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Preface to the Second Edition

This second edition is significantly expanded by new material that discusses
recent advances in grid generation technology based on the numerical solu-
tion of Beltrami and diffusion equations in control metrics. It gives a more
detailed and practice-oriented description of the control metrics for provid-
ing the generation of adaptive, field-aligned, and balanced numerical grids.
Some numerical algorithms are described for generating surface and domain
grids. Applications of the algorithms to the generation of numerical grids with
individual and balanced properties are demonstrated.

Grid generation codes represent an indispensable tool for solving field
problems in nearly all areas of applied mathematics and computational physics.
The use of these grid codes significantly enhances the productivity and re-
liability of the numerical analysis of problems with complex geometry and
complicated solutions. The science of grid generation is still growing fast; new
developments are continually occurring in the fields of grid methods, codes,
and practical applications. Therefore there exists an evident need of students,
researchers, and practitioners in applied mathematics for new books which co-
herently complement the existing ones with a description of new developments
in grid methods, grid codes, and the concomitant areas of grid technology.

The objective of this book is to give a clear, comprehensive, and easily
learned description of all essential methods of grid generation technology for
two major classes of grids: structured and unstructured. These classes rely
on two somewhat opposite basic concepts. The basic concept of the former
class is adherence to order and organization, while the latter is prone to the
absence of any restrictions.

The present monograph discusses the current state of the art in methods
of grid generation and describes new directions and new techniques aimed at
the enhancement of the efficiency and productivity of the grid process. The
emphasis is put on mathematical formulations, explanations, and examples of
various aspects of grid generation.

Special attention is paid to a review of those promising approaches and
methods which have been developed recently and/or have not been sufficiently
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covered in other monographs. In particular, the book includes a stretching
method adjusted to the numerical solution of singularly perturbed equations
having large scale solution variations, e.g. those modeling high-Reynolds-
number flows. A number of functionals related to conformality, orthogonality,
energy, and alignment are described. The book includes differential and varia-
tional techniques for generating uniform, conformal, and harmonic coordinate
transformations on hypersurfaces for the development of a comprehensive ap-
proach to the construction of both fixed and adaptive grids in the interior
and on the boundary of domains in a unified manner. The monograph is also
concerned with the description of all essential grid quality measures such as
skewness, curvature, torsion, angle and length values, and conformality. Em-
phasis is given to a clear style and new angles of consideration where it is not
intended to include unnecessary abstractions.

The major area of attention of this book is structured grid techniques.
However, the author has also included an elementary introduction to basic
unstructured approaches to grid generation. A more detailed description of
unstructured grid techniques can be found in Computational Grids: Adap-
tation and Solution Strategies by Carey (1997), Delaunay Triangulation and
Meshing by George and Borouchaki (1998), and Mesh Generation Application
to Finite Elements by Frey and George (2008).

Since grid technology has widespread application to nearly all field prob-
lems, this monograph may have some interest for a broad range of readers,
including teachers, students, researchers, and practitioners in applied mathe-
matics, mechanics, and physics.

The first chapter gives a general introduction to the subject of grids. There
are two fundamental forms of mesh: structured and unstructured. Structured
grids are commonly obtained by mapping a standard grid into the physical
region with a transformation from a reference computational domain. The
most popular structured grids are coordinate grids. The cells of such grids
are curvilinear hexahedrons, and the identification of neighboring points is
done by incrementing coordinate indices. Unstructured grids are composed of
cells of arbitrary shape and, therefore, require the generation of a connectivity
table to allow the identification of neighbors. The chapter outlines structured,
unstructured, and composite grids and delineates some basic approaches to
their generation. It also includes a description of various types of grid topology
and touches on certain issues of big grid codes.

Chapter 2 deals with some relations, necessary only for grid generation,
connected with and derived from the metric tensors of coordinate transforma-
tions. As an example of an application of these relations, the chapter presents
a technique aimed at obtaining conservation-law equations in new fixed or
time-dependent coordinates. In the procedures described, the deduction of
the expressions for the transformed equations is based only on the formula for
differentiation of the Jacobian.

Very important issues of grid generation, connected with a description of
grid quality measures in forms suitable for formulating grid techniques and
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efficiently analyzing the necessary mesh properties, are discussed in Chap. 3.
The definitions of the grid quality measures are based on the metric tensors
and on the relations between the metric elements considered in Chap. 2. Spe-
cial attention is paid to the invariants of the metric tensors, which are the
basic elements for the definition of many important grid quality measures.
Clear algebraic and geometric interpretations of the invariants are presented.

Equations with large variations of the solution, such as those modeling
high-Reynolds-number flows, are one of the most important areas of the ap-
plication of adaptive grids and of demonstration of the efficiency of grid tech-
nology. The numerical analysis of such equations on special grids obtained by
a stretching method has a definite advantage in comparison with the classical
analytic expansion method in that it requires only a minimum knowledge of
the qualitative properties of the physical solution. The fourth chapter is con-
cerned with the description of such stretching methods aimed at the numerical
analysis of equations with singularities.

The first part of Chap. 4 acquaints the reader with various types of sin-
gularity arising in solutions to equations with a small parameter affecting the
higher derivatives. The solutions of these equations undergo large variations
in very small zones, called boundary or interior layers. The chapter gives a
concise description of the qualitative properties of solutions in boundary and
interior layers and an identification of the invariants governing the location
and structure of these layers. Besides the well-known exponential layers, three
types of power layer which are common to bisingular problems having com-
plementary singularities arising from reduced equations, are described. Such
equations are widespread in applications, for example, in gas dynamics. Sim-
ple examples of one- and two-dimensional problems which realize different
types of boundary and interior layers are demonstrated, in particular, the ex-
otic case where the interior layer approaches infinitely close to the boundary
as the parameter tends to zero, so that the interior layer turns out to be a
boundary layer of the reduced problem. This interior layer exhibits one more
phenomenon: it is composed of layers of two basic types, exponential on one
side of the center of the layer and power-type on the other side.

The second part of Chap. 4 describes a stretching method based on the
application of special nonuniform stretching coordinates in regions of large
variation of the solution. The use of stretching coordinates is extremly effec-
tive for the numerical solution of problems with boundary and interior layers.
The method requires only a very basic knowledge of the qualitative proper-
ties of the physical solution in the layers. The specification of the stretching
functions is given for each type of basic singularity. The functions are defined
in such a way that the singularities are automatically smoothed with respect
to the new stretching coordinates. The chapter ends with the description of
a procedure to generate intermediate coordinate transformations which are
suitable for smoothing both exponential and power layers. The grids derived
with such stretching coordinates are often themselves well adapted to the ex-
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pected physical features. Therefore, they make it easier to provide dynamic
adaptation by taking part of the adaptive burden on themselves.

The simplest and fastest technique of grid generation is the algebraic
method based on transfinite interpolation. Chapter 5 describes formulas for
general unidirectional transfinite interpolations. Multidirectional interpola-
tion is defined by Boolean summation of unidirectional interpolations. The
grid lines across block interfaces can be made completely continuous by us-
ing Lagrange interpolation or to have slope continuity by using the Hermite
technique. Of central importance in transfinite interpolation are the blending
functions (positive univariate quantities depending only on one chosen coordi-
nate) which provide the matching of the grid lines at the boundary and interior
surfaces. Detailed relations between the blending functions and approaches to
their specification are discussed in this chapter. Examples of various types of
blending function are reviewed, in particular, the functions defined through
the basic stretching coordinate transformations for singular layers described
in Chap. 4. These transformations are dependent on a small parameter so that
the resulting grid automatically adjusts to the respective physical parameter,
e.g. viscosity, Reynolds number, or shell thickness, in practical applications.
The chapter ends with a description of a procedure for generating triangular,
tetrahedral, or prismatic grids through the method of transfinite interpolation.

Chapter 6 is concerned with grid generation techniques based on the nu-
merical solution of systems of partial differential equations. Generation of
grids from these systems of equations is largely based on the numerical so-
lution of elliptic, hyperbolic, and parabolic equations for the coordinates of
grid lines which are specified on the boundary segments. The elliptic and par-
abolic systems reviewed in the chapter provide grid generation within blocks
with specified boundary point distributions. These systems are also used to
smooth algebraic, hyperbolic, and unstructured grids. A very important role
is currently played in grid codes by a system of Poisson equations defined as
a sum of Laplace equations and control functions. This system was originally
considered by Godunov and Prokopov and further generalized, developed,
and implemented for practical applications by Thompson, Thames, Mastin,
and others. The chapter describes the properties of the Poisson system and
specifies expressions for the control functions required to construct nearly or-
thogonal coordinates at the boundaries. Hyperbolic systems are useful when
an outer boundary is free of specification. The control of the grid spacing in
the hyperbolic method is largely performed through the specification of vol-
ume distribution functions. Special hyperbolic and elliptic systems are pre-
sented for generating orthogonal and nearly orthogonal coordinate lines, in
particular, those proposed by Ryskin and Leal. The chapter also reviews some
parabolic and high-order systems for the generation of structured grids.

Effective adaptation is one of the most important requirements put on
grid technology. The basic aim of adaptation is to increase the accuracy and
productivity of the numerical solution of partial differential equations through
a redistribution of the grid points and refinement of the grid cells. Chapter 7
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describes some basic techniques of dynamic adaptation. The chapter starts
with the equidistribution method, first suggested in difference form by Boor
and further applied and extended by Dwyer, Kee, Sanders, Yanenko, Liseikin,
Danaev, and others. In this method, the lengths of the cell edges are defined
through a weight function modeling some measure of the solution error. An
interesting fact about the uniform convergence of the numerical solution of
some singularly perturbed equations on a uniform grid is noted and explained.
The chapter also describes adaptation in the elliptic method, performed by the
control functions. Features and effects of the control functions are discussed
and the specification of the control functions used in practical applications
is presented. Approaches to the generation of moving grids for the numerical
solution of nonstationary problems are also reviewed. The most important
feature of a structured grid is the Jacobian of the coordinate transformation
from which the grid is derived. A method based on the specification of the
values of the Jacobian to keep it positive, developed by Liao, is presented.

Chapter 8 reviews the developments of variational methods applied to grid
generation. Variational grid generation relies on functionals related to grid
quality: smoothness, orthogonality, regularity, aspect ratio, adaptivity, etc.
By the minimization of a combination of these functionals, a user can define a
compromise grid with the desired properties. The chapter discusses the vari-
ational approach of error minimization introduced by Morrison and further
developed by Babuŝka, Tihonov, Yanenko, Liseikin, and others. Functionals
for generating uniform, conformal, quasiconformal, orthogonal, and adaptive
grids, suggested by Brackbill, Saltzman, Winslow, Godunov, Prokopov, Ya-
nenko, Liseikin, Liao, Steinberg, Knupp, Roache, and others are also pre-
sented. A variational approach using functionals dependent on invariants of
the metric tensor is also considered. The chapter discusses a new variational
approach for generating harmonic maps through the minimization of energy
functionals, which was suggested by Dvinsky. Several versions of the function-
als from which harmonic maps can be derived are identified.

Methods developed for the generation of grids on curves and surfaces are
discussed in Chap. 9. The chapter describes the development and application
of hyperbolic, elliptic, and variational techniques for the generation of grids
on parametrically defined curves and surfaces. The differential approaches are
based on the Beltrami equations proposed by Warsi and Thomas, while the
variational methods rely on functionals of surface grid quality measures. The
chapter includes also a description of the approach to constructing conformal
mappings on surfaces developed by Khamaysen and Mastin.

Chapter 10 is devoted to the author variant of the implementation of an
idea of Eiseman for generating adaptive grids by projecting quasiuniform grids
from monitor hypersurfaces. The monitor hypersurface is formed as a surface
of the values of some vector function over the physical geometry. The vector
function can be a solution to the problem of interest, a combination of its
components or derivatives, or any other variable quantity that suitably mon-
itors the way that the behavior of the solution influences the efficiency of the
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calculations. For the purpose of commonality a general approach based on dif-
ferential and variational methods for the generation of quasiuniform grids on
arbitrary hypersurfaces is considered. The variational method of generating
quasiuniform grids, developed by the author, is grounded on the minimization
of a generalized functional of grid smoothness on hypersurfaces, which was in-
troduced for domains by Brackbill and Saltzman. The chapter also includes an
expansion of the method by introducing more general control metrics in the
physical geometry. The control metrics provide efficient and straightforwardly
defined conditions for various types of grid adaptation, particularly grid clus-
tering according to given function values and/or gradients, grid alignment
with given vector fields, and combinations thereof. Using this approach, one
can generate both adaptive and fixed grids in a unified manner, in arbitrary
domains and on their boundaries. This allows code designers to merge the
two tasks of surface grid generation and volume grid generation into one task
while developing a comprehensive grid generation code.

The subject of unstructured grid generation is discussed in Chap. 11. Un-
structured grids may be composed of cells of arbitrary shape, but they are
generally composed of triangles and tetrahedrons. Tetrahedral grid methods
described in the chapter include Delaunay procedures and the advancing-front
method. The Delaunay approach connects neighboring points (of some previ-
ously defined set of nodes in the region) to form tetrahedral cells in such a way
that the sphere through the vertices of any tetrahedron does not contain any
other points. In the advancing-front method, the grid is generated by building
cells one at a time, marching from the boundary into the volume by succes-
sively connecting new points to points on the front until all the unmeshed
space is filled with grid cells.

The book ends with a list of references.
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1

General Considerations

1.1 Introduction

An important element of the numerical solution of partial differential equa-
tions by finite-element or finite-difference methods on general regions is a grid
which represents the physical domain in a discrete form. In fact, the grid is
a preprocessing tool or a foundation on which physical, continuous quantities
are described by discrete functions and on which the differential equations are
approximated by algebraic relations for discrete values that are then numeri-
cally analyzed by the application of computational codes. The grid technique
also has the capacity, based on an appropriate distribution of the grid points,
to enhance the computational efficiency of the numerical solution of complex
problems.

The efficiency of a numerical study of a boundary value problem is esti-
mated from the accuracy of the computed solution and from the cost and time
of the computation.

The accuracy of the numerical solution in the physical domain depends on
both the error of the solution at the grid points and the error of interpolation.
Commonly, the error of the numerical computation at the grid points arises
from several distinct sources. First, mathematical models do not represent
physical phenomena with absolute accuracy. Second, an error arises at the
stage of the numerical approximation of the mathematical model. Third, the
error is influenced by the size and shape of the grid cells. Fourth, an error is
contributed by the computation of the discrete physical quantities satisfying
the equations of the numerical approximation. And fifth, an error in the solu-
tion is caused by the inaccuracy of the process of interpolation of the discrete
solution. Of course, the accurate evaluation of the errors due to there sources
remains a formidable task. It is apparent, however, that the quantitative and
qualitative properties of the grid play a significant role in controlling the in-
fluence of the third and fifth sources of the error in the numerical analysis of
physical problems.

V.D. Liseikin, Grid Generation Methods, Scientific Computation,
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2 1 General Considerations

Another important characteristic of a numerical algorithm that influences
its efficiency is the cost of the operation of obtaining the solution. From this
point of view, the process of generating a sophisticated grid may increase the
computational costs of the numerical solution and encumber the computer
tools with the requirement of additional memory. On the other hand, there
may be a significant profit in accuracy which allows one to use a smaller
number of grid points. Any estimation of the contributions of these oppos-
ing factors can help in choosing an appropriate grid. In any case, since grid
generation is an important component of numerical modeling, research in this
field is aimed at creating techniques which are not too costly but which give
a significant improvement in the accuracy of the solution. The utilization of
these techniques provides one with the real opportunities to enhance the ef-
ficiency of the numerical solution of complex problems. Thus grid generation
helps to satisfy the constant demand for enhancement of the efficiency of the
numerical analysis of practical problems.

The first efforts aimed at the development of grid techniques were un-
dertaken in the 1960s. Now, a significant number of advanced methods have
been created: algebraic, elliptic, hyperbolic, parabolic, variational, Delaunay,
advancing-front, etc. The development of these methods has reached a stage
where calculations in fairly complicated domains and on surfaces that arise
while analyzing multidimensional problems are possible. Because of its suc-
cessful development, the field of numerical grid generation has already formed
a separate mathematical discipline with its own methodology, approaches, and
technology.

At the end of the 1980s there started a new stage in the development of
grid generation technique. It is characterized by the creation of comprehensive,
multipurpose, three-dimensional grid generation codes which are aimed at
providing a uniform environment for the construction of grids in arbitrary
multidimensional geometries.

The current chapter presents a framework for the subject of grid gener-
ation. It outlines the most general concepts and techniques, which will be
expounded in the following chapters in more detail.

1.2 General Concepts Related to Grids

There are two general notions of a grid in an n-dimensional bounded domain
or on a surface. One of these considers the grid as a set of algorithmically
specified points of the domain or the surface. The points are called the grid
nodes. The second considers the grid as an algorithmically described collection
of standard n-dimensional volumes covering the necessary area of the domain
or surface. The standard volumes are referred to as the grid cells. The cells
are bounded curvilinear volumes, whose boundaries are divided into a few
segments which are (n−1)-dimensional cells. Therefore they can be formulated
successively from one dimension to higher dimensions. The boundary points
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of the one-dimensional cells are called the cell vertices. These vertices are the
grid nodes. Thus the grid nodes are consistent with the grid cells in that they
coincide with the cell vertices.

This section discusses some general concepts related to grids and grid cells.

1.2.1 Grid Cells

For cells in an n-dimensional domain or surface, there are commonly used
n-dimensional volumes of simple standard shapes (see Fig. 1.1 for n = 1, 2, 3).

In one dimension the cell is a closed line or segment, whose boundary is
composed of two points referred to as the cell vertices.

A general two-dimensional cell is a two-dimensional simply connected do-
main, whose boundary is divided into a finite number of one-dimensional cells
referred to as the edges of the cell. Commonly, the cells of two-dimensional
domains or surfaces are constructed in the form of triangles or quadrilaterals.
The boundary of a triangular cell is composed of three segments, while the
boundary of a quadrilateral is represented by four segments. These segments
are the one-dimensional grid cells.

By a general three-dimensional cell there is meant a simply connected
three-dimensional polyhedron whose boundary is partitioned into a finite num-
ber of two-dimensional cells called its faces. In practical applications, three-
dimensional cells typically have the shape of tetrahedrons or hexahedrons.
The boundary of a tetrahedral cell is composed of four triangular cells, while
a hexahedron is bounded by six quadrilaterals. Thus a hexahedral cell has six
faces, twelve edges, and eight vertices. Some applications also use volumes in
the form of prisms as three-dimensional cells. A prism has two triangular and
three quadrilateral faces, nine edges, and six vertices.

Commonly, the edges and the faces of the cells are linear. Linear trian-
gles and tetrahedrons are also referred to as two-dimensional simplexes and
three-dimensional simplexes, respectively. The notion of the simplex can be
formulated for arbitrary dimensions. Namely, by an n-dimensional simplex
there is meant a domain of n-dimensional space whose nodes are defined by
the equation

x =
N+1∑

i=1

αixi,

where xi, i = 1, . . . , N +1, are some specified points which are the vertices of
the simplex, and αi, i = 1, . . . , N +1, are real numbers satisfying the relations

N+1∑

i=1

αi = 1, αi ≥ 0.

In this respect a one-dimensional linear cell is the one-dimensional simplex.
The boundary of an n-dimensional simplex is composed of n + 1 (n − 1)-
dimensional simplexes.
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Fig. 1.1. Typical grid cells

The selection of the shapes shown in Fig. 1.1 to represent the standard
cells is justified, first, by their geometrical simplicity and, second, because
the existing procedures for the numerical simulation of physical problems are
largely based on approximations of partial differential equations using these
elemental volumes. The specific choice of cell shape depends on the geome-
try and physics of the particular problem and on the method of solution. In
particular, tetrahedrons (triangles in two dimensions) are well suited for finite-
element methods, while hexahedrons are commonly used for finite-difference
techniques.

Some applications consider curvilinear cells as well. These grid cells are
obtained by deformation of ordinary linear segments, triangles, tetrahedrons,
squares, cubes, and prisms.

The major advantage of hexahedral cells (quadrilaterals in two dimensions)
is that their faces (or edges) may be aligned with the coordinate surfaces (or
curves). In contrast, no coordinates can be aligned with tetrahedral meshes.
However, strictly hexahedral meshes may be ineffective near boundaries with
sharp corners.

Prismatic cells are generally placed near boundary surfaces which have
previously been triangulated. The surface triangular cells serve as faces of
prisms, which are grown out from these triangles. Prismatic cells are efficient
for treating boundary layers, since they can be constructed with a high aspect
ratio in order to resolve the layers, but without small angles, as would be the
case for tetrahedral cells.

Triangular cells are the simplest two-dimensional elements and can be
produced from quadrilateral cells by constructing interior edges. Analogously,
tetrahedral cells are the simplest three-dimensional elements and can be de-
rived from hexahedrons and prisms by constructing interior faces. The strength
of triangular and tetrahedral cells is in their applicability to virtually any type
of domain configuration. The drawback is that the integration of the physical
equations becomes a few times more expensive with these cells in comparison
with quadrilateral or hexahedral cells.
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The vertices of the cells define grid points which approximate the physical
domain. Alternatively, the grid points in the domain may have been generated
previously by some other process. In this case the construction of the grid cells
requires special techniques.

1.2.2 Requirements Imposed on Grids

The grid should discretize the physical domain or surface in such a manner
that the computation of the physical quantities is carried out as efficiently as
desired. The accuracy, which is one of the components of the efficiency of the
computation, is influenced by a number of grid factors, such as grid size, grid
topology, cell shape and size, and consistency of the grid with the geometry
and with the solution. A very general consideration of these grid factors is
given in this subsection.

1.2.2.1 Grid Size and Cell Size

The grid size is indicated by the number of grid points, while the cell size
implies the maximum value of the lengths of the cell edges. Grid generation
requires techniques which possess the intrinsic ability to increase the number
of grid nodes. At the same time the edge lengths of the resulting cells should
be reduced in such a manner that they approach zero as the number of nodes
tends to infinity.

An instructive example of a grid on the interval [0, 1] which does not satisfy
the requirement of unlimited reduction of the cell sizes when the number of
the nodes is increased is a grid generated by a rule in which the steps are in
a geometrical progression:

hi+1

hi
= a, a > 0, a �= 1, (1.1)

where hi = xi+1 − xi, i = 0, . . . , N − 1, are the steps of the grid nodes
xi, i = 0, . . . , N, with x0 = 0, xN = 1. The grid nodes xi satisfying (1.1) are
computed for arbitrary N by the formula

xi =
a − 1

aN −1 − a

i∑

j=1

aj , i = 1, . . . , N,

and consequently we obtain

hi =
ai+1(a − 1)
aN −1 − a

, i = 0, . . . , N − 1.

Therefore
lim

N →∞
h0 = 1 − a if 0 < a < 1,

lim
N →∞

hN −1 =
a − 1

a
if a > 1,
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i.e. the left-hand boundary cell of this grid, if a < 1, or the right-hand bound-
ary cell, if a > 1, does not approach zero even though the number of grid
points tends to infinity.

Small cells are necessary to obtain more accurate solutions and to in-
vestigate phenomena associated with the physical quantities on small scales,
such as transition layers and turbulence. Also, the opportunity to increase the
number of grid points and to reduce the size of the cells enables one to study
the convergence rate of a numerical code and to improve the accuracy of the
solution by multigrid approaches.

1.2.2.2 Grid Organization

There also is a requirement on grids to have some organization of their nodes
and cells, which is aimed at facilitating the procedures for formulating and
solving the algebraic equations substituted for the differential equations. This
organization should identify neighboring points and cells. The grid organiza-
tion is especially important for that class of finite-difference methods whose
procedures for obtaining the algebraic equations consist of substituting dif-
ferences for derivatives. To a lesser degree, this organization is needed for
finite-volume methods because of their inherent compatibility with irregular
meshes.

1.2.2.3 Cell and Grid Deformation

The cell deformation characteristics can be formulated as some measures of
the departure of the cell from a standard, least deformed one. Such standard
triangular and tetrahedral cells are those with edges of equal lengths. The least
distorted quadrilaterals and hexahedrons are squares and cubes, respectively.
The standard prism is evidently the prism with standard linear faces. Cells
with low deformity are preferable from the point of view of simplicity and
uniformity of the construction of the algebraic equations approximating the
differential equations.

Typically, cell deformation is characterized through the aspect ratio, the
angles between the cell edges, and the volume (area in two dimensions) of the
cell.

The major requirement for the grid cells is that they must not be folded or
degenerate at any points or lines, as demonstrated in Fig. 1.2. Unfolded cells
are obtained from standard cells by a one-to-one deformation. Commonly, the
value of any grid generation method is judged by its ability to yield unfolded
grids in regions with complex geometry.

The grid deformity is also characterized by the rate of the change of the
geometrical features of contiguous cells. Grids whose neighboring cells do not
change abruptly are referred to as smooth grids.
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Fig. 1.2. Normal (left) and badly deformed (center, right) quadrilateral cells

1.2.2.4 Consistency with Geometry

The accuracy of the numerical solution of a partial differential equation and of
the interpolation of a discrete function is considerably influenced by the degree
of compatibility of the mesh with the geometry of the physical domain. First of
all, the grid nodes must adequately approximate the original geometry, that is,
the distance between any point of the domain and the nearest grid node must
not be too large. Moreover, this distance must approach zero when the grid size
tends to infinity. This requirement of adequate geometry approximation by
the grid nodes is indispensible for the accurate computation and interpolation
of the solution over the whole region.

The second requirement for consistency of the grid with the geometry is
concerned with the approximation of the boundary of the physical domain
by the grid, i.e. there is to be a sufficient number of nodes which can be
considered as the boundary ones, so that a set of edges (in two dimensions)
and cell faces (in three dimensions) formed by these nodes models efficiently
the boundary. In this case, the boundary conditions may be applied more
easily and accurately. If these points lie on the boundary of the domain, then
the grid is referred to as a boundary-fitting or boundary-conforming grid.

1.2.2.5 Consistency with Solution

It is evident that distribution of the grid points and the form of the grid cells
should be dependent on the features of the physical solution. In particular, it
is better to generate the cells in the shape of hexahedrons or prisms in bound-
ary layers. Often, the grid points are aligned with some preferred directions,
e.g. streamlines. Furthermore, a nonuniform variation of the solution requires
clustering of the grid point in regions of high gradients, so that these areas of
the domain have finer resolution. Local grid clustering is needed because the
uniform refinement of the entire domain may be very costly for multidimen-
sional computations. It is especially true for problems whose solutions have
localized regions of very rapid variation (layers). Without grid clustering in
the layers, some important features of the solution can be missed, and the ac-
curacy of the solution can be degraded. Problems with boundary and interior
layers occur in many areas of application, for example in fluid dynamics, com-
bustion, solidification, solid mechanics and wave propagation. Typically the
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Fig. 1.3. Boundary layer function for ε = 10−2

locations where the high resolution is needed are not known beforehand but
are found in the process of computation. Consequently, a suitable mesh, track-
ing the necessary features of the physical quantities, as the solution evolves,
is required.

A local grid refinement is accomplished in two ways: (a) by moving a
fixed number of grid nodes, with clustering of them in zones where this is
necessary, and coarsening outside of these zones, and (b) by inserting new
points in the zones of the domain where they are needed. Local grid refinement
in zones of large variation of the solution commonly results in the following
improvements:

(1) the solution at the grid points is obtained more accurately;
(2) the solution is interpolated over the whole region more precisely;
(3) oscillations of the solution are eliminated;
(4) larger time steps can be taken in the process of computing solutions of

time-dependent problems.

The typical pattern of a solution with large local variation is illustrated
by the following univariate monotonic function

u(x) = exp(−x/ε) + x, 0 ≤ x ≤ 1,

with a positive parameter ε. This function is a solution to the two-point bound-
ary value problem

εu′ ′ + u′ = 1, 1 > x > 0,

u(0) = 1, u(1) = 1 + exp(−1/ε).

When the parameter ε is very small, then u(x) has a boundary layer of rapid
variation (Fig. 1.3). Namely, in the interval [0, ε|ln ε|] the function u(x) changes
from 1 to ε + ε|ln ε|. For example, if ε = 10−5, then ε|ln ε| = 5 × 10−5 ln 10 <
2 × 10−4. In this small interval the variation of the function u(x) is more than
1–2 × 10−4.
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Let the number of uniform grid points required for the accurate approx-
imation of u(x) on the boundary layer be N0. Then the number of uniform
grid points on [0, 1] with the same step as in the boundary layer will be

N = N0/ε | ln ε| ≥ 2 × 104N0.

However, in order to approximate u(x) with the same accuracy in the interval
[ε|ln ε|, 1] there is no necessity to use more than N0 points of the uniform
grid, since u(x) is monotonic and changes with nearly the same variation in
this interval as it does in the boundary layer. Thus, instead of 2 × 104N0, we
can restrict the number of grid nodes on the interval [0, 1] to 2N0 in order to
obtain the same accuracy of interpolation. This spectacular reduction in the
number of grid points is obtained at the expense of using a finer grid in the
boundary layer only.

This example clearly demonstrates that local grid refinement for problems
where the solution quantities have narrow zones in which the dominant length
scales are very small is more promising than the uniform refinement of the en-
tire region, since a significant reduction in the total number of grid nodes and
consequently in the solution time can be attained. Local refinement becomes
indispensable for complex geometries in three dimensions, since otherwise the
cost of grid generation may be even higher than the cost of the numerical
solution of a physical problem on the grid.

1.2.2.6 Compatibility with Numerical Methods

The locations of the zones of local refinement are also dependent on the nu-
merical approximation to the physical equations. In particular, the areas of
high solution error require more refined grid cells. However, the error is esti-
mated through the derivatives of the solution and the size of the grid cells.
Thus, ultimately, the grid point locations are to be defined in accordance with
the derivatives of the solution.

In general, numerical methods for solving partial differential equations can
be divided into two classes: methods based on direct approximations of the
derivatives in the differential equation and methods that approximate the
solution of the continuum differential equation by linear combinations of trial
functions. Finite-difference methods belong to the first class. This difference
in methods has a direct impact on the construction of the numerical grid.
For the finite-difference methods it is desirable to locate the grid points along
directions of constant coordinates in the physical region in order to provide
a natural approximation of the derivatives: on the other hand, the methods
in the second class that approximate the solution with trial functions do not
impose such a restriction on the grid, since the approximate derivatives are
obtained after substitution of the approximate solution.
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1.3 Grid Classes

There are two fundamental classes of grid popular in the numerical solution
of boundary value problems in multidimensional regions: structured and un-
structured. These classes differ in the way in which the mesh points are locally
organized. In the most general sense, this means that if the local organiza-
tion of the grid points and the form of the grid cells do not depend on their
position but are defined by a general rule, the mesh is considered as struc-
tured. When the connection of the neighboring grid nodes varies from point
to point, the mesh is called unstructured. As a result, in the structured case
the connectivity of the grid is implicitly taken into account, while the con-
nectivity of unstructured grids must be explicitly described by an appropriate
data structure procedure.

The two fundamental classes of mesh give rise to three additional subdi-
visions of grid types: block-structured, overset, and hybrid. These kinds of
mesh possess to some extent the features of both structured and unstructured
grids, thus occupying an intermediate position between the purely structured
and unstructured grids.

1.3.1 Structured Grids Generated by Mapping Approach

The most popular and efficient structured grids are those whose generation
relies on a mapping concept. According to this concept the nodes and cells
of the grid in an n-dimensional region Xn ⊂ Rn are defined by mapping
the nodes and cells of a reference (generally uniform) grid in some standard
n-dimensional domain Ξn with a certain transformation

x(ξ) : Ξn → Xn, ξ = (ξ1, . . . , ξn), x = (x1, . . . , xn), (1.2)

from Ξn onto Xn. The domain Ξn is referred to as the logical or computa-
tional domain.

The mapping concept was borrowed from examples of grids generated for
geometries that are described by analytic coordinate transformations. In par-
ticular, two-dimensional transformations have often been defined by analytic
functions of a complex variable and by direct shearing. This is the case, for
example, for the polar coordinate system for circular regions

x(ξ) = exp(ξ1)(cos ξ2, sin ξ2), r0 ≤ ξ1 ≤ r1, 0 ≤ ξ2 ≤ 2π.

As an illustrative example of a three-dimensional transformation, the following
scaled cylindrical transformation may be considered:

x(ξ) : Ξ3 → X3, ξ = (ξ1, ξ2, ξ3), 0 ≤ ξi ≤ 1, i = 1, 2, 3,

described by
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Fig. 1.4. Cylindrical structured grid

x1(ξ) = r cos θ,

x2(ξ) = r sin θ, (1.3)
x3(ξ) = Hξ3,

where

r = r0 + (r1 − r0)ξ1, θ = θ0 + (θ1 − θ0)ξ2, H > 0,

with
0 < r0 < r1, 0 ≤ θ0 < θ1 ≤ 2π.

If θ1 = 2π then this function transforms the unit three-dimensional cube into
a space bounded by two cylinders of radii r0 and r1 and by the two planes
x3 = 0 and x3 = H. The reference uniform grid in Ξ3 is defined by the nodes

ξijk = (ih, jh, kh), 0 ≤ i, j, k ≤ N, h = 1/N,

where i, j, k and N are positive integers. The cells of this grid are the three-
dimensional cubes bounded by the coordinate planes ξ1

i = ih, ξ2
j = jh, and

ξ3
k = kh. Corresponding, the structured grid in the domain X3 is determined

by the nodes
xijk = x(ξijk), 0 ≤ i, j, k ≤ N.

The cells of the grid in X3 are the curvilinear hexahedrons bounded by
the curvilinear coordinate surfaces derived from the parametrization x(ξ)
(Fig. 1.4).

1.3.1.1 Realization of Grid Requirements

The notion of using a transformation to generate a mesh is very helpful. The
idea is to choose a computational domain Ξn with a simpler geometry than
that of the physical domain Xn and then to find a transformation x(ξ) be-
tween these domains which eliminates the need for a nonuniform mesh when
approximating the physical quantities. That is, if the computational area and
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the transformation are well chosen, the transformed boundary value prob-
lem can be accurately represented by a small number of equally spaced mesh
points. Emphasis is placed on a small number of points, because any trans-
formed problem (provided only that the transformation is nonsingular) may
be accurately approximated with a sufficiently fine, uniform mesh. In practice,
there will be a trade-off between the difficulty of finding the transformation
and the number of uniformly spaced points required to find the solution to a
given accuracy.

The idea of using mappings to generate grids is extremely appropriate
for finding the conditions that the grid must satisfy for obtaining accurate
solutions of partial differential equations in the physical domain Xn, because
these conditions can be readily defined in terms of the transformations. For
example, the grid requirements described in Sect. 1.2.2 are readily formulated
through the transformation concept.

Since a solution which is a linear function is computed accurately at the
grid points and is approximated accurately over the whole region, an attractive
possible method for generating structured grids is to find a transformation
x(ξ) such that the solution is linear in Ξn. Though in practice this requirement
for the transformation is not attained even theoretically (except in the case of
strongly monotonic univariate functions), it is useful in the sense of an ideal
that the developers of structured grid generation techniques should bear in
mind. One modification of this requirement which can be practically realized
consists of the requirement of a local linearity of the solution in Ξn.

The requirements imposed on the grid and the cell size are realized by the
construction of a uniform grid in Ξn and a smooth function x(ξ). The grid cells
are not folded if x(ξ) is a one-to-one mapping. Consistency with the geometry
is satisfied with a transformation x(ξ) that maps the boundary of Ξn onto the
boundary of Xn. Grid concentration in zones of large variation of a function
u(x) is accomplished with a mapping x(ξ) which provides variations of the
function u[x(ξ)] in the domain Ξn that are not large.

1.3.1.2 Coordinate Grids

Among structured grids, coordinate grids in which the nodes and cell faces
are defined by the intersection of lines and surfaces of a coordinate system
in Xn are very popular in finite-difference methods. The range of values of
this system defines a computation region Ξn in which the cells of the uniform
grid are rectangular n-dimensional parallelepipeds, and the coordinate values
define the function x(ξ) : Ξn → Xn.

The simplest of such grids are the Cartesian grids obtained by the in-
tersection of the Cartesian coordinates in Xn. The cells of these grids are
rectangular parallelepipeds (rectangles in two dimensions). The use of Carte-
sian coordinates avoids the need to transform the physical equations. However,
the nodes of the Cartesian grid do not coincide with the curvilinear bound-
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ary, which leads to difficulties in implementing the boundary conditions with
second-order accuracy.

1.3.1.3 Boundary-Conforming Grids

An important subdivision of structured grids is the boundary-fitted or bounda-
ry-conforming grids. These grids are obtained from one-to-one transformations
x(ξ) which map the boundary of the domain Ξn onto the boundary of Xn.

The most popular of these, for finite-difference methods, have become the
coordinate boundary-fitted grids whose points are formed by intersection of
the coordinate lines, while the boundary of Xn is composed of a finite number
of coordinate surfaces (lines in two dimensions) ξi = ξi

0. Consequently, in this
case the computation region Ξn is a rectangular domain, the boundaries of
which are determined by (n − 1)-dimensional coordinate planes in Rn, and
the uniform grid in Ξn is the Cartesian grid. Thus the physical region is
represented as a deformation of a rectangular domain and the generated grid
as a deformed lattice (Fig. 1.5).

These grids give a good approximation to the boundary of the region and
are therefore suitable for the numerical solution of problems with boundary
singularities, such as those with boundary layers in which the solution depends
very much on the accuracy of the approximation of the boundary conditions.

The requirements imposed on boundary-conforming grids are naturally
satisfied with the coordinate transformations x(ξ).

The algorithm for the organization of the nodes of boundary-fitted co-
ordinate grids consists of the trivial identification of neighboring points by
incrementing the coordinate indices, while the cells are curvilinear hexahe-
drons. This kind of grid is very suitable for algorithms with parallelization.

Its design makes it easy to increase or change the number of nodes as
required for multigrid methods or in order to estimate the convergence rate
and error, and to improve the accuracy of numerical methods for solving
boundary value problems.

With boundary-conforming grids there is no necessity to interpolate the
boundary conditions of the problem, and the boundary values of the region

Fig. 1.5. Boundary-conforming quadrilateral grid
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can be considered as input data to the algorithm, so automatic codes for grid
generation can be designed for a wide class of regions and problems.

In the case of unsteady problems the most direct way to set up a moving
grid is to do it via a coordinate transformation. These grids do not require
a complicated data structure, since they are obtained from uniform grids in
simple fixed domains such as rectangular ones, where the grid data structure
remains intact.

1.3.1.4 Shape of Computational Domains

The idea of the structured approach is to transform a complex physical domain
Xn to a simpler domain Ξn with the help of the parametrization x(ξ). The
region Ξn in (1.2), which is called the computational or logical region, can be
either rectangular or of a different matching qualitatively the geometry of the
physical domain; in particular, shape it can be triangular for n = 2 (Fig. 1.6)
or tetrahedral for n = 3. Using such parametrizations, a numerical solution of
a partial differential equation in a physical region of arbitrary shape can be
carried out in a standard computational domain, and codes can be developed
that require only changes in the input.

The cells of the uniform grid can be rectangular or of a different shape.
Schematic illustrations of two-dimensional triangular and quadrilateral grids
are presented in Figs. 1.6 and 1.7, respectively. Note that regions in the form
of curvilinear triangles, such as that shown in Fig. 1.6, are more suitable for

Fig. 1.6. Boundary-conforming triangular grid

Fig. 1.7. Computational domains adjusted to the physical domains
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gridding in the structured approach by triangular cells than by quadrilateral
ones. One approach for such gridding is described in Sect. 5.6.

1.3.2 Unstructured Grids

Many field problems of interest involve very complex geometries that are not
easily amenable to the framework of the pure structured grid concept. Struc-
tured grids may lack the required flexibility and robustness for handling do-
mains with complicated boundaries, or the grid cells may become too skewed
and twisted, thus prohibiting an efficient numerical solution. An unstructured
grid concept is considered as one of the appropriate solutions to the problem
of producing grids in regions with complex shapes.

Unstructured grids have irregularly distributed nodes and their cells are
not obliged to have any one standard shape. Besides this, the connectivity
of neighboring grid cells is not subject to any restrictions; in particular, the
cells can overlap or enclose one another. Thus, unstructured grids provide the
most flexible tool for the discrete description of a geometry.

These grids are suitable for the discretization of domains with a compli-
cated shape, such as regions around aircraft surfaces or turbomachinery blade
rows. They also allow one to apply a natural approach to local adaptation, by
either insertion or removal of nodes. Cell refinement in an unstructured sys-
tem can be accomplished locally by dividing the cells in the appropriate zones
into a few smaller cells. Unstructured grids also allow excessive resolution to
be removed by deleting grid cells locally over regions in which the solution
does not vary appreciably. In practice, the overall time required to generate
unstructured grids in complex geometries is much shorter than for structured
or block structured grids.

However, the use of unstructured grids complicates the numerical algo-
rithm because of the inherent data management problem, which demands a
special program to number and order the nodes, edges, faces, and cells of the
grid, and extra memory is required to store information about the connections
between the cells of the mesh. One further disadvantage of unstructured grids
that causes excessive computational work is associated with increased numbers
of cells, cell faces, and edges in comparison with those for hexahedral meshes.
For example, a tetrahedral mesh of N points has roughly 6N cells, 12N faces,
and 7N edges, while a mesh of hexahedra has roughly N cells, 3N faces, and
3N edges. Furthermore, moving boundaries or moving internal surfaces of
physical domains are difficult to handle with unstructured grids. Besides this,
linearized difference scheme operators on unstructured grids are not usually
band matrices, which makes it more difficult to use implicit schemes. As a
result, the numerical algorithms based on an unstructured grid topology are
the most costly in terms of operations per time step and memory per grid
point.

Originally, unstructured grids were mainly used in the theory of elasticity
and plasticity, and in numerical algorithms based on finite-element methods.
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However, the field of application of unstructured grids has now expanded con-
siderably and includes computational fluid dynamics. Some important aspects
of the construction of unstructured grids are considered in Chap. 11.

1.3.3 Block-Structured Grids

In the commonly applied block strategy, the region is divided without holes or
overlaps into a few contiguous subdomains, which may be considered as the
cells of a coarse, generally unstructured grid. And then a separate structured
grid is generated in each block. The union of these local grids constitutes
a mesh referred to as a block-structured or multi-block grid. Grids of this
kind can thus be considered as locally structured at the level of an individual
block, but globally unstructured when viewed as a collection of blocks. Thus
a common idea in the block-structured grid technique is the use of different
structured grids, or coordinate systems, in different regions, allowing the most
appropriate grid configuration to be used in each region.

Block-structured grids are considerably more flexible in handling com-
plex geometries than structured grids. Since these grids retain the simple
regular connectivity pattern of a structured mesh on a local level, these
block-structured grids maintain, in nearly the same manner as structured
grids, compatibility with efficient finite-difference or finite-volume algorithms
used to solve partial differential equations. However, the generation of block-
structured grids may take a fair amount of user interaction and, therefore,
requires the implementation of an automation technique to lay out the block
topology.

The main reasons for using multi-block grids rather than single-block grids
are that

(1) the geometry of the region is complicated, having a multiply connected
boundary, cuts, narrow protuberances, cavities, etc.;

(2) the physical problem is heterogeneous relative to some of the physical
quantities, so that different mathematical models are required in different
zones of the domain to adequately describe the physical phenomena;

(3) the solution of the problem behaves non-uniformly: zones of smooth and
rapid variation of different scales may exist.

The blocks of locally structured grids in a three-dimensional region are
commonly homeomorphic to a three-dimensional cube, thus having the shape
of a curvilinear hexahedron. However, some domains can be more effectively
partitioned with the use of cylindrical blocks as well. Cylindrical blocks are
commonly applied to the numerical solution of problems in regions with holes
and to the calculation of flows past aircraft or aircraft components (wings,
fuselages, etc.). For many problems it is easier to take into account the geom-
etry of the region and the structure of the solution by using cylindrical blocks.
Also, the total number of blocks and sections might be smaller than when us-
ing only blocks homeomorphic to a cube.
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Fig. 1.8. Types of interface between contiguous blocks (a discontinuous; b, c non-
smooth; d smooth)

1.3.3.1 Communication of Adjacent Coordinate Lines

The requirement of mutual positioning or “communication” of adjacent grid
blocks can also have a considerable influence on the construction of locally
structured grids and on the efficiency of the numerical calculations. The co-
ordinate lines defining the grid nodes of two adjacent blocks need not have
points in common, and can join smoothly or nonsmoothly (Fig. 1.8). If all
adjacent grid blocks join smoothly, interpolation is not required. If the co-
ordinate lines do not join, then during the calculation the solution values at
the nodes of one block must be transferred to those of the adjacent block in
the neighborhood of their intersection. This is done by interpolation or (in
mechanics) using conservation laws.

The types of interaction between adjacent grid blocks are selected on the
basis of the features of the physical quantities in the region of their intersec-
tion. If the gradient of the physical solution is not high in the vicinity of a
boundary between two adjacent blocks and interpolation can, therefore, be
performed with high accuracy, the coordinate lines do not need to join. This
greatly simplifies the algorithm for constructing the grid in a block. If there
are high gradients of the solution near the intersection of two blocks, a smooth
matching is usually performed between the coordinate lines of the two blocks.
This kind of conformity poses a serious difficulty for structured mesh gener-
ation methods. Currently the problem is overcome by an algebraic technique
using Hermitian interpolation, or by elliptic methods, involving a choice of
control functions. A combination of Laplace and Poisson equations, yielding
equations of fourth or even sixth order, is also used for this purpose.

1.3.3.2 Topology of the Grid

The correct choice of the topology in a block, depending on the geometry of
the computational region and the choice of the transformation of the region
into the block, has a considerable influence on the quality of the grid. There
are two ways of specifying the computational region for a block:
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Fig. 1.9. Patterns of grid topology

(1) as a complicated polyhedron which maintains the schematic form of the
block subdomain (Fig. 1.7);

(2) simply as a solid cube or a cube with cuts (Fig. 1.9).

With the first approach, the problem of constructing the coordinate trans-
formation x(ξ) is simplified, and this method is often used to generate a
single-blocked grid in a complicated domain. The second approach relies on a
simplified geometry of the computational domain but requires sophisticated
methods to derive suitable transformations x(ξ).

In a block which is homeomorphic to a cylinder with thick walls, the grid
topology is determined by the topology of the two-dimensional grids in the
transverse sections. In applications, for sections of this kind, which are annular
planes or surfaces with a hole, wide use is made of three basic grid topologies:
H, O and C (see Fig. 1.9).

In H-type grids, the computational region is a square with an interior cut
which is opened by the construction of the coordinate transformation and
mapped onto an interior boundary of the region X2. The outer boundary of
the square is mapped onto the exterior of X2. The interior boundary has two
points with singularities where one coordinate line splits. H-type grids are
used, for instance, when calculating the flow past thin bodies (aircraft wings,
turbine blades, etc.).

In O-type grids, the computational region is a solid square. In this case the
system of coordinates is obtained by bending the square, sticking two opposite
sides together and then deforming. The stuck sides determine the cut, called
the fictive edge, in the block. An example of O-type grid is the nodes and cells
of a polar system of coordinates. The O-type grid can be constructed without
singularities when the boundary of the region is smooth. Grids of this kind
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are used when calculating the flow past bulky aircraft components (fuselages,
gondolas, etc.) and, in combination with H-type grids, for multilayered block
structures.

The computational region is also a solid square in a C-type grid, but the
mapping onto X2 involves the identification of some segments of one of its
sides and then deforming it. In the C-type grid, the coordinate lines of one
family leave the outer boundary, circle the inner boundary and return again
to the outer boundary. There is one point on the inner boundary which has
the same type of singularity as in the H-type grid. The C-type grids are
commonly used in regions with holes and long protuberances.

The O and C-type techniques in fact introduce artificial interior cuts in
multiply connected regions to generate single block-structured grids. The cuts
are used to join the disconnected components of the domain boundary in order
to reduce their number. Theoretically, this operation can allow one to generate
a single coordinate transformation in a multiply connected domain.

The choice of the grid topology in a block depends on the structure of the
solution, the geometry of the domain, and, in the case of continuous or smooth
grid-line communication, on the topology of the grid in the adjacent block as
well. For complicated domains, such as those near aircraft surfaces or turbines
with a large number of blades, it is difficult to choose the grid topology of the
blocks, because each component of the system (wing, fuselage, etc.) has its own
natural type of grid topology, but these topologies are usually incompatible
with each other.

1.3.3.3 Conditions Imposed on Grids in Blocks

A grid in a block must satisfy the conditions which are required to obtain
an acceptable solution. In any specific case, these conditions are determined
by features of the computer, the methods of grid generation available, the
topology and conditions of interaction of the blocks, the numerical algorithms,
and the type of data to be obtained.

One of the main requirements imposed on the grid is its adaptation to the
solution. Multidimensional computations are likely to be very costly without
the application of adaptive grid techniques. The basic aim of adaptation is to
enhance the efficiency of numerical algorithms for solving physical problems
by a special nonuniform distribution of grid nodes. The appropriate adaptive
displacement of the nodes, depending on the physical solution, can increase the
accuracy and rate of convergence and reduce oscillations and the interpolation
error.

In addition to adaptation, the construction of locally structured grids often
requires the coordinate lines to cross the boundary of the domain or the sur-
face in an orthogonal or nearly orthogonal fashion. The orthogonality at the
boundary can greatly simplify the specification of boundary conditions. Also,
a more accurate representation of algebraic models of turbulence, the equa-
tions of a boundary layer, and parabolic Navier–Stokes equations is possible in
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this case. If for grids of O and C-type the coordinate lines are orthogonal to the
boundary of each block and its interior cuts, the global block-structured grid
will be smooth. It is also desirable for the coordinate lines to be orthogonal or
nearly orthogonal inside the blocks. This will improve the convergence of the
difference algorithms, and the equations, if written in orthogonal variables,
will have a simpler form.

For unsteady gas-dynamics problems, some coordinates in the entire do-
main or on the boundary are required to have Lagrange or nearly Lagrange
properties. With Lagrangian coordinates the computational region remains
fixed in time and simpler expressions for the equations can be obtained in
this case.

It is also important that the grid cells do not collapse, the changes in the
steps are not too abrupt, the lengths of the cell sides are not very different,
and the cells are finer in any domain of high gradient, large error, or slow
convergence. Requirements of this kind are taken into account by introducing
quantitative and qualitative characteristics of the grid, both with the help of
coordinate transformations and by using the sizes of cell edges, faces, angles,
and volumes. The characteristics used include the deviation from orthogonal-
ity, the Lagrange properties, the values of the transformation Jacobian or cell
volume, and the smoothness and adaptivity of the transformation. For cell
faces, the deviation from a parallelogram, rectangle, or square, as well as the
ratio of the area of the face to its perimeter, is also used.

1.3.4 Overset Grids

Block-structured grids require the partition of the domain into blocks that
are restricted so as to abut each other. Overset grids are exempt from this
restriction. With the overset concept the blocks are allowed to overlap, which
significantly simplifies the problem of the selection of the blocks covering the
physical region. In fact, each block may be a subdomain which is associated
only with a single geometry or physical feature. The global grid is obtained as
an assembly of structured grids which are generated separately in each block.
These structured grids are overset on each other, with data communicated by
interpolation in overlapping areas of the blocks (Fig. 1.10).

Fig. 1.10. Fragment of an overset grid
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Fig. 1.11. Fragment of a hybrid grid

1.3.5 Hybrid Grids

Hybrid numerical grids are meshes which are obtained by combining both
structured and unstructured grids. These meshes are widely used for the nu-
merical analysis of boundary value problems in regions with a complex geom-
etry and with a solution of complicated structure. They are formed by joining
structured and unstructured grids on different parts of the region or surface.
Commonly, a structured grid is generated about each chosen boundary seg-
ment. These structured grids are required not to overlap. The remainder of
the domain is filled with the cells of an unstructured grid (Fig. 1.11). This
construction is widely applied for the numerical solution of problems with
boundary layers.

1.4 Approaches to Grid Generation

The unique aspect of grid generation on general domains is that grid genera-
tion has a high degree of freedom, i.e. mesh techniques are not obliged to have
any specified formulation, so any foundation may be suitable for this purpose
if the grid generated is acceptable.

The chief practical difficulty facing grid generation techniques is that of
formulating satisfactory techniques which can realize the user’s requirements.
Grid generation techniques should develop methods that can help in handling
problems with multiple variables, each varying over many orders of magni-
tude. These methods should be capable of generating grids which are locally
compressed by large factors when compared with uniform grids.

The methods should incorporate specific control tools, with simple and
clear relationships between these control tools and characteristics of the grid
such as mesh spacing, skewness, smoothness, and aspect ratio, in order to
provide a reliable way to influence the efficiency of the computation. And
finally, the methods should be computationally efficient and easy to code.

A number of techniques for grid generation have been developed. Every
method has its strengths and its weaknesses. Therefore, there is also the ques-
tion of how to choose the most efficient method for the solution of any specific
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problem, taking into account the geometrical complexity, the computing cost
for generating the grid, the grid structure, and other factors.

The goal of the development of these methods is to provide effective and
acceptable grid generation systems.

1.4.1 Methods for Structured Grids

The most efficient structured grids are boundary-conforming grids. The gen-
eration of these grids can be performed by a number of approaches and tech-
niques. Many of these methods are specifically oriented to the generation of
grids for the finite-difference method.

A boundary-fitted coordinate grid in the region Xn is commonly gener-
ated first on the boundary of Xn and then successively extended from the
boundary to the interior of Xn. This process is analogous to the interpolation
of a function from a boundary or to the solution of a differential boundary
value problem. On this basis there have been developed three basic groups of
methods of grid generation:

(1) algebraic methods, which use various forms of interpolation or special
functions;

(2) differential methods, based mainly on the solution of elliptic, parabolic,
and hyperbolic equations in a selected transformed region;

(3) variational methods, based on optimization of grid quality properties.

1.4.1.1 Algebraic Methods

In the algebraic approach the interior points of the grid are commonly com-
puted through formulas of transfinite interpolation.

Algebraic methods are simple; they enable the grid to be generated rapidly
and the spacing and slope of the coordinate lines to be controlled by the blend-
ing coefficients in the transfinite interpolation formulas. However, in regions of
complicated shape the coordinate surfaces obtained by algebraic methods can
become degenerate or the cells can overlap or cross the boundary. Moreover,
they basically preserve the features of the boundary surfaces, in particular,
discontinuties. Algebraic approaches are commonly used to generate grids in
regions with smooth boundaries that are not highly deformed, or as an initial
approximation in order to start the iterative process of an elliptic grid solver.

1.4.1.2 Differential Methods

For regions with arbitrary boundaries, differential methods based on the so-
lution of elliptic and parabolic equations are commonly used. The interior
coordinate lines derived through these methods are always smooth, being a
solution of these equations, and thus discontinuties on the boundary surface
do not extend into the region. The use of parabolic and elliptic systems enables
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orthogonal and clustering coordinate lines to be constructed, while, in many
cases, the maximum principle, which is typical for these systems, ensures that
the coordinate transformations are nondegenerate. Elliptic equations are also
used to smooth algebraic or unstructured grids.

In practice, hyperbolic equations are simpler then nonlinear elliptic ones
and enable marching methods to be used and an orthogonal system of co-
ordinates to be constructed, while grid adaptation can be performed using
the coefficients of the equations. However, methods based on the solution of
hyperbolic equations are not always mathematically correct and they are not
applicable to regions in which the complete boundary surface is strictly de-
fined. Therefore hyperbolic methods are mainly used for simple regions which
have several lateral faces for which no special nodal distribution is required.
Hyperbolic generation is particularly well suited for use with the overset grid
approach. The marching procedure for the solution of hyperbolic equations
allows one to decompose only the boundary geometry in such a way that neigh-
boring boundary grids overlap. Volume grids will overlap naturally if sufficient
overlap is provided on the boundary. In practice, a separate coordinate grid
around each subdomain can be generated by this approach.

1.4.1.3 Variational Methods

Variational methods are widely used to generate grids which are required to
satisfy more than one condition, such as nondegeneracy, smoothness, unifor-
mity, near-orthogonality, or adaptivity, which cannot be realized simultane-
ously with algebraic or differential techniques. Variational methods take into
account the conditions imposed on the grid by constructing special function-
als defined on a set of smooth or discrete transformations. A compromise
grid, with properties close to those required, is obtained with the optimum
transformation for a combination of these functionals.

At present, variational techniques are not widely applied to practical grid
generation, mainly because their formulation does not always lead to a well-
posed mathematical problem. However, the variational approach has been
cited repeatedly as the most promising method for the development of future
grid generation techniques, owing to its underlying, latent, powerful potential.

1.4.2 Methods for Unstructured Grids

Unstructured grids can be obtained with cells of arbitrary shape, but are
generally composed of tetrahedrons (triangles in two dimensions). There are,
fundamentally, three approaches to the generation of unstructured grids: oc-
tree methods, Delaunay procedures, and advancing-front techniques.

1.4.2.1 Octree Approach

In the octree approach the region is first covered by a regular Cartesian grid of
cubic cells (squares in two dimensions). Then the cubes containing segments of
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the domain surface are recursively subdivided into eight cubes (four squares in
two dimensions) until the desired resolution is reached. The cells intersecting
the body surfaces are formed into irregular polygonal cells. The grid generated
by this octree approach is not considered as the final one, but serves to simplify
the geometry of the final grid, which is commonly composed of tetrahedral
(or triangular) cells built from the polygonal cells and the remaining cubes.

The main drawback of the octree approach is the inability to match a pre-
scribed boundary surface grid, so the grid on the surface is not constructed
beforehand as desired but is derived from the irregular volume cells that in-
tersect the surface. Another drawback of the grid is its rapid variation in cell
size near the boundary. In addition, since each surface cell is generated by
the intersection of a hexahedron with the boundary there arise problems in
controlling the variation of the surface cell size and shape.

1.4.2.2 Delaunay Approach

The Delaunay approach connects neighboring points (of some previously spec-
ified set of nodes in the region) to form tetrahedral cells in such a way that the
circumsphere through the four vertices of a tetrahedral cell does not contain
any other point. The points can be generated in two ways; they can be defined
at the start by some technique or they can be inserted within the tetrahedra
as they are created, starting with very coarse elements connecting boundary
points and continuing until the element size criteria are satisfied. In the latter
case a new Delaunay triangulation is constructed at every step using usually
Watson’s and Rebay’s incremental algorithms.

The major drawback of the Delaunay approach is that it requires the inser-
tion of additional boundary nodes, since the boundary cells may not become
the boundary segments of the Delaunay volume cells. Either the Delaunay
criterion must be mitigated near the boundaries or boundary points must be
added as necessary to avert breakthrough of the boundary.

1.4.2.3 Advancing-Front Techniques

In these techniques the grid is generated by building cells progressively one at
a time and marching from the boundary into the volume by successively con-
necting new points to points on the front until all previously unmeshed space
is filled with grid cells. Some provision must be made to keep the marching
front from intersecting.

To find a suitable vertices for the new cells is very difficult task in this
approach, since significant searches must be made to adjust the new cells to
the existing elements. Commonly, the marching directions for the advancing
front must take into account the surface normals and also the adjacent surface
points. A particular difficulty of this method occurs in the closing stage of the
procedure, when the front folds over itself and the final vertices of the empty
space are replaced by tetrahedra. Serious attention must also be paid to the
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marching step size, depending on the size of the front faces as well as the
shape of the unfilled domain that is left.

Unstructured grids, after they have been completed, are generally smoothed
by a Laplacian-type or other smoother to enhance their qualitative properties.

A major drawback remaining for unstructured techniques is the increased
computational cost of the numerical solution of partial differential equations
in comparison with solution on structured grids.

1.5 Big Codes

A “big grid generation code” is an effective system for generating structured
and unstructured grids, as well as hybrid and overset combinations, in general
regions. Such systems also are referred to as “comprehensive grid generation
codes”.

The development of such codes is a considerable problem in its own right.
The present comprehensive grid generation codes developed for the solution
of multidimensional problems have to incorporate combinations of block-
structured, hybrid, and overset grid methods and are still rather cumbersome,
rely on interactive tools, and take too many man-hours to generate a compli-
cated grid. Efforts to increase the efficiency and productivity of these codes
are mainly being conducted in two interconnected research areas.

The first, the “array area”, is concerned with the automation of those
routine processes of grid generation which presently require interactive tools
and a great deal of human time and effort. Some of these are:

(1) the decomposition of a domain into a set of contiguous or overlapping
blocks consistent with the distinctive features of the domain geometry,
the singularities of the physical medium and the sought-for solution, and
the computer architecture;

(2) numbering the set of blocks, their faces, and their edges with a connectivity
hierarchy and determining the order in which the grids are constructed in
the blocks and their boundaries;

(3) choosing the grid topology and the requirements placed on the qualitative
and quantitative characteristics of the internal and boundary grids and
on their communication between the blocks;

(4) selecting appropriate methods to satisfy the requirements put on the grid
in accordance with a particular geometry and solution;

(5) assessment and enhancement of grid quality.

The second, more traditional, “methods area” deals with developing new,
more reliable, and more elaborate methods for generating, adapting, and
smoothing grids in domains in a unified manner, irrespective of the geom-
etry of the domain or surface and of the qualitative and quantitative charac-
teristics the grids should possess, so that these methods, when incorporated
in the comprehensive codes, should ease the bottlenecks of the array area,
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in particular, by enabling a considerable reduction of the number of blocks
required.

There are many demands that are made on the codes. The code must be
efficient, expandable, portable, and configurable. It should incorporate state-
of-the-art techniques for generating grids. Besides this, the code should include
pre- and post-processing tools in order to start from prescribed data of the
geometry and end with the final generation of the grid in the proper format
for use with the specified partial differential codes. The code should have the
ability to be updated by the addition of new features and the removal of
obsolete ones.

The overall purpose of the development of these comprehensive grid gen-
eration codes is to create a system which enables one to generate grids in a
“black box” mode without or with only a slight human interaction. Currently,
however, the user has to take active role and be fully occupied in the grid gen-
eration process. The user has to make conclusions about qualitative properties
of the grid and undertake corrective measures when necessary. The present
codes include significant measures to increase the productivity of such human
activity, namely, graphical interactive systems and user-friendly interfaces. Ef-
forts to eliminate the “human component” of the codes are directed towards
developing new techniques, in particular, new grid generation methods and
automated block decomposition techniques.

1.5.1 Interactive Systems

An important element of the current comprehensive grid generation codes
is an interactive system which includes extensive graphical tools to display
all elements of the grid generation process and graphical feedback to mon-
itor progress in grid efficiency and to verify, as well as correct, errors and
faults easily. All existing comprehensive codes possess well-developed inter-
active systems which are used, in particular, to define grid boundaries and
surface normals on block faces; to generate multiblock topologies and domain
decompositions; to specify connectivity data, grid density, and spatial distrib-
ution in the normal direction at the boundaries; and to provide attraction to
chosen points or lines. The graphical systems of the codes provide a display
of data and domain and surface elements with different colors and markers;
a representation of surface grids and their boundaries by specific colors; a vi-
sual representation of the qualitative and quantitative properties of the grid
in terms of cell skewness, aspect ratio, surface and volume Jacobian checks,
estimates of truncation errors, and measures of grid continuity across blocks;
and views of surface and block grids at various levels coarseness.

These capabilities allow any portion of a multiple-block grid to be dis-
played in a manner that is quickly discernible to the user. All functions of
the generation process are invoked through interactive screens and menus. In
an interactive environment the user can continually examine and correct the
surfaces and grids as they are developed.
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1.5.2 New Techniques

The present codes are designed in a modular fashion to facilitate both the ad-
dition of new techniques in a straightforward manner as they become available
and the removal of obsolete ones. Although most of the methods included in
the codes have provided appropriate results for specific applications, they lack
the desired generality, flexibility, efficiency, automation, and robustness. Ef-
forts to create new techniques are directed towards the automation of domain
decomposition, interactive and automated generation of block connectivity,
the development of new, more effective methods for generating grids within
the blocks, interactive local adaptive adjustment of the control functions in
elliptic equations, the optimal specification and modification of the distribu-
tion functions in hyperbolic and advancing-front grid generators, interactive
local quality enhancement of the grid, and interactive and generally applica-
ble interpolation techniques to transfer data between the separate component
grids.

1.5.2.1 Domain Decomposition

To perform domain zoning well, some expertise is required: the user must
have experience with composite zonal grid methods, familiarity with the grid
generation capabilities available, knowledge of the behavior of the zonal tech-
nique to be used, knowledge of the physical behavior, some expectation of
the important physical features of the problem to be solved, and criteria for
evaluating the zonings. To perform zoning quickly, the user must have both
expertise and interactive, graphical, easy-to-use tools.

However, even with the interactive techniques available, the generation
of the block structure is the most difficult and time-consuming task in the
grid generation process. Therefore any automation of domain decomposition
is greatly desirable.

The first attempts to overcome the problem of domain decomposition were
presented in the 1980s. The proposed approaches laid a foundation for an
automated approach to 3-D domain decomposition which relies mainly on
observation of how experts perform the task and on a knowledge-based pro-
gramming approach, typically described by means of examples. The user first
represents all components of the domain schematically as rectangular sets of
blocks and then the codes develop a schematic block structure.

1.5.2.2 New Methods

Recent results in the field of grid generation methods have largely been related
to the application of harmonic function theory to adaptive grid generation.
The suggestion to use harmonic functions for generating adaptive grids was
made by Dvinsky (1991). Adaptive grids can be generated by mapping the
reference grid into the domain with a coordinate transformation which is
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inverse to a harmonic vector function (in terms of Riemannian manifolds).
Adaptation is performed by a specified adaptive metric in the domain which
converts it into a Riemannian manifold. Each harmonic function minimizes
some functional of the total energy, and hence it can be found by the numerical
solution either of a variational problem or of a boundary value problem for a
system of Euler–Lagrange equations.

One version of the harmonic approach, proposed by Liseikin (1991a, 2004),
uses a method of generating smooth hypersurface grids. Specifically, the adap-
tive grid with node clustering in the zones of large values of a vector function
is obtained as a projection of a quasiuniform grid from a monitor surface gen-
erated as a surface of the function values over the physical space. The vector
function can be the physical solution or a combination of its components or
derivatives, or it can be any other quantity that suitably monitors the behav-
ior of the solution. A generalization of this approach for generating grids with
another properties was performed by Liseikin (2004, 2007). The method de-
veloped allows the designer to merge the two tasks of surface grid generation
and volume grid generation into one task while developing a comprehensive
grid generation code. It also eases the array bottlenecks of the codes by al-
lowing a decrease of the number of blocks required for the decomposition of
a complicated region.

1.6 Comments

Detailed descriptions of the most popular structured methods and their theo-
retical and logical justifications and numerical implementations were given in
the monographs by Thompson, Warsi, and Mastin (1985), Knupp and Stein-
berg (1993), and Liseikin (1999). Particular issues concerned with the genera-
tion of one-dimensional moving grids for gas-dynamics problems, the stretch-
ing technique for the numerical solution of singularly perturbed equations,
and nonstationary grid techniques were considered in the books by Alalykin
et al. (1970), Liseikin and Petrenko (1989), Liseikin (2001a), and Zegeling
(1993), respectively.

A considerable number of general structured grid generation methods were
reviewed in surveys by Thompson, Warsi, and Mastin (1982), Thompson
(1984a, 1996), Eiseman (1985), Liseikin (1991b), Thompson and Weather-
ill (1993), and in the handbook of grid generation edited by Thompson, Soni,
and Weatherill (1999).

Adaptive structured grid methods were first surveyed by Anderson (1983)
and Thompson (1984b, 1985). Then a series of surveys on general adaptive
methods was presented by Eiseman (1987), Hawken, Gottlieb, and Hansen
(1991), Liseikin (1996b), and Baker (1997). Adaptive techniques for moving
grids were described by Hedstrom and Rodrigue (1982) and Zegeling (1993).

A description of the types of mesh topology and the singular points of the
grids around wing-body shapes was carried out by Eriksson (1982).
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Methods for unstructured grids were reviewed by Thacker (1980), Ho-
Le (1988), Shephard et al. (1988a), Baker (1995, 1997), Field (1995), Carey
(1997), George and Borouchaki (1998), Krugljakova et al. (1998), and Owen
(1998). An exhaustive survey of both structured and unstructured techniques
has been given by Thompson and Weatherill (1993), and Thompson (1996).

The multiblock strategy for generating grids around complicated shapes
was originally proposed by Lee et al. (1980); however, the idea of using dif-
ferent coordinates in different subregions of the domain can be traced back
to Thoman and Szewezyk (1969). The overset grid approach was introduced
by Atta and Vadyak (1982), Berger and Oliger (1983), Benek, Steger, and
Dougherty (1983), Miki and Takagi (1984), and Benek, Buning, and Steger
(1985). The first attempts to overcome the problem of domain decomposi-
tion were discussed by Andrews (1988), Georgala and Shaw (1989), Allwright
(1989), and Vogel (1990). The concept of blocks with a continuous alignment
of grid lines across adjacent block boundaries was described by Weatherill and
Forsey (1984) and Thompson (1987b). Thomas (1982) and Eriksson (1983) ap-
plied the concept of continuous line slope, while a discontinuity in slope was
discussed by Rubbert and Lee (1982). A shape recognition technique based
on an analysis of a physical domain and an interactive construction of a com-
putational domain with a similar geometry was proposed by Takahashi and
Shimizu (1991) and extended by Chiba et al. (1998). The embedding tech-
nique was considered by Albone and Joyce (1990) and Albone (1992). Some
of the first applications of block-structured grids to the numerical solution of
three-dimensional fluid-flow problems in realistic configurations were demon-
strated by Rizk and Ben-Shmuel (1985), Sorenson (1986), Atta, Birchelbaw,
and Hall (1987), and Belk and Whitfield (1987).

The first comprehensive grid codes were described by Holcomb (1987),
Thompson (1987a), Thomas, Bache, and Blumenthal (1990), Widhopf et al.
(1990), and Steinbrenner, Chawner, and Fouts (1990). These codes have stim-
ulated the development of better ones, reviewed by Thompson (1996). This
paper also describes the current domain decomposition techniques developed
by Shaw and Weatherill (1992), Stewart (1992), Dannenhoffer (1995), Wulf
and Akrag (1995), Schonfeld, Weinerfelt, and Jenssen (1995), and Kim and
Eberhardt (1995).

Since the time that these pioneering codes appeared many codes more
advanced and sophisticated have been developed by researchers. Exhaustive
surveys of the most popular recent codes can be found at the meshing pages
http://www.andrew.cmu.edu/user/sowen/softsurv.html and http://www-
users.informatik.rwth-aachen.de/∼roberts/software.html. In particular, very
useful descriptions of mesh generation codes and codes with parallel mesh
generation techniques are given in the books of Frey and George (2008) and
Ivanov (2008), respectively. An informal survey of software vendors, research
labs, and educational institutions that develop grid generation codes was pre-
sented by Owen (1998).
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Coordinate Transformations

2.1 Introduction

Partial differential equations in the physical domain Xn can be solved on a
structured numerical grid obtained by mapping a reference grid in the logical
region Ξn into Xn with a coordinate transformation x(ξ) : Ξn → Xn. The
structured grid concept also gives an alternative way to obtain a numerical
solution to a partial differential equation, by solving the transformed equation
with respect to the new independent variables ξi on the reference grid in the
logical domain Ξn. Some notions and relations concerning the coordinate
transformations yielding structured grids are discussed in this chapter. These
notions and relations are used to represent some conservation-law equations
in the new logical coordinates in a convenient form. The relations presented
will be used in Chap. 3 to formulate various grid properties.

Conservation-law equations in curvilinear coordinates are typically de-
duced from the equations in Cartesian coordinates through the classical for-
mulas of tensor calculus, by procedures which include the substitution of ten-
sor derivatives for ordinary derivatives. The formulation and evaluation of
the tensor derivatives is rather difficult, and they retain some elements of
mystery. However, these derivatives are based on specific transformations of
tensors, modeling in the equations some dependent variables, e.g. the compo-
nents of a fluid velocity vector, which after the transformation have a clear
interpretation in terms of the contravariant components of the vector. With
this concept, the conservation-law equations are readily written out in this
chapter without application of the tensor derivatives, but utilizing instend
only some specific transformations of the dependent variables, ordinary deriv-
atives, and one basic identity of coordinate transformations derived from the
formula for differentiation of the Jacobian.

For generality, the transformations of the coordinates are mainly consid-
ered for arbitrary n-dimensional domains, though in practical applications the
dimension n equals 1, 2, 3, or 4 for time-dependent transformations of three-
dimensional domains. We also apply chiefly a standard vector notation for
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the coordinates, as variables with indices. Sometimes, however, particularly
in figures, the ordinary designation for three-dimensional coordinates, namely
x, y, z for the physical coordinates and ξ, η, ζ for the logical ones, is used to
simplify the presentation.

2.2 General Notions and Relations

This section presents some basic relations between Cartesian and curvilinear
coordinates.

2.2.1 Jacobi Matrix

Let
x(ξ) : Ξn → Xn, ξ = (ξ1, . . . , ξn), x = (x1, . . . , xn),

be a smooth invertible coordinate transformation of the physical region Xn ⊂
Rn from the parametric domain Ξn ⊂ Rn. If Ξn is a standard logical domain,
then, in accordance with Chap. 1, this coordinate transformation can be used
to generate a structured grid in Xn. Here and later Rn presents the Euclidean
space with the Cartesian basis e1, . . . , en, which represents an orthogonal
system of vectors, i.e.

ei · ej =

{
1 if i = j,

0 if i �= j.

Thus we have

x = x1e1 + · · · + xnen,

ξ = ξ1e1 + · · · + ξnen.

The values xi, i = 1, . . . , n, are called the Cartesian coordinates of the vec-
tor x. The coordinate transformation x(ξ) defines, in the domain Xn, new
coordinates ξ1, . . . , ξn, which are called the curvilinear coordinates. The ma-
trix

j =
(

∂xi

∂ξj

)
, i, j = 1, . . . , n,

is referred to as the Jacobi matrix, and its Jacobian is designated by J :

J = det
(

∂xi

∂ξj

)
, i, j = 1, . . . , n. (2.1)

The inverse transformation to the coordinate mapping x(ξ) is denoted by

ξ(x) : Xn → Ξn.
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This transformation can be considered analogously as a mapping introducing
a curvilinear coordinate system x1, . . . , xn in the domain Ξn ⊂ Rn. It is
obvious that the inverse to the matrix j is

j−1 =
(

∂ξi

∂xj

)
, i, j = 1, . . . , n,

and consequently

det
(

∂ξi

∂xj

)
=

1
J

, i, j = 1, . . . , n. (2.2)

In the case of two-dimensional space the elements of the matrices (∂xi/∂ξj)
and (∂ξi/∂xj) are connected by

∂ξi

∂xj
= (−1)i+j ∂x3−j

∂ξ3−i

/
J,

∂xi

∂ξj
= (−1)i+jJ

∂ξ3−j

∂x3−i
, i, j = 1, 2.

(2.3)

Similar relations between the elements of the corresponding three-dimensional
matrices have the form

∂ξi

∂xj
=

1
J

(
∂xj+1

∂ξi+1

∂xj+2

∂ξi+2
− ∂xj+1

∂ξi+2

∂xj+2

∂ξi+1

)
,

∂xi

∂ξj
= J

(
∂ξj+1

∂xi+1

∂ξj+2

∂xi+2
− ∂ξj+1

∂xi+2

∂ξj+2

∂xi+1

)
, i, j = 1, 2, 3,

(2.4)

where for each superscript or subscript index, say l, l + 3 is equivalent to l.
With this condition the sequence of indices (l, l + 1, l + 2) is the result of a
cyclic permutation of (1, 2, 3) and vice versa; the indices of a cyclic sequence
(i, j, k) satisfy the relation j = i + 1, k = i + 2.

2.2.2 Tangential Vectors

The value of the function x(ξ) = [x1(ξ), . . . , xn(ξ)] in the Cartesian basis
(e1, . . . , en), i.e.

x(ξ) = x1(ξ)e1 + · · · + xn(ξ)en,

is a position vector for every ξ ∈ Ξn. This vector-valued function x(ξ) gen-
erates the nodes, edges, faces, etc. of the cells of the coordinate grid in the
domain Xn. Each edge of the cell corresponds to a coordinate line ξi for some
i and is defined by the vector

Δix = x(ξ + hei) − x(ξ),

where h is the step size of the uniform grid in the ξi direction in the logical
domain Ξn. We have
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Fig. 2.1. Grid cell and contracted parallelogram

Δix = hxξi + t,

where

xξi =
(

∂x1

∂ξi
, · · · ,

∂xn

∂ξi

)

is the vector tangential to the coordinate curve ξi, and t is a residual vector
whose length does not exceed the following quantity:

1
2

max|xξiξi |h2.

Thus the cells in the domain Xn whose edges are formed by the vectors
hxξi , i = 1, . . . , n, are approximately the same as those obtained by map-
ping the uniform coordinate cells in the computational domain Ξn with the
transformation x(ξ). Consequently, the uniformly contracted parallelepiped
spanned by the tangential vectors xξi , i = 1, . . . , n, represents to a high order
of accuracy with respect to h the cell of the coordinate grid at the correspond-
ing point in Xn (see Fig. 2.1). In particular, for the length li of the ith grid
edge we have

li = h|xξi | + O(h2).

The volume Vh (area in two dimensions) of the cell is expressed as follows:

Vh = hnV + O(hn+1),

where V is the volume of the n-dimensional parallelepiped determined by the
tangential vectors xξi , i = 1, . . . , n.

The tangential vectors xξi , i = 1, . . . , n, are called the base covariant
vectors since they comprise a vector basis. The sequence xξ1 , . . . , xξn of the
tangential vectors has a right-handed orientation if the Jacobian of the trans-
formation x(ξ) is positive. Otherwise, the base vectors xξi have a left-handed
orientation.

The operation of the dot product on these vectors produces elements of
the covariant metric tensor. These elements generate the coefficients that ap-
pear in the transformed governing equations that model the conservation-law
equations of mechanics. Besides this, the metric elements play a primary role
in studying and formulating various geometric characteristics of the grid cells.
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Fig. 2.2. Disposition of the base tangential and normal vectors in two dimensions

2.2.3 Normal Vectors

For a fixed i the vector (
∂ξi

∂x1
, · · · ,

∂ξi

∂xn

)
,

which is the gradient of ξi(x) with respect to the Cartesian coordinates
x1, . . . , xn, is denoted by ∇ξi. The set of the vectors ∇ξi, i = 1, . . . , n, is
called the set of base contravariant vectors.

Similarly, as the tangential vectors relate to the coordinate curves, the
contravariant vectors ∇ξi, i = 1, . . . , n, are connected with their respective
coordinate surfaces (curves in two dimensions). A coordinate surface is de-
fined by the equation ξi = ξi

0; i.e. along the surface all of the coordinates
ξ1, . . . , ξn except ξi are allowed to vary. For all of the tangent vectors xξj to
the coordinate lines on the surface ξi = ξi

0 we have the obvious identity

xξj · ∇ξi = 0, i �= j,

and thus the vector ∇ξi is a normal to the coordinate surface ξi = ξi
0. There-

fore the vectors ∇ξi, i = 1, . . . , n, are also called the normal base vectors.
Since

xξi · ∇ξi = 1

for each fixed i = 1, . . . , n, the vectors xξi and ∇ξi intersect each other at
an angle θ which is less than π/2. Now, taking into account the orthogonality
of the vector ∇ξi to the surface ξi = ξi

0, we find that these two vectors xξi

and ∇ξi are directed to the same side of the coordinate surface (curve in two
dimensions). An illustration of this fact in two dimensions is given in Fig. 2.2.

The length of any normal base vector ∇ξi is linked to the distance di

between the corresponding opposite boundary segments (joined by the vector
xξi) of the n-dimensional parallelepiped formed by the base tangential vectors,
namely,

di = 1/|∇ξi|, |∇ξi| =
√

∇ξi · ∇ξi.

To prove this relation we recall that the vector ∇ξi is a normal to all of the
vectors xξj , j �= i, and therefore to the boundary segments formed by these
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n − 1 vectors. Hence, the unit normal vector ni to these segments is expressed
by

ni = ∇ξi/|∇ξi|.

Now, taking into account that

di = xξi · ni,

we readily obtain
di = xξi · ∇ξi/|∇ξi| = 1/|∇ξi|.

Let li denote the distance between a grid point on the coordinate surface
ξi = c and the nearest point on the neighboring coordinate surface ξi = c+h;
then

li = hdi + O(h2) = h/|∇ξi| + O(h2).

This equation shows that the inverse length of the normal vector ∇ξi mul-
tiplied by h represents with high accuracy the distance between the corre-
sponding faces of the coordinate cells in the domain Xn.

Note that the volume of the parallelepiped spanned by the tangential vec-
tors equals J, so we find from (2.2) that the volume of the n-dimensional par-
allelepiped defined by the normal vectors ∇ξi, i = 1, . . . , n, is equal to 1/J.
Thus both the base normal vectors ∇ξi and the base tangential vectors xξi

have the same right-handed or left-handed orientation.
If the coordinate system ξ1, . . . , ξn is orthogonal, i.e.

xξi · xξj = P (x)δi
j , P (x) > 0, i, j = 1, . . . , n,

then for each fixed i = 1, . . . , n the vector ∇ξi is parallel to xξi . Here and
later, δi

j is the Kronecker symbol, i.e.

δi
j = 0 if i �= j, δi

j = 1 if i = j.

2.2.4 Representation of Vectors Through the Base Vectors

If there are n independent base vectors a1, . . . , an of the Euclidean space Rn

then any vector b with components b1, . . . , bn in the Cartesian basis e1, . . . , en

is represented through the vectors ai, i = 1, . . . , n, by

b = aij(b · aj)ai, i, j = 1, . . . , n, (2.5)

where aij are the elements of the matrix (aij) which is the inverse of the
tensor (aij), aij = ai · aj , i, j = 1, . . . , n. It is assumed in (2.5) and later that
a summation is carried out over repeated indices unless otherwise noted.

The components of the vector b in the natural basis of the tangential
vectors xξi , i = 1, . . . , n, are called contravariant. Let them be denoted by

b
i
, i = 1, . . . , n. Thus
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b = b
1
xξ1 + · · · + b

n
xξn .

Assuming in (2.5) ai = xξi , i = 1, . . . , n, we obtain

b
i
= amj

(
bk ∂xk

∂ξj

)
∂xi

∂ξm
, i, j, k, m = 1, . . . , n, (2.6)

where b1, . . . , bn are the components of the vector b in the Cartesian basis
e1, . . . , en. Since

aij =
∂xk

∂ξi

∂xk

∂ξj
, i, j, k = 1, . . . , n,

we have

aij =
∂ξi

∂xk

∂ξj

∂xk
, k = 1, . . . , n.

Therefore, from (2.6),

b
i
= bj ∂ξi

∂xj
, i, j = 1, . . . , n, (2.7)

or, using the dot product notation

b
i
= b · ∇ξi, i = 1, . . . , n. (2.8)

Thus, in this case (2.5) has the form

b = (b · ∇ξi)xξi , i = 1, . . . , n. (2.9)

For example, the normal base vector ∇ξi is expanded through the base
tangential vectors xξj , j = 1, . . . , n, by the following formula:

∇ξi =
∂ξi

∂xj

∂ξk

∂xj
xξk , i, j, k, = 1, . . . , n. (2.10)

Analogously, a component bi of the vector b in the basis ∇ξi, i = 1, . . . , n, is
expressed by the formula

bi = bj ∂xj

∂ξi
= b · xξi , i = 1, . . . , n, (2.11)

and consequently

b = bi∇ξi = (b · xξi)∇ξi, i = 1, . . . , n. (2.12)

These components bi, i = 1, . . . , n, of the vector b are called covariant.
In particular, the base tangential vector xξi is expressed through the base
normal vectors ∇ξj , j = 1, . . . , n, as follows:

xξi =
∂xj

∂ξi

∂xj

∂ξk
∇ξk, i, j, k = 1, . . . , n. (2.13)
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2.2.5 Metric Tensors

Many grid generation algorithms, in particular those based on the calculus
of variations, are typically formulated in terms of fundamental features of
coordinate transformations and the corresponding mesh cells. These features
are compactly described with the use of the metric notation, which is discussed
in this subsection.

2.2.5.1 Covariant Metric Tensor

The matrix
(gij), i, j = 1, . . . , n,

whose elements gij are the dot products of the pairs of the basic tangential
vectors xξi ,

gij = xξi · xξj =
∂xk

∂ξi

∂xk

∂ξj
, i, j, k = 1, . . . , n, (2.14)

is called a covariant metric tensor of the domain Xn in the coordinates
ξ1, . . . , ξn. Geometrically, each diagonal element gii of the matrix (gij) is the
length of the tangent vector xξi squared:

gii = |xξi |2, i = 1, . . . , n.

Also,
gij = |xξi | |xξj |cos θ =

√
gii

√
gjj cos θ, (2.15)

where θ is the angle between the tangent vectors xξi and xξj . In these expres-
sions for gii and gij the subscripts ii and jj are fixed, i.e. here the summation
over the repeated indices is not carried out.

The matrix (gij) is called the metric tensor because it defines distance
measurements with respect to the coordinates ξ1, . . . , ξn:

ds =
√

gijdξidξj , i, j = 1, . . . , n.

Thus the length s of the curve in Xn prescribed by the parametrization

x[ξ(t)] : [a, b] → Xn

is computed by the formula

s =
∫ b

a

√
gij

dξi

dt

dξj

dt
dt.

We designate by g the Jacobian of the covariant matrix (gij). It is evident
that

(gij) = jjT ,
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and hence
J2 = g.

The covariant metric tensor is a symmetric matrix, i.e. gij = gji. If a
coordinate system at a point ξ is orthogonal then the tensor (gij) has a simple
diagonal form at this point. Note that these advantageous properties are in
general not possessed by the Jacobi matrix (∂xi/∂ξi) from which the covariant
metric tensor (gij) is defined.

2.2.5.2 Contravariant Metric Tensor

The contravariant metric tensor of the domain Xn in the coordinates ξ1, . . . , ξn

is the matrix
(gij), i, j = 1, . . . , n,

inverse to (gij), i.e.

gijg
jk = δk

i , i, j, k = 1, . . . , n. (2.16)

Therefore
det(gij) =

1
g
.

It is easily shown that (2.16) is satisfied if and only if

gij = ∇ξi · ∇ξj =
∂ξi

∂xk

∂ξj

∂xk
, i, j, k = 1, . . . , n. (2.17)

Thus, each diagonal element gii (where i is fixed) of the matrix (gij) is the
square of the length of the vector ∇ξi:

gii = |∇ξi|2. (2.18)

Geometric Interpretation

Now we discuss the geometric meaning of a fixed diagonal element gii, say
g11, of the matrix (gij). Let us consider a three-dimensional coordinate trans-
formation x(ξ) : Ξ3 → X3. Its tangential vectors xξ1 , xξ2 , xξ3 represent
geometrically the edges of the parallelepiped formed by these vectors. For the
distance d1 between the opposite faces of the parallelepiped which are defined
by the vectors xξ2 and xξ3 , we have

d1 = xξ1 · n1,

where n1 is the unit normal to the plane spanned by the vectors xξ2 and xξ3 .
It is clear, that

∇ξ1 · xξj = 0, j = 2, 3,

and hence the unit normal n1 is parallel to the normal base vector ∇ξ1 . Thus
we obtain
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n1 = ∇ξ1/|∇ξ1 | = ∇ξ1/
√

g11.

Therefore
d1 = ∇ξ1 · ∇ξ1/

√
g11 = 1/

√
g11,

and consequently
g11 = 1/(d1)2.

Analogous relations are valid for g22 and g33, i.e. in three dimensions the
diagonal element gii for a fixed i means the inverse square of the distance di

between those faces of the parallelepiped which are connected by the vector
xξi . In two-dimensional space the element gii (where i is fixed) is the inverse
square of the distance between the edges of the parallelogram defined by the
tangential vectors xξ1 and xξ2 .

The same interpretation of gii is valid for general multidimensional coor-
dinate transformations:

gii = 1/(di)2, i = 1, . . . , n, (2.19)

where the index i is fixed, and di is the distance between those faces of the
n-dimensional parallelepiped which are linked by the tangential vector xξi .

2.2.5.3 Relations Between Covariant and Contravariant Elements

Now, in analogy with (2.3) and (2.4), we write out very convenient formulas
for natural relations between the contravariant elements gij and the covariant
ones gij in two and three dimensions.

For n = 2,

gij = (−1)i+j g3−i 3−j

g
,

gij = (−1)i+jgg3−i 3−j , i, j = 1, 2,
(2.20)

where the indices i, j on the right-hand side of the relations (2.20) are fixed,
i.e. summation over the repeated indices is not carried out here. For n = 3 we
have

gij =
1
g
(gi+1 j+1 gi+2 j+2 − gi+1 j+2 gi+2 j+1),

gij = g(gi+1 j+1 gi+2 j+2 − gi+1 j+2 gi+2 j+1), i, j = 1, 2, 3,

(2.21)

with the convention that any index, say l, is identified with l ± 3, so, for
instance, g45 = g12.

We also note that, in accordance with the expressions (2.14), (2.17) for gij

and gij , respectively, the relations (2.10) and (2.13) between the basic vectors
xξi and ∇ξj can be written in the form

xξi = gik∇ξk,

∇ξi = gikxξk , i, k = 1, . . . , n.
(2.22)
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So the first derivatives ∂xi/∂ξj and ∂ξk/∂xm of the transformations x(ξ)
and ξ(x), respectively, are connected through the metric elements:

∂xi

∂ξj
= gmj

∂ξm

∂xi
,

∂ξi

∂xj
= gmi ∂xj

∂ξm
, i, j, m = 1, . . . , n.

(2.23)

2.2.6 Cross Product

In addition to the dot product there is another important operation on three-
dimensional vectors. This is the cross product, ×, which for any two vectors
a = (a1, a2, a3), b = (b1, b2, b3) is expressed as the determinant of a matrix:

a × b = det

⎛

⎝
e1 e2 e3

a1 a2 a3

b1 b2 b3

⎞

⎠ , (2.24)

where (e1, e2, e3) is the Cartesian vector basis of the Euclidean space R3.
Thus

a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1),

or, with the previously mentioned convention in three dimensions of the iden-
tification of any index j with j ± 3,

a × b = (ai+1bi+2 − ai+2bi+1)ei, i = 1, 2, 3. (2.25)

We will now state some facts connected with the cross product operation.

2.2.6.1 Geometric Meaning

We can readily see that a × b = 0 if the vectors a and b are parallel. Also,
from (2.25) we find that a · (a × b) = 0 and b · (a × b) = 0, i.e. the vector
a × b is orthogonal to each of the vectors a and b. Thus, if these vectors are
not parallel then

a × b = α|a × b|n, (2.26)

where α = 1 or α = −1 and n is a unit normal vector to the plane determined
by the vectors a and b.

Now we show that the length of the vector a × b equals the area of the
parallelogram formed by the vectors a and b, i.e.

|a × b| = |a| |b| sin θ, (2.27)

where θ is the angle between the two vectors a and b. To prove (2.27) we first
note that
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|a|2|b|2 sin2 θ = |a|2|b|2(1 − cos2 θ) = |a|2|b|2 − (a · b)2.

We have, further,

|a|2|b|2 − |a · b|2 =

(
3∑

i=1

aiai

)(
3∑

j=1

bjbj

)
−

(
3∑

k=1

akbk

)2

=
3∑

k=1

[(al)2(bm)2 + (am)2(bl)2 − 2alblambm]

=
3∑

k=1

(albm − ambl)2,

where (k, l, m) are cyclic, i.e. l = k + 1, m = k + 2 with the convention
that j + 3 is equivalent to j for any index j. According to (2.25) the quantity
albm − ambl for the cyclic sequence (k, l, m) is the kth component of the vector
a × b, so we find that

|a| |b| sin2 θ = |a|2|b|2 − |a · b|2 = |a × b|2, (2.28)

what proves (2.27). Thus we obtain the result that if the vectors a and b are
not parallel then the vector a × b is orthogonal to the parallelogram formed
by these vectors and its length equals the area of the parallelogram. Therefore
the three vectors a, b and a × b are independent in this case and represent a
base vector system in the three-dimensional space R3. Moreover, the vectors
a, b and a × b form a right-handed triad since a × b �= 0, and consequently
the Jacobian of the matrix determined by a, b, and a × b is positive; it equals

a × b · a × b = (a × b)2.

2.2.6.2 Relation to Volumes

Let c = (c1, c2, c3) be one more vector. The volume V of the parallelepiped
whose edges are the vectors a, b and c equals the area of the parallelogram
formed by the vectors a and b multiplied by the modulas of the dot product
of the vector c and the unit normal n to the parallelogram. Thus

V = |a × b| |n · c|

and from (2.26) we obtain

V = |(a × b) · c|. (2.29)

Taking into account (2.25), we obtain

(a × b) · c = c1(a2b3 − a3b2) + c2(a3b1 − a1b3) + c3(a1b2 − a2b1).
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The right-hand side of this equation is the Jacobian of the matrix whose rows
are formed by the vectors a, b, and c, i.e.

