

NUMERICAL METHODS FOR ROOTS OF POLYNOMIALS
PART I

Prelims-N52729.FM Page i Wednesday, December 27, 2006 12:30 PM

STUDIES IN
COMPUTATIONAL MATHEMATICS 14

Editors:

C.K. CHUI
Stanford University
Stanford, CA, USA

L. WUYTACK
University of Antwerp

Antwerp, Belgium

Amsterdam · Boston · Heidelberg · London · New York · Oxford · Paris
San Diego · San Francisco · Singapore · Sydney · Tokyo

Prelims-N52729.FM Page ii Thursday, January 4, 2007 11:14 AM

NUMERICAL METHODS FOR ROOTS
OF POLYNOMIALS

PART I

J.M. MCNAMEE
Department of Computer Science, York University,

4700 Keele Street,
Toronto, Ontario,
M3J 1P3 Canada

Amsterdam · Boston · Heidelberg · London · New York · Oxford · Paris
San Diego · San Francisco · Singapore · Sydney · Tokyo

Prelims-N52729.FM Page iii Wednesday, December 27, 2006 12:30 PM

Elsevier
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

First edition 2007

Copyright © 2007 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material
herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13: 978-0-444-52729-5
ISBN-10: 0-444-52729-X
ISSN: 1570-579X

For information on all Elsevier publications
visit our website at books.elsevier.com

Printed and bound in The Netherlands

07 08 09 10 11 10 9 8 7 6 5 4 3 2 1

Prelims-N52729.FM Page iv Wednesday, December 27, 2006 12:30 PM

Dedication

This work is dedicated to my wife, Jean Frances McNamee, who over the last five
years has spent innumerable hours driving around the Haliburton Highlands while
I read hundreds of journal articles in preparation for the book.

v

This page intentionally left blank

Preface

This book constitutes the first part of two volumes describing methods
roots of polynomials.
one chapter in Part II will be devoted to “analytic” methods

It is hoped that the series will be useful to anyone doing research into methods
of solving polynomials (including the history of such methods), or who needs to
solve many low- to medium-degree polynomials and/or some or many high-degree
ones in an industrial or scientific context. Where appropriate, the location of good
computer software for some of the best methods is pointed out. The book(s) will
also be useful as a text for a graduate course in polynomial root-finding.

Preferably the reader should have as pre-requisites at least an undergraduate
course in Calculus and one in Linear Algebra (including matrix eigenvalues). The
only knowledge of polynomials needed is that usually acquired by the last year of
high-school Mathematics.

The book(s) cover most of the traditional methods for root- finding (and numer-
ous variations on them), as well as a great many invented in the last few decades
of the twentieth and early twenty-first centuries. In short, it could well be entitled:
“ A Handbook of Methods for Polynomial Root-Solving”.

vii

for finding

for
 In general most such methods are numerical (iterative), but

polynomials
of degree up to four.

This page intentionally left blank

Contents

Preface vii

Contents ix

Introduction xiii

1 Evaluation, Convergence, Bounds 1
1.1 Horner’s Method of Evaluation . 1
1.2 Rounding Errors and Stopping Criteria 4
1.3 More Efficient Methods for Several Derivatives 7
1.4 Parallel Evaluation . 8
1.5 Evaluation at Many Points . 11
1.6 Evaluation at Many Equidistant Points 14
1.7 Accurate Evaluation . 17
1.8 Scaling . 22
1.9 Order of Convergence and Efficiency 23
1.10 A Priori Bounds on (Real or Complex) Roots 26
1.11 References for Chapter 1. 33

2 Sturm Sequences and Greatest Common Divisors 37
2.1 Introduction . 37
2.2 Definitions and Basic Theorem . 37
2.3 Application to Locating Roots . 38
2.4 Elimination of Multiple Roots . 40
2.5 Detection of Clusters of Zeros (Near-Multiple) 43
2.6 Sturm Sequences (or gcd’s) Using Integers 47
2.7 Complex Roots (Wilf’s Method) . 49
2.8 References for Chapter 2 . 51

3 Real Roots by Continued Fractions 53
3.1 Fourier and Descartes’ Theorems . 53
3.2 Budans’s Theorem . 54
3.3 Vincent’s Theorem . 55

ix

x Contents

3.4 Akritas’ Improvement of Vincent’s Theorem 56
3.5 Applications of Theorem 3.4.1 . 60
3.6 Complexity of m . 60
3.7 Choice of the ai . 61
3.8 Cauchy’s Rule . 62
3.9 Appendix to Chapter 3. Continued Fractions 62
3.10 References for Chapter 3 . 65

4 Simultaneous Methods 67
4.1 Introduction and Basic Methods . 67
4.2 Conditions for Guaranteed Convergence 72
4.3 Multiple Roots . 80
4.4 Use of Interval Arithmetic . 84
4.5 Recursive Methods . 90
4.6 Methods Involving Square Roots, Second Order Derivatives, etc . . 92
4.7 Effect of Rounding Errors . 100
4.8 Gauss-Seidel and SOR Variations 102
4.9 Real Factorization Methods . 108
4.10 Comparison of Efficiencies . 114
4.11 Implementation on Parallel Computers 117
4.12 Miscellaneous Methods . 120
4.13 A Robust and Efficient program . 121
4.14 References for Chapter 4 . 123

5 Newton’s and Related Methods 131
5.1 Definitions and Derivations . 131
5.2 Early History of Newton’s Method 135
5.3 Computable Conditions for Convergence 137
5.4 Generalizations of Newton’s Method 141
5.5 Methods for Multiple Roots . 151
5.6 Termination Criteria . 158
5.7 Interval Methods . 161
5.8 Parallel Methods . 173
5.9 Hybrid Methods Involving Newton’s Method 175
5.10 Programs . 189
5.11 Miscellaneous Methods Related to Newton’s 190
5.12 References for Chapter 5 . 196

6 Matrix Methods 207
6.1 Methods Based on the Classical Companion Matrix 207
6.2 Other Companion Matrices . 214
6.3 Methods with O(N2) Operations . 231
6.4 Methods Designed for Multiple Roots 257
6.5 Methods for a Few Roots . 289

xi

6.6 Errors and Sensitivity . 294
6.7 Miscellaneous Methods and Special Applications 304
6.8 Programs and Packages . 314
6.9 References for Chapter 6 . 316

Index 323

Contents

This page intentionally left blank

Introduction

A polynomial is an expression of the form

p(x) = cnx
n + cn−1x

n−1 + ...+ c1x+ c0 (1)

If the highest power of x is xn, the polynomial is said to have degree n. It was
proved by Gauss in the early 19th century that every polynomial has at least one
zero (i.e. a value ζ which makes p(ζ) equal to zero), and it follows that a polyno-
mial of degree n has n zeros (not necessarily distinct). Often we use x for a real
variable, and z for a complex. A zero of a polynomial is equivalent to a “root” of
the equation p(x) = 0. A zero may be real or complex, and if the “coefficients”
ci are all real, then complex zeros occur in conjugate pairs α + iβ, α − iβ. The
purpose of this book is to describe methods which have been developed to find the
zeros (roots) of polynomials.

Indeed the calculation of roots of polynomials is one of the oldest of mathemat-
ical problems. The solution of quadratics was known to the ancient Babylonians,
and to the Arab scholars of the early Middle Ages, the most famous of them being
Omar Khayyam. The cubic was first solved in closed form by G. Cardano in the
mid-16th century, and the quartic soon afterwards. However N.H. Abel in the early
19th century showed that polynomials of degree five or more could not be solved
by a formula involving radicals of expressions in the coefficients, as those of degree
up to four could be. Since then (and for some time before in fact), researchers
have concentrated on numerical (iterative) methods such as the famous Newton’s
method of the 17th century, Bernoulli’s method of the 18th, and Graeffe’s method
of the early 19th. Of course there have been a plethora of new methods in the
20th and early 21st century, especially since the advent of electronic computers.
These include the Jenkins-Traub, Larkin’s and Muller’s methods, as well as several
methods for simultaneous approximation starting with the Durand-Kerner method.
Recently matrix methods have become very popular. A bibliography compiled by
this author contains about 8000 entries, of which about 50 were published in the
year 2005.

xiii

xiv Introduction

Polynomial roots have many applications. For one example, in control theory
we are led to the equation

y(s) = G(s)u(s) (2)

where G(s) is known as the “transfer function” of the system, u(s) is the Laplace
tranform of the input, and y(s) is that of the output. G(s) usually takes the form
P (s)
Q(s) where P and Q are polynomials in s. Their zeros may be needed, or we may

require not their exact values, but only the knowledge of whether they lie in the
left-half of the complex plane, which indicates stability. This can be decided by the
Routh-Hurwitz criterion. Sometimes we need the zeros to be inside the unit circle.
See Chapter 15 in Volume 2 for details of the Routh-Hurwitz and other stability
tests.

Another application arises in certain financial calculations, e.g. to compute
the rate of return on an investment where a company buys a machine for, (say)
$100,000. Assume that they rent it out for 12 months at $5000/month, and for a
further 12 months at $4000/month. It is predicted that the machine will be worth
$25,000 at the end of this period. The solution goes as follows: the present value
of $1 received n months from now is 1

(1+i)n , where i is the monthly interest rate,

as yet unknown. Hence

100, 000 =

12
∑

j=1

5000

(1 + i)j
+

24
∑

j=13

4000

(1 + i)j
+

25, 000

(1 + i)24
(3)

Hence

100, 000(1+ i)24−
12
∑

j=1

5000(1+ i)24−j −
24
∑

j=13

4000(1+ i)24−j − 25, 000 = 0(4)

a polynomial equation in (1+i) of degree 24. If the term of the lease was many
years, as is often the case, the degree of the polynomial could be in the hundreds.

In signal processing one commonly uses a “linear time-invariant discrete” sys-
tem. Here an input signal x[n] at the n-th time-step produces an output signal y[n]
at the same instant of time. The latter signal is related to x[n] and previous input
signals, as well as previous output signals, by the equation

y[n] = b0x[n]+b1x[n−1]+ ...+bNx[n−N]+a1y[n−1]+ ...+aMy[n−M](5)

To solve this equation one often uses the “z-transform” given by:

X(z) =

∞
∑

n=−∞
x[n]z−n (6)

Introduction xv

A very useful property of this transform is that the transform of x[n− i] is

z−iX(z) (7)

Then if we apply 6 to 5 using 7 we get

Y (z) = b0X(z) + b1z
−1X(z) + ...+ bNz

−NX(z)+

a1z
−1Y (z) + ...+ aMz−MY (z) (8)

and hence

Y (z) = X(z)
[b0 + b1z

−1 + ...+ bNz
−N]

[1 − a1z−1 − ...− aMz−M]
(9)

= X(z)zM−N [b0z
N + b1z

N−1 + ...+ bN]

[zM − a1zM−1 − ...− aM]
(10)

For stability we must have M ≥ N . We can factorize the numerator and denom-
inator polynomials in the above (or equivalently find their zeros zi and pi respec-
tively). Then we may expand the right-hand-side of 10 into partial fractions, and
finally apply the inverse z-transform to get the components of y[n]. For example
the inverse tranform of z

z−a is

anu[n] (11)

where u[n] is the discrete step-function, i.e.

u[n]
= 0 (n < 0)
= 1 (n ≥ 0)

(12)

In the common case that the denominator of the partial fraction is a quadratic (for
the zeros occur in conjugate complex pairs), we find that the inverse transform is
a sin- or cosine- function. For more details see e.g. van den Emden and Verhoeckx
(1989).

As mentioned, this author has been compiling a bibliography on roots of poly-
nomials since about 1987. The first part was published in 1993 (see McNamee
(1993)), and is now available at the web-site
http://www.elsevier.com/locate/cam
by clicking on “Bibliography on roots of polynomials”. More recent entries have
been included in a Microsoft Access Database, which is available at the web-site
www.yorku.ca/mcnamee
by clicking on “Click here to download it” (under the heading “ Part of my bibli-
ography on polynomials is accessible here”). For furthur details on how to use this
database and other web components see McNamee (2002).

xvi Introduction

We will now briefly review some of the more well-known methods which (along
with many variations) are explained in much more detail in later chapters. First
we mention the bisection method (for real roots): we start with two values a0 and
b0 such that

p(a0)p(b0) < 0 (13)

(such values can be found e.g. by Sturm sequences -see Chapter 2). For i = 0, 1, ...
we compute

di =
ai + bi

2
, (14)

then if f(di) has the same sign as f(ai) we set ai+1 = di, bi+1 = bi; otherwise
bi+1 = di, ai+1 = ai. We continue until

|ai − bi| < ǫ (15)

where ǫ is the required accuracy (it should be at least a little larger than the machine
precision, usually 10−7 or 10−15). Alternatively we may use

|p(di)| < ǫ (16)

Unlike many other methods, we are guaranteed that 15 or 16 will eventually be
satisfied. It is called an iterative method, and in that sense is typical of most of
the methods considered in this work. That is, we repeat some process over and
over again until we are close enough to the required answer (we hardly ever reach
it exactly). For more details of the bisection method, see Chapter 7.

Next we consider the famous Newton’s method. Here we start with a single
initial guess x0, preferably fairly close to a true root ζ, and apply the iteration:

zi+1 = zi −
p(zi)

p′(zi)
(17)

Again, we stop when

|zi+1 − zi|
|zi+1|

< ǫ (18)

or |p(zi)| < ǫ (as in 16). For more details see Chapter 5.

In Chapter 4 we will consider simultaneous methods, such as

z
(k+1)
i = z

(k)
i − p(z

(k)
i)

∏n
j=1,j 6=i(z

(k)
i − z

(k)
j)

(i = 1, ..., n) (19)

starting with initial guesses z
(0)
i (i = 1, ..., n). Here the notation is a little different

from before, that is z
(k)
i is the k-th approximation to the i-th zero ζi (i = 1, ..., n).

Introduction xvii

Another method which dates from the early 19th century, but is still often used,
is Graeffe’s. Here 1 is replaced by another polynomial, still of degree n, whose zeros
are the squares of those of 1. By iterating this procedure, the zeros (usually) become
widely separated, and can then easily be found. Let the roots of p(z) be ζ1, ..., ζn
and assume that cn = 1 (we say p(z) is “monic”) so that

f0(z) ≡ p(z) = (z − ζ1)....(z − ζn) (20)

Hence

f1(w) ≡ (−1)nf0(z)f0(−z) (21)

= (w − ζ2
1)...(w − ζ2

n) (22)

with w = z2.
We will consider this method in detail in Chapter 8 in Volume II.

Another popular method is Laguerre’s:

zi+1 = zi −
np(zi)

p′(zi) ±
√

(n− 1){(n− 1)[p′(zi)]2 − np(zi)p′′(zi)}
(23)

where the sign of the square root is taken the same as that of p′(zi) (when all the
roots are real, so that p′(zi) is real and the expression under the square root sign
is positive). A detailed treatment of this method will be included in Chapter 9 in
Volume II.

Next we will briefly describe the Jenkins-Traub method, which is included in
some popular numerical packages. Let

H(0)(z) = p′(z) (24)

and find a sequence {ti} of approximations to a zero ζ1 by

ti+1 = si −
p(si)

H̃(i+1)(si)
(25)

For details of the choice of si and the construction of H̃(i+1)(si) see Chapter 12 in
Volume II.

There are numerous methods based on interpolation (direct or inverse) such as
the secant method:

xi+1 =
p(xi)

p(xi) − p(xi−1)
xi−1 +

p(xi−1)

p(xi−1) − p(xi)
xi (26)

(based on linear inverse interpolation) and Muller’s method (not described here)
based on quadratic interpolation. We consider these and many variations in Chap-
ter 7 of Volume II.

xviii Introduction

Last but not least we mention the approach, recently popular, of finding zeros
as eigenvalues of a “companion” matrix whose characteristic polynomial coincides
with the original polynomial. The simplest example of a companion matrix is (with
cn = 1):

C =













0 1 0 .. 0
0 0 1 .. 0
..
0 0 .. 0 1

−c0 −c1 −cn−1













(27)

Such methods will be treated thoroughly in Chapter 6.

Introduction xix

References for Introduction

McNamee, J.M. (1993), A bibliography on roots of polynomials, J. Comput. Appl.
Math. 47, 391-394

———————- (2002), A 2002 update of the supplementary bibliography on roots
of polynomials, J. Comput. Appl. Math. 142, 433-434

van den Emden, A.W.M. and Verhoeckx, N.A.M. (1989), Discrete- Time Signal
Processing, Prentice-Hall, New York

This page intentionally left blank

Chapter 1

Evaluation, Convergence, Bounds

1.1 Horner’s Method of Evaluation

Evaluation is, of course, an essential part of any root-finding method. Unless the
polynomial is to be evaluated for a very large number of points, the most efficient
method is Horner’s method (also known as nested multiplication) which proceeds
thus:
Let

p(x) = cnx
n + cn−1x

n−1 + ...+ crx
r + ...+ c0 (1.1)

bn = cn; bk = xbk+1 + ck (k = n− 1, n− 2, ..., 0) (1.2)

Then

p(x) = b0 (1.3)

Outline of Proof bn−1 = xcn + cn−1; bn−2 = x(xcn + cn−1) + cn−2 =
x2cn + xcn−1 + cn−2... Continue by induction

Alternative Proof Let

p(z) = (z − x)(bnz
n−1 + bn−1z

n−2 + ...+ bn−kz
n−k−1 + ...+ b1) + b0 (1.4)

Comparing coefficients of zn, zn−1, ..., zn−k, ...z0 gives

1

2 1. Evaluation, Convergence, Bounds

cn = bn so bn = cn
cn−1 = bn−1 − xbn so bn−1 = xbn + cn−1

..

..
cn−k = bn−k − xbn−k+1 so bn−k = xbn−k+1 + cn−k (k = 2, ..., n− 1)
..
c0 = b0 − xb1 so b0 = xb1 + c0

(1.5)

Now setting z = x we get p(x) = 0+b0

Note that this process also gives the coefficients of the quotient when p(z) is divided
by z-x, (i.e. bn, ..., b1)

Often we require several or all the derivatives, e.g. some methods such as
Laguerre’s require p′(x) and p′′(x), while the methods of Chapter 3 involving a
shift of origin z = y+x use the Taylor Series expansion

p(z) = p(x+ y) = p(x) + p′(x)y+
p′′(x)

2!
y2 + ...+

p(k)

k!
yk + ...+

p(n)

n!
yn(1.6)

If we re-write 1.4 as

Pn(z) = (z − x)Pn−1(z) + Pn(x) (1.7)

and apply the Horner scheme as many times as needed, i.e.

Pn−1(z) = (z − x)Pn−2(z) + Pn−1(x) (1.8)

....

....

Pn−k+1(z) = (z − x)Pn−k(z) + Pn−k+1(x) (k = 2, ..., n) (1.9)

then differentiating 1.7 k times using Leibnitz’ theorem for higher derivatives of a
product gives

P (k)
n (z) = (z − x)P

(k)
n−1(z) + kP

(k−1)
n−1 (z) (1.10)

Hence

P (k)
n (x) = kP

(k−1)
n−1 (x) = k(k − 1)P

(k−2)
n−2 (x) = ... = k!Pn−k(x) (1.11)

Hence

Pn−k(x) =
1

k!
P (k)

n (x) (1.12)

These are precisely the coefficients needed in 1.6

1.1. Horner’s Method of Evaluation 3

EXAMPLE Evaluate p(x) = 2x3 − 8x2 + 10x− 4 and its derivatives at x = 1.
Write P3(x) = c3x

3 + c2x
2 + c1x+ c0 and P2(x) = b3x

2 + b2x+ b1 with p(1) = b0
Then b3 = c3 = 2; b2 = xb3 +c2 = −6; b1 = xb2 +c1 = 4; b0 = xb1 +c0 =
0
Thus quotient on division by (x-1) = 2x2 − 6x+ 4
Writing P1(x) = d3x+ d2 (with d1 = p′(1)):
d3 = b3 = 2, d2 = xd3 + b2 = −4, d1 = xd2 + b1 = 0 = p′(1)
Finally write P0(x) = e3, with e2 = 1

2p
′′(1)

i.e. e3 = d3 = 2, e2 = xe3 + d2 = −2, p′′(1) = 2e2 = −4

CHECK p(1) = 2-8+10-4 = 0, p′(1) = 6-16+10 = 0, p′′(1) = 12-16 = -4, OK

The above assumes real coefficients and real x, although it could be applied
to complex coefficients and argument if we can use complex arithmetic. However
it is more efficient, if it is possible, to use real arithmetic even if the argument is
complex. The following shows how this can be done.
Let p(z) = (z-x-iy)(z-x+iy)Q(z)+r(z-x)+s =

(z2+pz+q)(bnz
n−2+bn−1z

n−3+...+bn−kz
n−k−2+...+b2)+b1(z−x)+b0(1.13)

where p = -2x, q = x2 + y2, and thus p, q, x, and the bi are all real.

Comparing coefficients as before:

cn = bn so bn = cn
cn−1 = bn−1 + pbn so bn−1 = cn−1 − pbn
..
cn−k = bn−k + pbn−k+1 + qbn−k+2 so
bn−k = cn−k − pbn−k+1 − qbn−k+2

(k = 2, ..., n− 1)
..
c0 = b0 − xb1 + qb2 so b0 = c0 + xb1 − qb2

(1.14)

Now setting z = x+iy gives

p(x+ iy) = b0 + iyb1 = R(x, y) + iJ(x, y), say (1.15)

Wilkinson (1965) p448 shows how to find the derivative p′(x + iy) = RD + iJD;
we let

dn = bn, dn−1 = bn−1 − pdn,,

dn−k = bn−k − pdn−k+1 − qdn−k+2 (k = 2, ..., n− 3), ..., (1.16)

4 1. Evaluation, Convergence, Bounds

, ..., d2 = b2 − qd4 (but if n = 3, d2 = b2)

Then

RD = −2y2d3 + b1, JD = 2y(xd3 + d2) (1.17)

EXAMPLE (As before), at z=1+i, p = -2, q = 2, b3 = 2, b2 = −8− (−2)2 =
−4, b1 = 10−(−2)(−4)−2×2 = −2, b0 = −4+(−2)−2(−4) = 2; p(1+ i) =
2 − 2i
Check p(1 + i) = 2(1 + i)3 − 8(1 + i)2 + 10(1 + i)− 4 = 2(1 + 3i− 3− i)− 8(1 +
2i− 1) + 10(1 + i) − 4 = 2 − 2i OK.
For p′(1 + i), d3 = 2, d2 = −4, RD = −4 − 2 = −6, JD = 2(2 − 4) = −4;
Check p′(1+i) = 6(1+i)2−16(1+i)+10 = 6(1+2i−1)−16(1+i)+10 = −6−4i.
OK.

1.2 Rounding Errors and Stopping Criteria

For an iterative method based on function evaluations, it does not make much sense
to continue iterations when the calculated value of the function approaches the pos-
sible rounding error incurred in the evaluation.

Adams (1967) shows how to find an upper bound on this error. For real x, he
lets

hn =
1

2
cn; ..., hi = |x|hi+1 + |si| (i = n− 1, ..., 0) (1.18)

where the si are the computed values of the bi defined in Sec. 1.
Then the rounding error ≤ RE =

β1−t(h0 −
1

2
|s0|) (1.19)

where β is the base of the number system and t the number of digits (usually bits)
in the mantissa.

The proof of the above, from Peters and Wilkinson (1971), follows:-

Equation 1.2 describes the exact process, but computationally (with rounding)
we have

sn = cn; si = fl(xsi+1 + ci) (i = n− 1, ..., 0); p(x) = s0

where p(x) is the computed value of p(x).
Now it is well known that fl(x + y) = (x + y)/(1 + ǫ) and fl(xy) = xy(1 + ǫ)

1.2. Rounding Errors and Stopping Criteria 5

where ǫ ≤ 1
2β

1−t ≡ E
Hence

si = {xsi+1(1 + ǫi) + ci}/(1 + ηi) (i = n− 1, ..., 0)

where |ǫi|, |ηi| ≤ E.
Hence si = xsi+1(1 + ǫi) + ci − siηi

Now letting si = bi + ei (N.B. sn = cn = bn and so en = 0) we have

bi + ei = x(bi+1 + ei+1) + xsi+1ǫi + ci − siηi

= bi + xei+1 + xsi+1ǫi − siηi

and so |ei| ≤ |x|{|ei+1| + |si+1|E} + |si|E
Now define

gn = 0; gi = |x|{gi+1 + |si+1|} + |si| (i = n− 1, ..., 0) (1.20)

Then we claim that

|ei| ≤ giE (1.21)

For we have

|en−1| ≤ |x|{|en| + |sn|E} + |sn−1|E

= {|x|sn| + |sn−1|}E (since en = 0) = gn−1E
i.e. the result is true for i=n-1.
Now suppose it is true as far as r+1, i.e. |er+1| ≤ gr+1E
Then

|er| ≤ |x|{|er+1| + |sr+1|E} + |sr|E

≤ |x|{gr+1E + |sr+1|E} + |sr|E

= {|x|(gr+1 + |sr+1|) + |sr|}E

= grE

i.e. it is true for r. Hence by induction it is true for all i, down to 0.

The amount of work can be reduced by letting hn = 1
2 |sn| = 1

2 |cn| and

hi = gi+|si|
2 (i = n− 1, ..., 0)

or 2hi − |si| = gi = |x|{gi+1 + |si+1|} + |si| = |x|2hi+1 + |si|
Hence

2hi = 2(|x|hi+1 + |si|) (i = n− 1, ..., 0) (1.22)

6 1. Evaluation, Convergence, Bounds

and finally g0 = 2h0 − |s0| i.e.

|e0| = |s0 − b0| ≤ g0E = (h0 −
1

2
|s0|)β1−t (1.23)

An alternative expression for the error, derived by many authors such as Oliver
(1979) is

E ≤
[

n−1
∑

k=0

(2k + 1)|ck||x|k + 2n|cn||x|n
]

1

2
β1−t (1.24)

Adams suggest stopping when

|p| = |s0| ≤ 2RE (1.25)

For complex z, he lets

hn = .8|bn|, ..., hi =
√
qhi+1 + |si| (i = n− 1, ..., 0) (1.26)

Then

RE = {2|xs1| − 7(|s0| +
√
q|s1|) + 9h0}

1

2
β1−t (1.27)

and we stop when

|R+ iJ | =
√

b20 + y2b21 ≤ 2RE (1.28)

EXAMPLE As before, but with β = 10 and t=7.
h3 = 1.6, h2 =

√
2 × 1.6 + 4 = 6.3, h1 =

√
2 × 6.3 + 2 = 10.8, h0 =√

2 × 10.8 + 2 = 17.1
RE = {2×1×2−7(2+1.4×2)+9×17.1}× 1

2 ×10−6 = 124× 1
2 ×10−6 = .000062

Igarashi (1984) gives an alternative stopping criteria with an associated error
estimate:
Let A(x) be p(x) evaluated by Horner’s method, and let

G(x) = (n−1)cnx
n +(n−2)cn−1x

n−1 + ...+c2x
2−c0 = xp′(x)−p(x)(1.29)

and

H(x) = xp′(x) (1.30)

finally

B(x) = H(x) −G(x) (1.31)

represents another approximation to p(x) with different rounding errors. He sug-
gests stopping when

|A(xk) −B(xk)| ≥ min{|A(xk)|, |B(xk)|} (1.32)

1.3. More Efficient Methods for Several Derivatives 7

and claims that then the difference between

xk −A(xk)/p′(xk) and xk −B(xk)/p′(xk) (1.33)

represents the size of the error in xk+1 (using Newton’s method). Presumably sim-
ilar comparisons could be made for other methods.

A very simple method based on Garwick (1961) is:
Iterate until ∆k = |xk − xk−1| ≤ 10−2|xk|.
Then iterate until ∆k ≥ ∆k−1 (which will happen when rounding error domi-
nates). Now ∆k gives an error estimate.

1.3 More Efficient Methods for Several Derivatives

One such method, suitable for relatively small n, was given by Shaw and Traub
(1974). To evaluate all the derivatives their method requires the same number of
additions, i.e. 1

2n(n+ 1), as the iterated Horner method described in Sec. 1. How-
ever it requires only 3n-2 multiplications and divisions, compared to (also) 1

2n(n+1)
for Horner. It works as follows, to find m ≤ n derivatives (N.B. it is only worthwhile
if m is fairly close to n):

Let T−1
i = cn−i−1x

n−i−1 (i = 0, 1, ..., n− 1) (1.34)

T j
j = cnx

n (j = 0, 1, ...,m) (1.35)

T j
i = T j−1

i−1 + T j
i−1 (j = 0, 1, ...m; i = j + 1, ..., n) (1.36)

p(j)

j!
=

T j
n

xj
(j = 0, 1, ...,m) (1.37)

This process requires (m + 1)(n − m
2) additions and 2n+m-1 multiplications and

divisions. If m = n, no calculation is required for p(n)

n! = c0, so it takes n
2 (n+ 1)

additions and 3n-2 multiplications/divisions.

Wozniakowski (1974) shows that the rounding error is bounded by

n
∑

k=j

C(k, j)|ck|(2k + 1)|x|k−j 1

2
β1−t (1.38)

Aho et al (1975) give a method more suitable for large n. In their Lemma 3
they use in effect the fact that

p(k)(r) =

n
∑

i=k

cii(i− 1)...(i− k + 1)ri−k (1.39)

8 1. Evaluation, Convergence, Bounds

=

n
∑

i=k

ci
i!

(i− k)!
ri−k (1.40)

=
n
∑

i=0

f(i)g(k − i) (1.41)

if we define

f(i) = cii! (i = 0, ..., n) (1.42)

g(j) =

[

r−j/(−j)! (j = −n,−(n− 1), ..., 0)
0 (j = 1, ..., n)

]

(1.43)

Then f(i) and g(j) can be computed in O(n) steps, while the right side of 1.41, being
a convolution, can be evaluated in O(nlogn) steps by the Fast Fourier Transform.

1.4 Parallel Evaluation

Dorn (1962) and Kiper (1997A) describe a parallel implementation of Horner’s
Method as follows:

Let p(x) = c0 + c1x+ ...+ cNx
N (1.44)

and n ≥ 2 be the number of processors operating in parallel. The method is
simplified if we assume that N=kn-1 (otherwise we may ‘pad’ p(x) with extra 0
coefficients). Define n polynomials in xn, pi(x

n) of degree

⌊N
n
⌋ = k − 1 (1.45)

thus:

p0(x
n) = c0 + cnx

n + c2nx
2n + ...+ c⌊N

n ⌋nx
⌊N

n ⌋n (1.46)

p1(x
n) = c1 + cn+1x

n + c2n+1x
2n + ...+ c⌊N

n ⌋n+1x
⌊N

n ⌋n

...

...

pi(x
n) = ci + cn+ix

n + c2n+ix
2n + ...+ c⌊N

n ⌋n+ix
⌊N

n ⌋n (i = 0, ..., n− 1)

1.4. Parallel Evaluation 9

...

...
Then p(x) may be expressed as

p(x) = p0(x
n) + xp1(x

n) + ...+ xipi(x
n) + ...+ xn−1pn−1(x

n) (1.47)

Note that the highest power of x here is n-1+ ⌊N
n ⌋n = n-1+(k-1)n = kn-1 = N, as

required.

Now the powers x, x2, x3, x4, ..., xn may be computed in parallel as follows:
time step 1: compute x2

time step 2: multiply x, x2 by x2 in parallel. Now we have x, x2, x3, x4.
time step 3: multiply x, x2, x3, x4 by x4 in parallel; thus we have all powers up
to x8.
Continue similarly until at step ⌈logn⌉ we have all powers up to x2⌈logn⌉

, i.e. at
least xn. The maximum number of processors required is at the last step where we
need n

2 processors.

Next we compute pi(x
n) for i=0,1,...,n-1 in parallel with n processors, each one

by Horner’s rule in 2⌊N
n ⌋ steps.

Finally, multiply each pi(x
n) by xi in 1 step, and add them by associate fan-in in

⌈logn⌉ steps (and n
2 processors).

Thus the total number of time steps are

T (N,n) = 2⌈logn⌉+ 2⌊N
n
⌋ + 1 (1.48)

For n ≥ N+1, this method reduces to finding xj for j=1,2,...,N, multiplying cj by
xj in 1 step, and adding the products in ⌈log(N + 1)⌉ steps, for a total of

T (N,N + 1) = ⌈logN⌉+ ⌈log(N + 1)⌉ + 1 (1.49)

if we define T ∗(N) as

min1≤n≤N+1T (N,n) (1.50)

then Lakshmivarahan and Dhall (1990) pp255-261 show that

T ∗(N) = T (N,N + 1) (1.51)

They also show that the minimum number of processors n∗ required to attain this
minimum is

N + 1 if N = 2g

⌈N+1
3 ⌉ if 2g < N < 2g + 2g−1

⌈N+1
2 ⌉ if 2g + 2g−1 ≤ N < 2g+1

(1.52)

10 1. Evaluation, Convergence, Bounds

where g = ⌊log N⌋

Kiper (1997B) describes an elaboration of Dorn’s method based on a decou-
pling algorithm of Kowalik and Kumar (1985). However, although they describe
it as an improvement of Dorn’s method, it appears to take slightly longer for the
same number of processors.

Lakshmivarahan describes a “binary splitting” method due to Estrin (1960)
which computes p(x) in 2⌈logN⌉ time steps using N

2 + 1 processors. This is only
slightly faster than optimum Dorn’s, but sometimes uses fewer processors.

They also describe a “folding” method, due to Muraoka (1971-unpublished),
which takes approximately 1.44 logN steps–significantly better than Dorn. It works
as follows:
Let Fi be the i’th Fibonacci number defined by

F0 = F1 = 1, Fi = Fi−1 + Fi−2 (i ≥ 2) (1.53)

Let

p(x) = cFt+1−1x
Ft+1−1 + cFt+1−2x

Ft+1−2 + ...+ c1x+ c0 (1.54)

(if the degree of p(x) is not of the required form it may be padded with extra terms
having 0 coefficients)
Now we may write

p(x) = p1(x) × xFt + p2(x) (1.55)

where p2 has degree Ft − 1 and p1 degree Ft−1 − 1
In turn we write

p1 = p11x
Ft−2 + p12 (1.56)

where p11 has degree Ft−3 − 1 and p12 degree Ft−2 − 1.
Similarly p2 = p21x

Ft−1 + p22,
where p21 has degree Ft−2 − 1 and p22 degree Ft−1 − 1, and the process is con-
tinued until we have to evaluate terms such as cix, which can be done in parallel,
as well as evaluating powers of x. A building up process is then applied, whereby
p(x) of degree N where Ft ≤ N ≤ Ft+1 can be computed in t+1 steps. Since

Ft ≈ 1√
5
(1+

√
5

2)t+1 we have log2Ft ≈ log2
1√
5

+ (t + 1)log2(
1+

√
5

2). Hence

t+ 1 ≈ 1.44log2Ft ≤ 1.44log2N.

1.5. Evaluation at Many Points 11

1.5 Evaluation at Many Points

This problems arises, for example, in Simultaneous Root-Finding methods (see
Chap. 4). Probably the best method for large n is that given by Pan et al (1997),
based on the Fast Fourier Transform. He assumes that the evaluation is to be done
at n points {x0, x1, ..., xn−1}, but if we have more than n points we may repeat the
process as often as needed. He assumes the polynomial p(x) is of degree n-1, with
coefficient vector c = [c0, c1, ..., cn−1]. Let the value of the polynomial at xi be vi.

We will interpolate p(u) at all the n’th roots of unity given by

wk = exp(2πk
√
−1/n) (k = 0, ..., n− 1) (1.57)

i.e. p(u) =

n−1
∑

k=0

p(wk)
∏n−1

i=0, 6=k(u− wi)
∏n−1

i=0,6=k(wk − wi)
(1.58)

= Γ(u)

n−1
∑

k=0

p(wk)

Γ′(wk)(u − wk)
(1.59)

where

Γ(u) =

n−1
∏

i=0

(u− wi) = un − 1 (1.60)

Γ′(u) = nun−1 (1.61)

Hence

Γ(xi) = xn
i − 1, Γ′(wi) = nwn−1

i = n/wi (1.62)

Putting u = xi (i=0,...,n-1) in 1.59 gives

vi = p(xi) = Γ(xi)
n−1
∑

k=0

1

xi − wk

1

Γ′(wk)
(
√
n Fc)k (1.63)

where

F =
1√
n

[wj
k]n−1

j,k=0 (1.64)

Hence

vi = (xn
i − 1)

n−1
∑

k=0

1

xi − wk

1

n/wk
(
√
n Fc)k (1.65)

= (1 − xn
i)

n−1
∑

k=0

1

wk − xi
wk(

1√
n

Fc)k (1.66)

12 1. Evaluation, Convergence, Bounds

= (
1

xi
− xn−1

i)
n−1
∑

k=0

1
1
xi

− 1
wk

uk (1.67)

where uk = (
1√
n

Fc)k (1.68)

But
1

1
xi

− 1
wk

= xi(1 − xi

wk
)−1 = xi

∞
∑

j=0

(
xi

wk
)j (1.69)

and so vi = (1 − xn
i)

∞
∑

j=0

Ajx
j
i (1.70)

where Aj =
n−1
∑

k=0

uk

wj
k

(1.71)

Now suppose

1 > q ≥ maxk|xk| (1.72)

(later we will see that this can be arranged),

and α = maxk|uk| (1.73)

and note that |wk| = 1 all k, so that

|Aj | ≤ αn (1.74)

Hence if we approximate vi by

v∗i = (1 − xn
i)

L−1
∑

j=0

Ajx
j
i (1.75)

the error

EL = || v∗ − v|| = maxi|v∗i − vi| ≤ αnbqL

1 − q
(1.76)

where b = maxk|xn
k − 1| ≤ 1 + qn (1.77)

Now EL ≤ some given ǫ if (1
q)L ≥ αnb

(1−q)ǫ

i.e. if L ≥ ⌈log(αnb

(1 − q)ǫ
)/log(

1

q
)⌉ (1.78)

Evaluation of Fc and hence u = [u0, ..., un−1] requires O(nlogn) operations; while
a single xn

i can be evaluated by repeated squaring in logn operations, so xn
i and

1.5. Evaluation at Many Points 13

1 − xn
i for all i can be done in O(nlogn) operations. Aj for j=0,...,L-1 requires

L(2n-2) operations, and finally v∗i for all i need (1+2L)n operations. Thus the total
number is

L(4n− 2) +O(nlogn) + n (1.79)

Now the numerator of the right-hand-side of 1.78 can be written log(α
ǫ) + logn +

logb− log(1 − q). It often happens that log(α
ǫ) = O(logn), so that L = O(log n),

and the number of operations is O(nlogn) (N.B. b and q are fixed constants).

However all the above depends on 1.72, which is often not satisfied. In that case
we may partition X = {x0, ..., xn−1} into 3 subsets: X−, X0, X+, where |xi| < 1
for X−, = 1 for X0, and > 1 for X+. X− presents no problem (but see below),
while for X+ we have 1

|xi| < 1, so we apply our process to the reverse polynomial

q(x) = xnp(1
x).

For X0, apart from the trivial cases x = ±1, we have −1 < R = Re(x) <
1, I = Im(x) = ±

√
1 −R2. Thus we may rewrite p(x) as p0(R) + Ip1(R) for

|R| < 1.
For example, consider a quadratic p(x) = c0 + c1(R + iI) + c2(R + iI)2

= c0 + c1R+ c2(R
2 − I2) + i(c1I + 2c2RI)

= c0 + c1R+ c2(2R
2 − 1) + iI(c1 + 2c2R),

This takes the stated form with p0 = c0 − c2 + c1R+ 2c2R
2, p1 = ic1 + 2ic2R.

Despite the ‘trick’ used above, we may still have a problem if q is very close to
1, for then L will need to be very large to satisfy 1.78, i.e. it may be larger than
O(logn). We may avoid this problem by using the transformation

x = γy + δ, or y =
(x− δ)

γ
(1.80)

where δ is the centroid of the xi,

=

∑n−1
i=0 xi

n
(1.81)

and γ = (e.g.) 1.2Max|xi − δ| (1.82)

Then maxi|yi| < .833 = q (1.83)

1.80 may be executed in two stages; first x = z + δ, which requires O(nlogn)
operations using the method of Aho et al referred to in section 3. Then we let
z = γy, leading to a new polynomial whose i’th coefficient is γi times the old
one. Since the γi can be evaluated in n operations, and also multiplied by the old
coefficients in n operations, the overall time complexity for the transformation is
O(nlogn). So the entire multipoint evaluation will be of that order.

14 1. Evaluation, Convergence, Bounds

1.6 Evaluation at Many Equidistant Points

This problem is quite common, for example in signal processing. Nuttall (1987)
and Dutta Roy and Minocha (1991) describe a method that solves this problem
in nm additions and no multiplications, where n = degree and m = number of
evaluation points. That is, apart from initialization which takes O(n3) operations.
The method compares favourably in efficiency with the repeated Horner method
for small n and moderate m. For example, for n = 3,4,5 Nuttall’s method is best
for m > 12,17, and 24 respectively.

The polynomial

pn(x) =

n
∑

j=0

cjx
j (1.84)

is to be evaluated at equidistant points

xs = x0 + s∆ (s = 0, 1, 2, ...,m) (1.85)

Combining 1.84 and 1.85 gives

pn(xs) = Qn(s) =

n
∑

j=0

cj(x0 + s∆)j =

n
∑

j=0

cj

j
∑

k=0

xj−k
0

(

j
k

)

∆ksk

=

n
∑

k=0

(

n
∑

j=k

(

j
k

)

cjx
j−k
0)∆ksk

=

n
∑

k=0

aks
k (1.86)

where

ak = ∆k
n
∑

j=k

(

j
k

)

cjx
j−k
0 (k = 0, 1, ..., n) (1.87)

Now we define the backward differences

Qk(s) = Qk+1(s) −Qk+1(s− 1) (k = n− 1, n− 2, ..., 1, 0) (1.88)

We will need initial values Qk(0); these can be obtained as follows:-
by 1.88
Qn−1(s) = Qn(s) −Qn(s− 1)
Qn−2(s) = Qn−1(s)−Qn−1(s−1) = Qn(s)−Qn(s−1)−[Qn(s−1)−Qn(s−2)] =

1.6. Evaluation at Many Equidistant Points 15

Qn(s) − 2Qn(s− 1) +Qn(s− 2), and so on, so that in general (by induction)

Qn−r(s) =

r
∑

i=0

(−1)i

(

r
i

)

Qn(s− i) (r = 1, 2, ..., n) (1.89)

Putting s = 0 above gives

Qn−r(0) =

r
∑

i=0

(−1)i

(

r
i

)

Qn(−i) (1.90)

Also putting s = −i in 1.86 gives

Qn(−i) =

n
∑

k=0

ak(−i)k (1.91)

Hence

Qn−r(0) =

r
∑

i=0

n
∑

k=0

(−1)i+k

(

r
i

)

(i)kak =

n
∑

k=0

[

r
∑

i=1

(−1)i+k(i)k

(

r
i

)

]

ak (1.92)

since i = 0 gives (i)k = 0.

However, combining 1.88 for k = n− 1 and 1.86, we have

Qn−1(s) = [a0 +

n
∑

k=1

aks
k] − [a0 +

n
∑

k=1

ak(s− 1)k] =

n
∑

k=1

ak[sk − (s− 1)k] =

a1 +

n
∑

k=2

ak(ksk−1 + ...)

i.e. Qn−1(s) contains no term in a0.
Similarly Qn−2 = [a1 +

∑n
k=2 bks

k−1] − [a1 +
∑n

k=2 bk(s− 1)k−1]
where the bk are functions of a2, ...an, i.e. Qn−2 contains no term in a1 or a0. Hence
by induction we may show that Qn−r contains no terms in a0, a1, ..., ar−1, and that
it is of degree n-r in s.
Thus 1.92 may be replaced by

Qn−r(0) =

n
∑

k=r

[

r
∑

i=1

(−1)i+k(i)k

(

r
i

)

]ak (1.93)

16 1. Evaluation, Convergence, Bounds

Also from 1.86

Qn(0) = a0 (1.94)

and, since Q0 is a polynomial of degree 0 in s, (and by the above inductive proof)

Q0(s) = n!an, for all s (1.95)

Finally 1.88 may be re-arranged to give the recursion

Qk+1(s) = Qk+1(s− 1) +Qk(s) (k = 0, 1, ..., n− 1) (1.96)

whereby we may obtain in turn Qn(1), Qn(2), ... at a cost of n additions per sample
point.
Volk (1988) shows empirically that the above method is unstable for large m (num-
ber of evaluation points). For this reason, as well as for efficiency considerations,
it is probably best to use the method of Pan (section 5) in the case of large m.

It would be a useful research project to determine where the break-even point
is.

AN EXAMPLE Let p3(x) = 1 + 2x+ 3x2 + 4x3, i.e. c0 = 1, c1 = 2, c2 =
3, c3 = 4, and let us evaluate it at 2,4,6,8, i.e. with x0 = 2 and ∆ = 2.

Then in 1.87, a0 = 20
∑3

j=0

(

j
0

)

cj2
j = 20(1 × 20 + 2 × 21 + 3 × 22 + 4 × 23)

= 1(1 + 4 + 12 + 32) = 49

a1 = 21
∑3

j=1

(

j
1

)

cj2
j−1 = 2(2 × 20 + 2 × 3 × 21 + 3 × 4 × 22)

= 2(2 + 12 + 48) = 2 × 62 = 124

a2 = 22
∑3

j=2

(

j
2

)

cj2
j−2 = 4(3×20+3×4×21) = 4(3+24) = 4×27 = 108

a3 = 23 ×
(

3
3

)

c32
0 = 8 × 4 = 32

i.e. Q3(s) = 49 + 124s+ 108s2 + 32s3

check by direct method
p3(x0 + ∆s) = p3(2 + 2s) = 1 + 2(2 + 2s) + 3(2 + 2s)2 + 4(2 + 2s)3 =
1 + 4 + 4s+ 3(4 + 8s+ 4s2) + 4(8 + 24s+ 24s2 + 8s3) =
49 + 124s+ 108s2 + 32s3 (agrees with above)

Next we use 1.93 to give

Q2(0) =
∑3

k=1[
∑1

i=1(−1)i+k(i)k

(

1
i

)

]ak =

∑3
k=1(−1)1+kak = a1 − a2 + a3 = 124 − 108 + 32 = 48

check Q2(0) = Q3(0) −Q3(−1) = 49 − (49 − 124 + 108 − 32) = 48

1.7. Accurate Evaluation 17

Q1(0) =
∑3

k=2[
∑2

i=1(−1)i+k(i)k

(

2
i

)

]ak =
∑3

k=2[(−1)1+k2+(−1)2+k2k]ak =

[−2 + 4]a2 + [2 − 8]a3 = 2a2 − 6a3 = 2 × 108 − 6 × 32 = 216 − 192 = 24
Also Q3(0) = a0 = 49, while for all s, Q0(s) = 3! × 32 = 192
Finally 1.96 gives, for s = 1,
Q1(1) = Q1(0) +Q0(1) = 24 + 192 = 216
Q2(1) = Q2(0) +Q1(1) = 48 + 216 = 264
Q3(1) = Q3(0) +Q2(1) = 49 + 264 = 313
check p3(2 + 2 × 1) = p3(4) = 1 + 2 × 4 + 3 × 42 + 4 × 43 =
1+8+48+256 = 313 (agrees).
while for s = 2
Q1(2) = Q1(1) +Q0(2) = 216 + 192 = 408
Q2(2) = Q2(1) +Q1(2) = 264 + 408 = 672
Q3(2) = Q3(1) +Q2(2) = 313 + 672 = 985
check p3(2 + 2 × 2) = p3(6) = 1 + 2 × 6 + 3 × 62 + 4 × 63 =
1+12+108+864 = 985 (agrees).

1.7 Accurate Evaluation

In implementing iterative methods we usually need (at some point) to evaluate
p(xi) where xi is close to a root. In that case the rounding error in the evaluation
may be bigger than the actual value, so that the latter cannot be calculated, at
least not in normal floating-point arithmetic. A popular solution to this problem
is to utilize multi-precision arithmetic, but this is quite expensive.

Paquet (1994) describes a method which can evaluate p(xi) correct to machine
accuracy, while using only ‘normal’ floating-point arithmetic (hereafter referrred to
as ‘float’ arithmetic). He assumes that the underlying float operations are optimal,
i.e.

x◦̂y = round(x ◦ y) (1.97)

i.e. the computed result of an operation ◦ = (+,-,*, or /) equals the result of
rounding the exact value. Let u = 1

2β
1−t, ω = 1 + u. then

|x◦̂y − x ◦ y| ≤ u

ω
|x ◦ y| (1.98)

In an example, using his exact evaluation method on a 19 decimal digit machine
he gets a result correct to machine accuracy, whereas ordinary float arithmetic gave
only 11 digits correct.

Paquet’s precise method depends on having available a precise scalar product.
For this he recommends the method of Dekker (1971) to obtain an exact product

18 1. Evaluation, Convergence, Bounds

of two float numbers as a sum of two float numbers. He also recommends a method
of Pichat (1972) or a similar method due to Kahan (1965) to sum a set of numbers
exactly. However this author believes that some of Dekker’s procedures would be
adequate for this purpose. Dekker’s techniques will be described towards the end
of this section.

Paquet’s method allows for evaluation at a point given in ‘staggered correction
format’, i.e. where xi is a sum of several float numbers (usually each one much
smaller than the previous). The result will be rounded to the nearest float number,
although theoretically it could also be given in staggered format. The method will
be explained assuming the staggered format for xi, although most commonly xi

will consist of only one float number.

We wish to evaluate p(x) at the point

τ =
r
∑

s=0

t(s) (1.99)

where t(0), t(1), ..., t(s) are float numbers. Set

A =













1 0 ... 0
−τ 1 0 ... 0
0 −τ 1 0 ... 0
...
0 0 ... 0 −τ 1













, (1.100)

A0 =













1 0 ... 0
−t(0) 1 0 ... 0

0 −t(0) 1 0 ... 0
..

0 0 ... −t(0) 1













(1.101)

p =













cn
cn−1

..

..
c0













(1.102)

The elements of A0 are float numbers, but generally those of A are not.

In exact arithmetic the solution of Ax = p (or A0x = p) is equivalent to the
Horner scheme 1.2 with x replaced by τ (or t(0)). Paquet shows how we can obtain,
in float arithmetic, a series

∑∞
l=0 x

l
0 of float numbers convergent to the value of p(τ).

1.7. Accurate Evaluation 19

The algorithm follows:
(i) Initialize

r(0) = p = [cn, cn−1, ..., c0]
T (1.103)

(ii) For j = 0,1,2,...
(a) Solve

A0y = r(j) = [r(j)n , ..., r
(j)
0]T (1.104)

in float arithmetic, by forward substitution, to give

x(j) = [x
(j)
n , ..., x

(j)
0]T , i.e.

x(j)
n = r(j)n (1.105)

and

x
(j)
i = r

(j)
i +̂(t(0)∗̂x(j)

i+1) (i = n− 1, n− 2, ..., 0) (1.106)

(b) Compute the residual

r(j+1) = round(p− A

j
∑

l=0

x(l)) (1.107)

or in more detail

r
(j+1)
i = round(ci −

j
∑

l=0

x
(l)
i +

r
∑

s=0

t(s)
j
∑

l=0

x
(l)
i+1) (i = n, n− 1, ..., 0) (1.108)

where we have set

x
(0)
n+1 = ... = x

(j)
n+1 = 0 (1.109)

The above 1.108 needs a precise scalar product, namely that between the vectors

[1,−1,−1, ...,−1, t(0), t(1), ..., t(r), t(0), t(1), ...t(r),, t(0), t(1)...t(r)] (1.110)

and

[ci, x
(0)
i , x

(1)
i , ..., x

(j)
i , x

(0)
i+1, ..., x

(0)
i+1, x

(1)
i+1, ..., x

(1)
i+1, ..., x

(j)
i+1, ..., x

(j)
i+1] (1.111)

Paquet proves that provided

|τ | < 1, |t(0)| < 1 (1.112)

and

q = 2(n2 + 2n)uω2n−1 + 2(n+ 1)
u

ω
+ ωn(n+ 1)|τ − t(0)| < 1 (1.113)

20 1. Evaluation, Convergence, Bounds

and with x the exact solution of Ax = p. then

|| x −
j
∑

l=0

x(l)||∞ ≤ q|| x −
j−1
∑

l=0

x(l)||∞ (1.114)

leading to

|x0 −
j
∑

l=0

x
(l)
0 | ≤ qj || x − x(0)||∞ (1.115)

where

x0 = p(τ) (1.116)

and x(0) is the float-number solution of

A0x
(0) = p (1.117)

Accordingly

j
∑

l=0

x
(l)
0 → p(τ) as j → ∞ (1.118)

Moreover he shows that by the change of variables

t(s) = βaξ(s) (1.119)

(a an integer) we may drop the conditions 1.112 and the last term in the middle
expression in 1.113.

In this context Paquet gives more details of the previously mentioned example:
if τ = a simple float number = t(0) = root of the equation correct to 19 decimal

places (machine accuracy), then
∑j

l=0 x
(l)
0 converges to machine accuracy in 3 iter-

ations (j = 2). The individual x
(l)
0 for l = 0,1,2,3,4 are approximately (in base 16)

+8 × 16−14, −8 × 16−14, +3 × 16−30, −3.7 × 16−46, and −A.A× 16−63.

Dekker’s method of multiplying two ‘single-length’ float numbers x and y gives
a pair (z,zz) of float numbers such that

z + zz = x× y (1.120)

where zz is almost neglibible within machine precision compared to x× y, i.e.

|zz| ≤ |z + zz| 2−t

1 + 2−t
(1.121)

He refers to the pair (z,zz) as a ‘double-length’ number. In practise x, y, z, and
zz may be double precision numbers in the usual sense, so that (z,zz) is really a

1.7. Accurate Evaluation 21

quadruple-precision number. But we will refer to x, y, z, zz, and other intermediate
variables as ‘single-length’ for the present discussion. His algorithm for multiplica-
tion is as follows (in Algol 60):

procedure mul12(x,y,z,zz);
value x,y; real x,y,z,zz;
begin real hx,tx,hy,ty,p,q;
p:= x× constant;
comment constant = 2 ↑ (t− t÷ 2) + 1
hx:= (x-p)+p; tx:= x-hx;
p:= y × constant;
hy:= (y-p)+p; ty:= y-hy;
p:= hx× hy; q:= hx× ty + tx× hy;
z:= p+q; zz:= (p-z)+q+tx× ty;
end mul12;

He also gives an algorithm for adding two ‘double-length’ (in his special sense)
numbers (x,xx) and (y,yy). It follows:

comment add2 calculates the double-length sum of (x,xx) and (y,yy), the result
being (z,zz);
procedure add2(x,xx,y,yy,z,zz);
value x,xx,y,yy; real x, xx, y, yy, z, zz;
begin real r,s;
r:= x+y;
s:= if abs(x) > abs(y) then
((x-r)+y)+yy+xx else ((y-r)+x)+xx+yy;
z:=r+s: zz:=(r-z)+s;
end add2;

Dekker gives a detailed proof of the accuracy of these procedures, and remarks
that they ‘have been used extensively for calculating double-length scalar products
of single-length scalar products of vectors of single-length float numbers’. If, as he
implies, these tests have been successful, it would seem that the methods of Pichat
etc mentioned by Paquet are not really needed.

Hammer et al (1995) and Kulisch and Miranker (1983) describe methods very
similar to Paquet’s, except that they use special hardware for the accurate scalar
product instead of Dekker’s float method. This special hardware may be generally
inaccessible.

22 1. Evaluation, Convergence, Bounds

1.8 Scaling

A common problem in evaluating polynomials in float arithmetic is overflow or un-
derflow. These phenomena, especially the former, may result in highly inaccurate
values. Linnainmaa (1981) gives several examples where both of these effects cause
problems. One solution is scaling; i.e. we may multiply all the coefficients, and/or
the argument, by a scaling factor so that overflow is prevented and the incidence
of underflow reduced. One work in which the coefficients are scaled is by Hansen
et al (1990).

They assume that a number is represented by mβc where c∈ [a, b] and a,b,
are respectively negative and positive integers. Also as usual the numbers are
normalized, i.e.

1

β
≤ |m| < 1 (1.122)

Let

ã = floor[(a+ 1)/2], b̃ = floor[b/2] (1.123)

and

γ = min{−ã, b̃}, I = [−γ, γ] (1.124)

Then z1z2 can be computed without under- or overflow provided

c(zi) ∈ I (i = 1, 2) (1.125)

The same is true for z1 + z2
The polynomial will be evaluated by Horner’s rule

fn = cn, fk = xfk+1 + ck (k = n− 1, ..., 0) (1.126)

Assume c(x) ∈ I, and initially scale fn = cn so that c(fn) ∈ I, recording the
scale factor. Now, as an inductive hypothesis, assume that c(fk+1) ∈ I. Since also
c(x) ∈ I, xfk+1 can be computed without under- or overflow. Next we will have
to add xfk+1 to ck. We scale xfk+1 and ck so that the larger of |xfk+1| and |ck|
has exponent in I (note that scaling xfk+1 implicitly scales cn, cn−1, ..., ck+1). This
may cause the smaller to underflow, but according to Hansen this is only a rounding
error.

The scaling is done by multiplying by s = βr (r an integer, possibly nega-
tive). Thus the mantissa of the scaled number is not disturbed, so there will be no
rounding error from this cause. We choose r to minimize underflow, i.e.

r = γ − c(max{|xfk+1|, |ck|}) (1.127)

1.9. Order of Convergence and Efficiency 23

Thus the larger of |xfk+1| and |ck| will have exponent γ.

Suppose we have done a sequence of scalings using si = βri , for i = 1,2,...,M.
Then the resulting scaling for all the coefficients at this stage is the same as if we
had scaled only once using

r =
M
∑

i=1

ri (1.128)

We record r. We need not scale any particular coefficient until it is used in 1.126.

Hansen gives a detailed pseudo-code for the method and summarizes briefly a
FORTRAN 77 implementation. The output of that is given in the form of a real
number F and integer SCALE such that p(x) = F ∗ βSCALE . Also the input and
intermediate data are converted to that form. This allows for a very wide range of
values of x and coefficients to be accomodated without over-or underflow problems.

Linnainmaa describes a very similar method, except that for |x| > 1 he makes
the transformation

P (x) = xnQ(
1

x
) (1.129)

where

Q(z) = c0z
n + c1z

n−1 + ...+ cn−1z + cn (1.130)

Then

P

P ′ =
x

n− Q′(1
x)

xQ(1
x)

(1.131)

which lends itself to use in Newton’s or similar methods. His algorithm scales P ′ as
well as P. As mentioned earlier he gives numerous examples where under-or over-
flow cause serious errors in the standard Horner method, but where correct results
are obtained with his modification.

1.9 Order of Convergence and Efficiency

Except for low-degree polynomials (up to degree 4) nearly all methods for finding
roots involve iteration. That is, we make a guess x0 for one of the roots α (or a
series of guesses for all the roots), improve it by applying some “iteration function”
φ(x0, ...) to give x1 (hopefully closer to α) , and so on, so that in general

xi+1 = φ(xi, ...) (1.132)

24 1. Evaluation, Convergence, Bounds

Under suitable conditions the iterations will converge towards α.

Traub (1971) classifies various types of iteration function. In the simplest, one-
point iteration (without memory), φ is a function only of xi, f(xi), f

′(xi),
..., f (s−1)(xi). An example is Newton’s method,

xi+1 = xi −
f(xi)

f ′(xi)
(1.133)

The main part of the work involved in an iteration (of whatever type) is the eval-
uation of f(xi) and its derivatives.

Another type of iteration is one-point with memory. Here we re-use old val-
ues of xi−1, ..., xi−m, f(xi−1), ..., f(xi−m), ..., f (s−1)(xi−1), ..., f

(s−1)(xi−m), which
have previously been calculated. The work is the same as for one-point without
memory, i.e. the cost of the new evaluations (the cost of combining the various
values of x, f, ..., f (s−1) is usually relatively small). An example is the Secant
method

xi+1 = xi − f(xi)
(xi − xi−1)

f(xi) − f(xi−1)
(1.134)

A further class of iteration function is multipoint (with or without memory). For
the case without memory, it proceeds thus:

z1 = φ1(xi, f(xi), ..., f
(s−1)(xi)) (1.135)

z2 = φ2(xi, f(xi), ..., f
(s−1)(xi), z1, f(z1), ..., f

(s−1)(z1)) (1.136)

.

.

.

zj = φj(xi, f(xi), ..., f
(s−1)(xi), z1, f(z1),

..., f (s−1)(z1), ..., zj−1, f(zj−1), (1.137)

..., f (s−1)(zj−1)) (j = 3, ..., n)

xi+1 = zn (1.138)

The case with memory would also use old values

xi−l, f(xi−l), ..., f
(s−1)(xi−l) (l = 1, ...,m) (1.139)

We would like to have a measure of how fast a method converges. Such a measure
is given by the order p, defined by

Limxi→α
|xi+1 − α|
|xi − α|p = C 6= 0,∞ (1.140)

1.9. Order of Convergence and Efficiency 25

Traub shows that one-point iterations without memory, using s-1 derivatives, are
of order at most s. Even with memory the order is at most s+1.

Werschultz (1981) describes a class of multipoint methods with memory using
Hermite information, i.e. we compute xi+1 from xi using

f (j)(zi−s,l), 0 ≤ j ≤ rl − 1, 1 ≤ l ≤ k, 0 ≤ s ≤ m (1.141)

The number of new function evaluations per iteration is

n =
k
∑

l=1

rl (1.142)

and the memory is m. zi,l+1 depends on zi,q, f(zi,q), f
(j)(zi,q), j = 1, ..., rl−1, q =

1, ..., l, zi−s,q, f(zi−s,q), f
(j)(zi−s,q) q = 1, ..., k, s = 1, ...,m, j = 1, .., rl −1. if k =

1, we have one-point iterations with memory, or if m = 0 we have multipoint meth-
ods without memory. Werschultz shows that the order of such methods is bounded
by 2n. This bound is attained (very nearly) for k = n, r1 = ... = rn = 1 (i.e.
no derivatives used) and m moderately large, by a Hermite Interpolatory method
which he describes.

For another example he takes k = 1, r1 = s. He shows that the order p is the
unique positive root of

pm+1 − s
m
∑

i=0

pi = 0 (1.143)

e.g. the secant method has m = s = 1, giving

p2 − p− 1 = 0 (1.144)

i.e. p = 1+
√

5
2 = 1.618.

Another important consideration, which enables us to compare different meth-
ods, is efficiency, which is defined as the inverse of total work needed to reduce the
error by a specified amount. It can be shown that this is

E = logp
1
n =

logp

n
(1.145)

(apart from a constant factor independent of the method) where p is order and n is
the number of new function evaluations (including derivatives) per iteration. The
base of the log is arbitrary; this author uses base 10 but some authors use e. For
example, for Newton’s method p = n = 2, so E = 1

2 log2 = .1505.; for the secant
method n = 1, p = 1.618, so E = .2090.

26 1. Evaluation, Convergence, Bounds

According to 1.145 and Werschultz’ bound, the maximum efficiency of multi-
point methods with memory is

log102 = .3010 (1.146)

This author is not aware of any method exceeding this efficiency.

1.10 A Priori Bounds on (Real or Complex) Roots

Many methods for finding roots of polynomials (e.g. Sturm sequence methods)
start with an estimate of an upper bound on the largest absolute value of the (real
or complex) roots. If one can obtain a more accurate estimate for the bound, one
can reduce the amount of work used in searching within the range of possible values
(e.g. using a one- or two-dimensional bisection method). Thus it would be useful
to know which of the available formulas is most accurate.

McNamee and Olhovsky (2005) report that, using the bibliography by McNamee
(2002), they have located over 50 articles or books which give bounds on polyno-
mial roots. They rejected those which were concerned only with real roots, or gave
formulas which appeared too complicated (and hence might take too much time to
compute). Also a few were rejected which worked only for special cases. They were
left with 45 distinct formulas, which are listed in the appendix to this section.

The authors wrote a Java program to compare these formulas as follows: for
each degree from 3 to 10 inclusive, 10 polynomials were generated with random
real roots in the range (-1,+1) (and another set in the range -10,+10), and their
coefficients computed. The 45 formulas (in terms of the coefficients) were applied,
and a ratio determined in each case between the estimated bound and the actual
maximum-magnitude root. These ratios were averaged over the 80 distinct poly-
nomials, and the results output, along with a note as to which method gave the
minimum ratio. The program was run 10 times for each set, giving slightly different
results each time, as expected. The above process was repeated for complex roots
with degrees 4,6,8,10. Thus we have 4 sets of polynomials (2 sets of 800 for real
roots and 2 sets of 400 for complex)

Let the polynomial be

P (z) = zn + cn−1z
n−1 + ...+ c1z + c0

and

ζ = Maxi=1,...,n|ζi|

1.10. A Priori Bounds on (Real or Complex) Roots 27

where the ζi are the roots of P (z) = 0. The best result (i.e. minimum ratio), by a
margin of 20%-50%, was for the formula 1.147 below, due to Kalantari (2004,2005).
The average ratio for this formula over the 2400 polynomials was close to 2.0, with
a standard deviation of about .08. Then there were a set of 3 formulas due to
Deutsch (1970) which gave ratios in the range 2.5-3.5. There were several other
formulas which gave relatively low ratios for some sets of tests, but not for others.
These will not be mentioned further.

Although the Deutsch formulas give bounds greater than those of Kalantari by
about 30%, in many cases it may be preferable to use them instead, for they require
considerably less work than Kalantari’s formula (equivalent of about 1 function
evaluation compared to at least 4 for Kalantari). In fact Kalantari gives a series
of formulas which he believes approach closer and closer to the true bound, but at
the price of increased work. The simplest of the Deutsch formulas is given by 1.148
below.

KALANTARI’S FORMULA

|ζ| ≤ 1

.682328
Maxk=4,..,n+3{|c2n−1cn−k+3 − cn−1cn−k+2

−cn−2cn−k+3 + cn−k+1|
1

k−1 } (1.147)

(c−1 = c−2 = 0)

DEUTSCH’S ‘SIMPLE’ FORMULA

|ζ| ≤ |cn−1| +Maxi=0,..,n−2

{∣

∣

∣

∣

ci
ci+1

∣

∣

∣

∣

}

(1.148)

In the above, where denominators such as ci+1 are involved, it is assumed that
these denominators are not 0. This was the case in all the tests run. But it was
realized that if they were 0, the bounds would be infinite.

28 1. Evaluation, Convergence, Bounds

Appendix for Section 10

List of Formulas for Bounding Roots of Polynomials

(For detailed references see below).

Part A. Formulas based on Maximum of some function of the ci

A1. (Guggenheimer 1978) ζ ≤ 2Maxi=1,..,n|cn−i|
1
i

A2. (Deutsch 1981) ζ ≤ Max[1, |c0|+ |c1|+ ...+ |ck|, 1+ |ck+1|, ..., 1+ |cn−1|]
for each k = 0,1,...,n-1

A3. (Reich and Losser 1971) Let Q = [Maxk=0,..,n−1|ck|]
1
n then ζ ≤

Q+Q2 + ...+Qn−1

A4. (ibid)ζ ≤ Max0≤j≤k≤n−1(j 6=k)[(1 + |ck|)(1 + |cj |)]
1
2

A5. (Joyal et al 1967) ζ ≤ 1
2 [1 +

√
1 + 4B′] where

B′ = Maxn−1
k=0 |cn−1ck − ck−1| (c−1 = 0)

A6. (ibid) ζ ≤ 1 +
√
B′′ where B′′ = Maxn−1

k=0 |(1 − cn−1)ck
+ck−1| (c−1 = 0)

A7. (Deutsch 1970) ζ ≤ 1
2 [1 + |cn−1| +

√

(cn−1)2 + 4M] where M =
Maxn−2

i=0 |ci|

A8. (ibid) ζ ≤ Max[2, |c0| + |cn−1|, |c1| + |cn−1|, ..., |cn−2| + |cn−1|]

A9. (ibid) ζ ≤
√

2 +M2 + |cn−1|2 (M as in A7).

A10. (ibid) ζ ≤ 1
2 [β′ + |cn−1| +

√

(|cn−1| − β′)2 + 4γ′|cn−1|]
where β′ = Maxn−2

i=1
|ci|

|ci+1| , γ
′ = Maxn−2

i=0
|ci|

|ci+1| ,

A11. (ibid) ζ ≤ |cn−1| + γ′, (γ′ as above)

A12. (ibid) ζ ≤
√

2|cn−1|2 + (β′)2 + (γ′)2 (β′, γ′ as above)

1.10. A Priori Bounds on (Real or Complex) Roots 29

A13. (ibid) ζ ≤ |cn−1| + (δ′)2 where δ′ = Maxn−2
i=0

[

|ci|
|cn−1|n−2−i

]

A14. (ibid)ζ ≤ |cn−1| +Max
[

|cn−1|, δ′

|cn−1|

]

A15. (ibid) ζ ≤
√

3|cn−1|2 + (δ′)2

|cn−1|2 (δ′ as above)

A16. (ibid) ζ ≤ 1
2 [N + |cn−1| +

√

(|cn−1| −N)2 + 4N2

where N = Maxn−2
i=0 [|ci|

1
n−i]

A17. (ibid) ζ ≤ N +Max[N, |cn−1|] (N as above)

A18. (ibid) ζ ≤
√

3N2 + |cn−1|2 (N as above)

A19. (Kakeya 1912) ζ ≤ Maxn−1
i=0

∣

∣

∣

ci

ci+1

∣

∣

∣ (cn = 1)

A20. (Mignotte 1991) ζ ≤ 1 +Max[1, |c0|, |c1|, ..., |cn−1|]

A21. (ibid) ζ ≤ nMax[1, |c0|, |c1|, ..|cn−1|] + 1

A22. (Datt and Govil 1978) ζ ≤ 1 +
(

1 − 1
(1+M)n

)

M

where M = Maxn−1
i=0 |ci|

A23. (Boese and Luther 1989) With M as above,

(i) If M < 1
n , ζ ≤ [M(1−nM)

(1−(nM)
1
n

]
1
n ,

(ii) If M ≥ 1
n , ζ ≤ Min[(1 +M)(1 − M

(1+M)n+1−nM), 1 + 2(nM−1
n+1]

N.B. first result useful for small M, for then roots are small.

A24. (Birkhoff 1914) ζ ≤
Maxn

i=1|
cn−i
Cn

i
|
1
i

2
1
n −1

(here and below Cn
i is the binomial

coefficient)

A25. (Diaz-Barrero 2002) ζ ≤ Maxn
k=1

[

2n−1|cn−k|Cn+1
2

k2Cn
k

] 1
k

A26. (ibid) ζ ≤ Maxn
k=1

[

F3n|cn−k|
2kFkCn

k

] 1
k

where Fi = the i’th Fibonacci num-

ber, given by F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2)

30 1. Evaluation, Convergence, Bounds

A27. (Riddell 1974) ζ ≤ Max{Maxn−1
i=0 | ci

ci+1
| + |cn−1|, c0

c1
} (cn = 1)

A28. (Kojima 1917)ζ ≤ Max[2| cn−1

cn
|, k+1

k−1 |
cn−k

cn−k+1
| (k = 2, .., n−1), |c0|

(n−1)|c1|]

A29. (Mignotte 1999) ζ ≤ Maxn
i=1[n|cn−i|]

1
i

A30. (Simuenovic 1991). If M2 = Maxn
i=2

|cn−2|+...+|cn−i|
i−1 then ζ ≤

|cn−1|+1+
√

(|cn−1|−1)2+4M2

2

A31. (Mishra 1993) ζ ≤ Minci 6=0|ci|+Maxci 6=0|ci|
Minci 6=0|ci|

Part B. Formulas based on sums of some function of the ci

B1. (Riddell 1974) ζ ≤ Max[1,
∑n−1

i=0 |ci|]

B2. (ibid, also Walsh 1924) ζ ≤ ∑n−1
i=0 |ci|

1
n−i

B3. (ibid) ζ ≤ |cn−1| +
∑n−2

i=0
|ci|

|ci+1|

B4 (Williams 1922) ζ ≤
√

1 +
∑n−1

i=0 |ci|2

B5. (ibid) ζ ≤
√

1 + (cn−1 − 1)2 +
∑n−2

i=0 |ci − ci+1|2 + c20

B6. (Kittaneh 1995) With α =
∑n−1

i=0 |ci|2, ζ ≤
√

α+1+
√

(α+1)2−4|c0|2
2

B7. (Fujii and Kubo 1993) ζ ≤ cos π
n+1 +

√

∑n−1

i=0
|ci|2+|cn−1|
2

B8. (Rahman 1970) |ζ+ 1
2cn−1| ≤ 1

2 |cn−1|+αM where M =
∑n

i=2 |cn−i|
1
i

and α = Maxn
i=2[M

−1|cn−i|
1
i]

i−1
i (α = 0 if all ci = 0, i = 0, .., n − 2)

B9. (Alzer 1995) ζ ≤ |cn−1| +
√

∑n
i=2 |cn−i|αi−2 where α = 1

Maxn
i=2|cn−i|

1
i

B10. (Guggenheimer 1978) ζ ≤ |cn−1| +
∑n

i=2 | cn−i

ci−1
n−1

|

B11. (ibid) ζ ≤ 1 +
∑n

i=1 b
1
i
i where bi = Maxj<i(0, |cn−i| − |cn−j |) (i =

2, .., n); b1 = |cn−1|

1.10. A Priori Bounds on (Real or Complex) Roots 31

B12. (Kuniyeda 1916) (Only if
∑ |ci|2 < 1

n−1)

ζ ≤
[

nn

(n−1)n−1

∑n−1
i=0 |ci|2

]
1
2n

B13. (Parodi 1949) ζ ≤ Max[1, 1
2 [|cn−1| +

√

|cn−1|2 + 4
∑n−2

j=0 |cj |]]

B14. (Mignotte 1999) (Only if
∑

< 1) ζ ≤ [
∑n−1

i=0 |ci|]
1
n

References for formulas for bounds

Alzer, H. (1995), On the zeros of a polynomial, J. Approx. Theory 81,
421-424

Birkhoff, G.D. (1914), An elementary double inequality for the roots of an
algebraic equation having greatest absolute value, Bull. Amer. Math. Soc,
21, 494-495

Boese, F.G. and Luther, W.J. (1989), A Note on a Classical Bound for the
Moduli of All Zeros of a Polynomial, IEEE Trans. Autom. Control 34,
998-1001

Datt, B. and Govil, N.K. (1978), On the Location of the Zeros of a Polyno-
mial, J. Approx. Theory 24, 78-82

Deutsch, E. (1970), Matricial Norms and the Zeros of Polynomials, Lin.
Alg. Appls. 3, 483-489

Deutsch, E. (1981), Bounds for the Zeros of Polynomials, Amer. Math.
Monthly 88, 205-206

Diaz-Barrero, J.L. (2002), Note on bounds of the zeros, Missouri J. Math.
Sci. 14, 88-91

Fujii, M. and Kubo, F. (1993) Buzano’s inequality and bounds for roots of
algebraic equations, Proc. Amer. Math. Soc 117, 359-361

Guggenheimer, H. (1962), Bounds for the Roots of Algebraic Equations,
Amer. Math. Monthly 69, 915-916

32 1. Evaluation, Convergence, Bounds

————— (1978), Bounds for roots of algebraic equations, Arch. Math.
31, 568-569

Joyal, A., Labelle, G. and Rahman, Q.I. (1967), On the location of zeros of
polynomials, Canad. Math. Bull. 10, 53-63

Kakeya, S. (1912), On the Limits of the Roots of an Algebraic Equation
with Positive Coefficients, Tohoku Math. J. 2, 140-142

Kalantari, B. (2004), Private Communication

————- (2005), An infinite family of bounds on zeros of analytic functions
and relationship to Smale’s bounds, Math. Comp. 74, 841- 852

Kittaneh. F. (1995), Singular values of companion matrices and bounds on
zeros of polynomials, SIAM J. Matrix Anal. Appl. 16, 333-340

Kojima (1917), On the Limits of the Roots of an Algebraic Equation, To-
hoku Math. J. 11, 119-127

Kuniyeda (1916), Note on the Roots of Algebraic Equations, Tohoku Math.
J. 9, 187-188

McNamee, J.M. (2002), A 2002 update of the supplementary bibliography
on roots of polynomials, J. Comput. Appl. Math. 142 (2002), 433-434.
Note this contains instructions for accessing the bibliography via the web.

Mignotte, M. (1991), An inequality on the greatest roots of a polynomial,
Elem. Math. 46, 85-86

———— (1999), Polynomials, An Algorithmic Approach, Springer- Verlag

Mishra, B. (1993), Bounds on the Roots, in Algorithmic Algebra, Springer-
Verlag, 306-308

Parodi, M. (1949), Sur les limites des modules des racines des équations
algébriques, Bull. Sci. Math. Ser. 2 73, 135-144

1.11. References for Chapter 1. 33

Rahman, Q.I. (1970), A bound for the moduli of the zeros of polynomials,
Canad. Math. Bull 13, 541-542

Reich, S. and Losser, O.P. (1971), Locating Zeros of Polynomials, Amer.
Math. Monthly 78, 681-683

Riddell, R.C. (1974), Upper bounds on the moduli of the zeros of a polyno-
mial, Math. Mag. 47, 267-273

Simeunovic, D.M. (1991), A Remark on the Zeros of a Polynomial, Zeit.
Angew. Math. Mech. 71, T832-835

van der Sluis, A. (1970), Upperbounds for Roots of Polynomials, Numer.
Math. 15, 250-262

Walsh, J.L. (1924), An inequality for the roots of an algebraic equation,
Ann. Math. Ser. 2 25, 285-286

Williams, K.P. (1922), Note concerning the roots of an equation, Bull.
Amer. Math. Soc. 29, 394-396

1.11 References for Chapter 1.

Adams, D.A. (1967), A Stopping Criterion for Polynomial Root Finding,
Comm. Ass. Comput. Mach. 10, 655-658

Aho, A.V., Steiglitz, K., and Ullman, J.D. (1975), Evaluating polynomials
at fixed sets of points, SIAM J. Comput. 4, 533-539

Dekker, T.J. (1971), A floating-point technique for extending the available
precision, Numer. Math. 18, 224-242

Dorn, W.S. (1962), Generalization of Horner’s Rule for Polynomial Evalua-
tion, IBM J. Res. Dev. 6, 239-245

Dutta Roy, S.C. and Minocha, S. (1991) A Note on “Efficient Evaluation of
Polynomials and Exponentials of Polynomials at Equispaced Arguments”,
IEEE Trans. Acoustics, Speech, Sig. Proc. 39, 2554-2556

34 1. Evaluation, Convergence, Bounds

Estrin, G. (1960), Organization of a Computer System-The Fixed Plus Vari-
able Structure Computer, Proc. Western Joint Computer Conference,
AFIPS Press, Montvale, N.J., 33-40

Garwick, J.V. (1961), The limit of a converging sequence, BIT 1, 64

Hammer, R. et al (1995), C++ Toolbox for Verified Computing: Basic Nu-
merical Problems (Chap. 4), Springer-Verlag, Berlin

Hansen, E.R. et al (1990), Polynomial Evaluation with Scaling, ACM Trans.
Math. Software 16, 86-93

Igarashi, M. (1984), A Termination Criterion for Iterative Methods Used to
Find the Zeros of Polynomials, Math. Comp. 42, 165-171

Kahan, W. (1965), Further remarks on reducing truncation errors, Comm.
Ass. Comput. Mach. 8, 40

Kiper, A. (1997), Parallel Polynomial Evaluation by Decoupling Algorithm,
Par. Algs. Appl. 9, 145-152

Kowalik, J.S., and Kumar, S.P. (1985), Parallel Algorithms for Recurrence
and Tridiagonal Equations, in Parallel MIMD Computation: HEP Super-
computer and its Applications, ed. J.S. Kowalik, MIT Press, 295-307

Kulisch, U.W. and Miranker, W.L. (1983), A New Approach to Scientific
Computation, Academic Press, New York

Lakshmivarahan, S., and Dhall,S.K. (1990), Analysis and Design of Parallel
Algorithms, McGraw-Hill, New York

Linnainmaa, S. (1981), Combatting the Effects of Underflow and Overflow
in Determining Real Roots of Polynomials, SIGNUM Newsletter 16 No.
2, 11-15

McNamee, J.M. (2002), A 2002 update of the supplementary bibliography
on roots of polynomials, J. Comput. Appl. Math 142, 433-434

1.11. References for Chapter 1. 35

———— and Olhovsky, M. (2005), A Comparison of a Priori Bounds on
(Real or Complex) Roots of Polynomials, Proceedings of the 37-th IMACS
Conference, Paris

Nuttall, A.H. (1987), Efficient Evaluation of Polynomials and Exponentials
of Polynomials at Equispaced Arguments, IEEE Trans. Acoustics, Speech,
Sig. Proc. 35, 1486-1487

Oliver, J. (1979), Rounding error propogation in polynomial evaluation
schemes, J. Comput. Appl. Math. 5, 85-95

Paquet, L. (1994), Precise evaluation of a polynomial at a point given in
staggered correction format, J. Comput. Appl. Math. 50, 435-454

Pan, V.Y. et al (1997), Fast multipoint evaluation and interpolation via
computations with structured matrices, Ann. Numer. Math. 4, 483-510

Peters, G., and Wilkinson, J.H. (1971), Practical Problems Arising in the
Solution of Polynomial Equations, J. Inst. Math. Appl. 8, 16-35

Pichat, M. (1972), Correction d’une somme en arithmétique à virgule flot-
tante, Numer. Math. 19, 400-406

Shaw, M. and Traub, J.F. (1974), On the Number of Multiplications for the
Evaluation of a Polynomial and Some of its Derivatives, J. Ass. Comp.
Mach. 21, 161-167

Stewart, G.W. III (1971), Error Analysis of the Algorithm for Shifting the
Zeros of a Polynomial by Synthetic Division, Math. Comp. 25, 135-139

Traub, J.F. (1971), Optimal iterative processes: theorems and conjectures,
Proc 1971 IFIP Congress Booklet TA-1, 1273-1277

Volk, W. (1988), An Efficient Raster Evaluation Method for Univariate Poly-
nomials, Computing 40, 163-173

Werschultz, A.G. (1981), Maximal Order for Multipoint Methods with Mem-

36 1. Evaluation, Convergence, Bounds

ory Using Hermitian Information, Intern. J. Comput. Math. Sec. B 9,
223-241

Wilkinson, J.H. (1965), The Algebraic Eigenvalue Problem, Clarendon Press

Wozniakowski, H. (1974), Rounding error analysis for the evaluation of a
polynomial and some of its derivatives, SIAM J. Numer. Anal 11, 780-
787

Chapter 2

Sturm Sequences and Greatest
Common Divisors

2.1 Introduction

Sturm sequences, derived from a polynomial and its derivative, provide a
way of determining how many real roots lie in a specified interval, and ulti-
mately, by means of a bisection process, of determining a range within which
a single root lies. They have also been used by Wilf (1978) in locating com-
plex roots. Ralston (1978) gives a good treatment, on which the following
three sections are based.

