

Texts and Monographs in Symbolic
Computation

A Series of the Research Institute for Symbolic
Computation, Johannes Kepler University, Linz, Austria

Series Editors

Robert Corless; University of Western Ontario, Canada

Hoon Hong; North Carolina State University, USA

Tetsuo Ida; University of Tsukuba, Japan

Martin Kreuzer; Universität Passau, Germany

Bruno Salvy; INRIA Rocquencourt, France

Dongming Wang; Université Pierre et Marie Curie - CNRS, France

Peter Paule; Universität Linz, Hagenberg, Austria

For further volumes:
http://www.springer.com/series/3073

Ulrich Langer
Peter Paule
Editors

Numerical and Symbolic
Scientific Computing

Progress and Prospects

Prof.Dr. Ulrich Langer
Johannes Kepler University Linz
Institute of Computational Mathematics
Altenbergerstr. 69
4040 Linz
Austria
ulanger@numa.uni-linz.ac.at

Prof.Dr. Peter Paule
Johannes Kepler University Linz
Research Institute for Symbolic
Computation
Altenbergerstr. 69
4040 Linz
Austria
peter.paule@risc.jku.at

This work is subject to copyright.
All rights are reserved, whether the whole or part of the material is concerned, specif-
ically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction
by photocopying machines or similar means, and storage in data banks.

Product Liability: The publisher can give no guarantee for all the information contained
in this book. This does also refer to information about drug dosage and application
thereof. In every individual case the respective user must check its accuracy by
consulting other pharmaceutical literature.

The use of registered names, trademarks, etc. in this publication does not imply, even
in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

c� 2012 Springer-Verlag/Wien

SpringerWienNewYork is part of Springer Science+Business Media
springer.at

Typesetting: SPi, Pondicherry, India

Printed on acid-free and chlorine-free bleached paper
SPIN 80044234

With 50 Figures

Library of Congress Control Number: 2011942415

ISSN 0943-853X
ISBN 978-3-7091-0793-5 e-ISBN 978-3-7091-0794-2
DOI 10.1007/978-3-7091-0794-2
SpringerWienNewYork

Preface

For more than 10 years, the numerical analysis and symbolic computation groups
at the Johannes Kepler University Linz (JKU) have made serious efforts to combine
two different worlds of scientific computing, numerics and symbolics. This work
has been carried out in the frame of two excellence programs of the Austrian
Science Funds (FWF), a special research program (SFB, 1998–2008) and a doctoral
program (DK, 2008–). In addition to the JKU institutes for Applied Geometry,
Computational Mathematics, Industrial Mathematics, and the Research Institute for
Symbolic Computation (RISC), the Radon Institute for Computational and Applied
Mathematics (RICAM), a branch of the Austrian Academy of Sciences, have been
partners in this enterprise.

This book presents an offspring of this initiative. It contains surveys of the state
of the art and of results achieved after more than 10 years of SFB/DK work. In
addition, we included chapters that go beyond, this means, which set pointers for
future developments. All of the chapters have been carefully refereed. Most of them
center around the theme of partial differential equations. Major aspects are: fast
solvers in elastoplasticity, symbolic analysis for boundary problems (from rewriting
to parametrized Groebner bases), symbolic treatment of operators, use of computer
algebra in the finite element method for the construction of recurrence relations in
special high-order Maxwell solvers and for the construction of sparsity optimized
high-order finite element basis functions on simplices, a symbolic approach to finite
difference schemes, cylindrical algebraic decomposition and symbolic local Fourier
analysis of multigrid methods, and white noise analysis for stochastic PDEs. The
scope of other numerical-symbolic topics range from applied and computational
geometry (approximate implicitization of space curves, symbolic–numeric genus
computation, automated discovery in geometry) to computer algebra methods
used for total variation energy minimization. One chapter deals with verification
conditions in connection with functional recursive programs.

The contributions to this book are arranged in alphabetical order.

v

vi Preface

The editors express their sincerest thanks to all authors for their interesting con-
tributions, the anonymous referees for their valuable work, Silvia Schilgerius and
Wolfgang Dollhäubl from Springer-Verlag Wien and Gabriela Hahn from the DK.

Last but not least, we would like to acknowledge the moral and financial support
by the Austrian Science Fund (FWF), the Johannes Kepler University Linz (JKU),
the Government of Upper Austria, and the City of Linz.

Linz, June 2011 Ulrich Langer
Peter Paule

Contents

Approximate Implicitization of Space Curves . 1
Martin Aigner, Bert Jüttler, and Adrien Poteaux

Sparsity Optimized High Order Finite Element
Functions on Simplices . 21
Sven Beuchler, Veronika Pillwein, Joachim Schöberl,
and Sabine Zaglmayr

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity 45
Peter G. Gruber, Johanna Kienesberger, Ulrich Langer,
Joachim Schöberl, and Jan Valdman

A Symbolic-Numeric Algorithm for Genus Computation 65
Mădălina Hodorog and Josef Schicho

The “Seven Dwarfs” of Symbolic Computation . 95
Erich L. Kaltofen

Computer Algebra Meets Finite Elements: An Efficient
Implementation for Maxwell’s Equations . 105
Christoph Koutschan, Christoph Lehrenfeld, and Joachim Schöberl

A Symbolic Approach to Generation and Analysis of Finite
Difference Schemes of Partial Differential Equations . 123
Viktor Levandovskyy and Bernd Martin

White Noise Analysis for Stochastic Partial Differential Equations 157
Hermann G. Matthies

Smoothing Analysis of an All-at-Once Multigrid Approach
for Optimal Control Problems Using Symbolic Computation 175
Stefan Takacs and Veronika Pillwein

vii

viii Contents

Analytical Evaluations of Double Integral Expressions Related
to Total Variation . 193
Carsten Pontow and Otmar Scherzer

Sound and Complete Verification Condition Generator
for Functional Recursive Programs . 219
Nikolaj Popov and Tudor Jebelean

An Introduction to Automated Discovery in Geometry
through Symbolic Computation . 257

Symbolic Analysis for Boundary Problems: From Rewriting
to Parametrized Gröbner Bases . 273
Markus Rosenkranz, Georg Regensburger, Loredana Tec,
and Bruno Buchberger

Linear Partial Differential Equations and Linear Partial
Differential Operators in Computer Algebra . 333
Ekaterina Shemyakova and Franz Winkler

Tomas Recio and María P. Vélez

Approximate Implicitization of Space Curves

Martin Aigner, Bert Jüttler, and Adrien Poteaux

Abstract The process of implicitization generates an implicit representation of a
curve or surface from a given parametric one. This process is potentially interesting
for applications in Computer Aided Design, where the robustness and efficiency
of intersection algorithm can be improved by simultaneously considering implicit
and parametric representations. This paper gives an brief survey of the existing
techniques for approximate implicitization of hyper surfaces. In addition it describes
a framework for the approximate implicitization of space curves.

1 Introduction

There exist two main representations of curves and surfaces in Computer Aided
Geometric Design: the implicit and the parametric form. In both cases, the functions
which describe the curve or surface are almost always chosen as polynomial or
rational functions or, more generally, as polynomial or rational spline functions [15].
Consequently, one deals with segments and patches of algebraic curves and surfaces.

Each of the two different representation is particularly well suited for certain
applications. Parametric representations are well suited to generate points, e.g.,
for displaying curves and surfaces, and to apply the results of the classical
differential geometry of curves and surfaces, e.g., for shape interrogation. Implicit
representations encompass a larger class of shapes and are more powerful for certain
geometric queries. Moreover, the class of algebraic curves and surfaces is closed

B. Jüttler (�) �M. Aigner
Institute of Applied Geometry, Johannes Kepler University, Altenbergerstr. 69,
4040 Linz, Austria
e-mail: bert.juettler@jku.at; martin.aigner@jku.at

A. Poteaux
University of Lille, France

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 1,
© Springer-Verlag/Wien 2012

1

bert.juettler@jku.at
martin.aigner@jku.at

2 M. Aigner et al.

under certain geometric operations, such as offsetting, while the class of rational
parametric curves and surfaces is not.

Consequently, it is often desirable to change from one representation to the other
one. For instance, the implicitization of a planar curve reduces the computation of
the intersection of two curves given in the parametric form to a root finding problem
for a single polynomial [23].

The exact conversion procedures, implicitization and parameterization, have
been studied in classical algebraic geometry and in symbolic computation. Their
practical application in Computer Aided Design is rather limited, due to the
feasibility reasons outlined below. As an alternative, approximate techniques have
emerged recently. These alternatives contribute to the use of symbolic-numerical
techniques in Computer Aided Geometric Design.

The remainder of this paper consists of four parts. First we introduce the
notation. Section 3 then presents a survey of related techniques for the approximate
implicitization of hypersurfaces. The following section describes a new framework
for the approximate implicitizaton of space curves. Finally we conclude this paper.

2 Preliminaries

We start by introducing a few notations. A parametric representation of a curve
segment or a surface patch is a mapping

p W ˝ ! R
d W t 7! p.t/ (1)

where ˝ � R
k is the parameter domain (typically a closed interval in R or a box

in R
2). A curve or surface is described for k D 1 and k D 2, respectively. In

many applications, e.g. in Computer-Aided Design, the mapping p is represented
by piecewise rational functions (rational spline functions), see [15].

An implicitly defined hypersurface F in R
d is the zero-set of a function fs W

R
d ! R,

F D fx 2 R
d W fs.x/ D 0g: (2)

If d D 3 or d D 2, then it is called an implicitly defined surface or planar curve,
respectively.

The subscript represents a vector s 2 R
N which collects the parameters which

characterize the function fs.x/. They are called the shape parameters, since they
control the shape of the curve or surface. For instance, if fs is a polynomial of some
finite degree,

fs.x/ D
NX

iD1

si �i .x/; (3)

then s D .s1; : : : ; sN / contains the coefficients with respect to a suitable basis
.�i /

N
iD1 of the space of polynomials.

Approximate Implicitization of Space Curves 3

Fig. 1 An implicitly defined
space curve

An implicitly defined space curve

C D fx 2 R
3 W fs.x/ D 0 ^ gs.x/ D 0g (4)

is defined by two intersecting implicitly defined surfaces F and G , see Fig. 1.
Clearly, fs and gs are not unique. This space curve is said to be regular at the point
x 2 F \ G , if there exists a representation (4) such that the two gradient vectors
rxfs.x/ and rxgs.x/ with rx D . @

@x
; @

@y
; @

@z / are linearly independent.
Typically, the two functions defining F and G are characterized by two

independent sets of shape parameters, say sf and sg . In order to simplify the
notation, we shall use the convention that both functions depend on the union of
these two sets, hence on s D sf [sg . If the two functions fs.x/ and gs.x/ are
polynomials, then C is said to be an algebraic space curve.

3 Approximate Implicitization

Exact techniques for the implicitization of curves and surfaces have been studied
for a long time. In 1862, Salmon [20] noted that the surface implicitization can
be performed by eliminating the parameters. This was improved by Dixon in 1908
[8], who published a more compact resultant for eliminating two variables from
three polynomials. In 1983, Sederberg [21] considered the implicitization of surface
patches for Computer Aided Geometric Design.

From a theoretical point of view, the problem of the implicitization of a given
rational curve or surface is always solvable. However, there remains a number of
challenging computational difficulties. As described in [15, chapter 12], while the
2D case can be handled satisfactorily by building the Bezout resultant, the 3D case
is more complicated: for instance, a tensor product surface of degree .m; n/ leads to
an implicit formula of degree 2mn. Then, in the simple case m D n D 3, we already
have an algebraic representation of degree 18. After expanding this polynomial in
monomial basis this would lead to 1330 terms.

4 M. Aigner et al.

Practical problems associated with the exact implicitization of curves and
surfaces are addressed in [22] and [5]. Gröbner bases can also be used [7]. For
more details on resultant based methods, the reader may also consult [6].

To conclude, as shown in [15, 22], exact implicitization has many associated
difficulties, in particular in the case of surfaces. Moreover, the computed implicit
form of a curve or surface can be difficult to use, since the degree of the polynomial
is often too high. On the other hand, CAD (Computer-Aided Design) systems are
based on floating point computations, and so all quantities are represented with a
rounding error. Therefore, if we apply any of the exact implicitization method in
this context, the result is not exact.

The existing techniques for approximate implicitization can be classified as direct
ones, where the result is found in a single step, and evolution-based techniques,
where an iterative process is needed to find the result.