(a × b) · c = det

⎛

⎝
a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞

⎠ . (2.30)

From this equation we readily obtain

(a × b) · c = a · (b × c) = (c × a) · b.

Thus the volume of the parallelepiped determined by the vectors a, b, and c
equals the Jacobian of the matrix formed by the components of these vectors.
In particular, we obtain from (2.1) that the Jacobian of a three-dimensional
coordinate transformation x(ξ) is expressed as follows:

J = xξ1 · (xξ2 × xξ3). (2.31)

2.2.6.3 Relation to Base Vectors

Applying the operation of the cross product to two base tangential vectors xξl

and xξm , we find that the vector xξl ×xξm is a normal to the coordinate surface
ξi = ξi

0 with (i, l, m) cyclic. The base normal vector ∇ξi is also orthogonal to
the surface and therefore it is a scalar multiple of xξl × xξm , i.e.

∇ξi = c(xξl × xξm).

Multiplying this equation for a fixed i by xξi , using the operation of the dot
product, we obtain, using (2.31),

1 = cJ,

and therefore
∇ξi =

1
J

(xξl × xξm). (2.32)

Thus the elements of the three-dimensional contravariant metric tensor (gij)
are computed through the tangential vectors xξi by the formula

gij =
1
g
(xξi+1 × xξi+2) · (xξj+1 × xξj+2), i, j = 1, 2, 3.

Analogously, every base vector xξi , i = 1, 2, 3, is expressed by the tensor
product of the vectors ∇ξj , j = 1, 2, 3:

xξi = J(∇ξl × ∇ξk), i = 1, 2, 3, (2.33)

where l = i + 1, k = i + 2, and m is equivalent to m + 3 for any index m.
Accordingly, we have
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gij = g(∇ξi+1 × ∇ξi+2) · (∇ξj+1 × ∇ξj+2), i, j = 1, 2, 3.

Using the relations (2.32) and (2.33) in (2.31), we also obtain

1
J

= ∇ξ1 · ∇ξ2 × ∇ξ3. (2.34)

Thus the volume of the parallelepiped formed by the base normal vectors
∇ξ1, ∇ξ2, and ∇ξ3 is the modulus of the inverse of the Jacobian J of the
transformation x(ξ).

2.3 Relations Concerning Second Derivatives

The elements of the covariant and contravariant metric tensors are defined
by the dot products of the base tangential and normal vectors, respectively.
These elements are suitable for describing the internal features of the cells
such as the lengths of the edges, the areas of the faces, their volumes, and
the angles between the edges and the faces. However, as they are derived
from the first derivatives of the coordinate transformation x(ξ), the direct
use of the metric elements is not sufficient for the description of the dynamic
features of the grid (e.g. curvature), which reflect changes between adjacent
cells. This is because the formulation of these grid features relies not only
on the first derivatives but also on the second derivatives of x(ξ). Therefore
there is a need to study relations connected with the second derivatives of the
coordinate parametrizations.

This section presents some notations and formulas which are concerned
with the second derivatives of the components of the coordinate transforma-
tions. These notations and relations will be used to describe the curvature
and eccentricity of the coordinate lines and to formulate some equations of
mechanics in new independent variables.

2.3.1 Christoffel Symbols

The edge of a grid cell in the ξi direction can be represented with high accuracy
by the base vector xξi contracted by the factor h, which represents the step
size of a uniform grid in Ξn. Therefore the local change of the edge in the ξj

direction is characterized by the derivative of xξi with respect to ξj , i.e. by
xξiξj .

Since the second derivatives may be used to formulate quantitative mea-
sures of the grid, we describe these vectors xξiξj through the base tangential
and normal vectors using certain three-index quantities known as Christoffel
symbols. The Christoffel symbols are commonly used in formulating measures
of the mutual interaction of the cells and in formulas for differential equations.

Let us denote by Γ k
ij the kth contravariant component of the vector xξiξj

in the base tangential vectors xξk , k = 1, . . . , n. The superscript k in this
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designation relates to the base vector xξk and the subscript ij corresponds to
the mixed derivative with respect to ξi and ξj . Thus

xξiξj = Γ k
ijxξk , i, j, k = 1, . . . , n, (2.35)

and consequently

∂2xp

∂ξj∂ξk
= Γm

kj

∂xp

∂ξm
, j, k, m, p = 1, . . . , n. (2.36)

In accordance with (2.7), we have

Γ i
kj =

∂2xl

∂ξk∂ξj

∂ξi

∂xl
, i, j, k, l = 1, . . . , n, (2.37)

or in vector form,
Γ i

kj = xξkξj · ∇ξi. (2.38)

Equation (2.37) is also obtained by multiplying (2.36) by ∂ξi/∂xp and sum-
ming over p.

The quantities Γ i
kj are called the space Christoffel symbols of the second

kind and the expression (2.35) is a form of the Gauss relation representing
the second derivatives of the position vector x(ξ) through the tangential vec-
tors xξi .

Analogously, the components of the second derivatives of the position vec-
tor x(ξ) expanded in the base normal vectors ∇ξi, i = 1, . . . , n, are referred
to as the space Christoffel symbols of the first kind. The mth component of
the vector xξkξj in the base vectors ∇ξi, i = 1, . . . , n, is denoted by [kj, m].
Thus, according to (2.11),

[kj, m] = xξkξj · xξm =
∂2xl

∂ξk∂ξj

∂xl

∂ξm
, j, k, l, m = 1, . . . , n, (2.39)

and consequently
xξkξj = [kj, m]∇ξm. (2.40)

So, in analogy with (2.36), we obtain

∂2xl

∂ξj∂ξk
= [kj, m]

∂ξm

∂xi
, i, j, k, m = 1, . . . , n. (2.41)

Multiplying (2.39) by gim and summing over m we find that the space Christof-
fel symbols of the first and second kind are connected by the following relation:

Γ i
kj = gim[kj, m], i, j, k, m = 1, . . . , n. (2.42)

Conversely, from (2.37),

[kj, m] = gmlΓ
l
kj , j, k, l, m = 1, . . . , n. (2.43)
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The space Christoffel symbols of the first kind [kj, m] can be expressed through
the first derivatives of the covariant elements gij of the metric tensor (gij) by
the following readily verified formula:

[kj, m] =
1
2

(
∂gjm

∂ξk
+

∂gkm

∂ξj
− ∂gkj

∂ξm

)
, i, j, k, m = 1, . . . , n. (2.44)

Thus, taking into account (2.42), we see that the space Christoffel symbols of
the second kind Γ i

kj can be written in terms of metric elements and their first
derivatives. In particular, in the case of an orthogonal coordinate system ξi,
we obtain from (2.42), (2.44)

Γ i
kj =

1
g
gii

(
∂gii

∂ξk
+

∂gii

∂ξj
− ∂gkj

∂ξi

)
.

Here the index i is fixed, i.e. the summation over i is not carried out.

2.3.2 Differentiation of the Jacobian

Of critical importance in obtaining compact conservation-law equations with
coefficients derived from the metric elements in new curvilinear coordinates
ξ1, . . . , ξn is the formula for differentiation of the Jacobian

∂J

∂ξk
≡ J

∂2xi

∂ξk∂ξm

∂ξm

∂xi
≡ J

∂

∂xi

(
∂xi

∂ξk

)
≡ Jdivx

∂x

∂ξk
,

i, k, m = 1, . . . , n. (2.45)

In accordance with (2.37), this identity can also be expressed through the
space Christoffel symbols of the second kind Γ i

kj by

∂J

∂ξk
= JΓ i

ik, i, k = 1, . . . , n,

with the summation convention over the repeated index i.
In order to prove the identity (2.45) we note that in the case of an arbitrary

matrix (aij) the first derivative of its Jacobian with respect to ξk is obtained
by the process of differentiating the first row (the others are left unchanged),
then performing the same operation on the second row, and so on with all
of the rows of the matrix. The summation of the Jacobians of the matrices
derived in such a manner gives the first derivative of the Jacobian of the
original matrix (aij). Thus

∂

∂ξk
det(aij) =

∂aim

∂ξk
Gim, i, j, k, m = 1, . . . , n, (2.46)

where Gim is the cofactor of the element aim. For the Jacobi matrix (∂xi/∂ξj)
of the coordinate transformation x(ξ) we have

Gim = J
∂ξm

∂xi
, i, j = 1, . . . , n.

Therefore, applying (2.46) to the Jacobi matrix, we obtain (2.45).
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2.3.3 Basic Identity

The identity (2.45) implies the extremely important relation

∂

∂ξj

(
J

∂ξj

∂xi

)
≡ 0, i, j = 1, . . . , n, (2.47)

which leads to specific forms of new dependent variables for conservation-law
equations. To prove (2.47) we first note that

∂2ξp

∂xk∂xj

∂xl

∂ξp
= − ∂2xl

∂ξp∂ξm

∂ξm

∂xk

∂ξp

∂xj
.

Multiplying this equation by ∂ξi/∂xl and summing over l, we obtain a for-
mula representing the second derivative ∂2ξi/∂xk∂xm of the functions ξi(x)
through the second derivatives ∂2xm/∂ξl∂ξp of the functions xm(ξ), m =
1, . . . , n:

∂2ξi

∂xk∂xm
= − ∂2xp

∂ξl∂ξj

∂ξj

∂xk

∂ξl

∂xm

∂ξi

∂xp
, i, j, k, l, m, p = 1, . . . , n. (2.48)

Now, using this relation and the formula (2.45) for differentiation of the Ja-
cobian in the identity

∂

∂ξj

(
J

∂ξj

∂xi

)
=

∂J

∂ξj

∂ξj

∂xi
+ J

∂2ξj

∂xi∂xk

∂xk

∂ξj
,

we obtain

∂

∂ξj

(
J

∂ξj

∂xi

)
= J

∂2xk

∂ξp∂ξj

∂ξp

∂xk

∂ξj

∂xi
− J

∂2xp

∂ξl∂ξm

∂ξm

∂xi

∂ξl

∂xk

∂ξj

∂xp

∂xk

∂ξj

= J
∂2xk

∂ξp∂ξj

∂ξp

∂xk

∂ξj

∂xi
− J

∂2xp

∂ξl∂ξm

∂ξl

∂xp

∂ξm

∂xi
= 0,

i, j, k, l, m, p = 1, . . . , n,

i.e. (2.47) has been proved.
The identity (2.47) is obvious when n = 1 or n = 2. For example, for n = 2

we have from (2.3)

J
∂ξj

∂xi
= (−1)i+j ∂x3−i

∂ξ3−j
, i, j = 1, 2,

with fixed indices i and j, and therefore

∂

∂ξj

(
J

∂ξj

∂xi

)
= (−1)i+1

(
∂

∂ξ1

∂x3−i

∂ξ2
− ∂

∂ξ2

∂x3−i

∂ξ1

)
= 0, i, j = 1, 2.

An inference from (2.47) for n = 3 follows from the differentiation of
the cross product of the base tangential vectors rξi , i = 1, 2, 3. Taking into
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account (2.25), we readily obtain the following formula for the differentiation
of the cross product of two three-dimensional vector-valued functions a and b:

∂

∂ξi
(a × b) =

∂

∂ξi
a × b + a × ∂

∂ξi
b, i = 1, 2, 3.

With this formula we obtain

3∑

i=1

∂

∂ξi
(xξj × xξk) =

3∑

i=1

xξjξi × xξk +
3∑

i=1

xξj × xξkξi , (2.49)

where the indices (i, j, k) are cyclic, i.e. j = i + 1, k = i + 2, m is equivalent
to m + 3. For the last summation of the above formula, we obtain

3∑

i=1

xξj × xξkξi =
3∑

i=1

xξk × xξiξj .

Therefore, from (2.49),

3∑

i=1

∂

∂ξi
(xξj × xξk) = 0,

since
xξi × xξjξk = −xξjξk × xξi

and (2.32) implies (2.47) for n = 3.
The identity (2.47) can help one to obtain conservative or compact forms

of some differential expressions and equations in the curvilinear coordinates
ξ1, . . . , ξn. For example, for the first derivative of a function f(x) with respect
to xi we obtain, using (2.47),

∂f

∂xi
=

1
J

∂

∂ξj

(
J

∂ξj

∂xi
f

)
, j = 1, . . . , n. (2.50)

For the Laplacian

∇2f =
∂

∂xj

∂f

∂xj
, j = 1, . . . , n (2.51)

we have, substituting the quantity ∂f/∂xi for f in (2.50),

∇2f =
1
J

∂

∂ξj

(
J

∂ξj

∂xi

∂f

∂xi

)
=

1
J

∂

∂ξj

(
J

∂ξj

∂xi

∂ξm

∂xi

∂f

∂ξm

)

=
1
J

∂

∂ξj

(
Jgmj ∂f

∂ξm

)
, i, j, m = 1, . . . , n. (2.52)

Therefore the Poisson equation
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∇2f = P (2.53)

has the form
1
J

∂

∂ξj

(
Jgmj ∂f

∂ξm

)
= P (2.54)

with respect to the independent variables ξ1, . . . , ξn.

2.4 Conservation Laws

This section utilizes the relations described in Sects. 2.2 and 2.3, in particular
the identity (2.47), in order to describe some conservation-law equations of
mechanics in divergent or compact form in new independent curvilinear coor-
dinates ξ1, . . . , ξn. For this purpose the dependent physical variables are also
transformed to new dependent variables using some specific formulas. The
essential advantage of the equations described here is that their coefficients
are derived from the elements of the covariant metric tensor (gij).

2.4.1 Scalar Conservation Laws

Let A be an n-dimensional vector with components Ai, i = 1, . . . , n, in the
Cartesian coordinates x1, . . . , xn. The operator

divxA =
∂Ai

∂xi
, i = 1, . . . , n, (2.55)

is commonly used in mechanics for the representation of scalar conservation
laws, commonly in the form

divxA = F.

Using (2.47) we easily obtain

divxA =
1
J

∂

∂ξj
(JA

j
) = F, j = 1, . . . , n, (2.56)

where A
j
is the jth contravariant component of the vector A in the coordinates

ξi, i = 1, . . . , n, i.e. in accordance with (2.7):

A
j

= Ai ∂ξj

∂xi
, i, j = 1, . . . , n. (2.57)

Therefore a divergent form of the conservation-law equation represented by
(2.55) is obtained in the new coordinates when the dependent variables Ai

are replaced by new dependent variables A
i

defined by the rule (2.57). Some
examples of scalar conservation-law equations are given below.
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2.4.1.1 Mass Conservation Law

As an example of the application of (2.56), we consider the equation of con-
servation of mass for steady gas flow

∂ρui

∂xi
= 0, i = 1, . . . , n, (2.58)

where ρ is the gas density, and ui is the ith component of the flow velocity
vector u in the Cartesian coordinates x1, . . . , xn. With the substitution Ai =
ρui, (2.58) is transformed to the following divergent form with respect to the
new dependent variables ρ and ui in the coordinates ξ1, . . . , ξn:

∂

∂ξi
(Jρui) = 0, i = 1, . . . , n. (2.59)

Here ui is the ith contravariant component of the flow velocity vector u in
the basis xξi , i = 1, . . . , n, i.e.

ui = uj ∂ξi

∂xj
, i, j = 1, . . . , n. (2.60)

2.4.1.2 Convection–Diffusion Equation

Another example is the conservation equation for the steady convection–
diffusion of a transport variable φ, which can be expressed as

− ∂

∂xi

(
ε

∂φ

∂xi

)
+

∂

∂xi
(ρφui) = S, i = 1, . . . , n, (2.61)

where ρ and ε denote the density and diffusion coefficient of the fluid, respec-
tively. Taking

Ai = ρφui − ε
∂φ

∂xi
,

we obtain, in accordance with the relation (2.57),

A
j

= ρφuj − ε
∂φ

∂ξk
gkj .

Therefore, using (2.56), the convection–diffusion equation (2.61) in the curvi-
linear coordinates ξ1, . . . , ξn is expressed by the divergent form

∂

∂ξj

[
J

(
ρφuj − εgkj ∂φ

∂ξk

)]
= JS, j, k = 1, . . . , n. (2.62)
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2.4.1.3 Laplace Equation

Analogously, the Laplace equation

∇2f =
∂

∂xj

∂f

∂xj
= 0, j = 1, . . . , n, (2.63)

has the form (2.55) if we take

Ai =
∂f

∂xi
, i = 1, . . . , n.

Using (2.57), we obtain

A
j

= gij ∂f

∂ξi
, i = 1, . . . , n.

Therefore the Laplace equation (2.63) results in

∇2f =
1
J

∂

∂ξi

(
Jgij ∂f

∂ξj

)
= 0, (2.64)

since (2.56) applies.

2.4.2 Vector Conservation Laws

Many physical problems are also modeled as a system of conservation-law
equations in the vector form

∂Aij

∂xj
= F i, i, j = 1, . . . , n. (2.65)

For the representation of the system (2.65) in new coordinates ξ1, . . . , ξn in a
form which includes only coefficients derived from the elements of the metric
tensor, it is necessary to make a transition from the original expression for
Aij to a new one A

ij
. One convenient formula for such a transition from the

dependent variables Aij to A
ij

, i, j = 1, . . . , n,

A
ij

= Akm ∂ξi

∂xk

∂ξj

∂xm
, i, j, k, m = 1, . . . , n. (2.66)

This relation between Aij and A
km

is in fact composed of transitions of the
kind (2.57) for the rows and columns of the tensor Aij . In tensor analysis
the quantity A

ij
means the (i, j) component of the second-rank contravariant

tensor (Aij) in the coordinates ξ1, . . . , ξn.
Multiplying (2.66) by (∂xp/∂ξi)(∂xl/∂ξj) and summing over i and j we

also obtain a formula for the transition from the new dependent variables A
ij

to the original ones Aij :
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Aij = A
km ∂xi

∂ξk

∂xj

∂ξm
, i, j, k, m = 1, . . . , n. (2.67)

Therefore we can obtain a system of equations for the new dependent variables
A

ij
by replacing the dependent quantities Aij in (2.65) with their expressions

(2.67). As a result we obtain

∂Aij

∂xj
=

∂

∂xj

(
A

km ∂xi

∂ξk

∂xj

∂ξm

)

=
∂A

km

∂ξm

∂xi

∂ξk
+ A

km ∂2xi

∂ξk∂ξm
+ A

km ∂xi

∂ξk

∂

∂xj

(
∂xj

∂ξm

)

= F i, i, j, k, m = 1, . . . , n.

The use of the formula (2.45) for differentiation of the Jacobian in the sum-
mation in the equation above yields

∂Aij

∂xj
=

∂A
km

∂ξm

∂xi

∂ξk
+ A

km ∂2xi

∂ξk∂ξm
+

1
J

A
km ∂xi

∂ξk

∂J

∂ξm
= F i,

i, j, k, l, m = 1, . . . , n.

Multiplying this system by ∂ξp/∂xi and summing over i we obtain, after
simple manipulations,

1
J

∂

∂ξj
(JA

ij
) +

∂2xl

∂ξk∂ξj

∂ξi

∂xl
A

kj
= F

i
, i, j, k, l = 1, . . . , n, (2.68)

where

F
i
= F j ∂ξi

∂xj
, i, j = 1, . . . , n,

is the ith contravariant component of the vector F = (F 1, . . . , Fn) in the
basis xξ1 , . . . , xξn . The quantities (∂2xl/∂ξk∂ξj)(∂ξi/∂xl) in (2.68) are the
space Christoffel symbols of the second kind Γ i

kj . Thus the system (2.68) has,
using the notation Γ i

jk, the form

1
J

∂

∂ξj
(JA

ij
) + Γ i

kjA
kj

= F
i
, i, j, k = 1, . . . , n. (2.69)

We see that all coefficients of (2.69) are derived from the metric tensor (gij).
Equations of the form (2.69), in contrast to (2.65), do not have a conser-

vative form. The conservative form of (2.65) in new dependent variables is
obtained, in analogy with (2.56), from the system

1
J

∂

∂ξj
(JA

j

i ) = F i, i, j = 1, . . . , n, (2.70)

where A
j

i is the jth component of the vector Ai = (Ai1, . . . , Ain) in the basis
xξj , j = 1, . . . , n, i.e.
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A
j

i = Aik ∂ξj

∂xk
, i, j, k = 1, . . . , n. (2.71)

In fact, (2.70) is the result of the application of (2.56) to the ith line of (2.65).
Therefore in the relations (2.65), (2.70), (2.71) we can assume an arbitrary
range for the index i, i.e. the matrix Aij in (2.65) can be a nonsquare matrix
with i = 1, . . . , m, j = 1, . . . , n.

Though the system (2.70) is conservative and more compact than (2.69),
it has its drawbacks. In particular, mathematical simulations of fluid flows are
generally formulated in the form (2.65) with the tensor Aij represented as

Aij = Bij + ρuiuj , i, j = 1, . . . , n,

where ui, i = 1, . . . , n, are the Cartesian components of the flow velocity. The
transformation of the tensor ρuiuj by the rule (2.71),

ρuiuk ∂ξj

∂xk
= ρuiuj , i, j, k = 1, . . . , n,

results in equations with an increased number of dependent variables, namely
ui and uj . The substitution of ui for uj or vice versa leads to equations whose
coefficients are derived from the elements ∂xi/∂ξj of the Jacobi matrix and
not from the elements of the metric tensor (gij).

2.4.2.1 Example

As an example of (2.65) we consider the stationary equation of a compressible
gas flow

∂

∂xj
(ρuiuj) +

∂p

∂xi
− ∂

∂xj
μ

∂ui

∂xj
= ρF i, i, j = 1, . . . , n, (2.72)

where ui is the ith Cartesian component of the vector of the fluid velocity u,
ρ is the density, p is the pressure and, μ is the viscosity. The tensor form of
(2.65) is given by

Aij = ρuiuj + δi
jp − μ

∂ui

∂xj
, i, j = 1, . . . , n.

From (2.66) we obtain in this case

A
ij

= ρuiuj + gijp − μ
∂ul

∂xk

∂ξi

∂xl

∂ξj

∂xk
, (2.73)

where ui is the ith component of u in the basis xξi , i.e. ui is computed from
the formula (2.60). It is obvious that

ul = uj ∂xl

∂ξj
, j, l = 1, . . . , n. (2.74)
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Therefore

∂ul

∂xk
=

∂

∂ξm

(
up ∂xl

∂ξp

)
∂ξm

∂xk

=
∂up

∂ξm

∂xl

∂ξp

∂ξm

∂xk
+ up ∂2xl

∂ξp∂ξm

∂ξm

∂xk
.

Using this equation, we obtain, for the last term of (2.73),

μ
∂ul

∂xk

∂ξi

∂xl

∂ξj

∂xk
= μgmj

(
∂ui

∂ξm
+ Γ i

pmup

)
, i, j, m, p = 1, . . . , n,

since (2.37) applies. Thus (2.73) has the form

A
ij

= ρuiuj + gijp − μgmj

(
∂ui

∂ξm
+ Γ i

pmup

)
, i, j, m, p = 1, . . . , n, (2.75)

and, applying (2.69), we obtain the following system of stationary equations
(2.72) with respect to the new dependent variables ρ, ui, and p and the inde-
pendent variables ξi:

1
J

∂

∂ξj

{
J

[
ρuiuj + gijp − μgmj

(
∂ui

∂ξm
+ Γ i

pmup

)]}

+ Γ i
kj

[
ρukuj + gkjp − μgmj

(
∂uk

∂ξm
+ Γ k

pmup

)]
= ρF

i
,

i, j, k, m, p = 1, . . . , n. (2.76)

The application of (2.70) to (2.72) yields the following system of stationary
equations:

1
J

∂

∂ξj

[
J

(
ρuiuj +

∂ξj

∂xi
p − μ

∂ui

∂ξk
gkj

)]
= ρF i,

uj = uk ∂ξj

∂xk
, i, j, k = 1, . . . , n. (2.77)

Now, as an example of the utilization of the Christoffel symbols of the
second kind Γ i

kj , we write out the expression for the transformed elements of
the tensor

σij = μ

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, . . . , n, (2.78)

in the coordinates ξ1, . . . , ξn, obtained in accordance with the rule (2.66). This
tensor is very common and is important in applications simulating deforma-
tion in the theory of elasticity and deformation rate in fluid mechanics. Using
the notations described above, the tensor σij can be expressed in the coordi-
nates ξ1, . . . , ξn through the metric elements and the Christoffel symbols of
the second kind. For the component σij we have
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σij = σmk ∂ξi

∂xm

∂ξj

∂xk

= μ

(
gjl ∂ui

∂ξl
+ gil ∂uj

∂ξl
+ (gjlΓ i

pl + gilΓ j
pl)u

p

)
,

i, j, l, p = 1, . . . , n. (2.79)

This formula is obtained rather easily. For this purpose one can use the relation
(2.74) for the inverse transition from the contravariant components ui to the
Cartesian components uj of the vector u = (u1, . . . , un) and the formula
(2.37). By substituting (2.74) in (2.78), carrying out differentiation by the
chain rule, and using the expression (2.37), we obtain (2.79).

2.5 Time-Dependent Transformations

The numerical solution of time-dependent equations requires the application
of moving grids and the corresponding coordinate transformations, which are
dependent on time. Commonly, such coordinate transformations are deter-
mined in the form of a vector-valued time-dependent function

x(t, ξ) : Ξn → Xn
t , ξ ∈ Ξn, t ∈ [0, 1], (2.80)

where the variable t represents the time and Xn
t is an n-dimensional domain

whose boundary points change smoothly with respect to t. It is assumed that
x(t, ξ) is sufficiently smooth with respect to ξi and t and, in addition, that
it is invertible for all t ∈ [0, 1]. Therefore there is also the time-dependent
inverse transformation

ξ(t, x) : Xn
t → Ξn (2.81)

for every t ∈ [0, 1]. The introduction of these time-dependent coordinate trans-
formations enables one to compute an unsteady solution on a fixed uniform
grid in Ξn by the numerical solution of the transformed equations.

2.5.1 Reformulation of Time-Dependent Transformations

Many physical problems are modeled in the form of nonstationary conserv-
ation-law equations which include the time derivative. The formulas of
Sects. 2.3 and 2.4 can be used directly, by transforming the equations at every
value of time t. However, such utilization of the formulas does not influence
the temporal derivative, which is transformed simply to the form

∂

∂t
+

∂ξi

∂t

∂

∂ξi
, i = 1, . . . , n,

so that does not maintain the property of divergency and its coefficients are
not derived from the elements of the metric tensor.
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Instead, the formulas of Sects. 2.3 and 2.4 can be more successfully applied
to time-dependent conservation-law equations if the set of the functions x(t, ξ)
is expanded to an (n+1)-dimensional coordinate transformation in which the
temporal parameter t is considered in the same manner as the spatial variables.

To carry out this process we expand the n-dimensional computational and
physical domains in (2.80) to (n + 1)-dimensional ones, assuming

Ξn+1 = I × Ξn, Xn+1 =
⋃

t

t × Xn
t .

Let the points of these domains be designated by ξ0 = (ξ0, ξ1, . . . , ξn) and
x0 = (x0, x1, . . . , xn), respectively. The expanded coordinate transformation
is defined as

x0(ξ0) : Ξn+1 → Xn+1, (2.82)

where x0(ξ0) = ξ0 and xi(ξ0), i = 1, . . . , n, this coincides with (2.80) with
ξ0 = t.

The variables x0 and ξ0 in (2.82) represent in fact the temporal variable t.
For convenience and in order to avoid ambiguity we shall also designate the
variable ξ0 in Ξn+1 by τ and the variable x0 in Xn+1 by t. Thus x0(ξ0) is the
(n + 1)-dimensional coordinate transformation which is identical to x(τ, ξ) at
every section ξ0 = τ.

The inverted coordinate transformation

ξ0(x0) : Xn+1 → Ξn+1 (2.83)

satisfies
ξ0(x0) = x0, ξi(x0) = ξi(t, x), i = 1, . . . , n,

where t = x0, x = (x1, . . . , xn), and ξi(t, x) is defined by (2.81). Thus (2.83)
is identical to (2.81) at each section Xt.

2.5.2 Basic Relations

This subsection discusses some relations and, in particular, identities of the
kind (2.45) and (2.47) for the time-dependent coordinate transformations
(2.80), using for this purpose the (n + 1)-dimensional vector functions (2.82)
and (2.83) introduced above.

2.5.2.1 Velocity of Grid Movement

The first derivative xτ , x = (x1, x2, . . . , xn), of the transformation x(ξ, τ) has
a clear physical interpretation as the velocity vector of grid point movement.
Let the vector xτ , in analogy with the flow velocity vector u, be designated
by w = (w1, . . . , wn), i.e. wi = xi

τ . The ith component wi of the vector wi in
the tangential bases xξi , i = 1, . . . , n, is expressed by (2.7) as
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wi = wj ∂ξi

∂xj
=

∂xj

∂τ

∂ξi

∂xj
, i, j = 1, . . . , n.

Therefore
w = wixξi , i = 1, . . . , n, (2.84)

i.e.

wi =
∂xi

∂τ
= wj ∂xi

∂ξj
, i, j = 1, . . . , n.

Differentiation with respect to ξ0 of the composition of x0(ξ0) and ξ0(x0)
yields

∂ξi

∂x0

∂x0

∂ξ0
+

∂ξi

∂xj

∂xj

∂ξ0
= 0, i, j = 1, . . . , n.

Therefore we obtain the result

∂ξi

∂t
= − ∂xj

∂τ

∂ξi

∂xj
= −wi, i, j = 1, . . . , n. (2.85)

2.5.2.2 Derivatives of the Jacobian

It is apparent that the Jacobians of the coordinate transformations x(τ, ξ)
and x0(ξ0) coincide, i.e.

det
(

∂xi

∂ξj

)
= det

(
∂xk

∂ξl

)
= J, i, j = 0, 1, . . . , n, k, l = 1, . . . , n.

In the notation introduced above, the formula (2.45) for differentiation of the
Jacobian of the transformation

x0(ξ0) : Ξn+1 → Xn+1

is expressed by the relation

1
J

∂

∂ξi
J =

∂2xk

∂ξi∂ξm

∂ξm

∂xk
, i, k, m = 0, 1, . . . , n, (2.86)

differing from (2.45) only by the range of the indices. As a result, we obtain
from (2.86) for i = 0,

1
J

∂

∂τ
J =

∂

∂ξm

(
∂xk

∂τ

)
∂ξm

∂xk
= divx

∂x

∂τ
, k, m = 0, 1, . . . , n,

and, taking into account (2.84),

1
J

∂

∂τ
J =

∂

∂ξm

(
wj ∂xk

∂ξj

)
∂ξm

∂xk

=
∂wm

∂ξm
+ wi ∂2xk

∂ξj∂ξm

∂ξm

∂xk
, j, k, m = 1, . . . , n.
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Now, taking advantage of the formula for differentiation of the Jacobian (2.45),
in the last sum of this equation we have

1
J

∂

∂τ
J =

∂wm

∂ξm
+

1
J

wj ∂J

∂ξj
, j, m = 1, . . . , n,

and consequently

1
J

∂

∂τ
J =

1
J

∂

∂ξj
(Jwj), j = 1, . . . , n. (2.87)

2.5.2.3 Basic Identity

Analogously, the system of identities (2.47) has the following form:

∂

∂ξj

(
J

∂ξj

∂xi

)
= 0, i, j = 0, 1, . . . , n. (2.88)

Therefore for i = 0 we obtain

∂

∂τ
(J) +

∂

∂ξj

(
J

∂ξj

∂t

)
= 0, j = 1, . . . , n, (2.89)

and, taking into account (2.85),

∂

∂τ
J − ∂

∂ξj
(Jwj) = 0, j = 1, . . . , n, (2.90)

which corresponds to (2.87). For i > 0 the identity (2.88) coincides with (2.47),
i.e.

∂

∂ξj

(
J

∂ξj

∂xi

)
= 0, i, j = 1, . . . , n.

As a result of (2.89), we obtain, in analogy with (2.50),

∂f

∂t
=

1
J

∂

∂ξj

(
J

∂ξj

∂t
f

)
=

1
J

(
∂

∂τ
(Jf) − ∂

∂ξk
(Jwkf)

)
,

j = 0, 1, . . . , n, k = 1, . . . , n. (2.91)

2.5.3 Equations in the Form of Scalar Conservation Laws

Many time-dependent equations can be expressed in the form of a scalar
conservation law in the Cartesian coordinates t, x1, . . . , xn:

∂A0

∂t
+

∂Ai

∂xi
= F, i = 1, . . . , n. (2.92)

Using (2.88), in analogy with (2.56), this equation is transformed in the co-
ordinates ξ0, ξ1, . . . , ξn, ξ0 = τ to
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1
J

(
∂

∂ξj
(JA

j

0)
)

= F, j = 0, 1, . . . , n, (2.93)

where by A
j

0 we denote the jth contravariant component of the (n + 1)-
dimensional vector A0 = (A0, A1, . . . , An) in the basis ∂x0/∂ξi, i = 0, 1, . . . , n,
i.e.

A
j

0 = Ai ∂ξj

∂xi
, i, j = 0, 1, . . . , n. (2.94)

We can express each component A
j

0, j = 1, . . . , n, of the vector A0 through the
components A

i
and wk, i, k = 1, . . . , n, of the n-dimensional spatial vectors

A = (A1, . . . , An) and w = (w1, . . . , wn) in the coordinates ξl, l = 1, . . . , n,
where A is a vector obtained by projecting the vector A0 into the space Rn,
i.e. P (A0, A1, . . . , An) = (A1, . . . , An). Namely,

A
j

0 = A0 ∂ξj

∂t
+ Ai ∂ξj

∂xi
= A

j − A0wj , i, j = 1, . . . , n,

using (2.85). Further, we have

A
0

0 = Ak ∂ξ0

∂xk
= A0, k = 0, 1, . . . , n.

Therefore (2.93) implies a conservation law in the variables τ, ξ1, . . . , ξn in the
conservative form

1
J

(
∂

∂τ
(JA0) +

∂

∂ξj
[J(A

j − A0wj)]
)

= F, j = 1, . . . , n. (2.95)

2.5.3.1 Examples of Scalar Conservation-Law Equations

As an illustration of the formula (2.95), we write out some time-dependent
scalar conservation law equations presented first in the form (2.92).

Parabolic Equation

For the parabolic equation

∂f

∂t
=

∂

∂xj

∂f

∂xj
, j = 1, . . . , n, (2.96)

we obtain from (2.95), with A0 = f and Ai = ∂f/∂xi, i = 1, . . . , n,

∂Jf

∂τ
=

∂

∂ξj

[
J

(
gjk ∂f

∂ξk
+ fwj

)]
, j, k = 1, . . . , n. (2.97)
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Mass Conservation Law

The scalar mass conservation law for unsteady compressible gas flow

∂ρ

∂t
+

∂ρui

∂xi
= F, i = 1, 2, 3, (2.98)

is expressed in the new coordinates as

∂Jρ

∂t
+

∂Jρ(uj − wj)
∂ξj

= JF, j = 1, 2, 3. (2.99)

Convection–Diffusion Equation

The unsteady convection–diffusion conservation equation

∂

∂t
(ρφ) +

∂

∂xi
(ρφui) − ∂

∂xi

(
ε

∂φ

∂xi

)
= S, i = 1, . . . , n, (2.100)

has the form in the coordinates τ, ξ1, . . . , ξn

∂

∂τ
(Jρφ)+

∂

∂ξj

(
Jρφ(uj − wj) − Jgkjε

∂φ

∂ξk

)
= JS, j, k = 1, . . . , n. (2.101)

Energy Conservation Law

Analogously, the energy conservation law

∂

∂t
ρ(e + u2/2) +

∂

∂xj
ρuj(e + u2/2 + p/ρ) = ρFjuj , j = 1, 2, 3, (2.102)

where

e = e(ρ, p), p = p − γ
∂ui

∂xi
, i = 1, 2, 3,

u2 =
3∑

i=1

(ui)2,

is transformed in accordance with (2.95) to

∂

∂τ

[
Jρ

(
e +

1
2
gmkumuk

)]
+

∂

∂ξj

[
Jρ

(
e +

1
2
gmkumuk

)
(uj − wj) + Jpuj

]

= Jρgmkf
m

uk, j, m, k = 1, 2, 3, (2.103)

where, taking into account (2.56),

p = p − γ

J

∂

∂ξi
(Jui), i = 1, 2, 3.
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Linear Wave Equation

The linear wave equation
utt = c2∇2u (2.104)

arises in many areas such as fluid dynamics, elasticity, acoustics, and magne-
tohydrodynamics. If the coefficient c is constant than (2.104) has a divergent
form (2.92) with

A0 = ut, Ai = −c2 ∂u

∂xi
, i = 1, . . . , n,

or, in the coordinates τ, ξ1, . . . , ξn,

A0 = uτ − wi ∂u

∂ξi
, Ai = −c2 ∂u

∂ξk

∂ξk

∂xi
, i, k = 1, . . . , n.

Therefore the divergent form (2.93) of (2.104) in the coordinates τ, ξ1, . . . , ξn

has the form

∂

∂τ

[
J

(
uτ − wi ∂u

∂ξi

)]
+

∂

∂ξj

[
J

(
uτwj + (c2gmj − wiwj)

∂u

∂ξi

)]
= 0. (2.105)

Another representation of the linear wave equation (2.104) in the coordi-
nates τ, ξ1, . . . , ξn comes from the formula (2.64) for the Laplace operator and
the description of the temporal derivative (2.91). Taking advantage of (2.91),
we obtain

utt =
1
J

[
∂

∂τ

(
J

∂u

∂t

)
− ∂

∂ξk

(
Jwk ∂u

∂t

)]

=
1
J

∂

∂τ

[
J

(
uτ − wi ∂u

∂ξi

)]

− 1
J

∂

∂ξk

[
Jwk

(
uτ − wi ∂u

∂ξi

)]
.

This equation and (2.64) allow one to derive the following form of (2.104) in
the coordinates τ, ξ1, . . . , ξn:

∂

∂τ

[
J

(
uτ − wi ∂u

∂ξi

)]

=
∂

∂ξk

[
Jwk

(
uτ − wj ∂u

∂ξi

)]
+ c2 ∂

∂ξk

(
Jgkj ∂u

∂ξj

)
, (2.106)

which coincides with (2.105) if c2 is a constant.
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2.5.3.2 Lagrangian Coordinates

One of the most popular systems of coordinates in fluid dynamics is the La-
grangian system. A coordinate ξi is Lagrangian if the both the ith component
of the flow velocity vector u and the grid velocity w in the tangent basis
xξj , j = 1, . . . , m, coincide, i.e.

ui − wi = 0. (2.107)

The examples of gas-dynamics equations described above, which include the
terms wi, allow one to obtain the equations in Lagrange coordinates by sub-
stituting ui for wi in the written-out equations in accordance with the relation
(2.107). In such a manner, we obtain the equation of mass conservation, for
example, in the Lagrangian coordinates ξ1, . . . , ξn as

∂Jρ

∂τ
= JF (2.108)

from (2.99). Analogously, the convection–diffusion equation (2.101) and the
energy conservation law (2.103) have the forms in Lagrangian coordinates ξi

∂

∂τ
(Jρφ) +

∂

∂ξj

(
Jgkjε

∂φ

∂ξk

)
= JS, j, k = 1, . . . , n,

and

∂

∂τ

[
Jρ

(
e +

1
2
gmkumuk

)]
+

∂

∂ξj
(Jpuj) = Jρgmkf

m
uk, j, m, k = 1, 2, 3,

respectively.
In the same manner, the equations can be written in the Euler–Lagrange

form, where some coordinates are Lagrangian while the rest are Cartesian
coordinates.

2.5.4 Equations in the Form of Vector Conservation Laws

Now we consider a formula for a vector conservation law with time-dependent
physical magnitudes Aij

∂

∂xj
Aij = F i, i, j = 0, 1, . . . , n, (2.109)

where the independent variable x0 represents the time variable t, i.e. x0 = t.
Let the new independent variables ξ0, ξ1, . . . , ξn be obtained by means of
(2.82). As well as (2.69), which expresses the vector conservation law (2.65)
in the coordinates ξ1, . . . , ξn, we find that the transformation (2.109) has the
form of the following system of equations for the new dependent quantities



2.5 Time-Dependent Transformations 63

A
ij

0 , i, j = 0, 1, . . . , n, with respect to the independent variables ξ0, ξ1, . . . , ξn,
ξ0 = τ :

1
J

∂

∂ξj
(JA

ij

0 ) + Γ
i

kjA
kj

0 = F
i

0, i, j = 0, 1, . . . , n, (2.110)

where

A
ij

0 = Amn ∂ξi

∂xm

∂ξj

∂xn
, i, j, m, n = 0, 1, . . . , n,

Γ
i

kj =
∂2xl

∂ξk∂ξj

∂ξi

∂xl
, i, j, k, l = 0, 1, . . . , n,

F
i

0 = F j ∂ξi

∂xj
, i, j = 0, 1, . . . , n.

As in the case of the scalar conservation law, we represent all of the terms of
(2.110) through A00 and the spatial components:

A
ij

= Akm ∂ξi

∂xk

∂ξj

∂xm
, i, j, m, n = 1, . . . , n,

Γ i
kj =

∂2xl

∂ξk∂ξj

∂ξi

∂xl
, i, j, k, l = 1, . . . , n,

F
i
= F j ∂ξi

∂xj
, i, j = 1, . . . , n,

wi = − ∂ξi

∂t
=

∂xj

∂τ

∂ξi

∂xj
, i, j = 1, . . . , n.

For A
ij

0 we obtain

A
00

0 = A00,

A
0i

0 = A00 ∂ξi

∂t
+ A0m ∂ξi

∂xm
= A

0i − A00wi, i = 1, . . . , n,

A
i0

0 = A
i0 − A00wi, i = 1, . . . , n,

A
ij

0 = A00wiwj − A
0j

wi − A
i0

wj + A
ij

, i, j = 1, . . . , n.

Analogously, for Γ
i

kj we obtain

Γ
0

kj = 0, k, j = 0, 1, . . . , n,

Γ
i

00 =
∂wi

∂t
+ wlwmΓ i

lm, i, l, m = 1, . . . , n,

Γ
i

j0 = Γ i
0j =

∂wi

∂ξj
+ wlΓ i

jl, i, j, l = 1, . . . , n,

Γ
i

jk = Γ i
jk, i, j, k = 1, . . . , n,

and for F
i

0,
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F
0

0 = F 0,

F
i

0 = F
i − A0wi, i = 1, . . . , n.

Using these expression in (2.110), we obtain a system of equations for the vec-
tor conservation law in the coordinates τ, ξ1, . . . , ξn with an explicit expression
for the components of the speed of the grid movement:

∂

∂τ
(JA00) +

∂

∂ξj
[J(A

0i − A00wj)] = JF 0,

∂

∂τ
J(A

i0 − A00wj) +
∂

∂ξj
J(A

ij
+ A00wiwj − A

0j
wj − A

i0
wi)

+ JA00

(
∂wi

∂τ
+ wl ∂wi

∂ξl
+ wlwjΓ i

lj

)

+ J(A
j0

+ A
0j − 2A00wj)

(
∂wi

∂ξj
+ wlΓ i

jl

)

+ J(A
lj

+ A00wlwj − A
0j

wl − A
0l

wj)Γ i
lj

= J(F
i − F 0wi), i, j, l = 1, . . . , n.

(2.111)

Another representation of (2.109) in new coordinates can be derived in
the form of (2.95) by applying (2.95) to each line of the system (2.109). As a
result we obtain

1
J

{
∂

∂τ
(JAi0)+

∂

∂ξj

[
J

(
Aik ∂ξj

∂xk
− Ai0wj

)]}
= F, j, k = 1, . . . , n. (2.112)

Recall that this approach is not restricted to a square form of the system
(2.109), i.e. the ranges for the indices i and j can be different.

As an illustration of these equations for a vector conservation law in the
curvilinear coordinates τ, ξ1, . . . , ξn, we write out a joint system for the con-
servation of mass and momentum, which in the coordinates t, x1, x2, x3 has
the following form:

∂ρ

∂t
+

∂

∂xi
ρui = 0, i = 1, 2, 3,

∂ρui

∂t
+

∂

∂xj
(ρuiuj + pδi

j) = ρf i, i, j = 1, 2, 3,

(2.113)

where

p = p − γ
∂ui

∂xi
, δi

j = 0 if i �= j and δi
j = 1 if i = j.

This system is represented in the form (2.109) with

A00 = ρ,

A0i = Ai0 = ρui, i = 1, 2, 3,

Aij = ρuiuj + δijp, i, j = 1, 2, 3,
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i.e.

(Aij) =

⎛

⎜⎜⎝

ρ ρu1 ρu2 ρu3

ρu1 ρu1u1 + p ρu1u2 ρu1u3

ρu2 ρu2u1 ρu2u2 + p ρu2u3

ρu3 ρu3u1 ρu3u2 ρu3u3 + p

⎞

⎟⎟⎠ ,

i, j = 0, 1, 2, 3 (2.114)

and

F 0 = 0,

F i = ρf i, i = 1, 2, 3.

For the coordinate system τ, ξ1, . . . , ξn we obtain

A
00

= ρ,

A
0i

= A
i0

= ρ(ui − wi), i = 1, 2, 3,

A
ij

= ρ(ui − wi)(uj − wj) + pgij , i, j = 1, 2, 3.

Substituting these expressions in (2.111) we obtain a system of equations for
the mass and momentum conservation laws in the coordinates τ, ξ1, . . . , ξn:

∂

∂τ
(Jρ) +

∂

∂ξj
[Jρ(uj − wj)] = 0, i = 1, 2, 3,

∂

∂τ
[Jρ(ui − wi)] +

∂

∂ξj
[Jρ(ui − wi)(uj − wj) + Jpgij ]

+ Jρ
∂wi

∂τ
+ Jρ(2uj − wj)

∂wi

∂ξj
+ J(ρuluj + pglj)Γ i

lj

= Jρf
i
, i, j, l = 1, 2, 3.

(2.115)

If the coordinates ξi are the Lagrangian ones, i.e. ui = wi, then we obtain
from (2.115)

∂

∂τ
(Jρ) = 0,

Jρ
∂ui

∂τ
+

∂

∂ξj
(Jpgij) + Jρuj ∂ui

∂ξj
+ J(ρuluj + pglj)Γ i

lj = Jρf
i
.

(2.116)

Note that the first equation of the system (2.115) coincides with (2.99) if
F = 0; this was obtained as the scalar mass conservation law.

In the same manner, we can obtain an expression for the general Navier–
Stokes equations of mass and momentum conservation by inserting the tensor
(σij) described by (2.78) in the system (2.113) and the tensor (σij) represented
by (2.79) in the system (2.115).
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A divergent form of (2.113) in arbitrary coordinates τ, ξ1, . . . , ξn is ob-
tained by applying (2.112). With this, we obtain the system

∂

∂τ
(Jρ) +

∂

∂ξj
[Jρ(uj − wj)] = 0,

∂

∂τ
(Jρui) +

∂

∂ξj

[
J

(
ρui(uj − wj) + p

∂ξj

∂xi

)]
= JF i, (2.117)

uj = uk ∂ξj

∂xk
, i, j, k = 1, 2, 3,

and, in the Lagrangian coordinates,

∂

∂τ
(Jρ) = 0,

∂

∂τ
(Jρui) +

∂

∂ξj

(
Jp

∂ξj

∂xi

)
= JF i, i, j = 1, 2, 3.

(2.118)

2.6 Comments

Many of the basic formulations of vector calculus and tensor analysis may be
found in the books by Kochin (1951), Sokolnikoff (1964) and Gurtin (1981).

The formulation of general metric and tensor concepts specifically aimed
at grid generation was originally performed by Eiseman (1980) and Warsi
(1981).

Very important applications of the most general tensor relations to the
formulation of unsteady equations in curvilinear coordinates in a strong con-
servative form were presented by Vinokur (1974). A strong conservation-law
form of unsteady Euler equations also was also described by Viviand (1974).

A derivation of various forms of the Navier–Stokes equations in general
moving coordinates was described by Ogawa and Ishiguto (1987).
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Grid Quality Measures

3.1 Introduction

It is very important to develop grid generation techniques which sense grid
quality features and possess means to eliminate the deficiencies of the grids.
These requirements give rise to the problem of selecting and adequately for-
mulating the necessary grid quality measures and finding out how they affect
the solution error and the solution efficiency, in order to control the perfor-
mance of the numerical analysis of physical problems with grids. Commonly,
these quality measures encompass grid skewness, stretching, torsion, cell as-
pect ratio, cell volume, departure from conformality, and cell deformation.

In this chapter we utilize the notions and relations discussed in Sects. 2.2
and 2.3 to describe some qualitative and quantitative characteristics of struc-
tured grids. The structured grid concept allows one to define the grid char-
acteristics through coordinate transformations as features of the coordinate
curves, coordinate surfaces, coordinate volumes, etc. In general these features
are determined through the elements of the metric tensors and their deriv-
atives. In particular, some grid properties can be described in terms of the
invariants of the covariant metric tensor.

The chapter starts with an introduction to the elementary theory of curves
and surfaces, necessary for the description of the quality measures of the
coordinate curves and coordinate surfaces. It also includes a discussion of the
metric invariants. Various grid characteristics are then formulated through
quantities which measure the features of the coordinate curves, surfaces, and
transformations.

3.2 Curve Geometry

Commonly, the curves lying in the n-dimensional space Rn are represented
by smooth nondegenerate parametrizations

V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-90-481-2912-6 3, c© Springer Science+Business Media B.V. 2010
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x(ϕ) : [a, b] → Rn, x(ϕ) = [x1(ϕ), . . . , xn(ϕ)].

In our considerations we will use the designation Sx1 for the curve with the
parametrization x(ϕ). In this chapter we discuss the important measures of
the local curve quality known as curvature and torsion. These measures are
derived by some manipulations of basic curve vectors using the operations of
dot and cross products.

3.2.1 Basic Curve Vectors

3.2.1.1 Tangent Vector

The first derivative of the parametrization x(ϕ) is a tangential vector

xϕ = (x1
ϕ, . . . , xn

ϕ)

to the curve Sx1. The quantity

gxϕ = xϕ · xϕ = xi
ϕxi

ϕ, i = 1, . . . , n,

is the metric tensor of the curve and its square root is the length of the tangent
vector xϕ. Thus the length l of the curve Sx1 is computed from the integral

l =
∫ b

a

√
gxϕdϕ.

The most important notions related to curves are connected with the arc
length parameter s defined by the equation

s(ϕ) =
∫ ϕ

0

√
gxϕdϕ. (3.1)

The vector dx[ϕ(s)]/ds, where ϕ(s) is the inverse of s(ϕ), is a tangent vector
designated by t. From (3.1) we obtain

t =
d
ds

x[ϕ(s)] =
dϕ

ds
xϕ =

1√
gxϕ

xϕ.

Therefore t is the unit tangent vector and, after differentiating the relation
t · t = 1, we find that the derivative ts is orthogonal to t. The vector ts is
called the curvature vector and denoted by k. Let n be a unit vector that is
parallel to ts; there then exists a scalar k, such that

ts = k = kn, k = (ts · ts)1/2 = α|k|, (3.2)

where α = 1 or α = −1.
The magnitude k is called the curvature, while the quantity ρ = 1/k is

called the radius of curvature of the curve.
Using the identity xϕ =

√
gxϕt, we obtain from (3.2)

xϕϕ =
1√
gxϕ

(xϕϕ · xϕ)t + gxϕkn. (3.3)

The identity (3.3) is an analog of the Gauss relations (2.35). This identity
shows that the vector xϕϕ lies in the t–n plane.
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Fig. 3.1. Base curve vectors

3.2.1.2 Curves in Three-Dimensional Space

In three dimensions we can apply the operation of the cross product to the
basic tangential and normal vectors. The vector b = t × n is a unit vector
which is orthogonal to both t and n. It is called the binormal vector. From
(3.3) we find that b is orthogonal to xϕϕ.

The three vectors (t, n, b) form a right-handed triad (Fig. 3.1). Note that
if the curve lies in a plane, then the vectors t and n lie in the plane as well
and b is constant unit vector normal to the plane.

The vectors t, n, and b are connected by the Serret–Frenet equations

dt

ds
= kn,

dn

ds
= −kt + τb, (3.4)

db

ds
= −τn,

where the coefficient τ is called the torsion of the curve. The first equation of
the system (3.4) is taken from (3.2). The second and third equations are readily
obtained from the formula (2.5) by replacing the b in (2.5) by the vectors on
the left-hand side of (3.4), while the vectors t, n, and b substitute for e1, e2,
and e3, respectively. The vectors t, n, and b constitute an orthonormal basis,
i.e.

aij = aij = δi
j , i, j = 1, 2, 3,

where, in accordance with Sect. 2.2.4 aij = ei · ej , and (aij) is the inverse of
the tensor (aij). Now, using (2.5) we obtain

dn

ds
=

(
dn

ds
· t

)
t +

(
dn

ds
· n

)
n +

(
dn

ds
· b

)
b = −kt +

(
dn

ds
· b

)
b,

since ns · t = −n · ts, ns · n = 0. Thus we obtain the second equation of (3.4)
with τ = ns · b. Analogously we obtain the last equation of (3.4) by expanding
the vector bs through t, n, and b using the relation (2.5):
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db

ds
=

(
db

ds
· t

)
t +

(
db

ds
· n

)
n +

(
db

ds
· b

)
b = −

(
dn

ds
· b

)
n = −τn,

as bs · t = −b · ts = 0, bs · b = 0.

3.2.2 Curvature

A very important characteristic of a curve which is related to grid generation is
the curvature k. This quantity is used as a measure of coordinate line bending.

One way to compute the curvature is to multiply (3.2) by n using the dot
product operation. As

dt

ds
=

1√
gxϕ

d
dϕ

(
1√
gxϕ

xϕ

)
=

1
gxϕ

xϕϕ − 1
(gxϕ)2

(xϕ · xϕϕ)xϕ,

from (3.1), (3.2), the result is

k =
1

gxϕ
xϕϕ · n. (3.5)

The vector n is independent of the curve parametrization, and therefore we
find from (3.3), (3.5) that k is an invariant of parametrizations of the curve.

In two dimensions,

n =
1√
gxϕ

(−x2
ϕ, x1

ϕ),

therefore in this case we obtain from (3.5),

k2 =
(xϕyϕϕ − yϕxϕϕ)2

[(xϕ)2 + (yϕ)2]3
(3.6)

with the convention x = x1, y = x2. In particular, when the curve in R2

is defined by a function u = u(x), we obtain from (3.6), assuming x(ϕ) =
[ϕ, u(ϕ)], ϕ = x,

k2 = (uxx)2/[1 + (ux)2]3.

In the case of three-dimensional space the curvature k can also be com-
puted from the relation obtained by multiplying (3.3) by xϕ with the cross
product operation:

xϕ × xϕϕ = gxϕk(xϕ × n) = (gxϕ)3/2kb.

Thus we obtain

k2 =
|xϕ × xϕϕ|2

(gxϕ)3
(3.7)

and, consequently, from (2.25)

k2 =
(x1

ϕx2
ϕϕ − x2

ϕx1
ϕϕ)2 + (x2

ϕx3
ϕϕ − x3

ϕx2
ϕϕ)2 + (x3

ϕx1
ϕϕ − x1

ϕx3
ϕϕ)2

[(x1
ϕ)2 + (x2

ϕ)2 + (x3
ϕ)2]3

.
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3.2.3 Torsion

Another important quality measure of curves in three-dimensional space is
the torsion τ. This quantity is suitable for measuring the rate of twisting of
the lines of coordinate grids.

In order to figure out the value of τ for a curve in R3 we use the last
relation in (3.4), which yields

τ = − db

ds
· n.

As b = t × n, we obtain

db

ds
=

dt

ds
× n + t × dn

ds
= t × dn

ds
,

since dt/ds = kn. Thus

τ =
(

−t × dn

ds

)
· n. (3.8)

From (3.1), (3.2) we have the following obvious relations for the basic vectors
t and n in terms of the parametrization x(ϕ) and its derivatives:

t =
1√
gxϕ

xϕ,

n =
1
k

dt

ds
=

1
k

(
1

gxϕ
xϕϕ − xϕ · xϕϕ

(gxϕ)2
xϕ

)
,

dn

ds
=

1
k

(
1

(gxϕ)3/2
xϕϕϕ − 2

xϕ · xϕϕ

(gxϕ)2
xϕϕ

− d
dϕ

(
xϕ · xϕϕ

(gxϕ)2

)
xϕ − 1

k

dk

ds
n

)
.

(3.9)

Thus

t × dn

ds
=

1
k(gxϕ)2

xϕ × xϕϕϕ − 2
xϕ · xϕϕ

k(gxϕ)5/2
xϕ × xϕϕ − 1

k2
√

gxϕ

dk

ds
xϕ × n.

As (a × b) · a = (a × b) · b = 0 for arbitrary vectors a and b, we obtain from
(3.8), (3.9)

τ = − 1
k2(gxϕ)3

(xϕ × xϕϕϕ) · xϕϕ =
1

k2(gxϕ)3
(xϕ × xϕϕ) · xϕϕϕ. (3.10)

And using (2.30) we also obtain

τ =
1

k2(gxϕ)3
det

⎛

⎝
x1

ϕ x2
ϕ x3

ϕ

x1
ϕϕ x2

ϕϕ x3
ϕϕ

x1
ϕϕϕ x2

ϕϕϕ x3
ϕϕϕ

⎞

⎠ .
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3.3 Surface Geometry

In general, a surface in the three-dimensional space R3 is assumed to be
locally represented by some parametric two-dimensional domain S2 and a
parametrization

x(s) : S2 → R3, x(s) = [x1(s), x2(s), x3(s)], s = (s1, s2),

where x(s) is a smooth nondegenerate vector function. We use the designation
Sx2 for the surface with the parametrization x(s). In analogy with domains,
the transformation x(s) defines the coordinate system s1, s2 on the surface
as well as the respective base vectors and metric tensors.

For the purpose of adaptive grid generation, the so-called monitor surfaces
are very important. These surfaces are defined by the values of some vector-
valued function u(s), referred to as the height function, over the domain S2.
The natural form of the parametrization of the monitor surface formed with
a scalar height function u(x) is represented by the formula

x(s) = [s1, s2, u(s1, s2)].

3.3.1 Surface Base Vectors

A surface in R3 has three base vectors: two tangents (one to each coordinate
curve) and a normal. The two tangential vectors to the coordinates s1 and s2

represented by x(s) are, respectively,

xsi =
∂x

∂si
=

(
∂x1

∂si
,

∂x2

∂si
,

∂x3

∂si

)
, i = 1, 2.

The unit normal vector to the surface Sx2 is defined through the cross product
of the tangent vectors xs1 and xs2 :

n =
1

|xs1 × xs2 | (xs1 × xs2).

Since (xs1 × xs2) · n > 0, the base surface vectors xs1 , xs2 , and n comprise
a right-handed triad (Fig. 3.2). In accordance with (2.25), the unit normal n
can also be expressed as

n =
1√
grs

(
∂xl+1

∂s1

∂xl+2

∂s2
− ∂xl+2

∂s1

∂xl+1

∂s2

)
el, l = 1, 2, 3, (3.11)

where (e1, e2, e3) is the Cartesian basis of R3. Recall that this formula im-
plies the identification convention for indices in three dimensions, where k is
equivalent to k ± 3. If the surface Sx2 is a monitor surface represented by a
height function u(s) then we obtain from (3.11)
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Fig. 3.2. Surface base vectors

n =
1√

1 + (us1)2 + (us2)2

(
− ∂u

∂s1
, − ∂u

∂s2
, 1

)
.

In another particular case, when the surface points are found from the equa-
tion f(x) = c, we obtain ∇f · xsi = 0, i = 1, 2, and therefore

n = l∇f, |l| = 1/|∇f |.

3.3.2 Metric Tensors

The surface metric tensors, like the domain metric tensors, are defined through
the operation of the dot product on the vectors tangential to the coordinate
lines.

3.3.2.1 Covariant Metric Tensor

We designate the covariant metric tensor of the surface Sx2 in the coordinates
s1, s2 by

Gxs = (gxs
ij ), i, j = 1, 2,

where
gxs

ij = xsi · xsj , i, j = 1, 2. (3.12)

In particular, when a surface is defined by the values of some scalar function
u(s) over the domain S2 then

gxs
ij = δj

i +
∂u

∂si

∂u

∂sj
, i, j = 1, 2.
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The quantity
√

gxs
ii in (3.12) for a fixed i has the geometrical meaning of

the length of the tangent vector xsi to the coordinate curve si.
The differential quadratic form

gxs
ij dsidsj , i, j = 1, 2,

relating to the line elements in space, is called the first fundamental form of
the surface. It represents the value of the square of the length of an elementary
displacement dx on the surface.

Let the Jacobian of Gxs be designated by gxs. Since

gxs = |xs1 |2|xs2 |2(1 − cos2 θ) = (|xs1 | · |xs2 | sin θ)2 = (xs1 × xs2)2,

where θ is the angle between xs1 and xs2 , we find that the quantity gxs is
the area squared of the parallelogram formed by the vectors xs1 and xs2 .
Therefore the area of the surface Sx2 is computed from the formula

S =
∫

S2

√
gxsds.

3.3.2.2 Contravariant Metric Tensor

Consequently the contravariant metric tensor of the surface Sx2 in the coor-
dinates s1, s2 is the matrix

Gsx = (gij
sx), i, j = 1, 2

inverse to Gxs, i.e.
gxs

ij gjk
sx = δi

k, i, j, k = 1, 2.

Thus, in analogy with (2.20), we obtain

gij
sx = (−1)i+jgxs

3−i 3−j/gxs,

gxs
ij = (−1)i+jgxsg3−i 3−j

sx , i, j = 1, 2,
(3.13)

with fixed indices i and j. The diagonal elements g11
sx and g22

sx of the contravari-
ant metric tensor Gsx are connected with the natural geometric quantities of
the parallelogram defined by the tangent vectors xs1 and xs2 (see Fig. 3.3).

Fig. 3.3. Geometric meaning of the metric elements
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Namely, taking into account the relation gxs = gxs
11/g22

sx, we find that
√

g22
sx

is the inverse of the value of the distance between the parallel edges of the
parallelogram formed by the vector xs1 . Analogously,

√
g11

sx is the inverse of
the distance between the other pair of parallelogram edges, i.e. those formed
by xs2 .

3.3.3 Second Fundamental Form

The coefficients of the second fundamental form

bijdsidsj , i, j = 1, 2,

of the surface Sx2 are defined by the dot products of the second derivatives of
the vector function x(s) and the unit normal vector n to the surface at the
point s under consideration:

bij = xsisj · n, i, j = 1, 2. (3.14)

Thus, from (3.11), (3.14) we obtain for bij , i, j = 1, 2,

bij =
1√
gxs

[
∂2xl

∂si∂sj

(
∂xl+1

∂s1

∂xl+2

∂s2
− ∂xl+2

∂s1

∂xl+1

∂s2

)]
, l = 1, 2, 3, (3.15)

with the identification convention for the superscripts that k is equivalent to
k ± 3. Correspondingly, for the monitor surface with the height function u(s),
we obtain

bij =
1√

1 + (us1)2 + (us2)2
usisj , i, j = 1, 2.

The tensor (bij) reflects the local warping of the surface, namely its devi-
ation from the tangent plane at the point under consideration. In particular,
if (bij) ≡ 0 at all points of S2 then the surface is a plane.

3.3.4 Surface Curvatures

3.3.4.1 Principal Curvatures

Let a curve on the surface be defined by the intersection of a plane containing
the normal n with the surface. It is obvious that either n or −n is also the
curve normal vector. Taking into account (3.5), we obtain for the curvature
of this curve

k =
bijdsidsj

gxs
ij dsidsj

, i, j = 1, 2. (3.16)

Here (ds1, ds2) is the direction of the curve, i.e. dsi = c(dsi/dϕ), where
s(ϕ) is a curve parametrization. The two extreme quantities KI and KII of
the values of k are called the principal curvatures of the surface at the point
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under consideration. In order to compute the principal curvatures, we consider
the following relation for the value of the curvature:

(bij − kgxs
ij )dsidsj = 0, i, j = 1, 2, (3.17)

which follows from (3.16). In order to find the maximum and minimum values
of k, the usual method of equating to zero the derivative with respect to dsi

is applied. Thus the components of the (ds1, ds2) direction giving an extreme
value of k are subject to the restriction

(bij − kgxs
ij )dsj = 0, i, j = 1, 2,

which, in fact, is the eigenvalue problem for curvature. One finds the eigen-
values k by setting the determinant of this equation equal to zero, obtaining
thereby the secular equation for k:

det(bij − kgxs
ij ) = 0, i, j = 1, 2.

This equation, written out in full, is a quadratic equation

k2 − gij
sxbijk + [b11b22 − (b12)2]/gxs = 0,

with two roots, which are the maximum and minimum values KI and KII of
the curvature k:

KI,II =
1
2
gij

sxbij ±
√

1
4
(gij

sxbij)2 − 1
gxs

[b11b22 − (b12)2]. (3.18)

3.3.4.2 Mean Curvature

One half of the sum of the principal curvatures is referred to as the mean
surface curvature. Taking advantage of (3.18), the mean curvature, designated
by Km, is defined through the coefficients of the second fundamental form and
elements of the contravariant metric tensor by

Km =
1
2
(KI + KII) =

1
2
gij

sxbij , i, j = 1, 2. (3.19)

In the case of the monitor surface represented by the function u(s1, s2), we
obtain

Km =
us1s1 [1 + (us2)2] + us2s2 [1 + (us1)2] − 2us1us2us1s2

2[1 + (us1)2 + (us2)2]3/2
.

Now we consider the tensor

(Ki
j) = (gik

sxbkj), i, j, k = 1, 2.
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It is easy to see that (Ki
j) is a mixed tensor contravariant with respect to the

upper index and covariant with respect to the lower one. From (3.19) we find
that the mean curvature is defined as the trace of the tensor, namely,

2Km = tr(Ki
j), i, j = 1, 2. (3.20)

A surface whose mean curvature is zero, i.e. KI = −KII, possesses the fol-
lowing unique property. Namely, if a surface bounded by a specified contour
has a minimum area then its mean curvature is zero. Conversely, of all the
surfaces bounded by a curve whose length is sufficiently small, the minimum
area is possessed by the surface whose mean curvature is zero.

3.3.4.3 Gaussian Curvature

The determinant of the tensor (Ki
j) represents the Gaussian curvature of the

surface
KG = det(Ki

j) =
1

gxs
[b11b22 − (b12)2]. (3.21)

Taking into account (3.18), we readily see that the Gaussian curvature is the
product of the two principal curvatures KI and KII, i.e.

KG = KIKII.

In terms of the height function u(s) representing the monitor surface Sx2, we
have

KG =
us1s1us2s2 − (us1s2)2

[1 + (us1)2 + (us2)2]2
.

A surface point is called elliptic if KG > 0, i.e. both KI and KII are both
negative or both positive at the point of consideration. A saddle or hyperbolic
point has principal curvatures of opposite sign, and therefore has negative
Gaussian curvature. A parabolic point has one principal curvature vanishing
and, consequently, a vanishing Gaussian curvature. This classification of points
is prompted by the form of the curve which is obtained by the intersection
of the surface with a slightly offset tangent plane. For an elliptic point the
curve is an ellipse; for a saddle point it is a hyperbola. It is a pair of lines
(degenerate conic) at a parabolic point, and it vanishes at a planar point,
where both principal curvatures are zero.

It is easily shown that both the mean and the Gaussian curvatures are
invariant of surface parametrizations.

3.4 Metric-Tensor Invariants

The coordinate transformation x(ξ) : Ξn → Xn of a physical n-dimensional
domain Xn applied to generate grids can be locally interpreted as some defor-
mation of a uniform cell in the computational domain Ξn into the correspond-
ing cell in the domain Xn. The local deformation of any cell is approximated
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by a linear transformation represented by the Jacobi matrix (∂xi/∂ξj). This
deformation is not changed if any orthogonal transformation is applied to the
cell in Xn. The deformation is also preserved if the orientation of the compu-
tational domain Ξn is changed. Therefore it is logical to formulate the features
of the grid cells in terms of the invariants of the orthogonal transformations
of the covariant metric tensor (gij).

3.4.1 Algebraic Expressions for the Invariants

According to the theory of matrices a symmetric nondegenerate (n×n) matrix
(aij) has n independent invariants Ii, i = 1, . . . , n, of its orthogonal trans-
formations. The ith invariant Ii is defined by summing all of the principal
minors of order i of the matrix. Recall that the principal minors of a square
matrix are the determinants of the square submatrices of the matrix. Thus,
for example,

I1 =
n∑

i=1

aii = tr(aij),

In−1 =
n∑

i=1

cofactor aii = det(aij)
n∑

i=1

aii = det(aij) tr(aij), (3.22)

In = det(aij),

where (aij) is the inverse of (aij).
When we use for (aij) the covariant metric tensor gij , gij = xξi · xξj , of a

domain Xn, then, taking advantage of (3.22), the invariants I1 and I2 in two
dimensions are expressed as

I1 = g11 + g22,

I2 = g11 g22 − (g12)2 = g = J2,
(3.23)

where J = det(∂xi/∂ξj). The invariants of the three-dimensional metric ten-
sor (gij) are expressed as follows:

I1 = g11 + g22 + g33,

I2 = g(g11 + g22 + g33), (3.24)
I3 = det(gij) = g, i, j = 1, 2, 3,

where gij = ∇ξi ·∇ξj . Analogously, the invariants of the surface metric tensor
Gxs, represented in the coordinates s1, s2 by (3.12), are written out as

I1 = gxs
11 + gxs

22 ,

I2 = gxs.
(3.25)

The notion of an invariant can be helpful to identity conformal coordinate
transformations. For example, in two dimensions we know that a conformal
mapping x(ξ) satisfies the Cauchy–Riemann equations
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∂x1

∂ξ1
=

∂x2

∂ξ2
,

∂x1

∂ξ2
= − ∂x2

∂ξ1
.

Therefore a zero value of the quantity

Q =
(

∂x1

∂ξ1
− ∂x2

∂ξ2

)2

+
(

∂x1

∂ξ2
+

∂x2

∂ξ1

)2

is an indication of the conformality of x(ξ). We obtain

Q = g11 + g22 − 2J = I1 − 2
√

I2,

using (3.23). Thus the two-dimensional coordinate transformation x(ξ) is con-
formal if only if the invariants I1 and I2 satisfy the restriction I1/

√
I2 = 2. In

Sect. 3.7.6 it will be shown that an analogous relation is valid for an arbitrary
dimension n ≥ 2.

We also can see that the mean and Gaussian curvatures described by (3.20)
and (3.21), respectively, are defined through the invariants of the tensor (Ki

j),
namely,

Km =
1
2
I1, KG = I2.

3.4.2 Geometric Interpretation

The invariants of the covariant metric tensor (gij) can also be described in
terms of some geometric characteristics of the n-dimensional parallelepiped
(parallelogram in two dimensions) determined by the tangent vectors xξi , thus
giving a relationship between the grid cell characteristics and the invariants.
For example, we see from (3.23), (3.25) in two dimensions that the invariant
I1 equals the sum squares of the parallelogram edge lengths, while I2 is equal
to the parallelogram area squared. In three-dimensional space we find from
(3.24) that I1 equals the sum of the squares of the lengths of the base vectors
xξi , i = 1, 2, 3, which are the edges of the parallelepiped. The invariant I2 is
the sum of the squares of the areas of the faces of the parallelepiped, while
the invariant I3 is its volume squared.

These geometric interpretations can be extended to arbitrary dimensions
by the following consideration. Every principal minor of order m is the deter-
minant of an m-dimensional square matrix Am obtained from the covariant
tensor (gij) by crossing out n − m rows and columns that intersect pairwise
on the diagonal. Therefore the elements of Am are the dot products of m
particular vectors of the base tangential vectors xξi , i = 1, . . . , n. Thus, geo-
metrically, the determinant of Am equals the square of the m-dimensional
volume of the m-dimensional parallelepiped constructed by the vectors of the
basic set xξi , i = 1, . . . , n, whose dot products form the matrix Am. Therefore
Ii, i = 1, . . . , n, is geometrically the sum of the squares of the i-dimensional
volumes of the i-dimensional sides of the n-dimensional parallelepiped spanned
by the base vectors xξi , i = 1, . . . , n.
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Fig. 3.4. Quadrilaterals with the same invariants

We note that the invariants do not describe all of the geometric features of
the grid cells. In the two-dimensional case, the invariants I1 and I2 given by
(3.23) can be the same for parallelepipeds that are not similar. For example,
if we take a transformation x(ξ) whose tangential vectors xξ1 and xξ2 define
a rectangle with sides of different lengths a and b, then we obtain

I1 = a2 + b2, I2 = (ab)2.

However, as demonstrated in Fig. 3.4, the same invariants are produced by
a transformation x(ξ), whose tangent vectors yield a rhombus with a side
length l equal to

√
(a2 + b2)/2 and an angle θ defined by

θ = arcsin
2ab

a2 + b2
,

since

I1 = 2l2 = a2 + b2,

I2 = l2 sin2 θ = (ab)2.

Thus, a knowledge of only the values of the invariants I1 and I2 is not suf-
ficient to distinguish the rectangle from the rhombus. However, the value of
the quantity I1/

√
I2 imposes restriction on the maximal angle between the

parallelogram edges and on the maximum cell aspect ratio. These bounds will
be evaluated in Sect. 3.7.6. In particular, if I1 = 2

√
I2, then we can definitely

state that the parallelogram is a square.

3.5 Characteristics of Grid Lines

This section describes some characteristics of curvilinear coordinate lines in
domains specified by the parametrization x(ξ) : Ξn → Xn. These charac-
teristics can be used for the evaluation of the grid properties and for the
formulation of grid generation techniques through the calculus of variations.
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All considerations in this section are concerned with a selected coordinate
line ξi for a specified i, and therefore summation is not carried out over the
repeated index i here.

3.5.1 Sum of Squares of Cell Edge Lengths

The length li of any cell edge along the coordinate curve ξi is expressed
through the element gii of the covariant metric tensor (gij):

li ≈ √
giih.

The sum of the squares of the cell edge lengths equals Qlh
2, where

Ql =
n∑

j=1

gjj = tr(gij). (3.26)

The quantity Ql is one of the important characteristics of the grid cell. This
characteristic is the first invariant I1 of the tensor matrix (gij).

3.5.2 Eccentricity

The ratio between two adjacent grid steps along any coordinate curve ξi is a
quantity which characterizes the change of the length of the cell edge in the ξi

direction. This quantity is designated as εi, and at the point ξ it is expressed
as follows:

εi ≈
|xξi(ξ + hei)|

|xξi(ξ)| .

We also find that

εi ≈
√

gii(ξ + hei) −
√

gii(ξ)√
gii(ξ)

+ 1 ≈ h
1

√
gii

∂

∂ξi

√
gii + 1,

for a fixed i, since |xξi | =
√

gii. The quantity

Qi
ε =

(
1

√
gii

∂

∂ξi

√
gii

)2

=
(

∂

∂ξi
ln

√
gii

)2

(3.27)

obtain from the expression for εi is a measure of the relative eccentricity. When
Qε = 0 then the length of the cell edge does not change in the ξi direction.
With the Christoffel symbol notation (2.39), we also obtain

Qi
ε =

(
1
gii

∂x

∂ξi
· ∂2x

∂ξi∂ξi

)2

=
(

1
gii

[ii, i]
)2

. (3.28)
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3.5.3 Curvature

The relative eccentricity Qi
ε describes the change of the length of the cell

edge along the coordinate curve ξi, however, it fails to describe the change
of its direction. The quantity which characterizes this grid quality is derived
through a curvature vector.

In accordance with (3.2), the curvature vector ki of the coordinate line
ξi for a fixed i is defined by the relation ki = xss, where s is the arc length
parametrization of the coordinate line ξi, i.e. the variable s is defined by the
transformation s(ξi) satisfying the equation

ds

dξi
=

√
gii.

Therefore
∂

∂s
=

1
√

gii

∂

∂ξi

and consequently

ki =
1
gii

xξiξi −
xξi

(gii)2
xξi · xξiξi . (3.29)

3.5.3.1 Local Straightness of the Coordinate Line

Equation (3.29) shows that if the curvature vector ki equals zero (ki = 0) then
the vector xξiξi is parallel to the vector xξi , i.e. the tangential vector does
not change its direction. Therefore the coordinate line ξi is locally straight at
a point of zero curvature. From (3.29), we obtain in this case

xξiξi =
(xξiξi · xξi)

gii
xξi .

Using the Gauss relations (2.35), we also obtain

xξiξi = Γ l
iixξl , l = 1, . . . , n.

Comparing these two expansions of xξiξi we see that the vector xξiξi is parallel
to xξi if

Γ l
ii = 0 for all l �= i. (3.30)

The relation (3.30) is a criterion of local straightness of the coordinate curve ξi.
A measure of the deviation of the curve ξi from a straight line may, therefore,
be determined as

Qi
st = dlmΓ l

iiΓ
m
ii , l, m �= i, (3.31)

where dlm is a positive (n − 1) × (n − 1) tensor.



3.5 Characteristics of Grid Lines 83

3.5.3.2 Expansion of the Curvature Vector in the Normal Vectors

We know that the curvature vector ki is orthogonal to the unit tangential
vector xs. On the other hand, the normal base vectors ∇ξj , j �= i, are also
orthogonal to the tangent vector xξi and therefore to xs. Thus the curvature
vector ki of the coordinate curve ξi can be expanded in the n − 1 normal
vectors ∇ξj , j �= i. In order to find such an expansion we first recall that in
accordance with (2.40),

xξiξi = [ii, m]∇ξm, m = 1, . . . , n,

with summation over m, where

[ii, m] = xξiξi · xξm =
∂gim

∂ξi
− 1

2
∂gii

∂ξm
,

from (2.44). Further, from (2.22),

xξi = gim∇ξm, m = 1, . . . , n.

Therefore the relation (3.29) is equivalent to

ki =
1
gii

(
[ii, m]∇ξm − 1

gii
[ii, i]

)
gim∇ξm

=
1

(gii)2
(gii[ii, l] − gil[ii, i])∇ξl,

m = 1, . . . , n, l = 1, . . . , n, l �= i, i fixed. (3.32)

This equation represents the curvature vector ki through the n − 1 normal
base vectors ∇ξl, l �= i.

In particular, in two dimensions the relation (3.32) for i = 1 becomes

k1 =
1

(g11)2
(g11[11, 2] − g12[11, 1])∇ξ2. (3.33)

And, from, (2.20)

k1 =
g

(g11)2
(g22[11, 2] + g21[11, 1])∇ξ2.

Therefore, using (2.42), we obtain

k1 =
g

(g11)2
Γ 2

11∇ξ2. (3.34)

Analogously, the curvature vector k2 along the coordinate ξ2 is expressed as
follows:

k2 =
g

(g22)2
Γ 1

22∇ξ1. (3.35)
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In the same way the curvature vector of the coordinate curves in the case
of three-dimensional space R3 is computed. For example, in accordance with
(3.32), the vector k1 can be expanded in the normal vectors ∇ξ2 and ∇ξ3 as

k1 =
1

(g11)2
{(g11[11, 2] − g12[11, 1])∇ξ2

+ (g11[11, 3] − g13[11, 1])∇ξ3}. (3.36)

3.5.3.3 Measure of Coordinate Line Curvature

The length of the vector ki is the modulus of the curvature and denoted by
|ki|. Thus, for the curvature k1 of the coordinate line ξ1 in the two-dimensional
domain X2, we obtain from (3.34)

|k1| =
g
√

g22

(g11)2
|Γ 2

11| =
g
√

g22

(g11)2

∣∣∣∣
∂2x1

∂ξ1∂ξ1

∂ξ2

∂x1
+

∂2x2

∂ξ1∂ξ1

∂ξ2

∂x2

∣∣∣∣. (3.37)

Taking into account the two-dimensional relation (2.3)

∂ξi

∂xj
= (−1)i+j 1

J

∂x3−j

∂ξ3−i
, i, j = 1, 2, J =

√
g,

with i, j fixed, we find that

Γ 2
11 =

1
J

(
∂x1

∂ξ1

∂2x2

∂ξ1∂ξ1
− ∂x2

∂ξ1

∂2x1

∂ξ1∂ξ1

)
.

Therefore, for the curvature of the coordinate ξ1, we also obtain from (2.20)
and (3.37)

|k1| =
1

(g11)3/2

∣∣∣∣
∂x1

∂ξ1

∂2x2

∂ξ1∂ξ1
− ∂x2

∂ξ1

∂2x1

∂ξ1∂ξ1

∣∣∣∣. (3.38)

Analogously, using the relation (3.35) we get for the curvature of the coordi-
nate curve ξ2

|k2| =
1

(g22)3/2

∣∣∣∣
∂x2

∂ξ2

∂2x1

∂ξ2∂ξ2
− ∂x1

∂ξ2

∂2x2

∂ξ2∂ξ2

∣∣∣∣. (3.39)

In the case of three-dimensional space, the curvature measure of the coor-
dinate line ξi is computed from the relation (3.7):

|ki| =
1√

(gii)3
|xξi × xξiξi |, i = 1, 2, 3. (3.40)

The curvature representation can provide various measures of the curva-
ture of the coordinate line ξi. The simplest measure may be described in the
common manner as the square of the curvature

Qi
k = (ki)2. (3.41)

In analogy with (3.31), the quantity Qi
k is also a measure of the departure of

the coordinate line ξi from a straight line.
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3.5.4 Measure of Coordinate Line Torsion

The square of the torsion is another measure of a coordinate line ξi lying in
three-dimensional space. This measure is computed in accordance with (3.10)
from the relation

Qi
τ =

1
(ki)4(gii)6

[(xξi × xξiξi) · xξiξiξi ]2

=
1

(ki)4(gii)6
det2

⎛

⎝
xξi

xξiξi

xξiξiξi

⎞

⎠ . (3.42)

The condition Qi
τ ≡ 0 means that the coordinate line ξi lies in a plane. Thus

the quantity Qi
τ is a measure of the departure of the coordinate line ξi from

a plane line.

3.6 Characteristics of Faces of Three-Dimensional Grids

A structured coordinate grid in a three-dimensional domain X3 is composed of
three-dimensional curvilinear hexahedral cells which are images of elementary
cubes obtained through a coordinate transformation

x(ξ) : Ξ3 → X3.

The boundary of each cell is segmented into six curvilinear quadrilaterals,
through which some characteristics of the cell can be defined. This section
describes some important quality measures of the faces of three-dimensional
coordinate cells.

3.6.1 Cell Face Skewness

The skewness of a cell face is described through the angle between the two
tangent vectors defining the cell face. Let the cell face lie in the surface ξl =
const; the tangent vectors of the surface are then the vectors xξi and xξj , i =
l + 1, j = l + 2, with the identification convention for the index m that m
is equivalent to m ± 3. One of the cell face skewness characteristics can be
determined as the square of the cosine of the angle between the vectors. Thus,
for a fixed l,

Ql
sk,1 = cos2 θ =

(gij)2

giigjj
, i = l + 1, j = l + 2. (3.43)

Another expression for the cell face skewness is specified by the cotangent
squared of the angle θ:
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Ql
sk,2 = cot2 θ =

(gij)2

giigjj − (gij)2
, i = l + 1, j = l + 2. (3.44)

Taking into account the relations (2.28) and (2.32), this can also be written
in the form

Ql
sk,2 =

(gij)2

(xξi × xξj )2
=

(gij)2

ggll
, i = l + 1, j = l + 2.

Since (gij)2 = giigjj(1 − sin2 θ), we also obtain

Ql
sk,2 =

giigjj

(xξi × xξj )2
− 1 =

giigjj

ggll
, i = l + 1, j = l + 2.

The quantities for the grid face skewness introduced above equal zero when
the edges of the cell face are orthogonal. Therefore these quantities character-
ize the departure of the cell face from a rectangle. One more characteristic of
the cell face nonorthogonality is defined as square of the dot product of the
vectors xξi and xξj :

Ql
o,1 = (gij)2, i = l + 1, j = l + 2. (3.45)

3.6.2 Face Aspect-Ratio

A measure of the aspect-ratio of the cell face formed by the tangent vectors xξi

and xξj is defined through the diagonal elements gii and gjj of the covariant
metric tensor (gkm), k, m = 1, 2, 3. One form of this measure is given by the
expression

Ql
as =

gii

gjj
+

gjj

gii
=

(gii + gjj)2

giigjj
− 2, (3.46)

where i = l + 1, j = l + 2, and m + 3 is equivalent to ±m. We have the
inequality Ql

as ≥ 2, which is an equality if and only if gii = gjj , i.e. the
parallelogram formed by the vectors xξi and xξj is a rhombus. Thus (3.46) is
a measure of the departure of the cell from a rhombus.

3.6.3 Cell Face Area Squared

The square of the area of the face of the basic parallelepiped formed by the
two tangential vectors xξi and xξj is expressed as follows:

Ql
ar = |xξi |2|xξj |2 sin2 θ = giigjj − (gij)2, i = l + 1, j = l + 2, (3.47)

where θ is the angle of intersection of the vectors and i and j are chosen to
satisfy the condition l �= i and l �= j. Taking advantage of (2.28) and (2.32),
we see that

Ql
ar = |xξi × xξj |2 = g|∇ξl|2 = ggll, l fixed. (3.48)

As the square of the area of the coordinate cell face which corresponds to the
parallelogram defined by the vectors xξi and xξj equals h2Qar + O(h3), the
quantity Ql

ar can be applied to characterize the area of the cell face.
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3.6.4 Cell Face Warping

Measures of the cell face warping are obtained through the curvatures of the
coordinate surface on which the face lies. Let this be the coordinate surface
ξ3 = ξ3

0 . Then a natural parametrization x(ξ) : Ξ2 → R3, ξ = (ξ1, ξ2) of the
surface is represented by x(ξ1, ξ2, ξ3

0).

3.6.4.1 Mean Curvature of the Coordinate Surface

Twice the mean curvature of the coordinate surface is defined through the
formula (3.19) or (3.20) as

2K3,m = gij
ξxbij , i, j = 1, 2, (3.49)

where bij = xξiξj ·n. It is obvious that the contravariant metric tensor (gij
ξx) of

the surface ξ3 = ξ3
0 in the coordinates ξ1, ξ2 is the inverse of the 2 × 2 matrix

(gxξ
ij ) whose elements are the elements of the volume metric tensor (gij) with

the indices i, j = 1, 2, i.e.

gxξ
ij = gij = xξi · xξj , i, j = 1, 2.

Therefore, using (3.13) and (2.32), we have

gij
ξx = (−1)i+jg3−i 3−j/(xξ1 × xξ2)2 =

(−1)i+jg33

g
g3−i 3−j , i, j = 1, 2,

without summation over i or j. Also, it is clear that

n =
1√
g33

∇ξ3,

and consequently the coefficients of the second fundamental form of the coor-
dinate surface ξ3 = ξ3

0 are expressed as follows:

bij =
1√
g33

xξiξj · ∇ξ3 =
1√
g33

Γ 3
ij .

Thus, (3.49) results in

2K3,m =
(−1)i+j

√
g33

g
g3−i 3−jΓ

3
ij , i, j = 1, 2.

Analogously, we obtain a general formula for the coefficients of the second
fundamental form of the coordinate surface ξl = ξl

0, l = 1, 2, 3:

bij =
1√
gll

Γ l
l+i l+j , i, j = 1, 2, (3.50)
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with l fixed and where m is equivalent to m±3. Thus twice the mean curvature
of the coordinate surface ξl = ξl

0, l = 1, 2, is expressed by

2Kl,m =
(−1)i+j

√
gll

g
gl−i l−jΓ

l
l+i l+j , i, j = 1, 2, (3.51)

with l fixed.

3.6.4.2 Gaussian Curvature of the Coordinate Surface

Taking advantage of (3.21) and (3.50), the Gaussian curvature of the coordi-
nate surface ξl = ξl

0 can be expressed as follows:

Kl,G =

√
gll

g
[Γ l

l+1 l+1Γ
l
l+2 l+2 − (Γ l

l+1 l+2)
2], (3.52)

with the index l fixed.

3.6.4.3 Measures of Face Warping

The quantities which measure the warping of the face of a three-dimensional
cell are obtained through the coefficients of the second fundamental form or
through the mean and Gaussian curvatures of a coordinate surface containing
the face. Let this be the surface ξl = ξl

0. Then, taking advantage of (3.51) and
(3.52), the measures may be expressed as follows:

Ql
w,1 = (Kl,m)2 =

gll

g2
[(−1)i+jgl−i l−jΓ

l
l+i l+j ]

2,

Ql
w,2 = (Kl,g)2 =

gll

g2
[Γ l

l+1 l+1Γ
l
l+2 l+2 − (Γ l

l+1 l+2)
2],

(3.53)

with l fixed.
Equation (3.50) for the second fundamental form of the surface ξl = ξl

0

also gives an expression for the third measure of the cell face warpness:

Ql
w,3 =

2∑

i,j=1

(bij)2 =
1
gll

2∑

i,j=1

(Γ l
l+i l+j)

2, l fixed. (3.54)

3.7 Characteristics of Grid Cells

Cell features are described by the cell volume (area in two dimensions) and
by the characteristics of the cell edges and faces.
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3.7.1 Cell Aspect-Ratio

A measure of the aspect-ratio of a three-dimensional cell is formulated through
the measures of the aspect-ratio of its faces described by (3.46). The simplest
formulation is provided by summing these measures, which results in

Qsk =
3∑

l=1

Ql
sk. (3.55)

3.7.2 Square of Cell Volume

The characteristic related to the square of the cell volume is

QV = g = det(gij) = In. (3.56)

In three dimensions, we also obtain from (2.31)

QV = [xξ1 · (xξ2 × xξ3)]2.

3.7.3 Cell Area Squared

We denote by Qar the sum of the quantities Qij
ar, i �= j, from (3.48). These

quantities are the area characteristics of the faces of a three-dimensional cell;
thus, in accordance with (3.24), the magnitude Qar coincides with the invari-
ant I2:

Qar =
3∑

i=1

ggii = I2. (3.57)

3.7.4 Cell Skewness

One way to describe the cell skewness characteristics of three-dimensional
grids utilizes the angles between the tangential vectors in the forms of the
corresponding expressions (3.43) and (3.44) introduced for the formulation
of the face skewness. For example, summation of these quantities gives the
following expressions for the cell skewness measures:

Qsk,1 =
(g12)2

g11g22
+

(g23)2

g22g33
+

(g13)2

g11g33
,

Qsk,2 =
(g12)2

g11g22 − (g12)2
+

(g13)2

g11g33 − (g13)2
+

(g23)2

g22g33 − (g23)2
(3.58)

=
1
g

(
(g12)2

g33
+

(g13)2

g22
+

(g23)2

g11

)
.

Here Qsk,1 is the sum of the squares of the cosines of the angles between the
edges of the cell, while Qsk,2 is the sum of the squares of the cotangents of
the angles.



90 3 Grid Quality Measures

Other quantities to express the three-dimensional cell skewness can be
defined through the angles between the normals to the coordinate surfaces.
Any normal to the coordinate surface ξi = ξi

0 is parallel to the normal vector
∇ξi. Therefore the cell skewness can be derived through the angles between
the base normal vectors ∇ξi. The quantity

(∇ξi · ∇ξj)2

giigjj
=

(gij)2

giigjj
, i, j fixed

is the cosine squared of the angle between the respective faces of the coordi-
nate cell. This characteristic is a dimensionless magnitude. The sum of such
quantities is the third characteristic of the three-dimensional cell skewness:

Qsk,3 =
(g12)2

g11g22
+

(g13)2

g11g33
+

(g23)2

g22g33
. (3.59)

Another dimensionless quantity which characterizes the mutual skewness
of two faces of the cell is the cotangent squared of the angle between the
normal vectors ∇ξi and ∇ξj :

(∇ξi · ∇ξj)2

|∇ξi × ∇ξj |2 =
g(gij)2

gkk
=

(gij)2

giigjj − (gij)2
,

where (i, j, k) are cyclic and fixed. The summation of this over k defines the
fourth grid skewness characteristic

Qsk,4 =
(g12)2

g11g22 − (g12)2
+

(g13)2

g11g33 − (g13)2
+

(g23)2

g22g33 − (g23)2

= g

(
(g12)2

g33
+

(g13)2

g22
+

(g23)2

g11

)
. (3.60)

Note that the three-dimensional cell skewness quantities Qsk,1 and Qsk,3 can
be readily extended to arbitrary dimensions n ≥ 2.

3.7.5 Characteristics of Nonorthogonality

The quantities Qsk,i, i = 1, 2, 3, 4, from (3.58)–(3.60) reach their minimum
values equal to zero, only when the three-dimensional transformation x(ξ) is
orthogonal at the respective point, and vice-versa. Therefore these quantities,
which provide the possibility to detect orthogonal grids, may be considered
as some measures of grid nonorthogonality.