2.2 Definitions and Basic Theorem

Definition 1. A sequence of polynomials f1(x), f2(x), ...fm(x) is called a
STURM SEQUENCE on an interval (a,b) if

(i) fm(x) 6= 0 in (a, b) (2.1)

(ii) at any zero of fk(x), (k = 2, ...,m − 1)

fk−1(x)fk+1(x) < 0 (2.2)

Note that this implies

fk−1 6= 0 and fk+1 6= 0 (2.3)

Definition 2. Let fi(x), i = 1, ...,m, be a Sturm sequence on (a,b), and let
x0 be a point at which f1(x) 6= 0. We define V (x0) =number of changes of

37

38 2. Sturm Sequences and Greatest Common Divisors

sign in fi(x0), zeroes being ignored. If a = −∞, V (a) is defined as number
of sign changes in limx→−∞ fi(x). Similarly for V (b) if b = +∞.

Definition 3. Let R(x) be a rational function. We define the CAUCHY
INDEX Ib

aR(x)=(number of jumps from −∞ to +∞) -(number of jumps
from +∞ to −∞) as x goes from a to b, excluding endpoints.

Now we can prove:-
STURM’S THEOREM. If fi(x), (i = 1, ...,m) is a Sturm sequence on
(a,b), and if f1(a) 6= 0, f1(b) 6= 0, then:-

Ib
a

f2(x)

f1(x)
= V (a) − V (b) (2.4)

Proof. V(x) does not change when x passes through a zero x0 of fk(x), (k =
2, ...,m), because of 2.2 [e.g. if the sign of fk is the same as that of fk−1

just left of x0, it will be the same as that of fk+1 just right of x0, so there
is only one sign change in the sequence fk−1, fk, fk+1 both left and right of
x0]. Thus V(x) can only change at a zero of f1(x).

Now if x0 is a zero of f1(x), it is not a zero of f2(x), by 2.3 with k=2 (for
if it were, f1(x) 6= 0). Hence f2(x) has the same sign on both sides of x0.
So if x0 is a zero of f1(x) of even multiplicity, then V(x) does not change
as x passes through x0 (for f1(x) does not change sign), while there is no
contribution to the Cauchy index (for f2

f1
remains equal to +∞, or −∞).

But, if x0 is of odd multiplicity, f1(x) changes sign at x0. If f1 and f2 have
the same sign to the left of x0, V(x) increases by 1 while the Cauchy index
has a contribution of -1 (f2

f1
jumps from +∞ to −∞). Likewise if f1 and

f2 have opposite sign, V(x) decreases by 1 while the Cauchy index incurs a
contribution of +1. Thus Ib

a
f2

f1
= −(V (b) − V (a)). Q.E.D.

2.3 Application to Locating Roots

To find the real roots of f(x) in (a,b) we let f1(x) ≡ f(x), f2(x) = f ′(x) and
compute fj(x), j=3,...m, by

fj−1(x) = qj−1(x)fj(x) − fj+1(x), j = 2, ...,m − 1 (2.5)

2.3. Application to Locating Roots 39

fm−1(x) = qm−1(x)fm(x) (2.6)

i.e. fj+1 is - remainder when fj−1 divided by fj. The sequence fj is of
decreasing degree and hence must terminate with fm(x), possibly a constant,
which divides fm−1 and hence all fj (j=m-1,...,1), i.e. fm is the greatest
common divisor of f1 and f2. If fm 6= 0 in (a,b) condition i) of Defn. 1 is
satisfied, while by 2.5 condition ii) is satisfied, i.e. fj is a Sturm sequence .

If fm=0 in (a,b) we work with { fj

fm
} which has the same values of Ib

a, V(a),
V(b) as {fj}.

Now suppose

f = (x− ζ1)
m1(x− ζ2)

m2 ...(x− ζp)
mpQ(x), (2.7)

where Q(x) has no real roots. Then

f ′(x) =
p
∑

i=1

mi(x−ζi)mi−1
p
∏

j=1,6=i

(x−ζj)mjQ(x)+
p
∏

j=1

(x−ζj)mjQ′(x)(2.8)

Hence

f2

f1
=
f ′

f
=

p
∑

i=1

mi

x− ζi
+
Q′

Q
(2.9)

THEOREM 2 Then Ib
a

f2

f1
= number of distinct real zeros in (a,b)

=V(a)-V(b) (provided f(a) 6= 0, f(b) 6= 0).
If f(x) has a simple root at a or b the result holds with V(x)=number of sign
changes in f2(x), ..., fm(x).

Using this theorem and a bisection process we may isolate one or more
of the real roots of f(x), i.e. find an interval (ak, bk) containing exactly one
root (e.g. the largest). Start with
b0 = 1.1×an upper bound on roots of f, a0 = −b0
Now for k=0,1,... do:-
Find nk = V (ak) − V (bk). If nk > 1 then:-
Set ck = (ak + bk)/2. Find V (ck).

If nk = V (ck) − V (bk) > 1 set ak = ck and continue;
else if this nk = 0 set bk = ck and continue;
else (nk = 1) the interval (ck, bk) contains exactly one root.

Now we may continue the bisection process until (bk − ak) < some
error criterion, or we may switch to some more rapidly converging method.
Dunaway (1974) describes a program which uses Sturm sequences to get a

40 2. Sturm Sequences and Greatest Common Divisors

first approximation to real roots and Newton’s method to improve them.

2.4 Elimination of Multiple Roots

It was mentioned in Sec. 3 that special methods must be used if fm = 0
in (a,b), i.e. we should divide each fj by fm. Now it may be shown that
dividing f1 (f) by the g.c.d. fm of f and f ′ leaves us with a polynomial
having no multiple roots (if indeed f has any multiple roots to start with).
For we see by 2.7 and 2.8 of Sec. 3 (allowing some or all of the ζi to be
complex and Q(x) = constant) that f and f ′ have common factors

p
∏

i=1

(x− ζi)
mi−1 (2.10)

and these are the highest powers of (x− ζi) which are common factors.
Thus, apart from a constant, 2.10 gives the g.c.d. of f and f ′. Note that

if mi = 1,

(x− ζi)
mi−1 = 1 (2.11)

i.e. this factor does not occur in the g.c.d. Hence if we divide f by the g.c.d.
of f and f ′ we are left with

p
∏

i=1

(x− ζi) (2.12)

i.e. there are no multiple roots. It is recommended that one do this division
before applying the Sturm sequence method. Not only is it then easier to
apply Sturm, but other methods such as Newton’s, which may be used in
conjunction with Sturm, converge faster in the abscence of multiple roots.

By repeating the process of finding and dividing by the g.c.d. we may
obtain a set of polynomials each of which contain only zeros of a specific
(known) multiplicity. Thus, with a slight change of notation, let

P1 = f (or f1), P2 = gcd(P1, P
′
1), ...,

Pj = gcd(Pj−1, P
′
j−1) for j = 2, ...,m + 1 (2.13)

where Pm+1 is the first Pj to be constant. Then as we have seen P2 contains
∏p

i=1(x− ζi)
mi−1, so in general Pj will contain

p
∏

i=1

(x− ζi)
mi+1−j (2.14)

2.4. Elimination of Multiple Roots 41

with the proviso that if

mi + 1 − j ≤ 0 (2.15)

the i’th factor is replaced by 1.
It follows from 2.14 that zeros of P1 (f) which have multiplicity

mi ≥ j (2.16)

will appear in Pj , but not zeros which have

mi < j (2.17)

Moreover m is the greatest multiplicity of any zero of P1 (for by 2.16 and
2.17 m+1 > all mi and hence m+1 ≥ Max mi+1).

Now we let

Qj =
Pj

Pj+1
(j = 1, 2, ...,m − 1) (2.18)

Qm = Pm (2.19)

Each Qj contains only simple zeros, and the zeros of Qj appear in P1 with
multiplicity ≥ j. For using 2.14 and 2.15 we see that

Qj =

∏p
i=1;mi≥j(x− ζi)

mi+1−j

∏p
i=1;mi≥j+1(x− ζi)mi−j

(2.20)

Clearly, for mi > j, the factors (x − ζi) in the numerator and in the
denominator cancel except for a power of 1 remaining in the numerator. But
for mi = j the numerator contains just (x − ζi)

1 while the denominator
contains no factor (x− ζi). In short

Qj =
p
∏

i=1;mi≥j

(x− ζi) (2.21)

We can take the process a further step, by letting

Q̃j =
Qj

Qj+1
(j = 1, 2, ...,m − 1) (2.22)

Q̃m = Qm (2.23)

Then

Q̃j =

∏p
i=1;mi≥j(x− ζi)

∏p
i=1;mi≥j+1(x− ζi)

=
p
∏

i=1;mi=j

(x− ζi) (2.24)

42 2. Sturm Sequences and Greatest Common Divisors

or in words, Q̃j contains all factors (to power 1) which are of multiplicity
exactly j.

This is a very useful result, for if we factorize each Q̃j separately we will
not be handicapped by multiple roots, but we will know the multiplicity of
each factor of Q̃j in the original P1.

EXAMPLE

P1 = (x− ζ1)
5(x− ζ2)

3(x− ζ3)
3(x− ζ4)

P2 = (x− ζ1)
4(x− ζ2)

2(x− ζ3)
2

P3 = (x− ζ1)
3(x− ζ2)(x− ζ3)

P4 = (x− ζ1)
2

P5 = (x− ζ1)

P6 = 1

Thus we see that the highest multiplicity is 5.
Now

Q1 = (x− ζ1)(x− ζ2)(x− ζ3)(x− ζ4)

Q2 = (x− ζ1)(x− ζ2)(x− ζ3)

Q3 = (x− ζ1)(x− ζ2)(x− ζ3)

Q4 = (x− ζ1)

Q5 = (x− ζ1)

and finally

Q̃1 = (x− ζ4)

Q̃2 = 1

Q̃3 = (x− ζ2)(x− ζ3)

Q̃4 = 1

2.5. Detection of Clusters of Zeros (Near-Multiple) 43

Q̃5 = (x− ζ1)

and we conclude that P1 has one simple root, two of multiplicity 3, and
one of multiplicity 5. There are no roots of multiplicity 2 or 4. Note that
initially Q̃3 will be given as a quadratic, not factorized. We will have to
factorize it, and of course in general Q̃i could be of still higher degree.

2.5 Detection of Clusters of Zeros (Near-Multiple)

The methods of the last section break down in the presence of rounding error,
as in floating-point computation, since a small change in the coefficients
leads to the disintegration of a k-fold zero into a cluster of k distinct (but
usually close) zeros. In other words, a g.c.d. of (p, p′) which is of degree >
0, as would be found for the multiple zero case if infinite precision is used
(e.g. in pure integer or rational arithmetic), is replaced by a g.c.d. = 1 in
floating-point arithmetic.

One popular solution to this problem is of course to work in rational
arithmetic, as in a symbolic algebra system. This will be discussed in the
next section. Here we will describe a method discussed by Hribernig and
Stetter (1997), which enables us to compute clusters of zeros, with their
multiplicities and centers, using a combination of symbolic and floating-
point computation.

The key idea is the definition of a cluster in relation to an accuracy level:-

DEFINITION 2.5.1 “At the accuracy level α, a complex polynomial p̃
posesses a k-cluster of zeros with center ζ if there exists a polynomial p∗,
with deg p∗ ≤ deg p̃, such that p∗ has an exact k-fold zero at ζ, and

||p̃− p∗|| ≤ α (2.25)

or equivalently

p̃ = (x− ζ)k q̃ + r̃(x), with ||r̃|| ≤ α (2.26)

Note that we have defined

||p(x)|| ≡
n
∑

j=0

|cj | (2.27)

44 2. Sturm Sequences and Greatest Common Divisors

where p(x) = c0 + c1x+ ...cnx
n.

Note also that the values of ζ, p∗ or q̃, r̃ are not uniquely determined; but
for a given α there is a highest possible value of k–this is the value we assume
in 2.26. Theoretically, this k is an increasing, integer-valued function of α;
hence it is a discontinuous function. In practise. the points of discontinuity
are replaced by critical ranges.

Since, as we have seen, the computation of the g.c.d.’s used in Sec. 4
breaks down, we replace the gcd by a “near- or α-gcd” defined as follows:-

DEFINITION At the accuracy level α, two polynomials f̃1 and f̃2 possess
a near-gcd g̃ if there exist polynomials f∗1 and f∗2 such that

gcd(f∗1 , f
∗
2) = g̃ and ||f̃i − f∗i || ≤ α, i = 1, 2 (2.28)

or

f̃i = g̃q̃i + r̃i where ||r̃i|| ≤ α, i = 1, 2 (2.29)

We seek a near-gcd g̃∗ of the maximum degree feasible at accuracy level
α. Again, f∗i , g̃

∗ or q̃i, r̃i are not uniquely defined, and so deg g̃∗ is an
increasing integer-valued function of α whose discontinuities are not sharp.
On the other hand, once g̃ has been computed, Maxi=1,2||r̃i|| is well-defined
and we may assess the validity of our gcd.

The classical Euclidean algorithm (EA) for gcd(f1, f2) computes qi and
fi+1 by division:-

fi−1 = fiqi + fi+1 (i = 2, 3, ..., l) (2.30)

terminating when fl+1 = 0, so that

gcd(f1 f2) = fl (2.31)

But, as mentioned, small perturbations of the fi will lower the degree of the
gcd dramatically, usually to 0. We expect that replacement of the criterion
“fl+1 = 0” by “fl+1 sufficiently small” will stabilize the gcd and yield a
“near-gcd”. But how do we quantify this criterion at a given accuracy level
α?. It turns out that we can write

fi = s
(i)
j fj + s

(i)
j−1fj+1 (j > i ≥ 1) (2.32)

with

s
(i)
j = qjs

(i)
j−1 + s

(i)
j−2, j > i and s

(i)
i−1 = 0, s

(i)
i = 1 (2.33)

2.5. Detection of Clusters of Zeros (Near-Multiple) 45

PROOF Assume true up to j, i.e.

fi = s
(i)
j fj + s

(i)
j−1fj+1 (j > i ≥ 1)

Also

fj = qj+1fj+1 + fj+2 (2.34)

hence fi = s
(i)
j {qj+1fj+1 + fj+2} + s

(i)
j−1fj+1

= {qj+1s
(i)
j + s

(i)
j−1}fj+1 + s

(i)
j fj+2

= s
(i)
j+1fj+1 + s

(i)
j fj+2 (2.35)

i.e. it is true for j+1 in place of j.

But fi = qi+1fi+1 + fi+2

= (qi+11 + 0)fi+1 + 1fi+2

= s
(i)
i+1fi+1 + s

(i)
i fi+2 (2.36)

according to the definitions in 2.33
i.e. theorem is true for j = i+1;
hence by induction for all j.

The s
(1)
j and s

(2)
j may be computed as we compute the fi. Then compar-

ing 2.32 and 2.29 with fj = g̃ and s
(i)
j = q̃i we see that the criterion

||s(i)j−1fj+1|| ≤ α (i = 1, 2) (2.37)

means that fj is an α-gcd of f1 and f2.

We may use floating-point arithmetic here provided that the backward
error

||s(i)j−1ρj+1|| (2.38)

of the residuals

ρj+1 = f̃j−1 − f̃jqj − f̃j+1 (2.39)

remain small compared to α. This leads to a dramatic reduction in execu-
tion time when the coefficients are ratios of large integers (as often happens

46 2. Sturm Sequences and Greatest Common Divisors

during an exact g.c.d. calculation).

We may check the adequacy of the near-gcd a posteriori by dividing f̃1

and f̃2 by f̃l to give residuals v
(i)
l

f̃i = f̃lw
(i)
l + v

(i)
l , (i = 1, 2) (2.40)

if ||v(i)
l || << α (i = 1, 2), one may test the previous v

(i)
l−1 to see if f̃l−1 is a

better near-g.c.d. (note that the higher the degree of f̃l, the better).

EXAMPLE 1 Consider

f̃1 = p̃(x) = x4 − 1.4143878x3 + .0001232x2 + .7071939x − .2500616

Take f̃2 = 1
4 p̃

′, and perform an EA in float-point arithmetic, computing
the error bounds on L.H.S. 0f 2.37 as we go. Results are

j degf̃j 2.37
1 4 −
2 3 −
3 2 1.09
4 1 .9 × 10−7

5 0 .6 × 10−9

As our polynomial has an accuracy level .5 × 10−7, we appear to have a
near-gcd f̃3 of degree 2.

The sequence Pi = gcd(Pi−1, P
′
i−1) described in section 4 will now be

replaced by

P̃i = an α− gcd(P̃i−1, P̃
′
i−1) (2.41)

where by an α-gcd we mean a near-gcd at accuracy level α.

Hribernig shows that
“For |ζ| < 1, if (x− ζ)k−1 is a factor of an α-gcd of P̃ and P̃ ′, then P̃ has
a k-cluster of zeros with center ζ at an accuracy level 3α”

Suppose that after applying 2.41 and the further computation of Qj and
Q̃j as in sec 4 we have

P̃1 ≡ f̃1 =
m
∏

j=0

(Q̃j)
j + r̃ (2.42)

2.6. Sturm Sequences (or gcd’s) Using Integers 47

then we may form

P̃1 = (Q̃j)
j q̃j + r̃j (j = 1, ...,m) (2.43)

and check the size of the r̃j . If ||r̃j || ≈ α, (j=1,...,m), then we accept 2.42
as a valid grouping of the zeros of P̃1 into clusters at accuracy level α. But
if ||r̃j || >> (<<) α we have too few (too many) clusters, and we have to
lower (raise) degree P̃l, i.e. we have to take at least one step more (less) in
the stabilized EA which generates P̃l

As in the standard procedure, if some of the Q̃j have degree > 1, their
approximate zeros must be found as centers of the several i-clusters which
they represent. These zeros will be well-separated at the specified accuracy
level (otherwise they would be considered as one cluster), and finding them
should be relatively easy.

2.6 Sturm Sequences (or gcd’s) Using Integers

As pointed out at the start of section 5, errors in floating arithmetic often
prevent us from finding the true gcd of two polynomials. Note that the
calculation of Sturm sequences is the same as that of gcd’s, apart from the
sign of the remainder at each step in the Euclidean algorithm (see below).
Thus in what follows we will refer to gcd’s, as is often done in the litera-
ture.(Also the methods of Sec. 4 require the calculation of gcd’s , so this
topic is important in its own right).

One favorite way of avoiding errors is to multiply the polynomial by the
gcd of the denominator of its rational coefficients and work with integers
only, if necessary using multiple precision (of course if the true coefficients
are irrationals they will necessarily be approximated by rationals on input
to the computer).

The traditional Euclid’s method for finding the gcd of two polynomials
P1 and P2 is to divide P1 by P2 giving remainder P3 and repeat that process
until Pl+1 = 0.Then Pl is the gcd of P1 and P2. Unfortunately, even if P1

and P2 have integral coefficients, P3 etc generally have non-integral ones.

48 2. Sturm Sequences and Greatest Common Divisors

We can avoid this problem by instead computing the pseudo-remainder
given for F and G by

gn−m+1
m F = QG+R (2.44)

where gm is the leading coefficient of G, n and m are the degrees of F and
G respectively, and degree(R) < degree(G) = m. To see why this works,
observe that division is actually accomplished by a series of ‘partial divisions’

Si+1 = Si −
sin

gm
xni−mG (2.45)

where sin is the leading coefficient of Si, ni is its degree, and S0 = F.
This eliminates successively lower powers of x from the partial remainders.
However, to avoid non-integral coefficients we modify the above to

Si+1 = gmSi − sinx
ni−mG (2.46)

This will be repeated until we reach a value of i such that ni+1 < m. Since
ni ≤ ni−1 − 1, 2.46 is applied at most n-m+1 times, Si being multiplied by
gm each time. As we do not know how many times it will actually be used,
we assume the worst case, leading to 2.44

If 2.44 is applied with F=Pi−2, G = Pi−1 and R = βiPi, i.e. to give

βiPi = αiPi−2 −QPi−1 (i = 3, ..., l + 1) (2.47)

where

αi = lc
ni−2−ni−1+1
i−1 (2.48)

and ni = deg(Pi), lci =leading coefficient of Pi and βi is yet to be chosen,
we will have what is called a polynomial remainder sequence (prs).

The choice βi = 1 gives a Euclidean prs, but this leads to an exponential
increase in coefficient size and thus is impractical except for low degrees.
Or, we may divide the pseudo-remainder by the gcd of its coefficients, so
that after division they will be relatively prime (then we say that the prs is
Primitive). This controls the size, but finding the gcd of the coefficients
takes a great deal of work.

A method which is often relatively efficient (that is, when δi = ni −
ni+1 = 1 for all i– the normal case) is the Reduced prs (Collins (1967)).
Here we take

βi = αi−1 = lc
δi−3+1
i−2 (2.49)

2.7. Complex Roots (Wilf ’s Method) 49

and it turns out (see Brown and Traub(1971) or Akritas (1987) for proof)
that the pseudo-remainder in 2.47 in this case is exactly divisible by βi, i.e.
Pi has integral coefficients for all i. But also note that in the non-normal
case for this method the coefficents may grow a great deal.

An even better, but slightly more complicated, method is known as the
Subresultant prs, where a “subresultant” is a polynomial whose coeffi-
cients are certain determinants related to the resultant. In this method we
take

β3 = (−1)δ1+1; βi = −lci−2ψ
δi−2

i (i = 4, ..., l + 1) (2.50)

where

ψ3 = −1; ψi = (−lci−2)
δi−3ψ

1−δi−3

i−1 (i = 4, ..., l + 1) (2.51)

Brown and Traub (1971) give a good derivation, and Brown (1978) proves
that the calculated Pi have integral coefficients . Note that if the prs is
normal 2.50 and 2.51 reduce to

ψi = −lci−2; βi = +lc2i−2 (2.52)

In that case the reduced and subresultant prs are identical except possibly
for signs.

Collins (1967) p139 shows that the coefficients of Pl in a subresultant prs
do not exceed

(n− nl−1 + 1)(2d + log102(n − nl−1 + 1)) (2.53)

where d is the maximum number of decimal places in the coefficients of P1

and P2. That is, they grow almost linearly with n, and no expensive com-
putations of gcd’s of coefficients are required. Moreover Brown (1978) p 247
shows that the cost is of order (d2n4). Thus it appears that the Subresul-
tant prs is the best of its class, although other methods such as heuristic or
modular may be even faster.

2.7 Complex Roots (Wilf’s Method)

We will show a method due to Wilf (1978) by which the number of roots
in a given rectangle may be counted - then a two-dimensional extension of

50 2. Sturm Sequences and Greatest Common Divisors

the bisection method can be used to find a rectangle, as small as desired,
containing a single root. The method is based on the “Argument Principle”,
which states:-“ suppose no zeroes of f(z) lie on the boundary ∂R of R. Then
the number N of zeroes of f(z) inside R=

1

2π
∆∂R(arg f(z)) =

1

2π
× {change in arg f(z) around ∂R} (2.54)

Now consider a straight line from a to b which is part of ∂R. Let z=a+(b-a)t,
so that

f(z) =
n
∑

ν=0

(αν + iβν)t
ν = fR(t) + ifI(t) (2.55)

Consider the curve in the w-plane given by w=f(z) as z moves from a to b.
If the w-curve crosses from the 1st quadrant to the 2nd, or from the 3rd to
the 4th, the function fI(t)/fR(t) ≡ R(t) jumps from +∞ to −∞, while if
it crosses from the 2nd to the 1st, (or from 4th to 3rd), R(t) jumps from
−∞ to +∞. Hence -I1

0R = net excess of counter-clockwise over clockwise
crossings by w-curve as z traverses ab and t goes from 0 to 1. But each extra
counter-clockwise crossing contributes π to arg f(z). Hence

∆∂Rargf(z) = −π
∑

edges of R

I1
0fI(t)/fR(t) (2.56)

Hence

N = −1

2

m
∑

i=1

I1
0{f

(i)
I (t)/f

(i)
R (t)} (2.57)

Now we may find each I1
0 by the Sturm’s theorem using a sequence with

f1 = fR and f2 = fI . That is, if Q1, Q2, Q3, Q4, (Q5 = Q1) are vertices
of a rectangle, then on side QkQk+1 we expand f(z) about Qk, i.e. replace z
by Qk + ik−1t; let

f̃(t) =
n
∑

ν=0

(αν + iβν)tν (2.58)

and take

f1(t) =
n
∑

ν=0

ανt
ν , f2(t) =

n
∑

ν=0

βνt
ν . (2.59)

2.8. References for Chapter 2 51

The usual Sturm sequence will terminate with a constant fm since f1, f2

can have no common factor (for this would give a zero of f on a side of
R).Then

N =
1

2

4
∑

k=1

{Vk(|Qk+1 −Qk|) − Vk(0)} (2.60)

Krishnamurthy and Venkateswaran (1981) describe a parallel version of
Wilf’s method, which they claim to work in O(n3p) sequential time or
O(n2p) parallel time with n processors. Here 2−p is the precision required.

Camargo-Brunetto et al. (2000) recommend using integer arithmetic
where possible, i.e. in calculating the Sturm sequences by, for example, the
subresultant method referred to in sec. 6.

Pinkert (1976) describes a variation using Routh’s theorem as well as
Sturm’s sequences.

A problem in all these methods is that Sturm’s (or Routh’s) theorem does
not work if there is a root or roots on one of the boundaries of a rectangle.
The method recommended to deal with this problem is as follows:
let the transformed polynomial on a side be given by 2.55 above, i.e. f(z) =
fR(t)+ ifI(t). We will find the gcd h(t) of fR(t) and fI(t). If this has a root
ζ on the side, then

fR(ζ) = fI(ζ) = 0 (2.61)

i.e. ζ is a root of f(z). So we will find the real roots of h(t) (and f(z)) on the
side, as accurately as desired, by Sturm’s theorem and bisection. We record
these roots. Then we shift the line a small distance to the left (or up) and
repeat the process (more than once if necessary). If and when we reach a
line with no roots on it, we apply Wilf’s method to the resulting rectangles
on left and right (or above and below).

2.8 References for Chapter 2

Akritas, A.G. (1987), A Simple Proof of the Validity of the Reduced prs
Algorithm, Computing 38, 369-372

52 2. Sturm Sequences and Greatest Common Divisors

Brown, W.S. (1978), The Subresultant PRS Algorithm, ACM Trans. Math.
Software 4, 237-249

Brown, W.S. and Traub, J.F. (1971), On Euclid’s Algorithm and the Theory
of Subresultants, J. Assoc. Comput. Mach. 18, 505-514

Camargo Brunetto, M.A.O., Claudio, D.M., and Trevisan, V. (2000), An
Algebraic Algorithm to Isolate Complex Polynomial Zeros Using Sturm Se-
quences, Comput. Math. Appls. 39, 95-105

Collins, G.E. (1967), Subresultants and Reduced Polynomial Remainder Se-
quences, J. Assoc. Comput. Mach. 14, 128-142

Dunaway, D.K. (1974), Calculation of Zeros of a Real Polynomial Through
Factorization Using Euclid’s Algorithm, SIAM J. Numer. Anal. 11,
1087-1104

Hribernig, V. and Stetter, H.J. (1997), Detection and Validation of Clusters
of Polynomial Zeros, J. Symbolic Comput. 24, 667-681

Krishnamurthy, E.V. and Venkateswaran, H. (1981), A Parallel Wilf Algo-
rithm for Complex Zeros of a Polynomial, BIT 21, 104-111

Pinkert, J.R. (1976), An Exact Method for Finding the Roots of a Complex
Polynomial, ACM Trans. Math. Software 2, 351-363

Ralston, A. (1978), A First Course in Numerical Analysis, McGraw-Hill,
New York

Wilf, H.S. (1978), A Global Bisection Algorithm for Computing the Zeros of
Polynomials in the Complex Plane, J. Assoc. Comput. Mach. 25, 415-420

Chapter 3

Real Roots by Continued Fractions

3.1 Fourier and Descartes’ Theorems

Fourier (1820) gave an easily calculated upper bound on the number of roots
of a real polynomial p(x) between any two values a, b of x. Like Sturm’s
theorem (see Chapter 2) it is based on the number of sign variations in a
certain sequence, where we have the definition:-
If c0, c1,, cn are a sequence of numbers and c′0, c

′
1, ..., c

′
r the sub-sequence

of their non-zero members (re-numbered if necessary), then we say that a
sign variation exists if cp and cp+1 have opposite signs. Let Var{ci} = total
number of sign variations in the sequence.
EXAMPLE p(x) = x3 − 5x2 + 3. Sequence of coefficients = {1,-5,0,3}, Var
= 2.
Now we can state Fourier’s theorem:-

THEOREM 3.1.1 Let fseq(x) = {p(x), p′(x), p(2)(x), ..., p(n)(x)}. If we re-
place x in the above by two numbers a and b (a < b) we have that:
(i) the number of real roots of p(x) = 0, between a and b = Var{fseq(a)}-
Var{fseq(b)}-2λ, where λ is a positive integer or zero.

PROOF. see Akritas (1989) p339.

EXAMPLE (as before) p(x) = x3−5x2 +3; fseq(x) = {x3−5x2 +3, 3x2−
10x, 6x−10, 6}. Take a = 0, b = 1, then number of roots between 0 and 1 =
Var{fseq(0)}-Var{fseq(1)}-2λ = Var{3,0,-10,6}- var{-1,-7,-4,6}- 2λ = 2-1-2λ
= 1 (for since number of roots ≥ 0, λ must = 0).

53

54 3. Real Roots by Continued Fractions

Somewhat easier to apply, although the number of roots is still not given
precisely, is Descartes’ rule (given in his Geometrie in 1637, proved by Gauss
in 1828-see Bartolozzi and Franci (1993)).

THEOREM 3.1.2 Let p(x) = cnx
n + cn−1x

n−1 + ...+ c1x+ c0 be a real
polynomial. Then number of positive roots = Var{ci} − 2λ, where again λ
is an integer ≥ 0.
PROOF We apply Fourier’s theorem above, using the fact that

p(x) = cnx
n + ...+ c0

p(1) = ncnx
n−1 + ...+ c1

p(2) = n(n− 1)cnx
n−2 + ...+ 2c2

..

..

..

p(n) = (n!)cn

Then fseq(0) = {c0, c1, 2c2, ..., (n!)cn}; while for x = ∞ fseq(∞) has no
sign variations, since each member has the sign of cn. Hence number of
positive roots = number between 0 and ∞ = Var{fseq(0)}-Var{fseq(∞)}-2λ
= Var{ci}-0-2λ. QED.

3.2 Budans’s Theorem

This theorem is the basis of the important Vincent’s theorem. It is equiv-
alent to Fourier’s theorem, but leads in a different direction. It states (see
Budan 1807):-
THEOREM 3.2.1 Suppose in a real equation p(x) = 0 we make two dis-
tinct substitutions x = α + x′ and x = β + x′′, where α and β are real and
α < β, giving equations A(x′) =

∑

aix
i = 0 and B(x′′) =

∑

bix
i = 0.

Then
(i) Var{ai} ≥ Var{bi}
(ii) The number of real roots of p(x) = 0 between α and β = Var{ai} -

3.3. Vincent’s Theorem 55

Var{bi} - 2λ,
where as usual λ = an integer ≥ 0

To see that this is equivalent to Fourier’s theorem note that the coefficients

ai = p(i)(α)
i! (by Taylor’s theorem). Thus Var{ai} = Var{fseq(α)} and

similarly for β and bi.

3.3 Vincent’s Theorem

This theorem, first published in Vincent (1836), leads to a relatively efficient
method for isolating the real roots of a real polynomial. Now in a computer
only rational numbers can be stored, and we can multiply a polynomial with
rational coefficents by the least common multiplier of their denominators to
give integer coefficients. We may then work with exact integer arithmetic to
give rational bounds on real (possibly irrational) roots, thus avoiding prob-
lems with rounding error endemic in floating point calculations.

As background let us look at Descartes’ rule again: it gives the exact
number of roots only in two special cases:-
(i) If there are no variations, there is no positive root.
(ii) if there is one sign variation, there is exactly one positive root.

The converse of (i) is true according to:
LEMMA 3.3.1 (Stodola). If p(x) = cnx

n + ... + c0 (ci real, cn > 0) has
only roots with negative real parts, then Var{ci} = 0
PROOF Let -αi (i=1,...,k) be the real roots, and let −γm ± iδm (m =
1, 2, ..., s) be the complex roots, where αi and γm > 0, all i,m. Then p(x)
can be written as the product cn

∏k
i=1(x+αi)

∏s
m=1([x+ γm]2 + δ2m), where

all the factors have positive coefficients, hence all ci > 0, i.e. Var{ci} = 0.

The converse of (ii) is not true in general, as we see from the counter- ex-
ample x3 − 2x2 + x− 2 = (x− 2)(x− i)(x+ i) which has one positive root
but 3 variations of sign.
However, under certain special conditions the converse of (ii) IS true, namely:

LEMMA 3.3.2 (Akritas and Danielopoulos 1985). Let p(x) be a real poly-
nomial of degree n, with simple roots, having one positive root ξ and n-1
roots ξ1, ..., ξn−1 with negative real parts, these roots being of the form

56 3. Real Roots by Continued Fractions

ξj = −(1 + αj) with |αj | < ǫ = (1 + 1
n)

1
n−1 − 1. Then p(x) has exactly

one sign variation.
PROOF see Akritas (1989) or paper referred to above.

THEOREM 3.3.3 (Vincent 1836). If in a polynomial p(x) with rational
coefficients we make successive transformations

x = a1 +
1

x′
, x′ = a2 +

1

x′′
, x′′ = a3 +

1

x′′′
, etc

where a1 is an arbitrary non-negative integer and a2, a3, ... are arbitrary
positive integers, then eventually the transformed equation has either zero
or one sign variation. If one, the equation has exactly one positive root given
by the continued fraction

a1 +
1

a2 + 1
a3+...

If zero, it has no positive roots.
PROOF-see Vincent’s paper.

3.4 Akritas’ Improvement of Vincent’s Theorem

Vincent’s theorem was apparently forgotten until 1948 when Uspensky ex-
tended it to give a bound on the number of transformations required to give
one or zero sign variation(s). Akritas (1978) corrected Uspensky’s proof.

THEOREM 3.4.1 let p(x) be a polynomial of degree n with rational coef-
ficients and simple roots, and let ∆ > 0 be the minimum distance between
any two roots. Let m be the smallest integer such that

Fm−1
∆

2
> 1 and Fm−1Fm∆ > 1 +

1

ǫn
(3.1)

where the Fm are the Fibonacci numbers given by

Fm+1 = Fm + Fm−1 (F1 = F2 = 1) (3.2)

and

ǫn = (1 +
1

n
)

1
n−1 − 1 (3.3)

3.4. Akritas’ Improvement of Vincent’s Theorem 57

Let ai be as in Theorem 3.3.3. then the transformation

x = a1 +
1

a2 + ...+ 1
am+ 1

ξ

(3.4)

transforms p(x) into p̂(ξ) which has 0 or 1 sign variation.

PROOF We need to show that the real parts of all complex roots and
all real roots, except at most one, become negative. Then the theorem
follows by Lemmas 3.3.1 and 3.3.2. Now let pk

qk
be the k’th convergent to

the continued fraction in 3.4 (see Appendix for some definitions and proofs
regarding continued fractions, especially equations 3.35 and 3.36). Then for
k ≥ 0, (with p0 = 1, p−1 = 0, q0 = 0, q−1 = 1) we have

pk+1 = ak+1pk + pk−1

qk+1 = ak+1qk + qk−1 (3.5)

From q1 = 1 and q2 = a2 ≥ 1 (and ak ≥ 1) we have

qk ≥ Fk (3.6)

Also 3.4 can be written

x =
pmξ + pm−1

qmξ + qm−1
(3.7)

(by 3.39 with x in place of ξ and ξ in place of ξn)
and so

ξ = −pm−1 − qm−1x

pm − qmx
(3.8)

Hence, if x0 is a root of p(x) = 0, then ξ0 given by 3.8 with x0 in place of x
is a root of p̂(ξ) = 0.
1) Suppose x0 is complex = a+ib (b 6= 0). Then

Re(ξ0) = −Re
[

(pm−1 − qm−1a) − iqm−1b

pm − qma− iqmb

]

= −Re
[{(pm−1 − qm−1a) − iqm−1b}{(pm − qma) + iqmb}

{(pm − qma) − iqmb}{(pm − qma) + iqmb}

]

= −
[

(pm−1 − qm−1a)(pm − qma) + qm−1qmb
2

(pm − qma)2 + q2mb
2

]

(3.9)

58 3. Real Roots by Continued Fractions

This will be negative if

(pm−1 − qm−1a)(pm − qma) ≥ 0 (3.10)

but what if this quantity is < 0 ?
Well, then a lies between pm−1

qm−1
and pm

qm
, whose diference in absolute value is

|pm−1qm−pmqm−1|
qm−1qm

= |(−1)m|
qm−1qm

= 1
qm−1qm

(see Appendix, theorem A1, part

1).
Hence

∣

∣

∣

∣

pm−1

qm−1
− a

∣

∣

∣

∣

and

∣

∣

∣

∣

pm

qm
− a

∣

∣

∣

∣

are both <
1

qm−1qm
(3.11)

and so

|(pm−1 − aqm−1)(pm − aqm)| < 1

qm−1qm
≤ 1 (3.12)

Consequently

Re(ξ0) < 0 if qm−1qmb
2 > 1 (3.13)

But by definition of ∆, |(a + ib) − (a − ib)| = |2ib| = 2|b| ≥ ∆, and the
conditions of the theorem give

qm−1|b| ≥ qm−1
∆

2
≥ Fm−1

∆

2
(by 3.6) > 1 (by 3.1)

Moreover qm ≥ qm−1 (by 3.5), so also qm|b| > 1
Finally

qm−1qmb
2 > 1 (3.14)

so Re(ξ0) < 0

2) Suppose x0 is a real root. Suppose that for all real roots xi we have

(pm−1 − qm−1xi)(pm − qmxi) > 0 (3.15)

Then by 3.8 all real roots of p̂(ξ) are < 0, while from 1) all the complex
roots of p̂(ξ) have negative real parts. Hence by Lemma 3.3.1, p̂(ξ) has no
sign variations.

Now suppose on the other hand that 3.15 is not true. Then x0 lies between
pm−1

qm−1
and pm

qm
, and hence as in 3.11,

∣

∣

∣

∣

pm

qm
− x0

∣

∣

∣

∣

≤ 1

qm−1qm
(3.16)

3.4. Akritas’ Improvement of Vincent’s Theorem 59

Also by 3.8 ξ0 is > 0
Let xk (k 6= 0) be another root (real or complex) of p(x) = 0, and ξk the
corresponding root of p̂(ξ) = 0. Then using 3.8

ξk +
qm−1

qm
= −

(

pm−1 − qm−1xk

pm − qmxk

)

+
qm−1

qm

=
−pm−1qm + qm−1pm + (qm−1qm − qm−1qm)xk

qm(pm − qmxk)
=

(−1)m

qm(pm − qmxk)
(3.17)

Hence

ξk = −(
qm−1

qm
)

[

1 − (−1)m

qm−1qm(pm

qm
− xk)

]

=

−qm−1

qm
(1 + αk) (3.18)

where

αk =
(−1)m−1

qm−1qm(pm

qm
− xk)

(3.19)

But |pm

qm
−xk| = |pm

qm
−x0 +x0−xk| ≥ |x0−xk|− |pm

qm
−x0| ≥ ∆− 1

qm−1qm

(by 3.16) = (qm−1qm∆−1
qm−1qm

) >

(Fm−1Fm∆ − 1)

qm−1qm
> 0 by 3.1 (3.20)

Hence |αk| ≤ 1
qm−1qm∆−1 ≤ 1

Fm−1Fm∆−1 , and then by 3.1

|αk| < ǫn ≤ 1

2
(3.21)

So ξk = −(qm−1

qm
)(1 + αk) all have negative real parts. Thus p̂(ξ) has

one positive roots and all other roots have negative real parts satisfying
conditions of Lemma 3.3.2, so p̂(ξ) must have exactly one sign variation.
See Akritas (1989) p369 for the case where the LHS of 3.15 = 0 exactly.

60 3. Real Roots by Continued Fractions

3.5 Applications of Theorem 3.4.1

If p̂(ξ) = 0 has only one variation of signs, then it has only one positive
root ξ′, i.e. 0 < ξ′ < ∞. Thus substituting 0 and ∞ in 3.7 we see that
the corresponding x′ must lie between pm−1

qm−1
and pm

qm
. This is usually a very

narrow range of values, giving a good starting range for approximating the
root x′ (by the same or different method).

The process must be repeated for each positive root of p(x) = 0 (see
section 7). Also, for negative roots we replace x by -x in p(x) and proceed
as before.

3.6 Complexity of m

m is the smallest index such that both parts of 3.1 hold. Suppose the first
one fails for m-1, i.e.

Fm−2
∆

2
≤ 1 (3.22)

now for large m, Fk ≈ 1√
5
φk whre φ = 1+

√
5

2 = 1.618

Hence φm−2 ≤ 2
√

5
∆ , hence (m− 2) ≤ logφ(2

√
5

∆), i.e.

m ≤ 2 + logφ2 +
1

2
logφ5 − logφ∆ (3.23)

But (see Akritas 1989, sec 7.2.4 or Mahler 1964)

∆ ≥
√

3n−
n+2

2 |p(x)|−(n+1)
1 (3.24)

i.e.

logφ∆ ≥ 1

2
logφ3 − n+ 2

2
logφn− (n+ 1)logφ|p(x)|1 (3.25)

Combining 3.23 and 3.25 and using L(|p(x)|1) ≈ L(|p(x)|∞) gives

m = O{nL(n) + nL(|p(x)|∞)} (3.26)

But usually L(n) = O(1) so we get

m = O{nL(|p(x)|∞)} (3.27)

in the above L(x) means “ the number of bits in x” or log2(x), and

|p(x)|∞ = Max0≤i≤n|ci| (3.28)

3.7. Choice of the ai 61

while

|p(x)|1 =
∑

i=0..n

|ci| ≤ n|p(x)|∞ (3.29)

3.7 Choice of the ai

Vincent used a very simple method, i.e. he took ai = 1, applying x = 1+y
repeatedly until he detected a change in sign variation. Unfortunately this
takes a very long time if the smallest positive root is very large.

Akritas (see e.g. his book and several papers) uses a much more efficient
method– he takes ai = b = lower bound on positive roots of some interme-
diate p̂(ξ). This is the same as finding an upper bound on roots of p̂(1

ξ).
This can be done e.g. by Cauchy’s rule (see section 8). Then he makes the
transformation x = b+ 1

y and repeats the process for the next ai

Rosen and Shallit (1978) use Newton’s method to find ai as the largest
integer ≤ the smallest positive root of p̂(ξ). They start with an initial ap-
proximation of 1, and find the root with an error ≤ .5, rounding the estimate
to the nearest integer t. Then they test t-1, t, t+1 to see which is really
[root]. The rest as before.

It is not clear whether Akritas’ or Rosen and Shallit’s method is more
efficient, or which is most robust (Newton’s method is liable to diverge).

The literature does not appear to explain how we get the second, third,
etc., roots, but we think it can be done as follows. When the lowest positive
root of p(x) has been isolated between pm

qm
and pm−1

qm−1
, we let β = maximum

of these two values. Then in the original p(x) make the transformation
x = β + y to give p(y). This polynomial will have the second lowest
positive root of p(x) as its smallest positive root. We then apply the usual
procedure to p(y), and so on until all the positive roots are obtained.

When isolating intervals have been found for all the real roots, we may
approximate them as accurately as required by continuing the processs until
|ph

qh
− α| ≤ 1

qh−1qh
≤ required error.

62 3. Real Roots by Continued Fractions

3.8 Cauchy’s Rule

(For details of this see Obreschkoff 1963 pp50-51).

THEOREM 3.8.1 Let p(x) = xn+cn−1x
n−1+...+c1x+c0 with cn−k < 0

for at least one k, and let λ be the number of its negative cn−k. Then

b = Max1≤k≤n:cn−k<0{|λcn−k|
1
k } (3.30)

PROOF. Clearly bk ≥ λ|cn−k| for each k with cn−k < 0,
i.e. bn ≥ λ|cn−k|bn−k

Summing over these k gives λbn ≥ ∑

cn−k<0 λ|cn−k|bn−k

Hence in p(b) we have that positive bn ≥ sum of absolute values of negative
terms. Thus if x increases above b, the positive term(s) increase at a greater
rate than the negative terms, so p(x) 6= 0 for x > b, i.e. b is an upper bound
on the largest root.

Akritas gives an efficient way of computing b (e.g. see his book pp350-
351), and shows that its time-complexity is O{n2L(|p(x)|∞)}

3.9 Appendix to Chapter 3. Continued Fractions

Given a rational fraction a0
a1

in lowest terms, and a1 > 0, we may apply
the Euclidean Algorithm to give

a0 = a1c0 + a2 (0 < a2 < a1)

a1 = a2c1 + a3 (0 < a3 < a2)

...

...

ai = ai+1ci + ai+2 (0 < ai+2 < ai+1) (3.31)

...

...

ak−1 = akck−1

i.e. the process stops when ak+1 = 0, as it eventually must by 3.31.

3.9. Appendix to Chapter 3. Continued Fractions 63

Letting ξi = ai

ai+1
, 3.31 may be written

ξi = ci +
1

ξi+1
(3.32)

Thus ξ0 = c0 + 1
ξ1

= c0 + 1
c1+

1
ξ2

= ... =

c0 +
1

c1 + 1
c2+

1

....+ 1

ck−2+ 1
ck−1

(3.33)

which is the continued fraction expansion of a0
a1

. The ci are called partial
quotients. Note that c0 may have any sign, but the other ci > 0.

EXAMPLE Consider 13
8 . We have 13 = 8 × 1 + 5; 8 = 5 × 1 + 3; 5 =

3 × 1 + 2; 3 = 2 × 1 + 1; 2 = 1 × 2 + 0. Thus, all ci = 1, except the last
one, which = 2. Hence 8

5 = 1 + 1
1+ 1

1+ 1
2

. The last ck−1 (2) may be replaced

by 1 + 1
1 .

Akritas (book, p 46) shows that if we take ck−1 > 1 the expansion is
unique.

An irrational number ξ may be expressed by an infinite continued fraction
with the ci defined by ξ0 = ξ, c0 = [ξ0], ξ1 = 1

ξ0−c0
, ...,

ξi+1 =
1

ξi − ci
, where ci = [ξi], i = 1, 2, ... (3.34)

Defining

p−2 = 0, p−1 = 1, pi = cipi−1 + pi−2 (i = 0, 1, 2, ...),

q−2 = 1, q−1 = 0, qi = ciqi−1 + qi−2 (i = 0, 1, 2, ...) (3.35)

the continued fraction in 3.33, with k-1 = n, has the value

rn =
pn

qn
, (pn, qn) = 1 (3.36)

This is called the n’th convergent to ξ. Since ci ≥ 1 (i ≥ 1)and q0 =
1, q1 ≥ 1, we have

qi > qi−1 (i ≥ 2) (3.37)

64 3. Real Roots by Continued Fractions

If we replace ck−1 = cn in 3.33 by the infinite continued fraction

ξn = cn +
1

cn+1 + 1
...

(3.38)

then we have

ξ =
pn−1ξn + pn−2

qn−1ξn + qn−2
(3.39)

THEOREM A1. Let rn = pn

qn
be the n’th convergent to a finite or

infinite continued fraction expansion of ξ. Then
1)pnqn−1 − pn−1qn = (−1)n−1 (n = 1, 2, ...)

2)rn − rn−1 = (−1)n−1

qn−1qn
(n = 1, 2, ...)

3)rn − rn−2 = (−1)n−2 cn

qnqn−2
(n = 2, 3, ...)

4)For even n, rn → ξ (and rn increasing)
For odd n rn → ξ (and rn decreasing)
r2n < r2n−1 all n, rn lies between rn−1 and rn−2

PROOF 1) For n = 1, by 3.35, p1q0 − p0q1 = (c1p0 + p−1)q0 − (c0p−1 +
p−2)q1 = (c1c0 + 1)(1) − (c01 + 0)(c11 + 0) = 1
Assume true for k, i.e. pkqk−1 − pk−1qk = (−1)k−1

then pk+1qk − pkqk+1 = (ck+1pk + pk−1)qk − pk(ck+1qk + qk−1) =
−(pkqk−1 − pk−1qk) = (−1)k, i.e. the result is true for k+1.
Hence, by induction 1) is true for all k.

2) Divide 1) by qnqn−1 to give pn

qn
− pn−1

qn−1
= (−1)n−1

qnqn−1
and the result follows

by definition of rn.

3) rn − rn−2 = pn

qn
− pn−2

qn−2
= (pnqn−2−pn−2qn)

qnqn−2

= (cnpn−1+pn−2)qn−2−pn−2(cnqn−1+qn−2)
qnqn−2

= cn(pn−1qn−2−pn−2qn−1)
qnqn−2

= (−1)n−2cn

qnqn−2
. i.e. the result is proved.

4) By 3) r2n+2 − r2n = (−1)2nc2n

qnqn−2
> 0, i.e. r2n < r2n+2 or r2n > r2n−2

Similarly r2n−1 > r2n+1

By 2) r2n − r2n−1 = (−1)2n−1

q2n−1q2n
< 0 i.e. r2n−1 > r2n

Thus the sequence {r2n} is increasing and bounded above by r1 (for r2n <
r2n−1 < r2n−3 < ... < r3 < r1); hence it tends to a limit. Similarly

3.10. References for Chapter 3 65

{r2n+1} → a limit. But |r2n − r2n−1| → 0 as n→ ∞ by 2) and the fact that
the qn are increasing as n → ∞. Hence the two limits must be the same.
Also we have shown that r2n > r2n−2 and r2n−1 > r2n, i.e. with n even,
rn lies between rn−2 and rn−1. We can show the same result for n odd.

THEOREM A2. Let ξ be an irrational number, and

c0 +
1

c1 + 1
c2+....+cn−1+

1
ξn

be its continued fraction expansion, where ξn is given by 3.38.
Then 1) Each rn is nearer to ξ than rn−1.
2) 1

2qn+1qn
< |ξ − pn

qn
| < 1

qn+1qn
< 1

q2
n
.

PROOF 1) By 3.39 ξ = (pn−1ξn+pn−2)
(qn−1ξn+qn−2)

Hence ξn(ξqn−1 − pn−1) = −(ξqn−2 − pn−2)
Hence (dividing by ξnqn−1) |ξ − pn−1

qn−1
| = | qn−2

ξnqn−1
||ξ − pn−2

qn−2
|

But ξn > 1, qn−1 > qn−2, hence 0 < | qn−2

ξnqn−1
| < 1

Hence |ξ − pn−1

qn−1
| < |ξ − pn−2

qn−2
|

2) From 2) of Theorem A1 we have |rn+1−rn| = 1
qn+1qn

, and from 1) above

ξ is closer to rn+1 than to rn; hence 1
2qn+1qn

< |ξ − pn

qn
| < 1

qn+1qn
< 1

q2
n

3.10 References for Chapter 3

Akritas, A.G. (1978), A correction on a theorem by Uspensky, Bull. Greek.
Math. Soc. 19, 278-285

Akritas, A.G. (1989), Elements of Computer Algebra with Applications,
Wiley, New York.

Akritas, A.G. and Danielopoulos, S.D. (1985), A converse rule of signs for
polynomials, Computing 34, 283-286

Bartolozzi, M. and Franci, R. (1993), La regola dei segni dall’enunciato di
R. Descartes..., Arch. Hist. Exact Sci. 45, 335-374

66 3. Real Roots by Continued Fractions

Budan, F. (1807), Nouvelle Méthode pour la Résolution des Équations d’un
Degré Quelconque 2/E, Paris, (1822)

Fourier, J. (1820), Le bulletin des sciences par la Societe philomatique de
Paris.

Mahler, K. (1964), An inequality for the discriminant of a polynomial,
Michigan Math. J. 11, 257-262

Obreschkoff, N. (1963), Verteilung und Berechnung der Nullstellen reeller
Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin

Rosen, D. and Shallit, J. (1978), A Continued Fraction Algorithm for Ap-
proximating all Real Polynomial Roots, Math. Mag. 51, 112-116

Uspensky, J.V. (1948), Theory of Equations, McGraw-Hill, New York.

Vincent (1836), Sur la résolution des équations numériques, J. Math. Pures
Appl. 1, 341-372

Chapter 4

Simultaneous Methods

4.1 Introduction and Basic Methods

Until the 1960’s all known methods for solving polynomials involved finding
one root at a time, say ζi, and deflating (i.e. dividing out the factor x-αi).
This can lead to problems with increased rounding errors, and unlike the
simultaneous methods described in this chapter, does not lend itself to par-
allel computing.

The first-to-be-discovered and simplest method of this class of simulta-
neous methods is the following:

z
(k+1)
i = z

(k)
i − P (z

(k)
i)

∏n
j=1, 6=i(z

(k)
i − z

(k)
j)

(i = 1, ..., n; k = 0, 1, ...) (4.1)

where z
(0)
i is some initial guess. The various z

(k+1)
i can be formed inde-

pendently or in parallel. This formula was first mentioned by Weierstrass
(1903) in connection with the Fundamental Theorem of Algebra. It was
re-discovered by Ilieff (1948), Docev (1962), Durand (1960), Kerner (1966),
and others. We shall call it the WDK method. A straightforward evaluation
of 4.1, with P(z) computed by Horner’s method, requires about 2n2 complex
multiplications and 2n2 additions or subtractions. However Werner (1982)
describes a computational scheme which needs only 1

2n
2 multiplications, 1

2n
2

divisions, and 2n2 additions/subtractions.

Aberth (1973) gives a simple derivation of 4.1 as follows: let zi and
ẑi = zi + ∆zi be old and new approximations to the roots ζi. Ideally, we

67

68 4. Simultaneous Methods

would like ẑi to equal ζi, so

P (z) =
n
∏

i=1

(z − [zi + ∆zi]) = (4.2)

n
∏

k=1

(z − zk) −
n
∑

i=1

∆zi

n
∏

k=1, 6=i

(z − zk) +O(∆z2
i) (4.3)

Neglecting powers (and products) of ∆zi higher than the first, setting z =
z1, z2, ..., zn in turn, and solving for ∆zi gives

∆zi =
−P (zi)

∏n
k=1, 6=i(zi − zk)

(4.4)

which leads to 4.1 when iterated. Semerdzhiev (1994) also derives the WDK
method by solving a differential equation.

Besides the advantage of lending itself to parallel computation, the WDK
method is much more robust than e.g. Newton’s method, i.e. it nearly
always converges, no matter what the initial guess(es). Experiments by
Semerdhiev (1994) found it to converge for all but 4 out of 4000 random
polynomials. He observes that “after slight changes in the initial approxima-
tions the process becomes a convergent one”. Similarly Docev and Byrnev
(1964) find convergence in all but 2 out of 5985 cases. Again, perturbations
result in convergence. For n=2, Small (1976) proves that the method al-
ways converges except for starting points on a certain line. It is conjectured
that a similar situation is true for all n (although this is not proved so far).
However we shall see in Section 2 that various conditions on the starting
approximations and the polynomial values at these points will guarantee
convergence.

Hull and Mathon (1996) prove that convergence is quadratic for simple
roots. For we have

ẑi − ζi = zi + ∆zi − ζi = zi − ζi − (zi − ζi)
n
∏

k=1, 6=i

zi − ζk
zi − zk

; (4.5)

let

ǫ = max1≤i≤n|zi − ζi| (4.6)

4.1. Introduction and Basic Methods 69

and note that

zi − ζk
zi − zk

= 1 +
zk − ζk
zi − zk

(4.7)

Now if ζi is a simple root, then for small enough ǫ |zi − zk| is bounded away
from zero, and so

zi − ζk
zi − zk

= 1 +O(ǫ) (4.8)

and

n
∏

k=1, 6=i

zi − ζk
zi − zk

= (1 +O(ǫ))n−1 = 1 +O(ǫ) (4.9)

Hence

ẑi − ζi = (zi − ζi)(1 − (1 +O(ǫ)) = O(ǫ2) (4.10)

Other authors, such as Niell (2001) and Hopkins et al (1994) give more
complicated proofs of quadratic convergence. In fact, Hopkins shows that if

|| z(0) − ζ|| ≤ 4
1

n−1 − 1

2 ∗ 4
1

n−1 + 1
δ (4.11)

where

δ = min(|ζi − ζj|, i, j = 1, ..., n, i 6= j) (4.12)

and ζ is the vector (ζ1, ζ2,, ζn), then the iterates converge, and

limk→∞
|| z(k+1) − ζ||
|| z(k) − ζ||2 ≤ n− 1

δ
(4.13)

An alternative derivation of the WDK formula, used by Durand and
Kerner, is to note that the roots satisfy

n
∑

i=1

ζi = −cn−1/cn,
n
∑

i=1

∑

k>i

ζiζk = cn−2/cn, etc (4.14)

and apply Newton’s method for systems, giving a set of linear equations for
the ∆zi. The first of these is

n
∑

i=1

∆zi +
n
∑

i=1

zi = −cn−1/cn (4.15)

70 4. Simultaneous Methods

i.e.
∑

ẑi = −cn−1/cn (4.16)

Thus the sum of approximations in each iteration (except the first) remains
constant and equal to the sum of the true roots. The above proof is due to
Hull, but Kjelberg (1984), Niell, and Hopkins give alternative proofs. This
fact is used by Small to eliminate one of the zi in the case of n = 2, and
Kjellberg uses it to explain the observation that approximations towards
a multiple root tend to be grouped uniformly on a circle around that root,
thus: “...the approximations converging towards the simple zeros reach their
goals comparatively quickly,..., and do not then contribute to any difference
between the centres of gravity of the zeros and the approximations. The
approximations converging towards the multiple zero must then have their
centre of gravity equal to the multiple zero, and therefore be grouped around
it”. (More about this in Section 3).

Another method, apparently discovered by Borsch-Supan (1963), and
also described by Ehrlich (1967) and Aberth (1973), is as follows:

z
(k+1)
i = z

(k)
i − 1

P ′(z
(k)
i

)

P (z
(k)
i

)
−∑n

j=1, 6=i
1

z
(k)
i

−z
(k)
j

(4.17)

Aberth derives it as follows: let

Ri(z) =
P (z)

∏

j 6=i(z − zj)
(4.18)

and apply Newton’s method to Ri(z) at zi. Now

R′
i(z) =

P ′(z)
∏n

j=1, 6=i(z − zj) − P (z)
∑n

j=1, 6=i

∏n
l=1, 6=i, 6=j(z − zl)

(
∏n

l=1,6=i(z − zl))2
(4.19)

Then Newton’s formula gives:

Ri(zi)

R′
i(zi)

=
N

D

where

N =
P (zi)

∏n
j=1, 6=i(zi − zj)

D =

4.1. Introduction and Basic Methods 71

(

P ′(zi)
∏n

j=1, 6=i(zi − zj) − P (zi)
∑n

j=1, 6=i

∏n
l=1,6=i, 6=j(zi − zl)

)

(
∏n

l=1,6=i(zi − zl))2
(4.20)

leading to 4.17. Aberth, Ehrlich, and Farmer and Loizou (1975) have proved
that the above method has cubic convergence for simple roots.

Simeunovic (1989) describes a variation

z
(k+1)
i = ai −

1
P ′(ai)
P (ai)

−∑n
j=1, 6=i

1

ai−z
(k)
j

(4.21)

where the ai are constants chosen to be fairly close to the roots (assumed
real and distinct). He gives some elaborate conditions for convergence. It is
possible that this method may be more efficient than the standard Aberth
method.

Borsch-Supan (1970) and Nourein (1975) give the formula

z
(k+1)
i = z

(k)
i −

P (z
(k)
i)/

∏n
j=1, 6=i(z

(k)
i − z

(k)
j)

1 +
∑n

j=1, 6=i

P (z
(k)
j

)/
∏n

l=1, 6=j
(z

(k)
j

−z
(k)
l

)

z
(k)
i

−z
(k)
j

(4.22)

This method also has cubic convergence. Again, Werner gives an efficient
way of evaluating the formula 4.22 which requires only n2

2 multiplications
and 3

2n
2 divisions.

In (1977a) Nourein gives an improvement of the above, which may be sum-
marized as

z
(k+1)
i = z

(k)
i − Wi

1 +
∑n

j=1, 6=i
Wj

z
(k)
i

−Wi−z
(k)
j

(4.23)

where

Wi =
P (z

(k)
i)

∏n
j=1, 6=i(z

(k)
i − z

(k)
j)

(4.24)

is the WDK correction term. This has fourth order convergence. It requires
about the same work as 4.22, or about the same amount as two WDK iter-
ations, which together give order 4.

72 4. Simultaneous Methods

Similarly in (1977b) Nourein gives the “Improved Durand-Kerner Method”:

z
(k+1)
i = z

(k)
i − P (z

(k)
i)

∏n
j=1, 6=i(z

(k)
i − z

(k)
j +Wj)

(4.25)

which is third order, and the “Improved Ehrlich-Aberth Method”:

z
(k+1)
i = z

(k)
i − 1

P ′(z
(k)
i

)

P (z
(k)
i

)
−∑n

j=1,6=i
1

z
(k)
i

−z
(k)
j

+
P (z

(k)
j

)

P ′(z
(k)
j

)

(4.26)

which is of fourth order.

The book by Petkovic (1989B) gives many more details of the above and
other methods.

4.2 Conditions for Guaranteed Convergence

As mentioned above, the WDK method seems in practice to converge from
nearly all starting points. (Kjurkchiev (1998) gives conditions for NON-
convergence of the WDK and several other methods). However this be-
haviour has not been proved, except for n = 2. It is desirable to have
conditions under which convergence is guaranteed, and several authors, no-
tably Petkovic and his colleagues, have described such conditions, for various
methods. In fact Petkovic and Herceg (2001) proceed as follows:

Let W
(k)
i =

P (z
(k)
i)

∏n
j=1, 6=i(z

(k)
i − z

(k)
j)

(i = 1...n, k = 0, 1, ...) (4.27)

w(0) = Max1≤i≤n|W (0)
i |, (4.28)

and

d(0) = Minj 6=i|z(0)
i − z

(0)
j | (4.29)

Conditions for safe convergence are found as

w(0) ≤ cnd
(0) (4.30)

where cn depends on n and some constant(s). Note that a large cn enables
a larger value of w(0), i.e. initial guesses further from the roots.

4.2. Conditions for Guaranteed Convergence 73

Most simultaneous methods can be expressed as

z
(k+1)
i = z

(k)
i − Ci(z

(k)
1 , ..., z(k)

n) (4.31)

where

Ci =
P (z

(k)
i)

Fi(z
(k)
1 , ..., z

(k)
n)

(4.32)

and Fi(z1, ..., zn) 6= 0 for zi = ζi (roots of P) or zi distinct. Define

g(t) = 1 + 2t, 0 < t ≤ 1/2; = 1/(1 − t), 1/2 < t < 1 (4.33)

They state a theorem, which we will number as (4.2.1):
THEOREM 4.2.1
“Let an iterative method be defined as above, and let z

(0)
i (i= 1,...,n) be

initial approximations to the roots of P. If there exists β ∈ (0, 1) such that

(i) |C(k+1)
i | ≤ β|C(k)

i | (k = 0, 1, ...) (4.34)

(ii) |z(0)
i − z

(0)
j | > g(β)(|C(0)

i | + |C(0)
j |)(i 6= j, i, j = 1, ..., n) (4.35)

then the method converges”

Proof: see Petkovic, Herceg and Ilic (1998)

Analysis of convergence is based on Theorem 4.2.1 and the following
relations named (W-D) etc:

(W −D) : w(0) ≤ cnd
(0)

(already mentioned)

(W −W) : |W (k+1)
i | ≤ δn|W (k)

i | (i = 1, ..., n; k = 0, 1, ...) (4.36)

(C − C) : |C(k+1)
i | ≤ βn|C(k)

i | (i = 1, ..., n; k = 0, 1, ...) (4.37)

(C −W) : |C(k)
i | ≤ λn

|W (k)
i |
cn

(i = 1, ..., n; k = 0, 1, ...) (4.38)

where δn, βn, λn are > 0 and depend only on n. cn must be chosen so that

δn < 1 (4.39)

74 4. Simultaneous Methods

and hence W
(k)
i converges to 0. This will imply (by 4.31 and 4.38) that

|z(k+1)
i − z

(k)
i | → 0 (4.40)

and hence z
(k)
i → ζi (for then P (Lim z

(k)
i) = 0).

Also the choice of cn must provide that

βn < 1 (4.41)

and

λn <
1

2g(βn)
(4.42)

and 4.38. For if 4.42 and 4.38 are both true then |z(0)
i − z

(0)
j | ≥ d(0) (by

4.29) ≥ w(0)

cn
(by 4.30) ≥ |W (0)

i
|+|W (0)

j
|

2cn
(by 4.28) ≥ |C(0)

i
|+|C(0)

j
|

2λn
(by 4.38)

≥ g(βn)(|C(0)
i |+ |C(0)

j |) (by 4.42) which is (ii) of our theorem 4.2.1. Finally
we must also prove 4.37 (which is the same as 4.34 i.e. (i) of theorem 2.1)

subject to 4.41: this will ensure that |C(m)
i | → 0, i.e. convergence of

whatever method we are considering. We will need
Lemma 4.2.2 For distinct numbers z1, ..., zn, ẑ1, ..., ẑn let

d = Min1≤i,j≤n;i6=j|zi − zj |, d̂ = Min|ẑi − ẑj| (4.43)

and assume

|ẑi − zi| ≤ λnd (i = 1, ..., n) (4.44)

Then

|ẑi − zj | ≥ (1 − λn)d (4.45)

|ẑi − ẑj | ≥ (1 − 2λn)d (4.46)

and
∣

∣

∣

∣

∣

∣

∏

j 6=i

ẑi − zj
ẑi − ẑj

∣

∣

∣

∣

∣

∣

≤ (1 +
λn

1 − 2λn
)n−1 (4.47)

PROOF

|ẑi − zj | = |zi − zj + ẑi − zi| ≥

4.2. Conditions for Guaranteed Convergence 75

|zi − zj | − |ẑi − zi| ≥ d− λnd = (1 − λn)d

|ẑi − ẑj | = |zi − zj + ẑi − zi + zj − ẑj | ≥

|zi − zj | − |ẑi − zi| − |ẑj − zj | ≥

d− λnd− λnd = (1 − 2λn)d

Also
∣

∣

∣

∣

∣

∣

∏

j 6=i

ẑi − zj
ẑi − ẑj

∣

∣

∣

∣

∣

∣

=
∏

j 6=i

∣

∣

∣

∣

∣

(

1 +
ẑj − zj
ẑi − ẑj

)∣

∣

∣

∣

∣

≤
∏

j 6=i

(

1 +
|ẑj − zj|
|ẑi − ẑj|

)

≤

∏

(

1 +
λnd

(1 − 2λn)d

)

=

(

1 +
λn

1 − 2λn

)n−1

Q.E.D.

In the case of the WDK method

C
(k)
i = W

(k)
i , i.e. Fi =

∏

j 6=i

(zi − zj) (4.48)

Below we will denote z
(k)
i etc just by zi etc and z

(k+1)
i etc by ẑi etc. Also

w = Max|W (k)
i | and ŵ = max |W (k+1)

i |. We need another lemma, namely
LEMMA 4.2.3. Let

w ≤ cnd (4.49)

cn ∈ (0, 0.5) (4.50)

δn ≤ 1 − 2cn (4.51)

where δn is defined as

(n− 1)cn
1 − cn

(

1 +
cn

1 − 2cn

)n−1

(4.52)

Then

|Ŵi| ≤ δn|Wi| (4.53)

and

ŵ ≤ cnd̂ (4.54)

76 4. Simultaneous Methods

PROOF Let λn = cn. We have

|ẑi − zi| = |Wi| ≤ w ≤ cnd (4.55)

But this is 4.44 with λn = cn. Hence by Lemma 4.2.2 we have

|ẑi − zj | ≥ (1 − cn)d (4.56)

and

|ẑi − ẑj | ≥ (1 − 2cn)d (4.57)

Now the WDK iteration is ẑi = zi −Wi, leading to

Wi

ẑi − zi
= −1 (4.58)

so
n
∑

j=1

Wj

ẑi − zj
+ 1 =

Wi

ẑi − zi
+
∑

j 6=i

Wj

ẑi − zj
+ 1 =

∑

j 6=i

Wj

ẑi − zj
(4.59)

But Lagrange’s interpolation formula for P(z) based on the points z1, ..., zn
and ∞ gives

P (z) =





n
∑

j=1

Wj

z − zj
+ 1





n
∏

j=1

(z − zj) (4.60)

Letting z = ẑi and using 4.59 we obtain

P (ẑi) = (ẑi − zi)





∑

j 6=i

Wj

ẑi − zj





∏

j 6=i

(ẑi − zj) (4.61)

Dividing by
∏

j 6=i(ẑi − ẑj) gives

Ŵi =
P (ẑi)

∏

j 6=i(ẑi − ẑj)
=

(ẑi − zi)





∑

j 6=i

Wj

ẑi − zj





∏

j 6=i

(

1 +
ẑj − zj
ẑi − ẑj

)

(4.62)

Hence |Ŵi| ≤ |ẑi − zi|
∑

j 6=i
|Wj |

|ẑi−zj |
∏

j 6=i

(

1 +
|ẑj−zj |
|ẑi−ẑj |

)

(by 4.55, 4.56, 4.57)

≤ |Wi|
(n− 1)w

(1 − cn)d

(

1 +
cnd

(1 − 2cn)d

)n−1

4.2. Conditions for Guaranteed Convergence 77

≤ |Wi|
(n− 1)cn

1 − cn

(

1 +
cn

1 − 2cn

)n−1

= δn|Wi| (with δn given by 4.52). This is 4.53.

Now since d̂ = min1≤i,j,≤n;i6=j|ẑi − ẑj | by 4.57 we get

d̂ ≥ (1 − 2cn)d, i.e. (4.63)

d ≤ d̂

1 − 2cn
(4.64)

and hence using 4.51

|Ŵi| ≤ δn|Wi| ≤ δncnd ≤ δncn
1 − 2cn

d̂ ≤ cnd̂

This gives 4.54. Q.E.D.

Now we have

THEOREM 4.2.4 With the assumptions 4.49, 4.50, and 4.51 and

z
(0)
1 , ..., z

(0)
n as initial approximations for which

w(0) ≤ cnd
(0) (4.65)

then the WDK method converges.

PROOF We will take C
(k)
i = W

(k)
i in Theorem 4.2.1 and seek to prove

4.34 and 4.35. Now by 4.54 and 4.65 we conclude that

w(1) ≤ cnd
(1) (4.66)

Similarly w(k) ≤ cnd
(k) implies

w(k+1) ≤ cnd
(k+1) (4.67)

and so by induction 4.67 is true for all k. Hence by 4.53

|W (k+1)
i | ≤ δn|W (k)

i | = βn|W (k)
i | (4.68)

(Note that as Ci = Wi in this case 4.36 and 4.37 are identical i.e. δn = βn

with δn given by 4.52). So 4.34 is true.

78 4. Simultaneous Methods

Similarly to the derivation of 4.57 we can show that |z(k+1)
i − z

(k+1)
j | ≥

(1 − 2cn)d > 0 so that Fi(z
(k)
1 , ..., z

(k)
n) =

∏

i6=j(z
(k)
i − z

(k)
j) 6= 0 in each

iteration, and hence the WDK method is well-defined.

Now βn = δn < 1 by 4.51, i.e. condition 4.41 is true. Then if βn ≥ 1
2 ,

4.42 becomes 1
1−βn

< 1
2λn

which is equivalent to 4.51. If βn < 1
2 , then

4.42 reduces to

1 + 2βn <
1

2λn
, i.e. λn = cn <

1

2(1 + 2βn)
∈ (.25, .5)

which is true by 4.50. Also, λn = cn and C
(k)
i = W

(k)
i (which is 4.38) is

automatically satisfied. Hence 4.35 is true, i.e. by Theorem 4.2.1 the WDK
method converges. Finally, if we take

cn =
1

1.76325n + .8689426
=

1

An+B
(4.69)

we have cn ≤ c3 ≈ 0.16238, so cn ∈ (0, 0.5) i.e. 4.50 is true.

Let us define

ηn =
δn

1 − 2cn
=

(n− 1)cn
(1 − cn)(1 − 2cn)

(

1 +
cn

1 − 2cn

)n−1

(4.70)

But limn→∞
(n−1)cn

1−2cn
= 1

A , limn→∞
1

1−cn
= 1, and

limn→∞

(

1 +
cn

1 − 2cn

)n−1

= limn→∞

(

1 +
1

An

)n

= e
1
A (4.71)

Hence

limn→∞ηn =
1

A
e

1
A < .99998 < 1 (4.72)

and since ηn is monotonically increasing we have δn < 1 − 2cn which is
4.51.
Thus the conditions of Theorem 4.2.4 are satisfied and WDK converges for
those values of A and B.

A slight variation on 4.28 and 4.30 is to write

n
∑

i=1

|W (0)
i | ≤ Ωnd

(0) (4.73)

4.2. Conditions for Guaranteed Convergence 79

where we may take

Ωn = ncn (4.74)

The cn derived in the last several pages (based on Petkovic and Herceg
(2001)) gives

Ω3 = 3c3 = .48712, Ωn ∈ (4cn, limn→∞ncn) = (.50493,
1

A
) ≈

(.505, .567) (n ≥ 4) (4.75)

Earlier authors give lower ranges, e.g. Zhao and Wang (1993) give

Ωn ∈ (.171, .257) (4.76)

and later in Wang and Zhao (1995) they improved this to

Ωn ∈ (.204, .324) (4.77)

while Batra (1998) gave Ωn = .5. It can be shown that Petkovic and
Herceg’s range is the best so far (although not much better than Batra’s).

Petkovic also shows that the Borsch-Supan or Nourein’s method 4.22
converges certainly if

cn =
1

n+ 9/2
(n = 3, 4); =

1

309n/200 + 5
(n ≥ 5) (4.78)

He also points out, quoting Carstensen (1993), that 4.22 and the Ehrlich-
Aberth method 4.17 are mathematically equivalent, so that the same con-
ditions for convergence apply. The proof of this equivalence is as follows:
The Lagrange interpolation formula for P(t) at the points (z1, ..., zn,∞) is

P (t) =





n
∑

j=1

Wj

t− zj
+ 1





n
∏

j=1

(t− zj) (4.79)

Taking the logarithmic derivative of both sides gives

P ′(t)
P (t)

=
∑

j 6=i

1

t− zj
+

∑

j 6=i
Wj

t−zj
+ 1 − (t− zi)

∑

j 6=i
Wj

(t−zj)2

Wi + (t− zi)
(

∑

j 6=i
Wj

t−zj
+ 1

) (4.80)

Setting t = zi gives

P ′(zi)
P (zi)

=
∑

j 6=i

1

zi − zj
+

∑

j 6=i
Wj

zi−zj
+ 1

Wi
(4.81)

80 4. Simultaneous Methods

from which the stated equivalence follows.

4.3 Multiple Roots

Most methods, such as Newton’s and the WDK method, converge only lin-
early to multiple roots (the ones mentioned converge quadratically to sim-
ple roots). Several authors have described modifications which improve the
speed of convergence to multiple roots, or clusters of roots. Several of these
also determine the multiplicity, or effective multiplicity (the number in the
cluster).

We will explain in detail the work by Hull and Mathon (1996). Suppose
ζ is a root of multiplicity m, and that ζ1 = ζ2 = ... = ζm = ζ 6=
ζm+1, ..., ζn. The WDK formula gives

ẑj − ζ = zj − ζ −Aj

n
∏

k=m+1

(

zj − ζk
zj − zk

)

(4.82)

where

Aj =
(zj − ζ)m

∏m
k=1,6=j(zj − zk)

(4.83)

Let ǫ = max1≤j≤n|zj − ζj |. Then as in 4.9 the product in 4.82 is 1 +O(ǫ), so

ẑj − ζ = zj − ζ −Aj(1 +O(ǫ)) (4.84)

Now assume that the method converges at least linearly, so that ẑj − ζ = O(ǫ),
then Aj = O(ǫ) and

ẑj − ζ = zj − ζ −Aj +O(ǫ2) (4.85)

Summing for j = 1 to m and dividing by m gives

m
∑

j=1

ẑj/m− ζ =

m
∑

j=1

(zj − ζ −Aj) +O(ǫ2)

=

m
∑

j=1

(

wj −
wm

j
∏m

k=1,6=j(wj − wk)

)

+O(ǫ2) (4.86)

4.3. Multiple Roots 81

where wj = zj − ζ. But the sum on the RHS above is precisely the sum of the
approximations which we would get by applying the WDK formula to wm = 0,
and by 4.16 this sum = −cn−1

cn
= 0. Hence

m
∑

j=1

ẑj/m− ζ = O(ǫ2) (4.87)

i.e. the convergence of the mean is quadratic.

It will be shown that near a multiple root the approximations behave in a special
way. For suppose

P (z) = (z − ζ)mF (z) (4.88)

where F (ζ) 6= 0. Then if

R(z) = cn

n
∏

j=1

(z − ẑj) (4.89)

we may write

R(z) = P (z) + p(z) (4.90)

where p(z) is a perturbation of order (ẑj − ζ). For z = ẑj (j = 1, ...,m) we have
R(ẑj) = 0 and so

(ẑj − ζ)mF (ẑj) + p(ẑj) = 0 (4.91)

Hence the ẑj which approximate ζ can be written

ẑj = ζ +

(−p(ẑj)

F (ẑj)

)
1
m

(4.92)

Thus the approximations to a multiple root tend to be spaced uniformly around
a circle with centre at the root, and hence it is likely that the mean of these
approximations is a good approximation to the root.
Now assume

zj = ζ + δe(
2πj
m +γ)i(1 +O(ǫ)) (4.93)

then as above ẑj − ζ = zj − ζ −Aj(1 +O(ǫ)) where now

Aj = (zj − ζ)

m
∏

k=1, 6=j

(zj − ζ)

zj − zk

=(zj − ζ)
∏

δe(
2πj
m

+γ)i

δe(
2πj
m

+γ)i−δe(2πk
m

+γ)i
(1 +O(ǫ))

= (zj − ζ)
∏m

k=1, 6=j
1

1−e
2π(k−j)

m
i
(1 +O(ǫ))

82 4. Simultaneous Methods

= (zj − ζ)
∏m−1

k=1
1

1−e(2πk
m

))i
(1 +O(ǫ))

= (zj − ζ)
1

m
(1 +O(ǫ)) (4.94)

since
∏m−1

k=1 (1 − e(
2πk
m)i) = Limz→1

(

zm−1
z−1

)

= m

Hence, for j = 1,...,m

ẑj − ζ = (zj − ζ)(1 − 1

m
(1 +O(ǫ))(1 +O(ǫ))

=
m− 1

m
(zj − ζ) +O(ǫ2) (4.95)

Thus the distribution of the new approximations is the same as before, with a
slightly reduced radius, i.e. the individual approximations converge linearly. But

fortunately the mean

∑

m

j=1
(ẑj−ζ)

m = m−1
m2 δe

γi
∑m

j=1 e
2πj
m i +O(ǫ2)

and the sum on the right = sum of m’th roots of unity = 0, i.e.

1

m

m
∑

j=1

ẑj = ζ +O(ǫ2) (4.96)

i.e. convergence of the mean is quadratic.

Hull and Mathon obtain error bounds thus: by the theory of partial fractions
(see e.g. Maxwell (1960)), with Q(z) =

∏n
k=1(z − zk) we have

P (z)

Q(z)
= 1 −

n
∑

k=1

∆zk

z − zk
(4.97)

Putting z = ζj gives

1 =

n
∑

k=1

∆zk

ζj − zk

and hence 1 ≤ ∑ |∆zk|
|ζj−zk|

The maximum term in the sum occurs at a particular k, and for that k

1 ≤ n

∣

∣

∣

∣

∆zk

ζj − zk

∣

∣

∣

∣

, i.e.

|zk − ζj | ≤ n|∆zk| (4.98)

In a similar manner we can show that

|zk − ζj | ≤
n
∑

k=1

|∆zk| (4.99)

4.3. Multiple Roots 83

We may take the least of these two bounds, and the bounds together with the zk

define n disks. Isolated disks correspond to simple roots, while the others form clus-
ters. A collection of approximations is considered to be a cluster if the union of their
discs form a continuous region which is disjoint from all the other discs. As succes-
sive iterations proceed, these regions get smaller, and we need a criterion to deter-
mine if convergence has occurred. This is taken to be the case (for a cluster of multi-
plicity m) if the estimated error bounds in evaluating P (z), P ′(z), ..., P (m−1)(z) are
greater than the calculated values of the polynomial and its derivatives. The error
can be estimated by the method of Peters and Wilkinson (1971). An experimental
program gave results slightly more accurate than the NAG and IMSL routines, and
at about the same speed. But the method described here has the great advantage
that it is suited for parallelization.

Miyakoda (1989, 1992, 1993) takes account of multiplicity in a slightly different
way. Considering 4.93 and 4.95 he deduces the following, for approximations i and
j belonging to the same cluster and with corrections ∆zi and ∆zj :
(a) m approximations are situated on a circle centering on the root and are sepa-
rated by an angle 2π/m.
(b) Every correction is directed towards the center and has almost the same mag-
nitude.
(c) The distance between new approximations is much smaller than that between
the old ones.

Using the above criteria (a) and (b) we are led to:

(i) 1 − α < |∆zi|
|∆zj| < 1 + α

(ii) cos θij =
(zj−zi,∆zi)
|zj−zi||∆zi| > 0

cos θji =
(zi−zj ,∆zj)
|zi−zj ||∆zj| > 0

(iii) |cos θij − cos θji| < β

(4.100)

where α is a small number , and β is also small. When we have determined that
the number of roots in a cluster is m, we make a correction for each of them equal
to m∆zi (i = 1,...,m). Then (c) gives:

(iv) |zi +m∆zi − zj −m∆zj | < γ|zi − zj | (4.101)

where as usual γ is small. It is suggested that α, β, and γ be about .1. Miyakoda
(1993) describes an algorithm based on the above, to determine the multiplicity. It
starts by sorting the approximations in order of magnitude of corrections, and adds
on to a cluster when all the equations of 4.100 are satisfied. He points out that the
use of corrections m∆zi may lead to a miscalculation of the multiplicity, but the
use of the mean value of approximations in a cluster speeds up the convergence and
usually gives the correct multiplicities.

