194304.

Connected to hpss.iu.edu.

[message of the day]

220 hpss-s12.uits.iupui.edu FTP server

(HPSS 4.3 PFTPD V1.1.1 Wed Sep 11 15:18:05 EST 2002) ready.

Name (hpss.iu.edu:gustav): gustav

331 Password required for /.../dce1.indiana.edu/gustav.

Password:

230 User /.../dce1.indiana.edu/gustav logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

[other messages]

Multinode is Disabled.

ftp> cd /:/hpssonly/g/u/gustav

250 CWD command successful.

56 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

ftp> ls -l

200 PORT command successful.

150 Opening ASCII mode data connection for file list.

-rw-r----- 1 gustav 1000 365684740 Oct 9 2001 FRIDAYZONE1.MPG

-rw-r----- 1 gustav 1000 361170948 Oct 9 2001 FRIDAYZONE2.MPG

-rw-r----- 1 gustav 1000 1164392 Jul 17 1999 IU-HPSS.tar.gz

drwxr-x--- 2 gustav 1000 512 Jul 10 2001 MPIO

drwxr-x--- 2 gustav 1000 512 Feb 13 2001 new

-rw-r----- 1 gustav ovpit 4194304000 Sep 4 16:57 test

226 Transfer complete.

391 bytes received in 0.11 seconds (3.50 Kbytes/s)

ftp> multinode

Processing the multinode list, please wait.....

Multinode is on.

ftp> setpwidth 4

Parallel stripe width set to (4).

Processing the multinode list, please wait.....

Now I transfer the file back to AVIDD with the parallel version of get, i.e., with
pget:

ftp> pget test

200 Command Complete (4194304000, test, 0, 4, 4194304).

Processing the multinode list, please wait.....

200 Command Complete.

200 Command Complete.

200 Command Complete.

200 Command Complete.

150 Transfer starting.

226 Transfer Complete.(moved = 4194304000).

4194304000 bytes received in 2 minutes,3.57 seconds (32.37 Mbytes/s)

200 Command Complete.

ftp> quit

221 Goodbye.

[gustav@ih1 gustav]$ ls -l

total 4096000

-rw-r--r-- 1 gustav ucs 4194304000 Sep 4 17:14 test

[gustav@ih1 gustav]$

And I get my file back. The return transfer rate was only about 32 MB/s,
which is about 8 MB/s/node. This is markedly slower than 108 MB/s we got
on writing to HPSS and is caused by the GPFS’ poor performance on writes.
Still, it is better than the 13 MB/s we saw in our previous experiments.

HPSS performs on these tests very well. You can see HPSS’ performance on
reads, uncontaminated by GPFS, if you drop the data on /dev/null:

ftp> multinode

Processing the multinode list, please wait.....

Multinode is on.

ftp> setpwidth 4

Parallel stripe width set to (4).

Processing the multinode list, please wait.....

ftp> pget test /dev/null

200 Command Complete (4194304000, test, 0, 4, 4194304).

Processing the multinode list, please wait.....

200 Command Complete.

200 Command Complete.

3.4. WORKING WITH DATA ON AVIDD 57

200 Command Complete.

200 Command Complete.

150 Transfer starting.

226 Transfer Complete.(moved = 4194304000).

4194304000 bytes received in 28.84 seconds (138.72 Mbytes/s)

200 Command Complete.

ftp>

The transfer rate on 4-way parallel reads from HPSS is nearly 140 MB/s – if
only there was a matching sink on the AVIDD side to drop the data on.

Very special thanks are due to the Distributed Storage Systems
Group (DSSG) administrators, who invested a lot of effort, as well
as a lot of skills and knowledge into getting these transfer rates so
high (from the HPSS side).

In real life you should expect IO transfer rates to vary. They will depend
on various environmental factors such as system load, GPFS load, network load
and HPSS load as well.

Exercises

1 Obtain a window on a computational node with the qsub -I command (see
section 4.3.1 for more information on qsub -I). Generate a 4GB GPFS
file with mkrandfile and copy it to your HPSS “hpssonly” directory using
pftp_client, multinode and setpwidth 4. What data transfer rate has
been reported by PFTP?

2 Delete the GPFS file created in exercise 3.4.3, then copy its image from HPSS
back onto GPFS using pftp_client, multinode and sepwidth 4. What
data transfer rate has been reported by PFTP?

3 Repeat transfers to and from HPSS in order to observe fluctuations in transfer
rates. What are they caused by?

4 Delete the HPSS copy of the file.

5 Exit the session on the computational node.

58 CHAPTER 3. WORKING WITH THE AVIDD CLUSTER

Chapter 4

Working with PBS

PBS stands for “Portable Batch System”. It is a suite of programs for submit-
ting jobs to distributed computational resources, e.g., to clusters such as our
AVIDD. There are many versions of PBS floating around. For example, there is
OpenPBS developed originally for NASA and “Scalable OpenPBS” distributed
by Superclusters.org, a site that is run by Cluster Resources, a company in Utah.
Then there is “Professional PBS Pro” distributed by OpenPBS.org, which is one
of many shopping windows of Altair Engineering, a company located in Michi-
gan.

The version installed on AVIDD at present is “Scalable OpenPBS” with the
Maui scheduler.

As I have already mentioned in section 3.3, you can find PBS manual en-
tries in /usr/local/man, and, this is about all there is there in terms of user
documentation.

In the following sections you will learn how to make sense of these manuals
and how to use PBS on the AVIDD cluster.

4.1 PBS Configuration

The first thing we are going to look at is the PBS configuration. And here you
want to find about the names of various queues that may have been configured
on the system. The queues usually are associated with various resources. For
example, there may be queues for short jobs and queues for long jobs. There
may be queues for sequential jobs and queues for parallel jobs. There may be
queues for exclusive jobs, i.e., jobs that want the whole node to themselves, and
queues for jobs that don’t mind sharing nodes with other jobs. There may be
queues for jobs requiring a lot of memory and jobs that don’t need that much
and queues for various architectures as well, because PBS can be used to manage
a heterogeneous cluster.

The command you can use to find about PBS configuration is qstat. In
particular qstat -q will tell you about queues and their parameters.

59

60 CHAPTER 4. WORKING WITH PBS

Running this command on avidd-b.iu.edu returns:

[gustav@bh1 gustav]$ qstat -q

server: bh1

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- --- --- -- -----

bg -- -- -- -- 17 3 -- E R

--- ---

17 3

[gustav@bh1 gustav]$

This means that there is only one queue configured on avidd-b at the time I’m
writing this tutorial. The queue has no memory limit, no CPU time limit, no
wall time limit and no node number limit either.

You can use the same command to find about queues configured on the
avidd-i.iu.edu as follows:

[gustav@bh1 gustav]$ ssh ih1 qstat -q

server: ih1

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- --- --- -- -----

bg -- -- -- -- 182 343 -- E R

--- ---

182 343

[gustav@bh1 gustav]$

Well, there is also only one queue configured there, which has the same name
(but it is not the same queue, mind you, because it is configured on a different
system). That queue has no memory, cpu time, wall clock time and no node
number limits either.

This is not common on HPC systems, unless you have one that’s used little
or by a small number of users. You will find, if you connect to our SP, that
there are great many queues configured there.

You can see what jobs run on the system currently by typing qstat without
any options. And so, for example, on the avidd-b, we have:

[gustav@bh1 gustav]$ qstat

Job id Name User Time Use S Queue

---------------- ---------------- ---------------- -------- - -----

10177.bh1 calmob surajago 107:06:4 R bg

11137.bh1 nokkmmcalmob surajago 0 Q bg

11617.bh1 klv_ptanal_lopt kevidale 31:54:37 R bg

11628.bh1 klv_ptanal_lopt kevidale 31:51:01 R bg

11629.bh1 klv_ptanal_lopt kevidale 31:43:24 R bg

11630.bh1 klv_ptanal_dach kevidale 32:00:26 R bg

11635.bh1 yeast3 jfan 0 Q bg

11970.bh1 c8_scan steige 17:41:52 R bg

12020.bh1 klv_ptanal_dach kevidale 11:21:29 R bg

12082.bh1 helB1 mkohtani 08:33:18 R bg

12150.bh1 STDIN ivdgl 00:00:00 R bg

12151.bh1 STDIN ivdgl 00:00:00 R bg

12152.bh1 STDIN ivdgl 00:00:00 R bg

4.1. PBS CONFIGURATION 61

12153.bh1 STDIN ivdgl 00:00:00 R bg

12154.bh1 myscript.ll mperezga 0 Q bg

12155.bh1 STDIN ivdgl 00:00:00 R bg

12182.bh1 STDIN ivdgl 00:00:00 R bg

12183.bh1 STDIN ivdgl 00:00:00 R bg

12184.bh1 STDIN ivdgl 00:00:00 R bg

12185.bh1 STDIN ivdgl 00:00:00 R bg

[gustav@bh1 gustav]$

The jobs have various ID numbers listed in the first column. These numbers
are important, because you have to use them in order to cancel a job, or to
postpone it, or to do something else with it. The second column lists names of
the jobs given to them by their originators. The names may not be unique, they
are up to the users themselves. The user names are listed in the third column.

You can see that right now we only have seven users running PBS jobs on
avidd-b:

[gustav@bh1 gustav]$ qstat | grep -v ’^Job id’ \

| grep -v ’^---’ | awk ’ { print $3 } ’ | sort -u

ivdgl

jfan

kevidale

mkohtani

mperezga

steige

surajago

[gustav@bh1 gustav]$

and only two users on avidd-i:

[gustav@bh1 gustav]$ ssh ih1 qstat | grep -v ’^Job id’ | grep -v ’^---’ \

| awk ’ { print $3 } ’ | sort -u

heap

jfan

[gustav@bh1 gustav]$

But the two avidd-i users have submitted 518 jobs to PBS:

[gustav@bh1 gustav]$ ssh ih1 qstat | grep -v ’^Job id’ | grep -v ’^---’ | wc

518 3108 40922

[gustav@bh1 gustav]$

whereas the seven users on avidd-b have only 20 jobs under PBS management:

[gustav@bh1 gustav]$ qstat | grep -v ’^Job id’ | grep -v ’^---’ | wc

20 120 1580

[gustav@bh1 gustav]$

The command qstat -q tells us the same thing, without the need for piping
and filtering:

[gustav@bh1 gustav]$ qstat -q

server: bh1

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- --- --- -- -----

bg -- -- -- -- 17 3 -- E R

--- ---

17 3

[gustav@bh1 gustav]$

62 CHAPTER 4. WORKING WITH PBS

It tells us that there are 17 jobs running at present and 3 queued ones. The 3
queued jobs are not queued because of lack of resources probably. Rather they
may depend on some of the jobs that are currently executing.

There are many more options to qstat, and we are going to learn about
some of them as we need them. But qstat and qstat -q will do for the time
being.

4.2 Submitting, Inspecting and Cancelling PBS
Jobs

In this section we are going to submit our first PBS job.
A PBS job is simply a shell script, possibly with some PBS directives. PBS

directives look to shell like shell comments, so it ignores them, but PBS picks
them up and processes the job accordingly.

We are going to start by submitting a very simple shell script, which doesn’t
have any PBS directives.

[gustav@bh1 PBS]$ pwd

/N/B/gustav/PBS

[gustav@bh1 PBS]$ ls

job.sh

[gustav@bh1 PBS]$ cat job.sh

#!/bin/bash

hostname

date

exit 0

[gustav@bh1 PBS]$

The shell is submitted with the command qsub:

[gustav@bh1 PBS]$ qsub job.sh

12248.bh1.avidd.iu.edu

[gustav@bh1 PBS]$

The command returns the job id in return. This is the id (but with the domain
name stripped off) that appears in the first column of qstat listing. qsub
returns the standard output produced by the job on a file in the same directory
from the job was submitted. Standard error is also returned on another file in
the same directory:

[gustav@bh1 PBS]$ ls

job.sh job.sh.e12248 job.sh.o12248

[gustav@bh1 PBS]$

The name of the output file is produced by appending “.o” followed by the job
id number to the name of the script submitted to qsub. The name of the error
file is produced by appending “.e” followed by the job id number to the name
of the script. In this case the error file is empty and the standard output file
contains:

[gustav@bh1 PBS]$ cat job.sh.o12248

bc89

Sun Sep 7 16:27:25 EST 2003

[gustav@bh1 PBS]$

4.2. SUBMITTING, INSPECTING AND CANCELLING PBS JOBS 63

and this tells us that the job was executed on bc89.avidd.iu.edu.
Now let me show you how you can submit a very large number of jobs auto-

matically. We begin by executing the following simple multiline shell expression:

[gustav@bh1 PBS]$ i=10; while [$i -gt 0]

> do

> echo $i

> i=‘expr $i - 1‘

> done

10

9

8

7

6

5

4

3

2

1

[gustav@bh1 PBS]$

The expression works as follows. First we initialize i to 10. Then we start the
while loop, which checks if the value of i, i.e., $i is still greater than zero.
Within the body of the loop we print the value of i and then we decrement it
by 1. The loop stops when the value of i becomes zero.

Now we are going to repeat the same multiline command, but this time we
are going to insert qsub job.sh within the body of the loop:

[gustav@bh1 PBS]$ i=10; while [$i -gt 0]

> do

> echo $i

> qsub job.sh

> i=‘expr $i - 1‘

> done

10

12249.bh1.avidd.iu.edu

9

12250.bh1.avidd.iu.edu

8

12251.bh1.avidd.iu.edu

7

12252.bh1.avidd.iu.edu

6

12253.bh1.avidd.iu.edu

5

12254.bh1.avidd.iu.edu

4

12255.bh1.avidd.iu.edu

3

12256.bh1.avidd.iu.edu

2

12257.bh1.avidd.iu.edu

1

12258.bh1.avidd.iu.edu

[gustav@bh1 PBS]$

These jobs are very small and they should execute very quickly:

64 CHAPTER 4. WORKING WITH PBS

[gustav@bh1 PBS]$ ls

0 job.sh.e12251 job.sh.e12256 job.sh.o12250 job.sh.o12255

job.sh job.sh.e12252 job.sh.e12257 job.sh.o12251 job.sh.o12256

job.sh.e12248 job.sh.e12253 job.sh.e12258 job.sh.o12252 job.sh.o12257

job.sh.e12249 job.sh.e12254 job.sh.o12248 job.sh.o12253 job.sh.o12258

job.sh.e12250 job.sh.e12255 job.sh.o12249 job.sh.o12254

[gustav@bh1 PBS]$

Let us see what we can find in the output files:

[gustav@bh1 PBS]$ cat job.sh.o*

bc89

Sun Sep 7 16:27:25 EST 2003

bc89

Sun Sep 7 16:43:18 EST 2003

bc68

Sun Sep 7 16:43:20 EST 2003

bc67

Sun Sep 7 16:43:20 EST 2003

bc67

Sun Sep 7 16:43:21 EST 2003

bc66

Sun Sep 7 16:43:22 EST 2003

bc65

Sun Sep 7 16:43:23 EST 2003

bc65

Sun Sep 7 16:43:24 EST 2003

bc63

Sun Sep 7 16:43:25 EST 2003

bc61

Sun Sep 7 16:43:26 EST 2003

bc61

Sun Sep 7 16:43:27 EST 2003

[gustav@bh1 PBS]$

We can see that the jobs were sent to various nodes, depending on which were
available.

You can easily submit thousands of jobs this way. But it is better to write a
job submitting script first, then test it with the qsub line commented out, just
to make sure that your counting and, most importantly, stopping is going to
work as you expect, and only then uncomment the qsub line and run the script
again.

Our job executes so fast that we can hardly catch it in action. We are going
to slow it down by letting it sleep for a hundred seconds before exiting.

Here is our modified version.

[gustav@bh1 PBS]$ cat job.sh

#!/bin/bash

hostname

date

sleep 100

date

exit 0

[gustav@bh1 PBS]$

And just to make sure that it’s not going to hang forever, we are going to execute
it interactively and check that it sleeps for 100 seconds only:

4.2. SUBMITTING, INSPECTING AND CANCELLING PBS JOBS 65

[gustav@bh1 PBS]$ time ./job.sh

bh1

Sun Sep 7 16:53:41 EST 2003

Sun Sep 7 16:55:21 EST 2003

real 1m40.029s

user 0m0.000s

sys 0m0.010s

[gustav@bh1 PBS]$

This works just fine: the job took 1 minute and 40 seconds, which is 100 seconds,
to execute. Now we are going to submit it with qsub and we are going to look
at it with qstat.

[gustav@bh1 PBS]$ qsub job.sh

12259.bh1.avidd.iu.edu

[gustav@bh1 PBS]$ qstat 12259.bh1

Job id Name User Time Use S Queue

---------------- ---------------- ---------------- -------- - -----

12259.bh1 job.sh gustav 0 R bg

[gustav@bh1 PBS]$

You can look at just the job that is of interest to you, by giving its ID as an
argument to qstat. The “R” in the 5th column indicates that the job is running.
The 5th column is the status column the other values you can see there are

E the job is exiting after having run

H the job is held – this means that it is not going to run until it is released

Q the job is queued and will run when the resources become available

R the job is running

T the job is being transferred to a new location – this may happen, e.g., if the
node the job had been running on crashed

W the job is waiting – you can submit jobs to run, e.g., after 5PM

Now, suppose that we have submitted a job and it is waiting in the queue.
Its status is going to be Q. Then we discover that there may be a problem with
the job, but we aren’t sure. What are we to do? Well, we can “place a hold”
on the job by issuing the command qhold:

[gustav@bh1 PBS]$ qsub job.sh

12259.bh1.avidd.iu.edu

[gustav@bh1 PBS]$ qhold 12259.bh1

If the job is still in the queue, it’ll be put on hold. Its status will change from
Q to H. You can now check if the submitted program and data are OK, and if
they are, you can release the hold by calling qrls:

[gustav@bh1 PBS]$ qrls 12259.bh1

This will make the job eligible to run again. Its status will change from H back
to Q.

Another scenario arises when the job that you may have some doubts about
is already running. You can send signals to jobs running under PBS by calling
the command qsig. The synopsis of qsig is

66 CHAPTER 4. WORKING WITH PBS

qsig -s signal job_id

The signal can be given either as a number, e.g., 2, or as a signal name, e.g,
SIGINT. Numbers and names of signals are described in section 7 of the Linux
manual. You can read the corresponding manual entry by issuing the command:

[gustav@bh1 gustav]$ man 7 signal

In the following example, we are going to submit our job that sleeps for 100
seconds and then we are going to send an interrupt signal to it (it is signal
number 2 that is called SIGINT). This signal is generated by pressing control-C
on normally configured Linux keyboard.

[gustav@bh1 PBS]$ qsub job.sh

12351.bh1.avidd.iu.edu

[gustav@bh1 PBS]$ qsig -s SIGINT 12351.bh1

[gustav@bh1 PBS]$ ls

job.sh job.sh.e12351 job.sh.o12351

[gustav@bh1 PBS]$ cat job.sh.o12351

bc67

Sun Sep 7 17:19:35 EST 2003

[gustav@bh1 PBS]$ qstat 12351.bh1

qstat: Unknown Job Id 12351.bh1.avidd.iu.edu

[gustav@bh1 PBS]$

The job has indeed been killed.
It is usually better to send signals other than SIGKILL (signal number 9),

because SIGKILL cannot be caught and normally you want to catch a signal and
act on it, e.g., clean the mess before exiting.

A more ruthless way to get rid of an unwanted job is to run qdel on it.
This command deletes a job from PBS. If the job runs, the command sends
SIGKILL to it. If the job is merely queued, the command deletes it from the
queue. Here’s the example:

[gustav@bh1 PBS]$ qsub job.sh

12390.bh1.avidd.iu.edu

[gustav@bh1 PBS]$ qdel 12390.bh1

[gustav@bh1 PBS]$ ls

job.sh job.sh.e12390 job.sh.o12390

[gustav@bh1 PBS]$ cat job.sh.o12390

bc89

Sun Sep 7 17:26:01 EST 2003

[gustav@bh1 PBS]$

PBS commands covered in this section

qsub submit a job for execution

qstat examine the status of a job (we have discussed what this
status may be)

qhold put a job on hold

qrls release a job

qsig send a signal to a job

qdel delete a job

4.3. SPECIFICATION OF PBS JOBS 67

4.3 Specification of PBS Jobs

So far we have used PBS in its simplest form relying on defaults. We never had
to specify queues or other job parameters. Although some of the specifications
may be superfluous on the AVIDD cluster right now, because there is only one
queue there and the queue has no limits imposed on it, nevertheless, you need
to learn how to describe PBS jobs more elaborately, in case you want to use
other facilities, e.g., NCSA, or in case AVIDD gets used more heavily in future
and its administrators will be forced to configure a richer queueing environment.
Furthermore we are going to learn some other tricks in this section that will be
useful for conditional execution of various jobs, i.e., jobs that may depend on
other jobs to run correctly.

4.3.1 Interactive PBS Jobs

Normally when you call qsub PBS grabs your script and goes away. You get
the prompt returned to you almost immediately and whatever output is pro-
duced from your job goes into a designated file. But what if you want to run an
interactive job, e.g., a matlab session? This is not, in general, the right way to
use supercomputers, because interactive jobs waste enormous amount of CPU
time, mostly because humans are so slow. Even if you could type 1000 charac-
ters per second, you would still waste enormous amount of CPU time, because
computers can easily type 500,000,000 characters per second or more (and high
end graphic displays, the so called frame buffers, can display the characters this
fast, but only as pixels).

The way to run such an interactive job is to call qsub -I. The -I option
will make PBS arrange for an interactive login session on an available AVIDD
node and your TTY will be reconnected to that session. On exiting the session
you’ll get back to the original TTY. Here is how it works:

[gustav@bh1 gustav]$ hostname

bh1

[gustav@bh1 gustav]$ pwd

/N/B/gustav

[gustav@bh1 gustav]$ qsub -I

qsub: waiting for job 12529.bh1.avidd.iu.edu to start

qsub: job 12529.bh1.avidd.iu.edu ready

[gustav@bc55 gustav]$ hostname

bc55

[gustav@bc55 gustav]$ pwd

/N/B/gustav

[gustav@bc55 gustav]$ exit

qsub: job 12529.bh1.avidd.iu.edu completed

[gustav@bh1 gustav]$

I start from the head node, bh1, and request an interactive session. PBS takes
my request, assigns it a job ID of 12529.bh1, and then gives me a shell on bc55.
On exiting the shell on bc55 the PBS job terminates and I get back to the head
node, bh1.

68 CHAPTER 4. WORKING WITH PBS

The computational nodes of the AVIDD cluster are configured for compu-
tation only. They have no X11 installed on them. This means that you cannot
run any X11 tools on those nodes and you cannot even run emacs there, which
is a pity, because emacs can be used as a computational tool. It is, after all, a
Lisp machine emulator. But you can compile and run your own X11 program
on computational nodes, because they have the full X11 library installed, and
you can compile and run your own emacs too. And you can copy an existing
X11 binary from /usr/X11R6/bin to your $HOME/bin too.

When you run X11 tools on computational nodes, the traffic is routed
through bh3.uits.indiana.edu (on avidd-b), so that you should either add bh3.uits.indiana.edu
to the list of hosts allowed to display windows on your X11 server, or – a better
practice – use Xauthority.

Here is a simple example that shows how to do this:

1. On my desktop X11 server I allow access to bh3 with xhost +bh3.uits.indiana.edu.

2. I copy xclock and xterm binary on the head node from /usr/X11R6/bin

to my $HOME/bin.

3. Now I enter the interactive PBS session:

[gustav@bh1 gustav]$ cp /usr/X11R6/bin/xclock bin/xclock

[gustav@bh1 gustav]$ cp /usr/X11R6/bin/xterm bin/xterm

[gustav@bh1 gustav]$ qsub -I

qsub: waiting for job 12546.bh1.avidd.iu.edu to start

qsub: job 12546.bh1.avidd.iu.edu ready

[gustav@bc55 gustav]$ export DISPLAY=woodlands.tqc.iu.edu:0.0

[gustav@bc55 gustav]$ xclock &

[1] 5709

[gustav@bc55 gustav]$ xterm &

[2] 5710

[gustav@bc55 gustav]$ exit

qsub: job 12546.bh1.avidd.iu.edu completed

[gustav@bh1 gustav]$

Exiting from bc55 kills both xclock and xterm.
Since you have copied xterm to your private bin already, you can get yourself

a more functional interactive window on a computational node simply by sub-
mitting a script, which calls xterm, without the -I option. Here is the example
of the script:

[gustav@bh1 PBS]$ cat xterm.sh

#!/bin/bash

xterm -display woodlands.tqc.iu.edu:0.0

exit 0

[gustav@bh1 PBS]$ qsub xterm.sh

12550.bh1.avidd.iu.edu

[gustav@bh1 PBS]$

Submitting the script to PBS will produce, after a short while, an xterm window
running on a PBS allocated node on your X11 server. Exiting the shell in the
window terminates the job.

4.3. SPECIFICATION OF PBS JOBS 69

4.3.2 Not Quite Interactive PBS Jobs

As I have mentioned in the previous section, very often you don’t really need to
make an interactive contact with the program you want to run under PBS, even
if the program requires some interactive input. If the input does not depend on
the program’s output, you can simply use the “here-input” feature of the shell.

The “here-input” is constructed in the following way:

$ my_command << EOF

one_line_of_input

another_line_of_input

EOF

Here is an example of a simple script that utilizes this feature:

[gustav@bh1 PBS]$ cat bc.sh

#!/bin/bash

bc << EOF

2 + 2

3 - 1

scale=10

3.14 - 2.17

EOF

exit 0

[gustav@bh1 PBS]$./bc.sh

4

2

.97

[gustav@bh1 PBS]$

The program bc is an interactive UNIX calculator. But here, instead of typing
the stuff interactively, we tell shell to type it for us: everything until the line
that begins with EOF.

We can submit this job to PBS and it will work the same, with the only
difference that the output is going to be written on a file:

[gustav@bh1 PBS]$ qsub bc.sh

12626.bh1.avidd.iu.edu

[gustav@bh1 PBS]$ ls

bc.sh bc.sh.e12626 bc.sh.o12626 job.sh xterm.sh

[gustav@bh1 PBS]$ cat bc.sh.o12626

4

2

.97

[gustav@bh1 PBS]$

4.3.3 Simple PBS Directives

If you don’t like the names of PBS output and error files, if you don’t want your
job to go to the default queue, if you have any other special requests, you can
specify them by the means of qsub command line switches or PBS directives.

PBS directives are exactly the same as the qsub command line switches, but
they are passed to PBS through the script comment lines. For example, in order
to change the name of the output file you can use

qsub -o file_name

70 CHAPTER 4. WORKING WITH PBS

or you can insert

#PBS -o file_name

in the preamble of the script. The effect will be the same.
The three letters, PBS, that mark the directive can be altered too, with the

command line switch

-C new_string

But it’s better not to tinker with it, since it may lead to unnecessary confusion
down the road.

To rename the error file use the directive:

#PBS -e file_name

The default name of the job, which shows in the second column of the qstat
listing, is the name of the submitted file. If you enter the job interactively, then
the name evaluates to STDOUT. Interactive job submission is not advisable,
because mistakes are easy to make, so I haven’t talked about it, but if you’re
curious, this is how it is done:

[gustav@bh1 PBS]$ qsub

hostname

date

exit 0

^D

12672.bh1.avidd.iu.edu

[gustav@bh1 PBS]$

The output files are then called STDIN.o12672 and STDIN.e12672:

[gustav@bh1 PBS]$ ls

STDIN.e12672 STDIN.o12672 bc.sh job.sh xterm.sh

[gustav@bh1 PBS]$ cat STDIN.o12672

bc68

Mon Sep 8 21:36:52 EST 2003

[gustav@bh1 PBS]$

You can change the name of the job with the directive

#PBS -N job_name

The submitted script is interpreted using the user’s login shell by default.
PBS does not read the

#!/bin/bash

line the scripts usually begin with. But this can be altered by using the directive

#PBS -S /bin/bash

You can use also perl or any other scripting language as long as its comment
character is the sharp sign, # (some Schemes allow for the sharp to be used as
a comment character too). PBS will scan all the initial comment lines for PBS
directives until the first executable line. Any directives embedded in the script
after some executable lines will be ignored.

If you don’t specify the queue name, the job gets submitted to the default
queue. The default queue at most institutions is a short job queue. So normally
you have to specify the queue name for longer jobs. This is done with the
directive

4.3. SPECIFICATION OF PBS JOBS 71

#PBS -q bg

Let us wrap up the -o, -e, -N, -S and -q directives into the following script.

[gustav@bh1 PBS]$ cat simple.sh

#PBS -S /bin/bash

#PBS -N host

#PBS -o host_out

#PBS -e host_err

#PBS -q bg

hostname

date

exit 0

[gustav@bh1 PBS]$ qsub simple.sh

12673.bh1.avidd.iu.edu

[gustav@bh1 PBS]$ ls

STDIN.e12672 bc.sh host_out simple.sh

STDIN.o12672 host_err job.sh xterm.sh

[gustav@bh1 PBS]$ cat host_out

bc68

Mon Sep 8 21:58:06 EST 2003

[gustav@bh1 PBS]$

Another two useful PBS directives result in e-mail being sent to you when
the job starts, or terminates or is aborted. The corresponding option is -m and
it must be followed by

n in which case no mail is sent

a in which case mail is sent when the job gets aborted

b in which case mail is sent when the job begins execution

e in which case mail is sent when the job terminates execution

Option a is the default. a, b and e can be combined, e.g., abe. The correspond-
ing PBS directive looks as follows:

#PBS -m abe

Now, who should the mail be sent to? This you can specify by using the -M
directive, e.g.,

#PBS -M gustav@indiana.edu

You can also send mail to several users, e.g.,

#PBS -M gustav@indiana.edu,stewart@iu.edu

Let us see how this works in combination with our simple job described above.

[gustav@bh1 PBS]$ cat simple.sh

#PBS -S /bin/bash

#PBS -N host

#PBS -o host_out

#PBS -e host_err

#PBS -q bg

#PBS -m abe

#PBS -M gustav@indiana.edu

72 CHAPTER 4. WORKING WITH PBS

hostname

date

exit 0

[gustav@bh1 PBS]$ qsub simple.sh

12866.bh1.avidd.iu.edu

[gustav@bh1 PBS]$ ls

bc.sh host_err host_out job.sh nodes.sh simple.sh xterm.sh

[gustav@bh1 PBS]$ cat host_out

bc88

Wed Sep 10 16:15:46 EST 2003

[gustav@bh1 PBS]$

Mail sent to gustav@indiana.edu is automatically redirected to my worksta-
tion, woodlands.tqc.iu.edu. Let us have a look then if there are any messages
there sent from AVIDD. Here is the updated mail listing from my emacs session:

1 10-Sep escience-admin@cs.indiana [108] \

[Escience] Computer’s ability to verify proof is an illusion

2- 10-Sep to: qc@WOODLANDS.tqc.iu.e [62] \

Quantum dynamics of a single vortex

3- 10-Sep adm@bh1.uits.indiana.edu [36] \

PBS JOB 12866.bh1.avidd.iu.edu

4- 10-Sep adm@bh1.uits.indiana.edu [31] \

PBS JOB 12866.bh1.avidd.iu.edu

Two messages have arrived from bh1 indeed. The messages may arrive out of
order, because this is how e-mail usually works. In this case the second message
(number 4 in the emacs listing) corresponds to the job beginning its execution:

Envelope-to: gustav@woodlands.tqc.iu.edu

Delivery-date: Wed, 10 Sep 2003 16:16:19 -0500

Date: Wed, 10 Sep 2003 16:15:46 -0500

From: adm <adm@bh1.uits.indiana.edu>

To: gustav@indiana.edu

Subject: PBS JOB 12866.bh1.avidd.iu.edu

PBS Job Id: 12866.bh1.avidd.iu.edu

Job Name: host

Begun execution

and the first message corresponds to the termination of the job:

Envelope-to: gustav@woodlands.tqc.iu.edu

Delivery-date: Wed, 10 Sep 2003 16:16:16 -0500

Date: Wed, 10 Sep 2003 16:15:46 -0500

From: adm <adm@bh1.uits.indiana.edu>

To: gustav@indiana.edu

Subject: PBS JOB 12866.bh1.avidd.iu.edu

PBS Job Id: 12866.bh1.avidd.iu.edu

Job Name: host

Execution terminated

Exit_status=0

resources_used.cput=00:00:00

resources_used.mem=0kb

resources_used.vmem=0kb

resources_used.walltime=00:00:00

A good idea is to have the message about your job having been aborted or
terminated sent to your cellular phone, if you have this kind of service. This
way the message will reach you wherever you may be.

4.3. SPECIFICATION OF PBS JOBS 73

4.3.4 Jobs Dependent On Other Jobs

In this section we are going to discuss jobs that may depend on other jobs. In
order to concoct such jobs we are going to begin by writing a very, very, very
simple UNIX program that reads a file in chunks of various sizes and counts
number of bytes in it. Then we are going to use it, together with mkrandfile

in PBS scripts.
Another reason for writing the program first is to give you an opportunity

to exercise your UNIX and C programming skills some more.

Program xrandfile

Here is the listing of the program:

/*

* Read an existing file full of random integers and perform

* some arbitrary operation on it.

*

* %Id: xrandfile.c,v 1.2 2003/09/12 21:28:33 gustav Exp %

*

* %Log: xrandfile.c,v %

* Revision 1.2 2003/09/12 21:28:33 gustav

* Converted mkrandfile to xrandfile: an application that reads the file and

* counts the number of bytes in it.

*

* Revision 1.1 2003/09/12 17:55:12 gustav

* Initial revision

*

*

*/

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<errno.h>

#define BLOCK_SIZE 1048576

#define SYNOPSIS printf ("synopsis: %s -f <file> [-l <blocks_per_read>]\n", argv[0])

#define CLOSE if (fclose(fp) != 0) { perror (name); exit (5); }

main(argc, argv)

int argc;

char *argv[];

{

FILE *fp;

int *junk, size_of_junk, n_of_items, blocks_per_read = 1;

long long count;

/* Note: we are working in a 32-bit architecture. In this architecture

long is the same as int (see limits.h) and LONG_MAX = INT_MAX

= 2^31 - 1 = 2147483647. We have to use (long long), for which

LLONG_MAX = 2^63 - 1 = 9223372036854775807. This is going to

have some very limiting ramifications, when we get to use ROMIO.

*/

/* variables for reading the command line */

74 CHAPTER 4. WORKING WITH PBS

extern char *optarg;

char *name = NULL;

int c;

/* error handling */

extern int errno;

size_of_junk = blocks_per_read * BLOCK_SIZE * sizeof(int);

while ((c = getopt(argc, argv, "f:l:h")) != EOF)

switch(c) {

case ’f’:

name = optarg;

(void)printf("reading %s\n", name);

break;

case ’l’:

if ((1 != sscanf (optarg, "%d", &blocks_per_read)) ||

(blocks_per_read < 1)) {

SYNOPSIS;

exit(1);

}

else {

size_of_junk = blocks_per_read * BLOCK_SIZE * sizeof(int);

printf("reading in chunks of size %d bytes\n", size_of_junk);

}

break;

case ’h’:

SYNOPSIS;

exit(0);

case ’?’:

SYNOPSIS;

exit(1);

}

if (name == NULL) {

SYNOPSIS;

exit(2);

}

if (! (junk = (int*) malloc(size_of_junk))) {

perror ("malloc");

exit(3);

}

else

printf("allocated %d bytes to junk\n", size_of_junk);

if (! (fp = fopen(name, "r"))) {

perror (name);

exit(4);

}

count = 0LL;

while (!feof(fp)){

n_of_items = fread (junk, sizeof(int), blocks_per_read * BLOCK_SIZE, fp);

if (ferror(fp)){

4.3. SPECIFICATION OF PBS JOBS 75

perror("fread");

CLOSE;

exit (6);

}

count = (long long) (count + n_of_items);

}

printf ("read %lld bytes\n", (long long)(count * sizeof(int)));

free((void *)junk);

CLOSE;

exit (0);

}

Let me explain briefly how the program works. We begin by reading the
command line first. The options are as before, but this time the option -l has
a different meaning. It specifies the size of the reading buffer in units of 4 MB.
Because the size of the reading buffer is no longer predefined, we have to allocate
it dynamically.

Observe that when I process the option -l, I use the number of parameters
matched by function sscanf in order to detect a possible error. The line of
the code that prints the synopsis of the program is now represented by a macro
SYNOPSIS, which is defined in the preamble of the program.

After we have finished with reading the command line and checking for
possible input errors, we allocate space for the junk array by calling malloc. If
malloc returns NULL, which means that it has failed to allocate requested space,
we print the error message and exit. The amount of requested space in bytes
is stored on the variable size_of_junk, which is calculated at the beginning of
the program and then recalculated again if the -l option is used. This way we
set a default value for it, which is 4 MB.

Having allocated the space, we open the file for reading this time.
Then we initialize the variable count, which will be used to count number

of integers found on the file, to 0LL. This notation means “zero in the long-long
format”. We have to use “long-long” for count, in order to count number of
integers that may be above INT_MAX, which is only 231 − 1 = 2147483647, i.e.,
about 2 billion. Our GPFS files may contain more than 2 billion integers.

The reading of the file is done within the while loop, which checks for the
end of file at the top of the loop. We read chunks of data of size size_of_junk
with fread, which returns number of items, in this case they are 32-bit integers,
read in a single operation. The number of items read is then added to count.

But before we increment count we check if the read has not returned an
error. This is not done by investigating the value returned by fread, but by
calling a special function ferror. This function operates on the file pointer, fp,
as does the function that detects the end-of-file condition, feof. If there has
been an error, we print the error message, then attempt to close the file (this is
what the CLOSE macro does), and exit raising error flag 6.

Assuming that all has gone well, we exit the while loop cleanly and print
number of bytes read from the file on standard output. Then we free the allo-
cated storage, close the file, and exit.

76 CHAPTER 4. WORKING WITH PBS

The Makefile for this program looks exactly the same as the Makefile for
mkrandfile, with the exception that the name mkrandfile is replaced with
xrandfile.

The manual entry for the program looks as follows:

XRANDFILE(1) I590 Programmer’s Manual XRANDFILE(1)

NAME

xrandfile - read a file in chunks of various sizes and

count number of bytes in it

SYNOPSIS

xrandfile -f filename [-l blocks-per-read] [-h]

DESCRIPTION

xrandfile reads a file in chunks of various sizes and

counts number of bytes in it. Can be used for disk-based

benchmarks.

OPTIONS

-f This parameter must be followed by input filename,

e.g. foo.

-l This parameter is optional. It must be followed by

an integer, which specifies the number of 4MB

blocks per read. The default is one 4MB block per

read.

-h Print a brief help message.

DIAGNOSTICS

Self explanatory and numerous.

EXAMPLES

$ xrandfile -f test -l 10

reading test

reading in chunks of size 41943040 bytes

allocated 41943040 bytes to junk

read 419430400 bytes

$ ls -l test

-rw-r--r-- 1 gustav ucs 419430400 Sep 12 16:20

test

BUGS

Command line processing may be fragile. There is no check-

ing if the requested buffer size does not exceed INT_MAX,

although malloc may catch this.

AUTHOR

Zdzislaw Meglicki <gustav@indiana.edu>

I590/7462 SEPTEMBER 2003 XRANDFILE(1)

4.3. SPECIFICATION OF PBS JOBS 77

A Four Part Job

We are now going to combine mkrandfile and xrandfile to construct a PBS
job that has four distinct parts:

1. Prepare a directory on the AVIDD GPFS.

2. Generate a data file in the directory.

3. Process the data file.

4. Clean up the GPFS directory and exit.

This is a simplistic prototype of a typical supercomputer job. The “generate a
data file” part may include staging the file from, e.g., HPSS, prior to executing
other parts of the code. The “clean up” part may include uploading a modified
data file to HPSS and deleting any unnecessary junk that the job may have
generated on the GPFS.

Here is the script:

[gustav@bh1 PBS]$ cat process.sh

#PBS -S /bin/bash

#PBS -N process

#PBS -o process_out

#PBS -e process_err

#PBS -q bg

#PBS -m abe

#PBS -M gustav@indiana.edu

#

Prepare a directory on the AVIDD GPFS.

[-d /N/gpfs/gustav] || mkdir /N/gpfs/gustav

cd /N/gpfs/gustav

rm -f test

Generate a data file in the directory.

mkrandfile -f test -l 100

Process the data file.

xrandfile -f test -l 4

Clean up the GPFS directory and exit.

rm -f test

exit 0

[gustav@bh1 PBS]$

Let us submit the script and inspect the output of the job:

[gustav@bh1 PBS]$ qsub process.sh

13744.bh1.avidd.iu.edu

[gustav@bh1 PBS]$ qstat 13744.bh1.avidd.iu.edu

Job id Name User Time Use S Queue

---------------- ---------------- ---------------- -------- - -----

13744.bh1 process gustav 0 R bg

[gustav@bh1 PBS]$ qstat 13744.bh1.avidd.iu.edu

qstat: Unknown Job Id 13744.bh1.avidd.iu.edu

[gustav@bh1 PBS]$ cat process_out

writing on test

writing 100 blocks of 1048576 random integers

reading test

reading in chunks of size 16777216 bytes

78 CHAPTER 4. WORKING WITH PBS

allocated 16777216 bytes to junk

read 419430400 bytes

[gustav@bh1 PBS]$

Well, it all works as expected.
In the following sections we are going to learn how we can submit a multi-

stage task like this in the form of several mutually dependent PBS jobs.

Submitting Jobs From Within Jobs

In this section we are going to split the job discussed in section 4.3.4 into four
separate jobs. The first job will prepare the GPFS directory and having finished
its task, it will submit the second job. The second job will then generate the
data file, and having done so it will submit the third job. The third job will
process the data file and then it will submit the fourth job, which will will clean
up and exit the sequence. The jobs are constructed to be run on the IUPUI
cluster, avidd-i.iu.edu.

Here is what the first job script looks like:

[gustav@ih1 PBS]$ cat first.sh

#PBS -S /bin/bash

#PBS -N first

#PBS -o first_out

#PBS -e first_err

#PBS -q bg

#

first.sh

#

Prepare a directory on the AVIDD GPFS.

[-d /N/gpfs/gustav] || mkdir /N/gpfs/gustav

cd /N/gpfs/gustav

rm -f test

echo "/N/gpfs/gustav prepared and cleaned."

Now submit second.sh.

ssh ih1 "cd PBS; /usr/pbs/bin/qsub second.sh"

echo "second.sh submitted."

Exit cleanly.

exit 0

[gustav@ih1 PBS]$

The new element in this job is the line:

ssh ih1 "cd PBS; /usr/pbs/bin/qsub second.sh"

Remember that the job will not run on the head node. It will run on a com-
putational node. But the PBS on the AVIDD cluster is configured so that you
cannot submit jobs from computational nodes. So here we have to execute qsub
as a remote command on the IUPUI head node ih1 by using the secure shell,
since this is the only remote execution shell supported on the cluster.

The first command passed to ssh is “cd PBS”. On having made the connec-
tion the secure shell will land me in my home directory. But I don’t want to
submit the job from there, because then the job output and error files will be
generated in my home directory too. Instead I want all output and error files
to be written on my ~/PBS subdirectory. So we go to ~/PBS first.

4.3. SPECIFICATION OF PBS JOBS 79

Then we submit the job. Observe that I use the full path name of the
qsub command. The default bash configuration on the AVIDD cluster is such
that the remote shell cannot find qsub otherwise. This, of course, I could fix
by tweaking my own environment until it does (the PATH should normally be
defined on .bashrc, not on .bash_profile), but it is a good practice to specify
the full path of the command in this context anyway.

The script second.sh submitted by first.sh looks as follows:

[gustav@ih1 PBS]$ cat second.sh

#PBS -S /bin/bash

#PBS -N second

#PBS -o second_out

#PBS -e second_err

#PBS -q bg

#PBS -j oe

#

second.sh

#

The AVIDD GPFS directory should have been prepared by first.sh.

Generate the data file.

cd /N/gpfs/gustav

time mkrandfile -f test -l 1000

ls -l test

echo "File /N/gpfs/gustav/test generated."

Now submit third.sh.

ssh ih1 "cd PBS; /usr/pbs/bin/qsub third.sh"

echo "third.sh submitted."

Exit cleanly.

exit 0

[gustav@ih1 PBS]$

There is only one novelty in this script, which you haven’t seen yet. I am using
a new PBS directive:

#PBS -j oe

This directive merges the standard error and standard output and writes both
on the standard output file. If we were to use

#PBS -j eo

the two streams would be merged too, and the output would be written on the
standard error file instead.

The reason I want both streams merged in this case is because the UNIX
command time writes its diagnostics, i.e., the amount of CPU and wall clock
time used by the program, on standard error. But I want this to be written
together with the length of the file generated on standard output, in case I want
to check the IO.

After this script has finished generating the file, it will submit the third
script, called third.sh. Here is what the third script looks like:

[gustav@ih1 PBS]$ cat third.sh

#PBS -S /bin/bash

#PBS -N third

#PBS -o third_out

#PBS -e third_err

80 CHAPTER 4. WORKING WITH PBS

#PBS -q bg

#PBS -j oe

#

third.sh

#

Process the data file generated by second.sh.

cd /N/gpfs/gustav

time xrandfile -f test -l 4

echo "File /N/gpfs/gustav/test processed."

Submit fourth.sh.

ssh ih1 "cd PBS; /usr/pbs/bin/qsub fourth.sh"

echo "fourth.sh submitted."

Exit cleanly.

exit 0

[gustav@ih1 PBS]$

Here I have also requested that standard error and standard output streams be
merged.

And finally the last, fourth script, which is called fourth.sh:

[gustav@ih1 PBS]$ cat fourth.sh

#PBS -S /bin/bash

#PBS -N fourth

#PBS -o fourth_out

#PBS -e fourth_err

#PBS -q bg

#

fourth.sh

#

Clean up everything in the GPFS directory

cd /N/gpfs/gustav

rm -f test

echo "Directory /N/gpfs/gustav cleaned."

exit 0

[gustav@ih1 PBS]$

Here is how to work all this. You submit the whole sequence on the IUPUI
head node ih1 by submitting just the first of the four scripts. The rest takes
care of itself:

[gustav@ih1 PBS]$ qsub first.sh

13658.ih1.avidd.iu.edu

[gustav@ih1 PBS]$ while sleep 10

> do

> qstat | grep gustav

> done

13659.ih1 second gustav 0 R bg

...

13659.ih1 second gustav 00:00:26 R bg

...

13659.ih1 second gustav 00:00:46 R bg

...

13675.ih1 third gustav 0 R bg

...

^C

[gustav@ih1 PBS]$ ls

Makefile first_err fourth_err nodes.sh second_out third_out

bc.sh first_out fourth_out process.sh simple.sh xterm.sh

4.3. SPECIFICATION OF PBS JOBS 81

first.sh fourth.sh job.sh second.sh third.sh

[gustav@ih1 PBS]$ cat first_out

/N/gpfs/gustav prepared and cleaned.

13659.ih1.avidd.iu.edu

second.sh submitted.

[gustav@ih1 PBS]$ cat second_out

writing on test

writing 1000 blocks of 1048576 random integers

real 5m8.000s

user 0m39.280s

sys 0m17.240s

-rw-r--r-- 1 gustav ucs 4194304000 Sep 13 13:28 test

File /N/gpfs/gustav/test generated.

13675.ih1.avidd.iu.edu

third.sh submitted.

[gustav@ih1 PBS]$ cat third_out

reading test

reading in chunks of size 16777216 bytes

allocated 16777216 bytes to junk

read 4194304000 bytes

real 0m42.039s

user 0m0.020s

sys 0m10.730s

File /N/gpfs/gustav/test processed.

13678.ih1.avidd.iu.edu

fourth.sh submitted.

[gustav@ih1 PBS]$ cat fourth_out

Directory /N/gpfs/gustav cleaned.

[gustav@ih1 PBS]$

Observe that IO is better on the computational nodes than on the head node.
The reading program xrandfile, which has very little computation (the user
CPU time is only 0.02s), returns transfer rate of 95 MB/s (remember that
1MB = 220B = 1048576B).

Why do things this way?

If you have a very long job that can be divided into multiple separate tasks
that can execute separately it is usually a good idea to do so. In case something
goes wrong and the system crashes, or has to be taken down for maintenance,
you won’t lose the whole lot. In fact, the jobs may simply run without any
problems at all, and the maintenance schedule will simply slide in between.
Furthermore, if the system is configured so that there are restrictions on the
wall clock time or CPU time consumed by PBS jobs (wall clock time restrictions
make more sense in this context than CPU time restrictions – can you figure
out why?), you may not be able to fit everything into a single job.

A Multi-Job Job

Organizing your jobs into multiple batch files may lead to confusion, especially
if files are many and they depend on each other in funny ways. It is better to
compile all such tasks on a single file and submit it several times in order to
execute various parts of the task. But how can we differentiate between various

82 CHAPTER 4. WORKING WITH PBS

submissions of the same file? The answer is with environmental variables . To
begin with the PBS directive

#PBS -V

will make all variables defined in the environment from which the job is sub-
mitted available to the job. We can then add more variables by using the -v

option followed by variable specifications.
In the following script I have combined first.sh, second.sh, third.sh and

fourth.sh into a single script. Here is the listing:

[gustav@ih1 PBS]$ cat all.sh

#PBS -S /bin/bash

#PBS -q bg

#PBS -V

LOG=/N/B/gustav/PBS/all_log

case $STAGE in

1)

[-d /N/gpfs/gustav] || mkdir /N/gpfs/gustav

cd /N/gpfs/gustav

rm -f test

echo "/N/gpfs/gustav prepared and cleaned."

ssh ih1 "cd PBS; /usr/pbs/bin/qsub -v STAGE=2 all.sh"

echo "Stage 2 submitted."

;;

2)

cd /N/gpfs/gustav

time mkrandfile -f test -l 1000

ls -l test

echo "File /N/gpfs/gustav/test generated."

ssh ih1 "cd PBS; /usr/pbs/bin/qsub -v STAGE=3 all.sh"

echo "Stage 3 submitted."

;;

3)

cd /N/gpfs/gustav

time xrandfile -f test -l 4

echo "File /N/gpfs/gustav/test processed."

ssh ih1 "cd PBS; /usr/pbs/bin/qsub -v STAGE=4 all.sh"

echo "Stage 4 submitted."

;;

4)

cd /N/gpfs/gustav

rm -f test

echo "Directory /N/gpfs/gustav cleaned."

;;

esac >> $LOG 2>&1

exit 0

[gustav@ih1 PBS]$

The action taken by the script depends on the value of STAGE. If $STAGE is 1
then we prepare /N/gpfs/gustav and then submit the same script , but this
time we set STAGE to 2 with the

-v STAGE=2

option.
In STAGE 2 we generate the data file with mkrandfile and resubmit the same

script with -v STAGE=3.

4.3. SPECIFICATION OF PBS JOBS 83

In STAGE 3 we process the data file with xrandfile and resubmit the script
with -v STAGE=4.

Finally in STAGE 4 we clean /N/gpfs/gustav and exit.
Observe that all output is collected on one file /N/B/gustav/PBS/all_log

to which each instantiation of the script appends its output. Also observe that
we try to capture standard error on this file too. This is what the redirection

2>&1

means.
Because we take care of collecting all standard output and standard error,

the output and error files generated by PBS will be empty.
The job is submitted as follows:

[gustav@ih1 PBS]$ qsub -v STAGE=1 all.sh

14204.ih1.avidd.iu.edu

[gustav@ih1 PBS]$

We are then going to see all.sh in the qstat listing but with a changing ID
number.

[gustav@ih1 PBS]$ while sleep 10

> do

> qstat | grep gustav

> done

14205.ih1 all.sh gustav 0 R bg

...

14205.ih1 all.sh gustav 00:00:13 R bg

...

14205.ih1 all.sh gustav 00:00:34 R bg

...

14205.ih1 all.sh gustav 00:00:57 R bg

...

14208.ih1 all.sh gustav 0 R bg

...

Eventually the execution of all four stages completes and we get the following
listing on all_log:

[gustav@ih1 PBS]$ cat all_log

/N/gpfs/gustav prepared and cleaned.

14205.ih1.avidd.iu.edu

Stage 2 submitted.

writing on test

writing 1000 blocks of 1048576 random integers

real 5m36.706s

user 0m38.510s

sys 0m18.780s

-rw-r--r-- 1 gustav ucs 4194304000 Sep 13 16:35 test

File /N/gpfs/gustav/test generated.

14208.ih1.avidd.iu.edu

Stage 3 submitted.

reading test

reading in chunks of size 16777216 bytes

allocated 16777216 bytes to junk

read 4194304000 bytes

84 CHAPTER 4. WORKING WITH PBS

real 0m33.902s

user 0m0.010s

sys 0m12.210s

File /N/gpfs/gustav/test processed.

14209.ih1.avidd.iu.edu

Stage 4 submitted.

Directory /N/gpfs/gustav cleaned.

[gustav@ih1 PBS]$

PBS Dependency Lists

In this section we are going to do what we have done in section 4.3.4, but we
will use PBS facility for defining job dependencies instead. We will have four
scripts as before, but the scripts will be simpler and they will not submit other
scripts. Instead we are going to tell PBS how our jobs depend on other jobs,
so that PBS will wait for the first job to finish before it will release the second
job. Then PBS will wait for the second job to finish, before the third job gets
released, and so on. All jobs will be submitted at the same time from a single
shell script.

The four jobs, first_1.sh, second_1.sh, third_1.sh and fourth_1.sh
look the same as the jobs in section 4.3.4, first.sh, second.sh, verb—third.sh—
and fourth.sh, with the exception that the job submission lines were com-
mented out. The real trickery is in the shell script that does the submissions.
Here is the script:

[gustav@bh1 PBS]$ cat submit_1

#!/bin/bash

FIRST=‘qsub first_1.sh‘

echo $FIRST

SECOND=‘qsub -W depend=afterok:$FIRST second_1.sh‘

echo $SECOND

THIRD=‘qsub -W depend=afterok:$SECOND third_1.sh‘

echo $THIRD

FOURTH=‘qsub -W depend=afterok:$THIRD fourth_1.sh‘

echo $FOURTH

exit 0

[gustav@bh1 PBS]$

Command qsub returns the job ID and this is normally printed on standard
output. Here we capture the output of qsub in variables FIRST, SECOND, THIRD
and FOURTH. The second job is submitted with option

-W depend=afterok:$FIRST

This means that the job itself is going to be put on hold until the first job has
completed with no errors . Only then the second job is going to be released.
The third and fourth jobs are treated similarly.

Let us run the script and see what happens:

[gustav@bh1 PBS]$./submit_1

13876.bh1.avidd.iu.edu

13877.bh1.avidd.iu.edu

13878.bh1.avidd.iu.edu

13879.bh1.avidd.iu.edu

[gustav@bh1 PBS]$ qstat | grep gustav

4.3. SPECIFICATION OF PBS JOBS 85

13876.bh1 first gustav 0 Q bg

13877.bh1 second gustav 0 H bg

13878.bh1 third gustav 0 H bg

13879.bh1 fourth gustav 0 H bg

[gustav@bh1 PBS]$ qstat -f 13878.bh1

Job Id: 13878.bh1.avidd.iu.edu

Job_Name = third

Job_Owner = gustav@bh1.avidd.iu.edu

job_state = H

queue = bg

server = bh1.avidd.iu.edu

Checkpoint = u

ctime = Sat Sep 13 14:33:26 2003

depend = afterok:13877.bh1.avidd.iu.edu@bh1.avidd.iu.edu,

beforeok:13879.bh1.avidd.iu.edu@bh1.avidd.iu.edu

Error_Path = bh1.avidd.iu.edu:/N/B/gustav/PBS/third_err

Hold_Types = s

Join_Path = oe

Keep_Files = n

Mail_Points = a

mtime = Sat Sep 13 14:33:26 2003

Output_Path = bh1.avidd.iu.edu:/N/B/gustav/PBS/third_out

Priority = 0

qtime = Sat Sep 13 14:33:26 2003

Rerunable = True

Resource_List.ncpus = 1

Resource_List.nodect = 1

Resource_List.nodes = 1

Resource_List.walltime = 00:30:00

Shell_Path_List = /bin/bash

Variable_List = PBS_O_HOME=/N/B/gustav,PBS_O_LOGNAME=gustav,

PBS_O_PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/b

in:/usr/local/gm/bin:/usr/lpp/mmfs/bin:/opt/intel/compiler70/ia32/bin:/

usr/local/maui/bin:/usr/pbs/bin:/usr/pbs/sbin:/opt/pgi/linux86/bin:/N/h

pc/totalview/bin:/opt/xcat/bin:/opt/xcat/sbin:/opt/xcat/i686/bin:/opt/x

cat/i686/sbin:/N/B/gustav/bin,PBS_O_MAIL=/var/spool/mail/gustav,

PBS_O_SHELL=/bin/bash,PBS_O_HOST=bh1.avidd.iu.edu,

PBS_O_WORKDIR=/N/B/gustav/PBS,PBS_O_QUEUE=bg

[gustav@bh1 PBS]$

We have generated four jobs, which were all submitted at roughly the same
time. But only the first job is queued, whereas the remaining three jobs are
on hold. Requesting the full listing of the third job with qstat -f shows the
dependency:

depend = afterok:13877.bh1.avidd.iu.edu@bh1.avidd.iu.edu,

beforeok:13879.bh1.avidd.iu.edu@bh1.avidd.iu.edu

The job can be started only after 13877 has completed without errors. Observe
that PBS has recognized another dependency, which I have not specified explic-
itly. Namely that after this job, 13878, has completed without errors, then job
13879 should be started, i.e., that there is another job that depends on this one.

The dependency is specified by using the -W option to qsub. The option is
generally used for additional attributes , of which dependency is one. The word
depend that flags this attribute must be followed by a list of jobs on which the
submitted job depends qualified with types of dependencies, e.g.,

86 CHAPTER 4. WORKING WITH PBS

-W depend=afterok:13876.bh1.avidd.iu.edu:13877.bh1.avidd.iu.edu

Here we state that the job can be released from hold only after two preced-
ing jobs, 13876.bh1.avidd.iu.edu and 13877.bh1.avidd.iu.edu, have com-
pleted their run without errors.

The jobs get released one after another. This can be seen by running qstat
every now and then:

[gustav@bh1 PBS]$ qstat | grep gustav

13878.bh1 third gustav 00:00:05 R bg

13879.bh1 fourth gustav 0 H bg

[gustav@bh1 PBS]$

Eventually everything completes and we are left with four logs in the PBS
directory:

[gustav@bh1 PBS]$ cat *_out

/N/gpfs/gustav prepared and cleaned.

Directory /N/gpfs/gustav cleaned.

writing on test

writing 1000 blocks of 1048576 random integers

real 2m42.813s

user 0m40.040s

sys 0m14.760s

-rw-r--r-- 1 gustav ucs 4194304000 Sep 13 14:44 test

File /N/gpfs/gustav/test generated.

reading test

reading in chunks of size 16777216 bytes

allocated 16777216 bytes to junk

read 4194304000 bytes

real 2m51.521s

user 0m0.000s

sys 0m12.600s

File /N/gpfs/gustav/test processed.

[gustav@bh1 PBS]$

Observe that the IO on writing is 32 MB/s and only 23 MB/s on reading. This
illustrates yet again how much IO can vary depending on the system load and
configuration.

4.4 Checkpointing and Resubmission

In this section we will discuss how to time, checkpoint and automatically resub-
mit PBS jobs.

PBS can checkpoint under Cray Unicos automatically, but not under Linux.
But checkpointing is a very intricate matter anyway, and if the state of the
program depends on external files as well as on its memory image, then auto-
matic checkpointing may not capture the full state of the program correctly.
Additional complications arise when you attempt to checkpoint a parallel pro-
gram. Consequently, it is usually a good idea to equip your program in its own
checkpointing ability. This is not difficult and should be done for every serious
project – especially if you are the developer.

4.4. CHECKPOINTING AND RESUBMISSION 87

The procedures discussed in this section are not limited to PBS. They should
work for any batch submission system, as long as the batch jobs are described
in terms of shell scripts, and as long as the system in question is IEEE-1003
(POSIX) compliant. They are applicable both to sequential and parallel jobs.

There are four issues that need to be addressed when automatically check-
pointing and resubmitting your PBS jobs.

Timing the job Your job must know how much CPU or wall-clock time it
used so far, and how much time there is still left.

Saving the state of the job This usually involves dumping a data file which
contains an essential summary of the state of the system that is being com-
puted. That file will be read when the job is restarted, and computation
will commence from the point reached when the file has been dumped.

Informing the parent process (usually a shell) that the computation should be continued
This can be done, for example, by exiting the job with a non-zero exit sta-
tus. Alternatively you could write a specific message on a log file (to be
searched for by the shell script when the job exits) or create an empty flag
file.

Resubmitting the job Depending on whether the job should be continued,
the PBS script, before exiting, should either

1. resubmit itself, possibly with certain new flags or variables set up, or

2. clean up and inform the user that the computation has been com-
pleted.

4.4.1 Timing a Job

Probably most C-language programmers know how to time their jobs, because
functions time and clock are parts of the standard C library, which is defined
by ANSI C specifications.

Function time takes a pointer to time_t as an argument and returns a value
of time_t on exit.

On the AVIDD system time_t is defined in a somewhat convoluted man-
ner. First it is defined as equivalent to __time_t on /usr/include/time.h

and then __time_t is defined as long int on /usr/include/bits/types.h.
But, as I have already remarked in section 4.3.4, long int is only a 32-bit in-
teger on the AVIDD’s IA32 nodes – as specified on /usr/include/limits.h

in the #if __WORDSIZE == 64 clause. Consequently, time_t can count up to
LONG_MAX, which on the 32-bit architecture is 2147483647.

If the pointer passed to function time is not NULL, the return value is also
placed in whatever location the pointer points at. The returned value is the
current calendar time, in seconds, since the Epoch, i.e., 00:00:00 GMT, 1st of

88 CHAPTER 4. WORKING WITH PBS

January 1970: popularly celebrated as the day when UNIX was born. Because
the maximum value returned is LONG_MAX, this gives us about

2147483647 s

365 days/year× 24 hours/day× 3600 seconds/hour
≈ 68 years

until the clock on 32-bit systems is going to wrap around, which is not until
2038.

If you think there won’t be any 32-bit systems by that time and that they
won’t rely on the old fashioned UNIX function time, don’t be so sure. We’ve
seen in the year 2000 how much bad code and antiquated computer architectures
lingered in corporate computer rooms and I am quite certain that we are going
to have similar problems in 2038.

You would use function time in order to find out about the elapsed wall-
clock time. If you know that, say, your queue allows only up to two wall-clock
hours (7200 seconds) per job, by checking how much wall-clock time you’ve used
so far, you will know how much time there is still left too.

Function clock does not take any arguments and returns a value of type
clock_t, which on the AVIDD IA32 nodes is defined to be equivalent to __clock_t
on /usr/include/time.hand then __clock_t is defined as long int on /usr/include/bits/types.h.
So clock_t can also count up to 231 − 1 = 2147483647 only.

This function returns CPU time that elapsed since the execution of the
program commenced. The returned time is not in seconds. It is in clock cycles.
There is a constant CLOCKS_PER_SEC defined on /usr/include/time.h, which
tells how many clock cycles there are per second. So, in order to find out how
many CPU seconds you have used so far, you have to divide the result obtained
by calling clock by CLOCKS_PER_SEC. This is what section 3 of Linux manual
will tell you.

But there is a slight complication here. Because of the insanity of the
CAE XSH convention CLOCKS_PER_SEC is forcibly set to 1 million on all XSI-
conformant systems, regardless of how fast their real clock is. So CLOCKS_PER_SEC
is useless for us. On the other hand, since all other standard unix facilities use
CLOCKS_PER_SEC too, as you will see soon enough, including PBS, we can just as
well stick to it. After all we want to use it to protect our job against a possible
PBS CPU-time-out.

Function clock wraps around very often. Present day chips are clocked at
very high speeds, e.g., 3 GHz, and at these speeds, the output is going to wrap
around every 0.7 seconds or so. Luckily, although I am going to show you how
to use clock in the example below, PBS queues are seldom configured with
respect to CPU time. It is usually the wall-clock time that really matters and
not the CPU time, since the whole idea of a batch queue system is to protect
the system against hogging1. You can easily imagine a job that is IO-bound
and uses very little CPU time. Such a job could hog the resources for a very
long wall-clock time, if the queue was CPU-time bound only.

The following example illustrates how to use functions time and clock.

1In our context to hog means “to take in excess of one’s due”, as you can check in the

on-line Webster dictionary.

4.4. CHECKPOINTING AND RESUBMISSION 89

/*

* Perform 10,000,000 square roots and divisions, sleep for 5 seconds.

* Used to exercise time and clock functions.

*

* %Id: c-time.c,v 1.3 2003/09/18 21:57:08 gustav Exp %

*

* %Log: c-time.c,v %

* Revision 1.3 2003/09/18 21:57:08 gustav

* *** empty log message ***

*

* Revision 1.2 2003/09/18 21:55:03 gustav

*

*/

#include <time.h> /* functions time and clock defined here */

#include <stdio.h> /* function printf defined here */

#include <unistd.h> /* function sleep defined here */

#include <stdlib.h> /* function exit defined here */

#include <math.h> /* function sqrt defined here */

main()

{

time_t t0, t1; /* time_t is defined on <bits/types.h> as long */

clock_t c0, c1; /* clock_t is defined on <bits/types.h> as long */

long count;

double a, b, c;

printf ("using UNIX function time to measure wallclock time ... \n");

printf ("using UNIX function clock to measure CPU time ... \n");

t0 = time(NULL);

c0 = clock();

printf ("\tbegin (wall): %ld seconds\n", (long) t0);

printf ("\tbegin (CPU): %ld cycles\n", (long) c0);

printf ("\t\tsleep for 5 seconds ... \n");

sleep(5);

printf ("\t\tperform some computation ... \n");

for (count = 1l; count < 10000000l; count++) {

a = sqrt((double)count); /* square root is a very slow operation */

b = 1.0/a; /* division is also a rather slow operation */

c = b - a; /* subtraction takes very little time */

}

t1 = time(NULL);

c1 = clock();

printf ("\tend (wall): %ld seconds\n", (long) t1);

printf ("\tend (CPU); %ld cycles\n", (long) c1);

printf ("\telapsed wall clock time: %ld seconds\n", (long) (t1 - t0));

printf ("\telapsed CPU time: %f seconds\n", (float) (c1 - c0)/CLOCKS_PER_SEC);

exit(0);

}

90 CHAPTER 4. WORKING WITH PBS

We compile this program with Makefile copied from our earlier programs. The
only thing you need to change is to add

-lm

at the end of the command line that links the program in order to load the
mathematics library, which contains the code of function sqrt.

[gustav@bh1 c-time]$ make

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/c-time.c,v c-time.c

RCS/c-time.c,v --> c-time.c

revision 1.3

done

cc -c c-time.c

cc -o c-time c-time.o -lm

[gustav@bh1 c-time]$

And now we can run this program as follows

[gustav@bh1 c-time]$ time ./c-time

using UNIX function time to measure wallclock time ...

using UNIX function clock to measure CPU time ...

begin (wall): 1063922790 seconds

begin (CPU): 0 cycles

sleep for 5 seconds ...

perform some computation ...

end (wall): 1063922796 seconds

end (CPU); 1080000 cycles

elapsed wall clock time: 6 seconds

elapsed CPU time: 1.080000 seconds

real 0m6.204s

user 0m1.080s

sys 0m0.000s

[gustav@bh1 c-time]$

Observe that the CPU time calculated by our program agrees perfectly with
the CPU time returned by the Linux command time. Our estimate of the wall
clock time is off by 0.2 s, because our quantum of time is one second.

It is possible to measure elapsed time more accurately than down to a second.
The UNIX program time obviously does. There is a Fortran function etime,
which returns elapsed time with the resolution to a nanosecond, but this function
does not have a simple, portable C-language equivalent. For the purpose of
timing a program running for some hours under PBS the one-second resolution
is good enough. For the purpose of timing loops inside the program, of course,
it isn’t, but then you are interested in the CPU time, not in the wall-clock time
and you should use function clock, which yields the best resolution possible,
i.e., down to a single clock cycle.

4.4. CHECKPOINTING AND RESUBMISSION 91

Exercises

1 Use function time to wall-clock time writes and reads in programs mkrandfile
(section 3.4.3) and xrandfile (section 4.3.4). You must ensure that in-
dividual writes and reads are sufficiently large for this to work, because
function time returns time with the accuracy of one second, which is a
very long time in computing. But this may just about work, if individual
writes and reads are huge and take long time.

2 Implement an option that can be used to turn timing on. Design the pro-
gram’s logic so that timing is turned off by default.

4.4.2 Restoring and Saving the State of a Job

In this section we shall discuss how to save and then restore the state of the
computation between successive invocations of a program via PBS. The basic
idea is that the only way any information can be transferred between successive
invocations of a program is either

1. through a file, or

2. through an environmental variable, or

3. through command line switches

Transferring data through a file is perhaps the most common practice. Using
files you can transfer very large amounts of data: e.g., the whole state of a 3D
flow, or the whole state of a protein, or the whole state of a car in a crash
simulation. Basically, files can be used to transfer any information from one
instantiation of a program to another, including even small items of information,
such as whether the program should restart a computation from a previously
reached state, or whether it should start a new computation.

Instead of writing on files, the program, in principle, can also write on user’s
environment. On the next invocation the program can check for existence and
state of certain predefined environmental variables, and obtain required infor-
mation that way. This method is good for transferring small amounts of infor-
mation, e.g., the name of a checkpoint file, or the request to initialize a run, but
not for very large data sets.

Of course, using environmental variables will not work if the variables them-
selves are not transmitted from one PBS process to another one. And because
we cannot submit jobs directly from computational nodes on the AVIDD cluster
and have to resort to the ssh kludge instead, transmitting the whole environ-
ment is going to be rather difficult. In section 4.3.4 we have used the -v option
to qsub to transmit and set just one environmental variable and this did the
trick there. We are going to resort to a similar technique here.

We are going to write the information about the name of the checkpoint
file and whether the job should be continued at the end of a log file. After our
application exits, the PBS script responsible for the execution of the application

92 CHAPTER 4. WORKING WITH PBS

can inspect the log, and if it finds the instruction that the job should be con-
tinued, it can resubmit itself with appropriate values of certain environmental
variables passed to its next instantiation by the means of the -v options. When
the script is reincarnated by PBS, our application will begin by checking for
the presence of these variables in the environment and for their content. From
there it will learn if it should continue or reinitialize the computation, and if it
should continue, where it should look for information about the state reached
by the previous run.

The following listing shows a very simple C-language program which, if re-
quested, reads the state of a computation from a file. If not requested it initial-
izes a new computation. Then some further computation is performed and the
new state is again saved on a file.

/*

* Obtain information about the status of the computation and the name of the

* checkpoint file (if present) from the environment. Open the checkpoint

* file if the job is to be continued and read the state of the computation

* from it.

*

* Sleep for 5 seconds (to make the computation look more substantial)

* and perform the computation itself.

*

* If checkpointing has been requested then if the job has been restarted,

* rename the old checkpoint file, then write the state of the computation

* on a new checkpoint file.

*

* %Id: rsave.c,v 1.1 2003/09/19 19:24:08 gustav Exp %

* %Log: rsave.c,v %

* Revision 1.1 2003/09/19 19:24:08 gustav

* Initial revision

*

*

*/

#include <stdio.h> /* has definitions of printf, fprintf, fopen, fscanf,

fclose, fflush, perror, rename and BUFSIZ */

#include <stdlib.h> /* has definitions of getenv and exit */

#include <unistd.h> /* has definition of sleep */

#include <string.h> /* has definitions of strcpy and strcat */

main()

{

char *restart_name, *restart, old_restart_name[BUFSIZ];

FILE *restart_file;

int n;

/* Is this a continued job or a new one? */

if (! (restart = getenv ("RSAVE_RESTART"))) {

printf ("Starting a new run.\n");

n = 0;

}

else {

if (! (restart_name = getenv ("RSAVE_CHECKFILE"))) {

fprintf (stderr, "error: no checkpoint file for the restart job\n");

4.4. CHECKPOINTING AND RESUBMISSION 93

exit (1);

}

else {

printf ("Restarting the job from %s.\n", restart_name);

if (! (restart_file = fopen(restart_name, "r"))) {

perror (restart_name);

exit (2);

}

else {

if (! (fscanf (restart_file, "%d", &n) > 0)) {

fprintf (stderr, "%s: input file format error\n", restart_name);

exit (3);

}

else {

fclose (restart_file);

}

}

}

}

printf ("n = %d\n", n);

printf ("\tcomputing ... "); fflush (stdout);

sleep (5);

n++;

printf ("done.\n");

printf ("n = %d\n", n);

if (! (restart_name = getenv ("RSAVE_CHECKFILE"))) {

printf ("checkpointing not requested, exiting...\n");

exit (0);

}

else {

if (restart) {

strcpy (old_restart_name, restart_name);

strcat (old_restart_name, ".old");

printf ("renaming old restart file to %s\n", old_restart_name);

if (0 > rename (restart_name, old_restart_name)) {

perror (old_restart_name);

exit (4);

}

}

printf ("saving data on %s\n", restart_name);

if (! (restart_file = fopen (restart_name, "w"))) {

perror (restart_name);

exit (5);

}

else {

fprintf (restart_file, "%d\n", n);

fclose (restart_file);

}

}

exit (0);

}

I’ll explain how this program works in detail below, but first let’s just see what
it does:

[gustav@bh1 rsave]$ make

94 CHAPTER 4. WORKING WITH PBS

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/rsave.c,v rsave.c

RCS/rsave.c,v --> rsave.c

revision 1.1

done

cc -c rsave.c

cc -o rsave rsave.o

[gustav@bh1 rsave]$ env | grep RSAVE

[gustav@bh1 rsave]$ export RSAVE_CHECKFILE=rsave.dat

[gustav@bh1 rsave]$./rsave

Starting a new run.

n = 0

computing ... done.

n = 1

saving data on rsave.dat

[gustav@bh1 rsave]$ export RSAVE_RESTART=yes

[gustav@bh1 rsave]$./rsave

Restarting the job from rsave.dat.

n = 1

computing ... done.

n = 2

renaming old restart file to rsave.dat.old

saving data on rsave.dat

[gustav@bh1 rsave]$ cat rsave.dat

2

[gustav@bh1 rsave]$./rsave

Restarting the job from rsave.dat.

n = 2

computing ... done.

n = 3

renaming old restart file to rsave.dat.old

saving data on rsave.dat

[gustav@bh1 rsave]$./rsave

Restarting the job from rsave.dat.

n = 3

computing ... done.

n = 4

renaming old restart file to rsave.dat.old

saving data on rsave.dat

[gustav@bh1 rsave]$

Here is the promised explanation of the program in detail.
The first thing that the program does, is to check for the existence of the en-

vironmental variable RSAVE_RESTART. If the variable does not exist, the program
starts a new run and initialises n to 0.

If the variable RSAVE_RESTART exists (it doesn’t really matter what is its
value) then we first check if another variable, which should specify the name of
the checkpoint file, RSAVE_CHECKFILE, exists too. If it doesn’t then we have no
way to find the name of the checkpoint file. So in that case we print an error
message, flag an error on exit (value 1) and exit.

If the variable RSAVE_CHECKFILE exists then we use its value as the name of
the checkpoint file, print a message about restarting the job from that file and

4.4. CHECKPOINTING AND RESUBMISSION 95

attempt to open it for reading.

If for some reason the file cannot be opened, we print the diagnostic on
standard output (with perror), flag an error (value 2) and exit.

If the file has been opened without problems we try to read an integer number
from it. That integer is the whole object of our simple computation in this
program and it represents the state of the computation.

It may happen that for some reason the checkpoint file does not contain
that integer. In that case we print the corresponding error message, flag an
error (value 3) and exit.

But if everything goes well, by this time we should have our state of the
system in hand, so we close the checkpoint file (in case of an error exit the file
would be closed automatically) and commence the computation.

The computation is quite trivial. We simply increment the integer read from
the file by 1. In order to add a little more body to the program we also sleep
for 5 seconds (this is called putting on weight). We will need that sleep in our
next example, which will combine timing with saving and restoring.

Once the computation is finished we again check the environmental variable
RSAVE_CHECKFILE. Observe that this variable has not been looked up so far by
the branch of the program, that does the initialisation. That is why we do it
here again, even though the other branch, which is responsible for the restarting
of the job, would have looked it up already.

If the variable RSAVE_CHECKFILE is not defined, we write the message that
“checkpointing has not been requested” and exit. No error condition is flagged
this time.

If the variable RSAVE_CHECKFILE exists, and if the job is a restarted one,
then we attempt to rename the original restart file to whatever its old name
was with a suffix .old appended.

If for some reason that cannot be done, we print a diagnostic on standard
error using perror, flag an error (value 4) and exit.

Otherwise, having renamed the old restart file, we attempt to open, this
time for writing, a new file bearing the old name. If for some reason that
cannot be done a diagnostic is printed on standard error with perror, an error
exit is flagged (value 5) and the program aborts.

Otherwise, i.e., if all went well and we have the new restart file opened, we
write the new value of n on it, close it, and exit with status 0.

This is really quite simple stuff. Whatever complexity there is in the pre-
sented example, it derives from my attempt to make the program robust. Re-
gardless of whether variables RSAVE_RESTART and RSAVE_CHECKFILE exist, re-
gardless of whether the data file itself exists, the program should always do
something more or less sensible, write meaningful error messages if need be,
and exit gracefully conveying a meaningful exit value to the shell. For seasoned
C and C++ programmers all this is just bread and butter.

96 CHAPTER 4. WORKING WITH PBS

4.4.3 Restoring, Timing and Saving a Job: the Complete
Application

In this section we shall combine job timing with job restoring and saving, and
produce a complete application, which, in the next section, will be combined
with a PBS script, so as to produce an automatically resubmitting job.

The program is a slight modification of our restore and save example. There
are no really new elements here, which would require a broader explanation.

The additional logic that is laid out on top of the restore and save example
is as follows.

We begin by checking for a new environmental variable, RSAVE_TIME_LIMIT.
If that variable does not exist then we assume that time allowed for this job
is unlimited and things work more or less as before. If the variable exists then
we attempt to read its value assuming that it is going to be a number. If it
is not a number we print an error message and exit. If it is a number then
the number is assigned to variable time_limit and assumed to represent the
number of wall-clock seconds allocated to this job.

As I have mentioned before, what really matters to other users and to the
system administrators is how long they have to wait, in terms of wall-clock time,
until your job gets out of the way. For this reason I use the wall-clock timer,
i.e., function time. However, you can modify the programs easily to look up
the CPU time instead.

Once the information about the time limit is obtained we proceed exactly
as before, until we get to the part of the program that does the computation.
Instead of just incrementing number n and sleeping for 5 seconds, we enter a
loop.

If no timing has been requested the loop keeps incrementing n and sleeping,
until n becomes greater than LAST_N. The latter is an arbitrary constant, which
in our toy example represents something like a convergence criterion. Once the
“convergence” has been reached, the finished flag is set to TRUE and the loop
exits.

Things are more interesting if timing of the job has been requested (by setting
the environmental variable RSAVE_TIME_LIMIT to some number of seconds). In
that case we measure time taken by one iteration of the loop, and we check
how much time there is still left after the iteration has finished. If there is still
enough time to perform another iteration we continue, if not, the loop exits.

Because saving the data, cleaning up, and executing the PBS script may take
additional time we have to include a SAFETY_MARGINwhile calculating time that
still remains. In this case we set SAFETY_MARGIN to 10 seconds, but if you have
to save a very large data set, you should probably reserve a couple of minutes.

Flagging the resubmission is accomplished as follows.
Before exiting, we check if the whole job is finished, which it will be once

our “convergence” criterion is satisfied. If the job is finished we write FINISHED
on standard output. Otherwise we write CONTINUE.

If the standard output has been logged on a file, after the program exits, the
PBS script can inspect the log, and resubmit itself if it finds the word CONTINUE

4.4. CHECKPOINTING AND RESUBMISSION 97

in the log.

Here is the program. The parameters LAST_N and SAFETY_MARGIN have been
implemented as cpp constants. I could also read them from the environment, a
command line, or from an input file, but that would clutter the example.

The program always executes the statements of the do ... while loop at
least once, because the exit condition is tested at the end of the loop.

Observe that the variable quit_time is initialised to 1l. That way, if timing
is not requested, it remains always positive and the while test fires up only when
the job is finished. Furthermore the variable timing is initialised to TRUE, and
becomes FALSE only if there is no environmental variable RSAVE_TIME_LIMIT.
The job is assumed to be unfinished on entry (the variable finished is initialised
to FALSE) and becomes finished only when n becomes greater than LAST_N. This
means that once n becomes greater than LAST_N, you can still submit the job
and it will always increment n by 1 before exiting.

/*

* rts: Restart Time and Save

*

* %Id: rts.c,v 1.1 2003/09/19 20:55:37 gustav Exp %

*

* %Log: rts.c,v %

* Revision 1.1 2003/09/19 20:55:37 gustav

* Initial revision

*

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <time.h>

#ifndef TRUE

define TRUE 1

#endif

#ifndef FALSE

define FALSE 0

#endif

#ifndef LAST_N

define LAST_N 30

#endif

#ifndef SAFETY_MARGIN

define SAFETY_MARGIN 10

#endif

main()

{

char *restart_name, *restart, old_restart_name[BUFSIZ];

FILE *restart_file;

int n, finished = FALSE, timing = TRUE;

time_t t0, t1, t2, loop_time, time_left, time_limit, quit_time = 1l;

98 CHAPTER 4. WORKING WITH PBS

char *time_limit_string;

/* Check the clock at the beginning of the run */

t0 = time(NULL);

/* Check how much time we have for this job */

if (! (time_limit_string = getenv ("RSAVE_TIME_LIMIT"))) {

printf ("Unlimited time for this job.\n");

timing = FALSE;

}

else {

if (! (0 < sscanf (time_limit_string, "%d", &time_limit))) {

fprintf (stderr, "Error: bad format of RSAVE_TIME_LIMIT\n");

exit (1);

}

else {

printf ("Time for this job limited to %d seconds.\n", time_limit);

}

}

/* Is this a continued job or a new one? */

if (! (restart = getenv ("RSAVE_RESTART"))) {

printf ("Starting a new run.\n");

n = 0;

}

else {

if (! (restart_name = getenv ("RSAVE_CHECKFILE"))) {

fprintf (stderr, "error: no checkpoint file for the restart job\n");

exit (1);

}

else {

printf ("Restarting the job from %s.\n", restart_name);

if (! (restart_file = fopen(restart_name, "r"))) {

perror (restart_name);

exit (2);

}

else {

if (! (fscanf (restart_file, "%d", &n) > 0)) {

fprintf (stderr, "%s: input file format error\n", restart_name);

exit (3);

}

else {

fclose (restart_file);

}

}

}

}

printf ("n = %d\n", n);

printf ("\tcomputing ... \n"); fflush (stdout);

/* Loop while keeping an eye on the clock */

do {

if (timing) t1 = time(NULL);

4.4. CHECKPOINTING AND RESUBMISSION 99

sleep (5);

n++;

/* Check if the whole simulation has been finished:

this is our ‘‘convergence’’ criterion.