Other quantities characterizing the departure of a three-dimensional grid
from an orthogonal one are as follows:

Qo,1 =
g11g22g33

g
,

Qo,2 = g (g11g22g33).
(3.61)
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Obviously, these quantities Qo,1 and Qo,2 are dimensionless and reach their
minimum equal to 1, if and only if the coordinate transformation x(ξ) is
orthogonal.

The sum of the squares of the nondiagonal elements of the covariant metric
tensor (gij) yields another characteristic of cell nonorthogonality,

Qo,3 = (g12)2 + (g13)2 + (g23)2. (3.62)

An analogous formulation is given through the elements of the contravariant
metric tensor,

Qo,4 = (g12)2 + (g13)2 + (g23)2. (3.63)

Note that, in contrast to Qo,1 and Qo,2, the quantities Qo,3 and Qo,4 are
dimensionally heterogeneous.

3.7.6 Grid Density

The invariants of the tensor (gij) can be useful for specifying some character-
istics of grid quality. For example, one important characteristic describing the
concentration of grid nodes can be derived from the ratio In−1/In.

In order to show this we first note that in accordance with the geometrical
interpretation of the invariants given in Sect. 3.4.2 we can write

In−1

In
=

n∑

m=1

(
V n−1

m

)2 / (
V n

)2
, (3.64)

where V n−1
m is the space of the boundary segment ξm = const of the basic

parallelepiped defined by the tangential vectors xξi , i = 1, . . . , n.
It is evident that

V n = dmV n−1
m , m = 1, . . . , n,

where dm is the distance between the vertex of the tangential vector xξm and
the (n−1)-dimensional plane Pn−1 spanned by the vectors xξi , i �= m. Hence,
from (3.64),

In−1

In
=

n∑

m=1

(1/dm)2. (3.65)

Now let us consider two grid surfaces ξm = c and ξm = c + h obtained by
mapping a uniform rectangular grid with a step size h in the computational
domain Ξn onto Xn. Let us denote by lm the distance between a node on the
coordinate surface ξm = c and the nearest node on the surface ξm = c + h
(Fig. 3.5). We have

lm = dmh + O(h)2

and, therefore, from (3.65),
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Fig. 3.5. Illustration of invariants

In−1

In
=

n∑

m=1

(h/lm)2 + O(h).

The quantity (h/lm)2 increases if the grid nodes cluster in the direction nor-
mal to the surface ξm = c. Therefore this quantity can be considered as some
measure of the grid concentration in the normal direction and, consequently,
the magnitude 1/dm means the density of the grid concentration in the ∇ξm

direction. In particular, we readily see that 1/dm =
√

gmm, with m fixed.
Thus the expression (3.65) defines a measure of the grid density in all direc-
tions. We denote this quantity by Qcn, where the subscript “cn” represents
“concentration”. Note that, in accordance with (3.22), this measure can be
expressed as follows:

Qcn =
In−1

In
= g11 + · · · + gnn. (3.66)

3.7.7 Characteristics of Deviation from Conformality

Conformal coordinate transformations are distinguished by the fact that the
Jacobi matrix j is orthonormal and consequently the metric tensor (gij) is a
multiple of the unit matrix:

(gij) = g(ξ)I = g(ξ)(δi
j), i, j = 1, . . . , n.

The cells of the coordinate grid derived from the conformal mapping x(ξ) are
close to n-dimensional cubes (squares in two dimensions). Grids with such cells
are attractive from the computational point of view. Therefore it is desirable
to define simple grid quantities which can allow one to detect grids whose cells
are close to n-dimensional cubes. It is clear that the condition of conformality
can be described by the system

gij = 0, i �= j,

g11 = g22 = · · · = gnn.

These relations give a rise to a natural quantity
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Q =
∑

i �=j

(gij)2 +
n∑

i=2

(gii − g11)2,

which is zero if and only if the coordinate transformation x(ξ) is conformal. So
this quantity can help one to detect when the grid is conformal. However, the
above formula is too cumbersome and it is dimensionally heterogeneous. More
compact expressions for the analysis of the conformality or nonconformality of
grid cells and for the formulation of algorithms to construct nearly conformal
grids are obtained by the use of the metric-tensor invariants.

3.7.7.1 Two-Dimensional Space

The departure from conformality of the two-dimensional transformation x(ξ) :
Ξ2 → X2 is expressed by the quantity

Qcf,1 =
I1√
I2

=
|xξ1 |2 + |xξ2 |2

|xξ1 | |rξ2 | | sin θ| =
g11 + g22√

g11
√

g22| sin θ| , (3.67)

where θ is the angle between the tangent vectors xξ1 and xξ2 . Since

Qcf,1 ≥ g11 + g22√
g11g22

,

it is clear that the value of I1/
√

I2 exceeds 2. The minimum value 2 is achieved
only if g11 = g22 and θ = π/2, i.e. when the parallelogram with sides defined
by the vectors xξ1 and xξ2 is a square. Thus the characteristic Qcf,1 allows one
to state with certainty when the coordinate transformation x(ξ) is conformal
at a point ξ, namely when Qcf,1(ξ) = 2. Therefore in the two-dimensional
case the quantity

Qcf,1 − 2 = I1/
√

I2 − 2

reflects some measure of the deviation of the cell from a square. We see that
the quantity Qcf,1 given by (3.67) is dimensionally homogeneous.

Through the quantity Qcf,1 we can also estimate the bounds of the aspect
ratio of the two-dimensional cell and the angle between the edges of this cell.

Evaluation of the Cell Angles

First, we obtain an estimate of the angle between the cell edges. From (3.67)
we have

sin2 θ =
(F 2 + 1)2

F 2
/Q2

cf,1, (3.68)

where F 2 = g11/g22. As (F 2 + 1)2/F 2 ≥ 4, we have from (3.68) that

sin2 θ ≥ 4/Q2
cf,1 (3.69)

and, accordingly, we obtain the following estimate for the angle θ:
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π − arcsin(2/Qcf,1) ≥ θ ≥ arcsin(2/Qcf,1). (3.70)

From (3.68), we find that the minimum value 4/Q2
cf,1 of sin2 θ for a fixed value

of Qcf,1 is achieved when F = 1, i.e. when the parallelogram is the rhombus.
Although it is desirable to generate orthogonal grids, a departure from or-

thogonality is practically inevitable when grid adaptation is performed. Com-
monly, this departure is required to be restricted to 45◦. Beyound this range
the contribution of the grid skewness to the truncation error may become un-
acceptable. The inequality (3.70) shows that this barrier of 45◦ is not broken
if Qcf,1 ≤ 2

√
2.

Evaluation of the Cell Aspect Ratio

Now we estimate the quantity F =
√

g11/g22. The quantity F, called the cell
aspect ratio, is the ratio of the lengths of the edges of the cell. By computing
F from (3.68) we obtain

F =
α

2
− 1 ±

√
α2

4
− α, α = Q2

cf,1 sin2 θ. (3.71)

Equation (3.71) gives two values of the cell aspect ratio,

F1 =
α

2
− 1 +

√
α2

4
− α and F2 =

α

2
− 1 −

√
α2

4
− α,

satisfying the relation F1F2 = 1. We find that

F1 = max(
√

g11/g22,
√

g22/g11)

and
F2 = min(

√
g11/g22,

√
g22/g11).

Thus

α

2
− 1 −

√
α2

4
− α ≤ Fi ≤ α

2
− 1 +

√
α2

4
− α, i = 1, 2, (3.72)

and consequently

2 ≤ Fi + 1/Fi ≤ α − 2, i = 1, 2. (3.73)

As Q2
cf,1 ≥ α ≥ 4, from (3.69), we also obtain from (3.72) and (3.73) the

following upper and lower estimates of the aspect ratios Fi, i = 1, 2, which
depend only on the quantity Qcf,1:

Q2
cf,1

2
− 1 − Qcf,1

√
Q2

cf,1

4
− 1 ≤ Fi ≤

Q2
cf,1

2
− 1 + Qcf,1

√
Q2

cf,1

4
− 1, (3.74)

and
2 ≤ Fi + 1/Fi ≤ Q2

cf,1 − 2, i = 1, 2. (3.75)

The maximum value of Fi for a given value of Qcf,1 is realized when sin2 θ = 1,
i.e. the parallelogram is a rectangle.
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3.7.7.2 Three-Dimensional Space

In three-dimensional space the deviation from conformality can be described
by the dimensionless magnitude

Qcf,1 = (g)1/3(g11 + g22 + g33), (3.76)

which, in accordance with (3.24), is expressed by means of the invariants I2

and I3 as follows:
Qcf,1 = I2/(I3)2/3. (3.77)

The value of (3.77) reaches its minimum only if

g11 = g22 = g33 and g−1 = g11g22g33, (3.78)

i.e. when the parallelogram defined by the basic normal vectors ∇ξi is a cube.
To prove this fact we note that

1
g

≤ g11g22g33.

Therefore, from (3.76),

Qcf,1 ≥ g11 + g22 + g33

3
√

g11g22g33

and, taking into account the general inequality for arbitrary positive numbers
a1, . . . , an

1
n

n∑

i=1

ai ≥ n

√√√√
n∏

i=1

ai,

we find that Qcf,1 ≥ 3. Obviously, Qcf,1 = 3 when the relations (3.78) are
satisfied. From (2.34),

1
g

= |∇ξ1 · ∇ξ2 × ∇ξ3|2

and therefore (3.78) is satisfied only when the normal vectors ∇ξi, i = 1, 2, 3,
are orthogonal to each other and have the same length. But then this is valid
for the base tangential vectors xξi , i = 1, 2, 3, as well. Thus (3.78) is satisfied
only when the transformation x(ξ) is conformal.

In the same manner as in the two-dimensional case, one can derive bounds
on the angles of the parallelepiped and on the ratio of the lengths of its edges
that depend on the quantity Qcf,1.
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3.7.7.3 Generalization to Arbitrary Dimensions

Analogously, in the n-dimensional case a local measure of the deviation of
the transformation x(ξ) from a conformal one is expressed by the quantity
Qcf,1 − n, where

Qcf,1 = In−1/(In)1−1/n = g1/n(g11 + · · · + gnn). (3.79)

The quantity Qcf,1 equals n if and only if the mapping x(ξ) is conformal.
Another local characteristic of the deviation from conformality is described

by the quantity Qcf,2 − n, where

Qcf,2 = I1/(In)1/n. (3.80)

As for Qcf,1, we can show that Qcf,2 ≥ n and that Qcf,2 = n if the trans-
formation x(ξ) is conformal at the point under consideration. Note also that
Qcf,1 = Qcf,2 in two dimensions.

3.7.8 Grid Eccentricity

One grid eccentricity characteristic is defined by summing the squares of the
coordinate-line eccentricities (3.27). Thus the quantity

Qε,1 =
n∑

i=1

(
∂

∂ξi
ln

√
gii

)2

(3.81)

is a measure of the change of the lengths of all of the grid cell edges.
A similar characteristic of eccentricity can be formulated through the terms

gii, namely

Qε,2 =
n∑

i=1

(
∂

∂xi
ln

√
gii

)2

. (3.82)

3.7.9 Measures of Grid Warping and Grid Torsion

In the same way as for grid eccentricity, we may formulate measures of grid
warping by summing the surface-coordinate characteristics (3.53) and (3.54).
As a result we obtain

Qw,1 =
1
g2

3∑

l=1

gll
(
(−1)i+jgl−i l−jΓ

l
l+i l+j

)2
,

Qw,2 =
1
g2

3∑

l=1

gll
[
Γ l

l+1 l+1Γ
l
l+2 l+2 −

(
Γ l

l+1 l+1

)2]
, (3.83)

Qw,3 =
3∑

l=1

2∑

i,j=1

1
gll

(
Γ l

l+i l+j

)2
.
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Fig. 3.6. Examples of poorly shaped triangles (a, b) and tetrahedrons (c, d, e)

The measure of grid torsion is formulated by summing the torsion measures
(3.42) of the coordinate lines ξi, i = 1, 2, 3:

Qτ =
3∑

i=1

Qi
τ . (3.84)

3.7.10 Quality Measures of Simplexes

The quantities which are applied to measure the quality of triangles and tetra-
hedrons are the following:

(1) the maximum edge length H,
(2) the minimum edge length h,
(3) the circum-radius R,
(4) the inradius r.

There are four deformation measures that allow one to characterize the quality
of triangular and tetrahedral cells:

Qd,1 =
H

r
, Qd,2 =

R

H
, Qd,3 =

H

h
, Qd,4 =

R

r
.

The uniformity condition for a cell is satisfied when Qd,1 = O(1) or Qd,4 =
O(1).

Examples of poorly shaped cells are shown in Fig. 3.6. Cases (a) and (c)
correspond to needle-shaped cells. Figure 3.6(d) shows a wedge-shaped cell,
while Figs. 3.6(b), (e) show sliver-shaped cells.

The cell is excessively deformed if Qd,1 	 1. In this case the cell has
either a very acute or a very obtuse angle. The former case corresponds to
Qd,2 = O(1), Qd,3 	 1 (Figs. 3.6(a), (c), (d)), while the latter corresponds
to Qd,4 	 1, Qd,3 = O(1) (Figs. 3.6(b), (e)). The condition Qd,2 = O(1)
precludes obtuse angles.
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3.8 Comments

Various aspects of mesh quality were surveyed by Knupp (2001, 2007). The
introduction of metric-tensor invariants to describe some of the qualitative
properties of grids was originally proposed by Jacquotte (1987). The grid
measures in terms of the invariants and their relations described in this chapter
were obtained by the author.

Prokopov (1989) introduced the dimensionless characteristics of two-di-
mensional cells.

Triangular elements were extensively analyzed by Field (2000).
Some questions concerned with the assessment of the contribution of the

grid quality properties to the accuracy of solutions obtained using the grid
were discussed by Kerlic and Klopfer (1982), Mastin (1982), Lee and Tsuei
(1992), and Huang and Prosperetti (1994).

Discrete length, area, and orthogonality grid measures using averages and
deviations were formulated by Steinberg and Roache (1992).

Babuŝka and Aziz (1976) have shown that the minimum-angle condition
in a planar triangulation is too restrictive and can be replaced by a condition
that limits the maximum allowable angle. Also the influence of grid quality
measures on solution accuracy was discussed by Knupp (2007) and Shewchuck
(2002).

Measures to quantify the shape of triangles and tetrahedrons were intro-
duced by Field (1986), Baker (1989), Cougny, Shephard, and Georges (1990),
and Dannelongue and Tanguy (1991).

A brief overview of tetrahedron quality measures with a comparison of
the fidelity of these measures to a set of distortion sensitivity tests, as well
as a comparison of the computational expense of such measures was given by
Parthasarathy, Graichen, and Hathaway (1993).

An overview of several element quality metrics was given by Field (2000).
Chen, Tristano, and Kwok (2003) extended the angle-based quality metric
originally defined by Lee and Lo (1994) for use in the optimization of meshes
consisting of triangles and quadrilaterals.

A special tetrahedron shape measure was given by Liu and Joe (1994a). It
is based on eigenvalues of the metric tensor for the transformation between a
tetrahedron and a regular reference tetrahedron. The geometric explanation
of this measure is that it characterizes the shape of the inscribed ellipsoid.
Another shape regularity quality of a triangle was given Bank and Xu (1996)
and Bank and Smith (1997). They showed that the quality has circular level
sets, when considered a function of the location of one vertex of triangle with
the other two vertices fixed. Three tetrahedron measures—the minimum solid
angle, the radius ratio, and the mean ratio and their relations were discussed
by Liu and Joe (1994b).

An algorithm for construction of solution-adapted triangular meshes within
an optimization framework was considered by Buscaglia and Dari (1997).
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Here, the optimized quality measure is a product of “shape” quality and a
function of mesh size.

A local cell quality measure as a function of Jacobian matrix and combined
element-shape and size-control metrics for different cell types was analyzed by
Garanzha (2000) and Branets and Carey (2005).

Dompierre et al. (2005) analyzed and generalized several simplex shape
measures documented in the literature and used them for mesh adaptation
and mesh optimization. Conclusions were drawn on the choice of simplex
shape measures to control mesh optimization.



4

Stretching Method

4.1 Introduction

The stretching approach for generating structured grids is applied widely in
the numerical solution of partial differential equations. Its major advantage
is the rapidity of grid generation and direct control of grid spacing, while
the main disadvantage is the necessity to explicitly select the zones where
the stretching is needed. Of central importance in the method are interme-
diate transformations constructed on the basis of some standard stretching
functions which provide the required spacing between the coordinate lines in
selected zones. This chapter is concerned with the specification of the stretch-
ing mappings and of the intermediate transformations for the generation of
grids with node clustering in the areas of solution singularities.

For this purpose some basic univariate, nonuniform coordinate transfor-
mations are described. These transformations can smooth the singularities
arising in boundary value problems whose solutions undergo large variations
in narrow zones. The grids generated through the use of such functions, each
of which transforms an individual coordinate, appear to be well adapted to
the expected physical features.

The basic functions incorporated into the method allow the grid to adjust
automatically to solution singularities arising from the physical parameters,
e.g. viscosity, high Reynolds number, or shell thickness, while a practical prob-
lem is solved. Such automation is one of the requirements imposed on com-
prehensive grid codes. The grids obtained by such methods enable users to
obtain numerical solutions of singularly perturbed equations which converge
uniformly to the exact solution with respect to the parameter. They also pro-
vide uniform interpolation of the numerical solution over the entire region,
including boundary and interior layers.

A stretching method utilizing the standard stretching functions supplies
one with a very simple means to cluster the nodes of the computational grid
within the regions of steep gradients without an increase in the total num-
ber of grid nodes. This grid concentration improves the spatial resolution in

V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-90-481-2912-6 4, c© Springer Science+Business Media B.V. 2010
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the regions of large variation, thus enhancing the accuracy of the algorithms
applied to the numerical solution of partial differential equations.

The stretching mappings can also be used successively to derive the blend-
ing functions in algebraic methods of transfinite interpolation. The algebraic
techniques are usually contained in large, multipurpose grid generation codes
in combination with more sophisticated elliptic and parabolic methods, where
their major task is to provide an initial grid which serves to start the iterative
process of the grid generators. The blending functions implemented through
the stretching mappings ease the process of the generation of the elliptic and
parabolic grids by taking part of the solution adjustment on themselves.

4.2 Formulation of the Method

The stretching method is one of the simplest and fastest approaches applied
to generate nonuniform grids. As a preliminary step it requires the introduc-
tion of some specified curvilinear coordinates in the physical region Xn. The
coordinates are chosen by a parametrization

x(q) : Qn → Xn, q = (q1, . . . , qn), x = (x1, . . . , xn),

from a domain Qn ⊂ Rn with a system of Cartesian coordinates qi, i =
1, . . . , n. This system is selected in such a way that it includes the coordinates
along which the grid nodes are to be redistributed by the stretching technique.
Then, in the zones where the nodes are to be concentrated, every required
variable qi is replaced by some stretching variable ξi using a specified separate
univariate transformation ξi(qi). To provide stretching of the coordinate qi,
the function ξi(qi) must have a large first derivative with respect to qi. The
inverse transformation qi(ξi), having, in contrast, a small first derivative with
respect to ξi, is a contraction transformation in these zones. A smooth or
continuous expansion of these separate local contraction functions qi(ξi) to
produce a new coordinate system ξ1, . . . , ξn in the whole region Qn provides
an intermediate transformation

q(ξ) : Ξn → Qn

from some parametric domain Ξn ⊂ Rn. The composition x[q(ξ)] defines a
coordinate transformation which yields a numerical grid with nodal clustering
in the required parts of the domain Xn.

Analogously, the transformation q(ξ) can be obtained as the inverse to a
mapping

ξ(q) : Qn → Ξn,

which is an expansion of the local stretching functions ξi(qi) over the whole
domain Qn.

Without losing generality, we assume that the domain Qn, called the inter-
mediate domain, as well as the domain Ξn, called the logical or computational
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Fig. 4.1. Illustration of the stretching method

domain is the unit n-dimensional cube. So the coordinate transformation from
the unit logical cube Ξn onto the physical region Xn is defined as the compo-
sition of two transformations: q(ξ) from Ξn onto Qn and x(q) from Qn onto
Xn (Fig. 4.1), i.e.

x(q)(ξ) : Ξn → Qn → Xn.

The splitting of the sought coordinate transformation x[q(ξ)] into the
two transformations q(ξ) and x(q) enables one to divide the task of grid
generation into two steps: one performed by the intermediate transforma-
tion q(ξ) : Ξn → Qn, obtained with the help of some specified contraction
functions qi(ξi) and responsible for the control of the grid, and another one
performed by the parametric mapping x(q) : Qn → Xn, which is concerned
with the specification of the coordinates requiring stretching in some zones
of the physical domain Xn. These two steps can be considered as separate
and distinct operations and as such can be developed in an independent and
modular way.

The intermediate coordinate transformations q(ξ) are designed to be be-
tween the standard unit cubes Ξn and Qn, which are fixed regardless of the
physical domain Xn and the physical solution. Therefore there is an oppor-
tunity to create a kind of database of reference functions which can be used
as elements to construct comprehensive intermediate transformations q(ξ).
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4.3 Theoretical Foundation

The construction of the basic intermediate transformations q(ξ) : Ξn → Qn

starts with the definition of the basic univariate functions qi(ξi) which are,
as was mentioned, the inverses of the basic univariate stretching functions
ξi(qi). The functions qi(ξi) should be suitable for providing adequate grid
clustering in the necessary zones through their implementation in formulas
for the intermediate transformations.

The form of the univariate transformation ξi(qi) which stretches the coor-
dinate qi in the zones of large derivatives depends on the qualitative behavior
of the solution. Thus, for effective use of the stretching method in the nu-
merical solution of multidimensional problems, one needs both to select the
directions qi in the region Xn along which the solution has large derivatives
and to have some information on its structure along these particular direc-
tions. Information about the qualitative solution structure is obtained from a
theoretical analysis of simpler model equations, in particular, ordinary differ-
ential equations which simulate the qualitative features of the solutions, or it
can be obtained from a preliminary numerical calculation for similar problems
on coarse grids.

One set of stretching functions can be formed by local nonuniform map-
pings applied to the numerical solution of equations with a small parameter
ε affecting the higher derivatives. Equations with a small parameter ε before
the higher derivatives are widespread in practical applications. For example,
such equations can model flows with small viscosity or high Reynolds number,
describe problems of elasticity where the small parameter represents the shell
thickness, or simulate flows of liquid in regions having orifices with a small
diameter. These problems have narrow boundary and interior layers where
the derivatives of the solutions with respect to the coordinates orthogonal to
the layers reach very large magnitudes when the parameter ε is small. In the
center of such a layer these derivatives have values of order ε−k, k > 0.

Problems with a small parameter affecting the higher derivatives have
been studied thoroughly by analytical and numerical methods. At present,
there is a lot of analytical information related to the qualitative features of
the solutions of these problems in the layers, which can be efficiently applied
to the development of well-behaved numerical methods, in particular, to the
generation of grids with nodal clustering in narrow zones of large variation of
the physical quantities.

The analysis of these problems has revealed new forms of local stretching
functions in addition to the well-known ones aimed chiefly at the treatment of
exponential-type layers. These new stretching functions are very suitable for
coping with power-type and mixed layers as well, which are common in prac-
tical applications. A stretching technique based on the new functions provides
efficient concentration of coordinate lines and control of the generation of the
coordinate system.
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In this section some theoretical facts concerning qualitative features of
solutions in boundary and interior layers are outlined. These facts serve to
justify the forms of the basic stretching functions applied to generate grids by
the stretching method.

4.3.1 Model Problems

The stretching method has efficient application to the numerical solution of
ordinary differential equations and multidimensional problems with boundary
and interior layers, where the solutions may have large variations along the
coordinate lines intersecting the layers. For the numerical calculation of a
two-dimensional viscous gas flow, for instance, the stretching method can be
used successfully to generate grids with nonuniform clustering in the region
of the boundary layer, where the longitudinal component u of the velocity
u = (u, v) has its highest gradient near a solid boundary, in the direction x
orthogonal to the boundary, in the case of a laminar flow. Some information
about the qualitative behavior of the tangential velocity u in the direction x
can be gained from the study of a model two-point boundary value semilinear
problem with a small parameter ε:

εu′ ′ + a(x)u′ = f(x, u), 0 < x < 1,

u(0) = u0, u(1) = u1.
(4.1)

The model equation (4.1) is derived from the steady equation for the tangen-
tial velocity component u of the Navier–Stokes system. With respect to the
independent transverse and longitudinal variables x and y, it can be written
in the form

∂

∂x

(
μ

∂u

∂x

)
− ρv

∂u

∂x
= g

[
u,

∂u

∂y
,
∂2u

∂y2
,
∂v

∂y
,

∂

∂x

(
μ

∂v

∂y

)
,

∂

∂y

(
μ

∂v

∂x

)]
. (4.2)

The model two-point boundary value problem (4.1) is obtained from this
equation with the assumptions that the dynamic viscosity μ is a constant, the
longitudinal coordinate y is a parameter, and the right-hand side is uniformly
bounded with respect to μ. Therefore a(x) in (4.1) corresponds to −ρv, ε to μ,
and f(x, u) to the right-hand side of (4.2).

The boundary-layer behavior of the solution u(x, ε) of the two-point bound-
ary value problem (4.1) for fu(x, u) > 0 is of three types, depending on the
values of a = a(0) and a′(0), and is characterized by estimates for the deriva-
tives of u(x, ε) with respect to x.

Another model equation to investigate the behavior of the solutions in
boundary and interior layers is obtained from a problem simulating the shock
wave structure of steady heat-conducting gas flow:
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dρu

dx
= 0,

ρu
du

dx
+

dp

dx
− ε

d2u

dx2
= 0,

ρu
de

dx
+ p

du

dx
− ε

(
du

dx

)2

− d
dx

(
χ

dT

dx

)
= 0, 0 < x < 1,

(ρ, u, e)(0) = (ρ0, u0, e0), (ρ, u, e)(1) = (ρ1, u1, e1),

(4.3)

where ρ is the density, u the velocity, p the pressure, T the temperature, e the
energy, ε the coefficient of viscosity of the gas, and χ the coefficient of thermal
conductivity.

In the case

e = cvT,

p = (ν − 1)ρe,

we obtain from the system (4.3)

− εu′ ′ + c[u + (ν − 1)e/u]′ = 0, 0 < x < 1,

u(0) = u0, u(1) = u1,
(4.4)

− (ε1e′)′ + c

(
e − u2

2
+

c2

c
u

)′
= 0, 0 < x < 1,

e(0) = e0, e(1) = e1,

(4.5)

where

c = ρ0u0, ε1 = χ/cv,

c2 = { −εu′ + c[u + (ν − 1)e/u]}|x=0.

The functions u(x) and e(x) are monotonic in the layer of their rapid variation.
Hence the dependent variables u and e are connected by some relations

e = E(u), u = U(e).

Therefore the problem (4.4) can be presented as a two-point boundary value
problem of a very simple, standard, autonomous quasilinear form

− εu′ ′ + a(u)u′ = 0, 0 < x < 1,

u(0) = u0, u(1) = u1,
(4.6)

which represents a model problem to study the qualitative features of solutions
with singularities in interior layers. An analogous expression can be obtained
for the problem (4.5) if ε1 is a constant.

One more model suitable for investigating the qualitative features of solu-
tions in layers is the boundary value problem of a gas flow near a round hole
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with a small radius r = ε or a corresponding problem of electron motion. The
behavior of the solution to these problems in the vicinity of the boundary layer
is simulated qualitatively by a semilinear two-point boundary value problem

(ε + x)pu′ ′ + a(x)u′ = f(x, u), p > 0, 0 < x < 1,

u(0) = u0, u(1) = u1.
(4.7)

The problems (4.1), (4.6), (4.7) are amenable to analytical study. Though
they represent highly idealized cases, they nevertheless give a rather profound
understanding of the variety and complexity of the singularities arising in
practical applications. The study of these two-point boundary value prob-
lems has provided solid knowledge about the possible qualitative features of
solutions in boundary and interior layers.

The next considerations of this section are concerned with some results
related to the qualitative behavior of the solutions to the problems (4.1),
(4.6), (4.7). The results mainly apply to estimates of the derivatives of the
solution appropriate to specifying the stretching functions. Any analytical
proof of the facts outlined below is beyond the scope of this book. But we
note that the principal technique used to analyze the asymptotic behavior of
the solutions and to provide estimates of the solutions and of their derivatives
employs the theory of differential inequalities developed by Nagumo (1937).
For the Dirichlet problem

u′ ′ = f(x, u, u′), 0 < x < 1,

u(0) = u0, u(1) = u1,
(4.8)

where f is a continuous function of the arguments x, u, u′, the Nagumo in-
equality theory states that if there exist continuous, twice differentiable func-
tions α(x) and β(x) with the properties

α(x) ≤ β(x), 0 ≤ x ≤ 1,

α(0) ≤ u(0) ≤ β(0), α(1) ≤ u(1) ≤ β(1),
α′ ′ ≥ f(x, α, α′), 0 < x < 1,

β′ ′ ≤ f(x, β, β′ ′), 0 < x < 1,

then the problem (4.8) with the condition f(x, u, z) = O(z2) has a solution
u(x) and

α(x) ≤ u(x) ≤ β(x).

The functions α(x) and β(x) are called the bounding functions. Estimates of
the solutions to the problems (4.1), (4.6), (4.7) and of their derivatives are
obtained rather readily by selecting the appropriate bounding functions α(x)
and β(x).
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4.3.2 Basic Majorants

This subsection presents some estimates of the first and higher derivatives of
the solutions to the problems (4.1), (4.6), (4.7). The solutions of these prob-
lems can have highly localized regions of rapid variation. The first derivative
of the solutions may reach a magnitude of ε−k, 1 ≥ k > 0, and therefore it
tends to infinity when ε approaches zero. Outside the layers the derivative is
estimated by a constant M independent of the parameter ε. These estimates
are used to define an optimum coordinate ξ with a transformation x(ξ).

4.3.2.1 Relation Between Optimal Univariate Transformations and
Majorants of the First Derivative

The optimum univariate transformation x(ξ) for a monotonic univariate func-
tion u(x) would be one for which u[x(ξ)] varied linearly with respect to ξ, since
this would result in zero truncation errors for any approximation. However, if
the function u(x) is not monotonic and is found from a solution of a particu-
lar problem, this formulation of the optimal transformation is too good to be
realized in practice. With regard to the problems (4.1), (4.6), (4.7) with the
small parameter ε, the optimum transformation x(ξ) would be one that elim-
inated the layers of singularity of the solution u(x, ε) of these problems, i.e.,
in particular, one in which the first derivative of the transformation u[x(ξ), ε]
was limited by a constant M independent of ε. Such a transformation x(ξ)
eliminates the singularities of u(x, ε), as a result the function u[x(ξ), ε] does
not have large variations, and therefore the transformed problem with respect
to the independent variable ξ can be efficiently solved on the uniform grid

ξi = ih, i = 1, . . . , N, h = 1/N.

The univariate transformations eliminating the singularities inherent in the
solutions of the problems (4.1), (4.6), (4.7) depend inevitably on the small
parameter ε. Nevertheless, for simplicity, we use the notation x(ξ) for such
functions.

Let the ranges of the variables x and ξ be normalized, say

0 ≤ x ≤ 1, 0 ≤ ξ ≤ 1.

Then the optimum transformation x(ξ) exists if the derivative of the function
u(x, ε) is bounded by a strictly positive function ψ(x, ε) whose total integral
is limited by a constant M independent of ε, i.e.

∣∣∣∣
du

dx

∣∣∣∣ ≤ ψ(x, ε),

with ∫ 1

0

ψ(x, ε)dx ≤ M. (4.9)
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Equation (4.9) means that u(x, ε) is a function with a uniformly limited total
variation on the interval [0, 1], i.e.

∫ 1

0

∣∣∣∣
du

dx

∣∣∣∣dx ≤ M.

The required function x(ξ) eliminating the singularity of first order of u(x, ε)
is obtained, for example, as the inverse of the solution ξ(x) of the initial-value
problem

dξ

dx
= cψ(x, ε), x > 0,

ξ(0) = 0,
(4.10)

where c is a scaling constant providing the condition ξ(1) = 1. After integrat-
ing (4.10) we obtain

c = 1
/∫ 1

0

ψ(x, ε)dx

and hence we have
∣∣∣∣
du

dξ

∣∣∣∣ =
∣∣∣∣
du

dx

∣∣∣∣
dx

dξ
≤

∫ 1

0

ψ(x, ε)dx ≤ M. (4.11)

So the function u[x(ξ), ε] does not have layers of rapid variation in the interval
[0, 1] of the independent variable ξ.

The initial-value problem (4.10) can also be replaced by an equivalent lin-
ear two-point boundary value problem for an ordinary equation of the second
order,

d
dx

(
dξ

dx
/ψ(x, ε)

)
= 0, 0 < x < 1,

ξ(0) = 0, ξ(1) = 1,

(4.12)

or by a nonlinear problem for an equation with ξ as the independent variable
and x as the dependent variable,

d
dξ

(
dx

dξ
ψ(x, ε)

)
= 0, 0 < ξ < 1,

x(0) = 0, x(1) = 1.

(4.13)

So, the singular functions u(x, ε) whose total variation is limited on the
interval [0, 1] by a constant M independent of the parameter ε can be trans-
formed to the function u[x(ξ), ε] with a uniformly limited first derivative with
respect to ξ on the interval [0, 1].

The one-dimensional grid derived through a transformation x(ξ) which
satisfies the relations (4.10), (4.12), (4.13) is optimal in the above sense. Tak-
ing into account (4.11), which shows that the first derivative of the function
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u[x(ξ), ε] with respect to ξ is uniformly bounded, we find that the variation
of the function u[x(ξ), ε] on the neighboring points xi+t and xi of the grid
derived by the transformation x(ξ), where

xi = x(ih), h = 1/N, i = 0, . . . , N,

is uniformly limited as well, i.e.

|ui+1 − ui| ≤ Mh, ui = u(xi, ε), i = 0, . . . , N − 1,

where M is independent of ξ. Therefore the values of ui can be uniformly
interpolated over the whole interval [0, 1] by a piecewise function P (x) which
uniformly approximates u(x, ε) over the entire interval [0, 1]:

|u(x, ξ) − P (x)| ≤ Mh, 0 ≤ x ≤ 1.

Analytical results guarantee the existence of a majorant ψ(x, ε) satisfying
the condition (4.9) for the solutions to the problems (4.1), (4.7) if the function
f(x, u) satisfies the condition of strong ellipticity, i.e.

fu(x, u) ≥ m > 0,

which also ensures uniqueness of the solution. Note, however, that the problem

εu′ ′ = −u = 0, 0 < x < 1,

u(0) = 0, u(1) = 1,

for example, does not satisfy the above condition of strong ellipticity and as a
result the total variation of its solution is not uniformly limited with respect
to ε.

The solution u(x, ε) to the problem (4.6) is always a monotonic function,
and therefore its total variation equals |u1 − u0|.

Now we present four positive basic singular functions ψi(x, ε), with a uni-
formly limited total integral, whose combinations bound the first derivative
of the solutions to the problems (4.1), (4.6), (4.7) in the boundary layers.

4.3.2.2 Exponential Functions

The most popular function used to demonstrate a boundary singularity is the
exponential function

u(x, ε) = exp(−bx/εk), 0 < x < 1,

k > 0, b > 0, whose first derivative yields an expression for the basic majorant
Mψ1(x, b, ε), where

ψ1(x, b, ε) = ε−k exp(−bx/εk), (4.14)

satisfying the condition (4.9).
An exponential singularity of the solution u(x, ε) to the problem (4.1) can

occur only near the boundary point as follows:
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(1) at x = 0, when a(0) ≥ m > 0, or a(0) = 0, a′(0) = 0;
(2) at x = 1, when −a(0) ≥ m > 0, or a(1) = 0, a′(1) = 0.

The condition a(0) > 0 in the gas flow simulation (4.2) corresponds to v(0) < 0,
which means the physical situation of the gas being sucked through a side wall.

The first derivative of the solution of (4.7) is also estimated by the majo-
rant Mψ1(x, b, ξ), with k = p, when p > 1.

4.3.2.3 Power Singularities

The most common condition for viscous gas flows is that of adhesion of the
gas to a solid wall, which, for two-dimensional flows (4.2), is expressed math-
ematically by the equation

u(0) = 0, v(0) = 0,

corresponding to a(0) = 0 in (4.1). In this case the nature of the boundary
layer singularity of the solution to the problem (4.1) depends on the sign of
the first derivative of a(x) at the point x = 0. The relations

a(0) = 0, a′(0) < 0, or a′(0) > 0,

express physically attraction or repulsion of the gas to or from the wall, re-
spectively. Therefore the singularities of the gas flow are directly connected
with the direction of the transverse velocity near the solid wall.

For a(0) = 0, a′(0) < 0, the first derivative of the solution u(x, ε) to the
problem (4.1) in the vicinity of the boundary x = 0 when fu(x, u) ≥ m > 0 is
estimated by the majorant Mψ2(x, b, ε), where

ψ2(x, b, ε) = εkb/(εk + x)b+1, b > 0, k = 1/2. (4.15)

The function Mψ2(x, b, ε) also estimates the first derivative of the solution to
the problem (4.7) when p = 1 and a(0) < 1.

Another power function near the boundary x = 0 is expressed by the
majorant Mψ3(x, b, ε):

ψ3(x, b, ε) = (εk + x)b−1, 1 > b > 0. (4.16)

The combination of this function for k = 1/2 with the majorant Mψ2(x, b, ε)
estimates the first derivative of the solution to the problem (4.1) in the vicinity
of x = 0 when a(0) = 0, a′(0) > 0. So a viscous flow in the direction of the
repulsion of the gas from the wall may have a combined boundary layer. The
function Mψ3(x, b, ε) also bounds the first derivative of the solution to the
problem (4.7) when p = 1, a(0) > 1.
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4.3.2.4 Logarithmic Function

One more important majorant function satisfying (4.9) appears in an estimate
of the first derivative of the solution to the problem (4.7) with p = 1, a(0) = 1.
Qualitatively, the solution u(x, ε) in the boundary layer is described in this
case by a logarithmic function

c(x)
ln(εk + x)

ln εk

with k = 1. The first derivative of u(x, ε) is estimated by the basic majorant
Mψ4(x, ε), where

ψ4(x, ε) =
1

(εk + x)| ln ε| . (4.17)

4.3.2.5 Relations Among Basic Majorants

For the majorants ψi(x, b, ε), i = 1, 2, 3, and ψ4(x, ε) the following relations,
expressed by inequalities, apply:

ψi(x, b1, ε) ≤ Mψi(x, b2, ε), b1 ≥ b2 > 0, i = 1, 2, 3,

ψ1(x, b, ε) ≤ Mψ2(x, d, ε) for arbitrary d > 0, (4.18)
ψi(x, b, ε) ≤ M | ln εk |ψ4(x, ε), b > 0, i = 1, 2.

These relations are readily proved. For example, the confirmation of the second
inequality follows from

ψ1(x, b, ε)
ψ2(x, d, ε)

=
(εk + x)d+1

εk(1+d)
exp(−bx/εk)

≤ 2d+1 exp(−bx/εk) +
(

x

εk

)d+1

exp(−bx/εk).

As
xn exp(−cx) ≤ M, n > 0, c > 0, 0 ≤ x < ∞,

where the constant M is dependent only on n and c, we find that

ψ1(x, b, ε)
ψ2(x, d, ε)

≤ M,

i.e. the second inequality of (4.18) is proved.

4.3.2.6 Interior Layers

The solutions to the problems (4.1) and (4.6) also have interior layers with
large variations. Moreover, the problem (4.6) models qualitatively the wave
tracks and shocks of many gas dynamic flows with layers of sharp variation
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away from the boundaries. The problems (4.1), (4.6) are remarkable in that
the first derivatives of their solutions in the interior layers can be estimated
by combinations of the same majorants ψi(x, b, ε), i = 1, 2, 3, in which the
independent variable x is replaced by |x − x0|, namely

ψi(|x − x0|, b, ξ), i = 1, 2, 3,

where x0 is the center of the layer, i.e. x0 is the point of the fastest local varia-
tion. Thus the estimates near the boundary point x = 0 serve also to estimate
the first derivative in the interior layer near the point x0. For example, for the
derivative of the solution u(x, ξ) to the problem (4.1), we have

∣∣∣∣
du

dx
(x, ε)

∣∣∣∣ ≤ Mψ3(|x − x0|, b, ξ), |x − x0| ≤ m,

where x0 is defined by the condition

a(x0) = 0, a′(x0) ≥ fu(u, x).

The location of the center of the interior layer of the solution to the prob-
lem (4.6) is dependent on the properties of the function

b(u) =
∫ u

u0

a(η)dη.

An interior layer of the solution exists if

b(u0) = b(u1), b(u) > b(u0), (4.19)

and its center point x0 is defined by the first nonzero coefficients of the Taylor
expansions of the function b(u) in the vicinity of the points u0 and u1.

For example, if in addition to the condition (4.19) the condition

b′(ui) = a(ui) �= 0, i = 0, 1,

is satisfied, then

x0 = a1/(a1 − a0), ai = a(ui), i = 0, 1,

and
|u′(x)| ≤ Mψ1(|x − x0|, b, ε), 0 ≤ x ≤ 1,

where the constant b is defined by a0 and a1.
An instructive example is that of an interior layer of the solution to the

problem (4.6) that moves unlimitedly to the boundary as the parameter ε
approaches zero. Such a layer is realized in a solution to the problem (4.6) if
the function b(u) satisfies the condition (4.19) and
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Fig. 4.2. Function with a mixed interior layer approaching the boundary unlimitedly

a(u0) �= 0,
dk

duk
b(u1) = 0, k ≤ p, p ≥ 1,

dp+1

dup+1
b(u1) �= 0.

For the derivative of the solution u(x, ε) in this case, we have

|u′(x, ε)| ≤
{

M [1 + ε−1{exp[a0(x − x0)/ε]}], 0 ≤ x ≤ x0,

M [1 + εb(ε + x − x0)(−1−b)], x0 ≤ x ≤ 1,
(4.20)

where
b = 1/p, x0 = (1 + b)

ε

a0
ln ε−1.

So the derivative in the left-hand part of the layer is estimated by the majorant
Mψ1(x−x0, a0, ε) and in the right-hand part it is bounded by Mψ2(x−x0, b, ε).
Therefore the stretching of the variable x should be different in the left- and
right-hand parts of the boundary layer. As the center point x0 approaches the
boundary unlimitedly as ε → 0, the solution with an interior layer tends to
the solution of the reduced problem (ε = 0) with a boundary layer (Fig. 4.2).
Thus this example shows a drawback of the analysis of the locations of layers
by means of reduced problems.

4.3.2.7 Estimates of the Higher Derivatives

The basic majorants of the higher derivatives of the solutions to the problems
(4.1), (4.6), (4.7) in the layers have the form of the derivatives of the ma-
jorants (4.14)–(4.17). Namely, they are expressed by the following functions
ψn

i (x, b, ε), i = 1, 2, 3, and ψn
4 (x, ε):
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ψn
1 (x, b, ε) = ε−kn exp(−b|x − x0|/εk),

ψn
2 (x, b, ε) = εkb/(εk + |x − x0|)b+n,

ψn
3 (x, b, ε) = (εk + |x − x0|)b−n,

ψn
4 (x, ε) =

1
(εk + |x − x0|)n| ln ε| ,

(4.21)

where x0 is the point at the center of the layer.
The general estimate of the nth derivative of u(x, ε) has the form

∣∣∣∣
dnu

dxn

∣∣∣∣ ≤ M [1 + ψn(x, ε)], 0 ≤ x ≤ 1, (4.22)

where ψn is a combination of the functions described by the formulas (4.21).
The distinctive feature of these estimates is that they guarantee that the
local transformation x(ξ) obtained from equations of the forms (4.10), (4.12),
(4.13) is suitable for smoothing the higher-order singularities, i.e. the following
estimate is valid: ∣∣∣∣

dn

dξn
u[x(ξ), ε]

∣∣∣∣ ≤ M, 0 ≤ x ≤ 1. (4.23)

4.3.2.8 Invariants of Equations

It is apparent that the boundary layers of the singularly perturbed solutions do
not vanish when the coordinate x is replaced by a coordinate q with a one-to-
one smooth transformation x(q) of the interval [0, 1] if x(q) is independent of ε.
And it is apparent that (4.1) has some invariants under such transformations
which determine the qualitative behavior of the solutions to the equations.
For example, (4.1) in the new independent variable q and dependent variable
u1(q, ε) = u[x(q), ε] has the form

εu′ ′
1 + a1(q)u′

1 = f1(q, u1), 0 < q < 1,

a1(q) = x′a[x(q)] + εx′ ′/(x′)2,
f1(q1, u1) = (x′)2f [x(a), u1].

So the invariants are

(1) the sign of the coefficient a1(q) of the first derivative for q = 0, ε = 0,
(2) the expression

a′
1(0)/fu1 [0, u1(0)]

for ε = 0 when a1(0) = 0.

As was mentioned above, the estimate of the first derivative of the solution
to this problem is defined through these two invariants.

The invariant defining the structure of the solution to the problem (4.7)
in the boundary layer is also the value of the coefficient a(x) for x = 0.
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The qualitative behavior of the solution to the problem (4.6) is determined
by the values of the derivatives of the function b(u) =

∫ u

u0
a(u)du at the points

u0 and u1. These values are the invariants of transformations v = f(u) of the
dependent variable u.

The preceding remarks show the importance of the study of the invariants
of equations and their connection with the qualitative features of the solutions
in the layers.

4.4 Basic Intermediate Transformations

This section gives a detailed description of the basic univariate stretching
functions and, consequently, the contraction functions, which are applied to
construct the intermediate transformations that provide grid clustering in
boundary and interior layers.

4.4.1 Basic Local Stretching Functions

The derivatives of the solution of a singularly perturbed equation are large in
the center of a layer and decrease towards its boundary. Outside the layers the
derivatives are estimated by a constant M independent of the small parame-
ter ε, while within a layer the derivatives of any singular solution with respect
to the coordinate x transverse to the layer can be bounded by the derivatives
of one or a combination of the basic functions ψn

i (x, ε), i = 1, 2, 3, defined by
(4.31). These basic functions generate four basic univariate transformations
ϕi(x, ε) which stretch the layers. The introduction of these functions to stretch
the coordinate transverse to a layer nonuniformly allows one to build a new
local coordinate system with respect to which the solution has no layers with
large derivatives.

Local coordinate transformations ϕi(x, ε) which nonuniformly stretch the
coordinate lines within the boundary layers have already been utilized to gen-
erate grids for the numerical solution of some singularly perturbed problems.
Analytical and numerical analyses have demonstrated that the grids gener-
ated in the layers by these coordinate transformations allow one to obtain a
numerical solution to a singularly perturbed problems which converges uni-
formly with respect to the small parameter to the exact solution. Also, the
solution can be interpolated uniformly over the entire region, including the
layers. Therefore the incorporation of stretching functions into formulas for
intermediate transformations is a promising way to develop grid techniques.

The four standard, local, stretching, coordinate transformations denoted
by ϕi(x, ε), i = 1, 2, 3, 4, where x is a scalar-valued independent variable inter-
preted here as a coordinate orthogonal to a layer and ε is a small parameter,
are have been designed only to stretch the boundary layer at the point x = 0.
These functions are defined by integrating the basic majorants (4.14)–(4.17).
In reality, these local stretching transformations are boundary layer functions
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which describe the qualitative behavior of the physical solutions across the
boundary layers. The functions which stretch the interior layers are derived
from these basic transformations by the procedures described in Sect. 4.4.4.

The boundary layer functions corresponding to the majorants described
above (4.14)–(4.17) are computed by solving an initial-value problem of the
type (4.10):

dϕ

dx
= dψ(x, ε), x > 0,

ϕ(0) = 0,

where ψ(x, ε) is the majorant of the first derivative. For convenience the local
stretching functions are written in a form that satisfies the following condi-
tions:

ϕ(0, ε) = 0,
d
dx

ϕ(x, ε) > 0.

The first function is the well-known exponential mapping

ϕ1(x, ε) =
1 − exp(−bx/εk)

c
, k > 0, b > 0, c > 0. (4.24)

The next two local stretching mappings are power functions,

ϕ2(x, ε) =
1 − [εk/(εk + x)]b

c
, k > 0, b > 0, c > 0, (4.25)

and

ϕ3(x, ε) =
(εk + x)b − εkb

c
, k > 0, 1 > b > 0, c > 0. (4.26)

The fourth local stretching function is a logarithmic map

ϕ4(x, ε) =
ln(1 + xε−k)
c ln(1 + ε−k)

, k > 0, c > 0. (4.27)

The numbers k, b, and c in these expressions for the stretching functions
ϕi(x, ε) are positive constants. The number k shows the scale of a layer. It
is easily computed analytically. For example, for problems of viscous flows,
k = 1/2 in a boundary layer and k = 1 in a shock wave. The constant c
serves to control the length of the interval of the new stretching coordinate
ϕ that is transformed into the layer. The constant b controls the type of
stretching nonuniformity and the width of the layer. The parameter ε provides
the major contribution to determining the slopes of the stretching functions
in the vicinity of the point x = 0.

The stretching functions ϕi(x, ε), i = 1, 2, 3, 4, for εk = 1/30 are shown in
Fig. 4.3. The symbols +, ×, ♦, and � identify the functions ϕ1(x, ε), ϕ2(x, ε),
ϕ3(x, ε), and ϕ4(x, ε), respectively. The constant c is selected to satisfy the
restriction ϕi(1, ε) = 1, i = 1, 2, 3, 4.
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Fig. 4.3. Basic local stretching functions

4.4.1.1 Width of Boundary Layers

The interval where any function ϕi(x, ε) provides a stretching of the coordinate
x coincides with the interval where the first derivative with respect to x of
this function ϕi(x, ε) is large. The first derivatives of the basic stretching
transformations ϕi(x, ε), i = 1, 2, 3, 4, are

dϕ1

dx
(x, ε) =

bε−k

c
exp(−bx/εk), k > 0, b > 0,

dϕ2

dx
(x, ε) =

bεkb

c(εk + x)b+1
, k > 0, b > 0,

dϕ3

dx
(x, ε) =

b

c
(εk + x)b−1, k > 0, 1 > b > 0,

dϕ4

dx
(x, ε) =

1
c ln(1 + ε−k)(εk + x)

, k > 0.

(4.28)

For the first derivative dϕi(x, ε)/dx of the stretching functions ϕi, i =
1, 2, 4, one can readily obtain the following relations:

dϕ1

dx
(x, ε) ≤ M

dϕ2

dx
(x, ε), 0 ≤ x ≤ 1,

d
dx

ϕ2(x, ε) ≤ M
d
dx

ϕ4(x, εp), p > 1, 0 ≤ x ≤ 1,

where the constant M does not depend on ε. Therefore the stretching transfor-
mation ϕ2(x, ε) can be used to eliminate both exponential and power layers,
while the mapping ϕ4(x, ε) is suitable for smoothing exponential and power

layers and also the singularities of the type described by ϕ4(x, ε).
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The derivative dϕi(x, ε)/dx of each local stretching mapping ϕi(x, ε) is
large in the vicinity of the point x = 0 when the parameter ε is small, and
decreases as x increases. The boundary of the layer for the function ϕi(x, ε)
is defined to be at the point xi where the modulus of the first derivative
(d/dx)ϕi(x, ε) is limited by a constant M > 0 independent of the parameter ε,
i.e. ∣∣∣∣

dϕi

dx
(xi, ε)

∣∣∣∣ ≤ M.

The value of xi coincides with the width of the layer, denoted by Δi(x, ε), of
the function ϕi(x, ε). So from (4.28),

x1 = Δ1(x, ε) =
εk

b
ln ε−k,

dϕ1

dx
(x1, ε) = b/c,

x2 = Δ2(x, ε) = εkb/(b+1) − εk,
dϕ2

dx
(x2, ε) = b/c,

x3 = Δ3(x, ε) = dε0 − εk,
dϕ3

dx
(x3, ε) = d(b−1)b/c,

x4 = Δ4(x, ε) =
1

ln(1 + ε−k)
− εk,

dϕ4

dx
(x4, ε) = 1/c.

(4.29)

These expressions evidently provide a rule for controlling, with the con-
stant b, the width of the layers where the grid nodes are to be clustered. In
order to make the layer wider this constant needs to be reduced.

Also, from (4.29) one can obtain the maximum value mi > 0 of the para-
meter ε for each stretching function ϕi(x, ε). The value of m is obtained from
the obvious condition xi < 1, i = 1, 2, 3, 4. This value defines the range for ε
for the application of the stretching, 0 < ε ≤ mi, and consequently the con-
traction functions for the construction of the intermediate transformations.
In the following discussion we consider only those values of the parameter ε
which are subject to the restriction xi < 1.

The formulas for Δ2(x, ε), Δ3(x, ε), and Δ4(x, ε) contain the quantity
−εk, which, asymptotically, does not influence the width of the layers, but is
included purely to simplify the expression for the first derivative of ϕi(x, ε) at
the point xi. Equations (4.29) clearly show that there exists a number ε0 > 0
such that

Δ3(x, ε) > Δ4(x, ε) > Δ2(x, ε) > Δ1(x, ε)

for all positive ε < ε0.
The equations in (4.28) indicate that the length of the central part of

the layer, where the first derivative reaches the maximum values Mε−k for
ϕi(x, ε), i = 1, 2, 3, and Mε−k/ ln ε−k for ϕ4(x, ε), is similar for all functions
ϕi(x, ε) and equals mεk. However, the relations (4.29) state that the transi-
tional part of the layer, between the center and the boundary, is very much
larger than mεk, especially for the functions ϕ2(x, ε), ϕ3(x, ε), and ϕ4(x, ε).
The first derivative in the transitional part of the layer is also large when the
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parameter ε is small, and therefore stretching of the central part is required
as well, though in lesser degree.

In contrast, the first derivative of each function ϕi(x, ε), i = 1, 2, 4, is very
small outside a layer when the parameter ε is small. Namely, from (4.29), for
a point x = const lying outside a layer,

dϕ1

dx
(x, ε) ∼ ε−k exp(−b1/εk),

dϕ2

dx
(x, ε) ∼ εkm,

dϕ4

dx
(x, ε) ∼ 1

ln ε−k
.

Of these three expressions for the first derivative, the last one has the least
tendency to become zero outside the layer and, when the parameter ε is not
too small, the function ϕ4(x, ε) can be used over the whole interval [0, 1] to
introduce a new coordinate variable to stretch the coordinate x in the layer.

The boundary point xi of the layer for the transformation ϕi(x, ε) cor-
responds to the value ϕi(xi, ε) = ϕi of the dependent variable ϕi(x, ε). For
generality, we denote by ϕ the dependent variable. Then ϕi defines the in-
terval [0, ϕi] which is transformed into the layer by the function inverse to
ϕi(x, ε). The values of these points ϕi(xi, ε) = ϕi corresponding to the values
of xi specified by (4.29) are given by

ϕ1 =
1 − εk

c
,

ϕ2 =
1 − εkb/(b+1)

c
,

ϕ3 =
db − εkb

c
,

ϕ4 =
ln(ε−k) − ln[ln(1 + ε−k)]

c ln(1 + ε−k)
.

(4.30)

These expressions imply that

ϕi → 1/c, i = 1, 2, 4,

ϕ3 → db/c,

when ε tends to 0.

4.4.2 Basic Boundary Contraction Functions

The functions ϕi(x, ε) stretch the coordinate x within the narrow layers [0, xi],
therefore the mappings that are inverse to ϕi(x, ε) provide a contraction of
the coordinate ϕ in the interval [0, ϕi]. Thus these inverse functions can be
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used as the univariate local transformations qj(ξj), where qj = x, ξj = ϕ, to
build the intermediate n-dimensional transformations

q(ξ) : Ξn → Qn

which generate nodal clustering in the layers along the selected coordinates qj .
Taking into account (4.24)–(4.27), the local inverse transformations xi(ϕ, ε)

of the corresponding stretching functions ϕi(x, ε) have the following form:

x1(ϕ, ε) = − εk

b
ln(1 − cϕ), k > 0, b > 0,

x2(ϕ, ε) = εk
(
(1 − cϕ)−1/b − 1

)
, k > 0, b > 0,

x3(ϕ, ε) = (εkb + cϕ)1/b − εk, k > 0, 1 > b > 0,

x4(ϕ, ε) = εk
(
(1 + ε−k)cϕ − 1

)
, k > 0.

(4.31)

The first derivative of any of the functions xi(ϕ, ε) is small at the points where
0 ≤ ϕ ≤ ϕi(xi, ε) = ϕi, and therefore the magnitude of the grid spacing in
the x direction of the grid generated by the mapping xi(ϕ, ε) is also small in
the layer; it is approximately of the order of (d/dϕ)[xi(ϕ, ε)]h. The degree of
grid clustering at the center of the layer reaches a value of εk and increases at
the points near the boundary xi of the layer.

The stretching functions ϕi(x, ε) themselves describe the qualitative be-
havior of solutions within their zones of large gradients along the coordinate
lines normal to the layers. Therefore, as any mapping xi(ϕ, ε), i = 1, 2, 3, 4,
is the inverse of the corresponding function ϕi(x, ε), the grids derived from
the transformations xi(ϕ, ε) provide the optimum nonuniform resolution of
the physical solution in the layers with an economy of nodal points. How-
ever, as mentioned above, these functions, excluding the mapping x3(ϕ, ε),
produce excessively sparse grids outside the layers, since their first derivative,
satisfying the equation

dxi

dϕ
(ϕ, ε) = 1

/dϕi

dx
[x(ϕ), ε]

is, according to (4.28), very large when ϕ > ϕi and tends to infinity as the
parameter ε nears zero. Therefore the contraction functions xi(ϕ, ε) can only
be used to provide grid clustering in the layers; outside the layers the grids
must be generated through other mappings producing less coarse grids.

4.4.2.1 Basic Univariate Transformations

An intermediate tansformation

q(ξ) : Ξn → Qn
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can be constructed through the use of separate univariate mappings qi(ξi) :
[0, 1] → [0, 1] such that qi(ξ) = qi(ξi). Therefore in order to define a nonuni-
form intermediate transformation q(ξ) through the local univariate mappings
xi(ϕ, ε), i = 1, 2, 3, 4, specified on the corresponding intervals [0, ϕi], to pro-
vide adequate clustering of grid points where necessary, these mappings need
to be extended continuously or smoothly over the whole interval [0, 1] to map
this interval monotonically onto the unit interval [0, 1]. This can be done by
“gluing” these local nonuniform transformations xi(ϕ, ε) to other mappings in
the interval [ϕi, 1] that are more uniform than the basic functions xi(ϕ, ε), for
example, linear or polynomial functions. The glued transformation extending
xi(ϕ, ε) must be smooth, or at least continuous.

Continuous Mappings

Nonsmooth continuous univariate mappings, denoted here as xi,c(ϕ, ε), can
be defined as

xi,c(ϕ, ε) =

{
xi(ϕ, ε), 0 ≤ ϕ ≤ ϕi,

xi + (1−xi)(ϕ−ϕi)
1−ϕi

, ϕi ≤ ϕ ≤ 1.
(4.32)

These functions are monotonically increasing, given a suitable choice of the
interval [0, mi] for the parameter ε, and vary from 0 to 1. Therefore they
generate the individual univariate transformations qi(ξi), assuming

qi(ξi) = xj,c(ξi, ε), j = 1, 2, 3, 4.

The first derivative of the function x3(ϕ, ε) is limited uniformly, with re-
spect to the parameter ε, for all 0 < ε ≤ m3, so the matching of this function
to any other one to transform the interval [0, 1] onto the interval [0, 1] is, in
general, not necessary. The proper functions, monotonically increasing and
varying from 0 to 1, denoted by x3,s(ϕ, ε), is obtained by adjusting the con-
stant c in (4.31):

x3,s(ϕ, ε) = (εkb + cϕ)1/b − εk, c = (εk + 1)b − εkb.

The length of any interval [0, ϕi], i = 1, 2, 4, transformed into the cor-
responding layer by the corresponding function xi,c(ϕ, ε) defined by (4.32)
approaches the constant 1/c as the parameter ε tends to zero. This quantity
1/c specifies that part of the uniform grid in the interval [0, 1] of the indepen-
dent variable ϕ which is transformed into the layer. Obviously, the value of
the constant c must be more than 1.

Smooth Mappings

Smooth basic univariate global transformations of the interval [0, 1] can be
defined by matching the basic local transformations xi(ϕ, ε) at the corre-
sponding points ϕi to polynomials of the second order or to tangent straight
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lines emerging from the point (1, 1) in the plane x, ϕ. The latter matching
is made at the cost of the constant c in the formulas for xi(ϕ, ε). These very
smooth transformations, obtained by matching smoothly the local contraction
functions xi(ϕ, ε), i = 1, 2, 4, with the tangent lines and denoted below by
xi,s(ϕ, ε), are given here.

The local basic stretching function x1(ϕ, ε) is extended by the procedure
of smooth matching to

x1,s(ϕ, ε) =

{
− εk

b ln(1 − cϕ), 0 ≤ ϕ ≤ ϕ1,

x1 + c
b (ϕ − ϕ1), ϕ1 ≤ ϕ ≤ 1,

(4.33)

with

ϕ1 = (1 − εk)/c, x1 =
1
b
εk ln ε−k, c = 1 − εk + b(1 − x1).

The use of the local stretching function x2(ϕ, ε) yields

x2,s(ϕ, ε) =

{
εk((1 − cϕ)(−1/b) − 1), 0 ≤ ϕ ≤ ϕ2,

x2 + c
b (ϕ − ϕ2), ϕ2 ≤ ϕ ≤ 1,

(4.34)

where

ϕ2 =
1
c
(1 − εkb/(b+1)), x2 = εkb/(b+1) − εk,

c = 1 − εkb/(b+1) + b(1 − x2).

When b = 1 this transformation has a simpler form:

x2,s(ϕ, ε) =

{
εk cϕ

1−cϕ , 0 ≤ ϕ ≤ ϕ2,

x2 + c(ϕ − ϕ2), ϕ2 ≤ ϕ ≤ 1,
(4.35)

where

ϕ2 =
1
c
(1 − εk/2), x2 = εk/2 − εk, c = 2 − 2εk/2 + εk.

Finally, for the fourth basic mapping, we obtain

x4,s(ϕ, ε) =

{
εk((1 + ε−k)cϕ − 1), 0 ≤ ϕ ≤ ϕ4,

x4 + c(ϕ − ϕ4), ϕ4 ≤ ϕ ≤ 1,
(4.36)

where

ϕ4 =
ln(ε−k) − ln[ln(1 + ε−k)]

c ln(1 + ε−k)
, x4 =

1
ln(1 + ε−k)

− εk,

c = 1 − x4 +
ln(ε−k) − ln[ln(1 + ε−k)]

ln(1 + ε−k)
.
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Fig. 4.4. Basic local contraction functions

Figure 4.4 illustrates these functions for ε = 1/30. The symbols +, ×, ♦,
and � correspond to the functions x1,s(ϕ, ε), x2,s(ϕ, ε), x3,s(ϕ, ε), and x4,s(ϕ, ε),
respectively.

The first derivative of the local function

x4(ϕ, ε) = εk
(
(1 + ε−k)cϕ − 1

)

tends to ln ε−k as ϕ > ϕ4. This quantity is large when the parameter ε is
very small; however, if ε is not too small, the magnitude of ln ε−k, which
characterizes the grid spacing, is not very large and may be tolerable for grid
generation. In this case it is reasonable to use the local basic transformation
x4(ϕ, ε) as a global one from [0, 1] to [0, 1] without matching it to any other
one to generate a grid. By adjusting the constant c, we obtain the form

x5(ϕ, ε) = εk
(
(1 + ε−k)ϕ − 1

)
.

The length of the interval [0, ϕ1] transformed into the corresponding layer
[0, x1] by the smooth function x1,s(ϕ, ε) tends to 1/(1 + b) as the parameter ε
tends to zero. For the function x2,s(ϕ, ε), the length of the interval [0, ϕ2] also
tends to 1/(1 + b) and, for the function x4,s(ϕ, ε), the length of the interval
[0, ϕ4] tends to 1/2. Consequently, this part of the uniform grid on the interval
[0, 1] is transformed into the corresponding layer. If there is a need for a larger
proportion of the grid points to be distributed by smooth mappings into layers,
the basic local contraction functions xi(ϕ, ε), i = 1, 2, 4, should be matched
smoothly to polynomials. In this case the point of matching can be chosen
with less restriction and in this case it will not be completely prescribed,
unlike the functions xi,s(ϕ, ε).
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4.4.3 Other Univariate Transformations

Besides the univariate transformations described above, which depend on the
parameter ε and are directly connected with the solutions to singularly per-
turbed equations, there are other monotonic functions, e.g. polynomials, hy-
perbolic functions, sines, and tangents which are used as local contraction
mappings to yield grid clustering in boundary and interior layers.

4.4.3.1 Eriksson Function

One such reference function was introduced by Eriksson (1982):

x6(ϕ) =
edϕ − 1
ed − 1

, d > 0, 0 ≤ ϕ ≤ 1. (4.37)

This function provides a concentration of the grid towards the boundary
ϕ = 0.

There is a direct correspondence between x6(ϕ) and the basic transforma-
tion x5(ϕ, ε). Namely, if d in (4.37) is equal to ln(1 + ε−k) then the Eriksson
function (4.37) coincides with the contraction transformation x5(ϕ, ε), i.e.

x6(ϕ) = εk
(
(1 + ε−k)ϕ − 1

)
.

This relation shows clearly how to adjust the grid spacing automatically to
the physical small parameter ε by means of the Eriksson basic function.

Other functions, based on the inverse hyperbolic sines and tangents, were
introduced by Vinokur (1983) to treat exponential singularities. Note that
hyperbolic sines and tangents are defined through exponential functions and
therefore, in the case of narrow layers, are locally similar to the exponential
function ϕ1(x, ε).

4.4.3.2 Tangent Function

The basic function
y(ϕ) = tan ϕ (4.38)

is very popular for generating grid clustering. Using two parameters α and β,
a monotonic function transforming the interval [0, 1] onto (0, 1] with an op-
portunity to control the contraction near the boundary ϕ = 0 can be defined
by

x(ϕ) = α tan(βϕ). (4.39)

The condition x(1) = 1 implies

α = 1/ tan β.

For the derivative of the function x(ϕ) with respect to ϕ, we have
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x′(ϕ) =
β

tan β cos2 βϕ
.

In order to cope with any boundary layer quantity whose derivative with
respect to x reaches values of ε−k at the point x = 0, the function x′(ϕ) must
have a value of the order of εk at the point ϕ = 0. This condition implies

β = arctan ε−k

and consequently

α = εk,

x′(0) = εk arctan ε−k ∼ π

2
εk, for 0 < ε 	 1.

Thus the required expression for the local contraction function (4.39) elimi-
nating the boundary layer is

x(ϕ) = εk tan[arctan(ε−k)ϕ]. (4.40)

The corresponding inverse local stretching function ϕ(x) has the form

ϕ(x) =
arctan(ε−kx)
arctan(ε−k)

.

We have

ϕ′(x) =
εk

arctan ε−1(ε2k + x2)

and thus

M1
εk

(εk + x)2
≤ |ϕ′(x)| ≤ M2

εk

(εk + x)2
, (4.41)

where 0 < ε ≤ 1/2, and the constants M1 and M2 are independent of the
parameter ε. A comparison of the inequality (4.41) and the relations (4.28)
shows that the local stretching function ϕ(x) is qualitatively equivalent to
the function ϕ2(x, ε) described by (4.25) with b = 1. The function (4.40) is
therefore suitable to cope with solutions that are close to step functions in
layers of exponential and power types.

4.4.3.3 Procedure for the Construction of Local Contraction
Functions

The features of the tangent function (4.38) and the procedure described give a
clue as to how to build new functions which can generate local grid clustering
near a boundary point. These functions are derived from some basic univariate
mappings y(ϕ), satisfying, in analogy with tan ϕ, the following conditions:

(1) y′(0) = 1,
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(2) y(ϕ) is a monotonical increasing function for 0 ≤ ϕ < a for some a > 0,
(3) y(ϕ) → ∞ when ϕ → a.

If y(ϕ) is a function satisfying these properties then, assuming in analogy with
(4.39) and (4.40)

x(ϕ) =
y(βϕ)
y(β)

= εky[y−1(ε−k)ϕ],

where y−1 is the inverse of y(ϕ), we obtain a monotonic transformation of
the interval [0, 1] onto [0, 1] with a contraction of the order of εk at the point
ϕ = 0.

Note that the transformations

x1(ϕ, ε) = − εk

b
ln(1 − cϕ),

x2(ϕ, ε) = εk
[
(1 − cϕ)(−1/b) − 1

]
,

from (4.31) can be obtained in accordance with this scheme from the functions

y1(ϕ) = − ln(1 − ϕ)

and
y2(ϕ) = b

[
(1 − ϕ)−1/b − 1

]
,

respectively.
The original function y(ϕ) can be formed as a ratio

y(ϕ) = b1(ϕ)/b2(ϕ)

of two functions b1(ϕ) and b2(ϕ) which are strongly positive on the interval
[0, a]. In addition, the function b1(ϕ) must be monotonically increasing, while
b2(ϕ) is monotonically decreasing and satisfies the condition b2(a) = 0. For
example, the function

y(ϕ) =
ϕ

1 − ϕ

generates the local contraction transformation

x(ϕ) =
εkϕ

1 − (1 − εk)ϕ
,

which coincides with the transformation x2(ϕ, ε) from (4.31) for b = 1, c =
(1 − εk).

4.4.4 Construction of Basic Intermediate Transformations

The basic functions xi,c(ϕ, ε) and xi,s(ϕ, ε) described above can be consid-
ered as construction elements for building intermediate transformations q(ξ) :
Ξn → Qn that serve to provide adequate grid clustering where necessary.
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Firstly, these basic functions can be used as separate transformations qi(ξi)
of the coordinates ξi. The first derivatives of the basic mappings xi,c(ϕ, ε) and
xi,s(ϕ, ε) are small near the point ϕ = 0, and therefore the derived interme-
diate transformations produce grid clustering in the vicinity of the selected
boundary surfaces ξi = 0.

Functions which provide grid clustering near arbitrary coordinate surfaces
can be derived from these basic univariate mappings. For this purpose it is
sufficient to define monotonic scalar functions having a small first derivative
near arbitrary boundary or interior points in the interval [0, 1]. Such mappings
can be defined by simple procedures of scaling, shifting, and matching with
the basic functions xi,c(ϕ, ε) and xi,s(ϕ, ε), as described below.

4.4.4.1 Functions with Boundary Contraction

For example, let x(0, ϕ) be one of these basic monotonically increasing func-
tions varying from 0 to 1 and having a small value of the first derivative near
the point ϕ = 0, thus exhibiting a grid contraction near the point x = 0. Then
the mapping

x(1, ϕ) = 1 − x(0, 1 − ϕ)

is also a monotonically increasing function transforming the interval [0, 1] onto
itself and having the same small first derivative, but near the boundary point
x = 1. Therefore it performs a nodal concentration near the point x = 1.

Grid clustering near two boundary points 0 and 1 can be produced by
the mapping x(0, 1, ϕ) that is a composite of the two functions x(0, ϕ) and
x(1, ϕ), say

x(0, 1, ϕ) = x[0, x(1, ϕ)],

or can be obtained by the following formula of scaling and matching of the
functions x(0, ϕ) and x(1, ϕ):

x(0, 1, ϕ) =

{
x0x(0, ϕ/x0), 0 ≤ ϕ ≤ x0,

1 − (1 − x0)x(0, 1−ϕ
1−x0

), x0 ≤ ϕ ≤ 1,

where x0 is an interior matching point of the interval [0, 1].

4.4.4.2 Functions with Interior Contraction

Further, if x0 is an inner point of the interval [0, 1] then the mapping

x(x0, ϕ) =

{
x0[1 − x(0, 1 − ϕ/x0)], 0 ≤ ϕ ≤ x0,

x0 + (1 − x0)x(0, ϕ−x0
1−x0

), x0 ≤ ϕ ≤ 1,

is a monotonically increasing function from the interval [0, 1] onto the inter-
val [0, 1] which provides grid clustering in the vicinity of the point x = x0.
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The function x(0, x0, 1, ϕ), defined as the composition of the two mappings
x(0, 1, ϕ) and x(x0, ϕ) introduced above, namely

x(0, x0, 1, ϕ) = x[x0, x(0, 1, ϕ)],

provides a concentration of grid nodes in the vicinity of the boundary points
0, 1 and of the interior point x0.

A monotonically increasing function x(x0, x1, ϕ) performing grid clustering
near two interior points x0 and x1, x0 < x1, can be defined as a composition
of two functions of the type x(x0, ϕ) or can be given by the formula

x(x0, x1, ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0[1 − x(0, 1 − ϕ/x0)], 0 ≤ ϕ ≤ x0,

x0 + (d − x0)x(0, ϕ−x0
d−x0

), x0 ≤ ϕ ≤ b,

x1 + (d − x1)x(0, x1−ϕ
x1−d ), b ≤ ϕ ≤ x1,

x1 + (1 − x1) x(0, ϕ−x1
1−x1

), x1 ≤ ϕ ≤ 1,

where d is a specified number satisfying x0 < b < x1. The same procedures
allow one to construct monotonically increasing functions providing grid clus-
tering near an arbitrary number of points. If the original mapping x(0, ϕ) is
smooth then the functions derived by these procedures are smooth as well.

Analogously, there can be defined monotonically decreasing functions pro-
viding grid concentration near an arbitrary number of points using the basic
decreasing transformations 1−x(0, ϕ). So there is a broad range of possibilities
in using the basic transformations to generate effective grid clustering.

4.4.4.3 Clustering near Arbitrary Surfaces

The intermediate transformations q(ξ) constructed by the above approach
through these modifications of the basic scalar functions provide grid cluster-
ing near the coordinate surfaces ξi = ξi

l . One drawback of such intermediate
transformations is that they generate grid clustering only near these coordi-
nate surfaces, with the same spacing in the vicinity of each of them. There-
fore some procedures are needed to construct intermediate functions with a
broader range of possibilities.

In three-dimensional domains, for instance, there is often a need to define
an intermediate transformation q(ξ) providing grid clustering near an arbi-
trary surface intersecting a coordinate direction, say ξ3. Let the surface be
prescribed by the function

ξ3 = g(ξ1, ξ2).

The required mapping q(ξ), providing grid concentration near this surface, is
given by the formula

q1(ξ) = ξ1,

q2(ξ) = ξ2,

q3(ξ) =

{
g(ξ1, ξ2){1 − f [1 − ξ3/g(ξ1, ξ2)]}, 0 ≤ ξ3 ≤ g(ξ1, ξ2),

g(ξ1, ξ2) + [1 − g(ξ1, ξ2)]f( ξ3−g(ξ1,ξ2)
1−g(ξ1,ξ2) ), g(ξ1, ξ2) ≤ ξ3 ≤ 1,
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where f(ϕ) is a basic monotonically increasing function with a small first
derivative near the point ϕ = 0. Compositions of such transformations pro-
duce maps that provide grid clustering near a number of surfaces intersecting
different directions.

4.4.4.4 Nonuniform Clustering

The procedures described above provide adequate grid clustering in the vicin-
ity of arbitrary surfaces, but with the same grid spacing around any one spec-
ified surface. However, in some cases, for example when gridding a flow region
around a body, there is a need for nonuniform grid clustering in the trans-
verse direction with respect to different parts of the surface of the body. Such
grid clustering can be realized by intermediate transformations constructed
along the coordinate surface (line in two dimensions) through a combination
of basic functions with different values of the parameter ε. For example, a two-
dimensional intermediate transformation q(ξ) can be defined as

q1(ξ1, ξ2) = ξ1,

q2(ξ1, ξ2) = ξ1x1(ξ2, εk) + (1 − ξ1)x2(ξ2, εd),

where xi(ξ2, εm) is one of the basic functions. The mapping q(ξ) provides a
nonuniform grid spacing along the coordinate ξ2 = ξ2

0 in the ξ1 direction.
The procedures presented here can be applied to other mappings as well to

construct intermediate transformations generating nonuniform grid clustering
in the desired zones of the physical domain.

4.5 Comments

There are three basic approaches to treating problems with boundary and
interior layers. The classical approach relies on expansion of the solution in a
series of singular and slowly changing functions. The second technique applies
special approximations of equations. The third one is based on the implemen-
tation of local stretching functions to stretch the coordinates and, correspond-
ingly, provide clustered grids.

The approach using stretching functions appears to be more effective in
comparison with the other techniques because it requires only rough infor-
mation about the qualitative properties of the solution and enables one to
interpolate the solution uniformly over the entire physical region. The appli-
cation of interactive procedures using the basic intermediate transformations
allows one to generate efficient grids in arbitrary zones even without prelimi-
nary information about the qualitative features of the solution.

Estimates of the derivatives of the solution to the problem of the type
(4.8) with exponential layers were obtained by Brish (1954). Investigation of
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the qualitative properties of the solution to the linear problem (4.1) in interior
layers was carried out by Berger, Han, and Kellog (1984).

The asymptotic location of the interior layers of the solution to the problem
(4.6) was found by Lorenz (1982, 1984). The asymptotic expansion of the lin-
ear version of the problem (4.7) for a(0) > 1 was considered by Lomov (1964).
A qualitative investigation of the solutions to the problems (4.1), (4.6), (4.7)
in arbitrary boundary and interior layers was carried out by Liseikin (1984,
1986, 1993b). In these papers, estimates of the derivatives of the solution were
obtained. A detailed description of the estimates of derivatives of the solutions
of singularly perturbed equations is presented in the monograph by Liseikin
and Petrenko (1989) and Liseikin (2001a).

The logarithmic transformation x1(ϕ, ε) in (4.31) was introduced by Bah-
valov (1969) for the generation of clustered grids in the vicinity of exponential
boundary layers of singularly perturbed equations. The mappings xi(ϕ, ε),
i = 2, 3, 4, were proposed by Liseikin (1984, 1986) for the construction of
nonuniform clustered grids within power and combined boundary and inte-
rior layers. A particular shape of the basic contraction mapping x2(ϕ, ε) for
b = 1, having the form

x2(ϕ, ε) = εk cϕ

1 − cϕ
,

was also proposed independently by Vulanovic (1984) to generate grids within
some exponential layers for boundary layer functions of the type described by
(4.24).

Stretching functions based on inverse hyperbolic sines were employed by
Thomas et al. (1972) in a numerical solution of inviscid supersonic flow.

A two-sided stretching function of the logarithmic type (4.27) was intro-
duced by Roberts (1971) to study boundary layer flows.

A family of tangent mappings of the form

x = x0 + α tan[(s − s0)βϕ],

suitable primarily for internal layers, was introduced by Vinokur (1983) to
generate grids. These mappings were also employed by Bayliss and Garbey
(1995) as part of the adaptive pseudospectral method.

Physical quantities were used as new coordinates for stretching boundary
and interior layers by Tolstykh (1973).
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Algebraic Grid Generation

5.1 Introduction

The algebraic grid generation approach relies chiefly on an explicit construc-
tion of coordinate transformations through the formulas of transfinite interpo-
lation. Of central importance in the method are blending functions (univari-
ate quantities each depending on one chosen coordinate only). These provide
matching of the grid distribution on, and grid directions from, the bound-
aries and specified interior surfaces of an arbitrary domain. Direct control of
the essential properties of the coordinate transformations in the vicinity of
the boundaries and interior surfaces is carried out by the specification of the
out-of-surface-direction derivatives and blending functions.

The purpose of this chapter is to describe common techniques of algebraic
grid generation.

Nearly all of the formulas of transfinite interpolation include both repeated
indices over which a summation is carried out and one repeated index, usu-
ally i, that is fixed. Therefore in this chapter we do not use the convention
of summation of repeated indices but instead use the common notation

∑
to

indicate summation.

5.2 Transfinite Interpolation

This section describes some general three-dimensional formulas of transfinite
interpolation which are used to define algebraic coordinate transformations
from a standard three-dimensional cube Ξ3 with Cartesian coordinates ξi, i =
1, 2, 3, onto a physical domain X3 with Cartesian coordinates xi, i = 1, 2, 3.
The formulation of the three-dimensional interpolation is based on a particular
operation of Boolean summation over unidirectional interpolations. So, first,
the general formulas of unidirectional interpolation are reviewed.

V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-90-481-2912-6 5, c© Springer Science+Business Media B.V. 2010
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5.2.1 Unidirectional Interpolation

5.2.1.1 General Formulas

For the unit cube Ξ3, let there be chosen one coordinate direction ξi and
some sections of the cube orthogonal to this direction, defined by the planes
ξi = ξi

l , l = 1, . . . , Li. Furthermore, on each section ξi = ξi
l , let there be

given the values of some vector-valued function r(ξ), ξ = (ξ1, ξ2, ξ3), and
of its derivatives with respect to ξi up to order P i

l . Then the unidirectional
interpolation of the function r(ξ) is a vector-valued function P i[r](ξ) from
Ξ3 into R3 defined by the formula

P i[r](ξ) =
Li∑

l=1

P i
l∑

n=0

αi
l,n(ξi)

∂n

(∂ξi)n
r(ξ|ξi=ξi

l
). (5.1)

Here the smooth scalar functions αi
l,n(ξi), depending on one independent vari-

able ξi are subject to the following restrictions:

dm

(dξi)m
αi

l,n(ξi
k) = δl

kδn
m, l, k = 1, . . . , Li, m, n = 0, 1, . . . , P i

l , (5.2)

where δj
i is the Kronecker delta function, i.e.

δj
i =

{
1, i = j,

0, i �= j.

The expression (ξ|ξi=ξi
l
) in (5.1) designates a point that is a projection of

ξ = (ξ1, ξ2, ξ3) on the section ξi = ξi
l , i.e. the ith coordinate ξi of ξ is fixed

and equal to ξi
l ; for example,

(ξ|ξ1=ξ1
l
) = (ξ1

l , ξ2, ξ3).

It is also assumed in (5.1) and below that the operator for the zero-order
derivative is the identity operator, i.e.

∂0

(∂ξi)0
f(ξ) = f(ξ),

d0

(dξi)0
g(ξi) = g(ξi).

The coefficients αi
l,n(ξi) in (5.1) are referred to as the blending functions.

They serve to propagate the values of the vector-valued function r(ξ) from
the specified sections of the cube Ξ3 into its interior. It is easily shown that the
conditions (5.2) imposed on the blending functions αi

l,n(ξi) provide matching
at the sections ξi = ξi

l of the values of the function P i[r](ξ) and r(ξ), as well
as the values of their derivatives with respect to ξi, namely,

∂nP i[r]
(∂ξi)n

(ξ|ξi=ξi
l
) =

∂nr

(∂ξi)n
(ξ|ξi=ξi

l
), n = 0, . . . , P i

l .
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5.2.1.2 Two-Boundary Interpolation

A very important interpolation for grid generation applications is the one
which matches the values of the vector-valued function r(ξ) and of its deriv-
atives exclusively at the boundary planes of the cube Ξ3. In this case Li = 2,
ξi
1 = 0, and ξi

2 = 1, and the relations (5.1) and (5.2) have the form

P i[r](ξ) =
P i

1∑

n=0

α1
l,n(ξi)

∂n

(∂ξi)n
r(ξ|ξi=0)

+
P i

2∑

n=0

αi
2,n(ξi)

∂n

(∂ξi)n
r(ξ|ξi=1), (5.3)

dm

(dξi)m
αi

l,n(ξi
k) = δl

kδn
m, l, k = 1, 2, m, n = 0, 1, . . . , P i

l . (5.4)

The interpolation described by (5.3) is referred to as the two-boundary inter-
polation.

5.2.2 Tensor Product

The composition of two unidirectional interpolations P i[r](ξ) and P j [r](ξ)
of r(ξ) in the directions ξi and ξj , respectively, is called their tensor product.
This operation is denoted by P i[r] ⊗ P j [r](ξ) and, in accordance with (5.1),
we obtain

P i[r] ⊗ P j [r](ξ) = P i[P j [r]](ξ)

=
Li∑

l=1

P i
l∑

n=0

αi
l,n(ξi)

∂nP j [r]
(∂ξi)n

(ξ|ξi=ξi
l
)

=
Lj∑

k=1

P j
k∑

m=0

Li∑

l=1

P i
l∑

n=0

αi
l,n(ξi)αj

k,m(ξj)

× ∂n+mr

(∂ξi)n(∂ξj)m
(ξ|ξi=ξi

l
,ξj=ξj

k
). (5.5)

Here by the notation (ξ|ξi=ξi
l
,ξj=ξj

k
) we mean the point which is the projection

of ξ on the intersection of the planes ξi = ξi
l and ξj = ξj

k, e.g.

(ξ|ξ1=ξ1
l
,ξ3=ξ3

k
) = (ξ1

l , ξ2, ξ3
k).

Equation (5.5) shows clearly that the tensor product is a commutative oper-
ation, i.e.

P i[r] ⊗ P j [r] = P j [r] ⊗ P i[r].

Using the relations (5.1), (5.2), and (5.5) we obtain
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∂

∂ξi
P i[r] ⊗ P j [r](ξ|ξi=ξi

s,ξj=ξj
t
)

=
Lj∑

m=1

P j
k∑

k=0

Li∑

l=1

P i
l∑

p=0

d
dξi

αi
m,k(ξi

s)α
j
l,p(ξ

j
t )

∂k+pr

(∂ξi)k(∂ξj)p
(ξ|ξi=ξi

m,ξj=ξj
l
)

=
∂r

∂ξi
(ξ|ξi=ξi

s,ξj=ξj
t
).

Analogously,

∂k+p

(∂ξi)k(∂ξj)p
(P i[r] ⊗ P j [r])(ξ|ξi=ξi

s,ξj=ξj
t
) =

∂k+p

(∂ξi)k(∂ξj)p
r(ξ|ξi=ξi

s,ξj=ξj
t
).

Thus the derivatives of the tensor product P i[r] ⊗ P j [r] with respect to ξi

and ξj match the derivatives of the function r(ξ) at the intersections of the
planes ξi = ξi

s and ξj = ξj
t .

5.2.3 Boolean Summation

5.2.3.1 Bidirectional Interpolation

The bidirectional interpolation matching the values of the function r(ξ) and
of its derivatives at the sections in the directions ξi and ξj is defined through
the Boolean summation ⊕:

P i[r] ⊕ P j [r](ξ) = P i[r](ξ) + P j [r](ξ) − P i[r] ⊗ P j [r](ξ). (5.6)

Using (5.1) and (5.5), we obtain

P i[r] ⊕ P j [r](ξ)

=
Li∑

l=1

P i
l∑

n=0

αi
l,n(ξi)

∂nr

(∂ξi)n
(ξ|ξi=ξi

l
) +

Lj∑

k=1

P j
k∑

m=0

αj
k,m(ξi)

∂mr

(∂ξj)m
(ξ|ξj=ξj

k
)

−
Lj∑

k=1

P j
k∑

m=0

Li∑

l=1

P i
l∑

n=0

αi
l,n(ξi)αj

k,m(ξj)
∂n+mr

(∂ξi)n(∂ξj)m
(ξ|ξi=ξi

l
,ξj=ξj

k
). (5.7)

Taking into account the relation

P j [r] − P i[r] ⊗ P j [r] = P j [r − P i[r]] (5.8)

we obtain the result that the formulas (5.6), and (5.7) for the Boolean sum-
mation can be written as the ordinary sum of two unidirectional interpolants
P i[r] and P j [r − P i[r]]. Thus, using (5.1), we obtain

P i[r] ⊕ P j [r](ξ) = P j [r](ξ) +
Li∑

l=1

P i
l∑

n=0

αi
l,n(ξi)

∂n(r − P j [r])
(∂ξi)n

(ξ|ξi=ξi
l
). (5.9)
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From (5.7) it is evident that

P i[r] ⊕ P j [r] = P j [r] ⊕ P i[r],

so the indices i and j in (5.7), (5.9) can be interchanged.
The Boolean summation (5.6) matches r(ξ) and its derivatives at all sec-

tions ξi = ξi
k and ξj = ξj

l , i.e.

∂k+p

(∂ξi)k(∂ξj)p
(P i[r] ⊗ P j [r])(ξ|ξt=ξt

l
) =

∂k+p

(∂ξi)k(∂ξj)p
r(ξ|ξt=ξt

l
),

where either t = i or t = j.

5.2.3.2 Three-Dimensional Interpolation

A multidirectional interpolation P [r](ξ) of r(ξ), which matches the values of
the function r(ξ) and of its derivatives at the sections ξi = ξi

l , l = 1, . . . , Li,
in all directions ξi, i = 1, 2, 3, is defined through the Boolean summation of
all unidirectional interpolations P i[r], i = 1.2, 3:

P [r] = P 1[r] ⊕ P 2[r] ⊕ P 3[r]. (5.10)

Taking into account (5.6), we obtain

P [r] = P 1[r] + P 2[r] + P 3[r]
− P 1[r] ⊗ P 2[r] − P 1[r] ⊗ P 3[r] − P 2[r] ⊗ P 3[r]
+ P 1[r] ⊗ P 2[r] ⊗ P 3[r]. (5.11)

5.2.3.3 Recursive Form of Transfinite Interpolation

Using the relation (5.8) we can easily show that (5.11) is also equal to the
following equation:

P [r] = P 1[r] + P 2[r − P 1[r]] + P 3

[
r − P 1[r] − P 2[r − P 1[r]]

]
. (5.12)

This represents the formula (5.10) for multidirectional interpolation as the
sum of the three unidirectional interpolations P 1[r], P 2[r − P 1[r]], and
P 3[r − P 1[r] − P 2[r − P 1[r]]]. Therefore the expression (5.12) for P [r] gives
a recursive form of the interpolation (5.10) through a sequence of the unidi-
rectional interpolations (5.1):

F 1[r] = P 1[r],
F 2[r] = F 1[r] + P 2[r − F 1[r]],
P [r] = F 2[r] + P 3[r − F 2[r]]

which is usually applied in constructing algebraic coordinate transformations.
Using (5.1) we obtain
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F 1[r](ξ) =
L1∑

l=1

P 1
l∑

n=0

α1
l,n(ξ1)

∂nr

(∂ξ1)n
(ξ1

l , ξ2, ξ3),

F 2[r](ξ) = F 1[r](ξ) +
L2∑

l=1

P 2
l∑

n=0

α2
l,n(ξ2)

∂n(r − F 1[r])
(∂ξ2)n

(ξ1, ξ2
l , ξ3), (5.13)

P [r](ξ) = F 2[r](ξ) +
L3∑

l=1

P 3
l∑

n=0

α3
l,n(ξ3)

∂n(r − F 2[r])
(∂ξ3)n

(ξ1, ξ2, ξ3
l ).

It is easy to see, taking advantage of (5.2), that the multiple summation
matches the function r(ξ) and its derivatives with respect to ξ1, ξ2, and ξ3

on all sections ξi = ξi
l , i = 1, 2, 3, of the cube Ξ3.

5.2.3.4 Outer Boundary Interpolation

Equation (5.13) shows that the outer boundary interpolation based on the two-
boundary unidirectional interpolations described by (5.4) has the following
form:

F 1[r](ξ) =
P 1

1∑

n=0

α1
1,n(ξ1)

∂nr

(∂ξ1)n
(0, ξ2, ξ3)

+
P 1

2∑

n=0

α1
2,n(ξ1)

∂nr

(∂ξ1)n
(1, ξ2, ξ3),

F 2[r](ξ) = F 1[r](ξ) +
P 2

1∑

n=0

α2
1,n(ξ2)

∂n(r − F 1[r])
(∂ξ2)n

(ξ1, 0, ξ3)

+
P 2

2∑

n=0

α2
2,n(ξ2)

∂n(r − F 1[r])
(∂ξ2)n

(ξ1, 1, ξ3),

P [r](ξ) = F 2[r](ξ) +
P 3

1∑

n=0

α3
1,n(ξ3)

∂n(r − F 2[r])
(∂ξ3)n

(ξ1, ξ2, 0)

+
P 3

2∑

n=0

α3
2,n(ξ3)

∂n(r − F 2[r])
(∂ξ3)n

(ξ1, ξ2, 1).

(5.14)

5.2.3.5 Two-Dimensional Interpolation

The formulas for two-dimensional transfinite interpolation of a two-dimension-
al vector-valued function x(ξ) : Ξ2 → X2 are obtained from (5.13) and (5.14)
by assuming F 2(r) = P (r), α3

l,k = 0, and omitting ξ3. For example, we obtain
from (5.13) the following formula for two-dimensional transfinite interpolation:
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Fig. 5.1. Coordinate transformation

F 1[r](ξ1, ξ2) =
L1∑

l=1

P 1
l∑

k=0

α1
k(ξ1)

∂kr

(∂ξ1)k
(ξ1

l , ξ2),

P [r](ξ1, ξ2) = F 1[r](ξ1, ξ2) (5.15)

+
L2∑

l=1

P 2
l∑

m=0

α2
l,m(ξ2)

∂m(r − F 1[r])
(∂ξ2)m

(ξ1, ξ2
l ).