84 4. Simultaneous Methods

Fraignaud (1991) gives a similar treatment.
The above all refer to variations on the WDK method. Other methods for

multiple roots were treated by Lo Cascio et al (1989) (method of Pasquini and
Trigante), Iliev and Semerdzhiev (1999) (a method similar to Aberth’s of order 3
derived by them), Carstensen (1993) (Aberth-like method of order 3), Gargantini
(1980) (Square-root iteration usually of order 4), and Farmer and Loizou (1977)
(order up to 5). The last-mentioned give, among other methods, a second-order
variation on the WDK method, namely

ẑi = zi −
(

P (zi)
∏n

j=1, 6=i(zi − zj)mj

)
1

mi

(4.102)

where mi, mj are the multiplicities of zi, zj respectively. They suggest estimating
the multiplicity of a root approximated by a sequence zi by

Limzi→αi

1

u′(zi)
(4.103)

where

u(z) =
P (z)

P ′(z)
(4.104)

Petkovic and Stefanovic (1987) give a variation on 4.102 whereby zj is replaced by
zj − mjP (zj)/P

′(zj). This method is of order 3. They also explain how best to
choose one of several m′

ith roots in 4.102

Sakurai et al (1991) give a method which is of order 7 for simple roots and 3 for
multiple roots. They claim that it is more efficient than Aberth’s method in many
cases.

4.4 Use of Interval Arithmetic

In finding roots of polynomials it is of course necessary to have reliable bounds
on the errors in the estimated solutions. One very satisfactory way of obtaining
these is by the use of interval arithemtic. That is, we start with some disjoint disks
or rectangles which contain the zeros, and apply some iterative method such that
successively smaller intervals are generated, which are guaranteed to still contain
the roots. Thus we will obtain good approximations with error bounds given by
the radii or semi-diagonal of the smallest interval.

Most of the relevant literature deals with disks, as they are easier to invert than
rectangles, so we will give a brief survey of complex disk arithmetic (for more details

4.4. Use of Interval Arithmetic 85

see Gargantini and Henrici (1971) or Alefeld and Herzberger (1983)).
We denote a closed circular region or disk

Z = z : |z − c| ≤ r (4.105)

by {c;r}. Here we denote the center c by mid Z and the radius r by rad Z. We
define

Z1 ± Z2 = {z1 ± z2 : z1 ∈ Z1, z2 ∈ Z2} (4.106)

where Zk = disk {ck; rk} (k=1,2).
It may be shown that the above is also a disk, namely

{c1 ± c2; r1 + r2} (4.107)

Unfortunately, if we were to define

Z1.Z2 = {z1z2 : z1 ∈ Z1, z2 ∈ Z2} (4.108)

the result would not in general be a disk, so it is usual to use

Z1.Z2 = {c1c2; |c1|r2 + |c2|r1 + r1r2} (4.109)

which is of course a disk by definition. Gargantini and Henrici show that the RHS
of 4.109 contains that of 4.108, although the reverse is not generally true.

Now we will prove that (if Z does not contain 0) Z−1 = { 1
z : z ∈ Z} is also a

disk, namely
{

c

|c|2 − r2
;

r

|c|2 − r2

}

(4.110)

For the boundary of a disk with center c = a+ ib and radius R (note upper case)
has cartesian equation

(x− a)2 + (y − b)2 = R2 (4.111)

or x2 − 2ax+ y2 − 2by+ a2 + b2 −R2 = 0, or in polar coordinates (r, θ) (i.e. with
z = reiθ)

r2 − 2ar cosθ − 2br sinθ + C = 0 (4.112)

where

C = a2 + b2 −R2 = cc−R2 = |c|2 −R2 (4.113)

But if we let w = 1
z we have w = 1

r e
−iθ or w = (ρ, φ) where ρ = 1

r , φ = −θ
(or r = 1

ρ , θ = −φ), and so the equation of the transformed boundary is
1
ρ2 − 2a

ρ cosφ+ 2b
ρ sinφ+ C = 0, i.e.

1

C
− 2a

C
ρcosφ+

2b

C
ρsinφ+ ρ2 = 0 (4.114)

86 4. Simultaneous Methods

This is the equation of a circle with center

a− ib

C
=

c

C
(4.115)

and radius
√

(a
C)2 + (b

C)2 − 1
C =

√

cc
C2 − 1

C =
√

cc−(cc−R2)
C2 = R

C =

R

cc−R2
(4.116)

However in our original definition of Z we used lower case r for the radius, so re-
placing R by r above, 4.113, 4.115 and 4.116 establish 4.110.

Next we define

Z1/Z2 = Z1.Z
−1
2 (4.117)

(provided Z2 does not contain 0.)
and, with c = |c|eiφ and |c| > r

{c; r} 1
2 = {

√

|c|ei(φ/2);
√

|c| −
√

|c| − r}
⋃

{−
√

|c|ei(φ/2);
√

|c| −
√

|c| − r} (4.118)

For * = any of the basic operations +, -, ., / the inclusion property holds i.e.

Zk ⊆ Wk (k = 1, 2) =⇒ Z1 ∗ Z2 ⊆ W1 ∗W2 (4.119)

Also, if F is a complex circular extension of f (i.e. each complex variable in f is
replaced by a disk), then wk ∈ Wk (k = 1, ..., q; wk a complex number) implies

f(w1, ..., wq) ∈ F (W1, ...,Wq) (4.120)

The question of when disks are contained in one another is answered by

{c1; r1} ⊆ {c2; r2} iff |c1 − c2| ≤ r2 − r1 (4.121)

and Z1, Z2 are disjoint if and only if

|c1 − c2| > r1 + r2 (4.122)

We may extend 4.107 and 4.109 to more than 2 disks as follows:

Z1 + Z2 + ...+ Zq = {c1 + ...+ cq; r1 + ...+ rq} (4.123)

q
∏

i=1

Zi = {
q
∏

i=1

ci;

q
∏

i=1

(|ci| + ri) −
q
∏

i=1

|ci|} (4.124)

4.4. Use of Interval Arithmetic 87

In the special case where Z1 = {z1; 0} (i.e. a single point, denoted just by z1) we
have

z1 ± Z2 = {z1 ± c2; r2} (4.125)

z1.Z2 = {z1c2; |z1|r2} (4.126)

4.118 may be generalized to the k’th root thus:

Z
1
k =

k−1
⋃

j=0

{|c| 1
k exp(

φ+ 2jπ

k
i); |c| 1

k − (|c| − r)
1
k } (4.127)

Alefeld and Herzberger (1983) give a disk version of the WDK method: given

initial disjoint disks Z
(0)
1 , ..., Z

(0)
n containing the simple zeros ζ1, ..., ζn respectively,

let

Z
(k+1)
i = z

(k)
i − P (z

(k)
i)

∏n
j=1; 6=i(z

(k)
i − Z

(k)
j)

(i = 1, ..., n; k = 0, 1, ..) (4.128)

where z
(k)
i = mid(Z

(k)
i).

Then ζi ∈ Z
(k)
i for all i, k. Petkovic, Carstensen and Trajkovic (1995) prove that

if

ρ(0) >
7(n− 1)

2
r(0) (4.129)

where

ρ(0) = mini,j;i6=j{|z(0)
i − z

(0)
j | − r

(0)
j } (4.130)

r(0) = max1≤j≤nradZ
(0)
j (4.131)

and we apply 4.128, then for all i, k

ζi ∈ Z
(k)
i ; r(k+1) <

7(n− 1)

4(ρ(0) − 5r(0))
(r(k))2 (4.132)

They recommend a hybrid method, in which the ordinary WDK method is applied
M times, then we take disks

D
(M−1)
i = {z(k)

i ;
1

4
|W (z

(M−1)
i)|} (4.133)

where W = correction in last WDK step. They show that the Di will contain the

ζi. Finally we take one step of 4.128, using D
(M−1)
i in place of Z

(m)
i .

They claim that this is considerably more efficient than the use of the pure disk
iteration 4.128 throughout, but still provides a good error estimate.

88 4. Simultaneous Methods

Sun and Li (1999) combine two steps of the WDK disk method, but with only
one function evaluation, i.e. they let:

U
(k)
i = z

(k)
i − P (z

(k)
i)

∏n
j=1, 6=i(z

(k)
i − Z

(k)
j)

(4.134)

Z
(k+1)
i = z

(k)
i − P (z

(k)
i)

∏n
j=1, 6=i(z

(k)
i − U

(k)
j)

(4.135)

They prove that if

ρ(0) ≥ 2.5(n− 1)r(0) (4.136)

then the z
(k)
i converge to the ζi with r

(k)
i tending to zero with order 3. As this

method involves the equivalent of about 3 function evaluations per iteration, its
efficiency index is about log(3

√
3) = .1590, which is a little better than the log(

√
2)

= .150 of the pure WDK -disk method.

Gargantini and Henrici (1971) give a disk-version of the Ehrlich-Aberth method
4.17 i.e.

Z
(k+1)
i = z

(k)
i − 1

P ′(z
(k)
i)

P (z
(k)
i

)
−∑n

j=1,6=i
1

z
(k)
i

−Z
(k)
j

(4.137)

They show that this converges cubically. Gargantini (1978) gives a version of the
above for multiple roots (of known multiplicity). With the usual definitions of ρ(0)

and r(0), and with mi as the multiplicity of ζi (i = 1, ..., p ≤ n), she defines

ν = min1≤i≤pmi; ν = max mi; γ =
ν(n− ν)

ν
(4.138)

Then she lets

Z
(k+1)
i = z

(k)
i − mi

P ′(z
(k)
i)

P (z
(k)
i

)
−∑p

j=1,6=i
mj

z
(k)
i

−Z
(k)
j

(4.139)

She shows that if

6γr(0) < ρ(0) (4.140)

then the r(k) tend to zero, with

r(k+1) <
3γ(r(k))3

ν(ρ(0))2
(4.141)

4.4. Use of Interval Arithmetic 89

Petkovic (1982) similarly gives a disk version of the Borsch-Supan method 4.22,
namely (with the usual notation)

Z
(k+1)
i = z

(k)
i − Wi

1 −∑n
j=1,6=i

Wj

z
(k)
j

−Z
(k)
i

(4.142)

where Wi = the WDK correction in 4.24. They show that if

ρ(0) > 3(n− 1)r(0) (4.143)

then the method converges with order 3. The same author, with Carstensen (1993)
gives a disk version of Nourein’s method 4.23, thus:

Z
(k+1)
i = z

(k)
i − Wi

1 −∑n
j=1,6=i WjINV (z

(k)
j − Z

(k)
i +Wi)

(4.144)

where INV may be the usual inverse given by 4.110 (referred to as I) or I2 given
by

{c; r}I2 =

{

1

c
;

2r

|c|2 − r2

}

(4.145)

They show that if

d(0) ≥ 4(n− 1)r(0) (4.146)

where

d(0) = mini,j=1,..n;i6=j |z(0)
i − z

(0)
j | (4.147)

then the z
(k)
i converge to the roots, with order 3+

√
17

2 = 3.562 if I is used, or order
4 if I2 is used. On the other hand the inclusion disks produced by I2 are often
larger than those from I, so the authors conclude that I is best.

Carstensen and Petkovic (1993) describe a hybrid version using M iterations of
the point Nourein method 4.23 followed by one disk iteration using 4.142. It is not
clear why they do not use 4.144 in the disk iteration. They claim that the hybrid
method is more robust than the pure disk method, and also it is more efficient as
it uses the less expensive point iterations most of the time, whereas the final disk
iteration gives a good error estimate.

Petkovic and Stefanovic (1986A) use rectangular intervals instead of disks with

the WDK method, i.e. 4.128, where the Z
(k)
j are disjoint rectangles each containing

one of the roots. That is

Z = I1 + iI2 (4.148)

90 4. Simultaneous Methods

where I1 and I2 are real intervals e.g.

I1 = {x : a1 ≤ x ≤ b1} (4.149)

with

z
(k)
j = mid(I1) + i mid(I2) (4.150)

and r
(k)
j = sd(Z

(k)
j) (semidiagonal).

They show that if

ρ(0) > 4(n− 1)r(0) (4.151)

(with ρ(0) and r(0) more or less as usual, i.e. given by 4.130 and 4.131) then their
version of 4.128 converges quadratically.

Finally Markov and Kjurkchiev (1989) describe an interval method for the case
where all the roots are real and distinct. They suppose that the disjoint real
intervals

X
(0)
i = [x

(0)
i , x

(0)
i] (4.152)

each contain a root ζi (presumably these intervals could be found by Sturm’s se-
quences). Then a variation on the WDK method is used thus:

x
(k+1)
i = x

(k)
i −

P (x
(k)
i)

∏i−1
j=1(x

(k)
i − x

(k)
j)

∏n
j=i+1(x

(k)
i − x

(k)
j)

(i = 1, ..., n; k = 0, 1, ...) (4.153)

with a similar formula for x
(k+1)
i . They show that with suitable conditions conver-

gence is quadratic (as are most variations on the WDK method).

4.5 Recursive Methods

These are exemplified in Atanassova (1996), where the following method (general-
izing the WDK method) is described:

z
(k+1)
i = z

(k)
i − P (z

(k)
i)

∏n
j=1,6=i(z

(k)
i − z

(k)
j − ∆R,k

j)
(i = 1, ..., n) (4.154)

∆p,k
i = − P (z

(k)
i)

∏n
s=1, 6=i(z

(k)
i − z

(k)
s − ∆p−1,k

s)
(i = 1, ..., n; p = 1, ..., R) (4.155)

4.5. Recursive Methods 91

∆0,k
i = 0 (4.156)

Of course the above 3 formulas are repeated for k = 0,1,... until convergence. He
shows that the rate of convergence is of order R+2. R=0 gives the WDK method,
while R=1 gives Nourein’s method 4.25. Since the method requires R+2 function
evaluations or equivalent per root, the efficiency is

log((R+ 2)
1

R+2) (4.157)

which is a maximum for integer R = 1 (i.e. 4.25), reaching the value .1590. Note
that Atanassova states that the above was first given by Kjurkchiev and Andreev
(1985).

Another example, generalizing the Borsch-Supan method 4.22, is given by
and Petkovic (1993), namely:

Z
(k+

(λ+1)
R)

i = z
(k)
i −

Wi

1 +
∑n

j=1,6=i

(

Wj

Z
(k+λ/R)
i

−z
(k)
j

)

(λ = 0, ..., R− 1, i = 1, ..., n, k = 0, 1, ...) (4.158)

Here the Zi are disks as in section 4, but they could equally be points. The order of
convergence is 2R+1. For a given R, the number of equivalent function evaluations

per root appears to be 2+1.5R, so the efficiency is log((2R+1)
1

2+1.5R). These values
are tabulated below

R 1 2 3 4
eff .136 .1398 .1300 .1193

Thus the most efficient method of this class would be for R = 2, but it is still not
as efficient as 4.25.

Kjurkchiev and Andreev (1992) give a similar recursive version of Aberth’s
method. R recursions give order 2R+3 and require 2+1.5(R+1) function evalu-
ations per root. Again, R= 0 (the ordinary Aberth’s method) is most efficient at
efficiency = log(3.5

√
3) = .136

Andreev and Kjurkchiev (1987) give a recursive version of 4.153, for simple real
roots. As before it is expected that the interval version of 4.25 will be the most
efficient of this class. They also give a recursive interval version of Aberth’s method.

Carstensen

92 4. Simultaneous Methods

4.6 Methods Involving Square Roots, Second Order
Derivatives, etc

Leuze (1983) derives a modified, simultaneous Laguerre-type method as follows: let

S1(z) =
P ′(z)

P (z)
=

n
∑

i=1

1

z − ζi
(4.159)

S2(z) = −dS1

dz
=

P ′(z)2 − P (z)P ′′(z)

P (z)2
=

n
∑

i=1

1

(z − ζi)2
(4.160)

α(z) =
1

z − ζj
, β(z) + γi(z) =

1

z − ζi
(i = 1, ..., n; i 6= j) (4.161)

where

β(z) =
1

n− 1

∑

i6=j

1

z − ζi
(4.162)

Hence

n
∑

i=1, 6=j

γi = 0 (4.163)

Also define

δ2 =

n
∑

i=1, 6=j

γ2
i (4.164)

Hence we have

S1 = α+ (n− 1)β, S2 = α2 + (n− 1)β2 + δ2 (4.165)

(For S2 = 1
(z−ζj)2

+
∑

i6=j
1

(z−ζi)2
= α2 +

∑

i6=j(β + γi)
2 =

α2 + (n− 1)β2 + 2β
∑

i6=j γi +
∑

i6=j γ
2
i)

Eliminating β and solving the resulting quadratic in α gives

α =
1

n
[S1 ±

√

(n− 1)(nS2 − S2
1 − nδ2)] (4.166)

Since α = 1
z−ζj

this gives

ζj = z − n

S1 ±
√

(n− 1)(nS2 − S2
1 − nδ2)

(4.167)

4.6. Methods Involving Square Roots, Second Order Derivatives, etc 93

where S1, S2 and δ are evaluated at z. (Note that dropping δ2 gives the classical
Laguere iteration).
Substituting β from 4.162 into S2 given by 4.165 and solving for δ2 gives

δ2 =

n
∑

i=1, 6=j

[

1

z − ζi
− β

]2

(4.168)

(For the RHS of the above equation =
∑

i6=j

[

1
(z−ζi)2

− 2β 1
z−ζi

+ β2
]

=
∑

i6=j
1

(z−ζi)2
− 2β

∑

i6=j
1

z−ζi
+ (n− 1)β2

=
∑n

i=1
1

(z−ζi)2
− 1

(z−ζj)2 − 2β(n− 1)β + (n− 1)β2

= S2 − α2 − (n− 1)β2 = δ2)
We approximate δ2 by

δ2j =

n
∑

i=1, 6=j

(

1

z
(k)
j − z

(k)
i

− βj

)2

(4.169)

where

βj =
1

n− 1

n
∑

i=1,6=j

1

z
(k)
j − z

(k)
i

(4.170)

leading to the iteration

z
(k+1)
j = z

(k)
j − n

S1 ±
√

(n− 1)(nS2 − S2
1 − nδ2j)

(4.171)

where S1 and S2 are evaluated at z
(k)
j , e.g. S1 =

P ′(z
(k)

j
)

P (z
(k)
j

)
. This is called the

modified Laguerre method.

Petkovic, Petkovic and Ilic (2003) derive the same method and show that if

w(0) ≤ d(0)

3n
(4.172)

and the roots are simple, then 4.171 converges with order 4. In practise the 3 in
4.172 may be dropped.

Leuze continues by showing that if zl and zm are two approximations close to
each other but far from a root, then convergence may be greatly slowed down. To
remedy this, a hybrid method is described as follows: a modified Laguerre step is
taken except when it is found that two approximations are much closer to each
other than to a root. If that occurs, a classical Laguerre step is taken by one ap-
proximation and a modified step by the other. This allows the rapid convergence of
the modified method to resume. The criterion for closeness is that nδ2j be greater

94 4. Simultaneous Methods

than nS2 − S2
1 . For further details see the cited paper by Leuze. Numerous tests

show that the hybrid method is much more robust than the modified method by
itself.

Hansen, Patrick and Rusnack (1977) point out that the modfied method re-
quires nearly twice as many operations per iteration than the classical method.
Their tests show that the classical method is more efficient when the starting val-
ues are fairly close to the roots. But if this is not the case Laguerre’s method often
converges to only a few of the roots, i.e. several approximations converge to the
same (non-multiple) root. Modified Laguerre worked properly in all cases tested,
even when the starting values were clustered about only one of the roots.

Petkovic (2003) gives a circular interval version of 4.171 as follows:

Z
(k+1)
i = Z

(k)
i − n

S1 +

√

(n− 1)(nS2 − S2
1 −Q

(k)
i)

(4.173)

where

Q
(k)
i = n

n
∑

j=1, 6=i

(

1

z
(k)
i − Z

(k)
j

)2

− n

n− 1





n
∑

j=1,6=i

1

z
(k)
i − Z

(k)
j





2

(4.174)

and S1, S2 are evaluated at z
(k)
i .

The disk to be chosen in the denominator of 4.173 is that whose center maximizes
the modulus of that denominator. He shows that if ρ(0) > 3(n−1)r(0) (where ρ(0)

and r(0) are given by 4.130 and 4.131) then for all i and k

ζi ∈ Z
(k)
i and r(k+1) <

5(n− 1)(r(k))4

(ρ(0) − 5
4r

(0))3
(4.175)

Petkovic (1981) describes a disk interval k’th root method as follows: let

Hk(z) =
(−1)k−1

(k − 1)!

dk

dzk
[logP (z)](k ≥ 1) (4.176)

=

n
∑

j=1

1

(z − ζj)k
=

1

(z − ζi)k
+

n
∑

j=1,6=i

1

(z − ζj)k
(4.177)

Hence

ζi = z − 1
[

Hk(z) −
∑n

j=1,6=i
1

(z−ζj)k

]
1
k

(4.178)

4.6. Methods Involving Square Roots, Second Order Derivatives, etc 95

= z − 1

q
1
k

i

(say) (4.179)

The value of the k’th root above should be chosen, for z = zi, to satisfy
∣

∣

∣

∣

P ′(zi)

P (zi)
− q

1
k

i

∣

∣

∣

∣

≤ n− 1

ρ
(4.180)

where

ρ > k(n− 1)r (4.181)

4.178 leads us to the disk iteration

Z
(m+1)
i = z

(m)
i − 1

[

Hk(z
(m)
i) −∑n

j=1,6=i

(

1

z
(m)

i
−Z

(m)

j

)k
]

1
k

(4.182)

(Here the iteration index is taken as m because k is already taken for the k’th root).
Petkovic shows that if

ρ(0) > β(k, n)r(0) (4.183)

where

β(k, n) = 2n (k = 1)
= k(n− 1) (k > 1)

(4.184)

then the order of convergence is k+2, and the disk Z
(m+1)
i always contains ζi.

Replacing Zi by its center zi gives a k’th root point iteration, also with order
k+2. The case k=1 gives Aberth’s method 4.17 having convergence order 3, while
k = 2 gives a 4th order modification of Ostrowski’s method namely

z
(m+1)
i = z

(m)
i − 1

[

H2(z
(m)
i) −∑n

j=1, 6=i
1

(z
(m)
i

−z
(m)
j

)2

]
1
2

(4.185)

(“Ostrowski’s” (1970) method does not have the last term in the denominator).
Petkovic and Rancic (2004) show that if

w(0) <
5

13n
d(0) (4.186)

and the zeros are simple, then 4.185 is guaranteed to converge with order 4, so
that efficiency is log(5

√
4) = .1204. Petkovic (1982) gives a modification of 4.182 for

multiple roots. Petkovic and Stefanovic (1986B) modify 4.185 by replacing z
(m)
j in

the denominator by

z
(m)
j − P (z

(m)
i)

P ′(z(m)
i)

(4.187)

96 4. Simultaneous Methods

They show that this has convergence order 5, and as it takes about 5 horners, its
efficiency index is log(5

√
5) = .139

They also give another method replacing z
(m)
j by

z
(m)
j +

2PP ′

PP ′′ − 2PP ′2 (4.188)

where P etc are evaluated at z
(m)
j . This has convergence order 6, and hence effi-

ciency index log(5
√

6) = .156
Petkovic and Vranic (2000) describe another disk method involving square roots,
which they term “Euler-like”. It is

Z
(k)
i = z

(k)
i − 2W

(k)
i

1 + g
(k)
i +

√

(1 + g
(k)
i)2 + 4W

(k)
i S

(k)
i

(4.189)

where

Wi =
P (zi)

∏n
j=1,6=i(zi − zj)

(4.190)

(the Weierstrass correction),

gi =
∑

j 6=i

Wj

(zi − zj)
, Si =

∑

j 6=i

Wj

(zi − zj)(Zi − zj)
(4.191)

They show that if

ρ(0) > 4(n− 1)r(0) (4.192)

then convergence is guaranteed with order 4. Another variation which they describe
is to replace Zi in 4.191 by Zi −Wi, and to use the so-called centered inversion

Zi =

{

1

c
;

1

|c|(|c| − r)

}

(4.193)

for the inversion of (Zi −Wi − zj). They claim that in this case convergence is of
order 5. Indeed if

w(0) <
1

5n
d(0) (4.194)

where

d(0) = mini,j;i6=j |z(0)
i − z

(0)
j | (4.195)

then convergence is guaranteed provided we start with initial disks
{

z
(0)
i ;

5

4
W (z

(0)
i)

}

(i = 1, .., n) (4.196)

4.6. Methods Involving Square Roots, Second Order Derivatives, etc 97

which contain the roots ζi (i=1,...,n).

Several papers give high-order variations on Halley’s method

z
(k+1)
i = z

(k)
i − P

P ′ − PP ′′

2P ′

(4.197)

where P etc are evaluated at z
(k)
i . For example, Wang and Wu (1987) give a general

formula

z
(k+1)
i = z

(k)
i −

P
P ′

1 − PP ′′

2P ′2 − 1
2

(

P
P ′

)2
(σ2

1 + σ2)
(4.198)

where

σl =
n
∑

j=1,6=i

1

(z
(k)
i − w

(k)
j)l

(l = 1, 2) (4.199)

and w
(k)
j may be replaced by various expressions, such as z

(k)
j , giving a method of

convergence order 4. Or we may take

w
(k)
j = z

(k)
j − P

P ′ (4.200)

which is of order 5.

Or again, with w
(k)
j = the Aberth right-hand-side

= z
(k)
j − 1

P ′

P −
∑n

l=1,6=i
1

z
(k)
j

−z
(k)

l

(4.201)

giving order 6. Moreover w
(k)
j given by Halley’s formula 4.197 also gives order 6.

Of this class of methods, the last is probably the most efficient (index log(5.5
√

6) =
.14147).
Finally

w
(k)
j = z

(k)
j − 1

P ′

P −
∑n

l=1,6=j
1

z
(k)
j

−z
(k)

l
+

P (z
(k)

l
)

P ′(z
(k)

l
)

(4.202)

gives order 7. Note that in the above P, P ′ and P ′′ are to be evaluated at z
(k)
j

(unless otherwise indicated).

Petkovic (1989A) gives a disk Halley-like method, suitable for multiple roots ζi
(i=1,...,m ≤ n) of known mutiplicity µi, namely:

Z
(k+1)
i = z

(k)
i − 1

P ′

2P (1 + 1
µi

) − P ′′

2P ′ − P
2P ′

(

(Σ1i)2

µi
+ Σ2i

) (4.203)

98 4. Simultaneous Methods

where

Σli =

n
∑

j=1,6=i

µj

(z
(k)
i − Z

(k)
j)l

(l = 1, 2) (4.204)

Provided

ρ(0) > 3(n−minm
i=1µi)r

(0) (4.205)

this converges with order 4.

Petkovic, Milovanovic and Stefanovic (1986) describe a variation on the square-
root iteration 4.185 suitable for multiple roots, thus:

z
(k+1)
i = z

(k)
i − (µi)

1
2

[

H2(z
(k)
i) −

∑m
j=1,6=i

µj

(z
(k)
i

−z
(k)
j

)2

]
1
2

(4.206)

Let Qi be the correction term in 4.206 (before square-rooting) and let w
(1)
i and

w
(2)
i be the two values of the

√
Qi. Then we should take that square root which

minimizes
∣

∣

∣

∣

P ′

P
− w

(l)
i

∣

∣

∣

∣

(l = 1, 2) (4.207)

They modify 4.206 further by replacing z
(k)
j by

z
(k)
j − µj

P

P ′ (4.208)

or by

z
(k)
j +

2
P ′′

P ′ − (1 + 1
µj

)P ′

P

(4.209)

of orders 5 and 6 respectively. The latter appears to have efficiency index log(5.5
√

6)
= .1415
Petkovic, Stefanovic and Marjanovic (1992) give a series of methods for multiple
zeros which do not require square or higher roots. The simplest is

z
(k+1)
i = z

(k)
i −

2
[

S1i(z
(k
i) − P ′

P

]

P ′′

P − (P ′

P)2 + S2i(z
(k)
i) − 1

µi
[S1i(z

(k)
i) − P ′

P]2
(4.210)

where

Sli(z) =

m
∑

j=1,6=i

µj

(z − z
(k)
j)l

(l = 1, 2) (4.211)

4.6. Methods Involving Square Roots, Second Order Derivatives, etc 99

Note that 4.211 is similar to 4.204.

Another method (of order 5) replaces z
(k)
j in 4.211 by

z
(k)
j −

µjP (z
(k)
j)

P ′(z(k)
j)

(4.212)

while a third (of order 6) replaces z
(k)
j by

z
(k)
j − 2

(1 + 1
µj

)P ′

P − P ′′

P

(4.213)

According to Petkovic et al all these methods require the equivalent of 4.5 com-
plex horners, although this author counts 5. Thus the efficiency index of the last-
mentioned is about log(4.5

√
6) = .1729. They also describe Gauss-Seidel variations

of slightly greater efficiency, which will be discussed in Sec. 8.

Hansen and Patrick (1977) give a one-parameter family of methods thus:

z
(k+1)
i = z

(k)
i − (α+ 1)P

αP ′ ±
√

(P ′)2 − (α+ 1)PP ′′
(4.214)

P etc being evaluated at z
(k)
i . For various values of α, some well-known methods are

obtained. Petkovic, Ilic and Trickovic (1997) give a simultaneous version, namely

z
(k+1)
i = z

(k)
i − (α+ 1)Wi

α(1 +G1i) ±
√

(1 +G1i)2 + 2(α+ 1)WiG2i

(4.215)

where Wi is the usual WDK correction at z
(k)
i and

Gli =

n
∑

j=1,6=i

Wj

(z
(k)
i − z

(k)
j)l

(4.216)

Setting α = 0, 1, 1
n−1 , -1 they obtain respectively what they call the Ostrowski-,

Euler-, Laguerre, and Halley-like methods. The last one needs a limiting operation
to obtain:

z
(k+1)
i = z

(k)
i − Wi(1 +G1i)

(1 +G1i)2 +WiG2i
(4.217)

For multiple zeros they obtain:

z
(k+1)
i = z

(k)
i

− µi(µiα+ 1)

µiα(P ′

P − S1i) ±
√

µi(µiα+ 1)([P ′

P]2 − P ′′

P − S2i) − µiα(P ′

P − S1i)2
(4.218)

100 4. Simultaneous Methods

where the Sli are given by 4.211. Setting α = 0 gives:

z
(k+1)
i = z

(k)
i −

√
µi

√

(P ′

P)2 − P ′′

P − S2i

(4.219)

α = − 1
µi

gives

z
(k+1)
i = z

(k)
i − 2µi(

P ′

P − S1i)

(P ′

P − S1i)2 − µi(
P ′′

P − (P ′

P)2 + S2i)
(4.220)

while α = 1
n−µi

gives

z
(k+1)
i = z

(k)
i − n

(P ′

P − S1i)(1 ±
√

n−µi

µi
− n

(

1 +
S2i−(P ′

P)2+S2i

(P ′

P −S1i)2

)

(4.221)

The authors prove that the above methods are all of order 4, and as they require
about 5 horners the efficiency index is log(5

√
4). Petkovic, Petkovic and Herceg

(1998) give initial conditions which guarantee convergence, namely:

w(0) <
d(0)

3n+ 3
(4.222)

while Petkovic and Herceg (2001) give the less stringent condition

w(0) <
2d(0)

5n− 5
(4.223)

Petkovic, Sakurai and Rancic (2004) derive a similar set of formulas based on
Hansen-Patrick’s method. It is not clear that these have any advantage over the
previously-mentioned ones.

Other high-order methods are given by Farmer and Loizou (1975), Loizou
(1983), Petkovic and Herceg (1998) and Sun and Zhang (2003), to mention a few
examples. For further details, see the cited papers.

4.7 Effect of Rounding Errors

As in any process which uses floating-point arithmetic, all the above methods are
affected by rounding errors, and this is considered by several authors. For example
Gargantini (1978) discusses the effect of rounding error upon the disk-Ehrlich-
Aberth method 4.137. She points out that iterative methods are usually designed
to terminate when the rounding error from the evaluation of P near a zero is of
the same order of magnitude as |P |. The rounding error (δP for P and δP ′ for P ′)
can be evaluated by the methods of Chap. 1 Sec. 2. Moreover the main source of
rounding error comes from the evaluation of P ′/P , so we replace P ′ and P by disks

E = {P ′; δP ′} and F = {P ; δP} (4.224)

4.7. Effect of Rounding Errors 101

This means that the term P ′

P in 4.137 is replaced by

Q
(k)
i = E.F−1 = {P ′; δP ′}

{

P

|P |2 − (δP)2
;

δP

|P |2 − (δP)2

}

(4.225)

=

{

P ′P

|P |2 − (δP)2
;
|P ′|δP + |P |δP ′ + δPδP ′

|P |2 − (δP)2

}

(4.226)

where P etc are evaluated at z
(k)
i .

Let δ
(k)
i denote the radius of Q

(k)
i , and let

δ(k) = Max1≤i≤nδ
(k)
i (4.227)

then Gargantini shows that if

|δP (k)
i | < |P (z

(k)
i)|, (i = 1, ..., n) (4.228)

δ(k) ≤ r(k)

(ρ(k))2
(4.229)

and

6(n− 1)r(0) < ρ(0) (4.230)

then convergence is cubic. But if 4.229 is not true and yet

δ(k) ≤ min{1, 1

(ρ(k))2
} (4.231)

applies (the other conditions being the same), then convergence is only quadratic

Similarly Gargantini (1979) shows that Ostrowski’s square-root disk method
(similar to 4.185 but with zj replaced by the disk Zj) with the conditions

ρ(0) > 3(n+ 1)r(0); |δP (k)
i | < |P (z

(k)
i)| and δ(k) <

r(k)

(ρ(k))3
(4.232)

converges with order 4, while if 4.232 is not true, but

δ(k) < min{1, 1

(ρ(k))3
} (4.233)

then the order is 3.

Petkovic and Stefanovic (1984) consider the disk-iteration 4.182, which gener-
alizes the last two methods mentioned. They show that if

|δP (m)
i | < |P (z

(m)
i)| (4.234)

102 4. Simultaneous Methods

δ
(m)
i ≤ r(m)

(ρ(m))k+1
(4.235)

(m is the iteration index here) and

ρ(0) > β(k, n)r(0) (4.236)

where

β(1, n) = 4n; β(k, n) = k(n− 1) (k > 1) (4.237)

then convergence is of order k+2. But if the other conditions hold, and 4.235 is not
true but still

δ
(m)
i ≤ min(1,

1

(ρ(m))k+1
) (4.238)

then convergence is only of order k+1.

Petkovic and Stefanovic (1986A) consider the case of the disk-WDK method

4.128, and with δP
(k)
i as above and

δ = maxn
i=1|δP

(k)
i |, r = Maxn

i=1sd(Z
(k)
i) (4.239)

(Note that they use rectangular intervals), they show that

r̂ ≤ αr2 + βδ (4.240)

where α and β are constants. Note that r̂ refers to the new value.
This means that as long as δ = O(r2) convergence remains quadratic, but if
δ = O(r) it is linear, while if rounding error exceeds the value of the semi-
diagonal (i.e. r = o(δ)) then further convergence is not possible.

Petkovic (1989A) considers the Halley-like disk method 4.203 and shows that
with the same meanings for r, r̂ and δ as in 4.240, then

r̂ ≤ r2(γ1δ + γ2r
2 + γ3rδ

2 + γ4δr
3) (4.241)

where the γi are constants. Thus if δ = O(r2) the order 4 is preserved, while if
δ = O(r) convergence is cubic. Also he states that if r = o(δ) and |δP | < |P |
(still) convergence is quadratic.

4.8 Gauss-Seidel and SOR Variations

The Gauss-Seidel method in Linear Algebra consists in using the already obtained
values of the next iterate ẑi in the correction term whenever possible. Many authors

4.8. Gauss-Seidel and SOR Variations 103

treat a similar method in reference to simultaneous root-finding. For example, Niell
(2001) gives the following modification of the WDK method:

z
(k+1)
i = z

(k)
i − P (z

(k)
i)

∏i−1
j=1(z

(k)
i − z

(k+1)
j)

∏n
j=i+1(z

(k)
i − z

(k)
j)

(i = 1, ..., n) (4.242)

He shows that convergence is of order t, where t is the positive root of

f(t) ≡ (t− 1)n − t = 0 (4.243)

so that 2 < t < 3 (for f(2) = -1, f(3) ≥ +1)
Some of the values of t for various n are shown below

n 2 3 5 10 15
t 2.61 2.32 2.17 2.08 2.05

It is seen that for large n the Gauss-Seidel variation (also known as serial or single-
step) has order not much different from the normal (parallel or total-step) WDK
method. So for large n it may not be worth sacrificing parallelism for the sake
of a slightly higher order of convergence. But in cases where a great many low-
degree polynomials need to be solved G.-S. versions should be considered. We will
mention a few of the many works on this topic. For example Monsi and Wolfe
(1988) describe the “ symmetric single-step” procedure (PSS)

z
(k,1)
i = z

(k)
i − P (z

(k)
i)

∏i−1
j=1(z

(k)
i − z

(k,1)
j)

∏n
j=i+1(z

(k)
i − z

(k)
j)

(i = 1, ..., n) (4.244)

z
(k,2)
i = z

(k)
i

− P (z
(k)
i)

∏i−1
j=1(z

(k)
i − z

(k,1)
j)

∏n
j=i+1(z

(k)
i − z

(k,2)
j)

(i = n, n− 1, ..., 1) (4.245)

z
(k+1)
i = z

(k,2)
i (i = 1, ..., n) (4.246)

They also describe a “repeated symmetric single-step” method (PRSS) whereby

4.244-4.246 are repeated rk times with the same value of P (z
(k)
i) in the numerator,

and in addition they describe interval versions of the above. Numerical experiments
show that the mixed interval-point PRSS method with rk = 3 is more efficient than
the WDK, Gauss-Seidel-WDK (4.242) or PSS.

104 4. Simultaneous Methods

Kanno et al (1996) describe an SOR-GS method

z
(k+1)
i = z

(k)
i − ω

P (z
(k)
i)

∏i−1
j=1(z

(k)
i − z

(k+1)
j)

∏n
j=i+1(z

(k)
i − z

(k)
j)

(i = 1, .., n) (4.247)

They show that if

|ω − 1| < 1 (4.248)

and the zeros are simple, then 4.247 converges locally to these zeros. If ω is real
4.248 becomes

0 < ω < 2 (4.249)

However if ω is close to 2, convergence is slow near the zeros, whereas if ω is close
to 1 convergence may be fast. Numerical experiments show that the best value of
ω varies from case to case in the range [1,1.4], sometimes giving an improvement
of about 30% compared to the pure G.-S. method (ω = 1). Similarly Petkovic and
Kjurkchiev (1997) find that ω = 1 gives faster solutions than any value < 1.

Yamamoto (1996) shows that the SOR versions of many well-known methods
converge if |ω − 1| < 1.

Alefeld and Herzberger (1974) describe and analyse a Gauss-Seidel version of
the Ehrlich-Aberth method 4.17 i.e.

z
(k+1)
i = z

(k)
i − 1

P ′(z
(k)

i
)

P (z
(k)
i

)
−
∑i−1

j=1
1

z
(k)
i

−z
(k+1)
j

−
∑n

j=i+1
1

z
(k)
i

−z
(k)
j

(i = 1, ..., n) (4.250)

If

h
(k)
i = z

(k)
i − ζi (4.251)

and η
(k)
i = γh

(k)
i , where γ is a constant, they show that

η
(k+1)
i ≤ 1

n− 1
(η

(k)
i)2[

i−1
∑

j=1

η
(k+1)
j +

n
∑

j=i+1

η
(k)
j] (4.252)

Since

Limk→∞|h(k)
i | = 0 (4.253)

4.8. Gauss-Seidel and SOR Variations 105

(i.e. the method converges) we may assume that η
(0)
i ≤ η < 1. Hence

η
(k+1)
i ≤ ηm

(k+1)
i (4.254)

where m(k) = (m
(k)
i) can be calculated by

m(k+1) = Am(k) (4.255)

with

A =













2 1 0
0 2 1 0
..
0 0 0 2 1
2 1 0 0 2













and m(0) =





















1
1
..
..
..
1
1





















(4.256)

Sketch of Proof. 4.252 gives

η
(1)
i ≤ 1

n− 1
η2[

i−1
∑

j=1

η
(1)
j +

n
∑

j=i+1

η] (4.257)

e.g. η
(1)
1 ≤ 1

n−1η
2[
∑n

j=2 η] = η3 = η2+1

η
(1)
2 ≤ 1

n−1η
2[η

(1)
1 +

∑n
j=3 η] ≤ η3 = η2+1.

(Note that the dominant term in the square brackets is always the one with the
lowest power, since η < 1).

Similarly η
(1)
i ≤ η3 (i = 3, .., n− 1).

However, η
(1)
n ≤ 1

n−1η
2[
∑n−1

j=1 η
(1)
j] = η5 = η2+1+2

Thus m(1) = [3, 3, ..., 3, 5] = Am(0)

Next for k = 1 we have

η
(2)
1 ≤ 1

n− 1
(η

(1)
1)2[

n
∑

j=2

η
(1)
j] ≤ η9 = η2×m

(1)
1 +m

(1)
2

η
(2)
2 ≤ 1

n− 1
(η

(1)
2)2[η

(2)
1 +

n
∑

j=3

η
(1)
j] ≤

1

n− 1
η6[η9 + (n− 3)η3 + η5] ≤ η9

and similarly for j=3,...,n-2.

η
(2)
n−1 ≤ 1

n− 1
(η

(1)
n−1)

2[

n−2
∑

j=1

η
(2)
j + η(1)

n]

106 4. Simultaneous Methods

≤ 1

n− 1
η6[(n− 2)η9 + η5] ≤ η11

= η2×m
(1)
n−1

+m(1)
n

η(2)
n ≤ 1

n− 1
(η(1)

n)2[

n−1
∑

j=1

η
(2)
j] =

1

n− 1
η10[(n− 2)η9 + η11]

≤ η19 = η2×m
(1)
1 +m

(1)
2 +2×m(1)

n

i.e.

m(2) = Am(1)

Thus 4.255 is verified for k = 0 and 1, and the general case follows by induction.
A is non-negative, irreducible and primitive, so that it has a positive eigenvalue
equal to its spectral radius ρ(A). The authors show that the order of convergence
is ≥ ρ(A). Now let us consider | A − λ I|n for a few small values of n, e.g.

| A − λ I|3 =

∣

∣

∣

∣

∣

∣

2 − λ 1 0
0 2 − λ 1
2 1 2 − λ

∣

∣

∣

∣

∣

∣

= (2 − λ)[(2 − λ)2 − 1] + 2 =

−[(λ− 2)3 − (λ − 2) − 2]

| A − λ I|4 =

∣

∣

∣

∣

∣

∣

∣

∣

2 − λ 1 0 0
0 2 − λ 1 0
0 0 2 − λ 1
2 1 0 2 − λ

∣

∣

∣

∣

∣

∣

∣

∣

=

(2 − λ)

∣

∣

∣

∣

∣

∣

2 − λ 1 0
0 2 − λ 1
1 0 2 − λ

∣

∣

∣

∣

∣

∣

− 2

∣

∣

∣

∣

∣

∣

1 0 0
2 − λ 1 0

0 2 − λ 1

∣

∣

∣

∣

∣

∣

=

(2 − λ)[(2 − λ)3 + 1] − 2 = (λ− 2)4 − (λ− 2) − 2

and it may be proved by induction that, for general n,

pn(λ) = (−1)n| A− λ I|n = (λ− 2)n − (λ − 2) − 2 (4.258)

Setting σ = λ− 2 we get

p̂n(σ) = σn − σ − 2 (4.259)

Now p̂n(1) = −2 and p̂n(2) ≥ 0 for n ≥ 2, so there is a positive root σn with
1 < σn ≤ 2, and by Descartes’ rule of signs it must be unique. Thus the order
of convergence

≥ ρ(A) = 2 + σn ∈ [3, 4] (4.260)

4.8. Gauss-Seidel and SOR Variations 107

The authors do not give numerical values of σn, but we calculate σ20 = 1.06.

Petkovic and Milanovic (1983) give a similar anaysis of the Gauss-Seidel version
of the “Improved Ehrlich-Aberth Method” 4.26, i.e.

z
(k+1)
i = z

(k)
i −

1

P ′(z
(k)
i

)

P (z
(k)

i
)
−∑i−1

j=1
1

z
(k)

i
−z

(k+1)

j

−∑n
j=i+1

1

z
(k)
i

−z
(k)
j

+
P (z

(k)

j
)

P ′(z
(k)
j

)

(4.261)

They show that the order is 2(1+ τn) > 4 where τn ∈ [1, 2] is the unique positive
root of

τn − τ − 1 = 0 (4.262)

Milovanovic and Petkovic (1983) give some typical values of the order as follows:

n 2 3 5 10
order 5.24 4.65 4.34 4.15

Again, it is seen that there is not much advantage in the serial method for large n.

Hansen et al (1977) give a serial version of the modified Laguerre method 4.171
of order > 4.

Petkovic and Stefanovic (1986B) give a Gauss-Seidel version of their
“Square root iteration with Halley correction”, given by 4.185 and 4.188, having
convergence order ∈ [6,7] and hence efficiency ≈ log(5

√
6.5) = .1626

Petkovic, Milovanovic and Stefanovic (1986) give a version of the above for mul-
tiple roots, again of efficiency .1626

Petkovic, Stefanovic and Marjanovic (1992) and (1993) give several G.-S. meth-
ods, the most efficient of which is the G.-S. version of 4.210,, with efficiency
log(4.5

√
6.5) = 0.1806

Petkovic and Stefanovic (1990) show that a forward-backward variation on the
G.-S. version of 4.203 has convergence order about 50% higher than the plain
forward-forward version (for n≥ 10), i.e. the order is at least 6, and so the ef-
ficiency is log(5.5

√
6) = .1415.

Ellis and Watson (1984) give a method based on divided differences thus: with

Wi =
P (zi)

∏

j 6=i(zi − zj)
(4.263)

108 4. Simultaneous Methods

and

Qi(s) =
∑

j 6=i

Wj

zj − s
(4.264)

r
(k+1)
i = r

(k)
i

− [(Qi(r
(k)
i) − 1)2(r

(k)
i − z

(0)
i) −Wi(Qi(r

(k)
i) − 1)]

(Qi(r
(k)
i) − 1)2 +WiQ′(r(k)

i)

(k = 0, ..., to convergence) (4.265)

Initially r
(0)
i = z

(0)
i (i = 0, ...n), and after convergence z

(K)
i = r

(K)
i (i = 1, ..., n)

where K is the latest value of k (i.e. value at which convergence occurs). Exper-
iments show that running in parallel, this method is faster than certain standard
methods, and always converges.

4.9 Real Factorization Methods

Several authors give methods which split a polynomial with real coefficients into
two or more real factors, such as quadratics (with one real factor as well if the
degree is odd). This means that we may work entirely with real numbers, which is
often more efficient than finding individual roots by for example the WDK method
(which needs complex arithmetic if the roots are complex).

For example, Freeman and Brankin (1990) describe a “divide and conquer”
method whereby

Pn(x) = QN (x)RN (x) (4.266)

The easiest case is where n is divisible by 4, which we will describe (they also
consider n odd, or even but not a multiple of 4).
Here N = n

2 and

QN (x) = xN + bN−1x
N−1 + ...+ b1x+ b0 (4.267)

RN (x) = xN + cN−1x
N−1 + ...+ c1x+ c0 (4.268)

Equating coefficients of xk (k = n− 1, n− 2, ..., 1, 0) in 4.266 leads to

bN−1 + cN−1 − an−1 = 0

bN−2 + bN−1cN−1 + cN−2 − an−2 = 0

bN−3 + bN−2cN−1 + bN−1cN−2 + cN−3 − an−3 = 0

4.9. Real Factorization Methods 109

...........

...........

b0 + b1cN−1 + b2cN−2 + ...+ bN−1c1 + c0 − aN = 0

b0cN−1 + b1cN−2 + ...+ bN−1c0 − aN−1 = 0

b0cN−2 + b1cN−3 + ...+ bN−2c0 − aN−2 = 0

.........

.........

b0c0 − a0 = 0 (4.269)

The above may be written

f(b,c) = 0 (4.270)

where fT = (f1, f2, ..., fn), bT = (bN−1, ..., b0), cT = (cN−1, ..., c0), and

fk(b,c) = bN−k +

k−1
∑

j=1

bN−k+jcN−j + cN−k − an−k

(k = 1, 2, ..., N) (4.271)

=
n
∑

j=k

bn−jcj−k − an−k (k = N + 1, ..., n) (4.272)

The Newton iteration for the solution of 4.270 is given by

(

b(i+1)

c(i+1)

)

=

(

b(i)

c(i)

)

+

(

δb(i)

δc(i)

)

(4.273)

where

J(i)

(

δb(i)

δc(i)

)

= − f(i) (4.274)

and J(i) is the Jacobian of f(i). (Of course the superscript i refers to the i-th
iteration)
The authors show that

J =

(

A B
C D

)

(4.275)

110 4. Simultaneous Methods

where

A =













1 0 0
cN−1 1 0 .. 0
..
..
c1 cN−1 1













(4.276)

B =













1 0 0
bN−1 1 0 .. 0
..
..
b1 bN−1 1













(4.277)

C =













c0 c1 cN−1

0 c0 cN−2

..

..
0 0 c0













,

D =













b0 b1 bN−1

0 b0 bN−2

..

..
0 0 b0













(4.278)

The blocks A etc are Toeplitz. If we partition

f =

(

f1
f2

)

(4.279)

where fl are N-vectors, and omit superscript i, we may write 4.274 as

Aδb + Bδc = −f1 (4.280)

Cδb + Dδc = −f2 (4.281)

Now the inverse of a triangular Toeplitz matrix is also a triangular Toeplitz matrix.
Premultiply 4.280 by B−1 and 4.281 by D−1 to give

B−1Aδb + δc = −B−1f1; D−1Cδb + δc = −D−1f2 (4.282)

Eliminating δc gives

Tδb = f̂ (4.283)

where

T = B−1A− D−1C (4.284)

4.9. Real Factorization Methods 111

and

f̂ = D−1f2 − B−1f1 (4.285)

4.283 may be solved in 3N2 operations, and further calculating δc requires a total
of 15

2 N
2 operations. J is only singular if QN (x) and RN (x) have at least one com-

mon zero. Convergence (provided good starting values are available) is quadratic.

The authors suggest the following starting values: let r be a bound on the moduli
of the zeros of Pn(x), then take

bi = 0 (i = 1, 2, ..., N − 1), b0 = r (4.286)

while the ci starting values can then be obtained from 4.269

Experiments show that this method requires about 3
8 the work of a WDK im-

plementation (but it is less robust).

The authors do not state this, but presumably the method could be applied
recursively until all the factors are quadratic.

In an earlier article Freeman (1979) derives quadratic factors directly. He as-
sumes that n is even (=2N) and that

Pn(x) = (x2 + β1x+ γ1)(x
2 + β2x+ γ2)...(x

2 + βNx+ γN) (4.287)

Equating coefficients of xn−1, xn−2, ..., x0 in the usual representation of Pn(x) and
in the expansion of 4.287 gives a series of non-linear equations such as:

f1(β, γ) = f
(n)

1 (β, γ) − cn−1 =

N
∑

i=1

βi − cn−1 (4.288)

f2(β, γ) = f
(n)

2 (β, γ) − cn−2 =
N
∑

i<j

βiβj +
N
∑

k=1

γk − cn−2 (4.289)

etc, etc. Let

ω = [β1, γ1, β2, γ2, ..., βN , γN]T (4.290)

and

f(ω) = [f1(β, γ), f2(β, γ), ..., fn(β, γ)]T = 0 (4.291)

The authors use a damped Newton method

ω(i+1) = ω(i) + α(i) p(i) (i = 1, 2, ...) (4.292)

112 4. Simultaneous Methods

where p(i) is the solution of

J(i) p(i) = − f(i) (4.293)

and J(i) is the Jacobian evaluated at ω(i) i.e. i refers to the iteration number. Note
that

Jk,l =
∂fk

∂ωl
(4.294)

To evaluate the fi (now i refers to the index number in the vector f) we may
use certain recurrence relations (proved in a report by Freeman). We have fi =

f
(n)

i − cn−i

Where

f
(j)

i = f
(j−2)

i + βj/2f
(j−2)

i−1 + γj/2f
(j−2)

i−2 (i = 1, 2, .., j/2) (4.295)

f
(j)

j−i+1 = f
(j−2)

j−i+1 + βj/2f
(j−2)

j−i + γj/2f
(j−2)

j−i−1 (i = 1, 2, .., j/2) (4.296)

with starting values

f
(j−2)

0 = 1; f
(j−2)

−1 = f
(j−2)

j−1 = f
(j−2)

j = 0 (4.297)

and, as may be seen by inspection of 4.287 with N = 2,

f
(4)

= [β1 + β2, β1β2 + γ1 + γ2, β1γ2 + β2γ1, γ1γ2] (4.298)

Thus for example if n = j = 6 (N = 3) we get

f
(6)

1 = f
(4)

1 + β3f
(4)

0 + γ3f
(4)

−1

= (β1 + β2) + β3(1) + γ3(0) = β1 + β2 + β3 (4.299)

and

f
(6)

2 = f
(4)

2 + β3f
(4)

1 + γ3f
(4)

0

= (β1β2 + γ1 + γ2) + β3(β1 + β2) + γ3(1)

3
∑

i,j=1,i<j

βiβj +
3
∑

k=1

γk (4.300)

in agreement with 4.288 and 4.289 for N = 3. The reader may verify that the

expressions for f
(6)

3 ...f
(6)

6 obtained by the above method agree with what we get
by inspection of 4.287 with N = 3. The author gives explicit expressions for the
elements of the Jacobian, but we may obtain them more easily by the following
recurrence relations: (but first note that

Jk,l+1 = Jk−1,l (k = 2, 3, ..., n, l odd) (4.301)

4.9. Real Factorization Methods 113

J1,l+1 = 0; J1,l = 1 (l odd) (4.302)

so that we only need to compute odd-numbered columns).

J2,l = f
(n)

1 − β(l+1)/2J1,l (4.303)

Jk,l = f
(n)

k−1 − β(l+1)/2Jk−1,l − γ(l+1)/2Jk−2,l (4.304)

(but as we see below these are not needed in practise). 4.293 is best solved by
factorizing J into L and U which are not quite lower and upper triangular matrices.
For example, for n = 4 from 4.294 and 4.298 we have

J =









1 0 1 0
β2 1 β1 1
γ2 β2 γ1 β1

0 γ2 0 γ1









= LU (4.305)

where

L =









1 0 0 0
0 1 0 0

γ2 − β2
2 β2 1 0

−β2γ2 γ2 0 1









(4.306)

U =









1 0 1 0
β2 1 β1 1
0 0 (γ1 − γ2 − β2(β1 − β2)) β1 − β2

0 0 γ2(β1 − β2) γ1 − γ2









(4.307)

For general n Freeman gives a lengthy list of expressions for Lij and U ij on p326
of the cited paper. It means that the LU factors can be found in 7

4n
2 + O(n)

multiplications without directly evaluating J. Freeman shows that J is singular
only if two quadratic factors are identical or have one real root in common.

α(i), the line search parameter, is set to 2−k (k = 0, 1, 2, ...) where k is the
smallest integer such that

a) F (ω(i) + 2−k p(i)) < ǫ1F (ω(i)) or (4.308)

b) F (ω(i) + 2−k p(i)) < F (ω(i) + 2−(k+1) p(i)) and

F (ω(i) + 2−k p(i)) < ǫ2F (ω(i)) (4.309)

where 0 < ǫ1 < ǫ2 ≤ 1 and

F (x) = f(x)T D f(x) (4.310)

and D is a diagonal matrix with

Dkk =
1

c2n−k

(4.311)

Experiments show that α(i) is usually chosen as 1 and the method is quite robust.

114 4. Simultaneous Methods

4.10 Comparison of Efficiencies

A few authors (although in our opinion not enough) compare the efficiencies of
various methods, for example Milovanovic and Petkovic (1986). They point out
that various measures of efficiency can be found in the literature, such as

E(SIP, n) =
r(n)

Θ(n)
(4.312)

or

∗E(SIP, n) = r(n)
1

Θ(n) (4.313)

where r(n) is the order of a simultaneous iterative process (SIP) applied to a poly-
nomial of degree n, and
Θ(n) is a normalized cost of evaluating the new iterate (including computing the
polynomial and some of its derivatives), given by

Θ(n) =
T (n)

G(n)
=

1 +
wAA(n) + wSS(n) + wMM(n) + wDD(n)

G(n)
(4.314)

where T (n) is the total cost of evaluation (for all zeros) per iteration and

G(n) = wAn
2 + wMn2 (4.315)

is the cost of evaluating the polynomial (of degree n) itself. The weights wA etc are
the times required for the various operations, normalized with respect to addition
(i.e. wA = 1), and A(n) etc are the number of adds etc needed, apart from the
evaluation of the polynomial. The cited authors report that 4.312 agrees better
with experiment, although theoretically 4.313 or

log r(n)

Θ(n)
(4.316)

should be more accurate (see Chapter 1 section 9). They compare 10 different
methods, several of which have been mentioned in previous sections of this chapter.
Letting

Wi =
P (zi)

∏

j=1, 6=i(zi − zj)
(4.317)

(Weierstrass or WDK correction) and

Ni =
P (zi)

P ′(zi)
(4.318)

4.10. Comparison of Efficiencies 115

(Newton’s correction), the methods, numbered I through X, are as listed below,

with z
(k)
i denoted by zi and z

(k+1)
i as ẑi (i = 1,...,n)

(I) ẑi = zi −
P (zi)

∏n
j=1,6=i(zi − zj)

(4.319)

(the WDK method, 4.1)

(II) ẑi = zi −
P (zi)

∏i−1
j=1(zi − ẑj)

∏n
j=i+1(zi − zj)

(4.320)

(the Gauss-Seidel WDK-method, 4.242)

(III) ẑi = zi −
P (zi)

∏n
j=1,6=i(zi − zj +Wj)

(4.321)

(the “Improved Durand-Kerner” method-4.25)

(IV) ẑi = zi −
P (zi)

∏i−1
j=1(zi − ẑj)

∏n
j=i+1(zi − zj +Wj)

(4.322)

(Gauss-Seidel version of 4.321–see Petkovic and Milanovic (1983)).

(V) ẑi = zi −
Wi

1 +
∑n

j=1,6=i
Wj

zi−zj

(4.323)

(Borsch-Supan method-4.22)

(V I) ẑi = zi −
Wi

1 +
∑n

j=1,6=i
Wj

zi−Wi−zj

(4.324)

(Nourein’s method–4.23)

(V II) ẑi = zi −
1

P ′(zi)
P (zi)

−
∑n

j=1,6=i
1

zi−zj

(4.325)

(Ehrlich-Aberth method–4.17)

(V III) ẑi = zi −
1

P ′(zi)
P (zi)

−∑i−1
j=1

1
zi−ẑj

−∑n
j=i+1

1
zi−zj

(4.326)

(Gauss-Seidel version of 4.325 i.e. 4.250)

(IX) ẑi = zi −
1

P ′(zi)
P (zi)

−∑n
j=1,6=i

1

zi−zj+
P (zj)

P ′(zj)

(4.327)

116 4. Simultaneous Methods

(“Improved Ehrlich-Aberth method” –4.26)

(X) ẑi = zi −
1

P ′(zi)
P (zi)

−∑i−1
j=1

1
zi−ẑj

−∑n
j=i+1

1

zi−zj+
P (zj)

P ′(zj)

(4.328)

(G.-S. version of 4.327 i.e. 4.261)

The authors cited give the number of operations (excluding evaluations of the
polynomial), and order of convergence of the various methods, as shown in the
following table:

METHOD I II III IV V V I V II V III IX X
Opers 2n2 2n2 5n2 9

2n
2 5n2 6n2 5n2 5n2 6n2 11

2 n
2

r(3) 2 2.33 3 3.15 3 4 3 3.52 4 4.65
r∞ 2 2 3 3 3 4 3 3 4 4

(In fact the authors distinguish between different types of operation, and give also
terms of O(n). But we only count terms of O(n2), all together). r∞ is the limit
of r(n) as n → ∞. Using the above values and 4.312 and 4.314, and considering
several computers, the authors conclude that method II is the most efficient and
VII the least. Their theoretical analysis is confirmed by experiments where actual
CPU time is measured (except that now V is worst and VII is second worst).

In a slightly earlier paper Petkovic and Milanovic (1985) find X best for large
n, although II is still best for smaller n.

Petkovic (1990) considers three of the above methods (I, VII, and IX) and
Newton’s method

ẑi = zi −
P (zi)

P ′(zi)
(4.329)

(He refers to these as P1, P3, P4 and P2 respectively-P for point). Also he considers
some disk-methods namely the WDK disk formula 4.128, Ehrlich-Aberth -disk 4.137
and a Halley-like disk method

Z
(k+1)
i = z

(k)
i

+
1

2[P ′′

P ′ − 2P ′

P] + P
2P ′ [(

∑n
j=1, 6=i

1
zi−Zj

)2 +
∑n

j=1,6=i
1

(zi−Zj)2
]

(4.330)

The above 3 disk methods are referred to as I1, I2, and I3 (I for interval). Actually
he gives formulas for multiple roots, but only considers the simple-root case, so
we do the same. He considers several combined methods, whereby a point method
is used for M iterations and an interval method for one final iteration (to give a
bound on the errors). Using an analysis similar to that in his previously-mentioned

4.11. Implementation on Parallel Computers 117

paper, Petkovic finds that the most efficient combined method involves P4 and I2,
i.e. the improved Ehrlich-Aberth method (IX) for the M point-iterations and the
disk Ehrlich-Aberth method at the end. This contrasts with the previous result
where Ehrlich-Aberth was worst.

4.11 Implementation on Parallel Computers

The methods of this chapter have many advantages (such as good convergence prop-
erties) even on a serial computer, but they are especially suited to implementation
on parallel computers. Accordingly, several authors have considered this situation.
Freeman (1989) considers the general simultaneous iteration

z
(k+1)
i = z

(k)
i − P (z

(k)
i)

φi(z
(k)
1 , z

(k)
2 , ..., z

(k)
n)

(i = 1, .., n) (4.331)

and gives a parallel algorithm as follows, for p processors in which the l’th processor
handles jl approximations, and il =

∑l−1
m=1 jm (l = 1, ..., p) (i1 = 0):

Step 1 (i) k = 1

(ii) Define initial approximations z
(1)
i

Step 2. In parallel, for l = 1,2,...,p and for i = il + 1, il + 2, ..., il + jl
(i) Calculate p

(k)
i = P (z

(k)
i)

(ii) Calculate q
(k)
i = φi(z

(k)
1 , z

(k)
2 , ..., z

(k)
n)

(iii) Set z
(k+1)
i = z

(k)
i − p

(k)
i /q

(k)
i

Step 3. for i = 1,2,..,n communicate z
(k+1)
i to all the processors.

Step 4. (i) Check for convergence
(ii) set k = k+1
(iii) Go to step 2.

Freeman considers the particular cases where 4.331 is replaced by (I) the WDK
method, (II) The Ehrlich-Aberth method 4.17 (henceforward referred to as the EA
method). (III) A fourth-order formula of Farmer and Loizou (1975).

For step 4(i) he suggests the rounding-error based method of Adams (1967).

This step can be performed simultaneously with Step 2(i) for the next z
(k+1)
i , and

also with step 3. The author describes some experiments on an 8-processor linear
chain. The results show that method (III) is often unreliable, but methods I and
II show a speed-up of about 5.5 for some of the higher-degree polynomials tested
(8 would be the maximum possible). Note that “speed-up” is defined as
(Time with one processor)/(Time with p processors) and is ≤ p. Less speed-up is

118 4. Simultaneous Methods

obtained with lower-degree polynomials.

Freeman and Bane (1991) consider asynchronous algorithms, in which each
processor continues to update its approximations even although the latest values

of the other z
(k)
i have not yet been received from the other processors (in the

synchronous version it would wait). Thus the WDK method becomes:

z
(k+1)
i = z

(k)
i − P (z

(k)
i)

∏n
j=1,6=i(z

(k)
i − z

(kj)
j)

(i = 1, .., n) (4.332)

where kj = k− ρ(j, k, h) and ρ(j, k, h) indicates that processor Ph knows only the

value of z
(k−ρ(j,k,h))
j , i.e the value computed at step k-ρ(j, k, h). Thus zj may have

been computed several steps prior to the k’th. While saving time on communica-
tion, this strategy may lead to more iterations before convergence, and we need to
balance these opposing forces.

We let

ρ = Maxj,k,hρ(j, k, h) (4.333)

be a measure of the asynchronism. The EA method is similarly modified.
Let

ǫ
(k)
i = z

(k)
i − ζi (i = 1, .., n) (4.334)

be small and the ζi simple zeros. Then the authors prove that

ǫ
(k+1)
i = −ǫ(k)

i





∑

j 6=i

ǫ
(kj)
j

(ζi − ζj)
+O(ǫ2)



 (i = 1, .., n); k = 1, 2, .. (4.335)

where

ǫ = max(|ǫ(k)
i |; |ǫ(kj)

j |, j 6= i) (4.336)

For the EA method there is a similar result with (ǫ
(k)
i)2 on the right. Note that the

order of the WDK method approaches 2 as ρ approaches 0, but otherwise it is super-
linear. The EA method similarly is superquadratic in general and cubic when ρ = 0.

The authors experiment with the case where approximations are exchanged after
every m iterations. Not surprisingly, the number of iterations required for conver-
gence increases with m. For small p, the savings in communication time (which may
be an appreciable part of the total) are outweighed by the cost of extra iterations.
But for large p, when communication costs are more significant, the choice of m
= 2 or 3 in the WDK case leads to a 10-20% net time reduction compared to the
synchronous case (m = 1). For EA and m = 2 through 5 the speed-up is significant

4.11. Implementation on Parallel Computers 119

even for small p, and is again about 20% for large p. Also EA is more robust.

Petkovic (1996) generalizes 4.335 to

ǫ
(k+1)
i = αi(ǫ

(k)
i)q

n
∑

j=1,6=i

βijǫ
(k−ρ(j,k,h)
i (4.337)

(Note that WDK has q=1 and EA has q = 2). Also if ρ = 0, then by 4.337 the
order is q+1. Then Petkovic shows that the order of the asynchronous method
leading to 4.337 is the (only) positive root of

ηρ+1
A − qηρ

A − 1 = 0 (4.338)

(N.B. if ρ = 0 this becomes ηA = ηS = q + 1, confirming the remark above). He
gives a table of orders for several values of ρ and q, thus:

ρ
q 0 1 2 3 4
1 2 1.62 1.47 1.38 1.32
2 3 2.41 2.21 2.11 2.06
3 4 3.30 3.10 3.04 3.01

Now let us define NS , TS and NA, TA as the number of iteration steps and time
per iteration of the synchronous and asynchronous methods respectively (often
TA < TS as there is less communication). Then the asynchronous implementation
wil be faster overall if

λq =
NA

NS
≈ log(q + 1)

log(ηA(q))
<

TS

TA
(4.339)

Petkovic shows that for all ρ considered, λq gets smaller (or stays the same) as
q increases, so that 4.339 is more easily satisfied. This gives us a reason, when
choosing between methods of the same efficiency (in synchronous case), to choose
the one of higher order.

Cosnard and Fraignaud (1990) compare 3 different parallel network topologies
(ring, 2-D torus, and hypercube). They conclude that the hypercube is by far the
fastest. In experiments they obtain almost perfect speed-up.

Maeder and Wynton (1987) discuss the parallelization of several methods which
are not normally considered “simultaneous”, such as the Sturm sequence method
(see Chapter 2). They point out that several stages in this method are suitable for
parallel computation. Firstly, the process of dividing the polynomials to form the
Sturm functions can be performed in parallel. As soon as the first few functions are
formed, values at a chosen set of points can be found, again in parallel. Moreover,
once all the functions have been obtained and the values at the chosen points

120 4. Simultaneous Methods

calculated, the counting of the sign changes among the function values at the chosen
points can proceed in parallel. Thus we can discover which intervals contain one or
more roots, subdivide them further and discard the ones which contain no roots.
Experiments using a large number of (simulated) processors gave a speed-up of
nearly 40.

4.12 Miscellaneous Methods

Patrick (1972) describes a method for polynomials all of whose roots are real (a
fairly common case). It takes O(n3) operations, but on the other hand it is globally
convergent, in contrast to many other methods where the determination of starting
points which ensure convergence for those methods is very time-consuming.

It is based on the fact that the zeros of the second derivative of a polynomial
with only real zeros can serve as starting values for Newton’s method with assured
convergence to zeros of the polynomial itself. Thus if the degree n is even, we start
with the (n-2)’th derivative, which is a quadratic, find its zeros by the usual for-
mula and hence by Newton’s method find 2 zeros of the (n-4)’th derivative, which
is fourth degree, and so on until we obtain zeros of the original polynomial. Thus
in general we find 2j-2 zeros of the (n-2j)’th derivative, which is of degree 2j. The
other two zeros can be found from the fact that the sum and product of all the
zeros are equal respectively to -(coefficient of x2j−1) and the constant term, of the
(n-2j)’th derivative. Thus we get 2 equations for the missing zeros u and v, of the
form
u+ v = c, uv = d, hence u+ d

u = c, hence u2 + du+ c = 0, a quadratic which
can easily be solved.

If the degree n is odd, the treatment is very similar except that we start with a
derivative which is linear.

Patrick proves that Newton’s method, when using a zero of the second deriva-
tive of Pm as a starting value, is guaranteed to converge monotonically to a zero of
Pm.

Pasquini and Trigante (1985) also give a method that is globally convergent for
the all-real zero case, and uses only O(n2) operations. It is derived by considering
divided differences, but we will omit the details of the derivation as it is very lengthy.
The actual algorithm is as follows:

x
(k+1)
i = x

(k)
i − ∆i (i = 1, .., n− 1) (4.340)

x(k+1)
n = −cn−1 −

n−1
∑

i=1

x
(k+1)
i (4.341)

4.13. A Robust and Efficient program 121

where

∆i = (Pi −
i−1
∑

l=1

πli∆l)/πii (4.342)

(with the sum omitted for i=1) and

Pi =
n−i+1
∑

j=0

cn−i+1−jpji (4.343)

πli =
n−i
∑

j=0

cn−i−jq
(l)
ji (4.344)

phr = ph,r−1 + x(k−1)
r ph−1,r; p0r = 1, (r ≥ 1);

ph0 = 0 (h ≥ 0) (4.345)

q
(m)
hr = phr + x(k−1)

m q
(m)
h−1,r; q

(m)
0r = 1, (r ≥ 1, m ≥ 1) (4.346)

It is claimed that the method converges quadratically even for multiple zeros,
provided that we take an average of clusters of zeros converging towards a multiple
zero. For more details see the cited paper, theorem 4.

4.13 A Robust and Efficient program

Bini (1996) and Bini and Fiorentino (2000) have written a highly efficient and
robust program, based on Aberth’s method, with cluster analysis to speed conver-
gence of multiple roots, and adaptive multiprecision arithmetic. It never failed on
1000 polynomials of degree up to 25,000.

It can be downloaded from

http://netlib.bell-labs.com/netlib/numeralgo

It is contained in item na20, and is called MPsolve (as of Dec. 2004, it is version
2.2). Instructions for running it are contained in the Appendix to this chapter.

APPENDIX. RUNNING MPsolve

- IF YOU ARE USING LINUX:

Step 1

122 4. Simultaneous Methods

Mpsolve uses GMP as a multiprecision arithmetic engine, in most cases it is already
available on many linux distributions, if this is not the case, you can get it from:

http://www.swox.com/gmp/

the current version is 4.1.4:

http://ftp.sunet.se/pub/gnu/gmp/gmp-4.1.4.tar.gz

download it, then you can unpack and install it by issuing:

tar xvzf gmp-4.1.4.tar.gz
cd gmp-4.1.4
./configure
make
make install (you may need to be in root to accomplish this step)

Step 2

To install MPsolve, download the package then just type

tar xvzf na20.tgz (this will create a directory named MPSolve-2.2)
cd MPSolve-2.2
make
make check (just to check that everything is OK).

- IF YOU ARE USING WINDOWS:

It is slightly more complicated since both GMP and MPSolve use Unix-like fea-
tures. You need to recreate a Unix-like environment, you can do so by installing
the Cygnus package

http://www.cygwin.com/

To setup the whole environment simply download and run the installer:

http://www.cygwin.com/setup.exe

Upon successful completion, an icon will be available which will launch the new
unix environment (it is a bash shell, actually).

GMP will be already available if you checked it from the list of available packages
during installation. Otherwise simply run the installer again and check it in the
math section.

4.14. References for Chapter 4 123

Copy the package na20.tgz in your cygnus home directory
(typically, C : \cygwin\home\Y our Name) then apply Step 2 above.

- IN BOTH CASES: In the package you will find all the instructions about how to
write input polynomials and how to feed them to MPSolve. The documentation
also describes all the features and runtime options.
The above was written by Dario Bini and Giuseppe Fiorentino

4.14 References for Chapter 4

Aberth, O. (1973), Iteration Methods for Finding all Zeros of a Polynomial Simul-
taneously, Math. Comp. 27, 339-344

Adams, D.A. (1967), A stopping criterion for polynomial root-finding, Comm.
Ass. Comp. Mach. 10, 655-658

Alefeld, G. and Herzberger, J. (1974), On the Convergence Speed of Some Algo-
rithms for the Simultaneous Approximation of Polynomial Roots, SIAM J. Numer.
Anal. 11, 237-243

———– and ————– (1983), Introduction to Interval Computations, Academic
Press, New York

Andreev, A.S. and Kjurkchiev, N.V. (1987), Two-Sided Method for Solving the
Polynomial Equation, Math. Balk. (New Series) 1 (1), 72-82

Atanassova, L. (1996), On the R-order of a Generalization of Single-Step Weier-
strass Type Methods, Z. angew. Math. Mech. 76, 422-424

Batra, P. (1998), Improvement of a convergence condition for the Durand-Kerner
iteration, J. Comput. Appl. Math. 96, 117-125

Bini, D.A. (1996), Numerical computation of polynomial zeros by means of Aberth’s
method, Numer. Algorithms 13, 179-200

———- and Fiorentino, G. (2000), Design, analysis, and implementation of a mul-
tiprecision polynomial rootfinder, Numer. Algorithms 23, 127-173

Borsch-Supan, W. (1963), A Posteriori Error Bounds for the Zeros of Polynomials,
Numer. Math. 5, 380-398

124 4. Simultaneous Methods

—————- (1970), Residuenabschätzung für Polynom-Nullstellen mittels Lagrange-
Interpolation, Numer. Math. 14, 287-296

Carstensen, C. (1993), On quadratic-like convergence of the means for two methods
for simultaneous rootfinding of polynomials, BIT 33, 64-73

————- and Petkovic, M.S. (1993), On iteration methods without derivatives for
the simultaneous determination of polynomial zeros, J. Comput. Appl. Math. 45,
251-266

Cosnard, M. and Fraignaud, P. (1990), Finding the roots of a polynomial on an
MIMD multicomputer, Parallel Computing 15, 75-85

Docev, K. (1962), An alternative method of Newton for simultaneous calculation
of all the roots of a given algebraic equation, Phys. Math. J., Bulg. Acad. Sci.
5, 136-139 (in Bulgarian)

——— (1962), Über Newtonsche Iterationen, C.R. Acad. Bulg. Sci. 15, 699-701

——– and Byrnev, P. (1964), Certain Modifications of Newton’s Method for the
Approximate Solution of Algebraic Equations, USSR Comp. Math. Math. Phys.
4 (5), 174-182

Durand, E. (1960), Solution Numérique des Équations Algébriques, Vol. 1,
du Type F(x) = 0, Racines d’une Polynôme. Masson, Paris

Ehrlich, L.W. (1967), A Modified Newton Method for Polynomials, Comm. Ass.
Comput. Mach. 10, 107-108

Ellis, G.H. and Watson, L.T. (1984), A parallel algorithm for simple roots of poly-
nomials, Comput. Math. Appl. 10, 107-121

Farmer, M.R. and Loizou, G. (1975), A Class of Iteration Functions for Improving,
Simultaneously, Approximations to the Zeros of a Polynomial, BIT 15, 250-258

———– and ———– (1977), An algorithm for the total, or partial, factorization
of a polynomial, Math. Proc. Camb. Phil. Soc. 82, 427-437

Fraignaud, P. (1991), The Durand-Kerner polynomials root-finding method in case
of multiple roots, BIT 31, 112-123

Freeman, T.L. (1979), A method for computing all the zeros of a polynomial with
real coefficients, BIT 19, 321-333

Équations

4.14. References for Chapter 4 125

———— (1989), Calculating polynomial zeros on a local memory parallel com-
puter, Parallel Computing 12, 351-358

———— and Bane, M.K. (1991), Asynchronous polynomial zero-finding algo-
rithms, Parallel Computing 17, 673-681

————- and Brankin, R.W. (1990), A divide and conquer method for polynomial
zeros, J. Comput. Appl. Math. 30, 71-79

Gargantini, I. (1978), Further Applications of Circular Arithmetic: Schroeder-like
Algorithms with Error Bounds for Finding Zeros of Polynomials, SIAM J. Numer.
Anal. 15, 497-510

————– (1979), The numerical stability of simultaneous iterations via square-
rooting, Computers Math. Appls. 5, 25-31

————– (1980), Parallel square-root iterations for multiple roots, Comput.
Math. Appl. 6, 279-288

————– and Henrici, P. (1971), Circular Arithmetic and the Determination of
Polynomial Zeros, Numer. Math. 18, 305-320

Hansen, E. and Patrick, M. (1977), A family of root-finding methods, Numer.
Math. 27, 257-269

———, ——— and Rusnack, J. (1977), Some modifications of Laguerre’s method,
BIT 17, 409-417

Hopkins, M. et al (1994), On a Method of Weierstrass for the Simultaneous Calcu-
lation of the Roots of a Polynomial, Z. angew. Math. Mech. 74, 295-306

Hull, T.E. and Mathon, R. (1996), The Mathematical Basis and a Prototype Im-
plementation of a New Polynomial Rootfinder with Quadratic Convergence, ACM
Trans. Math. Softw. 22, 261-280

Ilieff, L. (1948-50), On the approximations of Newton, Annual Sofia Univ. 46,
167-171 (in Bulgarian)

Iliev, A.I. and Semerdzhiev, Kh.I. (1999), Some Generalizations of the Chebyshev
method for Simultaneous Determination of All Roots of Polynomial Equations,
Comp. Math. Math. Phys. 39, 1384-1391

Kanno, S., Kjurkchiev, N.V. and Yamamoto, T. (1996), On Some Methods for the
Simultaneous Determination of Polynomial Zeros, Japan J. Indust. Appl. Math.