3.1 Direct Techniques

We describe three approaches to approximate implicitization. The first two
approaches are due to Dokken, who also coined the notion of AI. The third approach
comprises various fitting-based techniques.

3.1.1 Dokken’s method

In order to adapt implicitization to the need for approximate computation in CAD,
and to achieve more practical algorithms, Dokken introduced the approximate
implicitization of a curve or surface [9,10]. In the sequel we recall Dokken’s method
to compute the approximate implicitization of a curve or surface. See also [12] for
a survey of these and related techniques.

Given a parametric curve or surface p.t/, t 2 ˝ , a polynomial fs.x/ is called
approximate implicitization of p.t/ with tolerance � > 0 if we can find a continuous
direction function g.t/ and a continuous error function �.t/ such that

fs.p.t/C �.t/g.t// D 0; (5)

with kg.t/k2 D 1 and j�.t/j � � (see [9, Definition 35]). We denote by n the degree
of the parametrization p and by m the degree of fs.

Dokken observes that the composition fs ı p can be factorized as

fs.p.t// D .Ds/T ˛.t/; (6)

where D is a matrix build from certain products of the coordinate functions of
p.t/, s is the vector of parameters that characterize the function fs.x/. Furthermore,
˛.t/ D .˛1.t/; : : : ; ˛N .t//T is the basis of the space of polynomials of degree mn,
which is used to describe fs.p.t// and N is the dimension of polynomial space.

Approximate Implicitization of Space Curves 5

This basis is assumed to form a partition of unity,

NX

iD1

˛i D 1

and in addition, the basis ˛.t/ is assumed to be non-negative for t 2 ˝:

˛i .t/ � 0; 8i;8t 2 ˝:

For instance, one may use the Bernstein-Bézier basis with respect to the interval ˝

or with respect to a triangle which contains ˝ in the case of curves and surfaces,
respectively.

Consequently we obtain that

jfs.p.t//j D j.Ds/T ˛.t/j � kDsk2k˛.t/k2 � kDsk2; (7)

hence we are led to find a vector s which makes kDsk2 small. Using the Singular
Value Decomposition (SVD) of the matrix D, one can show that kfs1 .p.t///k1 �p

�1, where �1 is the smallest singular value, and s1 is the corresponding singular
vector. This strategy enables the use of Linear Algebra tools to solve the problem
of approximate implicitization. Moreover, this approach provides high convergence
rates, see [12, Table 1 and 2].

3.1.2 Dokken’s weak method

Dokken’s original method has several limitations: for instance, it is relatively
costly to build the matrix D. Moreover, it is impossible to use spline functions for
describing fs, since no suitable basis for the composition fs ı p can be found.

This problem can be avoided by using the weak form of approximate impliciti-
zation which was introduced in [11], see also [12, section 10]. For a given curve or
surface p with parameter domain ˝ , we now find the approximate implicitization
by minimizing Z

˝

.fs.p.t///2dt D sT As (8)

where

A D DT

�Z

˝

˛.t/˛.t/T dt
�

D: (9)

The matrix A can be analyzed by eigenvalue decomposition, similar to the original
approach, where the matrix D was analyzed with singular value decomposition.
Note that one can apply this strategy even if no explicit expression is available: one
only needs to be able to evaluate points on the curve or surface. The integrals can
then be approximately evaluated by numerical integration.

6 M. Aigner et al.

Choosing the eigenvector which is associated with the smallest eigenvalue of the
matrix A is equivalent to minimizing the objective function defined in (8) subject
to the constraint ksk D 1. This can be seen as a special case of fitting, see next
section.

3.1.3 Algebraic curve and surface fitting

Given a number of points .pi /
N
iD1, which have been sampled from a given curve

or surface, one may fit a curve or surface by minimizing the sum of the squared
residuals (also called algebraic distances),

NX

iD1

.fs.pi //
2: (10)

This objective function can be obtained by applying a simple numerical integration
to (8).

If the algebraic curve or surface is given as in (3), then this objective function
has the trivial minimum s D 0. In order to obtain a meaningful result by minimizing
(10), several additional constraints have been introduced.

Pratt [19] picks one of the coefficients and restricts it to 1, e.g.

s1 D 1: (11)

For instance, if fs is a polynomial which is represented with respect to the usual
power basis, then one may consider the absolute term. This constraint is clearly not
geometrically invariant, since the curve and surface cannot pass through the origin
of the system of coordinates.

Geometrically invariant constraints can be obtained by considering quadratic
functions of the unknown coefficients s. An interesting normalization has been
suggested by Taubin [24], who proposed to use the norm of the squared gradient
vectors at the given data,

NX

iD1

krxfs.pi /k2 D 1: (12)

Adding this constraint leads to a generalized eigenvalue problem. Taubin’s method
gives results which are independent of the choice of the coordinate system.

Finally, Dokken’s weak method – when combined with numerical integration for
evaluating the objective function (8) – uses the constraint

ksk2 D
NX

iD1

s2
i D 1: (13)

These three approaches are able to provide meaningful solutions which mini-
mize the squared algebraic distances (10). However, they may still lead to fairly

Approximate Implicitization of Space Curves 7

unexpected results. Additional branches and isolated singular points may be present,
even for data which are sampled from regular curves or surfaces.

If a method for approximate implicitization is to reproduce the exact results for
sufficiently high degrees, then this unpleasant phenomenon is always present. For
instance, consider a cubic planar curve with a double point. Even if we take sample
points only from one of the two branches which pass through the singular point,
any of the above-mentioned methods will generate the cubic curve with the double
point, provided that the degree of fs is at least 3.

These difficulties can be avoided by using additional normal (or gradient)
information. More precisely, a nontrivial solution of the minimization problem can
be found by considering a convex combination of the two objective functions (8) and

NX

iD1

krxfs.pi /� nik2; (14)

where the vectors .ni /
N
iD1 represent additional normal vector information at the

given points.
This gives a quadratic function of the unknown coefficients s, hence the minimum

is found by solving a system of linear equations. This approach has been introduced
in [16], and it has later been extended in [17, 25, 26]. Among other topics, these
papers also consider the case of curves which contain singular points, where a
globally consistent propagation of the normals is needed.

3.2 Iterative (Evolution-Based) Techniques

Iterative (evolution-based) methods have been considered for several reasons. First,
they lead to a uniform framework for handling various representations of curves
and surfaces, which can handle implicitly defined curves and surfaces as well as
parametric ones [1,13]. Second, they make it possible to include various conditions,
such as constraints on the gradient field, volume constraints or range constraints
[14, 27, 28]. Finally, the sequence of curves or surfaces generated by an iterative
method can be seen as discrete instances of a continuous evolution process, which
links this approach to the level set method and to active curves and surfaces in
Computer Vision [4, 18].

We recall the evolution-based framework for fitting point data .pj /jD1;:::;M with
implicitly defined hypersurfaces, which was described in [1]. In this framework,
the approximate solutions which are generated by an iterative algorithm are seen as
discrete instances of a continuous movement of an initial curve or surface towards
the target points (the given point data).

More precisely, we assume that the shape parameters s depend on a time-
like parameter t , and consider the evolution of the hypersurface described by the
parameters s.t/ for t ! 1. Each data point pj attracts a certain point fj on the

8 M. Aigner et al.

hypersurface F which is associated with it. Usually fj is chosen to be the closest
point on F , i.e.

fj D arg min
p2F kp � pjk: (15)

These attracting forces push the time-dependent hypersurface towards the data. This
is realized by assigning certain velocities to the points on the hypersurface. For
a point lying on a time-dependent implicitly defined curve or surface, which is
described by a function fs, the normal velocity is given by

v D �@fs

@t

rxf >s
krxfsk2 D �rsfs Ps rxf >s

krxfsk2 ; (16)

where the dot indicates the derivative with respect to t and the gradient operator

rs D
�

@

@s1

; : : : ;
@

@sN

�
(17)

gives the row vector of the first partial derivatives. Note that we omitted the time
dependency of s in (16), in order to simplify the notation.

The first term �rsfs Ps in (16) specifies the absolute value of the normal velocity.
The second term is the unit normal vector of the curve, which identifies the direction
of the velocity vector.

As the number of data points exceeds in general the degrees of freedom of the
hypersurface, the velocities are found as the least squares solution of

MX

jD1

..vj � dj />nj /2 ! min
Ps

; (18)

where dj D fj �pj is the residual vector from a data point to its associated point on
the hypersurface, nj D rxfs

krxfsk is the unit normal in this point and vj is the velocity
computed via (16) at fj . More precisely, this leads to the minimization problem

MX

jD1

 �
.rsfs/.pj / Ps .rxfs/.pj /

k.rxfs/.pj /k2 � .fj � pj />
�

.rxfs/.pj />

k.rxfs/.pj /k

!2

! min
Ps

: (19)

We use Tikhonov regularization in order to obtain a unique solution. In addition, we
apply a distance field constraint, in order to avoid the trivial solution, cf. [27].

The geometric interpretation of this approach is as follows: The bigger the
distance to the associated data point, the greater is the velocity that causes the
movement of the hypersurface at the corresponding point. Note that (18) takes only
the normal component of the velocity into account, as a tangential motion does not
change the distance to the data.

Approximate Implicitization of Space Curves 9

The objective function in (19) depends on s as well as on Ps. For a given value of
s, we can find Ps by solving a system of linear equations. Consequently, (19) leads to
an ordinary differential equation for the vector of shape parameters. We can solve it
by using Euler steps with a suitable stepsize control, see [1] for details.

The solution converges to a stationary point, which defines the solution of the
fitting problem. It can be shown that this evolution-based approach is equivalent to
a Gauss-Newton method for the implicit fitting problem, and the stationary point of
the ODE is a (generally only) local minimum of the objective function

MX

jD1

jjpj � fj jj2; (20)

where fj has been defined in (15), see [2].
The evolution viewpoint has several advantages. It provides a geometric interpre-

tation of the initial solution, which is now seen as the starting point of an evolution
that drives the hypersurface towards the data. It also provides a geometrically
motivated stepsize control, which is based on the velocity of the points during the
evolution (see [1]). Finally, the framework makes it possible to introduce various
other constraints on the shape of the hypersurface, see [13, 14].

In the remainder of this paper we will apply the evolution framework to the
approximate implicitization of space curves. In this situation we need to generate
two surfaces which intersect in the given space curve. Moreover, these two surfaces
should intersect transversely, in order to obtain a robustly defined intersection curve.

4 Approximate Implicitization of Space Curves

Now we consider a point cloud .pj /jD1;:::;M which has been sampled from a space
curve. Recall that a point pj lies on an implicitly defined space curve C if it
is contained in both surfaces defining the curve. Consequently we fit the spatial
data with two surfaces F and G . The desired solution C is then contained in the
intersection of F and G . We need to couple the fitting of the two surfaces, in order
to obtain a well-defined intersection curve.

4.1 Fitting Two Implicitly Defined Surfaces

Following the idea in [2] we use an approximation of the exact geometric distance
from a data point to a space curve. More precisely, we use the Sampson distance
which was originally introduced for the case of hypersurfaces [24]. The oriented
distance from a point pj to a curve or surface which is defined implicitly as the zero
set of some function fs can be approximated by

10 M. Aigner et al.

fs.pj /

krxfs.pj /k : (21)

Geometrically speaking, the equation of the surface is linearized in the point pj

and the distance from this point to the zero-set of the linearization is taken as an
approximation of the exact distance. Consequently, this measure is exact for planes,
as they coincide with their linearization. The Sampson distance is not defined at
points with vanishing gradients, which have to be excluded.

A natural extension of this distance to two surfaces defining a space curve is

dj D
s

fs.pj /2

krxs.pj /k2 C
gs.pj /2

krxgs.pj /k2 : (22)

If both surfaces intersect each other orthogonally in the data points, i.e.

.rxfsrxg>s /
ˇ̌
pj
D 0; (23)

then this expression approximates the distance to the implicitly defined space curve.
In order to approximate a set of points which has been sampled from a space

curve, we minimize the sum of the squared distances, which leads to the objective
function

MX

jD1

d 2
j D

MX

jD1

fs.pj /2

krxfs.pj /k2 C
gs.pj /2

krxgs.pj /k2 ! min
s

: (24)

Note that both functions fs and gs depend formally on the same vector s of shape
parameters. Typically, each shape parameter si is uniquely associated with either fs

or gs. Consequently, (24) minimizes the Sampson distances from a point pj to each
of the surfaces F and G independently.