5.3 Algebraic Coordinate Transformations

This section sets out the definitions of the algebraic coordinate transforma-
tions appropriate for the generation of structured grids through the formulas
of transfinite interpolation.

5.3.1 Formulation of Algebraic Coordinate Transformation

The formulas of transfinite interpolation described above give clear guidance
on how to define an algebraic coordinate transformation

x(ξ) : Ξ3 → X3, x(ξ) = (x1(ξ), x2(ξ), x3(ξ)), ξ = (ξ1, ξ2, ξ3)

from the cube Ξ3 onto a domain X3 ⊂ R3 which matches, at the boundary
and some chosen intermediate coordinate planes of the cube, the prescribed
values and the specified derivatives of x(ξ) along the coordinate directions
emerging from the coordinate surfaces (Fig. 5.1).

Let there be chosen, in each direction ξi, some coordinate planes ξi =
ξi
l , l = 1, . . . , Li, of the cube Ξ3, including two opposite boundary planes

ξi = ξi
0 = 0, ξi = ξi

Li = 1. Furthermore, let there be specified, at each
section ξi = ξi

l , a smooth three-dimensional vector-valued function denoted
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by Ai
l,0(ξ|ξi=ξi

l
), which is assumed to represent the values of the function

x(ξ) being constructed at the points of this section. Also, let there be spec-
ified, at this section, three-dimensional vector-valued functions denoted by
Ai

l,n(ξ|ξi=ξi
l
) which represent derivatives with respect to ξi of the function

x(ξ) on the respective sections ξi = ξi
l . Thus it is assumed that

Ai
l,0(ξ|ξi=ξi

l
) =

∂0

(∂ξi)0
x(ξ|ξi=ξi

l
) = x(ξ|ξl=ξi

l
), l = 1, . . . , Li,

Ai
l,n(ξ|ξi=ξi

l
) =

∂n

(∂ξi)n
x(ξ|ξi=ξi

l
), n = 1, . . . , P i

l .

Since
∂m

(∂ξj)m

(
∂nx

(∂ξi)n

)
=

∂n

(∂ξj)n

(
∂mx

(∂ξj)m

)
,

we find that the vector functions Ai
l,n(ξ|ξi=ξi

l
) and Aj

k,m(ξ|ξj=ξj
k
) specifying

the corresponding derivatives on the planes ξi = ξi
l and ξj = ξj

k, respectively,
must be compatible at the intersection of these planes, i.e.

∂m

(∂ξj)m
Ai

l,n(ξ|ξi=ξi
l
,ξj=ξj

k
) =

∂n

(∂ξj)n
Aj

k,m(ξ|ξi=ξi
l
,ξj=ξj

k
),

n = 0, . . . , P i
l , m = 0, . . . , P j

k . (5.16)

When the vector-valued functions Ai
l,k satisfying (5.16) are specified, the

transformation x(ξ) is obtained by substituting the functions Ai
l,0 and Ai

l,n

for the values of r(ξ) and of its derivatives ∂nr/∂(ξi)n(ξ|ξi=ξi
l
), respectively

in the above formulas for transfinite interpolation. Hence the transformation
based on the unidirectional interpolation given by (5.1) has the form

P i(ξ) =
Li∑

l=1

P i
l∑

n=0

αi
l,n(ξi)Ai

l,n(ξ|ξi=ξi
l
). (5.17)

This mapping matches the values of Ai
l,n only at the coordinate planes ξi = ξi

l

crossing the chosen coordinate ξi.
The formula (5.5) for the tensor product ⊗ of the two mappings P i(ξ)

and P j(ξ) obtained from (5.17) gives then the transformation

P i ⊗ P j(ξ)

=
Lj∑

k=1

P j
k∑

m=0

Li∑

l=1

P i
l∑

n=0

αi
l,n(ξi)αj

k,m(ξj)
∂n

(∂ξi)n
Aj

k,m(ξ|ξi=ξi
l
,ξj=ξj

k
),

(5.18)

which matches the values of Ai
l,n and Aj

k,m at the intersection of the planes
ξi = ξi

l and ξj = ξj
k. According to the consistency conditions (5.16), the

operation of the tensor product is commutative, i.e.
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P i ⊗ P j(ξ) = P j ⊗ P i(ξ),

which is indispensable for an appropriate definition of the coordinate trans-
formation x(ξ).

5.3.2 General Algebraic Transformations

The general formula for the three-dimensional coordinate transformation x(ξ)
that provides a matching with Ai

l,n in all directions and at all chosen coordi-
nate planes ξi = ξi

l is given by the replacement of the values of the function
r(ξ) and of its derivatives in the recursive formula (5.13) by the functions
Ai

l,n. Thus we obtain

F 1(ξ) =
L1∑

l=1

P 1
l∑

n=0

α1
l,n(ξ1)A1

l,n(ξ1
l , ξ2, ξ3),

F 2(ξ) = F 1(ξ) +
L2∑

l=1

P 2
l∑

n=0

α2
l,n(ξ2)

(
A2

l,n − ∂nF 1

(∂ξ2)n

)
(ξ1, ξ2

l , ξ3), (5.19)

x(ξ) = F 2(ξ) +
L3∑

l=1

P 3
l∑

n=0

α3
l,n(ξ3)

(
A3

l,n − ∂nF 2

(∂ξ3)n

)
(ξ1, ξ2, ξ3

l ).

As the specified functions Ai
l,n are consistent on the intersections of the planes

ξi = ξi
l and ξj = ξj

k and, therefore, the tensor product of the transformations
P i(ξ) and P j(ξ) is commutative, the result (5.19) is independent of the spe-
cific ordering of the successive interpolation directions ξi.

The formula for the two-dimensional algebraic coordinate transformation
is obtained in a corresponding way from (5.15):

F 1(ξ) =
L1∑

l=1

P 1
l∑

n=0

α1
l,n(ξ1)A1

l,n(ξ1
l , ξ2),

x(ξ) = F 1(ξ) +
L2∑

l=1

P 2
l∑

n=0

α2
l,n

(
A2

l,n − ∂nF 1

(∂ξ2)n

)
(ξ1, ξ2

l ),

(5.20)

where Ai
l,n are two-dimensional vector-valued functions representing x(ξ) for

n = 0 and its derivatives for P i
l ≥ n > 0 at the sections

ξi = ξi
l , i = 1, 2, l = 1, . . . , Li.

These functions must satisfy the relations (5.16) at the points (ξ1
l , ξ2

m), l =
1, . . . , L1, m = 1, . . . , L2.

The vector-valued function x(ξ) defined by (5.19) maps the unit cube Ξ3

onto the physical region X3 bounded by the six coordinate surfaces speci-
fied by the parametrizations Ai

1,0(ξ|ξi=0) and Ai
Li,0(ξ|ξi=1), i = 1, 2, 3, from
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the respective boundary intervals of Ξ3. The introduction of the intermediate
planes ξi = ξi

l , 0 < ξi
l < 1, into the formulas of transfinite interpolation allows

one to control the grid distribution and grid spacing in the vicinity of some
selected interior surfaces of the domain X3. A similar result is achieved by
joining, at the selected boundary surfaces, a series of transformations x(ξ)
constructed using the above described outer boundary interpolation equa-
tion (5.14):

F 1(ξ) =
P 1

1∑

n=0

α1
1,n(ξ1)A1

1,n(0, ξ2, ξ3)

+
P 1

2∑

n=0

α1
2,n(ξ1)A1

2,n(1, ξ2, ξ3),

F 2(ξ) = F 1(ξ) +
P 2

1∑

n=0

α2
1,n(ξ2)

(
A2

1,n − ∂nF 1

(∂ξ2)n
(ξ1, 0, ξ3)

)

+
P 2

2∑

n=0

α2
2,n(ξ2)

(
A2

2,n − ∂nF 1

(∂ξ2)n

)
(ξ1, 1, ξ3),

x(ξ) = F 2(ξ) +
P 3

1∑

n=0

α3
1,n(ξ3)

(
A3

1,n − ∂nF 2

(∂ξ3)n

)
(ξ1, ξ2, 0)

+
P 3

2∑

n=0

α3
2,n(ξ3)

(
A3

2,n − ∂nF 2

(∂ξ3)n

)
(ξ1, ξ2, 1).

(5.21)

This boundary interpolation transformation x(ξ) is widely applied to gen-
erate grids in regions around bodies. These domains cannot be successfully
gridded by one global mapping x(ξ) from the unit cube Ξ3 because of the in-
evitable singularities pertinent to such global maps. An approach based on the
matching of a series of boundary-interpolated transformations is thus prefer-
able. It only requires the consistent specification of the parametrizations and
coordinate directions at the corresponding boundary surfaces.

Equations (5.18)–(5.21) use the same set of blending functions αi
l,n(ξi) to

define each component xi(ξ) of the transformation x(ξ). These formulas can
be generalized by introducing an individual set of blending functions αi

l,n(ξi)
for the definition of each component xi(ξ) of the map x(ξ) being built. Such
a generalization gives broader opportunities to define appropriate algebraic
coordinate transformations x(ξ) and, therefore, to generate grids more suc-
cessfully.
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5.4 Lagrange and Hermite Interpolations

The recursive formula (5.19) represents a general form of transfinite inter-
polation which includes the prescribed values of the constructed coordinate
transformation x(ξ) and of its derivatives up to order P i

l at the sections
ξi = ξi

l of the cube Ξ3. However, most grid generation codes require, as a
rule, the specification of only the values of the function x(ξ) being sought
and sometimes, in addition, the values of its first derivatives at the selected
sections. Such sorts of algebraic coordinate transformation are described in
this section.

5.4.1 Coordinate Transformations Based on Lagrange Interpolation

A Lagrange interpolation matches only the values of the function r(ξ) at some
prescribed sections ξi = ξi

l , l = 1, . . . , Li, of the cube Ξ3. So, in accordance
with (5.1), the unidirectional Lagrange interpolation has the following form:

P i[r](ξ) =
Li∑

l=1

αi
l(ξ

i)r(ξ|ξi=ξi
l
).

The blending function αi
l(ξ

i) in this equation corresponds to αi
l,0(ξ

i) in the
formula (5.1). Taking into account (5.2), the blending functions αi

l(ξ
i), l =

1, . . . , Li, depending on one independent variable ξi, must be subject to the
following restrictions:

αi
l(ξ

i
k) = δl

k, l, k = 1, . . . , Li. (5.22)

These restrictions imply that the blending function αi
l for a fixed l equals 1 at

the point ξi = ξi
l and equals zero at all other points ξi

m, m �= l. The formula
for the construction of a three-dimensional coordinate mapping x(ξ) based
on the Lagrangian interpolation is obtained from (5.19) as

F 1(ξ) =
L1∑

l=1

α1
l (ξ

1)A1
l (ξ|ξ1=ξ1

l
),

F 2(ξ) = F 1(ξ) +
L2∑

l=1

α2
l (ξ

2)
(
A2

l − F 1

)
(ξ|ξ2=ξ2

l
), (5.23)

x(ξ) = F 2(ξ) +
L3∑

l=1

α3
l (ξ

3)
(
A3

l − F 2

)
(ξ|ξ3=ξ3

l
),

where the blending functions αi
l(ξ

i) satisfy (5.22), and the functions Ai
l(ξ|ξi=ξi

l
)

corresponding to Ai
l,0 in (5.22) specify the values of the mapping x(ξ) being
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sought. In accordance with (5.16), the specified functions Ai
l must coincide at

the intersection of their respective coordinate planes ξi = ξi
l , i.e.

Ai
l(ξ|ξi=ξi

l
,ξj=ξj

k
) = Aj

k(ξ|ξi=ξi
l
,ξj=ξj

k
).

Now we consider some examples of the blending functions used in Lagrange
interpolations.

5.4.1.1 Lagrange Polynomials

The best-known blending functions αi
l(ξ

i) satisfying (5.22) are defined as La-
grange polynomials applied to the points ξi

1, . . . , ξ
i
Li :

αi
l(ξ

i) =
Li∏

j=1

ξi − ξi
j

ξi
l − ξi

j

, j �= l. (5.24)

For example, when Li = 2, then from (5.24)

αi
1(ξ

i) =
ξi − ξi

2

ξi
1 − ξi

2

, αi
2(ξ

i) =
ξi − ξi

1

ξi
2 − ξi

1

= 1 − αi
1(ξ

i). (5.25)

Therefore, for the boundary interpolation, we obtain

αi
1(ξ

i) = 1 − ξi, αi
2(ξ

i) = ξi. (5.26)

5.4.1.2 Spline Functions

The Lagrange polynomials become polynomials of a high-order when a large
number of intermediate sections ξi = ξi

l is applied to control the grid dis-
tribution in the interior of the domain X3. These polynomials of high order
may cause oscillations. One way to overcome this drawback is to use splines
as blending functions αi

l(ξ
i). The splines are defined as polynomials of low-

order between each of the specified points ξi = ξi
Li , with continuity of some

derivatives at the interior points.
Piecewise-continuous splines satisfying (5.22) can be derived by means of

linear polynomials. The simplest pattern of such blending functions in the
form of splines consists of piecewise linear functions:

αl(ξi) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, ξi ≤ ξi
l−1,

ξi −ξi
l−1

ξi
l

−ξi
l−1

, ξi
l−1 ≤ ξi ≤ ξi

l ,

ξi
l+1−ξi

ξi
l+1−ξi

l

, ξi
l ≤ ξi ≤ ξi

l+1,

0, ξi ≥ ξi
l+1.

However, the use of these blending functions results in a nonsmooth point
distribution since they themselves are not smooth.

Continuity of the first derivative of a spline blending function can be
achieved with polynomials of the third-order, regardless of the number of
interior sections.
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5.4.1.3 Construction Based on General Functions

The application of polynomials in the Lagrange interpolation gives only a poor
opportunity to control the grid spacing near the selected boundary and interior
surfaces. In this subsection we describe a general approach to constructing the
blending functions αi

l(ξ
i) by the use of a wide range of basic functions, which

provides a real opportunity to control the grid point distribution.
The formulation of the blending functions on the interval 0 ≤ ξi ≤ 1, with

Li specified points,
0 = ξi

1 < · · · < ξi
Li = 1,

requires only the specification of some univariate smooth positive function

φ(x) : [0, ∞) → [0, ∞),

satisfying the restrictions φ(0) = 0, φ(1) = 1. This function can be used as a
basic element to derive the blending functions satisfying (5.22) through the
following standard procedure.

First we define two series of functions

φf
l (ξi) and φb

l (ξ
i), l = 1, . . . , Li.

The functions φf
l (ξi) are defined for l = 1 by

φf
1 (ξi) = φ(1 − ξi), 0 ≤ ξ ≤ 1,

and for 1 < l ≤ Li by

φf
l (ξi) =

⎧
⎨

⎩
0, 0 ≤ ξi ≤ ξi

l−1,

φ( ξi −ξi
l−1

ξi
l

−ξi
l−1

), ξi
l−1 ≤ ξi ≤ 1.

The functions φb
l (ξ

i) are determined similarly:

φb
Li(ξi) = φ(ξi)

and for 1 ≤ l < Li,

φb
l (ξ

i) =

⎧
⎨

⎩
0, 1 ≥ ξi ≥ ξi

l+1,

φ( ξi
l+1−ξi

ξi
l+1−ξi

l

), 0 ≤ ξi ≤ ξi
l+1.

Using the functions φf
l (ξi) and φb

l (ξ
i), the blending coefficients αi

l(ξ
i) satisfy-

ing (5.22) are defined by

αi
l(ξ

i) = φf
l (ξi)φb

l (ξ
i), l = 1, . . . , Li. (5.27)

Each of these blending functions vanishes outside some interval and thus it
affects the interpolation function only locally.
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Fig. 5.2. Smooth blending functions

Note that this procedure for constructing blending functions for the La-
grange interpolations will yield splines if the original function φ is a polyno-
mial. This construction may be extended by using various original functions
for the terms φf

l and φb
l in (5.27).

The simplest example of the basic function is φ(x) = x. However, this
function generates nonsmooth blending coefficients αi

l(ξ
i) at the points ξi

l−1

and ξi
l+1, since αi

l(ξ
i) ≡ 0 outside the interval (ξi

l−1, ξi
l+1). If the derivative

of φ(x) at the point x = 0 is zero then the blending functions derived by the
procedure described are smooth. One example of such a function is φ(x) = x2.
It can readily be shown that in this case the blending functions αi

l are of the
class C1[0, 1].

Continuity of the higher-order derivatives of the blending functions (5.27)
is obtained when the basic function φ(x) satisfies the condition φ(k)(0) =
0, k > 1, in particular, if φ(x) = xk+1. The function φ(x) = ϕ(x), where

ϕ(x) =

{
0, x = 0,

a1−1/x, x > 0,

with a > 1, generates an infinitely differentiable blending function αi
l(ξ

i) on
the interval [0, 1]. Figure 5.2 demonstrates the blending functions constructed
for φ(x) = ϕ(x) (left) and φ(x) = x2 (right).

5.4.1.4 Relations Between Blending Functions

Now, we point out some relations between blending functions which can be
useful for their construction. If the functions αi

l(ξ
i) are blending functions for

Lagrangian interpolation, namely, they are subject to the restrictions (5.22),
then the functions βi

l (ξ
i) defined below satisfy the condition (5.22) as well:
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(1) βi
l (ξ

i) = αi
l(ξ

i)f(ξ) if f(ξi
l ) = 1,

(2) βi
l (ξ

i) = αi
l [f(ξi)] if f(ξi

l ) = ξi
l ,

(3) βi
l (ξ

i) = f [αi
l(ξ

i)] if f(0) = 0, f(1) = 1, (5.28)
(4) βi

l (ξ
i) = αi

l(ξ
i) + f(ξi) if f(ξi

l ) = 0,

(5) βi
l (ξ

i) = 0.5[αi
l(ξ

i) + γi
l (ξ

i)] if γi
l (ξ) satisfies (5.22).

5.4.2 Transformations Based on Hermite Interpolation

Hermite interpolation matches the values of both the function r(ξ), and its
first derivatives ∂r/∂ξi(ξ|ξi=ξi

l
) at each section ξi = ξi

l , l = 1, . . . , Li, there-
fore the unidirectional interpolation (5.1) takes the following form:

P i[r](ξ) =
Li∑

l=1

(
αi

l,0(ξ
i)r(ξ|ξi=ξi

l
) + αi

l,1(ξ
i)

∂r

∂ξi
(ξ|ξi=ξi

l
)
)

. (5.29)

The formula (5.19) in the case of a Hermite coordinate mapping x(ξ) which
matches the specified values of x(ξ), denoted by Ai

l,0, and of its first deriv-
atives, denoted by Ai

l,1, at all sections ξi = ξi
l , l = 1, . . . , Li, and in all

directions ξi, i = 1, 2, 3, is thus reduced to

F 1(ξ) =
L1∑

l=1

(
α1

l,0(ξ
1)A1

l,0(ξ
1
l , ξ2, ξ3) + α1

l,1(ξ
1)A1

l,1(ξ
1
l , ξ2, ξ3)

)
,

F 2(ξ) =F 1(ξ) +
L2∑

l=1

(
α2

l,0(ξ
2)(A2

l,0 − F 1)(ξ1, ξ2
l , ξ3)

+ α2
l,1(ξ

2)
(

A2
l,1 − ∂F 1

∂ξ2

)
(ξ1, ξ2

l , ξ3)
)

,

x(ξ) =F 2(ξ) +
L3∑

l=1

(
α3

l,0(ξ
3)(A3

l,0 − F 2)(ξ1, ξ2, ξ3
l )

+ α3
l,1(ξ

3)
(

A3
l,1 − ∂F 2

∂ξ3

)
(ξ1, ξ2, ξ3

l )
)

,

(5.30)

where, in accordance with (5.2), the blending functions αi
l,0, αi

l,1 satisfy the
conditions

αi
l,0(ξ

i
k) = δl

k, αi
l,1(ξ

i
k) = 0,

d
dξi

αi
l,1(ξ

i
k) = δl

k,
d

dξi
αi

l,0(ξ
i
k) = 0, (5.31)

l, k = 1, . . . , Li, i = 1, 2, 3,

and the vector-valued functions Ai
l,n(ξ|ξi=ξi

l
) satisfy the consistency condi-

tions (5.16):
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Ai
l,0(ξ|ξi=ξi

l
,ξj=ξj

k
) = Aj

k,0(ξ|ξi=ξi
l
,ξj=ξj

k
),

∂

∂ξj
Ai

l,0(ξ|ξi=ξi
l
,ξj=ξj

k
) = Aj

k,1(ξ|ξi=ξi
l
,ξj=ξj

k
).

(5.32)

5.4.2.1 Construction of Blending Functions

The blending functions αi
l,m(ξi), m = 0, 1, for Hermite interpolations can be

obtained from the smooth blending functions defined for Lagrange interpo-
lations. Namely, let αi

l(ξ
i), l = 1, . . . , Li, be some smooth scalar functions

meeting the conditions (5.22). The functions αi
l,m, m = 0, 1, determined by

the relations

αi
l,0 =

(
1 − 2(ξi − ξi

l )
dαi

l

dξi
(ξi)

)
[αi

l(ξ
i)]2,

αi
l,1 = (ξi − ξi

l )[α
i
l(ξ

i)]2,
(5.33)

then satisfy (5.31) and, therefore, are the blending functions for the Hermite
interpolations. For example, if Li = 2 and the Lagrangian blending functions
are defined through (5.25), then from (5.33),

αi
1,0(ξ

i) =
(

1 − 2
ξi − ξi

1

ξi
1 − ξi

2

)(
ξi − ξi

2

ξi
1 − ξi

2

)2

,

αi
2,0(ξ

i) =
(

1 − 2
ξi − ξi

2

ξi
2 − ξi

1

)(
ξi − ξi

1

ξi
2 − ξi

1

)2

,

αi
1,1(ξ

i) = (ξi − ξi
1)

(
ξi − ξi

2

ξi
1 − ξi

2

)2

,

αi
2,1(ξ

i) = (ξi − ξi
2)

(
ξi − ξi

1

ξi
2 − ξi

1

)2

.

(5.34)

So if ξi
1 = 0, ξi

2 = 1, then from these relations,

αi
1,0(ξ

i) = (1 + 2ξi)(ξi − 1)2,

αi
2,0(ξ

i) = (3 − 2ξi)(ξi)2 = 1 − αi
1,0(ξ

i),

αi
1,1(ξ

i) = ξi(1 − ξi)2,

αi
2,1(ξ

i) = (ξi − 1)(ξi)2.

(5.35)

If the blending functions for Lagrange interpolation satisfy the condition

dαi
l

dξi
(ξi) ≡ 0, if ξi ≥ ξi

l+1 and ξi ≤ ξi
l−1, (5.36)

then the blending functions αi
l,n(ξi) for the Hermite interpolation can be de-

rived from αi
l(ξ

i) by the relations
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αi
l,0(ξ

i) =
(

1 + (ξi − ξi
l )

dαi
l

dξi
(ξi

l )
)

αi
l(ξ

i),

αi
l,1(ξ

i) = (ξi − ξi
l )α

i
l(ξ

i).
(5.37)

It is readily shown that the blending functions αi
l,n(ξi), n = 0, 1, satisfy the

restriction (5.31). Note that the approach described above for the general
construction of the blending functions for Lagrange interpolation yields the
smooth blending functions αi

l(ξ
i), l = 1, . . . , Li, in the form (5.27), which, in

addition to (5.22), are also subject to (5.36).

5.4.2.2 Deficient Form of Hermite Interpolation

Often it is not reasonable to specify the values of the first derivative with
respect to ξi of the sought coordinate transformation x(ξ) at all sections
ξi = ξi

l , l = 1, . . . , Li, but only at some selected ones. By omitting the
corresponding terms

α1
l,1(ξ

1)A1
l,1(ξ|ξ1=ξ1

l
)

and/or

αi
l,1(ξ

i)
(

Ai
l,1 − ∂F i−1

∂ξi

)
(ξ|ξi=ξi

l
), i = 2, 3,

in (5.30), a deficient form of Hermite interpolation is obtained which matches
the values of the first derivatives at the selected sections only. For example,
the outer boundary interpolation which contains the outer boundary specifi-
cations on all boundaries but the outward derivative with respect to ξ1 on the
boundary ξ1 = 0 only has, in accordance with (5.30), the form

F 1(ξ) = α1
1,0(ξ

1)A1
1,0(0, ξ2, ξ3) + α1

2,0(ξ
1)A1

2,0(1, ξ2, ξ3)

+ α1
1,1(ξ

1)A1
1,1(0, ξ2, ξ3),

F 2(ξ) = F 1(ξ) + α2
1,0(ξ

2)(A2
1,0 − F 1)(ξ1, 0, ξ3)

+ α2
2,0(ξ

2)(A2
2,0 − F 1)(ξ1, 1, ξ3),

x(ξ) = F 2(ξ) + α3
1,0(ξ

3)(A3
1,0 − F 2)(ξ1, ξ2, 0)

+ α3
2,0(ξ

3)(A3
2,0 − F 2)(ξ1, ξ2, 1).

(5.38)

5.4.2.3 Specification of Normal Directions

In the outer boundary interpolation technique the outward derivatives
Ai

1,1(ξ|ξi=0), Ai
2,1(ξ|ξi=1) along the lines emerging from the boundary sur-

faces are usually required to be performed as normals to the corresponding
boundary surfaces in order to generate orthogonal grids near the boundaries.
The boundary surfaces are parametrized by the specified boundary transfor-
mations Ai

1,0(ξ|ξi=0) and Ai
2,0(ξ|ξi=1), respectively. Therefore, these normals

can be computed from the cross product of the vectors tangential to the
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boundary surfaces. For example, the ξ1 coordinate direction A1
l,1(ξ1

l , ξ2, ξ3)
can be specified as

A1
1,1(0, ξ2, ξ3) = g(ξ2, ξ3)

(
∂

∂ξ2
A1

1,0(0, ξ2, ξ3) × ∂

∂ξ3
A1

1,0(0, ξ2, ξ3)
)

,

where g(ξ2, ξ3) is a scalar function that can be used to control the spacing of
the grid lines emerging from the boundary surface represented by the para-
metrization A1

1,0(0, ξ2, ξ3). Such a specification of the first derivatives can be
chosen on the interior sections as well.

5.5 Control Techniques

Commonly, all algebraic schemes are computationally efficient but require a
significant amount of user interaction and control techniques to define work-
able meshes. This section delineates some control approaches applied to alge-
braic grid generation.

The spacing between the grid points and the skewness of the grid cells
in the physical domain is controlled in the algebraic method, primarily by
the blending functions αi

l,n(ξi), by the representations of the boundary and
intermediate surfaces Ai

l,0(ξ|ξi=ξi
l
), and by the values of the first derivatives

Ai
l,1(ξ|ξi=ξi

l
) in the interpolation equations.

As was stated in Chap. 4, an effective approach which significantly simpli-
fies the control of grid generation relies on the introduction of an intermediate
control domain between the computational and the physical regions. The con-
trol domain is a unit cube Q3 with the Cartesian coordinates qi, i = 1, 2, 3. In
this approach the coordinate transformation x(ξ) from the unit cube Ξ3 onto
the physical region X3 is defined as a composition of two transformations:
q(ξ) from Ξ3 onto Q3 and g(q), q = (q1, q2, q3), from Q3 onto X3, that is,

x(ξ) = g[q](ξ) : Ξ3 → X3.

The functions g(q) and q(ξ) can be constructed through the formulas of
transfinite interpolation or by other techniques. As both the computational
domain Ξ3 and the intermediate domain Q3 are the standard unit cubes, the
formulas of transfinite interpolation for the generation of the intermediate
transformations q(ξ) are somewhat simpler then the original expressions. In
these formulas it can be assumed, without any loss of generality, that the
boundary planes ξi = 0 and ξi = 1 for each i = 1, 2, 3 are transformed by the
function q(ξ) onto the boundary planes qi = 0 and qi = 1, respectively, so
that

q(ξ|ξ1=0) = [0, q2(0, ξ2, ξ3), q3(0, ξ2, ξ3)],
q(ξ|ξ1=1) = [1, q2(1, ξ2, ξ3), q3(1, ξ2, ξ3)].
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Therefore the first component q1(ξ) of the Lagrangian boundary interpolation
for the intermediate mapping q(ξ) has the form

F1(ξ) = α1
2(ξ

1),

F2(ξ) = F1(ξ) + α2
1(ξ

2)
(
u1(ξ1, 0, ξ3) − α1

2(ξ
1)

)

+ α2
2(ξ

2)
(
u1(ξ1, 1, ξ3) − α1

2(ξ
1)

)
,

q1(ξ) = F2(ξ) + α3
1(ξ

3)
(
u1(ξ1, ξ2, 0) − F2(ξ1, ξ2, 0)

)

+ α3
2(ξ

3)
(
u1(ξ1, ξ2, 1) − F2(ξ1, ξ2, 1)

)
.

(5.39)

Analogous equations can be defined for the other components of the interme-
diate transformation q(ξ).

The functions based on the reference univariate transformations xi,c(ϕ, ε)
and xi,s(ϕ, ε) introduced in Chap. 4 can be used very successfully as blend-
ing functions to construct intermediate transformations by Lagrange and
Hermite interpolations in the two-boundary technique. In the case of La-
grange interpolation the blending function αi

1,0(ξ
i) satisfies the conditions

αi
1,0(0) = 1, αi

1,0(1) = 0. Therefore any monotonically decreasing function
derived by applying the procedures described in Sect. 4.4 to the reference uni-
variate functions can be used as the blending function αi

1,0(ξ
i). Analogously,

the blending function αi
2,0(ξ

i) can be represented by any monotonically in-
creasing mapping based on one of the standard local contraction functions
xi(ϕ, ε). The blending functions αi

i,1(ξ
i) for Hermite interpolations can also

use these standard transformations through applying the operation described
by (5.33) to the blending functions αi

1,0(ξ
i). By choosing the proper func-

tions, one has an opportunity to construct intermediate transformations that
provide adequate grid clustering in the zones where it is necessary.

5.6 Transfinite Interpolation from Triangles and
Tetrahedrons

The formulas of transfinite interpolation define a coordinate transformation
from the unit cube Ξ3 (the square Ξ2 in two dimensions and line Ξ1 in one
dimension) onto a physical domain X3 (or X2 or X1). The application of
this interpolation may lead to singularities of the type pertaining to polar
transformations when any boundary segment of the physical domain, corre-
sponding to a boundary segment of the computational domain, is contracted
into a point. An example is when the boundary of a physical two-dimensional
domain X2 is composed of three smooth segments as shown in Fig. 5.3. One
way to treat such regions is to use coordinate transformations from triangular
computational domains in two dimensions and tetrahedral domains in three
dimensions. It can be seen that the transfinite interpolation approach can be
modified to generate triangular or tetrahedral grids by mapping a standard
triangular or tetrahedral domain, respectively. The formulation of a transfinite
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Fig. 5.3. Scheme for gridding triangular curvilinear domains with triangles

interpolation to obtain these transformations from the standard unit tetrahe-
dron (triangle in two dimensions) is based on the composition of an operation
of scaling (stretching) the coordinates to deform the tetrahedron into the unit
cube Ξ3 and an algebraic transformation constructed by the equations given
above.

This procedure is readily clarified in two dimensions by the scheme de-
picted in Fig. 5.3. Suppose that the boundary segments AB, BC, and CD of
the unit triangle T 2 are mapped onto the corresponding boundary segments
AB, BC, and CD of the domain X2. Then, in this procedure, the standard
triangle T 2 with a uniform triangular grid is expanded to a square by a defor-
mation ξ(t) uniformly stretching each horizontal line of the triangle to make it
a rectangle, and afterwards the rectangle is uniformly stretched in the vertical
direction to make it the unit square Ξ2 as shown in Fig. 5.3. This operation
is the inverse of the contraction t(ξ) of the square along the horizontal and
vertical lines to transform it to the triangle. As a result we obtain a square Ξ2

with triangular cells on all horizontal levels except the top one. The number of
these cells in each horizontal band reduces from the lower levels to the upper
ones. The top level consists of one rectangular cell. With this deformation of
T 2 the transformation between the boundaries of T 2 and X2 generates the
transformation

x(ξ) : ∂Ξ2 → ∂X2,

which is the composition of t(ξ) and the assumed mapping of the boundary
of T 2 onto the boundary of X2. This boundary transformation maps the
top segment of Ξ2 onto the point C in X2. Now, applying the formulas of
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transfinite interpolation to a square Ξ2 with such grid cells, and the specified
boundary transformation one generates the algebraic transformation

x(ξ) : Ξ2 → X2

and consequently
x[ξ(t)] : T 2 → X2

from the triangle to the physical region X2 with the prescribed values of
the transformation at the boundary segments of the triangle. Note that the
composition x[ξ(t)] is continuous as the upper segment of Ξ2 is transformed
by x(ξ) onto one point C in X2.

In fact, such a triangular grid in the physical domain can be generated
directly by mapping the nonuniform grid constructed in the unit square Ξ2 as
described above onto X2 with a standard algebraic coordinate transformation
defined by transfinite interpolation.

The generation of grids by this approach is very well justified for regions
which shaped like curvilinear triangles, i.e. their boundaries are composed of
three smooth curves intersecting at angles θ less than π. By dividing an arbi-
trary domain into triangular curvilinear domains one can generate a composite
triangular grid in the entire domain by the procedure described above.

An analogous procedure using transfinite interpolation, is readily formu-
lated for generating tetrahedral grids in regions with shapes similar to that of
a tetrahedron.

The approach for generating triangular or tetrahedral meshes described
above can be extended to include grid adaptation by adding to the scheme
an intermediate domain and intermediate transformation q(ξ) as illustrated
in Fig. 5.3 and special blending functions, as in the case of generating hexa-
hedral (or quadrilateral) grids. Here, an adaptive triangular grid is generated
through the composition of the transformations q(ξ) and x(q), where q(ξ)
is an intermediate mapping providing grid adaptation and x(q) is an alge-
braic transformation. One example of a two-dimensional adaptive triangular
grid, with the intermediate grid generated in such a manner through the basic
stretching functions of Chap. 4, is presented in Fig. 5.4.

Note that the procedure described above for generating triangular grids
(tetrahedral and prismatic ones in three dimensions) can be realized analo-
gously in other techniques based on coordinate transformations from the unit
cube.

5.7 Comments

The standard formulas of multivariate transfinite interpolation using Boolean
operations were described by Gordon (1969, 1971), although a two-dimensional
interpolation formula with the simplest blending functions for the construc-
tion of the boundaries of hexahedral patches from CAD data was proposed by
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Fig. 5.4. Example of an adaptive algebraic triangular grid (right) and the corre-
sponding grid on the intermediate domain (left) generated by the algebraic method

Coons (1967) and Ahuja and Coons (1968). The construction of coordinate
transformations through the formulas of transfinite interpolation was formu-
lated by Gordon and Hall (1973) and Gordon and Thiel (1982). The Hermite
interpolation was presented by Smith (1982).

The multisurface method was described by Eiseman (1980) and was, in its
original form, a univariate formula for grid generation based on the specifi-
cation of two boundary surfaces and an arbitrary number of interior control
surfaces. The blending functions were implicitly derived from global and/or
local interpolants which result from an expression for the tangential derivative
spanning between the exterior boundary surfaces. The multisurface transfor-
mation can be described in the context of transfinite interpolation.

A two-boundary technique was introduced by Smith (1981). It is based
on the description of two opposite boundary surfaces, tangential derivatives
on the boundary surfaces which are used to compute normal derivatives, and
Hermite cubic blending functions.

The construction of some special blending functions aimed at grid cluster-
ing at boundaries was performed by Eriksson (1982) and Smith and Eriksson
(1987). A detailed description of various forms of blending functions with
the help of splines was presented in a monograph by Thompson, Warsi, and
Mastin (1985).

The procedures described above for generating smooth blending functions
and algebraic triangulations were developed by the author of the present book.
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Grid Generation Through Differential Systems

6.1 Introduction

Grid techniques based on using systems of partial differential equations to
derive coordinate transformations are very popular in structured grid gener-
ation. The choice of the systems of equations relies on numerical principles
and careful analysis of the required properties of the equations. They must
have intrinsic abilities to cope with complex geometries and to produce grids
which are locally compressed by large factors compared with uniform grids.
The equations should be computationally efficient, i.e. easy to model numeri-
cally and solve. Therefore the task of formulating satisfactory grid equations
is not simple.

The present chapter describes the most typical systems of equations for
grid generation: elliptic, hyperbolic, and parabolic.

At present, elliptic methods of grid generation have widespread applica-
tions. The formulation of an elliptic method for grid generation relies on the
utilization of an elliptic system whose solution defines a coordinate transfor-
mation

x(ξ) : Ξn → Xn, x(ξ) =
[
x1(ξ), . . . , xn(ξ)

]

from the computational domain Ξn ⊂ Rn onto the physical one Xn ⊂ Rn.
The values of the vector-valued function x(ξ) at the points of a reference grid
in Ξn define the nodes of the elliptic grid in Xn. However, in practice the grid
nodes are obtained by the numerical solution of a boundary value problem for
the elliptic system on the reference grid in the domain Ξn.

Elliptic equations are attractive for generating curvilinear coordinates be-
cause of some of their properties. First, elliptic equations which obey the
extremum principle, i.e. the extrema of solutions cannot be within the do-
main, are readily formulated and numerically implemented. With this prop-
erty, there is less tendency for folding of the resulting grid cells. Another
important property of any elliptic system is the inherent smoothness of its so-
lution and consequently of the resulting coordinate curves in the interior of the

V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-90-481-2912-6 6, c© Springer Science+Business Media B.V. 2010
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domain and even on smooth segments of the boundary. Moreover, the smooth-
ness can be propagated over the whole boundary with slope discontinuities if
the boundary conditions are consistent with the equations of the elliptic sys-
tem. The third advantageous feature of elliptic systems is that they allow one
to specify the coordinate points (and/or coordinate-line slopes) on the whole
boundary of the domain. Finally, well-established methods are available to
solve elliptic equations.

A disadvantage of elliptic systems is the cost of the numerical solution,
especially because the commonly applied equations, considered in the trans-
formed space, are nonlinear and require iteration.

Commonly, the elliptic equations for generating curvilinear coordinates are
formulated in two ways:

(1) in the computational domain with the physical Cartesian coordinates xi

as the dependent variables;
(2) in the physical domain with the curvilinear coordinates ξi as the depen-

dent variables.

In the second way, the coordinate mapping x(ξ) is constructed by solving
the elliptic system obtained by a transformation of the original system so as
to interchange the dependent and independent variables.

The initial elliptic systems for the generation of grids are generally chosen
in the form

L1(xi) ≡ akj
1

∂2xi

∂ξk∂ξj
+ bj

1

∂xi

∂ξj
+ c1x

i = f i
1, i, j, k = 1, . . . , n, (6.1)

and

L2(ξi) ≡ akj
2

∂2ξi

∂xk∂xj
+ bj

2

∂ξi

∂xj
+ c2ξ

i = f i
2, i, j, k = 1, . . . , n. (6.2)

Recall that repeated indices in formulas mean a summation over them unless
otherwise noted. The condition of ellipticity puts a restriction on the coeffi-
cients aij

l :

aij
l bibj ≥ clb

kbk, cl > 0, i, j, k = 1, . . . , n, l = 1, 2,

for an arbitrary vector b = (b1, . . . , bn).
Hyperbolic and parabolic methods of grid generation imply the numerical

solution of hyperbolic and parabolic differential equations, respectively. Both
types of system of equations are solved by marching in the direction of one
selected curvilinear coordinate. These procedures are much faster than an
elliptic scheme, producing a grid in an order of magnitude less computational
time.
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6.2 Laplace Systems

The most simple elliptic systems for generating grids are represented by the
uncoupled Laplace equations, either in the computational domain,

∇2xi ≡ ∂

∂ξj

∂xi

∂ξj
= 0, i, j = 1, . . . , n, (6.3)

with the dependent variables xi, or in the physical domain,

∇2ξi ≡ ∂

∂xj

∂ξi

∂xj
= 0, i, j = 1, . . . , n, (6.4)

with the dependent variables ξi.
Multiplying the system (6.4) by ∂xp/∂ξi and summing over i, we read-

ily obtain the inverse elliptic system with the dependent and independent
quantities interchanged, in the form

gij ∂2xp

∂ξi∂ξj
= 0, i, j, p = 1, . . . , n, (6.5)

where, in accordance with (2.17)

gij = ∇ξi · ∇ξj =
∂ξi

∂xk

∂ξj

∂xk
, i, j, k = 1, . . . , n.

These equations shape the coupled quasilinear elliptic system in the compu-
tational domain Ξn. A grid in the domain Xn is generated by solving (6.3) or
(6.5), with the Cartesian values of x on the physical boundaries used as the
boundary conditions along the corresponding boundary segments of Ξn.

The maximum principle is valid for the Laplace equations (6.3) and (6.4).
In the case of the system (6.3) it guarantees that the image of Ξn produced
by the coordinate transformation x(ξ) will be contained in Xn if the domain
Xn is convex. Analogously, the image of Xn produced by the transformation
ξ(x) satisfying the Laplace system (6.4) will be contained in Ξn if Ξn is a
convex domain. In the latter case the restriction of convexity is not imposed
on the physical domain Xn. As the shape of the computational domain Ξn

can be specified by the user, the system (6.4), and correspondingly (6.5), has
been more favored in applications than the system (6.3) for generating grids
in general regions. Equations (6.4) also are preferred because the physical-
space formulation provides direct control of grid spacing and orthogonality.
For these reasons, the formulation of many other elliptic grid generators is also
commonly performed in terms of the inverse of the coordinate transformation
x(ξ).

The main problem in grid generation is to make the coordinate transfor-
mation x(ξ) : Ξn → Xn a diffeomorphism, i.e. one-to-one mapping with the
Jacobian J not vanishing. In the case n = 2 the mathematical foundation
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of the technique, based on the Laplace system (6.4) with a convex computa-
tional domain Ξ2, is solid. It is founded on the following result, derived from
a theorem of Rado.

Let X2 be a simply connected bounded domain in R2. In this case, the
Jacobian of the transformation ξ(x) generated by the system (6.4) does not
vanish in the interior of X2, if Ξ2 is a rectangle and ξ(x) : ∂X2 → ∂Ξ2 is a
homeomorphism.

The system (6.4) was introduced by Crowley (1962) and Winslow (1967)
and, owing to the properties noted above, it has been the most widely used
system for generating fixed grids in general regions.

Some features of the coordinate transformations and corresponding grids
derived from the system (6.4) and, correspondingly, (6.5) are considered in
the next two subsections.

6.2.1 Two-Dimensional Equations

In this subsection we discuss the qualitative behavior of the coordinate lines
generated by the two-dimensional Laplace system (6.4) near the boundary
curves. We assume that Ξ2 is a unit square, X2 is a simply connected bounded
domain, and the coordinate transformation x(ξ) is defined as a solution to the
Dirichlet problem for the system (6.5) with a specified one-to-one boundary
transformation

x(ξ) : ∂Ξ2 → ∂X2.

It is obvious from the theorem above that the mapping x(ξ) is the inverse of
the transformation ξ(x), that is, a solution to the Laplace system (6.4) with
the Dirichlet boundary conditions

ξ(x) : ∂X2 → ∂Ξ2.

From (2.20), the two-dimensional contravariant metric elements gij in (6.5)
are connected with the covariant elements gij = xξi · xξj by the relation

gij = (−1)i+j g3−i 3−j

g
, i = 1, 2,

with fixed i and j. Therefore the system (6.5) for n = 2 is equivalent to

g22
∂2xi

∂ξ1∂ξ1
− 2g12

∂2xi

∂ξ1∂ξ2
+ g11

∂2xi

∂ξ2∂ξ2
= 0, i = 1, 2. (6.6)

We now demonstrate that the spacing between coordinate lines, say ξ2 =
const., in the vicinity of the respective boundary curve ξ2 = ξ2

0 , increases
toward it if the boundary line is convex and, conversely, the spacing decreases
when the boundary line is concave.

Let us consider, for clarity, a family of the coordinate curves ξ2 = const.
Then the boundary curve of this family is defined by the relation ξ2 = ξ2

0 with
ξ2
0 = 0 or ξ2

0 = 1.
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Fig. 6.1. Direction of the derivative of the tangential vector

First we note that the vector xξ1ξ1 , which is the derivative with respect to
ξ1 of the tangential vector xξ1 , x = (x1, x2), is directed, as shown in Fig. 6.1,
toward the concavity of the coordinate line ξ2 = ξ2

0 . Another important gra-
dient vector of ξ2(x),

∇ξ2 =
(

∂ξ2

∂x1
,
∂ξ2

∂x2

)
,

is orthogonal to the tangent vector xξ1 . The dot product of the vector ∇ξ2

and the tangential vector xξ2 equals 1. Therefore, these vectors are always
directed to one side of the line ξ2 = ξ2

0 (see Figs. 2.2 and 6.2); in particular,
they are directed into the domain X2 if this coordinate line is the boundary
curve ξ2 = 0. Thus the sign of the quantity

Q = ∇ξ2 · xξ1ξ1 = Γ 2
11

can serve as a criterion of the local shape of the boundary ξ2 = 0. Namely, if
Q < 0, which means the vectors xξ1ξ1 and ∇ξ2 are directed toward different
sides of the coordinate curve ξ2 = 0, then the domain X2 is concave (if Q > 0
the domain is convex) near that part of the boundary ξ2 = 0 where this
inequality is satisfied (see Fig. 6.2).

We have

Q = xξ1ξ1 · ∇ξ2 = −xξ1 · ∂

∂ξ1
(∇ξ2)

= −
(

∂x1

∂ξ1

)2
∂2ξ2

∂x1∂x1
− 2

∂x1

∂ξ1

∂x2

∂ξ1

∂2ξ2

∂x1∂x2
−

(
∂x2

∂ξ1

)2
∂2ξ2

∂x2∂x2
. (6.7)

The vector n = ∇ξ2/|∇ξ2| is the unit normal to the tangential vector xξ1 .
It is valid that

n · xξ2 = 1/|∇ξ2| = 1/
√

g22,

where

g22 = ∇ξ2 · ∇ξ2 =
∂ξ2

∂xi

∂ξ2

∂xi
, i = 1, 2.

Let us denote by lh the distance between the two coordinate lines ξ2 = 0
and ξ2 = h. Using the above equation for n · xξ2 , we have
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Fig. 6.2. Grid concentration near a concave boundary curve (left) and grid rarefac-
tion near a convex part of the boundary (right)

lh = (n · xξ2)h + O(h)2 = h/
√

g22 + O(h)2.

So the quantity
s2 = 1/

√
g22

reflects the relative spacing between the coordinate grid lines ξ2 = const.
The vector n is orthogonal to the boundary coordinate line ξ2 = 0, and

therefore the rate of change of the relative spacing s2 of the coordinate curves
ξ2 = const near this boundary line is computed in the n direction. Since

n =
1√
g22

(
∂ξ2

∂x1
,

∂ξ2

∂x2

)
,

we obtain

∂s2

∂n
=

1√
g22

(
∂s2

∂x1

∂ξ2

∂x1
+

∂s2

∂x2

∂ξ2

∂x2

)

= − 1
2(g22)2

((
∂ξ2

∂x1

)2
∂2ξ2

∂x1∂x1
+ 2

∂ξ2

∂x1

∂ξ2

∂x2

∂2ξ2

∂x1∂x2

+
(

∂ξ2

∂x2

)2
∂2ξ2

∂x2∂x2

)
.

Using in this equation the relation

∂ξi

∂xj
= (−1)i+j ∂x3−j

∂ξ3−i

/
J, i, j, = 1, 2,

with fixed i and j, we obtain for the rate of change of the relative spacing s2

∂s2

∂n
= − 1

2J2(g22)2

[(
∂x2

∂ξ1

)2
∂2ξ2

∂x1∂x1
− 2

∂x2

∂ξ1

∂x1

∂ξ1

∂2ξ2

∂x1∂x2

+
(

∂x1

∂ξ1

)2
∂2ξ2

∂x2∂x2

]
. (6.8)
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Equation (6.4), for n = 2, implies

∂2ξ2

∂x2∂x2
= − ∂2ξ2

∂x1∂x1
,

and therefore we see from (6.7) and (6.8) that

∂s2

∂n
= − 1

2J2(g22)2
Q.

Thus, we find that the quantities ∂s2/∂n and Q have different signs. So if the
boundary line ξ2 = 0 is convex or concave at some point ξ0, i.e. Q > 0 or
Q < 0, respectively, then

∂s2

∂n
< 0 or

∂s2

∂n
> 0,

at this point. These inequalities mean that the spacing of the grid lines ξ2 =
const decreases or increases, respectively, from the boundary curve ξ2 = 0 in
the vicinity of the boundary point ξ0.

Analogous computations are readily carried out for the coordinates near
the boundary curves ξ2 = 1 and ξ1 = 0 or ξ1 = 1, which result in the
conclusion that the grid lines obtained from the Laplace system (6.4) for
n = 2 are attracted to the concave part of the boundary and repelled near
the convex part (Fig. 6.2).

6.2.2 Three-Dimensional Equations

In contrast to two-dimensional domains, the problem of generating one-to-one
three-dimensional transformations through the Laplace system (6.4) has not
yet been solved theoretically. One of the reasons is the fact that the technique
used for the two-dimensional case cannot extended to higher dimensions. This
observation was made by Liao (1991). However, we may assume that the
transformation x(ξ) obtained as a solution to the Dirichlet problem for the
system (6.5) with n = 3 on the unit cube Ξ3 is a diffeomorphism, and hence
the inverse transformation ξ(x) is a solution to the Laplace system (6.4).
In this case the analogous property of the concentration of the coordinate
surfaces toward the concave part of the boundary and their rarefaction toward
the convex part is valid. This subsection gives a detailed proof of this fact.

First, we call that in the three-dimensional case the gradient vector

∇ξ3 =
(

∂ξ3

∂x1
,
∂ξ3

∂x2
,
∂ξ3

∂x3

)

is orthogonal to the tangent vectors xξ1 and xξ2 , x = (x1, x2, x3). The vectors
∇ξ3 and xξ3 are directed toward one side of the coordinate surface ξ3 = ξ3

0 .
And the quantity
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s3 = 1/
√

g33,

where

g33 = ∇ξ3 · ∇ξ3 =
∂ξ3

∂xi

∂ξ3

∂xi
, i = 1, 2, 3,

means, in the two-dimensional case, the relative grid spacing between the
coordinate surfaces ξ3 = const in the normal direction n, where

n = ∇ξ3/|∇ξ3| = ∇ξ3/
√

g33.

The rate of change of the relative spacing in this direction n equals

∂s3

∂n
=

1√
g33

(
∂s3

∂x1

∂ξ3

∂x1
+

∂s3

∂x2

∂ξ3

∂x2
+

∂s3

∂x3

∂ξ3

∂x3

)

= − 1
2(g33)2

(
∂ξ3

∂xi

∂ξ3

∂xj

∂2ξ3

∂xi∂xj

)
, i, j = 1, 2, 3. (6.9)

Using the general identity (2.48),

∂2ξi

∂xk∂xm
= − ∂2xp

∂ξl∂ξj

∂ξj

∂xk

∂ξl

∂xm

∂ξi

∂xp
,

i, j, k, l, m, p = 1, 2, 3,

for i = 3, between the second derivatives of the coordinate transformation
x(ξ) : Ξ3 → X3 and ξ(x) : X3 → Ξ3 in (6.9), we obtain

∂s3

∂n
=

1
2(g33)2

g3jg3l ∂2xp

∂ξl∂ξj

∂ξ3

∂xp
, j, l, p = 1, 2, 3.

Now we write out the right-hand side of this equation as the sum of two parts,
one of which contains all terms of the kind

∂2xp

∂ξl∂ξj
, i, j = 1, 2, p = 1, 2, 3,

namely,

∂s3

∂n
=

1
2(g33)2

(Q1 + Q2),

Q1 =
(

(g31)2
∂2xp

∂ξ1∂ξ1
+ 2g31g32 ∂2xp

∂ξ1∂ξ2
+ (g32)2

∂2xp

∂ξ2∂ξ2

)
∂ξ3

∂xp
, (6.10)

Q2 = g33

(
2g31 ∂2xp

∂ξ1∂ξ3
+ 2g32 ∂2xp

∂ξ2∂ξ3
+ g33 ∂2xp

∂ξ3∂ξ3

)
∂ξ3

∂xp
,

where p = 1, 2, 3. Multiplying the elliptic system (6.5) by ∂ξm/∂xp and sum-
ming the result over p, we obtain, for m = 3,
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gij ∂2xp

∂ξi∂ξj

∂ξ3

∂xp
= 0, i, j, p = 1, 2, 3.

Using this equation in the expression (6.10) for the quantity Q2, we readily
obtain

Q2 = −g33

(
g11 ∂2xp

∂ξ1∂ξ1
+ 2g12 ∂2xp

∂ξ1∂ξ2
+ g22 ∂2xp

∂ξ2∂ξ2

)
∂ξ3

∂xp
, p = 1, 2, 3.

Therefore,

Q1 + Q2 =
(

[(g31)2 − g33g11]
∂2xp

∂ξ1∂ξ1

+ [(g32)2 − g33g22]
∂2xp

∂ξ2∂ξ2

+ 2[g12g33 − g13g23]
∂2xp

∂ξ1∂ξ2

)
∂ξ3

∂xp
.

And, in accordance with the relation

gij = J2(gi+1 j+1gi+2 j+2 − gi+1 j+2gi+2 j+1), i, j = 1, 2, 3,

from (2.21), where any superscript index k can be identified with k − 3, we
have

Q1 + Q2 = − g3−i 3−j

J2

∂2xp

∂ξi∂ξj

∂ξ3

∂xp
, i, j = 1, 2, p = 1, 2, 3. (6.11)

Now we consider the value of Q1 +Q2 at the boundary surface ξ3 = 0. Let
ξ0 be a point at this surface. The derivative of the vector

b = a1xξ1 + a2xξ2 , ai = const, i = 1, 2,

along the direction t = b(ξ0) is the vector

∂b

∂t
= (a1)2xξ1ξ1 + 2a1a2xξ1ξ2 + (a2)2xξ2ξ2 .

If ξ0 is a point of local convexity of the boundary surface ξ3 = 0 then, in
analogy with the vector xξ1ξ1 considered previously in the two-dimensional
case, the vector ∂b/∂t(ξ0) is directed into the domain X3. The vector ∇ξ3

at the point ξ0 and the vector xξ3 are directed into the domain X3 also.
Therefore the dot product of the vectors ∇ξ3 and ∂b/∂t is positive at the
point under consideration, i.e.

∇ξ3 · ∂b

∂t
=

(
(a1)2

∂2xp

∂ξ1∂ξ1
+ 2a1a2

∂2xp

∂ξ1∂ξ2
+ (a2)2

∂2xp

∂ξ2∂ξ2

)
∂ξ3

∂xp
> 0, (6.12)

where p = 1, 2, 3. Considering the three cases
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(a1, a2) = (1, 0), (a1, a2) = (0, 1), (a1, a2) = (1, 1)

in (6.12) we find that at the point ξ0

∂2xp

∂ξ1∂ξ1

∂ξ3

∂xp
> 0, p = 1, 2, 3,

∂2xp

∂ξ2∂ξ2

∂ξ3

∂xp
> 0, p = 1, 2, 3,

and
∣∣∣∣

∂2xp

∂ξ1∂ξ2

∂ξ3

∂xp

∣∣∣∣ <

(
∂2xp

∂ξ1∂ξ1

∂ξ3

∂xp

∂2xp

∂ξ2∂ξ2

∂ξ3

∂xp

)1/2

, p = 1, 2, 3.

As the quadratic form (gij), i, j = 1, 2, is positive, we obtain from (6.11)

Q1 + Q2 < 0,

and, correspondingly, ∂s3/∂n < 0, i.e. the spacing between the coordinate
surfaces ξ3 = const is decreases from the convex part of the boundary ξ3 = 0.

Analogously, we have Q1 + Q2 > 0 at a point on a concave part of the
boundary surface ξ3 = 0, which implies the observation that the grid surface
spacing increases locally from a concave part of the boundary surface.

The same facts are obviously true for the corresponding grid spacings near
the boundary surfaces ξ3 = 1, ξi = 0, and ξi = 1, i = 1, 2.

Thus we find, that the coordinate surfaces of the coordinate system derived
from the Laplace equations (6.4) are clustered near the concave parts of the
boundary and coarser near convex parts of it.

6.3 Poisson Systems

The Laplace system provides little opportunity to control the properties of the
grid, in particular, to adapt the mesh to the geometry of the boundary or to
the features of the solution of the physical equations in regions of the domain
where this is necessary. Only one opportunity is given, by the specification of
the boundary conditions. However, the grid point distribution on the bound-
aries affects noticeably only the disposition of the nearby interior grid nodes.
The distribution of the nodes over most of the interior is influenced more by
the form of the elliptic equations than by the boundary values.

Therefore, in order to provide global control of the grid node distribution,
the Laplace system is replaced by a more general elliptic system with variable
coefficients. The simplest way to obtain such a generalization, suggested by
Godunov and Prokopov (1972) for the generation of two-dimensional grids,
consists of adding right-hand terms to the Laplace system (6.4), thus making
it a Poisson system.
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The actual generation of the grid is done by the numerical solution of
the transformed Poisson system in the computational domain Ξn, where the
curvilinear coordinates ξi are the independent variables and the Cartesian
coordinates xi are the dependent variables.

An elliptic method of grid generation based on the numerical solution
of a system of inverted Poisson equations is being used in broad range of
practical applications. The method allows the users to generate numerical
grids in fairly complicated domains and on surfaces that arise while analyzing
multidimensional fluid-flow problems. Practically all big grid generation codes
incorporate it as a basic tool to generate structured grids. Other techniques
(algebraic, hyperbolic, etc.) play an auxiliary role in the codes, serving as an
initial guess for the elliptic solver, or as a technique for generating grids in
regions with simple geometry.

6.3.1 Formulation of the System

The system of a Poisson equations for generating grids has the form

∇2ξi ≡ ∂

∂xj

∂ξi

∂xj
= P i, i, j = 1, . . . , n. (6.13)

The quantities P i are called either control functions or source terms. The
source terms are essential for providing an effective control of the grid point
distribution, although the choice of the proper control functions P i is difficult,
especially for multicomponent geometries.

Since

∂

∂xj

(
∂ξi

∂xj

)
∂xk

∂ξi
= − ∂2xk

∂ξi∂ξm

∂ξi

∂xj

∂ξm

∂xj
= −gim ∂2xk

∂ξi∂ξm
,

by multiplying the Poisson system (6.13) by ∂xk/∂ξi and summing over i an
inverted system of the equations (6.13) is obtained:

gij ∂2xk

∂ξi∂ξj
= −Pi

∂xk

∂ξi
, k, i, j = 1, . . . , n. (6.14)

Note that the left-hand part of these equations comprises the left hand part
of the system of inverted Laplace equations (6.5). The system (6.14) can also
be represented in the following vector notation:

gijxξiξj = −P ixξi , i, j = 1, . . . , n. (6.15)

For one-dimensional space we obtain from (6.15)

d2x

dξ2
= −P

(
dx

dξ

)3

.

Assuming
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P =
(

dξ

dx

)2
∂w

∂ξ

/
w,

where w is some positive function, playing the role of a weight in applications,
we have

w
d
dξ

(
w

dx

dξ

)
= 0.

This equation is related to the equation in (4.13), thus giving a clue as to how
to generate univariate grid clustering with the control function P .

Using the relations (2.20) and (2.21) we obtain from (6.15) two- and three-
dimensional systems of inverted Poisson grid equations:

Bn[x](ξ) = −gP ixξi , i = 1, . . . , n, (6.16)

where

Bn[y] = ggij ∂2y

∂ξi∂ξj
, i, j = 1, . . . , n,

i.e. for n = 2 and n = 3

B2[y] = g22
∂2y

∂ξ1∂ξ1
− 2g12

∂2y

∂ξ1∂ξ2
+ g11

∂2y

∂ξ2∂ξ2
,

B3[y] = [g22g33 − (g23)2]
∂2y

∂ξ1∂ξ1
+ [g11g33 − (g13)2]

∂2y

∂ξ2∂ξ2

+ [g11g22 − (g12)2]
∂2y

∂ξ3∂ξ3
+ 2[g23g13 − g12g33]

∂2y

∂ξ1∂ξ2

+ 2[g12g23 − g22g13]
∂2y

∂ξ1∂ξ3
+ 2[g13g12 − g23g11]

∂2y

∂ξ2∂ξ3
.

6.3.2 Justification for the Poisson System

The idea of using the Poisson system to provide efficient control of grid gener-
ation was justified by the fact that the system of the Poisson type is obtained
from the Laplace system, for intermediate coordinates which are transformed
to other coordinates. Let every component qi, i = 1, . . . , n, of the coordinate
transformation q(x) satisfy the Laplace equation

∇2qi =
∂

∂xj

(
∂qi

∂xj

)
= 0, i, j = 1, . . . , n.

Futher, let ξ(q) be a new intermediate one-to-one smooth coordinate transfor-
mation. Then every new coordinate ξi will satisfy the inhomogeneous elliptic
system

∇2ξi =
∂

∂xj

(
∂ξi

∂qk

∂qk

∂xj

)
=

∂2ξi

∂qk∂qm
gkm +

∂ξi

∂qk

∂2qk

∂xj∂xj

= gkm ∂2ξi

∂qk∂qm
, i, j, k, m = 1, . . . , n, (6.17)
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where gkm is the (k, m) element of the contravariant metric tensor of the
domain Xn in the coordinates q1, . . . , qn, i.e.

gkm =
∂qk

∂xj

∂qm

∂xj
, j, k, m = 1, . . . , n.

The elements gij , i, j = 1, . . . , n, of the contravariant metric tensor of the do-
main Xn in the coordinates ξ1, . . . , ξn are connected with gij , i, j = 1, . . . , n,
by

gkm = glj ∂qk

∂ξl

∂qm

∂ξj
, k, l, m, j = 1, . . . , n.

Thus, taking into account this relation, the system (6.17) has the form (6.13),
i.e.

∇2 ξi = P i, i = 1, . . . , n,

where

P i = glj ∂qk

∂ξl

∂qm

∂ξj

∂2ξi

∂qk∂qm
, i, j, k, l, m = 1, . . . , n. (6.18)

From the identity

∂qk

∂ξl

∂qm

∂ξj

∂2ξi

∂qk∂qm
≡ − ∂ξi

∂qm

∂2qm

∂ξl∂ξj

we also have

P i = −glj ∂ξi

∂qm

∂2qm

∂ξl∂ξj
. (6.19)

Thus by applying the intermediate coordinate transformation q(ξ) to a grid
generated as a solution of the Laplace system, we obtain a grid which could
have been generated directly as the solution of the Poisson system (6.13) with
the appropriate control functions defined by (6.18) and (6.19).

The general Poisson system (6.13) does not obey the maximum principle.
And, in contrast to the two-dimensional Laplace system (6.4), there is no
guarantee that the generated grid is not folded. In fact, any smooth but folded
coordinate transformation ξ(x) can be obtained from the system (6.13) by
computing P i directly from the Laplacian of ξi(x). If these P i are used in the
Poisson system (6.13) then the folded transformation ξ(x) will be reproduced.

One way to make the Poisson system satisfy the maximum principle is
to replace the control functions P i with other functions which guarantee the
maximum principle. One appropriate approach is to define the control func-
tions P i in the form

P i = gjkP i
jk, i, j, k = 1, . . . , n.

Such an expression for P i is prompted by (6.18) and (6.19) with

P i
jk =

∂ξi

∂qm

∂2qm

∂ξj∂ξk
, i, j, k, m = 1, . . . , n, (6.20)
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defined by the transformation from the intermediate coordinates qi to the final
computational coordinates ξi. According to the theory of elliptic equations the
factors gij in the expressions for P i guarantee the maximum principle for the
Poisson system (6.13).

Thus an appropriate Poisson system can be defined by the equations

∇2ξi = gjkP i
jk, i, j, k = 1, . . . , n, (6.21)

where the control functions P i
jk are considered to be specified. The inverse of

(6.21) has then the form

gij(xξij + P k
ijxξk) = 0. (6.22)

When the intermediate transformation q(ξ) is composed of separate one-
dimensional mappings qi(ξi) for each coordinate direction ξi, then, from (6.20),

P i
jk = δi

jδ
i
kP i

so that the generation system (6.21) becomes

∇2ξi = giiP i (6.23)

for each fixed i = 1, . . . , n. The inverted system has then the form

gijxξiξj + giiP ixξi = 0. (6.24)

The selection of the control functions P i
jk is a difficult task. Equations (6.20)

show that these functions are not independent if the coordinate transfor-
mation x(ξ) is defined as the composition of an intermediate mapping q(ξ)
and an exterior mapping x(q) which satisfies the inverted Laplace equation
(6.5). Some forms of the control functions suitable for grid adaptation will be
demonstrated in Sect. 7.4.

6.3.3 Equivalent Forms of the Poisson System

Taking into account the general identity (2.56) for arbitrary smooth functions
Ai, i = 1, . . . , n,

∂

∂xj
(Aj) ≡ 1

J

∂

∂ξj

(
JAm ∂ξj

∂xm

)
, j, m = 1, . . . , n,

we obtain, assuming Aj = ∂ξi/∂xj ,

∇2ξi =
∂

∂xj

(
∂ξi

∂xj

)
≡ 1

J

∂

∂ξj

(
J

∂ξi

∂xm

∂ξj

∂xm

)
≡ 1

J

∂

∂ξj
(Jgij), (6.25)

where i, j, m = 1, . . . , n. Therefore the Poisson system (6.13) is equivalent to
the following system of equations:
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1
J

∂

∂ξj
(Jgij) = P i, i, j = 1, . . . , n, (6.26)

which is derived from the elements of the metric tensors only. The left-hand
part of (6.26) can be expressed through the Christoffel symbols. For this pur-
pose we consider the identity

1
J

∂

∂ξj
(Jgijxξi) ≡ 0, (6.27)

which is a result of (2.47), since gijxξi = ∇ξj . Performing the differentiation
in the left-hand part of (6.27), we obtain

gijxξiξj +
1
J

∂

∂ξj
(Jgij)xξi ≡ 0, i, j = 1, . . . , n. (6.28)

The dot product of (6.28) and ∇ξk results in

∇2ξk ≡ −gijΓ k
ij , i, j, k = 1, . . . , n, (6.29)

using (6.25) and (2.38). The identity (6.29) demonstrates that the value of
∇2ξk is expressed through the metric elements and the space Christoffel sym-
bols of the second kind.

The utilization of (6.29) generates the following equivalent form of the
Poisson system (6.13):

−gijΓ k
ij = P k, i, j, k = 1, . . . , n. (6.30)

In order to define the value of the forcing terms on the boundaries we use an
alternative, equivalent system of equations

P k = −gijglk[ij, l], i, j, k, l = 1, . . . , n, (6.31)

which is obtained from (6.30) and (2.42), with

[ij, l] = xξiξj · xξl =
1
2

(
∂gil

∂ξj
+

∂gjl

∂ξi
− ∂gij

∂ξl

)
,

i, j, l = 1, . . . , n.

In particular, when the coordinate system ξi is orthogonal, then (6.31)
results in

P k = −giigkk[ii, k] = gkk

(
1
2
gii ∂gii

∂ξk
− gkk ∂gkk

∂ξk

)
,

i = 1, . . . , n, k fixed.
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6.3.4 Orthogonality at Boundaries

The grid point distribution in the immediate neighborhood of the boundaries
of two-dimensional and three-dimensional regions has a strong influence on
the accuracy of the algorithms developed for the numerical solution of partial
differential equations. In particular, it is often desirable to have orthogonal or
nearly orthogonal grid lines emanating from some boundary segments.

Consider, for example, the evaluation of the outward normal derivative of
an arbitrary function f at the boundary of a two-dimensional region X2:

∂f

∂n
= n · ∇f.

If the boundary is a line of constant ξ1, then

n =
1√
g22

∇ξ2,

and so
∂f

∂n
=

1√
g22

∂f

∂xi

∂ξ2

∂xi
=

g2k

√
g22

∂f

∂ξk
, k = 1, 2. (6.32)

If the coordinates ξ1, ξ2 are orthogonal, (6.32) reduces to just

∂f

∂n
=

1
√

g22

∂f

∂ξ2
.

Obviously, this equation is much simpler than (6.32) and is to be preferred
for most analytical purposes. Less obviously, but of importance to numerical
schemes, (6.32) couples the ξ1 and ξ2 variations of the function f , and thus the
application of a Neumann boundary condition to f may involve the difference
of two large numbers, with a possible loss of numerical accuracy.

The Poisson system provides two opportunities to satisfy the requirement
of orthogonality or near orthogonality of the coordinate lines emanating from
the boundary segments, either by imposing Neumann boundary conditions
or by specifying the source terms P i through the boundary values of the
coordinate transformation.

The commonly used approach to the specification of the source terms P i

to provide boundary orthogonality relies on the computation of the values of
∇2ξi on boundary segments, provided the coordinate lines ξi are orthogonal
to these segments. These computed data generate the boundary conditions
for P i. Expansion of the boundary values of P i over the whole region by
algebraic or differential approaches produces the specification of the control
functions. The coincidence of P i and the computed values of ∇2ξi on the
boundary provides some grounds for the expectation that the solution of the
Poisson system with the specified P i will yield a coordinate system which is
nearly orthogonal in the vicinity of the boundary segments.

In this subsection we find some necessary conditions for the boundary
values of the control functions P i to generate coordinates which emanate
orthogonally or nearly orthogonally from the respective boundary segments.
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6.3.4.1 Two-Dimensional Equations

Now we consider a two-dimensional case. Let a coordinate curve ξ2 = ξ2
0 be

orthogonal to the opposite family of coordinate lines ξ1 = const. In this case

g12 = 0, J =
√

g11g22,

g12 = 0, g11 = 1/g11, g22 = 1/g22,

along this coordinate line ξ2 = ξ2
0 . With these equations, the relations (6.31)

for the definition of P i, i = 1, 2, on the coordinate line ξ2 = ξ2
0 have the form

P 1 = −(g11)2[11, 1] − g22g11[22, 1]

= − 1
g11

(
1

2g11

∂g11

∂ξ1
+

1
g22

(xξ2ξ2 · xξ1)
)

. (6.33)

Analogously, if the coordinate curve ξ1 = ξ1
0 is orthogonal to the opposite

family of coordinate curves, then for the source term P 2 on the curve ξ1 = ξ1
0

we obtain

P 2 = − 1
2(g22)2

∂g22

∂ξ2
− 1

J2

∂2xi

∂ξ1 ∂ξ1

∂xi

∂ξ2

= − 1
g22

(
1

2g22

∂g22

∂ξ2
+

1
g11

[11, 2]
)

. (6.34)

If the curve ξ2 = ξ2
0 is the boundary segment then all of the quantities in (6.33)

are known except g22 and xξ2ξ2 . The metric term g22 is connected with the
relative grid spacing |xξ2 | of the coordinate lines ξ2 = const by the relation
g22 = |xξ2 |2. If the spacing |xξ2 | is specified on the boundary curve ξ2 = ξ2

0 ,
then only xξ2ξ2 is an unknown quantity in the specification of the control
function P 1 on this boundary. In the same way, on the boundary segment
ξ1 = ξ1

0 , only xξ1ξ1 is an unknown quantity in (6.34) for P 2. One way to
define xξ1ξ1 and xξ2ξ2 and consequently P 1 and P 2 on the respective boundary
segments is to apply an iterative procedure which utilizes the equation (6.16)
with the term −2g12xξ1ξ2 omitted because of the orthogonality condition:

g22xξ1ξ1 + g11xξ2ξ2 = −g11g22P
ixξi . (6.35)

Every step allows one to evaluate the control function P 1 on the boundary
curves ξ2 = ξ2

0 and the control function P 2 on the boundary lines ξ1 = ξ1
0 .

By expansion from the boundary values, the control functions P 1 and P 2 are
evaluated in the domain X2. By solving the system (6.35) with the obtained
control functions P i, the grid corresponding to the next step is generated in
the domain X2. If convergence is achieved, the final grid is generated satisfying
the condition of orthogonality and the specified spacing at the boundary.
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Local Straightness at the Boundary

The equations (6.33) and (6.34), which serve to define the control functions P i

on the boundary, are simplified if an additional requirement of local straight-
ness of coordinate lines is imposed. To demonstrate this we note that the
vector

b =
(

∂x2

∂ξ1
, − ∂x1

∂ξ1

)

is orthogonal to the tangential vector xξ1 . From the assumed condition of
orthogonality of the coordinate system along the curve ξ2 = ξ2

0 , we find that
the vector xξ2 is parallel to the vector b:

xξ2 = Fb,

i.e.

∂x1

∂ξ2
= −F

∂x2

∂ξ1
,

∂x2

∂ξ2
= F

∂x1

∂ξ1
.

(6.36)

Let ∂x2/∂ξ2 �= 0 at the boundary point ξ0. After squaring every equation of
the system (6.36) and summing them, we find that F =

√
g22/g11. Therefore,

[22, 1] =
∂xi

∂ξ1

∂2xi

∂ξ2 ∂ξ2

=
1
F

(
∂x2

∂ξ2

∂2x1

∂ξ2 ∂ξ2
− ∂x1

∂ξ2

∂2x2

∂ξ2 ∂ξ2

)

=
1
F

(
∂x2

∂ξ2

)2
∂

∂ξ2

(
∂x1

∂ξ2

/
∂x2

∂ξ2

)
(6.37)

at the point ξ0. The substitution of this relation in (6.33) yields

P 1 = − 1
2(g11)2

∂g11

∂ξ1
− 1

J2F

(
∂x2

∂ξ2

)2
∂

∂ξ2

(
∂x1

∂ξ2

/
∂x2

∂ξ2

)
. (6.38)

The ratio (∂x1/∂ξ2)/(∂x2/∂ξ2) is merely the slope dx1/dx2 of the family
of the coordinate curves ξ1 = const, which are transverse to the coordinate
ξ2 = ξ2

0 . The imposition of the condition that these transverse coordinate lines
ξ1 = const are locally straight (i.e. have zero curvature) in the neighborhood
of the coordinate ξ2 = ξ2

0 leads to the equation

∂

∂ξ2

(
∂x1

∂ξ2

/
∂x2

∂ξ2

)
= 0 (6.39)

on the coordinate line ξ2 = ξ2
0 . So in this case we obtain from (6.33) the

following expression for P 1,
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P 1 = − 1
2(g11)2

∂

∂ξ1
g11, (6.40)

which the source term P 1 must satisfy along the coordinate curve ξ2 = ξ2
0 if it

is orthogonal to the family of locally straight coordinate lines ξ1 = const. This
equation can be used to compute the numerical value of P 1 at each grid point
on the horizontal boundaries where the transformation x(ξ) and consequently
the metric element g11 is specified.

Analogously, if the coordinate line ξ1 = ξ1
0 is orthogonal to the family of

locally straight coordinate curves ξ2 = const, we have

P 2 = − 1
2(g22)2

∂

∂ξ2
g22 (6.41)

along this coordinate.
Once the control function P 1 is defined at each mesh point of the horizontal

boundaries ξ2 = 0 and ξ2 = 1, its value at the interior mesh points can
be computed by unidirectional interpolation along the vertical mesh lines
ξ1 = const between the horizontal boundaries. Similarly, the control function
P 2 can be computed by unidirectional interpolation along the horizontal mesh
lines ξ2 = const.

6.3.4.2 Three-Dimensional Equations

Now we find the values of the system (6.25) on a coordinate surface, say
ξ3 = ξ3

0 , when it is orthogonal to the family of coordinates ξ3. These values
define the specification of the control functions P i, i = 1, 2, on the coordinate
surface to obtain three-dimensional grids nearly orthogonal about this surface
through the system (6.14).

From the condition of orthogonality we have the following relations on the
surface ξ3 = ξ3

0 :

g13 = g23 = 0, g33 = 1/g33,

J =
√

g33g, g = det(gij), i, j = 1, 2.
(6.42)

It is also clear that the orthogonality condition on the coordinate surface
ξ3 = ξ3

0 implies that the matrix (gij), i, j = 1, 2, is inverse to the tensor
(gij), i, j = 1, 2. In fact the matrix (gij), i, j = 1, 2, is the covariant metric
tensor of the surface ξ3 = ξ3

0 in the coordinates ξ1, ξ2 represented by the
parametrization

r(ξ) : Ξ2 → R3, ξ = (ξ1, ξ2), r = (x1, x2, x3),

where
r(ξ1, ξ2) = x(ξ1, ξ2, ξ3

0).

Correspondingly, the matrix (gij), i, j = 1, 2, is the contravariant metric
tensor of the surface ξ3 = ξ3

0 in the coordinates ξ1, ξ2.
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The forcing terms P i, i = 1, 2, are expressed by the system of equations
(6.26). We will write out the equations for i = 1, 2 as a sum of two parts. The
first part contains only the terms with the superscripts 1 and 2, which thus
are related to the coordinate surface ξ3 = ξ3

0 . The second part includes the
terms with the superscript 3. Thus we assume

P i = P i
1 + P i

2,

P i
1 =

1
J

∂

∂ξj
(Jgij), i, j = 1, 2, (6.43)

P i
2 =

1
J

∂

∂ξ3
(Jgi3), i = 1, 2.

Let us consider the case i = 1. In accordance with the formula (2.21), we
obtain for the element g13 in (6.43)

g13 =
g21g32 − g31g22

g
.

So, taking into account the relations (6.42) valid on the surface ξ3 = ξ3
0 , we

obtain
g13 = − 1

g33
(g21g32 + g11g13).

Also, as a result of the condition of orthogonality, we have, on the surface,

gij =
(−1)i+jg3−i 3−j

g
, i, j = 1, 2,

with i, j fixed, and thus

P 1
2 =

1
J

∂

∂ξ3
(Jg13) = − 1

g33

(
g21 ∂

∂ξ3
g23 + g11 ∂

∂ξ3
g13

)
(6.44)

on ξ3 = ξ3
0 . For the term P i

1 on the surface ξ3 = ξ3
0 , we find, using (6.42) and

(6.43),

P i
1 =

1√
g33g

∂

∂ξj
(
√

g33ggij)

=
1√
g

∂

∂ξj
(
√

ggij) +
gij

2g33

∂

∂ξj
g33, i, j = 1, 2. (6.45)

The relations (6.44) and (6.45) yield

P 1 =
1√
g

∂

∂ξj
(
√

gg1j)

+
1

g33

[
g11

(
1
2

∂

∂ξ1
g33 − ∂

∂ξ3
g13

)
+ g12

(
1
2

∂

∂ξ2
g33 − ∂

∂ξ3
g23

)]

=
1√
g

∂

∂ξj
(
√

gg1j) +
1

g33

(
g11 ∂xk

∂ξ1

∂2xk

∂ξ3∂ξ3
+ g12 ∂xk

∂ξ2

∂2xk

∂ξ3∂ξ3

)
.
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Analogously,

P 2 =
1√
g

∂

∂ξj
(
√

gg2j) +
1

g33

(
g21 ∂xk

∂ξ1

∂2xk

∂ξ3∂ξ3
+ g22 ∂xk

∂ξ2

∂2xk

∂ξ3∂ξ3

)
.

So a general formula for P i, i = 1, 2, on the coordinate surface ξ3 = ξ3
0 is

P i =
1√
g

∂

∂ξj
(
√

ggij) +
1

g33

(
gij ∂xk

∂ξj

∂2xk

∂ξ3∂ξ3

)
, (6.46)

where i, j = 1, 2, k = 1, 2, 3. Equations (6.46) can be used in the same manner
as (6.33) and (6.34) to define the values of the control functions at the bound-
ary segments for the purpose of providing orthogonality at the boundary with
a specified normal spacing, through an iterative procedure.

If the vector rξ3ξ3 , r = (x1, x2, x3), is parallel to the vector rξ3 , for ex-
ample when the curvature of the coordinate lines ξ3 vanishes on the surface
ξ3 = ξ3

0 , then, from the condition of orthogonality, the second sum of (6.46)
vanishes, which implies

P i =
1√
g

∂

∂ξj
(
√

ggij), i = 1, 2, (6.47)

on the surface ξ3 = ξ3
0 .

As was mentioned, the covariant and contravariant elements of the surface
ξ3 = ξ3

0 in the coordinates ξ1, ξ2 coincide with the elements gij and gij ,
respectively, for i, j = 1, 2. So the expression (6.47) for P i is the value obtained
by applying the Beltrami operator ΔB,

ΔB =
1√
g

∂

∂ξj

(√
ggkj ∂

∂ξk

)
, j, k = 1, 2, (6.48)

to the function ξi(x), i.e.

ΔBξi = P i, i = 1, 2.

Analogous equations for P i are valid for the coordinate surfaces ξi = ξi
0, i = 1

or i = 2.

6.3.4.3 Projection of the Poisson System on the Boundary Curve

Now we use the three-dimensional system (6.26) to find an expression for
P i, i = 1, 2, 3 on a coordinate line ξi.

Let the coordinate lines ξ1 and ξ2 be orthogonal between themselves and
to the curve ξ3 at all its points. Then on ξ3

gij = gij = 0, i �= j,

gii = 1/gii, for each fixed i = 1, 2, 3, (6.49)
J2 = g11g22g33.
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From the system (6.26) we obtain the formula for the control term P 3:

P 3 =
1
J

∂

∂ξj
(Jg3j) =

1
J

(
∂

∂ξ1
(Jg31) +

∂

∂ξ2
(Jg32) +

∂

∂ξ3
(Jg33)

)
. (6.50)

The condition of orthogonality is obeyed along the whole coordinate curve ξ3,
and therefore we can carry out the differentiation with respect to ξ3 of the
quantities in (6.50) with the relations (6.49) substituted. Thus for the third
sum of (6.50) we obtain

1
J

∂

∂ξ3
(Jg33) =

1
J

∂

∂ξ3

√
g11g22

g33

=
1

2J2

∂

∂ξ3
(g11g22) − 1

2(g33)2
∂

∂ξ3
g33. (6.51)

From the formula (2.21),

g31 = (g12g23 − g13g22)/J2,

g32 = (g13g21 − g11g23)/J2.

Using these relations and (6.50) in (6.51), we obtain

P 3 = − 1
2(g33)2

∂

∂ξ3
g33 +

1
J2

(
1
2

∂

∂ξ3
(g11g22) − g22

∂

∂ξ3
g13 − g11

∂

∂ξ3
g23

)

= − 1
2(g33)2

∂

∂ξ3
g33 − 1

J2

(
g22

∂2xk

∂ξ1∂ξ1

∂xk

∂ξ3
+ g11

∂2xk

∂ξ2∂ξ2

∂xk

∂ξ3

)

= − 1
2(g33)2

∂

∂ξ3
g33 − 1

J2
(g22[11, 3] + g11[22, 3]) on ξ3.

If the vectors xξ1ξ1 and xξ2ξ2 lie in the plane orthogonal to the coordinate
ξ3 (for instance, when the coordinate lines ξ1 and ξ2 are locally straight at the
points intersecting the coordinate ξ3) then the term in brackets in the above
expression for P 3 is zero, and therefore we obtain

P 3 = − 1
2(g33)2

∂

∂ξ3
g33

on the curve ξ3.
Analogous equations are obtained for the forcing terms P i, i = 1, 2, along

the coordinate curves ξi:

P i = − 1
2(gii)2

∂

∂ξi
gii, i = 1, 2, (6.52)

provided similar restrictions are applied. Note that the index i is fixed in
(6.52).

In the case where the orthogonality condition for the coordinate lines is
obeyed at every point of the domain X3, we also readily obtain

P i =
1
J

∂

∂ξi

√
gjjgkk

gii
, (i, j, k) cyclic with i fixed.
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6.3.5 Control of the Angle of Intersection

Now, for two dimensions, we find how to use the source terms P i to control
the angle at which each grid line transverse to the boundary intersects it.

First, we note that the maximum principle for the Laplace operator guar-
antees that if

∇2f ≥ ∇2g

and
f |∂Xn = g|∂Xn ,

then
f(x) ≤ g(x), x ∈ Xn.

Therefore in the two-dimensional case a decrease of the values of P i causes an
increase of the values of ξi, and, correspondingly, a reduction of the intersec-
tion angle of the boundary line with the opposite family of coordinate curves.
For example if P i is negative at a grid point obtained through the inverted
Laplace system, the point is moved towards the side where ξi is less. The op-
posite effect is produced when the values of P i are increased. This observation
allows one to influence the angle of intersection by choosing larger or smaller
values of P i.

A more sophisticated procedure to control the angle of intersection relies on
a study of the dependence of the source terms P i on the boundary distribution
and the angle of intersection.

In place of the orthogonality condition g12 = 0 we use, therefore, the
condition

xξ1 · xξ2 = g12 = |xξ1 | |xξ2 | cos θ =
√

g11g22 cos θ, (6.53)

where θ denotes the angle of intersection between a coordinate line, say ξ2 =
ξ2
0 , and the corresponding transverse coordinate curves ξ1 = const. So θ is a

function depending on ξ1. A more convenient representation of this condition
is

g12 = J cot θ, (6.54)

which follows from (6.53) and the equation

J = |xξ1 | |xξ2 | sin θ =
√

g11g22 sin θ.

Since
J =

√
g11g22 − (g12)2,

we obtain from (6.53) and (6.54)

g11 =
1

g11 sin2 θ
,

g22 =
1

g22 sin2 θ
, (6.55)

g12 = − cos θ
√

g11g22 sin2 θ
.
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Fig. 6.3. Angle between the normal and tangential vectors

The angle between the tangent vectors xξ2 and xξ1 is θ, and therefore the
vector xξ2 intersects the vector

b =
(

− ∂x2

∂ξ1
,
∂x1

∂ξ1

)
,

which is orthogonal to the vector xξ1 , at an angle of π/2 − θ (Fig. 6.3). The
vectors xξ1 and b are orthogonal and have the same length: therefore

xξ2 = F (cos θxξ1 + sin θb),

where F =
√

g22/g11. Hence

∂x1

∂ξ2
= F

(
cos θ

∂x1

∂ξ1
− sin θ

∂x2

∂ξ1

)
,

∂x2

∂ξ2
= F

(
cos θ

∂x2

∂ξ1
+ sin θ

∂x1

∂ξ1

) (6.56)

on the coordinate curve ξ2 = ξ2
0 . It is clear that (6.56) is a generalization of

(6.36).
Now we compute the forcing term P 1 on the boundary curves ξ2 = 0 and

ξ2 = 1 required to provide control of the angle θ at these segments. For this
purpose we consider the representation of the Poisson system (6.13) in the
form (6.30).

For i = 1, n = 2 the system (6.30) implies

P 1 = −g11Γ 1
11 − 2g12Γ 1

12 − g22Γ 1
22

= −g11

(
∂2x1

∂ξ1∂ξ1

∂ξ1

∂x1
+

∂2x2

∂ξ1∂ξ1

∂ξ1

∂x2

)

− 2g12

(
∂2x1

∂ξ1∂ξ2

∂ξ1

∂x1
+

∂2x2

∂ξ1∂ξ2

∂ξ1

∂x2

)

− g22

(
∂2x1

∂ξ2∂ξ2

∂ξ1

∂x1
+

∂2x2

∂ξ2∂ξ1

∂ξ1

∂x2

)
. (6.57)
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In the two-dimensional case we have

∂ξ1

∂x1
=

∂x2

∂ξ2

/
J,

∂ξ1

∂x2
= − ∂x2

∂ξ1

/
J,

(6.58)

so, using the relation (6.56) valid along the coordinate ξ2 = ξ2
0 , we obtain

∂ξ1

∂x1
=

1
g11

(
cot θ

∂x2

∂ξ1
+

∂x1

∂ξ1

)
,

∂ξ1

∂x2
=

1
g11

(
∂x2

∂ξ1
− cot θ

∂x1

∂ξ1

)
.

(6.59)

Let the quantities ∂x1/∂ξ1 and ∂x2/∂ξ2 not vanish at the point under con-
sideration. Then the (6.57) is given by

g11Γ 1
11 = g11

(
∂2x1

∂ξ1∂ξ1

∂ξ1

∂x1
+

∂2x2

∂ξ1∂ξ1

∂ξ1

∂x2

)

=
1

(g11)2 sin2 θ

[(
cot θ

∂x2

∂ξ1
+

∂x1

∂ξ1

)
∂2x1

∂ξ1∂ξ1

+
(

− cot θ
∂x1

∂ξ1
+

∂x2

∂ξ1

)
∂2x2

∂ξ1∂ξ1

]

=
1

(g11)2 sin2 θ

[
1
2

∂

∂ξ1
g11 − cot θ

(
∂x1

∂ξ1

)2
∂

∂ξ1

(
∂x2

∂ξ1

/
∂x1

∂ξ1

)]
.

(6.60)

In order to compute the second term of (6.57), we note first that from
(6.56)

∂x1

∂ξ2

/
∂x2

∂ξ2
=

cos θ ∂x1

∂ξ1 − sin θ ∂x2

∂ξ1

sin θ ∂x1

∂ξ1 + cos θ ∂x2

∂ξ1

.

Therefore

∂

∂ξ1

(
∂x1

∂ξ2

/
∂x2

∂ξ2

)
= F 2

(
∂x2

∂ξ2

)2[
f1(ξ1) + f2(ξ1)

]
, (6.61)

where

f1(ξ1) = −
[(

sin θ
∂x1

∂ξ1
+ cos θ

∂x2

∂ξ1

)2

+
(

cos θ
∂x1

∂ξ1
− sin θ

∂x2

∂ξ1

)2]
θξ1

= −g11θξ1 ,
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f2(ξ1) =
(

cos θ
∂2x1

∂ξ1∂ξ1
− sin θ

∂2x2

∂ξ1∂ξ1

)(
sin θ

∂x1

∂ξ1
+ cos θ

∂x2

∂ξ1

)

−
(

sin θ
∂2x1

∂ξ1∂ξ1
+ cos θ

∂2x2

∂ξ1∂ξ1

)(
cos θ

∂x1

∂ξ1
− sin θ

∂x2

∂ξ1

)

=
∂2x1

∂ξ1∂ξ1

∂x2

∂ξ1
− ∂2x2

∂ξ1∂ξ1

∂x1

∂ξ1

= −
(

∂x1

∂ξ1

)2
∂

∂ξ1

(
∂x2

∂ξ1

/
∂x1

∂ξ1

)
.

So, using the relations (6.57) and (6.61), we obtain

g12Γ 1
12 = g12

(
∂2x1

∂ξ1∂ξ2

∂ξ1

∂x1
+

∂2x2

∂ξ1∂ξ2

∂ξ1

∂x2

)

=
g12

J

(
∂2x1

∂ξ1∂ξ2

∂x2

∂ξ2
− ∂2x2

∂ξ1∂ξ2

∂x1

∂ξ2

)

=
1
J

g12

(
∂x2

∂ξ2

)2
∂

∂ξ1

(
∂x1

∂ξ2

/
∂x2

∂ξ2

)

=
cot θ

(g11)2 sin2 θ

[
g11θξ1 +

(
∂x1

∂ξ1

)
∂

∂ξ1

(
∂x2

∂ξ1

/
∂x1

∂ξ1

)]
. (6.62)

Analogously, the third term of (6.57) is given by

g22Γ 1
22 =

∂2x1

∂ξ2∂ξ2

∂ξ1

∂x1
+

∂2x2

∂ξ2∂ξ1

∂ξ1

∂x2

=
1
J

(
∂2x1

∂ξ2∂ξ2

∂x2

∂ξ2
− ∂2x2

∂ξ2∂ξ2

∂x1

∂ξ2

)

=
1
J

(
∂x2

∂ξ2

)2
∂

∂ξ2

(
∂x1

∂ξ2

/
∂x2

∂ξ2

)
. (6.63)

Now, using the relations (6.60), (6.62), and (6.63) in (6.57), we obtain

P 1 = − 1
(g11)2 sin2 θ

×
[
1
2

∂

∂ξ1
g11 + cot θ

(
∂x1

∂ξ1

)2
∂

∂ξ1

(
∂x2

∂ξ1

/
∂x1

∂ξ1

)
+ 2g11 cot θ θξ1

]

− 1
Jg22 sin2 θ

(
∂x2

∂ξ2

)2
∂

∂ξ2

(
∂x1

∂ξ2

/
∂x2

∂ξ2

)
(6.64)

along the coordinate curve ξ2 = ξ2
0 .