*/

if (n > LAST_N) finished = TRUE;

/* Check if we still have enough time for the next loop.

*/

if (timing) {

t2 = time(NULL);

loop_time = t2 - t1;

time_left = time_limit - (t2 - t0);

quit_time = time_left - loop_time - SAFETY_MARGIN;

printf ("\t\tn = %d, time left = %d seconds\n", n, time_left);

if ((quit_time <= 0) && (! finished))

printf ("\t\tRun out of time, exiting ... \n");

}

} while ((quit_time > 0) && (! finished));

printf ("\tdone.\n");

printf ("n = %d\n", n);

if (! (restart_name = getenv ("RSAVE_CHECKFILE"))) {

printf ("checkpointing not requested, exiting...\n");

exit (0);

}

else {

if (restart) {

strcpy (old_restart_name, restart_name);

strcat (old_restart_name, ".old");

printf ("renaming old restart file to %s\n", old_restart_name);

if (0 > rename (restart_name, old_restart_name)) {

perror (old_restart_name);

exit (4);

}

}

printf ("saving data on %s\n", restart_name);

if (! (restart_file = fopen (restart_name, "w"))) {

perror (restart_name);

exit (5);

}

else {

fprintf (restart_file, "%d\n", n);

fclose (restart_file);

}

if (! finished)

printf ("CONTINUE\n");

else

printf ("FINISHED\n");

}

exit (0);

}

Here is how this job is run. First I submit it with the environmental variable
RSAVE_RESTART unset, which initialises the job. Then I set RSAVE_RESTART to

100 CHAPTER 4. WORKING WITH PBS

yes and resubmit the job, which restarts from where it left.
The job is allowed to run no longer than 30 seconds at a time. Given the

safety margin of 10 seconds and a single iteration time of 5 seconds this should
let our program do 4 iterations. But the while clause tests for quit_time > 0

not for quit_time >= 0, so, in effect we end up with 3 iterations instead of 4.
While the computational task remains unfinished, program rtswrites CONTINUE

on standard output before it exits. But the last run, when n becomes 31, is
flagged with the word FINISHED.

[gustav@bh1 rts]$ make

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/rts.c,v rts.c

RCS/rts.c,v --> rts.c

revision 1.1

done

cc -c rts.c

cc -o rts rts.o

[gustav@bh1 rts]$ env | grep RSAVE

RSAVE_CHECKFILE=rts.dat

RSAVE_TIME_LIMIT=30

[gustav@bh1 rts]$./rts

Time for this job limited to 30 seconds.

Starting a new run.

n = 0

computing ...

n = 1, time left = 25 seconds

n = 2, time left = 20 seconds

n = 3, time left = 15 seconds

Run out of time, exiting ...

done.

n = 3

saving data on rts.dat

CONTINUE

[gustav@bh1 rts]$ export RSAVE_RESTART=yes

[gustav@bh1 rts]$./rts

Time for this job limited to 30 seconds.

Restarting the job from rts.dat.

n = 3

computing ...

n = 4, time left = 25 seconds

n = 5, time left = 20 seconds

n = 6, time left = 15 seconds

Run out of time, exiting ...

done.

n = 6

renaming old restart file to rts.dat.old

saving data on rts.dat

CONTINUE

[gustav@bh1 rts]$./rts

Time for this job limited to 30 seconds.

Restarting the job from rts.dat.

n = 6

computing ...

4.4. CHECKPOINTING AND RESUBMISSION 101

n = 7, time left = 25 seconds

n = 8, time left = 20 seconds

n = 9, time left = 15 seconds

Run out of time, exiting ...

done.

n = 9

renaming old restart file to rts.dat.old

saving data on rts.dat

CONTINUE

[gustav@bh1 rts]$

...

[gustav@bh1 rts]$./rts

Time for this job limited to 30 seconds.

Restarting the job from rts.dat.

n = 24

computing ...

n = 25, time left = 25 seconds

n = 26, time left = 20 seconds

n = 27, time left = 15 seconds

Run out of time, exiting ...

done.

n = 27

renaming old restart file to rts.dat.old

saving data on rts.dat

CONTINUE

[gustav@bh1 rts]$./rts

Time for this job limited to 30 seconds.

Restarting the job from rts.dat.

n = 27

computing ...

n = 28, time left = 25 seconds

n = 29, time left = 20 seconds

n = 30, time left = 15 seconds

Run out of time, exiting ...

done.

n = 30

renaming old restart file to rts.dat.old

saving data on rts.dat

CONTINUE

[gustav@bh1 rts]$./rts

Time for this job limited to 30 seconds.

Restarting the job from rts.dat.

n = 30

computing ...

n = 31, time left = 25 seconds

done.

n = 31

renaming old restart file to rts.dat.old

saving data on rts.dat

FINISHED

[gustav@bh1 rts]$

102 CHAPTER 4. WORKING WITH PBS

4.4.4 Combining the Application with PBS: Automatic
Resubmission

In this section I shall demonstrate how our toy application can be run under
the PBS, and how you can use its various features to automatically keep resub-
mitting the job until the whole computational task is finished.

The PBS script begins by changing to the GPFS directory where we run rts
and then running program itself. The output is saved on rts.log:

cd /N/gpfs/gustav/rts

./rts > rts.log

After the job exits the script performs a number of manipulations. First of all,
it checks if an environmental variable RSAVE_STEP exists. That variable is used
to number our PBS runs. If the variable exists, it means that this particular
run was already a resubmission. In that case the value of RSAVE_STEP is incre-
mented and the old restart file, say, rts.dat.old is renamed to something like
rts.dat.3, where 3 is the RSAVE_STEP number. This way we keep the log of
the whole computation. In a more complex application the rts.dat files could
contain images or three dimensional data sets that, if saved, could be used to
produce an animation or a CAVE display.

If the variable RSAVE_STEP does not exist, it means that this is the initializing
run. In that case the variable is created and assigned number 0. We will make
it available to the next run by the means of the qsub -v option.

The log file, rts.log is also saved on something like, say, rts.log.3, where
3 is the RSAVE_STEP number. Observe that rts.log.3 corresponds to the run
that used rts.dat.3 as its restart file.

After these manipulations we inspect the log file itself and check if it contains
the word CONTINUE. If it does we resubmit the next iteration of the job with the
command:

ssh bh1 "cd /N/B/gustav/PBS; /usr/pbs/bin/qsub \

-v RSAVE_TIME_LIMIT=30,RSAVE_CHECKFILE=rts.dat,RSAVE_RESTART=yes,\

RSAVE_STEP=$RSAVE_STEP rts.sh"

We pass RSAVE_RESTART=yes to the next job on the qsub command line, this
way the next job will know it is a resubmission job, not an initialization job.
We also pass the RSAVE_STEP to the next job, so that it can enumerate the log
and data files properly.

If the word CONTINUE has not been found in the log file, then we check
if the log file contains the word FINISHED. If the job is FINISHED it is not
resubmitted. Instead a mail message is sent to me, in this case, that tells me
about the completion of the computation. Observe that the mail message is
sent from the head node, bh1, via ssh.

If neither the word CONTINUE nor the word FINISHED has been found in the
log file, it means that an error condition must have occurred and the job exited
mid-way. In that case, the job is not resubmitted and a mail message informing
about the error is sent to me.

Here is the whole PBS script in full glory:

4.4. CHECKPOINTING AND RESUBMISSION 103

[gustav@bh1 PBS]$ cat rts.sh

#PBS -S /bin/bash

#PBS -q bg

#PBS -m a

#PBS -M gustav@indiana.edu

#PBS -V

#

cd /N/gpfs/gustav/rts

#

Execute this step

#

rts > rts.log

#

If there is $RSAVE_CHECKFILE.old file then

replace the suffix ".old" with a step number

#

if [-n "${RSAVE_STEP}"]

then

RSAVE_STEP=‘expr $RSAVE_STEP + 1‘

if [-n "${RSAVE_CHECKFILE}"]

then

if [-f $RSAVE_CHECKFILE.old]

then

mv $RSAVE_CHECKFILE.old $RSAVE_CHECKFILE.$RSAVE_STEP

fi

fi

else

RSAVE_STEP=0

fi

#

save the log of this run

#

cp rts.log rts.log.$RSAVE_STEP

#

Check if the job is finished and if it is not

resubmit this file

#

if grep CONTINUE rts.log

then

ssh bh1 "cd /N/B/gustav/PBS; /usr/pbs/bin/qsub -v RSAVE_TIME_LIMIT=30,RSAVE_CHECKFILE=rts.dat,RSAVE_RESTART=yes,RSAVE

elif grep FINISHED rts.log

then

ssh bh1 mail -s finished gustav@indiana.edu << EOF

Your job rts has FINISHED

EOF

else

ssh bh1 mail -s error gustav@indiana.edu << EOF

rts: error exit, check the log file

EOF

fi

exit 0

[gustav@bh1 PBS]$

And here is how this script is submitted and what happens afterwards.

[gustav@bh1 PBS]$ env | grep RSAVE

RSAVE_TIME_LIMIT=30

RSAVE_CHECKFILE=rts.dat

104 CHAPTER 4. WORKING WITH PBS

[gustav@bh1 PBS]$ qsub rts.sh

17038.bh1.avidd.iu.edu

[gustav@bh1 PBS]$

Observe that only RSAVE_TIME_LIMIT and RSAVE_CHECKFILE have been de-
fined. All other variables will be defined by the PBS script as they become
needed.

The job runs happily resubmitting itself every time the program rts exits
and producing numerous log and data files. In this case I have separated the PBS
output, which is written on my job submission directory /N/B/gustav/PBS and
the rts output, which is written on my GPFS directory /N/gpfs/gustav/rts.

Eventually I get a message that looks as follows

Envelope-to: gustav@woodlands.tqc.iu.edu

Delivery-date: Fri, 19 Sep 2003 17:40:03 -0500

Date: Fri, 19 Sep 2003 17:39:26 -0500

From: Zdzislaw Meglicki <gustav@bh1.uits.indiana.edu>

To: gustav@indiana.edu

Subject: finished

Your job rts has FINISHED

and then I can go to my PBS and GPFS directories and look at the logs.
I find the following PBS output and error files in /N/B/gustav/PBS:

[gustav@bh1 PBS]$ pwd

/N/B/gustav/PBS

[gustav@bh1 PBS]$ ls rts.sh.*

rts.sh.e17040 rts.sh.e17045 rts.sh.e17050 rts.sh.o17044 rts.sh.o17049

rts.sh.e17041 rts.sh.e17046 rts.sh.o17040 rts.sh.o17045 rts.sh.o17050

rts.sh.e17042 rts.sh.e17047 rts.sh.o17041 rts.sh.o17046

rts.sh.e17043 rts.sh.e17048 rts.sh.o17042 rts.sh.o17047

rts.sh.e17044 rts.sh.e17049 rts.sh.o17043 rts.sh.o17048

[gustav@bh1 PBS]$

Files rts.sh.o* show the job resubmission history:

[gustav@bh1 PBS]$ cat rts.sh.o*

CONTINUE

17041.bh1.avidd.iu.edu

CONTINUE

17042.bh1.avidd.iu.edu

CONTINUE

17043.bh1.avidd.iu.edu

CONTINUE

17044.bh1.avidd.iu.edu

CONTINUE

17045.bh1.avidd.iu.edu

CONTINUE

17046.bh1.avidd.iu.edu

CONTINUE

17047.bh1.avidd.iu.edu

CONTINUE

17048.bh1.avidd.iu.edu

CONTINUE

17049.bh1.avidd.iu.edu

CONTINUE

4.4. CHECKPOINTING AND RESUBMISSION 105

17050.bh1.avidd.iu.edu

FINISHED

[gustav@bh1 PBS]$

and files rts.sh.e* are, mercifully, empty.
Switching now to /N/gpfs/gustav/rts shows:

[gustav@bh1 PBS]$ cd /N/gpfs/gustav/rts

[gustav@bh1 rts]$ ls

rts.dat rts.dat.3 rts.dat.7 rts.log.0 rts.log.3 rts.log.7

rts.dat.1 rts.dat.4 rts.dat.8 rts.log.1 rts.log.4 rts.log.8

rts.dat.10 rts.dat.5 rts.dat.9 rts.log.10 rts.log.5 rts.log.9

rts.dat.2 rts.dat.6 rts.log rts.log.2 rts.log.6

[gustav@bh1 rts]$

Files rts.dat.* contain the animation of the computation process:

[gustav@bh1 rts]$ cat ‘ls -t rts.dat.*‘

30

27

24

21

18

15

12

9

6

3

[gustav@bh1 rts]$

If these files contained images, I could make them into a movie. Files rts.log.*
contain the detailed history of the whole computation:

[gustav@bh1 rts]$ cat ‘ls -t rts.log.*‘

Time for this job limited to 30 seconds.

Restarting the job from rts.dat.

n = 30

computing ...

n = 31, time left = 25 seconds

done.

n = 31

renaming old restart file to rts.dat.old

saving data on rts.dat

FINISHED

Time for this job limited to 30 seconds.

Restarting the job from rts.dat.

n = 27

computing ...

n = 28, time left = 25 seconds

n = 29, time left = 20 seconds

n = 30, time left = 15 seconds

Run out of time, exiting ...

done.

n = 30

renaming old restart file to rts.dat.old

saving data on rts.dat

CONTINUE

...

Time for this job limited to 30 seconds.

106 CHAPTER 4. WORKING WITH PBS

Restarting the job from rts.dat.

n = 3

computing ...

n = 4, time left = 25 seconds

n = 5, time left = 20 seconds

n = 6, time left = 15 seconds

Run out of time, exiting ...

done.

n = 6

renaming old restart file to rts.dat.old

saving data on rts.dat

CONTINUE

Time for this job limited to 30 seconds.

Starting a new run.

n = 0

computing ...

n = 1, time left = 25 seconds

n = 2, time left = 20 seconds

n = 3, time left = 15 seconds

Run out of time, exiting ...

done.

n = 3

saving data on rts.dat

CONTINUE

[gustav@bh1 rts]$

I have requested in the PBS script that PBS should send mail to me only
when the job gets aborted. This is because I don’t want to be flooded by
excessive amount of mail. The PBS directive #PBS -m e would send me e-mail
every time the script exits, not when the whole computation is done.

Chapter 5

MPI and MPI-IO

5.1 Introduction

5.1.1 The History of MPI

Various message passing environments were developed in early 80s. Some were
developed for special purpose machines such as the Caltech’s N-cube (our Ge-
offrey Fox was amongst the authors of that software), some were developed
for networks of UNIX workstations, e.g., the Argonne’s P4 library and PICL
and PVM from Oak Ridge. The Ohio Supercomputer Center developed a mes-
sage passing library called LAM. There was a package developed specially for
quantum chemistry called TCGMSG and commercially available libraries like
Express that derived from the N-cube system.

By early 1992 it was clear that the authors of these numerous libraries du-
plicated each other’s efforts and busied themselves re-inventing the wheel all
the time. In late 1992 a meeting was called during the Supercomputing 92 con-
ference and the attendants agreed to develop and then implement a common
standard for message passing that would incorporate all the interesting ideas
developed so far and build on them. And this is how MPI, the Message Passing
Interface, was born.

Some message passing libraries, like ISIS developed by Cornell University’s
Ken Birman, didn’t fit the somewhat stiff model proposed by the participants of
the conference, and so they decided to go it alone in a quite different direction
of fault-tolerant distributed computing systems that helped them make heaps
of money (ISIS was deployed at major stock exchange operations around the
world) and ended up eventually at the door of Microsoft, which incorporated
ISIS technology into its clustering product called Wolfpack.

ISIS was based on the insanely great idea of virtual synchrony, but this idea
wouldn’t play in context of scientific computing, where synchronizing processes,
even if virtually only, would carry a heavy performance price. At the same time,
MPI was biased unashamedly towards supercomputing and the issues of fault
tolerance and synchronization were not considered critical.

107

108 CHAPTER 5. MPI AND MPI-IO

There were many industrial participants in the MPI club that helped finance
the endeavour. Amongst them were Convex, Cray, IBM, Intel, Meiko, nCUBE,
NEC and Thinking Machines. Some of these vendors bit the dust, but many
continued to prosper and benefited from the development of MPI. IBM, espe-
cially, is in the latter group. IBM SP is an MPI machine. Today, all PC and
UNIX workstation clusters are MPI systems too and MPI programs are run on
the Earth Simulator, Cray X1, and large SMPs.

The first MPI standard, called MPI-1 was completed in May 1994. The
second MPI standard, MPI-2, was completed in 1998. There was so much
enthusiasm back in 1994 that first MPI-1 implementations were released only
about a year later, the most popular ones being the Argonne’s MPICH (based on
the P4 package and Chameleon – hence the “CH” suffix) and Ohio LAM MPI.
There were still many supercomputer vendors around back then too, and they
released their own implementations of MPI.

But by 1998, the time MPI-2 standard was formalized, much of this enthu-
siasm evaporated and the first implementation of this more advanced standard
had to wait until November 2002. So MPI-2 is still very new. Yet, it is of special
interest to us, because it is only in MPI-2 that parallel IO operations were de-
fined. These operations were invented and implemented originally in a package
called MPI-IO that was developed for NASA prior to MPI-2 standardization.
MPI designers liked it so much that they incorporated all of it into the new
MPI-2 standard.

There is only one freeware MPI-IO version that floats about, and that I
know of, and it is called ROMIO. It was developed by the same people who
developed the original MPICH and their younger colleagues. ROMIO can be
combined with MPI-1, as an external MPI library or incorporated directly into
MPI-2. It works much the same in both cases.

5.1.2 MPI Documentation and Literature

The bible of MPI programmers is the on-line manual, which can be read in the
HTML format. It is located at: http://www-unix.mcs.anl.gov/mpi/. You will
find both “MPI Standard 1.1” and “MPI Standard 2.0” there. You can also find
information about MPICH and MPICH2 there and download both packages.

There is a couple of books about MPI that are rather helpful too. First there
is the introduction to MPI by the very authors of the library and its implemen-
tation, MPICH, “Using MPI – 2nd Edition: Portable Parallel Programming
with the Message Passing Interface (Scientific and Engineering computation)”
by William Gropp, Ewing Lusk, Anthony Skjellum and Rajeev Thakur. You
can find this book on Amazon.com. It costs $42. The next book is “Using
MPI-2: Advanced Features of the Message Passing Interface (Scientific and En-
gineering Computation)” by William Gropp, Ewing Lusk and Rajeev Thakur.
This book is the follow-up to the first book and costs $42 too.

The on-line MPI documentation can be purchased in a book format from
Amazon.com as well as a two volume set, “MPI: The Complete Reference” by

5.1. INTRODUCTION 109

William Gropp, Marc Snir, Bill Nitzberg and Ewing Lusk, for $68. Volume 2
covers MPI-IO.

You do not have to buy any of these texts for this course. Apart from various
examples you’ll see in these pages, you can also download MPI programming
examples from Argonne. But if you intend to develop serious MPI applications,
you should probably get all four books.

My suggestion is that you should hold on with any purchases until this course
is finished. This will give you a better idea of what this whole business is about.
You can buy the books then, if you think you will really need them.

5.1.3 What is in MPI?

A lot! MPI is a very comprehensive library and MPI-2 has about all of it
including some elements of fault-tolerance, process migration, etc.

The most fundamental functions in MPI, MPI_Send and MPI_Recv, provide
not only for buffered sends and receives, but also for typing of transferred data.
They also support the concept of a communicator . A communicator is a group
of processes within which the ranking, i.e., process differentiation, and com-
munication take place. A single program may comprise several overlaping or
completely separate communicators. This concept is crucial to implementations
of parallel code libraries. Otherwise, there would always be a risk of library
communications interfering with other communications within the parallel pro-
gram.

MPI provides a very rich set of collective communication functions, vir-
tual topologies, hooks for debugging and profiling, blocking and non-blocking
sends and receives, and support for heterogeneous networks. MPI-2 adds nu-
merous clarifications, specification of portable MPI process startup (previously
every MPI implementation would use different ways of starting MPI programs),
new data type manipulation functions and new predefined types, support for
dynamic process creation and management, support for one-sided communica-
tions, i.e., for the ability to write data directly into other processes’ memories,
portable high-performance IO in the form of MPI-IO, and support for C++ and
Fortran 90.

MPI is obviously a very large library. The listing below shows all MPI-1
functions. There are 128 of them. MPI-2 adds at least this many if not more.

110 CHAPTER 5. MPI AND MPI-IO

MPI_ABORT MPI_ADDRESS MPI_ALLGATHER MPI_ALLGATHERV
MPI_ALLREDUCE MPI_ALLTOALL MPI_ALLTOALLV MPI_ATTR_DELETE
MPI_ATTR_GET MPI_ATTR_PUT MPI_BARRIER MPI_BCAST
MPI_BSEND MPI_BSEND_INIT MPI_BUFFER_ATTACH MPI_BUFFER_DETACH
MPI_CANCEL MPI_CARTDIM_GET MPI_CART_COORDS MPI_CART_CREATE
MPI_CART_GET MPI_CART_MAP MPI_CART_RANK MPI_CART_SHIFT
MPI_CART_SUB MPI_COMM_COMPARE MPI_COMM_CREATE MPI_COMM_DUP
MPI_COMM_FREE MPI_COMM_GROUP MPI_COMM_RANK MPI_COMM_REMOTE_GROUP
MPI_COMM_REMOTE_SIZE MPI_COMM_SIZE MPI_COMM_SPLIT MPI_COMM_TEST_INTER
MPI_DIMS_CREATE MPI_ERRHANDLER_CREATE MPI_ERRHANDLER_FREE MPI_ERRHANDLER_GET
MPI_ERRHANDLER_SET MPI_ERROR_CLASS MPI_ERROR_STRING MPI_FINALIZE
MPI_GATHER MPI_GATHERV MPI_GET_COUNT MPI_GET_ELEMENTS
MPI_GET_PROCESSOR_NAME MPI_GRAPHDIMS_GET MPI_GRAPH_CREATE MPI_GRAPH_GET
MPI_GRAPH_MAP MPI_GRAPH_NEIGHBORS MPI_GRAPH_NEIGHBORS_COUNT MPI_GROUP_COMPARE
MPI_GROUP_DIFFERENCE MPI_GROUP_EXCL MPI_GROUP_FREE MPI_GROUP_INCL
MPI_GROUP_INTERSECTION MPI_GROUP_RANGE_EXCL MPI_GROUP_RANGE_INCL MPI_GROUP_RANK
MPI_GROUP_SIZE MPI_GROUP_TRANSLATE_RANKS MPI_GROUP_UNION MPI_IBSEND
MPI_INIT MPI_INITIALIZED MPI_INTERCOMM_CREATE MPI_INTERCOMM_MERGE
MPI_IPROBE MPI_IRECV MPI_IRSEND MPI_ISEND
MPI_ISSEND MPI_KEYVAL_CREATE MPI_KEYVAL_FREE MPI_OP_CREATE
MPI_OP_FREE MPI_PACK MPI_PACK_SIZE MPI_PCONTROL
MPI_PROBE MPI_RECV MPI_RECV_INIT MPI_REDUCE
MPI_REDUCE_SCATTER MPI_REQUEST_FREE MPI_RSEND MPI_RSEND_INIT
MPI_SCAN MPI_SCATTER MPI_SCATTERV MPI_SEND
MPI_SENDRECV MPI_SENDRECV_REPLACE MPI_SEND_INIT MPI_SSEND
MPI_SSEND_INIT MPI_START MPI_STARTALL MPI_TEST
MPI_TESTALL MPI_TESTANY MPI_TESTSOME MPI_TEST_CANCELLED
MPI_TOPO_TEST MPI_TYPE_COMMIT MPI_TYPE_CONTIGUOUS MPI_TYPE_EXTENT
MPI_TYPE_FREE MPI_TYPE_HINDEXED MPI_TYPE_HVECTOR MPI_TYPE_INDEXED
MPI_TYPE_LB MPI_TYPE_SIZE MPI_TYPE_STRUCT MPI_TYPE_UB
MPI_TYPE_VECTOR MPI_UNPACK MPI_WAIT MPI_WAITALL
MPI_WAITANY MPI_WAITSOME MPI_WTICK MPI_WTIME

But you don’t have to panic. In great many cases you can do all you need with
just 6 fundamental MPI functions:

MPI Init Initialize MPI processes;

MPI Comm size Find out about the number of the processes in the MPI
communicator;

MPI Comm rank What is my rank number within the pool of MPI commu-
nicator processes?

MPI Send Send a message.

MPI Recv Receive a message.

MPI Finalize Close down MPI processes and prepare for exit.

All the other functions, 128 minus 6, are auxiliary. They make programmer’s
life much, much easier by encapsulating frequently used parallel programming
procedures in convenience functions.

5.1.4 Programming Examples

You can download example MPI programs as well as MPI benchmarks from
http://www-unix.mcs.anl.gov/mpi/. This page is implemented in the form of
two frames. Once you have connected click on “MPICH Home Page” in the
left frame. Then scroll down to “Demonstrations”, and click on “Example pro-
grams”. The independent address of the page you’ll get to is http://www.mcs.anl.gov/mpi/mpich/demo.h
This page lets you download the parallel implementation of the Mandelbrot set
calculation.

You will find examples discussed in the “Using MPI” books at:

5.1. INTRODUCTION 111

• ftp://ftp.mcs.anl.gov/pub/mpi/usingmpi-1st,

• ftp://ftp.mcs.anl.gov/pub/mpi/usingmpi2 and

• ftp://ftp.mcs.anl.gov/pub/mpi/using/examples.

And, of course, you will find annotated examples of MPI programs in these
pages too.

5.1.5 Running MPI on the AVIDD Clusters

Running MPI on the AVIDD Clusters is a little problematic because there are
several MPI versions and implementations there. What is of special interest to
us is MPI-2, because MPI-IO is integral to it. For this reason we have installed
a beta version of Argonne’s MPICH2 in /N/hpc/mpich2. This directory should
be mounted on all computational nodes and head nodes of both IUPUI and IUB
clusters.

You will also need to define an environmental variable MPD_USE_USER_CONSOLE
and, possibly, LD_RUN_PATH and LD_LIBRARY_PATH (because there
are dynamic run-time libraries in /N/hpc/mpich2/lib). Without
MPD_USE_USER_CONSOLE defined in your environment the MPICH2
execution engine is going to do some rather weird things with the
name of the socket file with the sad effect that correct communica-
tion within the engine will not get established and the engine will
shut down.

But first and foremost you must create a file .mpd.conf in your
home directory. This file must be readable by you only and you
must be the only person allowed to write on it too:

$ cd

$ touch .mpd.conf

$ chmod 600 .mpd.conf

Now you must enter the following line on this file:

password=yoopee

Replace the word “yoopee” with your favourite password, of course.
Do not use your AVIDD or your IU Net password. This password is
for the MPICH2 MPD system only.

I forgot to tell you about this in the laboratory class and that is
why MPICH2 worked for me only. Then I forgot about it altogether,
and ended up very perplexed and suspected MPICH2 of the most
horrible bugs imaginable. MPICH2 is a beta release at this stage,
to be sure, so surprises are possible, but it’s not this bad.

The easiest way to get your PATH, MANPATH, LD_LIBRARY_PATH, LD_RUN_PATH
and MPD_USE_USER_CONSOLE right is to copy .bashrc, .bash_profile and
.inputrc files from my home directory to your home.

Proceed as follows. After you have logged on, issue the commands:

112 CHAPTER 5. MPI AND MPI-IO

$ cd

$ cp .bashrc .bashrc.ORIG

$ cp .bash_profile .bash_profile.ORIG

$ cp .inputrc .inputrc.ORIG

$ cp ~gustav/.bashrc .bashrc

$ cp ~gustav/.bash_profile .bash_profile

$ cp ~gustav/.inputrc .inputrc

$ chmod 755 .bashrc .bash_profile

$ chmod 644 .inputrc

Having done this logout and login again.
If you know what you are doing and if you prefer to use shells other than

bash, have a look at these files and then set up your environment similarly. The
most important thing is to

1. Ensure that your $HOME/bin is in front of the command search path, so
that you can overwrite system commands with your own.

2. Ensure that the MPICH2 directory /N/hpc/mpich2/bin is the second di-
rectory in your command search path, so that you’ll get MPI-2 start up
commands, as well as Python-2.3 and other tools used by MPI-2, in place
of whatever may be currently installed on the system – the system-wide
version of Python, for example, is older and doesn’t work with MPICH2.

To check that everything is as it ought to be try the following commands:

gustav@bh1 $ cd

gustav@bh1 $ ls -l .mpd.conf

-rw------- 1 gustav ucs 16 Oct 2 18:58 .mpd.conf

gustav@bh1 $ cat .mpd.conf

password=frabjous

gustav@bh1 $ env | grep PATH

LD_RUN_PATH=/N/B/gustav/lib:/N/hpc/mpich2/lib

LD_LIBRARY_PATH=/N/B/gustav/lib:/N/hpc/mpich2/lib

MANPATH=/N/B/gustav/man:/N/B/gustav/share/man:/N/hpc/mpich2/man:\

N/hpc/mpich2/share/man:/usr/local/man:/usr/local/share/man:\

usr/man:/usr/share/man:/usr/X11R6/man

PATH=/N/B/gustav/bin:/N/hpc/mpich2/bin:/usr/local/bin:/bin:\

usr/bin:/usr/X11R6/bin:/usr/pbs/bin:/usr/local/hpss:.

gustav@bh1 $ env | grep MPD

MPD_USE_USER_CONSOLE=yes

gustav@bh1 $

The first directory in LD_RUN_PATH, LD_LIBRARY_PATH, MANPATH and PATH, of
course, should be replaced with your private bin, lib and man.

Now you should run the following command on the IUB cluster

gustav@bh1 $ for i in ‘cat ~gustav/.bcnodes‘

> do

> echo -n "$i: "

> ssh $i date

> done

bc01-myri0: Wed Oct 1 16:12:56 EST 2003

bc02-myri0: Wed Oct 1 16:12:56 EST 2003

bc03-myri0: Wed Oct 1 16:12:56 EST 2003

bc04-myri0: Wed Oct 1 16:12:57 EST 2003

5.1. INTRODUCTION 113

...

bc93-myri0: Wed Oct 1 16:13:39 EST 2003

bc94-myri0: Wed Oct 1 16:13:39 EST 2003

bc95-myri0: Wed Oct 1 16:13:39 EST 2003

bc96-myri0: Wed Oct 1 16:13:40 EST 2003

gustav@bh1 $

and similarly on the IUPUI cluster:

gustav@ih1 $ for i in ‘cat ~gustav/.icnodes‘

> do

> echo -n "$i: "

> ssh $i date

> done

ic01-myri0: Wed Oct 1 16:15:14 EST 2003

ic02-myri0: Wed Oct 1 16:15:14 EST 2003

ic03-myri0: Wed Oct 1 16:15:15 EST 2003

ic04-myri0: Wed Oct 1 16:15:15 EST 2003

...

ic93-myri0: Wed Oct 1 16:18:24 EST 2003

ic94-myri0: Wed Oct 1 16:18:24 EST 2003

ic95-myri0: Wed Oct 1 16:18:24 EST 2003

ic97-myri0: Wed Oct 1 16:18:25 EST 2003

Please let me know if these commands hang on any of the nodes. The files
~gustav/.bcnodes and ~gustav/.icnodes contain the lists of currently func-
tional computational nodes with working Myrinet interfaces both at IUPUI and
IUB. These lists may change every now and then, in which case we may have
to repeat this procedure.

The purpose of this procedure is to populate your ~/.ssh/known_hosts

file with the computational nodes’ keys. The ssh command inserts the key
automatically in your known_hosts if it is not there. But in the process it
writes a message on standard output that may confuse the MPICH2 startup
scripts.

Now you are almost ready to run your first MPI job. First copy two more
files from my home directory. Do it as follows:

$ cd

$ [-d bin] || mkdir bin

$ [-d PBS] || mkdir PBS

$ cp ~gustav/bin/hellow2 bin

$ chmod 755 bin/hellow2

$ cp ~gustav/PBS/mpi.sh PBS

$ chmod 755 PBS/mpi.sh

Now submit the job to PBS as follows:

$ cd ~/PBS

$ qsub mpi.sh

$ qstat | grep ‘whoami‘

21303.bh1 mpi gustav 0 R bg

$!!

21303.bh1 mpi gustav 0 R bg

$

After you have submitted the job, you can monitor its progress through the
PBS system with

114 CHAPTER 5. MPI AND MPI-IO

$ qstat | grep ‘whoami‘

every now and then. But the job should run quickly, unless the system is very
busy. If everything works as it ought to, you will find mpi_err and mpi_out in
your working directory after the job completes. The first file should be empty
and the second will contain the output of the job, which should be similar to:

$ cat mpi_err

$ cat mpi_out

Local MPD console on bc68

bc68_33575

bc47_34123

bc46_34056

bc49_34697

bc48_33551

bc53_34095

bc54_35385

bc55_34714

time for 100 loops = 0.124682068825 seconds

0: bc68

2: bc46

1: bc47

3: bc49

4: bc48

6: bc54

5: bc53

7: bc55

bc68: hello world from process 0 of 8

bc47: hello world from process 1 of 8

bc46: hello world from process 2 of 8

bc49: hello world from process 3 of 8

bc48: hello world from process 4 of 8

bc53: hello world from process 5 of 8

bc54: hello world from process 6 of 8

bc55: hello world from process 7 of 8

$

This should work on both AVIDD clusters.
Let us have a look at the PBS script:

gustav@bh1 $ cat mpi.sh

#PBS -S /bin/bash

#PBS -N mpi

#PBS -o mpi_out

#PBS -e mpi_err

#PBS -q bg

#PBS -m a

#PBS -V

#PBS -l nodes=8

NODES=8

HOST=‘hostname‘

echo Local MPD console on $HOST

Specify Myrinet interfaces on the hostfile.

grep -v $HOST $PBS_NODEFILE | sed ’s/$/-myri0/’ > $HOME/mpd.hosts

Boot the MPI2 engine.

mpdboot --totalnum=$NODES --file=$HOME/mpd.hosts

sleep 10

Inspect if all MPI nodes have been activated.

5.1. INTRODUCTION 115

mpdtrace -l

Check the connectivity.

mpdringtest 100

Check if you can run trivial non-MPI jobs.

mpdrun -l -n $NODES hostname

Execute your MPI program.

mpiexec -n $NODES hellow2

Shut down the MPI2 engine and exit the PBS script.

mpdallexit

exit 0

gustav@bh1 $

There is a new PBS directive here, which we haven’t encountered yet. The
option -l lets you specify the list of resources required for the job. In this case
there is only one item in the list, nodes=8, and this item states that you need
eight nodes from the PBS in order to run the job. PBS is going to return the
names of the nodes on the file, whose name is conveyed in the environmental
variable PBS_NODEFILE. The nodes are listed on this file one per line.

Also observe that we have used the -V directive. By doing this we have im-
ported all environmental variables, including the wretched MPD_USE_USER_CONSOLE,
which is essential for MPICH2.

The first thing we do in the script is to convert the node names to their
Myrinet equivalents. This is easy to do, because the Myrinet names are obtained
by appending -myri0 to the name of the node, returned on $PBS_NODEFILE. This
is what the first command in the script does:

grep -v $HOST $PBS_NODEFILE | sed ’s/$/-myri0/’ > $HOME/mpd.hosts

There is one complication here though. We are removing from this list the name
of the node on which the script runs with the command grep -v $HOST. This
is because MPICH2 is going to create a process on this host anyway. If we left
this host’s name on the file, MPICH2 would create two processes on it.

Once the names returned on $PBS_NODEFILE have been converted to the
Myrinet names, we save them on $HOME/mpd.hosts. Now we are ready to start
the MPICH2 engine. The command that does this is

mpdboot --totalnum=$NODES --file=$HOME/mpd.hosts

Program mpdboot is a Python-2.3 script that boots the MPICH2 engine by
spawning MPICH2 supervisory processes, called mpds (pronounced “em-pea-
dee-s”), on nodes specified on $HOME/mpd.hosts.

We have to give mpdboot a few seconds to complete its job. We do this by
telling the script to sleep for 10 seconds. The mpds are spawned by ssh, which
is why we had to get all the keys in place in the first place. Silly problems may
show up if the keys are not there.

The command

mpdtrace -l

inspects the MPICH2 engine and lists names of all nodes on which mpds are
running. With the -l option, it also lists the names of the sockets used by the
mpds to communicate with each other.

The next command

116 CHAPTER 5. MPI AND MPI-IO

mpdringtest 100

times a simple message going around the ring of mpds, in this case 100 times.
These two commands, mpdtrace and mpdringtest, tell us that the MPICH2

engine is ready. We can now execute programs on it. These don’t have to be
MPICH2 programs though. You can execute any UNIX program under the
MPICH2 engine. But if they are not MPICH2 programs, they will not commu-
nicate with each other. You will just get a number of independent instantiations
of those programs running on individual nodes. The script demonstrates this
by running the UNIX command hostname under the MPICH2 engine:

mpdrun -l -n $NODES hostname

The option -l asks mpdrun to attach process labels to any output that the
instantiations of hostname on MPICH2 nodes may produce.

At long last we commence the execution of a real MPICH2 program. The
program’s name is hellow2. It is an MPI version of “Hello World”. This
program should be picked up from your $HOME/bin assuming that it is present
in your command search PATH. The command to run this program under the
MPICH2 engine is

mpiexec -n $NODES hellow

Observe that we don’t have to use all nodes given to us by the PBS, but, of
course, it would be silly not to, unless there is a special reason for it. Pro-
gram mpiexec is not specific to MPICH2. MPI-2 specification says that such a
program must be provided for the execution of MPI jobs. There was no such
specification in the original MPI.

After hellow2 exits, we are done and we shut down the MPICH2 engine
with

mpdallexit

Exercises

1 You should try all this out from your account. Try asking for a larger number
of nodes. Remember to change both the PBS directive -l nodes= and
NODES= in the shell script.

2 There is another MPI program in /N/B/gustav/bin, called cpi. Copy this
program to your $HOME/bin and modify the script above to execute cpi

instead of hellow2. What does this program do?

3 You can startup, manipulate and close the MPICH2 engine interactively from
the head node too, but only if you’re quick. Otherwise the skulker that
runs on the computational nodes will kill your MPD processes there. Try
the following from your account:

gustav@bh1 $ cd

gustav@bh1 $ pwd

/N/B/gustav

gustav@bh1 $ ls -l mpd.hosts

-rw-r--r-- 1 gustav ucs 77 Oct 1 16:48 mpd.hosts

gustav@bh1 $ cat mpd.hosts

bc55-myri0

5.2. BASIC MPI 117

bc54-myri0

bc53-myri0

bc49-myri0

bc48-myri0

bc47-myri0

bc46-myri0

gustav@bh1 $ mpdboot

gustav@bh1 $

Observe that we have started mpdboot without any options. By default
mpdboot will check if there is a file called mpd.hosts in your working
directory. If such a file exists mpdboot will read host names from it and it
will try to spawn mpds on those hosts.

gustav@bh1 $ mpdtrace -l

bh1_49212

bc47_34173

bc48_33601

bc46_34106

bc53_34145

bc49_34746

bc55_34766

bc54_35437

gustav@bh1 $ mpdringtest 1000

time for 1000 loops = 1.432543993 seconds

gustav@bh1 $ mpdrun -l -n 8 hostname

0: bh1

2: bc48

5: bc49

1: bc47

6: bc55

3: bc46

7: bc54

4: bc53

gustav@bh1 $ mpiexec -n 8 hellow2

bh1: hello world from process 0 of 8

bc48: hello world from process 2 of 8

bc47: hello world from process 1 of 8

bc46: hello world from process 3 of 8

bc49: hello world from process 5 of 8

bc53: hello world from process 4 of 8

bc55: hello world from process 6 of 8

bc54: hello world from process 7 of 8

gustav@bh1 $ mpdallexit

gustav@bh1 $

Please contact me if any of the above doesn’t work for you.

5.2 Basic MPI

5.2.1 Hello World

Program hellow2, which you have executed on the MPICH2 engine in section
5.1.5 (hopefully), is a very slight modification of a similar program distributed

118 CHAPTER 5. MPI AND MPI-IO

with MPICH2 source. We are going to have a look at this program here and I
am also going to show you how to compile it, link and install.

Here is the program:

gustav@bh1 $ cat hellow2.c

/*

* Find about the size of the communicator, your rank within it, and the

* name of the processor you run on.

*

* %Id: hellow2.c,v 1.1 2003/09/29 15:58:12 gustav Exp %

*

* %Log: hellow2.c,v %

* Revision 1.1 2003/09/29 15:58:12 gustav

* Initial revision

*

*

*/

#include <stdio.h> /* printf and BUFSIZ defined there */

#include <stdlib.h> /* exit defined there */

#include <mpi.h> /* all MPI-2 functions defined there */

int main(argc, argv)

int argc;

char *argv[];

{

int rank, size, length;

char name[BUFSIZ];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Get_processor_name(name, &length);

printf("%s: hello world from process %d of %d\n", name, rank, size);

MPI_Finalize();

exit(0);

}

gustav@bh1 $

You have already seen how this program runs in section 5.1.5.

All MPI programs must begin with MPI_Init(&argc, &argv) and end with
MPI_Finalize(). It is not an error to insert non-MPI program statements in
front of MPI_Init or after MPI_Finalize.

Function MPI Init initializes the MPI system. MPI processes are spawned
and ranked. Communication channels get established. The default communica-
tor, MPI_COMM_WORLD, is created. This function must be called before any other
MPI function. But you must not call it again. Subsequent calls to MPI_Init

will produce an error.

At the end of an MPI program you always must call MPI Finalize. This
function cleans up the MPI machine. Once it has been called no other MPI
function will work. Not to call MPI_Finalize and exit will result in exit error.

5.2. BASIC MPI 119

But this function alone is not equivalent to the UNIX function exit. It only
exits the MPI machine, not the UNIX process.

Between MPI_Init and MPI_Finalize you have an MPI program. Let’s see
what’s there in our hellow2 example.

The first call to MPI Comm rank informs every process that participates
in the MPI communicator about its rank number. This is how processes can
find out who they are and what their role is within the pool. This function
takes two arguments. The first one is the MPI communicator, and here we
use the default communicator, MPI_COMM_WORLD, which the MPI engine creates
at the very beginning. All processes invoked by the program belong to this
communicator. The second argument is a pointer to integer. On return, each
process is going to get its rank number written on this location.

Why should the processes bother about their rank numbers? This is so that
they can then differentiate their actions depending on this number. Otherwise
they would all have to do exactly the same thing. In the case of this simple
example program, they will write messages on standard output, and each MPI
process will write a somewhat different message.

The next call to MPI Comm Size tells the participating processes about the
total number of processes in this communicator. This is also something they
need to know. For example, if the program is to work on a very long array, the
processes will have to know how many of them there are in the pool in order
to work out for themselves which portion of the array they should work on.
Function MPI_Comm_size takes the MPI communicator as the first argument
and returns the size of the communicator in the location pointed to by the
second argument.

Finally we call function MPI Get processor name. We call this function
only out of curiosity. It is seldom necessary for the processes themselves to
know what physical processors they run on. But this function is there in the
MPI standard and it was meant to be used in process migration. Here we
simply use it to show that the MPI processes indeed run on different CPUs.
We could just as well have used the standard UNIX function gethostname, but
this would return the same name if the MPI program was to run on a large
SMP, or a large single parallel machine like, say, Cray X1. On the other hand,
function MPI_Get_processor_name will in this case return a specific number of
the physical processor a given MPI process runs on.

After the MPI processes have collected all this information, each of them
prints on standard output a message about

• the specific CPU it runs on,

• its rank number within the MPI_COMM_WORLD communicator,

• the total number of processes in this communicator.

Now, how to make and install this program? Its Makefile looks as follows:

gustav@bh1 $ cat Makefile

#

120 CHAPTER 5. MPI AND MPI-IO

%Id: Makefile,v 1.1 2003/09/29 16:20:16 gustav Exp %

#

%Log: Makefile,v %

Revision 1.1 2003/09/29 16:20:16 gustav

Initial revision

#

#

DESTDIR = /N/B/gustav/bin

MANDIR = /N/B/gustav/man/man1

CC = cc

CFLAGS = -I/N/hpc/mpich2/include

LIBS = -L/N/hpc/mpich2/lib

LDFLAGS = -lmpich

TARGET = hellow2

all: $(TARGET)

$(TARGET): $(TARGET).o

$(CC) -o $@ $(TARGET).o $(LIBS) $(LDFLAGS)

$(TARGET).o: $(TARGET).c

$(CC) $(CFLAGS) -c $(TARGET).c

install: all $(TARGET).1

[-d $(DESTDIR)] || mkdirhier $(DESTDIR)

install $(TARGET) $(DESTDIR)

[-d $(MANDIR)] || mkdirhier $(MANDIR)

install $(TARGET).1 $(MANDIR)

clean:

rm -f *.o $(TARGET)

clobber: clean

rcsclean

gustav@bh1 $

The CFLAGS tell the compiler to look for MPI-2 definitions in /N/B/gustav/include.
Similarly, we tell the loader that it should get objects from the library in
/N/B/gustav/lib. Finally, the specific library that should be used in libmpich.a,
which is what the switch -lmpich means.

Here’s how we make the program:

gustav@bh1 $ make

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/hellow2.c,v hellow2.c

RCS/hellow2.c,v --> hellow2.c

revision 1.1

done

cc -I/N/hpc/mpich2/include -c hellow2.c

cc -o hellow2 hellow2.o -L/N/hpc/mpich2/lib -lmpich

gustav@bh1 $

And now we install it:

gustav@bh1 $ make install

5.2. BASIC MPI 121

co RCS/hellow2.1,v hellow2.1

RCS/hellow2.1,v --> hellow2.1

revision 1.1

done

[-d /N/B/gustav/bin] || mkdirhier /N/B/gustav/bin

install hellow2 /N/B/gustav/bin

[-d /N/B/gustav/man/man1] || mkdirhier /N/B/gustav/man/man1

install hellow2.1 /N/B/gustav/man/man1

gustav@bh1 $

The manual page for the program describes how to run it under MPICH2:

HELLOW2(1) I590 Programmer’s Manual HELLOW2(1)

NAME

hellow2 - for each MPI process print its rank number and

name of the processor it runs on.

SYNOPSIS

mpiexec -n <number-of-processes> hellow2

DESCRIPTION

hellow2 prints the name of the processor, the process rank

number and the size of the communicator for each MPI pro-

cess.

OPTIONS

No hellow2 specific options

DIAGNOSTICS

No hellow2 specific diagnostics

EXAMPLES

$ mpdboot -n 8

$ mpiexec -n 8 hellow2

bc89: hello world from process 0 of 8

bc31: hello world from process 2 of 8

bc29: hello world from process 1 of 8

bc33: hello world from process 3 of 8

bc34: hello world from process 5 of 8

bc30: hello world from process 4 of 8

bc35: hello world from process 6 of 8

bc32: hello world from process 7 of 8

$ mpdallexit

AUTHOR

The simplest MPI program possible. Author unknown.

I590/7462 October 2003 HELLOW2(1)

You will find a script in /N/hpc/mpich2/bin called mpicc. This script knows
about the location of includes and libraries and simplifies the compilation pro-
cess. And so, instead of calling libraries and includes explicitly, as I have done
in the Makefile, you could simply compile this program as follows:

gustav@bh1 $ which mpicc

/N/hpc/mpich2/bin/mpicc

gustav@bh1 $ mpicc -o hellow2 hellow2.c

gustav@bh1 $

122 CHAPTER 5. MPI AND MPI-IO

5.2.2 Greetings, Master

The “Hello World” program from section 5.2.1 ran in parallel, but participating
processes did not exchange any messages, so the parallelism was trivial.

In this section we’re going to have a look at our first non-trivial parallel
program in which processes are going to exchange information.

We are going to designate one of the processes a master process. The master
process will find about the name of the processor it runs on and it will broadcast
the name to all other processes. They will respond by sending greetings to the
master process. The master process will collect all greetings and it will then
display them on standard output.

Here is the program:

gustav@bh1 $ cat greetings.c

/*

* The master process broadcasts the name of the CPU it runs on to

* the pool. All other processes respond by sending greetings

* to the master process, which collects the messages and displays

* them on standard output.

*

* %Id: greetings.c,v 1.2 2003/09/29 19:47:29 gustav Exp %

*

* %Log: greetings.c,v %

* Revision 1.2 2003/09/29 19:47:29 gustav

* Added "The" to the comment.

*

* Revision 1.1 2003/09/29 19:37:58 gustav

* Initial revision

*

*

*/

#include <stdio.h> /* functions sprintf, printf and BUFSIZ defined there */

#include <string.h> /* function strcpy defined there */

#include <stdlib.h> /* function exit defined there */

#include <mpi.h> /* all MPI-2 functions defined there */

#define TRUE 1

#define FALSE 0

#define MASTER_RANK 0 /* It is traditional to make process 0 the master. */

main(argc, argv)

int argc;

char *argv[];

{

int count, pool_size, my_rank, my_name_length, i_am_the_master = FALSE;

char my_name[BUFSIZ], master_name[BUFSIZ], send_buffer[BUFSIZ],

recv_buffer[BUFSIZ];

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Get_processor_name(my_name, &my_name_length);

if (my_rank == MASTER_RANK) {

i_am_the_master = TRUE;

5.2. BASIC MPI 123

strcpy (master_name, my_name);

}

MPI_Bcast(master_name, BUFSIZ, MPI_CHAR, MASTER_RANK, MPI_COMM_WORLD);

if (i_am_the_master)

for (count = 1; count < pool_size; count++) {

MPI_Recv (recv_buffer, BUFSIZ, MPI_CHAR, MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

printf ("%s\n", recv_buffer);

}

else {

sprintf(send_buffer, "hello %s, greetings from %s, rank = %d",

master_name, my_name, my_rank);

MPI_Send (send_buffer, strlen(send_buffer) + 1, MPI_CHAR,

MASTER_RANK, 0, MPI_COMM_WORLD);

}

MPI_Finalize();

exit(0);

}

gustav@bh1 $

Although at the first glance this program does much the same as our previous
example, hellow2, it does it differently and in a way that is immediately exten-
sible to quite non-trivial MPI programs. It contains a number of new conceptual
elements and some new MPI function calls.

It begins the same way any other MPI program begins. First we call
MPI_Init, followed by MPI_Comm_size, MPI_Comm_rank, and finally MPI_Get_processor_name.
We have discussed these already in section 5.2.1.

Then a new thing happens. The program forks. Only one of the MPI
processes, namely the one whose rank is equal to MASTER_RANK executes the if
clause:

if (my_rank == MASTER_RANK) {

i_am_the_master = TRUE;

strcpy (master_name, my_name);

}

whereas all other processes skip this clause, because it’s not theirs, and call the
next statement that follows, which is

MPI_Bcast(master_name, BUFSIZ, MPI_CHAR, MASTER_RANK, MPI_COMM_WORLD);

This statement blocks, i.e., the processes that get to it hang and wait until

process MASTER_RANK broadcasts the information.
But the master process is not there yet. Within the if clause it sets the

logical flag i_am_the_master to TRUE, whereas, by default, it’s been initialized
to FALSE and so it stays FALSE for everybody else. Then the master processes
copies the name of the processor it runs on onto a string called master_name.
At this stage the master process is the only process that has anything in this
string. For all other processes master_name just contains garbage (you must
not assume that UNIX is so kind as to initialize all strings to nulls).

124 CHAPTER 5. MPI AND MPI-IO

Now the master process joins the broadcast. The broadcast operation works
as follows. There is a root process for the broadcast, which is given by the
fourth argument to MPI Bcast. Here it is MASTER_RANK. The first argument is
the buffer. Remember that each of the MPI processes has its own buffer that is
pointed to by this variable and these buffers live on different machines and in
different memory locations. But they are all referred to as master_name. Only
the root process, which in our case is the master, has something sensible in its
own buffer. The length of the buffer, here it is BUFSIZ, is given as the number
of items of type that is specified by the third variable, in this case MPI_CHAR.
In this case all processes execute this broadcast statement from the same line
of the code (it doesn’t have to be so normally), and this guarantees that their
buffers are of identical length and that they will all interpret the data that is
going to be sent in the same way, i.e., as characters. The last argument specifies
the MPI communicator within which the communication is going to take place.

Now the root node broadcasts the content of its buffer to all other processes
and at the end of this operation they all have the same stuff in their buffers.

This type of an operation is called a collective operation. Collective oper-
ations tend to be rather costly, not only because data is being sent over the
whole pool of MPI processes (which may be very large), but also because this
operation forces all processes to wait until the operation completes. This en-
forces synchronization onto the process pool and synchronization is always very
costly in terms of CPU time and even wall-clock time.

Anyhow, the master process has broadcast the name of its CPU to all other
processes and now the program forks again. The master process does something
quite different from all other processes. This is expressed again by the means
of the if statement, which has one clause for the master process and another
clause for all other processes:

if (i_am_the_master)

for (count = 1; count < pool_size; count++) {

MPI_Recv (recv_buffer, BUFSIZ, MPI_CHAR, MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

printf ("%s\n", recv_buffer);

}

else {

sprintf(send_buffer, "hello %s, greetings from %s, rank = %d",

master_name, my_name, my_rank);

MPI_Send (send_buffer, strlen(send_buffer) + 1, MPI_CHAR,

MASTER_RANK, 0, MPI_COMM_WORLD);

}

Now you can fully appreciate why it is so important that MPI processes have
ranks. Within its own clause the master process issues count - 1 receives and
follows each successful receive with a print statement that prints whatever the
master has received on standard output. On the other hand all other processes
construct messages within their own part of the program and send them to the
master process. It is usually the case in sequential programs that only one clause
of an if statement is executed. Here both are executed at the same time, but
they run on different CPUs.

Let us have a look at the functions that send and receive data.

5.2. BASIC MPI 125

Function MPI Send sends strlen(send_buffer) + 1 items of type MPI_CHAR
to process of rank MASTER_RANK. The items are taken from the buffer pointed to
by send_buffer and the communication takes place within the MPI_COMM_WORLD
communicator. The fifth variable, which is here set to 0, is the message tag.
It is an arbitrary integer number that is used to differentiate between various
messages. The receiving process may wish to receive messages with certain tags
only.

Now the master process is going to receive the messages into its own receive
buffer that is here called recv_buffer. This is the first argument to function
MPI Recv. The second argument specifies the length of the receive buffer mea-
sured as the number of items of type MPI_CHAR, which is the third argument
to MPI_Recv. Observe that since we do not know a priori how long a message
is going to be, we usually have to oversize the receive buffer, but this may be
overcome in various ways. There are inquiry functions that can be used to find
out how much data has arrived, before the data is actually read. The fourth
argument to MPI_Recv specifies the rank of the process from which we want to
receive the message. We don’t have to receive messages as they come. We can
make them wait and we can ignore them altogether too. But in this case we
say that we want to receive messages from any source (MPI_ANY_SOURCE) and
with any tag (MPI_ANY_TAG). The messages are going to be received within the
MPI_COMM_WORLD communicator, and the status of the received message is going
to be written on a structure called status. We will ignore this last bit for the
time being.

Let me show you how this is made, installed and run.

gustav@bh1 $ pwd

/N/B/gustav/src/I590/greetings

gustav@bh1 $ make

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/greetings.c,v greetings.c

RCS/greetings.c,v --> greetings.c

revision 1.2

done

cc -I/N/hpc/mpich2/include -c greetings.c

cc -o greetings greetings.o -L/N/hpc/mpich2/lib -lmpich

gustav@bh1 $ make install

co RCS/greetings.1,v greetings.1

RCS/greetings.1,v --> greetings.1

revision 1.1

done

[-d /N/B/gustav/bin] || mkdirhier /N/B/gustav/bin

install greetings /N/B/gustav/bin

[-d /N/B/gustav/man/man1] || mkdirhier /N/B/gustav/man/man1

install greetings.1 /N/B/gustav/man/man1

gustav@bh1 $

The manual page looks like this:

GREETINGS(1) I590 Programmer’s Manual GREETINGS(1)

126 CHAPTER 5. MPI AND MPI-IO

NAME

greetings - send greetings to the master process

SYNOPSIS

mpiexec -n <number-of-processes> greetings

DESCRIPTION

greetings The master process finds about the name of the

CPU it runs on and broadcasts it to all. Having received

the broadcast other processes construct greeting messages

and send them back to the master, who collects them and

displays on standard output.

OPTIONS

No greetings specific options

DIAGNOSTICS

No greetings specific diagnostics

EXAMPLES

$ mpdboot -n 8

$ mpiexec -n 8 greetings

hello bc89, greetings from bc46, rank = 4

hello bc89, greetings from bc42, rank = 2

hello bc89, greetings from bc43, rank = 1

hello bc89, greetings from bc47, rank = 5

hello bc89, greetings from bc48, rank = 6

hello bc89, greetings from bc44, rank = 3

hello bc89, greetings from bc88, rank = 7

$ mpdallexit

AUTHOR

Still too trivial a program to claim authorship.

I590/7462 October 2003 GREETINGS(1)

I run this program from the following PBS script:

gustav@bh1 $ pwd

/N/B/gustav/PBS

gustav@bh1 $ cat greetings.sh

#PBS -S /bin/bash

#PBS -N greetings

#PBS -o greetings_out

#PBS -e greetings_err

#PBS -q bg

#PBS -V

#PBS -m a

#PBS -l nodes=8

NODES=8

HOST=‘hostname‘

echo Local MPD console on $HOST

grep -v $HOST $PBS_NODEFILE | sed ’s/$/-myri0/’ > $HOME/mpd.hosts

mpdboot --totalnum=$NODES --file=$HOME/mpd.hosts

sleep 10

mpiexec -n $NODES greetings

mpdallexit

exit 0

5.2. BASIC MPI 127

gustav@bh1 $ qsub greetings.sh

20674.bh1.avidd.iu.edu

gustav@bh1 $ qstat | grep gustav

20674.bh1 greetings gustav 0 R bg

gustav@bh1 $!!

qstat | grep gustav

gustav@bh1 $ cat greetings_err

gustav@bh1 $ cat greetings_out

Local MPD console on bc89

hello bc89, greetings from bc43, rank = 4

hello bc89, greetings from bc40, rank = 1

hello bc89, greetings from bc41, rank = 2

hello bc89, greetings from bc44, rank = 5

hello bc89, greetings from bc46, rank = 6

hello bc89, greetings from bc42, rank = 3

hello bc89, greetings from bc88, rank = 7

gustav@bh1 $

Observe that the messages do not arrive in any particular order.

This program is a very simple prototype of what you would have to do
in order to implement non-parallel IO in absence of MPI-IO. The processes
would have to send their data to a master process, which would then collect
and organize the data and write it out on a file using normal UNIX IO. Until
MPI-IO all MPI programs used to checkpoint this way.

Exercises

1 Modify program greetings discussed in section 5.2.2 so that the master
process receives the messages not out of order but in the order that agrees
with the ranking of the senders.

2 Write an MPI program in which processes fill their send buffers with random
integers instead of greeting strings. Make the send buffers (and the cor-
responding receive buffer of the master process) 1,048,576 integers long.
Make the master process append the received strings of random integers
to an external file, the way that the program mkrandfile discussed in
section 3.4.3worked.

Hint You will have to replace MPI_CHAR with MPI_INT in MPI_Send and
MPI_Recv. Remember that the length of send and receive buffers
must be given in terms of the number of items of a type specified by
the next argument, not in bytes.

Hint Use the process rank number so that a different seed for function
srand is generated within each MPI process. Otherwise they will all
generate identical strings of pseudo-random integers.

Hint Do not make the master process generate any numbers. It will be
busy enough collecting data and writing the file.

128 CHAPTER 5. MPI AND MPI-IO

5.2.3 Dividing the Pie

We are now going to analyze the program you should have run already, cpi. The
source of this program is distributed with MPICH2, and it lives in the directory
/N/hpc/mpich2/src/mpich2-0.94b1/examples. The file name is cpi.c. For
your convenience and because it is an open software program, I also quote it
below:

gustav@bh1 $ pwd

/N/hpc/mpich2/src/mpich2-0.94b1/examples

gustav@bh1 $ cat cpi.c

#include "mpi.h"

#include <stdio.h>

#include <math.h>

double f(double);

double f(double a)

{

return (4.0 / (1.0 + a*a));

}

int main(int argc,char *argv[])

{

int done = 0, n, myid, numprocs, i;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x;

double startwtime = 0.0, endwtime;

int namelen;

char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

MPI_Get_processor_name(processor_name,&namelen);

fprintf(stdout,"Process %d of %d is on %s\n",

myid, numprocs, processor_name);

fflush(stdout);

n = 10000; /* default # of rectangles */

if (myid == 0)

startwtime = MPI_Wtime();

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

h = 1.0 / (double) n;

sum = 0.0;

/* A slightly better approach starts from large i and works back */

for (i = myid + 1; i <= n; i += numprocs)

{

x = h * ((double)i - 0.5);

sum += f(x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

5.2. BASIC MPI 129

if (myid == 0) {

endwtime = MPI_Wtime();

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

printf("wall clock time = %f\n", endwtime-startwtime);

fflush(stdout);

}

MPI_Finalize();

return 0;

}

gustav@bh1 $

This program calculates π by using the formula

π = 4

∫ 1

0

1

1 + x2
dx (5.1)

The calculation is numerical, i.e., the segment [0, 1] is divided into 10,000 equal
fragments. Within each fragment we evaluate 4

1+x2 for the middle of the frag-
ment (this is the height of the rectangle) and multiply it by the width of the
fragment to obtain the area of the rectangle. Then we add all the areas together
and this is our integral, that is also the approximate value of π.

The program begins with the usual incantations to MPI_Init, MPI_Comm_size,
MPI_Comm_rank and MPI_Get_processor_name. Then each process writes on
standard output its rank number (which is called myid here), the size of the
communicator (which is called numprocs here) and the name of the processor
it runs on.

We have not talked about it so far, but this writing on standard
output is far from trivial. Every process writes on its own standard
output. In some early versions of MPI, e.g., in LAM MPI, these
writes were simply lost. But MPICH2 engine collects all standard
outputs from its processes and combines them together on the so
called console node. This is always the node whose rank is zero, the
node on which we run mpdboot. The output you see on the PBS
output file is the output from the MPICH2 console node.

Now we hardwire the number of division of segment [0, 1] into n and the console
node begins the timing of the program by calling function MPI Wtime. This
function measures wall-clock time down to amicrosecond, sic! It is very accurate
indeed.

Now the value of n is broadcast to all processes. This is completely unneces-
sary in this particular program, because all nodes know what n is from the very
beginning, but this program has been modified from its interactive predecessor,
which used to read n from standard input. It was the console node that used
to do the reading.

Now every process calculates the width of the rectangles:

h = 1.0 / (double) n;

130 CHAPTER 5. MPI AND MPI-IO

Every process initializes its own local variable sum to zero, and then calls f(x) =
4

1+x2 on. . . the rectangle that corresponds to its own rank number. Then it
jumps to the rectangle that corresponds to its rank number plus the number of
processes in the pool, and so on. The values of f(x) = 4

1+x2 are added for all
rectangles and only at the end they are multiplied by the width of the rectangle.
This, of course, saves on unnecessary multiplications.

Now we encounter a new operation, MPI Reduce. This operation takes as its
input the content of mypi for each process in the pool (the first argument). We
tell it that there is one item (the third argument) of type MPI_DOUBLE (the fourth
argument) in there. We are then telling it that it should perform summation
over all instances of mypi (the fifth argument, MPI_SUM) and that it should write
the result of the operation on pi (the second argument) on the root process
(the sixth argument), which is this case is the console process, i.e., process
of rank zero. The whole operation is performed within the MPI_COMM_WORLD

communicator.

At the end of this operation only the root (console) process has the right
answer in its location that corresponds to pi. But this is fine. In the next clause
we instruct the console process to measure the wall clock time again, then print
the value of π on standard output together with the estimate of the accuracy
of the computation. Then the console process also writes how long it took to
carry out the computation.

Here is the output of the program.

gustav@bh1 $ pwd

/N/B/gustav/PBS

gustav@bh1 $ cat mpi_out

Local MPD console on bc89

Process 0 of 8 is on bc89

Process 1 of 8 is on bc40

Process 2 of 8 is on bc42

Process 3 of 8 is on bc41

Process 4 of 8 is on bc44

Process 5 of 8 is on bc43

Process 6 of 8 is on bc88

Process 7 of 8 is on bc46

pi is approximately 3.1415926544231247, Error is 0.0000000008333316

wall clock time = 0.009541

gustav@bh1 $

MPI_SUM is not the only operation you can use with MPI_Reduce. MPI
provides a number of predefined reduction operations that can be used in this
context, and you can define your own operations too. The predefined ones are:

MPI_MAX MPI_MIN MPI_SUM

MPI_PROD MPI_LAND MPI_BAND

MPI_LOR MPI_BOR MPI_LXOR

MPI_BXOR MPI_MAXLOC MPI_MINLOC

5.2. BASIC MPI 131

Exercises

1 Rewrite the program discussed in section 5.2.3 to read n from standard input,
so that the broadcast operation actually makes sense.

Hint Make only the console process read standard input, then broadcast
the number to other processes as shown in section 5.2.3.

Hint Input the number in the PBS script using the here input feature of
the shell.

5.2.4 Bank Queue

The following program illustrates a rather important parallel programming tech-
nique, which is often referred to as a job queue or a bank queue paradigm. The
idea is as follows: you have a number of jobs that you need to attend to, and
that are not dependent on each other. The master process maintains the job
queue, and sends jobs to slave processes. The slaves labour on the jobs and
return the results back to the master. Once a slave has finished working on its
last assignment and returned the results to the master, a new job is sent to the
slave. That way all processes of an MPI farm are kept busy.

The paradigm can be enriched. For example the slave processes can return
not only answers to the master, but also new jobs. The master process may
assess those jobs, perhaps compare them to a list of jobs already done that it
may keep on a lightweight data base, and if a job is new indeed, it may be added
to the queue, whereas if there is already an answer available to that job, the
answer may be passed to the slave together with the information that this class
of problems has already been solved. This way the queue may grow and shrink
dynamically as the computation proceeds.

This is a very flexible paradigm and it is often used to traverse dynamically
growing trees, especially in artificial reasoning programs.

The master itself may take part in the work, other than just maintaining
the queue and communicating with the slaves. But if there is a lot of work and
a lot of slaves, the master process may be too busy attending to the queue and
communicating with the slaves to carry out any computation of its own.

When you write a program based on this paradigm you must remember
that communication is expensive. Consequently jobs sent to the slaves must
be substantial enough to occupy them for a very long time. It is very easy
to overload the master process if task granularity is too small. In that case
the communication and the inability of the master process to respond quickly
enough to slaves’ requests may easily become a bottleneck.

Here’s the program itself.

In this program we are simply going to multiply matrix A by vector b in
parallel. Every slave process will have its own copy of b, and the master is going
to send them rows of A to multiply by their own copy of b. The result of the
computation by a slave is going to be a corresponding entry in vector c = A · b.

132 CHAPTER 5. MPI AND MPI-IO

A slave process is going to deliver the calculated entry in vector c back to
the master process, which will then place it in an appropriate slot in c and pass
a new row to the slave process at the same time, if there is any more work still
to be done. If there is no more work, the master sacks the slave process, but
sending it a termination message.

/*

* %Id: bank.c,v 1.1 2003/10/05 19:52:15 gustav Exp %

*

* %Log: bank.c,v %

* Revision 1.1 2003/10/05 19:52:15 gustav

* Initial revision

*

*

*/

#include <stdio.h> /* [fs]printf, fopen and fclose defined here */

#include <stdlib.h> /* exit defined here */

#include <sys/types.h> /* chmod defined here */

#include <sys/stat.h> /* chmod defined here */

#include <mpi.h>

#define COLS 100

#define ROWS 100

#define TRUE 1

#define FALSE 0

#define MASTER_RANK 0

int main (int argc, char **argv)

{

int pool_size, my_rank, destination;

int i_am_the_master = FALSE;

int a[ROWS][COLS], b[COLS], c[ROWS], i, j;

int int_buffer[BUFSIZ];

char my_logfile_name[BUFSIZ];

FILE *my_logfile;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

sprintf(my_logfile_name, "/N/B/gustav/tmp/bank.%d", my_rank);

my_logfile = fopen(my_logfile_name, "w");

(void) chmod(my_logfile_name, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);

if (i_am_the_master) {

int row, count, sender;

for (j = 0; j < COLS; j++) {

b[j] = 1;

for (i = 0; i < ROWS; i++) a[i][j] = i;

5.2. BASIC MPI 133

}

MPI_Bcast(b, COLS, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

count = 0;

for (destination = 0; destination < pool_size; destination++) {

if (destination != my_rank) {

for (j = 0; j < COLS; j++) int_buffer[j] = a[count][j];

MPI_Send(int_buffer, COLS, MPI_INT, destination, count,

MPI_COMM_WORLD);

fprintf(my_logfile, "sent row %d to %d\n", count, destination);

count = count + 1;

}

}

for (i = 0; i < ROWS; i++) {

MPI_Recv (int_buffer, BUFSIZ, MPI_INT, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

sender = status.MPI_SOURCE;

row = status.MPI_TAG;

c[row] = int_buffer[0];

fprintf(my_logfile, "\treceived row %d from %d\n", row, sender);

if (count < ROWS) {

for (j = 0; j < COLS; j++) int_buffer[j] = a[count][j];

MPI_Send(int_buffer, COLS, MPI_INT, sender, count,

MPI_COMM_WORLD);

fprintf(my_logfile, "sent row %d to %d\n", count, sender);

count = count + 1;

}

else {

MPI_Send(NULL, 0, MPI_INT, sender, ROWS, MPI_COMM_WORLD);

fprintf(my_logfile, "terminated process %d with tag %d\n", sender, ROWS);

}

}

for (row = 0; row < ROWS; row++) printf("%d ", c[row]);

printf("\n");

}

else { /* I am not the master */

int sum, row;

MPI_Bcast(b, COLS, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

fprintf(my_logfile, "received broadcast from %d\n", MASTER_RANK);

MPI_Recv(int_buffer, COLS, MPI_INT, MASTER_RANK, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

fprintf(my_logfile, "received a message from %d, tag %d\n",

status.MPI_SOURCE, status.MPI_TAG);

while (status.MPI_TAG != ROWS) { /* The job is not finished */

row = status.MPI_TAG; sum = 0;

for (i = 0; i < COLS; i++) sum = sum + int_buffer[i] * b[i];

int_buffer[0] = sum;

MPI_Send (int_buffer, 1, MPI_INT, MASTER_RANK, row, MPI_COMM_WORLD);

fprintf(my_logfile, "sent row %d to %d\n", row, MASTER_RANK);

MPI_Recv (int_buffer, COLS, MPI_INT, MASTER_RANK, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

fprintf(my_logfile, "received a message from %d, tag %d\n",

134 CHAPTER 5. MPI AND MPI-IO

status.MPI_SOURCE, status.MPI_TAG);

}

fprintf(my_logfile, "exiting on tag %d\n", status.MPI_TAG);

}

fclose (my_logfile);

MPI_Finalize ();

exit (0);

}

The code is compiled and installed with a very simple Makefile:

#

%Id: Makefile,v 1.2 2003/10/05 19:56:13 gustav Exp %

#

%Log: Makefile,v %

Revision 1.2 2003/10/05 19:56:13 gustav

Fixed DESTDIR

#

Revision 1.1 2003/10/05 19:54:55 gustav

Initial revision

#

#

DESTDIR = /N/B/gustav/bin

all: bank

bank: bank.c

mpicc -o bank bank.c

install: all

install bank $(DESTDIR)

clean:

rm -f bank.o bank

clobber: clean

rcsclean

And it all works as follows:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/bank

gustav@bh1 $ make install

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.2

done

co RCS/bank.c,v bank.c

RCS/bank.c,v --> bank.c

revision 1.1

done

mpicc -o bank bank.c

install bank /N/B/gustav/bin

5.2. BASIC MPI 135

gustav@bh1 $ cd

gustav@bh1 $ [-d tmp] || mkdir tmp

gustav@bh1 $ rm -f tmp/*

gustav@bh1 $ mpdtrace

bh1

bc34

bc35

bc37

bc36

bc38

bc40

bc39

gustav@bh1 $ mpiexec -n 8 bank

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 \

1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 \

3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 \

4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 \

6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 \

7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 \

9200 9300 9400 9500 9600 9700 9800 9900

gustav@bh1 $ ls tmp

bank.0 bank.1 bank.2 bank.3 bank.4 bank.5 bank.6 bank.7

gustav@bh1 $

Files bank.0 through bank.7 contain logs from slaves and from the master.
We’ll have a look at those files later.

But first let us analyze this program in detail.
Matrix A is 100× 100. Its dimensions are fixed by

#define COLS 100

#define ROWS 100

The master process is going to be the process of rank 0:

#define MASTER_RANK 0

All processes begin their existence from the usual MPI incantations:

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

through which they learn about their rank numbers and the size of the pool.
Then the master process learns that about its masterood:

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

The variable i_am_the_master is FALSE by default and it remains so for all
other processes.

Then all processes open their own respective log files:

sprintf(my_logfile_name, "/N/B/gustav/tmp/bank.%d", my_rank);

my_logfile = fopen(my_logfile_name, "w");

(void) chmod(my_logfile_name, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);

Observe that all processes are going to log on the NFS in my $HOME. The files that
correspond to the processes are numbered by their ranks, which are appended
to the string bank.. The name of the log file is hardwired in this program. You

136 CHAPTER 5. MPI AND MPI-IO

will have to change this if you want to recompile this program and run it from
your own account. Furthermore the program does not check for the existence
of the directory /N/B/gustav/tmp, so this directory must be created before the
program is run. This is a typical example of sloppy programming. You would
not put anything like this in a commercial application. But, if you are in the
process of developing a parallel program, and something doesn’t work, and you
have to debug every process and all communications that take place, then this
is a legitimate way of doing things. It is a parallel equivalent of debugging a
sequential program with printf statements.

Function fopen is going to open the file with rather liberal permissions
(e.g., it may be open for writing to all users on the system). To make sure
that the permissions are as you expect them to be, e.g., 644, you can use
the chmod system call. Here I set the permissions to be -rw-r--r--. The
constants used in the permissions and the function chmod itself are defined on
/usr/include/sys/stat.h. The default file mode for opening is 0666.

Now the program splits into two subprograms. There is a separate subpro-
gram for the master and a separate subprogram for the slaves:

...

if (i_am_the_master) {

blah... blah... blah...

}

else { /* I am not the master */

blah... blah... blah...

}

fclose (my_logfile);

MPI_Finalize();

exit(0);

}

We are going to discuss these subprograms in the separate sections.

The Master Program

I reprint the master program here for your convenience.

if (i_am_the_master) {

int row, count, sender;

for (j = 0; j < COLS; j++) {

b[j] = 1;

for (i = 0; i < ROWS; i++) a[i][j] = i;

}

MPI_Bcast(b, COLS, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

count = 0;

for (destination = 0; destination < pool_size; destination++) {

if (destination != my_rank) {

for (j = 0; j < COLS; j++) int_buffer[j] = a[count][j];

MPI_Send(int_buffer, COLS, MPI_INT, destination, count,

5.2. BASIC MPI 137

MPI_COMM_WORLD);

fprintf(my_logfile, "sent row %d to %d\n", count, destination);

count = count + 1;

}

}

for (i = 0; i < ROWS; i++) {

MPI_Recv (int_buffer, BUFSIZ, MPI_INT, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

sender = status.MPI_SOURCE;

row = status.MPI_TAG;

c[row] = int_buffer[0];

fprintf(my_logfile, "\treceived row %d from %d\n", row, sender);

if (count < ROWS) {

for (j = 0; j < COLS; j++) int_buffer[j] = a[count][j];

MPI_Send(int_buffer, COLS, MPI_INT, sender, count,

MPI_COMM_WORLD);

fprintf(my_logfile, "sent row %d to %d\n", count, sender);

count = count + 1;

}

else {

MPI_Send(NULL, 0, MPI_INT, sender, ROWS, MPI_COMM_WORLD);

fprintf(my_logfile,

"terminated process %d with tag %d\n", sender, ROWS);

}

}

for (row = 0; row < ROWS; row++) printf("%d ", c[row]);

printf("\n");

}

The first thing that the master process does is to initialize vector b and
matrix A. Every entry in vector b is set to 1 and matrix A is set to Aij = i.
This way it will be easy to check that the computation is correct, because

ci =
∑

j

Aijbj =
∑

j

Aij = i×N

where N is the dimension of the matrix, in this case 100. So

ci = 100× i

Once the master process has initialized A and b it broadcasts b to all other
processes:

MPI_Bcast(b, COLS, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

Observe that this statement is issued in the master’s part of the program. Con-
sequently we will have to issue it again in the slaves’ part of the program.
Otherwise there won’t be anybody on the other side to receive the data.

Now the master process initializes the counter, count, which is going to be
used to number rows of matrix A sent to the slave processes, and sends the
first batch of jobs to all slave processes. In this program the master does not
participate in the computation, so it does not send a row to itself:

count = 0;

for (destination = 0; destination < pool_size; destination++) {

138 CHAPTER 5. MPI AND MPI-IO

if (destination != my_rank) {

for (j = 0; j < COLS; j++) int_buffer[j] = a[count][j];

MPI_Send(int_buffer, COLS, MPI_INT, destination, count,

MPI_COMM_WORLD);

fprintf(my_logfile, "sent row %d to %d\n", count, destination);

count = count + 1;

}

}

For clarity, I have made the master process transfer a row from A to a send
buffer called int_buffer, and then send the data to the slave process. The
data could be sent directly from matrix A, which would be faster, but then you
would have to remember how C stores matrices (it stores them in a row-major
fashion, so this would actually work in this program).

Every time a matrix row is sent to a slave process, the master process logs
its actions on the log file.

The following for loop is the tricky part of the master program. The master
process waits for a message to arrive, from any process, and from any source.

for (i = 0; i < ROWS; i++) {

MPI_Recv (int_buffer, BUFSIZ, MPI_INT, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

How is the master process to know, which slave process is going to be the first
with an answer? Some may be slower and busier than others depending on what
else runs on their CPUs.

Once a message has arrived, the master process checks where the message
has come from by inspecting the status structure associated with the message:

sender = status.MPI_SOURCE;

and inspects the tag number of the message, so that it is reminded about the
row number that the answer relates to (the slave process, of course, will have
to send the message so that the row number is conveyed in the tag):

row = status.MPI_TAG;

The answer itself is then placed in an appropriate slot of vector c:

c[row] = int_buffer[0];

The operation is the logged on the logfile:

fprintf(my_logfile, "\treceived row %d from %d\n", row, sender);

Now the master process has to respond to the slave process that was so kind to
deliver the answer. The master process checks if there is still any work left:

if (count < ROWS) {

blah... blah... blah...

}

else {

MPI_Send(NULL, 0, MPI_INT, sender, ROWS, MPI_COMM_WORLD);

fprintf(my_logfile,

"terminated process %d with tag %d\n", sender, ROWS);

}

5.2. BASIC MPI 139

and if there isn’t, it sends a null message to the slave process in question, whose
tag is ROWS, and logs it on the log file.

Now, in C arrays are numbered from 0 through length - 1, and all processes
know that matrix A has ROWS rows, numbered from 0 through ROWS - 1. So if
the tag of the message is ROWS the slave process is going to know that something’s
amiss. As a matter of fact it will know that this is a termination message, so it
will go away and wait on MPI_Finalize for other processes to finish.

If there is still some work left though, then the master process transfers the
corresponding row of matrix A to its send buffer, int_buffer, and sends its
content to the slave process that has just delivered the answer. This operation
is again logged on the log file, and the counter, that counts how many rows of
matrix A have been sent out so far, is incremented by 1:

for (j = 0; j < COLS; j++) int_buffer[j] = a[count][j];

MPI_Send(int_buffer, COLS, MPI_INT, sender, count,

MPI_COMM_WORLD);

fprintf(my_logfile, "sent row %d to %d\n", count, sender);

count = count + 1;

After the master process has collected answers to all problems that it sent
to the slave processes, there is nothing else left for it to do. It prints the result
of the computation on standard output:

for (row = 0; row < ROWS; row++) printf("%d ", c[row]);

printf("\n");

then joins the mainlines of the program: it will close the log file and hit
MPI_Finalize() where all the slave processes should wait for it already.

The Slave Program

Let use have a look at the slave program. It is reprinted below for your conve-
nience.

else { /* I am not the master */

int sum, row;

MPI_Bcast(b, COLS, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

fprintf(my_logfile, "received broadcast from %d\n", MASTER_RANK);

MPI_Recv(int_buffer, COLS, MPI_INT, MASTER_RANK, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

fprintf(my_logfile, "received a message from %d, tag %d\n",

status.MPI_SOURCE, status.MPI_TAG);

while (status.MPI_TAG != ROWS) { /* The job is not finished */

row = status.MPI_TAG; sum = 0;

for (i = 0; i < COLS; i++) sum = sum + int_buffer[i] * b[i];

int_buffer[0] = sum;

MPI_Send (int_buffer, 1, MPI_INT, MASTER_RANK, row, MPI_COMM_WORLD);

fprintf(my_logfile, "sent row %d to %d\n", row, MASTER_RANK);

MPI_Recv (int_buffer, COLS, MPI_INT, MASTER_RANK, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

fprintf(my_logfile, "received a message from %d, tag %d\n",

status.MPI_SOURCE, status.MPI_TAG);

}

fprintf(my_logfile, "exiting on tag %d\n", status.MPI_TAG);

}

140 CHAPTER 5. MPI AND MPI-IO

The slave processes begin their career by receiving vector b that has been broad-
cast by the master. This is the slave-side of the broadcast call matching the
master’s call:

MPI_Bcast(b, COLS, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

After they have received their copies of b, they log this event on their respective
log files and wait for the first batch of jobs to be sent to them by the master
process.