126 4. Simultaneous Methods

13, 267-288

Kerner, I.O. (1966), Ein Gesamtschritteverfahren zur Berechnung der Nullstellen
von Polynomen, Numer. Math. 8, 290-294

Kjellberg, G. (1984), Two Observations on Durand-Kerner’s Root-Finding Method,
BIT 24, 556-559

Kjurkchiev, N.V. (1998), Initial Approximations and Root-finding Methods, Wiley-
VCH, Weinheim, Germany

————— and Andreev, A. (1985), A modification of Weierstrass-Docev’s method
with rate of convergence R+2 for the simultaneous determination of zeros of a poly-
nomial, C.R. Acad. Bulgare Sci. 38, 1461-1463 (in Russian)

————— and ———– (1992), On the Generalization of the
Alefeld-Herzberger’s Method, Computing 47, 355-360

Leuze, M.R. (1983), A hybrid Laguerre method, BIT 23, 132-138

Lo Cascio, M.L., Pasquini, L. and Trigante, D. (1989), Simultaneous Determina-
tion of Polynomial Roots and Multiplicities: An Algorithm and Related Problems,
Ricerce Mat. 38, 283-305

Loizou, G. (1983), Higher-Order Iteration Functions for Simultaneously Approxi-
mating Polynomial Zeros, Intern. J. Computer Math. 14, 45-58

Maeder, A.J. and Wynton, S.A. (1987), Some parallel methods for polynomial root-
finding, J. Comput. Appl. Math. 18, 71-81

Markov, S. and Kjurkchiev, N. (1989), A Method for Solving Algebraic Equations,
Z. angew. Math. Mech. 69, T106-T107

Maxwell, E.A. (1960), Advanced Algebra, Cambridge University Press, Cambridge

Milovanovic, G.V. and Petkovic, M.S. (1983), On the Convergence Order of a Mod-
ified Method for Simultaneous Finding Polynomial Zeros, Computing 30, 171-178

—————– and ————– (1986), On Computational Efficiency of the Iterative
Methods for the Simultaneous Approximation of Polynomial Zeros, ACM Trans.
Math. Softw. 12, 295-306

Miyakoda, T. (1989), Iterative methods for multiple zeros of a polynomial by clus-
tering, J. Comput. Appl. Math. 28, 315-326

4.14. References for Chapter 4 127

———— (1992), Balanced convergence of iterative methods to a multiple zero of
a complex polynomial, J. Comput. Appl. Math. 39, 201-212

———— (1993), Multiplicity estimating algorithm for zeros of a complex polyno-
mial and its application, J. Comput. Appl. Math. 46, 357-368

Monsi, M. and Wolfe, M.A. (1988), Interval Versions of Some Procedures for the
Simultaneous Estimation of Complex Polynomial Zeros, Appl. Math. Comp. 28,
191-209

Niell, A.M. (2001), The Simultaneous Approximation of Polynomial Roots, Com-
put. Math. Appl. 41, 1-14

Nourein, A.-W. M. (1975), An iterative formula for the simultaneous determination
of the zeros of a polynomial, J. Comput. Appl. Math. 1(4), 251-254

—————- (1977a), An improvement on Nourein’s method for the simultaneous
determination of the zeros of a polynomial (an algorithm), ALGORITHM 007, J.
Comput. Appl. Math. 3 (2), 109-110

—————– (1977b), An Improvement on two Iteration Methods for Simultaneous
Determination of the Zeros of a Polynomial, Intern. J. Computer Math. 6B,
241-252

Ostrowski, A.M. (1970), Solution of Equations and Systems of Equations, Aca-
demic Press, New York

Pasquini, L. and Trigante, D. (1985), A Globally Convergent Method for Simulta-
neously Finding Polynomial Roots, Math. Comp. 44, 135-149

Patrick, M.L. (1972), A Highly Parallel Algorithm for Approximating All Zeros of
a Polynomial with Only Real Zeros, Comm. Ass. Comp. Mach. 15, 952-955

Peters, G. and Wilkinson, J.H. (1971), Practical problems arising from the solution
of polynomial equations, J. Inst. Math. Appl. 8, 16-35

Petkovic, M.S. (1981), On a Generalization of the Root Iterations for Polynomial
Complex Zeros in Circular Arithmetic, Computing 27, 37-55

————– (1982), On an iterative method for simultaneous inclusion of polynomial
complex zeros, J. Comput. Appl. Math. 8, 51-56

————– (1989A), On Halley-Like Algorithms for Simultaneous Approximation

128 4. Simultaneous Methods

of Polynomial Complex Zeros, SIAM J. Numer. Anal. 26, 740-763

————– (1989B) Iterative Methods for Simultaneous Inclusion of Polynomial
Zeros, Springer-Verlag, Berlin

————– (1990), On the efficiency of some combined methods for polynomial com-
plex zeros, J. Comput. Appl. Math. 30, 99-115

————– (1996), Asynchronous Methods for Simultaneous Inclusion of Polynomial
Roots, in Numerical Methods and Error Bounds, ed. G. Alefeld and J. Herzberger,
Akademie Verlag, Berlin, 178-187

————– (2003), Laguerre-like inclusion methods for polynomial zeros, J. Com-
put. Appl. Math. 152, 451-465

————– and Carstensen, C. (1993), Some improved inclusion methods for poly-
nomial roots with Weierstrass’ correction, Computers Math. Appl. 25 (3), 59-67

————- , ————– and Trajkovic, M. (1995), Weierstrass’ formula and zero-
finding methods, Numer. Math. 69, 353-372

————– and Herceg, D.D. (1998), On the convergence of Wang-Zheng’s method,
J. Comput. Appl. Math. 91, 123-135

————– and ———— (2001), Point estimation of simultaneous methods for solv-
ing polynomials: a survey, J. Comput. Appl. Math. 136, 283-307

————-, ————- and Ilic, S. (1998), Safe convergence of simultaneous methods
for polynomial zeros, Numer. Algorithms 17, 313-331

————-, Ilic, S. and Trickovic, S. (1997), A Family of Simultaneous Zero-Finding
Methods, Computers Math. Appls. 34 (10), 49-59

————- and Kjurkchiev, N. (1997), A note on the convergence of the Weierstrass
SOR method for polynomial roots, J. Comput. Appl. Math. 80, 163-168

————- and Milovanovic, G.V. (1983), A note on some improvements of the si-
multaneous methods for determination of polynomial zeros, J. Comput. Appl.
Math. 9(1), 65-69

————- and —————- (1985), Computational efficiency of the simultaneous
methods for finding polynomial zeros: comparison of various algorithms, in Nu-
merical Methods and Approximation Theory, ed. D. Herceg, University of Novi
Sad, 89-93

4.14. References for Chapter 4 129

————-, ———— and Stefanovic, L.V. (1986), Some higher-order methods for
the simultaneous approximation of multiple polynomial zeros, Computers Math.
Appls. 12A, 951-962

————-, Petkovic, L.D. and Herceg, D.D. (1998), Point Estimation of a Family
of Simultaneous Zero-Finding Methods, Computers Math. Appls. 36 (2), 1-12

————-, ————– and Ilic, S. (2003), The Guaranteed Convergence of Laguerre-
Like Methods, Computers Math. Appls. 46, 239-251

————- and Rancic, L. (2004), On the guaranteed convergence of the square-root
iteration method, J. Comput. Appl. Math. 170, 169-179

————-, Sakurai, T. and Rancic, L. (2004), Family of simultaneous methods of
Hansen-Patrick type, Appl. Numer. Math. 50, 489-510

————- and Stefanovic, L.V. (1984), The numerical stability of the generalized
root iteration for polynomial zeros, Computers Math. Appls. 10 (2), 97-106

————- and Stefanovic, L.V. (1986A), On a Second Order Method for the Simul-
taneous Inclusion of Polynomial Complex Zeros in Rectangular Arithmetic, Com-
puting 36, 249-261

————- and ————— (1986B), On some improvements of square root iteration
for polynomial complex zeros, J. Comput. Appl. Math. 15, 13-25

————- and ————— (1987), On some iteration functions for the simultaneous
computation of multiple complex polynomial zeros, BIT 27, 111-122

———— and —————- (1990), Forward-Backward Serial Iteration Methods for
Simultaneously Approximating Polynomial Zeros, Intern. J. Computer Math. 37,
227-238

————-, ————— and Marjanovic, Z. M. (1992), A family of simultaneous
zero-finding methods, Intern. J. Computer Math. 43, 111-126

————, —————- and —————– (1993), On the R-order of Some Acceler-
ated Methods for the Simultaneous Finding of Polynomial Zeros, Computing 49,
349-361

————- and Vranic, D.V. (2000), The Convergence of Euler-Like Method for the
Simultaneous Inclusion of Polynomial Zeros, Computers Math. Appls. 39(7/8),
95-105

130 4. Simultaneous Methods

Sakurai, T., Torii, T. and Sugiura, H. (1991), A high-order iterative formula for
simultaneous determination of zeros of a polynomial, J. Comput. Appl. Math.
38, 387-397

Semerdzhiev, K. (1994), Iterative Methods for Simultaneous Finding All Roots of
Generalized Polynomial Equations, Math. Balk. (New Series)
8, 311-335

Simeunovic, D.M. (1989), On the Convergence of an Iterative Procedure for the
Simultaneous Determination of all Zeros of a Polynomial, Z. angew. Math. Mech.
69, T108-110

Small, R.D. (1976), Problem 75-14, Simultaneous Iteration Towards All Roots of a
Complex Polynomial, SIAM Rev. 18, 501-502

Sun, F. and Li, X. (1999), On an accelerating quasi-Newton circular iteration,
Appl. Math. Comp. 106, 17-29

——- and Zhang, X. (2003), A new method of increasing the order of convergence
step-by-step, Appl. Math. Comp. 137, 15-32

Wang, D. and Wu, Y.-j. (1987), Some Modifications of the Parallel Halley Iterative
Method and Their Convergence, Computing 38, 75-87

——– and Zhao, F. (1995), The theory of Smale’s point estimation and its appli-
cation, J. Comput. Appl. Math. 60, 253-269

Weierstrass, K. (1903), Neuer Beweis des Satzes, dass jede ganze rationale Function
einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functio-
nen derselben Veränderlichen, Ges. Werke 3, 251-269

Werner, W. (1982), On the simultaneous determination of polynomial zeros, in It-
erative Solution of Nonlinear Systems of Equations, eds. R. Ansorge et al, Springer-
Verlag, Berlin, 188-202

Yamamoto, T. (1996), SOR-like Methods for the Simultaneous Determination of
Polynomial Zeros, in Numerical Methods and Error Bounds, G. Alefeld and J.
Herzberger (eds), Akademie Verlag, Berlin, 287-296

Zhao, F. and Wang, D. (1993), The theory of Smale’s point estimation and the
convergence of Durand-Kerner program, Math. Numer. Sinica 15, 196-206 (in
Chinese)

Chapter 5

Newton’s and Related Methods

5.1 Definitions and Derivations

Newton’s method in its modern form is given by the iteration

xi+1 = xi −
f(xi)

f ′(xi)
(i = 0, 1, ...,m) (5.1)

starting with an initial guess x0, and with m determined by some stopping criterion,
i.e we terminate the iteration process when accuracy is considered good enough.
f(x) could be any function, although in our context it is a polynomial.

This is probably the most widely known method for solving equations, although
it is not the most efficient, nor the most robust. That is, it is not guaranteed to
converge from an arbitrary starting point x0, so it is usually used in conjunction
with some other method that is globally convergent (e.g. bisection). This should
give an x0 close enough to the root ζ for Newton’s method to converge.

Many different derivations are given in the literature, but the most straight-
forward is based on Taylor’s theorem (see e.g Stoer and Bulirsch (1986)), i.e.

f(ζ) = 0 = f(x0 + [ζ − x0]) = f(x0) + (ζ − x0)f
′(x0)+

(ζ − x0)
2

2
f (2)(x0) + ... (5.2)

If the powers after the first are ignored, we get

0 = f(x0) + (ζ − x0)f
′(x0) (5.3)

where ζ is a new approximation to ζ, hopefully better than x0. Thus

ζ = x0 −
f(x0)

f ′(x0)
(5.4)

131

132 5. Newton’s and Related Methods

We set x1 = ζ and repeat the process to give x2, x3..., i.e. we have established 5.1.
We continue until we believe the desired accuracy has been attained (see sectiion 6
for stopping criteria).

Several authors, such as Stoer and Bulirsch, derive a similar method of higher
order by keeping the second degree term in 5.2, i.e.

ζ = x0 −
f ′(x0) ±

√

(f ′(x0))2 − 2f(x0)f ′′(x0)

f ′′(x0)
(5.5)

In general an iterative method may be written as

xi+1 = φ(xi) (i = 0, 1, 2, ...) (5.6)

The solutions are “fixed points” i.e. given by

ζ = φ(ζ) (5.7)

Now if the first p-1 derivatives φ′(ζ) = φ′′(ζ) = ... = φ(p−1)(ζ) are zero, but

φ(p)(ζ) 6= 0 (5.8)

then Taylor’s theorem gives

xi+1 = φ(xi) = φ(ζ) +
(xi − ζ)p

p!
φ(p)(ζ) +O(|xi − ζ|p+1) (5.9)

But φ(ζ) = ζ by 5.7 so we have

Limi→∞
xi+1 − ζ

(xi − ζ)p
=

φ(p)(ζ)

p!
(5.10)

i.e. convergence is of order p, with “asymptotic error constant ”

C ≡ φ(p)(ζ)

p!
, (i.e. xi+1 − ζ = C(xi − ζ)p) (5.11)

With

φ = x− f

f ′ (5.12)

as for Newton’s method we get

φ′ = 1 − (f ′)2 − ff ′′

(f ′)2
=

f(x)f ′′(x)

(f ′(x))2
(5.13)

so φ′(ζ) = 0 and Newton’s method is of order at least 2. But

φ′′ =
(f ′f ′′ + ff ′′′)(f ′)2 − ff ′′(2f ′f ′′)

(f ′)4
(5.14)

5.1. Definitions and Derivations 133

so

φ′′(ζ) =
f ′′(ζ)

f ′(ζ)
(since f(ζ) = 0) (5.15)

and the asymptotic error constant is

f ′′(ζ)

2f ′(ζ)
(5.16)

It can be proved (see e.g. Matthews (1992) theorem 2.2) that if y = φ(x)
satisfies a ≤ y ≤ b for all a ≤ x ≤ b, then φ has a fixed point in [a,b]. Further,
if

|φ′(x)| ≤ K < 1 for x ∈ [a, b] (5.17)

then xi+1 = φ(xi) (i = 0, 1, 2, ...) (5.6) converges to ζ. For Newton’s method 5.17
becomes: “Newton converges if

∣

∣

∣

∣

f(x)f ′′(x)

(f ′(x))2

∣

∣

∣

∣

< 1 for x ∈ [a, b]′′ (5.18)

This is mostly of theoretical interest, as it may be hard to estimate the values of f
and its derivatives over a range of x. More practical conditions are given in section 3.

Another condition for convergence is given by Ostrowski (1973) and quoted by
several other authors such as Presic (1978). It follows: Let f(x) be a real function
of a real variable x, f(x0)f

′(x0) 6= 0, and put

h0 = − f(x0)

f ′(x0)
, x1 = x0 + h0 (5.19)

Consider the interval J0 = < x0, x0 + 2h0 > and assume that f ′′(x) exists in J0,
that

SupJ0|f ′′(x)| = M (5.20)

and

2h0M ≤ |f ′(x0)| (5.21)

Let

xi+1 = xi −
f(xi)

f ′(xi)
(i = 0, 1, ...) (5.22)

Then all xi lie in J0 and xi → ζ as i → ∞ where ζ is the only zero in J0. Unless
ζ = x0 + 2h0, ζ is simple. Further

(a)

∣

∣

∣

∣

xi+1 − xi

(xi − xi−1)2

∣

∣

∣

∣

≤ M

2|f ′(xi)|
(i = 1, 2, ...) (5.23)

134 5. Newton’s and Related Methods

(b) |ζ − xi+1| ≤ M

2|f ′(xi)|
|xi − xi−1|2 (5.24)

For proof see Ostrowski (1973) pp57-59. There is a similar result for a complex
function of a complex variable (see Ostrowski pp59-60). Again this is of mostly
theoretical interest, as M is hard to evaluate except for very low-degree polynomi-
als.

A further condition (again only theoretically useful) is given by Franklin (1881),
quoting Fourier, as follows:
If f(x) has only one root between a and b, and if f ′′(x) does not change sign be-
tween those limits, then Newton’s method converges provided we start at that one
of the points a or b for which f has the same sign as f ′′. For proof see quoted paper.

A useful variation on Newton’s method, which originated with Fourier, is de-
scribed by Householder (1970) among others. Let the interval I = [x0, t0] contain
a simple zero, assume f ′(x)f ′′(x) 6= 0 on I, and

f(x0)f
′′(x0) > 0 (5.25)

Form the sequence x0, x1, x2, ... by Newton’s method, and also form

ti+1 = ti −
f(ti)

f ′(xi)
(5.26)

Then both sequences converge monotonically to the root ζ from opposite directions,
and

Limi→∞
(ti+1 − xi+1)

(ti − xi)2
=

f ′′(ζ)

2f ′(ζ)
(5.27)

We may also show that

|ζ − xi| ≤ |ti − xi| (5.28)

For proof see Householder pp156-157.

Another variation often quoted is to let

xi+1 = xi −
f(xi)

f ′(x0)
(i = 0, 1, ..., k) (5.29)

i.e. we need only one evaluation per iteration. When i reaches k we restart with
f ′(xk) in the denominator, and so on. The order of a set of k iterations is k+1,
according to Ortega and Rheinboldt (1970). Thus the efficiency is log(k+1

√
k + 1),

which is maximum for k=2.

5.2. Early History of Newton’s Method 135

Kung and Traub (1976) show that, among all rational iterations using two
function evaluations, the most efficient is either Newton’s or

xi+1 = xi −
f2(xi)

f(xi + f(xi)) − f(xi)
(5.30)

Atkinson (1989) shows that provided f ′(x) does not change rapidly between xi

and ζ (as is usually the case), then

ζ − xi ≈ xi+1 − xi (5.31)

which gives a practical stopping criterion.

5.2 Early History of Newton’s Method

Strictly speaking, the method commonly known as “Newton’s” or
is not really due to either of these gentlemen, but rather to

On the other hand Newton and Raphson did publish methods which are equiv-
alent to the modern formulation

xi+1 = xi −
f(xi)

f ′(xi)
(5.32)

The problem is that (unlike Simpson) they did not use calculus to compute f ′(xi),
but rather some strictly algebraic methods based on the binomial theorem (which
are comparatively laborious).

Newton’s version of the method was first written down in a tract “De analysi...”
in 1669, although not published in its own right until 1711 (it was published as part
of a book by Wallis (1685)). An English translation appears in Whiteside (1967-
1976). It may be described in modern notation as follows: let x0 be a first guess at
the solution ζ of f(x) = 0. Write

g0(x) = f(x) =

n
∑

i=0

cix
i (5.33)

Writing e0 = ζ − x0 and using the binomial expansion we get

0 = g0(ζ) = g0(x0 + e0) =

n
∑

i=0

ci(x0 + e0)
i =

n
∑

i=0

ci





i
∑

j=0

Ci
jx

j
0e

i−j
0



 (5.34)

= g1(e0) (5.35)

“ Newton-Raphson’s”
Thomas Simpson (1740).

136 5. Newton’s and Related Methods

N.B. x0 is a constant here, while the variable is e0.
Neglecting terms involving powers of e0 higher than the first gives

0 = g1(e0) ≈
n
∑

i=0

ci[x
i
0 + ixi−1

0 e0] =

n
∑

i=0

cix
i
0 + e0

n
∑

i=1

icix
i−1
0 (5.36)

from which we deduce

e0 ≈ b0 = −
∑n

i=0 cix
i
0

∑n
i=1 icix

i−1
0

(5.37)

and set x1 = x0 + b0. Now repeat the process, but instead of expanding the
original equation g0 about x1 expand the new polynomial g1 of the RHS of 5.34
about b0, i.e. write g1(e0) = g1(b0 + e1) = g2(e1)

In the modern notation of the calculus 5.37 could be written

c0 = −g0(x0)

g′0(x0)
= − f(x0)

f ′(x0)
(5.38)

but Newton (or Raphson) did not seem to realize the possibilities of 5.38, which is
much easier to calculate than the process 5.34-5.37. In fact Newton did not even
describe the above general formulation, but restricted himself to one single (now
famous) example x3 − 2x− 5 = 0.

Raphson’s version was first published in 1690 in a tract (Raphson 1690). Raph-
son’s treatment was similar to Newton’s, inasmuch as he used the binomial theorem,
but was more general. He treats the equation a3 − ba− c = 0 in the unknown a,
and states that if g is an estimate of the solution ζ, a better estimate is given by
g+x where

x =
c+ bg − g3

3g2 − b
(5.39)

Successive corrections are obtained by substituting in the original equation, rather
than using a new equation each time as in Newton’s version. Raphson gave explicit
formulas similar to 5.39 for polynomials of all degrees up to the tenth.

As mentioned, the first formulation in terms of calculus was given by Simpson
in 1740. Even he did not give it in its modern form, but in terms of “fluxions” of
the form ẏ or dy

dt , to be divided by ẋ to give dy
dx or f ′(x).

Lagrange (1798) gave the modern formula, mentioning Newton and Raphson but
not Simpson. Fourier in 1831 ascribed the method to Newton, with no mention of
Raphson or Simpson. The great popularity of Fourier may account for the use of the
term “Newton’s method”, with no mention of Simpson until perhaps Kollerstrom
(1992) and Ypma (1995).

5.3. Computable Conditions for Convergence 137

5.3 Computable Conditions for Convergence

Conditions for safe (i.e. guaranteed) convergence of Newton’s method from a start-
ing point x0, which were given in the literature prior to about 1978, were difficult or
impossible to evaluate, as they involved knowledge of f(x) and some of its deriva-
tives over a range of x (e.g. M in Ostrowski’s condition 5.3 in Section 1 =

Maxx0≤x≤x0+2h0 |f ′′(x)|) (5.40)

Or, even worse, they often involved knowledge of the roots.

As far as we know, the first paper giving a computable condition was by Presic
(1978). Theorem 2 of that paper is the same as Ostrowski’s condition quoted in
Section 1 of this chapter, except that instead of

2M |h0| ≤ |f ′(x0)| where M = MaxJ0 |f ′′(x)| (5.41)

we now have

M(x0)|h0| ≤ q|f ′(x0)| (5.42)

where

M(x) = Max{|f ′(x)|, |f ′′(x)|, ..., f (n)(x)|} (5.43)

(for a fixed x) is relatively easy to compute. Here q ≈ .3466 Also, the conclusions
(a) (5.23) and (b) (5.24) are replaced by

(a′)
|xi+1 − xi|
|xi − xi−1|2

≤ r
M(xi)

2|f ′(xi)|
(i = 1, 2, ...) (5.44)

(b′) |xi+1 − ζ| ≤ r
M(xi)

2|f ′(xi)|
|xi − xi−1|2 (i = 1, 2, ...) (5.45)

Here r = .5631. For proof see the quoted paper.

The above is for real xi, but in a second paper Presic (1979) proves a very
similar result for complex xi, except that now q = .2314 and r = .5409.

To use these conditions (and others to be described later), we may use some
globally convergent but slow method (e.g. bisection) until the condition in use is
satisfied, and then switch to Newton’s method.

Later Smale (1986) gave a more elaborate criterion for safe convergence from
z0. He defines an “approximate zero” (complex or real) z0 as satisfying

|zi − zi−1| ≤
(

1

2

)2i−1−1

|z1 − z0| (i = 1, 2, ...) (5.46)

138 5. Newton’s and Related Methods

Of course zi → ζ as i → ∞ in this case.
Also he defines

α(z, f) =

∣

∣

∣

∣

f(z)

f ′(z)

∣

∣

∣

∣

supk>1

∣

∣

∣

∣

f (k)(z)

k!f ′(z)

∣

∣

∣

∣

1
k−1

(5.47)

Then his theorem A states: “There is a number α0 ≈ .1307 such that if α(z0, f) <
α0, then z0 is an approximate zero of f”.
Note that f(z0), f

′(z0), ..., f (k)(z0)... are relatively easy to evaluate in principle,
but may take a large amount of computing power for high degree polynomials. So
Smale’s theorem B is useful, as it gives a much easier-to-evaluate criterion, i.e.

α(z, f) ≤ |f |max
|f(z)|
|f ′(z)|2

φ′d(|z|)2
φd(|z|)

(5.48)

where

|f |max = Supi|ci| (5.49)

φd(r) =

d
∑

i=0

ri =
1 − rd+1

1 − r
(5.50)

Then if the R.H.S. of 5.48 (for z = z0) is ≤ α0, it follows that α(z, f) < α0

and theorem A tells us that z0 is an approximate zero, i.e. Newton’s method
starting from z0 converges to a root. It is not clear whether Smale’s criteria are
easier or harder to satisfy than Presic’s– this would be an interesting research topic.

Petkovic et al (1977) quote Wang and Han (1989) as follows: “ If α = α(z, f) ≤
3 − 2

√
2, then

|z(k+1) − z(k)| ≤ (1 − q2
k

)K

2α(1 − ηq2k−1)(1 − ηq2k+1−1)
ηq2

k−1|z(1) − z(0)| (5.51)

where

K =
√

(1 + α)2 − 8α (5.52)

η =
1 + α−K

1 + α+K
, q =

1 − α−K

1 − α+K
′′ (5.53)

Since 3 − 2
√

2 ≈ .1716 > .1307, this is easier to fulfill than Smale’s criterion.
Typical values of q are :
1 for α = .17
.17 for α = .1
0 for α = 0.

5.3. Computable Conditions for Convergence 139

Another approach is taken by Hubbard et al (2001); they construct a finite set
of points such that for every root of a polynomial of degree d, at least one of these
points will provide a starting point for convergence to this root under Newton’s
iteration. They assume that all the roots are in the unit disk |z| < 1; if instead
the roots are in the disk |z| < r, we may scale all the starting points by a factor
of r. We select our set of points so that there is at least one in the “immediate
basin”of every root (i.e. the Newton iterations are guaranteed to converge from
that point). To do this we take

s = [.26632logd] + 1 (5.54)

circles centered at the origin with

N = [8.32547dlogd] + 1 (5.55)

points on each circle. (Here [x] means ‘integer part of x’). Let

rν = (1 +
√

2)

(

d− 1

d

)
2ν−1
4s

and θj =
2πj

N
for 1 ≤ ν ≤ s and

0 ≤ j − 1 ≤ N − 1 (5.56)

i.e. we have a collection of Ns points

rνexp(iθj) (5.57)

The number of circles is usually quite small, e.g. for degree ≤ 42, s is = 1; for d
> 42 and ≤ 1825, s = 2, and so on.

We are trying to find points ζ̂1, ζ̂2, ...ζ̂d which approximate the d roots of f so
that |ζ̂j − ζj | < ǫ. First make a guess K at the number of iterations required, such
as

K = [dlog(
1 +

√
2

ǫ
)] + 1 (5.58)

This is approximately the number of iterations required when the root is multiple,
and should be close to the worst case. Then, for each point z0 in our set of starting
points Sd, apply Newton’s method at most K times, stopping when

|zn − zn−1| <
ǫ

d
(5.59)

According to Henrici (1974) Cor. 6.4g, this guarantees that there is a root with

|zn − ζj | < ǫ (5.60)

for some j. The authors recommend that each successive point z0 should have an
argument differing by 2π

d from the previous one.

140 5. Newton’s and Related Methods

If the root ζj approximated by zn is different from any previously found root,

set ζ̂j = zn. Otherwise discard this set of iterations entirely. If Newton’s method
has been applied K times from z0 without locating a root, save the value zK in a
new set S1

d for possible future use. Also, if zk > 1 +
√

2 for any k > 1, store zk

in S1
d . If, after trying all the points in our initial set the number of roots found

is < d, then begin again, starting from points in S1
d and saving non- convergent

points in a new set S2
d . Continue thus until all d roots are found. Whan we have an

approximation to a root ζj , we must decide whether it approximates a previously
found root or a new one. Kim and Sutherland (1994), lemma 2.7, describe how to
do this. In fact these authors describe an asymptotically very efficient root-finding
method. See the cited paper for details. Schleicher (2002) gives an upper bound
on the numbers of iterations required to find each root with an accuracy ǫ. It is

9πd4f2
d

ǫ2log2
+ 1 +

|logǫ| + log13

log2
(5.61)

where

fd =
d2(d− 1)

2(2d− 1)
C2d

d (5.62)

He conjectures that this is a gross over-estimate, and that a more realistic bound
is

dlog(
2

ǫ
) (5.63)

Carniel (1994) gives a method based on finite-sized cells. If the region where we
suspect roots and cycles is bounded by

xL
i ≤ xi ≤ xU

i (i = 1, 2) (5.64)

then we divide each range into Ni equal subintervals of size
xU

i −xL
i

Ni
(i = 1, 2). Now

the iterations are given by a “cell-to-cell” mapping whereby the image of the cell z
is the center of the cell to which the image C(z) of the center of the cell z belongs.
Newton’s method may converge not only to a fixed point (root), but also to a cycle.
Cycles of period k are approximately detected by the condition

Ck(z∗(1)) = z∗(k + 1) = z∗(1) where z∗(m+ 1) = Cm(z∗(1)) (5.65)

Fixed points are regarded as cycles of period 1. The author shows how to detect
cycles and fixed points, but there are some problems if the iterations go outside the
region of interest. Of course we may enlarge the region of interest, but this may
result in excessive use of space and time resources. He suggests as an alternative
the use of polar and especially spherical coordinates. The latter sends ∞ to a finite
point if we use stereographic projection. Polar or spherical coordinates have the
advantage of generating relatively small-sized cells near the origin, where the roots
are usually found, and bigger cells far from the origin, where great detail is not

5.4. Generalizations of Newton’s Method 141

required. He suggests the following algorithm:

a) Transform the point yn (given in spherical coordinates) into cartesion coor-
dinates xn.

b) Apply Newton’s method to xn to give xn+1.

c)Transform xn+1 back to spherical coordinates yn+1

If the “latitude” and “longitude” of a point on a sphere of radius 1 are φ and λ,
then the cartesian coordinates in the central plane of the sphere, projected from
the “North Pole”, are given by

x =
cosφ cosλ

1 − sinφ
, y =

cosφ sinλ

1 − sinφ
(5.66)

while the reverse is given by

sinφ =
(x2 + y2) − 1

(x2 + y2) + 1
, tanλ =

y

x
(5.67)

(the last relation has to be modified if x and/or y are negative).

For the important case of a real polynomial with all real roots, Cosnard and
Masse (1983) prove that Newton’s method converges from almost any starting point.
Apparently a similar result was proved by Barna (1951).

5.4 Generalizations of Newton’s Method

This section describes a considerable number of methods, usually more efficient
than Newton’s itself (which has efficiency .15). They are based on the evaluation
of f and/or f ′ at some point(s) other than xi (as well as that point). Also included
are some that involve multiplying f and/or f ′ by a power of xi or a constant, as
well as some further miscellaneous ones. The first set of methods will be listed
more or less in order of increasing efficiency. It is worth noting that none of this
first set have efficiencies as high as Muller’s, which requires only one new function
evaluation per step.

We will give in detail the derivation of a third-order method due to Jarratt
(1966), requiring one function and two derivative evaluations per step. (normally,

142 5. Newton’s and Related Methods

because of lack of space, we will not give details of derivations). We start by
supposing that

xi+1 = xi −
f(xi)

a1w1(xi) + a2w2(xi)
(5.68)

where

w1(xi) = f ′(xi), w2(xi) = f ′(xi + αu(xi)) and u =
f

f ′ (5.69)

Assume a simple root at ζ and let

ǫ = ǫi = xi − ζ (5.70)

By Taylor’s series

f(xi) = c0 + c1ǫ+ c2ǫ
2 +O(ǫ3) (5.71)

Where

cr =
f (r)(ζ)

r!
, c0 = f(ζ) = 0 (5.72)

Similarly

f ′(xi) = c1 + 2c2ǫ+ 3c3ǫ
2 +O(ǫ3) (5.73)

And

f ′′(xi) = 2c2 + 6c3ǫ+ 12c4ǫ
2 +O(ǫ3) (5.74)

f (3)(xi) = 6c3 + 24c4ǫ+ ... (5.75)

Then

u(xi) =
f(xi)

f ′(xi)
= (c1ǫ+ c2ǫ

2 + ..)c−1
1 (1 + 2

c2
c1
ǫ+ 3

c3
c1
ǫ2 + ..)−1 =

ǫ− c2
c1
ǫ2 +O(ǫ3) (5.76)

So

w2(xi) = f ′(xi + αu(xi)) =

f ′(xi) + f ′′(xi)αu(xi) +
f (3)(xi)

2
α2u2(xi) = (5.77)

c1 + 2c2ǫ+ 3c3ǫ
2 + (2c2 + 6c3ǫ)α(ǫ− c2

c1
ǫ2)

5.4. Generalizations of Newton’s Method 143

+
1

2
(6c3 + 24c4ǫ)α

2(ǫ− c2
c1
ǫ2)2 +O(ǫ3) = (5.78)

c1 + 2c2(1 + α)ǫ+ [3c3(1 + 2α+ α2) − 2
c22
c1
α]ǫ2 +O(ǫ3) (5.79)

Consequently

a1w1(xi) + a2w2(xi) =

a1(c1 + 2c2ǫ+ 3c3ǫ
2) + a2{c1 + 2c2(1 + α)ǫ+

[3c3(1 + α)2 − 2
c22
c1
α]ǫ2} = c1(a1 + a2)

+2c2[a1 + (1 + α)a2]ǫ+ [3c3a1 + a2{3c3(1 + α2) − 2
c22
c1
α}]ǫ2 +O(ǫ3) (5.80)

We write this as

p1 + p2ǫ+ p3ǫ
2 +O(ǫ3) (5.81)

with the obvious meanings for p1, p2, p3. Substituting in 5.68 gives

ǫi+1 = xi+1 − ζ = ǫ− (c1ǫ+ c2ǫ
2 + c3ǫ

3)(p1 + p2ǫ+ p3ǫ
2)−1 = (5.82)

(1 − c1
p1

)ǫi +
1

p1
(
p2

p1
c1 − c2)ǫ

2
i +

1

p1
[
p2

p1
c2 + (

p3

p1
− p2

2

p2
1

)c1 − c3]ǫ
3
i +O(ǫ4i) (5.83)

We will choose our parameters a1, a2, α to ensure that the order is 3, i.e. we
require

1 − c1
p1

=
1

p1
(
p2

p1
c1 − c2) = 0 (5.84)

i.e. 1 − 1
a1+a2

= 0, so that

a1 + a2 = 1 and p1 = c1 (5.85)

Then the second part of 5.84 gives p2 = c2 i.e.

2(a1 + a2 + αa2)c2 = c2 i.e. 2(1 + αa2) = 1, i.e. 2αa2 = −1 (5.86)

Or, expressing a1 and a2 in terms of α,

a1 =
1 + 2α

2α
, a2 = − 1

2α
(5.87)

Choosing α = − 1
2 gives the simple formula

xi+1 = xi −
f(xi)

f ′(xi − 1
2

f(xi)
f ′(xi)

)
(5.88)

144 5. Newton’s and Related Methods

This was also derived by Kogan (1967), who generalized it. We have ensured that
this method has order 3, so the efficiency = log 3

√
3 = .159; this is somewhat better

than Newton.

Homeier (2005) uses Newton’s integral theorem for the inverse function x(y):

x(y) = x(yi) +

∫ y

yi

x′(η)dη (5.89)

and replaces the integral by an interpolating quadrature rule, such as the Trape-
zoidal rule, giving

xi+1 = xi −
f(xi)

2





1

f ′(xi)
+

1

f ′(xi − f(xi)
f ′(xi)

)



 (5.90)

Again, this is third order and uses 3 evaluations, so the efficiency is .159. Frontini
and Somani (2003) and Weerakom and Fernando (2000) give similar formulas based
on the same ideas. In one test case the last-mentioned method was much more
efficient than Newton’s.

Kizner (1964) uses the relation

ζ =

∫ 0

f(z1)

dz

df
df + z1 (5.91)

Approximating the integral by the rectangular rule gives Newton’s method, but
Kizner applies the classical Runge-Kutta method, which requires 5 function evalu-
ations and gives order 5. Thus the efficiency is log(5

√
5) = .140, which is less than

Newton. On the other hand, the author claims that this method often converges
when Newton’s does not.

Jarratt (1966) also gives a method of order 5, namely:

xi+1 = xi−

f(xi)
1
6 [f ′(xi) + f ′(xi − f(xi)

f ′(xi)
)] + 2

3f
′(xi − 1

8
f(xi)
f ′(xi)

− 3
8

f(xi)

f ′(xi− f(xi)

f′(xi)
)

) (5.92)

It is seen that this uses one function and three derivative evaluations, so the effi-
ciency is log(4

√
5) = .175. The derivation is a generalization of that for the third-

order method mentioned earlier.

King (1971) gives another 5th order method:

wi = xi −
f(xi)

f ′(xi)
(5.93)

5.4. Generalizations of Newton’s Method 145

xi+1 = wi −
f(wi)

f ′(wi)
− f(xi)

f ′(xi)

[

f(wi)

f(xi)

]3

(5.94)

This uses 2 function and 2 derivative evaluations, so the efficiency is again log(4
√

5)
= .175

Murakami (1978) also gives a 5th order method with 4 evaluations.

Werner (1982) gives a generalized method:

x
(0)
i+1 = x

(m−1)
i (5.95)

x
(k)
i+1 = x

(k−1)
i+1 − 1

f ′(1
2 (x

(m−1)
i + xm

i))
f(x

(k−1)
i+1) (5.96)

(i = 0, 1, 2...; k = 1, 2, ...,m; m ≥ 2) with given starting points x
(m−1)
0 , xm

0 . The
order is shown to be

m

2
+

√

m2

4
+ 1 (5.97)

e.g. m= 3 gives order 3.303 and efficiency .173. The case m = 2 gives

xi+1 = xi −
f(xi)

f ′(xi+yi

2)
(5.98)

yi+1 = xi+1 −
f(xi+1)

f ′(xi+yi

2)
(5.99)

This is of order 1 +
√

2 and efficiency .191. It is probably the most efficient of the
class 5.95-5.96. Werner also gives another variation in which 5.98 is followed by:

x∗i+1 = xi+1 − 2
f(xi+1)

f ′(xi+yi

2)
(5.100)

yi+1 =
1

2
(xi+1 + x∗i+1) (5.101)

and shows that (if we start close enough to a root ζ) thatmin(xi, x
∗
i) andmax(xi, x

∗
i)

converge from below and above to ζ with order 1 +
√

2, thus giving a good error
estimate.

Neta (1979) gives a sixth-order method using 3 function and 1 derivative eval-
uations. It is

wi = xi −
f(xi)

f ′(xi)
(5.102)

146 5. Newton’s and Related Methods

zi = wi −
f(wi)

f ′(xi)

f(xi) − 1
2f(wi)

f(xi) − 5
2f(wi)

(5.103)

xi+1 = zi −
f(zi)

f ′(xi)

f(xi) − f(wi)

f(xi) − 3f(wi)
(5.104)

and it has efficiency log(4
√

6) = .195.

Also King (1973) has a fourth order family of methods with 2 function and 1
derivative evaluation per step, including:

wi = xi −
f(xi)

f ′(xi)
(5.105)

xi+1 = wi −
f(wi)

f ′(xi)

f(xi)

f(xi) − 2f(wi)
(5.106)

The efficiency is log(3
√

4) = .2007

Jarratt (1970), p12 eq (16), gives a similar formula with the same efficiency,
while Jarratt (1966B) gives another formula with that same order and efficiency,
namely:

xi+1 = xi −
1

2

f(xi)

f ′(xi)
+

f(xi)

f ′(xi) − 3f ′(xi − 2
3

f(xi)
f ′(xi)

)
(5.107)

Earlier in the 1970 paper that author describes two methods of order 2.732 with 2
evaluations, i.e. efficiency .218 (p9 eq 10 and p10 eq 12).

Kung and Traub (1974) give a family of inverse Hermite interpolatory formulas
of which the first 3 members are:

w1 = x; w2 = x− f(x)

f ′(x)
(5.108)

w3 = w2 −
f(x)f(w2)

[f(x) − f(w2)]2
f(x)

f ′(x)
(5.109)

An Algol program is given to construct higher-order methods. wn requires n-1
function evaluations and 1 derivative and is of order 2n−1; thus its efficiency is
log(21− 1

n). For example, n=4 gives log(2
3
4) = .226. They conjecture that the order

of any iteration with n evaluations and no memory is at most 2n−1.

King (1972) describes what he calls the “tangent- parabola method”. It is rather
complicated but has high efficiency. Let

a0 = f0 − f2 + f ′
1(x2 − x0) (5.110)

5.4. Generalizations of Newton’s Method 147

b0 = 2x1(f2 − f0) + f ′
1(x

2
0 − x2

2) (5.111)

c0 = x2(2x1 − x2)f0 + x0(x0 − 2x1)f2 + x0x2(x2 − x0)f
′
1 (5.112)

where

fi = f(xi) and f
′
i = f ′(xi) (i = 0, 1, 2, ...) (5.113)

Also let

A1 = f ′
1 − f ′

3, B1 = 2(x1f
′
3 − x3f

′
1), (5.114)

C1 = 2(x1 − x3)f2 − x2
2A1 − x2B1 (5.115)

Then we compute

x3 =
1

2
(x2 +

−b0 ±
√

b20 − 4a0c0
2a0

) (5.116)

and

x4 = (
−B1 ±

√

B2
1 − 4A1C1

2A1
) (5.117)

These 2 substeps may be repeated until convergence as usual. The order is 3 and 2
new evaluations are required per full step, so that the efficiency=log(2

√
3) = .238.

Neta (1981) gives an even more efficient method of order 16 with 5 evaluations.
It is given by: Let

wi = xi −
f(xi)

f ′(xi)
(5.118)

zi = wi −
f(wi)

f ′(xi)

f(xi) + 2f(wi)

f(xi)
(5.119)

Now let

Fδ = f(δi) − f(xi) (5.120)

φδ =
δi − xi

F 2
δ

− 1

Fδf ′(xi)
(5.121)

where δ = w or z, (e.g. if δ = w, δi = wi, Fδ = f(wi) − f(xi)).
Next compute

D =
φw − φz

Fw − Fz
, γ = φw −DFw (5.122)

ti = xi −
f(xi)

f ′(xi)
+ γf2(xi) −Df3(xi) (5.123)

148 5. Newton’s and Related Methods

Ft = f(ti) − f(xi), φt =
ti − xi

F 2
t

− 1

Ftf ′(xi)
(5.124)

e =

φt−φz

Ft−Fz
− φw−φz

Fw−Fz

Ft − Fw
(5.125)

d =
φt − φz

Ft − Fz
− e(Ft + Fz), c = φt − dFt − eF 2

t (5.126)

and finally

xi+1 = xi −
f(xi)

f ′(xi)
+ cf2(xi) − df3(xi) + ef4(xi) (5.127)

The efficiency is log(5
√

16) = .241. The last two methods have much “overhead”,
i.e. calculations other than evaluations, and so would not be suitable for low-degree
polynomials. Muller’s method, which is even more efficient (.265), also has a fairly
high overhead.

We turn now to some different types of methods, for example Dawson (1982)
generates 2 quadratics y = gi(x) (i = 1, 2) defined by

yi = gi(xi) (5.128)

y′i = g′i(xi) (5.129)

and gi(r) = 0 such that

g′1(r) = g′2(r) (5.130)

Assuming that y1y2 < 0 he shows that r is unique, and it is given by

r =
x1 + x2

2
− y1 − y2
y′1 − y′2

±

[

(
x1 − x2

2
)2 + (

y1 − y2
y′1 − y′2

)2 − (x1 − x2)(y1 + y2)

y′1 − y′2

]
1
2

(5.131)

the + or - sign being taken according to the sign of y1−y2

y′
1−y′

2
. Here we use yi for f(xi).

(When y′1 = y′2, r =
y1x2 − y2x1

y1 − y2
) (5.132)

r is taken as the next approximation to the root. The efficiency is the same as
Newton, but the method compares favourably to several methods in the earlier
literature.

5.4. Generalizations of Newton’s Method 149

Costabile et al (2001) give another method based on quadratic interpolation.
Let

P2[f, a, b] = (fb − fa − f ′
a(b− a))(

x − a

b − a
)2 + f ′

a(x− a) + fa (5.133)

which satisfies

P2(a) = fa, P2(b) = fb, P
′
2(a) = f ′

a (5.134)

Here of course fa = f(a) etc. If we take x0 = b and x1 = a as starting points,
then xi+1 is taken as the root of P2[f, xi, xi+1] = 0, i.e.

xi+1 = xi −
2fi

f ′
i ±

√

f ′2
i − 4σifi

(5.135)

where fi = f(xi) etc, and

σi =
fi−1 − fi − f ′

i(xi−1 − xi)

(xi−1 − xi)2
(5.136)

We select x0 and x1 so that f(x0)f(x1) < 0 and calculate x2 as the unique root
of P2 inside [x0, x1]. It is shown that this solution exists and is unique.Then we
define the new x1 as x0 or (the old) x1 so that f takes opposite signs at the edges
of the new interval [x1, x2]. Finally we iterate this process to convergence (which
is guaranteed). The author shows that the order is 1 +

√
2, and as 2 evaluations

are required the efficiency is log(
2
√

1 +
√

2) = .190. This is not as efficient as some
of the methods mentioned above, but as convergence (to a real root) is guaranteed,
the method may be quite useful.

Alefeld and Potra (1995) describe several rather complicated bracketing meth-
ods for real roots based on inverse cubic interpolation. The best has order 2 +

√
7

for 3 evaluations per step (asymptotically- i.e. near the root), thus efficiency .22.
Again, as it uses bracketing, convergence is guaranteed.

Clegg (1981) suggests the formula

xi+1 = xi −
f(xi)

f ′(xi) − r
xi
f(xi)

, (xi 6= 0) (5.137)

He describes several ways of choosing r, but we suspect that they may be too ex-
pensive in practise. One of them is more robust than Newton.

Hines (1951) gives a formula equivalent to 5.137, and claims that for a range of
r it is faster than Newton, but does not show how to choose r.

150 5. Newton’s and Related Methods

He (2004) gives another variation:

xr
i+1 = xr

i − rxr−1
i

f(xi)

f ′(xi)
(5.138)

(r = 1 gives Newton).
The author reports experiments in which a higher value of r gives a greatly increased
rate of convergence compared to Newton, or gives convergence where Newton di-
verges. He suggests solving the equation

∂xi+1

∂r
= 0 (5.139)

to find the optimum r. However calculations by this author on one of He’s examples
did not agree with his results.

Wu (2000) gives the formula

xi+1 = xi −
f(xi)

qif(xi) + f ′(xi)
(i = 0, 1, 2, ...) (5.140)

where qi is chosen so that qif(xi) and f ′(xi) have the same sign. In experiments
with 5 simple functions, 5.140 converged much faster than Newton in one case,
and converged quite fast in the others, although Newton failed in those cases. In
fact the method is almost globally convergent for real roots. Apart from the condi-
tion on qif(xi) and f ′(xi) given above, the author does not explain how qi is chosen.

Tikhonov (1976) offers the following generalization: let

u =
f(xi)

f ′(xi)
(5.141)

then

xi+1 = xi

[

1 − 1

m+ xi

u − (s0 + s1

xi
+ ...+ sm−1

xm−1
i

)

]

(5.142)

(m=0,1,2,...). N.B. m = 0 gives Newton. Here the si are the sums of the i’th powers
of all the roots, and are given by Newton’s identities:

s0 = n, s1 = −cn−1, s2 = −cn−1s1 + 2cn−2, etc (5.143)

It is claimed that this converges faster than Newton, especially if the largest magni-
tude root is computed first. In an example, starting from -47, Newton reached the
value -7.01 after 15 iterations, whereas 5.142 (with m = 1) reached -7.0001 after 4
(the true root being exactly -7).

5.5. Methods for Multiple Roots 151

Finally Burgstahler (1986) describes an interesting method which replaces each
power of x, other than the leading power and constant term, by a multiple of the
leading power and a new constant term, using

(
x

R
)p ≈ p

n
(
x

R
)n +

(n− p)

n
(p = n− 1, n− 2, ..., 1) (5.144)

which he proves true if

|x−R| << |R| (5.145)

The result is

f ′(R)

nRn−1
xn

1 =
Rf ′(R)

n
− f(R) (5.146)

or x1 = R[1 − nf(R)

Rf ′(R)
]
1
n (5.147)

taking the complex root closest to (1,0). Experiments show that the new method is
often, but by no means always, faster than Newton. The author suggests running
both algorithms in parallel and choosing the result of whichever converges faster
(or sometimes one may converge and the other not).

5.5 Methods for Multiple Roots

Rall (1966) shows that the unmodified Newton method converges linearly to a
multiple root. Details of his proof follow: Assume the method is converging towards
a root ζ of multiplicity m. Let

ǫi = xi − ζ (5.148)

and ηi = − f(xi)

f ′(xi)
(5.149)

then since

xi+1 = xi + ηi (5.150)

we have

ǫi+1 = ǫi + ηi (5.151)

Expanding f(xi) and f ′(xi) about ζ by Taylor’s theorem gives

ηi = −
1

m!f
(m)(ζ + θǫi)ǫ

m
i

1
(m−1)!f

(m)(ζ + θ′ǫi)ǫ
m−1
i

(5.152)

152 5. Newton’s and Related Methods

with 0 < θ, θ′ < 1. (Note that f(ζ) = f ′(ζ) = ... = f (m−1)(ζ) = 0). Or,
since

f (m)(ζ + θǫi) = f (m)(ζ + θ′ǫi) + f (m+1)(ζ + θ′′(θ − θ′)ǫi)(θ − θ′)ǫi (5.153)

where 0 < θ, θ′′ < 1, it follows that

ηi = − 1

m
ǫi +O(ǫ2i) (5.154)

Substituting in 5.151 gives

ǫi+1 =
m− 1

m
ǫi +O(ǫ2i) (5.155)

Now he defines

ρi =
ηi+1

ηi
=

ǫi+2 − ǫi+1

ǫi+1 − ǫi
(5.156)

and shows that

ρi =
m− 1

m
+O(ǫi) (5.157)

so Limi→∞ρi =
m− 1

m
(5.158)

Hence we can find m, for large enough i, that is when ρi stabilizes.

Rall also describes the “corrected Newton method”

x̃i+1 = x̃i −m
f(x̃i)

f ′(x̃i)
(5.159)

(originally suggested by Schroder (1870)).
He shows that

η̃i = −ǫ̃i +O(ǫ̃2i) (5.160)

so that

ǫ̃i+1 = ǫ̃i + η̃i = O(ǫ̃2i) (5.161)

Traub (1967) shows that

Limi→∞
ǫ̃i+1

ǫ̃2i
=

f (m+1)(ζ)

m(m+ 1)f (m)(ζ)
(5.162)

The problem of course is to find m. In fact McNamee (1998) has compared (for
speed) 7 methods for finding m, as follows:

5.5. Methods for Multiple Roots 153

(A) Schroder (1870) uses

m =
1

u′
where u =

f

f ′ (5.163)

so u′ =
(f ′)2 − ff ′′

(f ′)2
(5.164)

and 5.159 becomes

xi+1 = xi −
f(xi)f

′(xi)

[f ′(xi)]2 − f(xi)f ′′(xi)
(5.165)

Note that if we use 5.165 we do not need to evaluate m explicitly.

(B) Ostrowski (1973) uses

m̃ =
x2i − x2i+1

x2i − 2x2i+1 + x2i+2
(5.166)

where x2i+1 and x2i+2 are obtained from x2i by two pure Newton steps. Then we
round m̃ to the nearest integer m and apply 5.159.

(C) Madsen (1973) forms xi + pdxi for p = 1,2,... where

dxi = − f(xi)

f ′(xi)
(5.167)

terminating when |f(xi +pdxi)| starts to increase. He takes m = that p which gives
the minimum |f(xi + pdxi)|.

(D) Hansen and Patrick (1976) give a rather complicated procedure. See their
paper or the one of McNamee for details.

(E) Chanabasappa (1979) takes

Sa = |afif
′′
i − (a− 1)(f ′

i)
2| (5.168)

for a = 1,2,...,n and takes m = that value of a which gives minimum Sa.

(F) Van der Straeten and Van de Vel (1992) set

m0 = 1, x1 = x0 −m0
f(x0)

f ′(x0)
(5.169)

and for i = 0,1,...

mi+1 =
mi

1 − f(xi+1)f ′(xi)
f ′(xi+1)f(xi)

(5.170)

154 5. Newton’s and Related Methods

xi+2 = xi+1 −mi+1
f(xi+1)

f ′(xi+1)
(5.171)

(G) Traub (1964) uses

m =
ln(f(xi))

ln(f(xi)
f ′(xi)

)
(5.172)

rounded to the nearest integer.

McNamee applied all the above methods to over 500 polynomials, mostly ran-
dom. He found that Madsen’s method was fastest with Aitken (see below), Os-
trowski and Schroder close. McNamee also tested two methods which do not com-
pute m, but apply acceleration to the linearly converging sequence produced by
pure Newton iteration. One is due to Aitken (1926): after each pair of Newton
steps giving x2i+1, x2i+2 we compute

x̃2i+2 = x2i −
(x2i+1 − x2i)

2

x2i+2 − 2x2i+1 + x2i
(5.173)

The other is due to Levin (1973). It is quite complicated and the tests showed that
it is relatively slow, so it will not be explained here. As mentioned above, Aitken’s
is among the better methods of those tested.

Not only is Schroder’s method 5.165 among the fastest of those tested, but
according to Gilbert (1994) it is much more reliable than those that compute m
explicitly and use 5.159, at least in the prescence of rounding error.

Lagouanelle (1966) describes a variation on Schroder’s method 5.163 of finding
m, namely

m = l − 1 + Limx→ζ

[

[f (l)(x)]2

[f (l)(x)]2 − f (l−1)(x)f (l+1)(x)

]

(5.174)

Then we may apply Newton’s or some other method with f (m−1)(x) in place of
f(x). He does not state how to choose l, but Derr (1959) gives a similar method in
which li is chosen to be the smallest non-negative integer such that

|f (li+1)(xi)| ≥ η = (say)
√
ǫ (5.175)

where ǫ = machine precision (e.g. 10−8). Then take

ki = li + θ̂ − 1 (5.176)

where θ̂ is the nearest integer to

θ =

f(li)

f(li+1)

f(li)

f(li+1) − f(li−1)

f(li)

(5.177)

5.5. Methods for Multiple Roots 155

where all the derivatives of f are evaluated at xi. Our next iteration is then given
by

xi+1 = xi − (ki − li)
f (li)(xi)

f (li+1)(xi)
(5.178)

Derr shows that as i→ ∞, li = ki − 1 = m− 1 and 5.178 becomes

xi+1 = xi −
f (m−1)(xi)

f (m)(xi)
(5.179)

This process is claimed to be of second order, and Lagouanelle claims that the
multiple roots are obtained as accurately as simple roots with the normal Newton
iteration.

Ypma (1983) compares a number of methods in which f(x) is replaced by a
function T (x) such that

Limx→ζT (x) = 0, Limx→ζT
′(x) 6= 0 (5.180)

i.e T (x) has a simple root identical to a (perhaps) multiple root of F (x). Most of
the T (x) are of the form

f2(x)(α + β)

f(x+ αf(x)) − f(x− βf(x))
(5.181)

He then applies Newton’s method to T (x). He concludes that the most reliable and
efficient case for polynomials is given by

T (x) =
f(x)

f ′(x)
(5.182)

just as u(x) in 5.163..leading to Schroder’s method 5.165.

King (1979), (1980), (1983A), (1983B) describes a series of extrapolation meth-
ods, each one more efficient than the previous. The best (1983B) is described below.
From x0 we compute x1 and x2 by two Newton steps, letting g0 = x0 − x1, g1 =
x1 − x2. Take x̃2 as the Aitken-extrapolation of (x0, x1, x2) (i.e. apply 5.173) and
set

g2 =
f(x̃2)

f ′(x̃2)
(5.183)

Now we fit a parabola g̃2 through (x0, g0), (x1, g1) and (x̃2, g2), compute the deriva-
tive g̃′2 at x̃2 and take a Newton-like step

x3 = x̃2 −
g̃2
g̃′2
, g3 =

f(x3)

f ′(x3)
(5.184)

156 5. Newton’s and Related Methods

Note that

g̃′2 = g[x̃2, x1] + g[x̃2, x0] − g[x0, x1] (5.185)

and that g2 = g̃2. Steps 5.185 and 5.184 are repeated as needed. King shows
that the order is 1.839, but as 2 evaluations are needed per step, the efficiency is
log(2

√
1.839) = .132. This compares favourably with Schroder’s method 5.165 which

has efficiency log(3
√

2) = .1003.

Dong (1987) gives a method of order 3 requiring 3 evaluations per step, thus
efficiency log(3

√
3) = .159. It is

xi+1 = xi − ui −
f(xi)

(m
m−1)m+1f ′(xi − ui) + m−m2−1

(m−1)2 f
′(xi)

(5.186)

where (presumably)

ui =
f(xi)

f ′(xi)
(5.187)

The above assumes m is known, and may be subject to some of the unreliablity
reported by Gilbert. Victory and Neta (1983) give a similar method of the same
order and efficiency as Dong’s, but it is a little more complicated. See their paper
for details.

Forsythe (1958) points out, by means of an example, that the “plain” Newton’s
method will converge linearly, if started from a large distance from several simple
roots, until xi is close enough to a root to “see” it as a separate entity. In that case
it may be better to start by using one of the methods designed for multiple roots,
such as Schroder’s.

The above gives a similar result to several papers which observe that, because
of rounding errors, a root which is mathematically multiple may be replaced com-
putationally by a cluster of close, but not equal, roots. For example Yakoubsohn
(2000) describes algorithms which detect such a cluster. We need some definitions:
an m-cluster of f is defined as an open disk

D(z, r) = {x : |x− z| < r} (5.188)

which contains m zeros of f, counting multiplicities. A full m-cluster is an m-cluster
which contains m-1 zeros of f ′, counting multiplicities. Let

Nf = x− f(x)

f ′(x)
(5.189)

βm(f, z) = Max0≤k≤m−1

∣

∣

∣

∣

m!f (k)(z)

k!f (m)(z)

∣

∣

∣

∣

1
m−k

(5.190)

5.5. Methods for Multiple Roots 157

γm(f, z) = Maxm+1≤k≤n

∣

∣

∣

∣

m!f (k)(z)

k!f (m)(z)

∣

∣

∣

∣

1
k−m

(5.191)

Rm(f, z, r) =
|f (m)(z)|

m!
rm −

m−1
∑

k=0

|f (k)(z)|
k!

rk −
n
∑

k=m+1

|f (k)(z)|
k!

rk (5.192)

The first algorithm, called “m-cluster”, detects a probable m-cluster. From
x0, we take two Newton steps, to x1 and x2. Then we find the integer m which
minimizes

∣

∣

∣

∣

|x2 − x1|
|x1 − x0|

− m− 1

m

∣

∣

∣

∣

(5.193)

Now compute

z = mx2 − (m− 1)x1 (5.194)

and

r =
1

(2γm(f, z))
(5.195)

The disk D(z, r) is a probable m-cluster. Finally, check whether Rm(z, r) > 0. If
so, D(z, r) is definitely an m-cluster, otherwise not.

An arbitrary x0 will not generally lead to an m-cluster as above. Yakoubsohn
describes a global Newton homotopy method which usually does obtain an m-
cluster. Let

ft(x) = f(x) − tf(x0) (5.196)

with x0 a given complex number. If zk−1 is the point at step k-1 corresponding to
tk−1, set

z0 = x0, y0 = zk−1; yi = yi−1 −
ftk

(yi−1)

f ′
tk

(yi−1)

(i = 1, 2, ..., nit). (N.B. f
′
tk

= f ′) (5.197)

zk = ynit (k = 1, 2, ...) (5.198)

Let

βk =

∣

∣

∣

∣

ftk
(zk)

f ′(zk)

∣

∣

∣

∣

(5.199)

Now if βk > (some small number) ǫ perform the previously- described algorithm
“m-cluster”. If zk is an m-cluster we are done. Otherwise set

tk+1 =
(tk + tk−1)

2
(5.200)

158 5. Newton’s and Related Methods

and continue to the next k. (N.B. We let t0 = 1, t1 = 1 − ǫ, β0 = 2ǫ).
On the other hand if βk ≤ ǫ and tk > 0 set

tk+1 = max(tk − 2(tk−1 − tk), 0) (5.201)

and continue to the next k.
Finally if βk ≤ ǫ and tk = 0 and R1(f, zk,

1
2γ1(f,zk)) > 0 then the disk

D(zk,
1

2γ1(f,zk)) contains only one root and we stop. Otherwise apply 5.200 and

continue to the next k. Yakoubsohn proves that this algorithm always terminates.

Kirrinnis (1997) also gives a method of detecting clusters, but it is too compli-
cated to describe here. See the cited article for details.

5.6 Termination Criteria

Since Newton’s method (like most methods for roots) is iterative, we need a crite-
rion to decide when to terminate the iteration. Note that much of the material of
this section applies to other methods besides Newton’s.

A popular method is to stop when

|xi+1 − xi| < ǫ (5.202)

or

|xi+1 − xi

xi
| < ǫ (5.203)

There are several problems with this. First, if ǫ is chosen too small, 5.202 or 5.203
may never be satisfied, because rounding error will cause the LHS to increase and
oscillate before they are satisfied.

At the other extreme, for some functions 5.202 or 5.203 may be satisfied although
xi is not close to a root. Donovan et al (1993) give an example where xi =√
ui, ui+1 = ui +1. The function producing this behaviour, by Newton iterations,

is shown to be

f(x) = C
exp[− 1

2 (x2 + x
√
x2 + 1)]

√

x+
√
x2 + 1

(5.204)

This has no real roots, but 5.202 is satisfied for any ǫ provided i is large enough.
They also show another function

h(x) = 3
√
xexp(−x2) (5.205)

which has a root at x = 0. Newton’s iteration does not converge to this root (unless
x0 = 0), but the xi satisfy 5.202 for large i (e.g. i = 250,000 for ǫ = 10−3).

5.6. Termination Criteria 159

Garwick (1961) suggests stopping when the LHS of 5.203 starts to increase (pro-
vided it is less than .01, for in the first few iterations it may increase for reasons
not to do with rounding error).

Igarashi (1985) gives an alternative stopping criterion, which also tells how
accurate xi is. We calculate f(x) by Horner’s method, calling the result A(x).
Then compute G(x) = xf ′(x) − f(x) by

G(x) = (n− 1)cnx
n + (n− 2)cn−1x

n−1 + ...+ c2x
2 − c0 (5.206)

and finally

xf ′(x) −G(x) (5.207)

Call the latter B(x) (= f(x)).
If we are far from a root, or using infinite precision, A(x) should equal B(x). But
near a root, if

f(x) = (x − ζ)mg(x) (g(ζ) 6= 0) (5.208)

we have (usually)

|xif
′(xi)| = |xi[(xi − ζ)(m−1)g(xi) + (xi − ζ)mg′(xi)]| > (5.209)

|f(xi)| = |(xi − ζ)mg(xi)

provided ζ, and hence xi, 6= 0.
Consequently A(xi) will have more correct digits than B(xi). When xi is very
close to a root, both A(xi) and B(xi) cease to have any correct digits and the two
values are completely different. The following criterion can be used to detect this
situation: if

R(f, xi) =
|A(xi) −B(xi)|

min(|A(xi)|, |B(xi)|)
> 1 (5.210)

then f(xi) has no correct digits and we are as close to a root as we will ever get.
Before this situation is reached, we may estimate the number of correct digits in
f(xi) as

−log10R(f, xi) (5.211)

We can also estimate the number of correct digits in xi, as the number of leading
digits in agreement between

xi = xi−1 −
A(xi−1)

f ′(xi−1)
and x̂i = xi−1 −

B(xi−1)

f ′(xi−1)
(5.212)

Igarashi (1982) gives another criterion: let the calculation errors in f(x) be
δf(x); then we stop iterating if

|f(x)| ≤ |δf(x)| ≤
n
∑

i=0

|cixi|b
−t

2
(5.213)

160 5. Newton’s and Related Methods

where t is the number of places in the mantissa in base b (usually 2).

Adams (1967) lets

e0 =
1

2
|cn|, ek = |x|ek−1 + |bn−k| (5.214)

where the bi are the coefficients in the deflated polynomial, found by Horner’s
method. Then he estimates the rounding error as

E = (en − 1

2
|b0|)b1−t (5.215)

and stops when the computed |f(x)| < 2E.

Mcnamee (1988) compares the above three methods and concludes that Gar-
wick’s method is the best among them (but see later).

Vignes (1978) gives a different approach: let an exact number x = mbe (m
unlimited) be represented in the computer by X = MbE where M is limited to t
places in base b, and usually e = E. The relative error in X is

α =
X − x

X
= − r

M
where r = m−M (5.216)

Statistically, with rounding α has a mean of 0 and a standard deviation of .4×2−t.
Let the mathematical operation z = xωy where ω ∈ [+, −, ×, /] be performed
on the computer as Z = X Ω Y where Ω is the computer equivalent of ω. We let
Ω ∈ [

⊕

, etc] (i.e. including rounding). Then the error

ǫz = Z − z = (x+ ǫx)ω(y + ǫy) − xωy + α(XΩY) (5.217)

where ǫx and ǫy are errors in X and Y.

Suppose some exact mathematical procedure

proc(d, r,+,−,×, /, funct) (5.218)

(where d and r are respectively data and results) is replaced on the computer by

PROC(D,R,
⊕

, etc, FUNCT) (5.219)

where again D and R are data and results. Each computer procedure corresponding
to a different permuation of the operands in 5.219 is equally representative of 5.218.
Suppose there are Cop of them. The generation of these is called the “permutation
method”. Moreover, each operator is subject to rounding error, which may go up
or down. Thus we have 2 results for each operator, and if there are k elementary
operations, there will be 2k results. This is called the perturbation method. If
this is applied for each permutation of the operators, then there are 2kCop results

5.7. Interval Methods 161

in total. This total population of results will be called < R >. Let R0 be the
result corresponding to the mathematical result r without any permutations or
perturbations, and R and δ be the mean and standard deviation of the elements of
< R >. Then it may be shown that the number C of significant digits in the result
is given by

10−C =

√

(R0 −R)2 + δ2

|R0|
(5.220)

It is not possible or necessary to generate all the elements of < R >. Instead in
practise we may generate successive elements of < R > until successive values of C
agree. Usually a small number, about 3, are sufficient for this purpose. Vignes give
a subroutine PEPER which performs the necessary permutations and perturba-
tions. Since it is subtraction of nearly equal numbers (or additions of positive and
negative numbers) which causes by far the most serious errors, the permutations
are restricted to adds and subtracts.

For an iterative method such as Newton’s, the above method gives a useful stop-
ping criterion, i.e. stop when C given by 5.220 as applied to f(x) is < 1. This would
mean that f(x) has no significant digits, as it is dominated by rounding errors. In
an experiment with Newton’s method on 4 related examples the conventional crite-
rion |xi−xi−1| < ǫ required 143 iterations while the C < 1 criterion obtained the
same accuracy with only 31 iterations. It is true that the permutation-perturbation
method requires more work per iteration, but on the other hand applying it to xi

gives us reliably the number of correct digits in xi, unlike the conventional criteria.

5.7 Interval Methods

Interval arithmetic has been described in Chapter 4 (Section 4) in connection with
simultaneous methods. It can also be applied very usefully to Newton’s and related
methods. It has at least two advantages: firstly, as before, it provides guaranteed
error bounds, and secondly it often converts methods which are only locally con-
vergent in point-form into globally convergent ones.

We will divide this section into three parts:
1) methods for real roots,
2) methods for complex roots based on rectangular intervals,
3) methods for complex roots based on circular intervals (disks).

Moore (1966) appears to have pioneered the treatment of real roots, with the
often-quoted equation:

N(X) = m(X) − f(m(X))

F ′(X)
(5.221)

162 5. Newton’s and Related Methods

Here X is a real interval, initially X0 = [a,b] say, m(X) = the midpoint of X =
1
2 (a+ b), and F ′(X) is an interval extension of f ′(x), i.e. the range

f
′
(X) = {f ′(w) : w ∈ X} ⊂ F ′(X) (5.222)

and

f ′(x) = F ′([x, x]) (5.223)

We then define a series of intervals by:

xi = m(Xi); N(xi, Xi) = xi −
f(xi)

F ′(Xi)
; Xi+1 =

N(Xi)
⋂

Xi (i = 0, 1, 2, ...) (5.224)

If the coefficients of f(x) are only known to lie in certain intervals, we replace
f(m(X)) in 5.221 by F (m(X)) where F evaluates the range of f over the inter-
vals of the coefficients. Moore shows that a necessary condition for N(x,X) to be
defined is that X contains at most one zero and that such a zero must be simple
(then F ′(X) 6∋ 0). Also he shows that if X in 5.221 contains a simple root ζ, then
ζ ∈ N(x,X). Consequently, either N(x,X)

⋂

X is empty, in which case X does
not contain a zero, or else N(x,X)

⋂

X contains a zero if X does.

Moore shows how to use the above to find a partition of [a,b] into a set of
adjacent intervals which alternately may contain a zero and definitely do not:
1. Evaluate F ([a, b]) and F ′([a, b]).
If F ([a, b]) does not contain 0, the process is complete for [a,b]. Otherwise, F ([a, b])
contains 0 and may contain a zero of f. In the latter case, F ′([a, b]) may contain
0. If it does perform step 2.
2. Put

[a, b] = [a,
a+ b

2
]
⋃

[
a+ b

2
, b] (5.225)

and begin again at step 1 for each subinterval.
If F ′([a, b]) does not contain 0:
3. Evaluate

N([a, b]) =
a+ b

2
− F (a+b

2)

F ′([a, b])
(5.226)

Now either i) N([a, b])
⋂

[a, b] is empty and [a,b] does not contain a zero of f and
we are done with [a,b], or ii)N([a, b])

⋂

[a, b] is a non-trivial interval which may
contain a zero of f. In the last case:
4. Put

[a, b] = X1

⋃

X2 where X1 = N([a, b])
⋂

[a, b] (5.227)

5.7. Interval Methods 163

Now since F ′([a, b]) 6∋ 0, there can be at most one zero in [a,b], and this (if it
exists) must be in X1. Hence X2 does not contain a zero and we are done with
it. We add it to the list of subintervals into which we are decomposing the original
interval. We repeat the process for X1, from step 1.
5. When an interval is found which does not contain a zero of f, and which intersects
with another such interval already found, the two are combined into a single one.
The process is continued until, for the precision being used, no further splitting can
be done.

Moore also shows that for a small enough interval Xi containing a simple root,
and for which F ′(Xi) does not contain zero, then there exists a positive K such
that

w(Xi+1) ≤ K(w(Xi))
2 (5.228)

We can also determine if certain intervals are guaranteed to contain a zero; we
do this by testing the sign of f in two intervals which are known not to contain
zeros, and which are separated by a single interval which may contain a zero. If
the two bordering intervals have opposite sign, then the one in between does
contain a simple zero.

Dargel et al describe a detailed algorithm based on Moore’s method, which ob-
tains a decomposition of [a,b] into adjacent intervals
[a, a1], [a1, b1], ..., [bm, b] which alternately do not contain a root and may contain
a root.

Moore and Dargel et al consider only the case f ′(X) 6∋ 0 (i.e. a simple
root), but Hansen (1992) extends the method to the case 0 ∈ f ′(X), in which case
evaluation of N(xi, Xi) requires the use of extended interval arithmetic, as first
discussed by Hanson in an unpublished report (1968). It was later described by
Hansen (1978A) as follows: if [c,d] is an interval containing 0, we let

1

[c, d]
= [

1

d
,∞] if c = 0 (5.229)

= [−∞,
1

c
] if d = 0 (5.230)

= [−∞,
1

c
]
⋃

[
1

d
,∞] otherwise (5.231)

The application to N(xi, Xi) is given below. Even though N(xi, Xi) is not finite,
the intersection Xi+1 = Xi

⋂

N(xi, Xi) is finite. We use interval arithmetic to
bound rounding errors in the evaluation of f(x), giving say f I(xi) = [ai, bi]. If
0 ∈ f I(xi), then xi is a zero of f or is near to one. Now suppose 0 6∈ f I(xi).

164 5. Newton’s and Related Methods

Let f ′(Xi) = [ci, di] ∋ 0. We will be using extended interval arithmetic. Since
0 6∈ f I(xi), either ai > 0 or bi < 0. In the first case

N(xi, Xi) = [−∞, qi] if ci = 0 (5.232)

= [pi,∞] if di = 0 (5.233)

[−∞, qi]
⋃

[pi,∞] if ci < 0 < di (5.234)

where

pi = xi −
ai

ci
(5.235)

qi = xi −
ai

di
(5.236)

The results for bi < 0 are similar. The intersection

Xi+1 = Xi

⋂

N(xi, Xi) (5.237)

may be a single interval, the union of two intervals, or empty.

Returning to the case where 0 ∈ f I(x) and 0 ∈ f ′(X): this leads to N(x,X) =
[−∞,∞] and hence Xi+1 = Xi. Usually this means that Xi is small and contains
a multiple zero of f(x). But it can also sometimes occur if Xi is large and xi is
a zero or near one. Hansen (1992) goes on to consider termination criteria. He
suggests

A) w(Xi) < ǫXfor some ǫX (5.238)

B) |f(xi)| < ǫF for some ǫF (5.239)

but points out that the choice of ǫX and ǫF is not easy. He then suggests

C) 0 ∈ f I(xi), 0 6∈ f ′(Xi), and N(xi, Xi) ⊃ Xi (5.240)

(so that Xi+1 = Xi). This is satisfied if rounding error prevents further accuracy.
Hansen suggests stopping if either (i) A and B are both satisfied, or (ii) C is satisfied.

The above criteria do not work very well in the case of multiple roots. Usually
this coincides with f ′(X) ∋ 0 (where X is small), but the latter may also be true if
X is large and contains more than one simple root. Hansen includes a new criterion
for this case:

R(X) =
w(f ′(X)

w(f I(x))
< 1024 (5.241)

If f ′(X) ∋ 0 and R > 1024, we split X in half and apply 5.224 to both intervals.

5.7. Interval Methods 165

The algorithm possesses the following properties:
1) Every zero of f in X0 will be found and correctly bounded. No deflation is
needed.
2) If there is no zero in X0, this will be proven in a finite number of iterations.
3) If 0 6∈ f ′(Xi), convergence is reasonably rapid at the start, and asymptotically
quadratic. For detailed proofs, see the quoted book.

Dimitrova (1994) gives a slightly different version of the algorithm described by
Moore and Hansen: let

X0 = [x−0 , x
+
0] (5.242)

contain several zeros of f(x) and

F ′(X0) = [F ′−, F ′+] (5.243)

Then let x be an interior point of X0, say m(X0). Consider the subintervals

X1,0 = [x−0 , x], X2,0 = [x, x+
0] (5.244)

Now let

x−1,1 = x−0 +
|f(x−0)|
|F ′+| (5.245)

x+
1,1 = x− |f(x)|

|F ′+| (5.246)

with similar definitions for x−2,1 and x+
2,1. Let

X1,1 = [x−1,1, x
+
1,1] (5.247)

X2,1 = [x−2,1, x
+
2,1] (5.248)

If both intervals are empty there are no roots in X0. If one is empty we disregard
it and apply the above procedure to the other one. If neither is empty we apply it
to both in turn, and so on. Thus we get a list L of subintervals. When we process
X ∈ L we first compute F ′(X). If this does not contain 0, then f(x) has at
most one zero in X. We test this by computing f(X); if this does not contain 0 we
delete X from the list. If f(X) does contain 0 then f(x) has a unique zero in X,
which we can estimate accurately by iterating the process above (5.244-5.248). For
details of the case where F ′(X) contains 0, see the cited paper (section 3).

It was pointed out in section 1 of this Chapter that Ostrowski’s condition for
convergence (equations 5.21-5.25) is of little practical value, as it is very difficult to
evaluate M = Supx∈J0|f ′′(x)|. However, if we use interval arithmetic, we auto-
matically obtain a range [m,M] for f ′′(x) and the condition becomes computable.

166 5. Newton’s and Related Methods

See Rokne and Lancaster (1969) for an interval version of Ostrowski’s condition.

Hansen (1978B) gives a method of reducing the size of successive intervals com-
pared with the straightforward Moore’s method: suppose x occurs more than once
in f(x) (as is usual). Replace x by x1 in one or more places and by x2 in the
remaining places. Call the result g(x1, x2) (note that g(x, x) ≡ f(x)). If x ∈ X ,
the root ζ ∈ N2(X) =

x− f(x)
∂

∂x1
g(X11, x) + ∂

∂x2
g(X21, X22)

(5.249)

Actually X11, X21 and X22 all = X, but we wish to emphasize that they are
independent.The author extends the above to the case where x occurs m times and
shows that

ζ ∈ Nm(x) = x− f(x)

g′(X)
(5.250)

where

g′(X) =
∂

∂x1
g(X11, x, x, ..., x) +

∂

∂x2
g(X21, X22, x, ..., x) + ...

+
∂

∂xm
g(Xm1, ..., Xmm) (5.251)

Here many arguments are real instead of intervals, usually leading to a smaller
interval result. The iterations follow as in Moore’s method.

If 0 ∈ X , we should choose x = 0 to give a narrow interval g′(X). Writing a
polynomial p(x) =

∑n
i=0 cix

i as

g(x1, x2) = c0 +

n
∑

i=1

cix
i−1
1 x2 (5.252)

Then

g′(X) =

n
∑

i=1

ci[(i− 1)X i−2
11 x+X i−1

21] (5.253)

and letting x = 0,

g′(X) =

n
∑

i=1

ciX
i−1
21 (5.254)

whereas

p′(X) =

n
∑

i=1

iciX
i−1 (5.255)

5.7. Interval Methods 167

so that the i’th term is i times as wide as in g′(X).

Since F ′(X) ∋ {f ′(x)|x ∈ X}, F ′(X) may contain 0 even if f ′(x) has constant
sign on X. To circumvent this problem, Petkovic (1981) interpolates a monotonic
function f on X = [a,b] containing a simple zero ζ by

q(x) = A+Bekx (5.256)

at a, c = a+b
2 , b.

He solves for A and B and gives an approximation to ζ as

α =
1

k
log(−A

B
) ∈ [a, b] (5.257)

Then in Moore’s method 5.221-5.224 we replace x by α and F ′(X) by the interval
extension Q′(X) of q′(x) i.e.

Bk[e1, e2] = [E1, E2] (5.258)

where

e1 = min(eka, ekb), e2 = max(eka, ekb) (5.259)

Since e1 and e2 > 0, 0 6∈ Q′(X). It is still possible that α − f(α)
Q′(X) does not

contain ζ, so Petkovic replaces N(x,X) by

Nǫ(α,X) = α− f(α)

[E1, E2] + Iǫ
(5.260)

where Iǫ is an interval chosen so that Nǫ contains ζ and 0 6∈ [E1, E2] + Iǫ. He
shows how to do this (see the cited paper). He shows that the order of the method
is almost 3.

Herzberger (1986) describes a recursive version of Moore’s method thus:
For a fixed p

X(0,p) = X(0) (5.261)

X(i+1,0) =

{

m(X(i)) − f(m(X(i)))

f ′(X(i,p))

}

⋂

X(i) (5.262)

X(i+1,k) =

{

m(X(i+1,k−1) − f(m(X(i+1,k−1)))

f ′(X(i,p))

}

⋂

X(i+1,k−1)

(k = 1, ..., p) (if p > 0) (5.263)

X(i+1) =

{

m(X(i+1,p) − m(f(X(i+1,p)))

f ′(X(i+1,p))

}

⋂

X(i+1,p) (5.264)

168 5. Newton’s and Related Methods

The above set of 3 equations are repeated for i = 0,1,... until convergence.
He shows that the order is p+3, and as p+3 evaluations are needed, the efficiency

is log(p+ 3)
1

p+3 . This is a maximum for p = 0 (and then it = log 3
√

3)

Alefeld and Potra (1988) give a bracketing method similar to the Newton -
Fourier method: suppose the interval [a,b] contains a zero of f. Let y0 = a, z0 = b
and for i=0,1,2,... compute

yi+1 = yi − ∆f(yi, zi)
−1f(yi) (5.265)

zi+1 = yi+1 −
f(yi)

f ′(yi+1)
(5.266)

zi+1 = min{zi+1, zi} (5.267)

where ∆f(s, t) is the divided difference of f at the points s, t. A second method is
given in which f ′(yi+1) in 5.266 is replaced by ∆f(yi, yi+1). They show that for
both these methods yi and zi tend to the root ζ from below and above respectively.
Also the order of the first method is 3, and that of the second is 1 +

√
2. As the

first method takes 3 evaluations, the efficiencies are respectively log 3
√

3 = .159

and log
2
√

1 +
√

2 = .191. Strictly speaking these are not interval methods, but
like the latter these methods provide error bounds.

Lin and Rokne (1995) give a variation on Hansen’s method 5.232- 5.237 suit-
able for multiple roots (i.e. such that f ′(X) ∋ 0). Let φ be a point iterative
method such as Schroeder’s 5.167. At the general (i’th) step X(i) consists of sev-

eral non-intersecting subintervals, X
(i)
j , (j = 1, ..., li). If xi ∈ X

(i)
k , compute

N(xi, X
(i)
k)

⋂

X
(i)
k , and combine it with the other subintervals to form X(i+1).

Then compute zi+1 = φ(xi).
If zi+1 ∈ X(i+1) take xi+1 = zi+1, otherwise let xi+1 be such that

|xi+1 − zi+1| = minx∈X(i+1) |x− zi+1| (5.268)

They show that the order is the same as that of φ.

Revol (2003) describes a multiple precision version of the Moore-Hansen method.

Alefeld (1981), for a polynomial p(x), replaces f ′(X) in Moore’s method by the
difference quotient

∆(x, y) =
p(x) − p(y)

x− y
∈ (

n
∑

i=1

ai−1X
i−1)H ≡ J1 (5.269)

where

ai−1 =

n
∑

j=i

cjy
j−1 (i = 1, ..., n) (5.270)

5.7. Interval Methods 169

and the subxcript H means evaluating by Horner’s method. He also gives several
alternate interval expressions which contain ∆(x, y). He shows theoretically that
J1 is narrower than the other expressions, or p′(X) (thus leading to faster conver-
gence). This is confirmed by an example.

We turn now to methods for complex roots by rectangular intervals, starting
with a method of Hansen (1968). He expresses p(z) where z = x1 + ix2 in terms
of real and imaginary parts f1(x1, x2) and f2(x1, x2). Let

A =
∂f1
∂x1

, B =
∂f1
∂x2

, C =
∂f2
∂x1

, D =
∂f2
∂x2

(5.271)

Suppose initially ζ ∈ X
(0)
1 + iX

(0)
2 , then we get a new containing rectangle by

Y
(0)
1 = x1 −

D(X
(0)
1 , X

(0)
2)f1(x1, x2) −B(X

(0)
1 , X

(0)
2)f2(x1, x2)

DENOM
(5.272)

Y
(0)
2 = x2 −

A(X
(0)
1 , X

(0)
2)f2(x1, x2) − C(X

(0)
1 , x2)f1(x1, x2)

DENOM
(5.273)

whereDENOM = A(X
(0)
1 , X

(0)
2)D(X

(0)
1 , X

(0)
2)−B(X

(0)
1 , X

(0)
2)C(X

(0)
1 , x2) (Grant

and Hitchins (1973) show that DENOM 6= 0 if X
(0)
1 + iX

(0)
2 contains only one

zero). Then we take

X
(1)
1 = X

(0)
1

⋂

Y
(0)
1 (5.274)

X
(1)
2 = X

(0)
2

⋂

Y
(0)
2 (5.275)

Arthur (1972) describes an interval-Bairstow method for complex roots.
method in ordinary (real) arithmetic starts with an approximate

x2 − px− q (5.276)

corresponding to a root and its complex conjugate. It then computes

bi = cn−i + pbi−1 + qbi−2; b−1 = b−2 = 0 (i = 0, 1, ..., n) (5.277)

ei = bi + pei−1 + qei−2; e−1 = e−2 = 0 (i = 0, 1, .., n− 1)) (5.278)

In the interval version we start with an approximate factor

x2 − Px−Q (5.279)

where P and Q are intervals containing p̃ and q̃ respectively, where x2 − p̃x − q̃ is
an exact factor. Then find bn−1 and bn by 5.277 using p = m(P), q = m(Q).
The bi will be intervals as rounded-interval computation is used, i.e. bi is actually

Bairstow’s
quadratic factor

170 5. Newton’s and Related Methods

an interval B̂i. Then use 5.277 and 5.278 with P and Q replacing p and q to find
intervals Bi and Ei. Next compute

δP =
B̂nEn−3 − B̂n−1En−2

DENOM
(5.280)

δQ =
B̂n−1En−1 − B̂nEn−2

DENOM
(5.281)

where

DENOM = E2
n−2 − En−1En−3 (5.282)

(if DENOM ∋ 0 the method breaks down). Finally set

P̂ = m(P) + δP, Q̂ = m(Q) + δQ (5.283)

and

P ∗ = P
⋂

P̂ , Q∗ = Q
⋂

Q̂ (5.284)

Repeat the process; usually the iteration converges to narrow intervals P̃ and Q̃
containing the exact p and q. Let

−P̃ 2 − 4Q̃ = [s, t] (5.285)

Then if the zeros are a± ib, we have

a ∈ 1

2
P̃ , b ∈ [

1

2

√
s,

1

2

√
t] (5.286)

unless [s,t] contains 0. For that case see the cited paper.