Analogously, for the second source term P 2 along the coordinate line ξ1 =
ξ1
0 ,
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P 2 = − 1
(g22)2 sin2 θ

×
[
1
2

∂

∂ξ2
g22 + cot θ

(
∂x2

∂ξ2

)2
∂

∂ξ2

(
∂x1

∂ξ2

/
∂x2

∂ξ2

)
+ 2g11 cot θ θξ2

]

− 1
Jg11 sin2 θ

(
∂x1

∂ξ1

)2
∂

∂ξ1

(
∂x2

∂ξ1

/
∂x1

∂ξ1

)
. (6.65)

If the coordinate curves ξi = const are locally straight at the points of their
intersection with the opposite coordinate lines, then the last line in (6.64)
and (6.65) will vanish. Using the conventional notation x, y and ξ, η instead
of x1, x2 and ξ1, ξ2, we have for the source terms P 1 and P 2 in this case

P 1 = − 1
(g11)2 sin2 θ

[
1
2

∂

∂ξ
g22 + cot θ

(
∂x

∂ξ

)2
∂

∂ξ

(
∂y

∂ξ

/
∂x

∂ξ

)

+ 2g11 cot θ θξ

]
, (6.66)

P 2 = − 1
(g22)2 sin2 θ

[
1
2

∂

∂η
g22 + cot θ

(
∂y

∂η

)2
∂

∂η

(
∂x

∂η

/
∂y

∂η

)

+ 2g11 cot θ θη

]
. (6.67)

6.4 Biharmonic Equations

The main drawback of a grid generation method based on a second-order el-
liptic differential equation is the limitation in controlling the boundary grid
distribution and the direction of the coordinate lines emanating from the
boundary. This results in considerable numerical difficulties in the solution of
problems involving boundary conditions in the normal direction, for example
problems of heat transfer and inviscid aerodynamics. Thus the technique de-
scribed above which utilizes the forcing terms of the Poisson system to control
the directions of the grid lines is not always acceptable.

A more reliable approach to this problem is the use of differential equa-
tions of increased order, in particular biharmonic equations. A system of bi-
harmonic equations provides an efficient opportunity to simultaneously satisfy
both Dirichlet and Neumann conditions on the boundaries. This provides the
flexibility necessary to smoothly patch together the subgrids and control the
locations of grid points.

6.4.1 Formulation of the Approach

As for the elliptic system of second order, the most acceptable system of
biharmonic equations to produce suitable grids is formulated in terms of the
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coordinates xi of the physical domain, used as independent variables, through
a composition of Laplace operators:

∇2(∇2ξi) = 0, i = 1, . . . , n. (6.68)

This system is extended to the mixed-boundary-value problem by imposing
the boundary conditions

ξi(x) = f i(x),
∂ξi

∂n
(x) = 0, x ∈ ∂Xn. (6.69)

The derivative ∂/∂n is taken in the outward normal direction on the boundary
of Xn. Applying the coupled approach, the problem of (6.68) and (6.69) yields
the system

∇2ξi = pi,

∇2pi = 0, i = 1, . . . , n, (6.70)

and the boundary conditions for ξi and pi

ξ(x) = f(x), x ∈ ∂Xn,

p(x) = ∇2ξ(x) − c
∂ξ

∂n
(x), x ∈ ∂Xn,

(6.71)

where c is an arbitrary nonzero constant, and

f = (f1, . . . , fn), p = (p1, . . . , pn).

6.4.2 Transformed Equations

In the computational domain Ξn with the dependent and independent vari-
ables interchanged, the original equations (6.70) become

gijxξiξj + pixξi = 0,

gijpξiξj = 0, i, j = 1, . . . , n.
(6.72)

The boundary conditions for (6.72) are, in accordance with (6.71) and (6.29),

x
∣∣
∂Ξn = f −1(ξ),

pk
∣∣
∂Ξn = gijΓ k

ij − c
∂ξk

∂n
, i, j, k = 1, . . . , n.

(6.73)

6.5 Orthogonal Systems

A system of equations suitable for generating orthogonal grids is commonly
obtained in two ways. In the first approach, the system is derived from the
following equations representing the condition of orthogonality:
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gij ≡ xξi · xξj = 0, i �= j.

The second approach is based on any differential identity which can be derived
for a suitable system by eliminating the terms gij , i �= j. The first approach is
considered in Sect. 6.5.1 section for the generation of two-dimensional grids,
while the second one is described in Sect. 6.5.2 for two and three-dimensional
domains.

6.5.1 Derivation from the Condition of Orthogonality

One example of a differential system, considered by Haussling and Coleman
(1981) to generate two-dimensional orthogonal and nearly orthogonal grids,
is

∂

∂ξ1
g12 = 0,

∂

∂ξ2
g12 = 0.

(6.74)

The constant solution g12 = const to (6.74) exists only if it is consistent with
the boundary data. Only at the corners of the computational region Ξ2 can
g12 be specified in advance. Thus the system (6.74) is suitable for obtaining
an orthogonal grid when the region X2 has right angles at the corners. Now
we change to the customary notations x, y for x1, x2 and ξ, η for ξ1, ξ2.

Expanding (6.74) yields

xξxξη + xξξxη + yξyξη + yξξyη = 0, (6.75)
xξxηη + xξηxη + yξyηη + yξηyη = 0. (6.76)

To compute the transformation r(ξ, η) : Ξ2 → X2, r = (x, y), these equations
are combined as follows. The product of (6.75) and xη is added to the product
of (6.76) and xξ, giving

(xη)2xξξ + (xξ)2xηη + 2xξxηxξη + xηyηyξξ + xξyξyηη

+ (xηyξ + xξyη)yξη = 0. (6.77)

The product of (6.75) and yη is added to the product of (6.76) and yξ, yielding

(yη)2yξξ + (yξ)2yηη + 2yξyηyξη + xηyηxξξ + xξyξxηη

+ (xηyξ + xξyη)xξη = 0. (6.78)

The systems (6.77), and (6.78) are approximated by central differences and
the resulting algebraic systems are solved iteratively using successive overre-
laxation. The reason for replacing (6.75), and (6.76) with (6.77), and (6.78)
is to obtain a nonzero coefficient for xij and yij in the finite-difference forms
of (6.77) and (6.78). This eliminates the possibility of dividing by zero in the
iteration process.
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6.5.2 Multidimensional Equations

A multidimensional differential system for generating orthogonal and nearly
orthogonal grids is usually obtained by the second approach, using some dif-
ferential identities and then eliminating the terms gij , i �= j. One example
gives the identity (2.47),

∂

∂ξj

(
J

∂ξj

∂xk

)
≡ 0, j, k = 1, . . . , n.

In accordance with (2.23),

∂ξj

∂xk
= gij ∂xk

∂ξi
, i, j, k = 1, . . . , n.

Using this relation in the above equation, another form of the identity is
obtained:

∂

∂ξj

(
Jgij ∂xk

∂ξi

)
≡ 0, i, j, k = 1, . . . , n, (6.79)

which also follows from the Beltrami equations

∂2xk

∂xj∂xj
≡ 1

J

∂

∂ξj

(
Jgij ∂xk

∂ξi

)
≡ 0, i, j, k = 1, . . . , n. (6.80)

Substituting the condition of orthogonality

gij = 0, i �= j, i, j = 1, . . . , n,

in the equations (6.79) for gij , i �= j, we obtain the system of elliptic equations
required to generate orthogonal coordinates:

∂

∂ξj

(
Jgjj ∂xk

∂ξj

)
= 0, j, k = 1, . . . , n, (6.81)

where

J =

√√√√
n∏

i=1

gii,

gjj = 1/gjj , for each fixed j = 1, . . . , n.

In two dimensions, using the common notations x, y for the dependent
variables and ξ, η for the independent variables, the system (6.81) is expressed
as

∂

∂ξ

(
F

∂x

∂ξ

)
+

∂

∂η

(
1
F

∂x

∂η

)
= 0,

∂

∂ξ

(
F

∂y

∂ξ

)
+

∂

∂η

(
1
F

∂y

∂η

)
= 0,

(6.82)

with F =
√

g22/g11.
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Analogously, for the three-dimensional system, we obtain from (6.81)

∂

∂ξi

(
Fi

∂x

∂ξi

)
= 0, i = 1, 2, 3, i fixed, (6.83)

where
Fi = gkkgll/gii, (i, k, l) cyclic and fixed,

i.e.

F1 =
√

g22g33/g11,

F2 =
√

g33g11/g22,

F3 =
√

g11g22/g33.

6.6 Hyperbolic and Parabolic Systems

The generation of a grid through elliptic systems can consume a large amount
of computational time. This disadvantage gave rise to the development of grid
techniques based on hyperbolic-type and parabolic-type partial differential
equations.

Hyperbolic grid generation relies on the numerical solution of hyperbolic
systems of equations. The hyperbolic equations allow one to use a marching
numerical solution without any iteration or initial guess, which makes their
use very simple and inexpensive.

Hyperbolic methods are efficient for generating grids in domains around
bodies. The solution marches from the inner boundary toward the outer field
generating loops of grids one by one, so the computational time is almost
equal to that of one iteration of solving elliptic grid generation equations
by an iterative scheme. So the computational time required to generate the
grid by the marching algorithm is only a very small fraction of that for the
elliptic grid generation equations and the fast-memory space required during
grid generation can be substantially reduced from that required by the elliptic
grid generation method. Furthermore, hyperbolic equations are very suitable
for providing grid orthogonality and grid node clustering.

However, hyperbolic grid systems also have their inherent undesirable
properties:

(1) since the hyperbolic methods are essentially a marching procedure, the
specification of the entire boundary is not allowed, and therefore the
methods are not appropriate for the computation of internal and closed
systems;

(2) the techniques propagate singularities of the boundary into the interior of
the domain;

(3) grid oscillation or even overlapping of grid lines is often encountered in
hyperbolic grid generation unless artificial damping terms for stability are
appropriately added to the equations.
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There are two major approaches in formulating hyperbolic systems. In
the first approach the Jacobian of the transformation is specified. The second
imposes a specification of the cell aspect ratio.

Parabolic methods possess some of the advantages of both elliptic and
hyperbolic techniques. The advantages of using parabolic partial differential
equations to generate structured grids are as follows:

(1) parabolic equations allow for formulating initial-value problems, so grids
are generated by a marching algorithm as in the hyperbolic grid generation
method;

(2) the parabolic equations have most of the properties of the elliptic equa-
tions, in particular, the diffusion effect which smooths out any singularity
of the inner boundary condition, and prescribed outer boundary condi-
tions may be satisfied.

6.6.1 Specification of Aspect Ratio

The condition of orthogonality gij = xξ1 · xξ2 = 0 alone is not sufficient for
obtaining the coordinate transformation x(ξ) : Ξ2 → X2. Two equations are
needed, since both the x1 and x2 coordinates of the transformed grid points
are to be found.

6.6.1.1 Initial-Value Problems

Here a method presented by Starius (1977) for determining orthogonal grids,
based on nonlinear hyperbolic initial-value problems which are formally re-
lated to the Cauchy–Riemann equations, is considered. For convenience the
ordinary notations x, y for x1, x2 and ξ, η for ξ1, ξ2 are utilized in this
subsubsection.

The orthogonality requirement g12 = 0 yields the initial-value problem

xη = −yξF, x(ξ, 0) = x(ξ),
yη = xξF, y(ξ, 0) = y(ξ),

(6.84)

where F is a positive function which is selected by meeting the following set
of requirements:

(1) F = F (ξ, η, x, y, xξ, yξ, xη, yη);
(2) a condition of invariance;
(3) a condition on the hyperbolic type of the system (6.84);
(4) geometrical conditions depending on the region X2;
(5) sufficient conditions for well-posedness of the nonlinear hyperbolic initial-

value problems.

The invariance conditions are simply invariance under transitions and ro-
tations. Let (x, y) be a solution of the equations (6.84); then (x, y), defined
by either
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(
x

y

)
=

(
x

y

)
+

(
a

b

)

or (
x

y

)
= Q

(
x

y

)

where

Q =
(

cos θ − sin θ
sin θ cos θ

)

is the matrix of rotation, and a, b, θ are arbitrary constants, is also a solution.
The first equation implies that F does not depend on (x, y), and the second
implies the following partial differential equation for F :

−yξFxξ
+ xξFyξ

− yηFxη + xηFyη = 0.

The solution of this equation is given by

F = F (ξ, η, g11, g22, g12).

This is, in fact, the general solution. The last argument of this function F is
zero because of the orthogonality requirement. Futher, by squaring (6.84) and
adding we find that g22 is connected with g11 by the relation

g22 = F 2g11,

i.e. F is the aspect ratio. Therefore only positive functions F depending on
ξ, η and g11 have to be considered, i.e.

F = F (ξ, η, z), z =
√

g11.

The quantity z has an evident geometrical interpretation, namely, it is the
length of the tangential vector xξ.

In order the initial-value problem (6.84) is well-posed it is necessary that
the system is hyperbolic. The type of the system (6.84) is defined by the
eigenvalues of the matrix

M =

(
− xξyξ

z Fz −F − y2
ξ

z Fz

F +
x2

ξ

z Fz
xξyξ

z Fz

)

obtained through the linearization of the system (6.84). The system is hyper-
bolic if the matrix M has real eigenvalues. The characteristic equation for M
is given by

λ2 = −F (F + zFz) = − ffz

z
,

where
f = Fz.
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Thus fz < 0 if F > 0, and so the function f = zF is strictly decreasing in z.
The inequality fz < 0 implies that M has distinct real eigenvalues. For fz = 0
we have a multiple real eigenvalue but only one eigenvector.

Before a specific f can be chosen, the quantity z must be normalized in
some sense. Let ξ be the arc length of ∂X2; then z = 1 there. This means
an equidistant grid spacing on the boundary η = η0. A graded grid in the
tangential direction is obtained with a suitable choice of the function ξ(t).
Grading in the other direction can be achieved in the same way, which implies
that f contains an a factor depending on the direction of η. When different
gradings in η are required for different values of ξ, the factor must depend on
ξ as well.

In order to specify the function f , two cases are considered:

(1) the spacing of the mesh in the η direction is about the same along the
whole boundary;

(2) the spacing is variable.

The spacing of the mesh along the η curve is expressed by
∫ η0

0

√
g22dη =

∫ η0

0

fdη

for all ξ. From this equation it is seen that in the first case f does not need
to depend explicitly on ξ, i.e. it will depend only on z.

When solving nonlinear hyperbolic problems, discontinuities and shocks
generally appear in the solution or in its derivatives; f must be chosen so that
this cannot happen as long as z > 0. It was proved by Starius that a suitable
f is

f(z) =
A + Bz2

C + z2
, (6.85)

where A, B, and C are constants such that A > BC, and A + B = C + 1.
Since f(0) = A/C, the divergence factor in the η direction from the outer to
the inner boundary of the curvilinear mesh can never exceed this quantity.

For the second case, it was assumed by Starius that

f(ξ, z) = a(ξ)f0(ξ, z),

where a(ξ) is a periodic function in ξ such that 0 < a ≤ 1. By using this f in
(6.84) we can see that a(ξ) is a relative measure of the grid spacing in the η
direction.

6.6.2 Specification of Jacobian

6.6.2.1 Orthogonal Grids in Two Dimensions

In the two-dimensional case the hyperbolic coordinate equations obtained by
specifying the Jacobian and a measure of orthogonality have the form
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xξ1 · xξ2 = 0,

|xξ1 × xξ2 | = J,
(6.86)

that is,

∂x1

∂ξ1

∂x1

∂ξ2
+

∂x2

∂ξ1

∂x2

∂ξ2
= 0,

∂x1

∂ξ1

∂x2

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1
= J,

(6.87)

where J is a specified area source term. These equations form a system of
nonlinear partial differential equations whose solution is based upon solving
the system

Axξ1 + Bxξ2 = f , (6.88)

where

A =

⎛

⎝
1√

g0
11g0

22

∂x1
0

∂ξ2 − 1
g0
11

∂x1
0

∂ξ1
1√

g0
11g0

22

∂x2
0

∂ξ2 − 1
g0
11

∂x2
0

∂ξ1

∂x2
0

∂ξ2 − ∂x1
0

∂ξ2

⎞

⎠ ,

B =

⎛

⎝
1√

g0
11g0

22

∂x1
0

∂ξ1 − 1
g0
22

∂x1
0

∂ξ2
1√

g0
11g0

22

∂x2
0

∂ξ1 − 1
g0
22

∂x2
0

∂ξ2

− ∂x2
0

∂ξ1
∂x1

0
∂ξ1

⎞

⎠ ,

x = (x1, x2)T , f = (0, J + J0)T .

Equation (6.88) represents the linearization of (6.87) about the state (x0).
Taking ξ2 as a marching direction, we obtain from (6.88)

xξ2 + B−1Axξ1 = B−1f . (6.89)

For the eigenvalues λ1, λ2 of the two-dimensional metric B−1A we have

λ1λ2 = det(B−1A),
λ1 + λ2 = Tr(B−1A).

As

det(B−1A) = F = |xξ2 |/|xξ1 | =
√

g22/g11,

Tr(B−1A) = 0,

we obtain λ1 = F, λ2 = −F. Hence the system (6.89) is hyperbolic and the
local solution consists of a left- and a right-running wave. Equation (6.89) is
typically modified by adding an artificial term εxξ1ξ1 to stabilize the numerical
scheme:

xξ2 + B−1Axξ1 + εxξ1ξ1 = B−1f . (6.90)
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6.6.2.2 Two-Dimensional Nonorthogonal Grids

A more general hyperbolic system which does not include any constraints on
the angle θ between the tangential vectors xξ1 and xξ2 is obtained from the
identities

g12 =
√

g11g22 cos θ,
√

g11g22 sin θ = J,
(6.91)

where θ and J can be user-specified. Choosing the ξ2 direction to be the
marching direction and solving the system (6.90) for ∂x1/∂ξ2, ∂x2/∂ξ2, we
obtain

∂x1

∂ξ2
=

√
g22

g11

(
∂x1

∂ξ1
cos θ − ∂x2

∂ξ1
sin θ

)
,

∂x2

∂ξ2
=

√
g22

g11

(
∂x2

∂ξ1
cos θ +

∂x1

∂ξ1
sin θ

)
.

(6.92)

The linearization of these equations produces the system (6.88) with

A =

⎛

⎝
1√

g0
11g0

22

∂x1
0

∂ξ2 − 1
g0
11

cos θ
∂x1

0
∂ξ1

1√
g0
11g0

22

∂x2
0

∂ξ2 − 1
g0
11

cos θ0
∂x2

0
∂ξ1

∂x2
0

∂ξ2 − ∂x1
0

∂ξ2

⎞

⎠ ,

B =

⎛

⎝
1√

g0
11g0

22

∂x1
0

∂ξ1 − 1
g0
22

cos θ
∂x1

0
∂ξ2

1√
g0
11g0

22

∂x2
0

∂ξ1 − 1
g0
22

cos θ0
∂x2

0
∂ξ2

− ∂x2
0

∂ξ1
∂x1

0
∂ξ1

⎞

⎠ ,

f = (cos θ + cos θ0, J + J0)T .

The matrix B−1 exists when sin θ �= 0, and

λ = ±
√

g22

g11
.

Hence the system (6.92) in this case is also hyperbolic.
The introduction of the angle θ into the system (6.92) allows one to solve

the initial-value problem, i.e. to specify grid data on the initial boundary
ξ2 = 0 and the side boundaries ξ1 = 0, ξ1 = 1. For (6.92) the boundary
curves ξ2 → x(ξ1

0 , ξ2), ξ1
0 = 0 or ξ1

0 = 1, need not intersect the initial curve
ξ2 = 0 orthogonally and so the initial-value problem is typically ill-posed.
Equations (6.92), however, give an opportunity to choose the angle terms
near the boundary so that a consistent problem results.

6.6.2.3 Three-Dimensional Version

The three-dimensional hyperbolic grid generation approach, where the march-
ing direction is say, ξ3, is based on two orthogonality relations and an addi-
tional equation to control the Jacobian as follows:
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xξ1 · xξ3 = 0,

xξ2 · xξ3 = 0, (6.93)

det
(

∂xi

∂ξj

)
= J, i, j = 1, 2, 3.

The local linearization of the system (6.93) with respect to (x − x0), where
x0(ξ) is a known state, neglecting products of small quantities that are second
order in (x − x0), yields

A0(x − x0)ξ1 + B0(x − x0)ξ2 + C0(x − x0)ξ3 = f , (6.94)

where x = (x1, x2, x3)T , x0 = (x1
0, x

2
0, x

3
0)

T , A0, B0, and C0 are coefficient
matrices that are evaluated from x0(ξ), and the subscripts si, i = 1, 2, 3,
denote partial derivatives.

6.6.3 Parabolic Equations

The parabolic grid approach lies between the elliptic and hyperbolic ones.
The two-dimensional parabolic grid generation equation where the march-

ing direction is ξ2 may be written in the following form:

xξ2 = A1xξ1ξ1 − B1x + S, (6.95)

where A1, B1, and B are matrix coefficients, and S is a source vector that con-
tains the information about the outer boundary configuration. Analogously,
the three-dimensional parabolic equations may be written as follows:

xξ3 = Aixξiξi − B1x + S, i = 1, 2. (6.96)

6.6.4 Hybrid Grid Generation Scheme

The combination of the hyperbolic and parabolic schemes into a single scheme
is attractive because it can use the advantages of both schemes. These advan-
tages are; first, it is a noniterative scheme; second, the orthogonality of the
grid near the initial boundary is well controlled; and third, the outer boundary
can be prescribed.

A hybrid grid generation scheme in two dimensions for the particular
marching direction ξ2 can be derived by combining (6.89) and (6.95), in par-
ticular, as the sum of equations (6.89) and (6.95) multiplied by weights α and
1 − α, respectively:

α(B−1Axξ1 + xξ2) + (1 − α)(xξ2 − A1xξ1ξ1 + B1x)
= αB−1f + (1 − α)S. (6.97)

The parameter α can be changed as desired to control the proportions of the
two methods. If α approaches 1, (6.97) becomes the hyperbolic grid generation
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equation, while if α approaches zero it becomes the parabolic grid generation
equation. In practical applications α is set to 1, when the grid generation
starts from the initial boundary curve ξ2 = 0, but it gradually decreases and
approaches zero when the grid reaches the outer boundary.

An analogous combination of (6.94) and (6.96) can be used to generate
three-dimensional grids through a hybrid of parabolic and hyperbolic equa-
tions.

6.7 Comments

A two-dimensional Laplace system (6.3) which implied the physical coordi-
nates to be solutions in the logical domain Ξ2 was introduced by Godunov
and Prokopov (1967), Barfield (1970), and Amsden and Hirt (1973). A gen-
eral two-dimensional elliptic system of the type (6.2) for generating structured
grids was considered by Chu (1971).

A two-dimensional Laplace system (6.4) using the logical coordinates ξi

as dependent variables was proposed by Crowley (1962) and Winslow (1967).
The technique presented in this chapter to analyze the qualitative behavior
near boundary segments of the coordinate lines obtained through the inverted
Laplace equations was introduced by the author of this book. A rather geomet-
ric approach was described for this purpose in the monograph by Thompson,
Warsi, and Mastin (1985). A more detailed analysis of grid behavior near
the boundary of both surfaces and two- and three-dimensional domains was
performed by Liseikin (2004, 2007).

Godunov and Prokopov (1972) obtained a system of the Poisson type
(6.13) assuming that its solution is a composition of conformal and stretch-
ing transformations. The general Poisson system presented in the current
book was justified by Thompson, Thames, and Mastin (1974) and Thomp-
son, Warsi, and Mastin (1985) in their monograph.

The algorithm aimed at grid clustering at a boundary and forcing grid
lines to intersect the boundary in a nearly normal fashion through the source
terms of the Poisson system was developed by Steger and Sorenson (1979),
Visbal and Knight (1982), and White (1990). Thomas and Middlecoff (1980)
described a procedure to control the local angle of intersection between trans-
verse grid lines and the boundary through the specification of the control func-
tions. Control of grid spacing and orthogonality was performed by Tamamidis
and Assanis (1991) by introducing a distortion function (the ratio of the di-
agonal metric elements) into the system of Poisson equations. Warsi (1982)
replaced the source terms P i in (6.13) by giiP i (i fixed) to improve the nu-
merical behavior of the generator. As a result the modified system acquired
the property of satisfying the maximum principle.

The technique based on setting to zero the off-diagonal elements of the
elliptic system was proposed by Lin and Shaw (1991) to generate nearly or-
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thogonal grids, while Soni et al. (1993) used a specification of the control
functions for this purpose.

A composition of Poisson’s and Laplace’s equations in the computational
domain to derive biharmonic equations of fourth order was used to gener-
ate smooth block-structured grids via the specification of grid line slopes and
boundary point distributions by Bell, Shubin, and Stephens (1982). Schwarz
(1986) used for this purpose equations of sixth order, which were composed
of Poisson and Laplace systems with respect to the dependent physical co-
ordinates xi. An alternative method, based on the solution of biharmonic
equations in the physical domain, was introduced by Sparis (1985). A recent
implementation of the biharmonic equations to provide boundary orthogonal-
ity and off-boundary spacing as boundary conditions was presented by Sparis
and Karkanis (1992).

A combination of elliptic and algebraic techniques was applied by Spekrei-
jse (1995) to generate two- and three-dimensional grids. An approach to for-
mulating an orthogonal system by differentiating nondiagonal metric elements
was developed by Haussling and Coleman (1981). Ryskin and Leal (1983), in
two dimensions, and Theodoropoulos and Bergeles (1989) in three dimensions,
have developed elliptic methods for nearly orthogonal grid generation.

The first systematic analysis of the use of two-dimensional hyperbolic equa-
tions to generate orthogonal grids was made by Starius (1977) and Steger and
Chaussee (1980), although hyperbolic grid generation can be traced back to
McNally (1972). This system was generalized by Cordova and Barth (1988).
They developed a two-dimensional hyperbolic system with an angle-control
source term which allows one to constrain a grid with more than one boundary.
A combination of grids using the hyperbolic technique of Steger and Chaussee
(1980), which starts from each boundary segment was generated by Jeng and
Shu (1995). The extension to three dimensions was performed by Steger and
Rizk (1985), Chan and Steger (1992), and Tai, Chiang, and Su (1996), who
introduced grid smoothing as well.

The generation of grids based on a parabolic scheme approximating the
inverted Poisson equations was first proposed for two-dimensional grids by
Nakamura (1982). A variation of the method of Nakamura was developed
by Noack (1985) to use in space-marching solutions to the Euler equations.
Extensions of this parabolic technique to generate solution adaptive grids were
performed by Edwards (1985) and Noack and Anderson (1990).

A combination of hyperbolic and parabolic schemes that uses the advan-
tages of the two but eliminates the drawbacks of each was proposed by Naka-
mura and Suzuki (1987).



7

Dynamic Adaptation

7.1 Introduction

Some basic differential methods for generating structured grids have been
discussed in Chap. 6. However, a very important aspect of structured grid
generation concerned with adaptation of grids to the numerical solution of
partial differential equations has not been covered fully so far in the discussion.
The goal of the current chapter is to partly eliminate this drawback by giving
an elementary introduction to the subject of adaptive grid generation.

Adaptive grids are commonly considered as meshes which adjust to phys-
ical quantities in such a way that the quantities can be represented with the
greatest possible accuracy and at optimal cost through a discrete solution on
a given number of grid points or grid cells. For particular problems the ad-
justment can be accomplished on the basis of a theoretical or computational
analysis, conducted beforehand, of those qualitative and/or quantitative prop-
erties of the solution which have the greatest influence on the accuracy of the
numerical computation. However, it is more preferable for the development of
automated grid codes to have a dynamic adaptation in which the process of
grid generation is coupled with the numerical analysis of the physical problem,
and consequently the grid points are built in response to the evolving solution
without reliance on a priori knowledge of the properties of the solution.

In many practical problems there may exist narrow regions in the physi-
cal domains where the dependent quantities undergo large variations. These
regions include shock waves in compressible flows, shear layers in laminar and
turbulent flows, expansion fans, contact surfaces, slipstreams, phase-change
interfaces, and boundary and interior layers, which, when interacting, can
present significant difficulties in the numerical treatment. The need for a de-
tailed description of the physical solutions to such problems requires the de-
velopment of adaptive methods whose adaptivity is judged by their ability
to provide a suitable concentration of grid nodes in these regions in com-
parison with the distribution of the nodes in the rest of the domain. One
approach to generating a clustered grid in the appropriate zones was consid-

V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-90-481-2912-6 7, c© Springer Science+Business Media B.V. 2010
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ered in Chap. 5. However, in the case of multidimensional nonlinear systems
of equations, the locations of the zones of large solution variation are, as a
rule, not known beforehand, and hence the explicit distribution of the grid
points by the stretching method described in Chap. 5 cannot be successfully
accomplished. One of the most efficient tools, which provides a real oppor-
tunity to enhance the efficiency of the numerical solution of these problems,
is the adaptive grid technique, aimed at the dynamic distribution of the grid
nodes with clustering in the zones of rapid change of the solution variables.

Analytical and numerical investigations have demonstrated that the adap-
tive grid technique has a significant potential to enhance the accuracy and
efficiency of computational algorithms. This is especially true for the calcula-
tion of multidimensional and unstable problems with boundary and interior
layers where the derivatives of the solution are large. Adaptivity can elimi-
nate oscillations associated with inadequate resolution of large gradients more
effectively, reduce the undesirable numerical viscosity, damp out instabilities,
and considerably curtail the number of grid nodes needed to yield an accept-
able solution of a problem relative to the number of nodes of a uniform grid.
The interpolation of functions by discrete values is also more accurately per-
formed over the whole region when the grid nodes are clustered in the zones
of large derivatives of the functions.

Adaptive grids are, therefore, an important subject to study because of
their potential for improving the accuracy and efficiency of the numerical
solution of boundary value problems modeling various complex physical phe-
nomena, and serious efforts have been undertaken to develop and enhance the
methods of adaptive grid generation and to incorporate these methods into
the numerical algorithms for solving field problems.

However, the problem of the development of robust adaptive grid methods
is a serious challenge since conflicting demands are imposed on the methods; in
particular, they should provide adequate resolution of the solution quantities
in regions of high gradients, while also limiting the total number of points and
excessive deformation of grid cells.

This chapter is concerned with the description of certain approaches to dy-
namic adaptation techniques. The emphasis is placed on the equidistribution
techniques, realized by differential equations, some of which were discussed in
Chap. 6. One more realization of the equidistribution techniques and realiza-
tions of other concepts through variational techniques will be considered in
Chaps. 8 and 10.

7.2 One-Dimensional Equidistribution

One of the demands imposed on grid adaptation techniques is that of obtaining
a numerical solution of a partial differential equation with optimal accuracy
for a given number of grid nodes. A rather reasonable idea to realize this
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demand relies on a placement of the grid nodes in such a way that the error
of the numerical solution is uniformly distributed throughout the domain.

Generally, in one dimension the solution error e can be expressed as the
product of the local grid spacing �s raised to some power p and a combination
of the local solution derivatives, i.e. e = (�s)pQ[diu/(dx)i]. Therefore the
most natural approach to realizing the idea of the uniform error distribution
is one in which some function w, connected with the error by the relation
w ∼ c|Q1/p|, is computed and the mesh size �s is specified so that w � s and
consequently the error e is nearly the same at all points of the domain. As a
result the grid nodes generated in accordance with this approach are clustered
in the regions of large solution derivatives, where the error is expected to be
higher.

In one dimension, the equidistribution techniques can be formulated in the
most clear and theoretically justified way. These one-dimensional techniques
have been the foundation for the demonstration and development of multi-
dimensional adaptive methods. And numerous theoretical and computational
investigations of the numerical algorithms for interpolation of functions and
for solving boundary value problems for ordinary differential equations have
shown that the equidistribution approaches have a high potential to provide
an effective reduction in the numerical error of the algorithms and an im-
provement of the resolution of the dependent variables.

7.2.1 Example of an Equidistributed Grid

As an example demonstrating the efficiency of the equidistribution principle,
we consider a numerical solution of the initial boundary value problem

du

dx
= f(u, x), x > a,

u(a) = l
(7.1)

approximated at the grid points xi, i = 0, 1, . . . , N, by a Runge–Kutta scheme
of the second order of accuracy:

ui+1 − ui

xi+1 − xi
= f(ui, xi) +

1
4
{
f [ui + (xi+1 − xi)fi, xi+1]

− f [ui + (xi−1 − xi)fi, xi−1]
}
, i > 0, (7.2)

u0 = l,

where fi = f(ui, xi), and the nonuniform grid nodes xi, i = 0, . . . , N, with
x0 = a are represented by a smooth one-to-one transformation x(ξ), i.e. xi =
x(ih), where h is the step size of a uniform grid in ξ space.

The error R of the approximation of (7.1) by the scheme (7.2) is estimated
by the equation

R =
h2

2

[
1
2

d2u

dx2

d2x

dξ2
+

1
3

d3u

dx2

(
dx

dξ

)2]
+ O(h3).
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The optimal transformation, eliminating the major error term in R and thus
increasing the global order of the approximation (7.2) and correspondingly
providing an asymptotic optimization of the solution error, satisfies the equa-
tion

1
2

d2u

dx2

d2x

dξ2
+

1
3

d3u

dx2

(
dx

dξ

)2

= 0.

This equation is readily solved with respect to the dependent quantity dx/dξ,
resulting in xξ = c(uxx)−2/3. Thus we can formulate an initial-value problem
for the computation of the transformation x(ξ) producing an optimal grid in
the following form:

dx

dξ
= c

∣∣∣∣
d2

dx2
u(x)

∣∣∣∣
−2/3

, ξ > 0,

x(0) = a.

(7.3)

If the quantity d2u/dx2 does not vanish then the solution of (7.3) is a smooth
function x(ξ) generating the optimal grid xi = x(ih), i = 0, 1, . . . . From (7.3)
we obtain

hi ≈ h
dx

dξ
(ih) ≈ ch

∣∣∣∣
d2u

dx2
(xi)

∣∣∣∣
−2/3

and consequently find that the grid steps hi, i = 0, 1, . . . , are generated in
accordance with the equidistribution principle:

hi

∣∣∣∣
d2u

dx2

∣∣∣∣
2/3

≈ c.

From (7.1),
d2u

dx2
= ffu + fx,

and therefore the steps hi of the optimal grid for the scheme (7.2) can be
obtained from the relation

hiwi = c, wi = w(xi), (7.4)

with the weight function

w = 3
√

(ffu + fx)2.

Thus this magnitude w(x) is equally distributed over the steps of the optimal
grid derived from a solution to the problem (7.3), and as a result we find that
the step size hi is inversly proportional to wi = w(xi).

Now, in order to demonstrate the efficiency of the optimal grid obtained
from (7.3), we analyze, as an example, the numerical solution to the following
initial-value problem of the type (7.1):
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du

dx
= x−2, x > 1,

u(1) = −1.
(7.5)

The exact solution of the problem (7.5) is

u(x) = −1/x, x ≥ 1.

In accordance with (7.3), we find that dx/dξ = cx2. The solution of this
equation with the initial boundary condition x(0) = 1 is the transformation
x(ξ) expressed as follows:

x(ξ) =
1

1 − cξ
, 0 ≤ ξ <

1
c
.

Consequently, we find that the optimal grid points xi are determined by the
relations

xi = 1/(1 − cih), i = 0, . . . , N, chN < 1.

The approximation of the initial problem (7.5) by the scheme (7.2) on the
grid nodes xi has the form

(ui+1 − ui)[1 − c(i + 1)h](1 − cih)
ch

= (1 − cih)2 +
1
4

{[1 − c(i + 1)h]2 − [1 − c(i − 1)h]2}, i ≥ 1,

u0 = −1

and its solution
ui = cih − 1 = − 1

xi

is the exact solution u(x) to the initial-value problem (7.5) at the grid nodes
xi, i.e. ui = u(xi), i = 1, . . . , N. Thus we find that the numerical solution
of (7.5) coincides with the exact solution at the grid nodes derived by the
equidistribution principle.

7.2.2 Original Formulation

The original one-dimensional formulation of the equidistribution principle for
generating grid steps was proposed by Boor (1974) for the purpose of ob-
taining more accurate interpolation of functions by splines. The principle was
formulated as a rule for determining the grid nodes xi, i = 1, . . . , N, in the
interval [a, b] in accordance with the relation

∫ xi+1

xi

w(x)dx = c, i = 0, 1, . . . , N − 1,

x0 = a, xN = b,

(7.6)
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where w(x) is a certain positive quantity called either a monitor function or
a weight function. A discrete form of (7.6) may be represented as

hiwi = c, i = 0, . . . , N − 1,

x0 = a, xN = b, hi = xi+1 − xi,
(7.7)

where wi = w(x′
i), x′

i ∈ hi, i = 0, . . . , N − 1. The constant c in (7.7) is
determined from the condition xN = b, i.e. after summing (7.6):

c =
1
N

∫ b

a

w(x)dx.

Equation (7.7) corresponds to (7.4), found for the generation of the optimal
grid to the solution of the problem (7.1). The grid steps satisfying (7.7) will
be small where the weight w is large, and vice versa. Thus the weight function
provides information about the desired grid clustering.

This formulation of the equidistribution principle for generating one-di-
mensional grids has been used with success to generate one-dimensional adap-
tive grids for the numerical solution of both stationary and nonstationary
problems with singularities. Commonly, the solution to the problem of inter-
est is first found on an initial background grid, then the weight function w
is computed at the points of this background grid and interpolated over the
entire interval [a, b], and afterwards grid points are either moved or added to
satisfy (7.6). The process is then repeated until a desired convergence toler-
ance is achieved.

7.2.3 Differential Formulation

If the grid points in the interval [a, b] are determined through a coordinate
transformation x(ξ) from the unit interval [0, 1] onto the interval [a, b] in the
form xi = x(ih), i = 0, 1, . . . , N, h = 1/N, then (7.7) can be interpreted as a
discrete approximation of the problem

dx

dξ
w[x(ξ)] = c, 0 < ξ < 1,

x(0) = a, x(1) = b.

(7.8)

Taking into account
dx

dξ
= 1

/ dξ

dx
,

the problem (7.8) is equivalent to the following one:

dξ

dx
= cw(x), a < x < b,

ξ(a) = 0, ξ(1) = b.
(7.9)
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The integration of (7.9) over the interval [a, b] gives

c = 1
/ ∫ b

a

w(x)dx,

and, consequently, by integrating (7.9) over the interval [a, x], we obtain

ξ(x) =
∫ x

a

w(x)
/ ∫ b

a

w(x)dx.

The inverse of ξ(x) yields the transformation x(ξ) satisfying (7.8), thus pro-
ducing the equidistributed grid.

By differentiating (7.8) with respect to ξ we can eliminate the constant c
from our consideration and obtain a two-point boundary value problem for
the definition of x(ξ):

d
dξ

(
w[x(ξ)]

dx

dξ

)
= 0, 0 < ξ < 1,

x(0) = a, x(1) = b.

(7.10)

This problem is solved, as a rule, by a method based on an explicit or implicit
iterative computation of the following parabolic boundary value problem:

∂

∂t
=

∂

∂ξ

(
w(x)

∂x

∂ξ

)
, 0 < ξ < 1, t > 0,

x(ξ, 0) = x0(ξ), x(0, t) = a, x(1, t) = b.

(7.11)

One-dimensional adaptive numerical grids with the nodes xi = x(ih), i =
0, 1, . . . , N, h = 1/N, constructed through the solution of either the initial-
value problem (7.8) or the two-point boundary value problem (7.10) on the
uniform grid ξi = ih, i = 0, 1, . . . , N, have been used to study many practical
problems with singularities.

It its apparent that any smooth, univariate, one-to-one coordinate trans-
formation x(ξ) can be found through the solution of the problems (7.8)–(7.10)
with the monitor function

w(x) =
dξ

dx
.

So, the problems (7.8)–(7.10) provide a general formulation for building uni-
variate adaptive grids. The major task in this formulation is to define the
appropriate weight functions w(x).

7.2.4 Specification of Weight Functions

Commonly, the weight function w(x) in (7.8)–(7.10) is defined in the form
w(x) = f [u(k)(x)], where f is some positive function, u(x) is either a solution
to the physical problem or a function monitoring some features of the quality



202 7 Dynamic Adaptation

of the solution, and u(k)(x) is the kth-order derivative of u(x) with respect
to x. For example, three possible weight functions are

w(x) =

⎧
⎪⎨

⎪⎩

α + ‖u(x)‖,√
α + ‖ux‖2,√
α + β‖ux‖2 + γ‖uxx‖2,

(7.12)

where α, β, γ are positive constants and ‖v‖ is some norm of the vector v =
(v1, . . . , vn) at the point x, commonly a least-squares norm or maxi |vi|, i =
1, . . . , n. It has been shown analytically and by numerical experiments that
adaptive grids built in accordance with the equidistribution principle (7.7)
with weight functions of the form (7.12) may often eliminate oscillations and
give a more accurate description of the solution in zones of large variations.

7.2.4.1 Optimally Distributed Grid

The idea of the equidistribution principle is to equidistribute the solution
error by placing more grid nodes where the error is large, so as to gain high
accuracy overall with a fixed number of grid points. The validity of this idea
was demonstrated by the above example. The grid which minimizes the error
of the numerical solution to a differential problem is an optimally distributed
grid with the nodes optimally refined in the areas of large solution error.
Thus, if a measure of the error e(x) is estimated for the grid interval hi by
the relation

‖e(x)‖ = (hi)pQ(x), e(x) = u(x) − uh(x),

where u(x) is the exact solution to the physical problem and uh(x) is the
numerical solution, it is quite natural, for obtaining the optimally distributed
grid, to define the weight function through a measure of the error by means
of the following relation:

w(x) = [Q(x)]1/p.

The error e(x) may be found with high accuracy as a solution to the boundary
value problem

L(e) = T , e|∂Xn = 0, (7.13)

where L is the operator of linearization of the governing equations for the
physical boundary value problem, while T is the approximation error of the
problem. The derivation of (7.13) is carried out analogously to that of stability
equations.

Although an asymptotically accurate solution error e(x) can in principle
be obtained from the equation for variation (7.13), in practice this task is very
difficult and expensive, even for a one-dimensional problem, to which (7.13)
is applicable.

A more promising way seems to lie in the generation of the grid in accor-
dance with a uniform distribution of some norm of T (x), i.e. by defining the
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monitor function w(x) through a measure of the approximation error T (x).
In this case

w(x) = [Q1(x)]1/p

if
‖T (x)‖ = (hi)pQ1(x),

and T (x) can be readily expressed through the solution derivatives. This as-
sumption has some meaning since the relation

‖e(x)‖ ∼ c(x)‖T (x)‖

is generally valid for the numerical solution of boundary value problems. How-
ever, the utilization of a weight function defined through the error of approxi-
mation T (x) to generate adaptive grids for the numerical solution of singularly
perturbed equations may result in too large a grid spacing in the areas which
lie outside the boundary and interior layers.

As an example, we consider the following two-point boundary value prob-
lem with a boundary layer:

εu′ ′ + u′ − u = f(x), 0 < x < 1,

u(0) = a, u(1) = b,
(7.14)

where 1 ≥ ε > 0 is a small parameter. An approximation of (7.14) using the
upwind differencing

2ε

hi + hi−1

(
ui+1 − ui

hi
− ui − ui−1

hi−1

)
+

ui+1 − ui

hi
− ui = f(xi),

0 < i < N, u0 = a, uN = b, (7.15)

on a nonuniform grid xi, i = 1, . . . , N, results in the approximation error

T ∼ c

{
ε

[
hi

d3u

dx3
(xi) + hi−1

d3u

dx3
(xi−1)

]
+ hi

d2u

dx2
(xi)

}
. (7.16)

Let v(x) be a solution to the following initial-value problem associated with
(7.14):

v′ − v = f(x), x < 1,

v(1) = b.

If |v(0) − a| > m, where m is a positive constant independent of ε, then the
solution u(x) of (7.14) is a function of the exponential boundary-layer type
(see Fig. 7.1) satisfying the inequality

|u(x) − v(x)| ≤ M [exp(−x/ε) + ε], 0 ≤ x ≤ 1,

and its derivatives in the interval [0, 1] are estimated by
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Fig. 7.1. Node placement generated by equidistribution of the approximation error
(left) and of the solution error computed at the grid points (right)

∣∣u(k)(x)
∣∣ ≤ M

[
ε−k exp(−x/ε) + 1

]
,

where M is a constant independent of ε. It is important to note that in the
boundary layer interval [0, kε ln(1/ε)] the derivatives of u(x) are bounded from
both sides by the estimate

M1

[
ε−k exp(−x/ε) + 1

]
≤

∣∣u(k)(x)
∣∣ ≤ M2

[
ε−k exp(−x/ε) + 1

]
, (7.17)

where M1, M2 are positive constants which do not depend on ε. Thus, in
accordance with (7.17), we obtain from (7.16) the following estimate for T (x)
in the boundary layer interval:

M3hi

[
ε−2 exp(−x/ε) + 1

]
≤ T (x) ≤ M4hi

[
ε−2 exp(−x/ε) + 1

]
,

with Mi > 0 and independent of ε. From this inequality it is natural to choose
the weight w(x), for the purpose of obtaining a uniform distribution of T (x)
with respect to the parameter ε, as

w(x) = ε−2 exp(−x/ε) + 1, 0 ≤ x ≤ 1.

However, by computing (7.9) with this weight function w(x), we obtain

ξ(x) =
1 − exp(−x/ε) + εx

1 − exp(−1/ε) + ε
. (7.18)

If x0 = ε ln(1/ε), (7.18) yields

ξ(x0) =
1 − ε + ε2 ln(1/ε)
1 − exp(−1/ε) + ε

∼ 1, if 0 < ε 	 1,

i.e. nearly all of the computational interval [0,1] (and consequently nearly the
entire set of grid points) is mapped by x(ξ) into the boundary layer. As a
result the area outside the boundary layer is not provided with a sufficient
number of grid nodes (Fig. 7.1, left).
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Note that this phenomenon does not occur if the scale of the layer is less
then 1, i.e. when the first derivative of u(x) satisfies the estimate

|u′(x)| ≤ Mε−α, 0 ≤ x ≤ 1, α < 1,

with M independent of ε. This case occurs, for example, when the first deriva-
tive u′ in (7.14) is either deleted or multiplied by a positive function vanishing
at the point x = 0.

If the generation of the grid for the solution of (7.14) is determined by the
condition of a uniform distribution of the solution error e = u(xi) − ui(xi),
then both the boundary layer and the rest of the interval [0, 1] are provided
with a sufficient number of grid points. Indeed, the following estimate of e is
valid:

|ei| ≤ Mhi

[
ε−1 exp(−x/ε) + 1

]
,

and, consequently, assuming

w(x) = ε−1 exp(−x/ε) + 1, 0 ≤ x ≤ 1,

we obtain, solving (7.9),

ξ(x) =
1 + x − exp(−x/ε)

2 − exp(−1/ε)
, 0 ≤ x ≤ 1.

This expression for ξ(x) yields, for x0 = ε ln(1/ε),

ξ(x0) =
1 + x0 − ε

2 − exp(−1/ε)
∼ 1

2
, if 0 < ε 	 1.

Thus, in this case, unlike to the previous one, nearly N/2 grid points will be
placed in the boundary layer and the remaining N/2 nodes will be distributed
outside the layer. The proportion of grid points placed in the boundary layer
can be controlled by a constant c if we propose

w(x) = ε−1 exp(−x/ε) + c,

which leads to the placement of approximately cN/(1+c) nodes in the bound-
ary layer.

Let us consider another phenomenon connected with the solution of (7.14)
by the scheme (7.15). Since |ui| ≤ M , where ui is the solution of (7.15) and
M is independent of ε, we have from (7.15)

|ei| ≤ M max
i≥2

{
ε

(h1)2
, hi[exp(−xi/ε) + 1]

}
, i = 0, 1, . . . , N − 1.

Therefore, if ε ≤ h(h1)2, we obtain a uniform estimate of the solution error

|ei| ≤ Mh, i = 0, . . . , N − 1.
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In this case (Fig. 7.1, right), i.e. when all grid nodes lie outside the boundary
layer, we find that the solution of the associated initial-value problem is solved
more accurately than in the case where a part of the nodes is put in the
boundary layer. As a result the solution to a problem of the type (7.14) may
be more accurate at the points of a uniform grid than at the points of a grid
with node clustering in the boundary layer when the parameter ε is sufficiently
small, namely ε ≤ 1/N3. However, this solution is not interpolated uniformly
over the entire interval [0, 1]. This consideration shows that a measure of the
solution error computed only at the grid points cannot be always used as a
successful driving mechanism for the adaptive distribution of grid points.

One more disadvantage of generating grids in accordance with a uniform
distribution of the error T (x) is the fact that for highly accurate approxi-
mations of the governing equations the expression for T (x) includes terms
dependent on high-order derivatives of the solution, which may cause much
numerical noise and instability.

Thus, though it is quite natural to incorporate directly the error mea-
surements ‖e(x)‖ or ‖T (x)‖ into a formulation of the monitor functions, the
computation of the optimally distributed grids defined by these measures
may be an expensive and unsuccessful procedure and, in fact, relies on ex-
act knowledge of the physical solution. So the requirement for efficiency of
the algorithms leads the practitioners to specify the weight functions in more
simple forms, applying for this purpose only lower-order derivatives of the
solution. Generally, the largest numerical errors are found in regions of rapid
variation of the lower derivatives of the solution, in particular, the first deriv-
ative. Therefore even the first derivatives of the solution can often be used to
derive the weight functions. The following paragraphs give some examples of
such weight functions composed of the first and/or second derivatives of the
physical quantities.

7.2.4.2 Equidistant Mesh

A readily constructed grid, which can in some cases reduce the solution error,
uses the measure of distance along the solution curve u(x) as the equally
divided computational coordinate. This grid is called the equidistant mesh.

The second expression for w(x) in (7.12) with α = 1 provides the arc
length monitor function u(x), whose curve is divided by the method into the
equal intervals �si = c, thus producing the equidistant mesh (Fig. 7.2). Equa-
tion (7.8), with this monitor function w(x) =

√
1 + ‖ux‖2 and the assumption

for the norm ‖ux‖

‖ux‖2 =
k∑

i=1

(
dui

dx

)2

,

implies the following equation:

ds

dξ
= c
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Fig. 7.2. Equidistant mesh

with respect to the dependent variable

s(x) =
∫ x

a

√
1 + ‖ux‖2dx.

The quantity s(x) represents length of the curve

[x, u(x)], u(x) =
[
u1(x), . . . , uk(x)

]

in the space Rk+1.
The equidistant method is efficient for generating grids for the numerical

solution of the singularly perturbed problems discussed in Chap. 4. A par-
tial justification of this statement is based on the estimates for the solution
derivatives, described in that chapter, which show that the area of large first
derivatives of the solution to a singularly perturbed problem practically co-
incides with the area of large higher derivatives. In this case the monitor
function

w(x) =
√

1 + ‖ux‖2

yields a coordinate transformation x(ξ) such that the high-order derivatives
with respect to ξ of the function u[x(ξ)] are nearly uniformly bounded. Thus
the use of the arc length monitor may put an emphasis on error control in the
vicinity of the narrow layers of rapid variation of the solution function.

The major factor influencing the use of the equidistant monitor is its
simplicity. The utilization of the truncation error monitor for any difference
scheme requires a computation of dp/(dx)pu(x) for some p ≥ 1. In general,
the complexity and expense of this calculation increase vary rapidly with p.
So the equidistant method is optimal in a very real sense.

A generalization of the equidistant approach is commonly provided by the
following weight functions:

w =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α‖ux‖ + α1,

α0 +
∑

i αi|ui
x|βi ,

α0 +
∑

i αi|ui
ξ |βi ,

(α + ‖u(k)‖2)1/(2k).

(7.19)
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Here ui is the ith component of the vector-valued dependent variable u and
α, αi, βi, l, k are positive constants. In the last case with α = 1 and k = 1,
the grid nodes are determined from the condition that the lengths of the
segments of the curve [x, u(x)] are equal.

7.2.4.3 Utilization of the Second Derivative and Curvature

Weight functions are also often defined by utilizing the second derivative of
the solution in addition to the first derivative, for example in the simplest
form

w = 1 + α‖ux‖ + β‖uxx‖. (7.20)

The second derivative is used to increase the concentration of grid points near
the extrema of the function u(x). Weight functions which include the first
and second derivatives of the solution in the form

w = 1 + a‖uξ ‖α + b‖uξξ ‖β

or
w = 1 + a‖ux‖α + b‖uxx‖β ,

generalizing (7.20), are used to calculate one-dimensional waves and to con-
struct multidimensional adaptive grids.

A more suitable grid may be obtained if the weight function w(x) is con-
structed by combining the first derivative of the solution with the values of
the curvature, for example in the forms

w =

{
(1 + α|k|)

√
1 + ‖ux‖2,

1 + α‖uξ ‖ + β
|k| ‖uξξ ‖,

(7.21)

where k is the curvature of the curve [x, u(x)]. In fact, the transformation x(ξ)
computed through the first representation of w(x) in (7.21) is a composition
of two transformations: one obtained by the equidistant approach and another
serving to concentrate the grid points at the regions of large solution curvature.
Note that in the case of a scalar function u(x) the curvature is represented by
the equation

k = uxx/
√

[1 + (ux)2]3.

In one more sophisticated approach, the weight function w(x) is deter-
mined by solving the diffusion equation

−wxx + σw = α‖ux‖ + β|k|, (7.22)

where σ, α, β are positive parameters. The term wxx in (7.22) is included to
provide a smoothing effect. This equation becomes a singularly perturbed one
if σ is large, and as a result the weight function w in this case has a localized
density, thus causing a localized adaptation.
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7.3 Equidistribution in Multidimensional Space

The one-dimensional equidistribution approach discussed in Sect. 7.2 has led
to the development of multidimensional equidistribution methods, in which
the grid is generated in such a manner that the grid spacing in any direction is
defined in accordance with the equidistribution of some prescribed quantity w,
called either a weight function or a monitor function, along the coordinate line
in this direction. It fact, most adaptive grid methods have much in common
and can be interpreted as techniques based on an equal distribution of weight
functions which represent some measures of the solution error.

7.3.1 One-Directional Equidistribution

An adaptation along a single family of coordinate lines is commonly carried
out in accordance with the equidistribution principle �sw ∼ const, where
�s is the step size of a selected coordinate line ξi. Since �s ∼ �ξi√

gii for
a fixed i, where gij = xξi · xξj , i, j = 1, . . . , n, the principle can operate
by specification of the ith diagonal element of the covariant metric tensor
by assuming it to be inversely proportional to a weight w squared. Typical
specifications of the monitor function w(x) are performed through gradient
magnitudes, curvatures, and cell quality measures. The distance si along any
coordinate curve ξi satisfies the equation

dsi

dξi
=

√
gii, i fixed.

On the other hand, in accordance with the equidistribution principle, we have
for each fixed i

widsi = cidξi.

The cancellation of dξi from these two equations gives

gii = (ci/wi)2

and thus
gii(wii)2 = (ci)2.

Differention with respect to ξi removes the constant ci, yielding the partial
differential equation

∂gii

∂ξi
+

2
wi

∂wi

∂ξi
gii = 0,

i.e.
xξixξiξi +

1
wi

∂wi

∂ξi
gii = 0, i fixed. (7.23)
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Fig. 7.3. Coordinate system derived by overlaying two independently deformed
families (solid curves) of coordinate lines

7.3.2 Multidirectional Equidistribution

The generation of grids in multidimensional domains commonly requires adap-
tation in several directions. One way to perform such adaptation is to extend
the methods of univariate equidistribution. A generalization of the univariate
equidistribution approach to generate grids in a multidimensional domain can
be accomplished by using either a combination or a composition of univariate
equidistributions along fixed families of coordinate lines which are specified
or computed beforehand in the physical domain.

7.3.2.1 Combination of One-Dimensional Equidistributions

In the combination approach the grid is derived by overlaying a series of grid
lines obtained separately with univariate equidistributions in each direction
(Fig. 7.3).

Thus, let the physical region Xn have a coordinate system q1, . . . , qn along
which a univariate adaptation is supposed to be performed. Let the coordinate
system qi be determined by a coordinate transformation

x(q) : Qn → Xn.

Here the parametric (intermediate) domain Qn can be considered as the unit
cube. The equidistribution of the grid points along any fixed family of coor-
dinate lines is carried out by the formulas of univariate equidistribution. This
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Fig. 7.4. Coordinate system derived by the composition of two successive deforma-
tions

process proceeds separately for each fixed coordinate family qi by determining
the respective weight function wi(q) and finding the coordinate transforma-
tion qi(ξi) for each fixed value (q1, . . . , qi−1, qi+1, qn) through the following
equation, of the form (7.10):

∂

∂ξi

(
∂qi

∂ξi
wi(q)

)
= 0, 0 < ξi < 1, i fixed,

qi(0) = 0, qi(1) = 1,

(7.24)

and then forming the final grid by overlaying the coordinate curves obtained.
In fact the grid is built by solving the system (7.24) for i = 1, . . . , n. Of
course, unlike the one-dimensional case, the solution to this system may not
be a one-to-one transformation.

7.3.2.2 Composition of Univariate Equidistributions

In the composition approach, the process is split into a sequence of one-
directional adaptations, in which the grid is obtained by successive application
of one-dimensional equidistribution techniques (Fig. 7.4). In two dimensions
this succession can be represented as

x(q1, q2) → x
[
q1(ξ1, q2), q2

]
→ x

{
q1

[
ξ1, q2(ξ1, ξ2)

]
, q2(ξ1, ξ2)

}
.

This approach produces one-to-one coordinate transformations.

7.3.3 Control of Grid Quality

Unlike the case in one dimension, the multivariable equidistribution method,
even in its simplest form, may produce mesh tangling or grids of poor quality
in terms of smoothness, skewness, and aspect ratio. A lack of control of the grid
quality may result in highly deformed cells, leading to a large truncation error.
This section outlines one device aimed at performing the control and regu-
larization of grid smoothness and skewness in the frame of the multivariable
equidistribution method. Regularization is very important for the equations
for moving the grid points in order to avoid excessive grid skewness. In fact
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Fig. 7.5. Tension–torsion spring model

there are many approaches for improving the equidistribution techniques. For
example, if the grid is adapted in one direction, then an orthogonality con-
straint is used in the other directions to control the grid distribution. A more
practical scheme, however, is based on a tension and torsion spring analogy.

A model using tension and torsion springs for a multidirectional adaptation
is a spring system in which each grid node is moved under the influence
of tension and torsion springs. For simplicity we consider a two-dimensional
formulation of the spring system.

The effect of the tension springs which connect adjacent grid points to
each other along one particular coordinate line, say ξ1 = ξ1

i , results in the
distribution of the grid points in accordance with a balance equation for the
complete spring system

Kij � sij − Kij−1 � sij−1 = 0, j = 1, . . . , N, (7.25)

where Kij is the spring constant of the spring connecting the point ξij+1 with
ξij , while �sij is the arc length of the curve ξ1 = ξ1

i between these two points
(Fig. 7.5). Here and below we use ξkl to denote the point in X2 which has
the curvelinear coordinate values (ξ1

k, ξ2
l ) in the computational domain Ξ2.

Equation (7.25) is in fact the equation for the equidistribution principle (7.7)
along the coordinate line ξ1 = ξ1

i with the piecewise constant weight function

w(ξ1
i , ξ2) = Kij , ξ2

j ≤ ξ2 < ξ2
j+1.

To distribute the grid lines along the ξ1 = ξ1
i coordinate line in proportion

to the dependent scalar variable f, the tension spring constant Kij between
the points ξij+1 and ξij may be chosen according to

Kij = Fij + C1|fij+1 − fij |/ � sij , (7.26)

where C1 and Fij are constants controlling grid smoothness and adaptation,
respectively.

A force to control the inclination of the other coordinate can be provided
by torsion springs attached to nodes along the ξ2 = ξ2

j line. The torsion spring
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attempts to change the inclination of the line ξ1 = ξ1
i to that of some reference

line by means of the force

Ftorsion = −Hi−1j(θi−1j − φi−1j),

where Hi−1j is the spring constant of the torsion spring connecting the points
ξi−1j and ξij (B and A in Fig. 7.5), θij is the inclination of the line connecting
these points, and φ is the inclination of the reference line (BM in Fig. 7.5).
The reference line for the line BA is prescribed in accordance with the user’s
choice, for example

(1) as an extension of the line CB to maintain smoothness,
(2) as a line normal to the ξ1 = ξ1

i coordinate to keep the grid nearly orthog-
onal;

(3) as a preferred solution direction so that the grid follows it.

Typically, a combination of these reference lines is used.
The balance equation for the system with tension springs along the ξ2 =

ξ2
i coordinate and torsions springs connecting the ξ1 = ξ1

i and ξ1 = ξ1
i−1

coordinate curves has the form

Kij � sij − Kij−1 � sij−1 − Hi−1j(θi−1j − φi−1j) = 0. (7.27)

We can write
Hi−1j(θi−1j − φi−1j) = Hi−1j(sij − sij),

where sij is the arc length calculated from point (i, 1) to point (i, j) along the
ξ1 = ξ1

i coordinate, sij is the projection of the reference line BM on the line
ξ1 = ξ1

i , and the Hi−1j term is set equal to Hi−1j divided by the length of
BM . Thus (7.27) is transformed to a tridiagonal system of equations for sij :

Kij−1sij−1 − (Kij + Kij−1 + Hi−1j)sij + Kijsij+1 = −Hi−1jsij . (7.28)

This model can be generalized to three dimensions with three-dimensional
adaptation by introducing a spring system in which each grid point is sus-
pended by six tension springs and twelve torsion springs. In this case the
balance system analogous to (7.28) is rather cumbersome and requires sig-
nificant computational effort. To facilitate the computation the procedure is
commonly split into a sequence of one-directional adaptations.

7.3.4 Equidistribution over Cell Volume

The equidistribution principle in the multidimensional space Rn can also be
formulated as a principle of equidistributing some grid measure w(x) over
each cell volume Vh:

w(x)Vh = const. (7.29)

Since Vh ≈ const det(∂xi/∂ξj), i, j = 1, . . . , n, for the coordinate grids, we
find that the equidistribution principle (7.29) can be reformulated as
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Jw[x(ξ)] = const, (7.30)

where J = det(∂xi/∂ξj), i, j = 1, . . . , n. If w(x) is positive, then J �= 0, and
as a result the transformation x(ξ) is a one-to-one mapping and thus the grid
cells are not folded.

The equidistribution principle (7.30) can be realized for arbitrary dimen-
sions if the physical domain Xn coincides with the computational domain
represented by the unit n-dimensional cube Ξn. For this purpose we consider
a smooth, positive weight function w(x) satisfying the normalization property

∫

Ξn

(
1

w(x)
− 1

)
dx = 0. (7.31)

It is evident that by means of a continuous deformation, the identity mapping
id : Ξn → Ξn can be transformed into a one-to-one mapping x(ξ) : Ξn → Ξn

such that

det
(

∂xi

∂ξj

)
=

1
w[x(ξ)]

, i, j = 1, . . . , n, in Ξn. (7.32)

Thus the cells of the coordinate grid constructed using x(ξ) contract where
w(x) is large and expand where w(x) is small.

Let this continuous deformation be designated by x(ξ, t), where t is a
parameter varying in the interval [0, 1]. In accordance with (2.87), we have for
x(ξ, t) the identity

∂J

∂t
= J

∂

∂xj

∂xj

∂t
(ξ, t) = Jdivx

∂x

∂t
, j = 1, . . . , n, (7.33)

where J is the determinant of [∂xi(ξ, t)/∂ξj ], i, j = 1, . . . , n. The necessary
deformation x(ξ, t) is defined as a solution to the initial-value problem at
every point ξ ∈ Ξn:

d
dt

x(ξ, t) =
v[x(ξ, t)]

1 − t + tw[x(ξ, t)]
, 0 < t ≤ 1,

x(ξ, 0) = ξ,

(7.34)

where the vector-valued function v(x) = [v1(x), . . . , vn(x)] is a solution to
the following problem:

divxv(x) = 1 − w(x) in Ξn,

v(x) = 0 on ∂Ξn.
(7.35)

As v(x) = 0 at the boundary points of the domain Ξn, we find from (7.34) and
(7.35) that the speed of the movement of the boundary grid points is zero.
Therefore the deformation function x(ξ, t) obtained as a solution to (7.34)
with v(x) satisfying (7.35) does not move the boundary points, i.e.

x(ξ, t) = ξ if ξ ∈ ∂Ξn,

for all 0 ≤ t ≤ 1.
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Using this function x(ξ, t), the required coordinate transformation x(ξ)
satisfying (7.32) is defined as x(ξ) = x(ξ, 1). To prove (7.32), we consider the
scalar function H(ξ, t) defined by

H(ξ, t) = J
{
1 − t + tw[x(ξ, t)]

}
.

We have
∂H

∂t
=

∂J

∂t
(1 − t + tw) + J

(
w − 1 + t

∂w

∂xi

∂xi

∂t

)
,

and, taking advantage of (7.33),

∂H

∂t
= J

(
(1 − t + tw)divx

∂x

∂t
+ w − 1 + t

∂w

∂xi

∂xi

∂t

)
. (7.36)

Using (7.34) and (7.35) we obtain

divx
∂x

∂t
= divx

(
v

1 − t + tw

)
=

divxv

1 − t + tw
−

t ∂w
∂xi v

i

(1 − t + tw)2

=
1 − w(x)
1 − t + tw

−
t ∂w

∂xi v
i

(1 − t + tw)2
.

Substituting this expression for divx(∂x/∂t) in (7.36), we obtain

∂H

∂t
= J

(
1 − w(x) − t

∂w

∂xi

∂xi

∂t
+ w(x) − 1 + t

∂w

∂xi

∂xi

∂t

)
= 0.

Thus the function H(ξ, t) is independent of t, and consequently H(ξ, 0) =
H(ξ, 1). Since

H(ξ, 0) = det
(

∂xi(ξ, 0)
∂ξj

)
= 1, i, j = 1, . . . , n,

we obtain

H(ξ, 1) = det
(

∂xi(ξ, 1)
∂ξj

)
w[x(ξ, 1)] = 1, i, j = 1, . . . , n.

Thus the coordinate transformation x(ξ) = x(ξ, 1) satisfies the equidistribu-
tion requirement (7.30).

Note that the computation of the vector field v(x) satisfying (7.35) can
be done by using a least-squares method or by solving the following Poisson
problem:

− � f = w(x) − 1 in Ξn,

∂f

∂n
= 0 on ∂Ξn, (7.37)

v(x) = ∇f.
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The relation (7.31) guarantees a solution to (7.37). In fact, the deformation
method described above can be extended to an arbitrary bounded domain
with a Lipschitz continuous boundary.

Though the deformation technique was developed to construct coordinate
transformations in the same domain, the use of the intermediate approach
considered in Chap. 4 allows one to generate an adaptive grid in an arbi-
trary domain provided at least one nondegenerate transformation between
the computational domain and the domain of interest exists.

7.4 Adaptation Through Control Functions

The differential approaches reviewed in Chap. 6 enable one to provide dynamic
adaptation by means of the coefficients of the equations. These coefficients are
referred to as the control functions.

7.4.1 Specification of the Control Functions in Elliptic Systems

7.4.1.1 Poisson System

In the elliptic method based on Poisson equations, considered in Chap. 6, the
grid adaptation is realized through the choice of the control functions P i in
the inverted system of equations

gij ∂2xk

∂ξi∂ξj
= −P i ∂xk

∂ξi
, i, j, k = 1, . . . , n. (7.38)

In one dimension this system is reduced to
(

dξ

dx

)2 d2x

dξ2
= −P

dx

dξ
. (7.39)

One way of determining the source function P in (7.39) so as to provide
an opportunity to control the attraction or repulsion of grid points is to use
an analogy between the one-dimensional equation (7.10), implementing the
one-dimensional equidistribution principle, and (7.39). In accordance with the
univariate equidistribution approach, the control function P in (7.39) realizing
the equidistribution of the monitor function w(x) should have the form

P =
(

dξ

dx

)2 dw

dξ

/
w, (7.40)

since, with this expression for P , the one-dimensional inverted Poisson equa-
tion (7.39) is transformed to the equation

w
d
dξ

(
w

dx

dξ

)
= 0,

which is equivalent to (7.10).
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The simplest approach to the specification of the control functions P i in
(7.38) lies in the generalization of (7.40). Commonly, this is realized by substi-
tuting gii for (dξ/dx)2 and ∂w/∂ξi for dw/dξ, by the following representation
of the control functions P i, for example:

P i = gii ∂w

∂ξi

/
w, for i fixed. (7.41)

A more general form also suggests

P i =
∑

j

gij ∂wi

∂ξj

/
wi, for i fixed. (7.42)

The functions w, wi in (7.41) and (7.42) are defined in terms of the com-
ponents of the solution of the physical problem and their derivatives. Thus in
problems of the motion of a liquid in a reservoir, w is defined in terms of the
depth function H:

w = 1 + H.

In gas-dynamics investigations, P i and w are defined through a number of
salient physical quantities. For flows with shock waves, use is made of the
gas density, the Mach number, and the internal energy and pressure, while
in boundary-layer calculations, the velocity or vorticity is used to formulate
the control functions P i. For instance, in supersonic compressible flows, the
pressure p is commonly identified as such a quantity, since shock waves are
detected by its rapid variation. To study these flows on a grid controlled by
source terms P i determined through (7.41), the weight function w is usually
specified by the equation

w = 1 + ‖∇p‖.

Another example of the specification of the control functions P i applied to
the study of two-dimensional flows can be presented through the density ρ:

P 1 = g11

(
∂w

∂ξ1
− c1

∂w

∂ξ2

)
w−1,

P 2 = g22

(
−c2

∂w

∂ξ1
+

∂w

∂ξ2

)
w−1,

w = 1 + f(ρ).

7.4.1.2 Other Equations

Elliptic equations of the form

n∑

i,j=1

gij ∂

∂ξi

(
bij

∂xα

∂ξj

)
= 0, α = 1, 2, . . . , n, (7.43)
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in which adaptation is carried out by choosing the coefficients bij , defined
as a rule in terms of the gradients of the solution, are also used. Thus, in
calculations of two-dimensional gas flows adaptive grids are constructed using
(7.43) with

b11 = f1, b22 = f2, b12 = b21 =
√

f1f2,

fi = fi(p, g11, g22), i = 1, 2.

The simplest form of (7.43) is obtained for

gij = �i
j , bij = f(ρ)�j

i ,

resulting in
∂

∂ξi

(
f(ρ)

∂x

∂ξi

)
= 0, i = 1, . . . , n.

7.4.2 Hyperbolic Equations

Adaptation in the hyperbolic equations considered in Sect. 6.6 is accomplished
by specifying in the equations the cell aspect ratio or the Jacobian of the
transformation.

7.5 Grids for Nonstationary Problems

In the finite-difference techniques developed for the numerical solution of non-
stationary problems the time variable t must be discretized in order to provide
computation of all physical variables at each time slice tn. As the physical so-
lution is dependent on the variable t it is reasonable to adjust the grid to the
solution to follow the trajectories of severe variations in the physical quanti-
ties. The goal is to compute as accurately as desired all physical quantities of
interest at each grid location in space and time. As a result the placement of
the grid points obtained with such an adjustment depends on the time t. The
motion of the grid points is demonstrated in the transformed equations by the
grid velocity xt appearing in the transformed time derivative. In the process
of numerical solution the grid speed is either found using the differences of
the values of the function x(ξ, t) on the (n + 1)th and nth layers or specified
in advance.

This section reviews some techniques aimed at the generation of structured
nonstationary grids for time-dependent partial differential equations which, in
addition to spatial derivatives, also contain derivatives with respect to the time
variable t. An example is the following form:

∂u

∂t
= L(u, x, t), x ∈ Xn, t > 0, (7.44)
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where L is a differential operator involving spatial derivatives.
The accuracy of the numerical solution of time-dependent partial differ-

ential equations is significantly dependent on the time-step size as well as the
spatial mesh size. However, high resolution in local regions of large solution
variations allows larger time steps to be taken.

There are two basic approaches to solving nonstationary problems: the
method of lines and the methods of moving grids.

7.5.1 Method of Lines

The idea of the method of lines consists in converting nonstationary equations
into a system of ordinary differential equations with time as the independent
variable. This is carried out by first approximating only the space deriva-
tives on a specified space grid chosen a priori. This operation yields a system
of ordinary differential equations with respect to the independent variable t.
The system obtained is then approximated on a one-dimensional grid, gen-
erally nonuniform, discretizing the variable t. In this approach the spatial
grid is fixed, and therefore it is applicable only to the numerical solution
of problems with stationary solution singularities. However, many solutions
to time-dependent problems have large variations which changed with time.
Moreover, the solutions may have narrow layers of rapid change with respect
to both space and time, for example a solution of the simple running-wave
form

u(x, t) = f(x − ct),

where f(y) is a scalar function, of boundary or interior-layer type.

7.5.2 Moving-Grid Techniques

There are two major approaches to controlling the movement of the points
of the numerical grid with time. With the first, stationary grids are con-
structed by the same method on each time layer but the grid points move
over time because of changes either of the control functions in the equation
or of the boundary conditions for the coordinate transformations applying on
the boundary of the computation region Ξn. With the second, an equation for
the velocity xt(ξ, t) of grid point movement is determined and the boundary
value problem is then solved for these equations.

7.5.2.1 Specification of Spatial Grid Distribution

The simplest way to generate grids for nonstationary problems is to use the
equidistribution approach with a time-dependent weight function w(x, t), for
instance in the form

∫ xi+1

xi

w(x, t)dx = c(t) =
1
N

∫ b

a

w(x, t)dx, i = 0, . . . , N − 1,



220 7 Dynamic Adaptation

which is analogous to (7.6). This form can be readily reformulated as a bound-
ary value problem of one of the types (7.8)–(7.10). In particular, in the case
of one-dimensional nonstationary problems it may be realized by the replace-
ment of the variables x, t by new variables ξ, t, where ξ is an arc-length-like
coordinate, i.e. the result is the equidistant mesh. The advantage of this pro-
cedure is that in the variables ξ, t the solution u(ξ, t) cannot develop large
spatial gradients ∂u/∂ξ.

7.5.2.2 Grid Movement Induced by Boundary Movement

Equations of the type (6.14) in which the control functions P i depend on t
are often used at each time step of the solution of gas-dynamics problems,
the movement of grid nodes on the boundary of the region being determined
by the motion of the medium; in particular, the velocity of the grid and the
velocity of the medium are the same on the boundary. The movement of
interior points in this approach depends solely upon the boundary motion.
The boundaries of the regions may be shock waves, interior boundaries which
separate the different regions of flow, or free surfaces.

Algebraic methods of constructing moving grids by interpolation from a
moving boundary can also be considered in the same fashion.

7.5.2.3 Specification of Grid Speed

In multidimensional nonstationary problems, it is often necessary to generate
adaptive grids which are adjusted to a moving solution of a problem. As a re-
sult the grid distribution is also nonstationary, that is, the derivative xt(ξ, t),
which represents the speed of the grid movement, is nonzero in the general
case. The expression xt(ξ, t) appears in the equations for nonstationary phys-
ical problems rewritten in the independent variables ξ, t.

This subsection delineates some typical approaches for formulating grid
equations by specification of the velocity of grid point movement to treat
nonstationary problems. In our considerations we discuss a simplified form of
the transformation x(ξ, τ), assuming t = τ. In this case the first temporal
derivatives ∂/∂t and ∂/∂τ are subject to the relation

∂

∂τ
=

∂

∂t
+

∂

∂xi

∂xi

∂τ
.

Thus, assuming the identification t = τ, (7.44) is transformed to

∂u

∂t
= − ∂u

∂xi

∂xi

∂t
+ L[u, x(ξ, t), t], ξ ∈ Ξn, t > 0, (7.45)

with u = u[x(ξ, t), t].
The simplest way to obtain grid equations which include the speed of

grid movement is to add the term xt(ξ, t) to the equations developed for
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the generation of fixed grids, in particular, to the inverted Poisson equations
(6.14).

The equations for the grid node velocities xt(ξ, t) can be determined, for
example, from the conditions for minimizing functionals of measure of the
deviation from Lagrangian properties. These functionals will be discussed in
Chap. 8.

It is often proposed to solve nonstationary problems by determining equa-
tions for xt(ξ, t) from the condition that the solution to the physical problem
in the new variables (ξ, t) is stationary. Also, the grid velocity can be formu-
lated on the basis of providing conditions of stability in the difference scheme
in nonstationary problems.

In one more approach, for the equations for multidimensional problems of
the mechanics of a continuous medium, the equations for the grid velocities are
determined from the condition that the convective terms are either a minimum
or zero. For example, if the operator L(u, x, t) in (7.44) has the form

L(u, x, t) = ai ∂u

∂xi
+ L1(u, x, t), i = 1, . . . , n,

where L1 is an operator without first derivatives, then (7.45) in the new
coordinates t, ξ1, . . . , ξn determined by the transformation x(ξ, t) is expressed
as follows:

∂u

∂t
=

(
ai − ∂xi

∂t

)
+ L1[u, x(ξ, t), t], i = 1, . . . , n. (7.46)

Thus the condition for zero convective terms in (7.46) gives the following
equations for the components of the grid velocity xt(ξ, t):

∂xi

∂t
= ai, i = 1, . . . , n.

In such a way, for example, the Lagrangian coordinates are generated, so the
approach aimed at the elimination of convective terms in the transformed
equations by nonstationary coordinate mappings is referred to as the La-
grangian method.

The Poisson equations (6.14), formally differentiated with respect to t, are
also used to obtain equations for xt(ξ, t). Also, differentation with respect to
time of the equations modeling the equidistribution principle gives differential
equations for the grid node velocity. This operation provides the necessary grid
velocity equations, which are then integrated to obtain the grid motion as a
function of time.

7.5.3 Time-Dependent Deformation Method

The deformation method considered in Sect. 7.3.4 for generating multidimen-
sional structured grids in an n-dimensional domain Xn coinciding with the
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computational domain Ξn can be extended to produce time-dependent grids
with nonstationary weight functions. This subsection describes such an ex-
tension, using for this purpose weight functions w(x, t) > 0 that satisfy the
following normalization properties:

∫

Ξn

(
1
w

− 1
)

dξ = 0, (7.47)

and w(x, t0) = 1 for all x ∈ Ξn. The nonstationary transformation x(ξ, t)
satisfying the equidistribution condition (7.32) is found from the following
initial-value problem for ordinary differential equations, formulated for each
fixed point ξ in Ξn:

∂

∂t
x(ξ, t) = v[x(ξ, t), t]w[x(ξ, t), t], t > t0,

x(ξ, t0) = ξ, t = t0,
(7.48)

where the vector field v(x, t) is computed from the following system:

divxv(x, t) = − ∂

∂t

(
1

w(x, t)

)
in Ξn,

curl v(x, t) = 0 in Ξn, (7.49)
v · n = 0 on ∂Ξn.

As in Sect. 7.3.4, we consider the derivative with respect to t of the function

H(ξ, t) = Jw[x(ξ, t), t],

where J = det(∂xi/∂ξj). Since the relation (7.33) is valid for the transforma-
tion x(ξ, t), we obtain

∂H

∂t
= J

(
w divx

∂x

∂t
+

∂w

∂xi

∂xi

∂t
+

∂w

∂t

)
.

Application of (7.47) and (7.48) to this equation yields

∂H

∂t
= J

[
w divx

(
v

w

)
+

∂w

∂xi

vi

w
+

∂w

∂t

]

= J

(
− ∂w

∂t
− vi

w

∂w

∂xi
+

∂w

∂xi

vi

w
+

∂w

∂t

)
= 0.

Since H(ξ, t0) = 1, we obtain

H(ξ, t) = Jw[x(ξ, t), t] = 1,

i.e. the multidimensional equidistribution principle (7.32) is obeyed by the
transformation x(ξ, t).
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7.6 Comments

Reviews of adaptive methods for the generation of structured grids have been
published by Anderson (1983), Thompson (1985), Eiseman (1987), Hawken,
Gottlieb, and Hansen (1991), and Liseikin (1996b).

Equidistribution approaches of various kinds have been reported by a num-
ber of researchers. The original one-dimensional integral formulation of the
equidistribution principle was proposed by Boor (1974), while the differential
versions were presented by Yanenko, Danaev, and Liseikin (1977), Tolstykh
(1978), and Dwyer, Kee, and Sanders (1980).

The most popular and general forms of the weight functions were reviewed
by Thompson (1985). These functions were proposed by Russell and Chris-
tiansen (1978), Ablow and Schechter (1978), White (1979), Dwyer, Kee, and
Sanders (1980), Nakamura (1983), and Anderson and Steinbrenner (1986).
Acharya and Moukalled (1990) used a normalized second derivative of the so-
lution as the weighting function. A linear combination of the first and second
derivatives of the solution was used as a measure of the weighting function
by Dwyer, Kee, and Sanders (1980), who successfully applied equidistribution
along one family of grid lines within two-dimensional problems. A combina-
tion of first and second derivatives and the curvature of the solution variables
to specify weight functions was applied by Ablow and Schechter (1978) and
Noack and Anderson (1990). A selection of monitor functions in the form
of weighted Boolean sums of various solution characteristics was defined by
Weatherill and Soni (1991) and Soni and Yang (1992).

In a one-dimensional application, Gnoffo (1983) used a tension spring anal-
ogy in which the adapted grid point spacing along a family of coordinate
lines resulted from the minimization of the spring system’s potential energy.
The idea of the spring analogy, represented in the equation for the weighting
function, was extended by Nakahashi and Deiwert (1985) to demonstrate the
feasibility and versatility of the equidistribution method. They also utilized
in their considerations the notion of a torsion spring attached to each node in
order to control the inclination of the grid lines.

Rai and Anderson (1981, 1982) and Eiseman (1985) have each used the
idea of moving grid points under the influence of forcing or weighting functions
that either attract or repel grid points relative to each other. Thus points with
forcing (or weighting) functions greater than a specified average value attract
each other, and those with values less than the average value repel each other.

Examples of the numerical solution of singularly perturbed problems on an
equidistant mesh were studied by Andrew and Whrite (1979). The equidistant
method was also advocated by Ablow (1982) and Catheral (1991), who applied
it to some gas-dynamic calculations.

Dorfi and Drury (1987) used a very effective technique for incorporating
smoothness into the univariate equidistribution principle. Their one-dimens-
ional technique ensures that the ratio of adjacent grid intervals is restricted,
thus controlling clustering and grid expansion. The power of this smoothing
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capability was clearly demonstrated in the valuable comparative studies by
Furzland, Verwer, and Zegeling (1990) and Zegeling (1993). A multidimen-
sional generalization of the approach of Dorfi and Drury (1987) was presented
by Huang and Sloan (1994), who introduced control of concentration, scaling,
and smoothness.

Morrison (1962) was apparently the first who managed to show analyti-
cally the efficiency of the error equidistribution principle for the generation
of grids for the numerical solution of ordinary differential equations. Babuŝka
and Rheinboldt (1978) proposed an error estimator based on the solution of a
local variational problem. A truncation error measure for generating optimal
grids was applied by Denny and Landis (1972), Liseikin and Yanenko (1977),
White (1979, 1982), Ablow and Schechter (1978), Miller (1981), Miller and
Miller (1981), Davis and Flaherty (1982), Adjerid and Flaherty (1986), and
Petzold (1987). The approaches based on the equidistribution of the trun-
cation error were developed by Pereyra and Sewell (1975) and Davis and
Flaherty (1982), while the equidistribution of the residual was developed by
Carey (1979), Pierson and Kutler (1980), and Rheinboldt (1981). An analysis
of the strategies based on a uniform error distribution was also undertaken
by Chen (1994). In particular, he proposed as optimal the following monitor
functions:

M =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[(u′)2 + T 2]1/3,

[(u′ ′)2 + T 2]1/3,

[(u′ ′ ′)2 + T 2]1/7,

[(u′ ′ ′)2 + (u′ ′ ′ ′)2]1/7[1 + (u′)2]1/2.

However, the numerical experiments by Blom and Verwer (1989) show that the
mesh generated from the error measurement monitor may be of poor quality.

Some methods which control the movement of the grid nodes in accordance
with the equidistribution of the residuals of equations were developed by Miller
(1981). Several versions of the moving-mesh method were also studied by
Huang, Ren, and Russel (1994) to demonstrate their ability to accurately
tracking rapid spatial and temporal transitions.

A curve-by-curve grid line equidistribution approach in the computational
space was described by Eiseman (1987). The combination and composition
versions of the multidimensional equidistribution principle were proposed by
Darmaev and Liseikin (1987).

An orthogonalization technique of Potter and Tuttle (1973) for two-dimens-
ional grid control, whereby the grids are adapted in one direction and orthog-
onality is imposed on the second, was proposed by Anderson and Rajendran
(1984) and Dwyer and Onyejekwe (1985).

Certain anomalies which may arise in the process of the numerical solution
of the nonlinear equations modeling the equidistribution principle and ways
for surmounting them were discussed by Steinberg and Roache (1990) and
Knupp (1991, 1992). Also, some adverse effects of dynamic grid adaptation



7.6 Comments 225

on the numerical solution of physical problems were noted by Sweby and Yee
(1990).

The idea of defining the control functions of the Poisson system through
weight functions was formulated by Anderson (1983, 1987) and extended by
Eiseman (1987). Some versions of the specification of the control functions
through sums of derivatives of physical quantities and quality measures of the
domain geometry were presented by Dannenhoffer (1990), Kim and Thompson
(1990), Tu and Thompson (1991), Soni (1991), and Hall and Zingg (1995),
while Hodge, Leone, and McCarry (1987) applied analytical expressions for
this purpose.

A deformation method for generating multidimensional unfolded grids has
been developed by Liao and Anderson (1992) and Semper and Liao (1995)
on the basis of a deformation scheme originally introduced by Moser (1965).
This deformation method was improved and applied to practical problems by
Wan and Turek (2006a, 2006b, 2007), and Liao et al. (2008).

A large number of important moving-grid methods for the numerical solu-
tion of unsteady equations can be found in the survey by Hawken, Gottlieb,
and Hansen (1991) and in the monograph by Zegeling (1993).

The movement of the nonstationary grid considered by Godunov and
Prokopov (1972) was caused by the boundary point speeds, while in the inte-
rior of the domain the grid nodes were found by solving the inverted Poisson
system. Hindman, Kutler, and Anderson (1981) formulated the grid motion
in time by taking the time derivative of the inverted Poisson equations.

One more approach involving grid speed equations, but based on time
differentiation of a more complicated set of Euler–Lagrange equations derived
from the minimization of a Brackbill–Saltzman-type functional, was presented
by Slater, Liou, and Hindman (1995).

A strategy for automatic time step selection based on equidistributing
the local truncation error in both the time and the space discretization was
proposed by Chen, Baines, and Sweby (1993).

White (1979) suggested a technique for numerically integrating systems
of time-dependent first-order partial differential equations in one space vari-
able x. His technique replaces the variables x, t by the new variables s, t,
where s is an arc-length-like coordinate.

Some questions arising from coupling upwinding schemes with moving
equidistributed meshes were discussed by Li and Petzold (1997). The stabil-
ity problems related to an equidistributed mesh of the systems of differential
equations for the grid velocities were studied by Coyle, Flaherty, and Ludwig
(1986).

One approach to generating one-dimensional time-dependent grids was
proposed by Dar’in, Mazhukin, and Samarskii (1988) with the help of the
system of evolutionary equations
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∂x(ξ, t)
∂ξ

= Ψ,

∂Ψ

∂t
= − ∂P

∂ξ
.

In order to concentrate the grid nodes in the high-gradient zones, various
expressions for P containing the derivatives with respect to ξ of the physical
quantities were considered. This approach was extended to the construction
of two-dimensional adaptive grids by Dar’in and Mazhukin (1989).

The method of equidistribution and minimization of the heuristically de-
termined error at each time step was used for calculations of nonstationary
problems by Dorfi and Drury (1987), Dwyer, Kee, and Sanders (1980), Klopfer
and McRae (1981), Miller (1983), Wathen (1990), and White (1982).

Formal addition of the velocity function xt(ξ, t) to (6.14), to the equations
obtained from variational methods based on the minimization of grid quality
functionals, or to expressions for the errors determined heuristically in terms of
the spatial derivatives was analyzed by Rai and Anderson (1981), Bell, Shubin,
and Stephens (1982), Harten and Hyman (1983), and Greenberg (1985).

Various physical analogies, such as those of springs (Bell and Shubin 1983,
Rai and Anderson 1982), chemical reactions (Greenberg 1985) and concepts
from continuum mechanics (Jacquotte 1987, Knupp 1995) have also been used
to construct moving adaptive grids.
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Variational Methods

8.1 Introduction

The calculus of variations provides an excellent opportunity to create new
techniques for generation of structured grids by utilizing the idea of optimiza-
tion of grid characteristics modeled through appropriate functionals. The grid
characteristics include grid smoothness, departure from orthogonality or con-
formality, cell skewness, and cell volume. The minimization of a combination
of the functionals representing the desired grid features generates the equa-
tions for those coordinate transformations which yield a grid with optimally
balanced grid quality measures. The relative contributions of the functionals
are determined by the user-prescribed weights.

The major task of the variational approach to grid generation is to describe
all basic measures of the desired grid features in an appropriate functional
form and to formulate a combined functional that provides a well-posed mini-
mization problem. This chapter describes some basic functionals representing
the grid quality properties and measures of grid features. These functionals
can provide mathematical feedback in an automatic grid procedure.

8.2 Calculus of Variations

The goal of the calculus of variations is to find the functions which are optimal
in terms of specified functionals. The optimal functions also are referred to
as critical or stationary points of the respective functionals. The theory of
the calculus of variations has been developed to formulate and describe the
laws and relations concerned with the critical points of functionals. One of the
most important achievements of this theory is the discovery that the optimal
functions satisfy some easily formulated equations called the Euler–Lagrange
equations. Thus the problem of computing the optimal functions is related
to the problem of the solution of these equations. This section presents the

V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-90-481-2912-6 8, c© Springer Science+Business Media B.V. 2010
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Euler–Lagrange equations derived by the minimization of functionals suitable
for the purpose of grid generation.

The condition of the convexity of the functionals is of paramount impor-
tance to the well-posedness of both the minimization problem for the func-
tionals and the boundary value problems for the resulting Euler–Lagrange
equations. Therefore this section also discusses questions concerned with the
convexity of functionals.

8.2.1 General Formulation

Commonly, in the calculus of variations, any functional over some admissible
set of functions f : Dn → Rm is defined by the integral

I(f) =
∫

Dn

G(f)dV, (8.1)

where Dn is a bounded n-dimensional domain, and G(f) is some operator
specifying, for each vector-valued function f : Dn → Rm, a scalar function
G(f) : Dn → R. The admissible set is composed of those functions f which
satisfy a prescribed boundary condition

f |∂Dn = φ

and for which the integral (8.1) is limited.
In the application of the calculus of variations to grid generation this set

of admissible functions is a set of sufficiently smooth invertible coordinate
transformations

ξ(x) : Xn → Ξn

between the physical domain Xn and the computational domain Ξn or, vice
versa, a set of sufficiently smooth invertible coordinate transformations from
the computational domain Ξn onto the physical region Xn:

x(ξ) : Qn → Xn.

The integral (8.1) is defined over the domain Xn or Ξn, respectively.
In grid generation applications the operator G is commonly chosen as a

combination of weighted local grid characteristics which are to be optimized.
The choice depends, of course, on what is expected from the grid. Some forms
of the weight functions were described in Sect. 7.2, while the local grid charac-
teristics were formulated in Chap. 3 through the coordinate transformations
and their first and second derivatives. Therefore, for the purpose of grid gen-
eration, it can be supposed that the most widely acceptable formula for the
operator G in (8.1) is one which is derived from some expressions containing
the first and second derivatives of the coordinate transformations. Thus we can
assume that the functional (8.1), depending on the coordinate transformation
ξ(x), is of the form
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I(ξ) =
∫

Xn

G(x, ξ, ξxi , ξxixj )dx, (8.2)

where G is a smooth function of its variables

x, ξ, ξxi =
∂ξ(x)
∂xi

, and ξxixj =
∂2ξ(x)
∂xi∂xj

.

The admissible set for this functional is a set of the invertible vector-valued
functions ξ(x) : Xn → Ξn satisfying the condition of smoothness up to the
fourth order, i.e.

ξi(x) ∈ C4(Xn), i = 1, . . . , n.

Analogously, the functional (8.1) formulated over a set of invertible coor-
dinate transformations x(ξ) from C4(Ξn), has the form

I(x) =
∫

Ξn

G(ξ, x, xξi , xξiξj )dξ. (8.3)

In accordance with the assumption that the admissible set of functions
for the functional (8.2) or (8.3) is composed of the corresponding invertible
coordinate transformations, we can reformulate either of these two functionals
in terms of the other by the following transition formulas:

∫

Xn

fdx =
∫

Ξn

(Jf)dξ,

∫

Ξn

fdξ =
∫

Xn

(f/J)dx.