MPI_Recv(int_buffer, COLS, MPI_INT, MASTER_RANK, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

They log this event on their log files too. Then they get to work.
The work is done within the large

while (status.MPI_TAG != ROWS) { /* The job is not finished */

blah... blah... blah...

}

loop. Every time a slave process receives a message from the master process
it checks if the tag of the message is less than ROWS. Remember that having
received a message with tag ROWS implies the termination of the contract.

If the tag is kosher, the slave process does the following:

row = status.MPI_TAG; sum = 0;

for (i = 0; i < COLS; i++) sum = sum + int_buffer[i] * b[i];

int_buffer[0] = sum;

MPI_Send (int_buffer, 1, MPI_INT, MASTER_RANK, row, MPI_COMM_WORLD);

fprintf(my_logfile, "sent row %d to %d\n", row, MASTER_RANK);

The row number is extracted from the tag of the message. Then the slave
process evaluates

∑

j Aijbj and sends it back to the master using the same tag.
This way the master will know which row number the answer corresponds to.
This operation is logged on the log file too.

Finally, the slave process waits for another message from the master process,
reads it, and logs it on the log file:

MPI_Recv (int_buffer, COLS, MPI_INT, MASTER_RANK, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

fprintf(my_logfile, "received a message from %d, tag %d\n",

status.MPI_SOURCE, status.MPI_TAG);

Then it’s back to the top of the loop: check the tag, if the tag is OK perform
the computation, otherwise print a farewell message on the log file, close the file
and hit MPI_Finalize().

The Logs

Let us have a look at the logs in /N/B/gustav/tmp.

gustav@bh1 $ pwd

/N/B/gustav/tmp

gustav@bh1 $ ls

bank.0 bank.1 bank.2 bank.3 bank.4 bank.5 bank.6 bank.7

gustav@bh1 $

5.2. BASIC MPI 141

The master’s log is on bank.0. It begins with:

sent row 0 to 1

sent row 1 to 2

sent row 2 to 3

sent row 3 to 4

sent row 4 to 5

sent row 5 to 6

sent row 6 to 7

This is followed by the routine work. Answers are received from the workers
and new jobs are sent back to them:

received row 1 from 2

sent row 7 to 2

received row 0 from 1

sent row 8 to 1

received row 3 from 4

sent row 9 to 4

...

Eventually the whole computation is complete and workers have to be sent
termination messages:

received row 92 from 3

terminated process 3 with tag 100

received row 94 from 5

terminated process 5 with tag 100

received row 95 from 6

terminated process 6 with tag 100

received row 96 from 7

terminated process 7 with tag 100

received row 97 from 4

terminated process 4 with tag 100

received row 98 from 2

terminated process 2 with tag 100

received row 99 from 1

terminated process 1 with tag 100

Now let us have a look at the log file of worker number 3:

gustav@bh1 $ cat bank.3

received broadcast from 0

received a message from 0, tag 2

sent row 2 to 0

received a message from 0, tag 10

sent row 10 to 0

received a message from 0, tag 16

sent row 16 to 0

...

received a message from 0, tag 79

sent row 79 to 0

received a message from 0, tag 86

sent row 86 to 0

received a message from 0, tag 92

sent row 92 to 0

received a message from 0, tag 100

exiting on tag 100

gustav@bh1 $

142 CHAPTER 5. MPI AND MPI-IO

The row this worker sends to 0 is the row of vector c, i.e., just a single integer.
The idea behind job queue paradigm is that you keep all processes as busy

as they can get, even if some have to cope with more load than others, e.g.,
because they run on faster machines. But this works only if the workers don’t
have to wait for new jobs from the master process longer than it takes them
to execute the jobs themselves. If this happens, the cost of communication
outweighs the cost of computation so much that you’ll be better off executing
the whole computation sequentially.

Exercises

1 Insert MPI Wtime calls in the client portion of the code in order to measure
time spent on computation and time spent on communication. Make each
client write the totals on its log file before calling MPI Finalize.

2 The program discussed in this section opens the log files in the directory
whose name is hardwired into the code, /N/B/gustav/tmp. Rewrite this
part of the program to

1. obtain the value of HOME from the user’s environment by calling func-
tion getenv(3);

2. check if directory tmp exists in HOME by calling function stat(2);

Hint If the directory you’re testing for does not exist function stat(2)

will return -1 signifying an error. You will then have to inspect
the value of errno(3), and in particular you should check if
errno=ENOENT, which would mean that there is no file or direc-
tory that can be accessed by this path name.

Hint If stat(2) does not return an error, this means that the file
does exist, but you still have to check if the file is a directory
and if you will be able to write on it. On a successful return
stat(2) will fill a structure of type stat that corresponds to the
file name given to stat(2) as the first argument. The st_mode
field of this structure can be used to test if the file in question
is a directory by calling a macro S_ISDIR, which is defined on
/usr/include/sys/stat.h. For example,
#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

...

char *file_name;

struct stat buf;

...

if (stat(file_name, &buf) == 0) {

if (S_ISDIR(buf.st_mode)) {

/* The file in question is a directory. */

...

} else {

/* The file in question is not a directory. */

...

}

} else {

5.2. BASIC MPI 143

/* The file in question probably does not exist or it cannot

be queried. Check errno. */

...

}

3. Create this directory if it does not exist by calling function mkdir(2).

These actions should be carried out by the master process only, whereas
other processes should wait on a barrier call, MPI Barrier, until the master
process has completed its task.

5.2.5 Diffusion

In this section I will lay the foundation for an MPI version of a diffusion code
based on Jacobi iterations. The idea is that a flat rectangular region, whose
dimensions in this token example are going to be 6× 8, will be divided amongst
12 processes, each handling a small square 2× 2. But because it is a differential
problem, apart from the 2×2 data squares, the processes will also have to main-
tain additional data that is going to mirror data that corresponds to whatever
the neighbouring processes have in their 2× 2 squares.

Diffusion is a very universal phenomenon that is encountered
almost everywhere, beginning with microscopic world of quantum
systems, and going all the way up to atmospheric circulation, pollu-
tion, and hurricanes. In the middle you encounter diffusion of nutri-
ents through various membranes in cells or diffusion of oil through
geological strata, or diffusion of heat through a combustion engine.

Mathematics of diffusion in all these systems is very similar and,
at its simplest, it is described by the following partial differential
equation:

∂T (x, y, z)

∂t
= D∇2T (x, y, z)

where T (x, y, z) represents the diffusing quantity (e.g., it may stand
for temperature), t stands for time, D is the diffusion coefficient

and ∇2 is the Laplace operator , which looks like this in Cartesian
coordinates:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Assuming that the problem is static, we get that ∂T (x,y,z)
∂t

= 0 and
then

∇2T (x, y, z) = 0 (5.2)

too. This is called the Laplace equation.
We can simplify the problem further, by assuming that it is only

2-dimensional, so that

∇2T (x, y) = 0

144 CHAPTER 5. MPI AND MPI-IO

This equation has the following discretized equivalent on a regular
rectangular lattice with spacing h for any lattice node (x0, y0):

T (x0, y0) =
1

4
(T (x0 + h, y0) + T (x0 − h, y0) + T (x0, y0 + h) + T (x0, y0 − h))

(5.3)
In other words, the value of T at (x0, y0) is the arithmetic average of
T over the neighbours nearest of (x0, y0) (we don’t take the diagonal
neighbours into account, because they are not the nearest).

This provides us with a simple method of solving equation (5.2)
for a situation with fixed boundary conditions, i.e., we know T every-
where on the boundary of some 2-dimensional region and we want to
find T everywhere within the region. The solution is to begin with
an initial guess. Then use equation (5.3) to replace each T (x0, y0)
with the average over the neighbours of (x0, y0). We may have to
repeat this process over and over, until we’ll notice that T no longer
changes from iteration to iteration. This is going to be our numer-
ical solution of equation (5.2). This very simple method is due to
a German mathematician Karl Gustav Jacob Jacobi, who was born
on the 10th of December 1804 in Potsdam near Berlin, and who died
on the 18th of February 1851 in Berlin.

In order to carry out Jacobi iterations on a parallel system, you need to divide
the two-dimensional region, in the simplest case a rectangle, into, say, squares,
allocating each square to a separate process. For nodes on the boundaries of
the squares, we will need to know values that function T assumes on nodes that
belong to other processes, so that we can perform the averaging.

This is where MPI communication comes in. We will have to use MPI
in order to transfer these values. We only need to transfer values associated
with the boundaries of the squares. If each square comprises N × N nodes,
then a process responsible for a given square will have to send 4 × N data
items to other nodes for each iteration. The amount of data that needs to
be communicated scales like N , whereas the amount of data that stays within
the square and can be computed on without communication scales like N2.
Assuming that computation is a thousand times faster than communication, we
get a “break-even” for N2 = 1000 × N , which yields N = 1000. For N much
larger than 1000 the cost of communication will be negligible compared to the
cost of computation. This means that the squares need to be very large. The
faster the CPUs compared to the network, the more nodes you have to pack
into each square to make the parallelization worthwhile.

The communication in this case can be facilitated further, if the processes
responsible for adjacent squares can be made to run on “adjacent” processors.
There are machines, such as, e.g., Cray X1, whose internal network topology
lets programmers do just this. Such machines are exceptionally well suited to
solving field problems, of which diffusion is the simplest.

In this section you will learn how MPI provides various constructs that are
very helpful in capturing this type of problem. But we are not going to solve

5.2. BASIC MPI 145

the problem itself. Instead we will focus on the MPI mechanisms themselves
and we will analyze a simple MPI demonstration program that explores these
mechanisms.

In our simple example each process looks after an small 2×2 integer matrix,
which represents the “square” and the integers represent function T . We are
going to surround each 2×2 square with additional rows and columns around its
boundary, into which we are going to transfer data from the adjacent squares.
There will be a column on the left and on the right of the 2×2 region to represent
values obtained from adjacent squares on the left and on the right hand side,
and rows above and below the 2× region, to represent values obtained from
adjacent squares above and below “our” square. So, in effect, each process will
really have to work with a 4× 4 matrix, but only 2× 2 interior of this matrix is
its own, and the periphery of the matrix will be populated with data obtained
from other processes.

Within the example code we are going to:

1. arrange processes into a virtual 2-dimensional Cartesian process topology

2. orient processes within this new topology (so that they know who their
neighbours are)

3. exchange data with neighbouring processes within the Cartesian topology
so as to populate the peripheral rows and columns in the 4× 4 matrices.

At every stage the master process is going to collect data from all other
processes and print it on standard output so as to show the state of the system
at one glance.

In order to help you understand the whole procedure, I’m going to show you
some of the output of the program first, then I’ll list the program for you, and
then discuss it in more detail.

When the program starts, right after the processes have formed the new
Cartesian topology, oriented themselves within it, but before they exchanged
any data, their state looks as follows:

9 9 9 9 10 10 10 10 11 11 11 11

9 9 9 9 10 10 10 10 11 11 11 11

9 9 9 9 10 10 10 10 11 11 11 11

9 9 9 9 10 10 10 10 11 11 11 11

6 6 6 6 7 7 7 7 8 8 8 8

6 6 6 6 7 7 7 7 8 8 8 8

6 6 6 6 7 7 7 7 8 8 8 8

6 6 6 6 7 7 7 7 8 8 8 8

3 3 3 3 4 4 4 4 5 5 5 5

3 3 3 3 4 4 4 4 5 5 5 5

3 3 3 3 4 4 4 4 5 5 5 5

3 3 3 3 4 4 4 4 5 5 5 5

0 0 0 0 1 1 1 1 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 2

146 CHAPTER 5. MPI AND MPI-IO

Every process initializes its own 4× 4 matrix to its own rank number. The ma-
trices are displayed by the master process in a way that illustrates the topology
of the whole system, i.e., we have a rectangular topology 3× 4, process rank 0
is in the lower left corner, and its neighbours are process rank 1 on the right
and process rank 3 above. Process rank 4 sits roughly in the middle and its
neighbours are process rank 1 below, process rank 7 above, process rank 3 on
the left, and process rank 5 on the right.

Now, the processes exchange the content of their inner rows with their neigh-
bours, i.e., process rank 4 sends the content of its row 3 (counted from the
bottom) to process number 7, which puts it in its own row 1 (counted from the
bottom), and, at the same time receives the content of row 2 from process rank
7, and places it in its own row 4.

So that after this exchange operation has taken place, the matrices look as
follows:

9 9 9 9 10 10 10 10 11 11 11 11

9 9 9 9 10 10 10 10 11 11 11 11

9 9 9 9 10 10 10 10 11 11 11 11

6 6 6 6 7 7 7 7 8 8 8 8

9 9 9 9 10 10 10 10 11 11 11 11

6 6 6 6 7 7 7 7 8 8 8 8

6 6 6 6 7 7 7 7 8 8 8 8

3 3 3 3 4 4 4 4 5 5 5 5

6 6 6 6 7 7 7 7 8 8 8 8

3 3 3 3 4 4 4 4 5 5 5 5

3 3 3 3 4 4 4 4 5 5 5 5

0 0 0 0 1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4 5 5 5 5

0 0 0 0 1 1 1 1 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 2

Now we have to repeat this operation, but this time exchanging columns between
neighbours. And so process rank 4 will send its column 2 (counted from the
left) to process rank 3, which is going to place it in its own column 4 (counted
from the left), and, at the same time process rank 3 is going to send its own
column 3 to process rank 4, which is going to place it in its own column 1.

And after all this is over, the matrices are going to look as follows:

9 9 9 10 9 10 10 11 10 11 11 11

9 9 9 10 9 10 10 11 10 11 11 11

9 9 9 10 9 10 10 11 10 11 11 11

6 6 6 7 6 7 7 8 7 8 8 8

9 9 9 10 9 10 10 11 10 11 11 11

6 6 6 7 6 7 7 8 7 8 8 8

6 6 6 7 6 7 7 8 7 8 8 8

3 3 3 4 3 4 4 5 4 5 5 5

6 6 6 7 6 7 7 8 7 8 8 8

3 3 3 4 3 4 4 5 4 5 5 5

5.2. BASIC MPI 147

3 3 3 4 3 4 4 5 4 5 5 5

0 0 0 1 0 1 1 2 1 2 2 2

3 3 3 4 3 4 4 5 4 5 5 5

0 0 0 1 0 1 1 2 1 2 2 2

0 0 0 1 0 1 1 2 1 2 2 2

0 0 0 1 0 1 1 2 1 2 2 2

Observe that now not only does every process know what data is harboured by
its neighbours on the left, on the right, above, and below, but they even know
the data that somehow made it diagonally, i.e., from the upper left, upper right,
lower left, and lower right directions - but the latter is not going to last, because
that data came from the peripheral rows and columns in the adjacent squares,
so it is not truly representative of the processes’ internal states.

Now every process can perform its own Jacobi iteration within its own little
patch for a diffusion problem, and set new values to its own data, while keeping
the mirrored data unchanged.

Before the next iteration can commence, the data has to be exchanged be-
tween the neighbours again, in order to refresh the peripheries of the squares.

So now let us have a look at the code:

The Code

Here is the code itself. Then I show how it’s made, installed and how it’s run.
You have to run it on 12 processes.

/*

* %Id: cart.c,v 1.1 2003/10/06 00:56:48 gustav Exp %

*

* %Log: cart.c,v %

* Revision 1.1 2003/10/06 00:56:48 gustav

* Initial revision

*

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

#define FALSE 0

#define TRUE 1

#define MASTER_RANK 0

#define UPDOWN 0

#define SIDEWAYS 1

#define RIGHT 1

#define UP 1

#define PROCESS_DIMENSIONS 2

#define PROCESS_ROWS 4

#define ROWS 4

#define DISPLAY_ROWS 16 /* must be PROCESS_ROWS * ROWS */

148 CHAPTER 5. MPI AND MPI-IO

#define PROCESS_COLUMNS 3

#define COLUMNS 4

#define DISPLAY_COLUMNS 12 /* must be PROCESS_COLUMNS * COLUMNS */

int main (int argc, char **argv)

{

int pool_size, my_rank, destination, source;

MPI_Status status;

char char_buffer[BUFSIZ];

int i_am_the_master = FALSE;

int divisions[PROCESS_DIMENSIONS] = {PROCESS_ROWS, PROCESS_COLUMNS};

int periods[PROCESS_DIMENSIONS] = {0, 0};

int reorder = 1;

MPI_Comm cartesian_communicator;

int my_cartesian_rank, my_coordinates[PROCESS_DIMENSIONS];

int left_neighbour, right_neighbour, bottom_neighbour, top_neighbour;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

MPI_Cart_create (MPI_COMM_WORLD, PROCESS_DIMENSIONS, divisions,

periods, reorder, &cartesian_communicator);

if (cartesian_communicator != MPI_COMM_NULL) {

int matrix [ROWS][COLUMNS];

int i, j;

MPI_Datatype column_type;

MPI_Comm_rank (cartesian_communicator, &my_cartesian_rank);

MPI_Cart_coords (cartesian_communicator, my_cartesian_rank,

PROCESS_DIMENSIONS, my_coordinates);

MPI_Cart_shift (cartesian_communicator, SIDEWAYS, RIGHT,

&left_neighbour, &right_neighbour);

MPI_Cart_shift (cartesian_communicator, UPDOWN, UP,

&bottom_neighbour, &top_neighbour);

if (! i_am_the_master) {

sprintf(char_buffer, "process %2d, cartesian %2d, \

coords (%2d,%2d), left %2d, right %2d, top %2d, bottom %2d",

my_rank, my_cartesian_rank, my_coordinates[0],

my_coordinates[1], left_neighbour, right_neighbour,

top_neighbour, bottom_neighbour);

MPI_Send(char_buffer, strlen(char_buffer) + 1, MPI_CHAR,

MASTER_RANK, 3003, MPI_COMM_WORLD);

}

else {

int number_of_c_procs, count;

number_of_c_procs = divisions[0] * divisions[1];

for (count = 0; count < number_of_c_procs - 1; count++) {

5.2. BASIC MPI 149

MPI_Recv(char_buffer, BUFSIZ, MPI_CHAR, MPI_ANY_SOURCE, 3003,

MPI_COMM_WORLD, &status);

printf ("%s\n", char_buffer);

}

printf("process %2d, cartesian %2d, \

coords (%2d,%2d), left %2d, right %2d, top %2d, bottom %2d\n",

my_rank, my_cartesian_rank, my_coordinates[0],

my_coordinates[1], left_neighbour, right_neighbour,

top_neighbour, bottom_neighbour);

}

for (i = 0; i < ROWS; i++) {

for (j = 0; j < COLUMNS; j++) {

matrix [i][j] = my_cartesian_rank;

}

}

if (my_cartesian_rank != MASTER_RANK)

MPI_Send (matrix, COLUMNS * ROWS, MPI_INT, MASTER_RANK, 3003,

cartesian_communicator);

else

collect_matrices (cartesian_communicator, my_cartesian_rank,

matrix, 3003);

MPI_Sendrecv (&matrix[ROWS - 2][0], COLUMNS, MPI_INT,

top_neighbour, 4004,

&matrix[0][0], COLUMNS, MPI_INT, bottom_neighbour,

4004,

cartesian_communicator, &status);

MPI_Sendrecv (&matrix[1][0], COLUMNS, MPI_INT, bottom_neighbour,

5005,

&matrix[ROWS - 1][0], COLUMNS, MPI_INT,

top_neighbour, 5005,

cartesian_communicator, &status);

if (my_cartesian_rank != MASTER_RANK)

MPI_Send (matrix, COLUMNS * ROWS, MPI_INT, MASTER_RANK, 6006,

cartesian_communicator);

else

collect_matrices (cartesian_communicator, my_cartesian_rank,

matrix, 6006);

MPI_Type_vector (ROWS, 1, COLUMNS, MPI_INT, &column_type);

MPI_Type_commit (&column_type);

MPI_Sendrecv (&matrix[0][1], 1, column_type, left_neighbour, 7007,

&matrix[0][COLUMNS - 1], 1, column_type,

right_neighbour, 7007,

cartesian_communicator, &status);

MPI_Sendrecv (&matrix[0][COLUMNS - 2], 1, column_type,

right_neighbour, 8008,

&matrix[0][0], 1, column_type, left_neighbour, 8008,

cartesian_communicator, &status);

if (my_cartesian_rank != MASTER_RANK)

150 CHAPTER 5. MPI AND MPI-IO

MPI_Send (matrix, COLUMNS * ROWS, MPI_INT, MASTER_RANK, 9009,

cartesian_communicator);

else

collect_matrices (cartesian_communicator, my_cartesian_rank,

matrix, 9009);

}

MPI_Finalize ();

exit(0);

}

int print_array (int array [DISPLAY_ROWS] [DISPLAY_COLUMNS],

int vertical_break,

int horizontal_break)

{

int k, l;

printf ("\n");

for (k = DISPLAY_ROWS - 1; k >= 0; k --) {

for (l = 0; l < DISPLAY_COLUMNS; l ++) {

if (l % horizontal_break == 0) printf (" ");

printf ("%2d ", array [k][l]);

}

printf ("\n");

if (k % vertical_break == 0) printf ("\n");

}

}

int collect_matrices (MPI_Comm cartesian_communicator,

int my_cartesian_rank,

int matrix[ROWS][COLUMNS],

int tag)

{

int coordinates[PROCESS_DIMENSIONS];

int client_matrix[ROWS][COLUMNS];

int display[DISPLAY_ROWS][DISPLAY_COLUMNS];

int i, j, k, l, source;

MPI_Status status;

for (i = PROCESS_ROWS - 1; i >= 0; i --) {

for (j = 0; j < PROCESS_COLUMNS; j ++) {

coordinates[0] = i;

coordinates[1] = j;

MPI_Cart_rank (cartesian_communicator, coordinates,

&source);

if (source != my_cartesian_rank) {

MPI_Recv (client_matrix, BUFSIZ, MPI_INT, source, tag,

cartesian_communicator, &status);

for (k = ROWS - 1; k >= 0; k --) {

for (l = 0; l < COLUMNS; l++) {

display [i * ROWS + k] [j * COLUMNS + l] =

client_matrix[k][l];

}

}

}

else {

for (k = ROWS - 1; k >= 0; k --) {

5.2. BASIC MPI 151

for (l = 0; l < COLUMNS; l ++) {

display [i * ROWS + k] [j * COLUMNS + l]

= matrix[k][l];

}

}

}

}

}

print_array (display, ROWS, COLUMNS);

}

The Makefile for this program looks the same as the Makefile for the previous
program. It simply calls mpicc to compile and link it, then install to install
it:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/cart

gustav@bh1 $ make install

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/cart.c,v cart.c

RCS/cart.c,v --> cart.c

revision 1.1

done

mpicc -o cart cart.c

install cart /N/B/gustav/bin

gustav@bh1 $ make clobber

rm -f cart.o cart

rcsclean

rm -f Makefile

rm -f cart.c

gustav@bh1 $

As I have mentioned above, this program must be run on 12 processes.
Here’s how it’s done:

gustav@bh1 $ mpdboot

gustav@bh1 $ mpdtrace | wc

13 13 64

gustav@bh1 $ mpdtrace

bh1

bc29

bc30

bc31

bc32

bc33

bc36

bc35

bc34

bc40

bc38

bc37

bc39

gustav@bh1 $ mpiexec -n 12 cart

process 1, cartesian 1, coords (0, 1), left 0, right 2, top 4, bottom -1

152 CHAPTER 5. MPI AND MPI-IO

process 11, cartesian 11, coords (3, 2), left 10, right -1, top -1, bottom 8

process 10, cartesian 10, coords (3, 1), left 9, right 11, top -1, bottom 7

process 8, cartesian 8, coords (2, 2), left 7, right -1, top 11, bottom 5

process 9, cartesian 9, coords (3, 0), left -1, right 10, top -1, bottom 6

process 7, cartesian 7, coords (2, 1), left 6, right 8, top 10, bottom 4

process 6, cartesian 6, coords (2, 0), left -1, right 7, top 9, bottom 3

process 5, cartesian 5, coords (1, 2), left 4, right -1, top 8, bottom 2

process 4, cartesian 4, coords (1, 1), left 3, right 5, top 7, bottom 1

process 3, cartesian 3, coords (1, 0), left -1, right 4, top 6, bottom 0

process 2, cartesian 2, coords (0, 2), left 1, right -1, top 5, bottom -1

process 0, cartesian 0, coords (0, 0), left -1, right 1, top 3, bottom -1

9 9 9 9 10 10 10 10 11 11 11 11

9 9 9 9 10 10 10 10 11 11 11 11

9 9 9 9 10 10 10 10 11 11 11 11

9 9 9 9 10 10 10 10 11 11 11 11

6 6 6 6 7 7 7 7 8 8 8 8

6 6 6 6 7 7 7 7 8 8 8 8

6 6 6 6 7 7 7 7 8 8 8 8

6 6 6 6 7 7 7 7 8 8 8 8

3 3 3 3 4 4 4 4 5 5 5 5

3 3 3 3 4 4 4 4 5 5 5 5

3 3 3 3 4 4 4 4 5 5 5 5

3 3 3 3 4 4 4 4 5 5 5 5

0 0 0 0 1 1 1 1 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 2

9 9 9 9 10 10 10 10 11 11 11 11

9 9 9 9 10 10 10 10 11 11 11 11

9 9 9 9 10 10 10 10 11 11 11 11

6 6 6 6 7 7 7 7 8 8 8 8

9 9 9 9 10 10 10 10 11 11 11 11

6 6 6 6 7 7 7 7 8 8 8 8

6 6 6 6 7 7 7 7 8 8 8 8

3 3 3 3 4 4 4 4 5 5 5 5

6 6 6 6 7 7 7 7 8 8 8 8

3 3 3 3 4 4 4 4 5 5 5 5

3 3 3 3 4 4 4 4 5 5 5 5

0 0 0 0 1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4 5 5 5 5

0 0 0 0 1 1 1 1 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 2

0 0 0 0 1 1 1 1 2 2 2 2

9 9 9 10 9 10 10 11 10 11 11 11

9 9 9 10 9 10 10 11 10 11 11 11

9 9 9 10 9 10 10 11 10 11 11 11

5.2. BASIC MPI 153

6 6 6 7 6 7 7 8 7 8 8 8

9 9 9 10 9 10 10 11 10 11 11 11

6 6 6 7 6 7 7 8 7 8 8 8

6 6 6 7 6 7 7 8 7 8 8 8

3 3 3 4 3 4 4 5 4 5 5 5

6 6 6 7 6 7 7 8 7 8 8 8

3 3 3 4 3 4 4 5 4 5 5 5

3 3 3 4 3 4 4 5 4 5 5 5

0 0 0 1 0 1 1 2 1 2 2 2

3 3 3 4 3 4 4 5 4 5 5 5

0 0 0 1 0 1 1 2 1 2 2 2

0 0 0 1 0 1 1 2 1 2 2 2

0 0 0 1 0 1 1 2 1 2 2 2

gustav@bh1 $ mpdallexit

gustav@bh1 $

The Discussion

This program contains numerous new elements and MPI function calls, so this
section may be a little heavy. But it also illustrates where MPI differs from
earlier, much simpler, but also much more primitive message passing systems.
MPI is very powerful. It is not just send and receive.

The code begins innocently enough like all other MPI codes that we have
seen so far: MPI itself is initialised, then every process finds out about the size
of the process pool, and its own rank within that pool.

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

And then, as usual, one of the processes assumes the role of the master:

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

But the next operation is entirely new:

MPI_Cart_create (MPI_COMM_WORLD, PROCESS_DIMENSIONS, divisions,

periods, reorder, &cartesian_communicator);

What happens here is as follows. The processes create a new communicator,
which, unlike the MPI_COMM_WORLD, has a special topology imposed on it. The
new communicator, the place for which is passed to MPI Cart create as the last
argument, is formed out of the old one, which is passed to MPI_Cart_create in
the first argument. The four parameters passed in the middle: PROCESS_DIMENSIONS,
divisions, periods, and reorder, specify the topology of the new communi-
cator. When we say topology it means that there is some sort of a connectivity
between the processes within this new communicator. In this case they will
acquire left, right, bottom, and top neighbours .

The value of PROCESS_DIMENSIONS is 2, which means that the processes are
to be organised into a 2 dimensional grid. divisions is going to be an array of
rank 1, whose entries specify lengths of the process grid in those two dimensions,
in this case:

154 CHAPTER 5. MPI AND MPI-IO

#define PROCESS_ROWS 4

...

#define PROCESS_COLUMNS 3

...

int divisions[PROCESS_DIMENSIONS] = {PROCESS_ROWS, PROCESS_COLUMNS};

that is, the processes are going to be organised into a rectangular grid with 4
rows and 3 columns.

The parameter periods specifies if the topology is going to be a wrap-around
topology or an open ended topology, i.e., if the processes that are on the borders
of the region should have as their over the border neighbours the guys on the
other side, or nobody. In this case we simply say that

int periods[PROCESS_DIMENSIONS] = {0, 0};

which means that we don’t want any wrapping.
The last parameter in this group, reorder, specifies if processes should be re-

ordered for efficiency. This implies that processes may be moved around between
processors, or just renumbered, so as to utilize better any hardware architec-
ture that a given machine may have. Examples of such machines are Cray T3E,
Cray X1, Fujitsu AP-3000, and NEC Cenju-3.

If you have asked for a 4× 3 Cartesian communicator and started with, say,
15 processes, then 3 of those 15 processes would have to be rejected from the
new communicator, because there is only going to be enough space in it for 12
processes. The rejected processes will find that after MPI_Cart_create returns,
the returned value of cartesian_communicator is MPI_COMM_NULL. What this
means is that those processes didn’t get the job.

They may hang about, if they choose, or they may go right for MPI_Finalize
– this is up to the programmer. You may create more than one communica-
tor with various properties, so that the processes that didn’t make it into the
cartesian_communicator will get jobs elsewhere.

For this reason the remainder of the program is in the form of one large if
statement:

if (cartesian_communicator != MPI_COMM_NULL) {

blah... blah... blah...

}

MPI_Finalize ();

exit (0);

}

Now, assuming that you did get a job, as a process, with the cartesian_communicator,
the first thing that you do is to find your new rank number within that new
communicator:

MPI_Comm_rank (cartesian_communicator, &my_cartesian_rank);

And the reason for this is that your rank number in the cartesian_communicator
may be entirely different from your old number in the MPI_COMM_WORLD com-
municator. They’re like a Tax File Number in Australia and a Social Security
Number in the US.

But now, since the cartesian_communicator is a communicator with a
topology, you can make inquiries about your neighbourhood:

5.2. BASIC MPI 155

MPI_Cart_coords (cartesian_communicator, my_cartesian_rank,

PROCESS_DIMENSIONS, my_coordinates);

MPI_Cart_shift (cartesian_communicator, SIDEWAYS, RIGHT,

&left_neighbour, &right_neighbour);

MPI_Cart_shift (cartesian_communicator, UPDOWN, UP,

&bottom_neighbour, &top_neighbour);

The first call to MPI Cart coords returns your Cartesian coordinates in an array
my_coordinates of length PROCESS_DIMENSIONS. Naturally you have to tell
MPI_Cart_coords who you are, in order to obtain that information. You have
to pass on your new Cartesian rank number in the second slot of the function.

The following two calls to MPI Cart shift tell you about the rank numbers
of your left and right neighbours and of your bottom and top neighbours. So
the function MPI_Cart_shift doesn’t really shift anything. It’s more like look-
ing up who your neighbours are. But the designers of MPI thought of it in
terms of shifting rank numbers of your neighbours from the left and from the
right and from above and from below into those containers, which you call
left_neighbour, right_neighbour, bottom_neighbour, and top_neighbour.

This stuff is worth displaying, so what we do now is to pack all that infor-
mation into a message and send it to the master process.

if (! i_am_the_master) {

sprintf(char_buffer, "process %2d, cartesian %2d, \

coords (%2d,%2d), left %2d, right %2d, top %2d, bottom %2d",

my_rank, my_cartesian_rank, my_coordinates[0],

my_coordinates[1], left_neighbour, right_neighbour,

top_neighbour, bottom_neighbour);

MPI_Send(char_buffer, strlen(char_buffer) + 1, MPI_CHAR,

MASTER_RANK, 3003, MPI_COMM_WORLD);

}

else {

int number_of_c_procs, count;

number_of_c_procs = divisions[0] * divisions[1];

for (count = 0; count < number_of_c_procs - 1; count++) {

MPI_Recv(char_buffer, BUFSIZ, MPI_CHAR, MPI_ANY_SOURCE, 3003,

MPI_COMM_WORLD, &status);

printf ("%s\n", char_buffer);

}

printf("process %2d, cartesian %2d, \

coords (%2d,%2d), left %2d, right %2d, top %2d, bottom %2d\n",

my_rank, my_cartesian_rank, my_coordinates[0],

my_coordinates[1], left_neighbour, right_neighbour,

top_neighbour, bottom_neighbour);

}

Observe that this communication takes place within the MPI_COMM_WORLD, not
within the cartesian_communicator. The old communicator didn’t go away,
when the new one was created, so it can be still used for various things.

Observe a subtle bug here: we are assuming that the master process is still
going to hang around! In other words that the master process was included into
the cartesian_communicator.

What will happen if it is not included?

156 CHAPTER 5. MPI AND MPI-IO

In our case we are going to run this job requesting exactly the right num-
ber of processes, so the master process is guaranteed to be included into the
cartesian_communicator. Having said that you may consider modifying the
logic of the program so as to get rid of the bug.

Here is what the output looks like, once the master process gets down to it:

process 1, cartesian 1, coords (0, 1), left 0, right 2, top 4, bottom -1

process 10, cartesian 10, coords (3, 1), left 9, right 11, top -1, bottom 7

process 11, cartesian 11, coords (3, 2), left 10, right -1, top -1, bottom 8

process 9, cartesian 9, coords (3, 0), left -1, right 10, top -1, bottom 6

process 8, cartesian 8, coords (2, 2), left 7, right -1, top 11, bottom 5

process 7, cartesian 7, coords (2, 1), left 6, right 8, top 10, bottom 4

process 6, cartesian 6, coords (2, 0), left -1, right 7, top 9, bottom 3

process 5, cartesian 5, coords (1, 2), left 4, right -1, top 8, bottom 2

process 2, cartesian 2, coords (0, 2), left 1, right -1, top 5, bottom -1

process 3, cartesian 3, coords (1, 0), left -1, right 4, top 6, bottom 0

process 4, cartesian 4, coords (1, 1), left 3, right 5, top 7, bottom 1

process 0, cartesian 0, coords (0, 0), left -1, right 1, top 3, bottom -1

Observe that the cartesian rank numbers here are the same as the world
rank numbers. But you must not count on it. It just happens to be so here,
on the AVIDD, for this particular program, and under this particular version of
MPICH2. This is not an MPI requirement.

What happens next is this simple piece of code:

for (i = 0; i < ROWS; i++) {

for (j = 0; j < COLUMNS; j++) {

matrix [i][j] = my_cartesian_rank;

}

}

Every process simply initializes its own little matrix with its own cartesian rank
number. The whole matrix is initialized, including the parts that are going to
be dedicated to mirroring, along the borders of the matrix.

Once the matrices have been initialized, the processes send them to the
master process, who dilligently collects them and displays on standard output:

if (my_cartesian_rank != MASTER_RANK)

MPI_Send (matrix, COLUMNS * ROWS, MPI_INT, MASTER_RANK, 6006,

cartesian_communicator);

else

collect_matrices (cartesian_communicator, my_cartesian_rank,

matrix, 6006);

Function collect_matrices hides the tedium of collecting, arranging and dis-
playing data received from other nodes.

This time the communication takes place entirely within the cartesian_communicator,
and the process that collects all matrices does not have to be the same process
as the master process in the MPI_COMM_WORLD communicator.

Now the processes in the cartesian_communicator have to exchange infor-
mation with their neighbours:

MPI_Sendrecv (&matrix[ROWS - 2][0], COLUMNS, MPI_INT,

top_neighbour, 4004,

&matrix[0][0], COLUMNS, MPI_INT, bottom_neighbour,

5.2. BASIC MPI 157

4004,

cartesian_communicator, &status);

MPI_Sendrecv (&matrix[1][0], COLUMNS, MPI_INT, bottom_neighbour,

5005,

&matrix[ROWS - 1][0], COLUMNS, MPI_INT,

top_neighbour, 5005,

cartesian_communicator, &status);

While sending this stuff up and down with the MPI Sendrecv operation, we’re
making use of the fact that matrices in C are stored in the row-major fashion,
i.e., the other way to Fortran. The first statement sends the whole second
row from the top (I have numbered these matrices upside down, so as to stick
to the usual x × y convention) to the top neighbour. The send buffer begins
at &matrix[ROWS - 2][0] and is COLUMNS items long. The items are of type
MPI_INT and the corresponding message is going to have tag 4004.

At the same time, every process receives into its bottom row data sent by
its bottom neighbour. The beginning of the receive buffer is &matrix[0][0],
the buffer contains items of type MPI_INT, and the number of those items is
COLUMNS.

Of course this communication must take place within the cartesian_communicator,
because it is only within this communicator that the notion of a bottom and
top neighbour makes sense.

The second MPI_Sendrecv operation does the same, but in the opposite
direction, i.e., the data is now sent down, whereas previously it went up.

Having done that we display the state of the whole system again:

if (my_cartesian_rank != MASTER_RANK)

MPI_Send (matrix, COLUMNS * ROWS, MPI_INT, MASTER_RANK, 6006,

cartesian_communicator);

else

collect_matrices (cartesian_communicator, my_cartesian_rank,

matrix, 6006);

The last part of the code is a little tricky. Here we have to exchange columns
between neighbours, but columns are not stored in C contiguously.

MPI provides a very powerful apparatus for situations like this one.
First we define a stridden data type:

MPI_Type_vector (ROWS, 1, COLUMNS, MPI_INT, &column_type);

MPI_Type_commit (&column_type);

Function MPI Type vector constructs this special stridden data type as follows:
the data type comprises ROWS items of type MPI_INT. The items are collected by
picking up 1 item every COLUMNS steps from a contiguous storage. The descrip-
tion of this peculiar data type is placed into column_type. Once the type has
been defined it must be committed by calling function MPI Type commit. Here
we give a parallel machine an opportunity to adjust its hardware or software
logic in order to prepare for manipulating this new data type.

Now we can exchange columns between neighbours in a much the same way
we did rows before:

158 CHAPTER 5. MPI AND MPI-IO

MPI_Sendrecv (&matrix[0][1], 1, column_type, left_neighbour, 7007,

&matrix[0][COLUMNS - 1], 1, column_type,

right_neighbour, 7007,

cartesian_communicator, &status);

MPI_Sendrecv (&matrix[0][COLUMNS - 2], 1, column_type,

right_neighbour, 8008,

&matrix[0][0], 1, column_type, left_neighbour, 8008,

cartesian_communicator, &status);

The first operation sends one item of type column_type, stored at &matrix[0][1]
to the left_neighbour. The corresponding message has tag 7007. At the same
time another single item of column_type is received from the right_neighbour
and placed in &matrix[0][COLUMNS - 1]. Again, observe that we are not send-
ing the border columns: we are sending internal columns, and we’re receiving
them into the border columns. The second MPI_Sendrecv call does the same in
the opposite direction, i.e., from left to right.

After the data has been exchanged, the state of the system is displayed again
by calling:

if (my_cartesian_rank != MASTER_RANK)

MPI_Send (matrix, COLUMNS * ROWS, MPI_INT, MASTER_RANK, 9009,

cartesian_communicator);

else

collect_matrices (cartesian_communicator, my_cartesian_rank,

matrix, 9009);

So, this is what the program does.

In spite of MPI’s powerful auxiliary functions this is still messy,
clumsy and, worst of all, error prone, compared to data parallel
environments such as High Performance Fortran that do it all auto-
matically. IBM and PGI HPF compilers, as a matter of fact, compile
your HPF program to an MPI code that does very much what this
simple example illustrates. To use HPF in place of MPI, wherever
applicable, will save you a lot of hard work.

HPF has recently been installed on the AVIDD cluster and it
lives in /opt/pgi/linux86/bin.

Exercises

1 The program discussed in section 5.2.5 initializes all entries in the 4 × 4
matrices managed by the worker processes to the rank number of the
processes. But it is only the 2× 2 interior of these matrices that is really
managed by the processes, whereas the boundary rows and columns are
filled by obtaining data from the neighbouring processes. Rewrite the
initialization procedure to initialize only the 2 × 2 interior to the process
rank number and the remainder of each matrix should be initialized to
minus the rank number.

Hint You will have to revise the function that displays the matrices,
because you will need more space for the minus sign.

5.2. BASIC MPI 159

2 The program transfers whole 1× 4 rows or 4× 1 columns between processes.
But it is only the 1 × 2 or 2 × 1 interior of the columns and rows that
contains the valid data. Rewrite the program to transfer only what is
really needed between the neighbouring processes.

3 Revise the program to allow for an arbitrary number of start-up processes.
Fix the bug that does not account for the fact that some processes may
not make it into the newly formed Cartesian communicator and that the
master process may be amongst them.

5.2.6 Interacting Particles

In this section we are going to take a shot at the problem of interacting particles.
A typical application of this problem is to the motion of charged plasma particles
that interact electrostatically with each other. Plasmas are actually even more
complex, because accelerated particles radiate and some of this radiation may be
captured by other particles, and this adds enormous complexity to the models.
Other applications include molecular dynamics and, right at the other end of
the spectrum, galactic dynamics.

As far as MPI is concerned, we are going to take another look at defining
MPI types and at collective communications. We are going to arrange all parti-
cles into an array and the way that this array is going to be partitioned between
processes of the computational pool is very reminiscent of how MPI-IO parti-
tions files. So this section may be thought of as a preparation to MPI-IO as
well.

Let me begin by reminding you about the Coulomb law. If you have two
electrically charged particles, with charges q1 and q2, then the force with which
particle 2 acts on particle 1 is given by

F 12 = −
1

4πǫ0

q1q2
r212

r12

r12
where (5.4)

r12 = r2 − r1 and

r12 =

√

(rx12)
2
+ (ry12)

2
+ (rz12)

2

where ǫ0 is the dialectric constant of vacuum and vector r12 points from particle

1 to particle 2 (this is easy to see – simply assume that particle 1 sits in the
middle of the world so that r1 = 0). If the particle charges are of the opposite
sign, then q1q2 is negative. This cancels the minus in front of 1/(4πǫ0) and
particle 1 ends up being accelerated towards particle 2. The particles attract
each other. If the particles have charges of the same sign, q1q2 > 0 and then
particle 1 is accelerated in the direction that is opposite to where particle 2 is.
The particles repel each other.

The force with which particle 1 acts on particle 2 is the opposite to F 12, i.e.,

F 21 = −F 12

160 CHAPTER 5. MPI AND MPI-IO

Sometimes equation (5.4) is printed without the minus in front of
1/(4πǫ0). Whether the minus should or should not be there depends
on the definitions of F 12 and r12. If r12 is the vector that points
from particle 1 to particle 2, i.e., r2−r1, and if F 12 is the force with
which particle 2 acts on particle 1, then the minus should be there.
Physics is one of these somewhat troubling disciplines, where you
need to understand what happens and where you need to be very
precise about what is what, otherwise it’s easy to get confused.

Consider N particles of various charges scattered at random in some region
of space. In order to evaluate the total force that acts on particle number i we
have to evaluate the sum:

F i = −
1

4πǫ0

j=N
∑

(j=1
j 6=i)

qiqj
r2ij

rij

rij
(5.5)

This sum has N − 1 terms in it, because we assume that particle i does not
act on itself. In order to evaluate forces that act on all N particles we have to
evaluate N(N − 1) such terms. We say that this computation is going to scale
like O(N2). This is going to turn very expensive if N gets very large.

We are going to distribute the computation over n processes by making each
process evaluate the force for N/n particles. Each process is therefore going to
evaluate N/n(N − 1) terms, which may result in considerable speed up of the
computation for a sufficiently large value of n. In particular, if we could make
n = N , the computation would scale as O(N) instead of O(N2). This is how
nature goes about “parallelizing” this problem. You can think of each particle
as being a separate processor that calculates its own evolution.

Within this example program we are going to push all N particles for 20
short time steps using a very simplistic numerical procedure that corresponds
to the following equations of motion for particle i:

mi

dvi

dt
= −

qi
4πǫ0

j=N
∑

(j=1
j 6=i)

qj
r2ij

rij

rij

dri
dt

= vi

We can always choose to use such time units in our computation that

1

4πǫ0
= 1

We are going to discretize the equations of motion by replacing dt with a final
time interval ∆t, so that:

vi(t+∆t) = vi(t)−
qi∆t

mi

j=N
∑

(j=1
j 6=i)

qj
r2ij(t)

rij(t)

rij(t)

ri(t+∆t) = ri(t) +
vi(t) + vi(t+∆t)

2
∆t

5.2. BASIC MPI 161

The Code

So here is the code in full. Towards the end of this section I show you how the
code is compiled and how it runs. The code is discussed in the next section.

/*

* %Id: particles.c,v 1.7 2003/10/12 01:38:12 gustav Exp %

*

* %Log: particles.c,v %

* Revision 1.7 2003/10/12 01:38:12 gustav

* Fixed the position advance bug.

*

* Revision 1.6 2003/10/10 23:15:32 gustav

* Made the master process write the iteration number.

* Increased the number of iterations to 20.

*

* Revision 1.5 2003/10/10 23:08:59 gustav

* Modified the whole example, making it into a true computation.

* Changed the structure to incorporate velocity, accelerations and charge.

* Changed number of particles back to 10000

*

* Revision 1.4 2003/10/10 21:10:04 gustav

* Increased the number of particles to 100,000

*

* Revision 1.3 2003/10/10 19:15:23 gustav

* More niceties.

*

* Revision 1.2 2003/10/10 19:07:26 gustav

* Increased the number of particles to 10,000 added some niceties.

*

* Revision 1.1 2003/10/10 18:55:23 gustav

* Initial revision

*

*

*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <mpi.h>

#define FALSE 0

#define TRUE 1

#define MASTER_RANK 0

#define MAX_PARTICLES 10000

#define MAX_PROCS 128

#define EPSILON 1.0E-10

#define DT 0.01

#define N_OF_ITERATIONS 20

int main (int argc, char **argv)

{

int pool_size, my_rank;

int i_am_the_master = FALSE;

extern double drand48();

extern void srand48();

162 CHAPTER 5. MPI AND MPI-IO

typedef struct {

double x, y, z, vx, vy, vz, ax, ay, az, mass, charge;

} Particle;

Particle particles[MAX_PARTICLES]; /* Particles on all nodes */

int counts[MAX_PROCS]; /* Number of ptcls on each proc */

int displacements[MAX_PROCS]; /* Offsets into particles */

int offsets[MAX_PROCS]; /* Offsets used by the master */

int particle_number, i, j, my_offset, true_i;

int total_particles; /* Total number of particles */

int count; /* Count time steps */

MPI_Datatype particle_type;

double dt = DT; /* Integration time step */

double comm_time, start_comm_time, end_comm_time, start_time, end_time;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

particle_number = MAX_PARTICLES / pool_size;

if (i_am_the_master)

printf ("%d particles per processor\n", particle_number);

MPI_Type_contiguous (11, MPI_DOUBLE, &particle_type);

MPI_Type_commit (&particle_type);

MPI_Allgather (&particle_number, 1, MPI_INT, counts, 1, MPI_INT,

MPI_COMM_WORLD);

displacements[0] = 0;

for (i = 1; i < pool_size; i++)

displacements[i] = displacements[i-1] + counts[i-1];

total_particles = displacements[pool_size - 1]

+ counts[pool_size - 1];

if (i_am_the_master)

printf ("total number of particles = %d\n", total_particles);

my_offset = displacements[my_rank];

MPI_Gather (&my_offset, 1, MPI_INT, offsets, 1, MPI_INT, MASTER_RANK,

MPI_COMM_WORLD);

if (i_am_the_master) {

printf ("offsets: ");

for (i = 0; i < pool_size; i++)

printf ("%d ", offsets[i]);

printf("\n");

}

srand48((long) (my_rank + 28));

5.2. BASIC MPI 163

/* Here each process initializes its own particles. */

for (i = 0; i < particle_number; i++) {

particles[my_offset + i].x = drand48();

particles[my_offset + i].y = drand48();

particles[my_offset + i].z = drand48();

particles[my_offset + i].vx = 0.0;

particles[my_offset + i].vy = 0.0;

particles[my_offset + i].vz = 0.0;

particles[my_offset + i].ax = 0.0;

particles[my_offset + i].ay = 0.0;

particles[my_offset + i].az = 0.0;

particles[my_offset + i].mass = 1.0;

particles[my_offset + i].charge = 1.0 - 2.0 * (i % 2);

}

start_time = MPI_Wtime();

comm_time = 0.0;

for (count = 0; count < N_OF_ITERATIONS; count++) {

if (i_am_the_master) printf("Iteration %d.\n", count + 1);

/* Here processes exchange their particles with each other. */

start_comm_time = MPI_Wtime();

MPI_Allgatherv (particles + my_offset, particle_number,

particle_type,

particles, counts, displacements, particle_type,

MPI_COMM_WORLD);

end_comm_time = MPI_Wtime();

comm_time += end_comm_time - start_comm_time;

for (i = 0; i < particle_number; i++) {

true_i = i + my_offset;

/* initialize accelerations to zero */

particles[true_i].ax = 0.0;

particles[true_i].ay = 0.0;

particles[true_i].az = 0.0;

for (j = 0; j < total_particles; j++) {

/* Do not evaluate interaction with yourself. */

if (j != true_i) {

/* Evaluate forces that j-particles exert on the i-particle. */

double dx, dy, dz, r2, r, qj_by_r3;

/* Here we absorb the minus sign by changing the order

164 CHAPTER 5. MPI AND MPI-IO

of i and j. */

dx = particles[true_i].x - particles[j].x;

dy = particles[true_i].y - particles[j].y;

dz = particles[true_i].z - particles[j].z;

r2 = dx * dx + dy * dy + dz * dz; r = sqrt(r2);

/* Quench the force if the particles are too close. */

if (r < EPSILON) qj_by_r3 = 0.0;

else qj_by_r3 = particles[j].charge / (r2 * r);

/* accumulate the contribution from particle j */

particles[true_i].ax += qj_by_r3 * dx;

particles[true_i].ay += qj_by_r3 * dy;

particles[true_i].az += qj_by_r3 * dz;

}

}

}

/*

* We advance particle positions and velocities only *after*

* we have evaluated all accelerations using the *old* positions.

*/

for (i = 0; i < particle_number; i++) {

double qidt_by_m, dt_by_2, vx0, vy0, vz0;

true_i = i + my_offset;

/* Save old velocities */

vx0 = particles[true_i].vx;

vy0 = particles[true_i].vy;

vz0 = particles[true_i].vz;

/* Now advance the velocity of particle i */

qidt_by_m = particles[true_i].charge * dt / particles[true_i].mass;

particles[true_i].vx += particles[true_i].ax * qidt_by_m;

particles[true_i].vy += particles[true_i].ay * qidt_by_m;

particles[true_i].vz += particles[true_i].az * qidt_by_m;

/* Use average velocity in the interval to advance the particles’

positions */

dt_by_2 = 0.5 * dt;

particles[true_i].x += (vx0 + particles[true_i].vx) * dt_by_2;

particles[true_i].y += (vy0 + particles[true_i].vy) * dt_by_2;

particles[true_i].z += (vz0 + particles[true_i].vz) * dt_by_2;

}

}

MPI_Barrier(MPI_COMM_WORLD);

5.2. BASIC MPI 165

end_time = MPI_Wtime();

if (i_am_the_master) {

printf ("Communication time %8.5f seconds\n", comm_time);

printf ("Computation time %8.5f seconds\n",

end_time - start_time - comm_time);

printf ("\tEvaluated %d interactions\n",

N_OF_ITERATIONS * total_particles * (total_particles - 1));

}

MPI_Finalize ();

exit(0);

}

The code is compiled using mpicc and linked with the mathematics library -lm,
which contains the definition of square root:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/particles

gustav@bh1 $ make install

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.2

done

co RCS/particles.c,v particles.c

RCS/particles.c,v --> particles.c

revision 1.7

done

mpicc -o particles particles.c -lm

install particles /N/B/gustav/bin

gustav@bh1 $

I run it on 32 CPUs:

gustav@bh1 $ cd

gustav@bh1 $ mpdtrace | wc

32 32 159

gustav@bh1 $ mpiexec -n 32 particles

312 particles per processor

total number of particles = 9984

offsets: 0 312 624 936 1248 1560 1872 2184 2496 2808 3120 \

3432 3744 4056 4368 4680 4992 5304 5616 5928 6240 6552 6864 \

7176 7488 7800 8112 8424 8736 9048 9360 9672

Iteration 1.

Iteration 2.

Iteration 3.

...

Iteration 18.

Iteration 19.

Iteration 20.

Communication time 1.72091 seconds

Computation time 14.97211 seconds

Evaluated 1993405440 interactions

gustav@bh1 $

166 CHAPTER 5. MPI AND MPI-IO

Observe that the communication time is quite short compared to the computa-
tion time. This type of computation benefits from the CPU farm model.

The Discussion

The program begins with the usual MPI incantations that result in every process
finding about its place within the pool and about the size of the pool of processes.
A process whose rank is MASTER_RANK assumes the “leadership” of the pool,
which in this program only means that it’s going to write stuff on standard
output.

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

Now we find out how many particles each process will have to deal with. This
is simply going to be MAX_PARTICLES/pool_size. If MAX_PARTICLES does not
divide by pool_size exactly, we’re going to work with fewer particles in this
program. In more elaborate codes, you may wish to give some processes more
particles. This code uses tools that allow for non-uniform particle distribution
amongst processes.

particle_number = MAX_PARTICLES / pool_size;

if (i_am_the_master)

printf ("%d particles per processor\n", particle_number);

The next step is to define a new MPI data type, so that we send and receive
the whole particle as an individual data item. A particle in this code is defined
as a structure:

typedef struct {

double x, y, z, vx, vy, vz, ax, ay, az, mass, charge;

} Particle;

whose slots are position coordinates, x, y, z, velocity in x y and z direction,
vx, vy, vz, accelerations in x, y and z directions, ax, ay, az, mass and charge.
All particles are arranged into an array:

Particle particles[MAX_PARTICLES]; /* Particles on all nodes */

How are we to tell MPI what a Particle is? In order to do this we must know
how the C-language is going to store the structure. It would be good if we could
simply pass Particle to MPI as an argument, but Particle is not a variable.
It is a type, and types cannot be passed to functions as variables.

In this program we assume that C is going to store all components of struc-
ture Particle contiguously (if it doesn’t, the program is going to crash – this
is the problem with MPI: it’s too low level). The components are all of the
same type double and there are 11 of them. So we tell MPI, by calling function
MPI Type contiguous, that we are going to operate on chunks of 11 contiguously
laid out doubles and we want MPI to store its own type description of a chunk
like this on a variable called particle_type, which is of type MPI_Datatype:

MPI_Type_contiguous (11, MPI_DOUBLE, &particle_type);

MPI_Type_commit (&particle_type);

5.2. BASIC MPI 167

Once an MPI type has been defined, it must be committed by calling MPI Type commit.
This call gives the MPI system a chance to compile this information on-the-fly,
so that it can be used efficiently in communication calls that follow.

Now we encounter a new fancy communication between processes. We call
function MPI Allgather to tell each process how many particles each other pro-
cess is going to look after.

MPI_Allgather (&particle_number, 1, MPI_INT, counts, 1, MPI_INT,

MPI_COMM_WORLD);

This call works as follows. Every process contributes an array given by the
first argument. The array comprises a number of elements given by the second
argument and of type given by the third argument. These arrays are then put
together to form a new array given by the fourth argument. In this operation
the types of individual data items in the contributed arraysmay be reinterpreted
(cast) and this, in turn, may also change the number of items that are received
from each process. The number of received items is therefore given in the fifth
argument and the type of the received items is given in the sixth argument.
I don’t know how much call there is for such re-interpretations of transmitted
data and I wouldn’t use this trick in my own programs, but MPI provides for
it, if the programmer wants to play with fire. Observe that MPI_Allgather

fills the array counts (in this case) for all participating processes . There is
another similar function called MPI Gather which performs a gather operation
like MPI_Allgather but leaves the result on a root process only. Function
MPI_Gather has one more argument, the rank of the root process, which is
placed just before the communicator.

In this specific program every process ends up looking after the same number
of particles, so it is not strictly necessary to call MPI_Allgather, but remember
that I promised that the infrastructure of the program would let you assign
different numbers of particles to processes. If these numbers were to be arrived
at by some tricky algorithm that each process would perform for itself and
that would yield different numbers of particles for each process, we would need
MPI_Allgather to send this information to all other processes.

In the following section of the code we find about the portions of array
particles that each process is going to be responsible for. We construct
an array called displacements. For process of rank 0 its first particle is
going to be particles[displacements[0]]. For process of rank 1 its first
particle is going to be particles[displacements[1]] and so on. The spe-
cific displacement for “me” is going to be called my_offset and it is simply
displacements[my_rank]:

displacements[0] = 0;

for (i = 1; i < pool_size; i++)

displacements[i] = displacements[i-1] + counts[i-1];

total_particles = displacements[pool_size - 1]

+ counts[pool_size - 1];

if (i_am_the_master)

printf ("total number of particles = %d\n", total_particles);

my_offset = displacements[my_rank];

168 CHAPTER 5. MPI AND MPI-IO

Here is the example of calling function MPI_Gather. Every process sends a one-
item long array to the root process. The array contains simply my_offset. The
root process assembles these contributions into an array offsets, which is then
printed on standard output.

MPI_Gather (&my_offset, 1, MPI_INT, offsets, 1, MPI_INT, MASTER_RANK,

MPI_COMM_WORLD);

if (i_am_the_master) {

printf ("offsets: ");

for (i = 0; i < pool_size; i++)

printf ("%d ", offsets[i]);

printf("\n");

}

This part of the code doesn’t really do anything important, other than illustrat-
ing the use of MPI_Gather.

Now each process initializes its own particles. It seeds the random number
generator with its rank number and then initializes x, y and z coordinates of
its particles to random double precision numbers between 0 and 1.

srand48((long) (my_rank + 28));

/* Here each process initializes its own particles. */

for (i = 0; i < particle_number; i++) {

particles[my_offset + i].x = drand48();

particles[my_offset + i].y = drand48();

particles[my_offset + i].z = drand48();

particles[my_offset + i].vx = 0.0;

particles[my_offset + i].vy = 0.0;

particles[my_offset + i].vz = 0.0;

particles[my_offset + i].ax = 0.0;

particles[my_offset + i].ay = 0.0;

particles[my_offset + i].az = 0.0;

particles[my_offset + i].mass = 1.0;

particles[my_offset + i].charge = 1.0 - 2.0 * (i % 2);

}

Now the real computation begins. The first thing we do is to initialize
timers. We are going to measure the total wall clock time used by the pro-
gram to perform its N_OF_ITERATIONS time steps and, separately, time spent
communicating, i.e., time spent within the MPI function calls.

start_time = MPI_Wtime();

comm_time = 0.0;

The iteration loop begins with a timed call to function MPI Allgatherv.

for (count = 0; count < N_OF_ITERATIONS; count++) {

if (i_am_the_master) printf("Iteration %d.\n", count + 1);

/* Here processes exchange their particles with each other. */

start_comm_time = MPI_Wtime();

MPI_Allgatherv (particles + my_offset, particle_number,

5.2. BASIC MPI 169

particle_type,

particles, counts, displacements, particle_type,

MPI_COMM_WORLD);

end_comm_time = MPI_Wtime();

comm_time += end_comm_time - start_comm_time;

This is a yet another variant of a gather operation. It differs from MPI_Allgather

by allowing processes to contribute arrays of different length. Remember that
all contributions in MPI_Allgather had to be of the same length. But here
every process contributes information about its particles to the pool and the
number of particles the processes look after may differ from a process to a
process (although in this simple program they do not). Hence the need to use
MPI_Allgatherv rather than MPI_Allgather.

Each process contributes particles from the location in the array given by
particles + my_offset. This is an example of pointer arithmetic. The mean-
ing of this hideous, dangerous and potentially misleading expression is &(particles[my_offset]),
and you could use the latter expression in this context too. The length of the
contributed array is particle_number (and this number may be now different
for each process) and the type of the items in the array is particle_type. So
far this looks much the same as what we have seen in MPI_Allgather. But now
we have to assemble these contributions into array particles keeping in mind
that we may have received different numbers of particles from participating
processes. The two arrays that follow particles in the arguments list specify
how many items (count) of type particle_type should be placed at the loca-
tion given by an entry in the array displacements. And so, count[0] items
of particle_type should go into the location pointed by displacements[0]

in the array particles, count[1] items of particle_type should go into the
location pointed by displacements[1] in the array particles, and so on.

After the operation completes, every process is going to have data pertaining
to all particles in its local copy of the array particles.

Now we can finally commence the computation. The i particles are the ones
I am reponsible for (“I” as a process, this is).

for (i = 0; i < particle_number; i++) {

true_i = i + my_offset;

/* initialize accelerations to zero */

particles[true_i].ax = 0.0;

particles[true_i].ay = 0.0;

particles[true_i].az = 0.0;

We begin by setting accelerations for the i particle to zero, i.e.,

ai = 0 for each i

Now we are going to calculate how the i particle is tugged by all the j particles
it interacts with. Remember that the i particle does not interact with itself, but
it does interact with every other particle.

170 CHAPTER 5. MPI AND MPI-IO

for (j = 0; j < total_particles; j++) {

/* Do not evaluate interaction with yourself. */

if (j != true_i) {

/* Evaluate forces that j-particles exert on the i-particle. */

double dx, dy, dz, r2, r, qj_by_r3;

/* Here we absorb the minus sign by changing the order

of i and j. */

dx = particles[true_i].x - particles[j].x;

dy = particles[true_i].y - particles[j].y;

dz = particles[true_i].z - particles[j].z;

r2 = dx * dx + dy * dy + dz * dz; r = sqrt(r2);

Here we have evaluated ri − rj = rji = −rij , this is what sits in dx, dy, dz.
We have also evaluated r2ji = r2ij , this is what sits in r2 and rji = rij , this is
what sits in r.

It may happen that rji is so small that qj/r
3
ji overflows. Here we implement

a very primitive quenching mechanism. If the particles are closer to each other
than ǫ, we switch the force between them off. This is not physical, but it is
safe. Real plasma codes implement more elaborate means of dealing with this
problem. If the particles are not too close we evaluate

qj
r3ji

/* Quench the force if the particles are too close. */

if (r < EPSILON) qj_by_r3 = 0.0;

else qj_by_r3 = particles[j].charge / (r2 * r);

Now we can finally sum up the contributions from j particles to the acceleration
that acts on the i particle:

j=N
∑

(j=1

j 6=i)

qj
r3ji

(ri − rj)

particles[true_i].ax += qj_by_r3 * dx;

particles[true_i].ay += qj_by_r3 * dy;

particles[true_i].az += qj_by_r3 * dz;

}

}

}

Having evaluated the accelerations using the old positions of the i and j par-
ticles, we can now advance velocities of the i particles, and then advance their
positions as well. We do this within the next for(i loop:

5.2. BASIC MPI 171

/*

* We advance particle positions and velocities only *after*

* we have evaluated all accelerations using the *old* positions.

*/

for (i = 0; i < particle_number; i++) {

double qidt_by_m, dt_by_2, vx0, vy0, vz0;

true_i = i + my_offset;

But first we save current velocities of the particles on auxiliary variables, because
we will need them to advance particle positions:

/* Save old velocities */

vx0 = particles[true_i].vx;

vy0 = particles[true_i].vy;

vz0 = particles[true_i].vz;

And now we implement the formula:

vi(t+∆t) = vi(t) +
qi∆t

mi

j=N
∑

(j=1
j 6=i)

qj
rji(t)3

(ri(t)− rj(t))

/* Now advance the velocity of particle i */

qidt_by_m = particles[true_i].charge * dt / particles[true_i].mass;

particles[true_i].vx += particles[true_i].ax * qidt_by_m;

particles[true_i].vy += particles[true_i].ay * qidt_by_m;

particles[true_i].vz += particles[true_i].az * qidt_by_m;

Finally, we push the i particle, i.e., advance their positions using the formula:

ri(t+∆t) = ri(t) +
vi(t) + vi(t+∆t)

2
∆t

/* Use average velocity in the interval to advance the particles’

positions */

dt_by_2 = 0.5 * dt;

particles[true_i].x += (vx0 + particles[true_i].vx) * dt_by_2;

particles[true_i].y += (vy0 + particles[true_i].vy) * dt_by_2;

particles[true_i].z += (vz0 + particles[true_i].vz) * dt_by_2;

}

This ends the computation within the top level for(count loop. We repeat
this loop for N_OF_ITERATIONS times – thus performing N_OF_ITERATIONS time
steps.

Having completed the computation we meet at the barrier and the master
process prints on standard output how much time it spent within MPI commu-
nications and how much time it spent computing.

MPI_Barrier(MPI_COMM_WORLD);

172 CHAPTER 5. MPI AND MPI-IO

end_time = MPI_Wtime();

if (i_am_the_master) {

printf ("Communication time %8.5f seconds\n", comm_time);

printf ("Computation time %8.5f seconds\n",

end_time - start_time - comm_time);

printf ("\tEvaluated %d interactions\n",

N_OF_ITERATIONS * total_particles * (total_particles - 1));

}

MPI_Finalize ();

exit(0);

}

Then all processes meet again on MPI_Finalize and exit.

Exercises

1 Experiment with the program discussed in section 5.2.6 changing the num-
ber of processes the program runs on and the total number of particles
as well. Observe how the ratio of communication to computation changes
dramatically as the particle number grows. This is a very computation-
ally intensive problem and it parallelizes quite well for a large number of
particles.

2 Rewrite the program so that processes handle different numbers of particles.

5.2.7 The Random Pie

In this section we are going to evaluate π, yet again, using a Monte Carlo
method. Monte Carlo methods are quite popular because they are usually
rather easy to code and to parallelize, but they can be also inaccurate and slow.

The way we’re going to employ Monte Carlo in this code is as follows. The
area of a circle is given by A◦ = πr2, where r is the radius of the circle. For
r = 1 we have that A◦ = π. The area of a square this circle is fitted in is
A2 = 2× 2 = 4. So the ratio of A◦/A2 = π/4.

Now imagine that you throw grains of sand, at random, at the square. We
expect that π/4 of all grains will end up within the circle, the remaining grains
landing outside.

Within this programwe are going to have worker processes throw sand grains
at random at the square and check if the grains have landed within or without
the circle. Every now and then the processes will collect the results from each
other in order to improve their estimate of π. We are going to have one process,
set aside, whose only job will be to generate random numbers. The process will
send the numbers to the workers on request. This guarantees that each worker
is going to get different random numbers. In our other programs we dealt with
this problem by using the process rank number to seed the random number
generator differently. So this is a new strategy.

5.2. BASIC MPI 173

Figure 5.1: Dividing the number of grains that have landed within the circle by
the total number of sand grains thrown at the square should give us π/4.

The process that is set aside will be excluded from the communicator, which
the worker processes will use to exchange their estimates of π with each other.
So we are going to learn on this occasion how to construct such a communicator
too.

The computation goes on until the required accuracy is reached, and this
accuracy is passed through the command line, the parameter is called ǫ, or until
the maximum number of sand grains has been thrown on the square.

The Code

/*

* %Id: randompie.c,v 1.1 2003/10/12 20:22:50 gustav Exp %

*

* %Log: randompie.c,v %

* Revision 1.1 2003/10/12 20:22:50 gustav

* Initial revision

*

*

*/

#include <stdio.h>

#include <stdlib.h> /* function random is defined here */

#include <limits.h> /* INT_MAX is defined here */

#include <mpi.h>

#define CHUNKSIZE 1000

#define REQUEST 1

#define REPLY 2

#define TOTAL 5000000

main(argc, argv)

int argc;

char *argv[];

{

int iter;

int in, out, i, iters, max, ix, iy, ranks[1], done, temp;

174 CHAPTER 5. MPI AND MPI-IO

double x, y, Pi, error, epsilon;

int numprocs, myid, server, totalin, totalout, workerid;

int rands[CHUNKSIZE], request;

MPI_Comm world, workers;

MPI_Group world_group, worker_group;

MPI_Status stat;

MPI_Init(&argc, &argv);

world = MPI_COMM_WORLD;

MPI_Comm_size(world, &numprocs);

MPI_Comm_rank(world, &myid);

server = numprocs - 1;

if (myid == 0)

sscanf(argv[1], "%lf", &epsilon);

MPI_Bcast(&epsilon, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

MPI_Comm_group(world, &world_group);

ranks[0] = server;

MPI_Group_excl(world_group, 1, ranks, &worker_group);

MPI_Comm_create(world, worker_group, &workers);

MPI_Group_free(&worker_group);

if(myid == server) {

do {

MPI_Recv(&request, 1, MPI_INT, MPI_ANY_SOURCE, REQUEST, world, &stat);

if (request) {

for (i = 0; i < CHUNKSIZE; i++)

rands[i] = random();

MPI_Send(rands, CHUNKSIZE, MPI_INT, stat.MPI_SOURCE, REPLY, world);

}

}

while (request> 0);

}

else {

request = 1;

done = in = out = 0;

max = INT_MAX;

MPI_Send(&request, 1, MPI_INT, server, REQUEST, world);

MPI_Comm_rank(workers, &workerid);

iter = 0;

while(!done) {

iter++;

request = 1;

MPI_Recv(rands, CHUNKSIZE, MPI_INT, server, REPLY, world, &stat);

for (i=0; i < CHUNKSIZE;) {

x = (((double) rands[i++])/max) * 2 - 1;

y = (((double) rands[i++])/max) * 2 - 1;

if (x*x + y*y < 1.0)

in++;

else

out++;

}

MPI_Allreduce(&in, &totalin, 1, MPI_INT, MPI_SUM, workers);

MPI_Allreduce(&out, &totalout, 1, MPI_INT, MPI_SUM, workers);

Pi = (4.0*totalin)/(totalin + totalout);

error = fabs(Pi-3.141592653589793238462643);

done = ((error < epsilon) || ((totalin+totalout) > TOTAL));

request = (done) ? 0 : 1;

5.2. BASIC MPI 175

if (myid == 0) {

printf("\rpi = %23.20lf", Pi);

MPI_Send(&request, 1, MPI_INT, server, REQUEST, world);

}

else {

if (request)

MPI_Send(&request, 1, MPI_INT, server, REQUEST, world);

}

}

MPI_Comm_free(&workers);

}

if (myid == 0)

printf("\npoints: %d\nin: %d, out: %d\n",

totalin+totalout, totalin, totalout);

MPI_Finalize();

exit (0);

}

Here’s how the code is compiled and installed:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/randompie

gustav@bh1 $ make

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/randompie.c,v randompie.c

RCS/randompie.c,v --> randompie.c

revision 1.1

done

mpicc -o randompie randompie.c

gustav@bh1 $ make install

install randompie /N/B/gustav/bin

gustav@bh1 $

And here’s how the code is run. Observe that the MPI program takes one
argument from the command line, namely the ǫ. It is simply typed on the
command line following the name of the MPI program, randompie.

gustav@bh1 $ mpdtrace | wc

32 32 159

gustav@bh1 $ mpiexec -n 16 randompie 0.0001

pi = 3.14164761904761924427

points: 420000

in: 329873, out: 90127

gustav@bh1 $

The Discussion

Like all other MPI programs, this program also begins with the usual incanta-
tions. But here we are going to create a new communicator by manipulating the
default one, so we copy the default communicator, which is an MPI constant,
onto a variable of type MPI_Comm, world:

MPI_Init(&argc, &argv);

world = MPI_COMM_WORLD;

MPI_Comm_size(world, &numprocs);

MPI_Comm_rank(world, &myid);

176 CHAPTER 5. MPI AND MPI-IO

We are going to exclude one process from the pool, and this process will be
employed to generate random numbers and then send them to other workers.
We are going to use a process with the highest rank number for this:

server = numprocs - 1;

In the next line we employ process of rank 0 to read the value of ǫ from the
command line and to broadcast it to all other processes:

if (myid == 0)

sscanf(argv[1], "%lf", &epsilon);

MPI_Bcast(&epsilon, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

Now we commence the communicator manipulations. The communicator com-
prises a number of elements. First, there are the processes themselves. The
processes when abstracted from the communicator form a group. But there is
more to a communicator than just a group of processes that enter it. A com-
municator may order the processes in a special way, e.g., to form a Cartesian
grid, as we have seen before, and a communicator arranges for separate com-
munication channels between its processes too. Messages are differentiated by
the means of tag numbers, recepient numbers, sender numbers and the commu-
nicator within which they are transmitted. But here it is the group of processes
that we want to reform. And so we begin by calling MPI Comm group, which is
going to extract the group of processes from the existing communicator world
and deposit it on a variable of type MPI_Group here called worker_group:

MPI_Comm_group(world, &world_group);

Type MPI_Group is an opaque type. It is not an array, which you could ma-
nipulate directly. In order to manipulate variables of this type, you have to
call special MPI functions that deal with groups of processes. Here we want to
exclude the random number server process from the group. And here is how it’s
done:

ranks[0] = server;

MPI_Group_excl(world_group, 1, ranks, &worker_group);

Function MPI Group excl takes an existing group, here it is world_group. Then
it takes an array of ranks, here called ranks of length specified by the second
argument, here it is 1. And finally it creates a new group of processes, here it
is called worker_group, by excluding processes listed in the array ranks from
the world_group group.

So this is an example of how you can manipulate process groups. Now we
need to make this new group, worker_group into a communicator. This is done
by calling MPI Comm create. This function takes an existing communicator
from which processes that form the worker_group have been extracted and
then creates a new communicator, here called workers, that contains processes
of the worker_group only.

MPI_Comm_create(world, worker_group, &workers);

Once the communicator has been created, we have no more need for the group
worker_group itself. So we can free the storage that’s been allocated for the
worker_group variable by calling function MPI Group free

MPI_Group_free(&worker_group);

5.2. BASIC MPI 177

We could free right here and now the other group world_group too, since the
program does not make any more use of it.

Processes within the new communicator called workers may have different
rank numbers, but the variable myid has been established within the original
MPI_COMM_WORLD and only one process is going to have myid == server and
this is exactly the process that has been excluded from workers. Whenever
workers will communicate with the server they will have to send messages
within the world communicator. Whenever they want to communicate just
amongst themselves, they will have to send messages within the workers com-
municator.

Now the program splits into two parts. The first part that corresponds to
the first clause of the if statement describes the server’s activities, the second
part describes the workers’ activities.

The server enters a loop, within which it waits for a request, i.e., a message
that may arrive from MPI_ANY_SOURCE, with the tag number set to REQUEST

sent to it within the world communicator. The message will contain just one
integer. If the integer is greater than zero (this means TRUE in the C-language)
the server process is going to generage CHUNKSIZE of random integers between
0 and INT_MAX (which is defined on limits.h). The integers will be written
on rand, which is then going to be sent back to the requesting process of rank
stat.MPI_SOURCE with the tag number set to REPLY. The communication still
takes place within the world communicator, because the server does not belong
to any other communicator.

The server is going to loop until someone sends it request == 0. Sending
request == 0 to the server terminates the server, which then goes right to
MPI_Finalize to wait for other processes.

if(myid == server) {

do {

MPI_Recv(&request, 1, MPI_INT, MPI_ANY_SOURCE, REQUEST, world, &stat);

if (request) {

for (i = 0; i < CHUNKSIZE; i++)

rands[i] = random();

MPI_Send(rands, CHUNKSIZE, MPI_INT, stat.MPI_SOURCE, REPLY, world);

}

}

while (request> 0);

}

The worker’s life is a little more complicated. The workers are the ones
who have to make various decisions in this program. They being their lives by
sending a request to the server for a string of random integers.

else {

request = 1;

done = in = out = 0;

max = INT_MAX;

MPI_Send(&request, 1, MPI_INT, server, REQUEST, world);

Then they find about their rank numbers within the workers communicator.
But in this program they are not going to make any use of it, so we could just
as well skip this call to MPI_Comm_rank:

178 CHAPTER 5. MPI AND MPI-IO

MPI_Comm_rank(workers, &workerid);

Now the iteration process begins. The iterations are going to be repeated
until the job is done, i.e., until π has been evaluated with precision better than
ǫ or until the total number of sand grains thrown at the square has exceeded
TOTAL. Each iteration begins by receiving a string of random integers from the
server:

iter = 0;

while(!done) {

iter++;

request = 1;

MPI_Recv(rands, CHUNKSIZE, MPI_INT, server, REPLY, world, &stat);

Having received the numbers, the worker process “throws” them at the square.
We take two random integers from the square. Then we renormalize them to
reals that fit between -1 and 1 and we call them x and y. Then the process
checks if the sand grain so produced hits the circle or the part of the square
that’s outside by checking if x2+y2 < 1. If we have scored the hit, we increment
the in counter, if we have missed we increment the out counter.

for (i=0; i < CHUNKSIZE;) {

x = (((double) rands[i++])/max) * 2 - 1;

y = (((double) rands[i++])/max) * 2 - 1;

if (x*x + y*y < 1.0)

in++;

else

out++;

}

Each process could evaluate pi on its own, but the evaluation will be more accu-
rate if they can add all their scores. This is done by calling the MPI Allreduce
function, which is like MPI_Reduce, which we have encountered already, but
with the difference that the result of the reduction operation is distributed to
all participating processes. Remember that in MPI_Reduce only the root process
had the number.

MPI_Allreduce(&in, &totalin, 1, MPI_INT, MPI_SUM, workers);

MPI_Allreduce(&out, &totalout, 1, MPI_INT, MPI_SUM, workers);

This communication takes place within the workers communicator. This is
the only place where the workers communicate with each other. Because the
communication is always collective, they don’t need to know their rank numbers
within the workers communicator.

Now we can evaluate our estimate of π. totalin + totalout is the to-
tal number of sand grains thrown at the square, whereas totalin is the total
number of sand grains that have landed within the circle:

Pi = (4.0*totalin)/(totalin + totalout);

Since we know from elsewhere what’s the value of π, we can easily evaluate the
accuracy of our Monte Carlo experiment:

error = fabs(Pi-3.141592653589793238462643);

and use this result in checking if the job is done:

done = ((error < epsilon) || ((totalin+totalout) > TOTAL));

5.2. BASIC MPI 179

Now we use this funny C-language construct, which encrypts if(done) request=0; else request=1;

and process of rank zero sends the request to the server after it has printed
the value of π on standard output. This value is printed in such a way that it
overwrites the previously printed value: the message begins with the carriage
return and there is no new-line.

The reason why process of rank zero sends the request to the server sepa-
rately from other processes is because the request may be a termination request,
in which case other processes should not send their termination requests. There
wouldn’t be anyone at the server’s end to receive them. The other processes
send the request to the server only if there is more work to be done:

request = (done) ? 0 : 1;

if (myid == 0) {

printf("\rpi = %23.20lf", Pi);

MPI_Send(&request, 1, MPI_INT, server, REQUEST, world);

}

else {

if (request)

MPI_Send(&request, 1, MPI_INT, server, REQUEST, world);

}

}

And this ends the while(!done) loop. There is one more thing that the worker
processes are going to do before they quit. They terminate their communicator
by calling MPI Comm free

MPI_Comm_free(&workers);

}

Having released themselves from the workers communicator they go to MPI_Finalize
to wait for each other. In the meantime process of rank 0 (within the world
communicator) prints the total number of sand grains thrown at the square on
standard output.

if (myid == 0)

printf("\npoints: %d\nin: %d, out: %d\n",

totalin+totalout, totalin, totalout);

MPI_Finalize();

exit (0);

}

Exercises

1 Program randompie of section 5.2.7 does not check for the correctness of the
parameter passed on the command line. It does not check if anything is
passed on the command line to begin with. Try running this program
without passing the value of epsilon on the command line and see what
happens.

2 Rewrite program randompie so that process of rank zero checks the command
line for any parameters, then checks if the parameters are correct, then
sends the OK message to other processes if it has found the value of ǫ there.
Otherwise process rank zero should write an error message on standard
error and send a termination message to other processes that would make
them go directly to MPI_Finalize.

180 CHAPTER 5. MPI AND MPI-IO

3 Try varying epsilon and TOTAL. Observe that the accuracy of π does not
improve beyond a certain TOTAL number of sand grains used in the com-
putation. Why?

5.2.8 Error Handling

In this section we are going to look at how to handle errors in MPI programs.
There are two categories of errors we are going to encounter. UNIX errors

and MPI errors.
MPI errors can arise when messages are incorrectly constructed, addressed,

sent or received, or when they get lost because of network problems or because
some nodes that participate in the communication may have crashed. The
latter falls into the category of largely intractable problems. Even if we could
diagnose such problems from within a program, there is little we could do about
them. Consequently, MPI does not really provide mechanisms for dealing with
failures in the communication system. Instead, the MPI-2 standard assumes
that MPI implementors are going to “insulate the user from this unreliability”
by developing systems that are sufficiently robust and fault tolerant to the extent
allowed by the present day technology.

But the former, i.e., MPI program errors, ought to be tractable, and it is
here that MPI provides mechanisms for handling recoverable errors. But this
requires explicitly changing the default behaviour of an MPI program, which is
to abort all parallel computation on having detected an MPI program error.

We are going to talk more about it in the second part of this section.
In the first part we are going to look at how we can use MPI itself (with the

assumption that MPI, at least, does not fail) in order to process UNIX errors
that may arise during program execution.