Arthur also suggests an interval method for multiple roots (of multiplicity m)
based on Derr’s method (equations 5.175- 5.179). It is:

Yi+1 = m(Xi) −
f (m−1)(m(Xi))

F (m)(Xi)
(5.287)

Xi+1 = Xi

⋂

Yi+1 (5.288)

Rokne (1973) gives a rectangular interval version of Ostrowski’s condition for
complex roots.

Petkovic and Herzberger (1991) describe a combined interval method for multi-
ple complex roots in rectangular arithmetic: let Φ be a point-iterative function in
“normal” (not interval) complex arithmetic, of order r. Also let

R(i+1) = Ψ(z(i), R(i)) (i = 0, 1, ...) (5.289)

5.7. Interval Methods 171

be an interval method of order q which starts from R(0) ∋ ζ. They define the
combined method

z(i,0) = mid(R(i)) (5.290)

z(i,j+1) = Φ(z(i,j)) (j = 0, 1, ..., k − 1) (5.291)

z(i) = z(i,k) if z(i,k) ∈ R(i) (5.292)

mid(R(i)) otherwise (5.293)

R(i+1) = Ψ(z(i), R(i)) (i = 0, 1, ...) (5.294)

The authors show that the order of the above combined method is rk.q, and hence
the efficiency is

log(rkq)
1

kθΦ+θΨ (5.295)

→ r
1

θΦ (5.296)

for large k, where θΦ, θΨ are the amounts of work involved in Φ and Ψ.

For a root of multiplicity m, the authors suggest for Ψ:

R(i+1) = z(i) − m
P ′(z(i))
P (z(i))

− (n−m)[[(z(i) − extR(i))−1]]
(5.297)

where [[A]] means the smallest rectangle enclosing a complex set A. If a rectangle is
given by [a,b]+i[c,d], the enclosing rectangle for the inverse of its exterior is given
by

[α, α] + i[β, β] (5.298)

where

α = min{1

a
,

1

2c
,− 1

2d
}, α = max{1

b
,− 1

2c
,

1

2d
} (5.299)

β = min{−1

d
,

1

2a
,− 1

2b
}, β = max{−1

c
,− 1

2a
,− 1

2b
} (5.300)

To find m Petkovic and Herzberger suggest Lagouanelle’s method, but this author
prefers Derr’s. Petkovic and Herzberger show that, if R(0) is an initial rectan-
gle (with z(0) = mid(R(0)) and d(0) = sd(R(0)) containing only one zero ζ of
multiplicity m, and if

∣

∣

∣

∣

p(z(0))

p′(z(0))

∣

∣

∣

∣

<
d(0)

2(m+ 1)(n−m)
(5.301)

172 5. Newton’s and Related Methods

then ζ ∈ R(i) (i = 0, 1, ...) and d(i) → 0 quadratically.

For Φ the authors suggest, among other methods, Schroeder’s:

z(i+1) = z(i) −m
p(z(i))

p′(z(i))
(5.302)

of order 2, or the Halley-like method of order 3:

z(i+1) = z(i) − 2

(1 + 1
m)p′(z(i))

p(z(i))
− p′′(z(i))

p′(z(i))

(5.303)

Calculating the efficiency by 5.296 shows that 5.302 is generally the most efficient
of 5.302, 5.303 and three other methods considered by the authors.

Henrici (1971) uses circular intervals to refine complex zeros. His theorem 1
states: “Let z0 be a complex number, and let C1; W2, W3, ...,Wn be disks. Let

p′(z0)

p(z0)
∈ C1 and wk ∈ Wk (k = 2, .., n) (5.304)

where w1, w2, ...wn are the zeros of p(z), a polynomial of degree n. Then

w1 ∈ W1 = z0 −
1

C1 −
∑n

k=2
1

z0−Wk

′′
(5.305)

He describes a Newton-like algorithm based on the above, and shows that under
certain initial conditions convergence is quadratic (see the cited work for details).

Petkovic (1987) also gives a circular disk iteration: Let {c, r} be a disk of center
c, radius r, and suppose we have found a disk {z(0), r(0)} ≡ {a,R} containing
exactly one zero ζ. Let

h(i) =
a− z(i)

R2 − |z(i) − a|2 (5.306)

and

d(i) =
R

R2 − |z(i) − a|2 (5.307)

then we define

Z(i+1) = z(i) − 1
p′(z(i))
p(z(i))

− (n− 1){h(i); d(i)}
(5.308)

and

z(i+1) = mid(Z(i+1)) (5.309)

5.8. Parallel Methods 173

For multiple roots (n-1) above is replaced by n-m. Under certain conditions con-
vergence is quadratic.

Gargantini (1976) gives a kind of simultaneous Newton-like method:

Z
(i+1)
k = z

(i)
k − 1

p′(z
(i)

k
)

p(z
(i)

k
)
−∑n

j=1,6=k
1

z
(i)

k
−Z

(i)
j

(5.310)

and shows that it has convergence order 3. A similar Laguerre-type method has
order 4, but the Newton-type method is considerably more efficient.

L.D. Petkovic et al (1997) give a slope method using complex intervals. Let

g(z, y) =
p(y) − p(z)

y − z
(5.311)

(note that since y − z is a factor of the numerator, g(y, y) is defined).
and use

Z(i+1) = z(i) − p(z(i))

g(z(i), Z(i))
(5.312)

where z(i) = mid(Z(i)), or better still

Z(i+1) = z(i) − 1
p′(z(i))
p(z(i))

− g′(z(i),Z(i))
g(z(i),Z(i))

(5.313)

Usually the interval g(z(i), Z(i)) is narrower than f ′(Z(i)), so the slope method
converges faster than the Newton-Moore-like methods. We may combine 5.312
with several prior iterations of the point-slope method

z(i+1) = z(i) − 1
p′(z(i))
p(z(i))

− g′(z(i),z(i))
g(z(i),z(i))

(5.314)

which has order 3, as does 5.313.

5.8 Parallel Methods

Akl (1989) describes a parallel implementation of Newton’s method which usually
overcomes the lack of global convergence (for real roots): suppose the interval [a,b]
is known to contain exactly one zero of f(x). The interval is divided into N+1
subintervals of equal size (N ≥ 2), and the division points are taken as ini-
tial approximations for Newton’s method, one on each processor. As soon as the
method converges on one processor, the result is written to a shared memory loca-
tion ROOT (initially set to ∞). As soon as that value is changed, all the processors
stop working. In case a set of iterations does not converge after (say) I iterations,

174 5. Newton’s and Related Methods

its processor stops working.

Shedler (1967) gives a slightly different parallel method: the interval [a,b] is
divided into N+1 subintervals as in Akl’s method and f evaluated at the points of
division. If |f(x)| is not < ǫ1 at any of these points, we obtain a new approxima-
tion by linear interpolation between a and b, and N others by applying Newton’s
method at each of the division points. If none of the new points satisfy |f(x)| < ǫ1,
we choose a new interval as the smallest one having a sign change between adjacent
points contained in the set {a,b, the N section points, and the N+1 new approxima-
tions}. If the length of the new interval is not < ǫ2, we perform a further iteration.
Obviously, the new points at each iteration can be found in parallel.

Wiethoff (1996) gives a parallel extended interval Newton method, which uses
extended interval operations and bisection. The master (M) keeps a list of remain-
ing intervals to be examined; it also stores whether a slave processor (P1, P2, ..., Pn)
is busy or idle. The starting interval [x] is divided equally into n subintervals
[x1], [x2], ..., [xn], and each subinterval is sent to the corresponding slave. All slaves
start working on their subintervals. In the case of bisection, the second interval is
returned to the master to be redistributed when possible. Either it is added to the
waiting list if no idle slave is available or it is sent to an idle slave. If a slave has
computed a result (an interval containing a zero), it is returned to the master and
the slave marked as idle (if the waiting list is empty), or it gets the next interval
from the waiting list.

The algorithm for the slave Pi follows: do
1. Receive [y] from M.
2. [Zero] = null (result interval = null).
3. If 0 6∈ f([y]) then go to 10. (null will be added to result-list)
4. c = mid([y]).
5. [z] = c-f(c)⋄/f ′([y]) (extended interval Newton step; f⋄ is an interval bounded
by the rounded up (and down) values of f(x)).
6. [yp] = [y]

⋂

[z] (intersection may contain 2 disjoint intervals [yp]1
⋃

[yp]2).
7. if [yp]1 = [y] (only one interval) then

[yp]1 = [y, c], [yp]2 = [c, y] where [y] = [y, y] (bisection)
8. If [yp]1 6= null and [yp]2 6= null then
Send BISECTION-SIGNAL to M; send [yp]2 to M.
9. If [yp]1 6= null then

if
width([yp]1)
mid([yp]1)

< ǫ and 0 ∈ f([yp]1) then [zero] = [yp]1 (zero found)

else [y] = [yp]1; go to 3.
10 Send RESULT-SIGNAL to M; send [zero] to M
while (true) (Slave does not terminate).

At the end we have a list of intervals of width < ǫ each containing a root.

5.9. Hybrid Methods Involving Newton’s Method 175

Patrick (1972) gives a method of finding real roots which lends itself to parallel
operations. This was discussed in Chapter 4, Section 12 of the present work, so
will not be discussed further here, except to point out that the various roots of the
derivatives can be found simultaneously on a parallel processor.

5.9 Hybrid Methods Involving Newton’s Method

Nesdore (1970) describes a program which potentially uses 14 different methods,
including Newton’s. For the function being solved, the “computational efficiency”
(C.E.) is used to rate and order all the methods in consideration (the C.E. is defined

as p
1
θ where p = order and θ = work per iteration). A few iterations are executed

with the most efficient method; if divergence is detected the iterations are repeated
with a different starting point. If divergence still occurs the next most efficient
method is tried, and so on until the list is exhausted. If convergence is detected but
appears linear, a switch is made to the most efficient multiple zero method (there
are 3 included in the program, such as Schroeder’s method). Some tests show that
a random choice of method is 35% slower than the selection method described above.

Bini and Pan (1998) give a method for computing the eigenvalues of a real
symmetric tridiagonal (rst) matrix. This problem is related to solving a polynomial
with only real roots, for given the coefficients of an n’th degree polynomial p(z)
having only real zeros ζ1, ζ2, ..., ζn, we may compute an n× n rst matrix Tn that
has characteristic polynomial p(z) and eigenvalues ζ1, ζ2, ..., ζn (see 5.348 below).
Their method approximates the eigenvalues of Tn (with integer entries at most 2m),
within error bounds 2−h, at cost bounded by

O(nlog2n(log2b+ logn)) (5.315)

where b = m+h. The same bounds apply to finding the roots of p(z).

Let Tn =













a1 b1 0 ... 0
b1 a2 b2 ... 0
0 b2 a3 ... 0
...
0 0 ... bn−1 an













(5.316)

where

|ai|, |bi| ≤ 2m (5.317)

so that by Gershgorin’s theorem

−3(2m) ≤ ζi ≤ 3(2m) (5.318)

176 5. Newton’s and Related Methods

We say that R = {r0, ..., rk} interleaves the set Q = {q1, ..., qk}, or that “R
is an interlacing set for Q” if

r0 ≤ q1 ≤ r1 ≤ q2 ≤ ...qk−1 ≤ rk−1 ≤ qk ≤ rk (5.319)

(We allow r0 = −∞ and rk = +∞). We say s is a splitting point of the level
(g,h) for the set Q if

qg < s < qh (5.320)

Let Diag(B1, ...,Bs) denote the block diagonal matrix having the blocks B1, ...,Bs.

Cauchy’s interlace theorem states:
Theorem 5.9.1 If Ar is an r × r submatrix of an n × n real tridiagonal matrix
A, then the eigenvalues λ1 ≤ λ2 ≤ ≤ λn of A and the eigenvalues µ1 ≤ µ2 ≤
... ≤ µr of Ar obey

λi ≤ µi ≤ λi+n−r (i = 1, ..., r) (5.321)

Then the eigenvalues of Tn satisfy:
Theorem 5.9.2: (a) If nk is a multiple of 2(k+1) and if {µ1 < µ2 < ... <
µ k

k+1n} is the set of all the eigenvalues of the k× k principal submatrices T̃i of Tn,

(i=1,..., n
k+1) containing the entries as of Tn for s = (i-1)(k+1)+j for j = 1,...,k.

Then

λ nk
2(k+1)

≤ µ nk
2(k+1)

≤ λn(k+2)
2(k+1)

(5.322)

(b) If 1 ≤ j ≤ n − 2 and if {γ1 ≤ γ2 ≤ ... ≤ γn−1} is the set of all the
eigenvalues of the following two principal submatrices of Tn:

Tj =













a1 b1 0 ... 0
b1 a2 b2 ... 0
..
0 aj−1 bj−1

0 .. 0 bj−1 aj













,

T̃n−j−1 =













aj+2 bj+2 0 .. 0
bj+2 aj+3 0
..
0 an−1 bn−1

.. .. 0 bn−1 an













(5.323)

then

λi ≤ γi ≤ λi+1 (i = 1, .., n− 1) (5.324)

5.9. Hybrid Methods Involving Newton’s Method 177

Next Corollary 5.9.2.1 states: if n is a multiple of 4,
{σ1 ≤ σ2 ≤ ... ≤ σn

2
} = {a2i−1, i = 1, ..., n

2 }, and
{θ1 ≤ θ2 ≤ ... ≤ θn

2
} = {a2i, i = 1, ..., n

2 }, then

λn
4

≤ σn
4

≤ λ 3
4n; λn

4
≤ θn

4
≤ λ 3

4n (5.325)

while Theorem 5.9.3 states: Let{φ1 ≤ φ2 ≤ ... ≤ φn} be the set of all
eigenvalues of

Sk = Tk −Diag(0, 0, .., 0.bk) (5.326)

Rn−k = T̃n−k −Diag(bk, 0, ..., 0) (5.327)

where Tk and T̃n−k are defined in Theorem 5.9.2b. Set φn+1 = φn + 2bk, φ0 =
φ1 + 2bk

If bk > 0, then

φi ≤ λi ≤ φi+1 (i = 1, ..., n) (5.328)

while if bk < 0, then

φi−1 ≤ λi ≤ φi (i = 1, ..., n) (5.329)

Next the authors show how to compute the number of eigenvalues in the intervals
of nearly interlacing sets. At the first stage we approximate some eigenvalues of Tn

within a required error bound and cover each remaining eigenvalue by an interval
containing no other eigenvalues. Let the set {d0, ..., dn} interleave the set Λ of
eigenvalues of Tn (we will show later how to find the di or approximations to
them). Thus

d0 < λ1 < d1 ≤ ... ≤ dn−1 ≤ λn < dn (5.330)

Let d−i , d
+
i be approximations to di, i.e. for a fixed ∆:

d+
i = d−i + 2∆, d−i ≤ di ≤ d+

i (i = 0, .., n) (5.331)

Suppose we know how to determine

p(λ) = det(Tn − λ I) (5.332)

Then for every λj we will either compute its approximation within the error 2∆,
or determine that the interval

Kj ≡ {λ : d+
j−1 ≤ λ ≤ d−j } (5.333)

contains λj and no other eigenvalue. This is done by Bini and Pan’s Algorithm 3.1
which inputs ∆, n, D = {d−i , d+

i , i = 1, ..., n − 1}⋃{d+
0 = −3(2m), d−n =

3(2m)} such that 5.330 and 5.331 and

p(d−i)p(d+
i) 6= 0 (i = 0, ..., n) (5.334)

178 5. Newton’s and Related Methods

hold. It also inputs d+
0 and d−n where

d+
0 ≤ λ1, λn ≤ d−n (5.335)

and outputs Kj or an approximation λj such that

|λj − λj | < 2∆ (5.336)

For details of how the algorithm works see the cited paper. Their Algorithm 3.1
is complemented by their Algorithm 4.1, which uses Newton iteration and the
bisection method. It is based on the following theorem, proved by Renegar (1987):
Let x(0) be such that

|x(0) − ζ1| ≤ |x(0) − ζ2| ≤ ... ≤ |x(0) − ζn| (5.337)

If

|x(0) − ζ1| <
1

5n2
|x(0) − ζ2| (5.338)

then the Newton iteration converges to ζ1 so that

|x(i) − ζ1| < 23−2i |x(0) − ζ1| (5.339)

In Bini and Pan’s “Algorithm 4.1”, starting with c < λ < d, we apply log(5n2)
bisection steps until we obtain x(0) satisfying 5.338 with c0 < x(0) < d0. Note
that the bisection steps are preceeded by a more complicated process-see the cited
paper. After the bisection steps we apply loglog(.8 d0−c0

∆n2) Newton steps to find λ

such that |λ− λ| < ∆.

We will apply Algorithm 4.1 concurrently to all the intervals which contain a
single eigenvalue. We will thus need to compute p(λ) and p′(λ) at a set of up to n
points. We will use the following recurrence relation for

pi(λ) = det

















a1 b1 0 ..
b1 a2 b2 ..
..
0 .. bi−1 ai

−









− λI









(5.340)

namely

p0(λ) = 1, p1(λ) = a1 − λ (5.341)

pi+1(λ) = (ai+1 − λ)pi(λ) − b2i pi−1(λ) (i = 1, 2, ..., n− 1) (5.342)

or equivalently
[

pi+1(λ)
pi(λ)

]

=

[

ai+1 − λ −b2i
1 0

] [

pi(λ)
pi−1(λ)

]

(5.343)

5.9. Hybrid Methods Involving Newton’s Method 179

= FiFi−1...F0

[

1
0

]

(5.344)

where

Fj =

[

aj+1 − λ −b2j
1 0

]

(j = 0, 1, .., i), b0 = 0 (5.345)

The above leads us to Bini and Pan’s Algorithm 5.1 which inputs n = 2h (we pad
our matrix with zeros if necessary to bring n up to such a value), a1, ..., an, b1, ..., bn−1

and outputs the coefficients of p(λ) = det(Tn − λI). It works by initially setting

H
(0)
j = Fj (j = 0, ..., n− 1) and then, for i = 1, 2, ..., logn compute

H
(i)
j = H

(i−1)
2j+1 H

(i−1)
2j (j = 0, ..., 2−in− 1) (5.346)

Then

p(λ) = [10]H
(h)
0

[

1
0

]

(5.347)

Given the coefficients of p(λ) (and p′(λ)) we may compute the values of p(λ) and
p′(λ) at a set of n points at a parallel cost of O(log2nloglogn) using n

loglogn proces-

sors (see Aho, Hopcroft and Ullman (1976)).

The main Algorithm (6.1) recursively reduces the original problem to two prob-
lems of half-size. It inputs integers m, n, u, a1, ..., an, b1, ..., bn−1 where n
is a power of 2; u such that the output errors are < 2−u; and m such that
|ai|, |bi| ≤ 2m. It outputs γ1, ..., γn such that |λi − γi| < 2−u where the λi

are the eigenvalues of Tn. It works as follows: we compute the coefficients of
p(λ) = det(Tn − λI) by using Algorithm 5.1; then we apply Algorithm 6.1 to the
set
m, n

2 , u+ 1, a1, an
2
−1, an

2
− bn

2
, b1, ..., bn

2
−1

which defines an rst matrix Sn
2

and the set
m, n

2 , u+ 1, an
2 +1 − bn

2
, an

2 +2, ..., an, bn
2
, ..., bn

which defines a matrix Rn
2
, thus obtaining approximations δ1 ≤ δ2 ≤ ... ≤ δn to

the eigenvalues of Sn
2

and Rn
2

within the absolute error ∆ = 2−u−1 (see Theorem
5.9.3). Now recall that the set of all eigenvalues of Sn

2
and Rn

2
interleaves the set

{λi} (see Theorem 5.9.3, i.e. 5.328 and 5.329). Set d+
i = δi + ∆, d−i = δi − ∆

and apply Algorithms 3.1 and 4.1 to obtain γi, ..., γn such that |γi − λi| < 2−u.

Suppose p(x) is a polynomial of degree n with coefficients in the range −2m to
+2m. We set pn(x) ≡ p(x), pn−1 = −p′(x) and apply the extended Euclidean
algorithm to pn and pn−1. i.e.

pi+1(x) = q(x)pi(x) − rpi−1(x) (i = n− 1, ..., 1) (5.348)

180 5. Newton’s and Related Methods

Then we may obtain the entries ai+1 and bi of Tn according to 5.342 by setting
q(x) = ai+1 − x, bi =

√
r (the sign of bi is arbitrary, but if the roots of p(x)

are all real r ≥ 0). Note: it may be thought that Algorithm 5.1 is not necessary,
since we start knowing the coefficients of p(x), but in fact “p(x)” most often refers
to the characteristic equation of Tn of size n

2 ,
n
4 etc.

Locher and Skrzipek (1995) describe a globally convergent method for calculat-
ing zeros (including complex ones) of a real polynomial using Chebyshev polynomi-
als. Let the disk Kr(0) = {r exp(it) : 0 ≤ t ≤ 2π}. Consider pn =

∑n
i=0 ciz

i

on Γ ≡ K1(0). We can write

pn(exp(it)) = un(t) + ivn(t) (5.349)

where

un(t) =

n
∑

ν=0

cνcos(νt), vn(t) =

n
∑

ν=1

cνsin(νt) (0 ≤ t ≤ 2π) (5.350)

Let vn−1(t) = vn(t)
sin(t) =

∑n−1
ν=0 cν+1

sin(ν+1)t
sin(t) .

A zero of pn on Γ is a common zero of un and vn, i.e. each zero of pn on Γ/{±1}
is a common zero of un and vn−1. Since pn(Γ) is symmetric about the x-axis, we
only need to consider 0 ≤ t ≤ π, or with x = cos(t), x ∈ [−1, 1]. Then

pn(exp(it)) = un(t) + isin(t)vn−1(t) (5.351)

=

n
∑

ν=0

cnTν(x) + i
√

1 − x2

n−1
∑

ν=0

cν+1Uν(x) (5.352)

≡ qn(x) + i
√

1 − x2qn−1(x) (5.353)

where Tν and Uν are Chebyshev polynomials of the first and second kind, i.e.

Tν(x) = cos(νcos−1x) (5.354)

Uν(x) =
sin([ν + 1]cos−1x)√

1 − x2
(5.355)

Hence zeros of pn on Γ/{±1} coincide with the common zeros of qn and qn−1 in
[-1,1].

We may apply the Euclidean algorithm starting with qn and qn−1 to get the
gcd(qn, qn−1) = qs whose zeros are the common zeros of qn and qn−1. Then we
get the authors’
Theorem 2.1: (1) pn has zeros of modulus 1 iff either
a) pn(1) = 0 or pn(−1) = 0 or
b) qn, qn−1 have a gcd qs with some zeros in [-1,1]

5.9. Hybrid Methods Involving Newton’s Method 181

(or both a and b).
(2) If qs 6= 0 in [-1,1] then qn, qn−1 generate the Sturm sequence
{qn, qn−1, ..., qs} on [-1,1], and the number NΓ(p) of zeros of pn in the interior of Γ

= SC(qn(−1), ..., qs(−1)) − SC(qn(1)..., qs(1)) (5.356)

where SC(a, b, ..., z) means “number of sign changes in the sequence a,b,...,z”. For
proof of (2) above see Locher (1993).

We may detect and divide out (by Horner’s rule-equation 1.2) zeros of pn at
±1, so in the following we assume pn(±1) 6= 0 6= qs(±1). If qs has zeros xj

in [-1,1] then exp(±itj) with tj = cos(xj) are the zeros of pn on Γ. Dividing
each quadratic factor out by 1.14 we obtain a new polynomial pk with no zeros
on Γ and whose zeros coincide with the remaining zeros of pn outside Γ. By the-
orem 2.1 part 2 we get the number of zeros of pk (and hence pn) in the interior of Γ.

We can get the zeros on and in the interior of Γ using the Chebyshev repre-
sentation of qn, qn−1 etc rather than expressing them in powers of x. We use the
relations

T0(x) = U0(x) (5.357)

T1(x) = xU0(x) (5.358)

Tν(x) = xUν−1(x) − Uν−2(x) (ν = 2, 3, ...) (5.359)

and

2TmUn =







Un+m + Un−m (n ≥ m)
U2m−1 (n = m− 1)
Um+n − Um−n−2 (n ≤ m− 2







(5.360)

Setting q
[0]
n = qn, q

[1]
n−1 = qn−1 we get in the first step of the Euclidean algorithm:

q[0]n (x) = c0T0(x) + c1T1(x) +

n
∑

ν=2

cνTν(x)

= c0U0(x) + c1xU0(x) +

n
∑

ν=2

cν(xUν−1(x) − Uν−2)

= T1(x)

n−1
∑

ν=0

cν+1Uν(x) − [(c2 − c0)U0(x) +

n−2
∑

ν=1

cν+2Uν(x)]

≡ h
[1]
1 (x)q

[1]
n−1(x) − q

[2]
n−2(x) (5.361)

182 5. Newton’s and Related Methods

where in general

q[j]µ =

µ
∑

ν=0

c[j]ν Uν (j ≥ 0), h
[j]
k =

k
∑

ν=0

b[j]ν Tν (j ≥ 1) (5.362)

In particular

h
[1]
1 = b

[1]
0 + b

[1]
1 T1, i.e. b

[1]
0 = 0, b

[1]
1 = 1 (5.363)

c[0]ν = cν (ν = 0, .., n), c[1]ν = cν+1 (ν = 0, .., n− 1) (5.364)

c
[2]
0 = c2 − c0, c

[2]
ν = cν+2 (ν = 1, ., , n− 2) (5.365)

In later steps of the Euclidean algorithm we have to compute h
[j]
k and q

[j+1]
m−k−1 from

q[j−1]
m = h

[j]
k q

[j]
m−k − q

[j+1]
m−k−1 (2 ≤ j ≤ s− 1) (5.366)

Here the subscript refers to the degree of the polynomial and the superscript to

the order of creation. Usually h
[j]
k is linear, i.e. k = 1, so m=n-j+1. In that case,

comparing coefficients of Uν and using the first of relations 5.360 with m = 1 and
n = ν i.e.

2T1Uν = Uν+1 + Uν−1 (5.367)

we get

b
[j]
1 = 2

c
[j−1]
m

c
[j]
m−1

, b
[j]
0 =

c
[j−1]
m−1 − 1

2b
[j]
1 c

[j]
m−2

c
[j]
m−1

(5.368)

c
[j+1]
0 =

1

2
b
[j]
1 c

[j]
1 + b

[j]
0 c

[j]
0 − c

[j−1]
0 (5.369)

c[j+1]
ν =

1

2
b
[j]
1 c

[j]
ν+1 + b

[j]
0 c

[j]
ν +

1

2
b
[j]
1 c

[j]
ν−1 − c[j−1]

ν (ν = 1, 2, ...,m− 2) (5.370)

For the more general case where k > 1 at some step, see the cited paper.

To get the number of zeros in the interior of Γ we may proceed as follows: if
we have found all, say ω, zeros of pn(exp(it)) (that is of qs(x)) for t ∈ (0, π)
(and we see in the next few paragraphs how to do that), we get the zeros zν =
exp(itν), ν = 0, ..., ω − 1 ≤ s− 1 of pn on Γ. Now zν is also a zero of pn, so we
can divide pn by the polynomial

Πω−1
ν=0 (z − zν)(z − zν) (5.371)

using equation 14 of Chapter 1 ω times. This gives a polynomial with no zeros on
Γ and applying a Sturm sequence using the above algorithm and Theorem 2.1 (2)

5.9. Hybrid Methods Involving Newton’s Method 183

we may find the number of zeros of pn in the interior of Γ.

To check whether qs (and hence qn, qn−1) has zeros in [-1,1] or not we generate
a Sturm sequence starting with qs and q′s.
Using

Uν =

{

2(Tν + Tν−2 + ...+ 1
2T0) , ν even

2(Tν + Tν−2 + ...+ T1) , ν odd

}

(5.372)

and T ′
ν = νUν−1

we see that with

qs =
s
∑

ν=0

ανUν , (5.373)

q′s =
s−1
∑

ν=0

α′
νUν (5.374)

we have

α′
s−2ν = 2(s− 2ν + 1)[αs−1 + αs−3 + ...+ αs−2ν+1] (ν = 1, 2, ..[

s

2
]) (5.375)

α′
s−2ν−1 = 2(s− 2ν)[αs + αs−2 + ...+ αs−2ν] (ν = 0, 1, ..., [

s

2
]) (5.376)

We can use here essentially the same equations as 5.368- 5.370.

Now suppose qs−k = gcd(qs, qs−1) 6= 0 in [-1,1], then {qs, qs−1, ..., qs−k} is a
Sturm sequence. Since ±1 are not zeros of qs we have

N(−1,1)(qs) = SC(qs(−1), ..., qs−k(−1)) − SC(qs(1), ..., qs−k(1)) (5.377)

Thus for qs−k 6= const we must decide whether or not any zeros of qs−k lie in [-1,1].
We may calculate hk = qs/qs−k and h′k, and generate the Sturm sequence starting
with hk and h′k. This gives the number ω of zeros of hk in [-1,1], and hence the
number of distinct zeros of qs, and hence of pn on |z| = 1, 0 < argz < π. The
authors show how to express hk and h′k as series in Uν , and then we may apply
equations 5.368- 5.370 again. Now it has been proved by Locher and Skrzipek
(private communication) that the roots of qs and hence of hk are always real and
in [-1,1]. So, if we start Newton’s iterations at 1, it will always converge to a root
x0 in [-1,1]. We may deflate, by

hk−1(x) =
hk(x)

x− x0
=

hk(x)
1
2U1(x) − x0U0(x)

(5.378)

and similarly find the next lower root x1 of hk−1(x) and so on until all ω roots
are found. If s = ω, all zeros of qs (and hence of pn on Γ) have been calculated;

184 5. Newton’s and Related Methods

otherwise qs has some zeros of multiplicity greater than one in [-1,1]. To calculate
the multiplicity µj of xj we divide qs by (x−xj) until we get a non-zero remainder
term; then the multiplicity = number of times we can divide with a zero remainder.
Thus

zj = exp(icos−1xj) (j = 0, ..., ω − 1) (5.379)

are the zeros of pn on Γ (some may be multiple). If we now replace pn(z) by

p∗n(z) =
pn(z)

Πω−1
j=0 [(z − zj)(z − zj)]µj

(5.380)

and repeat the algorithm we will get a new qs which has no zeros in [-1,1]. Then
Theorem 2.1 (2) will give NΓ(pn) = number in interior of Γ; while number outside
= n − NΓ(pn) − ω.

So far we have only shown how to find zeros on or in the unit circle. But if we
transform pn(x) to p∗n(x) = pn(rx) with coefficients cνr

ν we can apply Theorem
2.1 to get either the zeros on Kr(0) or the number of zeros in the interior of this
circle (indeed by applying 5.380 we may get both). We will use a bisection strategy
to get the moduli of all zeros ri which have distinct moduli. Once this is known we
may fix the arguments by finding the real zeros of the gcd of qn,ri = qn(rix) and
qn−1,ri = qn−1(rix). To avoid too much rounding we use the scaled polynomials
to get rough values for the zeros, then refine them using the original polynomial
and Newton or Bairstow’s method.

To start the bisection process we use Gershgorin’s theorem to get upper and
lower bounds ru and rl 6= 0 for the absolute values of the zeros. Then we use ru
as initial value to calculate the positive zero r̃u of

|cn|zn −
n−1
∑

ν=0

|cν |zν (5.381)

and similarly use rl to get the positive zero r̃l of

n
∑

ν=1

|cν |zν − |c0| (5.382)

Take

r(0) = min(ru, r̃u), r(1) = max(rl, r̃l) (5.383)

Next we test whether any zeros of pn lie in Kr(0)(0) or Kr(1)(0). If so we find their
arguments and multiplicities as before, as well as the number inside and outside
each of them. If all zeros lie on these circles we are finished. Otherwise we can use
algorithm bisect(2) where bisect is defined recursively as follows:

5.9. Hybrid Methods Involving Newton’s Method 185

PROCEDURE bisect(ν)
If not all zeros found do:
BEGIN

r(ν) =
r(ν−2) + r(ν−1)

2
(5.384)

Find the zeros on, inside and outside Kr(ν) . If there are j1 > 0 zeros in the annulus
between Kr(ν−1)(0) and Kr(ν)(0) then

BEGIN if |r(ν−1) − r(ν)| > ǫ (moderatly small) set r(ν−2) = r(ν)

ELSE determine the radii of the circles where the remaining zeros lie by
Newton or Bairstow (see later).

BISECT(ν + 1);
END
if there are j2 > 0 zeros between Kr(ν)(0) and Kr(ν−2)(0) then
BEGIN if |r(ν−2) − r(ν)| > ǫ then

r(ν−1) = r(ν)

ELSE determine moduli of remaining zeros by Newton or Bairstow’s method
BISECT(ν + 1);

END
END

The transformation p∗n(x) = pn(rx) may cause problems if n is large and r is
very small or very large, for then we may get under- or overflow. It seems that we
avoid most of these problems if we use in such cases

r−
n
2 pn(rx) =

n
∑

ν=0

cνr
ν− n

2 xν (5.385)

(This author suspects that the above device only works for moderate sized n).

The above bisection method may be used until we have |r(ν−1) − r(ν)| < ǫ
where ǫ is moderately small. Then it is more efficient to use Newton’s or Bairstow’s
method to improve the accuracy as desired. Assume that there is at least one zero
of pn with modulus r ∈ (r(ν−1), r(ν)). The number in this annulus is known since
in the above bisection process we have found the numbers niν , niν−1 in the interior
and nbν , nbν−1 on the boundary of Kr(ν)(0) and Kr(ν−1)(0). Thus between these
circles we have niν − (niν−1 + nbν−1) zeros. If there are zeros on the circles
we remove them by the process leading to equation 5.380. So we can assume that
there are no roots on those circles. The Euclidean algorithm yields the sequence

Sr(ν−1) = {q[0]
n,r(ν−1) , q

[1]

n−1,r(ν−1) , ...} (5.386)

and if we knew r we could get

Sr = {q[0]n,r, q
[1]
n−1,r, ...} (5.387)

186 5. Newton’s and Related Methods

For smallish ǫ we can approximate Sr by Sr(ν−1) , and thus we can approximate the

gcd q
[j]
n−k,r by q

[j]

n−k,r(ν−1) where the remaining elements of Sr(ν−1) are close to the

zero polynomial. We may find the number of zeros of q in [-1,1] by our usual method
and can test whether it has zeros at ±1. If there are zeros in [-1,1] we compute
xs and xl as the smallest and largest in this range by Newton’s method, evaluat-
ing q and q′ by Clenshaw’s algorithm. By x → cos−1x we get approximations
to the arguments of the zeros of pn on Kr(0) which have the smallest imaginary
part. Then we can improve the accuracy of one of these by Newton’s or Bairstow’s
method to give a zero rexp(iθ). We may then find all the zeros on Kr(0) by our
usual method; next we test whether there are zeros between Kr(ν−1)(0) and Kr(0)
or between Kr(0) and Kr(ν)(0). If there are we repeat the process until all zeros
between Kr(ν−1)(0) and Kr(ν)(0) are found. To avoid rounding error effects when
applying Sturm’s theorem near a zero of pn we should use multiple precision.

Tests on a large number of polynomials up to degree about 15 were very suc-
cessful.

Lang and Frenzel (1994) describe a program which uses Muller’s method (see
Chapter 7) to compute an estimate of a root of the deflated polynomial that con-
tains all the roots of p(x) except those already found. Only a few iterations of
Muller’s method are performed. Note that Muller’s method can find complex roots
even when initialized with real values. This is in contrast with (for example) New-
ton’s method. In a second step the estimate from Muller’s method is used as the
initial value for Newton’s method, working with the original (not deflated) poly-
nomial. This avoids rounding errors introduced by deflation. Their method was
compared with the Jenkins-Traub method and with the eigenvalue method used
in MATLAB. It gave smaller errors than either, and indeed for degrees above 40
Jenkins-Traub did not work at all. The method described here was faster then the
eigenvalue method for all degrees (at degrees above 40 comparison with Jenkins-
Traub is meaningless). The Lang-Frenzel program gave near computer accuracy
up to degree 10,000. However, this author would point out that some eigenvalue
methods developed in the 21st century may be considerably faster than the MAT-
LAB version referred to in Lang and Frenzel’s paper.

Tsai and Farouki (2001) describe a collection of C++ functions for operations on
polynomials expressed in Bernstein form. This form is used extensively in computer-
aided geometric design, as it is much less sensitive to coefficient perturbations than
other bases such as the power form. The Bernstein form on [-1,1] consists in

p(x) =

n
∑

k=0

cnkb
n
k (x), bnk (x) =

(

n
k

)

(1 − x)n−kxk (5.388)

5.9. Hybrid Methods Involving Newton’s Method 187

where cnk is a coefficient of the polynomial, while

(

n
k

)

is the binomial coefficient

n!

k!(n− k)!
(5.389)

Explicit conversions between different bases are ill-conditioned for high degree n, so
it is essential to remain with the Bernstein form from start to end of a calculation.
This is not more difficult than the usual power-form. A Bernstein-form polynomial
may be evaluated by a sequence of linear interpolations among the coefficients,

giving a triangular array P
(r)
k (r = 0, 1, ..., n; k = r, ..., n). Initially

P
(0)
k = cnk (k = 0, ..., n) (5.390)

and then if the polynomial is to be evaluated at xs, we apply, for r = 1,...,n:

P
(r)
k = (1 − xs)P

(r−1)
k−1 + xsP

(r−1)
k (k = r, ..., n) (5.391)

Finally

p(xs) = P (n)
n (5.392)

In addition the values

P
(0)
0 , P

(1)
1 , ..., P (n)

n and P (n)
n , P (n−1)

n , ..., P (0)
n (5.393)

are the coefficients on [0, xs] and [xs, 1] respectively. The authors, in their theorem
2, give conditions for p(x) to have a unique root in [a,b], and for the Newton iter-
ation to converge to it from any point in that interval. Their root-finder employs
recursive binary subdivision of [0,1] to identify intervals in which the conditions of
their theorem 2 are satisfied. If p(x) has only simple roots on [0,1], this process
terminates with up to n intervals on which Theorem 2 holds and Newton may be
applied to give guaranteed quadratic convergence. However at a high level of sub-
division, because of rounding errors, we may eventually get erroneous coefficient
signs and the method breaks down. It appears that for Chebyshev polynomials this
breakdown occurs at degree 50. If the conditions of Theorem 2 are not met on a
subinterval smaller than a certain tolerance the process is terminated with an error
message. Multiple roots may be determined by the method described in section
4, Chapter 2 of this work; thus we obtain polynomials Qk(x) (having only simple
roots) to which the above bisection-Newton method may be applied. It is reported
that on a set of Chebyshev polynomials the software performs “remarkably” well
up to degree 20 (much better than using the power form).

Ellenberger (1960) describes a method in which Bairstow’s method is first tried
and if that does not work Newton is tried. An Algol program is given in Ellenberger
(1961)–see also Alexander (1961) and Cohen (1962).

188 5. Newton’s and Related Methods

Hopgood and McKee (1974) describe an i-point iteration method based on Her-
mite interpolation with a function and derivative evaluation at each point, namely:

xi+1 =

i
∑

j=0

hj(0)xj +

i
∑

j=0

hj(0)[
1

f ′(xj)
] (5.394)

where

hj(y) = [1 − 2(y − yj)l
′(yj)]l

2
j (y) (5.395)

and

hj(y) = (y − yj)l
2
j (y) (5.396)

lj(y) =
Πi

k=0,6=j(y − yk)

Πi
k=0,6=j(yj − yk)

(5.397)

y = f(x), yk = f(xk) (k = 0, 1, ..., i) (5.398)

The authors give an algorithm, which they call the m-cycle improved Newton
method (INM)m as follows:
(1) i=0, given an initial guess x0

(2) Evaluate f(x0) and f ′(x0)

(3) Compute xi+1 =
∑i

j=0 hj(0)xj +
∑i

j=0 hj(0)[1
f ′(xj)

]

(4) If |xi+1 − xi| < ǫ then STOP else GO TO 5
(5) Evaluate f(xi+1) and f ′(xi+1)
(6) If i = m-1 then i = 0, x0 = xm, f(x0) = f(xm), f ′(x0) = f ′(xm) else i =
i+1
(7) GO TO 3

Another variation starts with 2 initial guesses; i.e. we alter step (1) to:
(1) i = 1 given initial guesses x0, x1

This will be called “ (INM)m−1 with 2 starting values”. It is shown that the
convergence order of (INM)m and “ (INM)m−1 with 2 starting values” are re-
spectively

2 × 3m−1 and 3m−2 +
√

32m−4 + 2 × 3m−2 (5.399)

compared with 2m for m applications of Newton’s method (NM)m. It follows that
for m > 1 the convergence order of (INM)m is greater than that of (NM)m.
Since the number of function evaluations is the same for both methods, (INM)m

is more efficient.

Cox (1970) describes a bracketing method for real roots based on a generaliza-
tion of Newton’s method with bisection in cases where their Newton-like method
fails. Let us start with a < ζ < b where ζ is a root and p(a)p(b) < 0. We

5.10. Programs 189

find an interpolating function y(x) = (x−c)
(d0+d1x+d2x2) such that it and its derivative

agree with p(x) and p′(x) at a and b. Solving for the 4 parameters c, di gives a
new approximation to ζ namely:

c = a+
(b− a)papb(pb − pa) − (b− a)2p2

ap
′
b

2papb(pb − pa) − (b − a)(p2
bp

′
a + p2

ap
′
b)

(5.400)

as a → ζ, or a similar equation with a and b interchanged if b → ζ, or a formula
(equivalent to the above) symmetric in a and b for the first few iterations. If c falls
outside [a,b] we use instead bisection i.e.:

c =
1

2
(a+ b) (5.401)

If now p(c) has the same sign as p(a), we replace a by c and iterate again; otherwise
we replace b by c. As a → ζ c → a − pa

p′
a
, i.e. the method reduces to Newton’s,

and so converges quadratically. But when a is far from ζ, and p′a ≈ 0, Newton
fails whereas the new method works by means of 5.401. In some numerical tests of
polynomials up to degree 30 the average number of evaluations per root was about
7 (3.5 iterations), while 5.401 was used in about 6% of cases (5.400 in the rest).

5.10 Programs

Chapter 6 of Hammer et al (1995) gives an algorithm and C++ program based on
the methods of Moore and Hansen described in Section 7 of this Chapter.

The program TOMS/681 implements Newton’s method for systems (with bi-
section). It can probably be applied to a single polynomial.

The program TOMS/812: BPOLY by Tsai and Farouki (2001) contains a library
of programs for polynomial operations including root- finding (with the polynomi-
als given in Bernstein form). See Section 9 of this Chapter.

To download either of the above programs, send a message to
netlib@ornl.gov
saying e.g.
send Alg681 from TOMS

Ellenberger (1961) gives an Algol program using Bairstow’s and Newton’s meth-
ods. See also Cohen (1962).

Lang and Frenzel (1994) refer to a C program based on their method described
in Section 9 of this Chapter. See
http://www.dsp.rice.edu
click on “Software”; “polynomial root finders”; and “ The algorithm of Lang and
Frenzel”

190 5. Newton’s and Related Methods

5.11 Miscellaneous Methods Related to Newton’s

Luther (1964) describes a method of factorizing p(z) into

s(z)t(z) (5.402)

where

s(z) =
m
∑

l=0

ρlz
l, t(z) =

n−m
∑

l=0

βlz
l (5.403)

We make an initial guess p
(0)
l (l = 0, ...,m) as approximations for ρl. Then b

(i)
j

(approximations for βj) and p
(i)
l are related by

m
∑

l=0

p
(i)
l b

(i)
j−l = cj (j = 0, ..., n) (5.404)

(b
(k)
s = 0 if s < 0)

We obtain a hopefully improved approximation

p
(i+1)
j = p

(i)
j + γ(i)

j−1
∑

l=0

p
(i)
l b

(i)
j−l (5.405)

where γ(i) is somewhat arbitrary, but depends on the pl. The author shows that if

the p
(0)
l are close enough to the ρl the method converges.

The case m=1, with

γ(p1) =
1

f ′(z1)
(5.406)

gives Newton’s method. For general m Luther suggests γ(pl) = ± 1
b0

.

Joseph et al (1989/90) introduce random variables into Newton’s method. Let
W be a subset of the real line, f a real function, {Xk} a sequence of random variables
and xk the realization of Xk. let

Xk+1 = xk − Yk when xk ∈ W (5.407)

Yk =
f(xk) + Z1k

f ′(xk) + Z2k
(5.408)

Xk+1 is uniform over W if xk 6∈ W
where Z1k, Z2k are independent random variables. In some (but not all) test cases
the randomized method converged where the normal Newton’s method did not.

5.11. Miscellaneous Methods Related to Newton’s 191

Bodmer (1962) gives a method for complex zeros using polar coordinates. Let
z = reiθ. We seek the roots of

p(z) =

n
∑

m=0

cmz
m = 0 = C + iS (5.409)

where by De Moivre’s theorem

C =

n
∑

m=0

cmr
mcos(mθ) (5.410)

S =

n
∑

m=0

cmr
msin(mθ) (5.411)

Suppose (r0, θ0) is an initial guess and (r0 +∆r, θ0 +∆θ) is the true solution. Then
expanding C and S by Taylor’s series as far as the linear terms we have:

0 = C(r0, θ0) + ∆rCr(r0, θ0) + ∆θCθ(r0, θ0) (5.412)

0 = S(r0, θ0) + ∆rSr(r0, θ0) + ∆θSθ(r0, θ0) (5.413)

where

Cr =
∂C

∂r
=

n
∑

m=1

mcmr
m−1cos(mθ) (5.414)

Cθ =
∂C

∂θ
= −

n
∑

m=1

mcmr
msin(mθ) (5.415)

Sr =
∂S

∂r
=

n
∑

m=1

mcmr
m−1sin(mθ) (5.416)

Sθ =
∂S

∂θ
=

n
∑

m=1

mcmr
mcos(mθ) (5.417)

and

Cθ = −rSr, Sθ = rCr (5.418)

Hence by Cramer’s rule (and using 5.418)

∆r =
r(SCθ − CSθ)

C2
θ + S2

θ

; ∆θ = − (CCθ + SSθ)

C2
θ + S2

θ

(5.419)

192 5. Newton’s and Related Methods

where C, S Cθ, Sθ are evaluated at (r0, θ0). They suggest using Graeffe’s method
initially to obtain an approximate value of r. Then the corresponding θ0 can be
found as a zero of

|p(z)|2 = C2 + S2 (5.420)

At a zero, C2 + S2 is a minimum, hence

CCθ + SSθ = 0 (5.421)

which can be solved by interpolating on θ. For equations with complex coefficients
they suggest considering

p(z)p(z) = 0 (5.422)

which has real coefficients so that Graeffe’s method can still be applied to find r.

Beyer (1964) describes a homotopy-version of Newton’s method: assume that
our equation takes the form

f(x, α) = 0 (5.423)

where α is a real parameter. Assume a root of 5.423 is known for α = α0, say
x(α0). We desire a root for α = αN 6= α0. Suppose that for each α in the range
α0 < α ≤ αN , f(x, α) has a zero x(α) and that

∂f

∂x
(x(α), α) 6= 0 (5.424)

with a further condition (see the cited reference). The author selects αi (i = 1, ..., n)
so that

α0 < α1 < ... < αN (5.425)

The equations

f(x, αi) = 0 (i = 1, ..., N) (5.426)

are solved successively by Newton’s method with

x1(αi+1) = x(αi) (5.427)

To ensure convergence we must take

∆αi = αi+1 − αi < | f2
x

2fαfxx
| (5.428)

where fx = ∂f
∂x etc.

Wu (2005) defines a slightly different homotopy method thus: let

H(x, t) ≡ tf(x) + (1 − t)g(x) = 0 (5.429)

5.11. Miscellaneous Methods Related to Newton’s 193

where t ∈ [0, 1] and f(x) is the function whose roots are being sought. So

H(x, 0) = g(x), H(x, 1) = f(x) (5.430)

and we apply Newton’s iterations to H(x, t), varying t from 0 to 1 as in Beyer’s
method. He suggests using g(x) = Cx+K or Cex +K where C, K are non-zero
constants. In some numerical tests on a cubic polynomial the homotopy method
succeeded for all 4 starting points tried, whereas plain Newton diverged in 3 of them.

Pomentale (1974) describes yet another homotopy method based on Newton,
which is modified to avoid points where f ′(x) = 0. It is apparently proved to be
globally convergent.

Sharma (2005) describes a hybrid Newton-Steffensen method:

xi+1 = xi −
f2(xi)

f ′(xi)(f(xi) − f(xi − f(xi)
f ′(xi)

))
(5.431)

This is of third order and uses 3 evaluations per step. In tests on 5 functions the
hybrid method converged in all cases, whereas in 4 of the cases either Newton or
Steffensen (or both) failed by themselves.

Brent (1976) considers root-finding in (variable) multi-precision (“mp”) arith-
metic. Suppose that the evaluation with error ≈ O(2−n) (“ to precision n”) of the
function or its derivative(s) takes time

w(cn) ≈ cαw(n) (5.432)

Here α varies with the software and/or hardware. The author defines the discrete
Newton mp method (N1) as

xi+1 = xi −
hif(xi)

f(xi + hi) − f(xi)
(5.433)

He states that to obtain the root to precision n requires 2 evaluations with precision
n, preceded by two with precision n

2 , etc. Hence the time

t(n) ≈ 2w(n) + 2w(
n

2
) + .. (5.434)

so the asymptotic constant CN1(α) is

2

1 − 2−α
(5.435)

Here C(α) is defined by

t(n) ≈ C(α)w(n) (5.436)

194 5. Newton’s and Related Methods

He also defines a Secant-like method Sk by

xi+1 = xi − f(xi)

[

xi − xi−k

f(xi) − f(xi−k)

]

(5.437)

We choose k to minimize CSk
(α), giving the “optimal secant method” S1 if α < 4.5,

or S2 if α ≥ 4.5. Finally he defines inverse quadratic interpolation Q (which is
always more efficient than S1, but less than S2 if α > 5.1) and an “optimal inverse
interpolating method” (I) (see the cited paper). He ranks these methods as follows:
I best if 1 ≤ α ≤ 5.1
S2 best if 5.1 < α ≤ 8.7
N1 best if α > 8.7

Chen (1990), (1992), (1993) describes a variation on Newton’s method (called
a “cluster-adapted” formula) which converged, usually very fast, for a number of
hard examples involving clusters of multiple roots (where Newton failed). It is:

zi+1 = zi − n
(Q

p
n − 1)

(Q− 1)

f(zi)

f ′(zi)
(5.438)

where

Q =
(n

µ − 1)

(n
p − 1)

(5.439)

and

µ =
(f ′(zi))

2

(f ′(zi))2 − f(zi)f ′′(zi)
(5.440)

p is best chosen as follows : Let

w =
n

|nµ − 1| + 1
(5.441)

q = floor(.5 + w) (5.442)

then if n > w ≥ 1 set p = q,
otherwise set p = 1.

As initial guess Chen takes A+R where the centroid

A =
−cn−1

ncn
; (5.443)

R = (−f(A)

cn
)

1
n = (5.444)

distance from A of roots of polynomial φ(z) = cn[(z −A)r −Rr]m and rm = n.

5.11. Miscellaneous Methods Related to Newton’s 195

There is a danger of “rebounding” to a far-away point, if an iteration lands near
the centroid of a symmetric cluster. This is detected by the following test :
If p ≥ 2 and if either

(a) |f(zi+1)

f(zi)
| ≥ 20, and/or (5.445)

(b) |f(zi+2)

f(zi+1)
| ≥ .75 (5.446)

with

|zi+2 − zi+1|
2|zi+1 −A| >

πp

n
(5.447)

then zi+2 is judged to have rebounded.. The cure is to replace zi+2 by a new zi+2

given by

zi+1 +R′eiσ (5.448)

where

R′ = (−f(zi+1))
1
p (5.449)

and σ puts zi+2 on the line between zi+1 and the old zi+2. In some tests with
low-degree polynomials the program based on this method (SCARFS) was 3 times
faster than the Jenkins-Traub method and 12 times faster than Muller’s.

Traub (1974) gives a sort of combined secant-Newton method as follows:

z0 = xi; z1 = z0 −
f(z0)

f ′(z0)
(5.450)

xi+1 = z1 −
f(z1)f(z0)

[f(z1) − f(z0)]2
f(z0)

f ′(z0)
(5.451)

This is of order 4 and requires 3 evaluations per step, so its efficiency is log(3
√

4) =
.200

Chun (2005) describes a family of methods which modify Newton’s method to
obtain a higher rate of convergence, but using derivatives of a lower order than many
other methods of the same convergence rate. This is sometimes an advantage. The
family includes

xi+1 = xi −
f(xi)

f ′(xi)
− f(x∗i+1)

f ′(xi)
(5.452)

196 5. Newton’s and Related Methods

where

x∗i+1 = xi −
f(xi)

f ′(xi)
(5.453)

This is of convergence rate 3 and efficiency log(3
√

3) = .159
Also we have

xi+1 = xi −
f(xi)

f ′(xi)
− 2

f(x∗i+1)

f ′(xi)
+
f(x∗i+1)f

′(x∗i+1)

[f ′(xi)]2
(5.454)

with x∗i+1 as before. This latter method is of order 4 and uses 4 function eval-

uations, so its efficiency is log(4
√

4), the same as Newton’s method. Other more
complicated methods have even lower efficiency.

Manta et al (2005) give two families of methods similar to Newton’s. One is

xi+1 = xi −
f(xi)

[f ′(xi) ± pf(xi)]
(5.455)

where the sign is chosen so that pf(xi) and f ′(xi) have the same sign (otherwise p
is arbitrary). This is identical to the method given by Wu (2000) and described in
section 4 of this Chapter. Another class of methods is

xi+1 = xi −
2f(xi)

f ′(xi) ±
√

f ′2(xi) + 4p2f2(xi)
(5.456)

where the sign is chosen to make the denominator largest in magnitude. The authors
show that convergence is quadratic. Again p is arbitrary, but in 12 numerical tests
of 5.456 with p = 1 this new method converged to the true root in every case,
whereas Newton failed in at least 6 of the cases. Moreover, when Newton did
converge it often took many more iterations than 5.456.

5.12 References for Chapter 5

Adams, D. (1967), A stopping criterion for polynomial root-finding, Comm. Ass.
Comput. Mach. 10, 655-658

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1976), The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass.

Aitken, A.C. (1926), On Bernoulli’s Numerical Solution of Algebraic Equations,
Proc. Roy. Soc. Edinburgh 46, 289-305

Akl, S.G. (1989), The Design and Analysis of Parallel Algorithms, Prentice-Hall,
Englewood Cliffs, N.J., 209-211

5.12. References for Chapter 5 197

Alefeld, G. (1981), Bounding the Slope of Polynomial Operators and Some Appli-
cations, Computing 26, 227-237

———— and Potra, F.A. (1988), On Two Higher Order Enclosing Methods of J.W.
Schmidt, Zeit. ang. Math. Mech. 68, 331- 337

———— and ———— (1995), Algorithm 748: Enclosing Zeros of Continuous
Functions, ACM Trans. Math. Software 21, 327-344

Alexander, W.J. (1961), Certification of Algorithm 30, Comm. Ass. Comput.
Mach. 4, 238

Arthur, D.W. (1972), The Use of Interval Arithmetic to Bound the Zeros of Real
Polynomials, J. Inst. Math. Appl. 10, 231-237

Atkinson, K.E. (1989), An Introduction to Numerical Analysis (2/E), Wiley, New
York, p64

Barna, B. (1951), Über das Newtonische Verfahren zur Annäherung von Wurzeln
algebraische Gleichungen, Publ. Math. Debrecen 2, 50-63

Ben-Israel, A. (1997), Newton’s method with modified functions, in “Recent De-
velopements in Optimization Theory and Nonlinear Analysis”, eds. Y. Censor and
S. Reich, Amer. Math. Soc., Providence, Rhode Island, 39-50

Beyer, W.A. (1964), A Note on Starting the Newton-Raphson Method, Comm.
Ass. Comput. Mach. 7, 442

Bini, D. and Pan, V.Y. (1998), Computing matrix eigenvalues and polynomial zeros
where the output is real, SIAM J. Computing 27, 1099-1115

Bodmer, W.F. (1962), A method of evaluating the complex zeros of polynomials
using polar coordinates, Proc. Camb. Phil. Soc. 58, 52-57

Brent, R.P. (1976), The complexity of multiple-precision arithemtic, in The Com-
plexity of Computational Problem-Solving, eds. R.S. Anderssen and R.P. Brent,
University of Queensland Press, 126-165

Burgstahler, S. (1986), An Algorithm for Solving Polynomial Equations, Amer.
Math. Monthly 93, 421-430

Carniel, R. (1994), A quasi cell-mapping approach to the global analysis of New-
ton’s root-finding algorithm, Appl. Numer. Math. 15, 133-152

198 5. Newton’s and Related Methods

Chanabasappa, M.N. (1979), A Note on the Computation of Multiple Zeros of Poly-
nomials by Newton’s Method, BIT 19, 134-135

Chen, T.-C. (1990), Iterative zero-finding revisited, in Computational Techniques
and Applications (CTAC-89), eds. W.I. Hogarth and B.J. Noye, Hemisphere Publ.
Corp., New York, 583-590

———– (1992), Globally Convergent Polynomial Iterative Zero-Finding using APL,
APL Quote Quod 23 (1), 52-59

———– (1993), SCARFS: An Efficient Polynomial Zero-Finder System, APL
Quote Quod 24 (1), 47-54

Chun, C. (2005), Iterative Methods Improving Newton’s Method by the Decompo-
sition Method, Comput. Math. Appl. 50, 1559-1568

Clegg, D.B. (1981), On Newton’s method with a class of rational functions, J.
Comput. Appl. Math. 7, 93-100

Cohen, K.J. (1962), Certification of Algorithm 30, Comm. Ass. Comput. Mach.
5, 50

Costabile, F., Gualtieri, M.I., and Luceri, R. (2001), A new iterative method for
the computation of the solution of nonlinear equations, Numer. Algs. 28, 87-100

Cosnard, M. and Masse, C. (1983), Convergence presque partout de la méthode de
Newton, C.R. Acad. Sci. Paris 297, 549-552

Cox, M.G. (1970), A bracketing technique for computing a zero of a function, Com-
puter J. 13, 101-102

Dargel, R.H., Loscalzo, F.R., and Witt, T.H. (1966), Automatic Error Bounds on
Real Zeros of Rational Functions, Comm. Ass. Comput. Mach. 9, 806-809

Dawson, J.E. (1982), A Formula Approximating the Root of a Function, IMA J.
Numer. Anal. 2, 371-375

Derr, J.I. (1959), A Unified Process for the Evaluation of the Zeros of Polynomials
over the Complex Number Field, Math. Tables Aids Comput. 13, 29-36

Dimitrova, N.S. (1994), On a Parallel Method for Enclosing Real Roots of Non-
linear Equations, in Advances in Numerical Methods and Applications, ed. I.T.
Dimov et al, World Scientific, Singapore, 78-84

5.12. References for Chapter 5 199

Dong, C. (1987), A Family of Multipoint Iterative Functions for Finding Multiple
Roots of Equations, Intern. J. Computer Math. 21, 363-367

Donovan, G.C., Miller, A.R., and Moreland, T.J. (1993), Pathological Functions
for Newton’s Method, Amer. Math. Monthly 100, 53-58

Ellenberger, K.W. (1960), On Programming the Numerical Solution of Polynomial
Equations, Comm. Ass. Comput. Mach. 3, 644-647

—————– (1961), ALGORITHM 30: Numerical Solution of the Polynomial
Equation, Comm. Ass. Comput. Mach 4, 643

Forsythe, G.E. (1958), Singularity and Near-Singularity in Numerical Analysis,
Amer. Math. Monthly 65, 229-240

Franklin, F. (1881), On Newton’s Method of Approximation, Amer. J. Math. 4,
275-276

Frontini, M. and Sormani, E. (2003), Some variant of Newton’s method with third-
order onvergence, Appl. Math. Comput. 140, 419-426

Gargantini, I. (1976), Comparing parallel Newton’s method with parallel Laguerre’s
method, Comput. Math. Appls. 2, 201-206

Garwick, J.V. (1961), The limit of a converging sequence, BIT 1, 64

Gilbert, W.J. (1994), Newton’s Method for Multiple Roots, Computers and Graph-
ics 18, 227-229

Grant, J.A. and Hitchins, G.D. (1973), The solution of polynomial equations in
interval arithmetic, Computer J. 16, 69-72

Hammer, R. et al (1995), Chap. 6. Nonlinear equations in one variable, in
C++ Toolbox for Verified Computing I: Basic Numerical Problems, Springer-Verlag,
Berlin, 93-112

Hansen, E.R. (1968), On Solving Systems of Equations Using Interval Arithmetic,
Math. Comp. 22, 374-384

———— (1978A), A globally convergent interval method for computing and bound-
ing real roots, BIT 18, 415-424

———— (1978B), Interval Forms of Newton’s Method, Computing 20, 153-163

200 5. Newton’s and Related Methods

———— (1992), Global Optimization using Interval Analysis, Marcel Dekker, New
York (especially Chap. 7).

———— and Patrick, M. (1976), Estimating the Multiplicity of a Root, Numer.
Math. 27, 121-131

Hanson, R.J. (1970), Automatic error bounds for real roots of polynomials having
interval coefficients, Computer J. 13, 284-288

He, J.-H. (2004), A Modified Newton-Raphson method, Comm. Num. Meth. Eng.
20, 801-805

Henrici, P. (1971), Circular arithmetic and the determination of polynomial zeros,
in Conference on Applications of Numerical Analysis (LNM 228), ed. J.L. Morris,
Springer-Verlag, Berlin, 86-92

Herzberger, J. (1986), On the R-Order of Some Recurrences with Applications to
Inclusion-Methods, Computing 36, 175-180

Hines, J. (1951), On approximating the roots of an equation by iteration, Math.
Mag. 24, 123-127

Homeier, H.H.H. (2005), On Newton-type methods with cubic convergence, J.
Comput. Appl. Math. 176, 425-432

Hopgood, D.J. and McKee, S. (1974), Improved Root-Finding Methods Derived
from Inverse Interpolation, J. Inst. Maths. Applics. 14, 217-228

Householder, A.S. (1970), The Numerical Treatment of a Single Nonlinear Equa-
tion, McGraw-Hill, New York, Chap. 4, Secs. 0-3

Hubbard, J., Schleicher, D. and Sutherland, S. (2001), How to find all roots of
complex polynomials by Newton’s method, Invent. Math. 146, 1-33

Igarashi, M. (1982), Zeros of Polynomial and an Estimation of its Accuracy, J.
Inform. Proc. 5, 172-175

———— (1985), Practical problems arising for finding roots of nonlinear equations,
Appl. Numer. Math. 1, 433-455

Jarratt, P. (1966), Multipoint iterative methods for solving certain equations, Com-
puter J. 8, 393-400

————(1966B), Some Fourth-Order Multipoint Iterative Methods for Solving

5.12. References for Chapter 5 201

Equations, Math. Comp. 20, 434-437

———– (1970), A review of methods for solving nonlinear algebraic equations in
one variable, in Numerical Methods for Nonlinear Algebraic Equations, ed P. Ra-
binowitz, Gordon and Breach, London, 1-26

Joseph, G., Levine, A., and Liukkonen, J. (1989/90), Randomized Newton-Raphson,
Appl. Numer. Math. 6, 459-469

King, R.F. (1971), A fifth-order family of modified Newton methods, BIT 11,
404-412

———- (1972), Tangent Methods for Nonlinear Equations, Numer. Math. 18,
298-304

———- (1973), A Family of Fourth-Order Methods for Nonlinear Equations, SIAM
J. Numer. Anal. 10, 876-879

———- (1979), An Extrapolation Method of Order Four for Linear Sequences,
SIAM J. Numer. Anal. 16, 719-725

———- (1980), An Efficient One-Point Extrapolation Method for Linear Conver-
gence, Math. Comp. 35, 1285-1290

———- (1983A), Improving the Van de Vel Root-Finding Method, Computing
30, 373-378

———- (1983B), Anderson-Bjorck for Linear Sequences, Math. Comp. 41, 591-
596

Kirrinnis, P. (1997), Newton Iteration Towards a Cluster of Polynomial Zeros, in
Foundations of Computational Mathematics, eds. F. Cucker and M. Shub, Springer-
Verlag, Berlin, 193-215

Kizner, W. (1964), A Numerical Method for Finding Solutions of Nonlinear Equa-
tions, SIAM J. 12, 424-428

Kogan, T.I. (1967), Formulation of higher-order iteration processes, USSR Comp.
Math. Math. Phys. 7, 423-424

Kollerstrom, N. (1992), Thomas Simpson and ‘Newton’s method of approximation’:
an enduring myth, British J. Hist. Sci. 25, 347-354

Lagouanelle, J.-L. (1966), Sur une méthode de calcul de l’ordre de multiplicité des

202 5. Newton’s and Related Methods

zéros d’un polynome, C.R. Acad. Sci. Paris 262A, 626-627

Lagrange, J.L. (1798), Traité de la Résolution des Équations Numériques, Paris

Lang, M. and Frenzel, B.-C. (1994), Polynomial Root-Finding, IEEE Signal Proc.
Lett. 1, 141-143

Levin,D. (1973), Developement of Non-Linear Transformations for Improving Con-
vergence of Sequences, Intern. J. Comput. Math. B3, 371-388

Lin, Q. and Rokne, J.G. (1995), An interval iteration for multiple roots of tran-
scendental equations, BIT 35, 561-571

Locher, F. (1993), A stability test for real polynomials, Numer. Math, 66, 33-40

———- and Skrzipek, M.-R. (1995), An Algorithm for Locating All Zeros of a Real
Polynomial, Computing 54, 359-375

Luther, M.A. (1964), A Class of Iterative Techniques For the Factorization of Poly-
nomials, Comm. Ass. Comput. Mach. 7, 177-179

Madsen, K. (1973), A Root-Finding Algorithm Based on Newton’s Method, BIT
13, 71-75

Mamta et al (2005), On a class of quadratically convergent iteration formulae,
Appl. Math. Comput. 166, 633-637

Matthews, J.H. and Fink, K.D. (1999), Numerical Methods Using Matlab 3/E,
Prentice-Hall

McNamee, J.M. (1988), A Comparison of Methods for Terminating Polynomial It-
erations, J. Comput. Appl. Math. 21, 239-244

————- (1998), A Comparison of Methods for Accelerating Convergence of New-
ton’s Method for Multiple Polynomial Roots, SIGNUM Bull 33 (2), 17-22

Moore, R.E. (1966), Interval Analysis, Prentice Hall, Englewood Cliffs, N.J. (es-
pecially Chap. 7).

Murakami, T. (1978), Some Fifth Order Multipoint Iterative Formulas for Solving
Equations, J. Inform. Proc. 1, 138-139

Nesdore, P.F. (1970), The determination of an algorithm which uses the mixed strat-
egy technique for the solution of single nonlinear equations, in Numerical Methods

5.12. References for Chapter 5 203

for Nonlinear Algebraic Equations, ed. P. Rabinowitz, Gordon and Breach, 27-46

Neta, B. (1979), A Sixth-Order Family of Methods for Nonlinear Equations, In-
tern. J. Computer Math. Sec. B 7, 157-161

——– (1981), On a Family of Multipoint Methods for Non- linear Equations, In-
tern. J. Computer Math. 9, 353-361

Ostrowski, A.M. (1973), Solution of Equations in Euclidean and Banach Spaces,
Academic Press, New York

Patrick, M.L. (1972), A Highly Parallel Algorithm for Approximating All Zeros of
a Polynomial with Only Real Zeros, Comm. Ass. Comput. Mach. 11, 952-955

Petkovic, L.D., Trickovic, S., and Petkovic, M.S. (1997), Slope Methods of Higher
Order for the Inclusion of Complex Roots of Polynomials, Reliable Computing 3,
349-362

Petkovic, M.S. (1981), On an Interval Newton Method Derived from Exponential
Curve Fitting, Zeit. ang. Math. Mech. 61, 117-119

—————— (1987), Some interval iterations for finding a zero of a polynomial
with error bounds, Comput. Math. Appl. 14, 479-495

—————— and Herzberger, J. (1991), Hybrid inclusion algorithms for polyno-
mial multiple complex zeros in rectangular arithmetic, Appl. Numer. Math 7,
241-262

——————, Herceg, D.D., and Ilic, S.M. (1997), Point estimation Theory and
Its Applications, Institute of Mathematics, Novi Sad, Yugoslavia

Pomentale, T. (1974), Homotopy Iterative Methods for Polynomial Equations, J.
Inst. Maths. Applics. 13, 201-213

Presic, M.D. (1978), On Ostrowski’s fundamental existence theorem, Publ. Inst.
Math. (Nouv. Ser.) 24 (38), 125-132

———— (1979), on Ostrowski’s fundamental existence theorem in the complex
case, Publ. Inst. Math. Debrecen (Nouv. Ser.) 26 (40), 229-232

Rall, L.B. (1966), Convergence of the Newton Process to Multiple Solutions, Nu-
mer. Math. 9, 23-37

Raphson, J. (1690), Analysis aequationum universalis ..., London. Microfilm copy:

204 5. Newton’s and Related Methods

University Microfilms, Ann Arbor, MI

Renegar, J. (1987), On the worst-case arithmetic complexity of approximating ze-
ros of polynomials, J. Complexity 3, 90-113

Revol, N. (2003), Interval Newton iteration in multiple precision for the univariate
case, Numer. Algs. 34, 417-426

Rokne, J. (1973), Automatic Errorbounds for Simple Zeros of Analytic Functions,
Comm. Ass. Comp. Mach. 16, 101-104

———– and Lancaster, P. (1969), Automatic Errorbounds for the Approximate
Solution of Equations, Computing 4, 294-303

Schleicher, D. (2002), On the number of iterations of Newton’s method for complex
polynomials, Ergod. Th. Dynamic Sys. 22, 935-945

Schroder, E. (1870), Ueber unendliche viele Algorithmen zur Auflosung der Gle-
ichungen, Math. Ann. 2, 317-365

Sharma, J.R. (2005), A composite third-order Newton-Steffensen method for solv-
ing nonlinear equations, Appl. Math. Comput. 169, 242-246

Shedler, G.S. (1967), Parallel Numerical Methods for the Solution of Equations,
Comm. Ass. Comput. Mach. 10, 286-291

Simpson, T. (1740), Essays... Mathematicks..., London.

Smale, S. (1986), Newton’s method estimates from data at one point, in The
Merging of Disciplines: New Directions in Pure, Applied and Computational Math-
ematics, Ed. R.E. Ewing et al, Springer-Verlag, New York, 185-196

Stoer, J. and Bulirsch, R. (1980), Introduction to Numerical Analysis, Springer-
Verlag, New York

Tikhonov, O. N. (1976), A generalization of Newton’s method of computing the
roots of algebraic equations, Sov. Math. (Iz. Vuz.) 20 (6), 109-111

Traub, J.F. (1964), Iterative Methods for the Solution of Equations, Prentice-Hall,
Englewood Cliffs

———– (1967), On Newton-Raphson Iteration, Amer. Math. Monthly 74, 996-
998

5.12. References for Chapter 5 205

———– (1974), Theory of Optimal Algorithms, in Software for Numerical Math-
ematics, ed D.J. Evans, Academic Press, London, 1-15

Tsai, Y.-F. and Farouki, R.T. (2001), Algorithm 812: BPOLY: An Object- Ori-
ented Library of Numerical Algorithms for Polynomials in Bernstein Form, ACM
Trans. Math. Software 27, 267-296

Vander Straeten, M. and Van de Vel, H. (1992), Multiple Root-Finding Methods,
J. Comput. Appl. Math. 40, 105-114

Victory, H.D. and Neta, B. (1983), A Higher Order Method for Multiple Zeros of
Nonlinear Functions, Intern. J. Computer Math. 12, 329-335

Vignes, J. (1978), New methods for evaluating the validity of the results of mathe-
matical computations, Math. Computers Simul. 20, 227-249

Wallis, J. (1685), A Treatise of Algebra both Historical and Practical, London.

Wang, X. and Han, D. (1989), On dominating sequence method in the point esti-
mate and Smale’s theorem, Sci. Sinica Ser. A, 905-913

Weerakom, S. and Fernando, T.G.I. (2000), A Variant of Newton’s Method with
Accelerated Third-Order Convergence, Appl. Math. Lett. 13, 87-93

Werner, W. (1982), Some Supplementary Results on the 1 +
√

2 Order Method for
the Solution of Nonlinear Equations, Numer. Math. 38, 383-392

Whiteside, D.T. (ed.) (1967-1976), The Mathematical Papers of Isaac Newton
Vols. I-VII, Cambridge University Press, Cambridge

Wiethoff, A. (1996), Enclosing all zeros of a nonlinear function on a parallel com-
puter system, Zeit. ang. Math. Mech. 76, 585-586

Wu, T.-M. (2005), A study of convergence on the Newton-homotopy continuation
method, Appl. Math. Comp. 168, 1169-1174

Wu, X.-Y. (2000), A new continuation Newton-like method and its deformation,
Appl. Math. Comp. 112, 75-78

Yakoubsohn, J.-C. (2000), Finding a Cluster of Zeros of Univariate Polynomials,
J. Complexity 16, 603-638

Ypma, T.J. (1983), Finding a Multiple Zero by Transformations and Newton-Like
Methods, SIAM Rev. 25, 365-378

206 5. Newton’s and Related Methods

———- (1995), Historical Developement of the Newton- Raphson Method, SIAM
Rev. 37, 531-551

Chapter 6

Matrix Methods

6.1 Methods Based on the Classical Companion Matrix

For many years people solved eigenvalue problems by finding roots of the charac-
teristic polynomial of the matrix in question. In more recent times this process
has been reversed: one solves a polynomial by finding a matrix whose characteris-
tic polynomial is identical to the given polynomial, and then finding its eigenvalues.

Brand (1964) defines the classical companion matix of a monic polynomial p(λ)
as follows:

C =













0 1 0 0
0 0 1 0 .. 0
..
0 0 0 1

−c0 −c1 −cn−2 −cn−1













(6.1)

it is also given by various authors as

C =













0 0 0 −c0
1 0 0 −c1
0 1 0 .. 0 −c2
..
0 0 1 −cn−1













(6.2)

and there are other rearrangements of the elements in the literature. It is sometimes
referred to as the Frobenius companion matrix, implying that it was discovered by
that author, but we have not discovered the original reference. The important
property of C is that

|C− λI| = (−1)np(λ) (6.3)

207

208 6. Matrix Methods

which Brand proves as follows: we write

|C − λI| =













−λ 1 0 .. 0 0
0 −λ 1 0 .. 0
..
0 0 .. 0 −λ 1

−c0 −c1 −cn−2 −cn−1 − λ













(6.4)

Now multiply columns 2,3,...,n of this determinant by λ, λ2, ..., λn−1 and add them
to the first column, so that all elements of that column become zero except the last
which is now -p(λ). Since the cofactor of this is (−1)n−1, we have

|C − λI| = (−1)np(λ) (6.5)

i.e. p(λ) is the characteristic polynomial of C.

C arises naturally in the theory of differential equations, when one replaces a
linear equation

f(D)y = 0, (D =
d

dt
) (6.6)

by a system of n first order equations. For example

y(3) + ay(2) + by′ + cy = 0 (6.7)

is replaced by

y′ = u
u′ = v
v′ = −cy −bu −av

(6.8)

The matrix of coefficients of the right-hand-side is the companion of

λ3 + aλ2 + bλ+ c = 0 (6.9)

The equation p(λ) = 0 may be written as

Ce(λ) = λe(λ) (6.10)

where

eT (λ) = (1, λ, λ2, ..., λn−1) (6.11)

for the first n-1 equations of 6.10 are of the form λi = λi (i = 1, 2, ..., n−1) (which
is always true) and the last is

−c0 − c1λ− ...− cn−1λ
n−1 = λn (6.12)

Thus, if λi is an eigenvalue of C (and hence a zero of p(λ)) 6.12 is satisfied and so
6.10 is also satisfied for λ = λi. The rank of C − λiI is always n-1 even when λi

6.1. Methods Based on the Classical Companion Matrix 209

is a multiple zero; for the minor of element (n,1) has a determinant = 1. So λi is
associated with only one eigenvector ei = e(λi). When C has an eigenvalue λ1

(and hence p(λ) has a root λ1) of multiplicity k, then λ1 satisfies

p(λ) = p′(λ) = ... = p(k−1)(λ) = 0 (6.13)

The first of these equations is equivalent to 6.10; the others are equivalent to equa-
tions derived from 6.10 by differentiations with respect to λ, such as

Ce(j)(λ) = λe(j)(λ) + je(j−1)(λ) (j = 1, 2, ..., k − 1) (6.14)

So, if λ1 is a k-fold zero we have

Ce1 = λ1e1 (6.15)

and

Cej = λ1ej + ej−1 (j = 2, ..., k) (6.16)

where e1 is the eigenvector and

ej =
e(j−1)(λ1)

(j − 1)!
(j = 2, ..., k) (6.17)

are defined as “generalized” eigenvectors. Note that

eT
j = (0, 0, ..., 1,

(

j
j − 1

)

λ1, ...,

(

n− 1
j − 1

)

λn−j
1 (j = 2, ..., k) (6.18)

where the 1 is in position j (the case j = 1 is given by 6.11 with λ = λ1). Thus
the entire set is linearly independent since the k × n matrix formed from their
components has rank k. Brand also shows that the inverse of C is













−c1/c0 −c2/c0 −cn−1/c0 −1/c0
1 0 0
0 1 0 0
..
0 0 1 0













(6.19)

It is the companion of the reciprocal polynomial xnp(1
x) (rearranged).

Some authors do not assume that p(λ) is monic, in which case the ci in 6.1 are
each divided by cn.

An early application of the companion matrix to actually finding roots is by
Mendelsohn (1957). He does this by applying the power method: a vector x(0)

is repeatedly multiplied by C until convergence, i.e. Cx(i) = λ1x
(i+1) where

x(i+1) ≈ x(i) if x(i) is normalized so that its last component is 1, and λ1 is the

210 6. Matrix Methods

largest magnitude root.

Krishnamurthy (1960) also applies the power method, but accelerates it by
using the Cayley-Hamilton theorem which states that a matrix satisfies its own
characteristic polynomial, i.e.

−(c0I + c1C + ...+ cn−1C
n−1) = Cn (6.20)

Thus a power Cm (m > n) can be expressed as a polynomial in C of degree n-1.
We then multiply x(0) by Cm for large m. The calculation of Cr (r = 1, 2, ..., n−1)
is made easy as all the first (n-1) columns of Ci are the same as the second to n’th
column of Ci−1 (i = 2, ..., n − 1). The author shows how to deal with complex or
unimodular roots. He mentions that multiple roots are difficult by this method.

Stewart (1970) gives a method which is equivalent to the power method, but
more efficient. He starts with an arbitrary polynomial h0 of degree < n but > 0,
and applies

hi+1 = [hi]
2(mod p) (6.21)

He then show that if |h0(r1)| > |h0(ri)| (ri 6= r1) then hk(z)/hk(0) converges to
π1(z)/π1(0), where

π1(z) =
p(z)

z − r1
(6.22)

and so

z − r1 =
p(z)

π1(z)
(6.23)

Using the Cayley-Hamilton theorem he shows that

hi+1(C) = [hi(C)]2 (6.24)

or

hi(C) = [h0(C)]2
i

(6.25)

i.e. the vector of coefficients of hi, called hi

= [h0(C)]2
i

e1 (6.26)

where

eT
1 = (1, 0, ..., 0) (6.27)

Thus 6.21 is a variant of the power method applied to h0(C) in which the matrix
is squared at each step. For simple roots, the convergence is quadratic; for multiple

6.1. Methods Based on the Classical Companion Matrix 211

it is linear with ratio 1
2 .

Hammer et al (1995) give an Algorithm with verified bounds. They use a slightly
more general companion matrix than most authors; that is they do NOT assume
that the polynomial is monic, so that the ci in the companion matrix in the form 6.2
are divided by cn for i=0,...,n-1. With A as the companion matrix thus described
they solve the eigenproblem

Aq∗ = z∗q∗ (6.28)

or

(A − z∗I)q∗ = 0 (6.29)

where

q∗ =













q∗0
q∗1
..
..

q∗n−1













(6.30)

is the eigenvector corresponding to the eigenvalue z∗.

Moreover, q∗0 , ..., q
∗
n−1 are the coefficients of the deflated polynomial

p(z)

z − z∗
(6.31)

The q∗i may be multiplied by an arbitrary factor, so to avoid the divisions in the
companion matrix we set q∗n−1 = cn, and then the others are given by

q∗i−1 = q∗i z
∗ + ci (i = n− 1, ..., 1) (6.32)

Thus we have a system of nonlinear equations in q0, ..., qn−2, z, and we write

x =

















q0
q1
..
..

qn−2

z

















≡
[

q
z

]

(6.33)

(the q∗i , z
∗ are the solutions of 6.32).

The authors solve 6.29
(written as

f(x) = 0) (6.34)

212 6. Matrix Methods

by applying the simplified Newton’s method for a system i.e.

x(i+1) = x(i) − Rf(x(i)) (6.35)

where

R = f′(x(0))−1 (6.36)

i.e. the inverse of the Jacobian J of f at x(0). In our case

f(x) = f(

[

q
z

]

) = (A − zI)

[

q
cn

]

(6.37)

Then

J = f′(x) =

[

(A − zI)

[

q
cn

]]′
(6.38)

= (A − zI)













1 0 ... 0 0
0 1 ... 0 0
..
.. .. 0 1 0
0 0 .. 0 0













−









0 ... 0 q0
..
.. .. 0 qn−2

0 .. 0 cn









(6.39)

=













−z 0 0 −q0
1 −z 0 .. 0 −q1
..
0 1 −z −qn−2

0 0 1 −cn













(6.40)

The authors show that

R = J(−1) =













−w1

w0
1 0 0

−w2

w0
0 1 0 .. 0

..
−wn−1

w0
0 0 1

− 1
w0

0 0 0





















1 z 0 .. 0
0 1 0 .. 0
..
0 0 1









...