(8.4)

Thus for the functional (8.3) we obtain

I(x) =
∫

Xn

(
1
J

G(ξ, x, xξi , xξiξj )
)

dx

=
∫

Xn

G1(x, ξ, ξxi , ξxixj )dx = I1(ξ)

with an implied transition from xξi and xξiξj to ξxl and ξxlxk .

8.2.2 Euler–Lagrange Equations

To be definite, we consider here the variational principle for grid generation
in the form of the functional (8.2) over the set of invertible smooth coordinate
transformations ξ(x) from the physical domain Xn onto the computational
domain Ξn. In general, the functionals are formulated in the physical space
Xn rather than in the parametric space Ξn. This is preferred because the
physical-space formulation can be used more simply to obtain grid generation
techniques that provide the necessary grid properties.
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If the transformation ξ(x) is optimal for the functional (8.2) then it sat-
isfies a system of Euler–Lagrange equations in the interior points of the do-
main Xn:

Gξi − ∂

∂xj
G ∂ξi

∂xj

+
∂2

∂xj∂xk
G ∂2ξi

∂xj∂xk

= 0, i, j, k, = 1, . . . , n, (8.5)

where the subscripts ξi, ∂ξi/∂xj , and ∂2ξi/∂xj∂xk mean the corresponding
partial derivatives of G. We remind the reader that the repeated indices here
and below imply summation over them unless otherwise noted.

In many applications the integrand G is dependent only on x, the function
ξ(x), and its first derivatives, i.e. G = G(x, ξ, ξxi). In this case the admissible
set of functions ξi(x) can be from the class C2(Xn), and the system of Euler–
Lagrange equations (8.5) is reduced to

Gξi − ∂

∂xj
G ∂ξi

∂xj

= 0, i, j = 1, . . . , n. (8.6)

We give a schematic deduction of (8.6). Equations (8.5) are obtained in a
similar manner.

Let the transformation ξ(x) be a critical point of the functional (8.2) with
G = G(x, ξ, ξxj ). In order to prove that ξ(x) satisfies (8.6), we first choose
a scalar smooth function from C2(Xn) which equals zero on the boundary of
the domain Xn. Let this function be denoted by φ(x). Now, using φ(x), we
define for a fixed index i a vector-valued function ψ(x) = [ψ1(x), . . . , ψn(x)]
dependent on x as follows:

ψj(x) = 0, j �= i,

ψi(x) = φ(x), j = i,

i.e.
ψ(x) = φ(x)ei,

where ei is the ith basic Cartesian vector. As was assumed, the transformation
ξ(x) is critical for the functional (8.2), and therefore the following scalar
smooth function

y(ε) = I(ξ + εψ) =
∫

Xn

G(x, ξ + εψ, ξxi + εψxi)dx, (8.7)

where ε is a real variable, has an extremum at the point ε = 0. This results
in the relation y′(0) = 0. In accordance with the rule of differentiation of
integrals we obtain

y′(0) =
∫

Xn

(
φ(x)Gξi +

∂φ

∂xj
G ∂ξi

∂xj

)
dx, j = 1, . . . , n.

Taking into account that
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∂φ

∂xj
G ∂ξi

∂xj

=
∂

∂xj

(
φG ∂ξi

∂xj

)
− φ

∂

∂xj
G ∂ξi

∂xj

, j = 1, . . . , n,

we have

y′(0) =
∫

Xn

[
φ

(
Gξi − ∂

∂xj
G ∂ξi

∂xj

)
+

∂

∂xj

(
φG ∂ξi

∂xj

)]
dx = 0. (8.8)

Using the divergence theorem

∫

Xn

(
n∑

i=1

∂Ai

∂xi

)
dx =

∫

∂Xn

(A · n)dS, (8.9)

valid for a smooth arbitrary vector function A(x) = [A1(x), . . . , An(x)], we
conclude that

∫

Xn

∂

∂xj

(
φG ∂ξi

∂xj

)
dx =

∫

∂Xn

φ(Gi · n)dS = 0,

where
Gi =

(
G ∂ξi

∂x1
, . . . , G ∂ξi

∂xn

)
,

since the selected function φ equals zero at all points of ∂Xn. Thus we find
that the second summation term in the integral (8.8) can be omitted, and
consequently we find that

y′(0) =
∫

Xn

φ

(
Gξi − ∂

∂xj
G ∂ξi

∂xj

)
dx = 0 (8.10)

for every smooth function φ(x) satisfying the condition proposed above, that
φ(x) = 0 if x ∈ ∂Xn. From this relation we readily find that the optimal
coordinate transformation ξ(x) obeys (8.6) at every interior point of the do-
main Xn. If this were not so, then there would exist an interior point x0 such
that the function

f(x) =
(

Gξi − ∂

∂xj
G ∂ξi

∂xj

)
(x)

does not vanish at this point, i.e. f(x0) �= 0, say f(x0) > 0. The function
f(x) is continuous, so there exists a positive number r > 0 such that f(x)
does not change its sign for all x satisfying |x − x0| ≤ r, i.e. f(x) > 0 at these
points. Now we use for the function φ(x) in (8.10) a nonnegative mapping
which equals zero at all points x that are outside the subdomain |x − x0| ≤ r,
and φ(x0) > 0. For example, one such function φ(x) is expressed as follows:

φ(x) =

{
exp( 1

(x−x0)2−r2 ), |x − x0| < r,

0, |x − x0| ≥ r.

This function is from the class C∞(Xn). In accordance with the assumed
property of f(x), we find that (8.10) is not satisfied for the function φ(x)
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specified above, namely y′(0) > 0, i.e. the function ξ(x) is not critical for
the functional (8.2), which is contrary to the initial assumption about the
extremum of the functional at the point ξ(x). From this contradiction we
conclude that the optimal transformation ξ(x) is a solution to (8.6) at every
interior point of the domain Xn.

Analogously, there can be obtained a system of Euler–Lagrange equations
for the functional (8.3),

Gxi − ∂

∂ξj
G ∂xi

∂ξj
+

∂2

∂ξj∂ξk
G ∂2xi

∂ξj∂ξk

= 0, i, j = 1, . . . , n, (8.11)

which is satisfied by the optimal coordinate transformation x(ξ).

8.2.3 Functionals Dependent on Metric Elements

The most common interior characteristics of grid cells were defined in Chap. 3
by the elements of the metric tensors. As the covariant elements can be de-
rived from the contravariant ones, we can assume that the functional (8.2)
representing an integral measure of some grid feature is defined by the inte-
grand G, depending on x and the elements gij = ∇ξi · ∇ξj = ∂ξi

∂xk
∂ξj

∂xk only,
i.e.

I(ξ) =
∫

Xn

G(x, gij)dx.

In this case the corresponding system of the Euler–Lagrange equations (8.6)
has the following divergent form

∂

∂xj

(
∂G

∂glk

∂glk

∂(∂ξi/∂xj)

)
= 0, i, j, k, l = 1, . . . , n. (8.12)

As
∂glk

∂(∂ξi/∂xj)
= δi

l

∂ξk

∂xj
+ δi

k

∂ξl

∂xj
, i, j, k, l = 1, . . . , n, (8.13)

we have the result that

∂G

∂glk

∂glk

∂(∂ξi/∂xj)
=

(
∂G

∂gik
+

∂G

∂gki

)
∂ξk

∂xj
, i, j, k, l = 1, . . . , n.

Therefore the system of the Euler–Lagrange equations (8.12) is equivalent to

∂

∂xj

[(
∂G

∂gik
+

∂G

∂gki

)
∂ξk

∂xj

]
= 0, i, j, k = 1, . . . , n, (8.14)

with summation over the repeated indices j and k. Taking advantage of the
identity (2.56), the system (8.14) can be converted to

∂

∂ξj

[
Jgkj

(
∂G

∂gik
+

∂G

∂gkj

)]
= 0, i, j, k = 1, . . . , n, (8.15)
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written with respect to the independent variables ξi. In particular, when the
integrand G is defined by the diagonal elements gii of the contravariant metric
tensor (gij) then (8.14) and (8.15) are as follows:

∂

∂xj

(
∂G

∂gii

∂ξi

∂xj

)
= 0,

∂

∂ξj

(
Jgij ∂G

∂gii

)
= 0, i, j = 1, . . . , n

with fixed index i.

8.2.4 Functionals Dependent on Tensor Invariants

Chapter 3 presents a description of some local grid quality properties which
are defined by the invariants I1, . . . , In of the metric tensor gij = xξi ·xξj . The
integration of these properties over the physical or the computational domain
represents the global grid properties in the form of functionals depending on
the invariants. Taking into account the general identity

∫

Ξn

Gdξ =
∫

Xn

[G/(I1/2
n )]dx,

where

In = g = det(gij) =
2

det
(

∂xi

∂ξj

)
,

we can consider all these functionals as integrals over the domain Xn in the
form

I(ξ) =
∫

Xn

G(x, I1, . . . , In)dx. (8.16)

The Euler–Lagrange equations (8.6) in this case are represented as follows:

∂

∂xj

(
GIk

∂Ik

∂(∂ξi/∂xj)

)
= 0, i, j, k = 1, . . . , n. (8.17)

8.2.4.1 Two-Dimensional Tensor

For two-dimensional coordinate transformations x(ξ) : Ξ2 → X2, the invari-
ants are defined by (3.23). Since we consider the functionals depending on the
invariants as integrals over the domain Xn, we need to rewrite the invariants
through the terms of the contravariant metric tensor (gij). This is readily
accomplished by applying (2.20). Thus we have in two dimensions

I1 = g(g11 + g22),

I2 = g = 1/ det(gij) = 1
/[

2

det
(

∂ξi

∂xj

)]
.
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From these relations we obtain
∂I2

∂(∂ξi/∂xj)
= −2J3(−1)i+j ∂ξ3−i

∂x3−j
= −2I2

∂xj

∂ξi
,

∂I1

∂(∂ξi/∂xj)
= 2g

∂ξi

∂xj
− 2J3(g11 + g22)(−1)i+j ∂ξ3−i

∂x3−j

= 2
(

I2
∂ξi

∂xj
− I1

∂xj

∂ξi

)
, i, j = 1, 2,

(8.18)

without summation over the repeated indices i and j. Thus we find that in
two dimensions the Euler–Lagrange system (8.17) can be expressed as follows:

∂

∂xj

[
GI1

(
I2

∂ξi

∂xj
− I1

∂xj

∂ξi

)
− GI2I2

∂xj

∂ξi

]
= 0, i, j = 1, 2. (8.19)

The application of the identity (2.56) to each equation of (8.19) leads to the
following system:

∂

∂ξj

{
J [gijGI1I2 − δi

j(GI1I1 + GI2I2)]
}

= 0, i, j = 1, 2. (8.20)

In particular, for the integral measure of the two-dimensional grid density
expressed locally by (3.66) with n = 2, we assume

Icn =
∫

X2
(I1/I2)dx =

∫

X2
(g11 + g22)dx,

and therefore the system of Euler–Lagrange equations (8.19) for Icn is the
system of Laplace equations

∂

∂xj

∂ξi

∂xj
= 0, i, j = 1, 2.

8.2.4.2 Three-Dimensional Tensor

As in two dimensions, the invariants (3.24) of the three-dimensional tensor
(gij) can be expressed through the elements of the contravariant tensor (gij).
Using for this purpose (2.21), we obtain

I1 = g(g11g22 + g11g33 + g22g33 − g12g21 − g13g31 − g23g32),
I2 = (g11 + g22 + g33)/ det(gij),
I3 = g = 1/ det(gij).

Therefore we have for i, j = 1, 2, 3

∂I3

∂gij
= −g2 cofactor of gij = −ggij = −gijI3,

∂I2

∂gij
= δi

jg − ggij(g11 + g22 + g33) = δi
jI3 − gijI2, (8.21)

∂I1

∂gij
= δi

jg(g11 + g22 + +g33) − gij − gijI3 = δi
jI2 − gijI3 − gij .
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Taking into account (8.13), we obtain

∂Ik

∂(∂ξi/∂xj)
=

(
∂Ik

∂gim
+

∂Ik

∂gmi

)
∂ξm

∂xj
, i, j, k, m = 1, 2, 3.

Therefore the use of (8.21) leads to

∂I3

∂(∂ξi/∂xj)
= −2I3

∂xj

∂ξi
, i, j = 1, 2, 3,

∂I2

∂(∂ξi/∂xj)
= −2I3

∂ξi

∂xj
− 2I2

∂xj

∂ξi
, i, j = 1, 2, 3,

∂I1

∂(∂ξi/∂xj)
= 2

(
I2

∂ξi

∂xj
− I3

∂xj

∂ξi
− gim ∂ξm

∂xj

)
, i, j, m = 1, 2, 3.

Using these relations in (8.17) we find that the three-dimensional Euler–
Lagrange equations for the functional (8.16) can be written as

∂

∂xj

[
GI1

(
I2

∂ξi

∂xj
− I3

∂xj

∂ξi
− gim ∂ξm

∂xj

)

− GI2

(
I3

∂ξi

∂xj
+ I2

∂xj

∂ξi

)
− GI3I3

∂xj

∂ξi

]
= 0,

i, j, m = 1, 2, 3. (8.22)

This system, after application of (2.56) to every equation, is transformed to
the

∂

∂ξj

{
J [gij(GI1I2 − GI2I3) − gimgmj − δi

j(GI1I3 + GI2I2 + GI3I3)]
}

= 0, i, j, m = 1, 2, 3, (8.23)

written with respect to the independent variables ξi.

8.2.5 Convexity Condition

Convexity is a very important property imposed on functionals in the calcu-
lus of variations. In the case of the functional (8.2) it is formulated by the
condition of positiveness of the tensors Gi, i = 1, . . . , n:

Gi =
(
G ∂ξi

∂xj
∂ξi

∂xk

)
, with i fixed.

Namely, every tensor Gi, i = 1, . . . , n, must be strongly positive. Recall that
a matrix is strongly positive if every principal minor is larger then zero. In
this case there exists a constant ci > 0 for every fixed index i = 1, . . . , n, such
that

G ∂ξi

∂xj
∂ξi

∂xk

bjbk ≥ cib
lbl, j, k, l = 1, . . . , n, (8.24)
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for an arbitrary vector b = (b1, . . . , bn). The inequality (8.24) means that the
system of Euler–Lagrange equations (8.6) is elliptic.

Convex functionals generate well-posed problems for their minimization
and for the solution of the Dirichlet boundary value problem for the corre-
sponding Euler–Lagrange equations (8.5) or (8.6). In particular, the relation
(8.24) guarantees that there exists a unique, isolated optimal transformation
which satisfies the system of Euler–Lagrange equations with Dirichlet bound-
ary conditions.

8.3 Integral Grid Characteristics

Grid properties can play an extremely important role in influencing the accu-
racy and efficiency of the numerical solutions of partial differential equations.
In particular, the truncation error is affected by the grid skewness, grid size,
grid size ratio, angle between the grid lines, grid nonuniformity, and consis-
tency of the grid with the features of the physical solution. Thus, by controlling
these grid quantities one can control the efficiency of the numerical solution of
boundary value problems. The calculus of variations allows one to formulate,
through appropriate functionals, natural techniques which can serve as tools
to control various grid properties.

A description of some local grid characteristics was given in Chap. 3
through the elements of the metric tensors. The procedure of integration of
these characteristics defines functionals which reflect global properties of the
grid. In this section some basic functionals modeling global grid characteris-
tics are formulated. It needs to be emphasized that some local characteristics
are dimensionally homogeneous. Therefore, in order to preserve this quality
globally, the integration of the corresponding quantities should be carried out
over a scaled region. If we assume that the logical domain Ξn is the unit cube,
we can utilize it as such a normalized domain.

8.3.1 Dimensionless Functionals

Dimensionless functionals are formed by integrating the dimensionless grid
characteristics reviewed in Chap. 3 over the computational domain Ξn.

8.3.1.1 Grid Skewness

The integrated measures of three-dimensional grid skewness are obtained from
the formulas (3.58)–(3.60), derived by means of the cosines and cotangents of
the angles between the tangential and normal vectors. These characteristics
are dimensionally homogeneous and, in accordance with the argument about
the integration of dimensionless quantities over the domain Ξn, we formulate
the global grid skewness measures as
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Isk,1 =
∫

Ξ3

(
(g12)2

g11g22
+

(g13)2

g11g33
+

(g23)2

g22g33

)
dξ,

Isk,2 =
∫

Ξ3

1
g

(
(g12)2

g33
+

(g13)2

g22
+

(g23)2

g11

)
dξ

=
∫

Ξ3

(
(g12)2

g11g22 − (g12)2
+

(g13)2

g11g33 − (g13)2

+
(g23)2

g22g33 − (g23)2

)
dξ,

Isk,3 =
∫

Ξ3

(
(g12)2

g11g22
+

(g13)2

g11g33
+

(g23)2

g22g33

)
dξ,

Isk,4 =
∫

Ξ3
g

(
(g12)2

g33
+

(g13)2

g22
+

(g23)2

g11

)
dξ

=
∫

Ξ3

(
(g12)2

g11g22 − (g12)2
+

(g13)2

g11g33 − (g13)2

+
(g23)2

g22g33 − (g23)2

)
dξ.

(8.25)

Since the elements gij of the contravariant metric tensor are expressed di-
rectly through the derivatives of the functions ∂ξi/∂xj , we see that the Euler–
Lagrange equations for the functionals Isk,3 and Isk,4 can be obtained more
easily if these functionals are reformulated over the domain X3. This can
be accomplished by using the relation (8.4). For example, we have, for the
functional Isk,3,

Isk,3 =
∫

X3

√
det(gij)

(
(g12)2

g11g22
+

(g13)2

g11g33
+

(g23)2

g22g33

)
dx.

The functionals Isk,1 and Isk,2 can be transformed to functionals dependent on
ξ(x) by the rule of transition (2.21) from the elements (gij) in the integrand
to the elements gij .

In two dimensions we obtain from (8.25) only two functionals of dimen-
sionally homogeneous skewness:

Isk,1 =
∫

Ξ2

(g12)2

g11g22
dξ =

∫

X2

√
det(gij)

(g12)2

g11g22
dx,

Isk,2 =
∫

Ξ2
g(g12)2dξ =

∫

X2

1√
det(gij)

(g12)2dx.

(8.26)

The first functional is defined through the cosines of the angles while the
second is determined by the cotangents of the angles.

8.3.1.2 Deviation from Orthogonality

Dimensionally homogeneous functionals indicating the global grid nonorthog-
onality in three dimensions can be derived from the local nonorthogonality
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measures (3.61). As a result, we have in three dimensions

Io,1 =
∫

Ξ3

g11g22g33

g
dξ

=
∫

X3

[g22g33 − (g23)2][g11g33 − (g13)2][g11g22 − (g12)2]√
det5(gij)

dx, (8.27)

Io,2 =
∫

Ξ3
g(g11g22g33)dξ =

∫

X3

1√
det(gij)

(g11g22g33)dx.

In two dimensions (8.27) yields only one functional of departure from orthog-
onality:

Io,1 =
∫

Ξ2

g11g22

g
dξ =

∫

X2

g11g22

√
det(gij)

dx. (8.28)

8.3.1.3 Deviation from Conformality

Integration of the dimensionless characteristics (3.67), (3.76), and (3.79) over
Ξ2 or Ξ3 generates a quantity which reflects an integral departure of the grid
from a conformal grid. Thus we obtain in two dimensions,

Icf,1 =
∫

Ξ2
(I1/

√
I2)dξ =

∫

X2
(I1/I2)dx. (8.29)

An analogous consideration of (3.77) yields, in three dimensions,

Icf,1 =
∫

Ξ3
[I2/

3
√

(I3)2]dξ =
∫

X3
[I2/(I3)7/6]dx. (8.30)

The quantity (3.80) for n = 3 defines one more three-dimensional form of
the nonconformality functional:

Icf,2 =
∫

Ξ3
[I1/(I3)1/3]dξ

=
∫

Ξ3

g11 + g22 + g33

3
√

det(gij)
dξ. (8.31)

Reformulation of Icf,2 over the domain X3 yields

Icf,2 =
∫

X3

1
6

√
det5[gij)

{
g11g22 + g11g33 + g22g33

− [(g12)2 + (g13)2 + (g23)2]
}
dx, (8.32)

using (8.4) and (2.21).
We can use as the integrand the dimensionally homogeneous quantity:
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Qcf,3 =
[
I2/

3
√

(I3)2
]α = (Qcf,1)α, α > 0, (8.33)

which also reaches its minimum value when the three-dimensional coordi-
nate transformation x(ξ) is conformal. In this case we can control the form
of the Euler–Lagrange equations with the parameter α. The corresponding
functional with the quantitative characteristic (8.33) is as follows:

Icf,3 =
∫

Ξ3

[
I2/

3
√

(I3)2
]αdξ

=
∫

X3
(I2)α/(I3)2α/3+1/2dx.

If α = 3/2 we obtain

Icf,3 =
∫

X3
(I2/I3)3/2dx

=
∫

X3
(g11 + g22 + g33)3/2dx,

taking into account (3.24). The system of Euler–Lagrange equations (8.14) or
(8.19) for this functional has the form

∂

∂xj

(√
g11 + g22 + g33

∂ξi

∂xj

)
=

∂

∂xj

(√
I2

I3

∂ξi

∂xj

)
= 0,

i, j = 1, 2, 3. (8.34)

Taking advantage of (2.56) or (8.23), we obtain for the inverted system of
(8.34)

∂

∂ξj

(√
I2g

ij
)

= 0, i, j = 1, 2, 3. (8.35)

Also, multiplication of (8.34) by ∂xk/∂ξi and summation over i yields one
more inverted system of (8.34):

gij ∂2xk

∂ξi∂ξj
=

√
I3

I2

∂

∂xk

√
I2

I3
, i, j = 1, 2, 3. (8.36)

An analogously simple system of Euler–Lagrange equations is derived for
n-dimensional functionals of nonconformality by replacing the local measure
(3.79) with

Qcf,3 =
[
In−1/(In)1−1/n

]α
, α > 0.

For the functional Icf,3 with α = n/2, we obtain

Icf,3 =
∫

Ξn

[
In−1/(In)1−1/n

]n/2dξ =
∫

Xn

(In−1/In)n/2dx

=
∫

Xn

(g11 + · · · + gnn)n/2dx. (8.37)
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The system of Euler–Lagrange equations for this functional is

∂

∂xj

(
(g11 + · · · + gnn)n/2−1 ∂ξi

∂xj

)
= 0, i, j = 1, . . . , n. (8.38)

Multiplying (8.38) by ∂xk/∂ξi and summing over i, we obtain in analogy with
(8.36), the system with respect to the dependent variables xi and independent
variables ξi:

gij ∂2xk

∂ξi∂ξj
= H−1 ∂

∂xk
H, i, j, k = 1, . . . , n, (8.39)

where
H = (g11 + · · · + gnn)n/2−1 = (In−1/In)n/2−1.

8.3.2 Dimensionally Heterogeneous Functionals

8.3.2.1 Smoothness Functionals

The characteristic of local grid concentration is expressed through the invari-
ants by (3.66). In general, this quantity is not dimensionless, and therefore its
integration is carried out over the physical domain Xn. The resulting func-
tional,

Is =
∫

Xn

(In−1/In)dx =
∫

Xn

(g11 + · · · + gnn)dx, (8.40)

formulated for an arbitrary n-dimensional domain Xn, is called the functional
of smoothness. We see that the functional of smoothness (8.40) for n = 2
coincides with the functional of conformality (8.29). However, in the three-
dimensional case the functionals (8.30) and (8.40) are different. The Euler–
Lagrange equations for the smoothness functional (8.40) comprise a simple
system of Laplace equations:

∂

∂xj

(
∂ξi

∂xj

)
= 0, i, j = 1, . . . , n.

The inverted system with respect to the dependent variable x is obtained in
the ordinary manner by multiplying (8.40) by ∂xk/∂ξi and summing over i.
As a result we obtain the n-dimensional inverted Laplace system

gij ∂x

∂ξi∂ξj
= 0, i, j = 1, . . . , n. (8.41)

8.3.2.2 Functionals of Orthogonality

The characteristics (3.62) and (3.63) of the local deviation of the three-
dimensional cells from orthogonal cells define two functionals of orthogonality.
For the purpose of simplicity of the resulting Euler–Lagrange equations, it is
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more suitable to integrate (3.62) over Ξ3 and (3.63) over X3. So we obtain the
following functionals, which represent some measures of grid nonorthogonality
and also can be interpreted as measures of grid skewness:

Io,3 =
∫

Ξ3

(
(g12)2 + (g13)2 + (g23)2

)
dξ,

Io,4 =
∫

X3

(
(g12)2 + (g13)2 + (g23)2

)
dx.

(8.42)

The corresponding Euler–Lagrange equations (8.11) and (8.6) have the form

gik
∂

∂ξj

(
∂xk

∂ξj

)
= 0,

gik ∂

∂xj

(
∂ξk

∂xj

)
= 0, i, j, k = 1, 2, 3, i �= k.

(8.43)

By applying (2.56) to every equation of the second system of (8.43), a con-
verted system is obtained:

gik ∂

∂ξk
J = 0, k = 1, 2, 3, i �= k. (8.44)

The systems (8.43) and (8.44) derive ill-posed boundary value problems, and
therefore the functionals of orthogonality are commonly combined with the
functional of smoothness (8.40) to yield well-posed problems of grid genera-
tion. In two dimensions, the orthogonality functionals (8.42) are

Io,3 =
∫

Ξ2
(g12)2dξ,

Io,4 =
∫

X2
(g12)2dx.

(8.45)

The local departure of a two-dimensional grid from an orthogonal one with
a prescribed cell aspect ratio F may be estimated by the measure

Qo,5 =
(

1√
F

∂x1

∂ξ1
−

√
F

∂x2

∂ξ2

)2

+
(

1√
F

∂x2

∂ξ1
+

√
F

∂x1

∂ξ2

)2

, (8.46)

since Qo,5 = 0 if and only if the grid is orthogonal and g11 = F 2g22. From
(8.46), we obtain

Qo,5 =
1
F

g11 + Fg22 − 2J.

This quantity Qo,5 defines one more functional of departure from orthogonal-
ity:

Io,5 =
∫

Ξ2

(
1
F

g11 + Fg22 − 2J

)
dξ

=
∫

Ξ2

(
1
F

g11 + Fg22

)
dξ − 2S, (8.47)
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where S is the area of the domain X2, with the following Euler–Lagrange
equations:

∂

∂ξ1

(
1
F

∂xi

∂ξ1
+ F

∂xi

∂ξ2

)
= 0, i = 1, 2. (8.48)

Analogously, the functional of departure from orthogonality is defined
through the elements gii as

Io,6 =
∫

X2

(
1
F

g11 + Fg22

)
dx − 2. (8.49)

8.3.3 Functionals Dependent on Second Derivatives

This subsection reviews a formulation of the functionals in the form (8.2)
or (8.3), where the integrands include terms dependent on second derivatives
of coordinate transformations.

8.3.3.1 Functionals of Eccentricity

The eccentricity functionals are derived from the local grid eccentricity mea-
sures (3.81) and (3.82). Since Qε,1, from (3.81), is expressed through the first
and second derivatives of x(ξ) with respect to ξi, we will integrate this quan-
tity over Ξn. For a similar reason, the relation (3.82) is integrated over Xn.
As a result, we obtain the integral characteristics of grid eccentricity in the
form

Iε,1 =
∫

Ξn

n∑

i=1

(
∂

∂ξi
ln

√
gii

)2

dξ,

Iε,2 =
∫

Xn

n∑

i=1

(
∂

∂xi
ln

√
gii

)2

dx.

(8.50)

Unlike the functionals determined by the first derivatives of the varied
functions ξ(x) or x(ξ), the functionals (8.50) include second derivatives. The
system of Euler–Lagrange equations (8.11) for grid generation is therefore of
fourth order. This makes it possible not only to specify the boundary nodal
distribution when generating a grid by solving such a system, but also to spec-
ify the directions of the coordinate lines emerging from the boundaries, which
is important when one needs to construct smoothly abutting grids in compli-
cated regions, as in the case of applying block grid techniques. Some questions
related to the formulation of the boundary conditions and the correctness of
the boundary value problems, and also to the numerical justification for the
systems of Euler–Lagrange equations for constructing grids are still to be
resolved, however.
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8.3.3.2 Functionals of Grid Warping and Grid Torsion

The functionals of grid warping and grid torsion are formulated analogously
through the respective local measures (3.83) and (3.84). Like the functionals
of eccentricity (8.50), these functionals are dependent on second derivatives,
thus generating Euler–Lagrange equations of the fourth order.

8.4 Adaptation Functionals

Numerical grids can significantly influence various characteristics of the effi-
ciency of the numerical solution of partial differential equations. One of the
most important characteristics is the accuracy of the numerical solution, which
is formulated through the error of the numerical calculation. In this matter,
the theory of the calculus of variations provides an excellent opportunity to
formulate the requirement of a minimal error for a given number of grid points
in a straightforward form through the functional of error. The minimization
of this functional generates an optimal grid in the sense of accuracy. Thus
the variational approach is a natural tool for generating grids adapted to the
physical solution.

The simplest and most logical way of defining the error functional Ier seems
to be through the integral measure of the local numerical error r = u − uh,

Ier,1 =
∫

Ξn

‖r‖dξ, (8.51)

or through the integral of the measure of the approximation error T ,

Ier,2 =
∫

Ξn

‖T ‖dξ, (8.52)

with the notation r and T discussed in Sect. 7.2. However, this logical formu-
lation results in a very cumbersome and high-order system of Euler–Lagrange
equations; namely, its order is twice the order of the derivatives in r or T . The
numerical solution of these Euler–Lagrange equations is a very difficult task,
especially in the case of multidimensional space. Thus the optimal grid can be
obtained only at the expense of the efficiency of the grid generation process.
Evidently, a more optimal approach to generating adaptive grids through the
variational technique lies in formulating simpler error functionals in order to
balance the accuracy of the solution against the cost of obtaining the grid.

A common approach aimed at the minimization of the numerical error
relies on concentration of grid nodes in the subregions of high truncation
error. One version of this approach, reviewed in Chap. 7, was formulated
through the equidistribution principle. In fact this principle is universal, since
all adaptive methods aimed at the concentration of grid nodes in the regions of
large solution variations are related to the one-dimensional equidistribution
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principle, which requires the grid spacing to be inversely proportional to a
weight function. The equidistribution principle can be formulated in a number
of different ways. In this section a variational version of the equidistribution
approach is discussed.

8.4.1 One-Dimensional Functionals

The basic one-dimensional differential model for the equidistribution principle
with the weight function w was formulated as the two-point boundary value
problem (7.10). In the case where the weight function w is defined in the
interval ξ and thus does not vary when x(ξ) changes, the problem (7.10)
is a boundary value problem for the Euler–Lagrange equation obtained by
optimizing the functional

Ieq =
∫ 1

0

w

(
dx

dξ

)2

dξ. (8.53)

The functional (8.53) physically models the energy which arises in a system of
nodes xi connected by springs with stiffness 2wi. The equilibrium condition
of this system also determines the positions of the grid points xi defined by a
coordinate transformation x(ξ) satisfying (7.10).

There also is a geometric interpretation of the following numerical approx-
imation of the integral (8.53) on a uniform grid ξi = ih, h = 1/N :

Ih
eq = N

N −1∑

i=0

wi+1/2(hi+1/2)2, (8.54)

where

wi+1/2 = [w(ξi) + w(ξi+1)]/2,

hi+1/2 = x(ξi+1) − x(ξi).

The expression (8.54) describes a hyperellipsoid for each value of Ih
eq, if hi+1/2

is considered as the ith coordinate in the (N −1)-dimensional Euclidean space,
and its minimization means that the hyperplane

N −1∑

i=1

hi+1/2 = b − a,

where b − a is the length of the segment x, is an (N − 2)-dimensional tangent
plane for this hyperellipsoid.

Since, in general, the error of the solution in the interval x is described
by an expression of the form ri = C(hi)k ≈ Chk(∂x/∂ξ)k, the functional
(8.53) can be interpreted as the integral error of the second-order approxi-
mation of a one-dimensional differential problem. The error functional of the
approximation of order k can be represented by the integral



8.4 Adaptation Functionals 245

Ieq =
∫ 1

0

w

(
dx

dξ

)k

dξ, k > 0. (8.55)

A geometric interpretation of the functional (8.55) for k = 4 is possible if u2
x

is taken as the weight function. In this case the value of the functional (8.55)
is proportional to the sum of the squares of the areas of the rectangles which
border the curve u = u(x) in the (u, x) plane.

Commonly the weight function w is defined in the physical region, and
therefore the variational formulation of the equidistribution method typically
utilizes a functional with respect to transformations ξ(x) with specified bound-
ary conditions:

Ieq =
∫

X

w1(x)
(

dξ

dx

)k

dx, k > 0, (8.56)

whose Euler–Lagrange equation is obtained in accordance with (8.6). Thus the
optimal transformation ξ(x) for this functional is the solution to the boundary
value problem

d
dx

[
w1(x)

(
dξ

dx

)k−1]
= 0, a < x < b,

ξ(a) = 0, ξ(b) = 1.

(8.57)

From (8.57), the following relation follows directly:

w
1/(k−1)
1

dξ

dx
= const =⇒ w

1/(1−k)
1

dx

dξ
= const,

which results in small values of dx/dξ when w
1/(1−k)
1 is large and vice versa.

A problem equivalent to (7.10) is obtained from (8.57) when k = 2, w1(x) =
w−1(x), w1 > 0.

Thus the equidistribution method considered in Sect. 7.2 can be inter-
preted as a variational method for constructing grids by minimizing the func-
tionals (8.55) or (8.56). An analytic justification for using functionals of these
forms when constructing adaptive grids is provided by the example in Sect. 7.2:
the formula (7.3) for an optimal grids can be obtained from the condition of
a minimum of the functional (8.56) with k = 2 and

w1(x) =
(∥∥∥∥

du

dx

∥∥∥∥

)−p

, p = 2/3,

by integrating (8.57).

8.4.2 Multidimensional Approaches

In this subsection the variational formulations (8.55) and (8.56) of the one-
dimensional equidistribution approach are taken as a starting point for the
extension to multiple dimensions.
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The basic elements of the functionals (8.55) and (8.56) are the weight
functions and the first derivative of the transformation x(ξ) or ξ(x). When
generalizing to an n-dimensional region Xn, this derivative can be interpreted
as the Jacobian of transformation x(ξ) or ξ(x), or as the square roots of the
values of the diagonal elements of the covariant metric tensor (gij) or the
contravariant metric tensor (gij). Thus, in many of the generalizations of the
functionals (8.55) and (8.56) that have been proposed for constructing adap-
tive grids in an n-dimensional domain Xn, the expression dx/dξ is replaced
by J = det(∂xi/∂ξj), and dξ/dx by det(∂ξi/∂xj) = 1/J, or combinations of
the diagonal elements of the covariant or contravariant metric tensor (gij) and
(gij) are used. Since J =

√
g, all these functionals can be formulated through

the metric tensors (gij) or (gij). Thus the Euler–Lagrange equations for these
functionals are readily obtained by using (8.14) or (8.15).

8.4.2.1 Volume-Weighted Functional

For example, the functional defined through the Jacobian J =
√

g, called the
volume-weighted functional, has the form

Ivw =
∫

Xn

w(x)gkdx, k > 0. (8.58)

The expected result of the minimization of this functional is small values of
the Jacobian when w(x) is large and vice versa.

In analogy with the first line of (8.21), we have for arbitrary dimensions

∂g

∂glk
= −gglk, l, k = 1, . . . , n.

Therefore, using (8.14), we obtain a system of Euler–Lagrange equations for
the functional (8.58):

∂

∂xj

(
wgkgim

∂ξm

∂xj

)
=

∂

∂xj

(
wgk ∂xj

∂ξi

)
= 0, i, j, k, m = 1, . . . , n. (8.59)

In order to obtain compact equations which include only the derivatives with
respect to ξi we use the identity

∂

∂xj

(
g−1/2 ∂xj

∂ξi

)
≡ 0, i, j = 1, . . . , n,

which is a mere reformulation of (2.47). Therefore, from (8.59), we obtain

∂

∂xj

(
wgk ∂xj

∂ξi

)
= g−1/2 ∂

∂xj
(wgk+1/2)

∂xj

∂ξi

= g−1/2 ∂

∂ξi
(wgk+1/2) = 0. (8.60)
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8.4.2.2 Tangent-Length-Weigthed Functionals

An adaptation functional which use the diagonal elements of the metric tensor
(gij) can be expressed as follows:

Itw,1 =
∫

Ξn

(
w(ξ)

∑

i

gii

)
dξ =

∫

Ξn

w(ξ)I1dξ. (8.61)

A functional aimed at providing an individual grid concentration in each
grid direction ξi can be formulated through a combination of the edge length
characteristics gii with individually specified weights:

Itw,2 =
∫

Ξn

(∑

i

wi(ξ)gii

)
dξ. (8.62)

The weight functions wi control the grid spacing along each coordinate inde-
pendently.

The system of Euler–Lagrange equations for the functional (8.62) is of
simple elliptic type,

∂

∂ξj

(
wi ∂xi

∂ξj

)
= 0, i, j = 1, . . . , n,

with the index i fixed. The functionals (8.61) and (8.62) influence the grid
node distribution in the direction of the coordinate lines.

8.4.2.3 Normal-Length-Weighted Functionals

Analogous adaptation functionals determined by weighted diagonal elements
gii of the contravariant metric tensor (gij) have the form

Inw,1 =
∫

Xn

(
w(x)

∑

i

gii

)
dx (8.63)

and

Inw,2 =
∫

Xn

(∑

i

wi(x)gii

)
dx. (8.64)

The functionals (8.63) and (8.64) are also referred to as diffusion functionals.
They are formulated for the purpose of distributing the nodes in the direction
of the normals to the coordinate surfaces ξi = c, with clustering of the grid
points in the neighborhoods of large values of the weighting functions and
rarefying of the nodes in the vicinity of small values of the weights.

The resulting Euler–Lagrange equations for critical functions ξ(x) of the
functionals (8.63) and (8.64) have the form
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∂

∂xj

(
wi

∂ξi

∂xj

)
= 0, i, j = 1, . . . , n, (8.65)

with the index i fixed. If wi > 0 then this system is elliptic. The relation
wi = w, i = 1, . . . , n, in this system corresponds to the functional (8.63). In
this case the transformed equations with the dependent and independent vari-
ables interchanged are readily obtained by multiplying the system of Euler–
Lagrange equations (8.65) by ∂xk/∂ξi and summing over i. As a result, we
obtain

gij ∂2xk

∂ξi∂ξj
− 1

w

∂w

∂xk
= 0, i, j, k = 1, . . . , n. (8.66)

Using the relation (2.23), we have

∂w

∂xk
=

∂w

∂ξi

∂ξi

∂xk
= gij ∂w

∂ξi

∂xk

∂ξj
.

Therefore we obtain, from the inverted system of Euler–Lagrange equations
(8.66),

gij

(
∂2xk

∂ξi∂ξj
− 1

w

∂w

∂ξi

∂xk

∂ξj

)
= wgij ∂

∂ξi

(
1
w

∂xk

∂ξj

)
= 0.

Thus we obtain another compact form of the Euler–Lagrange equations for
the functional (8.63):

gij ∂

∂ξi

(
1
w

∂xk

∂ξj

)
= 0, i, j, k = 1, . . . , n. (8.67)

8.4.2.4 Metric-Weighted Functionals

The length-weighted functionals permit a natural generalization in the form
of metric-weighted functionals:

Imw,1 =
∫

Ξn

wij(ξ)gijdξ (8.68)

and
Imw,2 =

∫

Xn

wij(x)gijdx. (8.69)

The condition of convexity (8.24) will be satisfied for these functionals if the
matricies (wij) and (wij), respectively, are positive. Without loss of generality,
we can assume in (8.68) and (8.69) that wij = wji, wij = wji. The correspond-
ing systems of Euler–Lagrange equations for (8.68) and (8.69) have then the
form

∂

∂ξj

(
wik ∂xk

∂ξj

)
= 0,

∂

∂xj

(
wik

∂ξk

∂xj

)
= 0, i, j, k = 1, . . . , n.

(8.70)
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8.4.2.5 General Approach

A more general formulation of the adaptation functionals utilizes the weighted
elements of the matrix [(∂xi/∂ξj)2] or the matrix [(∂ξi/∂xj)2]. For example,

Iad,6 =
∫

Ξn

[∑

i,j

wij(ξ)
(

∂xi

∂ξj

)2]
dξ,

Iad,7 =
∫

Xn

[∑

i,j

wij(x)
(

∂ξi

∂xj

)2]
dx.

(8.71)

The corresponding Euler–Lagrange equations are

∂

∂ξj

(
wij ∂xi

∂ξj

)
= 0,

∂

∂xj

(
wij ∂ξi

∂xj

)
= 0, i, j = 1, . . . , n,

(8.72)

where the summation is carried out only over j and the index i is fixed.

8.4.2.6 Nonstationary Functionals

In the construction of adaptive grids for spatial nonstationary elastoplas-
tic and gas-dynamics problems, the adaptation functional characterizing the
concentration of grid nodes in the high-gradient region of the flow velocity
u = (u1, u2, u3) is defined in terms of the velocity components of the grid
nodes ∂xi/∂t:

Iad,6 =
∫

X3
(k div w − div u)2dx, (8.73)

where

w = (w1, . . . , wn), wi =
3∑

j=1

∂xj

∂t

∂ξi

∂xj
,

u = (u1, . . . , un), ui =
3∑

j=1

∂ξi

∂xj
uj , i = 1, 2, 3.

Minimization of the functional (8.73) involves equidistribution of the weight
function w(x) with respect to the values, to degree k, of the grid cell volumes,
generating a grid with small cell volumes in the neighborhood of large values
of w(x).
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8.4.2.7 Weight Functions

The weight functions w, wi, wi, wi,j , and wi,j in the formulations of adap-
tation functionals considered above are usually taken as combinations of the
moduli of the derivatives of those components ui of the solution of the phys-
ical problem for which these derivatives can take large values. For instance,
for the flow of a viscous heat-conducting gas, the function w(x) has the form

w =
(

ε +
∑

i

|gradui|αj

)β

+ φ0(x),

where φ0(x) is a positive function and ε, αi, and β are positive constants. The
weight function is of this form because of the need to construct a grid which
is invariant under Galilean transformations and provides node clustering in
the region of high gradients of u. Other weight functions were outlined in
Sect. 7.2.

8.5 Functionals of Attraction

For some multidimensional problems, there are natural families of lines or
vector fields which should be aligned with the grid lines or basic vector fields
for reasons of computational efficiency. In gas dynamics, for instance, these
are the streamlines (or lines of potential), lines of predominant direction of
flow, and a family of the Lagrange coordinates; in plasma theory they are
the preferred vector directions defined by the magnetic field. The solution
to viscous transonic flow problems usually contains shock structures which
should be aligned with one coordinate direction, while boundary layers should
be aligned with the coordinates from the other family; namely they need to be
parallel to a streamwise coordinate. Some problems also have an underlying
symmetry which should be matched with the coordinate system.

The alignment of the coordinate lines with natural families of curves of
this kind leads to efficiency in the numerical modeling. For example, the use
of Lagrange coordinates in problems of fluid motion simplifies the represen-
tation of the equations, and makes it possible to localize the moving region
and to follow the motion of the fluid particles during the numerical solution.
The requirement to generate aligned coordinates can be readily realized by
variational techniques through suitable functionals of departure. This section
presents a formulation of certain functionals of this type.

8.5.1 Lagrangian Coordinates

The condition for a coordinate ξi to be Lagrangian in a three-dimensional
fluid flow is given by the equation
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∂ξi

∂t
+ ui = 0, i = 1, 2, 3, (8.74)

where ui is the ith component of the velocity vector in the moving system of
coordinates (t, ξ1, ξ2, ξ3), i.e.

ui =
3∑

i=1

uj ∂ξi

∂xj
,

with uj , j = 1, 2, 3, representing the jth velocity component in the Cartesian
system (t, x1, x2, x3). Since

∂ξi

∂t
= −

3∑

j=1

∂ξi

∂xj

∂xj

∂t
,

(8.6) is equivalent to
wi − ui = 0, (8.75)

where wi is the ith component of the grid velocity vector expanded in the
tangential vectors xξj , j = 1, . . . , n.

Equation (8.75) can be used to determine the functional of deviation from
a Lagrangian coordinate grid:

IL,1 =
∫

X3×I

w

3∑

i=1

(wi − ui)2dx dt

=
∫

X3×I

w
m∑

i=1

(
∂ξi

∂t
+ ui

)2

dx dt, (8.76)

where I is the range of the variable t. The functional (8.76) is formulated so
as to provide attraction of the grid lines to the Lagrangian coordinates.

The Euler–Lagrange equations (8.6) derived from this functional are as
follows:

∂

∂t
[w(wi − ui)] − ∂

∂xj
[w(wi − ui)uj ] = 0, i, j = 1, 2, 3. (8.77)

By applying (2.95), they are transformed to the system

∂

∂t
[Jw(wi − ui)] +

∂

∂ξj
[Jw(wi − ui)(wj − uj)] = 0, i, j = 1, 2, 3, (8.78)

with respect to the dependent variables t, ξ1, ξ2, ξ3.
When all of the coordinates are Lagrangian, the conditions (8.75) with

i = 1, 2, 3 are equivalent to the system of equations

xi
t(t, ξ

1, ξ2, ξ3) − ui = 0, i = 1, 2, 3.
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This relation is used to define a functional that controls the attraction of the
generated grid to the Lagrangian grid in the form

IL,2 =
∫

Ξ3×I

w

3∑

i=1

(
ui − ∂xi

∂t

)2

dξ dt. (8.79)

8.5.2 Attraction to a Vector Field

Alignment can be very useful when there is a natural anisotropy in the physical
problem, for example a dominant flow direction which is expressed by a vector
field. The variational approach can be helpful in generating techniques to
obtain such alignment. Functionals which take into account the direction of the
prescribed vector fields Ai(x), i = 1, 2, 3, for constructing three-dimensional
coordinate transformations are introduced in the form

Ivf,1 =
∫

X3

(
w

3∑

i=1

(Ai × ∇ξi)2
)

dx, (8.80)

where w is the weight function, and ∇ξi = grad ξi. In the process of the
minimization of this functional the normals to the surface ξi = c tend to
become parallel to Ai. From (2.28), we have for the integrand of the functional
(8.80)

w

3∑

i=1

(Ai × ∇ξi)2 = w(|Ai|2gii − (Ai · ∇ξi)2)

= w

(
|Ai|2gii − Ak

i Ap
i

∂ξi

∂xk

∂ξi

∂xp

)
.

From this relation we readily obtain the Euler–Lagrange equations for the
functional (8.80):

∂

∂xj

[
w

(
|Ai|2 ∂ξi

∂xj
− Aj

iA
p
i

∂ξi

∂xp

)]
, i, j, p = 1, 2, 3, (8.81)

with the index i fixed.
Analogously, a functional of alignment of the tangent vectors xξi with the

prescribed vector fields Ai, i = 1, 2, 3, can be defined:

Ivf,2 =
∫

X3

(
w

3∑

i=1

(Ai × xξi)2
)

dx. (8.82)

This functional can serve to attract the coordinate lines to the streamlines of
the vector fields Ai, i = 1, 2, 3.
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8.5.3 Jacobian-Weighted Functional

A Jacobian-weighted functional represents the deviation of the Jacobian ma-
trix (∂ξi/∂xj) of the transformation ξ(x) from the prescribed matrix S(x) =
[Sij(x)], i, j = 1, . . . , n, via a least-squares fit. In particular, the functional
can have the following form:

Ijw,1(ξ) =
∫

Xn

G(x, ∇ξi)dx, (8.83)

with

G(x, ∇ξi) =
n∑

i,j=1

(
∂ξi

∂xj
− Sij(x)

)2

.

In fact, the integrand G(x, ∇ξi) is the square of the Frobenius norm of
the matrix

M =
(

∂ξi

∂xj
− Sij

)
, i, j = 1, . . . , n,

i.e.
G(x, ∇ξi) = tr(MT M).

The Euler–Lagrange equations derived from the minimization of the func-
tional Ijw have the form

∂

∂xj

(
∂ξi

∂xj
− Sij

)
= 0, i, j = 1, . . . , n. (8.84)

These equations are elliptic and are in fact, a variant of the Poisson system
(6.13) with

P i =
∂

∂xj
Sij , i, j = 1, . . . , n.

Multiplying this system by ∂xk/∂ξi and summing the result over i, we ob-
tain the following transformed equation for the transformed dependent vari-
able x(ξ), written in vector form:

gij ∂2x

∂ξiξj
+

∂

∂xj
(Sij)xξi = 0. (8.85)

In accordance with (2.70),

∂

∂xj
Sij =

1
J

∂

∂ξk
(JS

ik
), i, j, k = 1, . . . , n,

where

S
ik

= Sij ∂ξk

∂xj
, i, j, k = 1, . . . , n.

Hence (8.85) can be written as follows:
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gij ∂2x

∂ξiξj
+

1
J

∂

∂ξj
(JS

ij
)xξi = 0. (8.86)

Analogously, a Jacobian-weighted functional Ijw,2, which measures the
squared departure of the Jacobi matrix (∂xi/∂ξj) of the coordinate trans-
formation x(ξ) from the prescribed matrix [Sij(ξ)] can be defined as

Ijw,2 =
∫

Ξn

n∑

i,j=1

(
∂xi

∂ξj
− Sij

)2

dξ. (8.87)

The Jacobian-weighted functionals Ijw,1 and Ijw,2 also can be interpreted
as one more form for the functionals of alignment for vector fields. Let a vector
field be given by n vectors

vi(x), i = 1, . . . , n, vi = (v1
i , . . . , vn

i ).

Then the following form of a functional of grid attraction to the given vector
field can be defined:

Ivf,3 =
∫

Xn

n∑

i=1

|∇ξi − vi|2dx. (8.88)

This functional is in fact the Jacobian-weighted functional (8.84) with

Sij = vj
i , i, j = 1, . . . , n.

Note that the functionals of the form (8.83) and (8.87) are more efficient
for attracting grid lines to the corresponding vector fields than the functionals
of the type (8.88). This is because the former are concerned with attraction
to the specified directions only, while with the latter an attraction to both the
directions and the specified lengths is required.

The form of the Jacobian-weighted functional gives a clear guideline for
producing nonfolded grids. This guideline is based upon the following global
univalence theorem.

Theorem 1. Let F : U → Rn be a differentiable mapping, where U is the
rectangular region of Rn : U = {x : x ∈ Rn|ai ≤ xi ≤ bi}. If the Jacobian
matrix of F at x is positive for every x ∈ U, then F is globally one-to-one
in U.

Recall that an n × n real matrix A is positive if every principale minor of A
is positive. Thus, in order to obtain one-to-one coordinate transformations this
theorem suggests that one should use only positive matrices as the matrix S.

The minimization of the functional Ijw,1 generates a transformation ξ(x)
whose Jacobian matrix may be so close to the matrix S that the matrix
(∂ξi/∂xj) is also positive. Thus the matrix (∂xi/∂ξj) is positive as well, and
in accordance with the above theorem, the transformation x(ξ) : Ξn → Xn

is a one-to-one mapping.
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8.6 Energy Functionals of Harmonic Function Theory

The theory of harmonic maps is useful for formulating variational grid gener-
ation techniques which provide well-posed problems of grid generation.

8.6.1 General Formulation of Harmonic Maps

First, we consider the definition of a harmonic map between two general n-
dimensional Riemannian manifolds Xn and Zn with covariant metric tensors
dij and Dij in some local coordinates xi, i = 1, . . . , n, and zi, i = 1, . . . , n,
respectively.

Every C1(Xn) map z(x) : Xn → Zn defines an energy density by the
following formula:

e(z) =
1
2
dij(x)Dkl(z)

∂zk

∂xi

∂zl

∂xj
, i, j, k, l = 1, . . . , n, (8.89)

where (dij) is the contravariant metric tensor of Xn, i.e. dijd
jk = δk

i . The
total energy associated with the mapping z(x) is then defined as the integral
of (8.89) over the manifold Xn:

E(z) =
∫

Xn

e(z)dXn. (8.90)

A transformation z(x) of class C2(Xn) is referred to as a harmonic mapping
if it is a critical point of the functional of the total energy (8.90). The Euler–
Lagrange equations whose solution minimizes the energy functional (8.90) are
given by

1√
d

∂

∂xk

(√
ddkj ∂zl

∂xj

)
+ dkjΓ l

mp

∂zm

∂xk

∂zp

∂xj
= 0, (8.91)

where d = det(dij) and Γ l
mp are Christoffel symbols of the second kind on the

manifold Zn:

Γ l
mp =

1
2
Dlj

(
∂Djm

∂zp
+

∂Djp

∂zm
− ∂Dmm

∂zj

)
. (8.92)

The following theorem guarantees the uniqueness of the harmonic mapping.

Theorem 2. Let Xn, with metric dij, and Zn, with metric Dij, be two Rie-
mannian manifolds with boundaries ∂Xn and ∂Zn and let φ : Xn → Zn

be a diffeomorphism. If the curvature of Zn is nonpositive and ∂Zn is con-
vex (with respect to the metric Dij) then there exists a unique harmonic map
z(x) : Xn → Zn such that z(x) is a homotopy equivalent to φ. In other
words, one can deform z to φ by constructing a continuous family of maps
gt : Xn → Zn, t ∈ [0, 1], such that g0(x) = φ(x), g1(x) = z(x), and
gt(x) = z(x) for all x ∈ ∂Xn.
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8.6.2 Application to Grid Generation

In application of the harmonic theory to grid generation, the manifold Zn is
assumed to correspond to the computational domain Ξn, with a Euclidean
metric Dij = δi

j . Since the Euclidean space Ξn is flat, i.e. it has zero curvature,
and the domain Ξn is constructed by the user, both requirements of the above
theorem can be satisfied. For the manifold Xn, one uses a set of the points
of a physical domain Xn with an introduced Riemannian metric dij . The
functional of the total energy (8.90) has then the form

E(ξ) =
1
2

∫

Xn

(√
ddkl ∂ξi

∂xk

∂ξi

∂xl

)
dx, i, k, l = 1, . . . , n. (8.93)

And for the Euler–Lagrange equations (8.91), we have

1√
d

∂

∂xk

(√
ddkj ∂ξi

∂xj

)
= 0, i, j, k = 1, . . . , n, (8.94)

since, from (8.92), Γ l
mp = 0. The left-hand part of (8.94) is the Beltrami

operator ΔB , so (8.94) is equivalent to

ΔB(ξ) = 0. (8.95)

Equations (8.94), in contrast to (8.91), are linear and of elliptic type, and
have a conservative form. Therefore they satisfy the maximum principle, and
the Dirichlet boundary value problem is a well-posed problem for this system
of equations, i.e. the above theorem is proved very easily for the functional
(8.93).

Equations (8.94) can be reformulated with interchanged dependent and
independent variables in the typical manner, by multiplying the system by
∂xl/∂ξi and summing over i. As a result, we obtain

d
km ∂2xl

∂ξk∂ξm
− 1√

d

∂

∂xk
(

√
ddkl) = 0, k, l, m = 1, . . . , n, (8.96)

where

d
km

= dij ∂ξk

∂xi

∂ξm

∂xj
, i, j, k, m = 1, . . . , n,

are the elements of the contravariant metric tensor of the Riemannian manifold
Xn in the coordinates ξi.

8.6.3 Relation to Other Functionals

Some of the functionals given earlier are identical to the functionals of en-
ergy (8.90) and (8.93). For example, the smoothness functional (8.40) is the
functional of the form (8.93) with the Euclidean metric dij = δi

j in Xn.
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Analogously, the diffusion functional (8.63) can be interpreted as the func-
tional (8.93), with the contravariant metric tensor dij in Xn satisfying the
condition √

ddij = wδi
j , i, j = 1, . . . , n.

From this relation we readily obtain

dij = w2/(n−2)δi
j , i, j = 1, . . . , n.

Thus dij = w2δi
j for n = 3. The above formula fails to define the corresponding

metric in the two-dimensional domain X2. However, the formulation of the
diffusion functional (8.63) as the energy functional (8.93) can be accomplished
by using the Euclidean metric in Xn and the Riemannian metric in Ξn for
arbitrary n, by setting

Dij = wδi
j , i, j = 1, . . . , n.

The functional of inhomogeneous diffusion (8.64) can be interpreted in a
similar manner by taking

dij = wδi
j , Dij = wiδ

i
j , i, j = 1, . . . , n.

Similarly, the functionals (8.61), (8.62), and (8.72) can be identified with
the functional of energy (8.93).

Other applications of the functionals of energy to generate surface and
hypersurface grids will be discussed in Chaps. 9 and 10.

8.7 Combinations of Functionals

The functionals described in Sects. 8.2–8.6 are used to control and realize
various grid properties. This is carried out by combining these functionals
with weights in the form

I =
∑

i

λiIi, i = 1, . . . , k. (8.97)

Here λi, i = 1, . . . , k, are specified parameters which determine the individ-
ual contribution of each functional Ii to I. The ranges of the parameters λi

controlling the relative contributions of the functionals can be defined read-
ily when the functionals Ii are dimensionally homogeneous. However, if they
are dimensionally inhomogeneous, then the selection of a suitable value for
λi presents some difficulties. A common rule for selecting the parameters λi

involves making each component λiIi in (8.97) of a similar scale by using a
dimensional analysis.

The most common practice in forming the combination (8.97) uses both
the functionals of adaptation to the physical solution and the functionals of
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grid regularization. The first reason for using such a strategy is connected
with the fact that the process of adaptation can excessively distort the form
of the grid cells. The distortion can be prevented by functionals which im-
pede cell deformation. These functionals are ones which control grid skewness,
smoothness, and conformality. The second reason for using the regularization
functionals is connected with the natural requirement for the well-posedness
of the grid generation process. This requirement is achieved by the utilization
of convex functionals in variational grid generators. The convex functionals
are represented by energy-type functionals, producing harmonic maps, and by
the functionals of conformality.

The various functionals described above provide broad opportunities to
control and realize the required grid properties, though problems still remain;
these require more detailed studies of all properties of the functionals. The
knowledge of these properties will allow one to utilize the functionals as effi-
cient tools to generate high-quality grids.

8.7.1 Natural Boundary Conditions

In order to achieve the desired result more efficiently when generating grids
by the variational approach, one needs to adjust the boundary conditions to
the resulting Euler–Lagrange equations. As an illustration, we can consider
the process of generating two-dimensional conformal grids with the Laplace
equations derived from the functional of conformality (8.29). A conformal grid
is not obtained with arbitrary boundary conditions, but only with strictly
specified ones.

The natural boundary conditions for the Euler–Lagrange equations yielded
by functionals are those for which the boundary contribution to the variation
is zero. The natural boundary conditions are derived in the typical way, by
writing out the first variation of the functional.

8.8 Comments

A detailed description of the fundamentals and theoretical results of the cal-
culus of variations can be found in the monographs by Gelfand and Fomin
(1963) and by Ladygenskaya and Uraltseva (1973).

Liseikin and Yanenko (1977), Danaev, Liseikin, and Yanenko (1978), Ghia,
Ghia, and Shin (1983), Brackbill and Saltzman (1982) and Bell and Shubin
(1983) have each used the variational principle for grid adaptation.

The diffusive form of the adaptive functional (8.63) was formulated orig-
inally by Danaev, Liseikin, and Yanenko (1980) and Winslow (1981). A gen-
eralization of this functional to (8.64) with an individual weight function for
each direction was realized by Eiseman (1987) and Reed, Hsu, and Shiau
(1988). The most general variational formulation of the modified anisotropic
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diffusion approach was presented by Hagmeijer (1994). A variational prin-
ciple for the Jacobian-weighted functional was formulated, studied, and de-
veloped by Knupp (1995, 1996) and Knupp, Margolin, and Shashkov (2002).
A considarable amount of work in determining and studying the conditions re-
quired to guarantee invertibility of coordinate transformations was published
by Pathasarathy (1983) and Clement, Hagmeijer, and Sweers (1996).

The functional measuring the alignment of the two-dimensional grid with
a specified vector field was formulated by Giannakopoulos and Engel (1988).
The extension of this approach to three dimensions was discussed by Brackbill
(1993).

A variational method optimizing cell aspect ratios was presented and an-
alyzed by Mastin (1992). A dimensionally homogeneous functional of two-
dimensional grid skewness was proposed by Steinberg and Roache (1986).

The property of eccentricity for the univariate transformation x(ξ) was
introduced by Sidorov (1966), while a three-dimensional extension was per-
formed by Serezhnikova, Sidorov, and Ushakova (1989). A form of smoothness
based on the eccentricity term was developed by Winkler, Mihalas, and Nor-
man (1985).

The variational formulation of grid properties was described by Warsi and
Thompson (1990).

The geometric interpretation of the approximation (8.51) was given by
Steinberg and Roache (1986).

The introduction of the volume-weighted functional was originally pro-
posed in two dimensions by Yanenko, Danaev, and Liseikin (1977).

The approach of determining functionals which depend on invariants of
orthogonal transformations of the metric tensor (gij), to ensure that the
problems are well-posed and to obtain more compact formulas for the Euler–
Lagrange equations, was proposed by Jacquotte (1987). In his paper, the grids
were constructed through functionals obtained by modeling different elastic
and plastic properties of a deformed body.

The metric-weighted functional was formulated by Belinsky et al. (1975)
for the purpose of generating quasiconformal grids.

The possibility of using harmonic function theory to provide a general
framework for developing multidimensional mesh generators was discussed by
Dvinsky (1991). The interpretation of the functional of diffusion as a version of
the energy functional was presented by Brackbill (1993). A detailed survey of
the theory of harmonic mappings was published by Eells and Lenaire (1988).
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Curve and Surface Grid Methods

9.1 Introduction

Curvilinear lines and surfaces are common geometrical objects in both struc-
tured and unstructured grid generation techniques. Curves appear in grid
considerations as the boundary segments of two-dimensional domains or sur-
face patches and as the edges of three-dimensional blocks. Surfaces arise as
the boundary segments and/or faces of three-dimensional domains or blocks.

The main goal of grid generation on a curve is to provide boundary data
for boundary-fitted grid generators for two-dimensional planar domains and
surfaces. Analogously, surface grid generation is needed chiefly to build grids
on the boundaries of three-dimensional domains or blocks in order to provide
boundary data for volume grid techniques.

In the structured concept, grid generation on a surface follows the con-
struction of a set of surface patches, specification of a parametrization for
every patch, and generation of one-dimensional curve grids on the edges of
the surface patches to provide the boundary conditions for the surface grid
generator. In fact, for the purpose of simplicity and for maintaining adherence
of the surface grid techniques to the physical geometry, the grid is commonly
generated in a parametric two-dimensional domain and then mapped onto the
original patch of the surface.

Thus the process of surface grid generation may by divided into three
steps: forward mapping, grid generation, and backward mapping. The forward
mapping is a representation of the background surface patch from a three-
dimensional physical domain to a two-dimensional parameter area. Once the
forward mapping is complete, the grid is generated in the parameter space and
then mapped back into the physical space (backward mapping). A surface
patch is formed as a curvilinear triangle or a quadrilateral, with three or
four boundary segments, respectively. The corresponding parametric domain
may also have the shape of a triangle or a quadrilateral with curved boundary
edges. The backward transformation from the parametric domain to the patch

V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-90-481-2912-6 9, c© Springer Science+Business Media B.V. 2010
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is defined by specifically adjusted interpolations. The specification depends on
variations in surface features.

The generation of the grid on the parametric domain is derived by the same
types of approach—algebraic, differential, and variational—as those which
were described for planar domains. However, these approaches are adjusted
by including the necessary surface characteristics, expressed in terms of the
surface quadratic forms (see Sect. 3.3), to satisfy the required grid properties
on the surface.

This chapter gives a review of some advanced techniques of curve and
surface grid generation.

9.2 Grids on Curves

Methods for generation of grids on curves are the simplest to formulate and
analyze. These methods provide the background for the development of surface
grid techniques. Some common structured approaches to grid generation on
curves are discussed in this section.

9.2.1 Formulation of Grids on Curves

A curve in n-dimensional space is represented parametrically by a smooth,
nonsingular, vector-valued function from a normalized interval [0, 1]:

x(ϕ) : [0, 1] → Rn, x(ϕ) = [x1(ϕ), . . . , xn(ϕ)]. (9.1)

Let the curve with the parametrization x(ϕ) be designated by Sx1. The trans-
formation (9.1) provides a discrete grid on the curve Sx1 by mapping the nodes
of a uniform grid in the interval [0, 1] into Sx1 with r(ϕ), i.e. the grid points
xi, i = 0, 1, . . . , N, are defined as

xi = x(ih), h = 1/N.

However, the need to produce a grid with particular desirable properties re-
quires the introduction of a control tool. Such control of the generation of a
curve grid is carried out with strongly monotonic and smooth intermediate
transformations

ϕ(ξ) : [0, 1] → [0, 1], (9.2)

which generate the grid nodes ϕi on the interval [0, 1], where

ϕi = ϕ(ih), i = 0, 1, . . . , N, h = 1/N.

The transformation ϕ(ξ) is chosen is such a way that the composition

x[ϕ(ξ)] : [0, 1] → Rn, (9.3)
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Fig. 9.1. Scheme of generation of a curve grid

which represents a new parametrization of Sx1, generates the grid nodes

xi = x[ϕ(ih)] = x(ϕi), i = 0, 1, . . . , N, h = 1/N, (9.4)

with the desired properties. Figure 9.1 demonstrates the scheme of the gener-
ation of a curve grid. Thus, the process of grid generation on a curve is turned
into the definition of an intermediate transformation ϕ(ξ) so as to provide
a suitable parametrization of the curve. One such natural transformation is
connected with the scaled arc length parameter ξ which, in analogy with (3.1),
is defined by

ξ(ϕ) =
1
c

∫ ϕ

0

√
gxϕdx, c =

∫ 1

0

√
gxϕdx, (9.5)

where
gxϕ = xϕ · xϕ = |xϕ|2.

The function ϕ(ξ), inverse to ξ(ϕ), is subject to the condition

dϕ

dξ
=

c√
gxϕ

. (9.6)

Therefore we have, for the grid nodes ϕi = ϕ(ih) in the interval [0, 1], the
relation

ϕi+1 − ϕi

h
≈ dϕ

dξ
=

c√
gxϕ

, i = 0, 1, . . . , N, h = 1/N, (9.7)

and consequently we obtain, for the grid nodes xi on the curve Sx1,

|xi+1 − xi| ≈ |xϕ|(ϕi+1 − ϕi) ≈ ch, i = 0, 1, . . . , N, h = 1/N. (9.8)

Equations (9.6)–(9.8) are examples of the equidistribution principle considered
in Sect. 7.3, which is based on a specification of distances between the grid
points in accordance with a rule of inverse proportionality to a weight function.
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9.2.2 Grid Methods

The main approach to generating one-dimensional grids on curves is based
on a specification of the grid step spacing. The approach is realized by direct
reparametrization of the curve with suitable univariate intermediate transfor-
mations ϕ(ξ), such as the ones considered in Chap. 4, or by the formulation
of equations and functionals through the first derivative of the intermediate
transformations.

9.2.2.1 Differential Approach

The simplest differential method for the definition of an intermediate trans-
formation ϕ(ξ) relies on the solution of the initial-value problem in the form
of (9.6)

dϕ

dξ
=

c

F (ϕ)
, 0 < ϕ ≤ 1,

ϕ(0) = 0, c =
∫ 1

0

F (ϕ)dϕ,

(9.9)

where F (ϕ) is a nonnegative function specified by the user. Differentiation of
(9.9) with respect to ξ allows one to eliminate the constant c and obtain the
two-point boundary value problem

d
dξ

(
dϕ

dξ
F (ϕ)

)
= 0, 0 < ϕ < 1,

ϕ(0) = 0, ϕ(1) = 1.

(9.10)

Equations (9.9) and (9.10) represent the formulation of the equidistribution
principle of Chap. 7. Taking advantage of (9.6)–(9.8), we see that the solution
of (9.9) or (9.10) produces a grid on the curve Sx1 with a grid spacing inversely
proportional to

√
gxϕF (ϕ). Thus, in the weight-concept formulation

|xi+1 − xi|
h

≈ c1

w(ϕi)
, i = 0, . . . , N − 1,

we obtain
F (ϕ) = w(ϕ)

√
gxϕ, (9.11)

which, in the case w(ϕ) = 1, corresponds to the scaled-arc-length parame-
trization (9.6).

The weight function w(ϕ) is specified by the user in accordance with the
requirement to cluster the grid points in the zones of particular interest. It can
be defined through the derivatives of the physical quantities or through the
measures of the curve features described in Sect. 3.5, in particular, through
the metric tensor gxϕ, curvature k, or tension τ. The specification determines
the concentration of the curve grid, which becomes larger in the areas of large
values of the weight function.
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9.2.2.2 Variational Approach

In accordance with the results of Chap. 8, the differential formulation (9.10)
of the equidistribution principle is obtained from the minimization of the
functional

I =
∫ 1

0

1
F (ϕ)

(
dξ

dϕ

)2

dϕ, (9.12)

whose Euler–Lagrange equations

∂

∂ϕ

(
dξ

dϕ

1
F (ϕ)

)
= 0

(see Sect. 8.2) are equivalent to (9.10). Taking advantage of (9.11), we obtain
an equivalent form of (9.12) through the weight function w(ϕ):

I =
∫ 1

0

1
w(ϕ)

√
gxϕ

(
dξ

dϕ

)2

dϕ =
∫

Sx1

1
gxϕw(ϕ)

(
dξ

dϕ

)2

dSx1

=
∫

Sx1

1
gxξw(ϕ)

dSx1, (9.13)

where

gxξ =
dx[ϕ(ξ)]

dξ
· dx[ϕ(ξ)]

dξ
= xϕ · xϕ

(
dϕ

dξ

)2

= gxϕ

(
dϕ

dξ

)2

.

In analogy with the differential approach, the weight function w(ϕ) in
(9.13) is defined by the values of the solution or its derivatives and/or by the
curve quality measures.

9.2.2.3 Monitor Formulation

The monitor approach for controlling the grid steps on a curve Sx1 relies on the
introduction of a monitor curve which is defined by the values of some vector
function f : Xn → Rk, f(x) = [f1(x), . . . , fk(x)], over the curve, where
Xn is a domain containing the curve. The parameter function (9.1) and f(x)
define a parametrization r(ϕ) of the monitor curve designated by Sr1:

r(ϕ) : [0, 1] → Rn+k, r(ϕ) =
[
r1(ϕ), . . . , rn+k(ϕ)

]
, (9.14)

where

ri(ϕ) = xi(ϕ), i = 1, . . . , n, rn+j(ϕ) = f j [x(ϕ)], j = 1, . . . , k.

We obtain
grϕ = gxϕ + gfϕ, (9.15)

where
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gfϕ =
df [x(ϕ)]

dϕ
· df [x(ϕ)]

dϕ
=

∂f j

∂xl

∂f j

∂xm

dxl

dϕ

dxm

dϕ
,

j = 1, . . . , k, l, m = 1, . . . , n.

In the monitor approach the grid on the curve Sx1 is obtained by map-
ping a uniform grid on Sr1 with the projection function P : Rn+k → Rn

(P (x1, . . . , xn+k) = (x1, . . . , xn)). The uniform grid on Sr1 is derived by means
of the arc-length approach, realized with the initial-value problem (9.6), with
the two-point boundary value problem (9.10), or with the variational problem
(9.12) for F (ϕ) =

√
grϕ. As a result, we have for the intermediate transfor-

mation ϕ(ξ)

d
dξ

(
dϕ

dξ

√
grϕ

)
= 0, 0 < ξ < 1,

ϕ(0) = 0, ϕ(1) = 1,

(9.16)

with grϕ specified by (9.15). The transformation x[ϕ(ξ)] defines the grid on
the surface Sx1 which coincides with the grid projected from Sr1. Since

|xi+1 − xi|
h

≈
∣∣∣∣
dx

dϕ

∣∣∣∣
dϕ

dξ
=

√
gxϕ

√
grϕ

=
1√

1 + gfϕ/gxϕ
,

the monitor approach provides node clustering in the zones of large values of
gfϕ and, consequently, where the derivatives of the function f(x) are large.

Note that in accordance with (9.13), the variational formulation of the
monitor approach is given by the functional

I =
∫

Sr1

1
grϕ

dSr1. (9.17)

9.3 Formulation of Surface Grid Methods

It is assumed in this chapter that the surface under consideration lies in the
Euclidean space R3. Without loss of generality, we suggest that the surface,
denoted as Sx2, is locally represented by a parametrization

x(s) : S2 → R3, x(s) =
[
x1(s), x2(s), x3(s)

]
, s = (s1, s2), (9.18)

where S2 is a two-dimensional parametric domain with the Cartesian coordi-
nates s1, s2, while x(s) is a smooth, nondegenerate function.

9.3.1 Mapping Approach

The generation of a grid on the surface Sx2 is based on the introduction of
a standard computational domain Ξ2 with a reference grid and a one-to-one
transformation
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Fig. 9.2. Framework for generation of triangular surface grids

s(ξ) : Ξ2 → S2, s(ξ) =
[
s1(ξ), s2(ξ)

]
, ξ ∈ Ξ2. (9.19)

This mapping (9.19) generates in fact a grid in the two-dimensional do-
main S2. However, a required grid on the surface Sx2 is defined by mapping
some reference grid in Ξ2 onto Sx2 by the composite transformation

x[s(ξ)] : Ξ2 → Sx2, (9.20)

or, equivalently, by mapping with x(s) the grid generated in S2 by some
suitable transformation s(ξ) : Ξ2 → S2 (see Fig. 9.2).

Thus the problem of the generation of a surface grid is turned into the
problem of choosing an appropriate computational domain Ξ2 with a suitable
reference grid and of constructing an adequate transformation between the
computational and the parametric two-dimensional domains.

Some techniques for generating two-dimensional coordinate transforma-
tions of domains were considered in Chaps. 4–8. However, the direct applica-
tion of the approaches discussed above to the generation of two-dimensional
planar grids may not lead to satisfactory grids on the surface, since the grid
on the surface, obtained by the backward mapping x(s), may become sig-
nificantly distorted because of the mapping. The formulation of the proper
methods should take into account the geometric features of the surface under
consideration and properties of the parametrization x(s).
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9.3.2 Associated Metric Relations

The features of the surface are described through the first and second fun-
damental forms (Sect. 3.3), in particular, by the metric elements which are
derived from the dot products of the tangential vectors to the coordinate lines.

The scheme of grid generation on the surface Sx2 implies, in fact, two
parametrizations of the surface: the original parametrization x(s) with the
parametric space S2 and the final one x[s(ξ)] with the parametric space Ξ2.
The original parametrization is considered as an input, while the final para-
metrization x[s(ξ)] is an output of the surface grid generation process. The
role of the intermediate transformation s(ξ) is to correct the drawbacks of the
original mapping x(s) by transforming it to x[s(ξ)], which should generate a
grid with the properties required by the user.

The covariant metric tensor of the surface in the coordinates ξ1, ξ2, de-
noted by

Gxξ = (gxξ
ij ), i, j = 1, 2,

is defined by the dot product of the tangent vectors xξi = ∂x(s)/∂ξi(ξ), i =
1, 2, i.e.

gxξ
ij = xξi · xξj , i, j = 1, 2.

Analogously, the elements of the covariant metric tensor

Gxs = (gxs
ij ), i, j = 1, 2,

in the coordinates si, i = 1, 2, are expressed in the following form:

gxs
ij =

∂x

∂si
· ∂x

∂sj
, i, j = 1, 2.

It is clear that

gxξ
ij = gxs

mk

∂sm

∂ξi

∂sk

∂ξj
,

gxs
ij = gxξ

mk

∂ξm

∂si

∂ξk

∂sj
, i, j, k, m = 1, 2,

(9.21)

using the convention of summation over repeated indices.
The contravariant metric tensor of the surface in the coordinates ξi, i =

1, 2, denoted by
Gξx = (gij

ξx), i, j = 1, 2,

and in the coordinates si, i = 1, 2, written as

Gsx = (gij
sx), i, j = 1, 2,

is the matrix inverse to Gxξ and Gxs, respectively. Thus
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gij
ξx = (−1)i+jgxξ

3−i 3−j/gxξ, gxξ
ij = (−1)i+jgxξg3−i,3−j

ξx ,

gij
sx = (−1)i+jgxs

3−i 3−j/gxs, gxs
ij = (−1)i+jgxsg3−i,3−j

sx ,
(9.22)

where i, j = 1, 2, and

gxξ = det Gxξ, gxs = det Gxs.

Note that here, on the right-hand side of every relation in (9.22), the summa-
tion convention is not applied over i and j.

Similarly to (9.21), the elements of the contravariant metric tensor in the
coordinates ξi and si, i = 1, 2, are connected by the relations

gij
ξx = gmk

sx

∂ξi

∂sm

∂ξj

∂sk
,

gij
sx = gmk

ξx

∂si

∂ξm

∂sj

∂ξk
, i, j, k, m = 1, 2.

(9.23)

These relations and (9.21) readily yield

gii
sr = gmk

ξx gsξ
mk, i, j, k, m = 1, 2,

gxξ = gxsgsξ,
(9.24)

where gsξ
mk, k, m = 1, 2, are the elements of the covariant metric tensor of S2 in

the coordinates ξi, i.e. gsξ
mk = sξm · sξk , while gsξ = det(gsξ

ij ) = det2(∂si/∂ξj).
Now we proceed to the description of some advanced grid generation tech-

niques for the generation of grids on the surface Sx2.

9.4 Beltramian System

It is desirable to develop methods of surface grid generation which are invari-
ant of the parametrizations x(s) : S2 → Sx2. One such surface grid generation
system is obtained from the Beltrami second-order differential operator.

9.4.1 Beltramian Operator

The Beltrami operator ΔB is defined as

ΔB [f ] =
1√
gxs

∂

∂sj

(√
gxsgmj

sr

∂

∂sm
f

)
, j, m = 1, 2. (9.25)

When Sx2 is a plane and the coordinate system s1, s2 is orthonormal, i.e.
gxs

ij = gij
sx = δi

j , then (9.25) is the Laplace operator. Thus the operator (9.25)
is a generalization of the Laplacian on a surface.

The Beltrami operator does not depend on the parametrization of the
surface. For instance, let ui, i = 1, 2, be another parametrization. Taking into
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account the general relation (2.56), we obtain, for arbitrary smooth functions
A1 and A2,

∂Aj

∂sj
=

1√
gsu

∂

∂uk

(√
gsuAm ∂uk

∂sm

)
, i, j, k, m = 1, 2, (9.26)

where
√

gsu = det
(

∂si

∂um

)
, i, m = 1, 2.

Assuming

Aj =
√

gxsgmj
sr

∂

∂sm
f, j = 1, 2,

we have from (9.25)

1√
gxs

∂Aj

∂sj
= ΔB [f ], j = 1, 2.

Therefore (9.26) yields

ΔB [f ] =
1√
gru

∂

∂uj

(√
grugmp

sr

∂uj

∂sp

∂uk

∂sm

∂f

∂uk

)
, j, k, m, p = 1, 2,

where gru = gxsgsu. Thus, using (9.23), we obtain

1√
gxs

∂

∂sj

(√
gxsgmj

sr

∂

∂sm
f

)
=

1√
gru

∂

∂uj

(√
grugjk

ur

∂f

∂uk

)
, j, k, m = 1, 2.

So the value of the operator ΔB at a function f does not depend on any
parametrization of the surface Sx2.

9.4.2 Surface Grid System

A surface grid system can be formed, in analogy with the Laplace system (6.4),
by the Beltrami equations with respect to the components ξi(s) of the inverse
mapping of the intermediate transformation s(ξ):

ΔB [ξi] = 0, i = 1, 2,

i.e. taking advantage of (9.25),

1√
gxs

∂

∂sj

(√
gxsgmj

sr

∂ξi

∂sm

)
= 0, i, j, m = 1, 2. (9.27)

The system (9.27) is a generalization of the two-dimensional Laplace system
(6.4) applied to the generation of planar grids. As in the case of the Laplace
equations, the solution to a Dirichlet boundary value problem for (9.27) satis-
fies the conditions necessary for efficient surface grid generation. In particular,
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if the computational domain Ξ2 is chosen to be convex, then the values of
the function ξ(s) satisfying (9.27) lie in Ξ2 if ξ(s) maps the boundary of S2

onto the boundary of Ξ2. Moreover, the transformation ξ(s) is a one-to-one
transformation if it is homeomorphic on the boundary. This is the main justi-
fication of the formulation of (9.27) with respect to the inverse transformation
ξ(s).

In order to generate a grid on S2, the system (9.27) is inverted to inter-
change its dependent and independent variables. This is done in the typical
manner, by multiplying the system by ∂sl/∂ξi and summing over i. Thus we
obtain

1√
gxs

∂

∂sj

(√
gxsgmj

sr

∂ξi

∂sm

)
∂sl

∂ξi

= −gmj
sr

∂ξi

∂sm

∂ξk

∂sj

∂2sl

∂ξi∂ξk
+

1√
gxs

∂

∂sj
(

√
gxsglj

sr) = 0.

So, taking into account (9.23), the system (9.27) is transformed to the follow-
ing nonlinear system with respect to the dependent variables si(ξ):

gij
ξx

∂2sl

∂ξi∂ξj
=

1√
gxs

∂

∂si
(

√
gxsgil

sr), i, j, l = 1, 2. (9.28)

We shall call these equations as the inverted Beltrami equations.
The right-hand part of (9.28) is in fact the value of the Beltrami operator

applied to the function sl; thus the system (9.28) can be written out as follows:

gij
ξx

∂2sl

∂ξi∂ξj
= ΔB [sl], i, j, l = 1, 2.

Taking advantage of (9.22), the system (9.28) is transformed to a system
whose coefficients are determined by the elements of the metric tensors (gxξ

ij )
and (gxs

ij ):

Bxξ
2 [sl] = (−1)l gxξ

√
gxs

(
∂

∂s2

gxs
3−l 1√
gxs

− ∂

∂s1

gxs
3−l 2√
gxs

)
, l = 1, 2, (9.29)

where Bxξ
2 is an operator defined as follows:

Bxξ
2 [y] = gxξ

22

∂2y

∂ξ1∂ξ1
− 2gxξ

12

∂2y

∂ξ1∂ξ2
+ gxξ

11

∂2y

∂ξ2∂ξ2
.

In particular, let the surface Sx2 be a monitor surface formed by the val-
ues of a scalar height function u(s) and consequently be represented by the
parametrization

x(s) =
[
s1, s2, u(s)

]
.

Then we obtain
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gxs
ij = δi

j + usiusj , gij
sx = (−1)i+j

δi
j + us3−ius3−j

1 + (us1)2 + (us2)2
, i, j = 1, 2,

gxs = 1 + (us1)2 + (us2)2, gxξ = J2gxs, J = det(∂si/∂ξj)

without summing over i and j, and correspondingly,

ΔB [sl] =
(

(−1)j+l

√
1 + (us1)2 + (us2)2

)
∂

∂sj

(
δj
l + us3−j us3−l√

1 + (us1)2 + (us2)2

)
, j, l = 1, 2,

with l fixed. Thus the system (9.29) has in this case the form

Bxξ
2 [sl] = (−1)k+lJ2

√
1 + (us1)2 + (us2)2

∂

∂sk

(
δk
l + us3−kus3−l√

1 + (us1)2 + (us2)2

)
,

i, j, k, l = 1, 2, l fixed.

One more equivalent form of the system (9.29) in this case is as follows:

Bxξ
2 [sl] + Bxξ

2 [u1]
∂u

∂sl
= 0, l = 1, 2,

where u1(ξ) = u[s(ξ)].
The right-hand sides of the systems (9.28) and (9.29) are defined through

the metric elements of the original surface parametrization in the coordinates
si, i = 1, 2, and do not depend on the transformation s(ξ) : Ξ2 → S2;
therefore they can be computed in advance or at a previous step of an iterative
solution procedure.

The values of the numerical solution of a boundary value problem for (9.28)
or (9.29) on a reference grid in Ξ2 define a grid in the parametric domain S2.
The final grid on the surface Sx2, generated through the inverted Beltrami
system (9.28), is obtained by mapping the above grid with the original para-
metric transformation x(s).

9.5 Interpretations of the Beltramian System

Equations (9.27) are a generalization of the two-dimensional Laplace system
on a surface. In this section we give some interpretations and justifications of
the systems (9.27)–(9.29) concerned with grid generation.

9.5.1 Variational Formulation

As was shown in Sect. 8.2, the Laplace system (6.4) for generating grids in
domains can be obtained from the minimization of the functional of smooth-
ness

Is =
∫

Xn

(
n∑

i=1

gii

)
dx, gij =

n∑

m=1

∂ξi

∂xm

∂ξj

∂xm
. (9.30)
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A similar functional, whose Euler–Lagrange equations are equivalent to (9.27),
can be formulated for the Beltrami equations as well. This functional has the
form of (9.30) with gii and Xn replaced by gii

ξx and Sx2, respectively:

Is =
∫

Sx2

(
2∑

i=1

gii
ξr

)
dSx2 =

∫

Sx2
(tr Gξx)dSx2. (9.31)

In order to write out the Euler–Lagrange equations for this functional, we
consider the integration over S2. We obtain, using (9.23) and the relation
dSx2 =

√
gxsds,

Is =
∫

S2

√
gxsgmk

sr

∂ξi

∂sm

∂ξi

∂sk
ds. (9.32)

The functional (9.32) is formulated on a set of smooth functions ξi(s), and the
terms

√
gxsgmk

sr of its integrand are defined through the metric elements of the
original parametrization x(s) and therefore do not depend on these functions.
So the Euler–Lagrange equations derived from the functional (9.32) have the
form of (8.6), namely,

∂

∂sj

(√
gxsgmj

sr

∂ξi

∂sm

)
= 0, i, j, m = 1, 2, (9.33)

and they are equivalent to (9.27). This variational formulation allows one to
generate surface grids by a variational method. For this purpose, the functional
(9.31) written out with respect to the integral over the domain Ξ2,

Is =
∫

Ξ2

1√
gxξ

(gxξ
11 + gxξ

22 )dξ,

is used.

9.5.2 Harmonic-Mapping Interpretation

The integral (9.31), and consequently (9.32), according to the accepted termi-
nology in differential geometry, is the total energy associated with the function
ξ(s) : S2 → Ξ2 which represents a mapping between the manifold Sx2 with
the metric tensor gxs

ij and the computational domain Ξ2 with the Cartesian
coordinates ξi. A function which is a critical point of the energy functional is
called a harmonic function. It follows from the theory of harmonic functions
on manifolds that if there is a diffeomorphism f(s) : S2 → Ξ2 and the bound-
ary of the manifold Ξ2 is convex, while its curvature is nonpositive, then a
harmonic function coinciding with f on the boundary of the manifold Sx2 is
also a diffeomorphism between S2 and Ξ2. In the case under consideration
the coordinates of the manifold Ξ2 are Cartesian, and therefore its curvature
is nonpositive. So if the boundary of the computational domain Ξ2 is convex
(e.g. Ξ2 is a rectangle) and the surface Sx2 is diffeomorphic to Ξ2 then the
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mapping ξ(s) that minimizes the functional of smoothness (9.32) is a one-to-
one transformation and the grid obtained by the proposed variational method
is therefore nondegenerate.

9.5.3 Formulation Through Invariants

We note that, in accordance with (3.22), the trace tr Gξx of the contravariant
2 × 2 metric tensor can be expressed through the invariants I1, I2 of the
orthogonal transforms of the covariant metric tensor Gxξ, namely,

tr Gξx =
I1

I2
.

Therefore the functional of smoothness (9.31) can also be expressed through
these invariants:

Is =
∫

Sx2

(
I1

I2

)
dSx2. (9.34)

The invariant I2 is the Jacobian of the matrix Gxξ and it equals the area
squared of the parallelogram formed by the tangent vectors xξ1 and xξ2 . The
invariant I1 is qxξ

11 +qxξ
22 and means the sum of the lengths squared of the sides

of the parallelogram. So
I1

I2
=

gxξ
11 + gxξ

22

gxξ
. (9.35)

It is obvious that

gxξ = gxξ
11 (d2)2, gxξ = gxξ

22 (d1)2,

where di, i = 1, 2, is the distance between the vertex of the vector xξi and
the other vector xξj , j = 3 − i. Therefore, from (9.35),

I1

I2
=

1
(d1)2

+
1

(d2)2
. (9.36)

The quantity di is connected with the distance li between the grid lines ξi = c
and ξi = c + h by the relation

li = dih + O(h)2.

So, from (9.36),
I1

I2
=

2∑

i=1

(h/li)2 + O(h).

The quantity (h/li)2 increases as the grid nodes cluster in the direction nor-
mal to the coordinate ξi = const, and therefore it can be considered as some
measure of the grid concentration in this direction and, consequently, the func-
tional (9.34) defines an integral measure of the grid clustering in all directions.
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Hence the problem of the minimization of the smoothness functional (9.31)
can be interpreted as a problem of finding a grid with uniform clustering on
the surface Sx2. So the Beltrami equations (9.27) tend to generate a uniform
grid on the surface in the same manner as the system of the Laplace equations
does in a domain.

9.5.4 Formulation Through the Surface Christoffel Symbols

Equivalent forms of the surface system of equations (9.27) and (9.28) can be
obtained by a consideration of the formulas of Gauss. These formulas repre-
sent the derivatives of the tangential vectors xξ1 and xξ2 through the basis
(xξ1 , xξ2 , n), where n is a unit normal to the surface.

9.5.4.1 Surface Gauss Equations

In accordance with (2.5), we can write

xξiξj = alm(xξiξj · al)am, i, j = 1, 2, l, m = 1, 2, 3, (9.37)

where a1 = xξ1 , a2 = xξ2 , a3 = n, and (alm) is the matrix inverse to
(akp) = (ak · ap). We readily obtain, for the elements of the matrix (aij),

aij = gxξ
ij , ai3 = a3i = 0, i, j = 1, 2, a33 = 1.

Therefore

aij = gij
ξx, ai3 = a3i = 0, a33 = 1, i, j = 1, 2. (9.38)

Thus (9.37) results in

xξiξj = gkm
ξx (xξiξj · rξm)xξk + (xξiξj · n)n, i, j, k, m = 1, 2. (9.39)

The quantities xξiξj · xξm in (9.39) are the surface Christoffel symbols of
the first kind, denoted by [ij, m]. These quantities coincide with the space
Christoffel symbols (2.39) for the indices i, j, k = 1, 2, and, in the same manner
as (2.44), they are subject to the relations

[ij, k] =
1
2

(
∂gxξ

ik

∂ξj
+

∂gxξ
jk

∂ξi
−

∂gxξ
ij

∂ξk

)
, i, j, k = 1, 2.

The surface Christoffel symbols of the second kind, denoted by Υ k
ij , are

defined in analogy with (2.42) by

Υ k
ij = gkm

ξx [ij, m] = gkm
ξx xξiξj · xξm , i, j, k, m = 1, 2. (9.40)

The quantities xξiξj · n in (9.39), designated as bij , i.e.
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bij = xξiξj · n, i, j = 1, 2, (9.41)

are called the coefficients of the second fundamental form. With these desig-
nations, we have for (9.39)

xξiξj = Υ k
ijxξk + bijn. (9.42)

The relations (9.42) are referred to as the surface Gauss identities.

9.5.4.2 Weingarten Equation

Some other important relations are concerned with the first derivatives of
the unit normal n. Since nξi · n = 0, i = 1, 2, the vectors nξi , i = 1, 2,
are orthogonal to n and hence can be expanded in the tangential vectors
xξi , i = 1, 2. Taking advantage of (2.5) and (9.38), we obtain

nξi = glm
ξx (nξi · xξl)xξm , i, l, m = 1, 2. (9.43)

Since
nξi · xξl = (n · xξl)ξi − n · rξlξi = −bli,

(9.43) has the form

nξi = −glm
ξx blixξm , i, l, m = 1, 2. (9.44)

The relations (9.44) are called the Weingarten equations.

9.5.4.3 Mean Curvature

The value of the Beltrami operator over the position vector is connected with
the mean curvature. The quantity known as the mean surface curvature is
expressed in accordance with (3.19) by

Km =
1
2
gij

ξxbij , i, j = 1, 2. (9.45)

The mean surface curvature does not depend on the surface parametrization.
In fact, if si, i = 1, 2, are new surface coordinates, then

xξiξj =
∂sk

∂ξi

∂sm

∂ξj
xsksm +

∂2sm

∂ξi∂ξj
xsm ,

and hence

bij =
∂sk

∂ξi

∂sm

∂ξj
xsksm · n, i, j, k, m = 1, 2.

As the contravariant tensor (gim
ξx ) is transformed to the coordinates si in accor-

dance with the relations (9.23), we now readily see that the mean curvature is
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an invariant of the surface parametrizations. Therefore it can be defined from
the original parametrization x(s).

Recall that in geometry the first and second fundamental forms in the
coordinates ξ1, ξ2 are, respectively,

I = gxξ
ij dξidξj , II = bijdξidξj , i, j = 1, 2.