Here the difficulty is caused by the fact that on capturing a UNIX error a
process should not just exit . Well, it may, but this would take down the whole
parallel program and we may be none the wiser as to why it happened. The
trick is to capture any UNIX problems that may arise and then to build the logic

of the parallel program around them.

Handling UNIX Errors

In this section we are going to discuss a parallel version of program mkrandfile

introduced in section 3.4.3. The parallel version of this program is called
mkrandfiles (plural) and it tries to capture and process possible errors just
as diligently as its sequential version. This program will also prepare us for the
issues of MPI-IO. You can think of it as a prelude to MPI-IO.

Here is the program itself:

/*

* %Id: mkrandfiles.c,v 1.6 2003/10/19 19:02:09 gustav Exp %

*

* %Log: mkrandfiles.c,v %

* Revision 1.6 2003/10/19 19:02:09 gustav

* Forgot to initialize basename to NULL.

5.2. BASIC MPI 181

*

* Revision 1.5 2003/10/19 18:58:59 gustav

* Corrected reading the command line.

*

* Revision 1.4 2003/10/13 22:49:45 gustav

* Moved the debug messages into the if clauses.

*

* Revision 1.3 2003/10/13 22:46:36 gustav

* Added more debug messages.

*

* Revision 1.2 2003/10/13 22:41:36 gustav

* Finished.

*

* Revision 1.1 2003/10/13 21:18:00 gustav

* Initial revision

*

*

*/

#include <stdio.h> /* all IO stuff lives here */

#include <stdlib.h> /* exit lives here */

#include <unistd.h> /* getopt lives here */

#include <errno.h> /* UNIX error handling lives here */

#include <string.h> /* strcpy lives here */

#include <mpi.h> /* MPI and MPI-IO live here */

#define MASTER_RANK 0

#define TRUE 1

#define FALSE 0

#define BOOLEAN int

#define BLOCK_SIZE 1048576

#define SYNOPSIS printf ("synopsis: %s -f <file> -l <blocks>\n", argv[0])

int main(argc, argv)

int argc;

char *argv[];

{

/* my variables */

int my_rank, pool_size, number_of_blocks = 0, block, i;

BOOLEAN i_am_the_master = FALSE, input_error = FALSE,

my_file_open_error = FALSE, file_open_error = FALSE,

my_write_error = FALSE, write_error = FALSE;

char *basename = NULL, file_name[BUFSIZ], message[BUFSIZ];

int basename_length, junk[BLOCK_SIZE];

FILE *fp;

double start, finish, io_time = 0.0;

/* getopt variables */

extern char *optarg;

int c;

/* error handling variables */

extern int errno;

182 CHAPTER 5. MPI AND MPI-IO

/* ACTION */

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

if (i_am_the_master) {

/* read the command line */

while ((c = getopt(argc, argv, "f:l:h")) != EOF)

switch(c) {

case ’f’:

basename = optarg;

break;

case ’l’:

if ((sscanf (optarg, "%d", &number_of_blocks) != 1) ||

(number_of_blocks < 1))

input_error = TRUE;

break;

case ’h’:

input_error = TRUE;

break;

case ’?’:

input_error = TRUE;

break;

}

/* Check if the command line has initialized basename and

* number_of_blocks.

*/

if ((basename == NULL) || (number_of_blocks == 0)) input_error = TRUE;

if (input_error)

SYNOPSIS;

else {

basename_length = strlen(basename) + 1;

#ifdef DEBUG

printf("basename = %s\n", basename);

printf("basename_length = %d\n", basename_length);

printf("number_of_blocks = %d\n", number_of_blocks);

#endif

}

}

/* Transmit the effect of reading the command line to other

processes. */

MPI_Bcast(&input_error, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

if (! input_error) {

MPI_Bcast(&number_of_blocks, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

MPI_Bcast(&basename_length, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

if (! i_am_the_master) basename = (char*) malloc(basename_length);

MPI_Bcast(basename, basename_length, MPI_CHAR, MASTER_RANK, MPI_COMM_WORLD);

5.2. BASIC MPI 183

#ifdef DEBUG

printf("%3d: basename = %s, number_of_blocks = %d\n",

my_rank, basename, number_of_blocks);

#endif

/* Now every process creates its own file name and attempts

to open the file. */

sprintf(file_name, "%s.%d", basename, my_rank);

#ifdef DEBUG

printf("%3d: opening file %s\n", my_rank, file_name);

#endif

if (! (fp = fopen(file_name, "w"))) {

sprintf(message, "%3d: %s", my_rank, file_name);

perror(message);

my_file_open_error = TRUE;

}

/* Now we must ALL check that NOBODY had problems

with opening the file. */

MPI_Allreduce (&my_file_open_error, &file_open_error, 1, MPI_INT,

MPI_LOR, MPI_COMM_WORLD);

#ifdef DEBUG

if (i_am_the_master)

if (file_open_error)

fprintf(stderr, "problem opening output files\n");

#endif

/* If all files are open for writing, write to them */

if (! file_open_error) {

srand(28 + my_rank);

for (block = 0; (block < number_of_blocks) || my_write_error;

block++) {

for (i = 0; i < BLOCK_SIZE; junk[i++] = rand());

start = MPI_Wtime();

if (fwrite(junk, sizeof(int), BLOCK_SIZE, fp) != BLOCK_SIZE) {

sprintf(message, "%3d: %s", my_rank, file_name);

perror(message);

my_write_error = TRUE;

}

finish = MPI_Wtime();

io_time += finish - start;

}

/* Check if anybody had problems writing on the file */

MPI_Allreduce (&my_write_error, &write_error, 1, MPI_INT,

MPI_LOR, MPI_COMM_WORLD);

#ifdef DEBUG

if (i_am_the_master)

184 CHAPTER 5. MPI AND MPI-IO

if (write_error)

fprintf(stderr, "problem writing on files\n");

#endif

if (i_am_the_master)

if (!write_error)

printf("io_time = %f\n", io_time);

}

/* Only processes that were successful opening the files

need do close them here */

if (!my_file_open_error) {

fclose(fp);

#ifdef DEBUG

printf ("%3d: closed %s\n", my_rank, file_name);

#endif

}

/* If we have either write errors or file open errors,

then processes that managed to open their files

are requested to throw them away */

if ((write_error || file_open_error) && !my_file_open_error) {

unlink(file_name);

#ifdef DEBUG

printf("%3d: unlinked %s\n", my_rank, file_name);

#endif

}

/* We don’t try to capture unlink or fclose errors here,

because there is little we could do about them. */

}

MPI_Finalize();

exit(0);

}

Now let us discuss what the program does and how it goes about it.
The program begins the same way all other MPI programs do. All processes

find about the size of the pool and their own rank within it. Then it befalls to
the master processs, i.e., process of rank zero, to read input from the command
line using function getopt. The reading goes much the same as in mkrandfile,
but this time we don’t call exit whenever we encounter an error. Instead we
have a boolean variable input_error, which is set by default to FALSE, and
whenever the master process encounters a problem on reading the command
line, instead of exiting it sets input_error to TRUE.

The command line expects the same options as before: -f followed by the
name of the file, -l followed by the number of blocks that will be written on
the file and -h if the user asks for quick help. But the file name is treated a
little differently because it is a parallel program and without MPI-IO we cannot
make all processes write on the same file. The processes will append their rank

5.2. BASIC MPI 185

number to the name obtained from the command line and each process will
open a different file. For example if the program is invoked with

-f test

then the files that will be opened will be called test.0, test.1, test.2 and so
on.

The master process checks the correctness of input on the command line,
checks if everything has been properly specified and sets input_error accord-
ingly. The value of input_error is then broadcast to all processes:

MPI_Bcast(&input_error, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

and the rest of the program is one large

if (! input_error) {

blah... blah... blah...

}

clause. What follows the clause is MPI_Finalize. In other words, if any in-
put errors are encountered by the master process, nobody does anything. All
processes go directly to MPI_Finalize, and the whole program exits cleanly.

Now, if there have been no input errors on the command line, we may still
encounter various other errors and the logic of the program has to flow around
them.

The if(! input_error) { clause begins with some broadcasts and a malloc
that transmit number_of_blocks and basename (i.e., the word from which the
file names will be constructed by appending the rank numbers to it) to all
processes. On having received this data, the processes attempt to construct
their file names, and then they try to open the files for writing. This is how
they go about it:

if (! (fp = fopen(file_name, "w"))) {

sprintf(message, "%3d: %s", my_rank, file_name);

perror(message);

my_file_open_error = TRUE;

}

A problem may arise at this stage, but if it does the processes affected by
it should not just exit. Instead the process sets its own boolean variable
my_file_open_error to TRUE. The default value of this variable is FALSE.

Now the logic of the program handles such error as follows. We check if
any of the processes failed to open the file by calling MPI Allreduce with the
reduction operation set to logical OR:

/* Now we must ALL check that NOBODY had problems

with opening the file. */

MPI_Allreduce (&my_file_open_error, &file_open_error, 1, MPI_INT,

MPI_LOR, MPI_COMM_WORLD);

If any instance of my_file_open_error is TRUE, everybody’s instance of file_open_error
will be TRUE too. But by default file_open_error is FALSE.

If any of the processes failed to open its file, we don’t compute anything and
we don’t write anything either. Instead processes that opened files successfully,
close them and then delete them:

186 CHAPTER 5. MPI AND MPI-IO

if (! file_open_error) {

blah... blah... blah...

}

/* Only processes that were successful opening the files

need do close them here */

if (!my_file_open_error) {

fclose(fp);

#ifdef DEBUG

printf ("%3d: closed %s\n", my_rank, file_name);

#endif

}

/* If we have either write errors or file open errors,

then processes that managed to open their files

are requested to throw them away */

if ((write_error || file_open_error) && !my_file_open_error) {

unlink(file_name);

#ifdef DEBUG

printf("%3d: unlinked %s\n", my_rank, file_name);

#endif

}

But if all processes managed to open their files without problems, we com-
mence the computation, which works the same way it did in the sequential
version of mkrandfile. . .

if (! file_open_error) {

srand(28 + my_rank);

for (block = 0; (block < number_of_blocks) || my_write_error;

block++) {

for (i = 0; i < BLOCK_SIZE; junk[i++] = rand());

start = MPI_Wtime();

if (fwrite(junk, sizeof(int), BLOCK_SIZE, fp) != BLOCK_SIZE) {

sprintf(message, "%3d: %s", my_rank, file_name);

perror(message);

my_write_error = TRUE;

}

finish = MPI_Wtime();

io_time += finish - start;

}

. . . with one diffrence. If a process fails to write on its file, it sets the variable
my_write_error to TRUE. the for statement checks the value of my_write_error
at the top of the loop:

for (block = 0; (block < number_of_blocks) || my_write_error; block++)

and will not execute the next iteration if error has been detected.
Now, if there has been an error, then this information needs to be exchanged

with other processes. So we call MPI_Allreduce again:

/* Check if anybody had problems writing on the file */

MPI_Allreduce (&my_write_error, &write_error, 1, MPI_INT,

MPI_LOR, MPI_COMM_WORLD);

5.2. BASIC MPI 187

If any instance of my_write_error is TRUE, then every instance of write_error
is going to be TRUE too.

The way the program handles this condition is to discard all data. After the
files have been closed, they are unlinked by this statement:

if ((write_error || file_open_error) && !my_file_open_error) {

unlink(file_name);

#ifdef DEBUG

printf("%3d: unlinked %s\n", my_rank, file_name);

#endif

}

After all these travails, whether successful or unsuccessful, the processes meet
at MPI_Finalize and exit cleanly. The error condition is printed on standard
error by the perror statements. We could rewrite the program so that an
appropriate exit code would be set up too, depending on the type of error
encountered.

The program is compiled with the -DDEBUG CFLAG so that we can see how
it goes about detecting and handling errors. Without this flag the program
execution is silent and only the specific error messages are printed on standard
error.

So here is the compilation and installation:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/mkrandfiles

gustav@bh1 $ make install

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.2

done

co RCS/mkrandfiles.c,v mkrandfiles.c

RCS/mkrandfiles.c,v --> mkrandfiles.c

revision 1.4

done

mpicc -DDEBUG -o mkrandfiles mkrandfiles.c

install mkrandfiles /N/B/gustav/bin

gustav@bh1 $

Now let us run a few tests to see how the program is going to behave. First
we are going to test for incorrect input on the command line:

gustav@bh1 $ mpdboot

gustav@bh1 $ mpdtrace | wc

32 32 159

gustav@bh1 $ mpiexec -n 16 mkrandfiles

synopsis: mkrandfiles -f <file> -l <blocks>

gustav@bh1 $ mpiexec -n 16 mkrandfiles -f test -l -7

output files basename: test

synopsis: mkrandfiles -f <file> -l <blocks>

gustav@bh1 $

Now we are going to check the behaviour of the program if one of the processes
fails to open its output file. To do so I am going to create a file test.7 in my
working directory and will set permissions on this file to -r--r--r--. Then I’ll
invoke the program with the -f test option:

188 CHAPTER 5. MPI AND MPI-IO

gustav@bh1 $ touch test.7

gustav@bh1 $ chmod 444 test.7

gustav@bh1 $ mpiexec -n 8 mkrandfiles -f test -l 7

output files basename: test

each process will write 7 blocks of integers

0: basename = test, number_of_blocks = 7

0: opening file test.0

4: basename = test, number_of_blocks = 7

4: opening file test.4

2: basename = test, number_of_blocks = 7

2: opening file test.2

5: basename = test, number_of_blocks = 7

5: opening file test.5

3: basename = test, number_of_blocks = 7

3: opening file test.3

7: basename = test, number_of_blocks = 7

7: opening file test.7

1: basename = test, number_of_blocks = 7

1: opening file test.1

7: test.7: Permission denied

6: basename = test, number_of_blocks = 7

6: opening file test.6

problem opening output files

0: closed test.0

3: closed test.3

4: closed test.4

0: unlinked test.0

4: unlinked test.4

3: unlinked test.3

1: closed test.1

1: unlinked test.1

6: closed test.6

2: closed test.2

5: closed test.5

6: unlinked test.6

5: unlinked test.5

2: unlinked test.2

gustav@bh1 $

Every process write quite rich diagnostics on standard output. You can see
that they all received the basename and number_of_blocks. They all man-
aged to construct their file names without problems, but process number 7
failed to open the file, wrote the diagnostics on standard error and passed
this information to all other processes, so that the master process could write
problem opening output files on standard output:

7: opening file test.7

...

7: test.7: Permission denied

...

problem opening output files

Then all processes that managed to open files, i.e., all but process rank 7, close
them and then unlink them. After the run there are no files called test.? left
in the directory with the exception of test.7:

gustav@bh1 $ ls

PBS bin man mpd.hosts src test.7 tmp

gustav@bh1 $

5.2. BASIC MPI 189

Now let me recompile the program without debugging and we can use it to test
IO on the AVIDD GPFS:

gustav@bh1 $ make install

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.3

done

co RCS/mkrandfiles.c,v mkrandfiles.c

RCS/mkrandfiles.c,v --> mkrandfiles.c

revision 1.4

done

mpicc -o mkrandfiles mkrandfiles.c

install mkrandfiles /N/B/gustav/bin

gustav@bh1 $

This time I am going to run the program on GPFS:

gustav@bh1 $ cd /N/gpfs/gustav/mkrandfiles

gustav@bh1 $ mpiexec -n 32 mkrandfiles -f test -l 100

io_time = 202.484912

gustav@bh1 $ ls -l

total 13107200

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.0

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.1

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.10

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.11

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.12

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:04 test.13

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.14

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.15

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.16

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.17

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.18

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.19

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.2

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.20

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.21

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.22

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.23

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.24

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.25

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.26

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.27

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.28

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.29

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:04 test.3

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.30

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.31

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:04 test.4

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.5

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.6

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:04 test.7

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.8

-rw-rw-rw- 1 gustav ucs 419430400 Oct 13 19:05 test.9

gustav@bh1 $

The program wrote, in parallel, 32 files, each 400MB long. This is 12.5GB

190 CHAPTER 5. MPI AND MPI-IO

altogether. The IO itself took 202 seconds, which yields data transfer rate on
writes to GPFS of 63MB/s.

Would we be better off using fewer processes perhaps? This is easy to check:

gustav@bh1 $ ls

test.0 test.12 test.16 test.2 test.23 test.27 test.30 test.6

test.1 test.13 test.17 test.20 test.24 test.28 test.31 test.7

test.10 test.14 test.18 test.21 test.25 test.29 test.4 test.8

test.11 test.15 test.19 test.22 test.26 test.3 test.5 test.9

gustav@bh1 $ rm *

gustav@bh1 $ mpiexec -n 16 mkrandfiles -f test -l 200

io_time = 226.157398

gustav@bh1 $

Well, this is the same amount of data, but it took a little longer, and we got data
transfer rate on writes of about 57MB/s this time. But observe the following:

gustav@bh1 $ rm -f *

gustav@bh1 $ mpiexec -n 32 mkrandfiles -f test -l 4

io_time = 2.663388

gustav@bh1 $

Here we created 32 files, each 16MB long, which is 512MB total, and it took
us only 2.663388 seconds to write them. This yields data transfer rate on this
parallel write to GPFS of 190MB/s, sic! How would you explain this result?

When we get to study MPI-IO, you will learn how to write data from 32
processes to a single file, shared amongst them all.

Handling MPI Errors

I have emphasized many times before that an MPI communicator is more than
just a group of processes that belong to it. The latter is simply a group. But
communications do not take place within the group. They take place within the
communicator, because one needs more for a communication than just a list of
participating processes. Amongst the items that the communicator hides inside
its bulbous body is an error handler . The error handler is called every time an
MPI error is detected within the communicator.

The predefined default error handler, which is called MPI_ERRORS_ARE_FATAL,
for a newly created communicator or for MPI_COMM_WORLD is to abort the whole

parallel program as soon as any MPI error is detected. Whether an error message
is printed or not, and what the error message is, depends on the implementation.

There is another predefined error handler, which is called MPI_ERRORS_RETURN.
The default error handler can be replaced with this one by calling function
MPI Errhandler set, for example:

MPI_Errhandler_set(MPI_COMM_WORLD, MPI_ERRORS_RETURN);

Once you’ve done this in your MPI code, the program will not longer abort on
having detected an MPI error, instead the error will be returned and you will
have to handle it.

The returned error code is implementation specific. The only error code that
MPI standard itself defines is MPI_SUCCESS, i.e., no error. But the meaning of
an error code can be extracted by calling function MPI Error string.

For example, consider the following code fragment:

5.2. BASIC MPI 191

MPI_Errhandler_set(MPI_COMM_WORLD, MPI_ERRORS_RETURN);

error_code = MPI_Send(send_buffer, strlen(send_buffer) + 1, MPI_CHAR,

addressee, tag, MPI_COMM_WORLD);

if (error_code != MPI_SUCCESS) {

char error_string[BUFSIZ];

int length_of_error_string;

MPI_Error_string(error_code, error_string, &length_of_error_string);

fprintf(stderr, "%3d: %s\n", my_rank, error_string);

send_error = TRUE;

}

On top of the above MPI standard defines the so called error classes . Every
error code, even the one that is implementation specific, which is every one with
the exception of MPI_SUCCESS, must belong to some error class, and the error
class for a given error code can be obtained by calling function MPI Error class.
Error classes can be converted to comprehensible error messages by calling the
same function that does it for error codes, i.e., MPI_Error_string. The reason
for this is that error classes are implemented as a subset of error codes. Here is
the example:

MPI_Errhandler_set(MPI_COMM_WORLD, MPI_ERRORS_RETURN);

error_code = MPI_Send(send_buffer, strlen(send_buffer) + 1, MPI_CHAR,

addressee, tag, MPI_COMM_WORLD);

if (error_code != MPI_SUCCESS) {

char error_string[BUFSIZ];

int length_of_error_string, error_class;

MPI_Error_class(error_code, &error_class);

MPI_Error_string(error_class, error_string, &length_of_error_string);

fprintf(stderr, "%3d: %s\n", my_rank, error_string);

MPI_Error_string(error_code, error_string, &length_of_error_string);

fprintf(stderr, "%3d: %s\n", my_rank, error_string);

send_error = TRUE;

}

The idea here is that the error class should give you a general description of
the problem, yet it should be precise enough for most debugging purposes, and
the error code can then give you an even more precise, implementation specific,
diagnostic.

If you have found an MPI error like this in your code, it may be very difficult
to recover gracefully. Other than printing the message on standard error and
then exiting, or, at best, going right to MPI_Finalize, there isn’t much that
you can do. Sometimes if the problem is, e.g., a receive buffer that is too small,
you may be able to allocate a larger buffer dynamically. Your program has to
anticipate such events though, and if it does, there are other means of finding
how large a buffer you need and avoiding the error altogether.

Perhaps the best use of activating the non-aborting error handler is when
you debug the program and try to find where exactly it fails.

Once you have detected the error and are desperate to exit in a controllable
way, you can call MPI function MPI Abort, for example:

MPI_Errhandler_set(MPI_COMM_WORLD, MPI_ERRORS_RETURN);

192 CHAPTER 5. MPI AND MPI-IO

error_code = MPI_Send(send_buffer, strlen(send_buffer) + 1, MPI_CHAR,

addressee, tag, MPI_COMM_WORLD);

if (error_code != MPI_SUCCESS) {

char error_string[BUFSIZ];

int length_of_error_string, error_class;

MPI_Error_class(error_code, &error_class);

MPI_Error_string(error_class, error_string, &length_of_error_string);

fprintf(stderr, "%3d: %s\n", my_rank, error_string);

MPI_Error_string(error_code, error_string, &length_of_error_string);

fprintf(stderr, "%3d: %s\n", my_rank, error_string);

MPI_Abort(MPI_COMM_WORLD, error_code);

}

Each MPI file, which is always associated with a communicator and about
which we are going to learn in the next section, has its own separate file han-
dler, which can be altered with the call to function MPI File set errhandler.
The predefined values for an MPI file error handler are the same as the val-
ues for an MPI communicator error handler, i.e., MPI_ERRORS_ARE_FATAL and
MPI_ERRORS_RETURN. However, since file manipulation errors are very common,
in this case MPI_ERRORS_RETURN is the default.

Apart from communicators and files MPI also supports the so called win-

dows . These are windows of existing memory that each process exposes to direct
memory accesses by processes within the communicator. Like MPI files, MPI
windows are also associated with MPI communicators. Each MPI window has
its own error handler associated with it too and these can be altered by calling
function MPI Win set errhandler. The predefined values for the windows error
handlers are the same as for communicators and files.

5.3 MPI IO

MPI-IO was developed in 1994 in the IBM’s Watson Laboratory in order to
provide parallel I/O support for MPI. NASA adopted MPI-IO for its own re-
search computing projects in 1996 and in the same year MPI Forum decided
to incorporate MPI-IO in MPI-2. And so, when MPI-2 was published in 1997,
MPI-IO was already in it.

The reason why NASA and MPI Forum embraced MPI-IO so quickly was
because it was really very nice – especially if you looked at it from MPI. All
MPI-IO function calls are very reminiscent of MPI calls and very much in the
spirit of MPI too. Writing MPI files is similar to sending MPI messages and
reading MPI files is similar to receiving MPI messages. Furthermore MPI-IO
fully embraces the versatility and flexibility of MPI data types – and then takes
this concept one step further in defining the so called MPI file views.

Sending and receiving messages can be blocking or non-blocking. In this
course, which is introductory, we haven’t worked with non-blocking sends and
receives, because they are quite difficult to use. But if you want to optimize
your parallel program and expect a communication bottleneck, it may help

5.3. MPI IO 193

to use non-blocking communications. The general idea here is that you can
start a message send, and then immediately return to computations, while the
message is being sent in the background. Similarly you can keep computing
while receiving a message in the background. This is going to work best on
systems where there are processors that are dedicated to IO and do not in
general participate in computations. The IBM BlueGene/L is an example of
such a machine.

MPI-IO also lets you write and read files in a normal, i.e., blocking mode,
and then in the non-blocking mode – asynchronously – so that you can carry
out computations, while the file is being read or written in the background.

MPI-IO supports the concept of collective operations too. Processes can
access MPI files each on its own, or all together at the same time. The latter
allows for read and write optimizations that can be implemented on various
levels.

MPI-IO semantics are so nice that people use MPI-IO even to write normal
sequential files associated with individual processes.

In this section we are going to explore MPI-IO beginning with simple parallel
writes and reads and then gradually moving to more complex features.

5.3.1 Writing on MPI Files

In this section we are going to discuss a program that works much like our
previous program mkrandfiles discussed in section 5.2.8. But there are a few
impotant changes. First, rather than writing separate files, we are going to open
and write the same single file, which will be accessed in parallel by all processes
of the MPI process pool. Second, instead of writing the data in small chunks of
BLOCK_SIZE integers, every process is going to lump all the chunks into a single
array and then flush it into the MPI file in one large write.

Once we have concocted and analyzed our example program, we are going
to run it and illustrate some of the elementary concepts of MPI-IO. We will use
it also to test performance of the AVIDD GPFS.

Program mkrandpfile

So, here is the listing of the program in full glory.

/*

* %Id: mkrandpfile.c,v 1.13 2003/10/19 19:29:59 gustav Exp %

*

* %Log: mkrandpfile.c,v %

* Revision 1.13 2003/10/19 19:29:59 gustav

* Indented the file with Emacs.

*

* Revision 1.12 2003/10/19 19:26:09 gustav

* Truncated the log.

*

*

*/

194 CHAPTER 5. MPI AND MPI-IO

#include <stdio.h> /* all IO stuff lives here */

#include <stdlib.h> /* exit lives here */

#include <unistd.h> /* getopt lives here */

#include <string.h> /* strcpy lives here */

#include <mpi.h> /* MPI and MPI-IO live here */

#define MASTER_RANK 0

#define TRUE 1

#define FALSE 0

#define BOOLEAN int

#define BLOCK_SIZE 1048576

#define MBYTE 1048576

#define SYNOPSIS printf ("synopsis: %s -f <file> -l <blocks>\n", argv[0])

int main(argc, argv)

int argc;

char *argv[];

{

/* my variables */

int my_rank, pool_size, number_of_blocks = 0, i, count;

BOOLEAN i_am_the_master = FALSE, input_error = FALSE;

char *filename = NULL;

int filename_length;

int *junk;

int number_of_integers, number_of_bytes;

long long total_number_of_integers, total_number_of_bytes;

MPI_Offset my_offset, my_current_offset;

MPI_File fh;

MPI_Status status;

double start, finish, io_time, longest_io_time;

/* getopt variables */

extern char *optarg;

int c;

/* ACTION */

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

if (i_am_the_master) {

/* read the command line */

while ((c = getopt(argc, argv, "f:l:h")) != EOF)

switch(c) {

case ’f’:

filename = optarg;

#ifdef DEBUG

printf("output file: %s\n", filename);

#endif

break;

case ’l’:

5.3. MPI IO 195

if ((sscanf (optarg, "%d", &number_of_blocks) != 1) ||

(number_of_blocks < 1)) {

SYNOPSIS;

input_error = TRUE;

}

#ifdef DEBUG

else

printf("each process will write %d blocks of integers\n",

number_of_blocks);

#endif

break;

case ’h’:

SYNOPSIS;

input_error = TRUE;

break;

case ’?’:

SYNOPSIS;

input_error = TRUE;

break;

}

/* Check if the command line has initialized filename and

* number_of_blocks.

*/

if ((filename == NULL) || (number_of_blocks == 0)) {

SYNOPSIS;

input_error = TRUE;

}

if (input_error) MPI_Abort(MPI_COMM_WORLD, 1);

/* This is another way of exiting, but it can be done only

if no files have been opened yet. */

filename_length = strlen(filename) + 1;

} /* end of "if (i_am_the_master)"; reading the command line */

/* If we got this far, the data read from the command line

should be OK. */

MPI_Bcast(&number_of_blocks, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

MPI_Bcast(&filename_length, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

if (! i_am_the_master) filename = (char*) malloc(filename_length);

MPI_Bcast(filename, filename_length, MPI_CHAR, MASTER_RANK, MPI_COMM_WORLD);

#ifdef DEBUG

printf("%3d: received broadcast\n", my_rank);

printf("%3d: filename = %s\n", my_rank, filename);

#endif

number_of_integers = number_of_blocks * BLOCK_SIZE;

number_of_bytes = sizeof(int) * number_of_integers;

/* number_of_bytes must be just plain integer, because we are

going to use it in malloc */

total_number_of_integers =

196 CHAPTER 5. MPI AND MPI-IO

(long long) pool_size * (long long) number_of_integers;

total_number_of_bytes =

(long long) pool_size * (long long) number_of_bytes;

my_offset = (long long) my_rank * (long long) number_of_bytes;

#ifdef DEBUG

if (i_am_the_master) {

printf("number_of_bytes = %d/process\n", number_of_bytes);

printf("total_number_of_bytes = %lld\n", total_number_of_bytes);

printf("size of offset = %d bytes\n", sizeof(MPI_Offset));

}

#endif

MPI_File_open(MPI_COMM_WORLD, filename,

MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, my_offset, MPI_SEEK_SET);

MPI_File_get_position(fh, &my_current_offset);

#ifdef DEBUG

printf ("%3d: my current offset is %lld\n", my_rank, my_current_offset);

#endif

/* generate random integers */

junk = (int*) malloc(number_of_bytes);

srand(28 + my_rank);

for (i = 0; i < number_of_integers; i++) *(junk + i) = rand();

/* write the stuff out */

start = MPI_Wtime();

MPI_File_write(fh, junk, number_of_integers, MPI_INT, &status);

finish = MPI_Wtime();

io_time = finish - start;

MPI_Get_count(&status, MPI_INT, &count);

#ifdef DEBUG

printf("%3d: wrote %d integers\n", my_rank, count);

#endif

MPI_File_get_position(fh, &my_current_offset);

#ifdef DEBUG

printf ("%3d: my current offset is %lld\n", my_rank, my_current_offset);

#endif

MPI_File_close(&fh);

MPI_Allreduce(&io_time, &longest_io_time, 1, MPI_DOUBLE, MPI_MAX,

MPI_COMM_WORLD);

if (i_am_the_master) {

printf("longest_io_time = %f seconds\n", longest_io_time);

printf("total_number_of_bytes = %lld\n", total_number_of_bytes);

printf("transfer rate = %f MB/s\n",

total_number_of_bytes / longest_io_time / MBYTE);

}

MPI_Finalize();

exit(0);

}

Here is how the program is installed and made:

5.3. MPI IO 197

gustav@bh1 $ pwd

/N/B/gustav/src/I590/mkrandpfile

gustav@bh1 $ make install

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.2

done

co RCS/mkrandpfile.c,v mkrandpfile.c

RCS/mkrandpfile.c,v --> mkrandpfile.c

revision 1.10

done

mpicc -DDEBUG -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE -o mkrandpfile mkrandpfile.c

install mkrandpfile /N/B/gustav/bin

gustav@bh1 $

Observe the defines, which are added to the CFLAGS:

-D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE

These defines inform the Linux C compiler that we are going to work with
files of size that exceeds the ancient UNIX limitation of 2 GB maximum. This
limitation is related to the 32-bit architecture of IA32. I have it on explicit advice
of ROMIO authors that I should use these switches for all MPI-IO compilations
on IA32 systems under Linux, yet they are not MPI-IO specific. They are
mentioned, instead, in various system files in /usr/include.

And here is how the program is run. The program generates quite a lot of
output when run in the DEBUG mode, of course, this apart from the file it writes,
which can be very large indeed.

First I want to show you how the program captures error on the command
line:

gustav@bh1 $ pwd

/N/gpfs/gustav/mkrandpfile

gustav@bh1 $ ls

gustav@bh1 $ mpiexec -n 8 mkrandpfile -l 10

each process will write 10 blocks of integers

synopsis: mkrandpfile -f <file> -l <blocks>

ABORT - process 0: application called MPI_ABORT

rank 0 in job 40 bh1_46074 caused collective abort of all ranks

exit status of rank 0: return code 1

gustav@bh1 $

The ABORT message is triggered by the call to MPI_Abort. In this case process of
rank 0 is the only one that has called MPI_Abort, but this is enough to take all
other processes down too. The return code of the master process, i.e., process
of rank 0, is returned in the ABORT message.

Now let us create a relatively small 640 MB file with mkrandpfile:

gustav@bh1 $ mpiexec -n 8 mkrandpfile -f test -l 20

output file: test

each process will write 20 blocks of integers

0: received broadcast

0: filename = test

number_of_bytes = 83886080/process

total_number_of_bytes = 671088640

198 CHAPTER 5. MPI AND MPI-IO

size of offset = 8 bytes

4: received broadcast

4: filename = test

6: received broadcast

6: filename = test

7: received broadcast

7: filename = test

1: received broadcast

1: filename = test

2: received broadcast

2: filename = test

5: received broadcast

5: filename = test

3: received broadcast

3: filename = test

0: my current offset is 0

3: my current offset is 251658240

2: my current offset is 167772160

4: my current offset is 335544320

7: my current offset is 587202560

5: my current offset is 419430400

6: my current offset is 503316480

1: my current offset is 83886080

2: wrote 20971520 integers

2: my current offset is 251658240

5: wrote 20971520 integers

5: my current offset is 503316480

4: wrote 20971520 integers

4: my current offset is 419430400

1: wrote 20971520 integers

1: my current offset is 167772160

6: wrote 20971520 integers

6: my current offset is 587202560

3: wrote 20971520 integers

3: my current offset is 335544320

7: wrote 20971520 integers

7: my current offset is 671088640

0: wrote 20971520 integers

0: my current offset is 83886080

longest_io_time = 5.781979 seconds

total_number_of_bytes = 671088640

transfer rate = 110.688746 MB/s

gustav@bh1 $

First observe a rather nice IO bandwidth of 110MB/s. The bandwidth is so
nice, because the file is small and we end up writing it to memory caches. This
program does not flush the file. We will discuss the other messages, about offsets
and who wrote how many integers, in the next section.

And now we are going to create a somewhat larger 32GB file. This is going
to take a little longer, the program will run on 32 nodes, and I am going to
shorten the rather verbose output a little.

gustav@bh1 $ pwd

/N/gpfs/gustav/mkrandpfile

gustav@bh1 $ rm test

gustav@bh1 $ mpiexec -n 32 mkrandpfile -f test -l 256

5.3. MPI IO 199

output file: test

each process will write 256 blocks of integers

number_of_bytes = 1073741824/process

total_number_of_bytes = 34359738368

size of offset = 8 bytes

[...]

0: my current offset is 0

1: my current offset is 1073741824

2: my current offset is 2147483648

3: my current offset is 3221225472

4: my current offset is 4294967296

[...]

0: wrote 268435456 integers

0: my current offset is 1073741824

1: wrote 268435456 integers

1: my current offset is 2147483648

2: wrote 268435456 integers

2: my current offset is 3221225472

3: wrote 268435456 integers

3: my current offset is 4294967296

4: wrote 268435456 integers

4: my current offset is 5368709120

[...]

longest_io_time = 509.006609 seconds

total_number_of_bytes = 34359738368

transfer rate = 64.376374 MB/s

gustav@bh1 $

This time IO has dropped to 64 MB/s, which is what we saw when we had
written a lot of data with mkrandfiles. This transfer rate is disk array limited.
The amount of data, 1GB/node, is too large to just hide in memory buffers.

The Discussion

This program is very similar to mkrandfiles. It begins in the usual MPI-ish
way, i.e., all processes find about the size of the pool and their own rank number
within it. Then process of rank 0 assumes the mastership (which usually just
means more work and not much more pay) and reads the command line.

On having detected a command line input error, the master process calls
MPI Abort:

if (input_error) MPI_Abort(MPI_COMM_WORLD, 1);

and this takes every other process down. We can quit the program in such an
abrupt manner in this place because we haven’t opened any files yet. This is
important. Otherwise, we should really postpone aborting and clean up the
mess first. But in this first MPI-IO example of ours we are not going to be
particularly fastidious about error handling. This will come later.

200 CHAPTER 5. MPI AND MPI-IO

If there are no problems with the command line, the master process broad-
casts (1) the number of blocks of random integers each process is going to
contribute to the file, (2) the length of the file name, which includes also the
space for the string termination character.

Having received the latter each process, with the exception of the master
process, calls malloc to allocate enough space for the string. Observe that the
master process never had to malloc space for the string explicitly. This was
done by function getopt internally, when it created the string optarg. Then
the master process merely made its own instance of filename point to the same
location to which optarg pointed.

Finally, the master process broadcasts (3) the name of the file to other
processes.

In the next part of the code:

number_of_integers = number_of_blocks * BLOCK_SIZE;

number_of_bytes = sizeof(int) * number_of_integers;

each process calculates the number of random integers it is going to write and
the number of bytes it will need to store all these integers in its memory. Here
this program differs a little from mkrandfiles. Instead of writing in numerous
small chunks, we are going to prepare all number in memory first, and then
write the whole lot in a single operation. We will have to allocate sufficient
space for the numbers, and so number_of_bytes will become an argument to
malloc. This argument must be an integer. You cannot malloc a long long

of bytes. UNIX does not support memory above MAX_INT.
But the next three numbers that are computed here:

total_number_of_integers =

(long long) pool_size * (long long) number_of_integers;

total_number_of_bytes =

(long long) pool_size * (long long) number_of_bytes;

my_offset = (long long) my_rank * (long long) number_of_bytes;

are all of type long long, which on the IA32 is a 64-bit integer. This is because
the total number of bytes written on the file may well exceed the total amount of
memory available to a single process, on account of there being many processes
in the pool.

The last number, my_offset, will be used to point to a location in our MPI
file, which, in general, is going to be longer than 2 GB. The variables my_offset
and its sibling my_current_offset are of type:

MPI_Offset my_offset, my_current_offset;

You have to look up the meaning of this type in /N/hpc/mpich2/include/mpi.h

in order to find out that it is long long on the AVIDD system. It doesn’t always
have to be long long though. It may well be long or just int, depending on
how MPI was compiled and what machine it runs on.

Usually you should be able to just refer to this type knowing only that it is
an integer of some opaque length. And so we could write:

total_number_of_integers =

(MPI_Offset) pool_size * (MPI_Offset) number_of_integers;

5.3. MPI IO 201

total_number_of_bytes =

(MPI_Offset) pool_size * (MPI_Offset) number_of_bytes;

my_offset = (MPI_Offset) my_rank * (MPI_Offset) number_of_bytes;

But if MPI_Offset is not long enough, you will not be able to generate truly
large MPI files. And if you don’t know what it is, you may have problems
writing values of file pointer offsets on standard output, be it for debugging
or for other purposes, although there is a macro defined on mpio.h, which is
included in mpi.h:

#define LL %lld

and you may be able to use it in calls to printf.
Now we encounter the first MPI-IO function, MPI File open:

MPI_File_open(MPI_COMM_WORLD, filename,

MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

This function opens a file identified by filename on all processes in the MPI_COMM_WORLD
communicator. This is a collective function meaning that all processes must do
it together and the values of all parameters passed to it must be identical on all
processes too.

The third parameter specifies how the file should be opened, e.g., for writing,
reading or both, and whether it should be created if it doesn’t exist. The modes
supported by MPI-2 are as follows:

MPI MODE RDONLY open the file for reading from it only

MPI MODE RDWR open the file for reading and writing

MPI MODE WRONLY open the file for writing to it only

MPI MODE CREATE create the file if it does not exist

MPI MODE EXCL throw an error if you try to create a file that exists
already

MPI MODE DELETE ON CLOSE delete the file on close – such files are
called scratch files and they are used for auxiliary data storage during
computations

MPI MODE UNIQUE OPEN ensure that the file is not going to be opened
concurrently elsewhere (e.g., by another communicator)

MPI MODE SEQUENTIAL the file will be accessed sequentially only

MPI MODE APPEND set initial position of all file pointers to the end of
the file

The options can be combined with the boolean “or”, |, operator.
The fourth parameter can be used to give the operating system additional

hints about how and where the file should be opened. For example, our current
version of HPSS lets SP users open HPSS files using MPI-IO. If you wanted

202 CHAPTER 5. MPI AND MPI-IO

to tell HPSS which class of service the file should be associated with, what
annotation string it should have attached to its HPSS data base record, and
what ACLs it should have, you would use the info structure to pass all this
information. In this case though we don’t pass any such data to GPFS and so
we use one of the predefined infos, which is MPI_INFO_NULL.

On successful completetion MPI_Open_file returns a file handle on fh. This
is not the same as a file pointer. It is used a little differently and you always
have to check meticulously, whether an MPI-IO function you call wants a file
handle (i.e., the value of) or a pointer to it. Another thing that happens is that
every process in the MPI_COMM_WORLD communicator gets its own local pointer
to the file and all those pointers point to the beginning of the file, unless the
MPI_MODE_APPEND option has been used.

Having opened the file, collectively, each process is now going to advance to
its own position within it by calling MPI File seek

MPI_File_seek(fh, my_offset, MPI_SEEK_SET);

This is where we use the my_offset variable, which is of type MPI_Offset. The
value of this variable is different for each process, so that when they get to write
the data, they’ll write it on different portions of the file and without overwriting
each-other’s territory.

The seek can be performed in one of three ways:

MPI SEEK SET the pointer is set exactly to my_offset

MPI SEEK CUR the pointer is advanced by my_offset from its current po-
sition

MPI SEEK END the pointer is advanced by my_offset from the end of the
file

In general my_offset can be positive and negative, i.e., you can use it to move
in both directions within the file.

In this program we set the pointer explicitly. There are other ways to do this
and we’ll learn about them later. Whenever you manipulate a pointer explicitly,
especially in a parallel program, you must exercise great caution and make sure
that you point exactly where you want to point. Otherwise you may end up
overwriting your own data. You can check where your pointers are by calling
function MPI File get position:

MPI_File_get_position(fh, &my_current_offset);

In this program we are going to call this function before and after the write, in
order to see how each of the individual file pointer has advanced.

Having opened the file and positioned themselves within it, the processes
allocate space for the random integers they are about to write and then generate
them:

junk = (int*) malloc(number_of_bytes);

srand(28 + my_rank);

for (i = 0; i < number_of_integers; i++) *(junk + i) = rand();

Now we are ready to perform the write itself, and we time it too:

5.3. MPI IO 203

start = MPI_Wtime();

MPI_File_write(fh, junk, number_of_integers, MPI_INT, &status);

finish = MPI_Wtime();

io_time = finish - start;

Function MPI File write writes a number_of_integersof objects of type MPI_INT
taken from the buffer pointed to by junk on a file whose file handle is fh. The
write, for a given process, commences at the place where its file pointer points
and the file pointer is advanced as the writing proceeeds.

We can check how many items have indeed been written by inspecting
status with function MPI Get count.

MPI_Get_count(&status, MPI_INT, &count);

The variable status is of type MPI_Status, and it is the same status that is
returned, e.g., by MPI Recv. You can see here how nicely MPI-IO fits with
MPI.

After the write we call MPI_File_get_position again:

MPI_File_get_position(fh, &my_current_offset);

and the new positions are printed on standard output. Recall the following:

0: my current offset is 0

1: my current offset is 1073741824

2: my current offset is 2147483648

3: my current offset is 3221225472

4: my current offset is 4294967296

[...]

0: wrote 268435456 integers

0: my current offset is 1073741824

1: wrote 268435456 integers

1: my current offset is 2147483648

2: wrote 268435456 integers

2: my current offset is 3221225472

3: wrote 268435456 integers

3: my current offset is 4294967296

4: wrote 268435456 integers

4: my current offset is 5368709120

You can see that the initial offset of process 0 was 0 and after the write it is
1073741824. But this was the initial offset of process 1. Whereas after the write
process 1 advanced to 2147483648. But this was the initial offset of process 2,
which after the write advanced to 3221225472. . . and so on. The file has indeed
been written rather tightly. Each process wrote on its own portion of it.

Now we can close the file by calling MPI File close

MPI_File_close(&fh);

This file merely disposes of the file handle. Once you have closed the file, you
can no longer refer to it by using fh.

The last part of the program calls MPI Allreduce to find the longest IO
time that any process spent writing the data, and this time is then used by the
master process to estimate the data transfer rate:

204 CHAPTER 5. MPI AND MPI-IO

MPI_Allreduce(&io_time, &longest_io_time, 1, MPI_DOUBLE, MPI_MAX,

MPI_COMM_WORLD);

if (i_am_the_master) {

printf("longest_io_time = %f seconds\n", longest_io_time);

printf("total_number_of_bytes = %lld\n", total_number_of_bytes);

printf("transfer rate = %f MB/s\n",

total_number_of_bytes / longest_io_time / MBYTE);

}

whereupon all processes meet at MPI_Finalize and exit.

Exercises

1 Rewrite the program that simulated interactions between charged particles,
discussed in section 5.2.6 so that it dumps states of all particles after every
time step. Make each process write only the states of its own particles on
the common MPI file.

5.3.2 Reading from MPI Files

In this section I am going to show you how to read MPI files. This can be a
little tricky. You will also see how MPI-IO errors can be handled

Program xrandpfile

This is the example program. It opens a file whose name has been provided on
the command line. Then it finds about its length. Every process evaluates the
amount of data it’s going to read by dividing the size of the file by the number of
processes in the pool, and allocates sufficient memory for the data. The reading
itself is timed.

If any process has problems opening the file, the program aborts.

/*

* %Id: xrandpfile.c,v 1.4 2003/10/18 21:43:05 gustav Exp %

*

* %Log: xrandpfile.c,v %

* Revision 1.4 2003/10/18 21:43:05 gustav

* integers -> bytes

*

* Revision 1.3 2003/10/18 21:33:35 gustav

* Indented the program (used emacs).

*

* Revision 1.2 2003/10/18 20:43:24 gustav

* Added reading of status with MPI_Get_count

*

* Revision 1.1 2003/10/18 19:52:44 gustav

* Initial revision

*

*

*/

#include <stdio.h> /* all IO stuff lives here */

5.3. MPI IO 205

#include <stdlib.h> /* exit lives here */

#include <unistd.h> /* getopt lives here */

#include <string.h> /* strcpy lives here */

#include <limits.h> /* INT_MAX lives here */

#include <mpi.h> /* MPI and MPI-IO live here */

#define MASTER_RANK 0

#define TRUE 1

#define FALSE 0

#define BOOLEAN int

#define MBYTE 1048576

#define SYNOPSIS printf ("synopsis: %s -f <file>\n", argv[0])

int main(argc, argv)

int argc;

char *argv[];

{

/* my variables */

int my_rank, pool_size, last_guy, i, count;

BOOLEAN i_am_the_master = FALSE, input_error = FALSE;

char *filename = NULL, *read_buffer;

int filename_length;

int *junk;

int file_open_error, number_of_bytes;

/* MPI_Offset is long long */

MPI_Offset my_offset, my_current_offset, total_number_of_bytes,

number_of_bytes_ll, max_number_of_bytes_ll;

MPI_File fh;

MPI_Status status;

double start, finish, io_time, longest_io_time;

/* getopt variables */

extern char *optarg;

int c;

/* ACTION */

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

last_guy = pool_size - 1;

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

if (i_am_the_master) {

/* read the command line */

while ((c = getopt(argc, argv, "f:h")) != EOF)

switch(c) {

case ’f’:

filename = optarg;

#ifdef DEBUG

printf("input file: %s\n", filename);

206 CHAPTER 5. MPI AND MPI-IO

#endif

break;

case ’h’:

SYNOPSIS;

input_error = TRUE;

break;

case ’?’:

SYNOPSIS;

input_error = TRUE;

break;

} /* end of switch(c) */

/* Check if the command line has initialized filename and

* number_of_blocks.

*/

if (filename == NULL) {

SYNOPSIS;

input_error = TRUE;

}

if (input_error) MPI_Abort(MPI_COMM_WORLD, 1);

filename_length = strlen(filename) + 1;

/* This is another way of exiting, but it can be done only

if no files have been opened yet. */

} /* end of "if (i_am_the_master)"; reading the command line */

/* If we got this far, the data read from the command line

should be OK. */

MPI_Bcast(&filename_length, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

if (! i_am_the_master) filename = (char*) malloc(filename_length);

#ifdef DEBUG

printf("%3d: allocated space for filename\n", my_rank);

#endif

MPI_Bcast(filename, filename_length, MPI_CHAR, MASTER_RANK, MPI_COMM_WORLD);

#ifdef DEBUG

printf("%3d: received broadcast\n", my_rank);

printf("%3d: filename = %s\n", my_rank, filename);

#endif

MPI_Barrier(MPI_COMM_WORLD);

/* Default I/O error handling is MPI_ERRORS_RETURN */

file_open_error = MPI_File_open(MPI_COMM_WORLD, filename,

MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

if (file_open_error != MPI_SUCCESS) {

char error_string[BUFSIZ];

int length_of_error_string, error_class;

MPI_Error_class(file_open_error, &error_class);

5.3. MPI IO 207

MPI_Error_string(error_class, error_string, &length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

MPI_Error_string(file_open_error, error_string, &length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

MPI_Abort(MPI_COMM_WORLD, file_open_error);

}

MPI_File_get_size(fh, &total_number_of_bytes);

#ifdef DEBUG

printf("%3d: total_number_of_bytes = %lld\n", my_rank, total_number_of_bytes);

#endif

number_of_bytes_ll = total_number_of_bytes / pool_size;

/* If pool_size does not divide total_number_of_bytes evenly,

the last process will have to read more data, i.e., to the

end of the file. */

max_number_of_bytes_ll =

number_of_bytes_ll + total_number_of_bytes % pool_size;

if (max_number_of_bytes_ll < INT_MAX) {

if (my_rank == last_guy)

number_of_bytes = (int) max_number_of_bytes_ll;

else

number_of_bytes = (int) number_of_bytes_ll;

read_buffer = (char*) malloc(number_of_bytes);

#ifdef DEBUG

printf("%3d: allocated %d bytes\n", my_rank, number_of_bytes);

#endif

my_offset = (MPI_Offset) my_rank * number_of_bytes_ll;

#ifdef DEBUG

printf("%3d: my offset = %lld\n", my_rank, my_offset);

#endif

MPI_File_seek(fh, my_offset, MPI_SEEK_SET);

MPI_Barrier(MPI_COMM_WORLD);

start = MPI_Wtime();

MPI_File_read(fh, read_buffer, number_of_bytes, MPI_BYTE, &status);

finish = MPI_Wtime();

MPI_Get_count(&status, MPI_BYTE, &count);

#ifdef DEBUG

printf("%3d: read %d bytes\n", my_rank, count);

#endif

MPI_File_get_position(fh, &my_offset);

#ifdef DEBUG

printf("%3d: my offset = %lld\n", my_rank, my_offset);

#endif

io_time = finish - start;

MPI_Allreduce(&io_time, &longest_io_time, 1, MPI_DOUBLE, MPI_MAX,

208 CHAPTER 5. MPI AND MPI-IO

MPI_COMM_WORLD);

if (i_am_the_master) {

printf("longest_io_time = %f seconds\n", longest_io_time);

printf("total_number_of_bytes = %lld\n", total_number_of_bytes);

printf("transfer rate = %f MB/s\n",

total_number_of_bytes / longest_io_time / MBYTE);

}

}

else {

if (i_am_the_master) {

printf("Not enough memory to read the file.\n");

printf("Consider running on more nodes.\n");

}

} /* of if(max_number_of_bytes_ll < INT_MAX) */

MPI_File_close(&fh);

MPI_Finalize();

exit(0);

}

The program is made much the same as its sibling mkrandpfile:

/N/B/gustav/src/I590/xrandpfile

gustav@bh1 $ make install

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/xrandpfile.c,v xrandpfile.c

RCS/xrandpfile.c,v --> xrandpfile.c

revision 1.3

done

mpicc -DDEBUG -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE -o xrandpfile xrandpfile.c

install xrandpfile /N/B/gustav/bin

gustav@bh1 $

Now let us run this program. But first I want to show you how capturing
MPI file errors works. I will ask the program to open a non-existent file for
reading.

gustav@bh1 $ pwd

/N/gpfs/gustav/mkrandpfile

gustav@bh1 $ ls

test

gustav@bh1 $ mpiexec -n 8 xrandpfile -f junk

input file: junk

0: allocated space for filename

0: received broadcast

0: filename = junk

1: allocated space for filename

1: received broadcast

1: filename = junk

2: allocated space for filename

6: allocated space for filename

2: received broadcast

2: filename = junk

5: allocated space for filename

5.3. MPI IO 209

6: received broadcast

6: filename = junk

4: allocated space for filename

3: allocated space for filename

4: received broadcast

4: filename = junk

7: allocated space for filename

3: received broadcast

3: filename = junk

7: received broadcast

7: filename = junk

5: received broadcast

5: filename = junk

ABORT - process 0: application called MPI_ABORT

ABORT - process 1: application called MPI_ABORT

ABORT - process 3: application called MPI_ABORT

ABORT - process 7: application called MPI_ABORT

ABORT - process 4: application called MPI_ABORT

0: Other I/O error

0: Other I/O error No such file or directory

1: Other I/O error

1: Other I/O error No such file or directory

3: Other I/O error

3: Other I/O error No such file or directory

ABORT - process 2: application called MPI_ABORT

ABORT - process 5: application called MPI_ABORT

ABORT - process 6: application called MPI_ABORT

2: Other I/O error

2: Other I/O error No such file or directory

5: Other I/O error

5: Other I/O error No such file or directory

6: Other I/O error

6: Other I/O error No such file or directory

4: Other I/O error

4: Other I/O error No such file or directory

7: Other I/O error

7: Other I/O error No such file or directory

rank 7 in job 43 bh1_46074 caused collective abort of all ranks

exit status of rank 7: return code 32

rank 6 in job 43 bh1_46074 caused collective abort of all ranks

exit status of rank 6: return code 32

rank 5 in job 43 bh1_46074 caused collective abort of all ranks

exit status of rank 5: return code 32

rank 4 in job 43 bh1_46074 caused collective abort of all ranks

exit status of rank 4: return code 32

rank 3 in job 43 bh1_46074 caused collective abort of all ranks

exit status of rank 3: return code 32

rank 2 in job 43 bh1_46074 caused collective abort of all ranks

exit status of rank 2: return code 32

rank 1 in job 43 bh1_46074 caused collective abort of all ranks

exit status of rank 1: return code 32

rank 0 in job 43 bh1_46074 caused collective abort of all ranks

exit status of rank 0: return code 32

gustav@bh1 $

Observe that since every process captures the open error, every process issues
the MPI_Abort call. The error class corresponds to the message:

Other I/O error

210 CHAPTER 5. MPI AND MPI-IO

and the specific error is:

Other I/O error No such file or directory

And now let us read file test created with mkrandpfile with xrandpfile.
This file is 32GB long!

gustav@bh1 $ pwd

/N/gpfs/gustav/mkrandpfile

gustav@bh1 $ ls -l

total 33554432

-rw-rw-rw- 1 gustav ucs 34359738368 Oct 18 16:12 test

gustav@bh1 $ mpiexec -n 32 xrandpfile -f test

[... there some simple diagnostic output here pertaining to the

file name ...]

0: total_number_of_bytes = 34359738368

0: allocated 1073741824 bytes

0: my offset = 0

1: total_number_of_bytes = 34359738368

1: allocated 1073741824 bytes

1: my offset = 1073741824

2: total_number_of_bytes = 34359738368

2: allocated 1073741824 bytes

2: my offset = 2147483648

3: total_number_of_bytes = 34359738368

3: allocated 1073741824 bytes

3: my offset = 3221225472

4: total_number_of_bytes = 34359738368

4: allocated 1073741824 bytes

4: my offset = 4294967296

[...]

0: read 1073741824 bytes

0: my offset = 1073741824

1: read 1073741824 bytes

1: my offset = 2147483648

2: read 1073741824 bytes

2: my offset = 3221225472

3: read 1073741824 bytes

3: my offset = 4294967296

4: read 1073741824 bytes

4: my offset = 5368709120

[...]

longest_io_time = 193.654002 seconds

total_number_of_bytes = 34359738368

transfer rate = 169.209000 MB/s

20: read 1073741824 bytes

20: my offset = 22548578304

gustav@bh1 $

Here the transfer rate of nearly 170 MB/s is much better than the 64 MB/s we
saw when mkrandpfile wrote the 32 GB of test. Neither of these two numbers
is likely to get any better with the current generation and configuration of the

5.3. MPI IO 211

AVIDD disk arrays. This is it. This large discrepancy between reads and writes
illustrates very aptly how much slower physical writes on the magnetic media
are from reads. Optical media, such as CDs and DVDs, are even worse in this
respect. But the discrepancy would not be this large on, e.g., magnetic tapes,
because a magnetic tape is a streaming medium. What makes writes to disk
arrays so slow, apart from the physical process itself, is having to find space
for the writes. Once it’s been found, the head has to do quite a lot of moving
around as data is written on the disk. File test is not stored on the AVIDD
disk arrays contiguously.

Now let me show you on a smaller example the case when the total length
of the file does not divide by the number of processes evenly. In this case one
of the processes will have to read a little bit more.

gustav@bh1 $ mpiexec -n 4 mkrandpfile -f small_test -l 4

output file: small_test

each process will write 4 blocks of integers

0: received broadcast

0: filename = small_test

number_of_bytes = 16777216/process

total_number_of_bytes = 67108864

size of offset = 8 bytes

2: received broadcast

2: filename = small_test

1: received broadcast

1: filename = small_test

3: received broadcast

3: filename = small_test

0: my current offset is 0

1: my current offset is 16777216

2: my current offset is 33554432

3: my current offset is 50331648

2: wrote 4194304 integers

2: my current offset is 50331648

3: wrote 4194304 integers

3: my current offset is 67108864

0: wrote 4194304 integers

0: my current offset is 16777216

1: wrote 4194304 integers

1: my current offset is 33554432

longest_io_time = 1.453121 seconds

total_number_of_bytes = 67108864

transfer rate = 44.043134 MB/s

gustav@bh1 $ mpiexec -n 3 xrandpfile -f small_test

input file: small_test

2: allocated space for filename

0: allocated space for filename

0: received broadcast

0: filename = small_test

1: allocated space for filename

1: received broadcast

1: filename = small_test

2: received broadcast

2: filename = small_test

0: total_number_of_bytes = 67108864

0: allocated 22369621 bytes

0: my offset = 0

212 CHAPTER 5. MPI AND MPI-IO

2: total_number_of_bytes = 67108864

2: allocated 22369622 bytes

2: my offset = 44739242

1: total_number_of_bytes = 67108864

1: allocated 22369621 bytes

1: my offset = 22369621

1: read 22369621 bytes

1: my offset = 44739242

2: read 22369622 bytes

2: my offset = 67108864

0: read 22369621 bytes

0: my offset = 22369621

longest_io_time = 0.167047 seconds

total_number_of_bytes = 67108864

transfer rate = 383.125653 MB/s

gustav@bh1 $

Observe that process number 2 reads 22369622 bytes, whereas processes 0 and
1 read 22369621 bytes. In this case 3× 22369621 = 67108863, which is one byte
less than the length of the file, 67108864 bytes. So process number 2 has to
stretch just this little byte farther.

The Discussion

This program begins the same way mkrandpfile did, until we get to

file_open_error = MPI_File_open(MPI_COMM_WORLD, filename,

MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

if (file_open_error != MPI_SUCCESS) {

char error_string[BUFSIZ];

int length_of_error_string, error_class;

MPI_Error_class(file_open_error, &error_class);

MPI_Error_string(error_class, error_string, &length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

MPI_Error_string(file_open_error, error_string, &length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

MPI_Abort(MPI_COMM_WORLD, file_open_error);

}

This time we open the file for reading only and we check what function MPI_File_open

has returned. If there is no problem, i.e., file_open_error == MPI_SUCCESS,
then we go ahead and read the file. But if there is a problem, we convert
file_open_error to error messages, print them on standard output and MPI_Abort.

Assuming that the MPI_File_open worked, we need to find out how much
data has to be read. So we check the size of the file by calling MPI File get size

MPI_File_get_size(fh, &total_number_of_bytes);

where total_number_of_bytes must be of type MPI_Offset, i.e., in our case,
long long.

Now we evaluate how much data every process needs to read:

5.3. MPI IO 213

number_of_bytes_ll = total_number_of_bytes / pool_size;

/* If pool_size does not divide total_number_of_bytes evenly,

the last process will have to read more data, i.e., to the

end of the file. */

max_number_of_bytes_ll =

number_of_bytes_ll + total_number_of_bytes % pool_size;

Depending on the length of the file and the number of processes, the divi-
sion of the former by the latter may or may not be exact. If it isn’t then
max_number_of_bytes_ll is going to be a little larger than number_of_bytes_ll.
We will make the last process read more. Observe that both number_of_bytes_ll

and max_number_of_bytes_ll are long long. At this stage we don’t know if
they’ll fit in int.

Now we have the if statement:

if (max_number_of_bytes_ll < INT_MAX) {

blah... blah... blah...

}

else {

if (i_am_the_master) {

printf("Not enough memory to read the file.\n");

printf("Consider running on more nodes.\n");

}

} /* of if(max_number_of_bytes_ll < INT_MAX) */

MPI_File_close(&fh);

This statement checks, right at the top, if max_number_of_bytes_ll is going to
fit into int, because we are going to read the data the same way we wrote it, i.e.,
in one large gasp into a single sufficiently long array. If max_number_of_bytes_ll
is too large, then we close the file right away.

Now let’s see what happens inside the top clause of the if statement.
First each process converts number_of_bytes_ll to a normal integer suit-

able for passing to malloc with the exception of the last process, which does it
to max_number_of_bytes_ll, and then they all call malloc:

if (my_rank == last_guy)

number_of_bytes = (int) max_number_of_bytes_ll;

else

number_of_bytes = (int) number_of_bytes_ll;

read_buffer = (char*) malloc(number_of_bytes);

Now every process figures out its own offset in the file and goes there:

my_offset = (MPI_Offset) my_rank * number_of_bytes_ll;

#ifdef DEBUG

printf("%3d: my offset = %lld\n", my_rank, my_offset);

#endif

MPI_File_seek(fh, my_offset, MPI_SEEK_SET);

MPI_Barrier(MPI_COMM_WORLD);

and then they all meet at the barrier.
Now we are ready to commence the read, to time it, and to find if and how

the pointers have advanced as the result of it:

214 CHAPTER 5. MPI AND MPI-IO

start = MPI_Wtime();

MPI_File_read(fh, read_buffer, number_of_bytes, MPI_BYTE, &status);

finish = MPI_Wtime();

MPI_Get_count(&status, MPI_BYTE, &count);

#ifdef DEBUG

printf("%3d: read %d bytes\n", my_rank, count);

#endif

MPI_File_get_position(fh, &my_offset);

#ifdef DEBUG

printf("%3d: my offset = %lld\n", my_rank, my_offset);

#endif

Function MPI File read read number_of_bytes of items of type MPI_BYTE into
the read_buffer from the file given by the file handle fh. Every process
reads the data beginning from the position it is at as the result of the call
to MPI_File_seek, and as the reading progresses, its own pointer moves ac-
cordingly.

Let us have a look at the positions of the pointers before and after the
reading:

0: total_number_of_bytes = 34359738368

0: allocated 1073741824 bytes

0: my offset = 0

1: total_number_of_bytes = 34359738368

1: allocated 1073741824 bytes

1: my offset = 1073741824

2: total_number_of_bytes = 34359738368

2: allocated 1073741824 bytes

2: my offset = 2147483648

3: total_number_of_bytes = 34359738368

3: allocated 1073741824 bytes

3: my offset = 3221225472

4: total_number_of_bytes = 34359738368

4: allocated 1073741824 bytes

4: my offset = 4294967296

[...]

0: read 1073741824 bytes

0: my offset = 1073741824

1: read 1073741824 bytes

1: my offset = 2147483648

2: read 1073741824 bytes

2: my offset = 3221225472

3: read 1073741824 bytes

3: my offset = 4294967296

4: read 1073741824 bytes

4: my offset = 5368709120

Observe that process 0 started at offset 0 and progressed to offset 1073741824
having read exactly 1073741824 bytes. Process 1 started at offset 1073741824
and progressed to offset 2147483648, which is exactly where process 2 started
from. In short, we have read every byte from the file, not missing anything, not
even the last couple of bytes, in case the length of the file does not divide by
the number of processes. The last process is going to mop them up.

Now we check what the bandwidth was the same way we did it for mkrandpfile:

5.3. MPI IO 215

io_time = finish - start;

MPI_Allreduce(&io_time, &longest_io_time, 1, MPI_DOUBLE, MPI_MAX,

MPI_COMM_WORLD);

if (i_am_the_master) {

printf("longest_io_time = %f seconds\n", longest_io_time);

printf("total_number_of_bytes = %lld\n", total_number_of_bytes);

printf("transfer rate = %f MB/s\n",

total_number_of_bytes / longest_io_time / MBYTE);

}

And this is it. The processes all go to MPI_Finalize and exit.

Exercises

1 Rewrite the program that simulated interactions between charged particles,
discussed in section 5.2.6 so that it reads initial states of particles from an
MPI file if requested. Make each process read only the states of its own
particles from the MPI file.

5.3.3 Writing Sequential Files with MPI-IO

I have already mentioned that the semantics of MPI-IO are so nice, that it
is tempting to use them even for ordinary sequential files. This program is
almost the same as mkrandfiles, but it uses MPI-IO to write the files. It does
more error checking than my previous MPI-IO examples, testing for potential
errors both on open and on write. Any problems are handled without calling
MPI_Abort. Where mkrandfiles called unlink to delete files in case there were
problems either with open or with write, this program calls MPI File Delete.

Program mkrandpfiles

Here is the program itself:

/*

* %Id: mkrandpfiles.c,v 1.2 2003/10/19 19:20:14 gustav Exp %

*

* %Log: mkrandpfiles.c,v %

* Revision 1.2 2003/10/19 19:20:14 gustav

* Indented the program with Emacs.

*

* Revision 1.1 2003/10/19 18:51:41 gustav

* Initial revision

*

*

*/

#include <stdio.h> /* all IO stuff lives here */

#include <stdlib.h> /* exit lives here */

#include <unistd.h> /* getopt lives here */

#include <errno.h> /* UNIX error handling lives here */

#include <string.h> /* strcpy lives here */

#include <mpi.h> /* MPI and MPI-IO live here */

216 CHAPTER 5. MPI AND MPI-IO

#define MASTER_RANK 0

#define TRUE 1

#define FALSE 0

#define BOOLEAN int

#define BLOCK_SIZE 1048576

#define MBYTE 1048576

#define SYNOPSIS printf ("synopsis: %s -f <file> -l <blocks>\n", argv[0])

int main(argc, argv)

int argc;

char *argv[];

{

/* my variables */

int my_rank, pool_size, number_of_blocks = 0, i;

int number_of_integers, number_of_bytes;

long long total_number_of_integers, total_number_of_bytes;

BOOLEAN i_am_the_master = FALSE, input_error = FALSE,

my_file_open_error = FALSE, file_open_error = FALSE,

my_write_error = FALSE, write_error = FALSE;

char *basename = NULL, file_name[BUFSIZ], message[BUFSIZ];

int basename_length, *junk;

MPI_File fh;

double start, finish, io_time, longest_io_time;

char error_string[BUFSIZ];

int length_of_error_string, error_class;

MPI_Status status;

/* getopt variables */

extern char *optarg;

int c;

/* error handling variables */

extern int errno;

/* ACTION */

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

if (i_am_the_master) {

/* read the command line */

while ((c = getopt(argc, argv, "f:l:h")) != EOF)

switch(c) {

case ’f’:

basename = optarg;

break;

case ’l’:

if ((sscanf (optarg, "%d", &number_of_blocks) != 1) ||

(number_of_blocks < 1))

input_error = TRUE;

5.3. MPI IO 217

break;

case ’h’:

input_error = TRUE;

break;

case ’?’:

input_error = TRUE;

break;

}

/* Check if the command line has initialized both the basename and

* the number_of_blocks.

*/

if ((basename == NULL) || (number_of_blocks == 0)) input_error = TRUE;

if (input_error)

SYNOPSIS;

else {

basename_length = strlen(basename) + 1;

#ifdef DEBUG

printf("basename = %s\n", basename);

printf("basename_length = %d\n", basename_length);

printf("number_of_blocks = %d\n", number_of_blocks);

#endif

}

} /* end of if(i_am_the_master) { <read the command line> } */

/* Transmit the effect of reading the command line to other

processes. */

MPI_Bcast(&input_error, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

if (! input_error) {

/* If we managed to get here, data read from the command line

is probably OK. */

MPI_Bcast(&number_of_blocks, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

MPI_Bcast(&basename_length, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

if (! i_am_the_master) basename = (char*) malloc(basename_length);

MPI_Bcast(basename, basename_length, MPI_CHAR, MASTER_RANK, MPI_COMM_WORLD);

#ifdef DEBUG

printf("%3d: basename = %s, number_of_blocks = %d\n",

my_rank, basename, number_of_blocks);

#endif

/* Allocate space needed to generate the integers */

number_of_integers = number_of_blocks * BLOCK_SIZE;

number_of_bytes = sizeof(int) * number_of_integers;

total_number_of_integers = (long long) number_of_integers

* (long long) pool_size;

total_number_of_bytes = (long long) number_of_bytes

* (long long) pool_size;

junk = (int*) malloc(number_of_bytes);

218 CHAPTER 5. MPI AND MPI-IO

/* Now every process creates its own file name and attempts

to open the file. */

sprintf(file_name, "%s.%d", basename, my_rank);

#ifdef DEBUG

printf("%3d: opening file %s\n", my_rank, file_name);

#endif

my_file_open_error =

MPI_File_open(MPI_COMM_SELF, file_name,

MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);

if (my_file_open_error != MPI_SUCCESS) {

MPI_Error_class(my_file_open_error, &error_class);

MPI_Error_string(error_class, error_string, &length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

MPI_Error_string(my_file_open_error, error_string,

&length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

my_file_open_error = TRUE;

}

/* Now we must ALL check that NOBODY had problems

with opening the file. */

MPI_Allreduce (&my_file_open_error, &file_open_error, 1, MPI_INT,

MPI_LOR, MPI_COMM_WORLD);

#ifdef DEBUG

if (i_am_the_master)

if (file_open_error)

fprintf(stderr, "problem opening output files\n");

#endif

/* If all files are open for writing, write to them */

if (! file_open_error) {

srand(28 + my_rank);

for (i = 0; i < number_of_integers; i++) *(junk + i) = rand();

start = MPI_Wtime();

my_write_error =

MPI_File_write(fh, junk, number_of_integers, MPI_INT, &status);

if (my_write_error != MPI_SUCCESS) {

MPI_Error_class(my_write_error, &error_class);

MPI_Error_string(error_class, error_string, &length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

MPI_Error_string(my_write_error, error_string, &length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

my_write_error = TRUE;

}

else {

finish = MPI_Wtime();

5.3. MPI IO 219

io_time = finish - start;

printf("%3d: io_time = %f\n", my_rank, io_time);

}

/* Check if anybody had problems writing on the file */

MPI_Allreduce (&my_write_error, &write_error, 1, MPI_INT,

MPI_LOR, MPI_COMM_WORLD);

#ifdef DEBUG

if (i_am_the_master)

if (write_error)

fprintf(stderr, "problem writing on files\n");

#endif

} /* of if(! file_open_error) { <write on the file> } */

/* Only processes that were successful opening the files

need do close them here */

if (!my_file_open_error) {

MPI_File_close(&fh);

#ifdef DEBUG

printf ("%3d: closed %s\n", my_rank, file_name);

#endif

}

/* If we have either write errors or file open errors,

then processes that managed to open their files

are requested to throw them away */

if (write_error || file_open_error) {

if (! my_file_open_error) {

MPI_File_delete(file_name, MPI_INFO_NULL);

#ifdef DEBUG

printf("%3d: deleted %s\n", my_rank, file_name);

#endif

}

}

else {

MPI_Reduce(&io_time, &longest_io_time, 1, MPI_DOUBLE, MPI_MAX,

MASTER_RANK, MPI_COMM_WORLD);

if (i_am_the_master) {

printf("longest_io_time = %f seconds\n", longest_io_time);

printf("total_number_of_bytes = %lld\n", total_number_of_bytes);

printf("transfer rate = %f MB/s\n",

total_number_of_bytes / longest_io_time / MBYTE);

}

} /* end of if (write_error || file_open_error) {<delete open files>} */

} /* end of if(! input_error) { <open the file and write on it> } */

MPI_Finalize();

exit(0);

}

Here is how this program is made:

220 CHAPTER 5. MPI AND MPI-IO

gustav@bh1 $ pwd

/N/B/gustav/src/I590/mkrandpfiles

gustav@bh1 $ make install

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/mkrandpfiles.c,v mkrandpfiles.c

RCS/mkrandpfiles.c,v --> mkrandpfiles.c

revision 1.2

done

mpicc -DDEBUG -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE -o mkrandpfiles mkrandpfiles.c

install mkrandpfiles /N/B/gustav/bin

gustav@bh1 $

And now let us have a look at how it runs. We’ll check for error handling
first.

gustav@bh1 $ pwd

/N/gpfs/gustav/mkrandpfiles

gustav@bh1 $ mpiexec -n 8 mkrandpfiles -l 8

synopsis: mkrandpfiles -f <file> -l <blocks>

gustav@bh1 $ mpiexec -n 8 mkrandpfiles -f test

synopsis: mkrandpfiles -f <file> -l <blocks>

gustav@bh1 $ touch test.4

gustav@bh1 $ chmod 444 test.4

gustav@bh1 $ mpiexec -n 8 mkrandpfiles -f test -l 8

basename = test

basename_length = 5

number_of_blocks = 8

0: basename = test, number_of_blocks = 8

0: opening file test.0

2: basename = test, number_of_blocks = 8

2: opening file test.2

4: basename = test, number_of_blocks = 8

4: opening file test.4

6: basename = test, number_of_blocks = 8

6: opening file test.6

7: basename = test, number_of_blocks = 8

7: opening file test.7

3: basename = test, number_of_blocks = 8

3: opening file test.3

5: basename = test, number_of_blocks = 8

5: opening file test.5

1: basename = test, number_of_blocks = 8

1: opening file test.1

4: Other I/O error

4: Other I/O error Permission denied

problem opening output files

0: closed test.0

2: closed test.2

6: closed test.6

1: closed test.1

5: closed test.5

3: closed test.3

7: closed test.7

6: deleted test.6

0: deleted test.0

5.3. MPI IO 221

2: deleted test.2

3: deleted test.3

7: deleted test.7

5: deleted test.5

1: deleted test.1

gustav@bh1 $

And now a real run:

gustav@bh1 $ rm -f test.4

gustav@bh1 $ mpiexec -n 8 mkrandpfiles -f test -l 10

basename = test

basename_length = 5

number_of_blocks = 10

0: basename = test, number_of_blocks = 10

0: opening file test.0

1: basename = test, number_of_blocks = 10

1: opening file test.1

2: basename = test, number_of_blocks = 10

2: opening file test.2

6: basename = test, number_of_blocks = 10

6: opening file test.6

4: basename = test, number_of_blocks = 10

4: opening file test.4

7: basename = test, number_of_blocks = 10

7: opening file test.7

3: basename = test, number_of_blocks = 10

3: opening file test.3

5: basename = test, number_of_blocks = 10

5: opening file test.5

7: io_time = 3.383798

3: io_time = 3.461928

5: io_time = 3.508230

2: io_time = 3.523316

4: io_time = 3.783771

1: io_time = 3.955147

6: io_time = 4.276280

0: io_time = 5.050947

1: closed test.1

2: closed test.2

3: closed test.3

4: closed test.4

7: closed test.7

5: closed test.5

6: closed test.6

0: closed test.0

longest_io_time = 5.050947 seconds

total_number_of_bytes = 335544320

transfer rate = 63.354455 MB/s

gustav@bh1 $

The Discussion

The beginning of the program is the same as in mkrandfiles until we get to
the place where processes have to allocate space for data. This is done the same
way we did it in mkrandpfile, i.e., we allocate enough space to generate all the
data and then to write it in one shove onto the file:

222 CHAPTER 5. MPI AND MPI-IO

/* Allocate space needed to generate the integers */

number_of_integers = number_of_blocks * BLOCK_SIZE;

number_of_bytes = sizeof(int) * number_of_integers;

total_number_of_integers = (long long) number_of_integers

* (long long) pool_size;

total_number_of_bytes = (long long) number_of_bytes

* (long long) pool_size;

junk = (int*) malloc(number_of_bytes);

Now every process generates its own file name:

sprintf(file_name, "%s.%d", basename, my_rank);

#ifdef DEBUG

printf("%3d: opening file %s\n", my_rank, file_name);

#endif

and opens the file:

my_file_open_error =

MPI_File_open(MPI_COMM_SELF, file_name,

MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);

Observe the use of the predefined MPI_COMM_SELF communicator. This is a
communicator that contains one process only, namely the process that uses it.
Consequently the file in question will not be shared with other processes. It
belongs to this process in entirety.

Now we check for possible errors on open:

if (my_file_open_error != MPI_SUCCESS) {

MPI_Error_class(my_file_open_error, &error_class);

MPI_Error_string(error_class, error_string, &length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

MPI_Error_string(my_file_open_error, error_string,

&length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

my_file_open_error = TRUE;

}

We don’t call MPI_Abort. Instead we set my_file_open_error to TRUE. If
MPI_SUCCESS was zero, then we could use the value of my_file_open_error
simply as returned by MPI_File_open, but MPI_SUCCESS is opaque and we must
not make such assumptions.

Now all processes check if any of them experienced problems opening the
file:

MPI_Allreduce (&my_file_open_error, &file_open_error, 1, MPI_INT,

MPI_LOR, MPI_COMM_WORLD);

#ifdef DEBUG

if (i_am_the_master)

if (file_open_error)

fprintf(stderr, "problem opening output files\n");

#endif

5.3. MPI IO 223

The remaining part of the program is one large if statement followed by
cleanup that depends on what happened before:

if (! file_open_error) {

blah... blah... blah...

}

if (!my_file_open_error) MPI_File_close(&fh);

if (write_error || file_open_error) {

if (! my_file_open_error) MPI_File_delete(file_name, MPI_INFO_NULL);

}

else {

MPI_Reduce(&io_time, &longest_io_time, 1, MPI_DOUBLE, MPI_MAX,

MASTER_RANK, MPI_COMM_WORLD);

if (i_am_the_master) {

printf("longest_io_time = %f seconds\n", longest_io_time);

printf("total_number_of_bytes = %lld\n", total_number_of_bytes);

printf("transfer rate = %f MB/s\n",

total_number_of_bytes / longest_io_time / MBYTE);

}

}

Here you see that in case of a problem all successfully opened files are deleted
by calling MPI File delete.

Now let us have a look at what the blah... blah... blah... stands for.
First every process seeds the random number generator differently and gen-

erates the integers:

srand(28 + my_rank);

for (i = 0; i < number_of_integers; i++) *(junk + i) = rand();

Then we execute a timed write on the open file using MPI_File_write and
capture the error, if there is any to be caught. The error is treated similarly to
the way we did it for MPI_File_open. We don’t MPI_Abort if there is a problem.
Instead we set my_write_error to TRUE and then flow with it.

start = MPI_Wtime();

my_write_error =

MPI_File_write(fh, junk, number_of_integers, MPI_INT, &status);

if (my_write_error != MPI_SUCCESS) {

MPI_Error_class(my_write_error, &error_class);

MPI_Error_string(error_class, error_string, &length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

MPI_Error_string(my_write_error, error_string, &length_of_error_string);

printf("%3d: %s\n", my_rank, error_string);

my_write_error = TRUE;

}

else {

finish = MPI_Wtime();

io_time = finish - start;

printf("%3d: io_time = %f\n", my_rank, io_time);

}

Before we exit the if clause we still check if any of the processes has encountered
writing problems and set the variable write_error accordingly.

MPI_Allreduce (&my_write_error, &write_error, 1, MPI_INT,

224 CHAPTER 5. MPI AND MPI-IO

MPI_LOR, MPI_COMM_WORLD);

#ifdef DEBUG

if (i_am_the_master)

if (write_error)

fprintf(stderr, "problem writing on files\n");

#endif

At the end of all these adventures the processes meet at MPI_Finalize and
exit.

Exercises

1 Write a program for reading files written with mkrandpfiles. Test the
status variable with MPI_Get_count to verify the number of data items
read.

2 We could use something similar to mkrandpfiles in order to dump data
pertaining to particles (see the program in section 5.2.6) at every time
step. Explain why this would make our life difficult if we wanted to restart
the program on a number of nodes different from the number used to write
the files.

5.3.4 File Views

In the three previous sections we wrote and read MPI files in parallel by manip-

ulating file pointers explicitly and by moving the pointers in terms of bytes, e.g.,
800 bytes forward, or 800 bytes back. This worked, but this is a pretty low level
way of doing things and therefore prone to mistakes. There was nothing in the
way we accessed the files that would prevent, say, process of rank 3 overwriting
data written by process of rank 4. Furthermore data itself was written and read
in the simplest way possible, e.g., as a string of integers or a string of bytes.

MPI provides a mechanism for automating this whole process and structur-
ing it in a high level way, so that processes never step on each other’s toes –
and yet all writes and reads occur in parallel. The same mechanism is used to
access data not in terms of bytes or low level types such as integers or doubles,
but in terms of whole data structures. In this process file pointers are advanced
in terms of the data structures too.

This mechanism is called file views . The view that a given process has of
an open file is defined in terms of two data types, the elementary data type and
the file type. The elementary data type may be quite complex, it may be a
whole large structure that contains some doubles, some integers, some strings
and even other structures.

The way the file is then partitioned amongst the processes is defined in
terms of the file type, which becomes the template for accessing the file by
the processes. The file type should be constructed from multiple instances of
the same elementary type. Every process is then expected to define the file

5.3. MPI IO 225

type differently, which, if such definitions are consistent, guarantees that the
processes will not step on each other’s toes.

In order to make this concept more palatable to the reader, we have to go
back to the very concept of an MPI data type and cover it in some depth. The
following section is going to do just this, and then we’ll go back to MPI-IO and
see how the MPI data construction and manipulation utilities play there.

Derived Datatypes in MPI

MPI defines the following basic data types, from which all other data types can
be derived:

MPI CHAR This is the traditional ASCII character that is numbered by
integers between 0 and 127.

MPI UNSIGNED CHAR This is the extended character numbered by in-
tegers between 0 and 255.

MPI BYTE This is an 8-bit positive integer betwee 0 and 255, i.e., a byte.