1 0 0
0 1 0 .. 0
..
0 .. 0 1 z
0 0 1













(6.41)

where

wn−1 = cn; wi = qi + zwi+1 (i = n− 2, ..., 0) (6.42)

6.1. Methods Based on the Classical Companion Matrix 213

If x̃ =

[

q̃
z̃

]

is an initial approximation (and the authors do not say how this

should be obtained) then we have

x(i+1) = x(i) − Rf(x(i)) (6.43)

so

x(i+1) − x̃ = x(i) − x̃ − Rf(x̃ + ∆(i)
x)

or

∆(i+1)
x = ∆(i)

x − Rf(

[

q̃ + ∆
(i)
q

z̃ + ∆
(i)
z

]

) ≡ g(

[

∆
(i)
q

∆
(i)
z

]

) (6.44)

or g(∆
(i)
x) where

∆(j)
x = x(j) − x̃ (j = i, i+ 1) (6.45)

We may write (dropping the superscript(i))

g(∆x) = ∆x − R(A − (z̃ + ∆z)I)

[

q̃ + ∆q

cn

]

= ∆x−R[(A− z̃I)
[

q̃
cn

]

−∆z

[

q̃
cn

]

+(A− z̃I)
[

∆q

0

]

−∆z

[

∆q

0

]

](6.46)

= ∆x − R(A − z̃I)

[

q̃
cn

]

+ R∆z

[

∆q

0

]

−

R













(A − z̃I)













1 0
0 1 0
..
0 .. 0 1 0
0 0













−









0 .. 0 q̃0
..
0 q̃n−2

0 .. 0 cn





















∆x

= −Rd + R∆z

[

∆q

0

]

+ (I − RJ)∆x (6.47)

where

d = (A − z̃I)

[

q̃
cn

]

(6.48)

The iterations are repeated until

||∆(i+1)||∞
max(||(q(i)j)n−2

j=0 ||∞, |z(i)|)
≤ ǫ (e.g.10−7) (6.49)

214 6. Matrix Methods

or the maximum number of iterations is exceeded.

The authors also describe a verification step in which an interval version of
Newton’s method is used i.e.

[∆x](i+1) = g([∆x](i)) (6.50)

where the [∆x](j) are intervals. We obtain interval enclosures for [di], [wi] by
rounding the calculated values up and down as we calculate them. If we replace R
by an interval matrix [R] (by replacing wi by [wi]), then [R] encloses J−1 and the
term corresponding to (I-RJ) in 6.47 drops out, and we obtain

g([∆x]) = −[R][d] + [R][∆z]

[

[∆q]
0

]

(6.51)

Starting from an accurate solution of the non-interval iterations we apply 6.50 with
6.51 until [∆x](i+1) is properly included in [∆x](i). Then Schauder’s fixed-point
theorem tells us that there exists at least one solution of the eigenproblem, i.e.

x∗ ∈ x̃ + ∆(i+1)
x (6.52)

Other works using the classical companion matrix are referred to in Section 3, under
the heading “fast methods of O(n2) work”.

6.2 Other Companion Matrices

have been described by various authors. Some of these can give much more accuracy
than the “classical” one described in section 1. For example Schmeisser (1993)
modifies Euclid’s algorithm to derive a tridiagonal matrix having characteristic
polynomial p(λ) (i.e. it is a type of companion matrix). Define c(f) = leading
coefficient of f, and let

f1(x) = p(x), f2(x) =
1

n
p′(x) (6.53)

and proceed recursively as follows, for i = 1,2,...,:
If fi+1(x) 6≡ 1, then dividing fi by fi+1 with remainder −ri we have

fi = qifi+1 − ri (6.54)

and define

(i) if ri(x) 6≡ 0, ci = c(ri), fi+2(x) =
ri(x)

ci
(6.55)

(ii) if ri(x) ≡ 0, ci = 0, fi+2 =
f ′

i+1

c(f ′
i+1)

(6.56)

6.2. Other Companion Matrices 215

If fi+1(x) ≡ 1 terminate the algorithm, defining qi(x) = fi(x).

The author proves that p(x) has only real zeros if and only if the modified
Euclidean algorithm above yields n-1 nonnegative numbers c1, ..., cn−1, and in this
case

p(x) = (−1)n|T − xI| (6.57)

where

T =













−q1(0)
√
c1 0 0√

c1 −q2(0)
√
c2 0 0

..
0 0

√
cn−2 −qn−1(0)

√
cn−1

0 0
√
cn−1 −qn(0)













(6.58)

Further, the zeros are distinct iff the ci are all positive. The eigenvalues of T (roots
of p(x)) may be found by the QR method (see the end of this section).

Schmeisser concentrates on the all-real-root case, but Brugnano and Trigante
(1995) apply the Euclidean algorithm to general polynomials. Let p0(x) = p(x)
and p1(x) any other polynomial of degree n-1. Re-writing 6.54 with slightly different
notation we have

pi(x) = qi(x)pi+1(x) − pi+2(x) (i = 1, 2, ...) (6.59)

terminating when i = m− 1 with pm+1(x) = 0 (m must be ≤ n since each pi+1

is of lower degree than pi). Then pm(x) is the greatest common divisor of p0 and
p1, and indeed of p2, ..., pm−1 also. Then, if pm(x) 6≡ const, the functions

fi(x) =
pi(x)

pm(x)
(i = 0, ...,m) (6.60)

are also polynomials. When it happens that

deg pi(x) = n− i (i = 0, 1, ...,m = n) (6.61)

we say that 6.59 terminates regularly. When it does not, i.e. the gcd of p0 and
p1 is non-trivial, or if k ∈ {1, ...,m} exists such that

deg pi(x) = n− i (i = 0, ..., k − 1) (6.62)

deg pi(x) < n− i (i ≥ k) (6.63)

we say that a breakdown occurs at the k’th step of 6.59. If 6.61 is satisfied, all the
polynomials qi are linear, and we may re-write 6.59 as

pi(x) = (x− αi+1)pi+1(x) − βi+1pi+2(x) (i = 0, ..., n− 1) (6.64)

216 6. Matrix Methods

where βi is the coefficient of the leading term of pi+2(x) (so that the latter is now
monic). We have also pn+1(x) = 0 and pn(x) ≡ 1.

On the other hand, suppose that 6.61 is not satisfied, i.e. 6.59 has a breakdown
at the k’th step. Thus we obtain only the first k pi from 6.64, but we may then
switch back to 6.59, at the price of some qi being non-linear.

In the regular case one may write 6.64 as

x













p1(x)
p2(x)
..
..

pn(x)













= Tn













p1(x)
p2(x)
..
..

pn(x)













+













p0(x)
0
..
..
0













(6.65)

where

Ti =









α1 β1 0 0
1 α2 β2 0 .. 0
..
0 0 1 αi









(6.66)

from which it follows that the roots of p0(x) are the eigenvalues of Tn and vice
versa. Thus we may transform the polynomial root problem to that of finding
eigenvalues of a tridiagonal matrix (in the unlikely event of a breakdown we may
repeat the process with a different p1). Again the problem may be solved by the
QR method.

However if the roots (or eigenvalues) are multiple, the QR method may be very
slow. To avoid this problem we take

p1(x) =
p′0(x)

n
(6.67)

Then if x∗ is a root of multiplicity k for p0(x), it is a root of multiplicity k-1 for
pm(x), and consequently the roots of

f0(x) =
p0(x)

pm(x)
(6.68)

are all simple. If the process 6.59 with 6.67 terminates regularly, it means that

p0(x) has no multiple roots, since the gcd of p0 and
p′
0

n , i.e. pn, is of degree zero,
so p0 and p′0 have no common zeros. Hence 6.64 terminates regularly, and Tn has
simple eigenvalues.

On the other hand, if 6.64 breaks down at the r’th step, then there are two
cases:

6.2. Other Companion Matrices 217

a) pr+1 ≡ 0; then the zeros of p0(x) are given by those of f0(x) = p0(x)
pr(x) (which

will have only simple roots), and also of pr(x) (which = the gcd of p0(x), p
′
0(x)).

b) pr+1 6≡ 0; then we switch to 6.59 and complete the process. Two sub-cases may
occur:

(i) deg pm = 0, i.e. the gcd pm is a constant, i.e. p0(x) and p′0(x) have
no common factors, i.e. the roots of p0(x) are all simple; so we no longer need to
use 6.67 and we may choose p1(x) randomly and repeat the process 6.64.

(ii) deg pm > 0, then we apply the whole process to pm(x) and to

f0(x) = p0(x)
pm(x) (separately).

In the notation of section 3 of Chapter 2, p0 is represented by P1, pm by P2, and
f0 by Q1. Thus, as stated above, f0 (or Q1) has only simple roots, and they are
the distinct roots of p0 (or P1). When we repeat the process for pm (and later

equivalents to pm, i.e. the Pj) we may compute Qj =
Pj

Pj+1
for j= 1,2,...,s. Then

each Qj contains only simple zeros, and they appear in p0 (or P1) with multiplicity
≥ j. In terms of matrices Brugnano and Trigiante summarize the above as follows:
the roots of p0(x) are the eigenvalues of a block diagonal matrix

T∗ =





T(1) 0 0
..

.. 0 T(s)



 (6.69)

where each block T(j) has the form

T(j) =











α
(j)
1 β

(j)
1 0 .. 0

1 α
(j)
2 β

(j)
2 .. 0

..

0 .. 0 1 α
(j)
kj











(6.70)

and has only simple eigenvalues. Here

d = k1 ≥ k2 ≥ ≥ ks ≥ 1 (6.71)

and

s
∑

j=1

kj = n (6.72)

s = maximum multiplicity of the roots of pn(x), while
d = number of distinct roots. If a root appears in the j’th block and not in the
(j+1)’th, it has exact multiplicity j and must appear in all the previous blocks.

The authors test their method (incorporated in a Matlab program called bt-
roots) on several polynomials of moderate degree having roots of multiplicity up
to 10. They obtained relative errors at most about 10−14 (working in double pre-
cision), and perfect multiplicity counts. In contrast the Matlab built-in function

218 6. Matrix Methods

roots, which uses the QR method applied to the classical companion matrix, gave
errors as high as 10−2 in some cases, with no explicit calculation of the multiplicities.

Brugnano (1995) gives a variation on the above in which the Euclidean Al-
gorithm is formulated in terms of vectors and matrices. We take the companion
matrix in the form:

C =









−cn−1 −cn−2 .. −c1 −c0
1 0 0
..
0 .. 0 1 0









(cn = 1) (6.73)

and let

p1 =
p′(x)

n
=

n
∑

i=1

c
(1)
i xi−1 (6.74)

(the normalized derivative of p(x)),

u0 = 0,u1 = (1, c
(1)
n−1, ..., c

(1)
1) (6.75)

and compute further ui by

CTui = ui−1 + αiui + βiui+1 (i = 1, ..., n) (6.76)

Here αi and βi have to satisfy

eT
i ui+1 = 0, eT

i+1ui+1 = 1 (6.77)

where ei is the i’th column of In. These lead to

αi = eT
i (CTui − ui−1); (6.78)

βi = eT
i+1(C

Tui − αiui − ui−1) (6.79)

If 6.77 can be satisfied at each step then each ui (i=2,...,n) has zeros above the i’th
element, which is 1 (by the second part of 6.77). For example consider the case i
= 3, and suppose the result is true for i = 2,3 and β3 6= 0. Then by re-arranging
6.76 we get

β3u4 =













−cn−1 1 0 .. 0
−cn−2 0 1 .. 0
..

−c1 0 1
−c0 0 0





























0
0
1
..
..
..

















−













0
1
..
..
..













− α3

















0
0
1
..
..
..

















(6.80)

where by 6.78 α3 is the third element of CTu3 − u2. Hence the third element of
u4 is zero, and it is obvious that the first and second elements are also 0. Thus the

6.2. Other Companion Matrices 219

property is true for i = 4, and similarly we may prove it in general by induction.
It means that the matrix

U = (u1, ...,un) (6.81)

is unit lower triangular.

The first condition in 6.77 can always be satisfied, but the second can only be
so if the (i+1)’th element of

vi+1 = CTui − αiui − ui−1 (6.82)

is non-zero (in that case βi 6= 0). If this is true as far as i = n we have

vn+1 = CT un − αnun − un−1 (6.83)

where

uT
n = (0, ..., 0, 1), un−1 = (0, ..., 0, 1, x),

αn = eT
n

































0
..
..
0
1
0

















−

















0
..
..
0
1
x

































= −x

Hence

vn+1 =

















0
..
..
0
1
0

















+ x

















0
..
..
0
0
1

















−

















0
..
..
0
1
x

















= 0 (6.84)

and so βn = 0.
Consequently

CT [u1,u2, ...,un] = [u1,u2, ...,un]









α1 1 0
β1 α2 1
0 β2 α3 1 ..
..









(6.85)

or

CTU = UTT
n (6.86)

220 6. Matrix Methods

where

Ti =













α1 β1 0 0
1 α2 β2 0 .. 0
0 1
..
0 0 1 αi













(6.87)

From 6.86 we have

U−1CTU = TT
n (6.88)

i.e. Tn is similar to C. It can be formed if the second condition in 6.77 is satisfied at
each step, in which case we say that the procedure 6.76-6.77 terminates regularly.
In that case all the roots of p(x) are simple, and the QR method applied to C or Tn

gives a good accuracy for all the roots in O(n3) flops (later we will see variations
which use only O(n2) flops). Note that the formation of Tn takes only O(n2) flops.

If the process 6.76-6.77 does not terminate regularly we say that a breakdown
has occurred. This may happen in two ways:
(1) vi+1 = 0; here we say that the breakdown is complete. Then

p(x) = di(x)pi(x) (6.89)

and di(x) is the characteristic polynomial of Ti. Its (all simple) roots are the dis-
tinct roots of p(x). The same procedure is then applied to pi(x), giving the roots
of degree 2 or more, and so on.

(2) Here vi+1 6= 0 but the (i+1)-th element does = 0. We call this a partial
breakdown. Let vi+1,i+1+k (k ≥ 1) be the first non-zero element in vi+1, and set
βi = this element. Then define

ui+1+k =
1

βi
vi+1 (6.90)

ui+j = CT ui+j+1 (j = k, k − 1, ..., 1) (6.91)

and it follows that

Ui+k+1 = [u1, ...,ui+k+1] (6.92)

is still lower triangular with unit diagonals. Now we can define the following break-
down step for 6.76-6.77:

CTui+1 = ui + αi+1ui+1 +

k
∑

j=1

βi+jui+j+1 + βi+k+1ui+k+2 (6.93)

6.2. Other Companion Matrices 221

where αi+1 is defined so that

eT
i+1ui+k+2 = 0 (6.94)

and the βi+j are defined so that

eT
i+j+1ui+k+2 = 0 (j = 1, ..., k) (6.95)

eT
i+k+2ui+k+2 = 1 (6.96)

Then the usual procedure can be restarted with ui+k+1 and ui+k+2 in place of u0

and u1. If no more breakdowns occur we obtain:

CTU = U(T′
n)T (6.97)

where T′
n =





































α1 β1 0 0
1 α2 0
.. βi−1 0
.. 1 αi 0 0 βi 0
.. 1 αi+1 βi+k βi+k+1 0
.. 1 0 0
..

.. 1 0

.. 1 αi+k+2 βi+k+2

.. 1

.. βn−1

.. 1 αn





































(6.98)

If several partial breakdowns occur, there will be several blocks of the form













αi+1 βi+1 .. βi+k

1 0 .. 0
0 1 .. 0
..
.. .. 0 1













(6.99)

Brugnano next considers the stability of process 6.76 -6.77 and ways of improving
it by balancing the matrices C and Tn. If

D =









1 0
0 cn−1 0 ..
..
.. .. 0 c1









(6.100)

222 6. Matrix Methods

he shows that

Ĉ = DCD−1 =









−bn−1 .. −b1 −b0
bn−1 0 .. 0
..
.. 0 b1 0









(6.101)

(where bi = ci−1

ci
, i = 1, ..., n) has condition number

κ(Ĉ) ≤ 4
maxi|bi|
mini|bi|

(6.102)

whereas

κ(C) ≤ 1 +maxi|ci|(1 + |c0|−1(1 +maxi|ci|)) (6.103)

If the roots are all near ξ, where ξ >> 1, then

κ(C) = 2|ξ|n, κ(Ĉ) = 4n2 (6.104)

The second of the above is much smaller than the first e.g. if ξ = 10 and n=10.
He gets similar results for |ξ| << 1, or if some roots are small and others large.

In the example p(x) = (x+20)7+1 he finds κ(C) ≈ 1.7×109, κ(Ĉ) ≈ 1.4×102.

Sometimes a complete breakdown may be hard to recognize, because of rounding
errors. To ensure proper recognition we may keep track of the

µj = ||uj ||∞ (6.105)

Then if

µ1...µi >> µi+1...µn (6.106)

it means that a complete breakdown has occurred at the i’th step.

Several numerical examples gave very accurate roots and multiplicities in most
cases, indeed much better accuracy was obtained than by the built-in function
roots of MAPLE.

Fiedler (1990) has a different approach: he selects distinct numbers b1, ..., bn
Such that p(bi) 6= 0 for i = 1, ..., n. Set

v(x) =
n
∏

i=1

(x− bi) (6.107)

and define the matrix A = [aij] by

aij = −σdidj if i 6= j (6.108)

6.2. Other Companion Matrices 223

aii = bi − σd2
i if i = j (6.109)

where σ is arbitrary (except non-zero) and

σv′(bi)d
2
i − p(bi) = 0 (6.110)

Then (−1)np(x) is the characteristic polynomial of the symmetric matrix A, and
if λ is an eigenvalue of A, then

[
di

(λ− bi)
] (6.111)

is the corresponding eigenvector. As a special case, if we have only n-1 bi,

v(x) =

n−1
∏

i=1

(x− bi) (6.112)

Bi = diag(bi), g = [gi] where

v′(bi)g
2
i + p(bi) = 0 (i = 1, ..., n− 1) (6.113)

then

A =

[

B g
gT d

]

(where d = −cn−1 −
n−1
∑

i=1

bi) (6.114)

has characteristic polynomial (−1)np(x).

Laszlo (1981) preceded Fiedler with a very similar construction in which p(x)
may be complex and

A =













b1 0 .. 0 x1

0 b2 0 .. x2

..
0 .. 0 bn−1 xn−1

y1 y2 .. yn−1 d













(6.115)

where xiyi takes the place of g2
i in 6.113.

Malek and Vaillancourt (1995A) describe an application of Fiedler’s method in
which the eigenvalues of A in 6.114 are estimated by the QR method, with the
initial bi being eigenvalues of Schmeisser’s matrix. A new version of A is then
constructed using the eigenvalues of the first one for the bi, and new eigenvalues
calculated. The process is repeated to convergence. As an alternative the initial
bi may be taken as uniformly distributed on a large circle. Good results were ob-
tained for tests on a number of polynomials of moderate degree, including some
of fairly high multiplicity. In some cases extra high precision was needed to give

224 6. Matrix Methods

convergence. In the case of multiple roots, the authors successfully apply the Hull-
Mathon procedure described in Chapter 4 section 3.

In a slightly later paper, Malek and Vaillancourt (1995B) point out that the
above method requires multiple precision in the case of multiple roots, and they go
on to describe a better way of dealing with that case. They find the GCD g(x) of
p(x) and p′(x), by methods described above; then they form

q(x) =
p(x)

g(x)
(6.116)

(which has simple roots), and find those roots by iterating Fiedler’s method as
before. They find the multiplicities by a variation on Schroeder’s method, which

they ascribe to Lagouanelle. Let u(x) = p(x)
p′(x) , then the multiplicity is given by

m =
1

u′
(6.117)

This gives numerical difficulties when x→ a root, as p(x) and p′(x) will likely both
→ 0. So they let

v(x) =
p(x)

g(x)
, w(x) =

p′(x)

g(x)
(6.118)

and prove that

m = Limx→ζ
w(x)

v′(x)
(6.119)

It is found that the above methods converge most rapidly to large roots, which leads
to problems with deflation. So the authors give a method for computing small roots
(< .01) by finding large roots of the reciprocal equation

p∗(x) = xnp(
1

x
) (6.120)

In several numerical tests all roots were computed to high accuracy.

In yet a third paper, Malek and Vaillancourt (1995C) compare the use of three
companion matirces-the Frobenius, Schmeisser’s, and Fiedler’s- as starting points
for the QR algorithm. For Fiedler’s matrix, initial values of bi were chosen on a
circle of radius 25 centered at the origin, and the number of iterations was set at
5. The reduced polynomial q(x), defined above, was used as well as the original
p(x). For a number of test problems, the Frobenius matrix based on p(x) gave
only a few (or zero) correct digits; when based on q(x) it was generally good but
sometimes very inaccurate. Schmeisser’s method was nearly always very accurate
whether based on p(x) or q(x); while Fiedler was moderately good if based on p(x),
and nearly perfect when based on q(x). For condition numbers, Fiedler was easily

6.2. Other Companion Matrices 225

the smallest, especially for complex zeros.

Fortune (2002) describes an iterative method which starts by finding the eigen-
values si (i = 1, ..., n) of the Frobenius matrix C (by the QR method as usual).
These values are used to construct the generalized companion matrix

C(p, s) =









s1 0 0
0 s2 0 .. 0
..
0 0 sn









−









l1 l2 .. ln
l1 l2 .. ln
..
l1 l2 .. ln









(6.121)

where the Lagrange coefficients li are given by

li =

∣

∣

∣

∣

∣

p(si)
∏n

j=1, 6=i(si − sj)

∣

∣

∣

∣

∣

(6.122)

(he proves that 6.121 is in fact a companion matrix). The eigenvalues of C(p,s)
are computed and used to construct a new C(p,s) –the process is repeated till
convergence. Fortune describes the implementation (including convergence crite-
ria) in great detail- see the cited paper. In numerical tests, including high degree
polynomials, Fortune’s program eigensolve was ususally much faster than Bini
and Fiorentino’s mpsolve based on Aberth’s method (see Chapter 4 Section 13).
Exceptions include sparse polynomials such as xn − 1 for large n.

Many authors who solve the polynomial root problem by finding the eigenvalues
of some companion matrix perform the latter task by using the QR method. This
was originally invented by Francis (1961), and has been much improved since then.
It is described by many authors, such as Ralston and Rabinowitz (1978). We will
give a brief description, based on the last-mentioned book.

It is found beneficial to first reduce the matrix by a similarity transform to
Hessenberg or tridiagonal form. That is, we find an orthogonal matrix P such that

P∗AP = H =

















a11 a12 a13 a1n

a21 a22 a23 a2n

0 a32 a33 a3n

0 0 a43 a44 .. a4n

..
0 0 .. 0 an,n−1 ann

















(6.123)

H is known as a Hessenberg matrix. If A is symmetric, we may use Givens’ or
Householder’s method (see Ralston and Rabinowitz), and H is tridiagonal. If A
is non-symmetric, we may also use those methods or Gaussian elimination. The
Frobenius companion matrix is automatically in Hessenberg form, so none of these
methods is necessary. Likewise, Schmeisser’s method gives a symmetric tridiagonal
matrix, while Brugnano and Trigiante derive a general non-symmetric tridiagonal

226 6. Matrix Methods

matrix. The QR method is used with all of these matrices.

The QR method consists in factorizing

Ai − piI = QiRi (6.124)

(where Qi is orthogonal and Ri is right-triangular) and then reversing the order of
the factors to give:

Ai+1 = RiQi + piI (6.125)

The shifts pi may be chosen in various ways so as to accelerate convergence. It can
be proved that nearly always:

Ai+1 →





















λ1 x x x
0 λ2 x x
0 0 x
0 0 .. 0 λm x .. x
0 0 0 B1 .. x
.. x
0 0 Bl





















(6.126)

where λj are the real eigenvalues and the Bj are 2 × 2 real submatrices whose
complex conjugate eigenvalues are eigenvalues of A1 = A. The work involved in
a single transformation of type 6.124-6.125 is O(n) for tridiagonal matrices and
O(n2) for Hessenberg ones. As several iterations are required per eigenvalue, the
total work is O(n2) or O(n3) respectively. Unfortunately, as we shall see shortly,
the QR iterations for a non-symmetric tridiagonal matrix eventually cause the pre-
viously zero elements in the upper right triangle to become non-zero, leading to a
O(n3) algorithm On the other hand a symmetric tridiagonal matrix remains in
that form under QR, so in that case the algorithm is O(n2).

The factorization in 6.124 is accomplished by premultiplying Ai−piI by a series
of rotation matrices (also called Givens matrices)

ST
j,j+1 =





























1 0 0
0 1 0 0
..
.. 0 1 0 0
0 .. 0 cj −sj 0 .. 0
0 .. 0 sj cj 0 .. 0
0 0 1 .. 0
..
0 0 1





























(6.127)

where cj = cos(θj), sj = sin(θj), and θj is chosen so that after the multiplication
the new (j+1,j) element is 0. This requires

sjajj + cjaj+1,j = 0 (6.128)

6.2. Other Companion Matrices 227

i.e. sj = −aj+1,jαj , cj = ajjαj (6.129)

where

αj =
1

√

a2
j+1,j + a2

jj

(6.130)

The akj above have been modified by subtraction of pi from the diagonal terms, and
by previous multiplications by ST

12, S
T
23 etc. The above is repeated for j=1,2,...,n-1,

finally giving the desired right-triangular matrix Ri. Thus if we set

QT
i = ST

n−1,n...S
T
23S

T
12 (6.131)

we have

QT
i (Ai − piI) = Ri (6.132)

or Ai − piI = QiRi (6.133)

Next the reverse product RiQi is formed by postmultiplying Ri by
S12, S23, ..., Sn−1,n in turn (and piI added) to give Ai+1.

Let us consider for example the case of a 3 × 3 tridiagonal matrix




a11 a12 0
a21 a22 a23

0 a32 a33



 (6.134)

It may or may not be symmetric. We will assume that the shift has already been
applied to the diagonal elements. We will use:

S12 =





c1 s1 0
−s1 c1 0
0 0 1



 , ST
12 =





c1 −s1 0
s1 c1 0
0 0 1



 (6.135)

so that

ST
12A =





c1 −s1 0
s1 c1 0
0 0 1









a11 a12 0
a21 a22 a23

0 a32 a33



 (6.136)

=





c1a11 − s1a21 c1a12 − s1a22 −s1a23

s1a11 + c1a21 s1a12 + c1a22 c1a23

0 a32 a33



 (6.137)

where

s1a11 + c1a21 = 0, i.e. s1 = −a21α1, c1 = a11α1 (6.138)

228 6. Matrix Methods

α1 =
1

√

a2
21 + a2

11

(6.139)

and element in (1,1) position =

sq1 =
√

a2
21 + a2

11 (6.140)

Premultiplying the above by ST
23 gives





1 0 0
0 c2 −s2
0 s2 c2









sq1 c1a12 − s1a22 −s1a23

0 B c1a23

0 a32 a33



 (6.141)

where

B = (−a21a12 + a11a22)α1 (6.142)

The above matrix product =




sq1 c1a12 − s1a22 −s1a23

0 c2B − s2a32 c2c1a23 − s2a33

0 s2B + c2a32 s2c1a23 + c2a33



 (6.143)

where

s2B + c2a32 = 0 (6.144)

i.e.

s2 = −a32α2, c2 = Bα2 (6.145)

where

α2 =
1

√

B2 + a2
32

(6.146)

and the (2,2) element =

sq2 =
√

B2 + a2
32 (6.147)

Thus the above matrix, which is R1, may be written




sq1 c1a12 − s1a22 −s1a23

0 sq2 c2c1a23 − s2a33

0 0 s2c1a23 + c2a33



 (6.148)

Postmultiplying the above by S12 =





c1 s1 0
−s1 c1 0
0 0 1



 gives

[

c1sq1 − s1(c1a12 − s1a22) s1sq1 + c1(c1a12 − s1a22) −s1a23

−s1sq2 c1sq2 c2c1a23 − s2a33

0 0 s2c1a23 + c2a33

]

(6.149)

6.2. Other Companion Matrices 229

Postmultiplying by S23 =





1 0 0
0 c2 s2
0 −s2 c2



 gives R1S12S23 = R1Q1 =

[

c1sq1 − s1(c1a12 − s1a22) c2[s1sq1 + c1(c1a12 − s1a22)] + s1s2a23 E

x x x

0 x x

]

(6.150)

where x represents an unspecified non-zero element whose exact value is not im-
portant in the present context (which is to determine under what conditions E is
0). In fact

E = s2[s1sq1 + c21a12 − c1s1a22] − c2s1a23 (6.151)

= (−a32α2)[−a21α1

√

a2
21 + a2

11 + a2
11a12α

2
1+

a11a21a22α
2
1] −Bα2(−a21α1)a23 =

−a32α2[−a21 +
a2
11a12

a2
21 + a2

11

+
a11a21a22

a2
21 + a2

11

]+

α1(a11a22 − a21a12)a21a23α2α1

= − α2

a2
21 + a2

11

[a32{a2
11(a12 − a21) + a21(a11a22 − a2

21)}

−a23a21(a11a22 − a21a12)] (6.152)

= 0 if a12 = a21 and a23 = a32 (i.e. if A is symmetric). In general, if A
is non-symmetric, E will be non-zero, i.e. a new non-zero has been introduced in
the upper-right part of A2 . Next we will consider a 4 × 4 matrix, with a view
to showing how the right upper triangle fills in with non-zeros, even for a matrix
which is tridiagonal initially. We will indicate by a “x” those elements which are
non-zero after each multiplication by a rotation matrix, and by (0) those elements
which are set to 0 by the most recent multiplication. We have:

ST
12A =








c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

















x x 0 0
x x x 0
0 x x x
0 0 x x









=









x x x 0
(0) x x 0
0 x x x
0 0 x x









(6.153)

Now premultiplying by ST
23 gives:









1 0 0 0
0 c2 −s2 0
0 s2 c2 0
0 0 0 1

















x x x 0
0 x x x
0 x x x
0 0 x x









=









x x x 0
0 x x x
0 (0) x x
0 0 x x









(6.154)

230 6. Matrix Methods

Similarly premultiplying by ST
34 zeros out the (4,3) element, and then postmulti-

plying by S12 gives:








x x x 0
0 x x x
0 0 x x
0 0 (0) x

















c1 s1 0 0
−s1 c1 0 0
0 0 1 0
0 0 0 1









=









x x x 0
x x x x
0 0 x x
0 0 0 x









(6.155)

Next postmultiplying by S23 gives:








x x x 0
x x x x
0 0 x x
0 0 0 x

















1 0 0 0
0 c2 s2 0
0 −s2 c2 0
0 0 0 1









=









x x x 0
x x x x
0 x x x
0 0 0 x









(6.156)

and then postmultiplying by S34 we have:








x x x 0
x x x x
0 x x x
0 0 0 x

















1 0 0 0
0 1 0 0
0 0 c3 s3
0 0 −s3 c3









=









x x x 0
x x x x
0 x x x
0 0 x x









(6.157)

The above matrix is what we have called A2. The reader may like to verify that
another QR iteration to give A3 will fill in the (1,4) element, and for the general
case of order n, n-1 iterations will fill in the whole of the upper right triangle, so that
later iterations will take O(n2) flops, and the whole process will thus take O(n3)
flops. On the other hand if A1 is symmetric, then A2 = R1Q1 = QT

1 A1Q1,
which is also symmetric, and so on for all Ai. But since the lower triangle below
the first sub-diagonal does not fill in, neither does the upper triangle.

Goedecker (1994) has compared a companion matrix eigenvalue subroutine (us-
ing the QR method) with two well-known “conventional” methods (i.e. not using
matrices). They are the IMSL rootfinder ZPORC (based on the Jenkins-Traub
method), and the NAG rootfinder C02AGF (based on Laguerre’s method). He ran
tests involving several types of polynomials on two serial machines and a vector
machine. He reached the following conclusions regarding several important aspects
of root-finding:
1) Reliability. For high degree polynomials overflow occurs frequently in the con-
ventional rootfinders, but never in the matrix-based routine.
2) Accuracy. For low order, all three routines gave high accuracy. For higher-
order polynomials with simple roots, the conventional methods rapidly lost accu-
racy, whereas QR still gave good accuracy. For multiple roots the QR method gave
the best performance.
3) Speed. For low degree, the QR method (although of order n3 versus order n2 for
the others) was fastest. Even for high degree, the QR method is not much slower
than the others, and in fact is faster on the vector machine for “reasonable” values
of n.

6.3. Methods with O(N2) Operations 231

6.3 Methods with O(N2) Operations

Several authors in the late 20th or early 21st century have described fast methods
(i.e. faster than those of sections 1-2) using O(n2) operations to find all the roots.
We will start with Uhlig (1999). He applies the Euclidean algorithm, in a similar
manner to Brugnano and Trigiante, to find a (generally unsymmetric) tridiagonal
matrix whose characteristic polynomial is p(x). He finds that the QR method
behaves badly for unsymmetric tridiagonal matrices, so he performs a similarity
transformation which converts the tridiagonal generalized companion matrix to a
complex symmetric one, as follows: Let

T̃ = DTD−1 (6.158)

where

T =













a1 b1 0 .. 0
c1 a2 b2 0 ..
..
.. 0 cn−2 an−1 bn−1

0 .. 0 cn−1 an













(6.159)

and

D =









d1 0 .. 0
0 d2 0 ..
..
0 .. 0 dn









(6.160)

Then

T̃ =









d1a1d
−1
1 d1b1d

−1
2 0 ..

d2c1d
−1
1 d2a2d

−1
2

..
0 dnand

−1
n









(6.161)

We require this to be symmetric, i.e.

d2c1
d1

=
d1b1
d2

, i.e.
d2
2

d2
1

=
b1
c1

(6.162)

So d1 is arbitrary and

d2 = d1

√

b1
c1

(6.163)

and in general

di+1 = di

√

bi
ci

(i = 1, ..., n− 1) (6.164)

232 6. Matrix Methods

We see that if bici < 0 then di will be complex. 6.161 gives

T̃ =













a1

√
b1c1 0√

b1c1 a2

√
b2c2 0 ..

..

.. an−1

√

bn−1cn−1

0 .. 0
√

bn−1cn−1 an













=













a1 β1 0
β1 a1 β2 0 ..
..
0 .. βn−2 an−1 βn−1

0 .. 0 βn−1 an













(6.165)

with βi =
√
bici As pointed out in section 2, eigenvalues of T̃ can be obtained in

O(n2) operations.

The tridiagonalization process yields a block diagonal matrix

T =









T1 0
0 T2 0 ..
..
0 .. 0 Tk









(6.166)

If k > 1 we can compute several approximations for any multiple root from several
blocks, and averaging them gives better accuracy due to smoothing of random er-
rors. Uhlig explains that his version of Euclid’s algorithm for tridiagonal matrices
takes O(n2) operations.

The polynomial p(x) is scaled to give

p̃(x) = xn +
cn−1

c
xn−1 +

cn−2

c2
xn−2 + ...+

c0
cn

(6.167)

which has roots ζi

c . Uhlig computes the optimal power of 2 for c that nearly equal-
izes the coefficients of p̃(x), and re-scales the computed roots at the end. He finds
better precision and multiplicity estimates with this technique.

We will use standard Givens rotations (possibly complex), but observe that

cos(θk) =
ak

√

a2
k + β2

k

(6.168)

and

sin(θk) =
βk

√

a2
k + β2

k

(6.169)

6.3. Methods with O(N2) Operations 233

can be very large if

ak ≈ iβk (6.170)

This effect can be monitored and bounded, as will be explained later. Uhlig treats
the QR iteration a little differently from our treatment in section 2; he writes:

T̂ = (Gm−1...G1)T̃(G−1
1 ...G−1

m−1) (6.171)

where the Gj are “Givens rotations”, the same as Sj,j+1 of 6.127 but with a different

notation (in line with the different sources) and T̃ is given by 6.165. This may also
be written

Gm−1(...(G2(G1T̃G−1
1)G−1

2)...)G−1
m−1 (6.172)

Thus he forms in turn (G1T̃G−1
1), G2(G1T̃G−1

1)G−1
2 , etc. So we have at the first

step (with

T0 = T̃, −s1a1 + c1β1 = 0, s21 + c21 = 1) (6.173)

G1T0G
−1
1 =

















c1 s1 0
−s1 c1 0
.. 0 1 0
.. .. 0 1 0 ..
..
.. 0 1





























a1 β1 0
β1 a2 β2 0 ..
0 β2 a3
..
..





























c1 −s1 0
s1 c1 0
.. 0 1 0
.. .. 0 1 0 ..
..
.. 0 1

















(6.174)

=













â1 −s21β1 + s1c1a2 s1β2 0 ..
−s21β1 + s1c1a2 −c1s1β1 + c21a2 c1β2

s1β2 c1β2 a3
0
..













(6.175)

=













â1 s1P2 s1β2 0 ..
s1P2 c1P2(= γ2) c1β2 0 ..
s1β2 c1β2 a3
..
..













= T1 (say) (6.176)

where

P2 = −s1β1 + c1a2, γ2 = c1P2, â1 = a1 + a2 − γ2 (6.177)

234 6. Matrix Methods

(the last due to preservation of trace under similarity). Now at the next step when
we premultiply by G2 we need to eliminate the (3,2) element of T1, so we must
have

−s2(c1P2) + c2(c1β2) = 0 (6.178)

i.e. s2

c2
= c1β2

c1P2
and hence

−s2(s1P2) + c2(s1β2) = 0 (6.179)

i.e. the (3,1) element is also zeroed out. Postmultiplying by G−1
2 makes the (3,2)

element non-zero again, but the (3,1) element (and by symmetry the (1,3) element)
remains 0. In general we apply the transformation

Ti = GiTi−1G
−1
i (6.180)

where

Ti−1 =













..

.. âi−1 si−1Pi si−1βi

.. si−1Pi γi(= ci−1Pi) ci−1βi

.. si−1βi ci−1βi ai+1 βi+1 ..

.. 0 .. βi+1 ai+2 ..













(6.181)

so as to zero out the (i+1,i) element in GiTi−1, i.e.

−si(ci−1Pi) + ci(ci−1βi) = 0, i.e.
si

ci
=

βi

Pi
(6.182)

si =
βi

√

P 2
i + β2

i

, ci =
Pi

√

P 2
i + β2

i

(6.183)

Thus we obtain

Ti =

















..

.. âi−1 β̂i−1 0

.. β̂i−1 âi siPi+1 siβi+1 ..

.. 0 siPi+1 ciPi+1(= γi+1) ciβi+1 ..

.. 0 siβi+1 ciβi+1 ai+2 ..

..

















(6.184)

with

Pi+1 = −sici−1βi + ciai+1, β̂i−1 = si−1

√

P 2
i + β2

i (6.185)

γi+1 = ciPi+1 and âi = γi + ai+1 − γi+1 (6.186)

6.3. Methods with O(N2) Operations 235

Now we are really only interested in changes affecting the diagonal entries âi and the
products Bi = β̂2

i of off-diagonal elements, so we may avoid the time-consuming
operations of taking square-roots by setting

R = P 2
i + β2

i , c
2
i =

P 2
i

R
, s2i =

β2
i

R
(6.187)

Bi−1(= β̂2
i−1) = s2i−1R, γi+1 = c2i ai+1 − s2i γi (6.188)

P 2
i+1 =

γ2
i+1

c2i
(if ci 6= 0), = c2i−1β

2
i (if ci = 0) (6.189)

âi = γi + ai+1 − γi+1 (6.190)

6.188 can be derived as follows: γi+1 = ciPi+1 = ci(−sici−1βi + ciai+1) (by
6.185)
= c2i ai+1 − sicici−1βi = c2i ai+1 − sici−1(siPi) (by 6.182)
= c2i ai+1 − s2i γi (by definition of γi).
The equations 6.187-6.190 may be applied recursively for i=2,...,m-1 to give a com-
plete (modified) QR transformation in about 12(m-1) adds, multiplies and divides
(and no square roots) for an m × m matrix. This is about half the count for a
standard QR application using complex Givens transformations. Since ≈ 3m QR
transformations are required to get all the eigenvalues, we have O(m2) operations
for that task.

We have previously referred to the possibility of large complex Givens matrix
coefficients if 6.170 applies. Uhlig (1997) in his section 7 shows that if |cos(θk)| and
|sin(θk)| are bounded by 100, the coefficients will return to “moderate” levels at the
next iteration, and eigenvalues are preserved to many correct digits. If |cos(θk)|
and |sin(θk)| become > 100, Uhlig applies “exceptional shifts” which avoid the
problem. He does not explain in detail how this is done.

In numerical tests the program pzero constructed by Uhlig usually performed
well, with comparable or better accuracy than other programs such as btr of Brug-
nano’s. More importantly, it ran about n

2 times faster than the QR method applied
to the companion matrix for p(x), thus verifying that it is of order O(n2).

Bini, Daddi, and Gemignani (2004) apply the QR method to a modified com-
panion matrix in O(n2) operations. They define the companion matrix in the form:

F =













0 0 f1
1 0 .. 0 f2
..
.. 0 fn−1

0 .. 0 1 fn













(6.191)

236 6. Matrix Methods

where fi = −ci−1.
They apply the shifted QR iteration

Ak − αkI = QkRk (6.192)

Ak+1 = RkQk + αkI = QH
k AkQk (6.193)

(with A0 = F and MH = conjugate transpose to matrix M) which is equivalent
to

Ak = PH
k FPk (6.194)

(with Pk = Q0...Qk−1) and all the A, like F, are in upper Hessenberg form. We
can show that

F−1 =















− f2

f1
1 0 .. 0

− f3

f1
0 1

..

− fn

f1
0 .. 0 1

1
f1

0 .. 0 0















(6.195)

(for multiplying by F gives I) and we may also verify that

F = F−H + UVH (6.196)

where

U =









1 f1
0 f2
.. ..
0 fn









, V =















f2

f1
0

f3

f1
0

.. ..
fn

f1
0

− 1
f1

1















(6.197)

Combining 6.196 and 6.194 gives

Ak = A−H
k + UkV

H
k (k = 0, 1, ...) (6.198)

where

Uk = QH
k−1Uk−1, Vk = QH

k−1Vk−1 (6.199)

(Bini et al have QH
k in the above, but we thaink that is a misprint).

The authors show that the entries in the upper right part of A−H
k are given by

(A−H
k)i,j =

1

y
(k)
n

x
(k)
i y

(k)
j (i ≤ j) (6.200)

where

x(k) = (x
(k)
i) = A−H

k en (6.201)

6.3. Methods with O(N2) Operations 237

is the last column of A−H
k and

y(k)T = (y
(k)
i) = eT

1 A−H
k (6.202)

is the first row of A−H
k . It follows that Ak = (a

(k)
ij) is given by

a
(k)
ij =

{

0 for i > j + 1
1

y
(k)
n

x
(k)
i y

(k)
j + u

(k)
i1 v

(k)
j1 + u

(k)
i2 v

(k)
j2 for i ≤ j

}

(6.203)

In fact the Ak can be determined by 7n-1 parameters, namely the subdiagonals

(b
(k)
1 , ..., b

(k)
n−1), x(k), y(k), columns u

(k)
1 , u

(k)
2 of U, and columns v

(k)
1 and v

(k)
2 of

V. Let us denote in particular a(k) = vector of diagonals of Ak and d(k), g(k)

the diagonal and superdiagonal of Rk. The reduction to upper triangular form of
Ak − αkI can be obtained by a sequence of Givens rotations

G
(k)
i =









Ii−1 0 0 0

0 c
(k)
i s

(k)
i 0

0 −s(k)
i c

(k)
i 0

0 0 0 In−i−1









(6.204)

where c
(k)
i is real, |c(k)

i |2 + |s(k)
i |2 = 1 and Ii is the i× i identity matrix. G

(k)
1 is

chosen so that the (2,1) element of G
(k)
1 (Ak −αkI) is 0. Thus only the elements in

the first two rows of G
(k)
1 (Ak − αkI) are changed from Ak − αkI. And, for j > 2

the new elements are given by

1

y
(k)
n

x̂
(k)
i y

(k)
j + û

(k)
i1 vj1 + û

(k)
i2 v

(k)
j2 (i = 1, 2; j > i) (6.205)

where
[

x̂
(k)
1

x̂
(k)
2

]

= G
(k)
1

[

x
(k)
1

x
(k)
2

]

with similar relations for û
(k)
il (i, l = 1, 2). Moreover the 2× 2 leading submatrix of

G
(k)
1 (Ak − αkI) is given by

[

d
(k)
1 g

(k)
1

0 d
(k)
2

]

=

G
(k)
1

[

a
(k)
1 − αk

1

y
(k)
n

x̂
(k)
1 y

(k)
2 + û

(k)
11 v

(k)
21 + û

(k)
12 v

(k)
22

b
(k)
1 a

(k)
2 − αk

]

(6.206)

238 6. Matrix Methods

The values of d
(k)
1 , x̂

(k)
1 , û

(k)
11 , and û

(k)
12 are not modified by later Givens rotations,

while x̂
(k)
2 , û

(k)
21 , û

(k)
22 and d

(k)
2 are modified only at the second step. At the i’th

step, G
(k)
i is chosen so that the (i+1,i) element of G

(k)
i−1...G

(k)
1 (Ak − αk) becomes

zero. At the end, when the (n,n-1) element has been zeroed, we have Rk as follows:

r
(k)
ij =



















d
(k)
i for i = j

g
(k)
i for i = j − 1

1

y
(k)
n

x̂
(k)
i y

(k)
j + û

(k)
i1 v

(k)
j1 + û

(k)
i2 v

(k)
j2 for i < j − 1

0 for i > j



















(6.207)

Thus Rk can be stored with 8n-1 parameters. The authors combine the above into
their
“ALGORITHM 1”: Input Uk, Vk, x(k), y(k), b(k) and αk

Output s
(k)
i , c

(k)
i (i = 1, ..., n− 1), d(k), x̂(k), Ûk

Computation 1. Let

a(k) = (
1

y
(k)
n

x
(k)
i y

(k)
i + u

(k)
i1 v

(k)
i1 + u

(k)
i2 v

(k)
i2)i=1,...,n (6.208)

b̂
(k)

= b(k); Ûk = Uk (6.209)

x̂(k) = x(k)

2. Set a(k) = a(k) − αk(1, 1, ..., 1)
3. For i = 1,...,n-1 do:

(a) (Compute Gi)

(i) γi = 1
√

|a(k)
i

|2+|b(k)
i

|2
, νi =

a
(k)
i

|a(k)
i

|
, (νi = 1 ifa

(k)
i = 0)

θi = γi

νi

(ii)c
(k)
i = a

(k)
i θi, s

(k)
i = b

(k)
i θi

(b) (Update Rk)

(i)d
(k)
i = γi

νi
, t = 1

y
(k)
n

x̂
(k)
i y

(k)
i+1 + û

(k)
i1 v

(k)
i+1,1 + û

(k)
i2 vi+1,2

(ii)g
(k)
i = c

(k)
i t+ s

(k)
i a

(k)
i+1

(iii)d
(k)
i+1 = −s(k)

i t+ c
(k)
i a

(k)
i+1

(c) (Update Ûk)

(i)t = c
(k)
i û

(k)
i1 + s

(k)
i û

(k)
i+1,1, û

(k)
i+1,1 = −s(k)

i û
(k)
i1 + c

(k)
i û

(k)
i+1,1, û

(k)
i1 = t,

(ii)t = c
(k)
i û

(k)
i2 + s

(k)
i û

(k)
i+1,2, û

(k)
i+1,2 = −s(k)

i û
(k)
i2 + c

(k)
i û

(k)
i+1,2, û

(k)
i2 = t.

(d) (Update x̂(k))

(i)t = c
(k)
i x̂

(k)
i + s

(k)
i x̂

(k)
i+1,

(ii)x̂
(k)
i+1 = −s(k)

i x̂
(k)
i + c

(k)
i x̂

(k)
i+1,

(iii)x̂
(k)
i = t.

6.3. Methods with O(N2) Operations 239

4. End do

Now since

G
(k)
n−1...G

(k)
2 G

(k)
1 (Ak − αkI) = Rk (6.210)

we have that the Qk in Ak − αkI = QkRk is given by

Qk = (G
(k)
n−1...G

(k)
1)H = G

(k)H
1 ...G

(k)H
n−1 (6.211)

Also , it is proved (in effect) by Gill et al (1974) that if c
(k)
i (real) and s

(k)
i (perhaps

complex) are the Givens rotation parameters, and

D(k) =











1 0 0

0 −s(k)
1 0 .. 0

0 0 s
(k)
1 s

(k)
2 0 ..

0 0 (−1)n−1s
(k)
1 s

(k)
2 ...s

(k)
n−1











(6.212)

p(k) = D(k)−1[1, c
(k)
1 , c

(k)
2 , ..., c

(k)
n−1]

T (6.213)

= [1,− c
(k)
1

s
(k)
1

,
c
(k)
2

s
(k)
1 s

(k)
2

, ..., (−1)n−1 c
(k)
n−1

s
(k)
1 s

(k)
2 ...s

(k)
n−1

] (6.214)

q(k) = D(k)[c
(k)
1 , c

(k)
2 , ..., c

(k)
n−1, 1] (6.215)

= [c
(k)
1 ,−s(k)

1 c
(k)
2 , s

(k)
1 s

(k)
2 c

(k)
3 , ..., (−1)n−1s

(k)
1 ...s

(k)
n−1] (6.216)

then

Qk =



















q
(k)
1 p

(k)
1 q

(k)
2 p

(k)
1 ... q

(k)
n p

(k)
1

s
(k)
1 q

(k)
2 p

(k)
2 ... q

(k)
n p

(k)
2

0 s
(k)
2

..

.. .. q
(k)
n−1p

(k)
n−1 q

(k)
n p

(k)
n−1

.. .. s
(k)
n−1 q

(k)
n p

(k)
n



















(6.217)

i.e.

q
(k)
ij =











0 if i > j + 1

s
(k)
i if i = j + 1

(−1)i+jc
(k)
i−1c

(k)
j

∏j−1
l=i s

(k)
l if i ≤ j











(6.218)

with c
(k)
0 = c

(k)
n = 1

With the above algorithm and the reverse RQ step (see later) we can design an
algorithm for performing a single QR-step in O(n) operations. The factorization

240 6. Matrix Methods

into QkRk can be done in about 35n operations. The reverse RkQk + αkI step
proceeds as follows:
Given s(k), c(k) defining the Givens rotations and hence
Qk; x(k) and y(k); Uk, Vk; d(k), g(k), x̂(k) and Ûk defining (together with y(k)

and Vk) Rk via 6.207; αk.
Compute (i) a(k+1), the diagonal elements of Ak+1.
We have Ak+1 = RkQk + αkI where Rk is right triangular and Qk Hessenberg
so that

a
(k+1)
ii = r

(k)
ii q

(k)
ii + g

(k)
i q

(k)
i+1,i + αk =

r
(k)
ii c

(k)
i−1c

(k)
i + g

(k)
i s

(k)
i + αk (i = 1, ..., n) (6.219)

(N.B. rii = di).

We also compute b(k+1) where

b
(k+1)
i = d

(k)
i+1s

(k)
i (i = 1, ..., n) (6.220)

(ii) Compute Uk+1 and Vk+1 (such that 6.198 holds for Ak+1) by applying n-1
Givens rotations to the two columns of Uk and Vk using 24(n-1) operations.
(iii) x(k+1) and y(k+1): the authors suggest 5 different algorithms for computing
these quantities. We will describe their third and fifth methods. Method 3 uses

Ak+1 = RkAkR
−1
k (6.221)

to deduce that

x(k+1) = A−H
k+1en = R−H

k A−H
k RH

k en = r(k)
nnR−H

k x(k) (6.222)

and

y(k+1) = eT
1 A−H

k+1 = eT
1 R−H

k A−H
k RH

k =
1

r̂
(k)
11

y(k)T RH
k (6.223)

6.222 is equivalent to the triangular system of special form

RH
k x(k+1) = r̂nnx(k) (6.224)

which can be solved in O(n) operations by a method similar to Algorithm 2 below.
The vector-matrix multiplication in 6.223 can also be performed in O(n) operations,
according to Bini et al although they do not give details of how to do this. Their
“method 5” applies if αk = 0, in which case Ak+1 = RkQk so that A−1

k+1 =

Q−1
k R−1

k and A−H
k+1 = R−H

k Q−H
k . Then

x(k+1) = R−H
k Qken (6.225)

y(k+1) =
1

r
(k)
11

QH
k e1 (6.226)

6.3. Methods with O(N2) Operations 241

To avoid stability problems in the calculation of x(k+1) and y(k+1) Bini et al rec-
ommend writing them as

x(k+1) = (−1)n−1(s
(k)
1 ...s

(k)
n−1)D

(k)−1z(k+1) (6.227)

y(k+1) = D
(k)

w(k+1) (6.228)

where

w(k+1) =
1

r
(k)
11

(c
(k)
1 , ..., c

(k)
n−1, 1)T (6.229)

z(k+1) = D(k)R−H
k D(k)−1(1, c

(k)
1 , ..., c

(k)
n−1)

T (6.230)

These can be derived as follows: by 6.226 y(k+1) = 1

r
(k)
11

QH
k e1

= (by 6.217) 1

r
(k)
11

q(k)p
(k)
1 = (by 6.214 and 6.215)

1

r
(k)
11

D(c
(k)
1 , ..., c

(k)
n−1, 1)T = Dw(k+1).

The derivation of 6.227 is similar.
6.229 can be implemented easily in n divisions; for 6.230 we will use the method of
Algorithm 2 below.

In the QR factorization step of Algorithm 1 we will replace x(k), x̂(k), and y(k)

by z(k), ẑ(k) and w(k) respectively. The relations between these are given by 6.227
and 6.228 with k+1 replaced by k (and x by x̂ etc.). This modifies Algorithm 1 in
stage 1, 3(b) and 3(d) which become:

1. a(k) = (1

w
(k)
n

z
(k)
i w

(k)
i + u

(k)
i1 v

(k)
i1 + u

(k)
i2 v

(k)
i2)i=1..n, b̂

(k)
= b(k), Ûk =

Uk, ẑ(k) = z(k)

3(b) (Update Rk)

(i)d
(k)
i = γ

(k)
i , t = 1

w
(k)
n

ẑ
(k)
i w

(k)
i+1s

(k−1)
i + û

(k)
i1 v

(k)
i+1,1 + û

(k)
i2 v

(k)
i+1,2

(ii)g
(k)
i = c

(k)
i t+ s

(k)
i a

(k)
i+1,

(iii)d
(k)
i+1 = −s(k)

i t+ c
(k)
i a

(k)
i+1.

(d) (Update ẑ(k))

(i)t = c
(k)
i ẑ

(k)
i − s

(k)

i

s
(k)
i−1

ẑ
(k)
i+1,

(ii)ẑ
(k)
i+1 = s

(k)
i s

(k−1)
i−1 ẑ

(k)
i + c

(k)
i ẑ

(k)
i+1 ,

(iii)ẑ
(k)
i = t.

The cost of this is still O(n). Possible overflow in
s
(k)
i

s
(k)

i−1

does not occur, since if

s
(k)
i−1 → 0 then convergence has taken place and we deflate and continue with a

smaller matrix.

242 6. Matrix Methods

For the RQ step, we have to compute z(k+1) from 6.230 by solving

D(k)RH
k D(k)−1z(k+1) = b = (1, c

(k)
1 , ..., c

(k)
n−1) (6.231)

The coefficient matrix above, obtained from 6.207, is given by






























d
(k)
i if i = j

−s(k)
i g

(k)
i if i = j + 1

(s
(k)
j ...s

(k)
i−1)(

1

w
(k)
n

w
(k)
i ẑ

(k)

j (s
(k)−1
j ...s

(k)−1
i−1)+

(−1)i+j(v
(k)
i1 û

(k)

j1 + v
(k)
i2 û

(k)

j2)) if i > j + 1
0 if i < j































(6.232)

To solve 6.231 we use Algorithm 2 as follows:

Input: d(k), g(k), ẑ(k), w(k), Û = (û
(k)
ij), V = (v

(k)
ij), the Givens parameters

s
(k−1)
i and c

(k−1)
i ; b (r.h.s. of 6.231) and s

(k)
i (i = 1, ..., n− 1).

Output: Solution z(k+1) of 6.231
Computation

Set z
(k+1)
1 = b1

d
(k)

1

, z
(k+1)
2 =

(b2+g
(k)
1 s

(k)
1 z

(k+1)
1)

d
(k)

2

, γ2,1 = γ2,2 = φ2 = 0

For i=3,...,n do:

1. γij = s
(k)
i−1(−γi−1,j + û

(k)

i−2,js
(k)
i−2z

(k+1)
i−2), j = 1, 2

2. φi = s
(k)
i−1s

(k−1)
i−1 (φi−1 − ẑ

(k)

i−2s
(k−1)
i−2 s

(k)
i−2z

(k+1)
i−2),

3. z
(k+1)
i =

(bi+g
(k)

i−1
s
(k)

i−1
z
(k+1)

i−1
−v

(k)

i1
γi1−v

(k)

i2
γi2+ŵ

(k)

i

φi

w
(k)
n

)

d
(k)

i

End do.

Numerical experiments were performed with polynomials such as
(1) Wilkinson’s i.e. p(x) =

∏n
i=1(x− i) for n = 10,20

(2) p(x) = (xn−m + 1)
∏m+1

i=2 (x− 1
i) for m=20, n ≤ 106.

For (1) with n=20, the algorithm failed when α0 = 0, but it gave results correct
to at least 2 decimal places when α0 = 22. For (2) the cost grows linearly with n,
while the error is almost independent of n. In some cases breakdowns due to un-
derflow/overflow have been encountered. The authors conclude that the algorithm
is not robust and needs more investigation.

Bini, Gemignani and Pan (2004a) describe an inverse power method for a gen-
eralized companion matrix. Suppose we have n distinct values s1, ..., sn; then we
define a rank-one matrix Ed with diagonal entries

di =
p(si)

qi(si)
(6.233)

where

qi(x) =
∏

j 6=i

(x− sj) (6.234)

6.3. Methods with O(N2) Operations 243

and an associated companion matrix

C = Ds − Ed (6.235)

where Ds =





s1 0 ..
..
.. 0 sn



 (i.e. it is a diagonal matrix with (i,i) element si) and

Ed is somewhat arbitrary, but Elsner (1973) proposes

Ed =









d1 d2 .. dn

d1 d2 .. dn

..
d1 d2 .. dn









(6.236)

The authors quote Carstensen (1991) as proving that

det(xI − C) = p(x) (6.237)

i.e. C is indeed a companion matrix.

Now the inverse power method for a general matrix C is defined as follows:
let z(0) be a sufficiently close approximation to an eigenvalue zj of C and let

v =
n
∑

k=1

akvk (6.238)

with ||v||2 = 1, where vk (k = 1, ..., n) are the eigenvectors of C and ak 6= 0. Let

x(0) = v, (6.239)

y(i) = (C− z(i−1)I)−1x(i−1) (6.240)

x(i) =
y(i)

||y(i)|| 2
(6.241)

z(i) = x(i)T Cx(i) (6.242)

All the above 3 equations are repeated for i = 1,2,...
Then the pairs (y(i), z(i)) rapidly converge to an eigenvector/ eigenvalue pair (vj , zj)
(under certain conditions). The authors in their section 3 describe several methods
of choosing the initial z. They prove that for C as in 6.235 and 6.236 the vec-
tor products Cx and (C − zI)−1x can be performed in O(n) flops. For the i’th
component of

Cx = sixi − (
∑

djxj), (6.243)

where
∑

djxj only needs to be done once for all i (2n flops) and then 6.243 takes
2 flops for each i. Also

(C − zI)−1 = ([D − zI] − 1dT)−1 (6.244)

244 6. Matrix Methods

where 1T = [1, 1, ..., 1] and dT = [d1, d2, ..., dn]. They apply the Sherman-
Morrison-Woodbury formula (see Golub and Van Loan (1996) p50) i.e.

(A + UVT)−1 = A−1 − A−1U(Ik×k + VT A−1U)−1VTA−1 (6.245)

where U and V are n× k. They set A = D-zI, U = -1, and V = d so that 6.245
becomes
(C − zI)−1 = ([D − zI] − 1dT)−1 =

(D − zI)−1 + (D − zI)−11(I1×1 − dT (D − zI)−11)−1dT (D − zI)−1 (6.246)

= (In×n +
1

1 − τ
(D − zI)−11dT)(D − zI)−1 (6.247)

where

τ = dT (D − zI)−11 (6.248)

Hence

(C − zI)−1v = (D − zI)−1v +
σ

1 − τ
(D − zI)−11 (6.249)

where

σ = dT (D − zI)−1v (6.250)

Hence we can compute y = (C − zI)−1v by performing n reciprocations, 4n
multiplications, and 4n additions (or subtractions). For complex data this gives
37n+O(1) real flops. In more detail the algorithm proceeds as follows:
1. Compute

g = (D − zI)−11 (6.251)

2. Compute

u = g ∗ v (6.252)

where * denotes the componentwise product.
3. Compute

τ =

n
∑

i=1

digi (6.253)

4. Compute

σ =

n
∑

i=1

diui (6.254)

5. Compute

y = u +
σ

1 − τ
g (6.255)

6.3. Methods with O(N2) Operations 245

A random initial eigenvector is usually a good choice for v. Or, if we have an
approximation zj to one of the eigenvalues we may use

vj = [1, zj, z
2
j , ..., z

n−1
j]T (6.256)

or

vj = [
1

s1 − zj
,

1

s2 − zj
, ...,

1

sn − zj
]T (6.257)

When a zero zj is closely approximated, we may deflate (i.e. compute p(x)
(x−zj)

) at

a cost of 2n-2 multiplications and n-1 subtractions. The authors state that 6.242
may be replaced by a cheaper calculation

z(i) =
(Cy(i))j

y
(i)
j

(6.258)

where j is such that y
(i)
j 6= 0. Then for C given by 6.235 and 6.236 this becomes

z(i) = sj −
∑n

k=1 djy
(i)
k

y
(i)
j

(6.259)

Deflation of a calculated eigenvalue is fairly inexpensive. Let z be the computed
eigenvalue, and let sn be the initial approximation closest to z (we may reorder the
si to achieve this). Let

ŝ = (ŝ1, ..., ŝn−1, ŝn)T ≡ (s1, ..., sn−1, z)
T (6.260)

and

d̂i =
p(ŝi)

∏

j 6=i(ŝi − ŝj)
(6.261)

Then as p(z) = 0, the last column of Cŝ,d̂ = Dŝ − Eŝ is given by (0,0,...,0,z).
Hence

|Cŝ,d̂ − xI| = (z − x)|G − xI| (6.262)

where G is the leading (n − 1) × (n − 1) principal submatrix of Cŝ,d̂; so the lat-
ter coincides with the generalized companion matrix associated with the deflated

polynomial p(x)
(x−z) and the vector (s1, ..., sn−1)

T . This matrix is defined by the vec-

tors (s1, ..., sn−1)
T and (d̂1, ..., d̂n−1)

T . The former is already known, but the latter
needs to be calculated, which can be done by

d̂i = di
si − sn

si − z
(i = 1, ..., n− 1) (6.263)

Thus we can deflate with 2(n-1) subtractions, (n-1) divisions, and (n-1) multipli-
cations. The shifted inverse power and deflation process may be repeated for k =

246 6. Matrix Methods

n,n-1,...,1 (for k = 1 the eigenvalue is s1 − d1).

The above method is particularly efficient if only one or a few eigenvalues of
C (roots of p(x)) are required. The authors quote Wilkinson’s (1963) criterion for
judging whether a given approximation ξ to a zero of p(x) is a zero of a slightly
perturbed polynomial: let fl(p(ξ)) be the value obtained by computing p(ξ) by
means of Horner’s rule

u0 = cn, ui+1 = ξui + cn−i−1 (i = 0, ..., n− 1), p(ξ) = un (6.264)

in floating point arithmetic with machine precision µ. If

|fl(p(ξ))| ≤ δ

n
∑

i=0

|ci||ξ|i (6.265)

where

δ = (12n+ 3)µ (6.266)

then there exists a polynomial

p̃(x) =

n
∑

i=0

c̃ix
i (6.267)

such that

c̃i = ci(1 + ǫi), |ǫi| ≤ δ and p̃(ξ) = 0 (6.268)

If 6.265 is not satisfied, then for any polynomial p̃(x) such that |ǫi| ≤ δ
3 we have

p̃(ξ) 6= 0. If 6.265 is satisfied, we say that ξ is a δ-approximated zero of p(x). The
authors’ “Algorithm 7.2” computes approximations ξ1, ..., ξn to the zeros of p(x)
satisfying 6.265 for each ξ = ξi (i = 1, ..., n). The computation is as follows:
1. Compute initial approximations s1, ..., sn by previously mentioned methods. Set
m = n, δ = (12n+ 3)µ.
2. While m > 0 do:

2a. Compute d1, ..., dn by 6.233 and check if si is a δ-approximate zero of
p(x).

2b. Sort the si so that δ-approximated components are at the bottom and
components not yet δ-approximated are ordered with non-increasing modulus.

2c. Let m = number of components not yet δ-approximated.
2d. Apply the shifted inverse power method to the m ×m generalized com-

panion matrix Cs,d = Cs −Ed defined by s1, ..., sm, d1, ..., dm and output approx-
imations ξ1, ..., ξm. Set si = ξi (i = 1, ...,m)
End While.

In numerical experiments the new method was often much faster than the WDK
method, for example it found the roots of x2000 − 1 ten times faster than the WDK

6.3. Methods with O(N2) Operations 247

method did.

Bini, Gemignani, and Pan (2004b) give a method based on evaluating p(z) at
the n’th roots of unity, i.e. ωj where

ω = exp(
2π

√
−1

n
) (6.269)

It is assumed that p(z) can be evaluated at any point z without explicit knowledge
of the coefficients. By applying the Lagrange interpolation formula at the nodes
ωj ≡ ωj (j = 0, ..., n− 1) we get

p(z) − cnz
n =

n−1
∑

i=0

(p(ωi) − cnω
n
i)

∏

j 6=i(z − ωj)
∏

j 6=i(ωi − ωj)
(6.270)

= (zn − 1)
n−1
∑

i=0

(p(ωi) − cn)

(z − ωi)
∏

j 6=i(ωi − ωj)
(6.271)

(as ωn
i = exp(2πi

√
−1

n n) = 1)
The product above =

∏

j 6=i

ωn−1
i (1 − ωj−i) (6.272)

=
ωn

i

ωi

∏

j 6=i

(1 − ωj−i) =
n

ωi
(6.273)

(For
∏

j 6=i(z − ωj−i) =
∏n−1

l=1 (z − ωl) =

∏n−1

l=0
(z−ωl)

(z−1) = zn−1
z−1 = zn−1 + zn−2 +

...+ z + 1 → n as z → 1).
Hence

p(z) − cnz
n = (zn − 1)

n−1
∑

i=0

ωi(p(ωi) − cn)

n(z − ωi)
(6.274)

Hence

p(z) = cnz
n + (zn − 1)

n−1
∑

i=0

ωip(ωi)

n(z − ωi)
− cn(zn − 1)

n−1
∑

i=0

ωi

n(z − ωi)
(6.275)

But 1
zn−1 =

∑n−1
i=0

∏

j 6=i

1
(ωi−ωj)

z−ωi

=

n−1
∑

i=0

1

z − ωi

n−1
∏

j=0,6=i

ωi

ωn
i (1 − ωj−i)

=

n−1
∑

i=0

ωi

n(z − ωi)
(6.276)

248 6. Matrix Methods

Hence last term in 6.275 = -cn.
Hence

p(z) = (zn − 1)(cn +

n−1
∑

i=0

ωip(ωi)

n(z − ωi)
(6.277)

Putting z = 0 gives

p(0) = −cn −
n−1
∑

i=1

ωip(ωi)

n(−ωi)
(6.278)

i.e.

cn =

n−1
∑

i=0

p(ωi)

n
− p(0) (6.279)

The root-finding problem for p(z) in the form 6.277 can be expressed as the com-
putation of the eigenvalues of a generalized companion matrix

Â =









1 0 0
0 ω 0 .. 0
..
0 0 ωn−1









−

1

ncn













p(1)
p(ω)
..
..

p(ωn−1)













[

1 ω .. ωn−1
]

(6.280)

For we will show that Â and F have the same eigenvalues, while it is known that
the eigenvalues of F are zeros of p(z). To show this, recall that

F =









0 0 − c0

cn

1 0 .. 0 − c1

cn

..
0 .. 0 1 − cn−1

cn









(6.281)

We may re-write this as









0 .. 0 1
1 0 .. 0
..
0 .. 0 1









+













−1 − c0

cn

− c1

cn

..

..
− cn−1

cn













[

0 .. 0 1
]

(6.282)

≡ Z + peT
n (6.283)

6.3. Methods with O(N2) Operations 249

where

p =













−1 − c0

cn

− c1

cn

..

..
− cn−1

cn













, eT
n =

[

0 .. 0 1
]

Now let

Ω = (ω(i−1)(j−1)) =













1 1 .. 1 1
1 ω ω2 .. ωn−1

1 ω2 ω4 .. ω2n−2

..
1 ωn−1 ω2n−2 .. ω(n−1)(n−1)













(6.284)

V =
1√
n

Ω (6.285)

and

D̂ =









1 0 .. 0
0 ω 0 ..
..
0 .. 0 ωn−1









(6.286)

Then

VHD̂V =
1

n









1 1 1
1 ω ω2 .. ωn−1

..

1 ωn−1 ω(n−1)(n−1)





















1 1 .. 1
ω ω2 .. ωn

ω2 ω4 .. ω2n

..

ωn−1 ω2n−2 .. ω(n−1)n













(6.287)

= (since ω = ω−1)

1

n













1 1 1
1 ω−1 ω−2 .. ω−(n−1)

1 ω−2 ω−4 .. ω−(2n−2)

..
1 ω−(n−1) ω−(n−1)(n−1)













250 6. Matrix Methods













1 1 1
ω ω2 .. ωn−1 1
ω2 ω4 .. ω2n−2 1
..

ωn−1 ωn−2 1













= (6.288)

1

n













0 0 0 n
n 0 0 0
0 n 0 .. 0 0
..
0 0 n 0













= Z (6.289)

(for example the (1,1) element in the product in 6.288 = 1 +ω+ω2 + ...+ωn−1 =
wn−1
ω−1 = 1−1

ω−1 = 0; while the (1,n) element = 1 + 1 + ..+ 1 = n). Hence

F = VHD̂V + peT
n = VH(D̂ + VpeT

nVH)V (6.290)

Also (again since ω = ω−1), we have

eT
nΩH = [1, ω, ω2, .., ωn−1] ≡ v̂T (6.291)

(that is, we will call the above v̂T) and

Ωp = − 1

cn
[p(1), p(ω), .., p(ωn−1)]T (6.292)

(we will call the vector in 6.292 ûT)
Then 6.280 may be re-written as

Â = D̂ − 1

ncn
ûv̂T (6.293)

It follows that

F = VHÂV (6.294)

and so F and Â have the same eigenvalues, as claimed. Note that D̂ has complex
entries, but it is desirable, in order to achieve a fast solution, to have a matrix in
the form of a real diagonal plus rank-one matrix (the latter not necessarily real).

In fact D̂ has entries on the unit circle, so we will use the Mobius transformation

M(z) =
δz − β

−γz + α
, αδ − βγ 6= 0 (6.295)

which for appropriate choices of the parameters maps the unit circle into the real
axis. If αI − γÂ is non-singular then A = M(Â) has the required form i.e.
real diagonal plus rank-one. Now the inverse of a Mobius transformation is also a
Mobius transformation given by

M−1(z) =
αz + β

γz + δ
(6.296)

6.3. Methods with O(N2) Operations 251

It is shown by Van Barel et al (2005) in their Theorem 4.3 that if

γ = |γ|eiθγ , δ = |δ|eiθδ , α = |γ|eiθ̃ and β = |δ|eiθ̂ (6.297)

where

θ̂ = θ̃ + θγ − θδ (6.298)

then

M(z) =
δz − β

−γz + α
(6.299)

maps the unit circle (except the point z = α
γ) onto the real axis. Assume that

αI − γÂ is non-singular and ωj 6= α
γ (j = 0, ..., n− 1) Then

M(Â) = (δÂ − βI)(αI − γÂ)−1 (6.300)

= [(δD̂ − βI) − δ

ncn
ûv̂T][(αI − γD̂) +

γ

ncn
ûv̂T]−1 (6.301)

By 6.245

[(αI − γD̂) +
γ

ncn
ûv̂T]−1 = (αI − γD̂)−1(I − θûvT) (6.302)

where

θ =
γ

ncn + γvT û
(6.303)

and

v = (αI − γD̂)−1v̂ (6.304)

Replacing the LHS of 6.302 by the RHS in 6.301 gives

M(Â) = M(D̂) − θM(D̂)ûvT − δ

ncn
ûvT +

δθ

ncn
û(vT û)vT (6.305)

= M(D̂) − (θM(D̂)û +
δ

ncn
û− δθ

ncn
û(vT û))vT (6.306)

Letting

u = θM(D̂)û +
δ

ncn
û− δθ

ncn
û(v̂T û) (6.307)

Finally

A = M(Â) = D − uvT (6.308)

252 6. Matrix Methods

is in the required form of a real diagonal plus rank-one matrix, where

D = diag[M(1),M(ω), ...,M(ωn−1)] ∈ Rn×n (6.309)

Each eigenvalue ηj of A is related to the corresponding eigenvalue λj of Â by

ηj = M(λj) 6= − δ

γ
(6.310)

Once we have computed the ηj we may find the λj (roots of p(z)) by

λj =
αηj + β

γηj + δ
, (j = 1, ..., n) (6.311)

We may summarize the above in the following algorithm called FastRoots(p)
which outputs a vector λ of approximations to the roots of p(z):
1. Evaluate p(z) at 1, ω, ..., ωn−1 where

ω = cos
2π

n
+
√
−1sin

2π

n
(6.312)

2. Compute the leading coefficient cn of p(z) by 6.279
3. Form the vectors û and v̂T by 6.291 and 6.292.
4. Choose random complex numbers γ and δ.
5. Choose a random real number θ̃ ∈ [0, 1].
6. Define α and β by 6.297 and 6.298.
7. Compute (D)ii = M(ωi−1) for i=1,...,n.
8. Compute u and v by 6.307 and 6.304.
9. Compute approximations ηj of the eigenvalues of

D − uvT (6.313)

10. Approximate the λj by 6.311.

The most time-consuming part of the above is step 9. Bini, Gemignani and
Pan (2005) describe a method for finding eigenvalues of the type of matrix con-
sidered here (as well as others), which takes O(n2) time. They summarize this
method in their (2004b) paper, and we will reproduce their summary here. For
more details see later (and their 2005 paper). They define a class of “generalized
semi-separable matrices” Cn by stating that A = (aij) belongs to Cn if there exist
real numbers d1, ..., dn, complex numbers t2, ..., tn−1 and possibly complex vectors
u = [u1, ..., un]T , v = [v1, ..., vn]T , z = [z1, ..., zn]T and w = [w1, ..., wn]T

such that

aii = di + ziwi (i = 1, ..., n) (6.314)

aij = uit
×
ijvj (i = 2, ..., n; j = 1, ..., i− 1) (6.315)

aij = ujt
×
jivi + ziwj − zjwi (j = 2, ..., n; i = 1, ..., j − 1) (6.316)

6.3. Methods with O(N2) Operations 253

where

t×ij = ti−1...tj+1 for i− 1 ≥ j + 1 (6.317)

and otherwise

t×i,i−1 = 1 (6.318)

If we set z = u, w = v and ti = 1 (all i) we obtain the form D+uvH as required
in the present work. The authors prove that the shifted QR algorithm preserves
the structure of semi-separable matrices given by 6.314-6.316, and that an iteration
can be performed in O(n) flops, so that the complete eigenvalue problem takes only
O(n2).

Numerical tests were performed with the above algorithm on several difficult
polynomials. Most results were accurate, except for the Wilkinson polynomial
(z − 1)(z − 2)...(z − 19)(z − 20). The case

p(z) = (zn − 1)(cn +

n−1
∑

i=0

ωip(ωi)

n(z − ωi)
) (6.319)

with p(ωi) and p(0) random complex numbers was particularly interesting: for
n = 22+m with m = 1,...,7 the tests confirm that the time is indeed quadratic in
n.

Returning to the 2005 paper, the authors define triu(B,p) = the upper triangular
part of B formed by the elements on and above the p’th diagonal of B (i.e. the
diagonal which is p positions above and to the right of the main diagonal). Similarly
tril(B,p) is formed by the elements on and below the p’th diagonal. If A is a matrix
in the form of 6.314- 6.316, then

tril(A,−1) =

















0 0 0
u2v1 0 0
u3t2v1 u3v2 0 .. 0
u4t3t2v1 u4t3v2 u4v3 0 ..

..
untn−1...t2v1 untn−1...t3v2 ... unvn−1 0

















(6.320)

We also denote the above by

L({ui}n
i=2, {vi}n−1

i=1 , {ti}n−1
i=2) (6.321)

and also

R({ui}n
i=2, {vi}n−1

i=1 , {ti}n−1
i=2) ≡ (L({ui}etc))H (6.322)

254 6. Matrix Methods

Note that L({ui}n
i=2, {vi}n−1

i=1 , 0) is a lower bidiagonal matrix with main diagonal 0
and sub-diagonal ηi = uivi−1 (i = 2, ..., n). This is called Subdiag({ηi}n

i=2).
Let A be of type 6.314-6.316 and denote xi = [zi, wi] and yi = [wi,−zi] (i =
1, ..., n). Then

triu(A, 1) −R({ui}n
i=2, {vi}n−1

i=1 , {ti}n−1
i=2) =









0 x1y
H
2 .. x1y

H
n

..
0 .. 0 xn−1y

H
n

0 0









(6.323)

We will be using Givens rotations such as

G(γ) =
1

√

1 + |γ|2

[

1 γ
−γ 1

]

(6.324)

=

[

φ ψ

−ψ φ

]

(6.325)

where γ and ψ are in general complex and φ is real, while |ψ|2 + |φ|2 = 1. We
also have

G(∞) =

[

0 1
1 0

]

(6.326)

We can find γ so that G(γ) transforms a vector

[

a
b

]

into

[

ρ
0

]

where |ρ| =
√
a2 + b2. If a 6= 0, set γ = b

a , else γ = ∞. Then we define the n× n Givens
rotation Gk,k+1(γ) in coordinates k,k+1 by





Ik−1 0 0
0 G(γ) 0
0 0 In−k−1



 (6.327)

Recall that the QR iteration, which can be written

As+1 = RsAsR
−1
s (6.328)

where Rs is right-triangular, yields As+1 tending to upper triangular or block
upper-triangular form, so that the eigenvalues of A = A0 can be deduced. It can
be proved that the structure of A0 is preserved by the QR iterations: the authors
first prove, in their theorem 3.1, that the structure of the lower triangular part is
preserved. That is, each matrix satisfies

tril(As,−1) = L({u(s)
i }n

i=2, {v
(s)
i }n−1

i=1 , {t
(s)
i }n−1

i=2) (6.329)

6.3. Methods with O(N2) Operations 255

for suitable u
(s)
i , v

(s)
i , t

(s)
i . The proof is by induction on s. The case s = 0 follows

from the definition of A0. Assume that 6.329 holds for some u
(s)
i etc, and then

prove the theorem for s+1. Let Rs = (r
(s)
ij), R−1

s = Ws = (w
(s)
ij) and

As+ 1
2

= AsWs. The last matrix is obtained by linearly combining the columns
of As, i.e. it =









0 0 .. 0

u
(s)
2 v

(s)
1 0 .. 0

u
(s)
3 t

(s)
2 v

(s)
1 u

(s)
3 v

(s)
2 0 ..

..















w
(s)
11 w

(s)
12 ..

0 w
(s)
22 ..

0 0 ..






(6.330)

=









0 0 ..

u
(s)
2 (w

(s)
11 v

(s)
1)

u
(s)
3 t

(s)
2 (w

(s)
11 v

(s)
1) u

(s)
3 [w

(s)
12 t

(s)
2 v

(s)
1 + w

(s)
22 v

(s)
2] ..

..









(6.331)

Thus we may write

tril(As+ 1
2
,−1) = L({u(s+ 1

2)
i }n

i=2}, {v
(s+ 1

2)
i }n−1

i=1 , {t
(s+ 1

2)
i }n−1

i=2) (6.332)

where u
(s+ 1

2)
j = u

(s)
j , t

(s+ 1
2)

j = t
(s)
j and v

(s+ 1
2)

1 = w
(s)
11 v

(s)
1 while

v
(s+ 1

2)
j =

j
∑

k=2

w
(s)
k−1,jt

(s)
j ...t

(s)
k v

(s)
k−1 + w

(s)
jj v

(s)
j (j = 2, ..., n− 1) (6.333)

Similarly the rows of As+1 = RsAs+ 1
2

are linear combinations of rows of As+ 1
2

and we get that

tril(As+1,−1) = L({u(s+1)
i }n

i=2, {v
(s+1)
i }n−1

i=1 , {t
(s+1)
i }n−1

i=2) (6.334)

where v
(s+1)
j = v

(s+ 1
2)

j (given by 6.333), t
(s+1)
j = t

(s)
j , and u

(s+1)
n = r

(s)
nnu

(s)
n ,

while

u
(s+1)
n−j =

j−1
∑

k=0

r
(s)
n−j,n−kt

(s)
n−j...t

(s)
n−k−1u

(s)
n−k + r

(s)
n−j,n−ju

(s)
n−j

(j = 1, ..., n− 2) (6.335)

Next, we can prove that each As is of the form 6.314- 6.316, i.e.

a
(s)
ii = d

(s)
i + z

(s)
i w

(s)
i (i = 1, ..., n) (6.336)

a
(s)
ij = u

(s)
i t

(s)×
ij v

(s)
j (i = 2, ..., n; j = 1, ..., i− 1) (6.337)

a
(s)
ij = u

(s)
j t

(s)×
ji v

(s)
i + z

(s)
i w

(s)
j − z

(s)
j w

(s)
i (j = 2, ..., n; i = 1, ..., j − 1) (6.338)

256 6. Matrix Methods

For 6.337 has already been proved (it is the same as 6.334), and we may show that
B ≡ A − zwH is Hermitian so that

a
(s)
ij − z

(s)
i w

(s)
j = a

(s)
ji − z

(s)
j w

(s)
i (6.339)

For i < j we have by 6.337 with i,j reversed that

a
(s)
ji = u

(s)
j t

(s)×
ji v

(s)
i ; a

(s)
ji = u

(s)
j t

(s)×
ji v

(s)
i (6.340)

Substituting in 6.339 gives a
(s)
ij = u

(s)
j t

(s)×
ji v

(s)
i + z

(s)
i w

(s)
j − z

(s)
j w

(s)
i , which is

6.338. For i = j we can deduce from 6.339 that the imaginary part of a
(s)
ii coincides

with that of z
(s)
i w

(s)
i (for if a

(s)
ii = R + iI and z

(s)
i w

(s)
i = ρ + iσ we have

R+ iI = R− iI+(ρ+ iσ)− (ρ− iσ); hence 2iI = 2iσ). So a
(s)
ii = d

(s)
i +z

(s)
i w

(s)
i ,

which is 6.336.
We have also

As+1 = PH
s A0Ps = PH

s (B0 + z(0)w(0)H)Ps =

PH
s B0Ps + z(s+1)w(s+1)H (6.341)

which shows that

z(s+1) = PH
s z(0) = QH

s z(s) (6.342)

(where Ps = Q0Q1...Qs) and

w(s+1)H = w(0)HPs = w(s)HQs (6.343)

which give easy rules for updating z(s) and w(s) at each QR step. If, for a certain
index ŝ, Rŝ and Aŝ − σŝIn are singular (or nearly so), then σŝ is an eigenvalue of
A0, and we may deflate.