We adapt the evolution based-framework [2] in order to deal with the objective
function (24). We consider the combination of the two evolutions for F and G
which is defined by the minimization problem E ! min

Ps
, where

E.f; g/ D
X�

fs

krxfsk C
rsfs

krxfsk Ps
�2

C
�

gs

krxgsk C
rsgs

krxgsk Ps
�2

: (25)

In order to simplify the notation, we omit the argument pj from now on and omit
the range of the sum, which is taken over all sampled points .pj /jD1;:::;M . This sum
can also be seen as simple numerical integration along the given space curve.

The geometric meaning of this objective function is as follows: The normal
velocity (cf. 16) of the level set of fs (and analogously for gs) which passes through
the given point pj is to be equal to the estimated oriented distance, see (21), to the
surface. Later we will provide another interpretation of this evolution as a Gauss-
Newton-type method.

Approximate Implicitization of Space Curves 11

Similar to (19), the objective function in (25) depends on s and on Ps. For a given
value of s, we find Ps by solving a system of linear equations. Consequently, (25)
leads to an ordinary differential equation for the vector of shape parameters. We can
again solve it simply by using Euler steps with a suitable stepsize control.

As a necessary condition for a minimum of (25), the first derivatives with respect
to the vector Ps have to vanish. This yields the linear system

X� rsf
>

s

krxfsk
rsfs

krxfsk C
rsg

>
s

krxgsk
rsgs

krxgsk
�
Ps D �

X fsrsf
>

s

krxfsk2 C
gsrsg

>
s

krxgsk2 : (26)

If there exists a zero-residual solution, then the right hand side vanishes, as fs.pj / D
gs.pj / D 0 for all j . Hence Ps D 0 is a solution for the problem and we have reached
a stationary point of the evolution. However, the solution may not be unique.

First, the trivial (and unwanted) functions fs � 0 and gs � 0 solve always the
minimum problem (24) for all data sets .pj /jD1:::M . Of course these solutions have
to be avoided.

Second, the evolution defined via (25) pushes both surfaces independently
towards the data points pj . This may lead to the unsatisfying result fs � gs (where
the two functions are identical up to a factor �). Consequently, we need to introduce
additional terms which guarantee that fs and gs do not vanish and that they intersect
orthogonally in the data points.

4.2 Regularization

So far, the implicitization problem is not well–posed. If fs is a solution to the
problem, then �fs is a solution as well. In this section we discuss several strategies
that shall prevent the functions fs and gs from vanishing and that shall guarantee
a unique solution to the individual fitting problems for the two defining surfaces
F and G . Additionally, we propose a coupling term that ensures a well-defined
intersection curve of the surfaces F and G .

Distance field constraint. In order to avoid the unwanted solutions fs � 0 and
gs � 0 we use the distance field constraint which was described in [27]. Consider
the term

D.f / D
�

d

dt
krxfs.x/k C krxfs.x/k � 1

�2

: (27)

It pushes the function fs in a point x closer to a unit distance field, hence

krxfs.x/k D 1: (28)

If the length of the gradient in (27) equals 1, it is expected to remain unchanged.
Consequently, its derivative shall be 0. Otherwise (27) modifies fs such that the
norm of its gradient gets closer to 1.

12 M. Aigner et al.

We apply this penalty term to both functions fs and gs.
This side condition has also an important influence on the robustness of the

implicit representation of the two surfaces F and G , cf. [3]. Roughly speaking, the
closer the defining functions fs and gs are to a unit gradient field, the less sensible
is the representation to potential errors in its coefficients.

Theoretically, this condition can be integrated over the entire domain of interest.
In order to obtain a robust representation of the implicit space curve, the robustness
of the two generating surfaces is mainly required along their intersection, i.e. near
the data points. This leads to the idea of imposing the distance field constraint only
in the data points pj .

We note two more observations. First, the term is quadratic in the unknowns Ps
which follows directly from expanding the derivative in (27),

d

dt
krxfs.xj /k D rxfs

krxfskrsrxfs Ps: (29)

Consequently, the objective function with the distance field constraint is still
quadratic in the unknowns, and we can compute the derivative vector Ps of the shape
parameters by solving a system of linear equations.

Second, the constrained problem does in general not reproduce exact solutions
which would be available without any constraints. For instance, if the data were
sampled from a low degree algebraic space curve, then the approximation technique
would not provide an exact equation of this curve. Only if that solution possesses
a unit gradient field along the data, then it can be recovered. In the next section
we introduce another regularization term which makes it possible to reproduce the
exact solution.

Averaged gradient constraint. This technique is related to a method that was
introduced by Taubin [24]. The core idea is to restrict the sum of the norms of
the gradients. Hence, not all the gradient lengths are expected to be uniform, but the
average gradient length

1

M

X
krxfs.pj /k D 1: (30)

This can be dealt with by adding the term

A.f / D
�X d

dt
krxfs.pj /k C krxfs.pj /k � 1

�2

(31)

to our framework.
Although (28) and (31) look quite similar, their effects on the solution are rather

different. Note that (30) is only one constraint, whereas (28) is a set of constraints,
which depends on the number of points.

Consequently, the condition on the average norm of the gradient can only
handle the singularity that is due to the scalability of implicit representations.

Approximate Implicitization of Space Curves 13

If the ambiguity of the solution arises from an incorrectly chosen degree of the
polynomial, then Taubin’s method and the term (31) do not provide a unique
solution.

For instance, when fitting a straight line with two quadratic surfaces, the obtained
linear system is singular as the number of unknowns exceeds the number of linearly
independent equations provided by the data points. On the other hand, if we use the
distance field constraint (27), then we will obtain a unique solution.

Orthogonality constraint. The distance field constraint leads to a robust represen-
tation of each of the two surfaces which define the curve. Now we introduce an
additional term which provides a robust representation of the curve itself.

Ideally, the two surfaces would intersect orthogonally along the space curve C ,
i.e. (23) holds.

In this case, small displacements in the two surfaces cause only small errors in
the curve. Moreover, the term (22) then approximates the distance to the space curve
very well. On the other hand, if the two surfaces intersect tangentially

.rxf >s � rxg>s /
ˇ̌
C
D 0 (32)

even small perturbations may cause big changes of the curve.
In order to obtain two surfaces that intersect each other approximately orthogo-

nally, we add the term

O.f; g/ D
X�

d

dt

� rxfs

krxfsk
rxg>s
krxgsk

�
C rxfs

krxfsk
rxg>s
krxgsk

�2

(33)

to the objective function. This term penalizes deviations from the optimal case
rxfsrxg>s D 0. More precisely, if the gradients of the surfaces are not orthogonal
in a point where (33) is applied to, then the time derivative of the product of the unit
gradients forces the surfaces to restore this property. Theoretically, this term should
be imposed along the intersection of the surfaces F and G . As the exact intersection
curve is not known, we apply (33) to the data points pj .

We analyze the structure of this term in more detail. The time derivative of the
first product in (33) gives

d

dt

rxfs

krxfsk
rxg>s
krxgsk D

rx
Pfsrxg>s Crxfsrx Pg>s
krxfskkrxgsk

�rxfsrxg>s
� rxfsrxPs>
krxfsk3krxgsk C

rxgsrx Pg>s
krxfskkrxgsk3

�

(34)

Since rx Pfs D rxrsfsPs and rx Pgs D rxrsgsPs, the term (33) is quadratic in Ps.

14 M. Aigner et al.

4.3 Putting Things Together

Summing up, we obtain the minimization problem

F.Ps; s/! min
Ps

(35)

where

F D E.f; g/C!1.D.f /CD.g//C!2O.f; g/C!3.A.f /CA.g//C!4Ps2: (36)

The non-negative weights !1, !2, !3 and !4 control the influence of the distance
field constraint, the orthogonality constraint, the averaged gradient constraint and
the Tikhonov regularization, respectively. Due to the special structure (36) is
quadratic in the vector Ps. Hence, for a given vector s of shape parameters, we
can find Ps by solving a system of linear equations. The evolution of the implicit
representation of the space curve can then be traced using explicit Euler steps with
a suitable stepsize control (cf. [1]).

We conclude this section by discussing the coupled evolution from the optimiza-
tion viewpoint. We show that the constrained optimization is in fact a Gauss-Newton
method for a particular fitting problem.

Consider the optimization problem

C D
X�

fs

krxfsk
�2

C
�

gs

krxgsk
�2

C !1

�
.krxfsk � 1/2 C .krxgsk � 1/2

�

C!2

� rxfs

krxgsk
rxg>s
krxgsk

�2

C !3

��X
krxfs.pj /k � 1

�2

C
�X

krxgs.pj /k � 1
�2
�
! min

s
: (37)

Obviously, a solution of (37) minimizes simultaneously the Sampson distances
from the data points to the space curve (term 1 and 2) the distance field constraint
(term 3), the orthogonality constraint (term 4) and the averaged gradient constraint
(term 5 and 6). Hence a zero residual solution of (37) interpolates all data points,
the defining surfaces have slope one in the data points and furthermore, the surfaces
intersect orthogonally.

Since (37) is non-linear in the vector of unknowns s, we consider an iterative
solution technique. A Gauss-Newton approach for (37) solves iteratively the
linearized version of (37),

C � ! min
�s

(38)

Approximate Implicitization of Space Curves 15

where

C � D
X�

fs

krxfsk C
rsfs

krxfsk�s
�2

C
�

gs

krxgsk C
rsgs

krxgsk�s
�2

C !1

h
.krxfsk�1Crs.krxfsk�1/�s/2C .krxgsk�1Crs.krxgsk�1/�s/2

i

C !2

rxfs

krxfsk
rxg>

s

krxgsk C rs

rxfs

krxfsk
rxg>

s

krxgsk

!
�s

!2

C !3

��X
krxfsk�1Crskrxfsk�s

�2C
�X

krxgsk � 1Crskrxgsk�s
�2
�

(39)

and computes an update of the previous solution via sC D sC �s. By comparing
(36) and (39) we arrive at the following observation.

An explicit Euler step for the evolution equation (36) with stepsize 1 is equiv-
alent to the Gauss-Newton update (39) for the optimization problem (37).

Indeed, if we use that for any function h.s.t//,

d

dt
h.s.t// D rsh.s.t//Ps; (40)

then we can replace the time derivatives in (36). Substituting Ps for �s then gives the
desired result.

4.4 Examples

Finally we present some examples.

Example 1. We sampled 50 points from a parametric space curve of degree 6. The
two implicit patches that represent the implicit space curve are of degree 2. As initial
configuration we have chosen two surfaces deviating from each other slightly, see
Fig. 2(a).

The obtained result after 15 iterations is shown in Fig. 2(b). In order to demon-
strate the robustness of the representation we note that the norm of the gradients
of the two surfaces in the data points varies between 0.94 and 1.94. The maximal
deviation of the gradients from orthogonality at the data points is 0.49 degrees.

Example 2. We choose again the same data set, but modify the various weights in
order to demonstrate their influence. First we omit the orthogonality constraint. That
is, the evolution is not coupled, and both surfaces move independently towards the
data. The result is obvious, both surfaces converge towards the same result, as the
initial values are quite similar, cf. Fig. 3(a).

16 M. Aigner et al.

Fig. 2 Implicitization of a space curve represented by data points sampled from a parametric
curve. Left: Initial surfaces, right: Final result

Fig. 3 Result with omitted orthogonality constraint (left) and omitted distance field constraint
(right)

Fig. 4 Implicit description of a curve represented by perturbed data. Left: Initial surfaces, right:
Final result

Alternatively, we omit the distance field constraint. The results can be seen in
Fig. 3(b).

As one can verify, the two surfaces match still the data. However, one of the
surfaces has a singularity. This is due to the fact that the averaged gradient constraint
allows also vanishing gradients. For the distance field constraint this is not true, as
the norm of the gradients in the data points is forced to be close to one, hence
singular points are unlikely to appear.

Example 3. For this example we added a random error of maximal magnitude
0.05% of the diameter of the bounding box to the data points from the previous
example. The fitted space curve is represented in Fig. 4.

Approximate Implicitization of Space Curves 17

Fig. 5 Implicit representation of a curve described by exact point data. Left: Initial surfaces, right:
Final result

Example 4. In a fourth example we consider a parametric curve of degree 8. The
two surfaces were chosen to have degree 3. This example shall illustrate again the
good convergence behavior, as the two initial surfaces are far away from the final
result (Fig. 5).