MPI WCHAR T This is a wide character, e.g., a 16-bit character such as a
Chinese ideogram.

MPI SHORT This is a 16-bit integer between -32,768 and 32,767.

MPI UNSIGNED SHORT This is a 16-bit positive integer between 0 and
65,535.

MPI INT This is a 32-bit integer between -2,147,483,648 and 2,147,483,647.

MPI UNSIGNED This is a 32-bit unsigned integer, i.e., a number between
0 and 4,294,967,295.

MPI LONG This is the same as MPI_INT on IA32.

MPI UNSIGNED LONG This is the same as MPI_UNSIGNED on IA32.

MPI FLOAT This is a single precision, 32-bit long floating point number.

MPI DOUBLE This is a double precision, 64-bit long floating point number.

MPI LONG DOUBLE This is a quadruple precision, 128-bit long floating
point number.

MPI LONG LONG INT This is a 64-bit long signed integer, i.e., an integer
number between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807
(this reads: 9 quintillions 223 quadrillions 372 trillions 36 billions 854 mil-
lions 775 thousand 8 hundred and seven – not a large sum of money by
Microsoft standards).

MPI LONG LONG Same as MPI_LONG_LONG_INT.

226 CHAPTER 5. MPI AND MPI-IO

MPI FLOAT INT This is a pair of a 32-bit floating point number followed
by a 32-bit integer.

MPI DOUBLE INT This is a pair of a 64-bit floating point number followed
by a 32-bit integer.

MPI LONG INT This is a pair of a long integer (which under IA32 is just a
32-bit integer) followed by a 32-bit integer.

MPI SHORT INT This is a pair of a 16-bit short integer followed by a 32-bit
integer.

MPI 2INT This is a pair of two 32-bit integers.

MPI LONG DOUBLE INT This is a pair of a quadruple precision 128-bit
long floating point number and a 32-bit integer.

MPI LB The lower bound marker.

MPI UB The upper bound marker.

These basic types can then be used to construct new, more elaborate data
structures, by calling MPI type constructors. The type constructors characterize
all these new data structures simply in terms of a type map, which is a list of
pairs, each of which comprises a type and a displacement:

type map = ((type0, displacement0)(type1, displacement1) . . . (typen, displacementn))

where the displacement is the number of bytes from the beginning of the struc-
ture at which the given data item appears in it.

This is a very low level characterization of the data structure and it is likely to
lack portability between, e.g., 32-bit and 64-bit systems – due to, e.g., different
meanings of “long” and “long long” on these systems.

The secret to writing portable programs is never to assume any
lengths and instead to call sizeof whenever you need to use the
lengths of various types in your code. You can then help yourself
by calling MPI address and extent functions to check on the exact
locations of various items in the structures. The locations may not
always be what you think, because in some cases the data may have
to be aligned at word or half-word boundaries, in which case the
compiler may pad the data, i.e., insert empty space between, e.g.,
a character and the half-word boundary. Following the last typed
data item in the structure, located at some displacement, we may
still find some padding, if the data structure has to be aligned with
the word (half-word) boundary.

Consider the following example:

a b f f f f g g g g h h

5.3. MPI IO 227

Here we have a data object that begins with four bytes of padding, i.e., there
is nothing there in the first four bytes. Then we have two characters, a and b,
followed again by two bytes of padding. Then we have 2 32-bit floats f and g,
which are adjacent, and this is followed immediately by a 16-bit short integer h
and then again 2 bytes of padding.

Let us call this object

MPI_Datatype new_type

This new MPI type comprises five blocks of the following items.

• The first block contains just the beginning of the structure, which we can
mark by inserting here the lower-bound marker , i.e., the data item of type
MPI_LB and zero length, and its displacement from the beginning of the
structure is zero bytes.

• The second block contains two characters and its displacement from the
beginning of the structure is 4 bytes.

• The third block contains two 32-bit floats and its displacement from the
beginning of the structure is 8 bytes.

• The fourth block contains one 16-bit short and it displacement from the
beginning of the structure is 16 bytes.

• And the fifth block, yes, there is the fifth block here, contains just the
end of the structure. We can mark the end by inserting there the upper-

bound marker , i.e., the data item of type MPI_UB and zero length, and its
displacement from the beginning of the structure is 20 bytes.

Now we convert this verbal description into the following call to function
MPI Type create struct as follows:

MPI_Type_create_struct(5, array_of_block_lengths, array_of_displacements,

array_of_types, &new_type);

where

array_of_block_lengths = (1, 2, 2, 1, 1)

array_of_displacements = (0, 4, 8, 16, 20)

array_of_types = (MPI_LB, MPI_CHAR, MPI_FLOAT, MPI_SHORT, MPI_UB)

Observe that if thisMPI structure corresponds to some C-language structure
in your program, it is your responsibility, as the programmer, to ensure that the
two are indeed the same.

Note Function MPI_Type_create_struct is an MPI-2 function. This same
function is called MPI Type struct in MPI-1.

In order to find out how a C-language structure is laid out in the memory
of your computer you can use function MPI Get address in combination with
sizeof.

Consider, for example, the following C-language (not an MPI) structure:

228 CHAPTER 5. MPI AND MPI-IO

typedef struct {

char flavor;

char color;

int charge;

double mass;

double x, y, z;

double px, py, pz;

} Quark;

Quark tau;

To find how this structure should be described to MPI, you could do something
like:

int quark_address, flavor_address, color_address, charge_address, mass_address,

x_address, y_address, z_address, px_address, py_address, pz_address;

int flavor_offset, color_offset, charge_offset, mass_offset, ...

...

MPI_Get_address(&tau, &tau_address);

MPI_Get_address(&tau.flavor, &flavor_address);

MPI_Get_address(&tau.color, &color_address);

MPI_Get_address(&tau.charge, &charge_address);

MPI_Get_address(&tau.mass, &mass_address);

...

flavor_offset = flavor_address - tau_address;

color_offset = color_address - tau_address;

charge_offset = charge_address - tau_address;

mass_offset = mass_address - tau_address;

...

Then having these numbers in hand and using sizeof to get sizes of char,
double, etc., you would describe this structure to MPI by calling MPI_Type_create_struct
with appropriate parameters.

Note Function MPI_Get_address is an MPI-2 function. There is an identical
function in MPI-1, which is called MPI Address.

MPI_Type_create_struct is one of the more general type constructors in
MPI. There are more specific constructors, of which we have already encountered
MPI_Type_contiguous and MPI_Type_vector.

A type constructor, which is somewhere in between MPI_Type_create_struct
and MPI_Type_vector is MPI Type indexed. It is like MPI_Type_vector, mean-
ing that it works with data items of the same type, but as in MPI_Type_struct

the data can be placed at quite arbitrary locations in memory, not necessarily
with a regular stride and regular block length.

Defining File Views in Terms of MPI Datatypes

How are we going to use data types in order to tell processes how to partition
a file?

This is how. Suppose the picture below represents a file. Each little square
corresponds to a data item of some elementary type, and this type may be quite
complex. It is elementary not because it is simple, but because this is what the
file is made of.

5.3. MPI IO 229

Suppose we have 4 processes in the pool. Let us define the filetype for the
process of rank 0 to be:

0

where a 0 in the square means that this particular data item is considered full,
and the remaining three squares without a 0 in them are empty. As far as
process zero is concerned, they are just padding.

Now, let the filetype for process of rank 1 be:

1

where a 1 in the square means that this particular data item is considered full,
and the remaining three squares without a 1 in them are empty. As far as
process 1 is concerned, they are just padding.

Similarly the filetype for process of rank 2 is:

2

and for process of rank 3:

3

Now process of rank 0 is going to call function MPI File set view to establish
its view of the file as follows:

MPI File set view(fh, 0, , 0 , ”native”, MPI INFO NULL)

where

• the first argument of MPI_File_set_view is the file handle;

• the second argument of MPI_File_set_view is the displacement from the
beginning of the file in bytes of the place where this file view begins – a
file may have different views associated with it in various places;

• the third argument of MPI_File_set_view is the elementary data type;

• the fourth argument of MPI_File_set_view is the file data type, which
must be defined in terms of elementary data types;

• the fifth argument of MPI_File_set_view is a string that defines the data
representation – in this case it is “native”;

• the last argument of MPI_File_set_view is the info structure – in this
case it is MPI_INFO_NULL.

Let me skip the detailed discussion of this function for the time being, and just
show how the remaining processes are going to call it:

230 CHAPTER 5. MPI AND MPI-IO

MPI File set view(fh, 0, , 3 , ”native”, MPI INFO NULL)

MPI File set view(fh, 0, , 2 , ”native”, MPI INFO NULL)

MPI File set view(fh, 0, , 1 , ”native”, MPI INFO NULL)

As you see for every process the only thing that is unique to the process is the
file type.

Once all processes have issued the calls this is how the file is going to be
partitioned:

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

When process 1, say, issues MPI_File_read, it is going to read its own items
only, i.e., the ones labeled with 1. Its own file pointer will be automatically
advanced to the required location in the file.

So this is how the file gets partitioned without us having to specify separate
file offsets for each process explicitly. But constructing such different file views
for each process may not be all this easy either. Luckily MPI-2 provides us with
a very powerful function MPI Type create darray that can generate process
dependent file views automatically. But before I get to explain how this function
works, let me go back to MPI_File_set_view and explain in more detail the
meaning of its various arguments, as well as the behaviour of the function itself.

MPI_File_set_view is a collective function. All processes that have opened
the file have to participate in this call. The file handle and the data represen-
tation strings must be identical for all processes. The extent of the elementary
type, i.e., the distance between its upper and its lower marker in bytes, must be
the same for all processes. But the processes may call this function with differ-
ent displacements, file types and infos. Note that apart from differentiating the
view with a process specific file type, you may use different initial displacements
too.

The data representation string specifies how the data that is passed to
MPI_File_write is going to be stored on the file itself. The simplest way to
write a file, especially under UNIX, is to copy the bytes from memory to the
disk without any further processing. But under other operating systems files
may have fancy structures, multiple forks, format records and what not. Even
under UNIX Fortran files differ from plain C-language files, because Fortran
files may have record markers embedded in them.

MPI defines three data representations and MPI implementations are free
to add more. The three basic representations are:

”native” Data in this representation is stored in a file exactly as it is in mem-
ory. This format is fine for homogeneous farms, but it may fail for hetero-
geneous farms, because of problems with big-endian versus small-endian
conversions and other data representation incompatibilities.

5.3. MPI IO 231

”internal” Data in this representation is written in an MPI-implementation
dependent and operating system and architecture independent format.
The MPI implementation will perform required conversions transparently
when data is transferred between computational nodes, possibly of various
architectures, and the file.

”external32” Data in this representation is written in the “big-endian IEEE”
format, which is also operating system and architecture independent.
Writing data in this format will let you take the file away from the MPI
environment, it’s been written in, for processing on other machines under
other operating systems and on other architectures.

When the file gets opened with MPI_File_open, you get the default view,
which is equivalent to the call:

MPI_File_set_view(fh, 0, MPI_BYTE, MPI_BYTE, "native", MPI_INFO_NULL);

Now let us get to MPI Type create darray, the function that is going to
make our task of defining process dependent file views easier.

This function does a lot of very hard work and, at the same time, it is going
to save the programmer a lot of very hard work too, but for this very reason it
is a little complicated. Its synopsis is as follows:

int MPI_Type_create_darray(

int size,

int rank,

int ndims,

int array_of_gsizes[],

int array_of_distribs[],

int array_of_dargs[],

int array_of_psizes[],

int order,

MPI_Datatype oldtype,

MPI_Datatype *newtype)

When called it is going to generate the datatypes corresponding to the dis-
tribution of an ndims-dimensional array of oldtype elements onto an ndims-
dimensional grid of logical processes.

Remember how we had a 2-dimensional grid of processes in section 5.2.5 that
talked about solving a diffusion problem. There we also had a 2-dimensional
array of integers, which we have distributed manually amongst the processes
of the 2-dimensional grid, so that each process got a small portion of it and
then worked on it updating its edges by getting values from its neighbours.
Function MPI_Type_create_darray is going to deliver us of such partitioning
automatically.

The parameters of the function have the following meaning

size this is the size of the process group;

rank this is the rank of the process in the group;

ndims this is the number of the process grid dimensions – here we assume that
we have created a Cartesian grid of processes – this is also the number

232 CHAPTER 5. MPI AND MPI-IO

of the dimensions of the array that is going to be distributed amongst
the processes, e.g., if we have a 3-dimensional array, we need to have a
3-dimensional grid of processes to distribute the array over;

array of gsizes this is a one-dimensional array of positive integers of length
ndims; each entry in the array tells us about the number of elements of
type oldtype in the corresponding dimension of the global array;

array of distribs this is a one-dimensional array of predefined MPI constants
that specifies how a corresponding dimension of the matrix should be
distributed; the three constants provided are MPI_DISTRIBUTE_BLOCK –
which requests block distribution along the corresponding dimension, MPI_DISTRIBUTE_CYCLIC
– which requests cyclic distribution along the corresponding dimension,
and MPI_DISTRIBUTE_NONE – which requests no distribution along the
corresponding dimension;

array of dargs this is a one-dimensional array of positive integers of length
ndims; each entry in the array is the argument that further specifies how
the distribution of the array should be done – there is one MPI constant
provided here, MPI_DISTRIBUTE_DFLT_DARG, which lets MPI do default
distribution characterized only by array_of_distribs;

array of psizes this is a one-dimensional array of positive integers of length
ndims; each entry in the array tells us about the number of processes in
the corresponding dimension of the process grid;

order this is the storage order flag: arrays may be stored either FORTRAN-
style, i.e., column-major, or C-style, i.e., row-major. There are two pred-
ifined MPI constants that may be used here MPI_ORDER_FORTRAN and
MPI_ORDER_C.

oldtype this is the MPI type of a single item in the array – because it is an
array, every item in it is, of course, of the same type – but the types don’t
have to be basic, they may be quite complex structures;

newtype this is the new MPI data type that is going to be specific to each
process and that can be used in the call to MPI_Set_file_view.

At this stage I feel that you need a programming example to make sense of
all this. So here it is.

Program darray.c

This program exercises a number of newMPI function calls. They are MPI Dims create,
MPI Type create darray, MPI Type extent, MPI Type size, MPI File set view,
MPI File write all, and MPI File read all.

/*

* %Id: darray.c,v 1.2 2003/10/26 22:48:13 gustav Exp %

*

5.3. MPI IO 233

* %Log: darray.c,v %

* Revision 1.2 2003/10/26 22:48:13 gustav

* Expunged any references to "info".

*

* Revision 1.1 2003/10/26 22:05:50 gustav

* Initial revision

*

*

*/

#include <stdio.h> /* printf and relatives live here */

#include <stdlib.h> /* exit lives here */

#include <unistd.h> /* getopt lives here */

#include <string.h> /* strlen lives here */

#include <sys/types.h> /* chmod needs these two */

#include <sys/stat.h>

#include <mpi.h> /* all MPI stuff lives here (including MPI-IO) */

#define MASTER_RANK 0

#define TRUE 1

#define FALSE 0

#define BOOLEAN int

#define MBYTE 1048576

#define NDIMS 3

#define SIZE 512

#define SYNOPSIS printf ("synopsis: %s -f <file>\n", argv[0])

int main(argc, argv)

int argc;

char *argv[];

{

/* my variables */

int my_rank, pool_size, i, ndims, order, file_name_length,

array_of_gsizes[NDIMS], array_of_distribs[NDIMS],

array_of_dargs[NDIMS], array_of_psizes[NDIMS],

*write_buffer, write_buffer_size, count,

*read_buffer, read_buffer_size;

BOOLEAN i_am_the_master = FALSE, input_error = FALSE,

file_open_error = FALSE, file_write_error = FALSE, verbose = FALSE,

my_read_error = FALSE, read_error = FALSE;

char *file_name = NULL, message[BUFSIZ];

/* MPI variables */

MPI_Offset file_size;

MPI_File fh;

MPI_Status status;

MPI_Datatype file_type;

MPI_Aint file_type_size, file_type_extent;

int error_string_length;

char error_string[BUFSIZ];

/* getopt variables */

extern char *optarg;

int c;

234 CHAPTER 5. MPI AND MPI-IO

/* error handling variables */

extern int errno;

/* ACTION */

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

if (i_am_the_master) {

while ((c = getopt(argc, argv, "f:vh")) != EOF)

switch(c) {

case ’f’:

file_name = optarg;

break;

case ’v’:

verbose = TRUE;

break;

case ’h’:

input_error = TRUE;

break;

case ’?’:

input_error = TRUE;

break;

}

if (file_name == NULL) input_error = TRUE;

if (input_error)

SYNOPSIS;

else {

file_name_length = strlen(file_name) + 1;

if (verbose) {

printf("file_name = %s\n", file_name);

printf("file_name_length = %d\n", file_name_length);

}

}

}

MPI_Bcast(&input_error, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

if (! input_error) {

MPI_Bcast(&verbose, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

MPI_Bcast(&file_name_length, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

if (! i_am_the_master) file_name = (char*) malloc(file_name_length);

MPI_Bcast(file_name, file_name_length, MPI_CHAR, MASTER_RANK,

MPI_COMM_WORLD);

/* Prepare for calling MPI_Type_create_darray */

ndims = NDIMS;

for (i = 0; i < ndims; i++) {

array_of_gsizes[i] = SIZE;

array_of_distribs[i] = MPI_DISTRIBUTE_BLOCK;

array_of_dargs[i] = MPI_DISTRIBUTE_DFLT_DARG;

array_of_psizes[i] = 0;

5.3. MPI IO 235

}

MPI_Dims_create(pool_size, ndims, array_of_psizes);

order = MPI_ORDER_C;

/* Now call MPI_Type_create_darray */

if (verbose) {

printf ("%3d: calling MPI_Type_create_darray with\n", my_rank);

printf ("%3d: pool_size = %d\n", my_rank, pool_size);

printf ("%3d: my_rank = %d\n", my_rank, my_rank);

printf ("%3d: ndims = %d\n", my_rank, ndims);

printf ("%3d: array_of_gsizes = (%d, %d, %d)\n", my_rank,

array_of_gsizes[0],

array_of_gsizes[1],

array_of_gsizes[2]);

printf ("%3d: array_of_distribs = (%d, %d, %d)\n", my_rank,

array_of_distribs[0],

array_of_distribs[1],

array_of_distribs[2]);

printf ("%3d: array_of_dargs = (%d, %d, %d)\n", my_rank,

array_of_dargs[0],

array_of_dargs[1],

array_of_dargs[2]);

printf ("%3d: array_of_psizes = (%d, %d, %d)\n", my_rank,

array_of_psizes[0],

array_of_psizes[1],

array_of_psizes[2]);

printf ("%3d: order = %d\n", my_rank, order);

printf ("%3d: type = %d\n", my_rank, MPI_INT);

}

MPI_Type_create_darray(pool_size, my_rank, ndims,

array_of_gsizes, array_of_distribs,

array_of_dargs, array_of_psizes, order,

MPI_INT, &file_type);

MPI_Type_commit(&file_type);

/* Explore the returned type */

MPI_Type_extent(file_type, &file_type_extent);

MPI_Type_size(file_type, &file_type_size);

if (verbose) {

printf("%3d: file_type_size = %d\n", my_rank, file_type_size);

printf("%3d: file_type_extent = %d\n", my_rank, file_type_extent);

}

/* Allocate space for your own write buffer based on the

return of the MPI_Type_size call. */

write_buffer_size = file_type_size / sizeof(int);

write_buffer = (int*) malloc(write_buffer_size * sizeof(int));

/* We do this in case sizeof(int) does not divide file_type_size

exactly. But this should not happen if we have called

MPI_Type_create_darray with MPI_INT as the original data

type. */

if (! write_buffer) {

236 CHAPTER 5. MPI AND MPI-IO

sprintf(message, "%3d: malloc write_buffer", my_rank);

perror(message);

MPI_Abort(MPI_COMM_WORLD, errno);

/* We can still abort, because we have not opened any

files yet. Notice that since MPI_Type_create_darray

will fail if SIZE^3 * sizeof(int) exceeds MAX_INT,

because MPI_Aint on AVIDD is a 32-bit integer,

we are rather unlikely to fail on this malloc

anyway. */

}

MPI_Barrier(MPI_COMM_WORLD);

/* We wait here in case some procs have problems with malloc. */

/* Initialize the buffer */

for (i = 0; i < write_buffer_size; i++)

*(write_buffer + i) = my_rank * SIZE + i;

file_open_error = MPI_File_open(MPI_COMM_WORLD, file_name,

MPI_MODE_CREATE | MPI_MODE_WRONLY,

MPI_INFO_NULL, &fh);

if (file_open_error != MPI_SUCCESS) {

MPI_Error_string(file_open_error, error_string,

&error_string_length);

fprintf(stderr, "%3d: %s\n", my_rank, error_string);

MPI_Abort(MPI_COMM_WORLD, file_open_error);

/* It is still OK to abort, because we have failed to

open the file. */

}

else {

if (i_am_the_master)

chmod(file_name, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);

MPI_Barrier(MPI_COMM_WORLD);

/* We should be able to change permissions on the file by setting

the "file_perm" hint in the info structure before passing

it to MPI_File_open, but MPICH2 doesn’t support this

yet. All processes have to meet on the barrier before

further action. */

MPI_File_set_view(fh, 0, MPI_INT, file_type, "native", MPI_INFO_NULL);

file_write_error =

MPI_File_write_all(fh, write_buffer, write_buffer_size, MPI_INT,

&status);

if (file_write_error != MPI_SUCCESS) {

MPI_Error_string(file_write_error, error_string,

&error_string_length);

fprintf(stderr, "%3d: %s\n", my_rank, error_string);

MPI_File_close(&fh);

free(write_buffer);

if (i_am_the_master) MPI_File_delete(file_name, MPI_INFO_NULL);

}

5.3. MPI IO 237

else {

MPI_Get_count(&status, MPI_INT, &count);

MPI_File_get_size(fh, &file_size);

if(verbose) {

printf("%3d: wrote %d integers\n", my_rank, count);

printf("%3d: file size is %lld bytes\n", my_rank, file_size);

}

MPI_File_close(&fh);

/* We have managed to open, write on it and close the file.

Now we’re going to read it the same way we wrote it. */

read_buffer_size = write_buffer_size;

read_buffer = (int*) malloc(read_buffer_size * sizeof(int));

if (! read_buffer) {

sprintf(message, "%3d: malloc read_buffer", my_rank);

perror(message);

MPI_Abort(MPI_COMM_WORLD, errno);

/* We can abort, because the file has been closed and

we haven’t opened it for reading yet. */

}

MPI_Barrier(MPI_COMM_WORLD);

/* We wait here in case some procs have problems with malloc. */

MPI_File_open(MPI_COMM_WORLD, file_name, MPI_MODE_RDONLY,

MPI_INFO_NULL, &fh);

/* We don’t check for errors here, because we’ve just closed

this file a moment ago, so it should still be there. */

MPI_File_set_view(fh, 0, MPI_INT, file_type, "native", MPI_INFO_NULL);

MPI_File_read_all(fh, read_buffer, read_buffer_size, MPI_INT, &status);

MPI_Get_count(&status, MPI_INT, &count);

if (verbose)

printf("%3d: read %d integers\n", my_rank, count);

MPI_File_close(&fh);

/* Now check that the integers read are the same as the ones

we wrote. */

for (i = 0; i < read_buffer_size; i++) {

if (*(write_buffer + i) != *(read_buffer + i)) {

printf("%3d: data read different from data written, i = %d\n",

my_rank, i);

my_read_error = TRUE;

}

}

MPI_Reduce (&my_read_error, &read_error, 1, MPI_INT, MPI_LOR,

MASTER_RANK, MPI_COMM_WORLD);

if (i_am_the_master)

if (! read_error)

printf("--> All data read back is correct.\n");

238 CHAPTER 5. MPI AND MPI-IO

} /* no problem with file write */

} /* no problem with file open */

} /* no input error */

MPI_Finalize();

exit(0);

}

Here is how this program is compiled and installed:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/darray

gustav@bh1 $ make install

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.2

done

co RCS/darray.c,v darray.c

RCS/darray.c,v --> darray.c

revision 1.1

done

mpicc -o darray darray.c

install darray /N/B/gustav/bin

gustav@bh1 $

And now here is how the program runs. It can be made to run silently, or you
can ask for verbose output by invoking it with the -v option. I’ll do this to show
you what’s going on inside. I run this program under PBS. Not because it is
very heavy computationally or in terms of IO, but because I want to run it on 27
processors. The reason for this is that 27 = 3×3×3, so I can have a non-trivial
3-dimensional process grid, over which I am going to distribute a 3-dimensional
array (512 × 512 × 512) of integers. Observe that 5123 = 134, 217, 728 does
not divide by 27: 5123/27 = 4971026 26

27 . Function MPI_Type_create_darray is
going to allocate 5000211 integers to 8 processes each, 4970970 integers to 12
processes each, 4941900 integers to 6 processes each and 4913000 to one process.
You can easily check that 8×5000211+12×4970970+6×4941900+1×4913000 =
134217728 = 5123.

This is my PBS job file:

gustav@bh1 $ pwd

/N/B/gustav/PBS

gustav@bh1 $ cat darray.sh

#PBS -S /bin/bash

#PBS -N darray

#PBS -o darray_out

#PBS -e darray_err

#PBS -q bg

#PBS -m a

#PBS -V

#PBS -l nodes=27

NODES=27

HOST=‘hostname‘

echo Local MPD console on $HOST

5.3. MPI IO 239

cd /N/gpfs/gustav/darray

rm -f test

pwd

Specify Myrinet interfaces on the hostfile.

grep -v $HOST $PBS_NODEFILE | sed ’s/$/-myri0/’ > $HOME/mpd.hosts

Boot the MPI2 engine.

which mpdboot

mpdboot --totalnum=$NODES --file=$HOME/mpd.hosts

sleep 10

Inspect if all MPI nodes have been activated.

which mpdtrace

mpdtrace

Execute your MPI program.

which mpiexec

mpiexec -n $NODES darray -f test -v

Shut down the MPI2 engine and exit the PBS script.

which mpdallexit

mpdallexit

exit 0

gustav@bh1 $

After I have submitted it with

gustav@bh1 $ qsub darray.sh

46101.bh1.avidd.iu.edu

gustav@bh1 $ qstat | grep gustav

46101.bh1 darray gustav 0 R bg

gustav@bh1 $

I got the following output written on darray_out:

gustav@bh1 $ cat darray_out

[... various uninteresting junk ...]

0: calling MPI_Type_create_darray with

0: pool_size = 27

0: my_rank = 0

0: ndims = 3

0: array_of_gsizes = (512, 512, 512)

0: array_of_distribs = (121, 121, 121)

0: array_of_dargs = (-49767, -49767, -49767)

0: array_of_psizes = (3, 3, 3)

0: order = 56

0: type = 1275069445

0: file_type_size = 20000844

0: file_type_extent = 536870912

[...]

16: calling MPI_Type_create_darray with

16: pool_size = 27

16: my_rank = 16

16: ndims = 3

16: array_of_gsizes = (512, 512, 512)

16: array_of_distribs = (121, 121, 121)

16: array_of_dargs = (-49767, -49767, -49767)

16: array_of_psizes = (3, 3, 3)

16: order = 56

16: type = 1275069445

16: file_type_size = 19883880

16: file_type_extent = 536870912

[...]

240 CHAPTER 5. MPI AND MPI-IO

0: wrote 5000211 integers

0: file size is 536870912 bytes

16: wrote 4970970 integers

16: file size is 536870912 bytes

[...]

0: read 5000211 integers

1: read 5000211 integers

2: read 4970970 integers

[...]

16: read 4970970 integers

[...]

24: read 4941900 integers

25: read 4941900 integers

26: read 4913000 integers

--> All data read back is correct.

gustav@bh1 $ ls -l /N/gpfs/gustav/darray

total 524288

-rw-r--r-- 1 gustav ucs 536870912 Oct 26 17:49 test

gustav@bh1 $

The Discussion

The program begins with the usual incantations to MPI, which result in every
process learning about its rank number and the size of the pool of processes.
The master process, which doesn’t really do any mastering in this program, but
occasionally speaks for all and reads the command line, learns about being a
master.

The command line analysis is done with getopt and there is one more option
here, -v, which activates verbose output, by setting a boolean variable verbose
to TRUE.

Next the master program broadcasts the content of input_error to all pro-
cesses, so that they can all go directly to MPI_Finalize if there is such, otherwise
the action begins. The master process broadcasts verbose, file_name_length
and file_name to other processes.

Having received this information all processes promptly get to prepare them-
selves for calling MPI Type create darray

ndims = NDIMS;

for (i = 0; i < ndims; i++) {

array_of_gsizes[i] = SIZE;

array_of_distribs[i] = MPI_DISTRIBUTE_BLOCK;

array_of_dargs[i] = MPI_DISTRIBUTE_DFLT_DARG;

array_of_psizes[i] = 0;

}

MPI_Dims_create(pool_size, ndims, array_of_psizes);

order = MPI_ORDER_C;

The number of dimensions both of the process grid, which is yet to be con-
structed and of the data array itself is set to NDIMS, which is defined to be
3. So all these arrays used in the call to MPI_Type_create_darray are going
to be of length 3. The first array, array_of_gsizes, specifies the sizes of the
global data array, and we set it here to be 512 × 512 × 512, because this is
what SIZE is defined to be. All entries in the array_of_distribs are set to

5.3. MPI IO 241

MPI_DISTRIBUTE_BLOCK, which means that we want block distribution, rather
than cyclic distribution of data amongst the processes. Since the block distri-
bution request doesn’t take any arguments, all entries in the array_of_dargs

are set to MPI_DISTRIBUTE_DFLT_DARG. Finally we set all entries to the array
that specifies the process grid geometry to zeros. This is because this array is
going to be configured by the call to MPI Dims create. This function divides
a process pool into an ndims-dimensional grid of processes, and returns the
number of processes in each direction of the grid on array_of_psizes. The
total number of processes must be such that they can be indeed organized into
a grid. Otherwise this function will return an error. The order parameter is
set to MPI_ORDER_C, which means that the global data matrix is going to be
organized in the C-language style, i.e., row-major.

If the program is run in the verbose mode, all processes write the values of
all these parameters on standard output, for example:

4: calling MPI_Type_create_darray with

4: pool_size = 27

4: my_rank = 4

4: ndims = 3

4: array_of_gsizes = (512, 512, 512)

4: array_of_distribs = (121, 121, 121)

4: array_of_dargs = (-49767, -49767, -49767)

4: array_of_psizes = (3, 3, 3)

4: order = 56

4: type = 1275069445

You have to lookup /N/hpc/mpich2/include/mpi.h to see that, e.g., -49767 is
indeed MPI_DISTRIBUTE_DFLT_DARGand that 121 is indeed MPI_DISTRIBUTE_BLOCK

and that 56 is indeed MPI_ORDER_C and that 1275069445 is indeed MPI_INT.
Now the program finally calls MPI Type create darray and commits the new

returned MPI data type called file_type:

MPI_Type_create_darray(pool_size, my_rank, ndims,

array_of_gsizes, array_of_distribs,

array_of_dargs, array_of_psizes, order,

MPI_INT, &file_type);

MPI_Type_commit(&file_type);

There are two important numbers that characterize this new MPI type, its
extent and its size. The extent of an MPI type is the distance in bytes between
the upper and the lower marker of the type. The size of an MPI type is the total
amount of non-trivial data contained in the type, also in bytes. In other words,
the size is the extent of the type minus the padding. We can extract these two
numbers from the newly defined type by calling functions MPI Type extent and
MPI Type size:

MPI_Type_extent(file_type, &file_type_extent);

MPI_Type_size(file_type, &file_type_size);

if (verbose) {

printf("%3d: file_type_size = %d\n", my_rank, file_type_size);

printf("%3d: file_type_extent = %d\n", my_rank, file_type_extent);

}

It is instructive to inspect the output of the program in this place:

242 CHAPTER 5. MPI AND MPI-IO

[...]

8: file_type_size = 19767600

8: file_type_extent = 536870912

4: file_type_size = 20000844

4: file_type_extent = 536870912

[...]

Observe that the extent of file_type is 536,870,912 bytes, which is the size of
the file:

gustav@bh1 $ ls -l /N/gpfs/gustav/darray

total 524288

-rw-r--r-- 1 gustav ucs 536870912 Oct 26 17:49 test

gustav@bh1 $

but the size of file_type differs from process to process and corresponds to
the amount of data this process is going to write on the file, when the view is
established. This is how the processes divide the file amongst themselves. This
is done without having to manipulate processes’ local pointers explicitly.

But there is a price to this procedure, which makes it somewhat
impractical on systems such as the AVIDD cluster. The price is
that the second argument in function MPI_Type_extent must be of
type MPI_Aint, and MPI_Aint is defined on the 32-bit systems to be
simply int, because the idea here is that you ought to be able to
absorb a data item of this particular type into the memory of your
computer. This means that function MPI_Type_create_darray as
well as MPI_Type_extent will fail if the total amount of data you
want to partition exceeds INT_MAX, i.e., 2,147,483,647 bytes. This,
however, is very little data by supercomputer standards. It is in
places like this one that the limitations of 32-bit architectures can
cause real pain. Luckily, we have a 64-bit system available to us at
IU, it is our Research SP. There is also a small component of the
AVIDD cluster at IUPUI, which comprises IA64 nodes.

Once data partitioning has been returned to the processes, they can allocate
required amount of storage for the data:

write_buffer_size = file_type_size / sizeof(int);

write_buffer = (int*) malloc(write_buffer_size * sizeof(int));

/* We do this in case sizeof(int) does not divide file_type_size

exactly. But this should not happen if we have called

MPI_Type_create_darray with MPI_INT as the original data

type. */

if (! write_buffer) {

sprintf(message, "%3d: malloc write_buffer", my_rank);

perror(message);

MPI_Abort(MPI_COMM_WORLD, errno);

/* We can still abort, because we have not opened any

files yet. Notice that since MPI_Type_create_darray

will fail if SIZE^3 * sizeof(int) exceeds MAX_INT,

5.3. MPI IO 243

because MPI_Aint on AVIDD is a 32-bit integer,

we are rather unlikely to fail on this malloc

anyway. */

}

MPI_Barrier(MPI_COMM_WORLD);

/* We wait here in case some procs have problems with malloc. */

Observe that we are not going to proceed with opening the file until all processes
meet at the barrier, implying that none had problems with malloc. Now they
fill their memory buffers with numbers:

for (i = 0; i < write_buffer_size; i++)

*(write_buffer + i) = my_rank * SIZE + i;

Observe that this will result in each process filling its buffer with different num-
bers. We need this in order to check, towards the end of the program, that data
read back from the file is identical to data that has been written on it in the
first place.

Now we open the file and immediately check for a possible problem:

file_open_error = MPI_File_open(MPI_COMM_WORLD, file_name,

MPI_MODE_CREATE | MPI_MODE_WRONLY,

MPI_INFO_NULL, &fh);

if (file_open_error != MPI_SUCCESS) {

MPI_Error_string(file_open_error, error_string,

&error_string_length);

fprintf(stderr, "%3d: %s\n", my_rank, error_string);

MPI_Abort(MPI_COMM_WORLD, file_open_error);

/* It is still OK to abort, because we have failed to

open the file. */

}

If there is a problem on open we can still abort the program without having to
worry about clean-up. Function MPI_File_open is collective, which means that
if anybody has a problem opening the file, error will be returned to all of them
– and the file won’t be opened.

The rest of the program is contains within the else clause of the if state-
ment:

else {

blah... blah... blah...

} /* no problem with file open */

} /* no problem with input error */

MPI_Finalize();

exit(0);

}

The first thing that happens within this clause is that the master process changes
permissions on the successfully opened file from rw-rw-rw- to rw-r--r--, while
other processes wait on the barrier:

if (i_am_the_master)

chmod(file_name, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);

MPI_Barrier(MPI_COMM_WORLD);

244 CHAPTER 5. MPI AND MPI-IO

This shouldn’t be necessary, because MPI provides means for changing permis-
sions on a newly created file by the means of info hints, but MPICH2 hasn’t
implemented this part of the standard, so we have to relay on UNIX to do this
ourselves.

Now we convert our MPI type file_type into an official view of the file:

MPI_File_set_view(fh, 0, MPI_INT, file_type, "native", MPI_INFO_NULL);

and write the data. This time we call the collective form of MPI_File_write,
which is MPI File write all. It works much like MPI_File_write, but this time
all processes must do it at the same time, and any local errors become global
errors automatically. Consequently, if any of the processes fails to write the
data, all will know about it and all will enter the following clause of the if
statement:

file_write_error =

MPI_File_write_all(fh, write_buffer, write_buffer_size, MPI_INT,

&status);

if (file_write_error != MPI_SUCCESS) {

MPI_Error_string(file_write_error, error_string,

&error_string_length);

fprintf(stderr, "%3d: %s\n", my_rank, error_string);

MPI_File_close(&fh);

free(write_buffer);

if (i_am_the_master) MPI_File_delete(file_name, MPI_INFO_NULL);

}

If there is an error, all processes close the file – this is a collective call too, and
then the master process deletes it.

The rest of the program is again in the form of the else statement:

else {

blah... blah... blah...

} /* no problem with file write */

} /* no problem with file open */

} /* no input error */

MPI_Finalize();

exit(0);

}

The first thing that happens here is that every process inspects the status
returned by MPI_File_write_all for the number of data written on the file (it
should be the same as intended, but this is a yet another way to check it), and
the size of the whole file. These numbers should agree with numbers obtained
from the call to MPI_Type_construct_darray:

MPI_Get_count(&status, MPI_INT, &count);

MPI_File_get_size(fh, &file_size);

if(verbose) {

printf("%3d: wrote %d integers\n", my_rank, count);

printf("%3d: file size is %lld bytes\n", my_rank, file_size);

}

and afterwards the file gets closed:

MPI_File_close(&fh);

5.3. MPI IO 245

The last part of the program opens the file again, but this time for reading.
We allocate space for the reading buffer first, check if there are no problems
with malloc and then open the file for reading only:

read_buffer_size = write_buffer_size;

read_buffer = (int*) malloc(read_buffer_size * sizeof(int));

if (! read_buffer) {

sprintf(message, "%3d: malloc read_buffer", my_rank);

perror(message);

MPI_Abort(MPI_COMM_WORLD, errno);

/* We can abort, because the file has been closed and

we haven’t opened it for reading yet. */

}

MPI_Barrier(MPI_COMM_WORLD);

/* We wait here in case some procs have problems with malloc. */

MPI_File_open(MPI_COMM_WORLD, file_name, MPI_MODE_RDONLY,

MPI_INFO_NULL, &fh);

Next we establish the same view of the file as before, read all data back from
it, every process checks how much data has really been read by inspecting the
status, and then the file gets closed again:

MPI_File_set_view(fh, 0, MPI_INT, file_type, "native", MPI_INFO_NULL);

MPI_File_read_all(fh, read_buffer, read_buffer_size, MPI_INT, &status);

MPI_Get_count(&status, MPI_INT, &count);

if (verbose)

printf("%3d: read %d integers\n", my_rank, count);

MPI_File_close(&fh);

Now every process compares its read_buffer with its write_buffer, which we
have wisely saved, and the result of the comparison is reduced on the variable
read_error maintained by the master process:

for (i = 0; i < read_buffer_size; i++) {

if (*(write_buffer + i) != *(read_buffer + i)) {

printf("%3d: data read different from data written, i = %d\n",

my_rank, i);

my_read_error = TRUE;

}

}

MPI_Reduce (&my_read_error, &read_error, 1, MPI_INT, MPI_LOR,

MASTER_RANK, MPI_COMM_WORLD);

If the read and write buffers contain identical data for all processes in the pool,
the master process prints the message about it:

if (i_am_the_master)

if (! read_error)

printf("--> All data read back is correct.\n");

And this is where the action ends. All processes then meet at MPI_Finalize

and exit.

246 CHAPTER 5. MPI AND MPI-IO

Exercises

1 What is the largest size of SIZE, for which MPI_Type_construct_darray is
still going to work? Test it using the program discussed in section 5.3.4.

2 Would it help if we replaced MPI_INT with a more elaborate structure that
would contain more data?

3 The restriction on the extent of file_type in section 5.3.4 does not imply the
restriction on the size of the file. It is only a restriction on the amount of
data that can be written on the file in a single MPI_File_write operation.
But this operation can be repeated. Rewrite the program discussed in
section 5.3.4 in the following way:

• Instead of one array write_buffer and read_buffer define and mal-
loc several, e.g., write_buffer_1, write_buffer_2, etc., of identical
size, but make sure that you have enough memory for them all. Aim
for not more than a GB of memory per process.

• Populate the write_buffer_? arrays with random integers, using a
different random number generator seed for every process.

• Write them all on the file in multiple MPI_File_write_all opera-
tions, one after another. Time the whole data transfer and print
MB/s obtained on standard output.

• Read them back from the file on the read_buffer_? arrays and com-
pare every entry with the corresponding entry in the write_buffer_?
arrays. Time the data transfer and print MB/s obtained on standard
output.

• Replace MPI_DISTRIBUTE_BLOCK with MPI_DISTRIBUTE_CYCLIC and
compare the data transfer rates.

• Run the program on up to 32 nodes under PBS , generating files up
to 16GB long. Remember that half of the 1GB memory per process
will have to be reserved for read_buffer_?.

5.3.5 File Hints

Parallel files may be stored and accessed in great many ways that depend on the
operating system, particular devices used for storage and any middleware that
may live in between. In order to optimize file access the programmer may wish
to provide additional information to MPI, in hope that MPI would know what
to do with it. Such information is referred to as hints and there is a special MPI
construct called the info object that is supposed to collect all the hints. Once
constructed the info object can be passed to MPI_File_open, MPI_File_delete,
MPI_File_set_view and MPI_File_set_info. It should be understood though
that any hints you may wish to give MPI this way are only advisory and what
MPI is going to do with them is implementation dependent.

5.3. MPI IO 247

The info object is opaque. MPI provides functions for its manipulation and
inspection, but this is the only way you can (or should) deal with it. Information
contained in the info object consists of (key, value) pairs – both are strings.
Their maximum length allowed by an MPI implementation is given by constants
MPI_MAX_INFO_KEY and MPI_MAX_INFO_VAL, which can be looked up on mpi.h.
Their values on the AVIDD cluster are:

gustav@bh1 $ grep MAX_INFO mpi.h

#define MPI_MAX_INFO_KEY 255

#define MPI_MAX_INFO_VAL 1024

gustav@bh1 $

An empty info object can be created with the call to MPI Info create, whose
synopsis is simply:

int MPI_Info_create(MPI_Info *info)

Once created, it can be populated with (key, value) pairs by calling MPI Info set
whose synopsis is

int MPI_Info_set(MPI_Info info, char *key, char *value)

An info object obtained, e.g., from an MPI file, can be interrogated in various
ways. First you can find how many (key, value) pairs there are in the object by
calling function MPI Info get nkeys which returns the number of keys currently
defined within the object in its second argument:

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

Once you know how many (key, value) pairs there are in it, you can inspect them
by calling first MPI Info get nthkey in order to get the string that corresponds
to the nth key – the synopsis of this function is:

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

and then MPI Info get to get the value associated with the key. The synopsis
of MPI_Info_get is:

int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value, int *exists)

where exists is a Boolean flag that is set to TRUE (1) if the corresponding (key,
value) pair exists and to FALSE (0) otherwise.

An info object can be duplicated and it can be also erased by freeing it.
Specific (key, value) pairs may be deleted from an existing info object too.

MPI reserves certain hints, which are described in section 9.2.8.1, Reserved
File Hints, of the MPI-2 Standard. Unfortunately the current MPICH2 imple-
mentation of MPI-2 ignores most of them, including file_perm, which would
come handy in some of our example programs. The reserved hints cover pa-
rameters such as striping factor , striping unit , number of IO nodes (there are
systems where not all nodes have IO capability), list of IO devices to store the
file on, various chunking parameters, the size of buffers to be used for reading
and writing, and the like.

Because the GPFS on the AVIDD system is accessed only through its UFS
interface (MPI doesn’t really know that GPFS, is GPFS), few of the reserved
hints would be of much use anyway, even if MPICH2 did recognize them.

When a file is opened with the MPI_INFO_NULL parameter passed in place of
an info object, a default info is used by MPI. The following program retrieves
this info object and queries it. This shows us some of the info (key, value) pairs
that are implemented by MPICH2 on the UFS at present.

248 CHAPTER 5. MPI AND MPI-IO

Program queryinfo.c

Here is the listing of the program. The program lives in /N/B/gustav/src/I590/queryinfo.

/*

* %Id: queryinfo.c,v 1.1 2003/10/27 18:19:10 gustav Exp %

*

* %Log: queryinfo.c,v %

* Revision 1.1 2003/10/27 18:19:10 gustav

* Initial revision

*

*

*/

#include <stdio.h> /* printf and relatives live here */

#include <stdlib.h> /* exit lives here */

#include <unistd.h> /* getopt lives here */

#include <string.h> /* strlen lives here */

#include <mpi.h> /* all MPI stuff lives here (including MPI-IO) */

#define MASTER_RANK 0

#define TRUE 1

#define FALSE 0

#define BOOLEAN int

#define SYNOPSIS printf ("synopsis: %s -f <file> [-v] [-h]\n", argv[0])

int main(argc, argv)

int argc;

char *argv[];

{

/* my variables */

int my_rank, pool_size, i, file_name_length;

BOOLEAN i_am_the_master = FALSE, input_error = FALSE, verbose = FALSE;

char *file_name = NULL;

/* MPI variables */

MPI_File fh;

MPI_Info info_used;

int nkeys;

BOOLEAN exists;

char key[MPI_MAX_INFO_KEY], value[MPI_MAX_INFO_VAL];

/* getopt variables */

extern char *optarg;

int c;

/* ACTION */

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &pool_size);

if (my_rank == MASTER_RANK) i_am_the_master = TRUE;

if (i_am_the_master) {

while ((c = getopt(argc, argv, "f:vh")) != EOF)

switch(c) {

5.3. MPI IO 249

case ’f’:

file_name = optarg;

break;

case ’v’:

verbose = TRUE;

break;

case ’h’:

input_error = TRUE;

break;

case ’?’:

input_error = TRUE;

break;

}

if (file_name == NULL) input_error = TRUE;

if (input_error)

SYNOPSIS;

else {

file_name_length = strlen(file_name) + 1;

if (verbose) {

printf("file_name = %s\n", file_name);

printf("file_name_length = %d\n", file_name_length);

}

}

}

MPI_Bcast(&input_error, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

if (! input_error) {

MPI_Bcast(&verbose, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

MPI_Bcast(&file_name_length, 1, MPI_INT, MASTER_RANK, MPI_COMM_WORLD);

if (! i_am_the_master) file_name = (char*) malloc(file_name_length);

MPI_Bcast(file_name, file_name_length, MPI_CHAR, MASTER_RANK,

MPI_COMM_WORLD);

MPI_File_open(MPI_COMM_WORLD, file_name, MPI_MODE_CREATE | MPI_MODE_RDWR,

MPI_INFO_NULL, &fh);

MPI_File_get_info(fh, &info_used);

MPI_Info_get_nkeys(info_used, &nkeys);

for (i = 0; i < nkeys; i++) {

MPI_Info_get_nthkey(info_used, i, key);

MPI_Info_get(info_used, key, MPI_MAX_INFO_VAL, value, &exists);

if (verbose)

if (exists)

printf("%3d: key = %s, value = %s\n", my_rank, key, value);

}

MPI_File_close(&fh);

MPI_Info_free(&info_used);

}

MPI_Finalize();

exit(0);

}

The program is made and installed as follows:

gustav@bh1 $ pwd

250 CHAPTER 5. MPI AND MPI-IO

/N/B/gustav/src/I590/queryinfo

gustav@bh1 $ make install

co RCS/Makefile,v Makefile

RCS/Makefile,v --> Makefile

revision 1.1

done

co RCS/queryinfo.c,v queryinfo.c

RCS/queryinfo.c,v --> queryinfo.c

revision 1.1

done

mpicc -o queryinfo queryinfo.c

install queryinfo /N/B/gustav/bin

gustav@bh1 $

It can be run anywhere. It creates a file, but it doesn’t write anything on it.
Here is a fragment of the output generated by the program when it is run with
the -v option.

gustav@bh1 $ mpiexec -n 4 queryinfo -f test -v

file_name = test

file_name_length = 5

0: key = cb_buffer_size, value = 4194304

0: key = romio_cb_read, value = automatic

0: key = romio_cb_write, value = automatic

0: key = cb_nodes, value = 4

0: key = romio_no_indep_rw, value = false

0: key = ind_rd_buffer_size, value = 4194304

0: key = ind_wr_buffer_size, value = 524288

0: key = romio_ds_read, value = automatic

0: key = romio_ds_write, value = automatic

0: key = cb_config_list, value = *:1

[...]

gustav@bh1 $

The Discussion

The program begins the same way our previous programs have. The master
process reads the command line and then passes the options to other processes.
Eventually a file is opened with the call to MPI_File_open. But we don’t write
anything on it in this program. Instead we extract the default info object from
it by calling function MPI File get info:

MPI_File_get_info(fh, &info_used);

Whatever info has been used on opening the file is returned on info_used. Now
we ask about the number of (key, value) pairs inside the info by calling function
MPI Info get nkeys

MPI_Info_get_nkeys(info_used, &nkeys);

The number of pairs is returned on nkeys. Now we can loop through all the
pairs and obtain the key string for each pair first, and then having the key
string, we can obtain the value associated with the key. This is done by calling
MPI Info get nthkey to get the key and then MPI Info get to get the value.

for (i = 0; i < nkeys; i++) {

MPI_Info_get_nthkey(info_used, i, key);

MPI_Info_get(info_used, key, MPI_MAX_INFO_VAL, value, &exists);

if (verbose)

5.3. MPI IO 251

if (exists)

printf("%3d: key = %s, value = %s\n", my_rank, key, value);

}

In this case every key we pass to MPI_Info_get exists , because we got it from
the info object in the first place with the call to MPI_Info_get_nthkey, but
MPI_Info_getmay be used in other ways, e.g., just to check whether a particular
(key, value) pair is at all defined within the info, and then the exists flag comes
handy.

And this is all the program does. The file gets closed, the info gets freed,
the processes hit MPI_Finalize and exit:

MPI_File_close(&fh);

MPI_Info_free(&info_used);

} /* end of the for loop */

MPI_Finalize();

exit(0);

}

A typical output from a process that has just opened on MPI file on our
GPFS is going to look as follows:

2: key = cb_buffer_size, value = 4194304

2: key = romio_cb_read, value = automatic

2: key = romio_cb_write, value = automatic

2: key = cb_nodes, value = 4

2: key = romio_no_indep_rw, value = false

2: key = ind_rd_buffer_size, value = 4194304

2: key = ind_wr_buffer_size, value = 524288

2: key = romio_ds_read, value = automatic

2: key = romio_ds_write, value = automatic

2: key = cb_config_list, value = *:1

The cb_buffer_size and cb_nodes are the only hints reserved by the MPI-2
standard. All the other hints here are the implementation hints. In particular
we find that the size of the buffer space that can be used for collective buffering
on each target node (cb_buffer_size) is 4MB. We also find that the default
value for ind_wr_buffer_size is pretty small, only 0.5MB. You may try to
increase this value to 4194304 by calling function MPI Info set:

int MPI_Info_set(MPI_Info info, char *key, char *value)

note that the value has to be a character string, not an integer, and then passing
the modified info back to the file with MPI File set info:

int MPI_File_set_info(MPI_File fh, MPI_Info info)

Exercises

1 Rewrite program mkrandpfile.c discussed in section 5.3.1, to make use of
hints. Before you open the file, construct an info object for it taking all
the default values discussed in the previous section, but change the value
of ind_wr_buffer_size to 4194304. After you have opened the file, read
its info back and verify that the change has taken effect. Does the change
affect the data transfer rate?

252 CHAPTER 5. MPI AND MPI-IO

5.3.6 Asynchronous IO

All message passing operations and file access operations we have discussed in
this course so far are blocking. This means that when, e.g., you issue a call to
MPI_Send, the call returns only after all the data in the send buffer has been
sent, meaning that it is now safe to perform other operations on the send buffer,
e.g., you may write to it again. Similarly when you issue a call to MPI_Recv,
the call returns only after all the data that you expect to receive in the receive
buffer has been written on the buffer, meaning that it is now safe to perform
other operations on the receive buffer, e.g., it is safe to read it.

The file IO semantics are similar. The blocking IO operations such as
MPI_File_write and MPI_File_read do not return until all the data has been
taken out of the write buffer, or all the data has been written onto the read
buffer, so that it is now safe to use or re-use either one or the other.

Blocking of these functions calls is local , i.e., they block only for as long as
the send or write or receive or read buffers are in use by the communication
functions. There is another type of blocking, which is markedly more severe. It
is called synchronous or global blocking. If you send a message with MPI Ssend,
the function will return only after a matching receive has been activated on the
other side, and the receive process has started reading the data into its receive
buffer.

On the other hand we also have totally non-blocking operations such as
MPI Isend and MPI Irecv, which merely initiate the send or the receive and
return right away, even as their send or receive buffers are still being used by
data transfer operations. Of course, while the transfer is under way, you must
not touch the buffers.

What do we need such non-blocking operations for? The reason for their
existence is that message passing and file access operations are extremely slow
by computing standards. In the time it take to read data from a file, or to send
data to other processes, you may be able to perform thousands, even millions of
arithmetic operations. So if every nano-second counts, you want to be able to do
just this: compute, while data transfer operations execute in the background.

But how are you going to know that a particular data transfer operation you
have initiated has completed?

All non-blocking MPI functions take an additional argument of type MPI_Request.
It is a yet another opaque MPI data type. Once you have initiated a data trans-
fer you get this request back and you can then call MPI Test, which takes your
request as an argument and checks whether the corresponding communication
operation has completed. The synopsis of MPI_Test is:

int MPI_Test(MPI_Request *request, int *completed, MPI_Status *status)

The value of completed is set to TRUE when the communication operation
pointed to by request has indeed completed. Otherwise completed is FALSE.
Additionally the status variable may be inspected for other details pertaining
to the operation, e.g., the rank number of a sender process or the number of
items received.

If you have finished all you wanted to do while the data is still being trans-
ferred you can instead issue the call to MPI Wait, the synopsis of which is

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 253

int MPI_Wait(MPI_Request *request, MPI_Status *status)

There is no completed in MPI_Wait. This function returns only after the oper-
ation pointed to by the request has completed.

MPI-IO supports similar non-blocking functions for writing on and read-
ing from files. The functions are MPI File iwrite and MPI File iread. Their
respective synopses are:

int MPI_File_iwrite(MPI_File fh, void *buf, int count, MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread(MPI_File fh, void *buf, int count, MPI_Datatype datatype, MPI_Request *request)

Observe that unlike MPI_File_read, function MPI_File_iread does not take
status as an argument. You have to call MPI_Wait or MPI_Status to get
hold of status in this case. The reason for this should be obvious. When
MPI_File_iread returns, there is no status yet to read. It will only come to
existence after the reading operation has completed.

There are no asynchronous versions of collective file access operations like
MPI_File_read_all and MPI_File_write_all.

You can actually express MPI_File_write and MPI_File_read as combina-
tions of MPI_File_iwrite and MPI_File_iread with MPI_Wait. The following:

MPI_File_iwrite(fh, buf, count, datatype, &request);

MPI_Wait(&request, &status);

is equivalent to

MPI_File_write(fh, buf, count, datatype, &status);

and

MPI_File_iread(fh, buf, count, datatype, &request);

MPI_Wait(&request, &status);

is equivalent to

MPI_File_read(fh, buf, count, datatype, &status);

Exercises

1 Rewrite program mkrandpfile.c discussed in section 5.3.1 to use the non-
blocking MPI_File_iwrite. Use function MPI_Test to test if the writing
process has completed every now and then, while calculating square roots
of integers from 1 to 1,000,000 in the meantime. Square root is a very
expensive, i.e., slow, arithmetic operation.

5.4 MPI Graphics and Process Visualization

In this section we are going to learn about an auxiliary library, called MPE, for
the analysis and visualization of MPI programs. The library can be also used
to visualize data handled by MPI programs – although its graphic capabilities
are very simple.

We begin with the discussion of how to “MPE-instrument” MPI programs,
and how to view the logs generated thusly. There are various auxiliary tools for

254 CHAPTER 5. MPI AND MPI-IO

processing the logs and one huge Java program for viewing them in a graphical
format.

Then we’ll look at the graphics component of MPE and illustrate its use by
discussing some simple (and then less simple) example programs.

The MPE library and utilities are not as well documented as MPI itself. But
you can download a fairly readable, if terse, MPEmanual, ftp://ftp.mcs.anl.gov/pub/mpi/mpeman.pdf,
from Argonne. The PDF file has a January 2003 time stamp on it, the last I
have had a look at it, but it is not entirely up to date with respect to MPICH2.
MPE is also discussed in “Using MPI” by Gropp, Lusk and Skjellum, but this
discussion may be a little old, because the book itself was published in 1994.

5.4.1 Instrumenting MPI Programs with MPE

You have seen a simple and quite effective example of program instrumentation
in section 5.2.4 that talked about the Bank Queue paradigm. There we instru-
mented the program by writing logs of various operations on log files, one per
each process.

The MPE library provides a much more sophisticated tools for logging var-
ious events and states in your program. These don’t have to be MPI events or
states only. You can use MPE logging for other events and states too. The logs
are created on the run and stored in memory, so as to minimize the impact that
logging may have on the program’s performance. Only after the logging and
the program have been completed, the actual log file is written.

Unlike our simple logging example in section 5.2.4, MPE logging is accom-
panied by very precise time stamps. This can help solve some intricate com-
munication and synchronization problems as well as optimize communications
and computations within the program. So MPE logging can be used not only
to debug a parallel program, but also to profile its execution.

MPE logging can be “by default”, in which case just about everything that
happens in the program is logged, or it can be customized. The latter is more
useful for a programmer, the former is simpler, because the programmer doesn’t
have to do anything. All that’s required is to link the program with the -llmpe
library.

Suppose you would like to log all MPI events generated by program cpi.c
discussed in section 5.2.3. This program comes from the MPICH2 examples
that are distributed together with the code. To generate the logging version of
the program compile it as follows:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/cpi

gustav@bh1 $ mpicc -o cpi cpi.c -llmpe -lmpe

gustav@bh1 $

When the program is run, it should generate a file called cpi.clog in your
working directory:

gustav@bh1 $ pwd

/N/B/gustav

gustav@bh1 $ mpdtrace | wc

27 27 134

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 255

gustav@bh1 $ mpiexec -n 8 cpi

Process 0 of 8 is on bh1

Process 1 of 8 is on bc30

Process 2 of 8 is on bc23

Process 6 of 8 is on bc37

Process 4 of 8 is on bc36

Process 3 of 8 is on bc35

Process 5 of 8 is on bc34

Process 7 of 8 is on bc27

pi is approximately 3.1415926544231247, Error is 0.0000000008333316

wall clock time = 0.042839

Writing logfile.

Finished writing logfile.

gustav@bh1 $ ls *log*

cpi.clog

gustav@bh1 $

This file is written in the “native” format and is not readable without auxiliary
tools, but it can be converted to the human readable alog format by calling the
clog2alog utility:

gustav@bh1 $ clog2alog cpi

gustav@bh1 $ ls *cpi*

cpi.alog cpi.clog

gustav@bh1 $

You don’t need to supply the .clog suffix, because the program adds it auto-
matically to the file basename you provide it with on the command line. The
alog file contains an ASCI head followed by an ASCI listing of all events and
states logged by the program. This is what it may look like:

gustav@bh1 $ cat cpi.alog

-1 0 0 0 0 0 Me

-2 0 0 35 0 0

-3 0 0 8 0 0

-4 0 0 1 0 0

-5 0 0 5 0 0

-6 0 0 0 0 0

-7 0 0 0 0 42890

-8 0 0 1 0 0

-11 0 0 0 0 0

-13 0 13 14 0 0 cyan:boxes BCAST

-13 0 25 26 0 0 purple:2x2 REDUCE

-201 0 0 -1 0 0 MPI_PROC_NULL

-201 0 0 -2 0 0 MPI_ANY_SOURCE

-201 0 0 -1 0 1 MPI_ANY_TAG

13 0 0 1 0 55

14 0 0 2 0 83

25 0 0 1 0 108

13 1 0 1 0 4088

14 1 0 2 0 4114

25 1 0 1 0 4138

13 6 0 1 0 7042

13 2 0 1 0 7290

14 2 0 2 0 7327

25 2 0 1 0 7351

13 4 0 1 0 8855

14 4 0 2 0 8938

25 4 0 1 0 8966

256 CHAPTER 5. MPI AND MPI-IO

14 6 0 2 0 9108

25 6 0 1 0 9137

13 3 0 1 0 15425

14 3 0 2 0 15466

25 3 0 1 0 15491

13 5 0 1 0 15973

14 5 0 2 0 16034

25 5 0 1 0 16060

13 7 0 1 0 16155

14 7 0 2 0 16207

25 7 0 1 0 16231

26 1 0 2 0 25906

26 3 0 2 0 41456

26 2 0 2 0 41716

26 7 0 2 0 41867

26 6 0 2 0 42135

26 5 0 2 0 42372

26 4 0 2 0 42565

26 0 0 2 0 42890

gustav@bh1 $

Even though the format of the file is human readable, the file is still rather
cryptic and not very helpful.

A better way is to convert the clog file to an slog2 file with the clogTOslog2
utility (here you have to type the full name of the file including its extension):

gustav@bh1 $ clogTOslog2 cpi.clog

GUI_LIBDIR is set. GUI_LIBDIR = \

/N/B/gustav/src/mpich2-0.94b1/src/mpe/slog2sdk/lib

SLOG-2 Header:

version = SLOG 2.0.5

NumOfChildrenPerNode = 2

TreeLeafByteSize = 65536

MaxTreeDepth = 0

MaxBufferByteSize = 574

Categories is FBinfo(94 @ 682)

MethodDefs is FBinfo(0 @ 0)

LineIDMaps is FBinfo(100 @ 776)

TreeRoot is FBinfo(574 @ 108)

TreeDir is FBinfo(38 @ 876)

Annotations is FBinfo(0 @ 0)

Postamble is FBinfo(0 @ 0)

Number of Drawables = 16

Number of Unmatched Events = 0

Total ByteSize of the logfile = 3688

timeElapsed between 1 & 2 = 873 msec

timeElapsed between 2 & 3 = 50 msec

gustav@bh1 $ ls *log*

cpi.alog cpi.clog cpi.slog2

gustav@bh1 $

and then run program jumpshot on the slog2 file.
Jumpshot is a rather large (and so heavy that it is quite unusable over an

ISDN line) Java program that reads the slog2 file and displays events and
states of the program in the form of multiple long horizontal “thermometers”,

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 257

each “thermometer” corresponding to a separate process. Message passing is
symbolized by arrows that connect various “thermometers”. This way you can
see exactly when a message has been sent and when it has been received. Various
states of the program are symbolized by various colours of the “thermometer”
lines. For example, computation may be symbolized by the “thermometer”
going red, whereas waiting for data may be symbolized by, say, black or gray.
The idea behind an efficient parallel program is to have as much red and as
little black as possible. The window of jumpshot that displays all this is called
the Timeline Window.

A long program, which involves a lot of communication may produce a very
dense picture in the Timeline Window that is going to be difficult to read at
first glance. You can use a magnifying glass gizmo, invoked from the bottom
right corner of the window, to stretch fragments of the log, so that you can see
what happens there in greater detail. There is also another magnifying glass in
the tool bar above the window, which can be used to select specific portions of
the log for a closer look.

In order to customize the logging, you have to instrument your program
explicitly. Here is the example of cpi.c, obtained from the MPE component of
the MPICH2 source, instrumented this way:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/mpe

gustav@bh1 $ cat cpilog.c

#include <mpi.h>

#include <mpe.h>

#include <math.h>

#include <stdio.h>

double f(double);

double f(double a)

{

return (4.0 / (1.0 + a*a));

}

int main(int argc, char *argv[])

{

int n, myid, numprocs, i, j;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x;

double startwtime = 0.0, endwtime;

int namelen;

int event1a, event1b, event2a, event2b,

event3a, event3b, event4a, event4b;

char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

MPI_Get_processor_name(processor_name,&namelen);

fprintf(stderr,"Process %d running on %s\n", myid, processor_name);

MPE_Init_log();

258 CHAPTER 5. MPI AND MPI-IO

/* Get event ID from MPE, user should NOT assign event ID */

event1a = MPE_Log_get_event_number();

event1b = MPE_Log_get_event_number();

event2a = MPE_Log_get_event_number();

event2b = MPE_Log_get_event_number();

event3a = MPE_Log_get_event_number();

event3b = MPE_Log_get_event_number();

event4a = MPE_Log_get_event_number();

event4b = MPE_Log_get_event_number();

if (myid == 0) {

MPE_Describe_state(event1a, event1b, "Broadcast", "red");

MPE_Describe_state(event2a, event2b, "Compute", "blue");

MPE_Describe_state(event3a, event3b, "Reduce", "green");

MPE_Describe_state(event4a, event4b, "Sync", "orange");

}

if (myid == 0)

{

n = 1000000;

startwtime = MPI_Wtime();

}

MPI_Barrier(MPI_COMM_WORLD);

MPE_Start_log();

for (j = 0; j < 5; j++)

{

MPE_Log_event(event1a, 0, "start broadcast");

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPE_Log_event(event1b, 0, "end broadcast");

MPE_Log_event(event4a,0,"Start Sync");

MPI_Barrier(MPI_COMM_WORLD);

MPE_Log_event(event4b,0,"End Sync");

MPE_Log_event(event2a, 0, "start compute");

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs)

{

x = h * ((double)i - 0.5);

sum += f(x);

}

mypi = h * sum;

MPE_Log_event(event2b, 0, "end compute");

MPE_Log_event(event3a, 0, "start reduce");

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPE_Log_event(event3b, 0, "end reduce");

}

MPE_Finish_log("cpilog");

if (myid == 0)

{

endwtime = MPI_Wtime();

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 259

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

printf("wall clock time = %f\n", endwtime-startwtime);

}

MPI_Finalize();

return(0);

}

gustav@bh1 $

The program should be linked with the -lmpe library only as follows:

gustav@bh1 $ mpicc -o cpilog cpilog.c -lmpe

gustav@bh1 $

Then, once it’s run, it’ll generate the log file on cpilog.clog, which can be
then processed with clogTOslog2 and viewed with jumpshot.

Let us have a closer look at this instrumented program.

The call to MPE_Init_log() initiates the MPE logging subsystem. This call
has to be issued explicitly only if you are going to link the program with the
-lmpe library. If you link the program with the -llmpe -lmpe libraries, the
function is called by the -llmpe library right at the beginning of the program
implicitly, but then everything is going to be logged, including the new stuff
you have requested in your code and all the defaults as well. The advantage of
starting and stopping the logging within your program explicitly is that you can
decide to log only a specific part of the program or even to log various parts of
it on various files.

Once the logging has been initialized we can define various events:

event1a = MPE_Log_get_event_number();

event1b = MPE_Log_get_event_number();

event2a = MPE_Log_get_event_number();

event2b = MPE_Log_get_event_number();

event3a = MPE_Log_get_event_number();

event3b = MPE_Log_get_event_number();

event4a = MPE_Log_get_event_number();

event4b = MPE_Log_get_event_number();

These calls to MPE_Log_get_event_number merely assign dynamically gener-
ated integer numbers to variables event1a through event4b. You could assign
the numbers to these events manually and this is how it’s been done in the past
(see, e.g., “Using MPI”), but this is not a recommended practice today. At this
stage we have only specified that we are going to have eight different events,
but we haven’t told MPE what these events are going to be yet.

Next we see the definition of states issued by the means of calls to function
MPE_Describe_state:

if (myid == 0) {

MPE_Describe_state(event1a, event1b, "Broadcast", "red");

MPE_Describe_state(event2a, event2b, "Compute", "blue");

MPE_Describe_state(event3a, event3b, "Reduce", "green");

MPE_Describe_state(event4a, event4b, "Sync", "orange");

}

260 CHAPTER 5. MPI AND MPI-IO

These definitions still don’t define what the events themselves are, but by now
the programmer has already made her choices. Events event1a and event1b

correspond to the beginning and the end of broadcast. When the log is written
and then read and processed by jumpshot, the duration of a broadcast will be
symbolized by a horizontal red line in the Timeline Window, and the legend
attached to the display will say that the red colour corresponds to a broad-
cast. Similarly, computation will be symbolized by blue, the MPI_Reduce will
be symbolized by green and the duration of MPI_Barrier will be symbolized by
orange. So, in this case a lot of blue means “good”, and a lot of other colours
meand “bad”.

The state definitions need not be specified by more than just one process.
All processes will log their events independently, but it is enough for MPE to
read state definitions from one process only. These will then be applied to all
other processes.

The log itself is started by the call to MPE_Start_log() and it is only now
that we specify what the events event1a through event4b really mean, for
example:

MPE_Log_event(event1a, 0, "start broadcast");

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPE_Log_event(event1b, 0, "end broadcast");

Function MPE_Log_event logs the event even1a labeled "start broadcast"

just before calling MPI_Bcast, and the logs the event event1b with the label
"end broadcast" just after function MPI_Bcast has returned. Everything be-
tween these two events will be marked with the red colour on the jumpshot

display, as has been specified with the calls to MPE_Describe_state.
Of course, the programmer may well get it all wrong, which is exactly where

automatic logging is advantageous.
The call to MPI_Barrier is similarly flanked with logged events:

MPE_Log_event(event4a,0,"Start Sync");

MPI_Barrier(MPI_COMM_WORLD);

MPE_Log_event(event4b,0,"End Sync");

and then we flank the whole computation section with events event2a and
event2b:

MPE_Log_event(event2a, 0, "start compute");

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs)

{

x = h * ((double)i - 0.5);

sum += f(x);

}

mypi = h * sum;

MPE_Log_event(event2b, 0, "end compute");

Finally we flank the call to MPI_Reduce with event3a and event3b:

MPE_Log_event(event3a, 0, "start reduce");

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPE_Log_event(event3b, 0, "end reduce");

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 261

The call to

MPE_Finish_log("cpilog");

closes the log and writes it on the file cpilog.clog. This last call has to be
issued explicitly only if you link the program with -lmpe only. If you were to
link it with -llmpe -lmpe instead, the file would be generated automatically
and its name would default to the name of the binary.

To summarize let me list the synopsis for each MPE log function discussed
in this section:

int MPE_Init_log(void);

int MPE_Start_log(void);

int MPE_Stop_log(void);

int MPE_Finish_log(char *logfilename);

int MPE_Describe_state(int start, int end, char *name, char *color);

int MPE_Describe_event(int event, char *name);

int MPE_Log_event(int event, int intdata, char *chardata);

int MPE_Log_get_event_number(void);

5.4.2 MPE Graphics

MPE graphics are designed to display data in parallel from multiple MPI pro-
cesses on a single X window. The routines provided are very simple, but suffi-
cient for basic graphics and, in particular, for parallel display of images. Apart
from drawing routines MPE also provides two graphics input routines that can
be used to read the position of the mouse and to read coordinates of a rectan-
gular region selected within the window by dragging the mouse.

Unfortunately you will find no manual entries that describe these functions
in any detail in “User’s Guide for MPE” – they are merely mentioned there –
but there are some examples of their use in “Using MPI” (see, e.g., section 5.3,
“Visualizing the Mandelbrot Set” therein).

The Mandelbrot set example code can be found in

/N/hpc/mpich2/src/mpich2-0.94b1/src/mpe/contrib/mandel

but this code is rather hard to read. It is over-featured, some of the features
don’t work, and it is nearly 5,000 lines long, which for a computation this trivial
is quite excessive.

Instead we are going to study in this section two much smaller examples,
which you will find on:

/N/hpc/mpich2/src/mpich2-0.94b1/src/mpe/contrib/test/cxgraphics.c

and

/N/hpc/mpich2/src/mpich2-0.94b1/src/mpe/contrib/life/life_g.c

262 CHAPTER 5. MPI AND MPI-IO

Program cxgraphics.c

This program is very, very short. Here is the code.

#include <stdio.h>

#include <stdlib.h>

#include "mpe.h"

#include "mpe_graphics.h"

int main(int argc, char** argv)

{

MPE_XGraph graph;

int ierr, mp_size, my_rank;

MPE_Color my_color;

char ckey;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &mp_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

ierr = MPE_Open_graphics(&graph, MPI_COMM_WORLD, NULL,

-1, -1, 400, 400, 0);

if (ierr != MPE_SUCCESS) {

fprintf(stderr, "%d : MPE_Open_graphics() fails\n", my_rank);

ierr = MPI_Abort(MPI_COMM_WORLD, 1);

}

my_color = (MPE_Color) (my_rank + 1);

if (my_rank == 0)

ierr = MPE_Draw_string(graph, 187, 205, MPE_BLUE, "Hello");

ierr = MPE_Draw_circle(graph, 200, 200, 20+my_rank*5, my_color);

ierr = MPE_Update(graph);

if (my_rank == 0) {

fprintf(stdout, "Hit any key then return to continue ");

fscanf(stdin, "%s", &ckey);

fprintf(stdout, "\n");

}

MPI_Barrier(MPI_COMM_WORLD);

ierr = MPE_Close_graphics(&graph);

MPI_Finalize();

return 0;

}

Here is how to link and compile this program:

gustav@bh1 $ mpicc -o cxgraphics cxgraphics.c -lmpe -L/usr/X11R6/lib -lX11 -lm

gustav@bh1 $

In order to run it you must undertake the following steps:

1. If your variable DISPLAY points to an ssh socket, which is going to be
the case if you connected to the AVIDD cluster using slogin -X, redefine
DISPLAY to point to your physical display. Use either the IP number
or the fully domainized name of the machine from which you have made

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 263

the connection. Note that the laboratory PCs don’t have fully domainized
names, so in this case you need to use their IP numbers. To find what they
are, use the netstat -rn command in your local Cygwin environment.

2. On your display machine, e.g., on your PC, issue the command xhost +.
This command is a little dangerous, because it opens your X11 display to
read/write operations from any other system. The alternative would be
to list the names of all AVIDD nodes, and then for each of them issue the
command more specific command, e.g., xhost +bc64.uits.indiana.edu.

3. Now only you should start the MPD, i.e., issue the command mpdboot. If
you had MPD running before, you should shut it down with mpdallexit

and then restart it.

4. Finally, with MPD running you can execute the program by simply saying
something like

$ mpiexec -n 16 cxgraphics

Now let us have a closer look at the program and see how the MPE graphics
routines are used in it.

After the usual initializations:

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &mp_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

the program opens the X11 window by calling

ierr = MPE_Open_graphics(&graph, MPI_COMM_WORLD, NULL,

-1, -1, 400, 400, 0);

• The first argument, &graph is the pointer to an opaque MPE variable
MPE_XGraph. Once the window has been successfully opened, other draw-
ing routines will refer to this graph.

• The second argument is the communicator.

• The third argument is the name of the display, for example it could be
"beige.ucs.indiana.edu:0.0". If instead the name is set to NULL, every
process is going to get the name from its MPD, which, in turn, gets it from
the environment on the console node at the time of MPD booting. You
should now understand, why you cannot use the ssh socket, such as, e.g.,
localhost:27.0. This socket exists on the console node only, but not on
any other node. Consequently processes running on other nodes would
not be able to access it and function MPE_Open_graphicswould return an
error.

• The next four arguments specify the positions of the upper left corner and
the bottom right corner in pixels. Here -1 says go as far to the left, or

upwards, as you can. So the window is going to be created in the upper
left corner and it is going to be 400 pixels wide and 400 pixels high.

264 CHAPTER 5. MPI AND MPI-IO

• Function MPE_Open_graphicsmay be used either in the collective or in the
non-collective mode. Whether it is used in the collective mode is specified
by the last argument, which is a BOOLEAN variable. If it is FALSE, the call is
non-collective, otherwise it is collective. Here it is non-collective, because
the last argument is 0 = FALSE.

Because the mode is non-collective various processes may get different returns
from the function call. We test the returns in a way that is very reminiscent of
the way other MPI errors have been handled:

if (ierr != MPE_SUCCESS) {

fprintf(stderr, "%d : MPE_Open_graphics() fails\n", my_rank);

ierr = MPI_Abort(MPI_COMM_WORLD, 1);

}

A process that has failed to access the X11 display and open its portion of the
X11 window writes and error message on standard error and aborts, which is
going to take the whole MPI program down.

Assuming that this has not happened, the processes define their color:

my_color = (MPE_Color) (my_rank + 1);

and process of rank zero writes the word "Hello" on the window:

if (my_rank == 0)

ierr = MPE_Draw_string(graph, 187, 205, MPE_BLUE, "Hello");

• Function MPE_Draw_string takes graph (as returned by the call to MPE_Open_graphics)
as its first argument.

• The second and third arguments are the x and y coordinates in pixels,
measured from the upper left corner of the window (this is an X11 tradi-
tion), of the beginning of the string to be drawn.

• The fourth argument is the colour in which to draw the string, and

• the last argument is the string itself.

Now each process draws a circle in its own color with the centre at (200,200).
This is accomplished by calling

ierr = MPE_Draw_circle(graph, 200, 200, 20+my_rank*5, my_color);

• Function takes graph as its first argument.

• Its second and third arguments are the coordinates of the centre of the
circle measured in pixels from the upper left corner of the window.

• Its fourth argument is the radius of the circle measured in pixels, and

• its last argument is the colour in which the circle is to be drawn.

The next call to

ierr = MPE_Update(graph);

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 265

simply ensures that all that’s been drawn on the graph gets sent to the X11
window that’s associated with it.

At this stage the program waits for the user to type something on the con-
sole’s keyboard. Otherwise the picture would vanish almost instantaneously and
we might not have the time enough to admire it:

if (my_rank == 0) {

fprintf(stdout, "Hit any key then return to continue ");

fscanf(stdin, "%s", &ckey);

fprintf(stdout, "\n");

}

MPI_Barrier(MPI_COMM_WORLD);

Observe that it is process zero that is in charge of the console – this is always
the case in MPICH2 – the other processes wait for it on the barrier. The barrier
must be there, because what follows it is

ierr = MPE_Close_graphics(&graph);

If other processes did not have to wait on the barrier, they would take their
portions of the graph down, but, as it happens, they all get to it only after the
user has typed something on the keyboard.

The program ends with the usual:

MPI_Finalize();

return 0;

}

Now let me introduce officially the synopsis for each of the graphic functions
discussed in this section, as well as some other ones to be used in the next
section:

int MPE_Open_graphics(MPE_Xgraph *handle, MPI_Comm comm, char *display,

int x, int y, int is_collective);

int MPE_Draw_point(MPE_Xgraph handle, int x, int y, MPE_Color color);

int MPE_Draw_line(MPE_Xgraph handle, int x1, int y1, int x2, int y2,

MPE_Color color);

int MPE_Draw_circle(MPE_Xgraph handle, int centerx, int centery, int radius,

MPE_Color color);

int MPE_Update(MPE_XGraph handle);

int MPE_Num_colors(MPE_Xgraph handle, int *number_of_colors);

int MPE_Make_color_array(MPE_XGraph handle, int number_of_colors,

MPE_Color array[]);

int MPE_Close_graphics(MPE_XGraph handle);

int MPE_Draw_string(MPE_XGraph handle, int x, int y, MPE_Color, char* string);

The predefined colors can be found on

/N/hpc/mpich2/include/mpe_graphics.c

In our case they are

MPE_WHITE, MPE_BLACK, MPE_RED, MPE_YELLOW,

MPE_GREEN, MPE_CYAN, MPE_BLUE, MPE_MAGENTA,

MPE_AQUAMARINE, MPE_FORESTGREEN, MPE_ORANGE,

MPE_MAROON, MPE_BROWN, MPE_PINK, MPE_CORAL,

MPE_GRAY

Observe that all processes share the graph. Each process can access any
pixel on the graph. It is up to the programmer to ensure that they don’t step
on each other’s toes, unless, of course, this is what the programmer wants.

266 CHAPTER 5. MPI AND MPI-IO

Program life g.c

This program is somewhat more complicated than the previous example. But
it is still quite simple in its use of graphics. There is one new element here that
is related to our use of MPI_Sendrecv in section 5.2.5.

The computation itself is quite similar to Jacobi iterations. The difference is
that here the only values allowed in the matrix are zero and one. The iteration
takes a sum over all neighbours of an (i, j) element of the matrix, including
the diagonal neighbours too (here there is the first difference), so we have 8
neighbours this time instead of just 4 as was the case in the diffusion problem,
and now

• if the sum is 3 then the value of the (i, j) element is set to 1,

• if the sum is 2 then the value of the (i, j) element is left as it was before,

• otherwise the value of the (i, j) element is set to 0.

The result is a peculiar pattern that keeps evolving within the matrix. The
program calculates the evolution and displays the pattern as it evolves.

Here is the code.