The first fundamental form, derived from the surface metric, describes the
inner geometry of the surface, while the second form deals with the outer
geometry, since it is derived from the specification of the surface immersion
into R3. Obviously the second fundamental form gives an expression for the
local departure of the surface from its tangent plane.

9.5.4.4 Relation Between Beltrami’s Equation and Christoffel
Symbols

We assume that the basic surface vectors (xξ1 , xξ2 , n) compose a right-
handed triad. This leads to

n =
1√
gxξ

(xξ1 × rξ2). (9.46)

Note that the tangent vectors xξi , i = 1, 2, are neither normalized nor or-
thogonal to each other, while n is normalized and orthogonal to both xξ1 and
xξ2 . Using the general vector identity

u × (v × w) = (u · w)v − (u · v)w

we obtain taking into account (9.46),

xξi × n =
1√
gxξ

(gxξ
i2 xξ1 − gxξ

i1 xξ2).

With (9.22), this results in the relation

(−1)i+1xξ3−i × n =
√

gxξgij
ξxxξj , i, j = 1, 2, (9.47)

with i fixed. The application of (9.47) to the Beltramian operator yields

ΔB [x] =
1√
gxξ

∂

∂ξj

(√
gxξgij

ξxxξi

)

= (−1)j+1 1√
gxξ

∂

∂ξj
(xξ3−j × n)

= (−1)j+1 1√
gxξ

(xξ3−j × nξj ), i, j = 1, 2. (9.48)

Taking advantage of the Weingarten equations (9.44) and (9.46), we have
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(−1)j+1 1√
gxξ

(xξ3−j × nξj ) = (−1)j 1√
gxξ

glm
ξx blj(xξ3−j × xξm)

= glj
ξxbljn, j, l, m = 1, 2.

Thus (9.48) also has the form

ΔB [x] = bijg
ij
ξxn = 2Kmn, (9.49)

where the quantity Km, defined by (9.45), is the mean curvature of the surface.
Equation (9.49) means that the surface position vector x(ξ) is transformed
by the Beltrami operator to the vector ΔB [x], which is orthogonal to the
surface. Now expanding the differentiation in ΔB [x] and using the expression
for ΔB [ξi], we obtain one more form of ΔB [x]:

ΔB [x] = gij
ξxxξiξj + (ΔB [ξi])xξi , i, j = 1, 2. (9.50)

Equating the right-hand sides of (9.49) and (9.50), we have the identity

gij
ξxxξiξj +

(
ΔB [ξi]

)
rξi = 2Kmn, i, j = 1, 2. (9.51)

Thus, if the surface coordinate system ξ1, ξ2 is obtained by the solution of
(9.27) then from (9.51) we obtain

gij
ξxxξiξj = 2Kmn, i, j = 1, 2.

We obtain one more identity by multiplying (9.42) by gij
ξr:

gij
ξxxξiξj = gij

ξxΥ k
ijxξk + 2Kmn.

Comparing this identity with (9.51), we have the identity

ΔB [ξi] = −gkl
ξxΥ i

kl, i, k, l = 1, 2, (9.52)

i.e. the value obtained by applying the Beltrami operator to the function
ξi(s) is defined through the surface Christoffel symbols and the surface metric
elements. Note that the surface identity (9.52) is a reformulation of the identity
(6.29), valid for domains.

Taking advantage of (9.52), the Beltrami system (9.27) can be written in
the following equivalent form as

gkl
ξxΥ i

kl = 0, i, k, l = 1, 2, (9.53)

or, using (9.40), as

gkl
ξxgij

ξx[kl, j] ≡ gkl
ξxgij

ξxxξkξl · xξj = 0, i, j, k, l = 1, 2. (9.54)

Multiplying (9.54) by gxξ
im and summing over i yields
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gkl
ξxxξkξl · xξm = 0, k, l, m = 1, 2. (9.55)

Recall that the first and second Christoffel symbols in (9.53) and (9.54) are
defined in terms of the coordinates ξi.

In the particular case where the surface Sx2 is a monitor surface defined
by the values of a height function u(s) over the domain S2, i.e.

x(s) = [s1, s2, u(s)],

multiplication of (9.55) by gxξ(∂ξm/∂si) and summation over m produces the
following system of inverted surface Beltrami equations:

Bxξ
2 [si] + Bxξ

2 [u]
∂u

∂si
= 0, i = 1, 2, (9.56)

where

Bxξ
2 [y] ≡ gxξgij

ξx

∂2y

∂ξi∂ξj
≡ gxξ

22

∂2y

∂ξ1∂ξ1
− 2gxξ

12

∂2y

∂ξ1∂ξ2
+gxξ

11

∂2y

∂ξ2∂ξ2
, i, j = 1, 2.

Another form of the inverted Beltrami system can be obtained from the
elliptic system (9.28) for generating surface grids. Namely, applying (9.52) to
(9.28) with the identification ξi = si, i = 1, 2, we obtain

Bxξ
2 [sl] + gxξgkm

sx Υ l
km = 0, i, j, k, l, m = 1, 2, (9.57)

where the Υ l
km are the second surface Christoffel symbols in the coordinates si.

An equivalent form of (9.56) is also obtained by utilizing (9.40) for ξi = si, i =
1, 2:

Bxξ
2 [sl] + gxξgkm

sx glp
sx[km, p] = 0, i, j, k, l, m, p = 1, 2,

where [km, p] = xsksm · xsp .
In the particular case where the surface Sx2 is a monitor surface defined

by the values of a height function u(s) over the domain S2, i.e.

x(s) =
[
s1, s2, u(s)

]
,

the Beltrami equations (9.57) have the form

gij
ξx

∂2sl

∂ξi∂ξj
+ gkm

sx glp
sx

∂2u

∂sk∂sm

∂u

∂sp
= 0, i, j, k, l, m, p = 1, 2,

where

gkm
sx = (−1)k+m δk

m + ∂u
∂s3−k

∂u
∂s3−m

1 + ( ∂u
∂s1 )2 + ( ∂u

∂s2 )2
, k, m = 1, 2;

here the indices k and m are fixed.
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9.5.5 Relation to Conformal Mappings

A two-dimensional grid on the two-dimensional surface Sx2 can also be gen-
erated by the conformal mapping of the unit rectangle Ξ2 onto the surface
Sx2. Such an approach for the generation of grids on two-dimensional surfaces
lying in the three-dimensional space R3 was formulated by Khamayseh and
Mastin (1996). This subsection gives a description of their approach.

The coordinate transformation x[s(ξ)] : Ξ2 → Sx2 on the surface Sx2

represented by the parametrization x(s) : S2 → R3 is a conformal mapping if
it is orthogonal and has a constant aspect ratio. These conditions lead to the
system of equations

gxξ
12 = 0, d2gxξ

11 = gxξ
22 .

Using (9.21), we see that the above system of conditions for conformal map-
pings is equivalent to

gxs
11

∂s1

∂ξ1

∂s1

∂ξ2
+ gxs

12

(
∂s1

∂ξ1

∂s2

∂ξ2
+

∂s1

∂ξ2

∂s2

∂ξ1

)
+ gxs

22

∂s2

∂ξ1

∂s2

∂ξ2
= 0,

d2

[
gxs
11

(
∂s1

∂ξ1

)2

+ 2gxs
12

∂s1

∂ξ1

∂s2

∂ξ1
+ gxs

22

(
∂s2

∂ξ1

)2]

= gxs
11

(
∂s1

∂ξ2

)2

+ 2gxs
12

∂s1

∂ξ2

∂s2

∂ξ2
+ gxs

22

(
∂s2

∂ξ2

)2

.

The combination of these equations results in the complex equation

gxs
11r2 + 2gxs

12zw + gxs
22w2 = 0, (9.58)

where

z = d
∂s1

∂ξ1
+ i

∂s1

∂ξ2
, w = d

∂s2

∂ξ1
+ i

∂s2

∂ξ2
.

The solution of the quadratic equation (9.58) for z gives

z =
−gxs

12 ± i
√

gxs

gxs
11

w, gxs = det Gxs.

Equating the real and the imaginary parts of this expression gives a system
of two real equations

d
∂s1

∂ξ1
=

1
gxs
11

(
−d gxs

12

∂s2

∂ξ1
±

√
gxs

∂s2

∂ξ2

)
,

∂s1

∂ξ2
=

1
gxs
11

(
−gxs

12

∂s2

∂ξ2
± d

√
gxs

∂s2

∂ξ1

)
.

(9.59)

This system generates the first-order elliptic system
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d
∂s1

∂ξ1
= a

∂s2

∂ξ2
− b

∂s1

∂ξ2
,

d
∂s2

∂ξ1
= b

∂s2

∂ξ2
− c

∂s1

∂ξ2
,

(9.60)

where
a =

−gxs
22

±√
gxs

, b =
gxs
12

±√
gxs

, c =
−gxs

11

±√
gxs

. (9.61)

The sign ± needs to be chosen such that the Jacobian of the coordinate
transformation s(ξ) : Ξ2 → S2 is strongly positive:

J =
∂s1

∂ξ1

∂s2

∂ξ2
− ∂s1

∂ξ2

∂s2

∂ξ1
> 0.

The difference between the upper equation of the system (9.60) multiplied by
∂s2/∂ξ2 and the lower one multiplied by ∂s1/∂ξ2 produces the equation for
the Jacobian

dJ = a

(
∂s2

∂ξ2

)2

− 2b
∂s1

∂ξ2

∂s2

∂ξ2
+ c

(
∂s1

∂ξ2

)2

.

The quantities gxs
11 and gxs

22 are positive by definition, so the negative sign in
(9.61) will make a > 0 and c > 0. The equation ac − b2 = 1 leads to the
inequality |b| < |(ac)1/2| and, therefore,

dJ >

(
a1/2 ∂s2

∂ξ2
− c1/2 ∂s1

∂ξ2

)2

≥ 0;

hence J > 0. Thus we take in (9.61)

a =
1√
gxs

gxs
22 , b = − 1√

gxs
gxs
12 , c =

1√
gxs

gxs
11 . (9.62)

Taking into account the relations

∂ξi

∂sj
= (−1)i+j ∂s3−j

∂ξ3−i
/J, i, j = 1, 2,

(i and j fixed) in (9.60) one can derive either the system

d
∂ξ2

∂s2
= a

∂ξ1

∂s1
+ b

∂ξ1

∂s2
,

d
∂ξ2

∂s1
= −b

∂ξ1

∂s1
− c

∂ξ1

∂s2
,

or

1
d

∂ξ1

∂s2
= −a

∂ξ2

∂s1
− b

∂ξ2

∂s2
,

1
d

∂ξ1

∂s1
= c

∂ξ2

∂s2
+ b

∂ξ2

∂s1
.
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These systems are uncoupled by differentiating the first equation of each
system with respect to s1 and the second one with respect to s2 and then
subtracting the results. The final second-order elliptic system has then the
following form:

∂

∂s1

(
a

∂ξi

∂s1

)
+

∂

∂s1

(
b
∂ξi

∂s2

)
+

∂

∂s2

(
b
∂ξi

∂s1

)
+

∂

∂s2

(
c
∂ξi

∂s2

)
= 0, (9.63)

for i = 1, 2. Note that the coefficients a, b, c satisfy the following formulas:

a =
√

gxsg11
sx, b =

√
gxsg12

sx, c =
√

gxsg22
sx, (9.64)

obtained from (9.22) and (9.62). The substitution of these expressions in the
above second-order elliptic system (9.63) for the coefficients a, b, c leads to the
system of equations

∂

∂sm

(√
gxs gml

sx

∂ξi

∂sl

)
= 0, i, l, m = 1, 2,

which is equivalent to the system of the Beltrami equations (9.27).

9.5.6 Projection of the Laplace System

In this subsection we demonstrate that if the surface Sx2 is a coordinate
surface of a three-dimensional coordinate system ξ1, ξ2, ξ3 of a domain X3,
subject to the Laplace equations (6.4) for n = 3, then the two-dimensional Bel-
trami equations can be obtained by projecting the three-dimensional Laplace
system on Sx2, provided the coordinate lines emanating from Sx2 are orthog-
onal to and locally straight at the surface.

Thus we consider a domain X3 with the coordinate parametrization rep-
resented by a smooth one-to-one transformation

x(ξ) : Ξ3 → X3.

Let the surface Sx2, represented by the parametrization

x(s) : S2 → R3,

coincide with the coordinate surface, say ξ3 = ξ3
0 . Therefore this surface has

one more parametrization, induced by x(ξ),

x1(ξ1, ξ2) : Ξ2 → R3, x1(ξ1, ξ2) = x(ξ1, ξ2, ξ3
0),

which is connected with x(s) by some smooth one-to-one transformation

s(ξ1, ξ2) : Ξ2 → S2, i.e. x1(ξ1, ξ2) = x[s(ξ1, ξ2)].

In accordance with Sect. 6.3.4, the condition of orthogonality of the ξ3 coor-
dinate lines to the surface ξ3 = ξ3

0 generates the system
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1√
gxξ

∂

∂ξj
(
√

gxξgij
ξx) +

1
g33

gij
ξr(xξj · xξ3ξ3) = 0, i, j = 1, 2, (9.65)

which is obtained from (6.46) for P i = 0, i = 1, 2, 3. This system (9.65) is in
fact a projection of the Laplace equations

∇ξi = 0, i = 1, 2, 3,

on the coordinate surface ξ3 = ξ3
0 . In the above equation

gxξ = det(gij), i, j = 1, 2,

gij
ξx = (−1)i+jg3−i,3−j/gxξ = gij , i, j = 1, 2.

The condition of local straightness of the ξ3 coordinate curves implies

xξ3ξ3 = b(ξ)xξ3

and from the condition of orthogonality we find, that

xξj · xξ3ξ3 = 0, j = 1, 2.

Therefore if the ξ3 coordinate curves are straight at the points of the surface
ξ3 = ξ3

0 , the system (9.65) is reduced to

1√
gxξ

∂

∂ξj

(√
gxξgij

ξx

)
= 0, i, j = 1, 2. (9.66)

As gij = xξi · xξj , x = (x1, x2, x3), the matrix (gij), i, j = 1, 2, coincides
with the covariant metric tensor

Gxξ = (gxξ
ij ), i, j = 1, 2,

of the surface ξ3 = ξ3
0 in the coordinates ξ1, ξ2. So (9.66) is merely ΔB [ξi] =

0 when the conditions specified above are observed. Since the value of the
Beltrami operator is invariant of the parametrization of the surface, we obtain
from (9.66), assuming ξi = si,

1√
gxs

∂

∂sj

(√
gxsglj

sr

∂ξi

∂sl

)
= 0, i, j, l = 1, 2,

i.e. the system (9.27).

9.6 Control of Surface Grids

9.6.1 Control Functions

One approach to controlling the generation of a surface grid is to add forcing
terms to the Beltrami operator in analogy with the Poisson system, i.e. to
extend the system (9.27) to the following one:
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ΔB [ξi] = P i, i = 1, 2. (9.67)

The system inverse to (9.67) with interchanged dependent and independent
variables is obtained by the same procedure as was applied to produce (9.28)
and has the form

gij
ξx

∂2sl

∂ξi∂ξj
+

∂sl

∂ξi
P i = ΔB [sl], i, j, l = 1, 2, (9.68)

or with the application of the operator Bxξ
2 from (9.29)

Bxξ
2 [sl] + gxξ ∂sl

∂ξi
P i = gxξΔB [sl], i, l = 1, 2.

The control functions P i, i = 1, 2, can be chosen in the same manner as was
done in Sects. 6.3 and 7.2. For example, for the generation of grids that are
nearly orthogonal at the boundaries, we may apply the approach of Sect. 6.3,
determining the values of P i on the boundary curves and then propagating
them into the interior.

For this purpose we have to find the values of ΔB [ξi] on the boundary
curves.

9.6.2 Projection on the Boundary Line

Let the family of the surface coordinate lines ξ1 = const be orthogonal to the
boundary coordinate curve ξ2 = ξ2

0 . Then, along this curve,

gxξ
12 = 0, gxξ = gxξ

11 gxξ
22 ,

g11
ξx =

1

gxξ
11

, g22
ξr =

1

gxξ
22

.
(9.69)

Now we find the values of the quantity ΔB [ξi] at the points of the boundary
curve ξ2 = ξ2

0 . For this purpose we use the representation of the Beltramian
operator in the form (9.52):

ΔB [ξi] = −gkl
ξxΥ i

kl, i, k, l = 1, 2.

Taking advantage of (9.40), we also have

ΔB [ξi] = −gkl
ξxgim

ξx [kl, m], i, k, l, m = 1, 2. (9.70)

Therefore

ΔB [ξ1] = −(g11
ξx)2[11, 1] − g11

ξrg22
ξx[22, 1]

= − 1

2(gxξ
11 )2

∂gxξ
11

∂ξ1
− g11

ξxg22
ξxxξ2ξ2 · xξ1 on ξ2 = ξ2

0 . (9.71)
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Since
[22, 1] =

∂

∂ξ2
g12 − 1

2
∂

∂ξ1
g22,

we also obtain applying (9.69),

ΔB [ξ1] =
1

2gxξ
22

∂

∂ξ1
(gxξ

22/gxξ
11 ) − 1

gxξ
11gxξ

22

∂

∂ξ2
(gxξ

12 ) on ξ2 = ξ2
0 . (9.72)

Equations (9.71) and (9.72) give an expression for the forcing term P 1 on the
boundary curve ξ2 = ξ2

0 that is necessary for the system (9.67) to generate a
grid with orthogonally emanating coordinate lines ξ1 = const. Analogously,
we have, using (9.69) on the boundary line ξ2 = ξ2

0 ,

ΔB [ξ2] =
1

2gxξ
11

∂

∂ξ2
(gxξ

11/gxξ
22 ). (9.73)

In the same way, if the family of the surface coordinate lines ξ2 = const is
orthogonal to the coordinate curve ξ1 = ξ1

0 , we obtain from (9.69) and (9.70)

ΔB [ξ1] =
1

2gxξ
22

∂

∂ξ1
(gxξ

22/gxξ
11 ),

ΔB [ξ2] =
1

2gxξ
11

∂

∂ξ2
(gxξ

11/gxξ
22 ) − 1

gxξ
11gxξ

22

∂

∂ξ1
(gxξ

12 ), on ξ1 = ξ1
0 .

(9.74)

The values of ΔB [ξi] on the boundary segments can be used as the boundary
conditions for the control functions P i. Utilizing the considerations discussed
in Sect. 6.3, we can implement approaches similar to those of that section to
generate surface grids which are nearly orthogonal at the boundary curves.
With this scheme, a grid with coordinate lines nearly orthogonal at the bound-
ary segments can be generated by the following iterative procedure. The val-
ues of P i on the boundary curves are defined by (9.72)–(9.74) using the grid
data from the previous step. Then the control functions are determined in
the whole domain Ξ2 by algebraic or elliptic techniques. Applying the system
(9.68), the grid corresponding to the next step is built. The process continues
until a specified convergence requirement is met.

9.6.3 Monitor Approach

Another approach to controlling the generation of a grid on a surface relies
on the concept of the monitor surface defined by the values of some vector
function f = [f1(s), . . . , fk(s)] over the surface Sx2. The monitor surface,
denoted by Sr2, lies in R3+k and can be represented through the parametric
coordinates s1, s2 by the equation

r(s) =
[
x1(s), x2(s), x3(s), f1(s), . . . , fk(s)

]
, s = (s1, s2).
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The covariant (contravariant) metric elements of the monitor surface Sr2 in
the coordinates v1, v2 are denoted as grv

ij (gij
vr). In this approach, the Beltrami

equations on the surface Sr2 are used to generate the grid on the parametric
domain S2. Mapping this grid on Sx2 with the transformation x(s) : S2 → Sx2

produces a grid on the surface Sx2 dependent on the control function f .
The equations for generating the grid on the parametric domain S2 are

obtained in the same manner as the equations (9.27) and have, with respect
to the dependent coordinates si and the independent coordinates ξi, a form
similar to (9.28):

gij
ξr

∂2sl

∂ξi∂ξj
= ΔB [sl], i, j, l = 1, 2, (9.75)

where gij
ξr, i, j = 1, 2, are the elements of the contravariant tensor of the

surface Sr2 in the coordinates ξ1, ξ2, defined through the elements of the
covariant tensor

grξ
ij =

∂r

∂ξi
· ∂r

∂ξj
= gxξ

ij +
∂f [s(ξ)]

∂ξi
· ∂f [s(ξ)]

∂ξj
, i, j = 1, 2,

by the formula

gij
ξr = (−1)i+jgrξ

3−i3−j/grξ, grξ = det(grξ
ij ),

with fixed i and j. The Beltrami operator in the right-hand part of (9.75) is
expressed as

ΔB =
1√
grs

∂

∂sj

(√
grsgij

sr

∂

∂si

)

through the metric elements in the coordinates s1, s2 of the monitor sur-
face Sr2.

The same considerations as in Sect. 9.5 show that the grid on the mon-
itor surface Sr2 obtained through (9.75) tends to become uniform, and its
projection onto the surface Sx2 produces a grid with a node concentration in
the regions of large variations of the control function f . One example of such
adaptive grid is illustrated by Fig. 9.3.

9.6.4 Control by Variational Methods

The variational approaches of Chap. 8 can be successfully applied to sur-
face grid generation. What is needed is the formulation of the correspond-
ing surface-grid quality measures. Chapter 3 gives a detailed description of
domain-grid characteristics in terms of the space metric elements and the
space Christoffel symbols. The quantities expressing the local grid properties
are readily reformulated for grids on surfaces, using for this purpose the sur-
face metric elements and surface Christoffel symbols. The integration of these
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Fig. 9.3. Quadrilateral adaptive surface grid

quantities provides functionals which reflect the integral measures of the re-
spective grid qualities. The grid on the surface is then generated by using the
standard scheme of Chap. 8, by optimizing the grid characteristics with the
minimization of a combination of functionals to obtain a grid with certain de-
sired properties. In this subsection we describe some surface functionals which
represent popular geometric quality measures of surface grids. For generality
the functionals are formulated with weights which are determined by deriva-
tives of the solution quantities or by measures of the quality features of the
surface.

9.6.4.1 Functionals Dependent on Invariants

In analogy with Chap. 8 there are three basic surface functionals determined
by the invariants I1 and I2 of the metric tensor (gxξ

ij ) in the coordinates ξi.
The first is the length-weighted functional

Ilw =
∫

Ξ2
wI1dξ =

∫

Ξ2
w(gxξ

11 + gxξ
22 )dξ. (9.76)

The second is the area-weighted functional

Ia =
∫

S2
w(I2)mds =

∫

S2
w(gxξ)mds. (9.77)

And the third is the density-weighted functional

Id =
∫

Ξ2
w(I1/

√
I2)dξ =

∫

S2
w

√
gxs(g11

ξx + g22
ξx)ds. (9.78)

The length-weighted functional controls the lengths of the cell edges, while the
functional (9.77) regulates the areas of the surface grid cells. The control of
the grid density may be carried out through the functional (9.78). Note that
the functional (9.78) with w = 1 is in fact the smoothness functional (9.31).
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9.6.4.2 Weight Skewness and Orthogonality Functionals

Analogously, functionals can be formulated which measure the surface grid
skewness and deviation from orthogonality. Thus, in accordance with (8.26),
the functional for the weighted surface grid skewness may be either of the
following forms:

Isk,1 =
∫

Ξ2
w

(gxξ
12 )2

gxξ
11gxξ

22

dξ,

Isk,2 =
∫

Ξ2
w

(g12
ξx)2

g11
ξxg22

ξx

dξ.

(9.79)

Similarly to (8.28) and (8.45), the orthogonality functionals can be expressed
as follows:

Io,1 =
∫

Ξ2
w

(
gxξ
11gxξ

22

gxξ

)
dξ,

Io,2 =
∫

Ξ2
w(gxξ

12 )2dξ, (9.80)

Io,3 =
∫

Sx2
w(g12)2dSx2 =

∫

S2
w

√
gxs(g12)2ds.

9.6.4.3 Weight Functions

Commonly, the weight functions for surface grid generation are formulated
through the derivatives of the solution quantities and through the features of
the surface. Section 7.2 presents some popular expressions for the weights for
generating planar and volume grids which can also be utilized in surface grid
generation. Surface grid generation also requires adjustments of the measures
of the grid cells to the curvature of the surface. This can be carried out by
applying the curvature measures as weight functions.

A surface Sx2 has two curvatures: the mean curvature

Km =
1
2
gij

sxbij , i, j = 1, 2, (9.81)

and the Gaussian curvature

KG =
1

gxs
(b11b22 − (b12)2), (9.82)

where
bij =

1√
gxs

xsisj · (xs1 × xs2), i, j = 1, 2.

The corresponding weights can be formulated in the form

w = (Km)2 or w = (KG)2. (9.83)
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An expression for the quantity b11b22 − (b12)2 can be obtained through
derivatives of the elements of the metric tensor and the coefficients of the
second fundamental form of the surface. This is accomplished by using the
expansion (9.39) with the substitution of ξi for si, which results in the follow-
ing relation:

xs1s1 · xs2s2 − xs1s2 · xs1s2 = gxs
ij (Υ i

11Υ
j
22 − Υ i

12Υ
j
12) + b11b22 − (b12)2,

i, j = 1, 2. (9.84)

The left-hand part of (9.84) equals

xs1s1 · xs2s2 − xs1s2 · xs1s2 =
∂

∂s1
(xs2s2 · xs1) − ∂

∂s2
(xs1s2 · xs1).

Since

xs2s2 · xs1 = [22, 1] =
1
2

(
2
∂gxs

12

∂s2
− ∂gxs

22

∂s1

)
,

xs1s2 · xs1 = [12, 1] =
1
2

∂gxs
11

∂s2
,

we obtain from (9.85)

xs1s1 · xs2s2 − xs1s2 · xs1s2 =
1
2

(
2

∂2gxs
12

∂s1∂s2
− ∂2gxs

11

∂s2∂s2
− ∂2gxs

22

∂s1∂s1

)
.

Therefore (9.82) results in

KG =
1

gxs

[
1
2

(
2

∂2gxs
12

∂s1∂s2
− ∂2gxs

11

∂s2∂s2
− ∂2gxs

22

∂s1∂s1

)
− gxs

ij (Υ i
11Υ

j
22 − Υ i

12Υ
j
12)

]
,

i, j = 1, 2. (9.85)

9.6.5 Orthogonal Grid Generation

Orthogonal elliptic coordinate systems on a surface are formulated in the
standard way, as for domains. Namely, an appropriate identity is chosen, which
is then transformed to the orthogonal system by substituting zero for the
nondiagonal metric elements.

For example, using the Beltrami operator

ΔBξi =
1√
gxξ

∂

∂ξj

(√
gxξgij

ξr

)
, i, j = 1, 2,

we obtain

ΔBξi ∂xl

∂ξi
= −gij

ξx

∂2sl

∂ξi∂ξj
+ ΔBsl, i, j, l = 1, 2.

Thus we have the identity
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1√
gxξ

∂

∂ξj

(√
gxξgij

ξr

)∂sl

∂ξi
+ gij

ξr

∂2sl

∂ξi∂ξj
= ΔBsl,

which implies

1√
gxξ

[
∂

∂ξj

(√
gxξgij

ξr

∂sl

∂ξi

)]
= ΔBsl, i, j, l = 1, 2.

Substituting in these equations the condition of orthogonality g12
ξr = 0 for the

term g12
ξx, we obtain an elliptic system for generating orthogonal or nearly

orthogonal grids on the surface Sx2:

1√
gxξ

∂

∂ξj

(√
gxξgjj

ξx

∂sl

∂ξj

)
= ΔBsl, (9.86)

where
gxξ = gxξ

11 gxξ
22 , g11

ξx = 1/gxξ
11 , g22

ξr = 1/gxξ
22 .

Thus we have from (9.87)

1√
gxξ
11 gxξ

22

[
∂

∂ξ1

(√
gxξ
22/gxξ

11

∂sl

∂ξ1

)
+

∂

∂ξ2

(√
gxξ
11/gxξ

22

∂sl

∂ξ2

)]
= ΔBsl,

l = 1, 2. (9.87)

The system (9.88) is in fact a generalization of the planar system (6.82).

9.7 Hyperbolic Method

Although the elliptic methods described above can provide satisfactory grids
for most applications, there are situations when it is more convenient to use
hyperbolic methods, in particular, when the four boundaries of the surface
grid need not be specified and constructed prior to the generation of the
interior grid. Such a situation, for example, occurs in the generation of grids
for intersecting geometric components where the surface grid is generated
hyperbolically by marching away from the intersection curve. For the overset
grid approach, it is frequently the case that the location of some boundary
components is not restricted. Also, domain decomposition is simplified under
the overset grid approach, and the grid generation time with a hyperbolic
technique is relatively fast since only one boundary needs to be specified.

The hyperbolic method of surface grid generation involves marching a
grid away from an initial boundary curve by a user-specified distance. This is
achieved by the numerical solution of a set of hyperbolic partial differential
equations. Desirable grid attributes such as grid point clustering and orthog-
onality control are naturally achieved. The grid points obtained are projected
onto the underlying surface after each marching step.
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This section describes the hyperbolic method of surface grid generation
proposed by Steger (1991) and Chan and Buning (1995). The grid generation
procedure is formulated in physical space rather than parameter space. This
is preferred since the physical-space formulation provides direct control of the
grid spacing and orthogonality.

9.7.1 Hyperbolic Governing Equations

Let ξ1 and ξ2 be the coordinates of the surface, where ξ1 runs along some
initial boundary curve and ξ2 is the marching direction away from the curve
on the surface. Also, let n = (n1, n2, n3) be the local unit normal, which
is assumed to be computable anywhere on the surface. The constraints of
orthogonality of the families of grid lines and specified mesh cell area are

xξ1 · xξ2 = 0,

n · (xξ1 × xξ2) = 
S,
(9.88)

where 
S is a user-specified surface mesh cell area. A third equation, needed
to close the system, is provided by requiring that the marching direction of
the grid be orthogonal to the surface normal at the local grid point, i.e. the
marching direction is along the tangent plane of the underlying surface at this
point. This gives

n · xξl = 0. (9.89)

A unit vector in the marching direction ξ2 can be obtained from the cross
product of n with a unit vector in the initial curve direction ξ1.

Equations (9.89) and (9.90), in the usual variables x, y, z and ξ, η, can be
written as

xξxη + yξyη + zξzη = 0,

n1(yξzη − zξyη) + n2(zξxη − xξzη) + n3(xξyη − yξxη) = 
S, (9.90)
n1xη + n2yη + n3zη = 0.

These equations form a hyperbolic system for marching in the η direction.
Equations (9.90) are written in terms of the physical coordinates instead

of the parametric coordinates. In order to preserve the specified surface shape,
the physical coordinates are repeatedly projected onto the surface in the course
of the iteration.

9.8 Comments

A number of algorithms for generation of curve grids were discussed by Eise-
man (1987) and Knupp and Steinberg (1993).

The use of Beltrami’s equations to generate surface grids was proposed
by Warsi (1982), in analogy with the widely utilized Laplace grid generator
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of Crowley (1962) and Winslow (1967). Warsi (1990) has also justified these
equations by using some fundamental results of differential geometry. The-
oretical analyses of the relation of Beltrami’s equations to the equations of
Gauss and Weingarten were given by Warsi (1982, 1990) and Garon and Ca-
marero (1983). An implementation of the Beltrami operator to derive a fourth-
order surface elliptic system was performed by Ronzheimer et al. (1994), while
Spekreijse, Nijhuis, and Boerstoel (1995) applied this operator with algebraic
techniques to generate surface grids with orthogonality at the edges.

A surface grid generation scheme that uses a quasi-two-dimensional elliptic
system, obtained by projecting the inverted three-dimensional Laplace system,
to generate grids on smooth surfaces analytically specified by the equation
z = f(x, y) was proposed by Thomas (1982). The method was extended and
updated by Takagi et al. (1985) and Warsi (1986) for arbitrary curved surfaces
using a parametric surface representation. An adaptive surface grid technique
based on control functions and parametric specifications was also considered
by Lee and Loellbach (1989).

Some robust blending functions for algebraic surface grid generation were
proposed by Soni (1985) using the normalized arc lengths of the physical edges
of the surface patches. These functions and various techniques for the surface
patch parametrization were discussed by Samareh-Abolhassani and Stewart
(1994) for the purpose of the development of a surface grid software system.

The hyperbolic approach based on grid orthogonality was extended to sur-
faces by Steger (1991). An analogous technique for generating overset surface
grids was presented by Chan and Buning (1995).

Liseikin (1991a, 1992, 2004, 2007) used an elliptic system derived from a
variational principle to produce n-dimensional harmonic coordinate transfor-
mations which, in a particular two-dimensional case, generate both uniform
and adaptive grids on surfaces. Harmonic mapping was also used by Arina and
Casella (1991) to derive a surface elliptic system. The conformal mapping tech-
nique for generating surface grids presented in this chapter was formulated by
Khamayseh and Mastin (1996).

Variational approaches for generating grids on surfaces were described by
Saltzman (1986), Liseikin (1991a), and Steinberg and Roache (1992). A varia-
tional adaptive technique for deriving a surface grid approaching orthogonality
was developed by Desbois and Jacquotte (1991). A variational approach was
also given by Castilio (1991) for the control of spacing, cell area, orthogo-
nality, and quality measures. Several grid generation anomalies which appear
while implementing some surface variational techniques were discovered by
Steinberg and Roache (1986).

An optimization approach to surface grid generation which aimed to maxi-
mize grid smoothness and orthogonality was discussed by Pearce (1990). Some
techniques for clustering the grid points in regions of larger curvature were
considered by Weilmuenster, Smith, and Everton (1991).



10

Comprehensive Method

10.1 Introduction

Many physical phenomena involve the rapid formation, propagation, and dis-
integration of small-scale structures such as shock waves in compressible flows,
shear layers in laminar and turbulent flows, phase boundaries in nonequilibrim
and boundary and interior layers, tearing layers and magnetic reconnection
regions in magnetically confined plasmas, etc. A promising tool to deal with
the numerical problems related to these structures is adaptive grid generation
technology. With the increasing complexity of the physical problem, there is
an increased need for comprehensive methods which enable one to generate
suitable adaptive meshes in a uniform “block box” mode, with or without
human interaction.

This chapter describes one such comprehensive grid generation method
that relies on variational and elliptic approaches to the generation of grids
on hypersurfaces. The method enables one to generate in a unified manner
both fixed and adaptive grids in domains and on surfaces with complicated
geometry and/or complex physical solution.

The elliptic method of grid generation based on the numerical solution of
the system of inverted Poisson equations, proposed by Godunov and Prokopov
(1972) and further developed by Thompson, Thames, and Mastin (1974) and
other researchers, is being used in a broad range of practical applications.
The method allows the users to generate numerical grids in fairly complicated
domains and on surfaces that arise while analyzing multidimensional field
problems. Practically all big grid generation codes incorporate it as a basic
tool for generating grids. However, this basic method has at least three serious
drawbacks:

(1) uncertainties in the specification of the control functions required to pro-
vide the required types of adaptation;

(2) the cells of the grids produced by this method may be folded;

V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-90-481-2912-6 10, c© Springer Science+Business Media B.V. 2010
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(3) poor opportunities to provide effective automation of the grid generation
process.

The first drawback is due to the lack of clear understanding of connections
between geometric characteristics and required properties of grids and the
control functions in the system of Poisson equations. One of the reasons for
the second drawback is that the system does not obey the maximum principle.
The third one is due to the first and second drawbacks and also because of
the lack of any inherent potential to provide unification of the method when
applying it to domains and/or surfaces with different dimensions or while
performing adaptation.

These drawbacks partly account for the rise of interactive grid generation
as a substitute for automatic generation. However, the major driving factors
of comprehensive grid codes must first be automation and then graphical
interaction.

Much research effort has being spent on circumventing these drawbacks
within the framework of the Poisson system, by segmenting the domain into
simpler subdomains, implementing grid smoothing techniques, developing au-
tomatic control function specifications, and applying sophisticated interactive
systems. However, the present codes, though in principle they enable one to
generate grids in three-dimensional domains, are not yet efficient enough. In
particular, they take too many man-hours to generate acceptable grids in
complicated regions, and there are requirements from the users that this time
must be reduced by one order of magnitude at least for adequate efficiency of
these grid codes for the numerical solution of large problems.

A more promising way lies, apparently, in creating new methods that are
free or suffer in less degree from the disadvantages pertinent to the technique
based on the Poisson system. In this respect, considerable progress may be
achieved by the development of the methods which apply coordinate transfor-
mations that are inverse to harmonic functions. The salient features of such
transformations are that they are solutions to elliptic systems and guarantee
one-to-one mappings for two dimensions, at least if the parametric field is
convex and there is a diffeomorphism between it and the physical domain,
which can be eather convex or concave. Therefore the grids obtained do not
fold in this case.

The basic comprehensive method discussed in this chapter is one version of
the harmonic-function approach for generating both adaptive and fixed grids.
The method relies on a variational technique for the generation of grids on
hypersurfaces with the help of an energy functional with respect to control
metrics. One energy functional is the functional of smoothness which is defined
for a general hypersurface through the invariants of its metric tensor in the
grid coordinates and has a clear geometric interpretation of a measure of grid
nonuniformity. In fact, the grid in this method is derived from a coordinate
transformation that is inverse to the solution of a system of Beltrami equations
which are the Euler–Lagrange equations of the functional.



10.2 Hypersurface Geometry and Grid Formulation 295

The method of grid generation founded on the minimization of the func-
tional of energy or the numerical solution of the corresponding inverted Bel-
trami equations allows code designers to merge the two tasks of surface grid
generation and volume grid generation into one task when developing a com-
prehensive grid generation code. Since the grid generation is based on har-
monic coordinate transformations that are able to generate unfolded grids
in regions with complex geometry, the method can also relieve an array of
bottlenecks of codes by reducing the number of blocks required for partition-
ing a complicated physical domain. The functions representing the monitor
surface and control metrics are easily determined, thus providing efficient
and straightforwardly controlled grid adaptation of various types. Thus, the
method is free from the drawbacks of the elliptic method based on Poisson
equations, and its numerical implementation should provide a uniform envi-
ronment for the generation of fixed and adaptive grids in arbitrary regions.
This gives grounds to expect that the method will be relevant to a large
number of application areas.

This chapter describes some properties of the method and discusses its
relation to other techniques, in particular, to the approaches using harmonic
functions and Beltrami equations.

10.2 Hypersurface Geometry and Grid Formulation

For generality, we consider arbitrary n-dimensional hypersurfaces lying in the
(n+k)-dimensional space Rn+k, n ≥ 1, k ≥ 0, though in practical applications
the dimension n equals 1, 2, and 3. Each hypersurface under consideration is
supposed to be represented by a parametrization

x(s) : Sn → Rn+k, x = (x1(s), . . . , xn+k(s)), s = (s1, . . . , sn), (10.1)

where Sn is some n-dimensional parametric domain in Rn with Cartesian
coordinates si, i = 1, . . . , n. The hypersurface represented by (10.1) is desig-
nated by Sxn. This section gives a natural multidimensional generalization of
the notions and relations considered for n-dimensional domains, curves, and
two-dimensional surfaces in Chaps. 2, 3, and 9.

10.2.1 Hypersurface Grid Formulation

In order to generate a numerical grid on an arbitrary hypersurface Sxn, rep-
resented by a parametrization x(s) : Sn → Rn+k, both an n-dimensional
computational domain Ξn ⊂ Rn and an intermediate invertible, smooth trans-
formation

s(ξ) : Ξn → Sn, s(ξ) =
[
s1(ξ), . . . , sn(ξ)

]
,

ξ = (ξ1, . . . , ξn), ξ ∈ Ξn, (10.2)
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Fig. 10.1. Scheme of grid adaptation by the use of a monitor hypersurface

between Ξn and the parametrization domain Sn are determined. Then the
numerical grid on the hypersurface Sxn is built by mapping some reference
grid, specified in the computational domain Ξn, onto the hypersurface Sxn

with the aid of the composition of the transformations x(s) and s(ξ), i.e. with

x[s(ξ)] : Ξn → Rn+k.

This transformation defines a new coordinate system ξ1, . . . , ξn, hereafter re-
ferred to as the grid coordinate system, of the hypersurface Sxn.

The original parametrization x(s) also generates a grid on Sxn by mapping
some reference grid in Sn. However, this grid may be unsatisfactory. The role
of the intermediate transformation s(ξ) is to make the grid on Sxn satisfy the
necessary properties.

The computational domain Ξn, along with the cells of its reference grid,
may be rectangular or have another configuration, say, tetrahedral or pris-
matic, when n = 3, with the cells of its grid being similar or different in
shape, in particular, the reference grid may be unstructured which results in
an unstructured grid in Sxn.

10.2.2 Monitor Hypersurfaces

A hypersurface, for the purpose of adaptive grid generation, is commonly rep-
resented by a monitor hypersurface formed by values of some vector function
over the physical domain or surface. This vector function can be a solution
to the problem of interest, a combination of its components or derivatives,
or any other variable vector quantity that suitably monitors the features of
the physical solution or of the geometry of the physical domain or surface
which significantly affect the accuracy of the calculations. The vector func-
tions provide an efficient opportunity to control the grid quality, in particular,
the concentration of grid nodes in the zones of large variations of a such func-
tion (see Fig. 10.1 for n = 2, k = 1). The parametrization of the monitor
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hypersurface is established very simply. For example, in one case, important
for the generation of adaptive grids in a physical domain Xn ⊂ Rn, the mon-
itor hypersurface designated further by Srn is defined as an n-dimensional
hypersurface formed by the values of some vector function

f(x) : Xn → Rk, x = (x1, . . . , xn), f =
[
f1(x), . . . , fk(x)

]
,

over Xn. This monitor hypersurface Srn lies in the (n+ k)-dimensional space
Rn+k (see Fig. 10.1 for n = 2, k = 1). It is apparent that the parametric
domain Sn can coincide with Xn and, consequently, the parametric mapping
designated further by r(s) : Sn → Rn+k of Srn can be defined as

r(s) = [s, f(s)] =
[
s1, . . . , sn, f1(s), . . . , fk(s)

]
, s = x. (10.3)

If the monitor hypersurface is formed by the values of the function f(x)
over a two-dimensional surface Sx2 lying in the space R3 and represented
by the parametrization x(s) = [x1(s), x2(s), x3(s)] from a two-dimensional
domain S2 in the space R2, then the monitor hypersurface Sr2 lies in the
space R3+k and it can be described by a parametrization from S2 in the form

r(s) : S2 → R3+k, r(s) =
{
x(s), f [x(s)]

}
. (10.4)

Analogously, a one-dimensional monitor surface Sr1 (curve) over a curve Sx1

lying in Rn, n = 1, 2, 3, and represented by

x(ϕ) : [a, b] → Rn,

can be defined by the parametrization

r(s) : [a, b] → Rn+k, r(s) =
{
x(s), f [x(s)]

}
, s = ϕ. (10.5)

10.2.3 Metric Tensors

As for ordinary two-dimensional surfaces lying in R3, the interior features
of the hypersurface Sxn are defined by the elements of the covariant metric
tensor which in the coordinates vi are denoted as gxv

ij and computed by the
dot products of the vectors xvi = ∂x/∂vi that are tangent to the coordinate
lines, i.e.

gxv
ij = xvi · xvj , i, j = 1, . . . , n. (10.6)

The determinant of (gxv
ij ) is denoted by gxv.

The contravariant metric tensor of the hypersurface Sxn in the coordinates
vi is the inverse of (gxv

ij ) and is denoted by (gij
vx).

The covariant metric tensor (gxξ
ij ) of the hypersurface Sxn in the grid

coordinates ξ1, . . . , ξn has n invariants I1, . . . , In, whose geometrical meaning
is described through the geometrical measures of the edges, faces, etc. of the n-
dimensional parallelepiped formed by the tangent vectors xξi , i = 1, . . . , n. In
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analogy with Chap. 3, the invariants of the metric tensor of the hypersurface
Sxn can be used to formulate some quality properties of the grid on Sxn.

Similar to (10.6) we shall designate by grv
ij (gij

vr) the covariant (contravari-
ant) metric elements of the monitor hypersurface Srn in the coordinates
v1, . . . , vn, i.e.

grv
ij = rvi · rvj , i, j = 1, . . . , n. (10.7)

Thus in the case of the parametrization (10.3) of the monitor hypersurface
Srn over the domain Sn, we obtain

grs
ij = δi

j + fsi · fsj , i, j = 1, . . . , n. (10.8)

If f is a scalar function f then the determinant grs of the tensor (grs
ij ) is

readily computed:

grs = 1 +
∂f

∂si

∂f

∂si
= 1 + (∇f)2, i = 1, . . . , n.

The parametrization (10.4) of the monitor surface Sr2 determined by the
values of f over the surface Sx2 yields

grs
ij = gxs

ij +
∂f [x(s)]

∂si
· ∂f [x(s)]

∂sj
, i, j = 1, 2, (10.9)

where (gxs
ij ) is the covariant metric tensor of the surface Sx2 in the coordinates

si, i = 1, 2. In the case of a scalar monitor function f , we obtain

grs = gxs + gxs
11

(
∂f

∂s2

)2

− 2gxs
12

∂f

∂s1

∂f

∂s2
+ gxs

22

(
∂f

∂s1

)2

= gxs

(
1 + gij

sx

∂f

∂si

∂f

∂sj

)
, i, j = 1, 2, (10.10)

where gxs = det(gxs
ij ), (gij

sx) is the inverse of (gxs
ij ), and by ∂f/∂si is meant

∂f [x(s)]/∂si here.

10.2.4 Christoffel Symbols

The quantities
[ij, l] = xsisj · xsl , i, j, l = 1, . . . , n,

are the hypersurface Christoffel symbols of the first kind of the hypersurface
Sxn in the parametric coordinates si. These symbols are, in fact, the space
Christoffel symbols and, therefore, are subject to the relations (2.44).

In analogy with (9.40), the hypersurface Christoffel symbols of the second
kind in the coordinates si are defined by the relation

Υ l
ij = glm

sx [ij, m], i, j, l, m = 1, . . . , n. (10.11)
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From (2.44),

Υ j
ji = gjm

sx [ji, m] =
1
2
gjm

sx

(
∂gxs

jm

∂si
+

∂gxs
im

∂sj
−

∂gxs
ij

∂sm

)

=
1
2
gjm

sx

∂gxs
jm

∂si
, i, j, m = 1, . . . , n,

and in accordance with the formula (2.46) for differentiation of the Jacobian
we have an analog of the identity (2.45) in the form

∂

∂si

√
gxs =

1
2

√
gxsgjm

sx

∂gxs
jm

∂si

=
√

gxsΥ j
ji, i, j, m = 1, . . . , n. (10.12)

Now we determine the role of the Christoffel symbols in the expansion of the
derivatives of the tangent vectors xsi . Let dij be the vector defined by the
relation

dij = xsisj − Υ l
ijxsl , i, j, l = 1, . . . , n.

We have

dij · xsm = [ij, m] − Υ l
ijg

xs
lm = 0, i, j, l, m = 1, . . . , n,

from (10.11). Thus we find that in the following expansion of the vectors xsisj ,

xsisj = Υ l
ijxsl + dij , i, j, l = 1, . . . , n, (10.13)

the vectors dij lie in the k-dimensional hypersurface which is orthogonal to
the tangent n-dimensional hypersurface defined by the tangent vectors xsi .
Note that if some vectors v1, . . . , vk from Rn+k comprise an orthonormal basis
for this k-dimensional hypersurface, i.e.

vm · xsj = 0, m = 1, . . . , k, j = 1, . . . , n,

vm · vp = δm
p , m, p = 1, . . . , k,

then, in accordance with (2.5), we find that

xsisj = Υ l
ijxsl + (xsisj · vm)vm, l, i, j = 1, . . . , n, m = 1, . . . , k.

Thus we obtain from (10.13):

dij = (xsisj · vm)vm, m = 1, . . . , k, i, j = 1, . . . , n,

and so (10.13) is a generalization of (2.35) and (9.42) with the identification
ξi = si.
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10.2.5 Relations Between Metric Elements

The mapping x[s(ξ)] which generates a grid on the hypersurface Sxn deter-
mines a new coordinate system ξi, i = 1, . . . , n, on Sxn and it also defines the
values of the covariant metric tensor (gxξ

ij ) in the coordinates ξi, whose ele-
ments are the scalar products of the vectors xi = ∂x[s(ξ)]/∂ξi, i = 1, . . . , n,
i.e.

gxξ
ij = xi · xj , i, j = 1, . . . , n.

The elements of the covariant tensor of Sxn in the coordinates si and ξi are
connected by the following relations:

gxξ
ij = gxs

ml

∂sm

∂ξi

∂sl

∂ξj
,

gxs
ij = gxξ

ml

∂ξm

∂si

∂ξl

∂sj
, i, j, l, m = 1, . . . , n,

(10.14)

where ∂ξm/∂si, i, m = 1, . . . , n, is the first derivative with respect to si of
the mth component ξm(s) of the mapping

ξ(s) : Sn → Ξn, ξ(s) =
[
ξ1(s), . . . , ξn(s)

]
, s = (s1, . . . , sn), s ∈ Sn,

which is inverse to the intermediate mapping

s(ξ) : Ξn → Sn, s(ξ) =
[
s1(ξ), . . . , sn(ξ)

]
.

The latter mapping serves to generate a suitable grid on the hypersurface Sxn.
The contravariant metric tensor (gij

ξx) of the hypersurface Sxn in the curvi-
linear coordinates ξi, is the inverse to the covariant tensor (gxξ

ij ), that is,

gxξ
ij gjl

ξx = δi
l , i, j, l = 1, . . . , n.

In analogy with the relations (9.23) for two-dimensional surfaces, the elements
of the contravariant tensor of Sxn in the coordinates si and ξi are connected
as follows:

gij
ξx = gml

sx

∂ξi

∂sm

∂ξj

∂sl
,

gij
sx = gml

ξx

∂si

∂ξm

∂sj

∂ξl
, i, j, l, m = 1, . . . , n.

(10.15)

Similarly to (9.24), we also have the relations

gii
sx = gmk

ξx gsξ
mk,

gxξ = J2gxs, i, k, m = 1, . . . , n,

where

gxξ = det(gxξ
ij ), gsξ

ij =
∂s

∂ξi
· ∂s

∂ξj
, J = det

(
∂si

∂ξj

)
, i, j = 1, . . . , n.
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10.3 Functional of Smoothness

One of the ways of finding the intermediate coordinate transformations s(ξ)
between the computational and parametric domains required to generate grids
on hypersurfaces is to use variational methods. In accordance with the grid
methods for domains and two-dimensional surfaces considered above, the most
appropriate functional for this purpose is the smoothness one, since it gener-
ates a system of Beltrami equations possessing the unique properties desired
for grid generation.

10.3.1 Formulation of the Functional

Similarly to (9.31), the expression for the functional of grid smoothness on
the hypersurface Sxn with the parametrization (10.1) is represented as

Is =
∫

Sxn

(
n∑

i=1

gii
ξx

)
dSxn =

∫

Sxn

(
tr gij

ξx

)
dSxn, (10.16)

defined on the set of invertible functions ξ(s) ∈ C2(Sn). Since

dSxn =
√

gxsds =
√

gxξdξ

we obtain from (10.16)

Is =
∫

Sn

√
gxs(tr gij

ξx)ds =
∫

Ξn

√
gxξ(tr gij

ξx)dξ.

Thus for n = 1, 2, and 3 we have

Is =

⎧
⎪⎪⎨

⎪⎪⎩

∫
S1

√
gxsg11

ξxds, n = 1,
∫

S2

√
gxs(g11

ξx + g22
ξx)ds1ds2, n = 2,

∫
S3

√
gxs(g11

ξx + g22
ξx + g33

ξx)ds1ds2ds3, n = 3,

with the corresponding contravariant metric elements gij
ξx and determinants

gxs for each n = 1, 2, 3. Analogously, using suitable formulas for the elements
of inverse matrices, we obtain the formulation of the inverted smoothness
functional in terms of the covariant metric elements gxξ

ij :

IIS =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ξ1

1√
gxξ

dξ, n = 1,

∫
Ξ2

1√
gxξ

(gxξ
11 + gxξ

22 )dξ1dξ2, n = 2,

∫
Ξ3

1√
gxξ

[gxξ
11gxξ

22 + gxξ
11gxξ

33 + gxξ
22gxξ

33

−(gxξ
12 )2 − (gxξ

13 )2 − (gxξ
23 )2]dξ1dξ2dξ3, n = 3.
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Note that the functional IIS , in this formulation, is defined on the set of
invertible transformations s(ξ) ∈ C2(Ξn).

When the hypersurface Sxn is a three-dimensional region X3, the func-
tional (10.16) is the very functional of grid smoothness on X3,

Is =
∫

X3

(
3∑

i=1

gii

)
dx, gij =

3∑

m=1

∂ξi

∂xm

∂ξj

∂xm
, (10.17)

described in Chap. 8. Therefore the functional (10.16), being the generaliza-
tion of (10.17), is called the functional of grid smoothness on the hypersurface
Sxn. Further, it will be shown that such a generalization of the functional
(10.17) to n-dimensional hypersurfaces preserves all salient features of grids
obtained by applying the smoothness functional on domains.

10.3.2 Geometric Interpretation

This subsection describes a geometric meaning of the smoothness functional
which justifies to some extent its expression (10.16) for the generation of
quasiuniform grids on hypersurfaces, in particular, on monitor hypersurfaces
Srn specified by the parameterizations (10.3) and (10.4) and, consequently,
adaptive grids in domains and on surfaces. The explanation of the geometric
interpretation of the functional follows in general the considerations presented
in Sect. 3.7 for domain grid generation and in Sect. 9.5.3 for two-dimensional
surface grid generation.

First, note that the trace of the contravariant n-dimensional tensor (gij
ξx)

can be expressed through the invariants In−1 and In of the orthogonal trans-
forms of the covariant tensor (gxξ

ij ), namely

tr(gij
ξx) =

In−1

In
.

Therefore the functional of smoothness (10.16) can also be expressed through
these invariants:

Is =
∫

Sxn

(
In−1

In

)
dSxn. (10.18)

Now, for the purpose of simplicity, we restrict our consideration to three di-
mensions. The functional (10.18) then has the form

Is =
∫

Sx3

(
I2

I3

)
dSr3.

In three dimensions the invariant I3 is the Jacobian of the matrix (gxξ
ij ) and

it represents the volume V 3 of the three-dimensional parallelepiped P 3 formed
by the basic tangent vectors xi, i = 1, 2, 3. The invariant I2 of the matrix
(gxξ

ij ) is the sum of its principal minors of order 2. Every principal minor of
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order 2 equals the Jacobian of the two-dimensional matrix A2 obtained from
(gxξ

ij ) by crossing out a row and a column which intersect on the diagonal.
Therefore each element of the matrix A2 is a dot product of two tangential
vectors of the basis xi, i = 1, 2, 3, and, consequently, the Jacobian of A2 equals
the square of the area of the parallelogram formed by these two vectors. So
the invariants I2, I3 can be expressed as

I2 =
3∑

m=1

(
V 2

m

)2
, I3 =

(
V 3

)2
,

where V 2
m is the area of the boundary segment of the parallelepiped P 3 formed

by the vectors xi, i = 1, 2, 3, except for xm, and V 3 is the volume of P 3.
Therefore

I2

I3
=

3∑

m=1

(
V 2

m

)2
/
(
V 3

)2
. (10.19)

It is obvious that

V 3 = dmV 2
m, m = 1, 2, 3,

where dm is the distance between the vertex of the vector xm and the plane
spanned by the vectors xi, i �= m. Hence, from (10.19),

I2

I3
=

3∑

m=1

(1/dm)2. (10.20)

Now let us consider two grid surfaces ξm = c and ξm = c + h obtained by
mapping a uniform rectangular grid with a step size h in the computational
domain Ξ3 onto the hypersurface Sx3. The distance lm between a node on
the coordinate surface ξm = c and the nearest node on the surface ξm = c+h
equals dmh + O(h)2. Therefore (10.20) is equivalent to

I2

I3
=

3∑

m=1

(h/lm)2 + O(h).

The quantity (h/lm)2 increases as the grid nodes cluster in the direction
normal to the surface ξm = c, and therefore it can be considered as some
measure of the grid concentration in this direction; consequently, the func-
tional (10.18) for n = 3 defines an integral measure of the grid clustering in
all directions. Therefore, as in the case of two-dimensional surfaces considered
in Chap. 9, the problem of minimizing the functional of smoothness (10.16)
for n = 3 can be interpreted as a problem of finding a grid with a minimum of
nonuniform clustering, namely a quasiuniform grid on the surface Sx3. Anal-
ogous interpretations are valid for arbitrary dimensions. The interpretation
of the smoothness functional considered above justifies, to some extent, its
potential to generate adaptive grids in a domain or surface by projecting onto
the domain or surface quasiuniform grids built on monitor hypersurfaces (see
Fig. 10.1) by the minimization of the functional.
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10.3.3 Dimensionless Functionals

This section formulates some dimensionally homogeneous functionals through
the invariants of the metric tensor (gxξ

ij ) which, in analogy with the smoothness
functional, measure global nonuniformity of hypersurface grids.

As was demonstrated in Sect. 10.3.2, the quantity In−1/In represents a
measure of the local clustering of a hypersurface grid. Integration of this mea-
sure over the hypersurface Sxn derives the smoothness functional whose min-
imization tends to yield a uniform grid on Sxn. The smoothness functional
possesses the spectacular properties reviewed in Sects. 10.3.2 and 10.3.3. In
the particular case when n = 2, this functional is also dimensionless. How-
ever, it is not dimensionless in three-dimensions, which may by important for
the generation of spatial adaptive grids. Nevertheless, using the invariants of
the covariant metric tensor (gxξ

ij ), we can formulate dimensionless functionals
measuring grid nonuniformity for arbitrary n > 1.

For this purpose we, in analogy with (8.33), consider a dimensionless mea-
sure of the local departure of a hypersurfaces grid, in particular of a monitor
surface grid, from a conformal one:

Qcf,3 =
[
In−1/(In)1−1/n

]α
, α > 0, n > 1.

As was mentioned in Sect. 8.3.1, the dimensionless functionals are formulated
by integrating local dimensionless measures over the unit cube Ξn. Thus we
obtain one functional, using the quantity Qcf,3,

Icf,3 =
∫

Ξn

[
In−1/(In)1−1/n

]αdξ

=
∫

Sxn

1√
In

[
In−1/(In)1−1/n

]αdSxn. (10.21)

Functional (10.21) can be interpreted as an integral measure of the departure
from conformality. When (1 − 1/n)α = 1/2 this functional is independent of
the parametrization of Sxn.

Another dimensionless functional measuring the departure from confor-
mality is defined, in analogy with (8.31), through the first and nth invariants:

Icf,2 =
∫

Ξn

[
I1/(In)1/n

]αdξ

=
∫

Sxn

1√
In

[
I1/(In)1/n

]αdSxn, α > 0, n > 1. (10.22)

This functional is independent on parameterizations of Sxn if α = n/2.
The parameter α in (10.21) and (10.22) can be used to control the form
of the functionals. In particular, assuming α = n/2 in (10.21), we obtain a
dimensionless functional which is defined through the measure of the local
grid clustering In−1/In = gii

ξx, i = 1, . . . , n:
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Icf,3 =
∫

Sxn

(In−1/In)n/2dSxn. (10.23)

Note that functional (10.23) coincides with the smoothness functional for
n = 2. For n = 3 we obtain, using (10.15),

Icf,3 =
∫

Sr3

(
I2

I3

)3/2

dSr3

=
∫

S3

√
gxs

(
gkl

sx

∂ξi

∂sk

∂ξi

∂sl

)3/2

ds, i, j, k, l = 1, 2, 3. (10.24)

Thus the Euler–Lagrange equations for this functional have the form

∂

∂sj

(√
gxs

√
I2

I3
gkj

sx

∂ξi

∂sk

)
= 0, i, j, k = 1, 2, 3, (10.25)

while the corresponding inverted equations are represented as

gij
ξx

∂2sl

∂ξi∂ξj
=

1√
gxs

√
I3

I2

∂

∂sk

(√
gxs

√
I2

I3
glk

sx

)
, i, j, k, l = 1, 2, 3, (10.26)

which are a generalization of (8.39) with n = 3 for three-dimensional hyper-
surfaces. In the same manner there can be written Euler–Lagrange equations
for the functional Icf,3 for arbitrary n > 1.

Analogously, by assuming α = n/[2(n − 1)] we find a simpler form of the
dimensionless functional (10.22):

Icf,2 =
∫

Sxn

(I1/In)n/[2(n−1)]dSxn. (10.27)

This functional coincides with the smoothness functional for n = 2, while for
n = 3 it has the form

Icf,2 =
∫

Sr3
(I1/I3)3/4dSr3. (10.28)

Substituting in formulas (10.21)–(10.28) Sxn for Srn yields the correspond-
ing dimensionless functionals for generating adaptive grids in Sxn.

10.3.4 Euler–Lagrange Equations

The substitution of the parametric domain Sn for the integration hypersurface
Sxn in (10.16) yields the smoothness functional in the following equivalent
form with integration over Sn:

Is =
∫

Sn

√
gxs gml

sx

∂ξi

∂sm

∂ξi

∂sl
ds, i, m, l = 1, . . . , n. (10.29)



306 10 Comprehensive Method

The quantities gxs and gml
sx in (10.29) are defined through the specified

parametrization x(s) : Sn → Rn, and therefore they remain unchanged
when the functions ξi(s) are varied. So the Euler–Lagrange equations derived
from the functional of smoothness are readily obtained and, in accordance
with (8.6), have the following form:

∂

∂sm

(√
gxs gml

sx

∂ξi

∂sl

)
= 0, i, m, l = 1, . . . , n. (10.30)

If, in particular, Sxn is an n-dimensional domain Sn, then the system (10.30)
is equivalent to the system of Laplace equations

∇2ξi ≡ ∂

∂sj

(
∂ξi

∂sj

)
= 0, i, j, = 1, . . . , n,

introduced by Crowley (1962) and Winslow (1967) for the generation of fixed
grids in domains. Therefore the method for generating grids on hypersurfaces
Sxn by solving a boundary value problem for (10.30) derived from the func-
tional of smoothness can also be considered as an extension of the Crowley–
Winslow approach.

We considered in Chap. 6 the technique for generating adaptive grids in
Sn which is based on the numerical solution of the Poisson system

∂

∂sj

(
∂ξi

∂sj

)
= P i, i, j, = 1, . . . , n, (10.31)

where the P i are the control functions. In the case of a monitor hypersurface
Srn represented by (10.3) or (10.4) the system (10.30) with the identification
gxs = grs and gml

sx = gml
sr can also be interpreted as a system of elliptic equa-

tions with a control function. The control function is the monitor mapping
f(s) whose values over the physical domain or surface form the monitor hy-
persurface Srn. The influence of the control function f(s) is realized through
the magnitudes fsi · fsj in the terms grs and gml

sr . These terms are determined
by the tensor elements grs

ij in the form (10.8) or (10.9) which defines the covari-
ant metric tensor of the hypersurface Srn in the coordinates si represented by
the parametrization (10.3) or (10.4). The system (10.30), in contrast to that
of (10.31), has a divergent form and its solution is a harmonic function, as
was mentioned above.

Notice that the Dirichlet problem for both the equations (10.30) with
respect to the metric of a monitor hypersurface Srn and (10.31) is well posed.
Let us consider a twice differentiable function ξ0(s) : Sn → Ξn, ξ0(s) =
(ξ1

0(s), . . . , ξ1
0(s)) that is a one-to-one transformation at the boundary points

but it transforms two different interior points of Sn into one point in Ξn, that
is ξ0(s) is not invertible. Then assuming in (10.31)

P i =
∂

∂sj

(
∂ξi

0

∂sj

)
, i, j, = 1, . . . , n,
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we obtain that ξ0(s) is the solution of (10.31), however, the inverted Poisson
system with such P i does not have a solution.

10.3.5 Equivalent Forms

In analogy with two-dimensional space, the left-hand part of (10.30) multiplied
by 1/

√
gxs is the value of the Beltrami operator

ΔB =
1√
gxs

∂

∂sm

(√
gxs gml

sx

∂

∂sl

)
, l, m = 1, . . . , n, (10.32)

applied to the function ξi(x). Thus we find that the system of Euler–Lagrange
equations (10.30) for the generation of quasiuniform grids on hypersurfaces is
equivalent to

ΔB [ξi] ≡ 1√
gxξ

∂

∂ξj

(√
gxξgjl

ξx

)
= 0 i, j, l = 1, . . . , n. (10.33)

Now we obtain other forms of (10.33). For this purpose we first compute
the value of ΔB [x], where the operator ΔB is defined by (10.32). Expanding
the differentiation in ΔB [x], we have

ΔB [x] =
1√
gxξ

∂

∂ξj
(
√

gxξ gjl
ξxxξl) = gjl

ξxxξjξl + ΔB [ξl]xξl ,

j, l = 1, . . . , n. (10.34)

Using the expansion (10.13) with the assumption ξi = si, i = 1, . . . , n, we
obtain

xξiξj = Υ l
ijxξl + dij , i, j, l = 1, . . . , n,

where

Υ l
ij = glm

ξx [ij, m], [ij, m] = xξiξj · xξm , i, j, l, m = 1, . . . , n, (10.35)

and the dij are the vectors orthogonal to the tangent n-dimensional hyper-
plane defined by the vectors xξi , i = 1, . . . , n. From the above expansion of
xξiξj , we have

gjl
ξxxξjξl = gjl

ξxΥm
jl xξm + gjl

ξxdjl, j, l, m = 1, . . . , n.

Substitution of these identities in (10.34) yields

ΔB [x] = (gjl
ξxΥm

jl + ΔB [ξm])xξm + gjl
ξxdjl, j, l, m = 1, . . . , n. (10.36)

Now we show that the vector ΔB [x], as well as the vectors dij , lies in the
k-dimensional hyperplane which is orthogonal to the tangent hyperplane, i.e.

ΔB [x] · xξi = 0 for all i = 1, . . . , n.
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Indeed, we have

ΔB [x] · xξi =
1√
gxξ

(
∂

∂ξj

√
gxξgjm

ξx xξm

)
· xξi

=
1√
gxξ

∂

∂ξj
(
√

gxξgjm
ξx xξm · xξi) − gjm

ξx xξm · xξiξj

=
1√
gxξ

∂

∂ξi

√
gxξ − Υ j

ji, i, j, m = 1, . . . , n. (10.37)

Now, using the identity (10.12) (valid for arbitrary parametrization) in the
coordinates ξi, we obtain

ΔB [x] · xξi = 0, i = 1, . . . , n,

from (10.37). Therefore the coefficients before xξm in (10.36) are equal to zero,
i.e. we have the identity

ΔB [ξm] = −gjl
ξxΥm

jl , j, l, m = 1, . . . , n. (10.38)

Thus (10.36) becomes

ΔB [x] = gjl
ξxdjl, j, l = 1, . . . , n. (10.39)

Note that (10.39) is an extension of (6.27) and (9.49) to general hypersurfaces.
From (10.35), the identity (10.38) also has the form

ΔB [ξm] = −gjl
ξx gmi

ξx [jl, i] = −gjl
ξx gmi

ξx (xξjξl · xξi),
i, j, l, m = 1, . . . , n. (10.40)

Analogously, we have, assuming si = ξi, i = 1, . . . , n, in (10.40),

ΔB [sm] = −gjl
sx gmi

sx (xsjsl · xsi), i, j, l, m = 1, . . . , n. (10.41)

The identities (10.38) and (10.40) represent an extension of the identities
(9.52) valid for two-dimensional surfaces.

Since the Beltrami system (10.33) is equivalent to (10.30), we obtain from
(10.40) one more system of equations:

gjl
ξx gmi

ξx [jl, i] = 0, i, j, l, m = 1, . . . , n,

which is equivalent to the Euler–Lagrange equations (10.30). Multiplication of
this system by gxξ

mp and summation over m yields one more equivalent system

gjl
ξx[jl, p] = 0, j, l, p = 1, . . . , n,

namely
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gjl
ξx

∂2x[s(ξ)]
∂ξj∂ξl

· ∂x[s(ξ)]
∂ξp

= 0, j, l, p = 1, . . . , n. (10.42)

In particular, if Srn is a monitor surface Sxn over a domain Sn, represented
by (10.3), then the system (10.42) is

gjl
ξr

{
∂2s

∂ξj∂ξl
· ∂s

∂ξp
+

∂2f [s(ξ)]
∂ξj∂ξl

· ∂f [s(ξ)]
∂ξp

}
= 0, j, l, p = 1, . . . , n. (10.43)

This system of equations can be used to generate adaptive grids in Sxn and
nearly orthogonal grids in the vicinity of boundary segments of a domain Xn

by specifying the monitor hypersurface with a suitable choice of a monitor
function f(x).

10.4 Hypersurface Grid Systems

The numerical grid on the hypersurface Sxn is built by mapping a reference
grid in the computational domain Ξn with the coordinate transformation
x[s(ξ)] : Ξn → Sxn. The method based on the numerical solution of the in-
verted Beltrami equations in the metric of Sxn produces quasiuniform grids
on Sxn. When the method is applied to a monitor surface Srn over Sxn formed
by the values of some control function f(s) the grid generated is in fact an
adaptive grid on Sxn. Thus, in order to determine the nodes of the quasiuni-
form grid on the monitor hypersurface Srn and the nodes of the adaptive grid
on Sxn, it is sufficient to know the values of the function s(ξ) : Ξn → Sn at
the points of the reference grid in the computational domain Ξn.

10.4.1 Inverted Beltrami Equations

The equations which the components si(ξ) of the function s(ξ) satisfy are
derived by inverting the system (10.30). The inverse system of (10.30) is ob-
tained first by multiplying each ith component of this system by the derivative
∂sm/∂ξi and then by summing the result over i. This operation produces the
following system:

∂

∂sp

(√
gxs gpl

sx

∂ξi

∂sl

)
∂sm

∂ξi

=
∂

∂sp

(√
gxs gpl

sx

∂ξi

∂sl

∂sm

∂ξi

)
−

√
gxs gpl

sx

∂ξi

∂sl

∂ξj

∂sp

∂2sm

∂ξi∂ξj
= 0,

i, j, l, m, p = 1, . . . , n.

By multiplying this system of equations by 1/
√

gxs and taking into account
(10.15) and the relation

∂ξi

∂sl

∂sm

∂ξi
= δl

m, i, l, m = 1, . . . , n,
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the system of the inverse equations with si as dependent and ξi as independent
variables has the form

gip
ξx

∂2sm

∂ξi∂ξp
=

1√
gxs

∂

∂sl

(√
gxs glm

sx

)
, i, l, m, p = 1, . . . , n. (10.44)

This is a system of quasilinear equations and, which is important for the
creation of iterative numerical algorithms, its right-hand part is defined only
by the tensor elements gxs

ij of the hypersurface Sxn and, therefore, remains
unchanged when the function s(ξ) is varied. Moreover, each ith equation of the
right-hand part of the system (10.44) is the value of the Beltrami operator
applied to the function si. Thus the system (10.44) can be written in the
following equivalent form:

gij
ξx

∂2sl

∂ξi∂ξj
= ΔB [sl], i, j, l = 1, . . . , n. (10.45)

As in (6.16) introducing an operator

Bxξ
n [y] ≡ gxξgij

ξx

∂2y

∂ξi∂ξj
, i, j = 1, . . . , n, (10.46)

gives the system (10.45) another form

Bxξ
n [sl] = gxξΔB [sl], l = 1, . . . , n. (10.47)

Also taking advantage of (10.41), we obtain from (10.47) one more system
of equations equivalent to (10.44):

Bxξ
n [sl] = −gxξgjm

sx gli
sx[jm, i], i, j, l, m = 1, . . . , n, (10.48)

where [jm, i] = xsjsm · xsi . Thus (10.48) is a generalization of (9.57).
If Sxn is a monitor surface Srn over Sn, represented by the parametrization

(10.3) then multiplying (10.43) by ∂ξp/∂si yields

gjl
ξr

(
∂2si

∂ξj∂ξl
+

∂2f [s(ξ)]
∂ξj∂ξl

· ∂f(s)
∂si

)
= 0, i, j, l = 1, . . . , n, (10.49)

or introducing an operator Brξ
n , similar to (10.46),

Brξ
n [y] = grξgij

ξr

∂2y

∂ξi∂ξj
, i, j = 1, . . . , n, (10.50)

the system (10.49) is as:

Brξ
n [si] + Brξ

n [f ] · ∂f

∂si
= 0, i = 1, . . . , n. (10.51)
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10.5 Formulation of Comprehensive Grid Generator

Sections 10.2 and 10.4 give a schematic description of a mapping approach in
which an adaptive grid in the physical geometry Sxn represented by (10.1)
is generated as a smooth mapping subject to the inverted Beltrami equa-
tion with respect to the metric of a monitor hypersurface Srn over Sxn. This
metric provides the generation of grids with node clustering in the zones of
large variations of a specified function f(x). However, the application of such
metric does not provide the generation of grids with other very important
properties, in particular, grids with node clustering according to given func-
tion values, grid alignment with given vector fields, and combinations thereof.
So it is necessary to generalize the metrics (10.8) and (10.9) of the monitor
hypersurface Srn in order to generate adaptive grids for a more wide variety
of applied problems.

Thus, for the purpose of providing more efficient control of grid generation
in the hypersurface Sxn we introduce the notion of a monitor manifold over
Sxn. The points of the manifold are the points of Sxn while its metric may
differ from the metric of the given hypersurface. We shall refer to this more
general metric as the control metric.

This section reviews mathematical models for robust grid generators based
on energy and diffusion functionals and corresponding differential Beltrami
and diffusion equations, with respect to the control metrics.

10.5.1 Energy and Diffusion Functionals

Let the covariant (contravariant) elements of the control metric in the coor-
dinates v1, . . . , vn of Sxn be designated as gv

ij(g
ij
v ).

Similar to (10.29) the energy functional IE with respect to the contravari-
ant elements gij

s of the control metric gs
ij in the parametric coordinates s1, . . . ,

sn is as follows:

IE [ξ] =
1
2

∫

Sn

√
gsgml

s

∂ξi

∂sm

∂ξi

∂sl
ds, i, l, m = 1, . . . , n, (10.52)

where gs = det(gs
ij).

Assuming in (10.52)
√

gs = w(s), where w(s) > 0 is a weight function,
produces the functional of diffusion ID with respect to the control metric gs

ij :

ID[ξ] =
1
2

∫

Sn

w(s)gml
s

∂ξi

∂sm

∂ξi

∂sl
ds, i, l, m = 1, . . . , n. (10.53)

The inverse of the function ξ(s) : Sn → Ξn which is a critical point of
the functionals (10.52) or (10.53) determines the intermediate transformation
s(ξ) : Ξn → Sn applied to specify the grid nodes in the physical geometry
Sxn, represented by (10.1), by mapping the nodes of a reference grid in Ξn

with the transformation
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x(s(ξ)) : Ξn → Sxn ⊂ Rn+k. (10.54)

The novel feature of the functionals (10.52) and (10.53) is the recognition
that the control metric gs

ij can be freely chosen to give the grid in Sxn desired
properties. The incorporation of the weight function w provides additional
control over the redistribution of grid nodes in selected regions of Sxn. The
job of constructing the grid then rests entirely on the choice of the control
metric and the weight function.

The functionals (10.52) and (10.53) give some guess how to specify the
control metric gs

ij in order to obtain the grid with a desired property. Namely,
the metric gs

ij should be specified so that the quantity

m(s) = w(s)gjl
s

∂ξi

∂sj

∂ξi

∂sl
, i, j, l = 1, . . . , n, (10.55)

reflects some measure of departure from the desired grid in Sxn. In this case
minimization of the functionals with this metric gives the intermediate trans-
formations s(ξ) which are able to produce grids with the desired property.
In particular, in accordance with Sect. 10.3.2, for the metric gs

ij = grs
ij of a

monitor hypersurface Srn over Sxn, the quantity (10.55) with w(s) =
√

gs is
a measure of departure from a uniform grid in Srn and consequently from an
adaptive grid in Sxn.

Notice that the dimensionless functionals considered in Sect. 10.3.3 are
readily formulated for the hypersurface Sxn with the introduced control met-
ric gs

ij through the invariants of the control metric tensor (gξ
ij) in the grid co-

ordinates ξ1, . . . , ξn. However, these functionals are the same for the metrics
gs

ij and v(s)gs
ij , therefore, the functionals should also include weight functions,

similar to how it was done for formulating the diffusion functional (10.53).

10.5.2 Relation to Harmonic Functions

This subsection discusses another interpretation of the energy functional
(10.52), which is related to the harmonic-functions approach for generating
adaptive grids. This interpretation corresponds to a similar one discussed in
Sect. 9.5.2 for ordinary two-dimensional surfaces lying in R3.

According to the terminology adopted in multidimensional differential
geometry, the integral (10.52) is the total energy associated with the map-
ping ξ(s) : Sn → Ξn representing a transformation between Sn, with its
control metric tensor (gs

ij) in the coordinates si, and the computational do-
main Ξn, with the Cartesian coordinates ξi. A function which is a critical
point of the energy functional is called a harmonic function. It follows from
the theory of harmonic functions on manifolds that if there is a diffeomor-
phism f(s) : Sn → Ξn and the boundary of the manifold Ξn is convex, and
its curvature is nonpositive, then a harmonic function coinciding with f on
the boundary of the manifold Sn exists and is isotopic to f . In the case under
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consideration, the coordinates of the manifold Ξn are Cartesian, and there-
fore its curvature is nonpositive. As in the case of ordinary two-dimensional
surfaces, if S2 is diffeomorphic to Ξ2 and Ξ2 is convex then the mapping ξ(s)
that minimizes the functional of energy (10.52) is a one-to-one transforma-
tion, and the grid obtained by the proposed variational method is therefore
nondegenerate in this case. However, this property, in general, is not valid for
any dimension n > 2, in particular, for n = 3, which is important for the gen-
eration of three-dimensional adaptive grids in three-dimensional domains, in
particular, by projecting quasiuniform grids from monitor hypersurfaces Sr3.

10.5.3 Beltrami and Diffusion Equations

Similar to (10.30), the intermediate transformation s(ξ) for generating grids
in Sxn is determined as the inverse of the transformation

ξ(s) : Sn → Ξn, ξ(s) =
[
ξ1(s), . . . , ξn(s)

]

which is a solution of the following Dirichlet boundary value problem for the
Euler-Lagrange equations derived from the functional of energy (10.52)

∂

∂sj

(√
gsgjk

s

∂ξ

∂sk

)
= 0, j, k = 1, . . . , n,

ξ(s)|∂Sn = ϕ(s) : ∂Sn → ∂Ξn, ϕ(s) =
[
ϕ1(s), . . . , ϕn(s)

]
,

where gjk
s are the contravariant components of the control metric in the coordi-

nates s1, . . . , sn, ∂Sn and ∂Ξn are the boundaries of Sn and Ξn, respectively,
while ϕ(s) is a one-to-one continuous transformation between the boundaries
of Sn and Ξn. This boundary value problem has the following form for the
components ξi(s)

∂

∂sj

(√
gsgjk

s

∂ξi

∂sk

)
= 0, i, j, k = 1, . . . , n,

ξi(s)|∂Sn = ϕi(s), i = 1, . . . , n.

(10.56)

In the theory of Riemannian manifolds, the equations in (10.56) are called
generalized Laplace equations or Beltrami equations of the second order. We
shall hereafter call them Beltrami equations.

The functions ξ1, . . . , ξn satisfying (10.56) form a curvilinear coordinate
system in Sn and Sxn. These curvilinear coordinates are further referred to
as the grid coordinates.

It is easily shown that an arbitrary one-to-one twice differentiable trans-
formation ψ(s) : Sn → Ξn, ψ(s) = (ψ1(s), . . . , ψn(s)), is a solution of the
Dirichlet problem (10.56) with respect to the control metric gs

ij specified in
the parametric coordinates s1, . . . , sn, by

gs
ij =

∂ψ

∂si
· ∂ψ

∂si
, i, j = 1, . . . , n, (10.57)
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and with the following boundary conditions

ξ(s)|∂Sn = ψ(s), i = 1, . . . , n.

Indeed, it is readily obtained from (10.57) that

√
gs = det

(
∂ψl

∂sk

)
, gjk

s =
∂sj

∂ψm

∂sk

∂ψm
, j, k, l, m = 1, . . . , n,

so the ith equation in (10.56) with ∂ξi/∂sk = ∂ψi/∂sk is in fact the identity
of the form (2.47)

∂

∂sj

(
det

(
∂ψl

∂sk

)
∂sj

∂ψi

)
≡ 0, i, j = 1, . . . , n,

i.e., the functions ψi(s), i = 1, . . . , n, are the solutions of the Dirichlet problem
(10.56) for the Beltrami equations with respect to the metric (10.57).

The substitution of w(s) for
√

gs in the system of equations in (10.56)
yields the Dirichlet problem for more general equations

∂

∂sj

(
w(s)gjk

s

∂ξi

∂sk

)
= 0, i, j, k = 1, . . . , n,

ξi(s)|∂Sn = ϕi(s), i = 1, . . . , n.

(10.58)

Here w(s) > 0 is a weight function aimed at increasing or decreasing the effect
of the control metric in the necessary zones of Sxn. The equations in (10.58)
are in fact the Euler–Lagrange equations for the diffusion functional (10.53)
so they will be referred to as the diffusion equations.

The diffusion equations in (10.58) are equivalent to the Beltrami equations
if w(s) =

√
gs, gs = det(gs

ij). Moreover, for n �= 2 they are always equivalent
to the Beltrami equations, with respect to the metric

gij = (gs)
1

2−n [w(s)]
2

n−2 gs
ij , i, j = 1, . . . , n, (10.59)

regardless of the weight function w(s) > 0. Indeed, for this metric,

g = det(gij) = (gs)
n

2−n [w(s)]
2n

n−2 gs = (gs)
2

2−n [w(s)]
2n

n−2 ,

gij = (gs)
1

n−2 [w(s)]
2

2−n gij
s , i, j = 1, . . . , n,

so √
ggij = w(s)gij

s , i, j = 1, . . . , n,

i.e., the system in (10.58) is the system of Beltrami equations with respect to
the metric (10.59).

Though the Beltrami equations in (10.56) are comprehensive, i.e., an ar-
bitrary nondegenerate twice differentiable intermediate transformation (10.2)
can be computed as the inverse of the solution of these equations, the form of
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the diffusion equations in (10.58) appears to be simpler for formulating, es-
pecially for n = 2, in order to realize the necessary requirements for the grid
properties in different zones of Sxn. However, one is to remember that for an-
other coordinate system v1, . . . , vn the equations in (10.58) become equivalent
to

∂

∂vj

(
w[s(v)]Jgjk

v

∂ξi

∂vk

)
= 0, i, j, k = 1, . . . , n,

where J = det(∂si/∂vj). This very system in the parametric coordinates
v1, . . . , vn should be solved in order to obtain the same grid computed by
the solution of the boundary value (10.58) in the parametric coordinates
s1, . . . , sn.

10.5.4 Inverted Beltrami and Diffusion Equations

Note that, in order to find the grid nodes through the intermediate trans-
formation s(ξ) the inverse of which is a solution of the problem (10.56) or
(10.58) there is no necessity to compute the transformation s(ξ) at all points
ξ ∈ Ξn. It is sufficient to solve numerically the inverted boundary value
problem obtained by interchanging in (10.56) or (10.58) dependent and in-
dependent variables, i.e., considering the variables ξ1, . . . , ξn as independent
while the variables s1, . . . , sn of the parametric domain Sn as dependent ones.
The inverted problem with respect to the components si(ξ), i = 1, . . . , n, of
the intermediate transformation s(ξ) should be solved on the reference grid
in Ξn. The values of this same numerical solution

s(ξ) =
[
s1(ξ), . . . , sn(ξ)

]

at the points of the reference grid determine grid nodes in Sn and consequently
in Sxn by mapping them through x(s).

Similar to (10.47) it is readily shown from the equations in (10.56), that
the general inverted Beltrami equations with respect to the control metric gs

ij

are as follows:
Bξ

n[sl] = gξΔB [sl], l = 1, . . . , n, (10.60)

where

Bξ
n[sl] = gξgij

ξ

∂2sl

∂ξi∂ξj
, i, j, l = 1, . . . , n,

gξ = det(gξ
ij) = gs(J)2 = 1/ det

(
gij

ξ

)
,

ΔB [sl] =
1√
gs

∂

∂sj

(√
gsglj

s

)
, i, j, l = 1, . . . , n,

J = det(∂si/∂ξj), gξ
ij(g

ij
ξ ) are the covariant (contravariant) elements of the

control metric in the grid coordinates ξ1, . . . , ξn, i.e.
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gξ
ij = gs

kl

∂sk

∂ξi

∂sl

∂ξj
, gij

ξ = gkl
s

∂ξi

∂sk

∂ξj

∂sl
, i, j, k, l = 1, . . . , n. (10.61)

Notice that the operator Bξ
n is in fact the operator Bxξ

n (see (10.46)) if gξ
ij =

gxξ
ij , while it is the operator Brξ

n (see (10.50)) if gξ
ij = grξ

ij , and the operator
Bn in the formula (6.16) if gξ

ij = gij .
Consequently, the boundary value problem (10.56) is transformed into

the following inverted problem with respect to the components si(s) of the
intermediate function s(ξ) : Ξn → Sn

Bξ
n[si] = (J)2

√
gs

∂

∂ξk

(√
gsgij

s

)∂ξk

∂sj
, i, j, k = 1, . . . , n,

si(ξ)|∂Ξn = ψi(ξ), i = 1, . . . , n,

(10.62)

where ψ(ξ) : ∂Ξn → ∂Sn, ψ(ξ) = [ψ1(ξ), . . . , ψn(ξ)], is the inverse of ϕ(s) :
∂Sn → ∂Ξn, J = det(∂si/∂ξj).

Similar to (10.62) there is written out the Dirichlet boundary value prob-
lem obtained from (10.58) for the inverted diffusion equations

Bξ
n[si] =

gs(J)2

w(s)
∂

∂ξk

(
w(s)gij

s

)∂ξk

∂sj
, i, j, k = 1, . . . , n,

si(ξ)|∂Ξn = ψi(ξ), i = 1, . . . , n.

(10.63)

The inverted diffusion equations in (10.63) are also transformed into the
following divergent form

∂

∂ξj

{
Jw[s(ξ)]gij

ξ

}
= 0, i, j = 1, . . . , n, (10.64)

obtained by applying the identity (2.47) to the equations in (10.58). Substi-
tuting in (10.64)

√
gs for w(s) gives a divergent form for the inverted Beltrami

equations.
Another formulation of a grid model through the Beltrami equations with

respect to the intermediate transformation s(ξ):

∂

∂ξj

(
√

ggjk ∂si

∂ξk

)
= 0, i, j, k = 1, . . . , n,

si(ξ)|Ξn = ψi(ξ),
(10.65)

where gjk are the contravariant metric components of a monitor manifold over
Ξn, g = det(gjk) = 1/ det(gjk), was proposed by Godunov and Prokopov
(1967), and Ryskin and Leal (1983). The equations in (10.65) seem to be
more natural than the nonlinear inverted Beltrami equations in (10.62) ob-
tained from the Beltrami equations in (10.56) for the implementation into
numerical codes, since they are linear and of divergent form with respect to
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Fig. 10.2. Quadrilateral (a) and triangular (b) grids in concave domains generated
by the solution of equations (10.65) (left) and by the solution of equations in (10.62)
(right); both with respect to the Euclidean metric

the intermediate transformation s(ξ). However, such divergent model, owing
to the maximum principle, does not guarantee that all grid points will be
inside of the physical geometry Sxn when the parametric domain Sn is not
convex (see Fig. 10.2, left), moreover the grid cells may be folded. Providing
grid nondegeneracy through the solution of equations in (10.65) depends on
devising a suitable metric in Ξn, which hasn’t been done so far in a general
form.

The considerations mentioned are such that it is more reasonable to make
the formulation of grid systems through the Beltrami equations with respect
to the function ξ(s) : Sn → Ξn the inverse of which yields the intermediate
transformation s(ξ) : Ξn → Sn.

10.6 Numerical Algorithms

The boundary value problems (10.62) or (10.63) allow one to generate grids
on surfaces or in domains of an arbitrary dimension n > 0, and hence these
problems can be applied to obtain grids in n-dimensional blocks by means of
the successive generation of grids on curvilinear edges, faces, parallelepipeds,
etc., using the solution at a step i < n as the Dirichlet boundary condition for
the following step i + 1 ≤ n (see Fig. 10.3 for n = 3). Thus, both the interior
and the boundary grid points of a domain or surface can be calculated by the
similar elliptic solvers.

Note that the basic system implemented in the present codes to generate
adaptive and fixed structured grids is obtained by inverting the Poisson system
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Fig. 10.3. Scheme for successive generation of one-dimensional, two-dimensional
triangular and quadrilateral boundary grids, and three-dimensional prismatic inte-
rior grids

(10.31) and has the form (6.16):

Bxξ
n [xi] + gP j ∂xi

∂ξj
= 0, i, j = 1, . . . , n, (10.66)

where Bxξ
n is the operator (10.46). Formally, the systems in (10.62) and (10.63)

have some sort of similarity to the system (10.66). Therefore, the numerical
algorithms developed in the current codes for the numerical solution of the
inverted Poisson equations (10.66) can be applied with some modification to
the solution of the boundary value problems (10.62) or (10.63).

In this section, we describe some such numerical algorithms for solving
the Dirichlet boundary value problem for the inverted Beltrami and diffusion
equations.

10.6.1 Finite-Difference Algorithm

Solutions of the transformed non-linear boundary-value problem (10.62) are
found in the following way. First, this problem is replaced by a nonstationary
boundary-value problem with respect to the components si(ξ, t), i = 1, . . . , n,
of the vector function s(ξ, t) : Ξn × [0, T ] → Sn:

∂si

∂t
= (J)p

{
Bξ

n[si] − (J)2
√

gs
∂

∂ξj
(

√
gsgim

s )
∂ξj

∂sm

}
, i, j, m = 1, . . . , n,

si(ξ, t) = ψi(ξ), ξ ∈ ∂Ξn, t ≥ 0, (10.67)
si(ξ, 0) = si

0(ξ), ξ ∈ Ξn,

where J = det(∂si/∂ξj), p ≥ 0, si
0(ξ) is the i-th component of the initial

transformation
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s0(ξ) : Ξn → Sn, s0(ξ) =
[
s1
0(ξ), . . . , sn

0 (ξ)
]
,

specified by the user. The factor (J)p, p ≥ 0 in (10.67) is introduced to rule
out the Jacobian J being a denominator after replacing in the right-hand part
of the equations the derivatives ∂ξi/∂sj with the derivatives ∂sk/∂ξm, in par-
ticular in the case of the metric of a monitor hypersurface. This incorporation
of (J)p allows one to produce the final nondegenerate grid even if the initial
and intermediate grids may be singular ones.

The problem (10.67) is written out in the following vector form

∂s

∂t
= (J)p

{
Bξ

n[s] − R[s]
}
,

s(ξ, t)|∂Ξn = ψ(ξ), t ≥ 0, (10.68)
s(ξ, 0) = s0(ξ), ξ ∈ Ξn,

where

R[s] =
(
R1[s], . . . , Rn[s]

)
,

Ri[s] = (J)2
√

gs
∂

∂ξj

(√
gsgim

s

) ∂ξj

∂sm
, i, j, m = 1, . . . , n.

Notice that, for the metric (10.8) of the monitor hypersurface Srn over Sn,
i.e. gs

ij = grs
ij , Bξ

n = Brξ
n (see (10.50)) and in accordance with (10.51),

Ri[s] = −Brξ
n [f ] · ∂f [s(ξ)]

∂ξj

∂ξj

∂si
, i, j = 1, . . . , n, (10.69)

thus, for this case, p = 1 in (10.67) and (10.68).
When Bξ

n is an elliptic operator, then the solution of the problem (10.68)
relaxes to the solution of (10.62) as t → ∞.

The boundary value problem (10.68) is usually solved by alternating di-
rection implicit (ADI) methods. We discuss here a method of fractional steps
which is one of such ADI methods.

10.6.1.1 One-Dimensional Equation

For n = 1 we have

Bξ
1 [s] = gξ

11

∂2s

∂ξ1∂ξ1
, R1[s] = − ds

dξ1

√
gs
11

d

dξ1

[
1√
gs
11

]

and a numerical solution of the boundary value problem (10.68) for n = 1 is
found through the following scheme

sk+1
i − sk

i

τ
= (J)p[sk]

{
gξ
11[s

k](sk+1
i+1 − 2sk+1

i + sk+1
i−1 ) + R1[sk]

}
,

where sk = s(ξ, kτ), k = 0, 1, 2, . . . .
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10.6.1.2 Two-Dimensional Equations

For n = 2 we have

Bξ
2 [s] = gξ

22

∂2s

∂ξ1∂ξ2
− 2gξ

12

∂2s

∂ξ1∂ξ2
+ gξ

11

∂2s

∂ξ2∂ξ2
,

Ri[s] = (−1)j+mJ
√

gs
∂

∂ξj

(√
gsgim

s

)∂s3−m

∂ξ3−j
, i, j, m = 1, 2.