5 Conclusion

In the first part of the paper we reviewed some of the existing techniques for
approximate implicitization of hypersurfaces. Starting with Dokken’s approach,
which relies on the use of singular value decomposition, we observed that the weak
version of Dokken’s method can be seen as a special instance of a fitting method.
Finally we described a general framework for evolution based fitting techniques.

The second part of the paper extended the existing evolution framework to the
implicitization of space curves, by coupling the evolution of two implicitly defined
surfaces. As the implicit representation of a curve or surface is not unique, additional
regularization terms have to be added in order to achieve the uniqueness of the
solution. We discussed two possibilities.

The first, called the distance field constraint, tries to achieve a unit gradient field
along the intersecting surfaces. Hence a unique solution to the fitting problem is
always guaranteed. Furthermore, it can even cope with an incorrectly chosen degree,
that is when the degrees of the defining polynomials have been chosen too high.
However, this approach prevents the evolution from finding the exact solution.

The second proposed regularization eliminates only the redundancy which is
caused by the scalability of the underlying functions. As an advantage, it allows to
find the exact solution, provided that the degrees of the implicitly defined surfaces
are sufficiently high.

18 M. Aigner et al.

In order to obtain also a robust representation of the intersection curve we intro-
duced another constraint which is to guarantee that the defining surfaces intersect as
orthogonal as possible. Consequently, small perturbations of the coefficients of the
defining functions lead only to small deviations of the intersection points of the two
surfaces.

For future work we plan to use adaptive spline spaces to improve the quality
of the approximation of the space curves. Furthermore a theoretical analysis of the
approximation order, (which is until now only available for hypersurfaces) is under
investigation.

References

1. Aigner, M., Jüttler, B.: Hybrid curve fitting. Computing 79, 237–247 (2007)
2. Aigner, M., Jüttler, B.: Robust fitting of implicitly defined surfaces using Gauss–Newton–type

techniques. Visual Comput. 25, 731–741 (2009)
3. Aigner, M., Jüttler, B., Kim, M.-S.: Analyzing and enhancing the robustness of implicit

representations. In Geometric Modelling and Processing, pp. 131–142. IEEE Press (2004)
4. Blake, A., Isard, M.: Active Contours: The Application of Techniques from Graphics, Vision,

Control Theory and Statistics to Visual Tracking of Shapes in Motion. Springer, Secaucus
(1998)

5. Cox, D., Goldman, R., Zhang, M.: On the validity of implicitization by moving quadrics for
rational surfaces with no base points. J. Symb. Comput. 29(3), 419–440 (2000)

6. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, Secaucus, NJ, USA
(2005)

7. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to
Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in
Mathematics). Springer, Secaucus, NJ, USA (2007)

8. Dixon, A.L.: The eliminant of three quantics in two independents variables. Proc. London
Math. Soc. 6, 49–69 (1908)

9. Dokken, T.: Aspects of Intersection Algorithms and Approximation. PhD thesis, University of
Oslo (1997)

10. Dokken, T.: Approximate implicitization. In Mathematical Methods for Curves and Surfaces,
pp. 81–102. Vanderbilt University Press, Nashville, TN (2001)

11. Dokken, T., Kellerman, H.K., Tegnander, C.: An approach to weak approximate implicitiza-
tion. In Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 103–112. Vanderbilt
University, Nashville, TN, USA (2001)

12. Dokken, T., Thomassen, J.: Overview of approximate implicitization. In Topics in Algebraic
Geometry and Geometric Modeling, vol. 334, pp. 169–184. Amer. Math. Soc., Providence, RI
(2003)

13. Feichtinger, R., Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Dual evolution of planar
parametric spline curves and T–spline level sets. Comput. Aided Des. 40, 13–24 (2008)

14. Feichtinger, R., Jüttler, B., Yang, H.: Particle-based T-spline level set evolution for 3D object
reconstruction with range and volume constraints. In: Cunningham, S., Skala, V. (eds.) Proc.
WSCG, pp. 49–56. University of Plzen, Union Press (2008)

15. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A K Peters
Wellesley, MA (1993)

16. Jüttler, B., Felis, A.: Least–squares fitting of algebraic spline surfaces. Adv. Comput. Math. 17,
135–152 (2002)

Approximate Implicitization of Space Curves 19

17. Jüttler, B., Wurm, E.: Approximate implicitization via curve fitting. In: Kobbelt, L., Schröder,
P., Hoppe, H. (eds.) Symposium on Geometry Processing, pp. 240–247. New York, Eurograph-
ics/ACM Press (2003)

18. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, Applied Mathematical
Sciences. vol. 153, Springer, New York (2003)

19. Pratt, V.: Direct least-squares fitting of algebraic surfaces. SIGGRAPH Comput. Graph. 21(4),
145–152 (1987)

20. Salmon, G.: A treatise on the analytic geometry of three dimensions. Hodges, Figgis and Co.,
4th ed. (1882)

21. Sederberg, T.W.: Implicit and parametric curves and surfaces for computer aided geometric
design. PhD thesis, Purdue University, West Lafayette, IN, USA (1983)

22. Sederberg, T.W., Chen, F.: Implicitization using moving curves and surfaces. Comput. Graph.
29(Annual Conference Series), 301–308 (1995)

23. Sederberg, T.W., Parry, S.R.: Comparison of three curve intersection algorithms. Comput.
Aided Des. 18(1), 58–64 (1986)

24. Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by
implicit equations with applications to edge and range image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 13(11), 1115–1138 (1991)

25. Wurm, E.: Approximate Techniques for the Implicitisation and Parameterisation of Surfaces.
PhD thesis, Johannes Kepler University, Linz, Austria (2005)

26. Wurm, E., Thomassen, J.B., Jüttler, B., Dokken, T.: Comparative benchmarking of methods
for approximate implicitization. In: Neamtu, M., Lucian, M. (eds.) Geometric Modeling and
Computing: Seattle 2003, pp. 537–548. Nashboro Press, Brentwood (2004)

27. Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance
field constraints for geometry reconstruction and image segmentation. In Shape Modeling
International, pp. 247–252. IEEE Press (2006)

28. Yang, H., Jüttler, B.: Evolution of T-spline level sets for meshing non–uniformly sampled and
incomplete data. Visual Comput. 24, 435–448 (2008)

Sparsity Optimized High Order Finite Element
Functions on Simplices

Sven Beuchler, Veronika Pillwein, Joachim Schöberl, and Sabine Zaglmayr

Abstract This article reports several results on sparsity optimized basis functions
for hp-FEM on triangular and tetrahedral finite element meshes obtained within
the Special Research Program “Numerical and Symbolic Scientific Computing”
and within the Doctoral Program “Computational Mathematics” both supported
by the Austrian Science Fund FWF under the grants SFB F013 and DK W1214,
respectively. We give an overview on the sparsity pattern for mass and stiffness
matrix in the spaces L2, H1, H.div/ and H.curl/. The construction relies on a
tensor-product based construction with properly weighted Jacobi polynomials.

1 Introduction

Finite element methods (FEM) are among the most powerful tools for the approx-
imate solution of elliptic boundary value problems of the form: Find u 2 � such
that

S. Beuchler (�)
Institute for Numerical Simulation, University of Bonn, Wegelerstr. 6, 53115 Bonn, Germany
e-mail: beuchler@ins.uni-bonn.de

V. Pillwein
Research Institute for Symbolic Computation, Johannes Kepler University Linz,
4040 Linz, Austria
e-mail: veronika.pillwein@risc.jku.at

J. Schöberl
Institute for Analysis and Scientific Computing, TU Wien, Wiedner Hauptstr. 8–10, 1040 Wien,
Austria
e-mail: joachim.schoeberl@tuwien.ac.at

S. Zaglmayr
Computer Simulation Technology, 64289 Darmstadt, Germany
e-mail: sabine.zaglmayr@cst.com

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 2,
© Springer-Verlag/Wien 2012

21

beuchler@ins.uni-bonn.de
veronika.pillwein@risc.jku.at
joachim.schoeberl@tuwien.ac.at
sabine.zaglmayr@cst.com

22 S. Beuchler et al.

a.u; v/ D F.v/ 8v 2 �; (1)

where � is an infinite dimensional Sobolev space of functions on a bounded
Lipschitz domain ˝ � �d , d D 2; 3, a.�; �/ W � � � 7! � is an elliptic and
bounded bilinear form and F.�/ W � 7! � is a bounded linear functional. Examples
for the choice of a.�; �/ and� are:

1. The L2 case, where� D L2.˝/ and a.u; v/ D R
˝

uv
2. The H1 case, where� D H1.˝/ and a.u; v/ D R

˝
ru � rvC uv

3. The H.div/ case, where� D H.div;˝/ and a.u; v/ D R
˝
r � u r � vC u � v

4. TheH.curl/ case, where� D H.curl;˝/ and a.u; v/ D R
˝
r � u � r � vC u � v

where the space � coincides with fv 2 L2.˝/ W a.v; v/ < 1g. For a general
overview of the involved spaces including their finite element approximation we
refer to [48]. In all examples, the computation of an approximate solution uN to u
of (1) requires the solution of a linear system of algebraic equations

A u D f with A D �a. j ; i /
�N
i;jD1 (2)

where D Œ 1; : : : ; N � is a basis of a finite dimensional subspace �N of �, see
e.g. [21, 26, 53].

In order to obtain a good approximation uN to u for a fixed space dimension
N of �N , finite elements with higher polynomial degrees p, e.g. the p and
hp-version of the FEM, are preferred if the solution is piecewise smooth, see e.g.
[8, 28, 31, 42, 56, 58] and the references therein. The fast solution of (2) with an
iterative solution method like the preconditioned conjugate gradient method requires
two main ingredients:

• A fast matrix vector multiplication A u,
• The choice of a good preconditioner in order to accelerate the iteration process.

Preconditioners based on domain decomposition methods (DD) for hp-FEM are
extensively investigated in the literature, see e.g. [2,5,7,12,13,18,33,38–41,44,46,
51] for the construction of DD-preconditioners and see [4, 10, 11, 27, 29, 30, 49] for
extension operators which are required as one ingredient of the DD-preconditioners.
The matrix vector multiplication becomes fast if A is a matrix that has as many non-
zero entries as possible, i.e., it is a sparse matrix. Since the global stiffness matrix
A in finite element methods is the result of assembling of local stiffness matrices,
it is sufficient to consider the matrices on the element level.

In this survey, we will summarize the choice of sparsity optimized basis functions
and the results for the above defined bilinear forms on triangular and tetrahedral
finite elements. The results and their proofs have been presented in [14–16, 19], see
also [3,9,32,34,54,57] for the construction of scalar- and vector-valued high-order
finite elements. For fast integration techniques we refer to [36, 42, 47].

For proving the sparsity pattern of the various system matrices we use a symbolic
rewriting procedure to evaluate the integrals that determine the matrix entries
explicitly. For this rewriting procedure several identities relating several orthogonal
polynomials are necessary. Over the past decades algorithms for proving and finding

Sparsity Optimized High Order Finite Element Functions on Simplices 23

such identities have been developed such as Zeilberger’s algorithm [61, 63–65] or
Chyzak’s approach [23–25]. For a general overview on this type of algorithms see,
e.g., [52].

The outline of this overview is as follows. Section 2 comprises several results
about Jacobi and integrated Jacobi polynomials which are crucial for the sparsity of
the system matrices. Some general basics for the definition of tensor product based
shape functions on simplicial finite elements are presented in Sect. 3. The Sects. 4-7
include a summary of the definition of the basis functions and the sparsity results for
mass and main term in L2, H1, H.r�/, and H.curl/, respectively. Section 8 gives
a brief overview on the algorithm applied for symbolic computation of the matrix
entries.

2 Properties of Jacobi Polynomials with Weight .1 � x/˛

Sparsity optimization of high-order basis functions on simplices relies on using
Jacobi-type polynomials and their basic properties which will be introduced in this
section.