#include <mpi.h>

#define MPE_GRAPHICS

#include "mpe.h"

#include <stdio.h>

static MPE_XGraph graph;

static char *displayname = 0;

extern void srand48();

extern double drand48();

extern char * malloc();

static int width = 400, height = 400;

#define BORN 1

#define DIES 0

/* The Life function */

double life(matrix_size, ntimes, comm)

int matrix_size;

int ntimes;

MPI_Comm comm;

{

int rank, size ;

int next, prev ;

int i, j, k;

int mysize, sum ;

int **matrix, **temp, **addr ;

double slavetime, totaltime, starttime ;

int my_offset;

/* Determine size and my rank in communicator */

MPI_Comm_size(comm, &size) ;

MPI_Comm_rank(comm, &rank) ;

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 267

/* Set neighbors */

if (rank == 0)

prev = MPI_PROC_NULL;

else

prev = rank-1;

if (rank == size - 1)

next = MPI_PROC_NULL;

else

next = rank+1;

/* Determine my part of the matrix */

mysize = matrix_size/size + ((rank < (matrix_size % size)) ? 1 : 0) ;

my_offset = rank * (matrix_size/size);

if (rank > (matrix_size % size)) my_offset += (matrix_size % size);

else my_offset += rank;

/* allocate the memory dynamically for the matrix */

matrix = (int **)malloc(sizeof(int *)*(mysize+2)) ;

temp = (int **)malloc(sizeof(int *)*(mysize+2)) ;

for (i = 0; i < mysize+2; i++) {

matrix[i] = (int *)malloc(sizeof(int)*(matrix_size+2)) ;

temp[i] = (int *)malloc(sizeof(int)*(matrix_size+2)) ;

}

/* Initialize the boundaries of the life matrix */

for (j = 0; j < matrix_size+2; j++)

matrix[0][j] = matrix[mysize+1][j] = temp[0][j] = temp[mysize+1][j] = DIES ;

for (i = 0; i < mysize+2; i++)

matrix[i][0] = matrix[i][matrix_size+1] = temp[i][0] = temp[i][matrix_size+1] = DIES ;

/* Initialize the life matrix */

for (i = 1; i <= mysize; i++) {

srand48((long)(1000^(i-1+mysize))) ;

for (j = 1; j<= matrix_size; j++)

if (drand48() > 0.5)

matrix[i][j] = BORN ;

else

matrix[i][j] = DIES ;

}

/* Open the graphics display */

MPE_Open_graphics(&graph, MPI_COMM_WORLD, displayname,

-1, -1, width, height, 0);

/* Play the game of life for given number of iterations */

starttime = MPI_Wtime() ;

for (k = 0; k < ntimes; k++) {

MPI_Request req[4];

MPI_Status status[4];

/* Send and receive boundary information */

MPI_Isend(&matrix[1][0],matrix_size+2,MPI_INT,prev,0,comm,req);

MPI_Irecv(&matrix[0][0],matrix_size+2,MPI_INT,prev,0,comm,req+1);

MPI_Isend(&matrix[mysize][0],matrix_size+2,MPI_INT,next,0,comm,req+2);

MPI_Irecv(&matrix[mysize+1][0],matrix_size+2,MPI_INT,next,0,comm,req+3);

268 CHAPTER 5. MPI AND MPI-IO

MPI_Waitall(4, req, status);

/* For each element of the matrix ... */

for (i = 1; i <= mysize; i++) {

for (j = 1; j < matrix_size+1; j++) {

/* find out the value of the current cell */

sum = matrix[i-1][j-1] + matrix[i-1][j] + matrix[i-1][j+1]

+ matrix[i][j-1] + matrix[i][j+1]

+ matrix[i+1][j-1] + matrix[i+1][j] + matrix[i+1][j+1] ;

/* check if the cell dies or life is born */

if (sum < 2 || sum > 3)

temp[i][j] = DIES ;

else if (sum == 3)

temp[i][j] = BORN ;

else

temp[i][j] = matrix[i][j] ;

{ int xloc, yloc, xwid, ywid;

xloc = ((my_offset + i - 1) * width) / matrix_size;

yloc = ((j - 1) * height) / matrix_size;

xwid = ((my_offset + i) * width) / matrix_size - xloc;

ywid = (j * height) / matrix_size - yloc;

MPE_Fill_rectangle(graph, xloc, yloc, xwid, ywid, temp[i][j]);

}

}

}

MPE_Update(graph);

/* Swap the matrices */

addr = matrix ;

matrix = temp ;

temp = addr ;

}

/* Return the average time taken/processor */

slavetime = MPI_Wtime() - starttime;

MPI_Reduce (&slavetime, &totaltime, 1, MPI_DOUBLE, MPI_SUM, 0, comm);

return (totaltime/(double)size);}

int main(argc, argv)

int argc ;

char *argv[] ;

{

int rank, N, iters ;

double time ;

MPI_Init (&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;

/* If I’m process 0, determine the matrix size and # of iterations */

/* This relies on the MPI implementation properly flushing output

that does not end in a newline. MPI does not require this, though

high-quality implementations will do this.

*/

#if !defined (SGI_MPI) && !defined (IBM_MPI)

if (rank == 0) {

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 269

printf("Matrix Size : ") ;

scanf("%d",&N) ;

printf("Iterations : ") ;

scanf("%d",&iters) ;

}

#else

N=20;

iters=50;

#endif

/* Broadcast the size and # of iterations to all processes */

MPI_Bcast(&N, 1, MPI_INT, 0, MPI_COMM_WORLD) ;

MPI_Bcast(&iters, 1, MPI_INT, 0, MPI_COMM_WORLD) ;

if (argc > 2 && strcmp(argv[1], "-display") == 0) {

displayname = malloc(strlen(argv[2]) + 1);

strcpy(displayname, argv[2]);

}

/* Call the life routine */

time = life (N, iters, MPI_COMM_WORLD);

/* Print the total time taken */

if (rank == 0)

printf("[%d] Life finished in %lf seconds\n",rank,time/100);

MPE_Close_graphics(&graph);

MPI_Finalize();

}

The code comprises two distinct parts. There is the short main program
that is quite easy to decipher and a little more complicated function life that
does all the work.

So let us begin with main.
After the initial MPI incantations, process number 0 obtains some informa-

tion from standard input, namely, the size of the matrix and the desired number
of iterations:

if (rank == 0) {

printf("Matrix Size : ") ;

scanf("%d",&N) ;

printf("Iterations : ") ;

scanf("%d",&iters) ;

}

This information is then broadcast to other processes:

MPI_Bcast(&N, 1, MPI_INT, 0, MPI_COMM_WORLD) ;

MPI_Bcast(&iters, 1, MPI_INT, 0, MPI_COMM_WORLD) ;

Every process also analyses the command line (every process gets a copy of argv
and argc from MPI_Init) to find if the user has specified the -display option,
in which case the name of the X11 display is also read from the command line:

if (argc > 2 && strcmp(argv[1], "-display") == 0) {

displayname = malloc(strlen(argv[2]) + 1);

strcpy(displayname, argv[2]);

}

270 CHAPTER 5. MPI AND MPI-IO

Otherwise the name of the display will be obtained from MPDs, i.e., from the
environmental variable DISPLAY at the time MPD was booted on the console
node. Here displayname is a global (static) variable, so it doesn’t have to be
passed to function life. The display itself is going to be opened and then
written to by life. Function life is called as follows:

time = life (N, iters, MPI_COMM_WORLD);

After the program returns, graphics are closed and MPI itself shuts down:

MPE_Close_graphics(&graph);

MPI_Finalize();

}

And this is the end of main.
Function life begins its life from finding about the size of the communicator

that’s been passed to it as a variable. Then every process finds about its rank
within this communicator:

MPI_Comm_size(comm, &size) ;

MPI_Comm_rank(comm, &rank) ;

Now we can see some interesting manipulations, whose purpose is very similar
to what we did in the diffusion program. But there we simply used powerful
MPI functions, where here these manipulations are carried out explicitly.

First the processes are organized into one dimensional grid, so that each
process knows about its previous process and its next process:

/* Set neighbors */

if (rank == 0)

prev = MPI_PROC_NULL;

else

prev = rank-1;

if (rank == size - 1)

next = MPI_PROC_NULL;

else

next = rank+1;

Now the matrix, which is going to be N ×N is going to be divided amongst the
processes (within life the parameter N is called matrix_size):

mysize = matrix_size/size + ((rank < (matrix_size % size)) ? 1 : 0) ;

my_offset = rank * (matrix_size/size);

if (rank > (matrix_size % size)) my_offset += (matrix_size % size);

else my_offset += rank;

Having decided about the portion of the matrix each process is going to look
after, we allocate memory for it:

/* allocate the memory dynamically for the matrix */

matrix = (int **)malloc(sizeof(int *)*(mysize+2)) ;

temp = (int **)malloc(sizeof(int *)*(mysize+2)) ;

for (i = 0; i < mysize+2; i++) {

matrix[i] = (int *)malloc(sizeof(int)*(matrix_size+2)) ;

temp[i] = (int *)malloc(sizeof(int)*(matrix_size+2)) ;

}

Now we have the same problem with the “ghost columns” (the division of the
matrix is one dimensional in this program) that we had in the diffusion program
and we initialize these regions to zero:

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 271

/* Initialize the boundaries of the life matrix */

for (j = 0; j < matrix_size+2; j++)

matrix[0][j] = matrix[mysize+1][j] = temp[0][j] = temp[mysize+1][j] = DIES ;

for (i = 0; i < mysize+2; i++)

matrix[i][0] = matrix[i][matrix_size+1] = temp[i][0] = temp[i][matrix_size+1

] = DIES ;

The interiors of the matrices that belong to the processes, on the other hand,
are initialized to ones and zeros at random:

/* Initialize the life matrix */

for (i = 1; i <= mysize; i++) {

srand48((long)(1000^(i-1+mysize))) ;

for (j = 1; j<= matrix_size; j++)

if (drand48() > 0.5)

matrix[i][j] = BORN ;

else

matrix[i][j] = DIES ;

}

Now function life opens the graph on the X11 display:

/* Open the graphics display */

MPE_Open_graphics(&graph, MPI_COMM_WORLD, displayname,

-1, -1, width, height, 0);

where width and height are constants, equal 400 each. The window is going to
be displayed in the top left corner of the X11 display. The open is not collective.
Because the size of the X11 window is fixed in this program, the matrix, which
may be either smaller or larger than 400× 400 will have to be either squeezed
or stretched in order to be displayed.

Now we begin the iterations. Each iteration begins with the exchange of
border columns:

/* Send and receive boundary information */

MPI_Isend(&matrix[1][0],matrix_size+2,MPI_INT,prev,0,comm,req);

MPI_Irecv(&matrix[0][0],matrix_size+2,MPI_INT,prev,0,comm,req+1);

MPI_Isend(&matrix[mysize][0],matrix_size+2,MPI_INT,next,0,comm,req+2);

MPI_Irecv(&matrix[mysize+1][0],matrix_size+2,MPI_INT,next,0,comm,req+3);

MPI_Waitall(4, req, status);

This is done differently from the example discussed in section about diffusion.
I have mentioned there that MPI_Sendrecv saves us from serialization of the
communication. Another way to avoid such serialization is to use non-blocking
sends and receives. Observe that we use a new function here, MPI Waitall, to
do the waiting. This function waits not for just one request to be completed.
Instead it waits for the whole array of requests to be completed. In this case
the array, req, comprises 4 individual requests. The variable status points to
the array of statuses rather than to an individual status.

Having exchanged the border information we can now commence the com-
putation itself, which is as I have already explained at the beginning of this
section:

/* For each element of the matrix ... */

for (i = 1; i <= mysize; i++) {

for (j = 1; j < matrix_size+1; j++) {

272 CHAPTER 5. MPI AND MPI-IO

/* find out the value of the current cell */

sum = matrix[i-1][j-1] + matrix[i-1][j] + matrix[i-1][j+1]

+ matrix[i][j-1] + matrix[i][j+1]

+ matrix[i+1][j-1] + matrix[i+1][j] + matrix[i+1][j+1] ;

/* check if the cell dies or life is born */

if (sum < 2 || sum > 3)

temp[i][j] = DIES ;

else if (sum == 3)

temp[i][j] = BORN ;

else

temp[i][j] = matrix[i][j] ;

{

[... draw the graph ...]

}

}

}

For each element of the matrix we evaluate the sum over all its eight neigh-
bours and then set the value of the element itself to 1, 0 or leave it unchanged,
depending on what the sum is.

Now we have to display the matrix by either squeezing it or stretching, as
required, and then throwing the result on the display:

{ int xloc, yloc, xwid, ywid;

xloc = ((my_offset + i - 1) * width) / matrix_size;

yloc = ((j - 1) * height) / matrix_size;

xwid = ((my_offset + i) * width) / matrix_size - xloc;

ywid = (j * height) / matrix_size - yloc;

MPE_Fill_rectangle(graph, xloc, yloc, xwid, ywid, temp[i][j]);

}

The drawing itself is done by filling the rectangle at an appropriate position
with the blot, whose color is given by the value of the corresponding matrix
element, i.e., with either zero or one, which is going to translate into white and
black.

Having finished with the update, the current picture is flushed onto the
display by calling

MPE_Update(graph);

and the matrix itself is being updated too:

/* Swap the matrices */

addr = matrix ;

matrix = temp ;

temp = addr ;

An important point here is that the updates must not be carried out on the
actual matrix (why?). This is why we have two matrices here. The original one
and then the updated one. At the end of each iteration we swap them around,
i.e., the updated one becomes the original one (for the next iteration) and the
original one becomes the temporary space on which the update is going to be

5.4. MPI GRAPHICS AND PROCESS VISUALIZATION 273

calculated. This is done without any data copying. Instead we merely reassign
the pointers.

Having finished with all the requested iterations, function life estimates
time spent on the whole operation and returns it to the calling program:

/* Return the average time taken/processor */

slavetime = MPI_Wtime() - starttime;

MPI_Reduce (&slavetime, &totaltime, 1, MPI_DOUBLE, MPI_SUM, 0, comm);

return (totaltime/(double)size);}

5.4.3 Exercises

1 Rewrite program life_g to make use of MPI functions discussed in section
5.2.5 that talked about the diffusion program.

2 Rewrite program (1) so that the whole matrix is laid out onto a 2-dimensional
grid of processes.

3 Rewrite program (2) to dump the whole matrix onto an MPI file at the end
of its execution.

4 Rewrite program (3) to read the initial data from an MPI file if such a request
is made on the command line. Otherwise the program should initialize the
matrix as before.

274 CHAPTER 5. MPI AND MPI-IO

Chapter 6

The Assignment

The starting point for the assignment is the program you have developed in
exercise 4 in section 5.4.3. But this time the computation is going to be a little
different.

1. Assume both matrix and temp to be real, not integer.

2. Let every term of temp be constructed simply as follows:

temp[i][j] = 0.25 * (matrix[i-1][j] + matrix[i+1][j] +

matrix[i][j-1] + matrix[i][j+1]);

3. Assume that the boundary conditions for the whole region, are fixed, i.e.,
they do not change throughout the computation. You will have to make
sure that you don’t overwrite them accidentally. Assume 500.0 on the left
boundary and 0.0 on the remaining three boundaries of the region.

4. The colours provided by MPE vary between MPE_WHITE = 0 and MPE_GRAY = 15.
Display the values of matrix in such a way that 500.0 corresponds to 15
and 0.0 corresponds to 0. Ensure that you don’t stray beyond 15 or be-
yond 0 and that the colour values are indeed integers, otherwise MPE will
throw an error.

5. Add timing to the program, as discussed in section 4.4. Measure the time
used for computation and for generation of the data file. Develop the
logic of the program so that it takes time allocated to the run from the
environment or from the command line and that it dumps the checkpoint
file and the log file before its time runs out. The program should log
whether the computation has been completed or if it needs to be continued.
The computation will be completed when the largest difference between
temp[i][j] and matrix[i][j] for the whole computational region is less
than ǫ, the value of which should be obtained from the command line or
from the environment.

275

276 CHAPTER 6. THE ASSIGNMENT

6. Develop a PBS script that is going to submit and resubmit the run until
the computation has been completed.

7. Test all functions developed above carefully. Provide a man page for the
program describing all its features, possible bugs, command line argu-
ments, etc. Provide a README file that describes in detail the compilation
and installation of the program.

8. The program itself should be meticulously commented so that its reader
can understand your every step.

The assignment should be completed no later than by the 19th of December.

Method of Delivery The program, its man page, the corresponding PBS scripts,
and a README file that describes the whole lot, providing explanations
about how to compile, install and run the program – interactively and un-
der PBS – should be placed in a selected directory in your AVIDD $HOME.
You should then e-mail the location of the directory to me, so that I can
go there and check your work.

Once you have laboured enough on this assignment, you may wish to look
at how this program can be written in High Performance Fortran. Connect to
http://beige.ucs.indiana.edu/P573/node113.html. You will see there that the
whole computation, which is carried out in parallel, is captured on the mere 6
lines of the following loop:

do i = 1, iterations

where (mask)

field = (eoshift(field, 1, dim=1) + eoshift(field, -1, dim=1) &

+ eoshift(field, 1, dim=2) + eoshift(field, -1, dim=2)) * 0.25

end where

end do

Additional Comments Pointers and arrays are not the same in C, even
though they are often treated as the same, yet, this usually leads to
problems. Furthermore, multidimensional arrays in C are really arrays
of arrays. Consider the following code taken from life_g.c:

int **matrix, **temp, **addr ;

...

matrix = (int **)malloc(sizeof(int *)*(mysize+2)) ;

temp = (int **)malloc(sizeof(int *)*(mysize+2)) ;

for (i = 0; i < mysize+2; i++) {

matrix[i] = (int *)malloc(sizeof(int)*(matrix_size+2)) ;

temp[i] = (int *)malloc(sizeof(int)*(matrix_size+2)) ;

}

Observe that for every matrix[i] we call a separate malloc here. This
means that you cannot assume that the data pointed to by matrix is going
to be laid out in the computer’s memory contiguously. Consequently, if
you then attempt to describe it to MPI in terms of a stride and some
matrix geometry, thinking of matrix as an array of rank 2, your description
will not match the reality and when MPI attempts to retrieve data based

277

on this description, it’ll get the wrong data from the wrong locations and
it will write it on wrong locations too. You may even end up crashing the
process, if you attempt the write.

This, however, is not the case for statically declared and defined arrays.
If you define:

double matrix[500][500];

then the compiler will create a contiguous space for the 500×500 doubles –
then only columns will be columns, and the “distance” between the rows,
i.e., the stride, will be the same for every pair of adjacent rows.

Although GNU and other antiquated C compilers may fail
on large statically allocated arrays with segmentation fault,
this should not happen if you use the Intel compiler. The MPI
software installed in my $HOME is compiled using the Intel com-
piler.

How then can you create an array of rank 2 or higher dynamically, so that
all the data in the array is laid out contiguously – the same way it is going
to happen for a statically declared array? The answer is you cannot do
this in C. C is not a good language for working with multidimensional
arrays. Instead you have to malloc a single array of rank 1, i.e., a long
vector and then design your own pointer arithmetic for it, so that a pair
of indexes, [i][j], will translate into, say, i * NCOL + j.

278 CHAPTER 6. THE ASSIGNMENT

Chapter 7

HDF5

7.1 Introduction

HDF stands for “Hierarchical Data Format”. It is a library of functions that
let you structure your data files. The library provides functions for writing
and reading HDF files and there are also stand-alone utilities for viewing them,
analyzing them, for converting GIF images to HDF5 images and for compilation
and linking of programs that use HDF.

The version of HDF we are going to work with is HDF5. Although con-
ceptually very similar to HDF4, HDF5 is quite different. HDF5 functions have
different names, the file format is different, the data model is different, and,
most importantly for us, HDF5 binds to MPI-IO so that you can write HDF5
files from MPI programs in parallel.

At the time of this writing HDF5 is not installed on the AVIDD
cluster officially yet. I have it currently in my home directory and
you will have to put /N/B/gustav/bin in front of your command
search PATH and /N/B/gustav/lib in front of your library search
path, in order to run HDF5 examples. The reason for this is that
there are still some problems with parallel HDF5 files and I want
to have these resolved with NCSA folks before I tell AVIDD admin-
istrators that HDF5 is ready to install. But we are going to work
with sequential HDF5 initially, so these problems should not affect
us. And by the time we get to the parallel IO part, they may well
be fixed.

HDF5 is a relatively new product. I’ve been told that its parallel component
has not been tested on IA32 yet (so we may as well be the first to use it). But
conceptually HDF5 goes back to 1998, when HDF4 developers got a grant to
develop HDF further in order to address shortcomings of HDF4 and to make
HDF work with MPI-IO. Since its early release in 1998, HDF5 has been used
in numerous software packages such as Cactus, Chombo, Flash, Swarm, Vis5D,

279

280 CHAPTER 7. HDF5

Intel Array Visualizer, LabVIEW, and some others. HDF5 is also used by some
90 organizations or so, which is a lot for a highly specialized software package
of this type.

HDF development was paid for by the Department of Defense, the Depart-
ment of Energy, NASA, Hughes Information Technology Corporation, Microsoft,
NSF, Phillips Petroleum, the State of Illinois, Boeing, NCSA, and other part-
ners. It was developed in Urbana-Champaign by researchers associated with
NCSA. The current head of the project is Michael J. Folk, mfolk@ncsa.uiuc.edu,
but if you have any queries regarding HDF5 you should send mail to HDF User

Support at NCSA, hdfhelp@ncsa.uiuc.edu, since HDF problems are now han-
dled by the whole army of programmers. Naturally, within this course, I590,
you should probably contact me first, and if I can’t answer your question, we
will then go to NCSA.

NCSA provides quite nice on-line documentation that covers HDF5. The
central point of it is http://hdf.ncsa.uiuc.edu/HDF5/, from where you can go
to

• the Tutorial, http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/,

• User’s Guide http://hdf.ncsa.uiuc.edu/HDF5/doc/UG/,

• Reference Manual http://hdf.ncsa.uiuc.edu/HDF5/doc/RM H5Front.html,

• Frequently Asked Questions, http://hdf.ncsa.uiuc.edu/HDF5-FAQ.html

and other documents.

7.2 Structured versus Flat Files

An HDF5 file can be thought of as a directory tree within a file, the leaves of
which are datasets or images.

This is a little similar to AFS filesets, which are also implemented as UFS
files. Each AFS filesets is a whole lightweight file system, with directories and
individual AFS files, but physically it is implemented as a single UFS file. But
whereas AFS couples to the kernel, so that you can go to an AFS fileset and use
the standard UNIX ls command (or Windows dir) to view the directory of an
AFS fileset, HDF5 is implemented on the application level. Consequently, you
have to use HDF5 utilities or HDF5 library calls in order to view what’s inside
HDF5 files.

HDF5 directories are called groups . As is the case with directories, HDF5
groups can contain other groups as well as datasets (in the UNIX world we
would think of a dataset as a non-directory file).

If you have ever worked closely with the old Macintosh operating system
(pre MacOSX), you may remember that Macintosh files comprised two forks.
To each file there was a data fork and an annotation fork. Similarly, each HDF5
dataset may contain data as well as attributes. Attributes are annotations.

7.2. STRUCTURED VERSUS FLAT FILES 281

They can be used to provide additional information about the data, e.g., units,
or when and where the data was collected.

Here is a conceptual picture of a small HDF5 file:

HDF5 "dset.h5" {

GROUP "/" {

DATASET "dset" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (4, 6) / (4, 6) }

DATA {

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24

}

ATTRIBUTE "Units" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (2) / (2) }

DATA {

100, 200

}

}

}

}

}

The file is called dsetf.h5. The top level group in each HDF5 file is called
"/". This is much the same as the top level directory in UNIX. In this case this
group has no sub-groups, i.e., there are no subdirectories here. But we have
one dataset, whose full pathname is "/dset", which comprises four items (or
“forks”). The first item specifies the type of the data. HDF5 introduces its own
typing, much like MPI, so that you can write data in a portable format. If you
were to write an HDF5 file on a PC, and then take it to, e.g., a Cray-X1, you
should be able to read it with HDF5 utilities or programs without any loss of
data. The type of the data written on this dataset is H5T_STD_I32BE, which
stands for a 32-bit big-endian integer. The second item specifies the size of the
data space. It says that the data is written as a simple 4 × 6 matrix, with
one data item per one slot. Then we have the data itself, which is the third
item, and finally the attribute. The attribute itself is basically a small dataset,
structured the same way as the dataset it describes. It has a datatype field, a
dataspace field and then the data itself. In this case the data comprises two
integers, but more often you would store a string there that would describe the
data the attribute is attached to.

Now, you should not think that the data is written on the HDF5 file exactly
as shown in the conceptual listing above. If you tried to just view the content
of the HDF5 file with cat or type, all you’d see would be binary junk. You
would not get much further with od either.

Here is another conceptual example of an HDF file:

HDF5 "groups.h5" {

GROUP "/" {

GROUP "MyGroup" {

GROUP "Group_A" {

282 CHAPTER 7. HDF5

DATASET "dset2" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (2, 10) / (2, 10) }

DATA {

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

}

}

}

GROUP "Group_B" {

}

DATASET "dset1" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (3, 3) / (3, 3) }

DATA {

1, 2, 3,

1, 2, 3,

1, 2, 3

}

}

}

}

}

This file comprises the following groups (directories):

• /

• /MyGroup, which contains the dataset /MyGroup/dset1

• /MyGroup/GroupA, which contains the dataset /MyGroup/GroupA/dset2

• /MyGroup/GroupB, which is empty

Because /MyGroup contains /MyGroup/GroupA,which, in turn, contains /MyGroup/GroupA/dset2,
you could also say that /MyGroup contains dset2 too.

Now let me show you how you what you are going to see if you view this
file with some of the HDF5 tools. The name of the file is groups.h5 and the
name of the tool I am going to use is h5ls. It can be used, like UNIX ls to view
the directory of the HDF5 file, but also, unlike ls to view the contents of the
datasets.

There is no man entry provided with h5ls, but if you invoke it with any of
the -h, -? or --help options, you’ll get a brief synopsis:

gustav@bh1 $ h5ls --help

usage: h5ls [OPTIONS] [OBJECTS...]

OPTIONS

-h, -?, --help Print a usage message and exit

-a, --address Print addresses for raw data

-d, --data Print the values of datasets

-e, --errors Show all HDF5 error reporting

-f, --full Print full path names instead of base names

-g, --group Show information about a group, not its contents

-l, --label Label members of compound datasets

-r, --recursive List all groups recursively, avoiding cycles

-s, --string Print 1-byte integer datasets as ASCII

7.2. STRUCTURED VERSUS FLAT FILES 283

-S, --simple Use a machine-readable output format

-wN, --width=N Set the number of columns of output

-v, --verbose Generate more verbose output

-V, --version Print version number and exit

-x, --hexdump Show raw data in hexadecimal format

OBJECTS

Each object consists of an HDF5 file name optionally followed by a

slash and an object name within the file (if no object is specified

within the file then the contents of the root group are displayed).

The file name may include a printf(3C) integer format such as

"%05d" to open a file family.

gustav@bh1 $

So let us just try h5ls groups.h5 first:

gustav@bh1 $ h5ls groups.h5

MyGroup Group

gustav@bh1 $

Well, the program says that there is one group there, at the top, called MyGroup.
We can see all groups though with the recursive listing, much the same as you
would invoke ls -R in order to a content of the whole directory tree:

gustav@bh1 $ h5ls -r groups.h5

/MyGroup Group

/MyGroup/Group_A Group

/MyGroup/Group_A/dset2 Dataset {2, 10}

/MyGroup/Group_B Group

/MyGroup/dset1 Dataset {3, 3}

gustav@bh1 $

You can view the content of any selected dataset within the HDF5 file by using
the -d switch and passing the full name of the datset to h5ls as follows:

gustav@bh1 $ h5ls -d groups.h5/MyGroup/Group_A/dset2

MyGroup/Group_A/dset2 Dataset {2, 10}

Data:

(0,0) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

gustav@bh1 $

The data is not listed as a matrix, but you are informed about it being a matrix
by the formatting statement Dataset {2, 10}.

The -v switch, which stands for --verbose, gives us much more information:

gustav@bh1 $ h5ls -v -r groups.h5

Opened "groups.h5" with sec2 driver.

/MyGroup Group

Location: 0:1:0:1576

Links: 1

/MyGroup/Group_A Group

Location: 0:1:0:2552

Links: 1

/MyGroup/Group_A/dset2 Dataset {2/2, 10/10}

Location: 0:1:0:5896

Links: 1

Modified: 2003-11-10 14:21:40 EST

Storage: 80 logical bytes, 80 allocated bytes, 100.00% utilization

Type: 32-bit big-endian integer

284 CHAPTER 7. HDF5

/MyGroup/Group_B Group

Location: 0:1:0:3528

Links: 1

/MyGroup/dset1 Dataset {3/3, 3/3}

Location: 0:1:0:5624

Links: 1

Modified: 2003-11-10 14:21:40 EST

Storage: 36 logical bytes, 36 allocated bytes, 100.00% utilization

Type: 32-bit big-endian integer

gustav@bh1 $

Here we find not only what is the location of each item within the HDF5 file,
but even when each of the items was modified and how each dataset utilizes the
space that has been allocated to it. In HDF5 you allocate a space for a dataset
separately, and the dataset does not have to use all of it. But in this case the
datasets fill the space that’s been allocated to them entirely.

Program h5dump can be used to view the whole file displayed in the same
way as I have done above at the beginning of this section:

gustav@bh1 $ h5dump dset.h5

HDF5 "dset.h5" {

GROUP "/" {

DATASET "dset" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (4, 6) / (4, 6) }

DATA {

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24

}

ATTRIBUTE "Units" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (2) / (2) }

DATA {

100, 200

}

}

}

}

}

gustav@bh1 $

This kind of notation, which is quite similar to the way you structure C and
C++ programs, is called the Data Description Language, or DDL for short. The
language can be formalized, using, e.g., Backus-Naur Form, but I’ll stay away
from it, because DDL is intuitive enough to be easily understandable without
formalizing. But h5dump can dump your HDF5 data in other formats too. For
example, if you use the -x switch, the content of the file will be dumped in XML.
XML description though is horribly verbose and far from being as intuitive and
clear as DDL.

Instead of dumping the whole HDF5, you can dump only a select object.
For example:

gustav@bh1 $ h5dump -a /dset/Units dset.h5

7.2. STRUCTURED VERSUS FLAT FILES 285

HDF5 "dset.h5" {

ATTRIBUTE "/dset/Units" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (2) / (2) }

DATA {

100, 200

}

}

}

gustav@bh1 $

This command lists the selected attribute, in this case /dset/Units, associated
with the dataset /dset. A single data set can have several attributes with
different names associated with it.

Calling h5dump with the --help option, invokes the brief description of the
utility with all options listed and explained.

Now, once you know what structured files are, let us go back to the basic
question of this section: “Structured versus Flat Files”. Why should we bother
about structured files if we can always structure our data using the directory
tree itself? After all, instead of writing various datsets on various parts of a
structured HDF5 file, we could accomplish much the same by writing them on
various files, possibly located in various directories. We could write separate
files containing attributes and so on. In other words, we could simply take the
whole structure of an HDF5 file out and lay it on top of a file system. Doesn’t
an HDF5 file immitate a file system internally? This, after all, is what most
scientists do anyway.

The answer is portability, portability seen in two ways. First, portability
from a researcher to a researcher. If you have your data organized in a directory
tree, in order to exchange it with other researchers, you have to send them the
whole tree – presumably collated into a single file, e.g., a tar archive. But tar
is an operating system dependent utility. tar implies UNIX and when the files
get unpacked on, e.g., a Windows system or a VMS system or an MVS system
or some other equally exotic system, they may not come out right. The data, if
written in a small-endian fashion, may get all scrambled if a tar file is unpacked
on a big-endian system. The annotations may get all lost. File names may get
corrupted. Sometimes even the directory structure may get altered and lost too.
Some systems may not allow as deep a directory nesting as other systems. So
this brings us right to the issue of portability between operating systems and
machine architectures.

HDF5 structured files, by bringing the structure into the file itself, release
us from the dependence on the file system and on the operating system. By
providing us with machine independent formats for data they release us from
the dependence on the machine’s architecture and hardware.

By letting us put all the data, annotations, and structuring into a single file,
HDF5 helps us manage the data too. If you have a lot of data scattered over a
huge directory, it’s quite easy to get things wrong and either corrupt the data
by renaming files incorrectly or placing them in the wrong directories, or even
lose it by overwriting a file accidentally.

286 CHAPTER 7. HDF5

Last, but not least, traversing a directory tree and dealing with a large
number of files from within your application, can be expensive.

If you can replace it all with a single file that has all the required structuring,
annotations and data inside, your life as a programmer and maintainer may get
quite a lot easier. At the end of the day, you may think of HDF5 files as small
data bases. They are, sort of, right in between, where a single flat file is too
primitive for handling your problem, and where a fully blown data base would
be an overkill.

7.3 Creating and Structuring HDF5 Files

HDF5 files are handled in a way that is quite similar to directories. If you want
to create a file in a directory, you must create the directory first. Similarly, if
you want to create a dataset in an HDF5 group, you must create the group first.
But before you can create the group, you must create the HDF5 file itself. The
latter corresponds to the creation of a file system. When you create an HDF5
file, the top level group, "/", is created automatically too. So this means that
an HDF5 file is never empty, there is at least one group in it. And this, again,
is much like the story with the file system. A file system is never empty either.
There is always, at least, a top level directory in it.

Once you have created an HDF5 file, you can close it and go away. This is
the same as with creating a file system. Once you have created it, you don’t
have to write on it right away. You can go home and write on it tomorrow, in
the full knowledge that it won’t go away in the meantime.

All example programs in this section are taken from the NCSA Tutorial.

7.3.1 HDF5 File Creation

The first program we are going to look at does just this: it creates an HDF5
file, then closes it and goes away. The file is largely empty, meaning that there
is going to be the top level group in it, but nothing else. We are going to add
more structure to it later.

Here is the program:

/*

* Creating and closing a file.

*/

#include "hdf5.h"

#define FILE "file.h5"

main() {

hid_t file_id; /* file identifier */

herr_t status;

/* Create a new file using default properties. */

file_id = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

7.3. CREATING AND STRUCTURING HDF5 FILES 287

/* Terminate access to the file. */

status = H5Fclose(file_id);

}

Now I am going to compile and run this program:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/HDF5

gustav@bh1 $ which h5cc

/N/B/gustav/bin/h5cc

gustav@bh1 $ h5cc -o h5_crtfile h5_crtfile.c

gustav@bh1 $./h5_crtfile

gustav@bh1 $

The program executes quietly and creates file file.h5 in the working directory.
Let us have a look at it with h5dump:

gustav@bh1 $ h5dump file.h5

HDF5 "file.h5" {

GROUP "/" {

}

}

gustav@bh1 $

Well, there is the top level group in it and nothing more.
Function H5Fcreate creates an HDF5 file. It belongs to the class of File API

Functions . All functions in this class have names that begin with H5F. You will
learn about other classes soon enough. The third letter in an HDF5 function
name always indicates the class the function belongs to.

Function H5Fcreate takes four arguments. The first one is the string that
corresponds to the file’s name. The second argument is a flag that specifies how
the file should be created. There are two flags you can use in this place:

H5F ACC TRUNC which specifies that if you are trying to create a file that
exists already, the existing file will be truncated, i.e., all data stored on
the original file will be erased;

H5F ACC EXCL which specifies that if you are trying to create a file that
exists already, the function should return error. The error is returned as
a negative integer, otherwise the function returns a file identifier , which,
technically, is a positive integer.

The third argument is the file creation property list and the fourth argument is
the file access property list . We’ll talk about the property lists later and in the
meantime we are going to use the default indicator H5P_DEFAULT.

The file identifier is an opaque variable of type hid_t, which is defined on
H5Ipublic.h to be a signed integer, so this is why you can use it at the same
time for an error indicator. If H5Fcreate fails for whatever reason, the value of
the identifier returned is going to be negative.

The file creation operation opens the newly created file at the same time.
The file is now available for further operations on it.

Having created the file we close it with the call to H5Fclose. This call just
takes the file identifier, previously returned by the call to H5Fcreate, as its sole

288 CHAPTER 7. HDF5

argument and returns the status of the operation on status, which is a variable
of type herr_t, defined on H5public.h as a signed integer. It is negative in
case an error has been detected and positive otherwise.

7.3.2 HDF5 Datasets

In this example we are going to do more than just create an empty HDF5 file.
We are going to create a file and then we are going to create a dataset within
its top level group. But we are still going to postpone filling the dataset with
any data. The file system equivalent of this operation is to create an empty file
in, say, a top level directory of some file system, and then fill the file with nulls,
just so as to reserve sufficient space for the file itself.

Here is the program:

/*

* Creating and closing a dataset.

*/

#include "hdf5.h"

#define FILE "dset.h5"

main() {

hid_t file_id, dataset_id, dataspace_id; /* identifiers */

hsize_t dims[2];

herr_t status;

/* Create a new file using default properties. */

file_id = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Create the data space for the dataset. */

dims[0] = 4;

dims[1] = 6;

dataspace_id = H5Screate_simple(2, dims, NULL);

/* Create the dataset. */

dataset_id = H5Dcreate(file_id, "/dset", H5T_STD_I32BE, dataspace_id, H5P_DEFAULT);

/* End access to the dataset and release resources used by it. */

status = H5Dclose(dataset_id);

/* Terminate access to the data space. */

status = H5Sclose(dataspace_id);

/* Close the file. */

status = H5Fclose(file_id);

}

And here is how the program is compiled, linked, and run:

gustav@bh1 $ h5cc -o h5_crtdat h5_crtdat.c

gustav@bh1 $./h5_crtdat

gustav@bh1 $ ls

dset.h5 h5_crtdat h5_crtdat.o h5_crtfile.c

file.h5 h5_crtdat.c h5_crtfile h5_crtfile.o

gustav@bh1 $

7.3. CREATING AND STRUCTURING HDF5 FILES 289

The program executes silently, but here you can again see that a new HDF5 file
has been created, dset.h5. To see what’s inside it use h5dump:

gustav@bh1 $ h5dump dset.h5

HDF5 "dset.h5" {

GROUP "/" {

DATASET "dset" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (4, 6) / (4, 6) }

DATA {

0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0

}

}

}

}

gustav@bh1 $

So this program indeed created a file and then it created an empty fileset within
it.

Let us have a look at the program.
After we have created the file itself with the call to H5Fcreate:

file_id = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

we are going to create first the space for the dataset. Functions that manipulate
space that is then going to be allocated to datasets or attributes, all have their
names beginning with H5S. The third letter, S, stands for space. The specific
function we are going to call here is H5Screate simple

dims[0] = 4;

dims[1] = 6;

dataspace_id = H5Screate_simple(2, dims, NULL);

It creates the so called simple space. When is the data space simple? If the
data corresponds to a regular N -dimensional array of data points, e.g., data
on a regular rectangular grid, then the corresponding data space is simple,
otherwise it is called complex . So data on irregular grids, resulting from dynamic
refinement of meshes, must be written on complex data spaces.

Function H5Screate_simple takes three arguments. The first argument is
the rank of the array. In our case we are going to create space for an array of
rank 2, i.e., a 2-dimensional matrix. The second argument is an array of length
given by the first argument, whose entries specify the length of the matrix in
each dimension. In our case we are going to have a 4 × 6 matrix filled with
integers, so the second argument is [4,6].

Now the third argument would be used if we wanted to create a data space
that could be stretched if, e.g., we wanted to fill the dataset with more data
than originally intended. We can specify here up to how much the space can
be stretched, e.g., up to the size of [400,600], or we could place no lim-
its at all on its stretchability, in which case the third argument would be
[H5S_UNLIMITED,H5S_UNLIMITED]. If the third array is NULL, as is the case
in this example, the generated data space is not-stretchable.

290 CHAPTER 7. HDF5

Arrays used in place of the second and third argument of H5Screate_simple
are of type hsize_t *, where hsize_t is defined on H5public.h to be size_t,
which on the AVIDD system defaults to a 32-bit integer.

Function H5Screate_simple returns a dataset identifier, which is of the same
type as a file identifier and other identifiers returned by other HDF5 function,
i.e., hid_t.

Having created the space for the dataset, we are now ready to create the
dataset itself. The dataset is created within the pre-allocated space by calling
function H5Dcreate:

dataset_id = H5Dcreate(file_id, "/dset", H5T_STD_I32BE, dataspace_id, H5P_DEFAULT);

All functions that operate on datasets have their names beginning with H5D,
where D stands for dataset. Function H5Dcreate takes five arguments:

• The first argument is the file identifier – but here we can also use the
group identifier, if we have it.

• The second argument is the name of the dataset to be created - here we
use the full pathname of the dataset. If we used the group identifier in
the first argument, we could use the relative name of the dataset in the
second argument. It would be relative to the group specified by the first
argument.

• The third argument is the datatype to use when creating the dataset.
HDF5 supports various portable and non-portable, i.e., native datatypes
here. In this case we use the portable H5T_STD_I32BE, 32-bit big-endian
integer.

• The fourth argument is the dataspace identifier. In order to create a
dataset, we must have the dataspace in which to create it. Now, observe
that the dataset itself is created outside of the file. We did not have to use
either a file identifier or a group identifier in our call to create the data
space. The data space is a device through which we format the data in
the dataset itself.

• Finally, the last argument is the dataset creation property list . Here we
don’t specify any such list relying on a default, H5P_DEFAULT, instead.

Having created the dataset, we are now going to close it. This is like closing
a file in a directory tree:

status = H5Dclose(dataset_id);

Function H5Dclose takes just one argument, the dataset identifier. Then we
have to close the data space:

status = H5Sclose(dataspace_id);

Here the function H5Sclose also takes just one argument, namely the data space
identifier. And finally we close the file itself:

status = H5Fclose(file_id);

So this is how it all works. But. . . we still haven’t filled the data set with
any data. It’s been merely created and sized, but it’s filled with zeros. We are
going to write real data on it in the next section.

7.3. CREATING AND STRUCTURING HDF5 FILES 291

7.3.3 Writing On and Reading From HDF5 Datasets

In this example we are going to write data on the dataset created in the previous
section. This time we are not going to create the file and the dataset again,
because they are already there. Instead we are going to open them. Then we’ll
write on the dataset and then we’ll read the data back and then we’ll close the
dataset and the file.

Here’s the program:

/*

* Writing and reading an existing dataset.

*/

#include "hdf5.h"

#define FILE "dset.h5"

main() {

hid_t file_id, dataset_id; /* identifiers */

herr_t status;

int i, j, dset_data[4][6];

/* Initialize the dataset. */

for (i = 0; i < 4; i++)

for (j = 0; j < 6; j++)

dset_data[i][j] = i * 6 + j + 1;

/* Open an existing file. */

file_id = H5Fopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

/* Open an existing dataset. */

dataset_id = H5Dopen(file_id, "/dset");

/* Write the dataset. */

status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,

dset_data);

status = H5Dread(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,

dset_data);

/* Close the dataset. */

status = H5Dclose(dataset_id);

/* Close the file. */

status = H5Fclose(file_id);

}

Let me compile the program first:

gustav@bh1 $ h5cc -o h5_rdwt h5_rdwt.c

gustav@bh1 $

Now I am going to run it, but before I do I’m going to show you what’s on
the file dset.h5 and then I’m going to show you again what’s in it after the
program has completed its execution:

gustav@bh1 $ h5dump dset.h5

HDF5 "dset.h5" {

292 CHAPTER 7. HDF5

GROUP "/" {

DATASET "dset" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (4, 6) / (4, 6) }

DATA {

0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0

}

}

}

}

gustav@bh1 $./h5_rdwt

gustav@bh1 $ h5dump dset.h5

HDF5 "dset.h5" {

GROUP "/" {

DATASET "dset" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (4, 6) / (4, 6) }

DATA {

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24

}

}

}

}

gustav@bh1 $

Well, we have indeed written the data on the dataset – without corrupting the
rest of the file in the process.

So, how it’s done.
The program begins with filling the two dimensional array with data:

for (i = 0; i < 4; i++)

for (j = 0; j < 6; j++)

dset_data[i][j] = i * 6 + j + 1;

Then we open the file by calling function H5Fopen:

file_id = H5Fopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

By now you can already tell that this is a file manipulation function, because
its name begins with HDF5. The function takes three arguments:

• The first argument is the name of the HDF5 file to be opened.

• The second argument is a file access flag. There are two flags you can use
in this case:

H5F ACC RDWR which says that the file is to be opened for reading
and writing;

H5F ACC RDONLY which says that the file is to be opened for read-
ing only.

7.3. CREATING AND STRUCTURING HDF5 FILES 293

• The third argument is the file access property list , and, as before, we are
going to use the default list given by H5P_DEFAULT.

So we have opened the file. Now we have to open the dataset:

dataset_id = H5Dopen(file_id, "/dset");

Function H5Dopen opens an existing dataset. The first argument is the file
identifier and the second argument is the full pathname of the dataset. But you
can also use a group identifier in the place of the first argument, if you have it,
in which case the second argument would be the name of the fileset in relation
to the group. In this case, it would not have the preceding slash.

Once we have opened the dataset, we can write on it. We do this by calling
function H5Dwrite:

status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,

dset_data);

which takes the following arguments:

• The first argument is the dataset identifier.

• The second argument informs HDF about the format of data in the mem-
ory of the computer. The way that the data is going to be written on the
fileset has been specified when the fileset was created. HDF5 libraries will
perform required conversions. Normally the format of the data in memory
is native, unless you have specifically changed it, which can, of course, be
done. So here we say H5T_NATIVE_INT.

• The third argument is the identifier of the memory dataspace. Specifying
H5S_ALL in this slot means that the whole memory dataspace will be used
for the IO operation.

• The fourth argument is the file space identifier. Specifying H5S_ALL in this
slot means that the whole file dataspace will be used for the IO operation.

• The fifth argument is the data transfer property list and we use just a
default list given by H5P_DEFAULT.

• Finally the last argument is the pointer to the data array itself.

Function H5Dwrite returns an integer, which is negative if the operation has
failed for some reason.

The next step is to read the data back:

status = H5Dread(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,

dset_data);

The arguments of function H5Dread here are exactly the same as for H5Dwrite:
the operation is entirely symmetric with respect to the latter, which is rather
nice. The reason why this can be done this way is because the datasets here are
pre-sized. The reading is the same as writing in reverse.

Having finished with the dataset we have to close it first:

status = H5Dclose(dataset_id);

and then we close the file:

status = H5Fclose(file_id);

294 CHAPTER 7. HDF5

Exercise

1 Modify the program discussed in the previous section to verify that the data
read from the file is indeed the same as the data written on it.

7.3.4 HDF5 Attributes

In this section we are going to annotate the dataset with an attribute. At-
tributes, as remarked earlier, are really small datasets. But they have their
own functions for attribute creation, writing, reading and closing. Here is the
example program, which illustrates how to use these functions.

/*

* Creating a dataset attribute.

*/

#include "hdf5.h"

#define FILE "dset.h5"

main() {

hid_t file_id, dataset_id, attribute_id, dataspace_id; /* identifiers */

hsize_t dims;

int attr_data[2];

herr_t status;

/* Initialize the attribute data. */

attr_data[0] = 100;

attr_data[1] = 200;

/* Open an existing file. */

file_id = H5Fopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

/* Open an existing dataset. */

dataset_id = H5Dopen(file_id, "/dset");

/* Create the data space for the attribute. */

dims = 2;

dataspace_id = H5Screate_simple(1, &dims, NULL);

/* Create a dataset attribute. */

attribute_id = H5Acreate(dataset_id, "Units", H5T_STD_I32BE, dataspace_id, H5P_DEFAULT);

/* Write the attribute data. */

status = H5Awrite(attribute_id, H5T_NATIVE_INT, attr_data);

/* Close the attribute. */

status = H5Aclose(attribute_id);

/* Close the dataspace. */

status = H5Sclose(dataspace_id);

/* Close to the dataset. */

status = H5Dclose(dataset_id);

/* Close the file. */

status = H5Fclose(file_id);

7.3. CREATING AND STRUCTURING HDF5 FILES 295

}

The program is compiled with h5cc:

gustav@bh1 $ h5cc -o h5_crtatt h5_crtatt.c

gustav@bh1 $

And now let me show you that it indeed adds an attribute to the dataset:

gustav@bh1 $ h5dump dset.h5

HDF5 "dset.h5" {

GROUP "/" {

DATASET "dset" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (4, 6) / (4, 6) }

DATA {

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24

}

}

}

}

gustav@bh1 $./h5_crtatt

gustav@bh1 $ h5dump dset.h5

HDF5 "dset.h5" {

GROUP "/" {

DATASET "dset" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (4, 6) / (4, 6) }

DATA {

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24

}

ATTRIBUTE "Units" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (2) / (2) }

DATA {

100, 200

}

}

}

}

}

gustav@bh1 $

So, it works then.
The program begins with the initialization of the attribute data array:

attr_data[0] = 100;

attr_data[1] = 200;

Then we open the file and the dataset as before. Next we create the dataspace
for the attribute, and this works exactly the same way as for the datasets:

dims = 2;

dataspace_id = H5Screate_simple(1, &dims, NULL);

296 CHAPTER 7. HDF5

and finally we create the attribute itself:

attribute_id = H5Acreate(dataset_id, "Units", H5T_STD_I32BE, dataspace_id, H5P_DEFAULT);

Function H5Acreate belongs to the family of functions for manipulations of
attributes. Their names begin with H5A, where A stands for attribute. The
function takes the following arguments:

• The first argument is the identifier of the dataset the attribute is going to
be associated with. This argument can be also a group identifier, in which
case the attribute will be associated with the group.

• The second argument is the name of the attribute.

• The third argument is the type of data in the attribute. Here we are going
to write two integers in the 32-bit big-endian format.

• The fourth argument is the dataspace identifier.

• And the last argument is the attribute creation property list , which we are
going to replace with the default H5P_DEFAULT.

Observe that these parameters are exactly the same as the parameters used
by H5Dcreate, but you must not use the latter function here. Attributes are
attributes and datasets are datasets. HDF5 is fussy about this.

Once we have created the attribute we are going to fill it with data. This we
do by calling function H5Awrite, which is markedly simpler than H5Dwrite, this
is where the difference between datasets and attributes becomes more apparent:

status = H5Awrite(attribute_id, H5T_NATIVE_INT, attr_data);

This function takes just three arguments: the attribute identifier, the memory
data type and the data buffer itself. The memory data type is, of course, native,
and so HDF5 functions will have to perform the translation to the 32-bit big-
endian requested when the attribute was created.

Now we have to close the attribute by calling H5Aclose – it takes just one
argument, namely the attribute identifier, and the we close all other things we’ve
opened before, i.e., the dataspace, the dataset and the datafile itself:

/* Close the attribute. */

status = H5Aclose(attribute_id);

/* Close the dataspace. */

status = H5Sclose(dataspace_id);

/* Close to the dataset. */

status = H5Dclose(dataset_id);

/* Close the file. */

status = H5Fclose(file_id);

7.3. CREATING AND STRUCTURING HDF5 FILES 297

7.3.5 HDF5 Groups

In this section I am going to show you how to create additional HDF5 groups.
We are going to create groups:

/MyGroup

/MyGroup/Group_A

/MyGroup/Group_B

We will use the absolute pathname of the group in one case and a relative
pathname of the group in another.

Here is the code that does this. We are going to create a new file, groups.h5,
this time:

/*

* Creating groups using absolute and relative names.

*/

#include "hdf5.h"

#define FILE "groups.h5"

main() {

hid_t file_id, group1_id, group2_id, group3_id; /* identifiers */

herr_t status;

/* Create a new file using default properties. */

file_id = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Create group "MyGroup" in the root group using absolute name. */

group1_id = H5Gcreate(file_id, "/MyGroup", 0);

/* Create group "Group_A" in group "MyGroup" using absolute name. */

group2_id = H5Gcreate(file_id, "/MyGroup/Group_A", 0);

/* Create group "Group_B" in group "MyGroup" using relative name. */

group3_id = H5Gcreate(group1_id, "Group_B", 0);

/* Close groups. */

status = H5Gclose(group1_id);

status = H5Gclose(group2_id);

status = H5Gclose(group3_id);

/* Close the file. */

status = H5Fclose(file_id);

}

Here is how the binary is made and then how the program is run and then what
comes out of it:

gustav@bh1 $ h5cc -o h5_crtgrpar h5_crtgrpar.c

gustav@bh1 $./h5_crtgrpar

gustav@bh1 $ h5dump groups.h5

HDF5 "groups.h5" {

GROUP "/" {

GROUP "MyGroup" {

GROUP "Group_A" {

}

298 CHAPTER 7. HDF5

GROUP "Group_B" {

}

}

}

}

gustav@bh1 $

Creation of groups is easier than creation of datasets, because you don’t have to
bother with creating the dataspace. Function H5Gcreate belongs to the family
of functions for manipulation of HDF5 groups. Functions in this family have
names beginning with H5G.

Function H5Gcreate takes the following arguments:

• The first argument is the file or the group identifier.

• The second argument is the name of the new group. This name may be
absolute or relative. If you have used the group identifier for the first
argument, then you may define the name of the new group with respect
to the group within which it is going to be created. The code does it in
two ways. Compare:

group1_id = H5Gcreate(file_id, "/MyGroup", 0);

group2_id = H5Gcreate(file_id, "/MyGroup/Group_A", 0);

and

group3_id = H5Gcreate(group1_id, "Group_B", 0);

After the groups have been created, they have to be closed by calling H5Gclose.
This function takes the group identifier as the sole argument.

7.3.6 HDF5 Groups and Datasets

The example program in this section is a little longer, but it doesn’t really
introduce anything new, which is good. It is a summary example. We are going
to add some datasets to the file groups.h5 created in the previous section. The
dataset are going to be created within various groups too.

Here is the program:

/*

* Create two datasets within groups.

*/

#include "hdf5.h"

#define FILE "groups.h5"

main() {

hid_t file_id, group_id, dataset_id, dataspace_id; /* identifiers */

hsize_t dims[2];

herr_t status;

int i, j, dset1_data[3][3], dset2_data[2][10];

/* Initialize the first dataset. */

7.3. CREATING AND STRUCTURING HDF5 FILES 299

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

dset1_data[i][j] = j + 1;

/* Initialize the second dataset. */

for (i = 0; i < 2; i++)

for (j = 0; j < 10; j++)

dset2_data[i][j] = j + 1;

/* Open an existing file. */

file_id = H5Fopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

/* Create the data space for the first dataset. */

dims[0] = 3;

dims[1] = 3;

dataspace_id = H5Screate_simple(2, dims, NULL);

/* Create a dataset in group "MyGroup". */

dataset_id = H5Dcreate(file_id, "/MyGroup/dset1", H5T_STD_I32BE, dataspace_id,

H5P_DEFAULT);

/* Write the first dataset. */

status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,

dset1_data);

/* Close the data space for the first dataset. */

status = H5Sclose(dataspace_id);

/* Close the first dataset. */

status = H5Dclose(dataset_id);

/* Open an existing group of the specified file. */

group_id = H5Gopen(file_id, "/MyGroup/Group_A");

/* Create the data space for the second dataset. */

dims[0] = 2;

dims[1] = 10;

dataspace_id = H5Screate_simple(2, dims, NULL);

/* Create the second dataset in group "Group_A". */

dataset_id = H5Dcreate(group_id, "dset2", H5T_STD_I32BE, dataspace_id, H5P_DEFAULT);

/* Write the second dataset. */

status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,

dset2_data);

/* Close the data space for the second dataset. */

status = H5Sclose(dataspace_id);

/* Close the second dataset */

status = H5Dclose(dataset_id);

/* Close the group. */

status = H5Gclose(group_id);

/* Close the file. */

status = H5Fclose(file_id);

300 CHAPTER 7. HDF5

}

Now let me compile and then run the program. I will show what the file looks
like before and then after the program has completed its execution.

gustav@bh1 $ h5cc -o h5_crtgrpd h5_crtgrpd.c

gustav@bh1 $ h5dump groups.h5

HDF5 "groups.h5" {

GROUP "/" {

GROUP "MyGroup" {

GROUP "Group_A" {

}

GROUP "Group_B" {

}

}

}

}

gustav@bh1 $./h5_crtgrpd

gustav@bh1 $ h5dump groups.h5

HDF5 "groups.h5" {

GROUP "/" {

GROUP "MyGroup" {

GROUP "Group_A" {

DATASET "dset2" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (2, 10) / (2, 10) }

DATA {

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

}

}

}

GROUP "Group_B" {

}

DATASET "dset1" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (3, 3) / (3, 3) }

DATA {

1, 2, 3,

1, 2, 3,

1, 2, 3

}

}

}

}

}

gustav@bh1 $

The program begins by generating data for the two datasets that are going
to be created on groups.h5:

/* Initialize the first dataset. */

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

dset1_data[i][j] = j + 1;

/* Initialize the second dataset. */

for (i = 0; i < 2; i++)

for (j = 0; j < 10; j++)

7.3. CREATING AND STRUCTURING HDF5 FILES 301

dset2_data[i][j] = j + 1;

The HDF5 file is then opened and the dataspace is prepared for the first dataset:

/* Open an existing file. */

file_id = H5Fopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

/* Create the data space for the first dataset. */

dims[0] = 3;

dims[1] = 3;

dataspace_id = H5Screate_simple(2, dims, NULL);

The dataset is then created in the /MyGroup HDF5 group:

/* Create a dataset in group "MyGroup". */

dataset_id = H5Dcreate(file_id, "/MyGroup/dset1", H5T_STD_I32BE, dataspace_id,

H5P_DEFAULT);

/* Write the first dataset. */

status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,

dset1_data);

/* Close the data space for the first dataset. */

status = H5Sclose(dataspace_id);

/* Close the first dataset. */

status = H5Dclose(dataset_id);

The data itself is written, then the dataspace is closed first and then the dataset
itself is closed.

In order to create the second dataset we open the group /MyGroup/Group_A
first, because this is where we are going to create the dataset:

group_id = H5Gopen(file_id, "/MyGroup/Group_A");

Now we create the dataspace for the second dataset:

/* Create the data space for the second dataset. */

dims[0] = 2;

dims[1] = 10;

dataspace_id = H5Screate_simple(2, dims, NULL);

and create and write the dataset itself. Observe that this time we use the group
identifier for the first argument and the relative name of the dataset for the
second in the call to H5Dcreate:

/* Create the second dataset in group "Group_A". */

dataset_id = H5Dcreate(group_id, "dset2", H5T_STD_I32BE, dataspace_id, H5P_DEFAULT);

/* Write the second dataset. */

status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,

dset2_data);

Now we have to close the dataspace, the dataset, the group, and finally the file:

/* Close the data space for the second dataset. */

status = H5Sclose(dataspace_id);

/* Close the second dataset */

status = H5Dclose(dataset_id);

302 CHAPTER 7. HDF5

/* Close the group. */

status = H5Gclose(group_id);

/* Close the file. */

status = H5Fclose(file_id);

7.4 Property Lists

So far we have used a default property list, H5P_DEFAULT, wherever such was
required. Property lists are a lot more in HDF5 than just a decoration or the
means of tweaking I/O here and there. Numerous functions, including MPI-IO
based parallel IO are activated by the means of property lists. Semantically, the
device of a property list saves HDF5 developers from having to overload HDF5
functions with an excessive number of parameters, many of which may not be
normally used at all.

HDF5 property lists are opaque objects, which are manipulated by invoking
special functions only, and this is just as well, because it reduces the chance of
a programmer making a mistake.

Property lists are used to customize operations such as

• file creation

• accessing a file

• dataset creation

• dataset read/write

For every one of these operations HDF5 provides an operation specific default
property list, which can be then customized with various functions from the
H5P family (where “P” stands for Property). And so we have for:

file creation H5P_FILE_CREATE default property list;

accessing a file H5P_FILE_ACCESS default property list;

dataset creation H5P_DATASET_CREATE default property list;

dataset read/write H5P_DATASET_XFER default property list.

What sort of customizations can we ask for by modifying the default property
lists? You can see them all quickly, if you connect to http://hdf.ncsa.uiuc.edu/HDF5/doc/RM H5P.html.
You will find there:

• 9 functions for customizing file creation properties;

• 35 functions for customizing file access properties including 4 for interac-
tion with MPI;

• 24 functions for customizing dataset creation;

7.4. PROPERTY LISTS 303

• 23 functions for customizing dataset read/write including 2 for interaction
with MPI.

Now, roughly half of these functions are get functions, which just get you the
existing property of some type, and half are set functions, which set a specified
property in the list, so this whole property list business is not as intimidating
as it seems to be at first glance. But there is still a lot of hidden functionality
here.

Some specific properties that can be activated or de-activated are as follows:

file creation properties:

user block HDF5 may leave a block of certain size at the beginning of
the file, for the user to fill with whatever non-HDF5 data the user
wants.

byte size of offsets and lengths the byte sizes of offsets and lengths
on HDF5 files can be set to be 2, 4, 8 or 16. Normally you will
probably want them 8-bytes long, but they may default to 4-bytes
long on IA32 systems (e.g., AVIDD) – you may need to check this
and then correct.

sizing the symbol table HDF5 files contain directories (or groups) within,
organized hierarchically. This is done in a way that is similar to a
directory structure, i.e., there is a symbol table there, which is used
to look up a specific group or a dataset. You can set the size of
parameters used to control the symbol table nodes.

sizing B-trees for chunked datasets So far we have seen contiguous
and rigorously pre-sized datasets. But HDF5 datasets can be ex-
tended dynamically. This is done, again, in a way that is similar to
how files are written on disks. They are not normally written con-
tiguously. The writing process jumps all over the disk writing the
file wherever it finds space. The locations of the chunks of data are
then stored on a B-tree, which has to be traversed in order to read
the whole file. You can also store data similarly within an HDF5
file and a chunked dataset will then be described by a B-tree, whose
parameters can be controlled by the means of property lists.

file access properties:

memory caching HDF5 can cache whole files in memory on a specific
request. All IO operations are then done against memory, and the file
itself may never even be written to disk – unless, again, specifically
requested. Alternatively, HDF5 can be asked to use a specifically
sized caches for the metadata and for the raw data for files that are
not going to be memory cached in entirety.

file families If you work with a file system that imposes a limit on the
size of the file, e.g., 2GBs (common to 32-bit UFS and NFS), and

304 CHAPTER 7. HDF5

your dataset exceeds this, you have the option of writing your single
logical HDF5 file physically in the form of a family of files, all below
the file system size limit.

logging You can activate logging on all IO requests against an HDF5 file.

splitting You can split a single logical HDF5 file so that its metadata
and data live on separate physical files. This is similar to old MacOS
file forks.

MPI access MPI files are associated with MPI communicators, and they
may have MPI-IO info structures, that contain hints, associated with
them too. If an MPI file is to be written in HDF5 format, then the
communicator and the info structure must be passed to HDF5 file
access functions in the form of a property list.

Globus hooks In order to operate on files in the Globus environment,
the user must provide Globus hints on a special Globus info structure
(much like the MPI info structure). These are then passed to HDF5
processes by the means of a property list.

SRB hooks HDF5 can also co-exist with the SDSC’s Storage Request
Broker. SRB also requires an info structure to operate on SRB files
and this can be passed through a property list.

Streams HDF5 files can be made to stream directly into IO-sockets

dataset creation properties:

Dataset layout HDF5 data sets can be laid out in three ways. First, if
the dataset itself is very small, it can be stored in entirety, in the ob-
ject header. This is similar to storing very small files within an i-node
in some file systems. Second, the dataset may be stored contiguously,
and then we may as well request that it be chunked instead, in which
case, the data may be physically scattered throughout the whole file
– in chunks. The size of the chunks can be customized too.

Data compression We may request that data stored on an HDF5 file
be compressed. Both the compression method and the degree of
compression may be selected.

Data filtering Compression is a form of data filtering, but we may also
request that a user-defined filter be applied to data streams on writing
and reading datasets. The filter may be used, e.g., to encrypt the
data, or to carry out on the fly selection of data.

dataset read/write properties:

Error detection We may enable error detection on reads and writes.
Normally devices such as individual disk drives and disk arrays do
hardware level error detection anyway. Here you can add your own
additional error detection method, e.g., checksum.

7.4. PROPERTY LISTS 305

Callbacks If you have defined your own data filtering, here you may
additionally define a callback, which is going to be activated when
the filter fails.

MPI-IO You can specify here whether a write or a read operation against
an HDF5/MPI-IO file is to be collective or independent .

Blocking If you do a lot of small reads and writes, you can request that
these operations be blocked, i.e., HDF5 will collect all I/O until the
block is full, and then only will the block be transferred to the media.
You can request a specific size of the block.

These are not all properties and features available. They are just the ones that
caught my eye.

Even though HDF5 provides a lot of functionality here, you should not run
amok with it. Remember that IO is always going to be orders of magnitude

slower than computation and memory data access. Consequently, the best way
to do IO is to do as little of it as possible. Get all the data you need into
memory, if you can, and then operate on it there. After you finish, write it out
and update the file. Read and write in large blocks rather than in tiny amounts.
Do not use files for temporary scratch space, and certainly not to communicate
between processes. The so-called “out-of-core” jobs are unbelievably wasteful.
If you lack sufficient memory on, say, 8 nodes, go for 32 nodes, but always try
to fit all data you need to compute on in memory itself.

7.4.1 Modifying Property Lists

In this section I’m going to show you how to create desired property lists and
how to pass them to functions. The procedure is fairly simple and consists of
two steps basically:

1. Create a default property list for a given operation by calling function
H5Pcreate.

2. Modify the property list generated above by calling a specific property list
modification function.

For example, in order to create a file with 64-bit objects offsets and lengths you
would do as follows (this example is taken from the HDF5 Tutorial at NCSA):

hid_t create_plist;

hid_t file_id;

[...]

create_plist = H5Pcreate(H5P_FILE_CREATE);

H5Pset_sizes(create_plist, 8, 8);

file_id = H5Fcreate("test.h5", H5F_ACC_TRUNC,

create_plist, H5P_DEFAULT);

[...]

306 CHAPTER 7. HDF5

H5Fclose(file_id);

Here we create the default property list with H5Pcreate, which is invoked with
the H5P_FILE_CREATE specifier, first, and then modify the list by calling function
H5Pset sizes, which takes the property list identifier as its first argument, byte-
size of object offsets as its second argument and byte-size of object lengths as
its third argument. Once we have the list to our liking, we can use it in the call
to H5Fcreate.

It is OK to call more than one list modification function, if you need more
features, of course.

In the next couple of sub-sections, I am going to discuss various examples
of using property lists, as applied to accessing files, creating datasets and then
writing and reading them. MPI-IO/HDF5 examples will be shown here too.

7.4.2 Create a File Family

This simple example code creates a file family and then fills the family with
data. Even though physically we are going to write on multiple files, logically,
we treat the IO operation like a single HDF5 dataset write.

Here is the code (this example is also taken from the NCSA HDF5 Tutorial):

/*

* This example writes data to the HDF5 file.

* Data conversion is performed during write operation.

*/

#include "hdf5.h"

#define DIM0 40

#define DIM1 60

#define H5FILE_NAME "SDS%d.h5"

int

main (void)

{

hid_t file, dataset; /* handles */

hid_t dataspace;

hid_t plist_id;

int i, j, dset_data[DIM0][DIM1];

hsize_t family_size = 1000;

hsize_t dims[2] = {DIM0,DIM1};

herr_t status;

plist_id = H5Pcreate(H5P_FILE_ACCESS);

status = H5Pset_fapl_family(plist_id, family_size, H5P_DEFAULT);

file = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

dataspace = H5Screate_simple(2, dims, NULL);

dataset = H5Dcreate (file, "family-dataset", H5T_NATIVE_INT, dataspace,

H5P_DEFAULT);

for (i = 0; i < DIM0; i++)

7.4. PROPERTY LISTS 307

for (j = 0; j < DIM1; j++)

dset_data[i][j] = i * 6 + j + 1;

status = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,

dset_data);

status = H5Dclose(dataset);

status = H5Sclose(dataspace);

status = H5Fclose(file);

}

The program is compiled with:

gustav@bh1 $ h5cc -o h5_family h5_family.c

gustav@bh1 $

and then it is run by simply typing its name:

gustav@bh1 $./h5_family

gustav@bh1 $

After the program returns, you can see that it has generated 12 data files:

gustav@bh1 $ ls

SDS0.h5 SDS11.h5 SDS4.h5 SDS7.h5 h5_family

SDS1.h5 SDS2.h5 SDS5.h5 SDS8.h5 h5_family.c

SDS10.h5 SDS3.h5 SDS6.h5 SDS9.h5 h5_family.o

gustav@bh1 $

You cannot view any of the HDF5 data files in this family with a simple call to
h5dump followed by an explicit name of any of the files. To view this data do as
follows:

gustav@bh1 $ h5dump -f family SDS%d.h5

HDF5 "SDS%d.h5" {

GROUP "/" {

DATASET "family-dataset" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { (40, 60) / (40, 60) }

DATA {

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

[...]

277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290,

291, 292, 293, 294

}

}

}

}

gustav@bh1 $

You can also call h5dump without the -f family switch, in which case h5dump
will try five different drivers against the file name you have given it, eventually
finding that it can read it with the family driver.

Let us have a look at the program itself now. We begin by creating the
default property list for file access with H5Pcreate and then modify it by calling
H5Pset fapl family:

308 CHAPTER 7. HDF5

plist_id = H5Pcreate(H5P_FILE_ACCESS);

status = H5Pset_fapl_family(plist_id, family_size, H5P_DEFAULT);

Function H5Pset_fapl_family takes the property list identifier as its first ar-
gument. The second argument is the size of each file family member in bytes .
The third argument is the property list to be used for each of the file family
member, in this case just H5P_DEFAULT.

Now we create the HDF5 logical file itself:

file = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

Observe that H5FILE_NAME is defined as "SDS%d.h5". Once the file family is
created %d will be replaced with an appropriate number. The third argument
in the call to H5Fcreate is the file create property list, whereas the fourth
argument is the file access property list. The specific property we are talking
about here, i.e., the property that the file is to be split into the family, is an
access property, and so it is the fourth argument that has been cutomized to
convey our request.

The next couple of steps in the program are standard. We create a simple
data space, then we create the dataset, then we initialize the data in memory
and write the data on the dataset.

Finally we close the dataset, close the dataspace and close the file.
At no stage do we have to worry about dealing with multiple files. HDF5

takes care of this. Logically, we have opened a single HDF5 file for writing in
this program.

7.4.3 Create an MPI-IO File

In this section we are going to create an MPI file. It is going to be an HDF5
file too, so it won’t be empty, even though we are not going to write anything
on it explicitly yet. The file is going to be opened by all processes in the
MPI_COMM_WORLD communicator.

Here is the program taken from the NCSA HDF5 Tutorial, Creating/Accessing
a File with PHDF5

/*

* This example creates an HDF5 file.

*/

#include "hdf5.h"

#define H5FILE_NAME "SDS_row.h5"

int

main (int argc, char **argv)

{

/*

* HDF5 APIs definitions

*/

hid_t file_id; /* file and dataset identifiers */

hid_t plist_id; /* property list identifier(access template) */

herr_t status;

7.4. PROPERTY LISTS 309

/*

* MPI variables

*/

int mpi_size, mpi_rank;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Info info = MPI_INFO_NULL;

/*

* Initialize MPI

*/

MPI_Init(&argc, &argv);

MPI_Comm_size(comm, &mpi_size);

MPI_Comm_rank(comm, &mpi_rank);

/*

* Set up file access property list with parallel I/O access

*/

plist_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(plist_id, comm, info);

/*

* Create a new file collectively.

*/

file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

/*

* Close property list.

*/

H5Pclose(plist_id);

/*

* Close the file.

*/

H5Fclose(file_id);

MPI_Finalize();

return 0;

}

Observe that the program does not include <mpi.h> explicitly. This is because
it is included by <hdf5.h> through <H5public.h>. We compile this program
with h5cc, which invokes mpicc internally:

gustav@bh1 $ h5cc -o MPI_file_create MPI_file_create.c

gustav@bh1 $ mv MPI_file_create ~/bin/MPI_file_create

After compilation and linking I have moved the binary to my ~/bin so that it
will be available on other nodes when I run it under mpiexec. Then I start the
MPD machine to run the program:

gustav@bh1 $ mpdboot

gustav@bh1 $ mpdtrace | wc

26 26 129

gustav@bh1 $

and go to GPFS to run it:

310 CHAPTER 7. HDF5

gustav@bh1 $ cd /N/gpfs/gustav

gustav@bh1 $ mpiexec -n 8 MPI_file_create

gustav@bh1 $ ls

SDS_row.h5 t_mpio_1wMr test tests

gustav@bh1 $

There are various other files and directories in this area, but SDS_row.h5 has
been created and it is a genuine HDF5 file as you can see if you run h5dump on
it:

gustav@bh1 $ h5dump SDS_row.h5

HDF5 "SDS_row.h5" {

GROUP "/" {

}

}

gustav@bh1 $

Now let us have a look at the program itself. This is a typical simple MPI
program, which begins with the usual:

MPI_Init(&argc, &argv);

MPI_Comm_size(comm, &mpi_size);

MPI_Comm_rank(comm, &mpi_rank);

But right after this we invoke HDF5 functions. First we create a default file
access list:

plist_id = H5Pcreate(H5P_FILE_ACCESS);

and then we invoke function H5Pset fapl mpio:

H5Pset_fapl_mpio(plist_id, comm, info);

which is going to associate the file with the MPI_COMM_WORLD communicator and
with the MPI_INFO_NULL info object, because we have declared that:

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Info info = MPI_INFO_NULL;

Now we create the file itself:

file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

and this is all we are going to do in this program. Having created the file, we
close the property list, then close the file itself and finally we close MPI with
the call to MPI_Finalize – remember that this is an MPI program after all:

H5Pclose(plist_id);

H5Fclose(file_id);

MPI_Finalize();

return 0;

}

7.4.4 Create an Extendible Dataset

In our previous examples, the datasets were of fixed pre-defined size. HDF5 lets
you define datasets that can grow. But datasets like these have to be chunked ,
in other words, if they are to grow, you must allow for the data itself to be
physically scattered around the file in chunks.

7.4. PROPERTY LISTS 311

The following program, which is a little on the large side (by the standards of
this tutorial, which tries to keep programming examples very short), illustrates
how to create and then manipulate such an extendible dataset. So you will see
a few more new elements in it – but, read on, I’ll explain it all. The program is
taken from the NCSA HDF5 Tutorial.

Here is the program:

#include "hdf5.h"

#define FILE "ext.h5"

#define DATASETNAME "ExtendibleArray"

#define RANK 2

int

main (void)

{

hid_t file; /* handles */

hid_t dataspace, dataset;

hid_t filespace;

hid_t cparms;

hid_t memspace;

hsize_t dims[2] = { 3, 3}; /* dataset dimensions

at creation time */

hsize_t dims1[2] = { 3, 3}; /* data1 dimensions */

hsize_t dims2[2] = { 7, 1}; /* data2 dimensions */

hsize_t maxdims[2] = {H5S_UNLIMITED, H5S_UNLIMITED};

hsize_t size[2];

hssize_t offset[2];

hsize_t i,j;

herr_t status, status_n;

int data1[3][3] = { {1, 1, 1}, /* data to write */

{1, 1, 1},

{1, 1, 1} };

int data2[7] = { 2, 2, 2, 2, 2, 2, 2};

/* Variables used in reading data back */

hsize_t chunk_dims[2] ={2, 5};

hsize_t chunk_dimsr[2];

hsize_t dimsr[2];

int data_out[10][3];

int rank, rank_chunk;

/* Create the data space with unlimited dimensions. */

dataspace = H5Screate_simple (RANK, dims, maxdims);

/* Create a new file. If file exists its contents will be overwritten. */

file = H5Fcreate (FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Modify dataset creation properties, i.e. enable chunking */

cparms = H5Pcreate (H5P_DATASET_CREATE);

status = H5Pset_chunk (cparms, RANK, chunk_dims);

/* Create a new dataset within the file using cparms

creation properties. */

312 CHAPTER 7. HDF5

dataset = H5Dcreate (file, DATASETNAME, H5T_NATIVE_INT, dataspace,

cparms);

/* Extend the dataset. This call assures that dataset is 3 x 3.*/

size[0] = 3;

size[1] = 3;

status = H5Dextend (dataset, size);

/* Select a hyperslab */

filespace = H5Dget_space (dataset);

offset[0] = 0;

offset[1] = 0;

status = H5Sselect_hyperslab (filespace, H5S_SELECT_SET, offset, NULL,

dims1, NULL);

/* Write the data to the hyperslab */

status = H5Dwrite (dataset, H5T_NATIVE_INT, dataspace, filespace,

H5P_DEFAULT, data1);

/* Extend the dataset. Dataset becomes 10 x 3 */

dims[0] = dims1[0] + dims2[0];

size[0] = dims[0];

size[1] = dims[1];

status = H5Dextend (dataset, size);

/* Select a hyperslab */

filespace = H5Dget_space (dataset);

offset[0] = 3;

offset[1] = 0;

status = H5Sselect_hyperslab (filespace, H5S_SELECT_SET, offset, NULL,

dims2, NULL);

/* Define memory space */

dataspace = H5Screate_simple (RANK, dims2, NULL);

/* Write the data to the hyperslab */

status = H5Dwrite (dataset, H5T_NATIVE_INT, dataspace, filespace,

H5P_DEFAULT, data2);

/* Close resources */

status = H5Dclose (dataset);

status = H5Sclose (dataspace);

status = H5Sclose (filespace);

status = H5Fclose (file);

/**

Read the data back

***/

file = H5Fopen (FILE, H5F_ACC_RDONLY, H5P_DEFAULT);

dataset = H5Dopen (file, DATASETNAME);

filespace = H5Dget_space (dataset);

rank = H5Sget_simple_extent_ndims (filespace);

status_n = H5Sget_simple_extent_dims (filespace, dimsr, NULL);

cparms = H5Dget_create_plist (dataset);

if (H5D_CHUNKED == H5Pget_layout (cparms))

7.4. PROPERTY LISTS 313

{

rank_chunk = H5Pget_chunk (cparms, 2, chunk_dimsr);

}

memspace = H5Screate_simple (rank,dimsr,NULL);

status = H5Dread (dataset, H5T_NATIVE_INT, memspace, filespace,

H5P_DEFAULT, data_out);

printf("\n");

printf("Dataset: \n");

for (j = 0; j < dimsr[0]; j++)

{

for (i = 0; i < dimsr[1]; i++)

printf("%d ", data_out[j][i]);

printf("\n");

}

status = H5Pclose (cparms);

status = H5Dclose (dataset);

status = H5Sclose (filespace);

status = H5Sclose (memspace);

status = H5Fclose (file);

}

This is a sequential program, so it is compiled, linked and run in the usual HDF5
way:

gustav@bh1 $ h5cc -o h5_extend h5_extend.c

gustav@bh1 $./h5_extend

Dataset:

1 1 1

1 1 1

1 1 1

2 0 0

2 0 0

2 0 0

2 0 0

2 0 0

2 0 0

2 0 0

gustav@bh1 $

But when you run h5dump on the HDF5 data file generated by this program you
will notice something new:

gustav@bh1 $ h5dump ext.h5

HDF5 "ext.h5" {

GROUP "/" {

DATASET "ExtendibleArray" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { (10, 3) / (H5S_UNLIMITED, H5S_UNLIMITED) }

DATA {

1, 1, 1,

1, 1, 1,

1, 1, 1,

2, 0, 0,

2, 0, 0,

2, 0, 0,

2, 0, 0,

314 CHAPTER 7. HDF5

2, 0, 0,

2, 0, 0,

2, 0, 0

}

}

}

}

gustav@bh1 $

The new element to notice is the annotation:

DATASPACE SIMPLE { (10, 3) / (H5S_UNLIMITED, H5S_UNLIMITED) }

which says that the dataset currently of size 10× 3 can grow to unlimited size.
Previously we would have an annotation such as:

DATASPACE SIMPLE { (40, 60) / (40, 60) }

which says that this particular dataset is of size 40× 60 and cannot be resized.
The above program resizes the dataset twice, before the dataset itself and

then the file are closed.
So, let us discuss the program now.
The program begins with the creation of a simple 3× 3 dataspace, which is

allowed to grow without limits :

#define RANK 2

...

hsize_t dims[2] = { 3, 3};

...

hsize_t maxdims[2] = {H5S_UNLIMITED, H5S_UNLIMITED};

...

dataspace = H5Screate_simple (RANK, dims, maxdims);

Then we create the new HDF5 file in the usual way, assuming default property
lists:

file = H5Fcreate (FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

and then we get down to generating the property list for the dataset, which
specifies the chunking:

#define RANK 2

...

hsize_t chunk_dims[2] ={2, 5};

...

cparms = H5Pcreate (H5P_DATASET_CREATE);

status = H5Pset_chunk (cparms, RANK, chunk_dims);

Function H5Pset chunk takes three arguments: the first one is the property list
identifier, then the rank of the array that specifies the chunking. Here we have a
two-dimensional data space, and so our chunk array has to be two-dimensional
too. The chunking in the first dimension is going to be 2 (of elementary data
items) and the chunking in the second dimension is going to be 5 (of elementary
data items).

Now we create the dataset itself:

7.4. PROPERTY LISTS 315

#define DATASETNAME "ExtendibleArray"

...

dataset = H5Dcreate (file, DATASETNAME, H5T_NATIVE_INT, dataspace,

cparms);

and here we also say that the data in the dataset should be stored in the native
integer format. When we looked at the file itself though, we saw DATATYPE H5T_STD_I32LE

there, even though the program does not specify this anywhere explicitly. From
this we infer that IA32’s native format is little-endian.

This call:

size[0] = 3;

size[1] = 3;

status = H5Dextend (dataset, size);

is not really necessary, because we have already defined our dataspace to be
3 × 3, but it doesn’t hurt either. We are merely confirming the dataset to be
3× 3 here.

Now the program embarks on manipulations that are a little too soon in our
course, because they refer to hyperslab selection. Here is what happens. The
first call to H5Dget space

filespace = H5Dget_space (dataset);

returns an identifier for a copy of the dataspace for the dataset. In this space
we are now going to select a hyperslab by calling function H5Sselect hyperslab

hsize_t dims1[2] = { 3, 3};

...

offset[0] = 0;

offset[1] = 0;

status = H5Sselect_hyperslab (filespace, H5S_SELECT_SET, offset, NULL,

dims1, NULL);

This function call goes to the dataspace pointed to by the filespace identifier
and selects a portion of data, which is 3× 3 and begins at the beginning of the
dataset, because the offsets are both zero. The fourth parameter, which is NULL,
is used to define stride and the last parameter, which is NULL too, is used to
define the size of the block. In both cases NULL invokes defaults, i.e., the stride
is 1 and the block size is 1 too. With this function, as you see, you can pick up
portions of data from the dataset, but in this case we are just selecting all there
is at the moment, because our dataspace at present is 3× 3.