We need an efficient procedure to derive A1 from A0 and so on by the QR
factorization. Using the structure of tril(A0,−1) we may express Q0 as the product
of 2n-3 Givens rotations (compared with O(n2) for a general matrix). First we
reduce A0 to upper Hessenberg form

H0 = G2,3(γn−2)...Gn−1,n(γ1)A0 = Q̂0A0 (6.344)

Then we reduce H0 to upper triangular form

R0 = Gn−1,n(γ2n−3)...G12(γn−1)H0 (6.345)

Thus

R0 = Gn−1,n(γ2n−3)..G12(γn−1)G23(γn−2)...Gn−1,n(γ1)A0 =

QH
0 A0 (6.346)

6.4. Methods Designed for Multiple Roots 257

where

QH
0 = Gn−1,n(γ2n−3)...Gn−1,n(γ1) (6.347)

The Givens matrices are chosen to zero the various entries of tril(A0,−2); e.g. γ1

can be chosen so that

G(γ1)

[

u
(0)
n−1

u
(0)
n t

(0)
n−1

]

=

[

û
(0)
n−1

0

]

(6.348)

Thus, because of the special structure (see 6.320), the whole of the n’th row through
the (n,n-2) element is zeroed. The general case G(γi) is similar. Consequently the
reduction takes O(n) flops, in contrast to the O(n2) required for a general matrix.
The same is true for the reduction to upper triangular form. In fact the authors
show that each QR step requires 120n multiplications and 28n storage. For further
details see the cited paper.

Numerical tests were performed, firstly on arrowhead matrices of order n = 2s

for s = 3,...,8; then Hermitian diagonal-plus-semiseparable matrices; and finally
on the Chebyshev-comrade matrices of order n. The latter problem is related to
the task of finding roots of a polynomial represented as a series of Chebyshev
polynomials given by

p0(z) = 1; pj(z) = wj + (
1

2w
)j (j = 1, 2, ...) (6.349)

where

z = w +
1

2w
(6.350)

In the last-mentioned problem the coefficients were random complex values with
real and imaginary parts in the range [-1,1]. The tests confirm that the time is
O(n2), the error is very small, and about 6 iterations are required per eigenvalue.

6.4 Methods Designed for Multiple Roots

Some of the methods described in previous sections of this Chapter work (to a
certain extent) for multiple roots, but not as well as they do for simple roots. In
contrast the methods to be described in the present section are designed specifically
to work accurately in the case of multiple roots. The first is due to Zeng (2003,
2004a, 2004b). We will follow the treatment in (2004b). Zeng presents a combina-
tion of two algorithms for computing multiple roots and multiplicity structures (i.e.
a list of the number of times each distinct root is repeated). It accurately calculates
polynomial roots of high multiplicity without using multiprecision arithmetic (as
is usually required), even if the coefficients are inexact. This is the first work to
do that, and is a remarkable achievement. Traditionally it has been believed that

258 6. Matrix Methods

there is an “attainable accuracy” in computing multiple roots: i.e. to compute an
m-fold root correct to k digits requires a precision of mk digits in the coefficients
and machine numbers-hence the need for multiple precision in the common case
that mk > 16. Even worse, when coefficients are truncated (as is usual), multiple
roots are turned into clusters, and no amount of multiple precision will turn them
back into multiple roots.

However Kahan (1972) proved that if multiplicities are preserved, the roots may
be well-behaved , i.e. not nearly as hypersensitive as they would otherwise be. Poly-
nomials with a fixed multiplicity structure are said to form a pejorative manifold.
For a polynomial on such a manifold multiple roots are insensitive to perturbations
which preserve the multiplicity structure, unless it is near a submanifold of higher
multiplicities.

In light of the above, Zeng proposes his Algorithm I (see below) that transforms
the singular root-finding problem into a regular non-linear least squares problem
on a pejorative manifold. To apply this algorithm, we need initial root approxima-
tions as well as knowledge of the multiplicity structure. To accomplish this, Zeng
proposes a numerical GCD-finder (for the GCD u of p and p′) which uses a series
of Sylvester matrices. It finds the smallest singular value of each of these matrices,
and extracts the degree of u and the coefficients of the GCD decomposition (v and
w, where p = uv and p′ = uw). Finally it applies the Gauss-Newton iteration
to refine the approximate GCD. This GCD- finder constitutes the main part of his
Algorithm II, which computes the multiplicity structure and initial root approxi-
mations.

While most reported numerical experiments do not even reach multiplicity 10,
Zeng successfully tested his algorithms on polynomials with root multiplicities up
to 400 without using multiprecision arithmetic. To quote him: “We are aware of
no other reliable methods that calculate multiple roots accurately by using stan-
dard machine precision”. On the question of speed, there exist general-purpose
root-finders using O(n2) flops, such as those discussed in Section 3 of this Chapter.
But the barrier of “attainable accuracy” may prevent these from calculating mul-
tiple roots accurately when the coefficients are inexact, even if multiple precision
arithmetic is used. Zeng’s methods overcome this barrier at a cost of O(n3) flops
in standard arithmetic. This may not be too high a price (in fact for moderate n
it may be faster than an O(n2) method using multiple precision).

We will now discuss some preliminary material, before describing Algorithm I
and II in detail. The numbers of Lemmas etc will be as in Zeng’s paper. If the
polynomial

p(x) = cnx
n + cn−1x

n−1 + ...+ c0 (6.351)

then the same letter in boldface (e.g. p) denotes the coefficient vector

p = [cn cn−1 ... c0]
T (6.352)

6.4. Methods Designed for Multiple Roots 259

The degree n of p(x) is called deg(p). For a pair of polynomials p and q, their
greatest common divisor is called GCD(p,q).
Definition 2.1. For any integer k ≥ 0, we define the matrix

Ck(p) =





















cn 0
cn−1 cn 0 ..
..
.. cn
c0 cn−1

..

.. .. 0 c0





















(6.353)

(it is assumed that the above matrix has k+1 columns and hence n+k+1 rows). It
is called the k’th order convolution matrix associated with p(x).
Lemma 2.2. Let f and g be polynomials of degree n and m respectively, with

h(x) = f(x)g(x) (6.354)

Then h is the convolution of f and g defined by

h = conv(f,g) = Cm(f)g = Cn(g)f (6.355)

Proof. We see that for example from 6.354

hn+m = fngm; hm+n−1 = fn−1gm + fngm−1 (6.356)

etc until

hn = fn−mgm + fn−m+1gm−1 + ...+ fng0 (6.357)

and so on. This agrees with 6.355.
Definition 2.3. Let p′ be the derivative of p; then for k = 1,2,...,n-1 the matrix of
size (n+ k) × (2k + 1)

Sk(p) =
[

Ck(p′) | Ck−1(p)
]

(6.358)

is called the k’th Sylvester discriminant matrix.
Lemma 2.4. With p and p′ as before, let u = GCD(p, p′). For j = 1,...,n, let σj

be the smallest singular value of Sj(p). Then the following are equivalent:
(a) deg(u) = k,
(b) p has m = n-k distinct roots,
(c)σ1, σ2, ..., σm−1 > 0, σm = σm+1 = ... = σn = 0,
Proof that (a) is equivalent to (b): Assume that p(x) has m distinct roots of
multiplicities l1, ..., lm; then we have

p(x) = (x− ζ1)
l1(x− ζ2)

l2 ...(x− ζm)lm (6.359)

where li ≥ 1 (i = 1, ...,m) and
∑m

i=1 li = n. Then

GCD(p, p′) ≡ u = (x− ζ1)
l1−1...(x− ζm)lm−1 (6.360)

260 6. Matrix Methods

Hence deg(u) = k = l1 − 1 + l2 − 1 + ... + lm − 1 =
∑

li −m = n−m, so m
= n-k. For the proof that (a) is equivalent to (c) Zeng refers to Rupprecht (1999),
Proposition 3.1.
Lemma 2.5. Let p, p′, u and k be as before. Let v and w be polynomials that
satisfy

u(x)v(x) = p(x); u(x)w(x) = p′(x) (6.361)

Then (a) v and w are coprime (i.e. they have no common factors);
(b) the column rank of Sm(p) is deficient by one;

(c) the normalized vector

[

v
−w

]

is the right singular vector of Sm(p) associated

with its smallest singular value σm (which is zero);
(d) if v is known, the coefficient vector u of u(x) = GCD(p, p′) is the solution to
the linear system

Cm(v)u = p (6.362)

Proof. (a) follows by definition of the GCD: if v and w had a common factor it
would be included in u. Now

Sm(p)

[

v
−w

]

= Cm(p′)v − Cm−1(p)w = 0 (6.363)

because it is the coefficient vector of p′v − pw ≡ (uw)v − (uv)w ≡ 0. Let v̂ of
size m+1 and ŵ of size m be two other coefficient vectors of two other polynomials
v̂ and ŵ which also satisfy

Cm(p′)v̂ − Cm−1(p)ŵ = 0 (6.364)

Then we also have (uw)v̂ − (uv)ŵ = 0, so that wv̂ = vŵ (as u cannot be trivial;
at worst it = 1). Hence, since v and w are coprime, the factors of v must also be
factors of v̂, so v̂ = cv for some polynomial c. But v and v̂ have the same degree
m (=n-k) so c must be a constant. Also ŵ = w(v̂

v) = cw. Therefore the single

vector

[

v
−w

]

forms the basis for the null-space of Sm(p). Consequently, both

parts (b) and (c) follow. (d) follows from Lemma 2.2 with h replaced by p, f by v,
and g by u.
Lemma 2.6 . Let A be an n× k matrix with n ≥ k having two smallest singular

values σ̂ > σ̃. Let Q

[

R
0

]

= A be the QR decomposition of A, where Q

is n × n and unitary, and R is k × k and upper triangular. From any complex
vector x0 that is not orthogonal to the right singular subspace associated with σ̃,
we generate the sequences {sj} and {xj} by the inverse iteration:
Solve

RHyj = xj−1 (yj complex and size k) (6.365)

6.4. Methods Designed for Multiple Roots 261

Solve

Rzj = yj (zj complex and size k) (6.366)

Calculate

xj =
zj

||zj ||2
, sj = ||Rxj ||2 (6.367)

Then

lim
j→∞

sj = lim
j→∞

||Axj||2 = σ̃ (6.368)

and

sj = ||σj ||2 +O(τ2)

where

τ =

(

σ̃

σ̂

)2

(6.369)

and if σ̃ is simple, xj → the right singular vector of A associated with σ̃. Zeng
refers to Van Huffel (1991) for a proof.

He next discusses the Gauss-Newton iteration as a method for solving non-linear
least squares problems. Let

G(z) = a (6.370)

where a, z are of size n, m (n > m). This is an over-determined system so we
seek a weighted least squares solution. If

W =









ω1 0 .. 0
0 ω2 0 ..
..
0 .. 0 ωn









(ωi > 0) (6.371)

and for v any vector of size n,

||v||W = ||Wv||2 =

√

√

√

√

n
∑

j=1

ω2
j v

2
j (6.372)

then our objective is to find

minz||G(z) − a||2W (6.373)

Lemma 2.7. Let F be an analytic function from Cm to Cn, having Jacobian Ĵ(z).
If there is a neighborhood Ω of z̃ in Cm such that

||F (z̃)||2 ≤ ||F (z)||2 (6.374)

262 6. Matrix Methods

for all z ∈ Ω then

Ĵ
H
F (z̃) = 0 (6.375)

For proof Zeng quotes Dennis and Schnabel (1983) for the real case, and states
that the complex case is identical except for using the Cauchy-Riemann equation.
Now let J(z) be the Jacobian of G(z). To find a local minimum of ||F (z)||2 ≡
||W[G(z) − a]||2 with Ĵ(z) = WJ(z), we seek z̃ of size m such that

Ĵ(z̃)HF (z̃) = [WJ(z̃)]HW[G(z̃) − a] =

J(z̃)HW2[G(z̃) − a] = 0 (6.376)

Lemma 2.8. Let Ω ∈ Cm be a bounded open convex set and let F (a function

from Cm to Cn) be analytic in an open set D ⊃ Ω. Let Ĵ be the Jacobian of F(z).
Suppose there exist z̃ ∈ Ω such that

Ĵ(z̃)HF (z̃) = 0 (6.377)

with Ĵ(z̃) of full rank. Let σ be the smallest singular value of Ĵ(z̃), and δ > 0 be
such that

||[Ĵ(z) − Ĵ(z̃)]HF (z̃)||2 ≤ δ||z − z̃||2 (6.378)

for all z ∈ Ω
If δ < σ2, then for any c ∈ [1

σ ,
σ
δ] there exists ǫ > 0 such that for all z0 ∈ Ω

with ||z0 − z̃||2 < ǫ, the sequence generated by the Gauss-Newton iteration

zk+1 = zk − Ĵ(zk)+F (zk) (6.379)

where

Ĵ(zk)+ = [Ĵ(zk)H Ĵ(zk)]−1Ĵ(zk)H (6.380)

for k = 0,1,... is well-defined inside Ω, converges to z̃, and satisfies

||zk+1 − z̃||2 ≤ cδ

σ
||zk − z̃||2 +

cαγ

2σ
||zk − z̃||22 (6.381)

where α > 0 is the upper bound of ||Ĵ(z)||2 on Ω, and γ > 0 is the Lipschitz

constant of Ĵ(z) in Ω, i.e.

||Ĵ(z + h) − Ĵ(z)||2 ≤ γ||h||2 (6.382)

for all z, z+h ∈ Ω.
Proof : Zeng refers to Dennis and Schnabel (Theorem 10.2.1) for the real case, and
states that the complex case is a “straightforward generalization” of the real case.

6.4. Methods Designed for Multiple Roots 263

We now turn to the details of Algorithm I. It assumes that the multiplicity
structure is known: we shall deal with the problem of finding this later. A condition
number will be introduced to measure the sensitivity of multiple roots; when this is
moderate the multiple roots can be calculated accurately. A polynomial of degree
n corresponds to a (complex) vector of size n:

p(x) = cnx
n + cn−1x

n−1 + ...+ c0 ∼ a = [an−1, ..., a0]
T =

[
cn−1

cn
, ...,

c0
cn

]T (6.383)

For a partition of n, i.e. an array of positive integers l1, l2, ..., lm with l1 + l2 + ...+
lm = n, a polynomial p that has roots ζ1, ..., ζm with multiplicities l1, ..., lm can
be written as

1

cn
p(x) =

m
∏

j=1

(x− ζj)
lj = xn +

n
∑

j=1

gn−j(ζ1, ..., ζm)xn−j (6.384)

where each gj is a polynomial in ζ1, ..., ζm. We have the correspondence

p ∼ Gl(z) ≡













gn−1(ζ1, ..., ζm)
gn−2(ζ1, ..., ζm)

..

..
g0(ζ1, ..., ζm)













where z =













ζ1
ζ2
..
..
ζm













(6.385)

Definition 3.1. An ordered array of positive integers l = [l1, ..., lm] is called a
multiplicity structure of degree n if l1 + ...+ lm = n. For given l, the collection
of vectors Πl = {Gl(z)|z is of size m} is called the pejorative manifold of l,
and Gl is called the coefficient operator associated with l. For example consider
polynomials of degree 3. Firstly, for l = [1, 2] we have (x − ζ1)(x − ζ2)

2 =
x3 + (−ζ1 − 2ζ2)x

2 + (2ζ1ζ2 + ζ2
2)x + (−ζ1ζ2

2), i.e. a polynomial with one simple
root ζ1 and one double root ζ2 corresponds to

G[1,2](z) =





−ζ1 − 2ζ2
2

2ζ1ζ2 + ζ2
2

−ζ1ζ2
2



 , z =

[

ζ1
ζ2

]

The vectors G[1,2](z) for all z form the pejorative manifold Π[1,2]. Similarly

Π[3] = {(−3ζ, 3ζ2,−ζ3)|ζ ∈ C}

when l = [3]. Π[3] is a submanifold of Π[1,2] that contains all polynomials with a
single triple root. Π[1,1,...,1] = Cn is the vector space of all polynomials of degree n.

We now consider methods of solving the least-squares problem. If l = [l1, ..., lm]
is a multiplicity structure of degree n, with the corresponding pejorative manifold

264 6. Matrix Methods

Πl, and the polynomial p ∼ a ∈ Πl, then there is a vector z ∈ Cm such that
Gl(z) = a, i.e.













gn−1(ζ1, ..., ζm)
gn−2(ζ1, ..., ζm)

..

..
g0(ζ1, ..., ζm)













=









an−1

..

..
a0









or Gl(z) = a (6.386)

In general this system is over-determined except for l = [1, 1, ..., 1]. Let W =
diag(ω0, ..., ωn−1) as in 6.371 (with a change of numbering of the ωi) and let ||.||W
denote the weighted 2-norm defined in 6.372. We seek a weighted least-squares
solution to 6.386 by solving the minimization problem

Minz∈Cm ||Gl(z) − a||2W ≡ Minz∈Cm ||W(Gl(z) − a)||22 ≡

Minz∈Cm{
n−1
∑

j=0

ω2
j |Gj(z) − aj |2} (6.387)

Zeng does all his experiments with the weights

ωj = Min{1, 1

|aj |
}, (j = 0, ..., n− 1) (6.388)

which minimizes the relative backward error at every coefficient greater than one.
Let J(z) be the Jacobian ofGl(z). To find a local minimum of F (z) = W[Gl(z)−a]

with Ĵ(z) = WJ(z), we look for z̃ ∈ Cm such that

Ĵ(z̃)HF (z̃) = [WJ(z̃)]HW[Gl(z̃) − a] =

J(z̃)HW2[Gl(z̃) − a] = 0 (6.389)

Definition 3.2. Let p ∼ a be a polynomial of degree n. For any l also of degree
n, the vector z̃ satisfying 6.389 is called a pejorative root of p corresponding to
l and W.
Theorem 3.3 Let Gl : Cm → Cn be the coefficient operator associated with a
multiplicity structure l = [l1, ..., lm]. Then the Jacobian J(z) of Gl(z) is of full
rank if and only if the components of z = [ζ1, ..., ζm]T are distinct.
Proof. Let ζ1, ..., ζm be distinct. We seek to show that the columns of J(z) are
linearly independent. Write the j’th column as

Jj = [
∂gn−1(z)

∂ζj
, ...,

∂g0(z)

∂ζj
]T (6.390)

For j = 1,...,m let qj(x), a polynomial in x, be defined by

qj(x) = (
∂gn−1(z)

∂ζj
)xn−1 + ...+ (

∂g1(z)

∂ζj
)x + (

∂g0(z)

∂ζj
) (6.391)

6.4. Methods Designed for Multiple Roots 265

=
∂

∂ζj
[xn + gn−1(z)x

n−1 + ...+ g0(z)] (6.392)

=
∂

∂ζj
[(x− ζ1)

l1 ...(x − ζm)lm] (6.393)

= −lj(x− ζj)
lj−1[

∏

k 6=j

(x− ζk)lk] (6.394)

Assume that

c1J1 + ...+ cmJm = 0 (6.395)

for constants c1, ..., cm. Then

q(x) ≡ c1q1(x) + ...+ cmqm(x) = −
m
∑

j=1

{cjlj(x− ζj)
lj−1

∏

k 6=j

(x− ζk)lk}

= −[

m
∏

σ=1

(x− ζσ)lσ−1]

m
∑

j=1

[cj lj
∏

k 6=j

(x− ζk)] (6.396)

is a zero polynomial (e.g. coefficient of xn−1 = c1
∂gn−1

∂ζ1
+ ... + cm

∂gn−1

∂ζm
= first

element of c1J1 + ...+ cmJm). Hence

r(x) =

m
∑

j=1

cj lj
∏

k 6=j

(x − ζk) = 0 (6.397)

Hence for t = 1,...,m,

r(ζt) = ct[lt
∏

k 6=t

(ζt − ζk)] = 0 (6.398)

implies ct = 0 since the lts are positive and ζks are distinct. Hence the Jjs are
independent as claimed. On the other hand suppose that ζ1, ..., ζm are not distinct,
e.g. ζ1 = ζ2. Then the first two columns of J(z) are coefficients of polynomials

h1 = −l1(x − ζ1)
l1−1(x− ζ2)

l2

m
∏

k=3

(x− ζk)lk (6.399)

and

h2 = −l2(x − ζ1)
l1(x− ζ2)

l2−1
m
∏

k=3

(x− ζk)lk (6.400)

Since ζ1 = ζ2, these differ only by constant multiples l1 and l2. Hence J(z) is rank
deficient (rank ≤ m− 1).

266 6. Matrix Methods

With the system 6.386 being non-singular by the above theorem, the Gauss-
Newton iteration

zk+1 = zk − [J(z)+W][Gl(zk) − a] (k = 0, 1, ...) (6.401)

on Πl is well-defined. Here

J(zk)+W = [J(zk)HW2J(zk)]−1J(zk)HW2 (6.402)

Theorem 3.4. Let z̃ = (ζ̃1, ..., ζ̃m) be a pejorative root of p ∼ a associated
with multiplicity structure l and weight W. Assume ζ̃1, ζ̃2, ..., ζ̃m are distinct. Then
there is a number ǫ (> 0) such that, if ||a − Gl(z̃)||W < ǫ and ||z0 − z̃||2 < ǫ,
then iteration 6.401 is well-defined and converges to the pejorative root z̃ with at
least a linear rate. If further a = Gl(z̃), then the convergence is quadratic.

Proof. Let F (z) = W[Gl(z) − a] and Ĵ(z) be its Jacobian. F (z) is obviously

analytic. From Theorem 3.3, the smallest singular value of Ĵ(z) is strictly positive.
If a is sufficiently close to Gl(z̃), then

||F (z̃)||2 = ||Gl(z̃) − a||W (6.403)

will be small enough so that 6.378 holds with δ < σ2. Thus all the conditions of
Lemma 2.8 are satisfied and there is a neighborhood Ω of z̃ such that if z0 ∈ Ω,
the iteration 6.401 converges and satisfies 6.381. If in addition a = Gl(z̃), then
F (z̃) = 0 and so δ = 0 in 6.378 and 6.381. Thus the convergence becomes
quadratic.

As a special case for l = [1, 1, ..., 1], the equations 6.386 form Vieta’s nonlin-
ear system. Solving this by Newton’s n-dimensional method is equivalent to the
WDK algorithm. When a polynomial has multiple roots Vieta’s system becomes
singular at the (nondistinct) root vector. This appears to be the reason that causes
ill-conditioning of conventional root-finders: a wrong pejorative manifold is used.

Zeng next discusses a “structure-preserving” condition number. In general, a
condition number is the smallest number satisfying

[forward error] ≤ [condition number] × [backward error] + h.o.t. (6.404)

where h.o.t means higher-order terms in the backward error. In our context forward
error means error in the roots, and backward error means the errors in the coeffi-
cients which would produce that root error. For a polynomial with multiple roots,
under unrestricted perturbations, the only condition number satisfying 6.404 is
infinity. For example, consider p(x) = x2 (roots 0,0). A backward error ǫ gives a
perturbed polynomial x2 + ǫ, which has roots ±√

ǫi, i.e. forward error of magni-
tude

√
ǫ. The only constant c which accounts for

√
ǫ ≤ cǫ for all ǫ > 0 must be

infinity (for if ǫ < 1,
√
ǫ > ǫ). However by changing our objective from solving

p(x) = 0 to solving the non-linear least squares problem in the form 6.387, the

6.4. Methods Designed for Multiple Roots 267

structure-altering noise is filtered out, and the multiplicity structure is preserved,
leading usually to far less sensitivity in the roots.

Consider the root vector z of p ∼ a = Gl(z). The polynomial p is perturbed,
with multiplicity structure l preserved, to p̂ ∼ â = Gl(ẑ). That is, both p and p̂
are on the same pejorative manifold Πl. Then

â − a = Gl(ẑ) −Gl(z) = J(z)(ẑ − z) +O(||ẑ − z||2) (6.405)

where J(z) is the Jacobian of Gl(z). If the elements of z are distinct, then by
Theorem 3.3 J(z) is of full rank. Hence

||W(â − a)||2 = ||[WJ(z)](ẑ − z)||2 + h.o.t (6.406)

i.e.

||â − a||W ≥ σmin||ẑ − z||2 + h.o.t (6.407)

or

||ẑ − z||2 ≤ 1

σmin
||â − a||W + h.o.t. (6.408)

where σmin, the smallest singular value of WJ(z) , is > 0 since W and J(z) are
of full rank. 6.408 is in the form of 6.404, with forward error = ||ẑ − z||2, back-
ward error = ||â − a||W , and condition number = 1

σmin
. Thus in the present sense

(of multiplicity-preserving perturbations) the sensitivity of multiple roots is finite.
The above condition number, which depends on the multiplicity structure l and the
weight W, is called κl,w(z). Note that the array l = [l1, ..., lm] may or may not be
the actual multiplicity structure. Thus a polynomial has different condition num-
bers corresponding to different pejorative roots on various pejorative manifolds.

Now suppose a polynomial p is perturbed to give a slightly different polynomial
p̂, with both polynomials near a pejorative manifold Πl. It is possible that neither
polynomial possesses the structure l exactly, so that both polynomials may be ill-
conditioned in the conventional sense. So the exact roots of p and p̂ may be far
apart. However the following theorem ensures that their pejorative roots (unlike
their exact ones) may still be insensitive to perturbations.

Theorem 3.6. For a fixed l = [l1, ..., lm], let the polynomial p̂ ∼ b̂ be
an approximation to p ∼ b with pejorative roots ẑ and z, respectively, that
correspond to the multiplicity structure l and weight W. Assume the components
of z are distinct while ||Gl(z) − b̂||W reaches a local minimum at ẑ. If ||b − b̂||W
and ||Gl(z) − b||W are sufficiently small, then

||z − ẑ||2 ≤ 2κl,w(z).(||Gl(z) − b||W + ||b− b̂||W) + h.o.t (6.409)

Proof. From 6.408

||z − ẑ||2 ≤ κl,w(z)||Gl(z) −Gl(ẑ)||W + h.o.t

268 6. Matrix Methods

≤ κl,w(z)(||Gl(z) − b||W + ||b − b̂||W + ||Gl(ẑ) − b̂||W) + h.o.t (6.410)

Since ||Gl(ẑ) − b̂||W is a local minimum, we have

||Gl(ẑ) − b̂||W ≤ ||Gl(z) − b̂||W ≤ ||Gl(z) − b||W + ||b − b̂||W (6.411)

and the theorem follows.

This means that even if the exact roots are hypersensitive, the pejorative roots
are stable if κl,w(z) is not too large. For a polynomial p having a multiplicity
structure l, we can now estimate the error of its multiple roots computed from its
approximation p̂. The exact roots of p̂ are in general all simple and far from the
multiple roots of p. However by the following corollary the pejorative roots ẑ of
p̂ w.r.t. l can be an accurate approximation to the multiple roots z of p.
Corollary 3.7. Under the conditions of Theorem 3.6, if z is the exact root vector
of p with multiplicity structure l, then

||z − ẑ||2 ≤ 2κl,w(z)||b− b̂||W + h.o.t. (6.412)

Proof. Since z is exact, ||Gl(z) − b||W = 0 in 6.411.

The “attainable accuracy” barrier suggests that when multiplicity increases, so
does the root sensitivity. But apparently this does not apply to the structure-
constrained sensitivity. For example, consider the set of polynomials

pl(x) = (x+ 1)l1(x− 1)l2(x− 2)l3 (6.413)

with different sets l = [l1, l2, l3]. For the weight W defined in 6.388 the condition
number is 2.0 for l = [1, 2, 3], .07 for l = [10, 20, 30], and only .01 for l =
[100, 200, 300]. We get the surprising result that the root error may be less than
the data error in such cases. Thus multiprecision arithmetic may not be a necessity,
and the attainable accuracy barrier may not apply. The condition number can be
calculated with relatively little cost, for the QR decomposition of WJ(z) is required
by the Gauss-Newton iteration 6.401, and can be re-used to calculate κl,w. That
is, inverse iteration as in Lemma 2.6 can be used to find σmin. Iteration 6.401
requires calculation of the vector value of Gl(zk) and the matrix J(zk), where the
components of Gl(z) are defined in 6.384 and 6.385 as coefficients of the polynomial

p(x) = (x− z1)
l1 ...(x− zm)lm (6.414)

Zeng suggests doing this numerically by constructing p(x) recursively by multipli-
cation with (x− zj), which is equivalent to convolution with vectors (1,−zj)

T . We
do this lj times for j = 1, ...,m. The following, Algorithm EVALG, summarizes
this calculation in pseudo-code. It takes n2 +O(n) flops.

Algorithm EVALG
input: m,n, z = (z1, ..., zm)T , l = [l1, ..., lm].

6.4. Methods Designed for Multiple Roots 269

output: vector Gl(z) ∈ Cm.
Calculation:

s = (1)
for i = 1,2,...,m do

for k = 1,2,...,li do
s = conv(s, (1,−zi))

end do
end do
gn−j(z) = (j+1)th component of s for j=1,...,n

The j’th column of the Jacobian J(z), as shown in the proof of Theorem 3.3,
can be considered as the coefficients of qj(x) defined in 6.394. See the pseudo-code
for EVALJ shown below:

Algorithm EVALJ
input: m,n, z = (z1, ..., zm)T , l = [l1, ..., lm].
output: Jacobian J(z) ∈ Cn×m.
Calculation:

u =
∏

(x− zj)
lj−1 by EVALG

for j = 1,2,...,m do
s = −lju
for l = 1,...,m, l 6= j do

s = conv(s, (1,−zl))
end do
j’th column of J(z) = s

end do

Zeng states that this takes mn2 +O(n) flops. Each step of the Gauss-Newton iter-
ation takes O(nm2) flops, for a total of O(m2n+mn2). The complete pseudo-code
for Algorithm I is shown below:

Pseudo-code PEJROOT (Algorithm I)
input: m, n, a ∈ Cn, weight matrix W, initial iterate z0,

multiplicity structure l, error tolerance τ .
output: roots z = (ζ1, ..., ζm), or a message of failure.
Calculation:
for k = 0,1,... do

Calculate Gl(zk) and J(zk) with EVALG and EVALJ
Compute the least squares solution ∆zk to the linear system

[WJ(zk)](∆zk) = W[Gl(zk) − a]
Set zk+1 = zk − ∆zk and δk = ||∆zk||2
if k ≥ 1 then

if δk ≥ δk−1 then stop, output failure message

270 6. Matrix Methods

else if
δ2

k

δk−1−δk
< τ then stop, output z = zk+1

end if
end if

end do

Zeng performed several tests of his Algorithm I, implemented as a Matlab code
PEJROOT. The tests were performed strictly with IEEE double precision arith-
metic. His method was compared with the third-order method of Farmer and
Loizou (1977) which is subject to the “attainable accuracy” barrier. Both methods
were applied to

p1(x) = (x− 1)4(x− 2)3(x − 3)2(x− 4) (6.415)

starting with z0 = (1.1, 1.9, 3.1, 3.9). Farmer-Loizou bounces around, for example
giving 3.3 for the second root after 100 iterations. In contrast Zeng’s method con-
verges to 14 digits after 8 iterations. For the next case the multiplicities in 6.415
are changed to 40,30,20, and 10 respectively. Now the Farmer-Loizou program
uses 1000-digit arithmetic and yet still fails dismally, while Zeng attains 14-digit
accuracy in 6 iterations. The accuracy barrier in Algorithm I is κl,w(z), which is
29.3 in this case. PEJROOT calculated the coefficients with a relative error of
4.56× 10−16. The actual root error is about 1× 10−14, which is < the error bound
2 × (29.3)× (4.56 × 10−16) = 2.67 × 10−14 given by 6.412. Root-finding packages
which use multiprecision, such as MPSOLVE of Bini (1999) and EIGENSOLVE of
Fortune (2002), can accurately solve polynomials with exact coefficients, but for
inexact coefficients and multiple roots the accuracy is very limited. For example
the polynomial p(x) = (x −

√
2)20(x −

√
3)10 with coefficients calculated to 100

digits has “attainable accuracy” of 5 and 10 digits for the
√

2 and
√

3 roots respec-
tively. MPSOLVE and EIGENSOLVE reach this accuracy but no more, whereas
PEJROOT gives roots and multiplicity to 15-digit accuracy using only 16-digit pre-
cision in the coefficients and standard machine precision (also 16 digits).
Even clustered roots can be dealt with, e.g.

f(x) = (x − .9)18(x− 1)10(x− 1.1)16

was solved by the MATLAB function ROOTS giving 44 alleged roots in a 2 × 2
box (i.e. some roots have an imaginary part > 1i). On the other hand PEJROOT
obtains all roots to 14 digit accuracy, starting with the multiplicity structure and
initial approximations provided by Algorithm II. The condition number is 60.4, and
coefficients are perturbed in the 16th digit, so that 14 digits accuracy in the roots
is the best that can be expected. Zeng also considers a case with multiplicities
up to 400. He perturbs the coefficients in the 6th digits, and PEJROOT obtains
all roots correct to 7 digits; whereas ROOTS gives many totally incorrect estimates.

We now describe “Algorithm II” which calculates the multiplicity structure of
a given polynomial as well as an initial root approximation, both to be used by

6.4. Methods Designed for Multiple Roots 271

Algorithm I (note that a little strangely Algorithm II must be applied BEFORE
Algorithm I). Now for a polynomial p with u = GCD(p, p′), v = p

u has the
same distinct roots as p, but all roots of v are simple. If we can find v its simple
roots can be found by some “standard” root-finder such as those described in earlier
sections of this Chapter. Thus the following process, also described in Chapter 2,
will in principle give us the factorization of p:

u0 = p
for j = 1,2,... while deg(uj−1) > 0 do

calculate

uj = GCD(uj−1, u
′
j−1); vj =

uj−1

uj
(6.416)

calculate the (simple) roots of vj(x)
end do

The usual GCD calculations are often numerically unstable. Zeng avoids this prob-
lem as follows: he factors a polynomial p and its derivative p′ with a GCD triplet
(u, v, w) such that

u(x)v(x) = p(x) (6.417)

u(x)w(x) = p′(x) (6.418)

where u(x) is monic while v(x) and w(x) are coprime. He uses a successive updating
process that calculates only the smallest singular values of the Sylvester matrices
Sj(p), j = 1, 2, ... and stops at the first rank-deficient matrix Sm(p). With this
Sm(p) we can find the degrees of u, v, w, and obtain coefficients of v and w from
the right singular vector (see later). Using a more stable least squares division we
can generate an approximation to the GCD triplet, and obtain an initial iterate.
The key part of Algorithm II is the following GCD-finder:

STEP 1. Find the degree k of GCD(p, p′) (= u).
STEP 2. Set up the system 6.417-6.418 according to the degree k.
STEP 3. Find an initial approximation to u, v, w.
STEP 4. Use the Gauss-Newton iteration to refine the GCD triplet (u, v, w).

We shall now describe each step in detail, starting with STEP 1. Let p be a
polynomial of degree n. By Lemma 2.4, the degree of u = GCD(p, p′) is k
= n-m iff the m’th Sylvester matrix is the first one being rank-deficient. Hence
k = deg(u) can be found by calculating the sequence of the smallest singular
values σj of Sj(p), (j = 1, 2, ...) until reaching σm that is approximately zero. Since
only one singular pair (i.e. the singular value and the right singular vector) is
needed, the inverse iteration of Lemma 2.6 can be used. Moreover we can further

272 6. Matrix Methods

reduce the cost by recycling and updating the QR decomposition of the Sj(p)
′s.

For let

p(x) = anx
n + an−1x

n−1 + ...+ a0 (6.419)

and p′(x) = bn−1x
n−1 + bn−2x

n−2 + ...+ b0 (6.420)

We rotate the columns of Sj(p) to form Ŝj(p) so that the odd and even columns of

Ŝj(p) consist of the coefficients of p′ and p respectively, i.e.




























bn−1 0 .. an 0 ..
bn−2 an−1
..
.. .. bn−1 an

b0 .. bn−2
.. a0
..
.. .. b0
.. a0





























(6.421)

(with j+1 columns of the bi, and j columns of the ai) becomes:
































bn−1 an
bn−2 an−1 bn−1 an
.. .. bn−2 an−1
..
b0 bn−1 an ..
.. a0 b0 bn−1

.. a0

..

.. b0

.. a0 b0

































(6.422)

Thus the new matrix Ŝj+1(p) is formed from Ŝj(p) by adding a zero row at the
bottom and then two columns at the right. Updating the QR decomposition of
successive Ŝj(p)

′s requires only O(n) flops. The inverse iteration 6.365-6.367 re-

quires O(j2) flops for each Ŝj(p). Let θ be a given zero singular value threshold (see
later), then the algorithm for finding the degrees of u, v, w can be summarized as
follows:

Calculate the QR decomposition of the (n+ 1) × 3 matrix Ŝ1(f) = Q1R1.

for j = 1,2,... do

use the inverse iteration 6.365-6.367 to find the smallest singular value σj

of Ŝj(p) and the corresponding right singular vector yj

6.4. Methods Designed for Multiple Roots 273

If σj ≤ θ||p||2, then m = j, k = n-m, extract v and w from yj

(see Lemma 2.5), exit

else update Ŝj(p) to Ŝj+1(p) = Qj+1Rj+1

end if

end do

STEP 2. Let k = n-m be the degree of u calculated in Step 1. We express the
GCD system 6.417-6.418 in vector form with unknown vectors u, v and w:





uk

conv(u,v)
conv(u,w)



 =





1
p
p′



 (6.423)

for u ∈ Ck+1, v ∈ Cm+1, w ∈ Cm.

Lemma 4.1. The Jacobian of 6.423 is

J(u,v,w) =





eT
1 0 0

Cm(v) Ck(u) 0
Cm(w) 0 Ck−1(u)



 (6.424)

If u = GCD(p, p′) with (u, v, w) satisfying 6.423, then J(u, v, w) is of full
rank.
Proof. 6.424 follows from Lemma 2.2. To prove that J(u, v, w) is of full rank,
assume that there exist polynomials q(x), r(x) and s(x) of degrees ≤ k, ≤ m, ≤
m− 1 respectively such that

J(u, v, w)





q
r
s



 = 0 or







qk = 0
vq + ur = 0
wq + us = 0







(6.425)

where q, r, s are the coefficient vectors of q(x), r(x) and s(x). From 6.425 we
have vq = −ur and wq = −us. Hence wvq − vwq = −uwr + uvs = 0,
i.e. −wr + vs = 0 (since u 6≡ 0) or wr = vs. Since w and v are coprime,
the factors of v = factors of r, hence r = t1v. Similarly s = t2w, so that
wr = t1vw = t2vw and finally t1 = t2 = t. Hence vq = −ur = −utv leads
to q = −tu. But deg(q) = deg(tu) ≤ k, deg(u) = k ≥ 0 and uk = 1,
so deg(t) = 0 i.e. t = const. Finally by the first equation in 6.425 and uk = 1
we have qk = −tuk = −t = 0, so that q − −tu = 0, r = tv = 0, and
s = tw = 0. Thus J(u,v,w) must be of full rank.

Zeng next states
Theorem 4.2. Let ũ = GCD(p, p′) with ṽ and w̃ satisfying 6.423, and let W be

274 6. Matrix Methods

a weight matrix. Then there exists ǫ > 0 such that for all u0, v0, w0 satisfying
||u0 − ũ||2 < ǫ, ||v0 − ṽ||2 < ǫ, and ||w0 − w̃|| < ǫ, the Gauss-Newton iteration





uj+1

vj+1

wj+1



 =





uj

vj

wj



− J(uj ,vj ,wj)
+
W





eT
1 uj − 1

conv(uj ,vj) − f
conv(uj ,wj) − f′





(j = 0, 1, ...) (6.426)

converges to [ũ, ṽ, w̃]T quadratically. Here

J(.)+W = [J(.)HW2J(.)]−1J(.)HW2 (6.427)

is the weighted pseudo-inverse of the Jacobian J(.) defined in 6.424.
Proof. Zeng refers to Lemmas 2.8 and 4.1

STEP 3. Initial iterates v0, w0 can be obtained from Step 1 i.e. when the singular
value σm is calculated, the associated singular vector ym consists of v0 and w0,
which are approximations to v and w in 6.423 (see Lemma 2.5 (c)). Because of
the column permuation in 6.422, the odd and even entries of ym form v0 and w0

respectively. u0 is not found by conventional long division

p(x) = v0(x)q(x) + r(x) with u0 = q, r = 0 (6.428)

(which may not be numerically stable). Rather we solve the linear system (see
Lemma 2.5(d)):

Ck(v0)u0 = p (6.429)

by least squares so as to minimize

||conv(u0,v0) − p||2 (6.430)

This “least squares division” is more accuate than 6.428, which is equivalent to
solving the (n+ 1) × (n+ 1) lower triangular linear system

Lk(v0)

[

q
r

]

= p, with Lk(v0) =

[

Ck(v0) O(k+1)×(n−k)

... I(n−k)×(n−k)

]

(6.431)

In Theorem 4.3 Zeng proves that the condition number of Ck(v) is ≤ the condition
number of Lk(v). In an example with v(x) = x + 25, m = 20, we have
κ(Ck(v)) = 1.08, κ(Lk(v)) = 9 × 1027. In another example, the coefficients

of p(x)
v(x) were obtained correct to at least 8 decimal digits by the “least squares

division” 6.429-6.430, but some were wrong by a factor of 30 in the case of “long
division” 6.428. After extracting v0 and w0 from ym and solving 6.429 for u0,
we use them as initial iterates for the Gauss-Newton process 6.426 that refines the
GCD triplet. The system 6.429 is banded, with band-width k+1, so the cost of
solving it is relatively low.

6.4. Methods Designed for Multiple Roots 275

STEP 4. The Gauss-Newton iteration is used to reduce the residual

||
(

conv(uj ,vj)
conv(uj ,wj)

)

−
(

p
p′

)

||W (6.432)

at each step. We stop when this residual no longer decreases. W is used to scale

the GCD system 6.423 so that the entries of W

[

p
p′

]

are of similar magnitude.

Each step of Gauss-Newton requires solving an overdetermined linear system

[WJ(uj ,vj ,wj)]z = W





eT
1 uj − 1

conv(uj ,vj) − p
conv(uj ,wj) − p′



 (6.433)

for its least squares solution z, and requires a QR factorization of the Jacobian
WJ and a backward substitution for an upper triangular linear system. This Ja-
cobian has a special sparsity structure that can largely be preserved during the
process. Taking this sparity into account, the cost of the sparse QR factorization
is O(mk2 +m2k +m3) where m = number of distinct roots.

We next discuss the computation of the multiplicity structure. The procedure
6.416 generates a sequence of square-free polynomials v1, v2, ..., vs of degrees d1 ≥
d2 ≥ ... ≥ ds respectively, such that

p = v1v2...vs =
u0

u1

u1

u2
...
us−1

us
(6.434)

where u0 = p and us = 1. Furthermore

{roots of v1} ⊇ {roots of v2} ⊇ ... ⊇ {roots of vs} (6.435)

All vj are simple; roots of v1 consist of all distinct roots of p; roots of v2 consist of
all distinct roots of p

v1
, etc. Then the multiplicity structure is determined by the

degrees d1, d2, ..., ds. For example, considering

p(x) = (x− a)(x− b)3(x − c)4

we have the following:

vj deg(vj) roots
v1(x) = (x− a) (x− b) (x− c) d1 = 3 a, b, c
v2(x) = (x− b) (x− c) d2 = 2 b, c
v3(x) = (x− b) (x− c) d3 = 2 b, c
v4(x) = (x− c) d4 = 1 c

multiplicity structure → 1, 3, 4

276 6. Matrix Methods

Without finding the roots a, b, c the multiplicity structure [l1, l2, l3] = [1, 3, 4]
(with the li in increasing order) is solely determined by the degrees d1, ..., d4. Thus

l1 = 1 since d1 ≥ 3 = (d1 + 1) − 1
l2 = 3 since d1, d2, d3 ≥ 2 = (d1 + 1) − 2
l3 = 4 since d1, d2, d3, d4 ≥ 1 = (d1 + 1) − 3

In general we have
Theorem 4.4. With vi and di as above let m = d1 = deg(v1). Then the
multiplicity structure l consists of components

lj = max{t|dt ≥ (d1 + 1) − j}, j = 1, 2, ...,m (6.436)

Proof. Each ui contains the factors of p(x) to degree one less than in ui−1 (except
of course that those linear in ui−1 have disappeared in ui). Hence vi = ui−1

ui

contains only those factors of p(x) of degree at least i. So if d1 = d2 = ... =
dr > dr+1, then the factor of lowest degree in p(x) has degree r. Likewise if
dr+1 = dr+2 = ... = dt > dt+1, then the factor of next lowest degree has degree
t, and so on.

The location of the roots is not needed in determining the multiplicity struc-
ture. The initial root approximation is determined based on the fact that an l-fold
root of p(x) appears l times as a simple root among v1, ..., vl. After calculating
the roots of each vj with a standard root-finder, numerically “identical” roots of
the vj ’s are grouped, acording to the multiplicity structure [l1, ..., lm], to form the
initial approximation (z1, ..., zm) that is needed by Algorithm I.

We use three control parameters for the above. First is the zero singular value
threshold θ for identifying a numerically zero σm. The default value used is 10−8.
When the smallest σl of Ŝl(uj−1) is < θ||uj−1||2, it will be tentatively considered
0. Then the Gauss-Newton iteration is used until

ρj = ||
(

conv(uj ,vj) − uj−1

conv(uj ,wj) − u′
j−1

)

||W ≤ ρ||uj−1||2 (6.437)

where ρ, the initial residual tolerance, defaults to 10−10. If 6.437 is not yet satisfied
we continue to update Ŝl(uj−1) to Ŝl+1(uj−1) and check σl+1. For the third control
parameter (the residual growth factor) see the cited paper, p 896. A pseudo-code
for Algorithm II is shown below. It is called GCDROOT and is included with PE-
JROOT in the overall package MULTROOT.

Pseudocode GCDROOT (Algorithm II)
input: Polynomial p of degree n, singular threshold θ,

residual tolerance ρ, residual growth factor φ
(If only p is provided, set θ = 10−8, ρ = 10−10, φ = 100)

output: the root estimates (z1, ..., zm)T and

6.4. Methods Designed for Multiple Roots 277

multiplicity structure (l1, ..., lm)

Initialize u0 = p
for j=1,2,...,s, until deg(us) = 0 do

for l = 1,2,... until residual < ρ||uj−1||2 do

calculate the singular pair (σl,yl) of Ŝl(uj−1) by iteration 6.365-6.367
if σl < θ||uj−1||2 then

set up the GCD system 6.423 with p = uj−1

extract v
(0)
j , w

(0)
j from yl and calculate u

(0)
j

apply the Gauss-Newton iteration 6.426 from

u
(0)
j , v

(0)
j , w

(0)
j to obtain uj, vj , wj

extract the residual ρj as in 6.437
end if

end do
adjust the residual tolerance ρ to be max(ρ, φρj)

and set dj = deg(vj)
end do
set m = d1, lj = max{t|dt ≥ m− j + 1}, (j = 1, ...,m)
match the roots of vi(x), (i = 1, ..., s) according to the multiplicities lj .

Convergence of Algorithm II with respect to inverse iteration is guaranteed by
Lemma 2.6 (unless x0 is orthogonal to y, in which unlikely event orthogonality
will in any case be destroyed by roundoff). The Gauss-Newton iteration could in
theory cause trouble if the polynomial is perturbed to a place equidistant from two
or more pejorative manifolds, but in extensive tests the algorithm always converged
in practise.

Numerical tests included the following: consider

p(x) = (x− 1)20(x− 2)15(x− 3)10(x− 4)5

with coefficients rounded to 16 digits. GCDROOTS correctly finds the multiplicity
structure, while the roots are approximated to 10 digits or better. Inputting these
results to PEJROOT, Zeng obtained all roots correct to at least 14 digits. In
contrast MPSOLVE (although using multiprecision) obtained spurious imaginary
parts up to ±2.5i. Zeng’s program is believed to be the only one to date which
works at all accurately in such difficult cases. Another comparison was made with
Uhlig’s program PZERO based on the Euclidean division, for the polynomial

pk(x) = (x − 1)4k(x − 2)3k(x − 3)2k(x− 4)k

with k = 1,2,...,8. PZERO fails to identify the multiplicity structure beyond k =
2, whereas GCDROOT finds the correct multiplicities up to k = 7, and the roots

278 6. Matrix Methods

correct to 11 digits up to this value of k. Also the effect of inexact coefficients was
tested on the combined method using

p(x) = (x− 10

11
)5(x − 20

11
)5(x− 30

11
)5

with coefficients rounded to k digits (k = 10,9,...). GCDROOT gives the cor-
rect multiplicity structure down to k = 7. When multiplicities are given manully
PEJROOT converges for data correct only to 3 digits. Finally the author Zeng
generates a polynomial f(x) of degree 20 based on known exact roots, and rounds
the coefficients to 10 digits. He constructs multiple roots by repeated squaring,

i.e. gk(x) = [f(x)]2
k

for k = 1,2,3,4,5. Thus g5 has 20 complex roots each of
multiplicity 32. The polynomials gk(x) have inexact coefficients. MULTROOT
finds accurate multiplicities and roots correct to at least 11 digits. Thus ends our
description of Zeng’s paper and method.

Niu and Sakurai (2003) describe a somewhat different approach to finding mul-
tiple roots. They propose a new companion matrix which is efficient in finding
multiple zeros and their multiplicites, and (perhaps more usefully) the mean of a
cluster and the number of zeros in that cluster. They make use of a theorem of
Smith (1970), which we quote in a form suitable when all zeros are simple: i.e.
“For a monic polynomial p(z) of degree n, suppose that n distinct approximate
zeros z1, ..., zn are given, then the zeros of p(z) are the eigenvalues of the matrix

R =











z1 − p(z1)
q′(z1)

− p(z1)
q′(z2) .. − p(z1)

q′(zn)

− p(z2)
q′(z1)

z2 − p(z2)
q′(z2)

.. − p(z2)
q′(zn)

..

− p(zn)
q′(z1)

.. .. zn − p(zn)
q′(zn)











(6.438)

(This is not how Niu and Sakurai write it, but this author suspects a misprint in
their text).
In the above q(z) =

∏n
i=1(z−zi). An iterative application of Smith’s method (find

eigenvalues of R and use those for zi in the next iteration) does not work well for
multiple roots, and this is true for other methods, such as Fiedler’s (unless perhaps
multiple precision is used). As stated, Niu and Sakurai describe a new companion
matrix which works well for multiple roots. Unlike most “classical” methods they
compute the distinct zeros and their multiplicities separately (as Zeng does). Let

p(z) = cn

m
∏

k=1

(z − ζk)lk ,

m
∑

k=1

lk = n, cn 6= 0 (6.439)

have all n zeros located inside the circle Γ : {z : |z − γ| < ρ}, and let ζ1, ..., ζm be
mutually distinct zeros of p(z) with multiplicities l1, ..., lm. By a change of origin

6.4. Methods Designed for Multiple Roots 279

and scale we can ensure that all zeros are inside the unit circle C. Hence l1, ..., lm
are residues of p′(z)

p(z) at ζ1, ..., ζm. Let

µs =
1

2πi

∫

C

zs p
′(z)

p(z)
dz, (s = 0, 1, 2, ...) (6.440)

Then by the residue Theorem (see e.g. Henrici(1974))

µs =

m
∑

k=1

lkζ
s
k, (s = 0, 1, 2, ...) (6.441)

Let Hm, H
<
m be the m×m Hankel matrices

Hm = [µs+q]
m−1
s,q=0 =













µ0 µ1 .. µm−1

µ1 µm

..

.. µ2m−3

µm−1 µ2m−2













(6.442)

H<
m = [µs+q]

m
s,q=1 =













µ1 µ2 .. µm

µ2 µm+1

..

.. µ2m−2

µm µ2m−1













(6.443)

N.B. We label subsequent lemmas etc according to the numbering of Niu and Saku-
rai.
Lemma 3.1. If ζ1, ..., ζm are mutually distinct, then Hm is non-singular. Proof
Let

Vm =









1 .. 1
ζ1 .. ζm
..

ζm−1
1 .. ζm−1

m









(6.444)

and let

Dm =









l1 0
0 l2 0 ..
..
0 .. 0 lm









(6.445)

Then by 6.441,

Hm = VmDmVT
m (6.446)

280 6. Matrix Methods

(e.g. for m = 3, V3D3V
T
3 =





1 1 1
ζ1 ζ2 ζ3
ζ2
1 ζ2

2 ζ2
3









l1 0 0
0 l2 0
0 0 l3









1 ζ1 ζ2
1

1 ζ2 ζ2
2

1 ζ3 ζ2
3





=





l1 l2 l3
l1ζ1 l2ζ2 l3ζ3
l1ζ

2
1 l2ζ

2
2 l3ζ

2
3









1 ζ1 ζ2
1

1 ζ2 ζ2
2

1 ζ3 ζ2
3



 =





∑

li
∑

liζi
∑

liζ
2
i

∑

liζi
∑

liζ
2
i

∑

liζ
3
i

∑

liζ
2
i

∑

liζ
3
i

∑

liζ
4
i





=





µ0 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4



 = H3)

Since ζ1, ..., ζm are distinct and l1, ..., lm 6= 0, Vm and Dm are non-singular; hence
Hm also is non-singular. Let φm be the polynomial

φm(z) = zm + bm−1z
m−1 + ...+ b0 =

m
∏

k=1

(z − ζk) (6.447)

then the problem of finding the n zeros of p(z) reduces to finding the m zeros of
φm(z) and then computing their multiplicities. φm(z) is often ill-conditioned, so
instead of computing its coefficients, the authors use a type of companion matrix
whose eigenvalues are the zeros of φm(z).
Theorem 3.2. Let ζ1, ..., ζm be the m distinct zeros of p(z) and Cm be the Frobe-
nius companion matrix of φm(z), then

H−1
m H<

m = Cm (6.448)

Proof. Let

Ik = µk+m + bm−1µk+m−1 + ...+ b0µk =

µk+m +

m−1
∑

i=0

biµk+i (k = 0, ...,m− 1) (6.449)

Then by 6.441

Ik =

m
∑

i=1

liζ
k
i (ζm

i + bm−1ζ
m−1
i + ...+ b0) =

m
∑

i=1

liζ
k
i φm(ζi) = 0 (k = 0, 1, ...,m− 1) (6.450)

Hence

µk+m = −
m−1
∑

i=0

biµk+i (k = 0, 1, ...,m− 1) (6.451)

6.4. Methods Designed for Multiple Roots 281

Thus, from 6.441 and 6.451 we have

HmCm =













µ0 µ1 .. µm−1

µ1 µm

..

.. µ2m−3

µm−1 µ2m−2

























0 −b0
1 0 .. −b1
..
.. −bm−2

0 .. 1 −bm−1













(6.452)

=









µ1 µ2 .. −∑m−1
i=0 µibi

µ2
..

µm −
∑m−1

i=0 µm+i−1bi









=













µ1 µ2 .. µm

µ2
..
.. µ2m−2

µm µ2m−1













= H<
m (6.453)

Since Hm is non-singular, the theorem follows.
Theorem 3.3. Let z1, ..., zm be distinct approximate zeros of φm(z), and define

pm(z) = det(H<
m − zHm)/det(Hm) (6.454)

qm(z) =

m
∏

k=1

(z − zk) (6.455)

Then the m distinct zeros of p(z) are the eigenvalues of

A =











z1 − pm(z1)
q′

m(z1)
− pm(z1)

q′
m(z2)

.. − pm(z1)
q′

m(zm)

− pm(z2)
q′

m(z1)
z2 − pm(z2)

q′
m(z2)

.. ..

..

− pm(zm)
q′(z1)

.. .. zm − pm(zm)
q′

m(zm)











(6.456)

Proof. Since pm(z) = det(H<
m − zHm)/det(Hm)

= det(H−1
m)det(H<

m − zHm) = det(H−1
m H<

m − zI), then by Theorem 3.2

pm(z) = det(Cm − zI) = (−1)mφm(z) (6.457)

Hence the zeros of pm(z) are given by ζ1, ..., ζm (the zeros of φm(z)). But by 6.438
the distinct zeros of φm(z) are the eigenvalues of

S =







z1 − φm(z1)
q′

m(z1)
−φm(z1)

q′
m(z2)

.. ..

..

−φm(zm)
q′

m(z1)
.. .. zm − φ(zm)

q′
m(zm)






(6.458)

282 6. Matrix Methods

(The authors do not make clear what happens to the minus sign when m is odd)
By 6.457 S is the same as 6.456. Thus the theorem is proved. This matrix is a new
companion matrix (for φ) and all the eigenvalues of A are simple. They give the
distinct zeros ζ1, ..., ζm of p(z).

The integrals µs (see 6.440) can be approximated via numerical integration, e.g.
we can use the K-point Trapezoidal rule on the unit circle. Let ωj be the K’th roots
of unity, i.e.

ωj = exp(
2π

K
ij), (j = 0, 1, ...,K − 1) (6.459)

Then setting z = eiθ in 6.440 gives

µs =
1

2π

∫ 2π

0

eisθeiθ p
′(eiθ)

p(eiθ)
dθ, (s = 0, 1, ...) (6.460)

The Trapezoidal rule approximation of this is, with θj = 2π
K j,

µ̂s =
1

K

K−1
∑

j=0

p′(ωj)

p(ωj)
ωs+1

j , (s = 0, 1, ...) (6.461)

Let

Ĥm = [µ̂k+i]
m−1
k,i=0, Ĥ

<

m = [µ̂1+k+i]
m−1
k,i=0 (6.462)

Then µ̂s, Ĥm and Ĥ
<

m are approximations to µs, Hm and H<
m respectively.

Theorem 3.4. Let ζ1, ..., ζm be the m distinct zeros of p(z), then the corresponding
multiplicities l1, ..., lm are the solutions of the linear system:

m
∑

k=1

(
ζs
k

1 − ζK
k

)lk = µ̂s, (s = 0, 1, ...,m− 1) (6.463)

Proof. Since

p′(z)

p(z)
=

m
∑

k=1

lk
z − ζk

=
µ0

z
+
µ1

z2
+ ... (6.464)

then by 6.461

µ̂s =
1

K

K−1
∑

j=0

ωs+1
j (

∞
∑

i=0

µi

ωi+1
j

) (6.465)

=

∞
∑

i=0

µi(
1

K

K−1
∑

j=0

ωs−i
j) (6.466)

6.4. Methods Designed for Multiple Roots 283

But

1

K

K−1
∑

j=0

ωs−i
j =

{

1 if s− i = rK (r integer)
0 otherwise

}

(6.467)

Hence

µ̂s =
∞
∑

r=0

µs+rK =
m
∑

k=1

lkζ
s
k(1 + ζK

k + ζ2K
k + ...) (6.468)

=

m
∑

k=1

(
lk

1 − ζK
k

)ζs
k (s = 0, 1, ...,m− 1) (6.469)

i.e. the theorem is proved.

Lemma 3.5. If ζ1, ..., ζm are distinct zeros of p(z), then Ĥm is non-singular.
Proof. Let

Um =













1
1−ζK

1

.. 1
1−ζK

m
ζ1

1−ζK
1

.. ζm

1−ζK
m

..
ζm−1
1

1−ζK
1

..
ζm−1

m

1−ζK
m













(6.470)

Then by 6.463

Ĥm = UmDmVT
m (6.471)

where Vm and Dm are defined in 6.444 and 6.445. (For example with m = 2,

U2D2V
T
2 =

[

1
1−ζK

1

1
1−ζK

2
ζ1

1−ζK
1

ζ2

1−ζK
2

]

[

l1 0
0 l2

] [

1 ζ1
1 ζ2

]

=

[

µ̂0 µ̂1

µ̂1 µ̂2

]

= Ĥ2)

Since ζ1, ..., ζm are distinct and inside the unit circle, Um, Dm and Vm are non-
singular, and then so is Ĥm.

Theorem 3.6. Let ζ1, ..., ζm be distinct zeros of p(z), and let Cm be the Frobenius

companion matrix of φm(z). Let Ĥm and Ĥ
<

m be defined as in 6.462, then

Ĥ
−1

m Ĥ
<

m = Cm (6.472)

Proof. Let Îk = µ̂k+m + bm−1µ̂k+m−1 + ...+ b0µ̂k, (k = 0, 1, ...,m− 1)
Then by 6.463

Îk =

m
∑

i=1

liζ
k
i

1 − ζK
i

(ζm
i + bm−1ζ

m−1
i + ...+ b0) (6.473)

284 6. Matrix Methods

m
∑

i=1

liζ
k
i

1 − ζK
i

φm(ζi) = 0, (k = 0, 1, ...,m− 1) (6.474)

Hence

µ̂k+m = −
m−1
∑

i=0

biµ̂k+i, (k = 0, 1, ...,m− 1) (6.475)

Then similarly to the proof of Theorem 3.2, we have

ĤmCm = Ĥ
<

m (6.476)

Since Ĥm is non-singular, the result follows.
The above theorem means that the error of numerical integration of µ̂s does not
affect the result.

In the case that the polynomial has one or more clusters of zeros, suppose
that ζ1, ..., ζν form such a cluster. Let ζG be the arithmetic mean, then ζj =
ζG + ǫj , (j = 1, ..., ν). If we set

ǫ = max1≤j≤ν |ǫj | (6.477)

then
ν
∑

j=1

ζs
j

1 − ζK
j

=

ν
∑

j=1

(ζG + ǫj)
s

1 − (ζG + ǫj)K
=

ν
∑

j=1

ζs
G + sǫjζ

s−1
G +O(ǫ2j)

1 − ζK
G −Kǫjζ

K−1
G +O(ǫ2j)

=
ν
∑

j=1

ζs
G

1 − ζK
G

+ C
ν
∑

j=1

ǫj +O(
∑

ǫ2j)

(for some constant C)

= ν
ζs
G

1 − ζK
G

+O(ǫ2) (6.478)

(since
∑

ǫj = 0, as ζG is “centre of gravity”). If the size of the cluster is small
enough, we can take its centre as one multiple zero and the number of zeros in the
cluster as its multiplicity. Thus we can calculate the centre and the number in the
cluster by the new method.

In practise the authors suggest taking K = 2m, and to apply the algorithm
to the general case where the zeros are inside Γ : {z : |z − γ| < ρ} we set P (z) =
p(γ + zρ) and use P (eiθ) in place of p(eiθ). Let λk and ζk be the zeros of P (z) and
p(z), then if the eigenvalues of the companion matrix A associated with pm(z) are
λ1, ..., λm, then the ζj = γ + ρλj , (j = 1, 2, ...,m). Since

µ̂s =
1

2m

2m−1
∑

j=0

P ′(ωj)

P (ωj)
ωs+1

j =
1

2m

2m−1
∑

j=0

ρp′(γ + ρωj)

p(γ + ρωj)
ωs+1

j (6.479)

6.4. Methods Designed for Multiple Roots 285

and the zeros of P (z) have the same multiplicities as p(z), the multiplicities of ζk
can be calculated from

m
∑

k=1

(
λs

k

1 − λ2m
k

)lk = µ̂s, (s = 0, 1, ...,m− 1) (6.480)

The entire algorithm is summarized below:
Input: c0, ..., cn, the polynomial coefficients

m, the number of distinct zeros.
γ, ρ, the centre and radius of the circle which contains all the zeros.
z1, ..., zm, mutually distinct approximate zeros.

Output: distinct zeros and their multiplicities.

Calculation
(1)set ωj = e

2πji
2m , (j = 0, 1, ..., 2m− 1)

(2)set µ̂k = 1
2m

∑2m−1
j=0 ρ

p′(γ+ρωj)
p(γ+ρωj)

ωk+1
j , (k = 0, ..., 2m− 1)

(3)set Ĥm = [µ̂s+q]
m−1
s,q=0, Ĥ

<

m = [µ̂s+q]
m
s,q=1

(4) compute the companion matrix A by 6.456
(5) compute λ1, ..., λm, the eigenvalues of A
(6) set ζj = γ + ρλj , (j = 1, ...,m)
(7) compute l1, ..., lm by solving 6.480

In step (4), to get the pm(zi) we need to calculate some Hankel determinants. Fast
methods for that problem of O(n2) are discussed in Phillips (1971) and Trench
(1965).

Some numerical experiments were carried out using MATLAB and double preci-
sion arithmetic. In one test case involving a root of multiplicity 4, Fiedler’s method
(and Smith’s) gave errors about 10−4 for that root, whereas the new method gave
about 14 digit accuracy and correct multiplicities. Also some tests were performed
on a case with clusters of roots; in the first the members of the cluster were sepa-
rated by about 10−8, and the hoped-for result was the centre of the cluster. Again,
Fiedler’s method gave errors in the 4th place while the new method was correct to
about 14. Similar results were obtained with separations of 10−4 and 10−6.

The algorithm above assumes that the number of distinct roots is known. The
authors suggest that one ascertain this by initially applying some other method,
such as Fiedler’s, and observing the distances between approximate roots. Those
that agree within some tolerance will be regarded as a multiple root, so that we
may then apply the new method.

Kravanja, Sakurai, and Van Barel (1999) and Kravanja et al (2000) in related
papers describe a rather similar method to that of Niu and Sakurai. Our description

286 6. Matrix Methods

will be based on the second paper mentioned above, and for further details we refer
the reader to the first one. The method is developed for general analytic functions,
which include polynomials. Let W be a rectangular region in C, f : W → C analytic
in the closure of W and Γ the (positively oriented) boundary of W. Suppose that
Γ does not pass through any of the zeros of f , and that the edges of Γ are parallel
to the coordinate axes. (By finding an upper bound on the magnitude of the roots
we can ensure that all the roots of a given polynomial are inside W). The authors
present a Fortran 90 program, called ZEAL, which will find all the zeros inside Γ,
together with their multiplicities. Let N denote the total number of zeros inside Γ.
This is given by

N =
1

2πi

∫

Γ

f ′(z)

f(z)
dz (6.481)

Initially, when Γ includes all the zeros, N = n, the degree of the polynomial (if f is
in fact a polynomial); but later we will sub-divide the region and so 6.481 will be
needed. Similarly

sp =
1

2πi

∫

Γ

zp f
′(z)

f(z)
dz, (p = 0, 1, ...) (6.482)

Again, for the initial Γ, sp is identical with the µs of Niu and Sakurai. In general
it

= ζp
1 + ...+ ζp

N , (p = 0, 1, 2, ...) (6.483)

where ζ1, ..., ζN are the zeros of f inside Γ. It is known as the Newton sum. We
consider the polynomial

PN (z) =

N
∏

k=1

(z − ζk) (6.484)

If N is large, one needs to calculate the sp very accurately, i.e. with multiple pre-
cision. To avoid this, and to reduce the number of integrals required, the authors
suggest to construct and solve the PN (z) only if its degree is < some given number
M of moderate size such as 5. Otherwise Γ is subdivided and each smaller region
treated separately in turn. Kravanja et al, like other authors referred to in this
section, consider the distinct roots and their multiplicities separately. Numerical
approximations for the integrals in 6.482 and elsewhere are evaluated by QUAD-
PACK (see Piessens et al (1983)). Their method will now be summarized.

As usual, let ζ1, ..., ζm be the distinct roots of f inside Γ, and l1, ..., lm their
multiplicities. The authors define, for any two polynomials φ and ψ, “inner prod-
ucts”

< φ,ψ > =
1

2πi

∫

Γ

φ(z)ψ(z)
f ′(z)

f(z)
dz (6.485)

6.4. Methods Designed for Multiple Roots 287

=

m
∑

k=1

lkφ(ζk)ψ(ζk) (6.486)

(this follows because f ′

f has a simple pole at ζk with residue lk).
These < φ,ψ > can be evaluated by numerical integration. Then

sp = < 1, zp > =

m
∑

k=1

lkζ
p
k (6.487)

In particluar s0 = l1 + ...+ lm = N , the total number of zeros inside Γ. Let Hk

(as before) be the Hankel matrix

Hk =









s0 s1 .. sk−1

s1
..

sk−1 s2k−2









, (k = 1, 2, ...) (6.488)

A monic polynomial φt of degree t that satisfies

< zp, φt(z) > = 0, (p = 0, 1, ..., t− 1) (6.489)

is known as a formal orthogonal polynomial (FOP). The adjective “formal” comes
from the fact that in general the form 6.485 does not necessarily define a true inner
product. Consequently FOP’s need not exist or be unique. But if 6.489 is satisfied
and φt is unique, then φt is called a regular FOP and t a regular index. If we set

φt(z) = u0,t + u1,tz + ...+ ut−1,tz
t−1 + zt (6.490)

then 6.489 becomes









s0 s1 .. st−1

s1
..
st−1 s2t−2

















u0,t

u1,t

..
ut−1,t









= −













st

st+1

..

..
s2t−1













(6.491)

Thus, the regular FOP of degree t ≥ 1 exists iff Ht is non-singular. We can
find m, the number of distinct zeros, by the following theorem (at least in theory):
“m = rank(Hm+p) for every integer p ≥ 0.” In particular, m = rank(Hm). So
Hm is non-singular but Ht is singular if t > m. H1 = [s0] is non-singular by
assumption. The regular FOP of degree 1 exists and is given by: φ1(z) = z − µ
where

µ =
s1
s0

=

∑m
k=1 lkζk
∑m

k=1 lk
(6.492)

is the arithmetic mean of the zeros. For 6.491 becomes

[s0][u0,1] = −s1 (6.493)

288 6. Matrix Methods

The above theorem implies that the regular FOP of degree m exists, but for degree
> m they do not exist. We may show that

φm(z) = (z − ζ1)(z − ζ2)...(z − ζm) (6.494)

This follows because 6.489 and 6.486 give

m
∑

k=1

lkφ(ζk)ζp
k = 0, (p = 0, ...,m− 1) (6.495)

i.e. we have a set of m homogeneous equations in the m unknowns lkφ(ζk) whose
coefficients form a Vandermonde matrix. Since the ζk are distinct this matrix is
non-singular so lkφ(ζk) = 0 all k; but lk ≥ 1, so φ(ζk) = 0 and the result is
proved. Once m is known ζ1, ..., ζm can be found by solving a generalized eigenvalue
problem. For if

H<
m =









s1 .. sm

s2
..
sm .. s2m−1









(6.496)

then the eigenvalues of H<
m − λHm are given by ζ1, ..., ζm (see 6.448). Once the

ζi have been found the multiplicities li can be found by solving the Vandermonde
system









1 .. 1
ζ1 .. ζm
..

ζm−1
1 .. ζm−1

m

















l1
..
..
lm









=









s0
s1
..

sm−1









(6.497)

which is 6.487 written for p = 0, ...,m− 1. Such systems are often ill-conditioned,
but the solutions li are known to be integers, and so can be found accurately as
long as the errors in their computed values are < .5 in absolute value. The authors
obtain accurate zeros if Hm and H<

m are replaced by

Gm = [< φp, φq >]m−1
p,q=0 and G(1)

m = [< φk, φ1φq >]m−1
p,q=0 (6.498)

where the φi are FOP’s or related polynomials (see the cited papers for details). It

is proved that the eigenvalues of G(1)
m − λGm are given by ζ1 − µ, ..., ζm − µ where

as before µ = s1

s0
. We also refer to the cited papers for details of how we may

determine m. The (approximate) ζi found by the above method are refined by the
modified Newton’s method, i.e.

z
(i+1)
k = z

(i)
k − lk

f ′(z(i)
k)

f(z
(i)
k)

, (k = 1, ...,m; i = 0, 1, ...) (6.499)

with lk the now known multiplicity of z
(0)
k = the approximate ζk as determined by

the above method. 6.499 is quadratically convergent.

6.5. Methods for a Few Roots 289

In a test with a function having a triple zero as well as a double one, results
were accurate to about 14 digits.

6.5 Methods for a Few Roots

Quite often users require only a few zeros of a given polynomial, say the k-th largest
or the k-th smallest. The inverse power method (mentioned in a previous section)
is one method which serves this purpose. Others will be discussed here; for example
Gemignani (1998) describes a method which is relatively efficient in this case. In
fact a factor of degree k is found (k << n), which is usually a better-conditioned
problem than that of finding k separate zeros. He considers a lower Hessenberg
matrix of the form:

A1 =















a
(1)
1,1 1 0 0

a
(1)
2,1 a

(1)
2,2 1 0 .. 0

..

a
(1)
n−1,1 a

(1)
n−1,2 1

a
(1)
n,1 a

(1)
n,2 a

(1)
n,n















(6.500)

such that

det(tI − A1) = p(t) (6.501)

where p(t) is the polynomial whose zeros are being sought. That is, A1 is a com-
panion matrix of p(t), such as the Frobenius one. Now the standard LR algorithm
with shift defines a sequence of similar matrices by

As − σsI = LsRs (6.502)

As+1 = σsI + RsLs (s ≥ 1) (6.503)

where Ls is unit lower triangular and Rs is upper triangular. As in the QR method
As tends to a triangular or block-triangular matrix whose eigenvalues are the same
as those of A1, and can easily be found. The LR method preceded the QR method
historically. The above method was generalized by Watkins and Elsner (1991) to

ps(As) = LsRs (6.504)

As+1 = L−1
s AsLs (6.505)

where ps(t) is a monic polynomial of degree ks < n (indeed usually ks << n).
Writing ps(t) in factored form (e.g. (t − α)(t − β)), we find that 6.504 and 6.505
correspond to ks steps of 6.502-6.503, where the shifts σs are the zeros of ps(t).

Gemignani then defines the polynomials

ψ
(s)
i (t) = det(tI − Âs,i) (i = 1, ..., n− 1) (6.506)

290 6. Matrix Methods

where Âs,i is the submatrix formed by the first i rows and columns of As. The
polynomial vector

[ψ
(s)
0 (t), ..., ψ

(s)
n−1(t)]

T (6.507)

with

ψ
(s)
0 (t) = 1 (6.508)

satisfies

t













ψ
(s)
0 (t)
..
..
..

ψ
(s)
n−1(t)













= As













ψ
(s)
0 (t)
..
..
..

ψ
(s)
n−1(t)













+













0
..
..
0
p(t)













(6.509)

Proof. Consider the (i+1)-th element on either side of 6.509 above (ignoring the
superscripts on the aij). This gives, using the definition 6.506:

t

∣

∣

∣

∣

∣

∣

∣

∣

t− a11 −1 0
−a21 t− a22 −1 0 ..
..

−ai1 −ai2 t− aii

∣

∣

∣

∣

∣

∣

∣

∣

=

ai+1,1 + ai+1,2(t− a11) + ai+1,3

∣

∣

∣

∣

t− a11 −1
−a21 t− a22

∣

∣

∣

∣

+...+ ai+1,i+1

∣

∣

∣

∣

∣

∣

∣

∣

t− a11 −1 0
−a21 t− a22 −1
..

−ai1 −ai2 t− aii

∣

∣

∣

∣

∣

∣

∣

∣

+1

∣

∣

∣

∣

∣

∣

∣

∣

t− a11 −1 0
−a21 t− a22 −1 .. 0
.. −1

−ai+1,1 −ai+1,2 t− ai+1,i+1

∣

∣

∣

∣

∣

∣

∣

∣

(6.510)

Expanding the last determinant on the right-hand-side by its last row we find, after
much cancellation, that the left-hand-side = the right-hand-side. Applying 6.509
with s replaced by s+1, and using 6.505, we get:

t













ψ
(s+1)
0 (t)
..
..
..

ψ
(s+1)
n−1 (t)













= L−1
s AsLs













ψ
(s+1)
0 (t)
..
..
..

ψ
(s+1)
n−1 (t)













+













0
..
..
..
p(t)













(6.511)

6.5. Methods for a Few Roots 291

It then follows that












ψ
(s+1)
0 (t)
..
..
..

ψ
(s+1)
n−1 (t)













= L−1
s













ψ
(s)
0 (t)
..
..
..

ψ
(s)
n−1(t)













(6.512)

Replacing As in 6.509 by σsI + LsRs (from 6.502) gives:

(t− σs)













ψ
(s)
0 (t)
..
..
..

ψ
(s)
n−1(t)













= LsRs













ψ
(s)
0 (t)
..
..
..

ψ
(s)
n−1(t)













+













0
..
..
..
p(t)













(6.513)

and substituting 6.512 into 6.513 gives

(t− σs)













ψ
(s+1)
0 (t)
..
..
..

ψ
(s+1)
n−1 (t)













= Rs













ψ
(s)
0 (t)
..
..
..

ψ
(s)
n−1(t)













+













0
..
..
..
p(t)













(6.514)

Since As is Hessenberg, Rs takes the form

Rs =















r
(s)
1 1 0

0 r
(s)
2 1 0 ..

..

0 .. 0 r
(s)
n−1 1

0 0 r
(s)
n















(6.515)

so that 6.514 may be written as










(t− σs)ψ
(s+1)
0 (t) = r

(s)
1 ψ

(s)
0 (t) + ψ

(s)
1 (t)

..

(t− σs)ψ
(s+1)
n−1 (t) = r

(s)
n ψ

(s)
n−1(t) + p(t)











(6.516)

Putting t = σs here gives

r
(s)
1 = −ψ

(s)
1 (σs)

ψ
(s)
0 (σs)

(6.517)

etc., so that 6.516 becomes:


























(t− σs)ψ
(s+1)
0 (t) = −(ψ

(s)
1 (σs)/ψ

(s)
0 (σs))ψ

(s)
0 (t)+

ψ
(s)
1 (t)
..

(t− σs)ψ
(s+1)
n−1 (t) = −(p(σs)/ψ

(s)
n−1(σs))ψ

(s)
n−1(t)+

p(t)



























(6.518)

292 6. Matrix Methods

By performing ks steps of 6.516 (or 6.518) we may see that 6.504 and 6.505 are
equivalent to







































ps(t)ψ
(s+1)
0 (t) =

∑ks

i=0 b
(s)
0,iψ

(s−ks+1)
i (t)

..

ps(t)ψ
(s+1)
n−2 (t) = b

(s)
n−2,n−2ψ

(s−ks+1)
n−2 (t)+

b
(s)
n−2,n−1ψ

(s−ks+1)
n−1 (t) + g

(s)
n−2(t)p(t)

ps(t)ψ
(s+1)
n−1 (t) = b

(s)
n−1,n−1ψ

(s−ks+1)
n−1 (t)

+g
(s)
n−1(t)p(t)







































(6.519)

where the b
(s)
i,j are suitable scalars and g

(s)
n−i(t) (i = 1, 2) are monic polynomials of

degree ks − i. N.B. the reader should not confuse ps(t), of degree ks, with p(t), the
original polynomial of degree n (for which we are seeking some of the roots).

Initially the author suggests taking

p1(t) = (t− a)k (6.520)

where we seek the k zeros of p(t) closest to a, and setting

ps(t) = p1(t) (s = 1, 2, ...) (6.521)

Suppose that p1(t) separates h zeros of p(t) from the others, in the sense that

|p1(t1)| ≥ |p1(t2)| ≥ ... ≥ |p1(th)| > |p1(th+1)| ≥ ... ≥

|p1(tn)| > 0 (6.522)

where

|p1(th+1)|
p1(th)| <<

|p1(th+j+1)|
|p1(th+j)|

(j = 1, ..., n− h− 1) (6.523)

and the ti are the zeros of p(t). For example, if k = 4 and tn = tn−1 = tn−2 =
tn−3 = .1, tn−4 = 1, and p1(t) = t4 then 6.523 will be satisfied for h =

n-4. Then, let ψ
(0)
n−j(t) (j = 1, ..., n − h = k) be arbitrary monic polynomials of

degree n-j respectively (in his numerical experiments Gemignani takes them as the

derivatives of p(t) of order j), and for s = 1,2,... compute ψ
(s)
n−j (j = 1, ..., n− h) by

means of the last n-h equalities of 6.519 (using ps(t) = p1(t) for all s–this being
known as a stationary iteration). Theoretically the process could break down due
to As − σsI having a leading principal minor equal to zero. But the author shows
that the probability of this happening is very low. Moreover he proves that

||ψ(s+1)
h (t) −

h
∏

i=1

(t− ti)||∞ = O(|p1(th+1)

p1(th)
|s+1) (6.524)

6.5. Methods for a Few Roots 293

(Here ||q(t)||∞ = max0≤i≤n |qi|, qn = 1 for a polynomial q(t) =
∑n

i=0 qi(t)).

For more details see the cited paper. Now suppose {ψ(s)
n−k(t)}s=1,2,.. is a sequence

of polynomials of degree n-k generated by the stationary iteration, and let the

polynomials η
(s)
k (t) be defined by

p(t) = η
(s)
k (t)ψ

(s)
n−k(t) + θ(s) (6.525)

where deg(θ(s)(t)) < deg(ψ
(s)
n−k(t)). When ψ

(s)
n−k(t) approaches

∏n−k
i=1 (t−ti), which

is usually the case, then η
(s)
k (t) should converge to

n
∏

i=n−k+1

(t− ti) (6.526)

Thus we add the following feature to the stationary iteration, after computing a

new set ψ
(s)
n−j(t) (j = 1..., k):

Compute η
(s)
k (t) and check for convergence, i.e. test whether

||η(s+1)
k (t) − η

(s)
k (t)||∞ ≤ u(n+ k)||p(t)||∞ (6.527)

where u is the machine precision. The algorithm is halted if 6.527 is satisfied or if
s > some predefined value itmax. In the latter case the procedure reports failure.
The author shows that convergence of this modified stationary iteration is linear,

but by varying ps(t) after a certain value of s (i.e. computing η
(s)
k (t), checking for

convergence, and setting p(s+1)(t) = η
(s)
k (t)) we may achieve quadratic convergence

(again, see the cited paper for proof). We shift to the variable ps(t) when

|||η(s+1)
k (t)||∞ − ||η(s)

k (t)||∞| ≤ a constant η (say .01) (6.528)

It is stated that the process may be ill-conditioned, but poor results at one step
may be corrected by later iterations at the cost of taking more iterations. Also, it
is stated that each iteration will cost

O(k4 + nk3) (6.529)

operations.