For n � 0; ˛; ˇ > �1 and x 2 Œ�1; 1� let

P .˛;ˇ/
n .x/ D .�1/n

2nnŠ.1 � x/˛.1C x/ˇ
dn

dxn
�
.1 � x/nC˛.1C x/nCˇ� (3)

be the nth Jacobi polynomial with respect to the weight function .1� x/˛.1C x/ˇ .
The function P .˛;ˇ/

n .x/ is a polynomial of degree n, i.e. P .˛;ˇ/
n .x/ 2 �n..�1; 1//,

where �n.I / is the space of all polynomials of degree n on the interval I . In the
special case ˛ D ˇ D 0, the functions P .0;0/

n .x/ are called Legendre polynomials.
Mainly, we will use Jacobi polynomials with ˇ D 0. For sake of simple notation we
therefore omit the second index in (3) and write p˛n.x/ WD P .˛;0/

n .x/.
These polynomials are orthogonal with respect to the weight .1 � x/˛ , i.e. there

holds

Z 1

�1
.1 � x/˛p˛j .x/p˛l .x/ dx D �˛j ıjl ; where �˛j D

2˛C1

2j C ˛ C 1: (4)

This relation will be heavily used in computing the entries of the different mass and
stiffness matrices. Moreover for n � 1, let

Op˛n .x/ D
Z x

�1
p˛n�1.y/ dy; with Op˛0 .x/ D 1; (5)

be the nth integrated Jacobi polynomial. Obviously, Op˛n .�1/ D 0 for n � 1.
Integrated Legendre polynomials, by the orthogonality relation (4), vanish at both
endpoints of the interval. Summarizing, one obtains

24 S. Beuchler et al.

Op˛n .�1/ D 0; Op0n.1/ D 0 for n � 2: (6)

Factoring out these roots, integrated Jacobi polynomials (5) can be expressed in
terms of Jacobi polynomials (3) with modified weights, i.e.,

Op˛n .x/ D
1C x
n

P
.˛�1;1/
n�1 .x/; n � 1; (7)

Op0n.x/ D
1 � x2
2n � 2P

.1;1/
n�2 .x/; n � 2: (8)

There are several further identities relating Jacobi polynomialsp˛n.x/ and integrated
Jacobi polynomials (5) that have been proven in [19], [14] and [15]. These include
three term recurrences for fast evaluation as well as identities necessary for proving
the sparsity pattern of the mass and stiffness matrices below. We give a summary of
all necessary identities in Sect. 8. For more details on Jacobi polynomials we refer
the interested reader to the books of Abramowitz and Stegun [1], Szegö [59], and
Tricomi [60].

3 Preliminary Definitions

We assume a conforming affine simplicial mesh. Although the basis functions are
defined on arbitrary simplices, the analysis of the basis functions can be performed
only on the reference elements OT as defined in Fig. 1. The sparsity result on affine
meshes then follows by the mapping principle. An arbitrary simplex can be mapped
by an affine transformation to these reference elements. We mention that affine
transformations guarantee that polynomials are mapped to polynomials of the same
degree. The basis functions will be defined by means of barycentric coordinates
�i that are functions depending on x; y (and z). For our reference triangle they are
given as

�1.x; y/ D 1 � 2x � y
4

; �2.x; y/ D 1C 2x � y
4

; and �3.x; y/ D 1C y
2

;

Fig. 1 Notation of the vertices and edges/faces on the reference element OT for 2d and 3d

Sparsity Optimized High Order Finite Element Functions on Simplices 25

and for the reference tetrahedron they are defined as

�1=2.x; y; z/ D 1� 4x � 2y � z

8
; �3.x; y; z/ D 1C 2y � z

4
;

and �4.x; y; z/ D 1C z

2
:

We mention that the barycentric coordinates add up to 1.
By viewing the triangle (tetrahedron) as a collapsed quadrilateral (hexahedron)

as suggested by Dubiner [34] and Karniadakis, Sherwin [42], we can construct
a tensorial-type basis also for simplices. For this purpose, we need the Duffy
transformation that maps the tensorial element to the simplicial element.

In two dimensions the Duffy transformation D mapping the unit square to the
reference triangle is defined as

D W OQ D Œ�1; 1�2 ! OT
.�; �/ ! .x; y/

with
x D �

2
.1 � �/;

y D �:
(9)

Using the inverse of the Duffy transformation, we can parameterize the triangle O4
by

� D 2x

1 � y D
�2.x; y/ � �1.x; y/
�2.x; y/C �1.x; y/ ; and � D y D 2�3.x; y/ � 1:

Besides the Duffy transformation, polynomial basis functions which vanish on some
or all edges of the triangle are required. Therefore, we introduce several auxiliary
bubble functions, which are important for the definition of our basis functions. More
precisely, the authors introduce the edge based function

gEi .x; y/ WD Op0i
�
�e2��e1
�e1C�e2

�
.�e1 C �e2/i (10)

on the edge E D Œe1; e2�, running from vertex Ve1 to Ve2 and the bubbles

gi .x; y/ WD Op0i
�
�2��1
�1C�2

�
.�1 C �2/i and hij .x; y/ WD Op2i�1j .2�3 � 1/; (11)

where the barycentric coordinates depend on x and y. Note that the functions in
(10) and (11) are polynomial functions of degrees i , i and j , respectively. Using
(6), one observes that the functions gEi as defined in (10) vanish at the endpoints of
the edge E . In the same way, the functions gi .x; y/ vanish at the edges E2 D Œ1; 3�
and E3 D Œ2; 3�, whereas hij vanishes at the edge E1 D Œ1; 2�.

In three dimensions the Duffy transformation mapping the unit cube to the
reference tetrahedron is defined as

26 S. Beuchler et al.

D W OQ D Œ�1; 1�3 ! OT
.�; �; �/ ! .x; y; z/

with

x D �

4
.1 � �/.1 � �/;

y D �

2
.1 � �/;

z D �:

Using the inverse of the Duffy transformation we can parameterize the triangle O4
by

� D 4x

1 � 2y � z
D �2.x; y; z/ � �1.x; y; z/
�2.x; y; z/C �1.x; y; z/ ;

� D 2y

1 � z
D �3.x; y; z/ � �2.x; y; z/ � �1.x; y; z/
�3.x; y; z/C �2.x; y; z/C �1.x; y; z/ ;

� D z D 2�4.x; y; z/ � 1:
Here, the edge-based functions

uEi .x; y; z/ WD Op0i
�
�e2��e1
�e1C�e2

�
.�e1 C �e2/i (12)

are introduced on the edge E D Œe1; e2�, running from vertex Ve1 to Ve2 . The face
based functions

uFi WD Op0i
�
�f2 � �f1
�f2 C �f1

	 �
�f2 C �f1

�i
; vFij WD Op2i�1j

�
�f3 � �f2 � �f1

�
(13)

are defined on the face F D Œf1; f2; f3� characterized by the vertices Vf1 ; Vf2 and
Vf3 . The functions

ui .x; y; z/ WD Op0i
�
�2 � �1
�2 C �1

	
.�2 C �1/i ;

vij .x; y; z/ WD Op2i�1j

�
2�3 � .1 � �4/

1 � �4
	
.1 � �4/j ;

and wijk.x; y; z/ WD Op2iC2j�2k .2�4 � 1/

(14)

will be central in the definition of the interior bubble functions. Again, the
barycentric coordinates depend on x, y and z. For vector valued problems, the
lowest-order Nédélec function [50] corresponding to the edge E D Œe1; e2� and the
lowest order Raviart-Thomas function, [20, 50], corresponding to F D Œf1; f2; f3�,
characterized by the vertices Vf1; Vf2 and Vf3 are defined by

'1;E WD r�e1 �e2 � �e1r�e2 and (15)

 F0 D
Œf1;f2;f3�
0 WD �f1r�f2 � r�f3 C �f2r�f3 � r�f1 C �f3r�f1 � r�f2 ;

(16)

respectively.

Sparsity Optimized High Order Finite Element Functions on Simplices 27

The functions (10)–(14) and the choice of the weights for the Jacobi polynomials
are pivotal for obtaining the sparsity results in mass and stiffness matrices.

4 The L2 Orthogonal Basis Functions of Dubiner

These basis functions have been introduced by [34], see also [42]. Another possible
construction principle is based on Appell polynomials, [6, 22, 35].

Let 4s be a triangle with its baryzentrical coordinates �m.x; y/, m D 1; 2; 3.
Instead of (11), we introduce the auxiliary functions

Qgi .x; y/ WD p0i
�
�2 � �1
�1 C �2

	
.�1 C �2/i and Qhij .x; y/ WD p2iC1j .2�3 � 1/;

and define the L2 orthogonal functions

 ij .x; y/ D Qgi .x; y/ Qhij .x; y/; 0 � i; j; i C j � p:

We prove this orthogonality for the reference triangle given in Fig. 1. The com-
putations are straight forward: after using the Duffy transformation the integrals
can be evaluated by a mere application of the orthogonality relation (4) for Jacobi
polynomials:

Z

OT
p0i

�
2x

1 � y
	
p0k

�
2x

1 � y
	�

1 � y
2

	iCk
p2iC1j .y/p2kC1l .y/ d.x; y/

D
Z 1

�1
p0i .�/p

0
k.�/ d�

Z 1

�1

�
1 � �
2

	iCkC1
p2iC1j .�/p2kC1l .�/ d�

D 2

2i C 1ıik
Z 1

�1

�
1 � �
2

	2iC1
p2iC1j .�/p2iC1l .�/ d�

D 2ıikıjl

.2i C 1/.i C j C 1/ :

Now, let 4s be a tetrahedron with its baryzentrical coordinates �m.x; y/, m D
1; 2; 3; 4. With the auxiliary functions

Qui .x; y; z/ WD p0i
�
�2 � �1
�2 C �1

	
.�2 C �1/i ;

Qvij .x; y; z/ WD p2iC1j

�
�3 � �2 � �1
�3 C �2 C �1

	
.�3 C �2 C �1/j ;

and Qwijk.x; y; z/ WD p2iC2jC2k .�4 � �1 � �2 � �3/

28 S. Beuchler et al.

the basis functions read as

 ijk.x; y; z/ WD Qui .x; y; z/Qvij .x; y; z/ Qwijk .x; y; z/; i C j C k � p; i; j; k � 0:

The evaluation of the L2-inner product is completely analogous to the triangular
case. For the reference tetrahedron as defined in Fig. 1, the final result is

Z

OT
 ijk.x; y; z/ lmn.x; y; z/ d.x; y; z/ D 4ıil ıjmıkn

.2iC1/.iCjC1/.2iC2jC2kC3/ :

Also the sparsity results for the basis functions for H1; H.div/ and H.curl/ are
proved by evaluation that proceeds by rewriting until the orthogonality relation (4)
for Jacobi polynomials can be exploited. These computations, however, become
much more evolved as indicated in the sections below and ultimately this task is
handed over to an algorithm, see Sect. 8.

5 Sparsity Optimized H 1-Conforming Basis Functions

The construction of the basis functions in this section follows [14,15,19]. Through-
out we assume a uniform polynomial degree p.

In order to obtain H1-conforming functions, the global basis functions have to
be globally continuous. In 2D, the functions are split into three different groups, the
vertex based functions, the edge bubble functions and the interior bubbles. In order
to guarantee a simple continuous extension to the neighboring element, the interior
bubbles are defined to vanish at all element edges, the edge bubbles vanish on two of
the three edges whereas the vertex functions are chosen as the usual hat functions.
In 3D, there additionally exist face bubble functions.

5.1 Sparse H 1-Conforming Basis Functions on the Triangle

Using the integrated Jacobi polynomials (5), we define the shape functions on the
affine triangle4s with baryzentrical coordinates �m.x; y/, m D 1; 2; 3.

• The vertex functions are chosen as the usual linear hat functions

 V;m.x; y/ WD �m.x; y/; m D 1; 2; 3:

Let �2
V WD Œ V;1; V;2; V;3� be the basis of the vertex functions.

• For each edge E D Œe1; e2�, running from vertex Ve1 to Ve2 , we define

 Œe1;e2�;i .x; y/ D gEi .x; y/

Sparsity Optimized High Order Finite Element Functions on Simplices 29

with the integrated Legendre type functions (10). By �Œe1;e2� D
�
 Œe1;e2�;i

�p
iD2,

we denote the basis of the edge bubble functions on the edge Œe1; e2�. �2
E D�

�Œ1;2�; �Œ2;3�; �Œ3;1�
�

is the basis of all edge bubble functions.
• The interior bubbles are defined as

 ij .x; y/ WD gi .x; y/hij .x; y/; i C j � p; i � 2; j � 1; (17)

where the auxiliary bubble functions gi and hij are given in (11). Moreover,

�2
I D

�
 ij
�iCj�p
i�2;j�1 denotes the basis of all interior bubbles.