Now we write the data to the dataset:

int data1[3][3] = { {1, 1, 1}, /* data to write */

{1, 1, 1},

{1, 1, 1} };

...

status = H5Dwrite (dataset, H5T_NATIVE_INT, dataspace, filespace,

H5P_DEFAULT, data1);

Well, if this was not an extendible dataset, we could not write to it any more,
because it would be already full. So now we are going to extend it, for real this
time:

316 CHAPTER 7. HDF5

hsize_t dims[2] = { 3, 3};

hsize_t dims1[2] = { 3, 3};

hsize_t dims2[2] = { 7, 1};

...

dims[0] = dims1[0] + dims2[0];

size[0] = dims[0];

size[1] = dims[1];

status = H5Dextend (dataset, size);

This time the dataset is going to be 10× 3. We have already filled its top 3× 3
portion with data. Now we want to select a hyperslab that covers the as yet
unused space and write something there:

hsize_t dims2[2] = { 7, 1};

...

filespace = H5Dget_space (dataset);

offset[0] = 3;

offset[1] = 0;

status = H5Sselect_hyperslab (filespace, H5S_SELECT_SET, offset, NULL,

dims2, NULL);

We create new dataspace for this new hyperslab and then write new data into
it:

#define RANK 2

hsize_t dims2[2] = { 7, 1};

int data2[7] = { 2, 2, 2, 2, 2, 2, 2};

...

dataspace = H5Screate_simple (RANK, dims2, NULL);

status = H5Dwrite (dataset, H5T_NATIVE_INT, dataspace, filespace,

H5P_DEFAULT, data2);

Observe that this dataspace is 7 × 1, i.e., we are going to write on the first
column only, and only on rows 4 through 10. Before I go any further, let me
again bring back the h5dump of the file:

HDF5 "ext.h5" {

GROUP "/" {

DATASET "ExtendibleArray" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { (10, 3) / (H5S_UNLIMITED, H5S_UNLIMITED) }

DATA {

1, 1, 1,

1, 1, 1,

1, 1, 1,

2, 0, 0,

2, 0, 0,

2, 0, 0,

2, 0, 0,

2, 0, 0,

2, 0, 0,

2, 0, 0

}

}

}

}

As you see we have indeed written one-s on the top 3× 3 part of the space and
then added a column of two-s on the left hand side of the data space.

7.4. PROPERTY LISTS 317

Having done all this, we close the dataset, then the dataspace, the the
filespace and finally the file itself.

The second part of the program opens the file for reading, then opens the
dataset and then extracts information about it as follows:

file = H5Fopen (FILE, H5F_ACC_RDONLY, H5P_DEFAULT);

dataset = H5Dopen (file, DATASETNAME);

filespace = H5Dget_space (dataset);

rank = H5Sget_simple_extent_ndims (filespace);

status_n = H5Sget_simple_extent_dims (filespace, dimsr, NULL);

The two new functions here are H5Sget simple extent ndims and H5Sget simple extent dims.
The first one returns the dimensionality of the dataspace and the second one
returns the size in each dimension, here on dimsr, and the maximum size, here
on NULL, which means that we don’t care about this.

Now we are going to enquire about the data layout on the file by extract-
ing the property list from the dataset and then checking the list itself with
H5Pget layout

cparms = H5Dget_create_plist (dataset);

if (H5D_CHUNKED == H5Pget_layout (cparms))

{

rank_chunk = H5Pget_chunk (cparms, 2, chunk_dimsr);

}

Function H5Dget create plist returns an identifier for a copy of the dataset
creation property list for the dataset. Once we have the list we check if the
data was chunked and if it was we retrieve the size of chunks by calling function
H5Pget chunk. The function returns chunking on the last parameter, here it is
chunk_dimsr.

Having performed these interrogations, only to show how it’s done, because
we don’t really do anything with the returned data about chunking in this
program, we get down to reading the data itself. First we create the memory
space, then read the data itself and print it on standard output:

memspace = H5Screate_simple (rank,dimsr,NULL);

status = H5Dread (dataset, H5T_NATIVE_INT, memspace, filespace,

H5P_DEFAULT, data_out);

printf("\n");

printf("Dataset: \n");

for (j = 0; j < dimsr[0]; j++)

{

for (i = 0; i < dimsr[1]; i++)

printf("%d ", data_out[j][i]);

printf("\n");

}

Finally we have to close all that’s opened before exiting the program:

status = H5Pclose (cparms);

status = H5Dclose (dataset);

status = H5Sclose (filespace);

status = H5Sclose (memspace);

status = H5Fclose (file);

}

318 CHAPTER 7. HDF5

7.4.5 Create a Compressed Dataset

Default writes on HDF5 datasets are neither compressed nor is error checking
activated for them either. Both can be turned on by the means of dataset
creation property lists. In this section I am going to show you how to activate
compression.

The following program, taken from the NCSA HDF5 Tutorial, does the
following. First it creates a standard HDF5 data file called zip.h5. A group
/Data is then created in the file. Then we get down to generate a property list
for the dataset creation. The list is going to activate two features: chunking
and compression. Then we create the dataset /Data/Compressed_Data using
the list. The data itself is generated, then written on the dataset. At this stage
we close the dataspace, the dataset, the group and the file.

Then we re-open the file, the group and the dataset. The data is read in
full. There is no need for any hocus pocus with property lists here, because
the required property is already attached to the dataset on the file and HDF5
learns about it when it opens the dataset. The decompression is activated
automatically when the data is read. Having read the data we print a small
portion of it on standard output, then close the dataset, the group and the file.

Here’s the program:

/* Create compressed dataset */

#include "hdf5.h"

#define FILE "zip.h5"

/* Uncomment to remove compression and

comment out line above

#define FILE "unzip.h5"

*/

#define RANK 2

int

main(void)

{

hid_t file, grp;

hid_t dataset, dataspace;

hid_t plist;

herr_t status;

hsize_t dims[2];

hsize_t cdims[2];

int idx;

int i,j;

int buf[1000][20];

int rbuf [1000][20];

/*

* Create a file.

*/

7.4. PROPERTY LISTS 319

file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

printf ("H5Fcreate returns: %d\n", file);

/*

* Create a group in the file.

*/

grp = H5Gcreate(file, "/Data", 0);

printf ("H5Gcreate returns: %d\n", grp);

/*

* Create dataset "Compressed Data" in the group using absolute

* name. Dataset creation property list is modified to use

* GZIP compression with the compression effort set to 6.

* Note that compression can be used only when dataset is chunked.

*/

dims[0] = 1000;

dims[1] = 20;

cdims[0] = 20;

cdims[1] = 20;

dataspace = H5Screate_simple(RANK, dims, NULL);

printf ("H5Screate_simple: %d\n", dataspace);

/* Uncomment this section if you want to use GZIP compression

Be sure to comment out the line following, as well.

*/

plist = H5Pcreate(H5P_DATASET_CREATE);

printf ("H5Pcreate returns: %d\n", plist);

status = H5Pset_chunk(plist, 2, cdims);

printf ("H5Pset_chunk returns: %d\n", status);

status = H5Pset_deflate(plist, 6);

printf ("H5Pset_deflate returns: %d\n", status);

dataset = H5Dcreate(file, "/Data/Compressed_Data", H5T_STD_I32BE,

dataspace, plist);

/*

dataset = H5Dcreate(file, "/Data/Uncompressed_Data", H5T_STD_I32BE,

dataspace, H5P_DEFAULT);

*/

printf ("H5Dcreate returns: %d\n", dataset);

for (i = 0; i< dims[0]; i++) {

for (j=0; j<dims[1]; j++) {

buf[i][j] = i+j;

}

}

status = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf);

printf ("H5Dwrite: %d\n", status);

status = H5Sclose(dataspace);

printf ("H5Sclose: %d\n", status);

status = H5Dclose(dataset);

320 CHAPTER 7. HDF5

printf ("H5Dclose: %d\n", status);

status = H5Gclose (grp);

printf ("H5Gclose: %d\n", status);

status = H5Fclose(file);

printf ("H5Fclose: %d\n", status);

/*

* Now reopen the file and group in the file.

*/

file = H5Fopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

printf ("H5Fopen: %d\n", file);

grp = H5Gopen(file, "Data");

printf ("H5Gopen: %d\n", grp);

dataset = H5Dopen(grp, "Compressed_Data");

/* Uncomment, if removing compression

and comment out line above

dataset = H5Dopen(grp, "Uncompressed_Data");

*/

printf ("H5Dopen: %d\n", dataset);

status = H5Dread (dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, rbuf);

printf ("\nData (10 lines):\n");

for (i=0; i<10; i++)

{

for (j=0; j<20; j++)

printf(" %d", rbuf[i][j]);

printf ("\n");

}

status = H5Dclose(dataset);

printf ("\nH5Dclose: %d\n", status);

status = H5Gclose (grp);

printf ("H5Gclose: %d\n", status);

status = H5Fclose(file);

printf ("H5Fclose: %d\n", status);

}

The program is compiled and linked with h5cc and run normally by invoking
its name:

gustav@bh1 $ h5cc -o h5_zip h5_zip.c

gustav@bh1 $./h5_zip

H5Fcreate returns: 67108864

H5Gcreate returns: 201326592

H5Screate_simple: 335544322

H5Pcreate returns: 805306377

H5Pset_chunk returns: 0

H5Pset_deflate returns: 0

7.4. PROPERTY LISTS 321

H5Dcreate returns: 402653184

H5Dwrite: 0

H5Sclose: 0

H5Dclose: 0

H5Gclose: 0

H5Fclose: 0

H5Fopen: 67108865

H5Gopen: 201326593

H5Dopen: 402653185

Data (10 lines):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

H5Dclose: 0

H5Gclose: 0

H5Fclose: 0

gustav@bh1 $

As the program runs it prints returns of its various internal function calls on
standard output. The small portion of data printed at the end shows that the
data read back from the compressed dataset is indeed correct. The data array
itself is 1000× 20 and its entries are aij = i+ j, i.e., 0, 1, 2, . . . in the first row,
then 1, 2, 3, . . . in the second row, 2, 3, 4, . . . in the third row and so on.

But has the data been compressed? There are 1000 × 20 = 20, 000 4-byte
long integers in the dataset, which translates into 80,000 bytes. But the file is
only 11,312 bytes long:

gustav@bh1 $ ls -l zip.h5

-rw-r--r-- 1 gustav ucs 11312 Nov 24 12:56 zip.h5

gustav@bh1 $

so the data in it indeed must have been compressed. You can run h5dump on
this file and you’ll get all the data back uncompressed. But you won’t find any
hint that the data in the file is compressed either. To see this look at the file
with h5ls:

gustav@bh1 $ h5ls -r -v zip.h5

Opened "zip.h5" with sec2 driver.

/Data Group

Location: 0:1:0:1576

Links: 1

/Data/Compressed_Data Dataset {1000/1000, 20/20}

Location: 0:1:0:1952

Links: 1

Modified: 2003-11-24 12:56:24 EST

Chunks: {20, 20} 1600 bytes

Storage: 80000 logical bytes, 5316 allocated bytes, 1504.89% utilization

Filter-0: deflate-1 OPT {6}

322 CHAPTER 7. HDF5

Type: 32-bit big-endian integer

gustav@bh1 $

Here you can see that the 80,000 logical bytes have been squeezed into 5,316
physical bytes and that a deflate-1 OPT {6} filter, as we have requested with
the call to H5Pset deflate:

status = H5Pset_deflate(plist, 6);

has been used.
There are no new elements in this program other than the call to H5Pset_deflate,

so I won’t discuss the program in detail. It should be easy for you to see, by
now, how the program goes about its business. Function H5Pset_deflate takes
a property list as its first argument. The function activates the GNU gzip al-
gorithm on the data. If you look at the gzip man page, you’ll see that you
can regulate the compression speed by calling gzip with a flag such as -1 or
-9. -1, which is equivalent to --fast, results in very fast but not very effec-
tive compression. On the other hand -9, which is equivalent to --best, results
in slow but very effective compression. You can do the same when you call
H5Pset_deflate. The second argument is the compression speed argument
from gzip. It can be any integer between 1 and 9.

7.4.6 Activate Checksum for Error Detection

The program in this section activates checksum for error detection on writes to
and reads from a dataset. The program begins by creating a simple dataspace
and then filling a data array of rank 2 with integers following the formula aij =
6 × i + j + 1. The HDF5 file cksum.h5 is created and then we get down to
constructing a property list for the dataset. The list contains two requests.
The first request is chunking, and the second request is that a filter should
be applied to IO operations. The requested filter is H5Z_FILTER_FLETCHER32,
which implements checksum error detection. Finally we create a dataset /dset
with requested properties. The write takes place, upon which we close the
property list, the dataset and the file.

In the second part of the program we open the file and the the dataset. We
create a property list again, but this time we use it in order to inspect whether
checksum has been enabled on the data set – the result of the inspection is
printed on standard output. The data is then read, but not printed on standard
output. We only print the exit status of H5Dread. Then we close the property
list, the dataset and the file.

Here is the program itself (this program originates from the NCSA HDF5
Tutorial):

/*

h5cksum: This example uses the Fletcher32 checksum algorithm

for error detection

*/

#include "hdf5.h"

#define FILE "cksum.h5"

7.4. PROPERTY LISTS 323

main() {

hid_t file_id, dataset_id, dataspace_id, dxpl, property_id;

hsize_t dims[2];

herr_t status;

hsize_t chkdim[2] ={2,3};

int i, j, dset_data[4][6];

H5Z_EDC_t edc;

/* Create the data space for the dataset. */

dims[0] = 4;

dims[1] = 6;

dataspace_id = H5Screate_simple(2, dims, NULL);

/* Initialize the dataset. */

for (i = 0; i < 4; i++)

for (j = 0; j < 6; j++)

dset_data[i][j] = i * 6 + j + 1;

/* Create a new file using default properties. */

file_id = H5Fcreate (FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Create the dataset with checksum filter */

property_id = H5Pcreate(H5P_DATASET_CREATE);

status = H5Pset_chunk (property_id, 2, chkdim);

status = H5Pset_filter (property_id, H5Z_FILTER_FLETCHER32, 0, 0, NULL);

dataset_id = H5Dcreate (file_id, "/dset", H5T_STD_I32BE, dataspace_id,

property_id);

status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,

dset_data);

status = H5Pclose (property_id);

status = H5Dclose(dataset_id);

status = H5Fclose(file_id);

file_id = H5Fopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

dataset_id = H5Dopen (file_id, "/dset");

dxpl = H5Pcreate (H5P_DATASET_XFER);

edc = H5Pget_edc_check (dxpl);

if (edc == 1) printf ("Checksum is enabled\n");

if (edc == 0) printf ("Checksum is disabled\n");

status = H5Dread(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, dxpl,

dset_data);

printf ("H5Dread returns: %i\n", status);

status = H5Pclose (dxpl);

status = H5Dclose(dataset_id);

status = H5Fclose(file_id);

}

Here is how the program is compiled, linked and run:

324 CHAPTER 7. HDF5

gustav@bh1 $ h5cc -o h5_cksum h5_cksum.c

gustav@bh1 $./h5_cksum

Checksum is enabled

H5Dread returns: 0

gustav@bh1 $

The generated HDF5 file has a simple and small dump:

gustav@bh1 $ h5dump cksum.h5

HDF5 "cksum.h5" {

GROUP "/" {

DATASET "dset" {

DATATYPE H5T_STD_I32BE

DATASPACE SIMPLE { (4, 6) / (4, 6) }

DATA {

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24

}

}

}

}

gustav@bh1 $

You can see that the dataset has checksum filter attached to it when you run
h5ls on the file:

gustav@bh1 $ h5ls -v -r cksum.h5

Opened "cksum.h5" with sec2 driver.

/dset Dataset {4/4, 6/6}

Location: 0:1:0:976

Links: 1

Modified: 2003-11-24 18:20:54 EST

Chunks: {2, 3} 24 bytes

Storage: 96 logical bytes, 112 allocated bytes, 85.71% utilization

Filter-0: fletcher32-3 {}

Type: 32-bit big-endian integer

gustav@bh1 $

The program itself should be easy to understand. It calls two new functions we
haven’t encountered yet. The first one is H5Pset_filter and the second one is
H5Pget_edc_check.

Function H5Pset filter adds a filter to the filter pipeline, through which data
will flow to and from the dataset. The first argument is a property list we’re
working ont. The second argument is the name of the filter to be added. You
can choose one of the following:

H5Z FILTER DEFLATE This is the gzip filter, which we have installed
implicitly in the other program by calling H5Pset_deflate.

H5Z FILTER SHUFFLE This is a data shuffling filter. It may help com-
press data more effectively.

H5Z FILTER FLETCHER32 This is the checksum filter we install in this
program.

7.5. HYPERSLAB SELECTION 325

H5Z FILTER SZIP This is a yet another data compression filter that uses
the SZIP algorithm.

The third argument is a bit-vector, i.e., an integer, that can be used to specify
additional properties of the filter. In the case of this program it is simply 0.

The last argument is an array of integers that can be used to pass additional
values to the filter and the next to last argument is the length of this array. We
don’t have such an array in this program, so we simply put NULL in its place.

In summary our call to H5Pset_filter looks as follows:

status = H5Pset_filter (property_id, H5Z_FILTER_FLETCHER32, 0, 0, NULL);

The second new function call, H5Pget edc check, is used in the reading part
of the program in order to find if checksum has been enabled on the dataset.
This function is very easy to use. It takes only one argument, the property
list itself, and returns a logical value, TRUE for checksum enable and FALSE for
checksum disabled.

But also observe another difference. When the property list itself is created,
it is created against the H5P_DATASET_XFER constant – which represents the
default for the raw data transfer property list.

This is what this part of the code looks like:

dxpl = H5Pcreate (H5P_DATASET_XFER);

edc = H5Pget_edc_check (dxpl);

if (edc == 1) printf ("Checksum is enabled\n");

if (edc == 0) printf ("Checksum is disabled\n");

7.5 Hyperslab Selection

We have already encountered the hyperslab selection procedure, i.e., a procedure
that lets you read or write a portion of a dataset, in section 7.4.4 that talked
about extendible datasets. In this section we are going to study hyperslab
selection in more detail, the more so as hyperslab selection is crucial to MPI-IO
writes and reads, because it is through this mechanism that processes get to
stay away from each other’s territory. In other words, hyperslab selection plays
a role that is similar to MPI-IO file views.

Our first example is going to be sequential though, and here we will exercise
hyperslab selection both on the file and on the memory side, because hyperslab
selection can be used also to select a portion of a memory buffer from which to
read or to which to write.

But then we’ll switch to MPI-IO/HDF5 dataset manipulations and there
we’ll illustrate various dataset partitioning mechanisms whereupon each MPI
process is going to select its own hyperslab within the dataset that resides on
an HDF5 file.

326 CHAPTER 7. HDF5

7.5.1 Sequential Example

The program we are going to discuss in this section writes the following array
on an HDF5 dataset:

0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9

Then the dataset and the file get closed and then we open them again for
reading. This time, though, we create a 7 × 7 × 3 memory dataspace, which is
filled with zeros initially. The following shows one of the 2-dimensional slices of
this data space, e.g., the front slice:

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Then we are going to read only a portion of the file dataspace onto this 3-
dimensional cube of zeros – such a portion is called the hyperslab – and, to
make things more fancy, we read the data onto a specific location in the memory
data space, so that the front slice of the memory data space eventually looks as
follows:

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
3 4 5 6 0 0 0
4 5 6 7 0 0 0
5 6 7 8 0 0 0
0 0 0 0 0 0 0

You can now appreciate how this is going to be useful in dividing the file datas-
pace amongst MPI processes, both for writing and for reading.

Here is the example program taken from the NCSA HDF5 Tutorial:

/**

This example shows how to write and read a hyperslab. It

is derived from the h5_read.c and h5_write.c examples in

the "Introduction to HDF5".

**/

#include "hdf5.h"

#define FILE "sds.h5"

7.5. HYPERSLAB SELECTION 327

#define DATASETNAME "IntArray"

#define NX_SUB 3 /* hyperslab dimensions */

#define NY_SUB 4

#define NX 7 /* output buffer dimensions */

#define NY 7

#define NZ 3

#define RANK 2

#define RANK_OUT 3

#define X 5 /* dataset dimensions */

#define Y 6

int

main (void)

{

hsize_t dimsf[2]; /* dataset dimensions */

int data[X][Y]; /* data to write */

/*

* Data and output buffer initialization.

*/

hid_t file, dataset; /* handles */

hid_t dataspace;

hid_t memspace;

hsize_t dimsm[3]; /* memory space dimensions */

hsize_t dims_out[2]; /* dataset dimensions */

herr_t status;

int data_out[NX][NY][NZ]; /* output buffer */

hsize_t count[2]; /* size of the hyperslab in the file */

hssize_t offset[2]; /* hyperslab offset in the file */

hsize_t count_out[3]; /* size of the hyperslab in memory */

hssize_t offset_out[3]; /* hyperslab offset in memory */

int i, j, k, status_n, rank;

/***

This writes data to the HDF5 file.

***/

/*

* Data and output buffer initialization.

*/

for (j = 0; j < X; j++) {

for (i = 0; i < Y; i++)

data[j][i] = i + j;

}

/*

* 0 1 2 3 4 5

* 1 2 3 4 5 6

* 2 3 4 5 6 7

* 3 4 5 6 7 8

* 4 5 6 7 8 9

*/

328 CHAPTER 7. HDF5

/*

* Create a new file using H5F_ACC_TRUNC access,

* the default file creation properties, and the default file

* access properties.

*/

file = H5Fcreate (FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/*

* Describe the size of the array and create the data space for fixed

* size dataset.

*/

dimsf[0] = X;

dimsf[1] = Y;

dataspace = H5Screate_simple (RANK, dimsf, NULL);

/*

* Create a new dataset within the file using defined dataspace and

* default dataset creation properties.

*/

dataset = H5Dcreate (file, DATASETNAME, H5T_STD_I32BE, dataspace,

H5P_DEFAULT);

/*

* Write the data to the dataset using default transfer properties.

*/

status = H5Dwrite (dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, data);

/*

* Close/release resources.

*/

H5Sclose (dataspace);

H5Dclose (dataset);

H5Fclose (file);

/***

This reads the hyperslab from the sds.h5 file just

created, into a 2-dimensional plane of the 3-dimensional

array.

**/

for (j = 0; j < NX; j++) {

for (i = 0; i < NY; i++) {

for (k = 0; k < NZ ; k++)

data_out[j][i][k] = 0;

}

}

/*

* Open the file and the dataset.

*/

file = H5Fopen (FILE, H5F_ACC_RDONLY, H5P_DEFAULT);

dataset = H5Dopen (file, DATASETNAME);

7.5. HYPERSLAB SELECTION 329

dataspace = H5Dget_space (dataset); /* dataspace handle */

rank = H5Sget_simple_extent_ndims (dataspace);

status_n = H5Sget_simple_extent_dims (dataspace, dims_out, NULL);

printf("\nRank: %d\nDimensions: %lu x %lu \n", rank,

(unsigned long)(dims_out[0]), (unsigned long)(dims_out[1]));

/*

* Define hyperslab in the dataset.

*/

offset[0] = 1;

offset[1] = 2;

count[0] = NX_SUB;

count[1] = NY_SUB;

status = H5Sselect_hyperslab (dataspace, H5S_SELECT_SET, offset, NULL,

count, NULL);

/*

* Define the memory dataspace.

*/

dimsm[0] = NX;

dimsm[1] = NY;

dimsm[2] = NZ;

memspace = H5Screate_simple (RANK_OUT, dimsm, NULL);

/*

* Define memory hyperslab.

*/

offset_out[0] = 3;

offset_out[1] = 0;

offset_out[2] = 0;

count_out[0] = NX_SUB;

count_out[1] = NY_SUB;

count_out[2] = 1;

status = H5Sselect_hyperslab (memspace, H5S_SELECT_SET, offset_out, NULL,

count_out, NULL);

/*

* Read data from hyperslab in the file into the hyperslab in

* memory and display.

*/

status = H5Dread (dataset, H5T_NATIVE_INT, memspace, dataspace,

H5P_DEFAULT, data_out);

printf ("Data:\n ");

for (j = 0; j < NX; j++) {

for (i = 0; i < NY; i++) printf("%d ", data_out[j][i][0]);

printf("\n ");

}

printf("\n");

/*

* 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0

* 3 4 5 6 0 0 0

* 4 5 6 7 0 0 0

* 5 6 7 8 0 0 0

* 0 0 0 0 0 0 0

*/

330 CHAPTER 7. HDF5

/*

* Close and release resources.

*/

H5Dclose (dataset);

H5Sclose (dataspace);

H5Sclose (memspace);

H5Fclose (file);

}

Here is how to compile, link and run the program:

gustav@bh1 $ h5cc -o h5_hyperslab h5_hyperslab.c

gustav@bh1 $./h5_hyperslab

Rank: 2

Dimensions: 5 x 6

Data:

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3 4 5 6 0 0 0

4 5 6 7 0 0 0

5 6 7 8 0 0 0

0 0 0 0 0 0 0

gustav@bh1 $

Now let us discuss the program in detail.
The program begins with initialization of the data that is going to be written

on the file:

#define X 5 /* dataset dimensions */

#define Y 6

...

int data[X][Y];

...

for (j = 0; j < X; j++) {

for (i = 0; i < Y; i++)

data[j][i] = i + j;

}

which should generate a 5× 6 array of integers:

0 1 2 ...

1 2 3 ...

2 3 4 ...

...

The HDF5 data file is then created, we create a simple dataspace, then create
a dataset associated with the dataspace, and then write all the data on the
dataset filling it entirely. Then we close the dataspace, the dataset and the file:

file = H5Fcreate (FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

dimsf[0] = X; dimsf[1] = Y;

dataspace = H5Screate_simple (RANK, dimsf, NULL);

dataset = H5Dcreate (file, DATASETNAME, H5T_STD_I32BE, dataspace,

H5P_DEFAULT);

7.5. HYPERSLAB SELECTION 331

status = H5Dwrite (dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, data);

H5Sclose (dataspace);

H5Dclose (dataset);

H5Fclose (file);

So far there has been nothing new here. The H5Dwrite writes the whole lot and
onto the whole lot: H5S_ALL, H5S_ALL.

The fancy stuff begins in the data reading part that follows.
We begin this part of the program by creating and initializing with zeros a

new 3-dimensional array:

#define NX 7 /* output buffer dimensions */

#define NY 7

#define NZ 3

...

int data_out[NX][NY][NZ];

...

for (j = 0; j < NX; j++) {

for (i = 0; i < NY; i++) {

for (k = 0; k < NZ ; k++)

data_out[j][i][k] = 0;

}

}

Then we open the file again, but this time for reading only and open the dataset:

#define FILE "sds.h5"

#define DATASETNAME "IntArray"

...

file = H5Fopen (FILE, H5F_ACC_RDONLY, H5P_DEFAULT);

dataset = H5Dopen (file, DATASETNAME);

The following three calls extract information about the dataspace associated
with the dataset:

dataspace = H5Dget_space (dataset); /* dataspace handle */

rank = H5Sget_simple_extent_ndims (dataspace);

status_n = H5Sget_simple_extent_dims (dataspace, dims_out, NULL);

printf("\nRank: %d\nDimensions: %lu x %lu \n", rank,

(unsigned long)(dims_out[0]), (unsigned long)(dims_out[1]));

and once we got its dimensions we print this information on standard output.
We’ve seen this operation several times before already. The resulting output is:

Rank: 2

Dimensions: 5 x 6

Now we are going to narrow this dataspace by selecting a hyperslab, i.e., a 3×4
submatrix.

#define NX_SUB 3 /* hyperslab dimensions */

#define NY_SUB 4

...

offset[0] = 1;

offset[1] = 2;

count[0] = NX_SUB;

count[1] = NY_SUB;

status = H5Sselect_hyperslab (dataspace, H5S_SELECT_SET, offset, NULL,

count, NULL);

332 CHAPTER 7. HDF5

Function H5Sselect hyperslab is going to narrow the dataspace pointed to by
its first argument (the identifier) focusing on count[0] columns and count[1]

rows starting from a corner whose coordinates are offset[0] and offset[1].
The second argument is the selection operator . The following selection op-

erators can be used here:

H5S SELECT SET Replaces the existing selection with the parameters from
this call. So this is what I meant when I said that we are going to narrow

our original dataspace.

H5S SELECT OR Adds the new selection to the existing selection. This is
the OR operator of the set theory.

H5S SELECT AND Retains only the overlapping portions of the new se-
lection and the existing selection. This is the AND operator of the set
theory.

H5S SELECT XOR Retains only the elements that are members of the new
selection or the existing selection, excluding elements that are members
of both selections. This is the exclusive OR of the set theory.

H5S SELECT NOTB Retains only elements of the existing selection that
are not in the new selection. This is the NOT operator of the set theory.

H5S SELECT NOTA Retains only elements of the new selection that are
not in the existing selection.

The two NULL parameters in this call correspond to the stride and the size of the
block to be picked up. If the stride is NULL a contiguous hyperslab is selected.
If the block size is NULL it defaults to one elementary data item.

So this is how we have constructed the hyperslab of the dataset on the file.
This is what we are going to read. Now, where are we going to put it? To
answer this question we define first the memory dataspace and then we take a
hyperslab out of it:

#define NX 7

#define NY 7

#define NZ 3

#define NX_SUB 3

#define NY_SUB 4

#define RANK_OUT 3

...

dimsm[0] = NX;

dimsm[1] = NY;

dimsm[2] = NZ;

memspace = H5Screate_simple (RANK_OUT, dimsm, NULL);

offset_out[0] = 3;

offset_out[1] = 0;

offset_out[2] = 0;

count_out[0] = NX_SUB;

count_out[1] = NY_SUB;

count_out[2] = 1;

status = H5Sselect_hyperslab (memspace, H5S_SELECT_SET, offset_out, NULL,

count_out, NULL);

7.5. HYPERSLAB SELECTION 333

The space onto which we are going to write the data will begin from row number
3 (remember that in C rows are counted from 0), column zero and plane zero
too – so we are going to write on the front plane of the brick. The extents are
going to be 3 rows and 4 columns, and we are not going to go beyond the front
plane.

Now we are ready to read the data:

status = H5Dread (dataset, H5T_NATIVE_INT, memspace, dataspace,

H5P_DEFAULT, data_out);

The data is read from the already narrowed dataspace on the file into the just
narrowed dataspace, here called memspace, in data_out.

The following print statements show the final effect of this operation:

printf ("Data:\n ");

for (j = 0; j < NX; j++) {

for (i = 0; i < NY; i++) printf("%d ", data_out[j][i][0]);

printf("\n ");

}

printf("\n");

The job done, we close the dataset, the dataspace, the memory dataspace,
and finally the file:

H5Dclose (dataset);

H5Sclose (dataspace);

H5Sclose (memspace);

H5Fclose (file);

Now, at long last we can attempt an MPI-IO data transfer.

7.5.2 Partitioning MPI-IO/HDF5 Datasets

Contiguous Hyperslabs

The following example code, also taken from the NCSA HDF5 Tutorial intro-
duces almost nothing new, but when all that you’ve learnt so far gets combined
together, you end up, miraculously, with a parallel write onto an HDF5 dataset
that sits in an HDF5 file.

This time before I show you the program, I want to show you what it does
first.

The program lives in this directory

gustav@bh1 $ pwd

/N/B/gustav/src/I590/HDF5/mpi-io

gustav@bh1 $ ls

hyperslab_by_row.c

gustav@bh1

and is compiled and linked with the h5cc wrapper, which knows all about MPI
and MPI-IO too.

gustav@bh1 $ h5cc -o hyperslab_by_row hyperslab_by_row.c

gustav@bh1 $

334 CHAPTER 7. HDF5

I install the program in my ~/bin so that mpiexec will find it. Then I go my
GPFS directory.

gustav@bh1 $ mv hyperslab_by_row ~/bin

gustav@bh1 $ cd /N/gpfs/gustav

gustav@bh1 $ ls

t_mpio_1wMr test tests

gustav@bh1 $

MPD is running already on 26 nodes, but I’m going to use 4 only for this run:

gustav@bh1 $ mpdtrace | wc

26 26 129

gustav@bh1 $ mpiexec -n 4 hyperslab_by_row

gustav@bh1 $

The job created an HDF5 file SDS_row.h5 in this directory, and I am going to
inspect it with h5dump.

gustav@bh1 $ ls

SDS_row.h5 t_mpio_1wMr test tests

gustav@bh1 $ h5dump SDS_row.h5

HDF5 "SDS_row.h5" {

GROUP "/" {

DATASET "IntArray" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { (8, 5) / (8, 5) }

DATA {

10, 10, 10, 10, 10,

10, 10, 10, 10, 10,

11, 11, 11, 11, 11,

11, 11, 11, 11, 11,

12, 12, 12, 12, 12,

12, 12, 12, 12, 12,

13, 13, 13, 13, 13,

13, 13, 13, 13, 13

}

}

}

}

gustav@bh1 $

You will see when we get to analyze the program that process 0 wrote:

10, 10, 10, 10, 10,

10, 10, 10, 10, 10,

process 1 wrote

11, 11, 11, 11, 11,

11, 11, 11, 11, 11,

process 2 wrote

12, 12, 12, 12, 12,

12, 12, 12, 12, 12,

and process 3 wrote:

13, 13, 13, 13, 13,

13, 13, 13, 13, 13

7.5. HYPERSLAB SELECTION 335

The writes were collective, i.e., HDF5 used MPI_File_write_all to write the
data on this file, and presumably, since the file lives on GPFS, the writes oc-
curred in parallel.

So now let’s see how this is done. Here is the program:

/*

* This example writes data to the HDF5 file by rows.

* Number of processes is assumed to be 1 or multiples of 2 (up to 8)

*/

#include "hdf5.h"

#define H5FILE_NAME "SDS_row.h5"

#define DATASETNAME "IntArray"

#define NX 8 /* dataset dimensions */

#define NY 5

#define RANK 2

int

main (int argc, char **argv)

{

/*

* HDF5 APIs definitions

*/

hid_t file_id, dset_id; /* file and dataset identifiers */

hid_t filespace, memspace; /* file and memory dataspace identifiers */

hsize_t dimsf[2]; /* dataset dimensions */

int *data; /* pointer to data buffer to write */

hsize_t count[2]; /* hyperslab selection parameters */

hssize_t offset[2];

hid_t plist_id; /* property list identifier */

int i;

herr_t status;

/*

* MPI variables

*/

int mpi_size, mpi_rank;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Info info = MPI_INFO_NULL;

/*

* Initialize MPI

*/

MPI_Init(&argc, &argv);

MPI_Comm_size(comm, &mpi_size);

MPI_Comm_rank(comm, &mpi_rank);

/*

* Set up file access property list with parallel I/O access

*/

plist_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(plist_id, comm, info);

/*

* Create a new file collectively and release property list identifier.

*/

336 CHAPTER 7. HDF5

file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

H5Pclose(plist_id);

/*

* Create the dataspace for the dataset.

*/

dimsf[0] = NX;

dimsf[1] = NY;

filespace = H5Screate_simple(RANK, dimsf, NULL);

/*

* Create the dataset with default properties and close filespace.

*/

dset_id = H5Dcreate(file_id, DATASETNAME, H5T_NATIVE_INT, filespace,

H5P_DEFAULT);

H5Sclose(filespace);

/*

* Each process defines dataset in memory and writes it to the hyperslab

* in the file.

*/

count[0] = dimsf[0]/mpi_size;

count[1] = dimsf[1];

offset[0] = mpi_rank * count[0];

offset[1] = 0;

memspace = H5Screate_simple(RANK, count, NULL);

/*

* Select hyperslab in the file.

*/

filespace = H5Dget_space(dset_id);

H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, NULL, count, NULL);

/*

* Initialize data buffer

*/

data = (int *) malloc(sizeof(int)*count[0]*count[1]);

for (i=0; i < count[0]*count[1]; i++) {

data[i] = mpi_rank + 10;

}

/*

* Create property list for collective dataset write.

*/

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace,

plist_id, data);

free(data);

/*

* Close/release resources.

*/

H5Dclose(dset_id);

H5Sclose(filespace);

7.5. HYPERSLAB SELECTION 337

H5Sclose(memspace);

H5Pclose(plist_id);

H5Fclose(file_id);

MPI_Finalize();

return 0;

}

The program begins with already traditional MPI incantations:

MPI_Init(&argc, &argv);

MPI_Comm_size(comm, &mpi_size);

MPI_Comm_rank(comm, &mpi_rank);

Then we immediately switch to HDF5. We create a file access property list that
contains MPI information and we create the file itself:

plist_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(plist_id, comm, info);

file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

H5Pclose(plist_id);

Now we create the dataspace and the dataset:

#define H5FILE_NAME "SDS_row.h5"

#define DATASETNAME "IntArray"

#define NX 8

#define NY 5

#define RANK 2

...

dimsf[0] = NX;

dimsf[1] = NY;

filespace = H5Screate_simple(RANK, dimsf, NULL);

dset_id = H5Dcreate(file_id, DATASETNAME, H5T_NATIVE_INT, filespace,

H5P_DEFAULT);

H5Sclose(filespace);

The dataset is going to have 8 rows and 5 columns.
Now each process defines its own memory dataset and memory dataspace

for its own data and also selects a hyperslab on the HDF5 dataset in the file,
on which it is going to write:

count[0] = dimsf[0]/mpi_size;

count[1] = dimsf[1];

offset[0] = mpi_rank * count[0];

offset[1] = 0;

memspace = H5Screate_simple(RANK, count, NULL);

filespace = H5Dget_space(dset_id);

H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, NULL, count, NULL);

Now each process initializes its own data:

data = (int *) malloc(sizeof(int)*count[0]*count[1]);

for (i=0; i < count[0]*count[1]; i++) {

data[i] = mpi_rank + 10;

}

and then we get back to HDF5. Each process creates a data transfer property
list, in which we request that the following write should be collective:

338 CHAPTER 7. HDF5

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

Function H5Pset dxpl mpio is the only new function in this program. Apart
from H5FD_MPIO_COLLECTIVE you can also request H5FD_MPIO_INDEPENDENT,
which is a default actually.

Now we are ready to write the data:

status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace,

plist_id, data);

Observe that filespace corresponds to a different hyperslab for each process,
so that they don’t step on each other’s toes.

After the write returns, we free the array data, which was malloced before,
then close the dataset, the filespace, the memory space, the property list and
finally the file itself.

And, at the end, we call MPI_Finalize, because it is an MPI program after
all.

So this is how it works. HDF5 implements parallel IO on the dataset level
and file partitioning is accomplished by the means of hyperslab selection.

Striding Data

In this section we are going to use a stride and a block while selecting the
hyperslab for partitioning of a fileset. The effect will be that the two processes
that constitute the MPI pool in the example that follows will divide the HDF5
dataset into interleaving columns, i.e., process 1 is going to write column 1 while
process 2 will write column 2, then process 1 will write column 3 while process 2
will write column 4 and so on. The result will be a dataset that looks as follows:

1 2 10 20 100 200
1 2 10 20 100 200
1 2 10 20 100 200
1 2 10 20 100 200
1 2 10 20 100 200
1 2 10 20 100 200
1 2 10 20 100 200
1 2 10 20 100 200

where the first digit of every number marks the process that has written the
number.

The program must be run on two processes.
Here is how to compile and run it:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/HDF5/mpi-io

gustav@bh1 $ h5cc -o hyperslab_by_col hyperslab_by_col.c

gustav@bh1 $ mv hyperslab_by_col ~/bin

gustav@bh1 $ mpdboot

gustav@bh1 $ mpdtrace | wc

20 20 99

7.5. HYPERSLAB SELECTION 339

gustav@bh1 $ cd /N/gpfs/gustav

gustav@bh1 $ ls

SDS_row.h5 t_mpio_1wMr test tests

gustav@bh1 $ mpiexec -n 2 hyperslab_by_col

gustav@bh1 $ ls

SDS_col.h5 SDS_row.h5 t_mpio_1wMr test tests

gustav@bh1 $ h5dump SDS_col.h5

HDF5 "SDS_col.h5" {

GROUP "/" {

DATASET "IntArray" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { (8, 6) / (8, 6) }

DATA {

1, 2, 10, 20, 100, 200,

1, 2, 10, 20, 100, 200,

1, 2, 10, 20, 100, 200,

1, 2, 10, 20, 100, 200,

1, 2, 10, 20, 100, 200,

1, 2, 10, 20, 100, 200,

1, 2, 10, 20, 100, 200,

1, 2, 10, 20, 100, 200

}

}

}

}

gustav@bh1 $ mpdallexit

gustav@bh1 $

Now, here is the listing of the program, taken from the NCSA HDF5 Tutorial,
and you’ll find the discussion of the code further down.

/*

* This example writes data to the HDF5 file by columns.

* Number of processes is assumed to be 2.

*/

#include "hdf5.h"

#define H5FILE_NAME "SDS_col.h5"

#define DATASETNAME "IntArray"

#define NX 8 /* dataset dimensions */

#define NY 6

#define RANK 2

int

main (int argc, char **argv)

{

/*

* HDF5 APIs definitions

*/

hid_t file_id, dset_id; /* file and dataset identifiers */

hid_t filespace, memspace; /* file and memory dataspace identifiers */

hsize_t dimsf[2]; /* dataset dimensions */

hsize_t dimsm[2]; /* dataset dimensions */

int *data; /* pointer to data buffer to write */

hsize_t count[2]; /* hyperslab selection parameters */

hsize_t stride[2];

340 CHAPTER 7. HDF5

hsize_t block[2];

hssize_t offset[2];

hid_t plist_id; /* property list identifier */

int i, j, k;

herr_t status;

/*

* MPI variables

*/

int mpi_size, mpi_rank;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Info info = MPI_INFO_NULL;

/*

* Initialize MPI

*/

MPI_Init(&argc, &argv);

MPI_Comm_size(comm, &mpi_size);

MPI_Comm_rank(comm, &mpi_rank);

/*

* Exit if number of processes is not 2

*/

if (mpi_size != 2) {

printf("This example to set up to use only 2 processes \n");

printf("Quitting...\n");

return 0;

}

/*

* Set up file access property list with parallel I/O access

*/

plist_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(plist_id, comm, info);

/*

* Create a new file collectively and release property list identifier.

*/

file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

H5Pclose(plist_id);

/*

* Create the dataspace for the dataset.

*/

dimsf[0] = NX;

dimsf[1] = NY;

dimsm[0] = NX;

dimsm[1] = NY/2;

filespace = H5Screate_simple(RANK, dimsf, NULL);

memspace = H5Screate_simple(RANK, dimsm, NULL);

/*

* Create the dataset with default properties and close filespace.

*/

dset_id = H5Dcreate(file_id, DATASETNAME, H5T_NATIVE_INT, filespace,

H5P_DEFAULT);

H5Sclose(filespace);

7.5. HYPERSLAB SELECTION 341

/*

* Each process defines dataset in memory and writes it to the hyperslab

* in the file.

*/

count[0] = 1;

count[1] = dimsm[1];

offset[0] = 0;

offset[1] = mpi_rank;

stride[0] = 1;

stride[1] = 2;

block[0] = dimsf[0];

block[1] = 1;

/*

* Select hyperslab in the file.

*/

filespace = H5Dget_space(dset_id);

H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, stride, count, block);

/*

* Initialize data buffer

*/

data = (int *) malloc(sizeof(int)*dimsm[0]*dimsm[1]);

for (i=0; i < dimsm[0]*dimsm[1]; i=i+dimsm[1]) {

k = 1;

for (j=0; j < dimsm[1]; j++) {

data[i + j] = (mpi_rank +1) * k ;

k = k * 10;

}

}

/*

* Create property list for collective dataset write.

*/

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace,

plist_id, data);

free(data);

/*

* Close/release resources.

*/

H5Dclose(dset_id);

H5Sclose(filespace);

H5Sclose(memspace);

H5Pclose(plist_id);

H5Fclose(file_id);

MPI_Finalize();

return 0;

}

This MPI/HDF5 code begins the same way the previous code has: we initial-
ize MPI, find about the size of the communicator and every process then finds

342 CHAPTER 7. HDF5

its rank number. But then we check if the program is running on a number of
processes that is different than 2 and if it is, we quit:

if (mpi_size != 2) {

printf("This example to set up to use only 2 processes \n");

printf("Quitting...\n");

return 0;

}

Observe the dirty, UNIX-like, exit through ”return” instead of MPI_Abort, or a
jump to MPI_Finalize at the end of the program. This is not nice, but, clearly,
the authors didn’t care. Such an exit is bound to trigger MPD error messages.
But . . . let’s plough on.

After this we create a property list for the MPI file access:

plist_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(plist_id, comm, info);

and then we create the file itself, whereupon the property list gets closed, be-
cause it is no longer needed:

#define H5FILE_NAME "SDS_col.h5"

...

file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

H5Pclose(plist_id);

Now we are going to create two data spaces: one for the dataset on the file and
one for the memory. Because we are going to split the dataset amongst the two
processes of the pool, the memory data space for each process is going to be
half of the dataset data space:

#define NX 8

#define NY 6

#define RANK 2

...

hsize_t dimsf[2];

hsize_t dimsm[2];

...

dimsf[0] = NX;

dimsf[1] = NY;

dimsm[0] = NX;

dimsm[1] = NY/2;

filespace = H5Screate_simple(RANK, dimsf, NULL);

memspace = H5Screate_simple(RANK, dimsm, NULL);

Here NX is the number of rows and NY is the number of columns.
Now we can create the dataset and having done so, we’re going to close the

filespace, because it’s no longer needed:

#define DATASETNAME "IntArray"

...

dset_id = H5Dcreate(file_id, DATASETNAME, H5T_NATIVE_INT, filespace,

H5P_DEFAULT);

H5Sclose(filespace);

At this stage, in preparation for writing, we are going to define our hy-
perslabs – these are going to be different for each process. The procedure is
as follows: first we obtain the whole dataspace by interrogating the dataset
and then we modify the dataspace by calling H5Sselect_hyperslab with the
H5S_SELECT_SET argument. Here is the whole call:

7.5. HYPERSLAB SELECTION 343

count[0] = 1;

count[1] = dimsm[1]; /* i.e., count[1] = NY/2 = 3 */

offset[0] = 0;

offset[1] = mpi_rank; /* i.e., offset[1] = 0 or 1 */

stride[0] = 1;

stride[1] = 2;

block[0] = dimsf[0]; /* i.e., block[0] = NX = 8 */

block[1] = 1;

filespace = H5Dget_space(dset_id);

H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, stride, count, block);

Let us read this definition aloud.
Consider process of rank 0. For this process offset[0] = 0 and offset[1] = 0

too. So for this process the hyperslab begins at the (0,0) location in the
dataset, which corresponds to the beginning of the first column. But for pro-
cess 1 offset[0] = 0 and offset[1] = 1, so for this process the hyperslab
begins at the (0,1) location in the dataset, which corresponds to the beginning
of the second column.

For both processes count[0] = 1, stride[0] = 1 – this corresponds to
rows – and count[1] = 3 and stride[1] = 2 – this corresponds to columns
– which means that each process is going to select every second block of data
to the right three times, and each block is going to be 8 rows times 1 column,
because block[0] = 8 and block[1] = 1.

In other words, process 0 will select columns 1, 3, and 5 and process 1 will
select columns 2, 4, and 6.

Now each process writes the following data to its memory space:

data = (int *) malloc(sizeof(int)*dimsm[0]*dimsm[1]);

for (i=0; i < dimsm[0]*dimsm[1]; i=i+dimsm[1]) {

k = 1;

for (j=0; j < dimsm[1]; j++) {

data[i + j] = (mpi_rank + 1) * k ;

k = k * 10;

}

}

Observe that only the k index is used in constructing the data, whereas i and
j indexes are used in placing it. Also observe that k is reset to 1 every time j
reaches dimsm[1] = 3. And so, for the process of rank 0 we are going to have:

data[] = 1, 10, 100, 1, 10, 100, ... 1, 10, 100

and for the process of rank 1 we are going to have:

data[] = 2, 20, 200, 2, 20, 200, ... 2, 20, 200

Now remember that in C matrices are stored in the row-contiguous fashion,
which means that when this data is going to be mapped onto our memory
space, which is a matrix 8× 3, we’ll get:

1, 10, 100,

1, 10, 100,

...

1, 10, 100

344 CHAPTER 7. HDF5

and

2, 20, 200,

2, 20, 200,

...

2, 20, 200

Finally, we are ready to write the data. We create the property list for
collective MPI-IO write (unsing MPI_File_write_all) and write the data by
interpreting its memory layout according to memspace and its HDF5 file dataset
layout according to filespace:

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace,

plist_id, data);

And this is it: we free data, then we close the dataset, filespace, memspace,
the property list and finally the HDF5 file itself. Then the processes meet at
MPI_Finalize and we exit the program with return 0.

Scattering Data

Whereas in the previous example we have divided the dataset into columns
assigning every second column to a process participating in the MPI pool (which
was restricted to two processes only), in this example we are going to divide the
dataset differently. The dataset is going to be of size 8 × 4, i.e., we’ll have 8
rows and 4 columns and 4 processes in the pool. Each process is going to write
its own rank number (plus 1) on the dataset in a different place, so that the
final picture is going to look as follows:

1 3 1 3
2 4 2 4
1 3 1 3
2 4 2 4
1 3 1 3
2 4 2 4
1 3 1 3
2 4 2 4

This is called scattering the data, although the data isn’t really scattered at
random at all – it is written according to a pattern, but it is written in a highly
non-contiguous (and therefore inefficient) manner. I can’t think of a context
where you would need to do something like this, but it’s nice to know that you
can.

Here is how to compile, link and run the program, and what comes out of it
eventually:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/HDF5/mpi-io

gustav@bh1 $ h5cc -o hyperslab_by_pattern hyperslab_by_pattern.c

gustav@bh1 $ mv hyperslab_by_pattern ~/bin

7.5. HYPERSLAB SELECTION 345

gustav@bh1 $ cd

gustav@bh1 $ mpdboot

gustav@bh1 $ mpdtrace | wc

20 20 99

gustav@bh1 $ cd /N/gpfs/gustav

gustav@bh1 $ ls

SDS_col.h5 SDS_row.h5 t_mpio_1wMr test tests

gustav@bh1 $ mpiexec -n 4 hyperslab_by_pattern

gustav@bh1 $ ls

SDS_col.h5 SDS_pat.h5 SDS_row.h5 t_mpio_1wMr test tests

gustav@bh1 $ h5dump SDS_pat.h5

HDF5 "SDS_pat.h5" {

GROUP "/" {

DATASET "IntArray" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { (8, 4) / (8, 4) }

DATA {

1, 3, 1, 3,

2, 4, 2, 4,

1, 3, 1, 3,

2, 4, 2, 4,

1, 3, 1, 3,

2, 4, 2, 4,

1, 3, 1, 3,

2, 4, 2, 4

}

}

}

}

gustav@bh1 $ mpdallexit

gustav@bh1 $

The listing of the program that comes from the NCSA HDF5 Tutorial is
shown below.

/*

* This example writes data to the HDF5 file following some pattern

* - | - |

* * V * V

* - | - |

* * V * V

*

* Number of processes is assumed to be 4.

*/

#include "hdf5.h"

#define H5FILE_NAME "SDS_pat.h5"

#define DATASETNAME "IntArray"

#define NX 8 /* dataset dimensions */

#define NY 4

#define RANK 2

#define RANK1 1

int

main (int argc, char **argv)

{

/*

346 CHAPTER 7. HDF5

* HDF5 APIs definitions

*/

hid_t file_id, dset_id; /* file and dataset identifiers */

hid_t filespace, memspace; /* file and memory dataspace identifiers */

hsize_t dimsf[2]; /* dataset dimensions */

hsize_t dimsm[1]; /* dataset dimensions */

int *data; /* pointer to data buffer to write */

hsize_t count[2]; /* hyperslab selection parameters */

hsize_t stride[2];

hssize_t offset[2];

hid_t plist_id; /* property list identifier */

int i;

herr_t status;

/*

* MPI variables

*/

int mpi_size, mpi_rank;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Info info = MPI_INFO_NULL;

/*

* Initialize MPI

*/

MPI_Init(&argc, &argv);

MPI_Comm_size(comm, &mpi_size);

MPI_Comm_rank(comm, &mpi_rank);

/*

* Exit if number of processes is not 4.

*/

if (mpi_size != 4) {

printf("This example is set up to use 4 processes exactly\n");

printf("Quitting...\n");

return 0;

}

/*

* Set up file access property list with parallel I/O access

*/

plist_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(plist_id, comm, info);

/*

* Create a new file collectively and release property list identifier.

*/

file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

H5Pclose(plist_id);

/*

* Create the dataspace for the dataset.

*/

dimsf[0] = NX;

dimsf[1] = NY;

dimsm[0] = NX;

filespace = H5Screate_simple(RANK, dimsf, NULL);

memspace = H5Screate_simple(RANK1, dimsm, NULL);

7.5. HYPERSLAB SELECTION 347

/*

* Create the dataset with default properties and close filespace.

*/

dset_id = H5Dcreate(file_id, DATASETNAME, H5T_NATIVE_INT, filespace,

H5P_DEFAULT);

H5Sclose(filespace);

/*

* Each process defines dataset in memory and writes it to the hyperslab

* in the file.

*/

count[0] = 4;

count[1] = 2;

stride[0] = 2;

stride[1] = 2;

if(mpi_rank == 0) {

offset[0] = 0;

offset[1] = 0;

}

if(mpi_rank == 1) {

offset[0] = 1;

offset[1] = 0;

}

if(mpi_rank == 2) {

offset[0] = 0;

offset[1] = 1;

}

if(mpi_rank == 3) {

offset[0] = 1;

offset[1] = 1;

}

/*

* Select hyperslab in the file.

*/

filespace = H5Dget_space(dset_id);

status = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, stride, count, NULL);

/*

* Initialize data buffer

*/

data = (int *) malloc(sizeof(int)*dimsm[0]);

for (i=0; i < (int)dimsm[0]; i++) {

data[i] = mpi_rank + 1;

}

/*

* Create property list for collective dataset write.

*/

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace,

plist_id, data);

free(data);

348 CHAPTER 7. HDF5

/*

* Close/release resources.

*/

H5Dclose(dset_id);

H5Sclose(filespace);

H5Sclose(memspace);

H5Pclose(plist_id);

H5Fclose(file_id);

MPI_Finalize();

return 0;

}

Let us analyze this program now. I’ll skip the MPI opening, the abominable
error handling, and then creation of the file itself (with an appropriate MPI-
related property list), because it’s all the same stuff as before, and we’re going
to halt at the point where the data spaces are created:

#define NX 8

#define NY 4

#define RANK 2

#define RANK1 1

...

dimsf[0] = NX;

dimsf[1] = NY;

dimsm[0] = NX;

filespace = H5Screate_simple(RANK, dimsf, NULL);

memspace = H5Screate_simple(RANK1, dimsm, NULL);

So, the filespace is going to be 8× 4 and the memspace is a one-dimensional
array of length 8. Then we create the dataset on the HDF5 file and discard the
filespace:

#define DATASETNAME "IntArray"

...

dset_id = H5Dcreate(file_id, DATASETNAME, H5T_NATIVE_INT, filespace,

H5P_DEFAULT);

H5Sclose(filespace);

Now we get down to selecting the hyperslab of the dataset. We initialize strides,
counts and offsets:

count[0] = 4;

count[1] = 2;

stride[0] = 2;

stride[1] = 2;

if(mpi_rank == 0) {

offset[0] = 0;

offset[1] = 0;

}

if(mpi_rank == 1) {

offset[0] = 1;

offset[1] = 0;

}

if(mpi_rank == 2) {

offset[0] = 0;

offset[1] = 1;

}

7.5. HYPERSLAB SELECTION 349

if(mpi_rank == 3) {

offset[0] = 1;

offset[1] = 1;

}

Each process, as you see, is going to write 4 × 2 blocks of data separated by
a stride of 2 in each dimension. The block sizes will default to 1, because we
are going to NULL in the block size slot. Process of rank 0 starts at the (0, 0)
location, process of rank 1 starts at the (1, 0) location, process of rank 2 starts
at the (0, 1) location and process of rank 3 starts at the (1, 1) location. With
counts, strides and offsets defined, we call H5Sselect_hyperslab:

filespace = H5Dget_space(dset_id);

status = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, stride, count, NULL);

Each process is going to fill its memory dataspace simply with its own rank
number (plus 1):

data = (int *) malloc(sizeof(int)*dimsm[0]);

for (i=0; i < (int)dimsm[0]; i++) {

data[i] = mpi_rank + 1;

}

Now we are ready to write the data. We prep the property list for a collective
write using MPI_File_write_alland write the data itself so that it gets mapped
from memspace to filespace:

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace,

plist_id, data);

And this is it. We free data, then we close the dataset, the filespace, the
memory space, the property list and the file itself, and finally the processes
meet on MPI_Finalize and exit.

Chunking

In this last MPI-IO/HDF5 example we are going to write data from four pro-
cesses, the data being much the same as in the previous example, i.e., the process
rank number plus 1, on the 8 × 4 dataset, but this time we’ll write the data in
blocks:

1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4
3 3 4 4
3 3 4 4

350 CHAPTER 7. HDF5

Observe that although at first glance this partitioning does not seem very dif-
ferent from what we had in our first MPI-IO/HDF5 example:

1 1 1 1
1 1 1 1
2 2 2 2
2 2 2 2
3 3 3 3
3 3 3 3
4 4 4 4
4 4 4 4

it is, in fact, very different. Because matrices are stored row-contiguous in C, in
order to achieve the above pattern we can simply divide the dataset into four
contiguous portions and assign each to a separate process. This is, in fact, the
most efficient way of partitioning a dataset and you should stick to this, unless
you really have to subject yourself to the kind of equilibristics we have been
talking about in the last 3 sections (including this one).

So, the partition we are going to implement in the following example will
not be contiguous.

Before I get to the program itself, let me show you how to compile, link and
run the program first:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/HDF5/mpi-io

gustav@bh1 $ h5cc -o hyperslab_by_chunk hyperslab_by_chunk.c

gustav@bh1 $ mv hyperslab_by_chunk ~/bin

gustav@bh1 $ cd

gustav@bh1 $ mpdboot

gustav@bh1 $

gustav@bh1 $ mpdtrace | wc

20 20 99

gustav@bh1 $ cd /N/gpfs/gustav

gustav@bh1 $ ls

SDS_col.h5 SDS_pat.h5 SDS_row.h5 t_mpio_1wMr test tests

gustav@bh1 $ mpiexec -n 4 hyperslab_by_chunk

gustav@bh1 $ ls

SDS_chnk.h5 SDS_col.h5 SDS_pat.h5 SDS_row.h5 t_mpio_1wMr test tests

gustav@bh1 $ h5dump SDS_chnk.h5

HDF5 "SDS_chnk.h5" {

GROUP "/" {

DATASET "IntArray" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { (8, 4) / (8, 4) }

DATA {

1, 1, 2, 2,

1, 1, 2, 2,

1, 1, 2, 2,

1, 1, 2, 2,

3, 3, 4, 4,

3, 3, 4, 4,

3, 3, 4, 4,

3, 3, 4, 4

7.5. HYPERSLAB SELECTION 351

}

}

}

}

gustav@bh1 $ mpdallexit

gustav@bh1 $

Here is the program, which I have taken from the NCSA HDF5 Tutorial.

/*

* This example writes dataset sing chunking. Each process writes

* exactly one chunk.

* - |

* * V

* Number of processes is assumed to be 4.

*/

#include "hdf5.h"

#define H5FILE_NAME "SDS_chnk.h5"

#define DATASETNAME "IntArray"

#define NX 8 /* dataset dimensions */

#define NY 4

#define CH_NX 4 /* chunk dimensions */

#define CH_NY 2

#define RANK 2

int

main (int argc, char **argv)

{

/*

* HDF5 APIs definitions

*/

hid_t file_id, dset_id; /* file and dataset identifiers */

hid_t filespace, memspace; /* file and memory dataspace identifiers */

hsize_t dimsf[2]; /* dataset dimensions */

hsize_t chunk_dims[2]; /* chunk dimensions */

int *data; /* pointer to data buffer to write */

hsize_t count[2]; /* hyperslab selection parameters */

hsize_t stride[2];

hsize_t block[2];

hssize_t offset[2];

hid_t plist_id; /* property list identifier */

int i;

herr_t status;

/*

* MPI variables

*/

int mpi_size, mpi_rank;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Info info = MPI_INFO_NULL;

/*

* Initialize MPI

*/

MPI_Init(&argc, &argv);

MPI_Comm_size(comm, &mpi_size);

352 CHAPTER 7. HDF5

MPI_Comm_rank(comm, &mpi_rank);

/*

* Exit if number of processes is not 4.

*/

if (mpi_size != 4) {

printf("This example to set up to use only 4 processes \n");

printf("Quitting...\n");

return 0;

}

/*

* Set up file access property list with parallel I/O access

*/

plist_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(plist_id, comm, info);

/*

* Create a new file collectively and release property list identifier.

*/

file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

H5Pclose(plist_id);

/*

* Create the dataspace for the dataset.

*/

dimsf[0] = NX;

dimsf[1] = NY;

chunk_dims[0] = CH_NX;

chunk_dims[1] = CH_NY;

filespace = H5Screate_simple(RANK, dimsf, NULL);

memspace = H5Screate_simple(RANK, chunk_dims, NULL);

/*

* Create chunked dataset.

*/

plist_id = H5Pcreate(H5P_DATASET_CREATE);

H5Pset_chunk(plist_id, RANK, chunk_dims);

dset_id = H5Dcreate(file_id, DATASETNAME, H5T_NATIVE_INT, filespace,

plist_id);

H5Pclose(plist_id);

H5Sclose(filespace);

/*

* Each process defines dataset in memory and writes it to the hyperslab

* in the file.

*/

count[0] = 1;

count[1] = 1 ;

stride[0] = 1;

stride[1] = 1;

block[0] = chunk_dims[0];

block[1] = chunk_dims[1];

if(mpi_rank == 0) {

offset[0] = 0;

offset[1] = 0;

}

7.5. HYPERSLAB SELECTION 353

if(mpi_rank == 1) {

offset[0] = 0;

offset[1] = chunk_dims[1];

}

if(mpi_rank == 2) {

offset[0] = chunk_dims[0];

offset[1] = 0;

}

if(mpi_rank == 3) {

offset[0] = chunk_dims[0];

offset[1] = chunk_dims[1];

}

/*

* Select hyperslab in the file.

*/

filespace = H5Dget_space(dset_id);

status = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, stride, count, block);

/*

* Initialize data buffer

*/

data = (int *) malloc(sizeof(int)*chunk_dims[0]*chunk_dims[1]);

for (i=0; i < (int)chunk_dims[0]*chunk_dims[1]; i++) {

data[i] = mpi_rank + 1;

}

/*

* Create property list for collective dataset write.

*/

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace,

plist_id, data);

free(data);

/*

* Close/release resources.

*/

H5Dclose(dset_id);

H5Sclose(filespace);

H5Sclose(memspace);

H5Pclose(plist_id);

H5Fclose(file_id);

MPI_Finalize();

return 0;

}

We’ll skip the preliminaries and land right where the filespace and the mem-
ory space are defined:

#define NX 8

#define NY 4

#define CH_NX 4

#define CH_NY 2

354 CHAPTER 7. HDF5

...

dimsf[0] = NX;

dimsf[1] = NY;

chunk_dims[0] = CH_NX;

chunk_dims[1] = CH_NY;

filespace = H5Screate_simple(RANK, dimsf, NULL);

memspace = H5Screate_simple(RANK, chunk_dims, NULL);

So, the filespace itself is going to be 8 × 4 and the memory space for each
process is going to be 4 × 2. Now we create the dataset and observe that we
request that this dataset be chunked with chunks of the same size as the memory
datasets. But this chunking of the dataset, i.e., its physical partitioning, is quite
unrelated to our logical chunking, which we will have to implement by selecting
an appropriate hyperslab.

#define DATASETNAME "IntArray"

...

plist_id = H5Pcreate(H5P_DATASET_CREATE);

H5Pset_chunk(plist_id, RANK, chunk_dims);

dset_id = H5Dcreate(file_id, DATASETNAME, H5T_NATIVE_INT, filespace,

plist_id);

H5Pclose(plist_id);

H5Sclose(filespace);

Now we have to define counts, strides, block sizes and offsets for each hyper-
slab:

count[0] = 1;

count[1] = 1 ;

stride[0] = 1;

stride[1] = 1;

block[0] = chunk_dims[0];

block[1] = chunk_dims[1];

if(mpi_rank == 0) {

offset[0] = 0;

offset[1] = 0;

}

if(mpi_rank == 1) {

offset[0] = 0;

offset[1] = chunk_dims[1];

}

if(mpi_rank == 2) {

offset[0] = chunk_dims[0];

offset[1] = 0;

}

if(mpi_rank == 3) {

offset[0] = chunk_dims[0];

offset[1] = chunk_dims[1];

}

Each process is going to write just one block. The stride between the blocks is
going to be 1 in each direction, i.e., no striding – but here we could probably
default, since you cannot talk about a stride if you are going to write just one
block. The block size is going to be 4 × 2 for each process. Process of rank 0
writes its block at (0,0), process of rank 1 writes its block at (0,2), process of
rank 2 writes its block at (4,0) and process of rank 3 writes its block at (4,2).

Now each process is ready to select its hyperslab:

7.6. POINT SELECTION 355

filespace = H5Dget_space(dset_id);

status = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, stride, count, block);

At this stage the data gets initialized in memory, we add a collective MPI-
IO write request to the property list and we write the data, whereupon the
previously allocated buffer data gets freed.

data = (int *) malloc(sizeof(int)*chunk_dims[0]*chunk_dims[1]);

for (i=0; i < (int)chunk_dims[0]*chunk_dims[1]; i++) {

data[i] = mpi_rank + 1;

}

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace,

plist_id, data);

free(data);

Finally we close all resources and finalize MPI and exit:

H5Dclose(dset_id);

H5Sclose(filespace);

H5Sclose(memspace);

H5Pclose(plist_id);

H5Fclose(file_id);

MPI_Finalize();

return 0;

7.6 Point Selection

The previous section (or, to be more exact, the section, which was subdivided
into two subsections, of which the second was subdivided into 4 sub-sub-sections)
talked about selecting hyperslabs, i.e., subsets of a dataset. But what if we want
to modify just a specific element of the dataset, not its whole subset? There is an
HDF5 dataspace function, H5Sselect elements, that lets us focus the dataspace
on individual points. We are going to demonstrate how this function works in
this section.

We are going to create two HDF5 files. The first one is going to have just
one 3×4 data set in it filled with zeros, and the second one is going to have just
one 3× 4 data set in it filled with ones. Then we’re going to close the files and
open them again for an update. We are going to write 59 in the (0,1) location of
each dataset and 53 in the (0,3) location of each dataset. Then the files will get
closed again, re-opened for reading, their datasets read and printed on standard
output.

Here you can see how the program works on the AVIDD cluster.

gustav@bh1 $ pwd

/N/B/gustav/src/I590/HDF5/points

gustav@bh1 $ h5cc -o h5_copy h5_copy.c

gustav@bh1 $./h5_copy

Dataset ’Copy1’ in file ’copy1.h5’ contains:

0 59 0 53

0 0 0 0

356 CHAPTER 7. HDF5

0 0 0 0

Dataset ’Copy2’ in file ’copy2.h5’ contains:

1 59 1 53

1 1 1 1

1 1 1 1

gustav@bh1 $ ls

copy1.h5 copy2.h5 h5_copy h5_copy.c h5_copy.o

gustav@bh1 $ h5dump copy1.h5

HDF5 "copy1.h5" {

GROUP "/" {

DATASET "Copy1" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { (3, 4) / (3, 4) }

DATA {

0, 59, 0, 53,

0, 0, 0, 0,

0, 0, 0, 0

}

}

}

}

gustav@bh1 $ h5dump copy2.h5

HDF5 "copy2.h5" {

GROUP "/" {

DATASET "Copy2" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { (3, 4) / (3, 4) }

DATA {

1, 59, 1, 53,

1, 1, 1, 1,

1, 1, 1, 1

}

}

}

}

gustav@bh1 $

This is the listing of the program taken from the NCSA HDF5 Tutorial:

/***/

/* */

/* PROGRAM: h5_copy.c */

/* PURPOSE: Shows how to use the H5SCOPY function. */

/* DESCRIPTION: */

/* This program creates two files, copy1.h5, and copy2.h5. */

/* In copy1.h5, it creates a 3x4 dataset called ’Copy1’, */

/* and write 0’s to this dataset. */

/* In copy2.h5, it create a 3x4 dataset called ’Copy2’, */

/* and write 1’s to this dataset. */

/* It closes both files, reopens both files, selects two */

/* points in copy1.h5 and writes values to them. Then it */

/* does an H5Scopy from the first file to the second, and */

/* writes the values to copy2.h5. It then closes the */

/* files, reopens them, and prints the contents of the */

/* two datasets. */

/* */

/***/

7.6. POINT SELECTION 357

#include "hdf5.h"

#define FILE1 "copy1.h5"

#define FILE2 "copy2.h5"

#define RANK 2

#define DIM1 3

#define DIM2 4

#define NUMP 2

int main (void)

{

hid_t file1, file2, dataset1, dataset2;

hid_t mid1, mid2, fid1, fid2;

hsize_t fdim[] = {DIM1, DIM2};

hsize_t mdim[] = {DIM1, DIM2};

hsize_t start[2], stride[2], count[2], block[2];

int buf1[DIM1][DIM2];

int buf2[DIM1][DIM2];

int bufnew[DIM1][DIM2];

int val[] = {53, 59};

hsize_t marray[] = {2};

hssize_t coord[NUMP][RANK];

herr_t ret;

uint i, j;

/***/

/* */

/* Create two files containing identical datasets. Write 0’s to one */

/* and 1’s to the other. */

/* */

/***/

for (i = 0; i < DIM1; i++)

for (j = 0; j < DIM2; j++)

buf1[i][j] = 0;

for (i = 0; i < DIM1; i++)

for (j = 0; j < DIM2; j++)

buf2[i][j] = 1;

file1 = H5Fcreate(FILE1, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

file2 = H5Fcreate(FILE2, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

fid1 = H5Screate_simple (RANK, fdim, NULL);

fid2 = H5Screate_simple (RANK, fdim, NULL);

dataset1 = H5Dcreate (file1, "Copy1", H5T_NATIVE_INT, fid1, H5P_DEFAULT);

dataset2 = H5Dcreate (file2, "Copy2", H5T_NATIVE_INT, fid2, H5P_DEFAULT);

ret = H5Dwrite(dataset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf1);

ret = H5Dwrite(dataset2, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf2);

ret = H5Dclose (dataset1);

ret = H5Dclose (dataset2);

ret = H5Sclose (fid1);

358 CHAPTER 7. HDF5

ret = H5Sclose (fid2);

ret = H5Fclose (file1);

ret = H5Fclose (file2);

/***/

/* */

/* Open the two files. Select two points in one file, write values to */

/* those point locations, then do H5Scopy and write the values to the */

/* other file. Close files. */

/* */

/***/

file1 = H5Fopen (FILE1, H5F_ACC_RDWR, H5P_DEFAULT);

file2 = H5Fopen (FILE2, H5F_ACC_RDWR, H5P_DEFAULT);

dataset1 = H5Dopen (file1, "Copy1");

dataset2 = H5Dopen (file2, "Copy2");

fid1 = H5Dget_space (dataset1);

mid1 = H5Screate_simple(1, marray, NULL);

coord[0][0] = 0; coord[0][1] = 3;

coord[1][0] = 0; coord[1][1] = 1;

ret = H5Sselect_elements (fid1, H5S_SELECT_SET, NUMP, (const hssize_t **)coord);

ret = H5Dwrite (dataset1, H5T_NATIVE_INT, mid1, fid1, H5P_DEFAULT, val);

fid2 = H5Scopy (fid1);

ret = H5Dwrite (dataset2, H5T_NATIVE_INT, mid1, fid2, H5P_DEFAULT, val);

ret = H5Dclose (dataset1);

ret = H5Dclose (dataset2);

ret = H5Sclose (fid1);

ret = H5Sclose (fid2);

ret = H5Fclose (file1);

ret = H5Fclose (file2);

ret = H5Sclose (mid1);

/***/

/* */

/* Open both files and print the contents of the datasets. */

/* */

/***/

file1 = H5Fopen (FILE1, H5F_ACC_RDWR, H5P_DEFAULT);

file2 = H5Fopen (FILE2, H5F_ACC_RDWR, H5P_DEFAULT);

dataset1 = H5Dopen (file1, "Copy1");

dataset2 = H5Dopen (file2, "Copy2");

ret = H5Dread (dataset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, bufnew);

printf ("\nDataset ’Copy1’ in file ’copy1.h5’ contains: \n");

for (i=0;i<DIM1; i++) {

for (j=0;j<DIM2;j++) printf ("%3d ", bufnew[i][j]);

printf("\n");

}

7.6. POINT SELECTION 359

printf ("\nDataset ’Copy2’ in file ’copy2.h5’ contains: \n");

ret = H5Dread (dataset2, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, bufnew);

for (i=0;i<DIM1; i++) {

for (j=0;j<DIM2;j++) printf ("%3d ", bufnew[i][j]);

printf("\n");

}

ret = H5Dclose (dataset1);

ret = H5Dclose (dataset2);

ret = H5Fclose (file1);

ret = H5Fclose (file2);

}

This is not an MPI program (just in case you got used to the HDF5/MPI-IO
mixture). Its first part is completely standard HDF5: we create the files, we
create simple dataspaces, then we create the datasets, we write zeros on one
and ones on the other one, then close it all.

In the second part of the program new things happen. We open both files
and the datasets within them. Then we extract the dataspace from the first
dataset, create a simple dataspace for the two numbers {53, 59}, and call
H5Sselect_elements to narrow the dataspace to just the two selected locations:

#define NUMP 2

...

fid1 = H5Dget_space (dataset1);

mid1 = H5Screate_simple(1, marray, NULL);

coord[0][0] = 0; coord[0][1] = 3;

coord[1][0] = 0; coord[1][1] = 1;

ret = H5Sselect_elements (fid1, H5S_SELECT_SET, NUMP, (const hssize_t **)coord);

The first parameter in the call to H5Sselect_elements is the dataset. This
is followed by the mode of selection, in this case we use the same mode as in
our previous examples with hyperslabs, i.e., we are going to replace the original
dataspace with the one that focuses on the two points in the dataspace only.
The third parameter, here it is NUMP, specifies the number of points and the last
parameter is the array that provides the point coordinates. Here they are (0,3)
and (0,1).

Now we can write our data on just these two locations:

int val[] = {53, 59};

...

ret = H5Dwrite (dataset1, H5T_NATIVE_INT, mid1, fid1, H5P_DEFAULT, val);

Observe that number 53 corresponds to (0,3) and 59 corresponds to (0,1).
Because the datasets on both files have the same geometry and we want to

write the data on exactly the same points in the second dataset, we don’t need
to re-create the dataspace for this operation. We can simply copy fid1 onto a
new dataspace fid2 by calling function H5Scopy:

fid2 = H5Scopy (fid1);

Having done this we complete the write on the second file:

360 CHAPTER 7. HDF5

ret = H5Dwrite (dataset2, H5T_NATIVE_INT, mid1, fid2, H5P_DEFAULT, val);

and then close everything again.
The last part of the program opens the files, the datasets, reads them, prints

them, and then closes it all. There is nothing new in it, so I’ll just skip it.

7.7 Compound Datatypes

All our HDF5 examples so far were concerned with writing very elementary data
on simple datasets. And the data were all 32-bit integers to make things simpler,
the only touch of excitement being small-endian versus big-endian. But what
if we have some richly structured data, a mixture of characters, floats, integers
and what not? Following the example of MPI HDF5 provides a rich interface
for creation of new HDF5 data types. All functions in this family have their
names beginning with H5T, where T stands for type. You cannot perform any
computations on these HDF5 datatypes though. Their purpose is similar to
the purpose of MPI datatypes. By defining HDF5 datatypes you tell it how it
should extract data from your C-language structures and how it should write
the data back on them.

The following program is going to create a simple one-dimensional dataset,
which is going to hold an array of length 10, on an HDF5 file, but each element of
this dataset is going to store a 3-element structure, whose C-language definition
is:

typedef struct s1_t {

int a;

float b;

double c;

} s1_t;

The program will initialize an array of such structures in memory, then it will
provide appropriate definitions to HDF5, and will transfer the content of the
memory array to the HDF5 dataset.

In the second part of the program we are going to read the data back, in
a special way that lets us select certain components of the structure only, and
we’ll print the results on standard output.

Here is how the program compiles, links and runs on the AVIDD cluster:

gustav@bh1 $ pwd

/N/B/gustav/src/I590/HDF5/compound

gustav@bh1 $ h5cc -o h5_compound h5_compound.c

gustav@bh1 $./h5_compound

Field c :

1.0000 0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000

Field a :

0 1 2 3 4 5 6 7 8 9

Field b :

0.0000 1.0000 4.0000 9.0000 16.0000 25.0000 36.0000 49.0000 64.0000 81.0000

gustav@bh1 $ ls

7.7. COMPOUND DATATYPES 361

SDScompound.h5 h5_compound h5_compound.c h5_compound.o

gustav@bh1 $

And here for the more inquisitive minds, is the h5dump of the file itself, followed
by its h5ls listing:

gustav@bh1 $ h5dump SDScompound.h5

HDF5 "SDScompound.h5" {

GROUP "/" {

DATASET "ArrayOfStructures" {

DATATYPE H5T_COMPOUND {

H5T_STD_I32LE "a_name";

H5T_IEEE_F64LE "c_name";

H5T_IEEE_F32LE "b_name";

}

DATASPACE SIMPLE { (10) / (10) }

DATA {

{

0,

1,

0

},

{

1,

0.5,

1

},

{

2,

0.333333,

4

},

{

3,

0.25,

9

},

{

4,

0.2,

16

},

{

5,

0.166667,

25

},

{

6,

0.142857,

36

},

{

7,

0.125,

49

},

{

362 CHAPTER 7. HDF5

8,

0.111111,

64

},

{

9,

0.1,

81

}

}

}

}

}

gustav@bh1 $ h5ls -r -v SDScompound.h5

Opened "SDScompound.h5" with sec2 driver.

/ArrayOfStructures Dataset {10/10}

Location: 0:1:0:976

Links: 1

Modified: 2003-11-30 17:56:34 EST

Storage: 160 logical bytes, 160 allocated bytes, 100.00% utilization

Type: struct {

"a_name" +0 native int

"c_name" +8 native double

"b_name" +4 native float

} 16 bytes

gustav@bh1 $

You can clearly see that information about the structure is provided. The
components of the structure are written on fields named "a_name", "c_name"
and "b_name". These names are important. They are not just decorative labels.
You will use these names in order to read data from selected fields into memory.

The program itself comes from the NCSA HDF5 Tutorial:

/*

* This example shows how to create a compound data type,

* write an array which has the compound data type to the file,

* and read back fields’ subsets.

*/

#include "hdf5.h"

#define FILE "SDScompound.h5"

#define DATASETNAME "ArrayOfStructures"

#define LENGTH 10

#define RANK 1

int

main(void)

{

/* First structure and dataset*/

typedef struct s1_t {

int a;

float b;

double c;

} s1_t;

s1_t s1[LENGTH];

7.7. COMPOUND DATATYPES 363

hid_t s1_tid; /* File datatype identifier */

/* Second structure (subset of s1_t) and dataset*/

typedef struct s2_t {

double c;

int a;

} s2_t;

s2_t s2[LENGTH];

hid_t s2_tid; /* Memory datatype handle */

/* Third "structure" (will be used to read float field of s1) */

hid_t s3_tid; /* Memory datatype handle */

float s3[LENGTH];

int i;

hid_t file, dataset, space; /* Handles */

herr_t status;

hsize_t dim[] = {LENGTH}; /* Dataspace dimensions */

/*

* Initialize the data

*/

for (i = 0; i< LENGTH; i++) {

s1[i].a = i;

s1[i].b = i*i;

s1[i].c = 1./(i+1);

}

/*

* Create the data space.

*/

space = H5Screate_simple(RANK, dim, NULL);

/*

* Create the file.

*/

file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/*

* Create the memory data type.

*/

s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));

H5Tinsert(s1_tid, "a_name", HOFFSET(s1_t, a), H5T_NATIVE_INT);

H5Tinsert(s1_tid, "c_name", HOFFSET(s1_t, c), H5T_NATIVE_DOUBLE);

H5Tinsert(s1_tid, "b_name", HOFFSET(s1_t, b), H5T_NATIVE_FLOAT);

/*

* Create the dataset.

*/

dataset = H5Dcreate(file, DATASETNAME, s1_tid, space, H5P_DEFAULT);

/*

* Wtite data to the dataset;

*/

status = H5Dwrite(dataset, s1_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s1);

364 CHAPTER 7. HDF5

/*

* Release resources

*/

H5Tclose(s1_tid);

H5Sclose(space);

H5Dclose(dataset);

H5Fclose(file);

/*

* Open the file and the dataset.

*/

file = H5Fopen(FILE, H5F_ACC_RDONLY, H5P_DEFAULT);

dataset = H5Dopen(file, DATASETNAME);

/*

* Create a data type for s2

*/

s2_tid = H5Tcreate(H5T_COMPOUND, sizeof(s2_t));

H5Tinsert(s2_tid, "c_name", HOFFSET(s2_t, c), H5T_NATIVE_DOUBLE);

H5Tinsert(s2_tid, "a_name", HOFFSET(s2_t, a), H5T_NATIVE_INT);

/*

* Read two fields c and a from s1 dataset. Fields in the file

* are found by their names "c_name" and "a_name".

*/

status = H5Dread(dataset, s2_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s2);

/*

* Display the fields

*/

printf("\n");

printf("Field c : \n");

for(i = 0; i < LENGTH; i++) printf("%.4f ", s2[i].c);

printf("\n");

printf("\n");

printf("Field a : \n");

for(i = 0; i < LENGTH; i++) printf("%d ", s2[i].a);

printf("\n");

/*

* Create a data type for s3.

*/

s3_tid = H5Tcreate(H5T_COMPOUND, sizeof(float));

status = H5Tinsert(s3_tid, "b_name", 0, H5T_NATIVE_FLOAT);

/*

* Read field b from s1 dataset. Field in the file is found by its name.