Some numerical tests involving multiple roots or clusters were unsuccessful. The
author also considered some random polynomials of degree 15 with real and imag-
inary parts of the coefficients in the range [0,1], p1(t) = (t − 1)4 and k = 4 (i.e.
he was seeking zeros close to 1). These tests were performed quite successfully,
although increasing the degree to 20 resulted in failure in 10% of cases. In a further
test, a cluster of degree k (k = 5 or 10) was multiplied by 100 random polynomials
of degree n-k, for n in steps of 50 up to 200. The factorization of the resulting
polynomial into factors of degree k and n-k was performed successfully in all cases,

294 6. Matrix Methods

at a cost of about 6 or 7 iterations per polynomial.

Gemignani (private communication) points out that the above LR-based method
is not perfect, but that a similar treatment by the QR method (for small k) may
perform much better. Such a treatment has not been worked out yet (June 2006),
but is expected in the near future.

6.6 Errors and Sensitivity

It is well known that the two problems of finding polynomial zeros and finding
eigenvalues of non-symmetric matrices may be highly sensitive to perturbations.
And of course the two problems are related, for the zeros of a polynomial are the
same as the eigenvalues of any of its companion matrices. Toh and Trefethen (1994),
at a time when interest in matrix methods for polynomial zeros was increasing,
considered the relationship between the sensitivities of these two problems, and
showed that under certain circumstances the sensitivities are very close. They
proceed as follows: for a monic polynomial p(z), let Z(p) denote the set of zeros of
p(z), and for any ǫ ≥ 0, define the ǫ-pseudozero set of p(z) by

Zǫ(p) = {z ∈ C : z ∈ Z(p̂) for some p̂} (6.530)

where p̂ ranges over all polynomials whose coefficients are those of p modified by
perturbations of size ≤ ǫ. Similarly, for a matrix A, let Λ(A) denote the set of
eigenvalues of A (i.e. its spectrum), and define the ǫ-pseudospectrum of A by

Λǫ(A) = {z ∈ C : z ∈ Λ(A + E) for some E with ||E|| ≤ ǫ} (6.531)

The authors report numerical experiments which show that Zǫ||p||(p) and Λǫ||A||(A)

are generally quite close to each other when A is a companion matrix of p that has
been “balanced” in the sense first described by Parlett and Reinsch (1969). It
follows that the zerofinding and balanced eigenvalue problems are comparable in
conditioning, and so finding roots via eigenvalues of companion matrices is a stable
algorithm. Note that Toh and Trefethen consider only the classical or Frobenius
companion matrix.

We define some notation:
P is the set of monic polynomials of degree n.
p(z) is the polynomial zn + cn−1z

n−1 + ...+ c0. Sometimes we denote the vector of
coefficients (c0, ..., cn−1)

T by p.
p∗ is the reciprocal polynomial of p i.e.

p∗(z) = znp(
1

z
) (6.532)

D is an n × n diagonal matrix with diagonal vector d = (d0, ..., dn−1)
T , or we

may write D = diag(d). d−1 denotes (d−1
0 , ..., d−1

n−1)
T , and similarly p−1 denotes

6.6. Errors and Sensitivity 295

(c−1
0 , ..., c−1

n−1)
T etc.

||x||d = ||Dx||2 (6.533)

(provided D is non-singular).
For given z, z̃ = the vector (1, z, ..., zn−1)T .
For i = 1,...,n ei has 1 in the i’th position and 0’s elsewhere.
Then

||p − p̂||d = [

n−1
∑

i=0

|di|2|ci − ĉi|2]
1
2 (6.534)

measures the perturbations in the coefficients of p relative to the weights given by
d. Also we have

||A||d = ||DAD−1||2 (6.535)

Now we define the ǫ-pseudozero set of p a little more formally as follows:

Zǫ(p; d) = {z ∈ C : z ∈ Z(p̂) for some p̂ ∈ P

with ||p̂ − p||d ≤ ǫ} (6.536)

These sets quantify the conditioning of the zerofinding problem: for a zerofinding
algorithm to be stable the computed zeros of p should lie in a region ZCu(p; d)
where C = O(||p||d) and u is the machine precision. d, for example , may be

||p||2p−1 (6.537)

for coefficientwise perturbations, or
√
n(1, 1, ..., 1)T (6.538)

for normwise perturbations.

Proposition 6.1

Zǫ(p; d) = {z ∈ C :
|p(z)|
||z̃||d−1

≤ ǫ} (6.539)

Proof. If z ∈ Zǫ(p; d), then ∃ p̂ ∈ P with p̂(z) = 0 and ||p̂−p||d ≤ ǫ Now the
Holder inequality (see e.g Hazewinkel (1989) or Hardy (1934)) states that

∑

i

|xiyi| ≤ (
∑

i

|xi|p)
1
p (
∑

i

|yi|q)
1
q ;

1

p
+

1

q
= 1 (6.540)

Setting p = q = 2, xi = (ĉi − ci)di, yi = zi

di
in 6.540 gives |p(z)| =

|p̂(z) − p(z)| = |∑n−1
i=0 (ĉi − ci)z

i| = |∑n−1
i=0 (ĉi − ci)di

zi

di
| ≤ ||p̂ − p||d||z̃||d−1

≤ ǫ||z̃||d−1 (6.541)

296 6. Matrix Methods

i.e.
|p(z)|
||z̃||d−1

≤ ǫ (6.542)

Conversely, suppose z ∈ C is such that 6.541 is satisfied. Let θ = arg(z), and
consider the polynomial r of degree n-1 defined by

r(w) =

n−1
∑

k=0

rkw
k (6.543)

where

rk = |zk|e−ikθd−2
k (6.544)

Then the authors state that

r(z) = ||r||d||z̃||d−1 (6.545)

Then the polynomial p̂ defined by

p̂(w) = p(w) − p(z)

r(z)
r(w) (6.546)

satisfies p̂(z) = 0 and

||p̂ − p||d = |p(z)
r(z)

|||r||d ≤ ǫ
||z̃||d−1 ||r||d

|r(z)| = ǫ (6.547)

Thus z ∈ Zǫ(p; d).

The authors define a condition number in the case of infinitesimal perturbations,
i.e. the condition number of the root ζ of p is given by

κ(ζ, p; d) = lim
||p̂−p||d→0

sup
p̂

|ζ̂ − ζ|
||p̂ − p||d/||p||d

(6.548)

The authors state that the above =

||p||d
||ζ̃||d−1

|p′(ζ)| (6.549)

We define the condition number of the entire zerofinding problem for p to be

κ(p; d) = max
ζ
κ(ζ, p; d) (6.550)

We turn now to consider the pseudspectrum of the companion matrix

Ap =









0 .. 0 −c0
1 0 .. −c1
..
.. 0 1 −cn−1









(6.551)

6.6. Errors and Sensitivity 297

For each p ∈ P , we define the ǫ-pseudospectrum of Ap (again, more formally) by

Λǫ(Ap; d) = {z ∈ C : z ∈ Λ(Â) for some Â with

||Â − Ap||d ≤ ǫ} (6.552)

Note that

||Â − Ap||d = ||D(Â − Ap)D
−1||2 (6.553)

D is included because balancing and other transformations (see later) involve a
diagonal similarity transformation. For an eigenvalue algorithm applied to a com-
panion matrix to be stable, the computed eigenvalues of Ap should lie in a region
ΛCu(Ap; d) for some C = O(||A(p)||d).
We define the condition number of a simple eigenvalue λ of a matrix B by

κ(λ,B; d) = lim
|| ˆB−B||d→0

sup
|| ˆB||

|λ̂− λ|
||B̂− B||d/||Bd||

(6.554)

and this reduces to

||B||d
||x||d−1 ||y||d

|xTy|
(6.555)

where x and y are left and right eigenvectors of B, respectively, corresponding to
λ. When B = Ap we have

x = (1, λ, ..., λn−1)T (6.556)

and

y = (b0, b1, ..., bn−1)
T (6.557)

where b0, ..., bn−1 (functions of λ) are the coefficients of

p(z) − p(λ)

z − λ
=

n−1
∑

i=0

biz
i (6.558)

Then the condition number reduces to

κ(λ,Ap; d) = ||Ap||d
||b̃(λ)||d||λ̃||d−1

|p′(λ)| (6.559)

where

b̃(λ) = (b0, ..., bn−1)
T (6.560)

(same as y above). If the eigenvalues of Ap are simple, we can define a condition
number for the entire problem of finding the eigenvalues of Ap as

κ(Ap; d) = max
λ

κ(λ,Ap; d) (6.561)

298 6. Matrix Methods

The conditioning of the eigenvalue problem for a companion matrix Ap may
be changed enormously by a diagonal similarity transformation. The best one
could hope for would be a transformation which makes the eigenvalue problem no
worse conditioned than the underlying zerofinding problem. The authors report
experiments which show that up to a factor of about 10, balancing achieves this
optimal result. They consider four possibilities of transforming to DApD

−1:
1) Pure companion matrix i.e. no transformation, or equivalently
d =

√
n(1, 1, ..., 1)T .

2)Balancing. This corresponds to finding a diagonal matrix T such that TApT
−1

has the 2-norm of its i’th row and i’th column approximately equal for each i =
1,...,n. We denote this transformation by t. It is the standard option in EISPACK
(see Smith (1976)) and the default in MATLAB (see MathWorks (1992)).
3) Scaling. For α > 0, the scaled polynomial corresponding to p ∈ P is

pα(z) =
1

αn
p(αz) =

n
∑

i=0

ci
αn−i

zi (6.562)

The corresponding diagonal similarity transformation is said to be defined by Dα =
diag(d(α)) where

d(α) = ||(αn, ..., α1)||2(α−n, ..., α−1)T (6.563)

4) Coefficientwise (if coefficients are all non-zero). This is given by the diagonal
matrix C = diag(c) where

c = ||p||2p−1 (6.564)

The authors found that balancing tends to achieve the best conditioned eigen-
value problem for Ap among these four choices. That is, let us consider the ratios
of the condition numbers for the other 3 choices to that of balancing, i.e.

σ(Ap; d) =
κ(Ap; d)

κ(Ap; t)
(6.565)

where d = c, d(α), or e, and t refers to balancing. In the case of scaling, α is chosen
to be optimal in the sense that σ(Ap; d

(α)) is minimized. It was found that σ(Ap; e)
and σ(Ap; d

(α)) are >> 1, meaning that the use of the pure companion matrix or
scaling lead to much worse conditioning than balancing does. σ(Ap; c) is often close
to 1, but coefficentwise transformations are not defined if some of the coefficients
are zero.

Next the authors compare the condition number for the balanced eigenvalue
problem with that of the coefficientwise perturbed zerofinding problem for p, i.e.
they consider the ratio

κ(Ap; t)

κ(p; c)
(6.566)

6.6. Errors and Sensitivity 299

Their experiments indicate that this ratio is fairly close to 1, ranging from 2.6 to 21
when applied to 8 well-known polynomials such as Wilkinson’s

∏20
i=1(z − i). They

also performed tests on 100 random polynomials of degree 10. In this case the ratio
varied from about 10 for well-conditioned polynomials to about 103 for ones having
condition number near 1010. In the case of the eight polynomials referred to above,
the authors graphically compared two pseudozero sets with the two pseudospectra
of the corresponding balanced companion matrix. The two sets were derived by
using two different values of ǫ (which varied from case to case). A reasonably close
agreement was observed in all cases. This suggests that it ought to be possible
to compute zeros of polynomials stably via eigenvalues of companion matrices. To
test this assumption, the authors compared three zerofinding methods:
1) J-T i.e. the Jenkins-Traub program CPOLY (see Jenkins and Traub (1970)).
This is available from ACM TOMS via Netlib and also is in the IMSL library.
2) M-R i.e. the Madsen-Reid code PA16 from the Harwell library, see Madsen and
Reid (1975). This is a Newton-based method coupled with line search. (At the
time the article by Toh and Trefethen was written the above two programs were
considered state-of-the-art).
3) ROOTS, the Matlab zerofinding code based on finding eigenvalues of the bal-
anced companion matrix by standard methods, see Moler (1991).

In their experiments, the authors first find the “exact” roots of p by computing
the eigenvalues of Ap in quadruple precision via standard EISPACK routines. The
rest of the calculations were carried out in double precision. For each of the eight
polynomials referred to previously, they calculated the maximum absolute error of
the roots as found by the above three methods, as well as the condition numbers of
the coefficientwise perturbed zerofinding problem for p, and the balanced compan-
ion matrix eigenvalue problem for Ap. The roots are always accurate (by all three
methods) to at least 11 or 12 decimal places, except for the Wilkinson polynomial,
which is notoriously ill-conditioned. The M-R code is a little more accurate than
ROOTS, which in turn is a little more accurate than J-T. For the random degree-10
polynomials, it was found that M-R and ROOTS are always stable, while J-T is
sometimes not (i.e. the errors are much greater than condition number*u). In the
case of multiple zeros, ROOTS is sometimes mildly unstable. The authors point
out that their results are inexact and empirical, and do not necessarily apply to all
polynomials. But they consider that a reasonable degree of confidence in zerofind-
ing via companion matrix eigenvalues is justified.

Edelman and Murakami (1995) also consider the question of perturbations in
companion matrix calculations. They ask the question “what does it mean to say
that

p̂(x) = xn + ĉn−1x
n−1 + ...+ ĉ0 (6.567)

is a slight perturbation of p(x) = xn + cn−1x
n−1 + ...+ c0?” (or in other words,

that the calculation is stable). Here the computed roots ζ̂i (i = 1, ..., n) of p(x)

300 6. Matrix Methods

(computed by the eigenvalue method) are the exact roots of p̂(x). They give four
answers, of which we quote the fourth (said to be the best). It is that

max
i

|ci − ĉi|
|ci|

= O(u) (6.568)

where O(u) means a small multiple of machine precision. We call the above a small
coefficientwise perturbation. If C is the usual Frobenius companion matrix (so
that PC(z) ≡ det(zI− C) = p(z)), and E is a perturbation matrix with “small”
entries, we are interested in the computation of

PC+E(z) − PC(z) ≡ δcn−1z
n−1 + ...+ δc1z + δc0 (6.569)

The authors state a theorem as follows: “To first order, the coefficient of zk−1 in
PC+E(z) − PC(z) is

k−1
∑

m=0

cm

n
∑

i=k+1

Ei,i+m−k −
n
∑

m=k

cm

k
∑

i=1

Ei,i+m−k (6.570)

where cn is defined as 1”.
This means that a small perturbation E introduces errors in the coefficients that
are linear in the Ei,j . Since standard eigenvalue procedures compute eigenvalues
of matrices with a small backward error, we can claim that there is a polynomial
near PC(z) whose exact roots are computed by solving an eigenvalue problem. The
result is stated in a matrix-vector format: let

fk,d ≡
k
∑

i=1

Ei,i+d and bk,d =

n
∑

i=k

Ei,i+d (6.571)

then












δc0
δc1
..
..

δcn−1













=













b2,−1 −f1,0 −f1,1 .. −f1,n−3 −f1,n−2 −f1,n−1

b3,−2 b3,−1 −f2,0 .. −f2,n−4 −f2,n−3 −f2,n−2

..
bn,−(n−1) bn,−(n−2) bn,−1 −fn−1,0 −fn−1,1

0 0 0 0 0 0 −fn,0

























c0
c1
..

cn−1

cn = 1













(6.572)

6.6. Errors and Sensitivity 301

correct to first order. The last row states that perturbing the trace of a matrix
perturbs the coefficient of zn−1 by the same amount. If E is the backward error
resulting from a standard eigenvalue routine, it is nearly upper triangular, i.e. there
may also be up to two non-zero subdiagonals, but no more.

The authors use their theorem above to predict the componentwise backward er-
ror; and they perform numerical experiments to actually measure this error. Their
results show that the theory always predicts a small backward error and is pes-
simistic by at most one or two (occasionally three) digits. They consider an error
matrix E with entries ǫ = 2−52 in all elements (i, j) with j − i ≥ −2. For
example, when n = 6

E =

















ǫ ǫ ǫ ǫ ǫ ǫ
ǫ ǫ ǫ ǫ ǫ ǫ
ǫ ǫ ǫ ǫ ǫ ǫ
0 ǫ ǫ ǫ ǫ ǫ
0 0 ǫ ǫ ǫ ǫ
0 0 0 ǫ ǫ ǫ

















(6.573)

This allows for the possibility of double shifting in the eigenvalue algorithm. The
standard algorithms balance the matrix by finding a diagonal matrix T such that
B = T−1AT has a smaller norm than A. The authors assume that the eigenvalue
algorithm computes the exact eigenvalues of a matrix B+E′ where |E′| ≤ E. Thus
we are computing the exact eigenvalues of A+TE′T−1. So to first order the error
in the coefficients is bounded by the absolute value of the matrix times the absolute
value of the vector in the product given in 6.572 where the fi,j and bi,j are computed
using TET−1. Thus the δi are predicted. Edelman and Murakami applied their
tests to the same eight “well-known” polynomials as Toh and Trefethen. For each
polynomial the coefficients were computed exactly or with 30- decimal precision.
For each coefficient of each polynomial the predicted error according to 6.572 was
calculated, i.e. the δci, and hence log10(

δci

ci
). Next the eigenvalues were computed

using MATLAB, then the exact polynomial p̂ using these computed roots, and hence
log10(

ĉi−ci

ci
) (N.B. ĉi − ci is the backward error). Finally the authors computed a

“pessimism index”, namely

log10(
ĉi − ci
δci

) (6.574)

Indices such as 0, -1, -2 indicate that we are pessimistic by at most two orders of
magnitude. The results show that the predicted error is usually correct to about
13 decimal places; the actual computed error is correct to about 15 places (this is
further indication that eigenvalue-based zerofinding calculations are reliable); and
the pessimism index is usually between one and three. It is never positive, indicat-
ing that the predictions are “fail-safe”. Thus the analyis described in this paper
would be a good way of confirming the accuracy of an eigenvalue-based zerofinder.
The authors give a MATLAB program which was used in the experiments, and

302 6. Matrix Methods

presumably could also be used in the suggested accuracy confirmation.

Near the start of this section, and later, we mentioned the process of “balancing”
a matrix. This is used in nearly all software for finding zeros via eigenvalues of
companion matrices. It is useful because, as pointed out by Osborne (1960), most
eigenvalue programs produce results with errors of order at least u||A||E , where
as usual u is the machine precision and ||A||E is the Euclidean norm (see later).
Hence he recommends that we precede the calling of such a program by a diagonal
similarity transformation of A which will reduce its norm (while preserving its
eigenvalues). Let

||x||p = (
n
∑

i=1

|xi|p)
1
p (6.575)

and

||A||p = (
n
∑

i=1

n
∑

j=1

|aij |p)
1
p (6.576)

(the case p = 2 gives the Euclidean norm). Parlett and Reinsch (1969) describe an
algorithm which produces a sequence of matrices Ak (k=1,2,...), diagonally similar
to A, such that for an irreducible A:
(i) Af = limk→∞ Ak exists and is diagonally similar to A.
(ii)

||Af ||p = inf(||D−1AD||p) (6.577)

where D ranges over the class of all non-singular diagonal matrices.
(iii) Af is balanced, i.e.

||ai||p = ||ai||p (i = 1, ..., n) (6.578)

where ai and ai denote respectively the i-th column and i-th row of Af .
No rounding errors need occur in this process if the elements of the diagonal matrix
are restricted to be exact powers of the radix base (usually 2). In more detail, let
A0 denote the off-diagonal part of A. Then for any non-singular diagonal matrix
D, we have

D−1AD = diag(A) + D−1A0D (6.579)

and only A0 is affected. Assume that no row or column of A0 vanishes identically.
From A0 a sequence {Ak} is formed. The term Ak differs from Ak−1 in only one
row and the corresponding column. Let k = 1,2,... and let i be the index of the
row and column modified in the step from Ak−1 to Ak. Then, if n is the order of
A0, i is given by

i− 1 ≡ k − 1(mod n) (6.580)

6.6. Errors and Sensitivity 303

Thus the rows and columns are modified cyclically in natural order. The k-th step
is as follows:
(a) Let Rk and Ck denote the ||.||p norms of row i and column i of Ak−1. According
to the “no-null-row-or-column” assumption RkCk 6= 0. Hence, if β denotes the
radix base, there is a unique (positive or negative) integer σ = σk such that

β2σ−1 <
Rk

Ck
≤ β2σ+1 (6.581)

Define f = fk by

f = βσ (6.582)

(b) For a constant γ ≤ 1 (taken as .95 in the authors’ program) take

Dk =
{

I + (f − 1)eie
T
i if (Ckf)p + (Rk

f)p < γ(Cp
k +Rp

k)

I otherwise

}

(6.583)

where ei is the i-th column of the identity matrix I.
(c) Form

Dk = DkDk−1 (D0 = I) (6.584)

Ak = D
−1

k Ak−1Dk (6.585)

The authors claim that if γ = 1 then in every step, f is that integer power of β
which gives maximum reduction of the contribution of the i-th row and column to
||Ak||p. If γ is slightly smaller than 1, a step is skipped if it would produce a very
small reduction in ||Ak−1||p. Iteration is terminated if, for a complete cycle (i =
1,...,n), Dk = I.

We will consider the example of a low-order matrix

A =





2 2 8
2 2 0
2 0 2



 . i.e. A0 =





0 2 8
2 0 0
2 0 0



 , ||A0||E =
√

76

For i = k = 1 we have R1 =
√

22 + 82 =
√

68, C1 =
√

8, R1

C1
=

√
8.5 ≈ 2.9,

hence σ = 1, f = 21 = 2.

(C1f)2 + (
R1

f
)2 = 32 + 17 = 49 < .95((C1)

2 + (R1)
2) = .95 × 76

Hence we compute

D1 =





2 0 0
0 1 0
0 0 1



 ,

304 6. Matrix Methods

A1 =





1
2 0 0
0 1 0
0 0 1









0 2 8
2 0 0
2 0 0









2 0 0
0 1 0
0 0 1



 =





0 1 4
4 0 0
4 0 0



 ,

||A1||E =
√

49
For i = k = 2, we have R2 = 4, C2 = 1, R2

C2
= 4, σ = 1, f = 2, D2 =





1 0 0
0 2 0
0 0 1



 , A2 =





0 2 4
2 0 0
4 0 0





For i = k = 3, we have R3 = C3 = 4, R3

C3
= 1, σ = 0, f = 1, D3 =

I, A3 = A2

For k = 4, i = 1 we have R1 =
√

20, C1 =
√

20, R1

C1
= 1, σ = 0, f =

1, D1 = I; as before D2 = D3 = I, i.e. no change for a complete cycle, so
iteration is terminated.

If a row or column of A0 is null then aii is an eigenvalue of A and the calculation
should proceed on the submatrix obtained by deleting row and column i. For more
details see the cited paper.

The authors give an Algol program and report numerical experiments on three
matrices of moderate order. The errors in the eigenvalues of the balanced matrices
were reduced by a factor of at least 104 compared to the unbalanced case.

6.7 Miscellaneous Methods and Special Applications

Jonsson and Vavasis (2004) consider the case where the leading coefficient of the
polynomial is much smaller than some of the other coefficients. This occurs for
example in geometric applications where one often works with a fixed “toolbox”
including cubic splines. An application might store a linear or quadratic polynomial
as a cubic with leading coefficient of zero. Then transformations such as rotations
might result in a leading coefficient which is small but no longer zero.

When we use eigenvalues of companion matrices to compute zeros, the transla-
tion from a polynomial to an eigenvalue problem should not cause the conditioning
to become much worse. The authors concentrate on this issue. They consider a
polynomial which is not necessarily monic, and its companion matrix in the form

C =









0 1 0 ..
..
.. .. 0 1

− c0

cn
.. .. − cn−1

cn









(6.586)

Suppose the eigenvalues of C are computed using a backward stable algorithm, i.e.
they are the exact eigenvalues of C + E, where E has small entries. The computed

6.7. Miscellaneous Methods and Special Applications 305

eigenvalues are also roots of a perturbed polynomial p̃ with coefficients c̃j = cj+ej.
We recall that Edelman and Mirakami (1995) showed that

ej−1 =

j−1
∑

m=0

cm

n
∑

i=j+1

Ei+m−j,i −
n
∑

m=j

cm

j
∑

i=1

Ei+m−j,i (6.587)

(The differences between this and 6.570 are due to the fact that C above in 6.586 is
the transpose of the form used by Edelman and Mirakami). Note that the leading
coefficient cn is not perturbed (en = 0).

The Matlab routine roots solves the eigenvalue problem

Cx = λx (6.588)

by means of the QR-algorithm, and it is stated that

||E|| < k1||C||u (6.589)

where u is the machine precision, k1 depends only on n, and for any matrix A,
||A|| = ||A||F is the Frobenius norm

= (

n
∑

i=1

n
∑

j=1

|aij |2)
1
2 (6.590)

Let

c = [c0, ..., cn] and c̃ = [c̃0, ..., c̃n] (6.591)

Now (very approximately)

||C|| ≈ |cmax

cn
| where |cmax| = max

j
|cj | (6.592)

So we get a backward error bound

||c̃ − c|| < k2|
cmax

cn
|||c||u+O(u2) (6.593)

where ||v|| = ||v||2 for vectors v. Henceforward we will omit the terms O(u2).
The bound 6.593 is large when

|cmax| >> |cn|, (6.594)

which is the case being considered in Jonsson and Vavasis’ paper. Now consider
the generalized eigenvalue problem

A − λB =









0 1
..
.. .. 0 1

−c0 −cn−1









− λ









1 0
..
.. .. 1 0
.. .. 0 cn









= 0 (6.595)

306 6. Matrix Methods

If this is solved using the QZ-algorithm (see Golub and Van Loan (1996) Sec. 7.7)
the computed eigenvalues are exact for a perturbed matrix pencil

(A + E) − λ(B + F) (6.596)

with

||E|| < ka||A||u, ||F|| < kb||B||u (6.597)

where ka, kb depend only on n. Assume that the coefficients have been scaled so
that ||c|| = 1. The authors quote Van Dooren and Dewilde (1983) as showing
that the computed roots are exact for a polynomial p̃ with

||c̃ − c|| < k3||c||u (6.598)

where k3 depends only on n. For the type of polynomial being considered, this
is a much better result than 6.593. The authors compare the accuracy of roots
computed by 6.588 (solved by roots) and 6.595. It is hoped that the forward error
is of order (condition number × u), or smaller. If we use 6.595, this is indeed
the case. For polynomials with a small leading coefficient and roots of order 1
in magnitude or smaller, 6.595 does better than roots. For other cases, roots is
sometimes better. In more detail, they generated 100 random test polynomials of
degree 8 with coefficients of the form (α+ iβ)10γ with α, β in the range [-1,1] and
γ in the range [-10,10]. The leading coefficient was fixed at 10−10. The above was
multiplied by (z − 1

2)2 in each case to give some ill-conditioning. The resulting
degree 10 polynomials were solved by four methods (see below). Given computed
roots

ẑ1, ..., ẑn, let p̂(z) = (z − ẑ1)...(z − ẑn) (6.599)

They compute the coefficients of p̂ using 40-decimal-digit precision. If we allow
all the coefficients of p to be perturbed, the perturbation giving ẑ1, ..., ẑn as exact
roots is not unique, since multiplying p̂ by a scalar does not change its roots. Unless
otherwise stated, we assume that the backward error computed is minimal in a least
squares sense, i.e. we find

min
τ

||τ ĉ − c|| (6.600)

This is obtained when

τ =
(ĉHc)

(ĉH ĉ)
(6.601)

The four methods used were:
a) Matlab’s roots with backward error computed by 6.600.
b) Equation 6.595, with ||c|| = 1, and error by 6.600.
(c) Equation 6.595 but with cn = 1 instead of ||c|| = 1, and error by 6.600.
(d) Equation 6.595, with ||c|| = 1, and backward error computed by || cn

ĉn
ĉ − c||

6.7. Miscellaneous Methods and Special Applications 307

(i.e. cn not perturbed).
It was observed that (b) gives backward errors of order ||c||u, i.e. 6.598 holds. The
other methods give much greater error, which shows that 6.588 is not good for these
problems, and also that the normalization ||c|| = 1 and perturbing all coefficients
including cn are neeeded for 6.598 to hold.

Now we turn to forward error, i.e. the accuracy of the computed roots. Let
z1, ..., zn be the “exact” roots, found by Matlab in 40-decimal-digit arithmetic.
The roots computed in double precision will be denoted by ẑ1, ..., ẑn. The absolute
root error |zj − ẑj| for each root of each polynomial is plotted as a function of
its condition number, given by 6.549. It is found that for method (b), the error
is nearly always well below (condition number× u), whereas for method (a) it is
well above. Note that the results are only reported for roots |z| < 10, since in
geometric computing we are usually only interested in the interval [-1,1]. The com-
putation of larger roots is considered in section 4 of the cited paper, but will not be
discussed here. The authors also considered dropping the leading term altogether,
but concluded that this method is less accurate than 6.595. However if a step of
Newton’s method is also performed, the forward errors are often improved, but the
backward errors often get worse. The authors apply the above analysis to Bezier
polynomials, which are widely used in geometric computing. For details see the
cited paper. Again, the use of 6.595 followd by a fractional linear transformation
is much more accurate than roots.

Good (1961) derives a matrix which serves the same purpose as the companion
matrix when the polynomial is expressed as a series of Chebyshev polynomials. He
calls it the colleague matrix. He makes use of

Un(x) = (1 − x2)−
1
2 sin{(n+ 1)cos−1x} (n = 0, 1, 2, ...) (6.602)

U0 = 1

and

Sn(x) = Un(
x

2
) (6.603)

Then he supposes that the polynomial is given by an “S-series”, i.e.

p(x) = a0 + a1S1(x) + a2S2(x) + ...+ anSn(x) (6.604)

We can express Un(x) as a determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2x −1 0 0
−1 2x −1 0 .. 0
..
0 2x −1
0 0 −1 2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(6.605)

308 6. Matrix Methods

This can be re-expressed as: Sn(λ) is the characteristic polynomial |λI−K| of the
matrix

K =

















0 1 0 .. 0 0
1 0 1 .. 0 0
0 1 0 .. 0 0
..
0 0 0 .. 0 1
0 0 0 .. 1 0

















(6.606)

Good then states that we may “easily” prove by induction that

Un(x) + an−1Un−1 + ...+ a0 =
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2x −1 0 .. 0 0
−1 2x −1 .. 0 0
..
0 0 0 .. 2x −1
a0 a1 a2 .. −1 + an−2 2x+ an−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(6.607)

Again, this can be expressed as: the characteristic polynomial of the matrix

A =













0 1 0 .. 0 0
1 0 1 .. 0 0
..
0 0 0 .. 0 1

−a0 −a1 −a2 .. 1 − an−2 −an−1













(6.608)

(which Good calls the colleague matrix) is

a(λ) = Sn(λ) + an−1Sn−1(λ) + ...+ a0 (6.609)

Now suppose we wish to approximate the zeros of a function in a finite interval,
which can be normalized to [-1,1] The function may be approximated by means of
an S-series such as 6.609. Then the roots of this can be found as the eigenvalues of
A (6.608).

Barnett (1975) treated the case, similar to the above, of polynomials expressed
as a series of orthogonal polynomials. These are defined as {pi(x)}, (i = 0, 1, 2, ...)
where

p0(x) = 1, p1(x) = α1x+ β1 (6.610)

pi(x) = (αix+ βi)pi−1(x) − γipi−2(x) (i ≥ 2) (6.611)

where αi, βi, γi are constants depending on i, and αi > 0, γi > 0. The pi(x)
can be assumed orthogonal. Any n-th degree polynomial can be expressed uniquely
as:

a(x) = anpn(x) + an−1pn−1(x) + ...+ a1p1(x) + a0 (6.612)

6.7. Miscellaneous Methods and Special Applications 309

Assume that an = 1, and define the monic polynomial

ã(x) = a(x)/(α1α2...αn) (6.613)

= xn + ãn−1x
n−1 + ...+ ã1x+ ã0 (6.614)

Theorem The matrix

A =





























− β1

α1

γ
1
2
2

α1
0 .. 0 0

γ
1
2
2

α2
− β2

α2

γ
1
2
3

α2
.. 0 0

0
γ

1
2
3

α3
− β3

α3
.. 0 0

..

0 0 0 .. − βn−1

αn−1

γ
1
2
n

αn−1

− a0

αn(γ2γ3...γn)
1
2

− a1

αn(γ3...γn)
1
2

.. .. −an−2+γn

αnγ
1
2

n

−an−1−βn

αn





























(6.615)

has ã(x) as its characteristic polynomial, as we will show below. This generalizes
Good’s result which follows if in 6.615 we take αi = γi = 1, βi = 0. Barnett
suggests the term “comrade” matrix for 6.615. We will now prove the theorem
above. For we have

pi(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1x+ β1 −γ
1
2
2 0 .. 0 0

−γ
1
2
2 α2x+ β2 −γ

1
2
3 .. 0 0

0 −γ
1
2
3 α3x+ β3 .. 0 0

..

0 0 0 .. αi−1x+ βi−1 −γ
1
2

i

.. −γ
1
2

i αix+ βi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(6.616)

(as we may see by expanding the determinant by its last column and comparing
with 6.611). Now define the diagonal matrix

D = diag(α1, α2, ..., αn) (6.617)

and consider

det(xD − DA) = detDdet(xI − A) (6.618)

= (α1α2...αn)det(xI − A) (6.619)

310 6. Matrix Methods

Expanding the determinant on the left side of 6.618 by the last row and using 6.616
gives

a0 + a1p1(x) + a2p2(x) + ...+ (an−2 − γn)pn−2(x)+

(an−1 + αnx+ βn)pn−1(x) (6.620)

Using 6.611 with i = n converts the above to a(x) in 6.612 (remembering that
an = 1); finally 6.619 and 6.613 give the desired result. We can show that

vi =























1
p1(λi)

γ
1
2
2

p2(λi)

(γ2γ3)
1
2

..

..
pn−1(λi)

(γ2γ3...γn)
1
2























(6.621)

is an eigenvector of A corresponding to the eigenvalue λi. Barnett also proves that
the comrade matrix

A = TCT−1 (6.622)

where C is the usual companion matrix i.e.













0 1 0 .. 0
0 0 1 .. 0
..
0 0 0 .. 1

−ã0 −ã1 −ã2 .. −ãn−1













(6.623)

and

T = ES (6.624)

Here

E = diag(1, γ
−1

2
2 , (γ2γ3)

− 1
2 , ..., (γ2...γn)−

1
2) (6.625)

and

S =

















1 0 0 .. 0
p10 p11 0 .. 0
p20 p21 p22 .. 0
..

pn−2,0 pn−2,1 pn−2,2 .. 0
pn−1,0 pn−1,1 pn−1,2 .. pn−1,n−1

















(6.626)

6.7. Miscellaneous Methods and Special Applications 311

where

pi(x) =
i
∑

j=1

pijx
j (i = 1, ..., n− 1) (6.627)

For a proof see the cited paper.

In a later paper Barnett (1981) shows how the companion matrix C can be used
to find the GCD of two polynomials a(λ) (whose companion matrix is C) and

b(λ) = bmλ
m + bm−1λ

m−1 + ...+ b0 (6.628)

with m < n. Let

b(C) = bmCm + bm−1C
m−1 + ...+ b1C + b0I (6.629)

Then it is claimed that the rows r1, ..., rn of b(C) satisfy

ri = ri−1C (6.630)

and

r1 = [b0, b1, ..., bm, 0, ..., 0] (6.631)

Denote the columns of b(C) by c1, ..., cn, and let the GCD of a(λ) and b(λ) be

d(λ) = λk + dk−1λ
k−1 + ...+ d0 (6.632)

Then Barnett quotes another paper of his (Barnett (1970)) as proving the following:
(i) det(b(C)) 6= 0 iff d(λ) = 1.
(ii) k = n− rank[b(C)].
(iii) ck+1, ..., cn are linearly independent, and

ci = di−1ck+1 +

n
∑

j=k+2

xijcj (6.633)

for some xij .

Ammar et al (2001) describe a zero-finding method based on Szego polynomials.
It utilizes the fact that, after a change of variables, any polynomial can be considered
as a member of a family of Szego polynomials. The zero-finder uses the recursion
relations for these polynomials, defined as follows:

φ0(z) = φ∗0(z) = 1 (6.634)

σj+1φj+1(z) = zφj(z) + γj+1φ
∗
j (z) (6.635)

σj+1φ
∗
j+1(z) = γj+1zφj(z) + φ∗j (z) (6.636)

312 6. Matrix Methods

where the γj+1, σj+1, and δj+1 are given by

γj+1 = − (zφj, 1)

δj
(6.637)

σj+1 = σj(1 − |γj+1|2) (6.638)

δj−1 = δjσj+1, δ0 = σ0 = 1 (6.639)

(the above all for j = 0,1,2,...). In 6.637 the inner product

(f, g) =
1

2π

∫ π

−π

f(z)g(z)dω(t) (6.640)

where z = eit. Moreover

φ∗j (z) = zjφj(
1

z
) (6.641)

The validity of these recurrence relations is partially proved in Ammar and Gragg
(1987). The zeros of the Szego polynomials are strictly inside the unit circle and
all γj have magnitude < 1. The leading coefficient of φj is 1

δj
.

Given a polynomial pn(z) in the usual power-of-x form, we first transform pn

so that the average of its zeros vanishes. Then we determine a disk centered at
the origin that contains all zeros of the transformed polynomial, and scale so that
this becomes the unit disk. Thus the problem of finding the zeros of pn(z) has
been transformed into the problem of finding the zeros of a monic polynomial with
all its zeros in the unit disk. We identify this with the monic Szego polynomial
Φn = δnφn. More details follow.

Let {ζj}n
j=1 denote the zeros of pn(z) and define their average:

ρ =
1

n

n
∑

i=1

ζi (6.642)

We compute this from

ρ = −cn−1

n
(6.643)

and define

ẑ = z − ρ (6.644)

Then

p̂n(ẑ) = pn(z) = ẑn + ĉn−2ẑ
n−2 + ...+ ĉ1ẑ + ĉ0 (6.645)

6.7. Miscellaneous Methods and Special Applications 313

The ĉj can be computed in O(n2) operations. Now we use a theorem of Ostrowski
(1969) which states that if a polynomial such as p̂n(ẑ) in 6.645 has all |ĉi| ≤ 1,
then all its zeros lie in the disk {z : |z| < 1

2 (1 +
√

5)} (for proof see the Ammar et
al paper). After we make a change of variable z̃ = σẑ, where σ > 0 is chosen so
that

max
2≤j≤n

σj |ĉn−j | = 1 (6.646)

the transfomed polynomial p̃n(z̃) = σnp̂n(ẑ) satisfies the conditions of Ostrowski’s
theorem above. Finally we make another change of variables

ζ = τ z̃ (6.647)

where

τ =
2

1 +
√

5
(6.648)

to yield a monic polynomial

Φ(τ)
n (ζ) = τnp̃n(z̃) (6.649)

with all zeros inside the unit circle. We identify Φ
(τ)
n with the monic Szego polyno-

mial δnφn and wish to compute the recursion coefficients {γj}n
j=1 that determine

polynomials of lower degree {φj}n−1
j=0 in the same family of Szego polynomials.

Given the coefficients of φn we may compute those of φ∗n and apply 6.634-6.639
backwards to obtain γn and the γj and φj for j=n-1,...,1. Assuming that the γj

and σj are available from the above, and eliminating φ∗j from 6.634-6.636, we may
obtain an expression for φj+1 in terms of φj , φj−1..., φ0. The Schur-Cohn algo-
rithm (see Henrici (1974) Chapter 6) is an efficient way of doing this. Writing these
expressions in matrix form yields

[φ0(z), φ1(z), ..., φn−1(z)]Hn =

z[φ0(z), φ1(z), ..., φn−1(z)] − [0, 0, ..., φn(z)] (6.650)

where

Hn =
















−γ1 −σ1γ2 −σ1σ2γ3 −σ1..σn−1γn

σ1 −γ1γ2 −γ1σ2γ3 −γ1σ2..σn−1γn

0 σ2 −γ2γ3 −γ2σ3..σn−1γn

...
0 ... 0 σn−2 −γn−2γn−1 −γn−2σn−1γn

0 0 σn−1 −γn−1γn

















(6.651)

this is called the Szego-Hessenberg matrix associated with the set {φj}. 6.650 shows
that the zeros of φn(z) are the eigenvalues of Hn; we can use this feature to find

314 6. Matrix Methods

the required zeros of pn(z). It is found that the zeros are calculated more accu-
rately when maxj |ζj | is close to one. The authors describe an elaborate method
of rescaling to achieve this situation, using the Schur-Cohn algorithm. When this
has been done, we may re-calculate the γj etc, form the matrix Hn, balance it, and
compute its eigenvalues by the QR algorithm.

The authors also describe briefly a continuation method, based on a paper by
Ammar et al (1996). This method is often more accurate than that using Hn above,
but on the other hand it quite often breaks down.

Numerous numerical test are reported comparing four methods, detailed below:
1) CB: the QR algorithm applied to the companion matrix of pn(z) after balancing.
2) CBS: the QR algorithm applied to the companion matrix of the monic Szego
polynomial Φn after balancing.
3) SHB: the QR algorithm applied to Hn after balancing.
4) CM: the continuation method mentioned above.

In the great majority of cases SHB gave the lowest error (strictly speaking CM
was often more accurate that SHB, but we suggest rejecting this method because
of its large number of failures. On the other hand the authors suggest using CM
but switching to SHB whenever CM fails).

6.8 Programs and Packages

In Section 2 of this Chapter we have described a method due to Fortune (2002).
His algorithm has been implemented in C++, using EISPACK (see Smith (1976))
or LAPACK (see Anderson et al (1995)) for the eigenvalue computations, with
GMP (see Granlund (1996)) for multiple- precision arithmetic. It accepts poly-
nomials of arbitrary degree, with coefficients (real or complex) specified either
as arbitrary precision integers or rationals. It is available from http://cm.bell-
labs.com/who/sjf/eigensolve.html.

Then in Section 3 we described a method due to Bini, Gemignani, and Pan
(2004a). Their algorithm has been implemented in Fortran 90 in the file ips.tgz
which can be downloaded from
www.dm.unipi.it/~bini/software

Finally Zeng (2004a) devotes a whole paper to a Matlab implementation of his
method as Algorithm 835: MULTROOT, which is available from ACM TOMS via
Netlib. Using the Matlab representation for p, we can execute MULTROOT by
>>z = multroot(p);
For example, to find the roots of
p(x) = x10−17x9+127x8−549x7+1521x6−2823x5+3557x4−3007x3+1634x2−

6.8. Programs and Packages 315

516x+ 72
we need only two matlab commands:
>>p = [1 -17 127 -549 1521 -2823 3557 -3007 1634 -516 72];
>>z = multroot(p);
The following output appears on the screen:
THE CONDITION NUMBER 20.1463
THE BACKWARD ERROR 3.22e-016
THE ESTIMATED FORWARD ERROR 1.30e-014

computed roots multiplicities
2.999999999999997 2
2.000000000000001 3
1.000000000000000 5

In addition there is output of a two-column matrix

z =





2.999999999999997 2
2.000000000000001 3
1.000000000000000 5





The result shows an accurate factorization of

p(x) = (x− 1)5(x− 2)3(x− 3)2

The full call sequence of MULTROOT is
>> [z,f err,b err,cond] = multroot(p,tol,thresh,growf)
where (besides z and p as previously described) other input/output items are op-
tional as follows:
(1) INPUT:
tol: the backward error tolerance (default 10−10).
thresh: the zero singular value threshold (default 10−8).
growf: growth factor for the residual (default not mentioned but probably 100).
Most users will probably accept the default values, in which case they need not
specify those options.
(ii) OUTPUT:
cond: the structure preserving condition number.
b err: the backward error.
f err: the estimated forward error based on the error estimate

||z − ẑ||2 ≤ 2κl,W (ẑ)||p − p̂||W
(see Section 4 of this Chapter).
The optional input/output items can be supplied/requested partially. For example
>> [z,f err] = multroot(p,1.0e-8)
sets the backward error tolerance to 10−8 and accepts as output z and f err.

316 6. Matrix Methods

If MULTROOT cannot find a non-trivial multiplicity structure (i.e. having
one or more multiplicities > 1) within the residual tolerance, the Matlab standard
root-finder will automatically be called to calculate simple roots. We can force
the continued use of MULTROOT in this case by calling the module MROOT in
the first place. This returns job = 1 if multiple roots are found, or job = 0 otherwise.

Zeng states that the code may fail for several (unlikely) causes, such as:
(1) High structure-preserving condition number.
(2) The polynomial is near several polynomials with different multiplicity struc-
tures, e.g. the Wilkinson polynomial.
(3) Multiplicity too high. Zeng does not state what is too high; one assumes it
depends on the other roots as well.
(4) Coefficients perturbed too much.

In an Appendix to the (2004a) paper Zeng lists a large number of polynomials
which were used to test the package, all with great success. Each one has a label
such as “jt01a”. The user may run a test case with a command such as
>> [p,z] = jt01a;
when roots and multiplicities will be displayed. The above may be followed by:
>> cond = spcond(z);
and then the structure-preserving condition number will be displayed.

6.9 References for Chapter 6

Ammar, G.S., Calvetti, D., and Reichel, L. (1996), Continuation methods for the
computation of zeros of Szego polynomials, Lin. Alg. Appls. 249, 125-155

———– and Gragg, W.B. (1987), The Generalized Schur Algorithm for the Super-
fast Solution of Toeplitz Systems, in Rational Approximation and its Applications
in Mathematics and Physics, eds. J. Gilewicz et al, L.N.M 1237, Springer-Verlag,
Berlin, 315-330; also updated at
http://www.math.niu.edu/~ammar/papers/gsa.pdf

———— et al (2001), Polynomial zero-finders based on Szego polynomials, J. Com-
put. Appl. Math. 127, 1-16

Anderson, E. et al (1995), LAPACK User’s Guide 2/E, SIAM, Philadelphia, PA

Barnett, S. (1970), Greatest common divisor of two polynomials, Lin. Alg. Appls.
3, 7-9

———– (1975), A Companion Matrix Analogue for Orthogonal Polynomials, Lin.

6.9. References for Chapter 6 317

Alg. Appls. 12, 197-208

———– (1981), Congenial Matrices, Lin. Alg. Appls. 41, 277-298

Bini, D.A., Daddi, F. and Gemignani, L. (2004), On the shifted QR iteration ap-
plied to companion matrices, Electr. Trans. Numer. Anal. 18, 137-152

———- and Fiorentino, G. (1999), Numerical computation of polynomial roots us-
ing MPSolve. Manuscript, Software at ftp://ftp.dm.unipi.it/pub/mpsolve

———-, Gemignani, L., and Pan, V.Y. (2004a), Inverse Power and Durand- Kerner
Iterations for Univariate Polynomial Root-Finding, Comput. Math. Applic. 47,
447-459

———-, ————, and ——– (2004b), Improved initialization of the accelerated
and robust QR-like polynomial root-finding, Electr. Trans. Numer. Anal. 17,
195-205

———-, ————, and ——– (2005), Fast and stable QR eigenvalue algorithms for
generalized companion matrices and secular equations, Numer. Math 100, 373-408

Brand, L. (1964), The Companion Matrix and its Properties, Amer. Math.
Monthly 71, 629-634

Brugnano, L. (1995), Numerical Implementation of a New Algorithm for Polyno-
mials with Multiple Roots, J. Difference Equ. Appl. 1, 187-207

———– and Trigiante, D. (1995), Polynomial Roots: The Ultimate Answer, Lin.
Alg. Appl. 225, 207-219

Carstensen, C. (1991), Linear construction of companion matrices, Lin. Alg. Appl.
149, 191-214

Dennis, J.E. and Schnabel, R.B. (1983), Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, N.J.

Edelman, A. and Murakami, H. (1995), Polynomial Roots from Companion Matrix
Eigenvalues, Math. Comp. 64, 763-776

Elsner, L. (1973), A Remark on Simultaneous Inclusions of the Zeros of a Polyno-
mial by Gershgorin’s Theorem, Numer. Math. 21, 425-427

Farmer, M.R. and Loizou, G. (1977), An algorithm for the total, or partial, factor-
ization of a polynomial, Math. Proc. Camb. Phil. Soc 82, 427-437

318 6. Matrix Methods

Fiedler, M. (1990), Expressing a Polynomial as the Characteristic Polynomial of a
Symmetric Matrix, Lin. Alg. Appl. 141, 265-270

Fortune, S. (2002), An Iterated Eigenvalue Algorithm for Approximating Roots of
Univariate Polynomials, J. Symb. Comput. 33, 627-646

Francis, J.G.F. (1961), The QR Transformation, a unitary analogue to the LR
Transformation, I and II, Computer J 4, 265-271 and 332-345

Gemignani, L. (1998), Computing a factor of a polynomial by means of multishift
LR algorithms, SIAM J. Matrix Anal. Appls. 19, 161-181

Gill, P.E. et al (1974), Methods for Modifying Matrix Factorizations, Math. Comp.
28, 505-535

Goedecker, S. (1994), Remark on Algorithms to Find Roots of Polynomials, SIAM
J. Sci. Comput. 15, 1059-1063

Golub, G.H. and Van Loan, C.F. (1996), Matrix Computations 3/E, The Johns
Hopkins University Press, Baltimore, MD.

Good, I.J. (1961), The Colleague Matrix, a Chebyshev Analogue of the Companion
Matrix, Quart. J. Math. Oxford 12, 61-68

Granlund, T. (1996), GNU MP: the GNU multiple precision arithmetic library, Ed.
2.0. Code available from www.swox.com/gmp/.

Hammer, R. et al (1995), Chapter 9: Zeros of Complex Polynomials, in C++
Toolbox for Verified Computing, Springer-Verlag, Berlin, 164-185

Hardy, G.H. et al (1934), Inequalities, Cambridge University Press

Hazewinkel, M. (ed.) (1989), Encyclopaedia of Mathematics 4, Kluwer Academic,
Dordrecht, 438-439

Henrici, P. (1974), Applied and Computational Complex Analysis, Wiley, New York,
241-243

Jenkins, M.A. and Traub, J.F. (1970), A Three-Stage Variable-Shift Iteration for
Polynomial Zeros and its Relation to Generalized Rayleigh Iteration, Numer. Math.
14, 252-263

Jonsson, G.F. and Vavasis, S. (2004), Solving polynomials with small leading coef-

6.9. References for Chapter 6 319

ficients, SIAM J. Matrix Anal. Appls. 26, 400-414

Kahan, W. (1972), Conserving confluence curbs ill-condition, Tech. Rep. 6, Com-
puter Science, University of California, Berkeley

Kravanja, P. et al (2000), ZEAL: A mathematical software package for computing
zeros of analytic functions, Comput. Phys. Comm. 124, 212-232

———-, Sakurai, T., and Van Barel, M. (1999), On locating clusters of zeros of
analytic functions, BIT 39, 646-682

Krishnamurthy, E.V. (1960), Solving an algebraic equation by determining high
powers of an associated matrix using the Cayley-Hamilton theorem, Quart. J.
Mech. Appl. Math. 13, 508-512

Laszlo, L. (1981), Matrix Methods for Polynomials, Lin. Alg. Appl. 36, 129-131

Madsen. K. and Reid, J. (1975), Fortran subroutines for finding polynomial zeros,
Report HL. 75/1172 (c.13), Comp.Sci. and Systems Divn., A.E.R.E. Harwell, Ox-
ford

Malek, F. and Vaillancourt, R. (1995A), Polynomial Zerofinding Iterative Matrix
Algorithms, Computers Math. Appl. 29(1), 1-13

———— and ———————– (1995B), A Composite Polynomial Zerofinding Ma-
trix Algorithm, Computers Math. Appl. 30(2), 37-47

———— and ———————– (1995C), On the conditioning of a composite poly-
nomial zerofinding matrix algorithm, C.R. Math. Rep. Acad. Sci. Canada 17(2),
67-72

The Mathworks, Inc. (1992), MATLAB User’s Guide

Mendelsohn, M.S. (1957), The Computation of Complex Proper Values and Vectors
of a Real Matrix with Applications to Polynomials, Math. Comp. 11, 91-94

Moler, C.B. (1991), “ROOTS-of polynomials, that is”, MathWorks Newsletter 5,
8-9

Niu, X.-M. and Sakurai, T. (2003), A Method for Finding the Zeros of Polynomials
Using a Companion Matrix, Japan J. Indust. Appl. Math. 20, 239-256

Osborne, E.E. (1960), On Pre-Conditioning of Matrices, J. Assoc. Comput. Mach.
7, 338-345

320 6. Matrix Methods

Ostrowski, A.M. (1969), A Method for Automatic Solution of Algebraic Equations,
in Constructive Aspects of the Fundamental Theorem of Algebra, eds. B. Dejon and
P. Henrici, Wiley Interscience, London, 209-224

Parlett, B.N. and Reinsch, C. (1969), Balancing a Matrix for Calculation of Eigen-
values and Eigenvectors, Numer. Math. 13, 293-304

Phillips, J.L. (1971), The triangular decomposition of Hankel matrices, Math.
Comp. 25, 599-602

Piessens, R. et al (1983), QUADPACK: A Subroutine Package for Automatic Inte-
gration, Springer, Berlin

Ralston, A. and Rabinowitz, P. (1978), A First Course in Numerical Analysis,
McGraw-Hill, New York

Rupprecht, D. (1999), An algorithm for computing certified approximate GCD of
n univariate polynomials, J. Pure Appl. Alg. 139, 255-284

Schmeisser, G. (1993), A Real Symmetric Tridiagonal Matrix with a Given Char-
acteristic Polynomial, Lin. Alg. Appl. 193, 11-18

Smith, B.T. (1970), Error Bounds for Zeros of a Polynomial Based Upon Gersh-
gorin’s Theorems, J. Assoc. Comput. Mach. 17, 661-674

———— et al (1976), Matrix Eigensystem Routines-EISPACK GUIDE 2/E
Vol. 6), Springer, New York

Stewart., G.W. (1970), Short Notes: On the Convergence of Sebastiao E Silva’s
Method for Finding a Zero of a Polynomial, SIAM Rev. 12, 458-460

Toh, K.-C. and Trefethen, L.N. (1994), Pseudozeros of polynomials and pseudospec-
tra of companion matrices, Numer. Math. 68, 403-425

Trench, W.F. (1965), An algorithm for the inversion of finite Hankel matrices, J.
Soc. Indust. Appl. Math. 13, 1102-1107

Uhlig, F. (1997), The DQR algorithm, basic theory, convergence, and conditional
stability, Numer. Math. 76, 515-553

——— (1999), General Polynomial Roots and their Multiplicities in O(n) Memory
and O(n2) Time, Lin. Mult. Alg. 46, 327-359

(L.N.C.S

6.9. References for Chapter 6 321

Van Barel, M. et al (2005), Orthogonal Rational Functions and Structured Matri-
ces, SIAM J. Matrix Anal. Appl. 26, 810-823

Van Dooren, P. and Dewilde, P. (1983), The eigenstructure of an arbitrary polyno-
mial matrix: computational aspects, Lin. Alg. Appls. 50, 545-579

Van Huffel, S. (1991), Iterative algorithms for computing the singular subpace of
a matrix associated with its smallest singular values, Lin. Alg. Appl. 154-156,
675-709

Watkins, D.S. and Elsner, L. (1991), Convergence of algorithms of decomposition
type for the eigenproblem, Lin. Alg. Appls. 143, 19-47

Wilkinson, J.H. (1963), Rounding Errors in Algebraic Processes, Her Majesty’s Sta-
tionary Office, London

Zeng, Z. (2003), A Method Computing Multiple Roots of Inexact Polynomials, IS-
SAC ’03, Philadelphia, PA, 266-272

——– (2004a), Algorithm 835: MultRoot–A Matlab Package for Computing Poly-
nomial Roots and Multiplicities, ACM Trans. Math. Software 30, 218-236

——– (2004b), Computing Multiple Roots of Inexact Polynomials, Math. Comp.
74, 869-903

This page intentionally left blank

Index

Abel, xiii
Aberth’s method, 91, 95, 121

recursive interval version, 91
recursive version, 91

accuracy, 131, 230, 232
level, 43, 44, 46, 47
required, xvi, 132

algebraic methods
used by Newton, 135

analytic function, 261
annulus, 185
approximate zero, 137, 281, 285
approximation, xvii, 40, 83, 84
argument, 184

principle, 50
arithmetic

complex, 108
exact, 18
integer, 51
rational, 43

asymptotic error constant, 132, 133
asynchronous algorithm

on parallel processor, 118, 119
attainable accuracy barrier, 268, 270

Babylonians, xiii
backward stable algorithm, 304
Bairstow’s method, 184, 187, 189

interval version, 169
balancing

of matrix, 221, 294, 297, 298, 302
banded system, 274
base

of number system, 4, 160, 303
Bernoulli’s method, xiii
Bernstein form, 186
Bezier polynomials, 307
bibliography, xiii

on roots of polynomials, xv, 26
binary splitting, 10
binomial coefficient, 187
binomial theorem, 135, 136
bisection, xvi, 26, 37, 39, 51, 131, 137,

174, 178, 184, 185
hybrid with Newton method, 187
two-dimensional, 50

block diagonal matrix, 217, 232
Borsch-Supan method, 115

disk version of, 89
generalization of, 91

Borsch-Supan-Ehrlich-Aberth method
see Ehrlich-Aberth method, 70

bound, 26
accurate, 26
actual, 26
Deutsch’s, 27
estimated, 26
Kalantari’s, 27
list of formulas, 28
on errors, 84, 116
on number of real roots, 53
on roots, 26, 111, 286
rational, 55
verified, 211

bracketing method, 149, 168, 188
breakdown, 215, 220, 221, 242

323

324

complete, 220, 222
partial, 220, 221
step, 220

Budan’s theorem, 54

calculus, 135, 136
Cardano, xiii
Carstensen’s method, 84
cartesian coordinates, 141
Cauchy index, 38
Cauchy’s rule, 62
Cauchy-Riemann equation, 262
Cayley-Hamilton theorem, 210
center, 172

of disk, 85
centroid, 194
characteristic polynomial, xviii, 175, 180,

207, 208, 210, 214, 220, 223,
231, 308, 309

Chebyshev polynomial, 180, 187, 257, 307
circle

equation of, 86
cluster, 43, 47, 83, 94, 121, 156, 158, 258,

270, 284, 285, 293
detection by Yakoubsohn’s method,

156
k-cluster, 43, 46
mean of, 278

coefficient
leading, 48

coefficients, xiii, 45, 47, 49
integral, 47, 49

cofactor, 208
combined method, 117

point-interval, 116
common factor, 51
common factors (of f and f ′), 40
communication time

on parallel processor, 118
companion matrix, 218, 278, 280, 284,

289, 294, 296, 304, 311
balanced, 299
classical, 207, 218
Frobenius, 207, 225, 280, 283, 300

generalized, 242, 245, 246, 248
generalized (Fortune’s version), 225
generalized(tridiagonal), 231
modified, 235

complex
argument, 3
coefficients, 3
conjugate, 169
disk arithmetic, 84

complexity
of Vincent’s method, 60

computed value, 4
computer-aided geometric design, 186
computing

parallel, 67
comrade matrix

Chebyshev, 257
condition number, 222, 224, 263, 267,

268, 270, 274, 296, 297, 299,
307

structure-preserving, 266
conditioning, 295
conjugate pairs, xiii
continuation method, 314
continued fraction, 56, 62, 63

infinite, 63, 64
roots by, 53

control theory, xiv
convergence, 74, 169

4th order, 93
acceleration (Aitken’s method), 154
acceleration (Levin’s method), 154
acceleration of, 226
check for, 293
cubic, 95, 101
cubic (for Aberth’s method), 71
cubic (for Nourein’s method), 71
fourth order (of Nourein’s improved

method), 71
global, 180, 193
global (interval methods for), 161
global for real roots, 150
guaranteed, 95, 96, 100, 120, 149,

187

Index

325

guaranteed (conditions for), 72
guaranteed (order 4), 96
not guaranteed, 131
of order 4, 97, 98
of order 5, 96, 97
of order 6, 96, 97
of order 7, 97
of order k+2, 95
of WDK method, 68
order of, 23–25, 91, 116
Ostrowski’s condition, 165
Ostrowski’s condition (interval ver-

sion), 166
quadratic, 101, 172
quadratic for WDK method, 68
rapid, 165
to the mean is quadratic, 81, 82

convergent
to continued fraction, 63

converging, 39
conversions

between bases, 187
convolution, 8, 268
correction, 83, 98
cost bound, 175
Cramer’s rule, 191
cubic, xiii
cubic spline, 304
cycle, 140

De Moivre’s theorem, 191
decoupling algorithm

for parallel evaluation, 10
deflated polynomial, 211
deflation, 165, 183, 186, 241, 245, 256

of known root, 67
problems with, 224

derivative, 7, 114, 120, 132, 218, 259,
271, 292

Aho’s method, 7
efficient methods for, 7
evaluation of, 2, 24
first, 3
logarithmic, 79

second, 120
use of in iteration function, 25
value of, 133

Descartes’ theorem, 53–55, 106
determinant, 49, 208, 290, 307, 309

Hankel, 285
diagonal matrix, 113
diagonal similarity transformation, 302
difference quotient, 168
differences

backward, 14
differential equation, 208
disk, 85, 158, 161, 312

boundary of, 85
in interval methods, 84
inclusion, 89
initial, 96
iteration, 87, 95, 172
method (square root), 96

distinct roots, 217
divide and conquer method, 108
divided differences, 107, 120
double precision, 217, 270, 285, 307
Durand-Kerner method, xiii

derivation of, 69
improved, 72, 115

efficiency, 23, 25, 91, 95–100, 107, 131,
141, 144–147, 149, 168, 171, 172,
188, 195, 210

of Newton’s method, 135
bound on, 26
comparison of, 114
computational, 175
index, 88
measure of, 114
of Bini’s program, 121
of multiple root method, 156
on parallel processor, 119

Ehrlich-Aberth method, 115, 117
disk version, 88, 100, 116, 117
Gauss-Seidel version, 104
improved, 72, 116, 117
improved (Gauss-Seidel version), 107

Index

326

eigenproblem, 211, 214
eigenvalue, xviii, 106, 175–178, 208, 209,

215–217, 223, 225, 226, 232, 235,
245, 248, 250, 256, 278, 280,
281, 284, 289, 294, 304, 308,
310

method, 186, 300
problem, 207, 300
problem-generalized, 288, 305
simple, 217

eigenvector, 209, 223, 310
initial, 245
left and right, 297

eigenvector/eigenvalue pair, 243
EISPACK, 298, 299, 314
elimination

of elements, 234
equation, xiii

non-linear, 111
equations

homogeneous, 288
error

actual, 270
backward, 45, 264, 266, 300, 301,

306, 307
bound (backward), 305
bounds, 46, 83, 84, 168, 175, 177
bounds (guaranteed), 161
criterion, 39
estimate, 87
forward, 266, 267, 306, 307
of approximation, 25
of multiple root, 268
relative, 270

errors
avoiding, 47
in floating arithmetic, 47

Euclidean algorithm, 44, 47, 62, 180, 182,
185, 215, 218, 231, 232

extended, 179
Schmeisser’s modification, 214
stabilized, 47

Euclidean norm, 302

Euclidean polynomial remainder
48

Euler-like method, 99
evaluation, 1, 22, 100, 101, 114, 141, 163,

247
accurate, 17
at equidistant points, 14
Clenshaw’s algorithm, 186
cost of (per iteration), 114
instability of, 16
matrix-vector product, 12
multipoint, 11, 13
of Bernstein form, 187
of derivative, 97, 100, 188
parallel, 8

evaluations, 116, 149, 168, 188, 189
new per iteration, 25, 88
per root, 91

extension
circular, 86

Farmer and Loizou’s method, 84, 117
Fast Fourier Transform, 8, 11
Fibonacci numbers, 56
Fiedler’s method, 222, 223
financial calculations, xiv
fixed points, 132, 140
fixed-point theorem

Schauder’s, 214
floating-point, 17, 18, 22, 43, 45, 46, 55,

100, 246
folding method, 10
formal orthogonal polynomial, 287
Fourier, 136
Fourier’s theorem, 53–55
fractional linear transformation, 307
Frobenius norm, 305
Fundamental Theorem of Algebra, 67

g.c.d., 40, 43, 44, 47, 184, 186, 215–217,
224, 258–260, 271, 311

exact, 46, 47
near, 44, 46
triplet, 271, 274

Index

sequence,

327

Gauss, xiii
Gauss-Newton iteration, 258, 261, 262,

266, 268, 269, 271, 274–277
Gauss-Seidel and SOR variations

of simultaneous methods, 102
Gauss-Seidel variation, 99
Gaussian elimination, 225
geometric applications, 304
Gershgorin’s theorem, 175, 184
Givens rotation, 232, 233, 237, 238, 240,

254, 256
complex, 235
parameters, 239

Givens’ method, 225
globally convergent method, 120, 137
GMP

multiprecision package, 122, 314
Graeffe’s method, xiii, xvii, 192
greatest common divisor

(see g.c.d.), 39

Halley’s method, 97
high-order variations, 97

Halley-like method, 99, 172
disk version, 97, 102, 116

Hansen and Patrick’s family of methods,
99, 100

Hermite information, 25
Hermite interpolatory method, 25
Hessenberg form

upper, 236, 256
high order method

similar to Newton’s, 132
Holder inequality, 295
homotopy method, 157

of Pomentale, 193
of Wu, 192

Horner’s method, 1, 2, 6, 7, 9, 18, 22, 23,
67, 159, 169, 246

parallel implementation of, 8
repeated, 14

Householder’s method, 225
Hull-Mathon procedure, 224
hybrid method

modified and regular Laguerre’s
93

hybrid method(point plus disk), 87
hybrid version

of Nourein’s method, 89
hypercube, 119

ill-conditioning, 266, 280, 293, 306
immediate basin, 139
IMSL Library, 299
inclusion property

of disks, 86
initial conditions, 100
initial guess, 68, 73, 77, 112, 117, 120,

131, 135, 139, 149, 173, 175,
188, 190, 191, 194, 213, 246,
258, 270, 276

for WDK method, 72
inner product, 286, 312
integrals

approximations to, 286
integration

numerical, 282, 284, 287
interior point, 165
interlace theorem

Cauchy’s, 176
interlacing sets, 177
interpolation, xvii, 11

Hermite, 188
inverse cubic, 149
inverse quadratic, 194
Lagrange, 76, 79, 247
linear, 174, 187
linear inverse, xvii
quadratic, xvii, 149

interval, 37, 90
arithmetic, 84, 165
arithmetic (extended), 163, 164
circular, 172
complex, 173
extension, 162, 167
isolating, 61
matrix, 214
method, 161

Index

method,

328

method (combined), 170
method (disk-k’th root), 94
method (for real roots), 90
midpoint of, 162
narrow, 166, 170
rectangular, 89, 102, 161, 169
reducing size of, 166

inverse
of companion matrix, 209
of disk, 89

inverse function, 144
inverse iteration, 268, 272

guaranteed convergence of, 277
inversion

centered, 96
iteration, xvi, 4, 23, 165

function, 23
multipoint, 24–26
one-point, 24, 25

iterative method, xvi, 17, 84, 132
point, 168

Jacobian, 109, 112, 261, 264, 266, 267,
269, 273–275

inverse of, 212
Jarratt’s method, 141
Jenkins-Traub method, xiii, xvii, 186, 195,

230, 299

k’th root method, 95
Kanno’s SOR-GS method, 104
King’s 5th order method, 144

Laguerre’s method, xvii, 2, 93, 230
(modified) serial version, 107
modified, 93, 94
simultaneous version, 92

Laguerre-like method, 99, 173
LAPACK, 314
Laplace transform, xiv
Larkin’s method, xiii
latitude and longitude, 141
leading coefficient

small, 304, 306

leading principal minor, 292
least common multiplier, 55
least-squares problem, 258, 261, 263, 266
least-squares solution, 275
Leibnitz’ theorem, 2
linear equation, 208
linear independence

of columns, 264
linear system, 260, 274, 282
linearly independent, 209
linux, 122
Lipschitz constant, 262
LR algorithm, 289

machine precision, xvi, 17, 20, 154, 246,
270, 293, 295, 300, 305

Madsen-Reid code, 299
mantissa, 4, 22, 160
MAPLE, 222
MATLAB, 186, 270, 285, 298, 299, 301,

305, 307, 314
function ROOTS, 270

MATLAB program, 217
matrices

similar, 289
matrix

block diagonal, 176
colleague, 307
companion, xviii, 310
comrade, 309, 310
conjugate transpose, 236
convolution, 259
diagonal, 243, 302, 309
diagonal plus rank-one, 250
generalized semi-diagonal, 252
Hankel, 279, 287
Hermitian, 256
Hermitian diagonal+semiseparable,

257
Hessenberg, 240, 289, 291
Hessenberg form, 225
identity, 237, 303
method

for a few roots, 289

Index

329

methods, xiii, 207
errors and sensitivity, 294
programs, 314

methods (of order N-squared oper-
ations), 231

orthogonal, 225
pencil

perturbed, 306
product, 228
rank-deficient, 271
rank-one, 242
real symmetric tridiagonal, 175
real tridiagonal, 176
right triangular, 227, 240, 254
rotation or Givens, 226, 229
similar, 220
Sylvester, 258, 259, 271
symmetric, 223
symmetric tridiagonal, 225
Szego-Hessenberg, 313
trace of, 301
triangular, 113
tridiagonal, 214, 216, 231, 232
unit lower triangular, 219, 220, 289
upper triangular, 237, 260, 289
Vandermonde, 288

mean, 287
of a cluster, 284
of error, 160

minimization problem, 264
minimum

local, 268
minor, 209
Mobius transformation, 250
modular method, 49
Monsi’s symmetric single-step method,

103
MPsolve program, 121
Muller’s method, xiii, xvii, 141, 186, 195
multiple

precision, 17, 47, 121, 168, 186, 193,
223, 224, 257, 258, 268, 270,
286

root, 40, 43, 81, 84, 88, 95, 97–99,
107, 116, 121, 139, 155, 164,
168, 170, 173, 187, 209, 210,
216, 224, 230, 232, 263, 266,
267, 270, 278, 293, 299

matrix methods for, 257
root (approximations to), 70, 81
root (attainable accuracy of), 258
roots

simultaneous methods for, 80
multiple root method, 175
multiplication

vector-matrix, 240
multiplicity, 38, 40–43, 80, 83, 84, 88, 97,

171, 184, 209, 216, 217, 222–
224, 259, 270, 278, 282, 285,
286, 288

Chanabasappa’s method, 153
Dong’s method, 156
estimation by Schroeder’s method,

153
estimation of, 152, 232
extrapolation method’s, 155
finding by Lagouanelle’s method, 154,

171
Hansen and Patrick’s method, 153
Madsen’s estimation, 153
of cluster, 83
Ostrowski’s method of estimation,

153
Traub’s method, 154
Ypma’s treatment, 155

multiplicity structure, 257, 258, 263, 264,
266–268, 270, 275–277, 316

n’th roots of unity, 11, 247
nested multiplication, 1
Neta’s 6th order method, 145
Neta’s order 16 method, 147
Netlib, 299
Newton sum, 286
Newton’s correction, 115
Newton’s identities, 150
Newton’s integral theorem, 144

Index

330

Newton’s method, xiii, xvi, 7, 23–25, 40,
61, 68, 70, 109, 116, 120, 131–
133, 137, 139, 144, 155, 158,
161, 174, 178, 183, 184, 186–
188, 190, 307

Chun’s variation, 195
cluster-adapted variation, 194
computable convergence conditions,

137
convergence in real root case, 141
convergence of, 131, 138
corrected, 152
damped, 111
derivation of, 131
discrete mp version, 193
earliest description, 135
for system, 69, 212, 266
Fourier’s condition for convergence,

134
Fourier’s variation, 134
generalizations, 141
history of, 135
homotopy version, 192
Hubbard’s set of initial points, 139
hybrid with bisection, 188
hybrid with other methods, 175
hybrid with Steffensen’s, 193
interval version, 214
Lagrange gave first modern, 136
linear convergence to multiple roots,

80
m-cycle improved, 188
methods related to, 190
modified, 288
order of, 132
Ostrowski’s convergence condition,

133, 137
parallel extended interval version, 174
programs using, 189
Raphson’s version, 136
Smale’s convergence condition, 137
versions for multiple roots, 151

Newton-Fourier method, 168
Newton-like method

parallel versions, 173
simultaneous, 173

Newton-Moore-like methods, 173
nonlinear system

Vieta’s, 266
Nourein’s method, 71, 91, 115

convergence of, 79
disk version of, 89

null-space, 260
number

double length, 20
numbers

normalized, 22
numerical methods, xiii

Omar Khayyam, xiii
order

of iteration with n evaluations, 146
orthogonal polynomial, 308
Ostrowski’s method, 95
Ostrowski’s square root method

disk version, 101
Ostrowski-like method, 99
over-determined system, 261, 264, 275
overflow, 22, 23, 185, 230, 241, 242

prevention of, 22

parallel computers
simultaneous method on, 117

parallel computing, 67, 68
parallel network topologies, 119
parallel processors, 9

minimum number of, 9
parallelism, 103
partial fractions, 82
pejorative manifold, 258, 263, 267
pejorative root, 264, 266–268
permutation method

of estimating errors, 160
perturbation, 44, 81, 186, 246, 258, 267,

270, 294, 295, 299, 306
coefficientwise, 295, 300
infinitesimal, 296
method, 160

Index

331

multiplicity-preserving, 267
normwise, 295
unrestricted, 266

perturbed polynomial, 305
point-slope method, 173
polar and spherical coordinates, 140
polar coordinates, 191
polynomial, xiii, xviii, 40

low-degree, 23
roots of, xiii, xiv

polynomial remainder sequence
(see prs), 48

power form, 186
power method, 210

for companion matrix, 209
inverse, 242
shifted inverse, 245, 246

power-of-x form, 312
powers of x

evaluation of, 10
parallel computation, 9

precision
infinite, 43

program for simultaneous methods, 121
prs

normal, 49
Primitive, 48
Reduced, 48, 49
Subresultant, 49

PRSS method
mixed interval-point version, 103

pseudo-inverse, 274
pseudo-remainder, 48, 49
pseudospectra, 299
pseudospectrum, 294, 296
pseudozero set, 294, 295, 299

QR factorization, 241, 256, 260, 268, 272,
275

QR iteration, 235, 239, 254, 256, 257
modified, 235

QR method, 215, 216, 218, 220, 223–226,
230, 231, 233, 289, 305, 314

description of, 225

shifted, 236, 253
QUADPACK, 286
quadratic, xiii, 13, 43, 92, 108, 120

factor, 111, 113, 169, 181
quadrature rule, 144
quadruple precision, 299
quartic, xiii
quotient

p(x) divided by z-x, 2
partial, 63

QZ-algorithm, 306

radicals
solution by, xiii

radius, 101, 172
of disk, 85

random errors, 232
random numbers, 252, 253
random variables, 190
range, 162

evaluation of, 162
of interval, 165

rank deficiency, 265
rationals, 47
real factorization methods, 108
real root case, 120, 141, 175, 215
reciprocal polynomial, 209, 224, 294
rectangle

enclosing, 171
in interval methods, 84

rectangular region, 286
rectangular rule, 144
recurrence relation, 112, 178, 312
recursive methods, 90
references

for bounds, 31
for chapter 1, 33
for chapter 2, 51
for chapter 3, 65
for chapter 4, 123
for chapter 5, 196
for chapter 6, 316

regular termination, 215, 220
relative error, 160

Index

332

remainder, 47
partial, 48
sign of, 47

repeated symmetric single-step method,
103

residuals, 19, 45, 46
residue theorem, 279
resultant, 49
reverse RQ step, 239
root, xiii, xiv

approximate, 47
delta-approximated, 246
k-fold, 43

root error
absolute, 307

roots
common, 113
distinct, 215, 286
multiple, 40, 42
of unity, 282
real, 37
real-isolation of, 55
simple, 39, 43, 217, 220
upper bound on, 39

rounding
after operation, 17

rounding error, 4, 6, 22, 43, 55, 100, 102,
154, 156, 158, 160, 164, 186,
187, 222, 302

alternative expression, 6
bound on, 4, 7, 163
estimate of, 6, 7
in evaluation, 4, 17, 160
in simultaneous method, 100
increased, 67

Routh’s theorem, 51
Routh-Hurwitz criterion, xiv
RQ step, 242
Runge-Kutta method, 144

S-series, 308
Sakurai’s method, 84
sample point, 16
scalar product

precise, 17, 19
scaling, 22, 184, 232, 298, 312, 314

factor, 22
Fortran implementation, 23

SCARFS
program, 195

Schroeder’s method, 224
Schur-Cohn algorithm, 313, 314
secant method, xvii, 24, 25

optimal, 194
secant-like method, 194
secant-Newton method, 195
second derivative

methods involving, 92
semi-diagonal

of rectangle, 90
of rectangular interval, 102

sensitivity, 263, 267, 294
structure-constrained, 268

shared memory, 173
Sherman-Morrison-Woodbury formula, 244
shift, 226, 227

exceptional, 235
sign variation, 38, 53, 56, 59, 60, 181

number of, 53
signal processing, xiv, 14
similarity transformation, 297
Simpson

true inventor of “Newton’s method”,
135

simultaneous methods, xiii, xvi, 11, 67,
73, 117, 161

order of, 114
singular matrix, 111, 113
singular value, 258–260, 262, 266, 267,

271, 272, 274
singular vector, 260, 261, 271
slope method, 173
sparsity structure, 275
spectral radius, 106
speed-up

on parallel processor, 117, 119
spherical coordinates, 141
splitting point, 176

Index

333

square root, 98, 235
square root method, 84

Petkovic’s variation, 98
with Halley correction (Gauss-Seidel

version), 107
square roots

methods involving, 92
stability, xiv, xv, 221, 241

of zerofinding algorithm, 295
staggered format, 18
standard deviation

of error, 160
stationary iteration, 293
stereographic projection, 140
stopping criterion, 131, 132, 135, 158,

161, 164
Adams’, 6, 117
Garwick’s, 7, 159
Igarashi’s, 6, 159
Vignes’, 160

Sturm sequence, xvi, 26, 37–40, 47, 50,
51, 90, 119, 182, 183

using integers, 47
Sturm’s theorem, 38, 51, 53, 186
subinterval, 162, 165, 174
submatrix

principal, 176, 245
subresultant method, 51
symbolic algebra, 43
system of nonlinear equations, 211
Szego polynomial, 311–313

Taylor’s series, 2, 191
Taylor’s theorem, 132, 142
termination

of iterative methods, 100
Toeplitz matrix, 110

triangular, 110
trace

preservation of, 234
transfer function, xiv
trapezoidal rule, 144, 282
triangular form

upper, 256, 257

triangular linear system, 275

underflow, 22, 23, 185, 242
minimization of, 22
reduction of, 22

union
of intervals, 164

vector machine, 230
Vincent’s theorem, 54, 55

Akritas’ improvement, 56

WDK correction, 89, 99, 114
WDK method, 67, 68, 75, 76, 78, 81, 84,

91, 108, 111, 115, 117, 266
(nearly always converges), 72
asynchronous parallel version, 118
Atanassova’s generalization of, 90
convergence of, 77, 78
disk version, 87, 88, 102, 116
for multiple roots, 80
Gauss-Seidel version, 115
modification of, 103
on parallel processor, 118
parallel or total-step variation, 103
rectangular interval version of, 89
serial or single-step variation, 103
variation of, 90

Weierstrass’ correction
see WDK correction, 96

Weierstrass’ method, 67
Werner’s method, 67, 145
Wilf’s method, 51
Wilkinson’s polynomial, 242, 253, 299
work

in iteration, 25

z-transform, xiv
Zeng’s program MULTROOT, 314

Index

	Dedication
	Preface
	Contents
	Introduction
	References

	Chapter 1 Evaluation, Convergence, Bounds
	1.1 Horner’s Method of Evaluation
	1.2 Rounding Errors and Stopping Criteria
	1.3 More Efficient Methods for Several Derivatives
	1.4 Parallel Evaluation
	1.5 Evaluation at Many Points
	1.6 Evaluation at Many Equidistant Points
	1.7 Accurate Evaluation
	1.8 Scaling
	1.9 Order of Convergence and Efficiency
	1.10 A Priori Bounds on (Real or Complex) Roots
	List of Formulas for Bounding Roots of Polynomials
	References for formulas for bounds

	1.11 References for Chapter 1

	Chapter 2 Sturm Sequences and Greatest Common Divisors
	2.1 Introduction
	2.2 Definitions and Basic Theorem
	2.3 Application to Locating Roots
	2.4 Elimination of Multiple Roots
	2.5 Detection of Clusters of Zeros (Near-Multiple)
	2.6 Sturm Sequences (or GCDs) Using Integers
	2.7 Complex Roots (Wilf’s Method)
	2.8 References for Chapter 2

	Chapter 3 Real Roots by Continued Fractions
	3.1 Fourier and Descartes’ Theorems
	3.2 Budans’s Theorem
	3.3 Vincent’s Theorem
	3.4 Akritas’ Improvement of Vincent’s Theorem
	3.5 Applications of Theorem 3.4.1
	3.6 Complexity of m
	3.7 Choice of the a_i
	3.8 Cauchy’s Rule
	3.9 Appendix to Chapter 3. Continued Fractions
	3.10 References for Chapter 3

	Chapter 4 Simultaneous Methods
	4.1 Introduction and Basic Methods
	4.2 Conditions for Guaranteed Convergence
	4.3 Multiple Roots
	4.4 Use of Interval Arithmetic
	4.5 Recursive Methods
	4.6 Methods Involving Square Roots, Second Order Derivatives, etc.
	4.7 Effect of Rounding Errors
	4.8 Gauss-Seidel and SOR Variations
	4.9 Real Factorization Methods
	4.10 Comparison of Efficiencies
	4.11 Implementation on Parallel Computers
	4.12 Miscellaneous Methods
	4.13 A Robust and Efficient Program
	4.14 References for Chapter 4

	Chapter 5 Newton's and Related Methods
	5.1 Definitions and Derivations
	5.2 Early History of Newton’s Method
	5.3 Computable Conditions for Convergence
	5.4 Generalizations of Newton’s Method
	5.5 Methods for Multiple Roots
	5.6 Termination Criteria
	5.7 Interval Methods
	5.8 Parallel Methods
	5.9 Hybrid Methods Involving Newton’s Method
	5.10 Programs
	5.11 Miscellaneous Methods Related to Newton’s
	5.12 References for Chapter 5

	Chapter 6 Matrix Methods
	6.1 Methods Based on the Classical Companion Matrix
	6.2 Other Companion Matrices
	6.3 Methods with O(N²) Operations
	6.4 Methods Designed for Multiple Roots
	6.5 Methods for a Few Roots
	6.6 Errors and Sensitivity
	6.7 Miscellaneous Methods and Special Applications
	6.8 Programs and Packages
	6.9 References for Chapter 6

	Index