Finally, let �r;2 D
�
�2
V ; �

2
E; �

2
I

�
be the set of all shape functions on4s .

The interior block of the mass and stiffness matrix on the triangle4s are denoted
by

MII;s;r2 D
Z

4s
Œ�2
I �
>Œ�2

I � WD
h
	s;2ij Ikl

iiCj�pIkCl�p
i;kD2Ij;lD1 ; and (18)

KII;s;r2 D
Z

4s
Œr�2

I �
> � Œr�2

I � WD
h
as;2ij Ikl

iiCj�pIkCl�p
i;kD2Ij;lD1 ; (19)

respectively.

Theorem 5.1. Let MII;s;r2 be defined via (18), then the matrix has O.p2/ nonzero
matrix entries. More precisely, 	s;2ij Ikl D 0 if ji � kj 62 f0; 2g or ji � k C j � l j > 4.

Let KII;s;r2 be defined via (19), then the matrix has O.p2/ nonzero matrix
entries. More precisely, as;2ij Ikl D 0 if ji � kj > 2 or ji � k C j � l j > 2.

Proof. This sparsity result is proven by explicit evaluation of the matrix entries
using the algorithm described in Sect. 8, see also [14,15]. However, we will give the
interested reader a short impression of the proofs. After the affine linear mapping of
the element4s to the reference element O4 it suffices to prove the results there. We
start with sketching the result for the mass matrix.

On the reference element OT , we have

O	.2/ij Ikl D
Z

OT
Op0i
�
2x

1 � y
	�

1 � y
2

	i
Op2i�1j .y/ Op0k

�
2x

1 � y
	�

1 � y
2

	k

� Op2k�1l .y/ d.x; y/

by (11) and (17). With the substitution � D 2x
1�y and � D y, cf. (9), the integral

simplifies to

O	.2/ij Ikl D
Z 1

�1
Op0i .�/ Op0k.�/ d�

Z 1

�1

�
1 � �
2

	iCkC1
Op2i�1j .�/ Op2k�1l .�/ d�:

Using (35) for ˛ D 0, the integrated Legendre polynomials can be expressed as the
sum of two Legendre polynomials. The orthogonality relation (4) implies that the
first integral is zero if ji � kj 62 f0; 2g.

30 S. Beuchler et al.

For i D k, we obtain

O	.2/ij Ii l D ci
Z 1

�1

�
1 � �
2

	2iC1
Op2i�1j .�/ Op2i�1l .�/ d�

with some constants ci . Now, relation (36) is applied for Op2i�1j .�/ and Op2i�1l .�/.
This gives

O	.2/ij Ii l D ci;j;l
Z 1

�1

�
1 � �
2

	2iC1
.p2i�1j .�/C p2i�1j�1 .�//.p2i�1l .�/C p2i�1l�1 .�// d�:

By the orthogonality relation (4), the term .p2i�1j .�/ C p2i�1j�1 .�// is orthogonal to

all polynomials of maximal degree j �2 with respect to the weight
�
1��
2

�2i�1
, e.g.,

is orthogonal to
�
1��
2

�2
.p2i�1l .�/ C p2i�1l�1 .�// 2 �l . Therefore, O	.2/ij Ii l D 0 for

j � l > 4. By symmetry, we obtain O	.2/ij Ii l D 0 for jj � l j > 4. For k D i � 2, one
obtains

O	.2/ij Ii�2l D ci
Z 1

�1

�
1 � �
2

	2i�1
Op2i�1j .�/ Op2i�5l .�/ d�:

Again, by (36) and (4), the result O	ij Ii�2l D 0 for jj C 2 � l j > 4 follows.
For the stiffness matrix, the proof is similar. Starting point is the computation of

the gradient on the reference element, which is given by

r ij D

2

64
p0i�1

�
2x
1�y

� �
1�y
2

�i�1 Op2i�1j .y/

1
2
p0i�2

�
2x
1�y

� �
1�y
2

�i�1 Op2i�1j .y/C Op0i
�
2x
1�y

� �
1�y
2

�i
p2i�1j�1 .y/

3

75 :

With this closed form representation at hand the computations follow the same
pattern as outlined for the mass matrix. ut
Remark 5.2. The family of basis functions defined by the auxiliary functions

gi .x; y/ WD Op0i
�
�2 � �1
�1 C �2

	
.�1 C �2/i and hij .x; y/ WD Op2i�aj .2�3�1/; (20)

for 0 � a � 4 have been considered in [15]. For a D 1, the functions coincide with
the functions given in (11). The sparsity optimal basis for H1 for both mass and
stiffness matrix is given by the choice a D 0 which also yields the best condition
numbers for the system matrix.

The nonzero pattern obtained by Theorem 5.1 is displayed in Fig. 2 for the
interior basis functions (17) obtained by (20) with a D 0 and a D 1. The best
sparsity results are obtained for a D 0 with a maximum of nine nonzero entries per
row for the element stiffness matrix on the reference element O4. Because of this

Sparsity Optimized High Order Finite Element Functions on Simplices 31

Fig. 2 Nonzero pattern for p D 14: mass matrix MII;s;r2 (above), stiffness matrix OKII;r2 on OT
(middle), stiffness matrixKII;s;r2 on general element (below) for the interior bubbles based on the
functions (20) with a D 0 (left) and a D 1 (right)

change of the weights in (20), the bandwidths of the nonzero blocks become larger
for a D 1.

This nonzero pattern has a stencil like structure which makes it simpler to solve
systems with linear combinations ofMII;s;r2 andKII;s;r2 using sparse direct solvers

32 S. Beuchler et al.

Fig. 3 Maximal and reciprocals of the minimal eigenvalues for the stiffness matrix OKII;r2 (19)
on the reference element OT for the basis functions based on (20) with a D 0 and a D 1

as the method of nested dissection, [37], embedded in a DD-preconditioner. This is
an important tool if static condensation is used in order to solve the system (2). We
refer the interested reader for a more detailed discussion to [19].

Besides the sparsity, also the condition numbers of the local matrices are
important. Figure 3 displays the diagonally preconditioned condition numbers of
the stiffness matrix OKII;r2 (19) on the reference element OT for several polynomial
degrees. Numerically the condition number grows at least as O.p2/ for the functions
with aD 0. This is the best possible choice for interior bubbles in two space
dimensions.

5.2 Sparse H 1-Conforming Basis Functions on the Tetrahedron

The construction principle follows [14].

• The vertex functions are defined as the usual hat functions, i.e.

 V;m.x; y; z/ D �m.x; y; z/; m D 1; 2; 3; 4:

Let �3
V D Œ V;m�4mD1 denote the basis of the hat functions.

• With (12), the edge bubbles are defined as

Sparsity Optimized High Order Finite Element Functions on Simplices 33

Œe1;e2�
i .x; y/ WD uEi .x; y/; for 2 � i � p

for an edge E D Œe1; e2�, running from vertex Ve1 to Ve2 . We denote the basis of
all edge bubble functions by

�3
E D

hh

Œ1;2�
i

ip
iD2 ;

h

Œ2;3�
i

ip
iD2 ;

h

Œ3;1�
i

ip
iD2 ;

h

Œ1;4�
i

ip
iD2 ;

h

Œ2;4�
i

ip
iD2 ;

h

Œ3;4�
i

ip
iD2

i
:

• For each face F D Œf1; f2; f3�, characterized by the vertices Vf1 ; Vf2 and Vf3 , the
face bubbles are defined as

f

j;k.x; y; z/ WD uFi .x; y; z/ vFij .x; y; z/; i � 2; j � 1; i C j � p

using the functions (13). We denote the basis of all face bubble functions by

�3
F WD

h

Œ1;2;3�
i;j

iiCjDp
iD2;jD1

h

Œ2;3;4�
i;j

iiCjDp
iD2;jD1 ;

h

Œ3;4;1�
i;j

iiCjDp
iD2;jD1 ;

h

Œ4;1;2�
i;j

iiCjDp
iD2;jD1

�
:

• With the functions (14), the interior bubbles read as

 ijk.x; y; z/ WD ui .x; y; z/vij .x; y; z/wijk .x; y; z/;

i C j C k � p; i � 2; j; k � 1:

Moreover, �3
I D

�
 ijk

�iCjCk�p
i�2;j�1;k�1 denotes the basis of the interior bubbles.

Let �r;3 D
�
�3
V ; �

3
E; �

3
F ; �

3
I

�
be the basis of all shape functions.

The interior block of the mass and stiffness matrix on the triangle4s are denoted
by

MII;s;r3 D
Z

4s
Œ�3
I �
>Œ�3

I � WD
h
	
s;3
ijkIlmn

iiCjCk�pIlCmCn�p
i;lD2Ij;m;l;nD1 and (21)

KII;s;r3 D
Z

4s
Œr�3

I �
> � Œr�3

I � WD
h
as;3ijkIlmn

iiCjCk�pIlCmCn�p
i;lD2Ij;k;m;nD1 ; (22)

respectively.

Theorem 5.3. The inner block of the mass matrix MII;s;r3 has in total O.p3/
nonzero matrix entries. More precisely, 	ijkImln D 0 if ji�l j > 2, ji�lCj�mj > 4
or ji � l C j �mC k � nj > 6.

34 S. Beuchler et al.

The inner block of the stiffness matrixKII;s;r3 has in total O.p3/ nonzero matrix
entries. More precisely, 	ijkImln D 0 if ji � l j > 2, ji � l C j � mj > 3 or
ji � l C j �mC k � nj > 4.

Proof. Evaluation of the matrix entries using the algorithm described in Sect. 8, see
also [14, 15]. ut
Remark 5.4. In [15], the auxiliary functions are defined in the more general form

ui .x; y; z/ WD Op0i
�
�2 � �1
�2 C �1

	
.�2 C �1/i ;

vij .x; y; z/ WD Op2i�aj

�
2�3 � .1 � �4/

1 � �4
	
.1 � �4/j ;

(23)

and wijk.x; y; z/ WD Op2iC2j�bk .2�4 � 1/,
where the integers a and b satisfy 0 � a � 4, a � b � 6. The interior bubbles
coincide with the functions given in [57], see also [42], if a D b D 0. To make
this equivalence obvious use the identities (7) and (8). This choice corresponds to
the sparsity optimal case for H1 for both mass and stiffness matrix. In this case the
results of Theorem 5.3 reduce to ji � l j > 2, ji � l C j � mj > 3 or ji � l C
j �mC k � nj > 4 for the mass matrix and ji � l j > 2, ji � l C j �mj > 3 or
ji � lCj �mCk�nj > 2 for the stiffness matrix. The auxiliary polynomials used
in this paper correspond to setting a D 1 and b D 2.

Again a stencil like structure for mass and stiffness matrix is obtained. However,
the elimination of the interior bubbles by static condensation with nested dissection
is much more expensive in the 3D case than in the 2D case. The computational
complexity is now O.p6/ flops in comparison to O.p3/ flops in the two-dimensional
case.

Besides the sparsity, also the condition numbers of the local matrices are
important. Figure 4 displays the condition numbers of the stiffness matrix OKII;r3

106

105

104

103

102

101

101 101

101

p

λ
m

in
−

1

a=1,b=2
a=1,b=1
a=1,b=0
a=0,b=2
a=0,b=1
a=0,b=0
a=0,b=−1

p

λ m
ax

a=1,b=2
a=1,b=1
a=1,b=0
a=0,b=2
a=0,b=1
a=0,b=0
a=0,b=−1

Fig. 4 Maximal (right) and minimal (left) eigenvalues for the diagonally preconditioned stiffness
matrix OKII;r3 (22) on the reference element OT for different values of a and b in (23)

Sparsity Optimized High Order Finite Element Functions on Simplices 35

(22) on the reference element OT for several polynomial degrees and several choices
of auxiliary functions (14) and (23). Numerically, the condition number grows as
least with O.p4/.

6 Sparsity Optimization of H.div/-Conforming
Basis Functions

The following construction of H.div/-conforming finite elements applies the ideas
on sparsity optimization on simplices of [14, 15, 19] to the general construction
principles of H.div/-conforming high-order fe bases developed in [62] and [55]. A
detailed description of both the two and three dimensional case can be found in [16].
In the sequel, we only report the results for tetrahedra.