*/

status = H5Dread(dataset, s3_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s3);

/*

* Display the field

*/

7.7. COMPOUND DATATYPES 365

printf("\n");

printf("Field b : \n");

for(i = 0; i < LENGTH; i++) printf("%.4f ", s3[i]);

printf("\n");

/*

* Release resources

*/

H5Tclose(s2_tid);

H5Tclose(s3_tid);

H5Dclose(dataset);

H5Fclose(file);

return 0;

}

Let us analyze the program.
The program begins by initializing the array of structures:

#define LENGTH 10

...

typedef struct s1_t {

int a;

float b;

double c;

} s1_t;

s1_t s1[LENGTH];

...

for (i = 0; i< LENGTH; i++) {

s1[i].a = i;

s1[i].b = i*i;

s1[i].c = 1./(i+1);

}

Then we create a simple dataspace. Observe that there is no information pro-
vided at this stage about the structure of the entities the dataspace is made
of:

#define LENGTH 10

#define RANK 1

...

hsize_t dim[] = {LENGTH};

...

space = H5Screate_simple(RANK, dim, NULL);

We create the HDF5 file:

file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

and now we have to tell HDF5 more about the structure that the dataset is
going to be made of:

s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));

H5Tinsert(s1_tid, "a_name", HOFFSET(s1_t, a), H5T_NATIVE_INT);

H5Tinsert(s1_tid, "c_name", HOFFSET(s1_t, c), H5T_NATIVE_DOUBLE);

H5Tinsert(s1_tid, "b_name", HOFFSET(s1_t, b), H5T_NATIVE_FLOAT);

We have two new functions here. The first one H5Tcreate creates the new type.
The first parameter in this call is an HDF5 constant H5T_COMPOUND, which tells

366 CHAPTER 7. HDF5

HDF5 that this is going to be a compound object. The other possible choices
here are H5T_OPAQUE and H5T_ENUM. The second parameter specifies the size of
the whole object.

The second function is H5Tinsert and it is used to tell HDF5 how exactly
the new type, whose identifier is s1_tid, is made.

The first call specifies that the first component is of type H5T_NATIVE_INT,
it should be inserted into the field of name "a_name", and it should be picked
from the memory location that corresponds to the offset of the a component in
the C-language structure s1_t. A special HDF5 macro HOFFSET can be used to
get it. You may recall that we had a function in MPI, called MPI_Get_address,
whose purpose was, similarly, to find offsets of various structure components in
order to provide MPI_Type_struct with displacements.

The second call tells HDF5 that the second component of the structure is of
type H5T_NATIVE_DOUBLE and its memory location corresponds to the location
of the c component of the s1_t structures. It should be inserted into the field
named "c_name".

Finally the third call tells HDF5 that the third component is to be inserted
into the field called "b_name", that it is an H5T_NATIVE_FLOAT and that its
memory location corresponds to the location of the b component in the s1_t

structure.
Now we are finally ready to create the dataset:

#define DATASETNAME "ArrayOfStructures"

...

dataset = H5Dcreate(file, DATASETNAME, s1_tid, space, H5P_DEFAULT);

The combination of the two parameters, (s1_tid, space), tells H5Dcreate
what the space should really be like.

Now we can peform the simple HDF5 write and release all resources:

status = H5Dwrite(dataset, s1_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s1);

H5Tclose(s1_tid);

H5Sclose(space);

H5Dclose(dataset);

H5Fclose(file);

In the second part of the program we open the file for reading, open the
dataset, and then read the data. But we read it a little differently than we have
written it originally. This is because in the first read we are going to read the
"c_name" and "a_name" fields of the dataset only. To do this we create a new
type:

#define LENGTH 10

...

typedef struct s2_t {

double c;

int a;

} s2_t;

s2_t s2[LENGTH];

...

s2_tid = H5Tcreate(H5T_COMPOUND, sizeof(s2_t));

H5Tinsert(s2_tid, "c_name", HOFFSET(s2_t, c), H5T_NATIVE_DOUBLE);

H5Tinsert(s2_tid, "a_name", HOFFSET(s2_t, a), H5T_NATIVE_INT);

7.8. ITERATING OVER HDF5 GROUPS 367

and use it to read the selected fields from the dataset – the data goes then
directly into s2 into slots specified by HOFFSET(s2_t,c) and HOFFSET(s2_t,a)
respectively:

status = H5Dread(dataset, s2_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s2);

Having read the data we print it on standard output:

printf("\n");

printf("Field c : \n");

for(i = 0; i < LENGTH; i++) printf("%.4f ", s2[i].c);

printf("\n");

printf("\n");

printf("Field a : \n");

for(i = 0; i < LENGTH; i++) printf("%d ", s2[i].a);

printf("\n");

Now we create an HDF5 type for reading the "b_name" field:

s3_tid = H5Tcreate(H5T_COMPOUND, sizeof(float));

status = H5Tinsert(s3_tid, "b_name", 0, H5T_NATIVE_FLOAT);

The offset in this case is zero, because we are going to read the data onto a plain
array of floats, s3. Then we read the field and print the array s3 on standard
output:

#define LENGTH 10

...

float s3[LENGTH];

...

status = H5Dread(dataset, s3_tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, s3);

printf("\n");

printf("Field b : \n");

for(i = 0; i < LENGTH; i++) printf("%.4f ", s3[i]);

printf("\n");

Having done all this, we close the shop and exit.

H5Tclose(s2_tid);

H5Tclose(s3_tid);

H5Dclose(dataset);

H5Fclose(file);

return 0;

7.8 Iterating over HDF5 Groups

You are obviously familiar with the -R switch to the ls command and with the
-r switch to the h5ls command, which, in both cases, invoke recursive traver-
sal of the whole directory tree. There is a function in HDF5 called H5Giterate,
which can be used to iterate over the whole group and all its subgroups, picking
up on every object within the group and applying a specified function, presum-
ably made of other HDF5 functions, to it. Program h5ls when invoked with
the -r option, is an example of how to use this function.

In this section we are going to write our own much simpler version of h5ls.
The program is called h5_iterate. It creates an HDF5 file and endows it with

368 CHAPTER 7. HDF5

a certain structure. Then it proceeds to iterate over the members of the "/"

group and tells us what the members it finds are.
Here is how this program works on our AVIDD cluster.

gustav@bh1 $ pwd

/N/B/gustav/src/I590/HDF5/iterate

gustav@bh1 $ h5cc -o h5_iterate h5_iterate.c

gustav@bh1 $./h5_iterate

Objects in the root group are:

Object with name Dataset1 is a dataset

Object with name Datatype1 is a named datatype

Object with name Group1 is a group

gustav@bh1 $ ls

h5_iterate h5_iterate.c h5_iterate.o iterate.h5

gustav@bh1 $

We can have a closer look at what’s inside the file created by the program,
iterate.h5, with h5dump:

gustav@bh1 $ h5dump iterate.h5

HDF5 "iterate.h5" {

GROUP "/" {

DATASET "Dataset1" {

DATATYPE H5T_STD_U32LE

DATASPACE SIMPLE { (4) / (4) }

DATA {

0, 0, 0, 0

}

}

DATATYPE "Datatype1" H5T_COMPOUND {

H5T_STD_I32LE "a";

H5T_STD_I32LE "b";

H5T_IEEE_F32LE "c";

}

GROUP "Group1" {

}

}

}

gustav@bh1 $

The iterator, H5Giterate, will not, by itself, go into subgroups recursively. For
this to happen you will have to write a recursive procedure yourself, but this
recursive procedure can be based on H5Giterate.

Here is the program, which comes from the NCSA HDF5 Tutorial:

#include "hdf5.h"

#define FILE "iterate.h5"

#define FALSE 0

/* 1-D dataset with fixed dimensions */

#define SPACE1_NAME "Space1"

#define SPACE1_RANK 1

#define SPACE1_DIM1 4

herr_t file_info(hid_t loc_id, const char *name, void *opdata);

/* Operator function */

7.8. ITERATING OVER HDF5 GROUPS 369

int

main(void) {

hid_t file; /* HDF5 File IDs */

hid_t dataset; /* Dataset ID */

hid_t group; /* Group ID */

hid_t sid; /* Dataspace ID */

hid_t tid; /* Datatype ID */

hsize_t dims[] = {SPACE1_DIM1};

herr_t ret; /* Generic return value */

/* Compound datatype */

typedef struct s1_t {

unsigned int a;

unsigned int b;

float c;

} s1_t;

/* Create file */

file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Create dataspace for datasets */

sid = H5Screate_simple(SPACE1_RANK, dims, NULL);

/* Create a group */

group=H5Gcreate(file,"Group1",-1);

/* Close a group */

ret = H5Gclose(group);

/* Create a dataset */

dataset=H5Dcreate(file,"Dataset1",H5T_STD_U32LE,sid,H5P_DEFAULT);

/* Close Dataset */

ret = H5Dclose(dataset);

/* Create a datatype */

tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));

/* Insert fields */

ret=H5Tinsert (tid, "a", HOFFSET(s1_t,a), H5T_NATIVE_INT);

ret=H5Tinsert (tid, "b", HOFFSET(s1_t,b), H5T_NATIVE_INT);

ret=H5Tinsert (tid, "c", HOFFSET(s1_t,c), H5T_NATIVE_FLOAT);

/* Save datatype for later */

ret=H5Tcommit (file, "Datatype1", tid);

/* Close datatype */

ret = H5Tclose(tid);

/* Iterate through the file to see members of the root group */

printf(" Objects in the root group are:\n");

printf("\n");

H5Giterate(file, "/", NULL, file_info, NULL);

370 CHAPTER 7. HDF5

/* Close file */

ret = H5Fclose(file);

return 0;

}

/*

* Operator function.

*/

herr_t file_info(hid_t loc_id, const char *name, void *opdata)

{

H5G_stat_t statbuf;

/*

* Get type of the object and display its name and type.

* The name of the object is passed to this function by

* the Library. Some magic :-)

*/

H5Gget_objinfo(loc_id, name, FALSE, &statbuf);

switch (statbuf.type) {

case H5G_GROUP:

printf(" Object with name %s is a group \n", name);

break;

case H5G_DATASET:

printf(" Object with name %s is a dataset \n", name);

break;

case H5G_TYPE:

printf(" Object with name %s is a named datatype \n", name);

break;

default:

printf(" Unable to identify an object ");

}

return 0;

}

The program begins by creating an HDF file, then we create a simple datas-
pace, then a group called "Group1". And once the group is created we close
it. We are not going to do anything with it. Then we create a dataset using
the simple dataspace and close it too. Finally we create a compound type that
corresponds to the following C-language structure:

typedef struct s1_t {

unsigned int a;

unsigned int b;

float c;

} s1_t;

and commit it to the file by calling function H5Tcommit:

ret = H5Tcommit (file, "Datatype1", tid);

ret = H5Tclose(tid);

This has the effect that the datatype definition is written on the HDF5 file, but
not actually used for anything. It can be retrieved from the file later and used,
if need be.

Now, having created all these objects, we invoke H5Giterate:

7.8. ITERATING OVER HDF5 GROUPS 371

printf(" Objects in the root group are:\n");

printf("\n");

H5Giterate(file, "/", NULL, file_info, NULL);

We are going to iterate over the group "/" of file file. To every object found
we are going to apply function file_info, which is defined towards the end
of the program source. The last parameter, which is NULL, can be used to
pass additional values to function file_info (e.g., a character ”v” for ”verbose
listing”). The third parameter, which is NULL too, is the location at which to
begin the iteration. If it is set to NULL, the iteration begins at the beginning of
the group, so to speak.

Normally the passed function, here it is file_info, is expected to take three
parameters, which will be provided to it by H5Giterate. They will be the object
location identifier, the object name, and the third parameter is what we have
set to NULL:

herr_t file_info(hid_t loc_id, const char *name, void *opdata)

We have not talked about locations in this course yet. Every HDF5 object has,
apart from its name, also its location or a reference. The objects can be accessed
by providing their locations instead of their names. But this is all you need to
know for now.

Function file_info calls H5Gget objinfo in order to find what the objects
passed to it by H5Giterate are:

H5Gget_objinfo(loc_id, name, FALSE, &statbuf);

The object type is provided in the statbuf structure, whose type member
contains the information. The third parameter, which is set to FALSE, tells
H5Gget_objinfo that it should not follow links.

Now, depending on what is returned on statbuf.type function file_info
writes a corresponding message on standard output and returns.

switch (statbuf.type) {

case H5G_GROUP:

printf(" Object with name %s is a group \n", name);

break;

case H5G_DATASET:

printf(" Object with name %s is a dataset \n", name);

break;

case H5G_TYPE:

printf(" Object with name %s is a named datatype \n", name);

break;

default:

printf(" Unable to identify an object ");

}

return 0;

After H5Giterate has returned, we close the file and exit:

ret = H5Fclose(file);

return 0;

372 CHAPTER 7. HDF5

7.9 What Else in HDF5?

What else is there in HDF5?
Plenty. I have skipped the whole issue of accessing HDF5 objects by ref-

erences (or addresses, or locations). This is useful if you want to create a list
of certain objects, store the list on a special dataset, then use it to iterate, for
example, over the objects. The objects collected this way don’t have to live in
the same group, otherwise you could simply use H5Giterate to pick them up.
Once you have an object you can obtain its address, within the file, by calling
function H5Rcreate. You can also create lists of references to specific regions
within the datasets, also by calling the same function H5Rcreate.

I have only showed you three HDF5 tools, h5dump, h5ls and h5cc, but there
are more:

h5diff identifies and locates differences between two HDF5 files

h5repart lets you re-partition an HDF5 file and create a file family out of it

h5import lets you import data into an existing or a new HDF5 file

gif2h5 lets you convert a GIF file to an HDF5 file

h52gif lets you extract images from an HDF5 file onto GIF files

h5perf lets you measure performance of HDF5 programs

h5fc lets you compile Fortran90 programs that call HDF5 functions

H5c++ lets you compile C++ programs that call HDF5 functions

h4toh5 lets you convert an HDF4 file to an HDF5 file

h5toh4 lets you convert an HDF5 file to an HDF4 file

JHI5 is the Java package that wraps around HDF5

H5View is a Java-based tool for browsing and editing HDF5 files

H5gen is a Java utility that reads an XML description of an HDF5 file and
generates the corresponding HDF5 file

VisAD is a Java toolkit for constructing interactive and collaborative visual-
ization and analysis of numerical data

You can find more about HDF5 at http://hdf.ncsa.uiuc.edu/HDF5/.

Chapter 8

Other Parallel Libraries

HDF5 is an example of a library that lives on top of MPI and lets you carry out
quite involved operations on portions (datasets) of structured files in parallel
and on a somewhat higher level than what MPI-IO lets you do, although the
way that a dataset gets divided into hyperslabs is quite similar to the way that
a portion of a file gets divided with file views in MPI-IO.

The whole point behind the development of MPI was to enable construction
of parallel libraries in such a way that inter-process communications within the
library would not interfere with inter-process communications within the calling
program – and this is what the device of an MPI communicator is for.

So, what other parallel libraries, apart from HDF5, are out there, in the
free-ware world? The answer is, not that many, but there are some worth
mentioning.

We shall start from the Netlib Repository at the University of Tennessee and
at the Oak Ridge National Laboratory, which will point you to High Performance
Math Software tools at the National HPCC Software Exchange (NHSE). HPC-
Netlib focuses on four areas at present:

• Numerical linear algebra

• Graph and mesh partitioning

• Parallel PDE solvers

• Optimization

The NHSE Software and Technology page provides numerous links to various
Domain Specific Repositories. Of these most reside at various DoD installations,
some of which do not distribute their software on-line. You may wish to visit:

• Computational Fluid Dynamics Software Catalog

• Grid Generation Software Catalog

• Performance Case Studies

373

374 CHAPTER 8. OTHER PARALLEL LIBRARIES

• Programming Tools Catalog

• Scalable Parallel Programming Tools Catalog

• Signal Image Processing Software Catalog

NCSA distributes HDF5, of course, but also a number of other tools and
libraries, most notably:

• Parallel Processing Tools

• Numerical Programs and Routines

And, last but not least, NHSE distributes its own tools and applications, for
example:

• Benchmark and Example Programs

• Data Analysis and Visualization

• Distributed Processing Tools

• Numerical Programs and Routines

• Parallel Processing Tools

• Scientific and Engineering Applications

In the last category, i.e., Scientific and Engineering Applications, you will
find, amongst others, tools for Financial Modeling, Simulated Annealing, Crys-
tallography, Adaptive Particle-Mesh Methods, Distributed Parallel Multipole
Tree Algorithms, Flux-Corrected Transport, Molecular Dynamics, Image Pro-
cessing, Finite Volume and Finite Element Simulations.

The Princeton Plasma Physics Laboratory distributes numerous applications
and tools for scientific programming in general and for solving various compli-
cated plasma problems in particular – some parallel. You will find their software
distribution site and catalogues at http://w3.pppl.gov/rib/repositories/NTCC/catalog

The Argonne National Laboratory is the home of MPI, MPICH, ROMIO
and even PVFS nowadays. The Mathematics and Computer Science Division
distributes other less know, but equally useful, systems and products. Amongst
them:

ALICE The toolkit provides three primary functionalities: the visualization
of individual data sets, data comparison via the visualization of the dif-
ferences between data sets, and image comparison via the simultaneous
visualization of multiple data sets. For each functionality, one or more
standard visualization techniques, such as vector field glyphs, animated
streamlines and flow fields, cutting planes, and scalar field height profiles,
are used to gain insight into the data. Additional insights are gained
through the dynamic selection of the color maps and through data ma-
nipulation techniques such as magnification, culling, and exaggeration.

375

ChemIO The toolkit facilitates the development of portable, high-performance
computational chemistry codes, by defining a standard I/O API that
meets chemistry requirements, and providing high-performance implemen-
tations of this API on different high-performance computers.

FLIC a Fortran loop and index converter, is a parser-based source translation
tool that automates the conversion of program loops and array indices for
distributed-memory parallel computers.

NEOS The NEOS Server 3.0 is the first network-enabled problem-solving envi-
ronment for a wide class of applications in business, science, and engineer-
ing. Included are state-of-the-art solvers in integer programming, nonlin-
early constrained optimization, bound-constrained optimization, uncon-
strained optimization, linear programmming, stochastic linear program-
ming, complemetarity problems, linear network optimization, semidefinite
programming, and administrative programming.

PETSc The Portable, Extensible Toolkit for Scientific computation, is a suite
of uni- and parallel-processor codes for solving large-scale problems mod-
eled by partial differential equations. PETSc employs the MPI standard
for all message-passing communication. The code is written in a data-
structure-neutral manner to enable easy reuse and flexibility.

Ptools The Scalable Unix Tools project – which offers parallel, scalable version
of common Unix commands for parallel machines with a Unix on each
node.

RSL RSL is a runtime system library for implementing regular-grid models
with nesting on distributed memory parallel computers. RSL provides
support for automatically decomposing multiple model domains and for
redistributing work between processors at run time for dynamic load bal-
ancing. The interface to RSL supports Fortran77 and Fortran90.

376 CHAPTER 8. OTHER PARALLEL LIBRARIES

Chapter 9

Databases: From Small to
Huge

We won’t have enough time left in this semester to cover this very

important and interesting topic in depth. An introductory lecture, for

which the notes are provided in this chapter, is going to be given on

the 18th of November, this on account of the AVIDD cluster possibly

not being available because of the SC2003 conference.

A database is a suite of software utilities for maintenance and operations on
tables of data. If the data is stored as a table, a great deal of optimizations
for data searches, updates, insertions, deletions, and other operations, including
storing the data itself, can be implemented. A single data base will normally
contain numerous tables, but a single table cannot usually belong to more than
one data base.

Data bases can store data on disk drives formatted specially for their use
– this is normally the most efficient way and this is how corporate computer
centers usually go about it – or on the native file system. The latter is almost
certainly going to be the case on a research system such as AVIDD, where
administrators would loath to sacrifice general purpose disk space and have to
format specialized partitions for the data base.

A data base is a typical example of a client-server system. Every data base
has a data base server that is always up, waiting for connections, and that takes
care of the data base itself. It is quite OK to think of the server and the data
it guards, as the data base. In order to access the data, or even in order to
insert the data into the data base, you have to use a data base client. The
client normally runs on a machine other than the machine on which the server
runs, although a data base administrator may use a client running on the same
machine in order to manage the data base.

Data bases are the darlings of corporate computing. You’ll find them in just
about every company beginning with a small real estate agent operation, where
a single data base would probably run under Windows on a single PC server, all

377

378 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

the way up to major corporations that often maintain hundreds, even thousands,
of data bases running on mainframes, parallel computer systems such as IBM
SP, and large SMPs like HP Superdome or Sun Starfire.

On the other hand, data bases have not made great strides in scientific
computing, because of their cost, fuss associated with setting them up and with
maintaining them, inflexibility – once you have defined a table, you are stuck
with it, and, besides, not every type of data fits into a table, and because they are
client-server systems. So, almost exactly what endears data bases to businesses
has been a huge turn off for scientists . . . and hackers.

But this is changing.
For many years there were no freeware data bases of quality. Once upon a

time there was a data base called Ingress, which was distributed for almost free
with BSD UNIX – “almost”, because you had to pay some token money for BSD
UNIX (about $500 per campus). But this was a long time ago (about 20 years
or so – some of you may not have even been born yet). Ingress programmers
went commercial later and even though the earlier version of Ingress remained
free, it was very antiquated and unsupported.

There was a good reason for this state of affairs of course. The reason was
that writing data bases was such a lucrative, but also difficult, undertaking that
no programmer would miss the opportunity to make millions of dollars in the
process.

But today we have some freeware data bases, and at least one of them, that
I know of, is very good indeed. The data base is called PostgreSQL and it is
developed and maintained by an international community of dedicated (usually
academic) programmers, much like Linux. PostgreSQL is distributed with Linux
and with Cygwin. Even though it is not installed on the AVIDD cluster at the
time of this writing, you can always request it and the AVIDD administrators
should have no problems adding it to the pool of available software on all AVIDD
nodes – although most likely you will just need PostgreSQL clients and client
libraries on the computational nodes and the data base itself may run either on
a selected AVIDD node or even outside of AVIDD. PostgreSQL has its WWW
page at http://www.postgresql.org/.

This free availability and ease of use of PostgreSQL made many scientists
change their mind about data bases. “Well, if it’s free and I can have it on my
PC or on my Linux cluster, then I may just as well have a look at it and think
what I could do with it.”

The other reason is that the two great data bases, namely, Oracle and DB2
are free to academics, at least in this country, too. For example, if you enroll
in the DB2 Scholars’ Program with IBM, you’ll get the whole DB2 shipped to
you in a box and you don’t have to pay a cent for it. There is a similar Oracle
program too. Both DB2 and Oracle are insanely great products and you should
not believe people who will tell you that you should stay away from one or
the other. But both can be pretty pricy too, the moment you leave academia.
Microsoft’s SQL-Server is not free to academic institutions though (at least at
the time I’m writing these words and as far as I know) and it is not quite in
the same league as DB2 and Oracle. The latter two run on everything: PCs,

379

Windows, Linux, Suns, HP systems, IBM systems, you name it. But Microsoft’s
SQL-Server runs under Windows only (although you can connect to it from non-
Windows clients) and it had quite a number of very serious security problems
recently.

Next, it ought to be said too that science has evolved recently in the direction
where problems acquire great complexity and structural richness. Take, for
example, epidemiology – a typical area of medical science where data bases
are quite essential. In fact anything to do with medicine involves data bases,
because you need to keep patients’ records somewhere and you need to carry out
searches on the records and other queries against such an information system.
The Regenstrief Institute in Indianapolis has built and maintains the largest

medical information system in the world.
Another example of data bases being used in science are data bases at SLAC,

which are used to store data pertaining to high energy physics events observed
in SLAC experiments. Every event is described by the means of a table row.
The data bases they have are amongst the largest in the world, because even
a very short experiment can easily generate trillions of events worth keeping in
the data base. The manipulation of and searches on such gigantic data bases,
which can very quickly grow to tens, even hundreds of TBs, is an extremely
difficult undertaking. Even the largest business data bases seldom grow above
some hundreds of GBs. The reason for the latter is that business data normally
has to be typed in by human operators, whereas data flows into the SLAC data
bases directly from measuring instruments.

Library science is an “in-between” category. Normally it should be more
like business, because library catalogues, which are data bases too, have to
be constructed by human operators. But more recently methods have been
developed to extract abstracts, keywords and other cataloguing information
from electronic texts automatically. This makes the task of feeding bibliographic
data into the catalogues a little more like the SLAC systems. On the other hand,
the texts themselves, still have to be written by humans, which limits the size of
the task dramatically, because humans are slow typists. If you took the whole
National Library collection and made an electronic copy of every book they have
there (but not in terms of images, rather in terms of converting every letter to
the corresponding ASCI character) – you would end up with at most a few
TBs. On the other hand, the moment you add images, sounds and videos to the
collection, the amount of data skyrockets very quickly. But cataloguing images
and videos is a tricky business, because it’s very difficult to tell a computer
“what to look for”.

Between physics and library science just about every other research discipline
can benefit from the use of data bases. In most cases the data bases are probably
going to be rather small – they should easily fit onto a single PC. Just today I
have seen a Dell advertisement in the Sunday newspaper about a small deskside
PC with a 140GB drive, 512MB memory and a very fast 2.3GHz CPU for some
$700 or so. A system like this should be more than sufficient for 99% of data
bases that small research groups would like to concoct – especially if the data
is to be entered manually or semi-automatically.

380 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

A very typical personal research data base is a list of citations, which can
be accessed from your TEX, troff or (shudder) Word document. Such data
bases are constructed laboriously over years of the researcher’s life, with much
pain, devotion, and lots of typos. They’re treasured like the Holy Grail, but . . .
they are trivial by data base standards. They seldom contain more than a few
thousand citations, which translates into a mere 5MB or so.

Consequently, when you think about using a data base in your research, the
first question you should ask yourself is how large is this data base going to
be. You’ll be surprised how difficult it will be to make it truly large. But if
you arrive at some moderately impressive numbers here, say, tens of GBs, or
some quite impressive numbers like hundreds of GBs then you should definitely
consider using parallel DB2 on the AVIDD cluster – especially if you expect to
run a lot of searches and data mining procedures against it.

In this chapter I’m going to show you first how you can set up and operate
on a PostgreSQL data base under Cygwin – and the same should apply to the
AVIDD cluster, because it is the same data base.

Then I am going to discuss, rather briefly, what you are going to get if you
switch to parallel DB2.

9.1 PostgreSQL under Cygwin

PostgreSQL should be already installed on your Laboratory PCs. The server
itself lives in the /usr/bin directory and is called postgres. But normally we
run it through a wrapper called postmaster, which also lives in /usr/bin. In
the NTFS notation, this may be something like C:\cygwin\usr\bin. There is
also a SQL client there, called psql.

The way to run PostgreSQL is as follows: first you have to start the server,
and then you talk to it using the client. The server and the client may run on the
same machine, or they may run on different machines. Both configurations are
supported. The same, of course, applies to Linux and therefore to the AVIDD
cluster.

But before you can run the PostgreSQL server, you have to configure the
IPC daemon, this is the only part that must be performed by the system admin-
istrator. All else you can do yourself, simply as a normal Cygwin (or Windows)
user.

If you administer your own PC, then the procedure for configuring and run-
ning the IPC daemon is as follows. First you have to become the administrator
in order to install the service. Because the service is a Cygwin program, it
must be configured using the cygrunsrv utility. This utility lives in the Cygwin
/usr/bin too.

Issue the command:

cygrunsrv --install ipc-daemon --path /usr/bin/ipc-daemon2 \

--desc "IPC daemon for PostgreSQL"

Then start the IPC daemon with

cygrunsrv --start ipc-daemon

9.1. POSTGRESQL UNDER CYGWIN 381

You should be able to see the daemon if you run

ps -ef

Alternatively, you can go to

-> My Computer

-> Control Panel

-> Administrative Tools

-> Services

and start the service the Windows way, i.e., by right-clicking on it and then
selecting Start – this, at least, is how it works on my PC under Windows 2000.

One way or another, you should have the daemon running. Now once the
daemon runs, you can switch back to your normal user account.

You have to decide where you want to keep all your PostgreSQL data. If the
data base is going to be for your personal use, you should select a directory in
your Cygwin home. If the data base is going to be used by your research group
and served from a server, you may as well dedicate the whole drive or at least
a partition to it.

In this case I am simply going to create the data base in a directory in my
Cygwin home:

gustav@WOODLANDS:../gustav 19:39:57 !539 $ pwd

/home/gustav

gustav@WOODLANDS:../gustav 19:39:58 !540 $ mkdirhier pgsql/data

gustav@WOODLANDS:../gustav 19:40:03 !541 $

At this stage the directory has to be initialized for work with a PostgreSQL
server. The utility that does the initialization is called initdb and it will ini-
tialize the directory not just for one data base, but for the whole data base
cluster , i.e., a collection of data bases, that are going to have their data stored
in this area:

gustav@WOODLANDS:../gustav 19:47:39 !551 $ initdb -D ‘pwd‘/pgsql/data

The files belonging to this database system will be owned by user "gustav".

This user must also own the server process.

The database cluster will be initialized with locale C.

Fixing permissions on existing directory /home/gustav/pgsql/data... ok

creating directory /home/gustav/pgsql/data/base... ok

creating directory /home/gustav/pgsql/data/global... ok

creating directory /home/gustav/pgsql/data/pg_xlog... ok

creating directory /home/gustav/pgsql/data/pg_clog... ok

creating template1 database in /home/gustav/pgsql/data/base/1... ok

creating configuration files... ok

initializing pg_shadow... ok

enabling unlimited row size for system tables... ok

initializing pg_depend... ok

creating system views... ok

loading pg_description... ok

creating conversions... ok

setting privileges on built-in objects... ok

vacuuming database template1... ok

copying template1 to template0... ok

382 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

Success. You can now start the database server using:

/usr/bin/postmaster -D /home/gustav/pgsql/data

or

/usr/bin/pg_ctl -D /home/gustav/pgsql/data -l logfile start

gustav@WOODLANDS:../gustav 19:48:44 !552 $

Let us have a look at what some of the files created by initdb look like.

gustav@WOODLANDS:../gustav 19:50:28 !561 $ cd pgsql/data

gustav@WOODLANDS:../data 19:50:31 !562 $ ls -FC

PG_VERSION global/ pg_hba.conf pg_xlog/

base/ pg_clog/ pg_ident.conf postgresql.conf

gustav@WOODLANDS:../data 19:50:33 !563 $

There are three configuration files here and then some directories in which Post-
greSQL is going to store data and logs.

The file that defines from which hosts you can connect to the data base
server and as who, is pg_hba.conf. The header of the file explains in detail
how to construct the entries. An example entry may look as follows:

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD

host biblio adams 129.79.207.223 255.255.255.0 md5

which specifies that a user adams is allowed to connect to the data base biblio
from a host of address 129.79.207.223, and that the user must be authenticated
using the md5 method. By default all users from the local machine are allowed
connections to PostgreSQL servers serving all data bases in the cluster. But
. . . also by default PostgreSQL will ignore this file altogether and allow data
base access to the data base owner only. To change this you will have to run
postmaster with the -i option. But before you do this, you should edit this
file very carefully indeed.

File pg_ident.conf is used for the user identification based on the ident

protocol. This protocol is very popular, but not very secure. In order to use this
protocol you would have to type ident in the METHOD field in the pg_hba.conf
file.

Finally there is the postgresql.conf file, which is the PostgreSQL configu-
ration file. It has a lot of parameter definitions, including the port number the
server is going to listen on, whether SSL should be used for security, what is
the maximum number of connections allowed, what is the maximum number of
tables per data base, what language should be used in the data base messages
(e.g., Lithuanian), and so on. There is usually little need to change much on this
file, unless your data base is going to be really big and accessed very frequently.

Now you can start the postmaster directing it to the newly created area.
The postmaster will refuse to run if the directories it’s been pointed to have
not been prepared with initdb. The program does not return and cannot be
talked to from the keyboard, although it logs all it does on standard output.
So the right way to run it is to start it in the background and have logging
redirected to a file. Here is how I do it:

gustav@WOODLANDS:../gustav 20:10:47 !586 $ postmaster \

-D ‘pwd‘/pgsql/data > pgsql/data/Nov-16-2003.log 2>&1 &

9.1. POSTGRESQL UNDER CYGWIN 383

[1] 2300

gustav@WOODLANDS:../gustav 20:10:32 !587 $ jobs

[1]+ Running postmaster -D ‘pwd‘/pgsql/data >pgsql/logs/Nov-16-2003.log 2>&1 &

gustav@WOODLANDS:../gustav 20:12:06 !588 $

Well, it runs! We can go to the logs directory and see the logging:

gustav@WOODLANDS:../gustav 20:12:06 !589 $ cd pgsql/logs

gustav@WOODLANDS:../logs 20:12:42 !590 $ ls

Nov-16-2003.log

gustav@WOODLANDS:../logs 20:12:42 !591 $ cat Nov-16-2003.log

LOG: database system was shut down at 2003-11-16 19:48:43 USEST

LOG: checkpoint record is at 0/83B238

LOG: redo record is at 0/83B238; undo record is at 0/0; shutdown TRUE

LOG: next transaction id: 480; next oid: 16976

LOG: database system is ready

gustav@WOODLANDS:../logs 20:12:44 !592 $

and once we’re there we can look at the log continuously with tail -f. If you
are going to do this, you will need another window, in which to run a client
application that talks to the server.

But before we are going to connect to the server let us create an empty data
base first. This is done with the command createdb. The command is going
to connect to the first postmaster it finds on the default port. If you run more
than one server, you will have to provide createdb with more information. But
the default will do just fine for us. So let us create a data base called neighbors:

gustav@WOODLANDS:../gustav 20:25:27 !595 $ createdb neighbors

CREATE DATABASE

gustav@WOODLANDS:../gustav 20:25:42 !596 $

Well, this worked.
Now we can connect to the data base and do various things with it.
If you want to completely delete the whole data base, issue the command

(with caution!):

gustav@WOODLANDS:../gustav 20:37:10 !615 $ dropdb neighbors

DROP DATABASE

gustav@WOODLANDS:../gustav 20:37:18 !616 $

To stop the postmaster you can simply type ^C, i.e., control-C, if the post-
master runs in the foreground, or you can send it a kill, if it runs in the back-
ground:

gustav@WOODLANDS:../gustav 20:37:18 !616 $ jobs

[1]+ Running postmaster -D ‘pwd‘/pgsql/data >pgsql/logs/Nov-16-2003.log 2>&1 &

gustav@WOODLANDS:../gustav 20:38:20 !617 $ kill %1

gustav@WOODLANDS:../gustav 20:39:29 !618 $ jobs

[1]+ Done postmaster -D ‘pwd‘/pgsql/data >pgsql/logs/Nov-16-2003.log 2>&1

gustav@WOODLANDS:../gustav 20:39:37 !619 $

There are many methods to connect to a PostgreSQL data base (the postmaster
must be running, of course). First and foremost PostgreSQL provides a C-
language interface. There is a direct interface and an embedded SQL interface.
There is also a Tcl interface, a Java interface, and a Python interface. And . . .
last but not least, a SQL (it is often pronounced sea-quell, hence “a” rather
than “an” in front of it) interface and a SQL client called psql.

384 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

How can you find more about PostgreSQL? Abundant documentation is
provided with it. You should find it in the /usr/doc/postgresql-7.3.4 (the
number may be different) on your Cygwin or Linux system. There is an html

subdirectory there and if you point your browser at the index.html file in it,
you’ll get to view the manuals. There should be at least six of them:

1. PostgreSQL 7.3.4 Tutorial

2. PostgreSQL 7.3.4 User’s Guide

3. PostgreSQL 7.3.4 Administrator’s Guide

4. PostgreSQL 7.3.4 Programmer’s Guide

5. PostgreSQL 7.3.4 Reference Manual

6. PostgreSQL 7.3.4 Developer’s Guide

7. Index

In the next section I am going to show you how to talk to PostgreSQL using
the SQL client.

9.2 Talking to a PostgreSQL Data Base with
psql

psql is the SQL interpreter that talks to PostgreSQL. You can use it to in-
terrogate a PostgreSQL data base interactively or to execute SQL programs,
in which case you will need to invoke psql with the -f option followed by the
name of the file that contains the program.

In order to connect to PostgreSQL data base with psql, the data base must
exist already. The command initdb creates two template data bases, which are
always there in the PostgreSQL data space. You can see them if you issue the
psql -l command:

gustav@WOODLANDS:../gustav 12:23:06 !508 $ psql -l

List of databases

Name | Owner | Encoding

-----------+--------+-----------

template0 | gustav | SQL_ASCII

template1 | gustav | SQL_ASCII

(2 rows)

gustav@WOODLANDS:../gustav 12:23:10 !509 $

The command createdb, I have used in the previous section, is just a shell
script, which connects to template1 and then issues the SQL create database
command. But it’s a very convenient wrapper, and so I’m going to use it again
to recreate the data base neighbors I have dropped in the previous section:

gustav@WOODLANDS:../gustav 12:27:15 !510 $ createdb neighbors

CREATE DATABASE

gustav@WOODLANDS:../gustav 12:27:31 !511 $

9.2. TALKING TO A POSTGRESQL DATA BASE WITH PSQL 385

Now I can connect to it:

gustav@WOODLANDS:../gustav 12:29:26 !513 $ psql neighbors

Welcome to psql 7.3.4, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms

\h for help with SQL commands

\? for help on internal slash commands

\g or terminate with semicolon to execute query

\q to quit

neighbors=#

If the psql prompt ends with the hash, #, it means that you are the owner of
the data base. Right now the data base doesn’t have any tables in it yet. But
how to define the tables is the SQL thing and I won’t dwell on it too much,
because you probably know all about it already. I want to focus more on the
specific features of psql. Still we’ll have to create some data if only to illustrate
various features of psql. But before we get there, let’s have a look at what we
can do in psql without any tables defined.

First you can ask about psql specific commands by typing \?:

neighbors=# \?

\a toggle between unaligned and aligned output mode

\c[onnect] [DBNAME|- [USER]]

connect to new database (currently "neighbors")

\C [STRING] set table title, or unset if none

\cd [DIR] change the current working directory

[... lots of various commands listed ...]

\x toggle expanded output (currently off)

\z [PATTERN] list table access privileges (same as \dp)

\! [COMMAND] execute command in shell or start interactive shell

psql specific commands all begin with a backslash. Some important ones are

\c database connects to the database

\d name describes the named object, it may be a table, a view, an index or a
sequence

\e file edit the query buffer or a file with an external editor

\h command help on syntax of SQL commands

\i file executes commands from the file

\l lists databases accessible to this psql session

\q quits psql

\r reset the query buffer

\s display history

\! execute a command in shell or start interactive shell

386 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

\h is used to help you with SQL language commands. If you just type \h
without any arguments, psql will list all available SQL commands in three
columns:

neighbors=# \h

Available help:

ABORT CREATE TABLE EXECUTE

ALTER DATABASE CREATE TABLE AS EXPLAIN

ALTER GROUP CREATE TRIGGER FETCH

ALTER TABLE CREATE TYPE GRANT

ALTER TRIGGER CREATE USER INSERT

ALTER USER CREATE VIEW LISTEN

ANALYZE DEALLOCATE LOAD

BEGIN DECLARE LOCK

CHECKPOINT DELETE MOVE

CLOSE DROP AGGREGATE NOTIFY

CLUSTER DROP CAST PREPARE

COMMENT DROP CONVERSION REINDEX

COMMIT DROP DATABASE RESET

COPY DROP DOMAIN REVOKE

CREATE AGGREGATE DROP FUNCTION ROLLBACK

CREATE CAST DROP GROUP SELECT

CREATE CONSTRAINT TRIGGER DROP INDEX SELECT INTO

CREATE CONVERSION DROP LANGUAGE SET

CREATE DATABASE DROP OPERATOR CLASS SET CONSTRAINTS

CREATE DOMAIN DROP OPERATOR SET SESSION AUTHORIZATION

CREATE FUNCTION DROP RULE SET TRANSACTION

CREATE GROUP DROP SCHEMA SHOW

CREATE INDEX DROP SEQUENCE START TRANSACTION

CREATE LANGUAGE DROP TABLE TRUNCATE

CREATE OPERATOR CLASS DROP TRIGGER UNLISTEN

CREATE OPERATOR DROP TYPE UPDATE

CREATE RULE DROP USER VACUUM

CREATE SCHEMA DROP VIEW

CREATE SEQUENCE END

neighbors=#

In order to refresh your knowledge on a specific SQL command in more detail
simply follow \h with the name of the command, e.g.,

neighbors=# \h select

Command: SELECT

Description: retrieve rows from a table or view

Syntax:

SELECT [ALL | DISTINCT [ON (expression [, ...])]]

* | expression [AS output_name] [, ...]

[FROM from_item [, ...]]

[WHERE condition]

[GROUP BY expression [, ...]]

[HAVING condition [, ...]]

[{ UNION | INTERSECT | EXCEPT } [ALL] select]

[ORDER BY expression [ASC | DESC | USING operator] [, ...]]

[LIMIT { count | ALL }]

[OFFSET start]

[FOR UPDATE [OF tablename [, ...]]]

where from_item can be:

9.2. TALKING TO A POSTGRESQL DATA BASE WITH PSQL 387

[ONLY] table_name [*]

[[AS] alias [(column_alias_list)]]

|

(select)

[AS] alias [(column_alias_list)]

|

table_function_name ([argument [, ...]])

[AS] alias [(column_alias_list | column_definition_list)]

|

table_function_name ([argument [, ...]])

AS (column_definition_list)

|

from_item [NATURAL] join_type from_item

[ON join_condition | USING (join_column_list)]

neighbors=#

select is the SQL command which extract data from the tables and prints
them on standard output. It can be also used to print the output of various
predefined functions, which, in turn, can be listed with \df. For example, there
is a function called version. If you just type \df you will find this function
towards the end of a very long listing. To list just the information about it type:

neighbors=# \df version

List of functions

Result data type | Schema | Name | Argument data types

------------------+------------+---------+---------------------

text | pg_catalog | version |

(1 row)

neighbors=#

or, if you want more:

neighbors=# \df+ version

List of functions

Result data type | Schema | Name | Argument data types | Owner | Language | Source code | Description

------------------+------------+---------+---------------------+--------+----------+---------------+--------------------

text | pg_catalog | version | | gustav | internal | pgsql_version | PostgreSQL version

(1 row)

neighbors=#

To see what the function actually does type:

neighbors=# select version();

version

PostgreSQL 7.3.4 on i686-pc-cygwin, compiled by GCC gcc (GCC) 3.2 20020927 (prerelease)

(1 row)

neighbors=#

You can also use select to view the content of variables, e.g., current_date
or to perform simple arithmetic:

neighbors=# select current_date;

date

388 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

2003-11-17

(1 row)

neighbors=# select 2 + 5;

?column?

7

(1 row)

neighbors=#

So now let us fill the data base neighbors with some data. At this stage
we get to use the SQL language. The SQL command create table creates an
empty table with some predefined columns, which you have to specify at this
stage, for example:

neighbors=# create table dogs (

neighbors(# name varchar(80),

neighbors(# owner varchar(80),

neighbors(# race varchar(80),

neighbors(# age int,

neighbors(# unit int

neighbors(#);

CREATE TABLE

neighbors=#

Having created the table, we can commence inserting data into it with the SQL
command insert:

neighbors=# insert into dogs (name, owner, race, age, unit)

neighbors-# values (’Barky’, ’Abraham Lincoln’, ’Poodle’, 3, 2387);

INSERT 16980 1

neighbors=# insert into dogs (name, owner, race, age, unit)

neighbors-# values (’Fiote’, ’Margaret Thatcher’, ’Border Collie’, 4, 2385);

INSERT 16981 1

neighbors=# insert into dogs (name, owner, race, age, unit)

neighbors-# values (’Cedric’, ’Woodrow Wilson’, ’Mongrel’, 8, 2383);

INSERT 16982 1

neighbors=# select * from dogs;

name | owner | race | age | unit

--------+-------------------+---------------+-----+------

Barky | Abraham Lincoln | Poodle | 3 | 2387

Fiote | Margaret Thatcher | Border Collie | 4 | 2385

Cedric | Woodrow Wilson | Mongrel | 8 | 2383

(3 rows)

neighbors=#

Let us create another table and populate it with some data at the same time:

neighbors=# create table cats (

neighbors(# name varchar(80),

neighbors(# owner varchar(80),

neighbors(# race varchar(80),

neighbors(# age int,

neighbors(# unit int

neighbors(#);

CREATE TABLE

neighbors=# insert into cats (name, owner, race, age, unit)

9.2. TALKING TO A POSTGRESQL DATA BASE WITH PSQL 389

neighbors-# values (’Smokey’, ’Abraham Lincoln’, ’Tabby’, 5, 2387);

INSERT 16985 1

neighbors=# insert into cats (name, owner, race, age, unit)

neighbors-# values (’Minnow’, ’Benjamin Franklin’, ’Bicolor’, 3, 2381);

INSERT 16986 1

neighbors=# insert into cats (name, owner, race, age, unit)

neighbors-# values (’Fluffy’, ’Frederic Chopin’, ’Siamese’, 2, 2385);

INSERT 16987 1

neighbors=#

Once we have the data in, we can query the data base against a single table
or against two (or more) tables at the same time. The latter usually is where
interesting discoveries can be made.

Let us begin with querying a single table:

neighbors=# select * from dogs

neighbors-# where race = ’Poodle’;

name | owner | race | age | unit

-------+-----------------+--------+-----+------

Barky | Abraham Lincoln | Poodle | 3 | 2387

(1 row)

neighbors=#

Well, this tells us that my neighbor, Abraham Lincoln, has a poodle named
Barky. This query:

neighbors=# select * from cats

neighbors-# where age > 2;

name | owner | race | age | unit

--------+-------------------+---------+-----+------

Smokey | Abraham Lincoln | Tabby | 5 | 2387

Minnow | Benjamin Franklin | Bicolor | 3 | 2381

(2 rows)

neighbors=#

tells us that there are two cats nearby that are more than 2 years old.
This query against two tables at the same time is more interesting:

neighbors=# select dogs.owner, dogs.unit

neighbors-# from dogs, cats

neighbors-# where dogs.owner = cats.owner

neighbors-# and dogs.unit = cats.unit;

owner | unit

-----------------+------

Abraham Lincoln | 2387

(1 row)

neighbors=#

This tells us that Abraham Lincoln has both a dog and a cat. Such a query
made against two tables at the same time is called a join query in the data base
parlance.

But now we are going to make a much fancier query:

390 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

neighbors=# select dogs.unit, dogs.owner, cats.owner

neighbors-# from dogs, cats

neighbors-# where dogs.unit = cats.unit

neighbors-# and dogs.owner not like cats.owner;

unit | owner | owner

------+-------------------+-----------------

2385 | Margaret Thatcher | Frederic Chopin

(1 row)

neighbors=#

It turns out that Margaret Thatcher cohabits with Frederic Chopin! In my
neighborhood! The world must have gone to dogs!

This is an example of data mining and startling discoveries that it may yield.
Verily I say unto you, great is the power of this technology.

But observe the following. Let us corrupt the cats data base and mistype
the name of Abraham Lincoln, something that is more than likely to happen in
real life.

neighbors=# update cats

neighbors-# set owner = ’Abrahan Lincoln’

neighbors-# where owner = ’Abraham Lincoln’;

UPDATE 1

neighbors=# select * from cats;

name | owner | race | age | unit

--------+-------------------+---------+-----+------

Minnow | Benjamin Franklin | Bicolor | 3 | 2381

Fluffy | Frederic Chopin | Siamese | 2 | 2385

Smokey | Abrahan Lincoln | Tabby | 5 | 2387

(3 rows)

neighbors=#

Now let us repeat our earlier query:

neighbors=# select dogs.owner, dogs.unit

neighbors-# from dogs, cats

neighbors-# where dogs.owner = cats.owner;

owner | unit

-------+------

(0 rows)

neighbors=#

As you see, because of the stupid typo, we have just missed the fact that Abra-
ham Lincoln has a dog and a cat – although in this case we could do the query
differently, namely:

neighbors=# select dogs.owner, dogs.unit

neighbors-# from dogs, cats

neighbors-# where dogs.unit = cats.unit;

owner | unit

-------------------+------

Margaret Thatcher | 2385

Abraham Lincoln | 2387

(2 rows)

neighbors=#

9.3. TALKING TO A POSTGRESQL DATA BASE FROM C 391

and this correctly tells us that there are a dog and a cat living in units 2385
and 2387.

So, this, in short is how you can talk to PostgreSQL using a SQL client,
psql.

Although in this example I have run psql and postmaster on the same ma-
chine, you would normally have them running on separate machines, reserving
a more powerful system, e.g., a research group server, for the postmaster and
the data directory itself, and running psql on, e.g., computational nodes of the
AVIDD cluster or on a desktop PC in your office.

9.3 Talking to a PostgreSQL Data Base from C

Suppose you have the following project. You have a C-language program that
can read documents, e.g., memos, articles, books, and that can generate au-
tomatically abstracts, keywords and bibliographic entries for these documents
– without any human intervention. If you have a lot of documents to process
you may consider running the program on the AVIDD farm. You would simply
submit a PBS job that would distribute multiple instances of the program over,
say, 32 or 48 nodes. Because the instances of the program have no need to com-
municate with each other, this is all that you really need to do to “parallelise”
the application.

The only snag is coordination. Suppose that all the documents you need
to process live on GPFS in one of your directories. How are you to decide,
which instance of your program should get which document? The other issue
is how you are going to collect the results of the processing. Each instance of
the program is going to generate bibliographic entries for the documents it has
processed, where are these entries to go?

This kind of a problem is not restricted to generation of bibliographic entries.
When high energy physicists process their experimental data, what they do is
almost exactly the same. The only difference in the type of calculations their
programs do. They store their data on multiple files, which are then distributed,
somehow, to instances of data reduction programs that run on a CPU farm. The
programs process the data and return the results on various files, which are then
collated and prepared for further processing, e.g., visualization.

In order to coordinate the exercise you could write an MPI program and
then incorporate your C program as a subroutine in the MPI program. But this
is really quite unnecessary, because you already have a first class coordinator
and data collector in the form of . . . yes, in the form of a PostgreSQL data base.

PostgreSQL data base transactions, i.e., operations such as update, or insert,
or delete, are atomic. Various complex combinations of these and other trans-
actions can be made atomic too using a special SQL bracketing in the form
of begin, commit and rollback commands. Atomicity of a transaction means
that the transaction, however complex and lengthy, runs to completion or not
at all. If anything happens while the transaction runs that makes it impossible
to complete it, the transaction is unwound and the state of the data base re-

392 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

turns to the condition the data base was in before the transaction began. This
is accomplished by the means of sophisticated locking, queuing, logging, back-
tracking and various other devices that would be quite difficult to implement in
a small MPI program.

Additionally SQL provides the command lock, which lets you lock the table
you work on explicitly and in various ways. The way to use this command is to
lock the table in the first command line of the transaction. Then you proceed
with the transaction and the moment you commit it, the lock is automatically
lifted. There is no unlock command in SQL.

In summary you could begin by constructing a table that would represent
the job queue. Your workers, once they’ve been instantiated by PBS on various
nodes of the AVIDD cluster would contact the data base server running on one
of the AVIDD nodes or even on your laboratory server and would perform a
transaction with the data base. They could, for example, ask the data base for
the top entry in the job queue table that has not been worked on yet. The way
to ask for such table entry is similar to the following:

neighbors=# select * from dogs

neighbors-# where age not like 3

neighbors-# limit 1;

name | owner | race | age | unit

-------+-------------------+---------------+-----+------

Fiote | Margaret Thatcher | Border Collie | 4 | 2385

(1 row)

neighbors=#

Now think of age = 3 representing a “worked-on” flag and here you have the
solution that gives you the next available entry in the table. Once the worker
gets the entry, the worker would set the “worked-on” flag on this row by doing
something like:

neighbors=# update dogs

neighbors-# set age = 3

neighbors-# where name = ’Fiote’ and unit = 2385;

UPDATE 1

neighbors=#

Having reserved the row, the worker would then go to process the correspond-
ing document. Then once the bibliographic entry for the document has been
constructed, the worker would again contact the data base and it would update
the relevant row in this or some other table, by adding the full bibliographic
entry to it.

The only thing you need to learn in order to implement your system this
way is how to talk to a PostgreSQL data base from your C-language program.
The easiest way to do this is to use the ecpg preprocessor for C with embedded
SQL statements. The preprocessor recognizes the SQL statements and converts
them automatically to C-language constructs. The program is then compiled
and linked with the ecpg library and . . . you have it.

Here is a simple example. Consider the following program:

gustav@WOODLANDS:../gustav 18:08:23 !525 $ cat tryme.pgc

#include <stdio.h>

main()

9.3. TALKING TO A POSTGRESQL DATA BASE FROM C 393

{

printf ("Connecting to the data base ... \n");

EXEC SQL CONNECT TO neighbors;

EXEC SQL UPDATE dogs SET age = 7 WHERE unit = 2383 AND name = ’Cedric’;

EXEC SQL COMMIT;

EXEC SQL DISCONNECT CURRENT;

printf ("Done it.\n");

}

gustav@WOODLANDS:../gustav 18:09:40 !526 $

The SQL commands begin with the EXEC SQL string, which is then followed
by a command itself and the terminating semicolon. You can interleave SQL
commands with normal C-language statements. SQL transactions executed this
way are not committed unless COMMIT is requrested explicitly.

I am going to preprocess this program first in order to generate a genuine
C-language program:

gustav@WOODLANDS:../gustav 18:09:40 !526 $ ecpg tryme.pgc

gustav@WOODLANDS:../gustav 18:10:30 !527 $

The C-language program I have just generated looks as follows:

gustav@WOODLANDS:../gustav 18:10:30 !527 $ cat tryme.c

/* Processed by ecpg (2.10.0) */

/* These four include files are added by the preprocessor */

#include <ecpgtype.h>

#include <ecpglib.h>

#include <ecpgerrno.h>

#include <sqlca.h>

#line 1 "tryme.pgc"

#include <stdio.h>

main()

{

printf ("Connecting to the data base ... \n");

{ ECPGconnect(__LINE__, "neighbors" , NULL,NULL , NULL, 0); }

#line 5 "tryme.pgc"

{ ECPGdo(__LINE__, NULL, "update dogs set age = 7 where unit = 2383 and name

= ’Cedric’", ECPGt_EOIT, ECPGt_EORT);}

#line 6 "tryme.pgc"

{ ECPGtrans(__LINE__, NULL, "commit");}

#line 7 "tryme.pgc"

{ ECPGdisconnect(__LINE__, "CURRENT");}

#line 8 "tryme.pgc"

printf ("Done it.\n");

}

gustav@WOODLANDS:../gustav 18:11:02 !528 $

Now I have to link this program with the ecpg library:

gustav@WOODLANDS:../gustav 18:11:02 !528 $ gcc -o tryme tryme.c -lecpg

gustav@WOODLANDS:../gustav 18:11:57 !529 $

and I have the binary.
Let me demonstrate to you that it actually works!

394 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

gustav@WOODLANDS:../gustav 18:08:18 !559 $ psql --command "select * from dogs;" neighbors

name | owner | race | age | unit

--------+-------------------+---------------+-----+------

Barky | Abraham Lincoln | Poodle | 3 | 2387

Cedric | Woodrow Wilson | Mongrel | 8 | 2383

Fiote | Margaret Thatcher | Border Collie | 3 | 2385

(3 rows)

gustav@WOODLANDS:../gustav 18:08:25 !560 $./tryme

Connecting to the data base ...

Done it.

gustav@WOODLANDS:../gustav 18:08:32 !561 $ psql --command "select * from dogs;" neighbors

name | owner | race | age | unit

--------+-------------------+---------------+-----+------

Barky | Abraham Lincoln | Poodle | 3 | 2387

Fiote | Margaret Thatcher | Border Collie | 3 | 2385

Cedric | Woodrow Wilson | Mongrel | 7 | 2383

(3 rows)

gustav@WOODLANDS:../gustav 18:08:37 !562 $

Also, observe the use of the --command (or -c) command line switch to psql. It
lets you execute psql commands without actually entering an interactive session
with it.

In the example above I have performed certain SQL action, but I have not
really interfaced SQL variables with C variables and this, clearly, is going to
be necessary if you want to do anything more elaborate with your C program.
ecpg lets you declare variables that are going to be used both in the SQL and
C parts of the program. This is done in the following way, e.g.,

EXEC SQL BEGIN DECLARE SECTION;

int x;

char foo[16], bar[16];

EXEC SQL END DECLARE SECTION;

But here things may get tricky, e.g., if you want to capture the output of a
select operation into a C-language string. The ecpg documentation is not
very clear on this point.

So here you may wish to turn to the full C-language interface, called libpq,
which is also provided with PostgreSQL. The full interface is, of course, much
more complex and more difficult to use than ecpg, but here you will have no
problems with capturing the output of select. There is the whole section,
“1.3.4. Retrieving SELECT Result Information”, in the “PostgreSQL 7.3.4
Programmer’s Guide, I. Client Interfaces” that talks about it. This specific
section’s location on my PC is

C:\cygwin\usr\doc\postgresql-7.3.4\html\libpq-exec.html

Briefly speaking, there is a function PQexec, which is used to submit queries
to the data base. The function returns the result as an object of type PGresult.
This object is really a table. It can be queried with various functions provided
by libpq in order to find about the number of rows and columns, column
names, column types, the actual values in the fields of the table. There is also a
special function that can be used to print the returned table on a file – including
standard output.

9.4. HUGE DATA BASES 395

The same manual, i.e., the Programmer’s Guide, provides example programs.
On my PC the examples live in:

C:\cygwin\usr\doc\postgresql-7.3.4\html\libpq-example.html

and they are quite invaluable if you want to make sense of it all.
If you are a Java programmer, then you’ll find Java interface to PostgreSQL

discussed in Chapter 5 of the Programmer’s Guide, still part I, Client Interfaces.
This chapter lives on my PC in

C:\cygwin\usr\doc\postgresql-7.3.4\html\jdbc.html

This chapter is also illustrated with some examples.

9.4 Huge Data Bases

If your data base is going to be tens of GBs large, perhaps even hundreds of
GBs, then PostgreSQL will not be enough. In this case you may have to process
the data base on multiple CPUs in parallel and PostgreSQL is not a parallel
data base.

You will find an example of a very powerful parallel data base described in
the article “DB2 Parallel Edition for AIX: Concepts and Facilities”.

We may provide parallel DB2 to AVIDD users on specific request, but it
is a very large and a very involved system. Think twice about making such a
request. Yet, if you have a good justification for it, don’t hesitate. This is what
the AVIDD cluster is for.

What is a “good justification”? Data bases do not really live entirely on the
disk, when the system is up. A data base server always tries to load as much of
it into memory as possible, because otherwise responding to queries would be
too slow. So you should think of an active data base as living partially on the
disk and partially in memory. A very small data base may live in the memory of
a computer entirely, with only occasional updates and logs written to the disk.
But a very large data base, whose size is well in excess of the available memory
floor will have to live on the disk mostly.

Computers still have rather limited memory, because memory is expensive.
I can’t wait for the day when memory will be so cheap and persistent that the
disks, which are clumsy, mechanical and energy hungry devices, will no longer
be necessary. Disks slow down computing enormously. They are also a primary
break down point. The computational nodes of the AVIDD cluster have 2GBs
memory each, of which you can probably get about a GB for your program, the
rest being taken by the operating system, PBS, and a “safety margin”. This
means that you can probably serve a data base with up to 4 times the size, i.e.,
a 4GB data base from a single node. This assumes that you should have a 25%
memory foothold, which is fairly reasonable.

Well, what then if the data base is 40GBs? Then, you should think about
distributing it over 10 AVIDD nodes for truly satisfactory performance. If the
nodes were more powerful and, just as importantly, if they had more memory,
you could run a larger data base from 10 nodes. Consider a system of 4-way

396 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

SMPs, for example, each SMP with, say, 8GBs memory, of which 1GB is reserved
for the OS. This would give you a 7GB foothold per node, and then you could
run a 28GB data base from a single node, or 280GB data base from 10 such
nodes. This would be nice and this is how large commercial data bases are
usually configured. But let us get back to AVIDD.

You should not expect that the performance of a parallel data base will scale
linearly forever. There is a lot of synchronization and communication involved
in the data base functioning, and so data bases running on more than 64 CPUs
are pretty rare. This could translate into, say, a system of 16 4-way SMPs, or
into a single powerful SMP such as the Sun Starfire or HP Superdome.

Since the AVIDD nodes are 2-way SMPs you could think of deploying a data
base on up to 32 of these. But the AVIDD nodes have little memory and cannot
have much more, because they are 32-bit systems, and so even 32 nodes would
probably be too many. But 16 to 24 nodes should be quite OK. This would give
you a data base of up to 96GBs, which is plenty as far as data bases goes and
more than anything I have seen at Indiana University so far, and more than the
largest file we have ever moved to our HPSS (although HPSS operators at some
DoE laboratories deal routinely with files that are larger than a TB).

Remember what I said right at the beginning of this chapter: data bases
are normally populated by human typists. 96GBs would roughly translate into
nearly 30 million pages of text, assuming 60 characters per line and 60 lines per
page. Assuming 300 pages per book, this would be 100,000 books. You’d need
a lot of typists to type this many pages!

DB2 Parallel Edition is a data base that is designed to live on a cluster.
Nowadays we actually no longer use the expression “Parallel Edition”, because
every new version of DB2 “Enterprise Edition” can be used in this way. It’s
simply one of the installation options.

Parallelism can manifest itself in various ways on such a system.
The first and the most obvious is inter-transaction parallelism. Transactions

don’t always get into each other’s way. If they don’t, then they can be executed
in parallel on separate nodes. Any SQL lookup with the select function doesn’t
alter the tables, and so you can have multiple lookups going on at the same time.
If updates are performed on separate parts of the table, they can be performed
in parallel too. Inter-transaction parallelism is especially welcome on relatively
small data bases that are accessed very frequently.

A less trivial form of parallelism is intra-query parallelism. Here a single
query may get split across many processors. This type of parallelism would be
used on a very large data base, where a single table may have been striped over
multiple nodes. Intra-query parallelism can be implemented in various ways
too, for example as partition parallelism or query decomposition, which is the
same thing, or pipelined parallelism where data may flow between processes in
a pipeline.

Then we may classify parallel operations depending on how we deal with
data. In some cases we may ship functions from one process to where the data
itself resides, in others we may have to fetch the data from other processes and
feed them into a function that runs on a select processor. Function shipping

9.4. HUGE DATA BASES 397

is usually preferable, especially on clusters. Functions are data too, as every
Lisp programmer knows, but they are usually rather small compared to the size
of data they operate on in large data bases. So it’s usually cheaper to send a
function across than the whole table or a portion of it.

The architecture of DB2 Parallel Edition is pretty complex. There is a sys-
tem controller there, a watch dog, a parallel system controller, a communication
manager, a master data base logger, a deadlock detector (sic!) and numerous
other agents. You will normally have several DB2 listeners running on various
nodes, so that connections made to the data base can be distributed over the
cluster in order to level the load on the whole system. There is a central agent
that maintains maps of how tables are distributed amongst the nodes, but even
this function may well be replicated for better performance. In this respect the
functioning of DB2 is likely to be quite similar to the functioning of, e.g., the
AFS.

The parallel DB2 supports pretty much normal SQL and adds a couple of
extensions. Most operations are quite transparent and you don’t need to think of
parallelism. What is parallelizable DB2 will parallelize automatically (business
people wouldn’t put up with all the parallel programming fuss otherwise!). In
some cases operations will run locally on the nodes. When some central action
is required, then the operations may be forwarded to the coordinator node.
This is somewhat similar to collective operations in MPI, e.g., MPI_Reduce or
MPI_Gather. There is always a coordinating node there, even if the operation
is of the type MPI_Allreduce, in which case the node is not explicit, but it is
still there.

Parallelism comes to the surface at the level of SQL optimization. Here the
optimizer has been extended to generate parallel plans . The optimizer then
selects the lowest-cost plan of a query. The cost depends on how the table has
been partitioned amongst the nodes, on table statistics, on index statistics, data
base configuration parameters, and on the SQL query itself.

The actions of the data base can be scrutinized with various so called explain

tools. These will usually explain why the optimizer made its choices for the
query, and how a particular operation is going to be executed. Explain reports
can be very detailed, which is important if you work with a huge commercial
data base and need to optimize its every aspect.

DB2 provides numerous utilities for executing commands on multiple nodes,
managing segments, splitting data, load leveling, adding and dropping nodes,
redistributing tables, data base back up and restore, data base recovery, and
data base directory utility.

IBM DB2 is a very flexible and quite universal tool. It is used not only in
business, but increasingly nowadays in science, engineering, and even in com-
puter management itself. For example, the HPSS data base is DB2 (as of version
5.1 and higher). Another example is the Blue Gene/L supercomputer, which is
configured and managed by DB2.

Even though data base pundits predicted a slow demise of relational data
bases many years ago, to be replaced, in their opinions, by object oriented data
bases, this has never happened. The reason for this is that a table is actually

398 CHAPTER 9. DATABASES: FROM SMALL TO HUGE

a very universal device and with suitable extensions it can be used to handle a
great variety of data and queries. For example, you may think of storing whole
images, even videos as table entries, why not?

Because data bases hold so much useful information, surprising discoveries
can sometimes be made by mining this information, looking for unusual and
unexpected correlations amongst the millions of rows and columns. Such activ-
ities are very difficult and time consuming. Ready-made data mining tools can
be purchased from data base companies. Such tools are extremely expensive
and people who can operate them skillfully and effectively command extremely
high salaries.

Perhaps one day, you’ll find yourself amongst them!

Index

TEX, 380

account, 28
AFS, 21

fileset, 280
ALICE, 374
Andrew File System, 21
ANL, 39
Arctic Region Supercomputer Cen-

ter, 14
ARSC, 14

Cray X1, 24
AVIDD, 7, 16

GPFS, 36
mounting point, 37
performance, 37
permissions, 37

NFS, 36
server nodes, 36

WWW page, 35

Birman, Ken, 107
Boehlert, Sherwood, 15

C
arrays versus pointers, 276
case, 43
chmod, 136
clock, 88
CLOCKS PER SEC, 88
command line
reading, 44

exit, 43
exit status, 45
fclose, 45
feof, 75
ferror, 75

fopen, 44
for, 16, 44
fread, 75
fscanf, 95
fwrite, 44
getenv, 94, 142
gethostname, 119
getopt, 43, 184
if, 44
INT MAX, 75
long long, 75
macros, 75
malloc, 50, 75
mkdir, 143
optarg, 43
perror, 44
rand, 44
rename, 95
sizeof, 44
srand, 44
sscanf, 43, 50, 75
stat, 142
S ISDIR, 142

strcat, 95
strcpy, 95
switch, 43
time, 87
wrap around, 88

while, 43, 75
CAE XSH convention, 88

XSI conformance, 88
capacity computing, 7, 24

car crash analysis, 24
distributing jobs, 8
SETI, 24

CEA, 39
CERN, 23

399

400 INDEX

Chameleon, 108
checkpointing, 86
ChemIO, 375
Clemson University, 37
clusters, 8
competition

lack of in IT, 11
Congress

supercomputer hearing, 15
Connection Machine, 17
Cornell University, 107
Cray, 13

Cascade, 13
Red Storm, 14
T3E, 154
Tera, 13
Unicos
checkpointing, 86

X1, 14, 144, 154
at ARSC, 14

Cygwin, 29
bash, 30
cygrunsrv, 380
Dfs, 30
download, 30
Emacs, 33
installation, 30
NTFS, 29
ACLs, 29

OpenSSH, 29, 34
authorized keys, 32
DSA keys, 32
passphrase, 32
slogin, 31
ssh-add, 33
ssh-agent, 32, 33
ssh-keygen, 31

SSH2, 34
X11R6, 33
startxwin.sh, 33
starxwin.sh, 33
xclock, 33
XWin, 33

DARPA

High Productivity Computing
Systems Program, 13

data bases
and business, 377
and science, 378
as client-server systems, 377
DB2, 378
architecture, 397
coordinator node, 397
explain tools, 397
functions as data, 397
on AVIDD, 395
Parallel Edition, 36, 380, 395
SQL, 397
utilities, 397

epidemiology, 379
high energy physics
SLAC, 379

Ingress, 378
medical information systems
Regenstrief Institute, 379

National Library, 379
Oracle, 378
personal
list of citations, 380

PostgreSQL, 378
C interface, 394
createdb, 383
documentation, 384
ecpg, 392
Embedded SQL preprocessor,
392

initdb, 381
IPC daemon, 380
Java interface, 395
libpq, 394
pg hba.conf, 382
pg ident.conf, 382
postgresql.conf, 382
postmaster, 382
psql, 383, 384
templates, 384

SQL
atomicity, 391
begin, 391
commit, 391

INDEX 401

create database, 384
create table, 388
delete, 391
insert, 388, 391
lock, 392
rollback, 391
select, 387
update, 390, 391

SQL Server, 378
storage methods, 377
tables, 377

data parallel programming
scalability, 20

data parallelism, 16
deadlock, 19
Dell, 379
disk IO

caching, 38
data compression, 38
writes versus reads, 38

Distributed Storage Systems Groups,
57

DSSG, 57
Dynix, 19

Earth Simulator, 13, 24
ECMWF, 39
Emacs

default.el, 35
info, 35

Express, 107

FLIC, 375
fork, 19
Fortran 90, 17

and MPI, 19
and shared memory, 19

Fox, Geoffrey, 107
FTP, 29
fuddy daddies, 15
Fujitsu, 12

AP-3000, 154

Gateway, 8
girlfriend

upset, 24

GNU
compilers, 34
info, 35

GPFS
ACLs, 34
documentation, 34
IO
dependence on block size, 50

memory caching, 37
on AVIDD, 36

Grid, 20
.NET Password as grid, 21
AFS as grid, 21
and distributed computing, 21
Globus, 20
Legion, 21
Unicore, 21

Gropp, William, 108

HDF4, 279
HDF5, 279

and Cactus, 279
and Chombo, 279
and Flash, 279
and Intel Array Visualizer, 280
and Java, 372
and LabVIEW, 280
and MPI-IO, 302
and Swarm, 279
and Vis5D, 279
constants
H5F ACC EXCL, 287
H5F ACC RDONLY, 292
H5F ACC RDWR, 292
H5F ACC TRUNC, 287
H5FD MPIO COLLECTIVE,
338

H5FD MPIO INDEPENDENT,
338

H5P DATASET CREATE, 302
H5P DATASET XFER, 302,
325

H5P DEFAULT, 287, 290, 302
H5P FILE ACCESS, 302
H5P FILE CREATE, 302
H5S SELECT AND, 332

402 INDEX

H5S SELECT NOTA, 332
H5S SELECT NOTB, 332
H5S SELECT OR, 332
H5S SELECT SET, 332
H5S SELECT XOR, 332
H5S UNLIMITED, 289
H5T COMPOUND, 365
H5T ENUM, 366
H5T NATIVE DOUBLE, 366
H5T NATIVE FLOAT, 366
H5T NATIVE INT, 293, 366
H5T OPAQUE, 366
H5T STD I32BE, 281
H5Z FILTER FLETCHER32,
322

Folk, Michael J., 280
Frequently Asked Questions, 280
gif2h5, 372
h4toh5, 372
h52gif, 372
H5Aclose, 296
H5Acreate, 296
attribute creation property list,
296

H5Awrite, 296
H5c++, 372
H5Dclose, 290
H5Dcreate, 290
dataset creation property list,
290

H5Dget create plist, 317
H5Dget space, 315
h5diff, 372
H5Dopen, 293
H5Dread, 293
h5dump, 284
H5Dwrite, 293
h5fc, 372
H5Fclose, 287
H5Fcreate, 287
file access property list, 287
file creation property list, 287

H5Fopen, 292
file access flag, 292
file access property list, 293

H5Gclose, 298

H5gen, 372
H5Gget objinfo, 371
H5Giterate, 367
h5import, 372
h5ls, 282
H5Pcreate, 305
h5perf, 372
H5Pget chunk, 317
H5Pget edc check, 325
H5Pget layout, 317
H5Pset chunk, 314
H5Pset deflate, 322
H5Pset dxpl mpio, 338
H5Pset fapl family, 307
H5Pset fapl mpio, 310
H5Pset filter, 324
H5Pset sizes, 306
H5Rcreate, 372
h5repart, 372
H5Sclose, 290
H5Scopy, 359
H5Screate simple, 289
H5Sget simple extent dims, 317
H5Sget simple extent ndims, 317
H5Sselect elements, 355
H5Sselect hyperslab, 315, 332
H5Tcommit, 370
H5Tcreate, 365
H5Tinsert, 366
h5toh4, 372
H5View, 372
HOFFSET, 366
JHI5, 372
MPI-IO
hyperslab selection, 325

object reference, 371
on AVIDD, 279
Reference Manual, 280
Tutorial, 280
types
H5T STD I32BE, 290
herr t, 288
hid t, 287
hsize t, 290

User’s Guide, 280
versus data bases, 286

INDEX 403

versus flat files, 285
VisAD, 372

High Performance Fortran, 18
High Performance Storage System,

39
Hitachi, 12
hogs, 88
HPC, 7
HPF, 18

and MPI, 18
on AVIDD, 158
versus MPI, 158

HPSS, 36, 39
and DB2, 397
pftp, 50
client, 52
kerberized client, 50

users, 39

I-Light, 7
I-light, 22
IA32, 7
IA64, 7
IBM, 7, 8, 13

Blue Gene/L
and DB2, 397

BlueGene/L, 193
HPSS, 7
PERCS, 13
SP
at Indiana University, 15

Watson Laboratory
and MPI-IO, 192

ICRR, 39
IEEE-1003, 87
IN2P3, 39
India, 23
Indiana University, 15, 39

AVIDD, 16
IBM SP, 15
GPFS, 16

LAM MPI, 18
IRAF, 23
ISIS, 107

and Microsoft Wolfpack, 107
virtual synchrony, 107

Jacobi, Karl Gustav Jacob, 144

KEK, 39
Kerberos, 51

kdestroy, 52
kinit, 51
klist, 51

KISTI, 39

LAM, 107
MPI, 108

LANL, 39
Laplace

equation, 143
boundary conditions, 144
discretized, 144
Jacobi iterations, 144

operator, 143
Linux, 9
LLNL, 39
Lusk, Ewing, 108

man
configuration file, 34

Mathematica, 24
Matlab, 24
message passing, 18
Message Passing Interface, 18
Microsoft, 107

.NET Password, 21
Wolfpack, 107
Word, 380

MPI, 18, 107
and multi-threading, 20
Argonne implementation, 35
C++, 109
collective operations, 124
communicator, 109
error handler, 190
group, 190

constants
MPI 2INT, 226
MPI ANY SOURCE, 125
MPI ANY TAG, 125
MPI BYTE, 225
MPI CHAR, 125, 225

404 INDEX

MPI COMM NULL, 154
MPI COMM SELF, 222
MPI COMM WORLD, 119
MPI DISTRIBUTE BLOCK,
232, 240

MPI DISTRIBUTE CYCLIC,
232, 246

MPI DISTRIBUTE DFLT DARG,
232, 241

MPI DISTRIBUTE NONE, 232
MPI DOUBLE, 130, 225
MPI DOUBLE INT, 226
MPI ERRORS ARE FATAL,
190

MPI ERRORS RETURN, 190
MPI FLOAT, 225
MPI FLOAT INT, 226
MPI INFO NULL, 202
MPI INT, 225
MPI LB, 226, 227
MPI LONG, 225
MPI LONG DOUBLE, 225
MPI LONG DOUBLE INT, 226
MPI LONG INT, 226
MPI LONG LONG, 225
MPI LONG LONG INT, 225
MPI MAX INFO KEY, 247
MPI MAX INFO VAL, 247
MPI ORDER C, 232, 241
MPI ORDER FORTRAN, 232
MPI SHORT, 225
MPI SHORT INT, 226
MPI SUCCESS, 190
MPI SUM, 130
MPI UB, 226, 227
MPI UNSIGNED, 225
MPI UNSIGNED CHAR, 225
MPI UNSIGNED LONG, 225
MPI UNSIGNED SHORT, 225
MPI WCHAR T, 225

data types, 109
debugging programs with fprintf,

136
file handle, 202
Fortran 90, 109
instrumenting a program, 254

LAM MPI, 18, 35, 108
MPE, 253
alog file, 255
automatic logging, 254
clog file, 254
clog2alog, 255
clogTOslog2, 256
jumpshot, 256
MPE Close graphics, 265
MPE Describe event, 261
MPE Describe state, 259
MPE Draw circle, 264, 265
MPE Draw line, 265
MPE Draw point, 265
MPE Draw string, 264, 265
MPE Finish log, 261
MPE Init log, 259
MPE Log event, 260
MPE Log get event number,
259

MPE Make color array, 265
MPE Num colors, 265
MPE Open graphics, 263, 265
MPE Start log, 260
MPE Update, 264, 265
slog2 file, 256

MPI-2, 109
MPI-IO, 108, 109
MPI Abort, 191, 199, 342
MPI Address, 228
MPI Allgather, 167
MPI Allgatherv, 168
MPI Allreduce, 178, 185, 203
MPI Barrier, 143, 260
MPI Bcast, 124
MPI Cart coords, 155
MPI Cart create, 153
MPI Cart shift, 155
MPI Comm, 175
MPI Comm create, 176
MPI Comm free, 179
MPI Comm group, 176
MPI Comm rank, 110, 119, 154
MPI Comm Size, 119
MPI Comm size, 110
MPI Dims create, 232, 241

INDEX 405

MPI Errhandler set, 190
MPI Error class, 191
MPI Error string, 190
MPI File close, 203
MPI File Delete, 215
MPI File delete, 223
MPI File get info, 250
MPI File get position, 202
MPI File get size, 212
MPI File iread, 253
MPI File iwrite, 253
MPI File open, 201
MPI File read, 214
MPI File read all, 232
MPI File seek, 202
MPI File set errhandler, 192
MPI File set info, 251
MPI File set view, 229, 232
MPI File write, 203
MPI File write all, 232, 244, 344
MPI Finalize, 110, 118, 142, 342
MPI Gather, 167, 168
MPI Get address, 227, 366
MPI Get count, 203
MPI Get processor name, 119
MPI Group, 176
MPI Group excl, 176
MPI Group free, 176
MPI Info create, 247
MPI Info get, 247, 250
MPI Info get nkeys, 247, 250
MPI Info get nthkey, 247, 250
MPI Info set, 247, 251
MPI Init, 110, 118
and the command line, 269

MPI Irecv, 252
MPI Isend, 252
MPI Recv, 109, 125, 203
status, 138

MPI Reduce, 130, 260
MPI Request, 252
MPI Send, 109, 125
MPI Sendrecv, 157
MPI Ssend, 252
MPI Status, 203
MPI Test, 252

MPI Type commit, 157, 167
MPI Type contiguous, 166, 228
MPI Type create darray, 230–

232, 240, 241
MPI Type create struct, 227
MPI Type extent, 232, 241
MPI Type indexed, 228
MPI Type size, 232, 241
MPI Type struct, 227, 366
MPI Type vector, 157, 228
MPI Wait, 252
MPI Waitall, 271
MPI Win set errhandler, 192
MPI Wtime, 129, 142
MPICH, 18, 35, 108
MPICH2, 108
.mpd.conf, 111
mpd.hosts, 115
MPD USE USER CONSOLE,
111, 115

mpdboot, 115
mpdringtest, 116
mpds, 115
mpicc, 121
mpiexec, 116

Ohio Supercomputer Center im-
plementation, 35

on AVIDD, 111
process rank, 109
programming examples, 110
ROMIO, 36, 108
Standard 1.1, 108
Standard 2.0, 108
synchronization
cost of, 124

The Complete Reference, 108
Using MPI, 108
Using MPI-2, 108
windows, 192

N-cube, 107
NASA, 39, 108
NCDC, 39
NCEP, 39
NCSA, 14, 22, 37
NEC, 12

406 INDEX

Cenju-3, 154
Earth Simulator, 13

NEOS, 375
NetMeeting, 9
Nitzberg, Bill, 109
NSF, 7, 15

Ohio Supercomputer Center, 107
OpenMP, 19
ORNL, 39, 107

P4, 107, 108
parallel programming

cost of communication, 20
scalability, 20

parallelism
data, 16

PBS
PBS NODEFILE, 115
qdel, 66
qhold, 65
qrls, 65
qsig, 65
qstat, 59, 65
-f, 85
-q, 59

qsub, 62
-C, 70
-I, 57, 67
-M, 71
-S, 70
-V, 82
-W, 84
-e, 70
-j, 79
-m, 71
-o, 69
-q, 70
-v, 82
submitting jobs interactively,
70

submitting X11 jobs, 68
using here-input in scripts, 69

qusb
-V, 115

PC, 11

cluster of, 12
memory bottleneck, 12

PETSc, 375
PFLOPS, 13
PGHPF, 18
PICL, 107
PIM, 13, 17
Pittsburgh Supercomputer Center,

14
Portland Group, 18
POSIX, 87
Processor in Memory, 17
processor in memory, 13
PSC, 37
Ptools, 375
PVFS, 37
PVM, 107
Python, 115

Regenstrief Institute, 379
RIKEN, 39
rlogin, 29
RSL, 375

SAN, 37
Sandia, 39
SC2003 conference, 377
Scarafino, Vincent, 15
SDSC, 15, 37, 39
secure shell, 29
security bugs, 44
shared memory, 18
skills, 8
Skjellum, Anthony, 108
skulker, 8
SLAC, 379
SMP, 18
Snir, Marc, 109
spawn, 18
speed of light, 22
Stewart, Craig, 35
Storage Area Network, 37
Sun, 13

clockless computing, 13
supercomputing, 7
Supercomputing 92, 107

INDEX 407

TCGMSG, 107
telnet, 29
Thakur, Rajeev, 108
this course

rationale for, 25
threads, 18
Trilab, 39
Turner, George W. M., 28

University of Michigan, 15
University of Stuttgart, 39
University of Texas, 15
UNIX

BSD
fee per campus, 378

chmod, 244
install, 46
INT MAX, 242
IO caching, 37
writes versus reads, 38

make, 45
Makefile, 45

RCS, 46
co, 47, 50
rcsclean, 47

shell
io redirection, 83

signals, 66
catching, 66

sleep, 64
tar, 285
time, 79, 90
troff, 380

US supercomputer industry
near death experience, 12

Windows, 9
2000, 9
Dfs, 30
NTFS, 29
XP, 9

X11, 34
mkdirhier, 46

year 2000 bug, 88
year 2038 bug, 88