In particular, for the metric (10.8) of the monitor hypersurface Sr2 over S2,
i.e. gs

ij = grs
ij , Bξ

2 = Brξ
2 (see (10.50)) and in accordance with (10.69) for n = 2

Bξ
2 [y] ≡ grξgij

ξr

∂2y

∂ξi∂ξj
= grξ

22

∂2y

∂ξ1∂ξ1
− 2grξ

12

∂2y

∂ξ1∂ξ2
+ grξ

11

∂2y

∂ξ2∂ξ2

= Bxξ
2 [y] +

∂f(s(ξ))
∂ξ2

· ∂f(s(ξ))
∂ξ2

∂2y

∂ξ1∂ξ1

− 2
∂f(s(ξ))

∂ξ1
· ∂f(s(ξ))

∂ξ2

∂2y

∂ξ1∂ξ2

+
∂f(s(ξ))

∂ξ1
· ∂f(s(ξ))

∂ξ1

∂2y

∂ξ2∂ξ2
, i, j = 1, 2,

Ri[s] = −(−1)j+i 1
J

(
Brξ

2 [f ] · ∂f

∂ξj

)
∂s3−i

∂ξ3−j
, i, j = 1, 2, i fixed.

A numerical solution of (10.68) for n = 2 is found through the following
scheme

sk+1/2 − sk

τ/2
= (J)p[sk]

{
gξ
22[s

k]Lh
11[s

k+1/2] − 2gξ
12[s

k]Lh
12[s

k]

+ gξ
11[s

k]Lh
22[s

k] + R[sk]
}
, (10.70)

sk+1 − sk+1/2

τ/2
= (J)p[sk]gξ

11[s
k]

{
Lh

22[s
k+1] − L22[sk]

}
.

Here sk+α = s(ξ, (k + α)τ), k = 0, 1, 2, . . . , α = 0, 1/2, 1, Lh
ij is a finite-

difference operator approximating the operator ∂2/(∂ξi∂ξj), by the central
differences. The first derivatives in the expressions gξ

ij [s
k], J [sk] and R[sk]

are also approximated by the central differences. The initial transformation
s(ξ, 0) = s0(ξ) is found through the formulas of transfinite interpolations
described in Chap. 5. In two dimensions, the logical domain Ξ2 may be taken
as a unit square (Fig. 10.4 (left)) or, for example, as a symmetric trapezoid
(Fig. 10.4 (right)), in particular, a triangle.

An analogous algorithm is written out for the boundary value problem
(10.63) with n = 2.
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Fig. 10.4. Quadrilateral and triangular stencils for finite differences

10.6.1.3 Three-Dimensional Equations

For n = 3 in (10.68), we obtain

Bξ
3 [s] =gξgij

ξ

∂2s

∂ξi∂ξj

=
[
gξ
22g

ξ
33 − (gξ

23)
2
] ∂2s

∂ξ1∂ξ1
+

[
gξ
11g

ξ
33 − (gξ

13)
2
] ∂2s

∂ξ2∂ξ2

+
[
gξ
11g

ξ
22 − (gξ

12)
2
] ∂2s

∂ξ3∂ξ3
+ 2[gξ

23g
ξ
13 − gξ

12g
ξ
33]

∂2s

∂ξ1∂ξ2

+ 2[gξ
12g

ξ
23 − gξ

22g
ξ
13]

∂2s

∂ξ1∂ξ3
+ 2[gξ

13g
ξ
12 − gξ

23g
ξ
11]

∂2s

∂ξ2∂ξ3
,

i, j = 1, 2, 3, (10.71)

and applying formula (2.4)

Ri[s] = J
√

gs
∂

∂ξj

(√
gsgim

s

)(∂sm+1

∂ξj+1

∂sm+2

∂ξj+2
− ∂sm+1

∂ξj+2

∂sm+2

∂ξj+1

)
,

i, j, m = 1, 2, 3.

In particular, for the metric (10.8) of the monitor hypersurface Sr3 over S3

we have Bξ
3 = Brξ

3 , while

Ri[s] = − 1
J

Brξ
3 [f ] · ∂f [s(ξ)]

∂ξj

(
∂si+1

∂ξj+1

∂si+2

∂ξj+2
− ∂si+1

∂ξj+2

∂si+2

∂ξj+1

)
,

i, j = 1, 2, 3, i fixed.

where operator Brξ
3 is defined by the formula (10.50) for n = 3. If fact the

operator Brξ
3 is described by (10.71) with the identification gξ

ij = grξ
ij .

Similar to (10.70) a numerical solution of (10.68) for n = 3 is found through
the following scheme



322 10 Comprehensive Method

sk+1/3 − sk

τ/3
= (J)p[sk]

{
a11[sk]Lh

11[s
k+1/3] + a22[sk]Lh

22[s
k]

+ a33[sk]Lh
33[s

k] + 2a12[sk]Lh
12[s

k] + 2a13[sk]Lh
13[s

k]
+ 2a23[sk]Lh

23[s
k] − R[sk]

}
,

sk+2/3 − sk+1/3

τ/3
= (J)p[sk]a22[sk]

{
Lh

22[s
k+2/3] − Lh

22[s
k]

}
,

sk+1 − sk+2/3

τ/3
= (J)p[sk]a33[sk]

{
Lh

33[s
k+1] − Lh

33[s
k]

}
,

where sk+α = s(ξ, (k + α)τ), k = 0, 1, 2, . . . , α = 0, 1/3, 2/3, 1,

aij = gξgij
ξ =

(
gξ

i+1j+1g
ξ
i+2j+2 − gξ

i+1j+2g
ξ
i+2j+1

)
, i, j = 1, 2, 3.

An analogous algorithm is written out for the boundary value problem
(10.63) with n = 3.

10.6.2 Spectral Element Algorithm

The divergent inverted diffusion equations (10.64) as well as the divergent
inverted Beltrami equations may be solved by a parallel code, using spectral
elements for spatial discretization, Newton–Krylov methods for solution, and
an adaptive time step.

Spatial discretization by high-order spectral elements is a method of ex-
ploiting the best features of both grid-based methods and global spectral
representations. Grid-based methods, such as the finite difference approach
described above, lead to nearest neighbor coupling and its resultant sparse
matrix structure, and lend themselves to parallelization by domain decom-
position and the kind of adaptive gridding. On the other hand, convergence
of the spatial truncation error in these methods is relatively slow, typically a
low power of the grid spacing h. Global spectral methods overcome the latter
problem, offering exponential convergence with increasing numbers of basis
functions, but lead to large, dense matrices and offer no obvious way to use
adaptive gridding and parallelization by domain decomposition. With spec-
tral elements, there is a relatively coarse grid, and within each grid cell there
is a local expansion in basis functions based on orthogonal polynomials. The
grid provides nearest-neighbor coupling while the spectral expansion provides
exponential convergence.

All equations for spectral elements are to be expressed in flux-source form,

∂uk

∂t
+ ∇ · Fk = Sk. (10.72)

This very form has the following system

∂si

∂t
− ∂

∂ξj
(Jw(s)gji

ξ ) = 0, i, j = 1, . . . , n, (10.73)
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obtained from the inverted diffusion equations (10.64). The dependent vari-
ables uk in (10.72) within each grid cell are expanded in a spectral basis
αj(ξ),

uk(t, ξ) ≈
n∑

j=0

uk
j (t)αj(ξ). (10.74)

Spatially discretized equations are obtained by a Galerkin method, taking the
scalar product of (10.72) with each basis function and integrating by parts to
obtain

M̈ u̇ = r ≡
∫

Ξn

(Skαi + Fk · ∇αi)dξ −
∫

∂Ξn

Fk
i · n̂dξ (10.75)

with M̈ the mass matrix, Mi,j ≡ (αi, αj), and the u the vector of mode
amplitudes uk

j (t). Integrals are evaluated by Gaussian quadrature to an order
appropriate to the degree of the Jacobi polynomials. Fluxes and sources may
depend in an arbitrary nonlinear manner on t, ξ, uk, and ∇uk. The code is
structured in such a way that the details of discretization and the specification
of physics equations are separated into different subroutines, making it as
simple as possible to encode complex physics. The discretized flux-source form
preserves conservation properties to high order. Elliptic equations are treated
by zeroing the mass matrix.

Time discretization of (10.75) is fully implicit in order to treat multiple
time scales efficiently and accurately,

M̈

(
u+ − u−

h

)
= θr+(u+) + (1 − θ)r−(u−) (10.76)

with the time-centering parameter θ normally chosen as 1/2 (Crank–Nicholson)
for accuracy. Solution of (10.76) requires finding the roots of the nonlinear
residual,

R(u+) ≡ M̈(u+ − u−) − h[θr+ + (1 − θ)r−] = 0, (10.77)

solved by Newton’s iteration,

R + J̈δu+ = 0, δu+ = −J̈ −1R(u+), u+ → u+ + δu+ (10.78)

with the Jacobian defined as J̈ ≡ M̈ − hθ{∂r+
i /∂u+

j }.
Efficient solution of the large sparse linear system in (10.78) is greatly

enhanced by the method of static condensation. Because of the C0 nature of
the spectral element representation, discussed above, higher-order elements in
one grid cell couple to those in neighboring grid cells only through the shared
linear finite elements which straddle cell boundaries.
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10.7 Formulation of Control Metrics

The control metric serves for controlling the properties of grids in the physical
geometry Sxn. It is evident that the metric should take into account the
quantities requiring grid adaptation: geometric characteristics of Sxn, physical
variables and their derivatives, specified vector fields, error of the numerical
solution applied, etc.

For the purpose of better handling grid control, it is reasonable to restrict
the whole set of the control metrics to a basic subset which, however, can be
adequate for realizing the necessary grid properties. Also, these basic control
metrics are to be described by simple formulas which allow one to establish
readily the relations between them and the grid characteristics. Further, one of
the natural ways to satisfy balanced grid properties, each of which is realized
by an individual control metric, is to combine these metrics linearly. Therefore,
the basic metric tensors formulated should be subject to the operation of
summation in the sense that the sum of the two control metrics from the
subset is also the metric (nonsingular tensor). Note, in general, the sum of two
metrics may not be a metric, since the sum of two nonsingular matrices may
be a singular matrix. In addition, a mathematical formulation of the control
metric should be simple and comprehensive, so that a robust grid code could
be developed for automatic generation of grids with required properties.

This section describes an approach for formulating such basic control met-
rics.

The most general and simple formulation of the imposed control metric
on Sxn whose covariant elements in the parametric coordinates s1, . . . , sn, are
designated by gs

ij , is given through a set of covariant tensors of the first rank

Fk(s) = [F k
1 (s), . . . , F k

n (s)], k = 1, . . . , l,

by the following formula

gs
ij = z(s)gxs

ij + F k
i (s)F k

j (s), i, j = 1, . . . , n, k = 1, . . . , l, (10.79)

where gxs
ij is the metric of Sxn, z(s) ≥ 0 is a weight function specifying the

contribution of this metric to the control metric gs
ij . In particular, the metric

(10.79) with z(s) = 1, F k
i = ∂fk/∂si has the form (10.8) and (10.9). Also

suggesting in (10.79) z(s) = 0, F k
i = ∂ψk/∂si, i, k = 1, . . . , n, yields the

metric (10.57).
Of course, it is assumed that the function z(s) and the vectors Fk(s), k =

1, . . . , l, in (10.79) are subject to the restriction

gs = det(gs
ij) > 0,

at each point s ∈ Sn.
Notice, if we introduce in Rn+k+l vectors wi(s), i = 1, . . . , n by the for-

mula
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wi(s) =
[√

z(s)
∂x
∂si

, F 1
i , . . . , F l

i

]
, i = 1, . . . , n,

where x(s) is the parametrization (10.1) of the physical geometry Sxn, then
it is obvious that

gs
ij = wi · wj , i, j = 1, . . . , n.

So, for nonsingularity of the control metric tensor (10.79) the vectors wi(s),
i = 1, . . . , n, must be independent. In particular, the vectors wi(s), i =
1, . . . , n, will be independent if z(s) > 0 at each point s ∈ Sn since the
tangent vectors ∂x/∂si, i = 1, . . . , n, of Sxn are independent.

It is evident that the linear combination of two metric tensors of the
form (10.79) with corresponding nonnegative coefficients ε1(s) and ε2(s) is
the matrix of the same form (10.79), and it is nonsingular (metric tensor) if
ε1(s) + ε2(s) > 0 at each point of s ∈ Sn.

Sometimes, instead of the covariant metric components gs
ij it is convenient,

in particular in order to define the measure of grid departure (10.55) from a
required grid, to formulate the contravariant components gij

s of the control
metric, for example, in the form (10.79), namely as

gij
s = ε(s)gij

sx + Bi
kBj

k, i, j = 1, . . . , n, k = 1, . . . , l, (10.80)

where ε(s) ≥ 0, gij
sx are the contravariant metric elements of Sxn, while Bi

k, i =
1, . . . , n, are the components of a contravariant vector Bk = (B1

k, . . . , Bn
k ),

k = 1, . . . , l.

10.7.1 Specification of Individual Control Metrics

10.7.1.1 Control Metric for Generating Field-Aligned Grids

A contravariant metric tensor in the form (10.80) allows one to control the
angle between the normal to a grid coordinate hypersurface in Sxn and a
specified vector field, in particular, to generate vector field-aligned grids. As
a tensor of the first rank in the formula (10.80) one may take either the same
or a transformed vector field.

The need for a vector field-aligned coordinate system can be appreciated in
the case Sxn = Sn by considering the heat equation in a magnetized plasma,
written in the grid coordinates ξi,

∂T

∂t
= ∇ · (χ · ∇T ) =

1
J

∂

∂ξi

(
Jχ : ∇ξi∇ξj ∂T

∂ξj

)
, i, j = 1, 2, 3. (10.81)

By far the largest component of the anisotropic thermal conductivity ten-
sor χ equals χ‖bb, where χ‖ is parallel conductivity and b is the unit vector
along the magnetic field B = (B1, . . . , Bn). If b · ∇ξi is of order unity for all
grid coordinates ξi, then the much smaller transverse terms in (10.81) involve
the difference between large terms, resulting in a loss of numerical accuracy.
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If it vanishes, or nearly so, for all but one coordinate, this inaccuracy can
be avoided. Similar considerations hold for other manifestations of magnetic
anisotropy.

For simple magnetic fields, such as those in the core region of the tokamak,
it is possible to define a flux coordinate ψ labeling the magnetic surfaces,
satisfying B · ∇ψ = 0 exactly. In more complicated cases, such as nonax-
isymmetric magnetic fields with multiple islands and regions of stochasticity,
this is not possible. For the choice of the contravariant control metric tensor
(gij

s ) = BB = (BiBj), (10.52) or (10.53) may be interpreted as a variational
principle for minimizing B · ∇ξi for one of the coordinates. This is too simple,
however, because such a tensor is singular, gs = det(gij

s ) = 0.
The matrix (gij

s ) whose elements are specified in the form (10.80) is non-
degenerate for an arbitrary ε(s) > 0; in addition this matrix is close to the
matrix (BiBj) when both ε(s) and Bk, k = 2, . . . , l are small and B1 = B.
Assuming this matrix as a contravariant metric tensor of a monitor mani-
fold over Sn yields, in accordance with (10.55), the following measure of grid
nonalignment with the vector field B

m(s) = w(s)
[
ε(s)δj

k + BjBk + Bj
mBk

m

]∂ξi

∂sj

∂ξi

∂sk
,

i, j, k = 1, . . . , n, m = 2, . . . , l,

and the contravariant elements

gij
s = ε(s)δi

j + BiBj + Bi
mBj

m,

i, j, m = 1, . . . , n, m = 2, . . . , l, (10.82)

of the control metric for generating vector field-aligned grids.
While this approach to grid alignment with the magnetic field was mo-

tivated by the work of Brackbill (1993), there is a substantial difference.
Whereas Brackbill has a variational principle similar to (10.52) or (10.53),
his integrand is designed to make a coordinate gradient parallel to a specified
vector field; the approach described above is designed to make a coordinate
gradient perpendicular to a specified vector field.

10.7.1.2 Control Metric for Generating Grids Adapting
to the Values of a Function

For generating a numerical grid in a physical geometry Sxn with node cluster-
ing in the zones of large values of a function |v(s)| the measure of departure
from the necessary grid in Sxn can be expressed in the form

m(s) = Z[v](s)gkm
sx

∂ξi

∂sk

∂ξi

∂sm
, i, j, k, m = 1, . . . , n, (10.83)

where Z[v] > 0 is a positive operator such that Z[v](s) is large (small) where
|v(s)| is small (large), in particular,
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Z[v](s) =
1

c1|v(s)| + c2
, c1 > 0, c2 > 0. (10.84)

So the contravariant elements of the control metric are as follows:

gij
s = Z[v](s)gij

sx, i, j = 1, . . . , n. (10.85)

Consequently, the covariant elements of the control metric are written out
as

gs
ij = Ψ [v](s)gxs

ij , i, j = 1, . . . , n, (10.86)

where Ψ [v](s) = 1/Z[v](s), therefore gs = gxs(z[v])−n/2. So the Beltrami
equations in (10.56) with respect to the metric (10.86) are expressed in the
form

∂

∂sj

(
(Z[v])(2−n)/2√

gxsgjk
sx

∂ξi

∂sk

)
= 0, i, j = 1, . . . , n, (10.87)

while the inverted Beltrami equations with respect to the metric (10.86) are
as follows:

Bxξ
n [sk] = J2√

gxs(Z[v])(n−2)/2 ∂

∂sj

(
(Z[v])(2−n)/2√

gxsgjk
xs

)
,

j, k = 1, . . . , n, (10.88)

where

Bxξ
n [y] = gxξgij

ξx

∂2y

∂ξi∂ξj
, i, j = 1, . . . , n.

In particular, if Sxn coincides with Sn, i.e. gxs
ij = δi

j and consequently
gxs = 1, gij

sx = δi
j , then the Beltrami equations (10.87) are as:

∂

∂sj

(
(Z[v])(2−n)/2 ∂ξi

∂sj

)
= 0, i, j = 1, . . . , n.

This system of equations is equivalent to the system of Poisson equations (6.13)

∂2ξi

∂sj∂sj
= P i, i = 1, . . . , n,

where

P i =
n − 2

2
1

Z[v]
∂Z[v](s)

∂sj

∂ξi

∂sj
=

n − 2
2

1
Z[v]

∂Z[v](s(ξ))
∂ξm

gim
ξx ,

i, j, m = 1, . . . , n.

Consequently, the inverted equations are as follows:

Bxξ
n [sk] =

2 − n

2
J2 1

Z[v]
∂

∂sk
Z[v](s), k = 1, . . . , n. (10.89)
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Fig. 10.5. Three-dimensional domain (left) and a fragment of an adaptive grid
(right) in the interior of the domain

Figure 10.5 illustrates an adaptive three-dimensional grid obtained by the
numerical solution of equations (10.89) through the algorithm described in
Sect. 10.6.1. The grid nodes cluster in the zones of large values of a function
v(s).

The diffusion equations in (10.58) with respect to the metric (10.86) are
expressed as:

∂

∂sj

(
w(s)Z[v]gjk

sx

∂ξi

∂sk

)
= 0, i, j = 1, . . . , n. (10.90)

So, the inverted diffusion equations in the metric (10.85) necessary to generate
the adaptive grids are:

Bxξ
n [sk] =

J2gxs

w(s)Z[v]
∂

∂sj

(
w(s)Z[v]gjk

xs

)
, j, k = 1, . . . , n. (10.91)

These equations for n = 2 are more efficient for adaptation than the inverted
Beltrami equations (10.88) and (10.89), which for n = 2 do not depend on the
operator Z[v].

10.7.1.3 Control Metrics for Generating Grids Adapting
to the Gradient of a Function

The contravariant metric tensor (10.85) can also be used for providing node
clustering in the zones of large variations of a function f(s) = (f1(s), . . . ,
f l(s)), introducing for this purpose an operator Z[grad f ] such that Z[grad f ](s)
is large where |grad f |(s) is small and vice versa. Figure 10.6 illustrates an
adaptive prismatic grid with such node clustering.

One more control metric for generating grids with node clustering in the
zones of the large variation of the function f(s) is of the form

gs
ij = ε(s)gxs

ij + εk(s)
∂fk

∂si

∂fk

∂sj
, i, j = 1, . . . , n, k = 1, . . . , l, (10.92)
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Fig. 10.6. Three-dimensional prismatic adaptive grid

where ε(s) ≥ 0, εk(s) ≥ 0, k = 1, . . . , l. This control metric is a generalization
of the metric of a monitor hypersurface (see formulas (10.8) and (10.9)).

10.7.2 Control Metrics for Generating Grids with Balanced
Properties

For computing numerical grids that are field-aligned and adaptive to the values
of one function and/or to the variation of another function, a natural way for
defining a control metric consists in combining the corresponding metrics; i.e.,
the covariant elements of the balanced control metric are to have a form

gs
ij(s) = ε1(s)gal

ij + ε2(s)g
adg
ij + ε3(s)gadv

ij , i, j = 1, . . . , n, (10.93)

where εk(s) ≥ 0, k = 1, 2, 3 are the weight functions specifying the contribu-
tion of the covariant elements gal

ij , gadg
ij , and gadv

ij . The marks al, adg and adv
in this formula mean that the corresponding metric elements are chosen to
grid alignment, adaptation to gradients of a function, and adaptation to the
values of the same of another function, respectively. It is evident that (10.93)
will be a covariant metric tensor if

ε1(s) + ε2(s) + ε3(s) > 0, s ∈ Sn.

Analogously, there is written out a formula for the contravariant components
gij

s of the balanced control metric

gij
s (s) = w1(s)g

ij
al + w2(s)g

ij
adg + w3(s)g

ij
adv, i, j = 1, . . . , n. (10.94)

There may be other effective ways for combining the corresponding ten-
sor components; in particular, for generating grids that are field-aligned and
adaptive to the values of a function v(s), adequate results are demonstrated
with the help of the following formula for the contravariant control metric
elements

gij
s (s) = Z[v](s)gij

al, i, j = 1, . . . , n. (10.95)
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This metric provides a compromise between alignment and adaptation. An
example of the grid generated by the spectral-element method through the
metric (10.95) with Z[v](s) specified by (10.84) was demonstrated in Glasser
et al. (2006).

10.7.3 Application to Solution of Singularly-Perturbed Equations

As an example we consider the application of the adaptive grid technology
described above to the numerical solution of the following boundary value
problem for a singularly- perturbed equation

− εΔu + a(s) · ∇u + f(s, u) = 0, s ∈ Sn,

u(s) = u0(s), s ∈ ∂Sn,
(10.96)

where

Δu =
n∑

i=1

∂2u

∂si∂si
, i = 1, . . . , n, ∇u =

(
∂u

∂s1
, . . . ,

∂u

∂sn

)
,

Sn ⊂ Rn ia a bounded domain, a(s) = (a1(s), . . . , an(s)) is the convection
vector, f(s, u) is a specified function, while 0 < ε  1 is the coefficient of
diffusion.

Depending on the function a(s), the solution of (10.96) has boundary
and/or interior layers when the coefficient ε is small.

The boundary value problem (10.96) is written out in the grid coordinates
ξi as:

− εBsξ
n [u] + F [u] = 0,

u(ξ) = ϕ(ξ), ξ ∈ ∂Ξn,
(10.97)

where ϕ(ξ) = u0[s(ξ)],

F [u] =
{
(J)2ai[s(ξ)] + εBsξ

n [si]
} ∂u

∂ξp

∂ξp

∂si
+ (J)2f(s(ξ), u), i, p = 1, . . . , n,

Bsξ
n [u] = gsξgij

ξs

∂2u

∂ξi∂ξj
,

gij
ξs =

∂ξi

∂sk

∂ξj

∂sk
, gsξ = (J)2, J = det

(
∂si

∂ξj

)
, i, j = 1, . . . , n.

Similar to (10.67), the problem (10.97) is replaced by the following nonsta-
tionary problem with respect to the function u(ξ, t)

∂u

∂t
= J

{
εBsξ

n [u] − F [u]
}
,

u(ξ, t) = ϕ0(ξ), ξ ∈ ∂Ξn, (10.98)
u(ξ, 0) = u0(ξ), ξ ∈ Ξn.
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Fig. 10.7. Adaptive grid (left) and the solution with the interior layer (right)

Fig. 10.8. Three-dimensional adaptive grid (left), its two-dimensional fragment
(center), and the solution at the nodes of a coordinate surface (right)

Since the operator Bsξ
n is in fact the operator Bξ

n in (10.67) with gξ
ij = gsξ

ij ,
the problem (10.98) is solved with the problem (10.67) by the same method
described in Sect. 10.6.1.

Figures 10.7 and 10.8 show the resulting two- and three-dimensional adap-
tive grids with node clustering in the zones of the interior layers of u(s).

10.8 Comments

The method presented here, based on the utilization of the invariants of the
metric tensor of the hypersurface to define the functional of smoothness, was
formulated and justified by Liseikin (1991a, 1992, 1993a, 1999). All properties
and interpretations of the functionals and the corresponding Beltrami and
diffusion equations described here were studied and published by Liseikin
1991a, 1992, 1993a, 1996a, 1999, 2001a, 2001b, 2002a, 2002b, 2003, 2004,
2005, 2007).
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Functionals of nonconformality to generate grids on hypersurfaces were
formulated, in analogy to the functional (8.33) or (8.37), by Liseikin (1991a,
1999). Numerical implementations of the functional (10.23) with n = 3,
α = 3/2 for generating three-dimensional adaptive grids were performed by
Branets and Garanzha (2002) and Azarenok (2007).

The formulas of the general control metrics were proposed by Liseikin
(2004, 2007). An application of the geometry of manifolds and the control
metrics to generating adaptive grids was performed by Liseikin (2004, 2005,
2007).

Implementations of the inverted Beltrami and diffusion equations with
respect to the control metric in numerical codes to generate adaptive grids
in domains and on surfaces were performed by Kupin and Liseikin (1994),
Liseikin and Petrenko (1994), Liseikin (2004), Shokin et al. (2005), Glasser et
al. (2006), Liseikin (2007), Liseikin, Likhanova, and Shokin (2007).

The measure (10.83) for generating adaptive grids in domains was intro-
duced by Danaev, Liseikin, and Yanenko (1980) and Winslow (1981). The
generation of grids through such a metric is helpful for numerically solving
problems with strong anisotropy, and problems of magnetized plasmas, in
particular.

The finite-difference algorithm of fractional steps described in this chapter
was proposed by Yanenko (1971). Other versions of this algorithm that can be
readily implemented for solving the resulting multidimensional grid equations,
in particular the popular ADI (alternating direction implicit) method, were
reviewed by Kovenya, Tarnavskii, and Chernyi (1990), Fletcher (1997), and
Langtangen (2003).

Alternative finite-difference grid generation algorithms based on the min-
imization of the inverted energy and diffusion functionals in the Eucledian
metric were developed by Ivanenko and Charakhch’yan (1988), while in the
metric of a monitor hypersurface, proposed by Liseikin (1991a, 1991b), they
were developed by Charakhch’yan and Ivanenko (1997), Garanzha (2000), and
Azarenok and Ivanenko (2001).

The spectral element method for solution of plasma equations was devel-
oped by Glasser and Tang (2004). Applications of this method for computing
plasmas and inverted diffusion grid equations were demonstrated by Glasser,
Liseikin, and Kitaeva (2005), Glasser et al. (2005), and Liseikin (2007).
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Unstructured Methods

11.1 Introduction

Unstructured mesh techniques occupy an important niche in grid generation.
The major feature of unstructured grids consists, in contrast to structured
grids, in a nearly absolute absence of any restrictions on grid cells, grid orga-
nization, or grid structure. Figuratively speaking, unstructured grids manifest
the domination of anarchy while structured grids demonstrate adherence to
order. The concept of unstructured grids allows one to place the grid nodes lo-
cally irrespective of any coordinate directions, so that curved boundaries can
be handled with ease and local regions in which the solution variations are
large can be resolved with a selective insertion of new points without unduly
affecting the resolution in other parts of the physical domain.

Unstructured grid methods were originally developed in solid mechanics.
Nowadays these methods influence many other fields of application beyond
solid modeling, in particular, computational fluid dynamics where, they are
becoming widespread.

Unstructured grids can, in principle, be composed of cells of arbitrary
shapes built by connecting a given point to an arbitrary number of other
points, but are generally formed from tetrahedra and hexahedra (triangles
and quadrilaterals in two dimensions). The advantages of these grids lie in
their ability to deal with complex geometries, while allowing one to provide
natural grid adaptation by the insertion of new nodes.

At the present time the methods of unstructured grid generation have
reached the stage where three-dimensional domains with complex geometry
can be successfully meshed. The most spectacular theoretical and practical
achievments have been connected with the techniques for generating tetra-
hedral (or triangular) grids. There are at least two basic approaches that
have been used to generate these meshes: Delaunay, and advancing-front.
This chapter presents a review of some popular techniques realizing these
approaches.

V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-90-481-2912-6 11, c© Springer Science+Business Media B.V. 2010
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Fig. 11.1. Convex (left) and strongly convex (right) quadrilateral cells

Note that the chapter addresses only some general aspects of unstructured
grid methods. The interested reader who wishes to learn more about the wider
aspects of unstructured grids should study, for example, the monographs by
Carey (1997), George and Borouchaki (1998), and Frey and George (2008).

11.2 Consistent Grids and Numerical Relations

This section presents some considerations associated with consistent unstruc-
tured grids. Such grids are composed of convex cells. The consistency prop-
erty of unstructured grids is often verified through relations which connect
the numbers of edges, faces, and cells of the grids. These relations are also
discussed in this section.

11.2.1 Convex Cells

A convex n-dimensional cell S is the convex hull of some n + k, k > 1, points
P 1, . . . , P n+k from Xn which do not lie in any (n − 1)-dimensional plane.
Thus S is composed of all points x ∈ Rn which are defined through P i by
the equation

x =
n+k∑

i=1

αiP i,

n+k∑

i=1

αi = 1, 1 ≥ αi ≥ 0.

We call all those points P l of the set {P i, i = 1, . . . , n + k} which lie on
the boundary of S vertices of the convex cell S.

A m-dimensional face of the convex n-dimensional cell S (n > m) is a
convex hull of m + 1 vertices Pl, which does not contain any other vertices
of S.

We call the cell S strongly convex if for all m < n it does not have any two
m-dimensional faces which lie in an m-dimensional plane. Fig. 11.1 demon-
strates the difference between convex (Fig. 11.1, left) and strongly convex
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(Fig. 11.1, right) cells. Evidently, if P is an interior point of the strongly con-
vex cell S with the vertices P 1, . . . , P n+k then there will be at least n + 1
points in the expansion of P

P =
n+k∑

i=1

αiP i,

n+k∑

i=1

αi = 1, αi ≥ 0, i = 1, . . . , n + k,

with nonzero values of their coefficients αi.

11.2.1.1 Simplexes and Simplex Cells

The simplest n-dimensional element applied to the discretization of domains
is an n-dimensional cell which is the hull of n+1 points x1, . . . , xn+1 that do
not lie in any (n − 1)-dimensional plane. Such cells are called simplexes. Thus
a simplex is formed by the points x from Rn satisfying the equation

x =
n+1∑

i=1

αixi, i = 1, . . . , n + 1,

n+1∑

i=1

αi = 1, αi ≥ 0.

(11.1)

This simplex is a strongly convex cell whose vertices are the points x1, . . . ,
xn+1. Each m-dimensional face of the simplex is an m-dimensional simplex
defined through m+1 vertices. The point x is an interior point of the simplex
if αi > 0 for all i = 1, . . . , n+1. It is obvious that a three-dimensional simplex
is a tetrahedron with the vertices x1, x2, x3, x4 while a two-dimensional
simplex is a triangle and a one-dimensional simplex is an interval.

In practical discretizations of domains, convex cells whose boundary faces
are simplexes are also applied. Such cells are referred to as simplex cells.

For each n-dimensional simplex cell S the following relation between the
number of faces is valid:

n−1∑

i=k

(−1)i

(
i + 1
k + 1

)
Ni = (−1)n−1Nk,

k = −1, . . . , n − 2, N−1 = 1, (11.2)(
l

m

)
=

l(l − 1) · · · (l − m + 1)
m!

, m ≥ 1,

(
l

0

)
= 1,

where Ni, i = 1, . . . , n, is the number of i-dimensional boundary simplexes
of S, and N0 is the number of vertices of S.

11.2.2 Consistent Grids

By a consistent grid or a consistent discretization we mean a set of points V
from Rn and a collection of n-dimensional strongly convex cells T satisfying
the following conditions:
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Fig. 11.2. Admitted (a) and nonadmitted (b, c, d) intersections of cells

(1) the set of the vertices of the cells of T coincides with V ;
(2) if two different cells S1 and S2 intersect, then the region of the intersection

is a common face for both cells.

This definition does not admit the fragments of discretizations depicted in
Fig. 11.2(b), (c), (d).

If the union of the cells of the consistent discretization constitutes a simply
connected n-dimensional domain, i.e. a domain which is homeomorphic to an
n-dimensional cube, then, in accordance with the Euler theorem,

n−1∑

i=0

(−1)iNi = 1 + (−1)n−1, (11.3)

where Ni, i > 0, is the number of i-dimensional boundary faces of the domain
discretization, while N0 is the number of boundary vertices. In particular, N1

is the number of boundary edges. The relation (11.3) and the following ones
can be used to verify the consistency of a generated grid.

11.2.2.1 Three-Dimensional Discretization

In three dimensions we have, for each consistent discretization, the following
generalization of the Euler formula (11.3):

N0 − N1 + N2 = 2(k − t), (11.4)

where k is the number of simply connected subdomains and t is the number
of holes.

For any convex three-dimensional cell, we also have the relations

N0 − N1 + N2 = 2,

4 ≤ N0 ≤ 2N2 − 4, (11.5)
4 ≤ N2 ≤ 2N0 − 4.
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Let N0(k) be the number of those vertices each of which is common to k
edges of a convex cell S. Analogously, by N2(k) we denote the number of faces
each of which is formed by k edges. Obviously,

N0 =
∑

k≥3

N0(k), N2 =
∑

k≥3

N2(k).

Using (11.3) we obtain

N0(3) + N2(3) = 8 +
∑

k≥4

(k − 4)
[
N0(k) + N2(k)

]
≥ 8. (11.6)

If the cell is a simplex cell, then we have from (11.2) the relations

N0 − N1 + N2 = 2,

− 2N1 + 3N2 = 0
(11.7)

or, in equivalent, form

N1 = 3N0 − 6,

N2 = 2N0 − 4.
(11.8)

Also, the following nonlinear inequalities for a simplex cell are valid:

2N1 < (N0 − 1)N0,

3N2 < (N0 − 2)N1.
(11.9)

11.2.2.2 Discretization by Triangulation

A consistent discretization by simplexes is called a triangulation. Let the num-
ber of edges be maximal for a given set of vertices of a two-dimensional trian-
gulation. Let C(P ) be the boundary of the hull formed by all vertices of the
triangulation and NC be the number of vertices which lie in C(P ). Then the
following relations are valid:

NT = 2(NV − 1) − NC ,

NE = 3(NV − 1) − NC ,
(11.10)

where NT is the number of triangles, NE is the number of edges, and NV is
the number of vertices of the triangulation. Thus the maximal triangulation
for the given vertices has a fixed number of triangles and edges.

11.3 Methods Based on the Delaunay Criterion

Much attention has been paid in the development of methods for unstructured
discretizations to triangulations which are based upon the very simple geomet-
rical constraint that the hypersphere of each n-dimensional simplex defined
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by n + 1 points is void of any other points of the triangulation. For example,
in three dimensions the four vertices of a tetrahedron define a circumsphere
which contains no other nodes of the tetrahedral mesh. This restriction is
referred to as the Delaunay or incircle criterion, or the empty-circumcircle
property. Triangulations obeying the Delaunay criterion are called Delaunay
triangulations. They are very popular in practical applications owing to the
following optimality properties valid in two dimensions:

(1) Delaunay triangles are nearly equilateral;
(2) the maximum angle is minimized;
(3) the minimum angle is maximized.

These properties give some grounds to expect that the grid cells of a
Delaunay triangulation are not too deformed.

The Delaunay criterion does not give any indication as to how the grid
points should be defined and connected. One more drawback of the Delaunay
criterion is that it may not be possible to realize it over the whole region with
a prespecified boundary triangulation. This disadvantage gives rise to two
grid generation approaches of constrained triangulation which preserve the
boundary connectivity and take into account the Delaunay criterion. In the
first approach of constrained Delaunay triangulation the Delaunay property
is overriden at points close to the boundaries and consequently the previously
generated boundary grid remains intact. Alternatively, or in combination with
this technique, points can be added in the form of a skeleton to ensure that
breakthroughs of the boundary do not occur. Another approach, which ob-
serves the Delaunay criterion over the whole domain, is to postprocess the
mesh by recovering the boundary simplexes which are missed during the gen-
eration of the Delaunay triangulation and by removing the simplexes lying
outside the triangulated domain.

There are a number of algorithms to generate unstructured grids based on
the Delaunay criterion in constrained or unconstrained forms.

Some methods for Delaunay triangulations are formulated for a preas-
signed distribution of points which are specified by means of some appro-
priate technique, in particular, by a structured grid method. These points
are connected to obtain a triangulation satisfying certain specific geometrical
properties which, to some extent, are equivalent to the Delaunay criterion.

Many Delaunay triangulations use an incremental Bowyer–Watson algo-
rithm which can be readily applied to any number of dimensions. It starts
with an initial triangulation of just a few points. The algorithm proceeds at
each step by adding points one at a time into the current triangulation and lo-
cally reconstructing the triangulation. The process allows one to provide both
solution-adaptive refinement and mesh quality improvement in the framework
of the Delaunay criterion. The distinctive characteristic of this method is that
point positions and connections are computed simultaneously.

One more type of algorithm is based on a sequential correction of a given
triangulation, converting it into a Delaunay triangulation.
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11.3.1 Dirichlet Tessellation

A very attractive means for generating a Delaunay triangulation of an assigned
set of points is provided by a geometrical construction first introduced by
Dirichlet (1850).

Consider an arbitrary set of points Pi, i = 1, . . . , N, in the n-dimensional
domain. For any point Pi we define a region V (Pi) in Rn characterized by the
property that it is constituted by the points from Rn which are nearer to Pi

then to any other Pj , i.e.

Vi =
{
x ∈ Rn|d(x, Pi) ≤ d(x, Pj), i �= j, j = 1, . . . , N

}
,

where d(a, b) denotes the distance between the points a and b. These areas
Vi are called the Voronoi polyhedrons. Thus, the polyhedra are intersections
of half-spaces and therefore they are convex, though not necessarily bounded.
The set of Voronoi polyhedra corresponding, to the collection of points Pi is
called the Voronoi diagramor Dirichlet tessellation. The common boundary of
two facing Voronoi regions V (Pi) and V (Pj) is an (n−1)-dimensional polygon.
A pair of points Pi and Pj whose Voronoi polyhedra have a face in common is
called a configuration pair. By connecting only the contiguous points, a net-
work is obtained. In this network, a set of n + 1 points which are contiguous
with one another forms an n-dimensional simplex. The circumcenter, i.e. the
center of the hypersphere, of any simplex is a vertex of the Voronoi diagram.
The hypersphere of the simplex is empty, that is, there is no point inside the
hypersphere. Otherwise, this point would be nearer to the circumcenter than
the points on the hypersphere. Thus the set of simplexes constructed in such
a manner from the Dirichlet tessellation constitutes a new tessellation which
satisfies the Delaunay criterion and is, therefore, a Delaunay triangulation.
The boundary of the Delaunay triangulation built from the Voronoi diagram
is the convex hull of the set of points Pi.

It should be noted that Delaunay triangulations and Dirichlet tessellations
can be considered the geometrical duals of each other, in the sense that for
every simplex Si there exists a vextex Pi of the tessellation and, conversely,
for every Voronoi region V (Pj) there exists a vertex Pj of the triangulation.
In addition, for every edge of the triangulation there exists a corresponding
(n − 1)-dimensional segment of the Dirichlet tessellation.

11.3.2 Incremental Techniques

The empty-hypercircle criterion of the Delaunay triangulation can be utilized
to create incremental triangulation algorithms for arbitrary dimensions. Recall
that by the Delaunay triangulation of a set VN of N points in n-dimensional
space we mean the triangulation of VN by simplexes with the vertices taken
from VN such that no point lies inside the hypersphere of any n-dimensional
simplex.
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Here two incremental methods are presented. In the first method a new
n-dimensional simplex is constructed during each stage of the triangulation,
using for this purpose the given set of points. In the second technique each
step produces several simplexes which are generated after inserting a new
point.

11.3.2.1 A-Priori-Given Set of Points

Let a set of points VN in a bounded n-dimensional domain Xn be given. We
assume that these points do not lie in any (n − 1)-dimensional hyperplane.
The incremental technique starts by taking an (n−1)-dimensional face e (edge
in two dimensions and triangle in three dimensions), commonly the one with
the smallest size, and constructing hyperspheres through the vertices of e and
any one of the remaining points of VN . One of these hyperspheres formed
by a point, say P1, does not contain inside it any point of VN . The (n − 1)-
dimensional simplex e and P1 define a new n-dimensional simplex. In the
next step the (n − 1)-dimensional simplex e is taken out of consideration. The
algorithm stops, and the triangulation is complete, when every boundary face
corresponds to the side of one simplex and every internal (n − 1)-dimensional
simplex forms the common face of precisely two n-dimensional simplexes. It
is clear that this algorithm is well suited to generate a Delaunay triangulation
with respect to a prescribed boundary triangulation.

The set of points used to generate the triangulation can be built with a
structured method or an octree approach, or by embedding the domain into a
Cartesian grid. However, the most popular approach is to utilize the strategy
of a sequential insertion of new points.

11.3.2.2 Modernized Bowyer–Watson Technique

Another incremental method, proposed by Baker (1989) and which is a gen-
eralization of the Bowyer–Watson technique, starts with some triangulation
not necessarily a Delaunay one, of the set of N points VN = {Pi|i = 1, . . . , N }
by an assambly of simplexes TN = {Sj }. For any simplex S ∈ TN , let RS be
the circumradius and QS the circumcenter of S. In the sequential-insertion
technique, a new point P is introduced inside the convex hull of VN . Let B(P )
be the set of the simplexes whose circumspheres contain the point P, i.e.

B(P ) =
{
S|S ∈ TN , d(P, QS) < RS

}
,

where d(P, Q) is the distance between P and Q. All these simplexes from
B(P ) form a region Γ (P ) surrounding the point P. This region is called the
generalized cavity. The maximal simply connected area of Γ (P ) that contains
the point P is called the principal component of Γ (P ) and denoted by ΓP . The
point P is checked to determine if it is visible from all boundary segments of
the principal component or if it is obscured by some simplex. In the former case
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the algorithm generates new simplexes associated with P by joining all of the
vertices of the principal component with the point P . In the latter case, either
this point is rejected and a new one is introduced or the principal component
ΓP is reduced by excluding the redundant simplexes from B(P ) to obtain an
area whose boundary is not obscured from P by any simplex. Then the new
simplexes are formed as in the former case. The union of these simplexes and
those which do not form the reduced region of the retriangulation defines a
new triangulation of the set of N +1 points VN+1 = VN ∪ {P }. In this manner,
the process proceeds by inserting new points, checking visibility, adjusting the
principal component, and generating new simplexes. The new triangulation
differs from the previous one only locally around the newly inserted point P.

In two dimensions we have that if the initial triangulation is the Delau-
nay triangulation then the region Γ (P ) is of star shape and consequently the
boundary is visible from the point P and each step of the Bowyer–Watson
algorithm produces a Delaunay triangulation. Thus in this case the Bowyer–
Watson algorithm is essentially a “reconnection” method, since it computes
how an existing Delaunay triangulation is to be modified because of the inser-
tion of new points. In fact, the algorithm removes from the existing grid all the
simplexes which violate the empty-hypersphere property because of the inser-
tion of the new point. The modification is constructed in a purely sequential
manner, and the process can be started from a very simple initial Delaunay
triangulation enclosing all points to be triangulated (for example, that formed
by one very large simplex or one obtained from a given set of boundary points)
and adding one point after another until the necessary requirements for grid
quality have been satisfied.

11.3.3 Approaches for Insertion of New Points

The sequential nature of the Bowyer–Watson algorithm gives rise to a problem
of choosing the position where to insert the new point in the existing mesh,
because a poor point distribution can eventually lead to an unsatisfactory
triangulation. The new point should be chosen according to some suitable
geometrical and physical criteria which depend on the existing triangulation
and the behavior of the physical solution. The geometrical criteria commonly
consist in the requirement for the grid to be smooth and for the cells to be of
a standard uniform shape and of a necessary size. The physical criterion com-
monly requires the grid cells to be concentrated in the zones of large solution
variations. With respect to the geometrical criterion of generating uniform
cells, the vertices and segments of the Dirichlet tessellation are promising lo-
cations for placing a new point since they represent a geometrical locus which
falls, by construction, midway between the triangulation points. Thus, in order
to control the size and shape of the grid cells, there are commonly considered
two different ways in which the new point is inserted. In the first, the new
point is chosen at the vertex of the Voronoi polyhedron corresponding to the
“worst” simplex. In the second way, the new point is inserted into a segment
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Fig. 11.3. Voronoi diagram and Delaunay triangulation

of the Dirichlet tessellation, in a position that guarantees the required size of
the newly generated simplexes.

11.3.4 Two-Dimensional Approaches

This subsection discusses the major techniques delineated in Sects. 11.3.1–
11.3.3 for generating planar triangulations based on the Delaunay criterion.

11.3.4.1 Voronoi Diagram

The Delaunay triangulation has a dual set of polygons referred to as the
Voronoi diagram or the Dirichlet tessellation. The Voronoi diagram can be
constructed for an arbitrary set of points in the domain. Each polygon of the
diagram corresponds to the point that it encloses. The polygon for a given
point is the region of the plane which is closer to that point then to any
other points. These regions have polygonal shapes and the tessellation of a
closed domain results in a set of nonoverlapping convex polygons covering the
convex hull of the points. It is clear that the edge of a Voronoi polygon is
equidistant from the two points which it separates and is thus a segment of
the perpendicular bisector of the line joining these two points. The Delaunay
triangulation of the given set of points is obtained by joining with straight
lines all point pairs whose Voronoi regions have an edge in common. For
each triangle formed in this way there is an associated vertex of the Voronoi
diagram which is at the circumcentre of the three points which form the
triangle. Thus each Delaunay triangle contains a unique vertex of the Voronoi
diagram, and no other vertex within the Voronoi structure lies within the
circle centered at this vertex. Figure 11.3 depicts the Voronoi polygons and
the associated Delaunay triangulation.

It is apparent from the definition of a Voronoi polygon that degeneracy
problems can arise in the triangulation procedure when

(1) three points of a potential triangle lie on a straight line;
(2) four or more points are cyclic.
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Fig. 11.4. Stages of the planar incremental algorithm

These cases are readily eliminated by rejecting or slightly moving the point
which causes the degeneracy from its original position.

11.3.4.2 Incremental Bowyer–Watson Algorithm

The two-dimensional incremental technique, introduced independently by
Bowyer (1981) and Watson (1981), triangulates a set of points in accordance
with the requirement that the circumcircle through the three vertices of a tri-
angle does not contain any other point. The accomplishment of this technique
starts from some Delaunay triangulation which is considered as an initial tri-
angulation. The initial triangulation commonly consists of a square divided
into two triangles which contain the given points. With this starting Delaunay
triangulation, a new grid node is chosen from a given set of points or is found
in accordance with some user-specified rule to supply new vertices. In order
to define the grid cells which contain this point as a vertex, all the cells whose
circumcircles enclose the inserted point are identified and removed. The union
of the removed cells forms the region which is referred to as the Delaunay or
inserting cavity. A new triangulation is then formed by joining the new point
to all boundary vertices of the inserting cavity created by the removal of the
identified triangles. Fig. 11.4 represents the stages of the planar incremental
algorithm.

The distinctive feature of the two-dimensional Delaunay triangulations is
that all edges of the Delaunay cavity are visible from this inserted point, i.e.
each point of the edges can be joined to it by a straight line which lies in the
cavity.

Properties of the Planar Delaunay Cavity

In order to prove the fact that all boundary edges of the Voronoi cavity are
visible from the introduced point, we consider an edge AB lying on the bound-
ary of the cavity. Let ABC be the triangle with the vertices A, B, and C,
which lies in the Delaunay cavity formed by the insertion of the point, denoted
by P (Fig. 11.5). It is obvious that all edges of triangle ABC are visible if
P lies inside the triangle. Let P lie outside the triangle. As this triangle lies



344 11 Unstructured Methods

Fig. 11.5. Illustration of the inserted point P and the triangles of the Delaunay
cavity

in the Delaunay cavity, it follows that P lies inside circle ABC. In this case
the quadrilateral whose vertices are the points ABCP is convex. Thus P has
to be visible from edge AB unless we have a situation like the one depicted
in Fig. 11.5, in which some triangle ACD separates the edge from P . As tri-
angle ACD belongs to the initial Delaunay triangulation, the vertex D lies
outside circle ABC. However, since a chord of a circle subtends equal angles
at its circumference, we readily find that P belongs to circle ACD, i.e. the
triangle lies inside the Delaunay cavity formed by P. Thus triangle ACD does
not prevent those edges of ABC which are the boundary edges of the cavity
from being visible from P. Repeating the argument with the other triangles,
the number of which is finite, we come to the conclusion that there are no
triangles between the boundary of the Delaunay cavity and P which do not
lie in the cavity. Also, we find that the Delaunay cavity is simply connected.
We emphasize that these facts are valid if the original triangulation satisfies
the Delaunay criterion.

Thus, in accordance with the incremental algorithm, the Delaunay cav-
ity is triangulated by simply connecting the inserted point with each of the
nodes of the initial grid that lie on the boundary of the cavity. The union of
these triangles with those which lie outside of the cavity (Fig. 11.4(c)) com-
pletes one loop of the incremental grid construction. The subsequent steps are
accomplished in the same fashion.

It is apparent that in two dimensions the creation of these new cells results
in a Delaunay triangulation, i.e. the Delaunay criterion is valid for all new
triangles. Here we present a schematic proof of this fact.

Let AB be an edge of the Delaunay cavity formed by the insertion of
point P. Suppose that the new triangle ABP does not satisfy the Delaunay
criterion. Then there exists some point D on the same side of AB as P and
which lies inside circle ABP (Fig. 11.6). Consider the original triangle that
had AB as an edge. There are two possibilities: either ABD is this original
triangle or there is another point, say E, on the cavity boundary lying outside
circle ABP. In the former case P lies outside circle ABD, i.e. triangle ABD
does not lie in the Delaunay cavity and consequently edge AB is not the edge
of the cavity, contrary to our assumption. In the latter case arc ABP lies
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Fig. 11.6. Illustration of the proof that the Delaunay criterion is satisfied by all
new triangles created by the incremental algorithm

inside circle ABE. However, this contradicts the assumption that the original
triangulation was of Delaunay type. Therefore circle ABP does not contain
other points, i.e. the triangle ABP satisfies the Delaunay criterion.

Thus, we find that the planar Bowyer–Watson algorithm is a valid proce-
dure for generating Delaunay triangulations. One more issue that has received
attention is that the point placement selected to generate Delaunay triangu-
lations can be used to generate meshes with a good aspect ratio.

Initial Triangulation

Because the mesh points are introduced in a sequential manner, in the initial
stages of this construction an extremely coarse grid containing a small subset
of the total number of mesh points and consisting of a small number of very
large triangles can be chosen. For example, for generating grids in general
two-dimensional domains, an initial triangulation can be formed by dividing
a square lying in the domain or containing it into two triangles. Then interior
and boundary points are successively added to build successive triangulations
until the necessary requirements of domain approximation are observed.

It is desirable to make the initial triangulation boundary-conforming, i.e.
all boundary edges are included in the triangulation. One natural way is to
triangulate initially only the prescribed boundary nodes, by means of the
Bowyer–Watson algorithm. Since the Delaunay triangulation of a given set of
points is a unique construction, there is no guarantee that the triangulation
built through the boundary points will be boundary-conforming. However, by
repeated insertion of new mesh points at the midpoints of the missing bound-
ary edges, a boundary-conforming triangulation may be obtained. Another
way to maintain boundary integrity is obtained by rejecting any point that
would result in breaking boundary connectivity.

11.3.4.3 Diagonal-Swapping Algorithm

The diagonal-swapping algorithm makes use of the equiangular property of
a Delaunay-type triangulation, which states that the minimum angle of each
triangle in the mesh in maximized.
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Fig. 11.7. The triangulation which maximizes the minimum angle. The dashed line
indicates a possible original triangulation

Assuming we have some triangulation of a given set of points, the swapping
algorithm transforms it into a Delaunay triangulation by repeatedly swapping
the positions of the edges in the mesh in accordance with the equiangular
property. For this purpose, each pair of triangles which constitutes a convex
quadrilateral is considered. This quadrilateral produces two of the required
triangles when one takes the diagonal which maximizes the minimum of the
six interior angles of the quadrilaterals, as shown in Fig. 11.7. Each time an
edge swap is performed, the triangulation becomes more equiangular. The end
of the process results in the most equiangular (the Delaunay) triangulation.

This technique based on the Delaunay criterion retriangulates a given tri-
angulation in a unique way, such that the minimum angle of each triangle in
the mesh is maximized. This has the advantage that the resulting meshes are
optimal for the given point distribution, in that they do not usually contain
many extremely skewed cells.

11.3.5 Constrained Form of Delaunay Triangulation

One way to ensure that the boundary triangulation remains intact in the
process of retriangulation by inserting new points is to use a constrained
version of the Delaunay triangulation algorithm of Sect. 11.3.2 that does not
violate the point connections made near the boundary.

11.3.5.1 Principal Component

For the purpose of generating a constrained two-dimensional triangulation
we consider the modernized Bowyer–Watson algorithm for an arbitrary tri-
angulation T that may not satisfy the Delaunay criterion. Let P be a new,
introduced point. The Delaunay cavity is the area constituted by all triangles
whose circumcircles contain P. Let this be denoted by Γ (P ).

An important fact is that the Delaunay cavity created by the introduction
of the point P contains no points other than P in its interior. In order to show
this we consider a point A in the triangulation T that is a vertex of at least
one triangle in Γ (P ). If there is a triangle S /∈ Γ (P ) that has A as a vertex
then the point A is not an interior point of Γ (P ). Thus we need to show that



11.3 Methods Based on the Delaunay Criterion 347

Fig. 11.8. Illustration of the principal component

there exists such a triangle. Let {Si} be the set of all triangles that have A
as a vertex, and let Ci be the circumcircle associated with triangle Si. Now
Si ∈ Γ (P ) if and only if the new point P lies inside Ci. Thus, for vertex A
to be an interior point of Γ (P ), point P must lie inside ∩Ci. However, if the
point A is an interior point of Γ (P ) then the interior of ∩Ci is empty, since
the vertex A is the only point that lies on all the circles of {Si}. Thus at least
one triangle of {Si} does not lie in Γ (P ) and hence the vertex A is not an
interior point of Γ (P ).

In the case of a general triangulation, the cavity Γ (P ) need no longer be
simply connected. For the purpose of retriangulation, we consider the max-
imal simply connected region of the cavity that contains the new point P.
This region is called the principal component of the Delaunay cavity and is
designated by ΓP .

It is apparent that the principal component possesses the property that
all its boundary edges are visible from P. To prove this, we first note that
ΓP is not empty, since it includes the triangle containing P. Let this be the
triangle ABC (Fig. 11.8). Now consider all neighboring triangles sharing a
common edge with the triangle ABC. In particular, let triangle BCD lie
in ΓP . Point P must, therefore, lie inside circle BCD. As points P, B, C,
and D define a convex quadrilateral, all edges of this quadrilateral are visible
from P. Continuing this process by means of a tree search through all triangles
in ΓP , we clearly see that all edges of ΓP are visible from P.

11.3.5.2 Formulation of the Constrained Triangulation

Now we can formulate the generation of a constrained planar Delaunay trian-
gulation developed by Baker (1989).

We assume that certain triangles of a triangulation T are fixed, in particu-
lar those adjacent to the boundary. Let this subset of T be denoted by T . The
triangles from T do not participate in the building of any Delaunay cavity,
i.e. if the cavity created by the introduction of a new point contains one or
more of the fixed triangles, we restrict the reconnections to the part of the
cavity that does not contain any fixed triangle. Let Υ (P ) be this part of the
cavity, i.e. Υ (P ) = Γ (P ) − T . By ΥP we denote the maximal simply connected
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region of Υ (P ) that contains P. In analogy with ΓP , we call the region ΥP

the principal component of Υ (P ). It is clear that the principal component
ΥP exists only if P does not lie inside any of the triangles belonging to the
collection T of the fixed triangles.

It is apparent that the boundary edges of the principal component ΥP are
visible from P. As the analogous fact has been proved for ΓP , we can restrict
our consideration to the case ΓP ∩T �= ∅. Let the edges of the principal compo-
nent ΓP be given by A1, A2, A2, A3, . . . , An−1, An, An, A1, where {Ai}i = 1, n
are the vertices on the boundary of ΓP . These edges, and consequently the
vertices Ai, are visible from P. The subcavity obtained by removing one of the
triangles from ΓP contains at most three new edges. These internal edges lie
wholly inside the cavity ΓP and divide ΓP into disjoint polygonal regions. The
principal component ΥP is the polygonal region that contains the point P, and
this polygon is made up of one these internal cavity edges and other edges
which come from the cavity boundary. The vertices of the polygon containing
P must, therefore, remain visible from P. Hence all edges of the polygon are
visible from P. By repeating this argument with other triangles removed from
ΓP , we conclude that the boundary edges of ΥP are visible from P.

Now, the vertices of ΥP can be connected with P , thus building the con-
strained retriangulation. This retriangulation keeps the fixed triangles of T
intact.

11.3.5.3 Boundary-Conforming Triangulation

A key requirement of a mesh generation procedure is to ensure that the mesh
is boundary-conforming, i.e. the edges of the assembly of triangles conform
to the boundary curve. The procedure of constrained triangulation allows one
to keep a subset of the boundary triangles, built from the edges forming the
boundary, intact. These boundary triangles can be generated by any one of
the suitable procedures. Thus the resulting triangulation will be boundary-
conforming and its interior triangles obey the Delaunay criterion.

Another approach developed by Weatherill and Hassan (1994) to applying
the Delaunay criterion to generate boundary-conforming grids consists in re-
covering the boundary edges which are missing during the process of Delaunay
triangulation and then deleting all triangles that lie outside the domain.

11.3.6 Point Insertion Strategies

The Bowyer–Watson algorithm proceeds by sequentially inserting a point in-
side the domain at selected sites and reconstructing the triangulation so as
to include new points. This subsection presents two approaches to sequential
point insertion which provide a refinement of planar Delaunay triangulations.
In both cases, bounds on some measures of grid quality such as the mini-
mum angle, the ratio of maximum to minimum edge length, and the ratio of
circumradius to inradius are estimated.
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11.3.6.1 Point Placement at the Circumcenter of the Maximum
Triangle

One simple but effective approach consists in placing a new point at the cir-
cumcenter of the cell with the largest circumradius and iterating this process
until the maximum circumradius is less than some prescribed threshold. In this
way, by eliminating bad triangles, the quality of the grid is improved at every
new point insertion, terminating with a grid formed only by suitable triangles.
In this subsection it will be shown that the Bowyer–Watson incremental algo-
rithm together with point insertion at the circumcenters of maximal triangles
will lead to a triangulation with a guaranteed level of triangle quality.

Unconstrained Triangulation

Let {Tn}, n = 0, 1, . . . , be a sequence of Delaunay triangulations built by the
repeated application of the Bowyer–Watson algorithm with point insertion
at the circumcenter of the maximal triangle. By the maximal triangle of a
triangulation we mean the triangle with the maximum value of its circum-
radius. We assume that the initial Delaunay triangulation T0 conforms to a
prescribed set of boundary edges. Now let ln, Ln, n = 0, 1, . . . , be the mini-
mum and maximum edge lengths, respectively, of Tn, and let Rn be the radius
of the maximal triangle of Tn. Furthermore, for any triangle S we denote its
circumradius by RS and its inradius by rS . Thus Rn = max{RS , S ∈ Tn}.
We have the following relations:

(1) Ri+1 ≤ Ri;
(2) when Rn−1 ≥ l0, then ln = l0, and when Rn−1 < l0, then ln = Rn−1;
(3) when Rn ≤ l0, then Ln/ln ≤ 2, θ ≥ 30◦ for all angles of the triangulation

Tn, and minRS/rS ≤ 2 + 4
√

3 for all triangles S of Tn.

To prove the first relation we consider an edge en of the Delaunay cavity of
the triangulation Tn formed by an inserted point P. There exist triangles S1

and S2 in Tn which share the common edge en, such that S1 lies inside while
S2 lies outside the Delaunay cavity. Let S1 be defined by the points A, B,
and C and S2 be defined by the points A, B, and D. Then edge en is the
line segment AB. Since P lies outside circle ABD, P lies on the same side
of en as C. If the center of circle ABP lies on the same side of en as D then
angle APB is obtuse and, consequently, the circumradius of triangle ABP is
smaller than the circumradius of triangle ABD. We denote these circumradii
by RABP and RABD, respectively.

If the center of circle ABP lies on the same side of en as C then the angle
θ1 subtended by chord AB at C is less than the angle θ2 subtended at P. Since
the centers of circles ABP and ABC lie on the same side of AB as points C
and P , it follows that θ1 < π/2 and θ2 < π/2. If the length of chord AB is l
then

RABP =
l

2 sin θ2
<

l

2 sin θ1
= RABC ,
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where RABC is the circumradius of ABC. Thus we obtain

RABP < RABD and RABP < RABC .

Since this is true for all edges of the Delaunay cavity, we obtain the proof of the
first relation, that the maximum circumradius Rn decreases, i.e. Rn+1 ≤ Rn,
with strict inequality if there is only one triangle with the maximum radius
Rn. As there can be only a limited number of maximal triangles in Tn, after
several applications of the procedure we obtain Rn+k < Rn.

It follows that the maximum radius can be reduced to any required size
after a sufficiently large number of iterations. When Rn falls below the value
of l0, so that ln+1 = Rn, we obtain the following obvious inequality:

Ln+1 ≤ 2Rn+1 ≤ 2Rn = 2ln+1. (11.11)

It is evident that repeated point insertion at the circumcenter reduces the
value λ = Ln/ln to a value no greater than 2. The upper bound of 2 for λ is
achieved when Rn ≤ l0. Let θmin be the minimum angle. We have

sin θmin ≥ ln+1

2Rn+1
, (11.12)

with equality if the minimum edge length of any maximal triangle is equal to
ln+1, the minimum edge length for the triangulation Tn+1. From the inequal-
ities (11.11) and (11.12), we obtain

sin θmin ≥ ln+1

2Rn+1
=

Rn

2Rn+1
≥ 1

2
, (11.13)

so that
θmin ≥ π/6.

For each triangle the quantity μ = R/r, where R is the circumradius and
r is the inradius, is a characteristic of cell deformity. The maximum value
of μ occurs for an isosceles triangle with an angle between sides of θmin and
assumes the value

μmax =
1

2 cos θmin(1 − cos θmin)
.

From (11.13), we obtain
μ ≤ 2 + 4/

√
3

after a sufficient number of retriangulations with the insertion of new points
at the circumcenters of maximal triangles.

These considerations prove the properties (2) and (3) stated above.
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Generalized Choice of the Insertion Triangles

In the approach considered, a new point is inserted at the circumcentre of
the largest triangle. The choice of the insertion triangle, namely the triangle
where the point is inserted, can be formulated in accordance with more general
principles.

One simple formulation is based on the specification of a function f(x)
which prescribes a measure of grid size or quality, say the radius of the circum-
scribed circle, at the point x. The actual expression for f(x) can be obtained
by interpolating prescribed nodal values over a convenient background mesh.
The function f(x) defines a quantity α(S) for each triangle S:

α(S) =
RS

f(QS)
,

where QS is the position of the centre of the circle circumscribed around the
triangle S. The largest value of α(S) determines the choice of the insertion
triangle S. By repeatedly inserting the new point at the circumcenters of such
triangles it is possible to reach eventually a mesh in which maxS α(S) < 1.

11.3.6.2 Voronoi-Segment Point Insertion

The second approach proposed by Rebay (1993) to placing a new point con-
sists in inserting the point along a segment of the Dirichlet tessellation. In
contrast to the first approach, where the position of the inserted point is pre-
determined, and the required cell size is reached after a number of iterations,
this technique provides an opportunity to generate one or possibly several
new triangles having, from the very beginning, the size prescribed for the fi-
nal grid. This is achieved by choosing a suitable position for point placement
in the Dirichlet tessellation, between a triangle whose circumradius falls below
the required value and a neighboring triangle whose circumradius is still too
large. This point insertion results in almost equilateral triangles over most of
the interior of the domain.

Formulation of the Algorithm

At each stage of the process of generating the triangulations Tn, n = 1, 2, . . . ,
the triangles of Tn are divided into two groups, which are referred to as the
groups of accepted (small enough) and nonaccepted (too large) triangles, re-
spectively. In most cases the accepted triangles are the boundary triangles
and those whose circumradii are below 3/2 times the prescribed threshold.
The remaining triangles constitute the group of nonaccepted triangles.

The algorithm proceeds by always considering a maximal nonaccepted
triangle which borders one of the accepted triangles (Fig. 11.9). Let ABC
be the accepted triangle and ADB the nonaccepted triangle. The Voronoi
segment connecting the circumcenters of these triangles is the interval EF
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Fig. 11.9. Voronoi-segment point insertion

which is perpendicular to the common edge AB and divides it into two equal
parts. In the algorithm, a new point X is inserted on the Voronoi segment
edge EF in a position chosen so that the triangle formed by connecting X
with A and B has the prescribed size. This point is inserted in the interval
between the midpoint M of the common edge and the circumcenter F of the
nonaccepted triangle ADB.

Let p be one half the length of edge AB, and q the length of FM . As
point F is the circumcenter of the triangle ADB we find that q ≥ p. Let
fM be the prescribed threshold value for the circumradius at the point M .
It may seem that we can locate the new point X on segment EF at the
intersection of EF with the circle that passes through points A and B and
has a radius equal to fM . However, it might happen that this exact value
fM for the circumradius is not appropriate, since any circle through A and
B has a radius ρ ≥ p/2. Furthermore, a real intersection point X exists only
for circles having a radius ρ smaller than that of the circle passing through
AB and F , i.e. ρ ≤ (p2 + q2)/2q. For these reasons the circumradius for the
triangle AXB is defined by the equation

RAXB = min
[
max(fM , p),

p2 + q2

2q

]
. (11.14)

Since
p2 + q2

2q
=

(p − q)2 + 2pq

2q
≥ p,

we find that RAXB ≥ p. In accordance with the algorithm, the new point X
will lie on the interval EF between M and F at a distance

d = RAXB +
√

(RAXB)2 − p2 (11.15)

from the point M.

Properties of the Triangulation

The condition
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RAXP ≤ p2 + q2

2q

and (11.15) ensure that d ≤ q. We also have, from (11.15), that d ≥ p. Angle
AXB is a right angle when d = p and it decreases as d increases.

If the accepted triangle ABC is equilateral then angle AFB must be no
greater than 2π/3, since otherwise the Delaunay triangulation would have
given rise to an edge connecting C to F.

At the first stage we expect p 
 q. Recall that the threshold of fM is
such that fM < p < 3fM/2. It follows that fM < p ≤ (p2 + q2)/2q and hence
d = p and RAXB = p. Thus triangle AXB has a right angle at vertex X.
Since 2 < 3fM/2, triangle AXB will be tagged as accepted and each segment
AX and XB will be a candidate for the next accepted triangle, built in the
same way as AXB. Now, we denote the quantity p, equal to one half the
length of the accepted edge of the ith iteration, by pi, and thus p1 = p0/

√
2.

Analogously, we use di, Ri, and Mi at the ith iteration of the procedure.
It turns out that on repeating the procedure, pi and di show the following
behavior:

pi →
√

3fMi/2, di → 3fMi/2,

i.e. the generated triangles tend to become equilateral, with circumradius fMi .
To show this, let

fMn =
(

2√
3

+ εn

)
pn =

(
2√
3

+ εn+1

)
pn+1. (11.16)

If |εn| is sufficiently small, we obtain pn < fMn so that Rn = fMn and, from
(11.15),

dn = fMn +
√

f2
Mn

− p2
n.

Further, we have

4p2
n+1 = p2

n + d2
n = 2

(
f2

Mn
+ fMn

√
f2

Mn
− p2

n

)
.

Thus
p2

n+1

p2
n

=
1
2

f2
Mn

p2
n

+
1
2

fMn

pn

√
f2

Mn

p2
n

− 1.

Using (11.16), we obtain

p2
n+1

p2
n

=
1
2

(
2√
3

+ εn

)2

+
1
2

(
2√
3

+ εn

)√(
2√
3

+ εn

)2

− 1,

which results in
pn+1

pn
= 1 +

3
4

√
3 + εn + O

(
ε2n

)
.

From (11.16), we also have
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pn+1

pn
=

2/
√

3 + εn

2/
√

3 + εn+1

.

Comparing the last two equations and neglecting terms O(ε2n), we find that

εn+1 � −εn/2.

Thus, for |εn| sufficiently small, the algorithm ensures that εn → 0 and

pn →
√

3fMn/2.

Therefore it can be expected that a large number of the interior triangles
will be nearly equilateral. Close to the boundary there may be isosceles right-
angled triangles, and in regions where the boundary has large curvature there
may be some obtuse triangles. A maximum angle of 120◦ and minimum angle
of 30◦ may be realized by an obtuse triangle formed when the vertex D of a
nonaccepted triangle is sufficiently close to an active edge.

In analogy with the first approach to inserting new points the choice of the
triangle into which the new popint is inserted can be modified by introducing
a quality measure function f(x) and a corresponding control quantity α(S).

11.3.7 Surface Delaunay Triangulation

A surface Delaunay triangulation is defined by analogy with the planar De-
launay triangulation.

Let Pi be the vertices of the surface triangulation T. A triangle S from
T satisfies the Delaunay criterion if the interior of the circumsphere through
the vertices of S and centered on the plane formed by S does not contain any
points. If all triangles satisfy the Delaunay criterion then the triangulation T
is called a surface Delaunay triangulation.

In practice, all methods for planar Delaunay triangulations are readily
reformulated for a surface Delaunay triangulation. However, a study of the
properties of the triangulations generated by these methods has not been
performed.

11.3.8 Three-Dimensional Delaunay Triangulation

In three dimensions the network of the Delaunay triangulation is obtained
by joining the vertices of the Voronoi polyhedrons that have a common face.
Each vertex of a Voronoi polyhedron is the circumcenter of a sphere that
passes through four points which form a tetrahedron and no other point in
the construction can lie within the sphere.
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11.3.8.1 Unconstrained Technique

The most popular three-dimensional algorithm providing a Delaunay struc-
ture is the one based on the Bowyer–Watson sequential process: each point of
the grid is introduced into an existing Delaunay triangulation, which is broken
and then reconnected to form a new Delaunay triangulation.

In general the algorithm follows the same steps as in the two-dimensional
construction described above. It starts with an initial Delaunay triangulation
formed by a supertetrahedron or supercube, partitioned into five tetrahedrons
which contain all other points. The remaining points which comprise the mesh
to be triangulated are introduced one at a time, and the Bowyer–Watson
algorithm is applied to create the Delaunay cavity and the corresponding
retriangulation after each point insertion.

An important feature of a mesh generation procedure is its ability to pro-
duce a boundary-conforming mesh, i.e. the triangular faces of the assembly
of tetrahedrons conform to the boundary surface. Unfortunately, the uncon-
strained technique does not guarantee that the boundary faces will be con-
tained within such a triangulation. Thus an modified procedure must be in-
troduced to ensure that the resulting triangulation is boundary-conforming.

11.3.8.2 Constrained Triangulation

The purpose of the constrained Delaunay triangulation is to generate a tri-
angulation which preserves the connections imposed on the boundary points.
The three-dimensional constrained triangulation is carried out in the same
way as for two-dimensional triangulations.

In the first approach the tetrahedrons whose faces constitute the bound-
ary surface are fixed during the process of retriangulation. These boundary
tetrahedrons are generated in the first step of triangulation. The next steps in-
clude the insertion of a point, the definition of a star-shaped cavity containing
the point, and retriangulation of the cavity. The resulting grid is boundary-
conforming and its interior subtriangulation is a Delaunay triangulation.

The second approach to the constrained triangulation of a domain devel-
oped by Weatherill and Hassan (1994) starts with inputting the boundary
points and boundary point connectivities of the faces of the boundary trian-
gulation. After performing a Delaunay triangulation of the boundary points,
a new Delaunay triangulation is built by inserting interior points and apply-
ing the Bowyer–Watson algorithm. After this, the tetrahedrons intersecting
the boundary surface are transformed to recover the boundary triangulation.
If a boundary face is not present in the new Delaunay triangulation, this is
due to the fact that edges and faces of the tetrahedrons of the Delaunay tri-
angulation intersect this face. Since the face is formed from three edges, it is
necessary to recover first the face edges and then the face. This is achieved by
first finding the tetrahedrons which are intersected by the face edges. There
is a fixed combination of possible standard intersections of each tetrahedron
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by any mixed boundary edge, which allows one to perform direct transfor-
mations to recover the edge. Having established the intersection types, these
tetrahedrons are then locally transformed into new tetrahedrons so that the
required edges are present. A similar procedure then follows to recover the
boundary faces.

11.4 Advancing-Front Methods

Advancing-front techniques extend the grid into the region in the form of
marching layers, starting from the boundary and proceeding until the whole
region has been covered with grid cells. Such a procedure allows an initial un-
structured mesh to be automatically generated from a surface representation
of the geometry. Thus advancing-front techniques need some initial triangula-
tion of the boundaries of the geometry, and this triangulation forms the initial
front. The marching process includes the construction of a new simplex, which
is built by connecting either some appropriate points on the front, or some
inserted new point with the vertices of a suitable face on the front.

The advancing-front approaches offer the advantages of high-quality point
placement and integrity of the boundary. The efficiency of the grid-marching
process largely depends on the arrangement of grid points in the front, espe-
cially at sharp corners. A new grid point is placed at a position which is deter-
mined so as to result in a simplex with prescribed optimal quality features. In
some approaches, the grid points are positioned along a set of predetermined
vectors. To ensure a good grid quality and to facilitate the advancing process,
these vectors are commonly determined once at each layer mesh point by
simply averaging the normal vectors of the faces sharing the point and then
smoothing the vectors. Other approaches to selecting new points for moving
the front use the insertion techniques applied in the Delaunay triangulations
described above.

The fronts continue to advance until either

(1) opposite fronts approach to within a local cell size; or
(2) certain grid quality criteria are locally satisfied.

Grid quality measures which are to be observed in the process of grid gener-
ation include the cell spacing and sizes of angles. The desired mesh spacings
and other gridding preferences in the region are commonly specified by calcu-
lations on a background grid.

11.4.1 Procedure of Advancing-Front Method

In order to generate cells with acceptable angles and lengths of edges by a
marching process, the advancing-front concept inherently requires a prelim-
inary specification of local grid spacing and directionality at every point of
the computational mesh. The spacing is prescribed by defining three (two
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in two dimensions) orthogonal directions together with some length scale for
each direction. The directions and length scales are commonly determined
from background information, in particular, by carrying out computations on
a coarse grid and interpolating the data.

The advancing-front procedure proceeds by first listing all faces which
constitute the front and then selecting an appropriate face (edge in two di-
mensions) on the front. The operation of the selection is very important since
the quality of the final grid may by affected by the choice. According to a
common rule, the face is selected where the grid spacing is required to be
the smallest. A collection of vertices on the front which are appropriate for
connection to the vertices of the selected face to form a tetrahedron (triangle
in two dimensions) is searched. The collection may be formed by the vertices
which lie inside a sphere centered at the barycenter of the face, with an appro-
priate radius based upon the height of a unit equilateral tetrahedron. A new
point is also created which is consistent with the ideal position determined
from the background information about grid spacing and directionality. The
selected vertices and the new point are ordered according to their distance
from the barycenter of the selected face. Each sequential tetrahedron formed
by the face and the ordered points is then checked to find out whether it
intersects any face in the front. The first point which satisfies the test and
gives a tetrahedron of good quality is chosen as the fourth vertex for the new
tetrahedron. The current triangle is then removed from the list of front faces,
since it is now obscured by the new tetrahedron. This process continues until
there are no more faces in the list of front faces.

In many cases, the use of the background mesh to define the local grid
spacing can be replaced by sources in the form of points, lines, and surfaces.

One of the advantages of such a procedure is that all operations are per-
formed locally, on neighboring faces only. Additionally, boundary integrity is
observed, since the boundary triangulation constitutes the initial front.

The disadvantages of the advancing-front approach relate mainly to the
phase in which a local direction and length scale are determined and to the
checking phase for ensuring the acceptability of a new tetrahedron.

11.4.2 Strategies to Select Out-of-Front Vertices

One of the critical items of advancing-front methods is the placement of new
points. Upon generating a new simplex, a point is placed at a position which
is determined so as to result in the required shape and size of the new simplex.
The parameters which define the desirable cell at each domain position are
specified by a function which is determined a priori or found in the process of
computation.

In one approach, the new point is placed along a line which is orthogonal to
a chosen face on the front and passes through its circumcenter. This placement
is aimed at the creation of a new simplex whose boundary contains the chosen
face.
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If the simplex generated with the new point results in a crossover with
the front it is discarded. Alternately, if the new point is located very close
to a vertex on the front it is replaced by this vertex in order to avoid the
appearance of a cell with a very small edge at some later stage.

Another approach, generally applied in two dimensions, takes into account
a vertex on the front and the angle at which the edges cross at this point.
The point is created with the aim of making the angles in the new triangles as
near to 60◦ as possible. In particular, a very large angle between the edges is
bisected or even trisected. On the other hand, if the vertex has a small interior
angle the two adjacent vertices on the front are connected. This approach can
be extended to three dimensions by analyzing a dihedral angle at the front.

11.4.3 Grid Adaptation

The frontal approach is well suited to generating adaptive grids near the
boundary segments, where the grid cells are commonly required to be highly
stretched.

Highly stretched grid cells begin forming individually from the bound-
ary and march into the domain. However, unlike the conventional procedure
in which cells are added in no systematic sequence, the construction of a
stretched grid needs to be performed by advancing one layer of cells at a
time, with the minimum congestion of the front and a uniform distribution
of stretched cells. The new points are positioned along a set of predetermined
vectors in accordance with the value of a stretching function. The criterion
by which the points are evaluated has a significant impact on the grid quality
and the marching process. Because of the requirement high aspect ratio of
cells in the boundary layer, the conventional criteria based on the cell angles
are not appropriate for building highly stretched cells.

In a criterion based on a spring analogy, the points forming a new layer
are assumed to be connected to the end points of the face by tension springs.
Among these points, the one with the smallest spring force is considered the
most suitable to form the new cell, and consequently to change the front
boundary. The spring concept allows one to indicate when an opposing front
is very close to the new location, namely, when an existing point on the front
has the smallest spring force. The adaptive advancing process terminates on
a front face when the local grid characteristics on the front, influenced by the
stretching function, no longer match those determined by the background grid
in that location. When the proximity and/or grid quality criteria are satisfied
on all faces of the front, the process switches from an advancing-layers method
to the conventional advancing-front method to form regular isotropic cells in
the rest of the domain.

11.4.4 Advancing-Front Delaunay Triangulation

A combination of the advancing-front approach and the Delaunay concept
gives rise to the advancing-front Delaunay methods.
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If the boundary of a domain is triangulated and in the interior of the
domain a set of points to be triangulated is given, then the advancing-front
Delaunay triangulation is carried out by forming the cells adjoining the front
in accordance with the empty-circumcircle property.

The procedure for the triangulation can be outlined as follows. A face
on the front is chosen, and a new simplex is tentatively built by joining the
vertices of the face to an arbitrary point on the front, in the interior of the
domain with regard to the front. If this simplex contains any points within its
circumcircle, it is not added to the triangulation. By checking all points, the
appropriate vertex which produces a simplex containing no points interior to
its circumcircle is eventually found. The simplex formed through this vertex
is accepted and the front is advanced.

Another algorithm is based on the strategy of placing new points ahead
of the front and triangulating them according to the Delaunay criterion.

11.4.5 Three-Dimensional Prismatic Grid Generation

The use of prismatic cells is justified by the fact that the requirement of high
aspect ratio can be achieved without reducing the values of the angles between
the cell edges.

The procedure for generating a prismatic grid begins by triangulating the
boundary surface of a domain. The next stage in the procedure computes
a quasinormal direction at each node of the surface triangulation. Then the
initial surface is shifted along these quasinormal directions by a specified dis-
tance d. This gives the first layer of prismatic cells. This shifting process is
repeated a number of times using suitable values of d at each stage, and ei-
ther the same or newly computed normal directions. The value of the quantity
d can be chosen in the form of any of the stretching functions described in
Chap. 4.

The efficiency of the algorithm is essentially dependent on the choice of
quasinormal directions. The generation of the quasinormals is carried out in
three stages, depending on a position of the vertices.

(1) Normals are first computed at the vertices which lie on the corners of
the boundary. These are calculated as the angle-weighted average of the
adjacent surface normals. The angle used is the one between the two edges
adjacent to the boundary surface and meeting at the corner.

(2) Normals at grid points on the geometrical edges of the boundary surface
are computed. These normals are the average of the two adjacent surface
normals.

(3) Finally, the normals at grid nodes on the boundary surfaces are calculated.
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11.5 Comments

Unstructured grid methods were originally developed in solid mechanics. The
paper by Field (1995) reviews some early techniques for unstructured mesh
generation that rely on solid modelling. An informal survey that illustrates the
wide range of unstructured mesh generation was conducted by Owen (1998)
and described in the handbook of grid generation edited by Thompson, Soni,
and Weatherill (1999).

Though unstructured technology deals chiefly with tetrahedral (triangular
in two dimensions) elements, some approaches rely on hexahedrons (or quadri-
laterals) for the decomposition of arbitrary domains. Recent results have been
presented by Tam and Armstrong (1991) and Blacker and Stephenson (1991).

Properties of n-dimensional triangulations were reviewed by Lawson (1986).
The relations between the numbers of faces were proved in the monograph by
Henle (1979) and in the papers by Steinitz (1922), Klee (1964), and Lee (1976).

The Delaunay triangulation and Voronoi diagram were originally formu-
lated in the papers of Delaunay (1934, 1947) and Voronoi (1908), respec-
tively. Algorithms for computing Voronoi diagrams have been developed by
Green and Sibson (1978), Brostow, Dussault, and Fox (1978), Finney (1979),
Bowyer (1981), Watson (1981), Tanemura, Ogawa, and Ogita (1983), Sloan
and Houlsby (1984), Fortune (1985), and Zhou et al. (1990). Results of stud-
ies of geometrical aspects of Delaunay triangulations and their dual Voronoi
diagrams were presented in the monographs by Edelsbrunner (1987), Du and
Hwang (1992), Okabe, Boots, and Sugihara (1992), and Preparata and Shamos
(1985). Proofs of the properties of planar Delaunay triangulations were given
by Guibas and Stolfi (1985) and by Baker (1987, 1989).

A technique for creating the Delaunay triangulation of an a priori given
set of points was proposed by Tanemura, Ogawa, and Ogita (1983). The incre-
mental two-dimensional Delaunay triangulation which starts with an initial
triangulation was developed by Bowyer (1981) and Watson (1981). Watson
has also shown the visibility of the edges of the cavity associated with the in-
serted point. Having demonstrated that the Delaunay criterion is equivalent to
the equiangular property, Sibson (1978) devised and later Lee and Schachter
(1980) investigated a diagonal-swapping algorithm for generating a Delaunay
triangulation by using the equiangular property.

A novel approach, based on the aspect ratio and cell area of the current
triangles, to the generation of points as the Delaunay triangulation proceeds
was developed by Holmes and Snyder (1988). In their approach a new point is
introduced in the existing triangulation at the Voronoi vertex corresponding
to the worst triangle. Ruppert (1992) and Chew (1993) have shown that in the
planar case the procedure leads to a Delaunay triangulation with a minimum-
angle bound of 30 degrees. An alternative procedure of inserting the new
point on a Voronoi segment was proposed by Rebay (1993). A modification
of the Rebay technique was made by Baker (1994). Haman, Chen, and Hong
(1994) inserted points into a starting Delaunay grid in accordance with the
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boundary curvature and distance from the boundary, while Anderson (1994)
added nodes while taking into account cell aspect ratio and proximity to
boundary surfaces.

Approaches to the generation of boundary-conforming triangulations based
upon the Delaunay criterion have been proposed by Lee (1978), Lee and Lin
(1986), Baker (1989), Chew (1989), Cline and Renka (1990), George, Hecht,
and Saltel (1990), Weatherill (1990), George and Hermeline (1992), Field and
Nehl (1992), Hazlewood (1993), and Weatherill and Hassan (1994). All tech-
niques and methods considered in the present chapter for proving the results
associated with the constrained Delaunay triangulation were described on the
basis of papers by Weatherill (1988), Baker (1989, 1994), Mavriplis (1990),
Rebay (1993), and Weatherill and Hassan (1994).

Further development of unstructured grid techniques based on the Delau-
nay criterion and aimed at the solution of three-dimensional problems has
been performed by Cavendish, Field, and Frey (1985), Shenton and Cendes
1985), Perronet (1988), Baker (1987, 1989), Jameson, Baker, and Weatherill
(1986), and Weatherill (1988). The application of the Delaunay triangulation
for the purpose of surface interpolation was discussed by DeFloriani (1987).

The octree approach originated from the pioneering work of Yerry and
Shephard (1985). The octree data structure has been adapted by Lohner
(1988b) to produce efficient search procedures for the generation of unstruc-
tured grids by the moving front technique. Octree-generated cells were used by
Shephard et al. (1988b) and Yerry and Shephard (1990) to cover the domain
and the surrounding space and then to derive a tetrahedral grid by cutting
the cubes. The generation of hexahedral unstructured grids was developed by
Schneiders and Bunten (1995).

The moving-front technique has been successfully developed in three di-
mensions by Peraire et al. (1987), Lohner (1988a) and Formaggia (1991). Some
methods using Delaunay connectivity in the frontal approach have been cre-
ated by Merriam (1991), Mavriplis (1991, 1993), Rebay (1993), Muller, Roe,
and Deconinck (1993), and Marcum and Weatherill (1995).

Advancing-front grids with layers of prismatic and tetrahedral cells were
formulated by Lohner (1993). A more sophisticated procedure, basically us-
ing bands of prismatic cells and a spring analogy to stop the advancement
of approaching layers, was described by Pirzadeh (1992). The application
of adaptive prismatic meshes to the numerical solution of viscous flows was
demonstrated by Parthasarathy and Kallinderis (1995).

Some procedures for surface triangulations have been developed by Peraire
et al. (1988), Lohner and Parikh (1988), and Weatherill et al. (1993).

A survey of adaptive mesh refinement techniques was published by Pow-
ell, Roe, and Quirk (1992). The combination of the Delaunay triangulation
with adaptation was performed by Holmes and Lamson (1986), Mavriplis
(1990), and Muller (1994). The implementation of solution adaptation into
the advancing-front method with directional refinement and regeneration of
the original mesh was studied by Peraire et al. (1987). Approaches based on
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the use of sources to specify the local point spacing have been developed by
Pirzadeh (1993, 1994), and Weatherill et al. (1993).

The prospects and trends for unstructured grid generation in its appli-
cation to computational fluid dynamics were discussed by Baker (1995) and
Venkatakrishan (1996). The first application of the Delaunay triangulation in
computational fluid dynamics was carried out by Bowyer (1981) and Baker
(1987). The advancing-front technique was introduced, in computational fluid
dynamics, primarily by Peraire et al. (1987), Lohner (1988a), and Lohner and
Parikh (1988). The techniques of George (1971), Wordenweber (1981, 1983),
Lo (1985), and Peraire (1986) foreshadowed the more recent advancing-front
methods. Muller (1994) and Marchant and Weatherill (1994) applied a com-
bination of frontal and Delaunay approaches to treat problems with boundary
layers. Muller (1994) generated triangular grids in the boundary layer by a
frontal technique, with high-aspect-ratio triangles, and filled the remainder
of the domain with triangles built by the Delaunay approach. Another way
to treat a boundary layer with the advancing-front approach was applied by
Hassan et al. (1994). In the first step the boundary layer is covered by a single
layer of tetrahedral cells. Then the newly generated nodes are moved along
the cell edges towards the boundary by a specified distance. These steps, in
the original layer, are repeated until a required resolution has been reached.
After this the advancing front proceeds to fill up the remainder of the domain.

An algorithm for the generation of a high-quality well-graded quadrilateral
element mesh from a triangular element mesh was presented by Lee and Lo
(1994). Very important applications to parallel unstructured mesh generation
were discussed by Chrisochoides (2006) and Ivanov (2008).
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Covariant metric tensor, 38
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decomposition, 25, 27
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Energy density, 255
Equation

algebraic, 6
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convection–diffusion, 50
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Serret–Frenet, 69
Weingarten, 276
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Euler theorem, 336
Exponential singularity, 110
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relation, 45
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Hypersurface, 295
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Interactive, 130
Interactive system, 26
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Hermite, 147–149
Lagrange, 143, 146, 148
outer boundary, 138, 142
three-dimensional, 133, 137
transfinite, 133, 137
two-boundary, 135

unidirectional, 134, 137
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Intersection angle, 177
Invariant, 78
Inverse, 33, 36, 68
Isotopic, 312

J
Jacobi matrix, 32
Jacobian, 32, 34

L
Lagrange polynomial, 144
Layer

boundary, 107, 111, 116
combined, 111
exponential, 118
interior, 105, 113
mixed, 104
power, 118
shear, 195
width, 117, 119

Left-handed orientation, 34
Length, 68

M
Mach number, 217
Manifold
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Mapping concept, 10
Marching, 156, 186
Maximum principle, 23, 157, 167, 168,
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Measure

of aspect-ratio, 86
of deformation, 97
of departure, 86
of deviation, 82
of deviation from conformality, 96
of error, 202, 243
of grid clustering, 274
of grid concentration, 92
of grid density, 234
of grid nonorthogonality, 90
of grid skewness, 236
of grid spacing, 188
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of grid warping, 96
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Method

advancing-front, 358
algebraic, 22
Bowyer–Watson, 338
deformation, 216, 221
Delaunay, 358
diagonal swapping, 345
differential, 22, 264
elliptic, 155
finite-difference, 6
finite-volume, 6
generalized Bowyer–Watson, 340
hybrid grid, 191
hyperbolic, 23, 156
incremental, 340
octree, 23
of lines, 219
stretching, 101, 102, 104
variational, 22, 245

Metric tensor, 34, 38
Minimum, 245
Monitor surface, 72, 76, 271

N
Nagumo inequality, 107

O
Orthogonality, 94, 170, 171
Orthonormal basis, 69, 299

P
Partition, 20
Point distribution, 144, 145, 164, 170
Pressure, 53, 217
Principal

component, 340
minor, 78, 79

Problem
boundary value, 105, 182, 306
Dirichlet, 107, 158
ill-posed, 190, 241
initial value, 109, 186
nonstationary, 220
well-posed, 186, 187, 227, 236

Product
cross, 41
dot, 34
tensor, 43, 135

R
Radius of curvature, 68
Rate of twisting, 71
Recursive form of interpolation, 137
Relative eccentricity, 81
Reynolds number, 101
Riemannian manifold, 28
Right-handed orientation, 34

S
Second fundamental form, 75, 87, 277
Shell thickness, 101, 104
Shock wave, 105, 195
Simplex, 3, 335
Singularity, 108, 110
Skewness, 67, 85
Source term, 165, 170, 177
Stationary point, 227
Straightness, 82, 172
Stretching, 67, 101, 102
Surface

metric tensor, 73
warping, 75

T
Tension, 212
Torsion, 67, 69, 71
Transformation

algebraic, 153
coordinate, 10
polar, 151
univariate, 102, 104, 108, 125

Triad, 42, 277
Turbulence, 6, 19

V
Variational principle, 229
Vector

binormal, 69
curvature, 68, 82, 83
normal, 36, 43, 72
tangential, 34, 68

Viscosity, 53, 101, 106
Voronoi

diagram, 339
polygon, 342
polyhedra, 339

Vorticity, 217
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