Let
s denote an arbitrary non-degenerated simplex
s � R
3, its set of four

vertices by V D fV1; V2; V3; V4g, Vi 2 R
3, and �1; �2; �3; �4 2 P1.
s/ its

barycentric coordinates. Global H.div/ conformity requires normal continuity over
element interfaces, which can be easily achieved by using a face-interior-based high-
order finite element basis. The general construction follows [55, 62]: The set of
face-based shape functions consists of low-order Raviart-Thomas shape functions
and divergence-free shape functions. The set of interior based shape functions are
split into a set of divergence-free fields (rotations) and a set of non-divergence-free
completion functions. Using the appropriately weighted Jacobi-type polynomials of
Sect. 3 the H.div/-conforming shape functions on the tetrahedron are defined as
follows.

• For each face F D Œf1; f2; f3�, characterized by the vertices Vf1; Vf2 and Vf3 we
construct the face based basis functions as follows. First, we choose the classical
Raviart-Thomas function of order zero F0 (16) and add the divergence-free
higher-order face based shape functions

 F1j WD r �
�
'
Œf1;f2�
1 vF1j

�
; 1 � j � p;

 Fij WD r �
�
ruFi vFij

�
D �ruFi � rvFij ; 2 � i I 1 � j I i C j � p C 1

(24)
where we use the face-based Jacobi-type polynomials (13) and the lowest-order
Nédélec function (15) corresponding to the edge Œf1; f2�. Let

Œ�0� WD
h

F1
0 ;

F2
0 ;

F3
0 ;

F4
0

i
(25)

denote the row vector of low-order shape functions,

Œ�F � WD

h
 F1j

ip
jD1 ;

h
 Fij

iiCj�pC1
iD2;jD1

�

36 S. Beuchler et al.

denote the row vector of the faced-based high-order shape functions of one fixed
face F , and

Œ� �F � WD
�
Œ�F1� Œ�F2� Œ�F3� Œ�F4�

�
(26)

be the row vector of all face-based high-order shape functions.
• The cell-based basis functions are constructed in two types. First we define the

divergence-free shape functions by the rotations

.a/

1jk.x; y; z/ WD r �
�
'
Œ1;2�
1 .x; y; z/ v2j .x; y; z/ w2jk.x; y; z/

�
;

j; k � 1I j C k � p;

.b/

ijk .x; y; z/ WD r �
�rui .x; y; z/ vij .x; y; z/ wijk.x; y; z/

�
;

i � 2I j; k � 1I i C j C k � p C 2;

.c/

ijk.x; y; z/ WD r �
�r.ui .x; y; z/ vij .x; y; z// wijk.x; y; z/

�
;

i � 2I j; k � 1I i C j C k � p C 2;

and complete the basis with the non-divergence free cell-based shape functions

e .a/

10k.x; y; z/ WD Œ1;2;3�0 .x; y; z/ w21k.x; y; z/;

1 � k � p � 1;
e .b/

1jk.x; y; z/ WD 'Œ1;2�0 .x; y; z/ � rw2jk.x; y; z/ v2j .x; y; z/;

j; k � 1I j C k � p;
e .c/

ijk.x; y; z/ WD wijk.x; y; z/ rui .x; y; z/ � rvij .x; y; z/;

i � 2I j; k � 1I i C j C k � p C 2;

where Œ1;2;3�0 .x; y; z/ denotes the Raviart-Thomas function (16) associated to the

bottom face Œ1; 2; 3� and 'Œ1;2�0 is the Nédélec function (15) associated to the edge
Œ1; 2�. The auxiliary functions ui ; vij and wijk have been defined in (14).

Finally, we denote the row vectors of the corresponding basis functions as

– Œ�a� D
h

.a/

1jk.x; y; z/
ijCk�p
j;k;�1 ,

– Œ�b� D
h

.b/

ijk .x; y; z/
iiCjCk�pC2
i�2;j;k;�1 ,

– Œ�c� D
h

.c/

ijk.x; y; z/
iiCjCk�pC2
i�2;j;k;�1 , for the divergence-free parts, and

– Œe�a� D
h
e .a/

10k.x; y; z/
ip�1
kD1,

Sparsity Optimized High Order Finite Element Functions on Simplices 37

– Œe�b� D
h
e .b/

1jk.x; y; z/
ijCk�p
j;k;�1 , and

– Œe�c� D
h
e .c/ijk.x; y; z/

iiCjCk�pC2
i�2;j;k;�1 for the non divergence-free polynomials.

The set of the interior shape functions is denoted by

Œ� �I � WD
�
Œ�1� Œ�2�

�
with Œ�1� WD

�
Œ�a� Œ�b� Œ�c�

�
;

Œ�2� WD
�
Œe�a� Œe�b� Œe�c�

�
: (27)

Using (25)–(27), the complete set of low-order-face-cell-based shape functions
on the tetrahedron is written as

Œ�r�� WD
�
Œ�0� Œ�

�
F � Œ�

�
I �
�
: (28)

Let

Ks;� D
Z

4s
Œr � �r��>Œr � �r�� (29)

be the element stiffness matrix with respect to the basis (28) and

MII;s;� D
Z

4s
Œ� �I �> � Œ� �I � (30)

be the block of the interior bubbles of the mass matrix. The following orthogonality
results can be shown.

Theorem 6.1. Let the set Œ�r�� of basis functions be defined in (28). Then, the fluxes
Œr � � �I � are L2-orthogonal to Œr � �r��. Moreover, the stiffness matrix Ks;� (29) is
diagonal up to the 4 � 4 low-order block adiv.Œ�0�; Œ�0�/.

The number of nonzero matrix entries per row in the matrix MII;s;� (30) is
bounded by a constant independent of the polynomial degree p.

Proof. The first result can be proved by straightforward computation. For the mass
matrix, the assertion follows by evaluation of the matrix entries using the algorithm
described in Sect. 8, see also [16]. ut
Due to a construction based on the Jacobi type polynomials (14), the nonzero pattern
of the matrixMII;s;� in (30) has again a stencil like structure as the matricesMII;s;r3
and KII;s;r3 in (21) and (22) for the H1 case. Also the growth of the condition
number is as O.p4/. However, the absolute numbers for a fixed polynomial degree
p are higher than for the H1 case.

The divergence of the inner basis functions vanishes for the first part and
coincides with the higher-order L2-optimal Dubiner basis functions for the second
part. Hence, the results for the element stiffness matrix Ks;� are strongly related to
the L2 results of Sect. 4. Namely, Ks;� is diagonal up to the low-order block. The
nonzero pattern for mass and stiffness matrix is displayed in Fig. 5 for p D 15.

38 S. Beuchler et al.

Fig. 5 Optimally weighted Jacobi-type basis Œ�r�� for p D 15: Above: Sparsity pattern of inner
block bMII;� of element mass (left, above) and element stiffness matrix bK � (right, above) on
reference tetrahedron O4. Below: Sparsity pattern of inner blockMII;s;� of mass matrix (left, below)
and stiffness matrix Ks;� on a general affine tetrahedron4s (right, below)

Besides sparsity the appropriately chosen weights imply a tremendous improve-
ment in condition numbers of the system matrices (even for curved element
geometries) as reported in [16].

7 Sparsity Optimized H.curl/-Conforming Basis Functions

The sparsity results forH.curl/-conforming basis functions included in this section
will be presented in a forthcoming paper [17]. Again, the general construction
principle follows [54] and [62]. The sparsity optimization will be performed only

Sparsity Optimized High Order Finite Element Functions on Simplices 39

for the interior basis functions. Hence, in the sequel we restrict ourselves only to
the definition of interior functions, while the edge and face based functions can be
taken from [54].

The interior (cell-based) basis functions are constructed in two types. First we
define the curl-free shape functions by the gradients

'
.b/

ijk.x; y; z/ WD r
�
ui .x; y; z/ vij .x; y; z/ wijk.x; y; z/

�
;

i � 2I j; k � 1I i C j C k � p C 1
(31)

and complete the basis with the non-curl free cell-based shape functions

Q'.a/1jk.x; y; z/ WD 'Œ1;2�1 .x; y; z/v1j .x; y; z/w1jk .x; y; z/;

j; k � 1I j C k � p � 1;
Q'.b/ijk.x; y; z/ WD rui .x; y; z/vij .x; y; z/wijk .x; y; z/;

i � 2I j; k � 1I i C j C k � p C 1;
Q'.c/ijk.x; y; z/ WD r

�
ui .x; y; z/vij .x; y; z/

�
wijk.x; y; z/;

i � 2I j; k � 1I i C j C k � p C 1;

(32)

where 'Œ1;2�1 is the Nédélec function (15), and ui ; vij and wijk are defined in (14).
Finally, we denote the row vectors of the corresponding basis functions as

• Œ˚b� D
h
�
.b/

ijk.x; y; z/
iiCjCk�pC1
i�2;j;k;�1 as the gradient fields, and

• Œe̊a� D
h
e�.a/1jk.z/

ijCk�p�1
j;kD1 ,

• Œe̊b� D
h
e�.b/ijk.x; y; z/

iiCjCk�pC1
i�2;j;k;�1 and

• Œe̊c � D
h
e�.c/ijk.x; y; z/

iiCjCk�pC1
i�2;j;k;�1

as the non curl free functions. The set of interior basis functions is denoted by

Œ��I � WD
�
Œ˚b� Œ˚2�

�
with Œ˚2� WD

�
Œe̊a� Œe̊b� Œe̊c�

�
: (33)

Finally, we introduce

Ks;II;� D
Z

4s
Œr � �r��> � Œr � �r�� and Ms;II;� D

Z

4s
Œ�r��> � Œ�r��

(34)

as the stiffness and mass matrix with respect to the interior bubbles (33), respec-
tively.

40 S. Beuchler et al.

Theorem 7.1. The matrices Ks;II;� and Ms;II;� (34) are sparse matrices having a
bounded number of nonzero entries per row. The total number of nonzero entries
grows as O.p3/.

Proof. The result follows from the construction principle of the basis functions
in (31), (32) and Theorems 5.3 and 6.1. We refer the reader for a more detailed
discussion to [17]. ut

8 Integration by Rewriting

In this section we present the algorithm that is used to evaluate the matrix entries for
different spaces and choices of basis functions. As indicated earlier, the basic idea
is to apply a rewriting procedure to the given integrands that yields a reformulation
of the integrand as a linear combination of products of the form

�
1 � x
2

	˛
p˛i .x/p

˛
j .x/:

These terms then can be evaluated directly by the Jacobi orthogonality relation (4).
Below we use the short-hand notation w˛.x/ D

�
1�x
2

�˛
for the weight function.

For the necessary rewriting steps several relations between Jacobi polynomials
and integrated polynomials are needed that have been proven in [14, 15, 19] and are
summarized in the next lemma.

Lemma 8.1 Let p˛n .x/ and Op˛n .x/ be the polynomials defined in (3) and (5). Then
for all n � 1 we have the relations

Op˛n .x/ D
2.nC˛/

.2nC˛�1/.2nC˛/p
˛
n.x/C

2˛

.2nC˛�2/.2nC˛/p
˛
n�1.x/

� 2.n � 1/
.2nC ˛ � 1/.2nC ˛ � 2/p

˛
n�2.x/; ˛ � �1; (35)

Op˛n .x/ D
2

2nC ˛ � 1Œp
˛�1
n .x/C p˛�1n�1 .x/�; ˛ > �1; (36)

.˛ � 1/ Op˛n.x/ D .1 � x/ p˛n�1.x/C 2 p˛�2n .x/; ˛ > 1: (37)

p˛�1n D 1

2nC ˛ Œ.nC ˛/p
˛
n .x/ � np˛n�1.x/�; ˛ > �1; (38)

After decoupling the integrands by means of the Duffy transformation, the
integrals are evaluated in the order given by the dependencies of the parameters ˛.
For each of these univariate integrals the following algorithm is executed:

Sparsity Optimized High Order Finite Element Functions on Simplices 41

1. Collect integrands depending on the current integration variable.
2. For each integrand: Rewrite integrated Jacobi polynomials in terms of Jacobi

polynomials using (35), (36), or (37).
3. Collect integrands depending on the current integration variable.
4. For each integrand: Adjust Jacobi polynomials to appearing weight functions.
5. Collect integrands depending on the current integration variable.
6. For each integrand: Evaluate integrals using orthogonality relation (4).

The two steps of the algorithm that need further explanations are steps 2 and 4.
Indeed, let us consider steps 2 and 4 in detail: which of the identities relating
integrated Jacobi polynomials and Jacobi polynomials (35)–(37) have to be used
in step 2 depends on the difference � � ˛ of the parameters of Op˛n .�/ and of the
weight function w� .�/.

2. Rewrite w� .�/ Op˛n .�/ in terms of Jacobi polynomials

(a) � � ˛ � 0: transform integrated Jacobi polynomials to Jacobi polynomials
with same parameter using (35).

(b) � � ˛ D �1: transform integrated Jacobi polynomials to Jacobi polynomials
with parameter ˛ � 1 using (36).

(c) � � ˛ D �2: use the mixed relation (37) to obtain

w� .�/ Op�C2n .�/ D 2

� C 1
�

w� .�/p
�
n.�/C w�C1.�/p�C2n�1 .�/

�
:

If none of the cases 2(a)–2(c) applies, the algorithms interrupts and returns the
unevaluated integrand for further examination. Such an output can lead either to
a readjustment of the parameters of the basis functions, or to the discovery of
a new relation between Jacobi polynomials that needs to be added to the given
rewrite rules. This finding of new, necessary identities can again be achieved with
the assistance of symbolic computation, e.g., by means of Koutschan’s package
HolonomicFunctions [45] or Kauers’ package SumCracker [43].

Rewriting the Jacobi polynomialsp˛n .�/ in terms of p�n .�/ fitting to the appearing
weights w� .�/ in step 4, means lifting the polynomial parameter ˛ using (38)
.� � ˛/ times. This transformation is performed recursively for each appearing
Jacobi polynomial.

4. Rewrite the Jacobi polynomials p˛n .�/ in terms of Jacobi polynomials fitting to
the appearing weights w� .�/ (� � ˛ > 0) by lifting the polynomial parameter ˛
using (38) .� � ˛/-times, i.e., written in explicit form we have

p˛n .�/ D
��˛X

mD0
.�1/k

�
� � ˛
m

	
.nC � �m/��˛�m nm
.2nC � �mC 1/��˛C1 .2n � 2mC � C 1/

� p�n�m.�/;

where ak D a.a � 1/ � : : : � .a � k C 1/ denotes the falling factorial.

42 S. Beuchler et al.

If ��˛ < 0 the algorithm interrupts. In this step of the algorithm polynomials down
to degree n � � C ˛ are introduced. Hence this transformation is a costly one as it
increases the number of terms significantly.

Acknowledgements This work has been supported by the FWF-projects P20121-N12 and
P20162-N18, the Austrian Academy of Sciences, the Spezialforschungsbereich “Numerical and
Symbolic Scientific Computing” (SFB F013) , the doctoral program “Computational Mathematics”
(W1214) and the FWF Start Project Y-192 on “3D hp-Finite Elements: Fast Solvers and
Adaptivity”.

References

1. Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions. Dover-Publications,
New York (1965)

2. Ainsworth, M.: A preconditioner based on domain decomposition for h-p finite element
approximation on quasi-uniform meshes. SIAM J. Numer. Anal. 33(4), 1358–1376 (1996)

3. Ainsworth, M., Coyle, J.: Hierarchic finite element bases on unstructured tetrahedral meshes.
Int. J. Num. Meth. Eng. 58(14), 2103–2130 (2003)

4. Ainsworth, M., Demkowicz, L.: Explicit polynomial preserving trace liftings on a triangle.
Math. Nachr. 282(5), 640–658 (2009)

5. Ainsworth, M., Guo, B.: An additive Schwarz preconditioner for p-version boundary element
approximation of the hypersingular operator in three dimensions. Numer. Math. 85(3), 343–
366 (2000)

6. Appell, P.: Sur des polynômes de deux variables analogues aux polynômes de jacobi. Arch.
Math. Phys. 66, 238–245 (1881)

7. Babuška, I., Craig, A., Mandel, J., Pitkäranta, J.: Efficent preconditioning for the p-version
finite element method in two dimensions. SIAM J. Numer. Anal. 28(3), 624–661 (1991)

8. Babuška, I., Guo, B.Q.: The h-p version of the finite element method for domains with curved
boundaries. SIAM J. Numer. Anal. 25(4), 837–861 (1988)

9. Babuška, I., Griebel, M., Pitkäranta, J.: The problem of selecting the shape functions for a
p-type finite element. Int. Journ. Num. Meth. Eng. 28, 1891–1908 (1989)

10. Bernardi, C., Dauge, M., Maday, Y.: Polynomials in weighted Sobolev spaces: Basics and trace
liftings. Technical Report R 92039, Universite Pierre et Marie Curie, Paris (1993)

11. Bernardi, Ch., Dauge, M., Maday, Y.: The lifting of polynomial traces revisited. Math. Comp.
79(269), 47–69 (2010)

12. Beuchler, S.: Multi-grid solver for the inner problem in domain decomposition methods for
p-FEM. SIAM J. Numer. Anal. 40(3), 928–944 (2002)

13. Beuchler, S.: Wavelet solvers for hp-FEM discretizations in 3D using hexahedral elements.
Comput. Methods Appl. Mech. Engrg. 198(13-14), 1138–1148, (2009)

14. Beuchler, S., Pillwein, V.: Shape functions for tetrahedral p-fem using integrated Jacobi
polynomials. Computing 80, 345–375 (2007)

15. Beuchler, S., Pillwein, V.: Completions to sparse shape functions for triangular and tetrahedral
p-fem. In Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.)
Domain Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture
Notes in Computational Science and Engineering, pp. 435–442, Springer, Heidelberg (2008).
Proceedings of the 17th International Conference on Domain Decomposition Methods held at
St. Wolfgang / Strobl, Austria, July 3–7, 2006

16. Beuchler, S., Pillwein, V., Zaglmayr, S.: Sparsity optimized high order finite element functions
for H(div) on simplices. Technical Report 2010-04, DK Computational Mathematics, JKU
Linz (2010)

Sparsity Optimized High Order Finite Element Functions on Simplices 43

17. Beuchler, S., Pillwein, V., Zaglmayr, S.: Sparsity optimized high order finite element functions
for H.curl/ on tetrahedral meshes. Technical Report Report RICAM, Johann Radon Institute
for Computational and Applied Mathematics, Linz (2011) in preparation.

18. Beuchler, S., Schneider, R., Schwab, C.: Multiresolution weighted norm equivalences and
applications. Numer. Math. 98(1), 67–97 (2004)

19. Beuchler, S., Schöberl, J.: New shape functions for triangular p-fem using integrated jacobi
polynomials. Numer. Math. 103, 339–366 (2006)

20. Bossavit, A.: Computational Electromagnetism: Variational formulation, complementary, edge
elements. Academic Press Series in Electromagnetism. Academic, San Diego (1989)

21. Braess, D.: Finite Elemente. Springer, Berlin (1991)
22. Braess, D.: Approximation on simplices and orthogonal polynomials. In Trends and

applications in constructive approximation, volume 151 of Internat. Ser. Numer. Math., pp.
53–60. Birkhäuser, Basel (2005)

23. Chyzak, F.: Gröbner bases, symbolic summation and symbolic integration. In Gröbner bases
and applications (Linz, 1998), volume 251 of London Math. Soc. Lecture Note Ser., pp. 32–60.
Cambridge University Press, Cambridge (1998)

24. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions.
Discrete Math. 217(1-3), 115–134 (2000). Formal power series and algebraic combinatorics
(Vienna, 1997)

25. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate
identities. J. Symbolic Comput. 26(2), 187–227 (1998)

26. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North–Holland, Amsterdam
(1978)

27. Costabel, M., Dauge, M., Demkowicz, L.: Polynomial extension operators for H1, H.curl/
and H.div/-spaces on a cube. Math. Comp. 77(264), 1967–1999 (2008)

28. Demkowicz, L.: Computing with hp Finite Elements. CRC Press, Taylor and Francis (2006)
29. Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. I. SIAM J.

Numer. Anal. 46(6), 3006–3031 (2008)
30. Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. II. SIAM J.

Numer. Anal. 47(5), 3293–3324 (2009)
31. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing

with hp-adaptive finite elements. Vol. 2. Chapman & Hall/CRC Applied Mathematics and
Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL, (2008). Frontiers: three
dimensional elliptic and Maxwell problems with applications

32. Demkowicz, L., Monk, P., Vardapetyan, L., Rachowicz, W.: De Rham diagram for hp finite
element spaces. Comput. Math. Apl. 39(7-8), 29–38, (2000)

33. Deville, M.O., Mund, E.H.: Finite element preconditioning for pseudospectral solutions of
elliptic problems. SIAM J. Sci. Stat. Comp. 18(2), 311–342 (1990)

34. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Computing 6, 345
(1991)

35. Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables, volume 81 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge (2001)

36. Eibner, T., Melenk, J.M.: An adaptive strategy for hp-FEM based on testing for analyticity.
Comput. Mech. 39(5), 575–595 (2007)

37. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10,
345–363 (1973)

38. Guo, B., Cao, W.: An iterative and parallel solver based on domain decomposition for the hp-
version of the finite element method. J. Comput. Appl. Math. 83, 71–85 (1997)

39. Ivanov, S.A., Korneev, V.G.: On the preconditioning in the domain decomposition technique
for the p-version finite element method. Part I. Technical Report SPC 95-35, Technische
Universität Chemnitz-Zwickau, December 1995

40. Ivanov, S.A., Korneev, V.G.: On the preconditioning in the domain decomposition technique
for the p-version finite element method. Part II. Technical Report SPC 95-36, Technische
Universität Chemnitz-Zwickau, December 1995

44 S. Beuchler et al.

41. Jensen, S., Korneev, V.G.: On domain decomposition preconditioning in the hierarchical
p�version of the finite element method. Comput. Methods. Appl. Mech. Eng. 150(1–4), 215–
238 (1997)

42. Karniadakis, G.M., Sherwin, S.J.: Spectral/HP Element Methods for CFD. Oxford University
Press, Oxford (1999)

43. Kauers, M.: SumCracker – A Package for Manipulating Symbolic Sums and Related Objects.
J. Symbolic Comput. 41(9), 1039–1057 (2006)

44. Korneev, V., Langer, U., Xanthis, L.: On fast domain decomposition methods solving
procedures for hp-discretizations of 3d elliptic problems. Comput. Meth. Appl. Math. 3(4),
536–559, (2003)

45. Koutschan, C.: HolonomicFunctions (User’s Guide). Technical Report 10-01, RISC Report
Series, University of Linz, Austria, January 2010

46. Melenk, J.M., Pechstein, C., Schöberl, J., Zaglmayr, S.: Additive Schwarz preconditioning for
p-version triangular and tetrahedral finite elements. IMA J. Num. Anal. 28, 1–24 (2008)

47. Melenk, J.M., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: Fast quadrature.
Comp. Meth. Appl. Mech. Eng. 190, 4339–4364 (1999)

48. Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and
Scientific Computation. The Clarendon Press Oxford University Press, New York (2003)

49. Munoz-Sola, R.: Polynomial liftings on a tetrahedron and applications to the h-p version of
the finite element method in three dimensions. SIAM J. Numer. Anal. 34(1), 282–314 (1996)

50. Nédélec, J.C.: Mixed finite elements in R
3. Numerische Mathematik 35(35), 315–341 (1980)

51. Pavarino, L.F.: Additive schwarz methods for the p-version finite element method. Numer.
Math. 66(4), 493–515 (1994)

52. Petkovšek, M., Wilf, H.S., Zeilberger, D.: A D B . A K Peters Ltd., Wellesley, MA (1996)
53. Quateroni, A., Valli, A.: Numerical Approximation of partial differential equations. Number 23

in Springer Series in Computational Mathematics. Springer, Berlin (1997)
54. Schöberl, J., Zaglmayr, S.: High order Nédélec elements with local complete sequence

properties. International Journal for Computation and Mathematics in Electrical and Electronic
Engineering (COMPEL) 24, 374–384 (2005)

55. Schöberl, J., Zaglmayr, S.: hp finite element De Rham sequences on hybrid meshes, in
preparation

56. Schwab, C.: p� and hp�finite element methods. Theory and applications in solid and fluid
mechanics. Clarendon Press, Oxford (1998)

57. Sherwin, S.J., Karniadakis, G.E.: A new triangular and tetrahedral basis for high-order finite
element methods. Int. J. Num. Meth. Eng. 38, 3775–3802 (1995)

58. Solin, P., Segeth, K., Dolezel, I.: Higher-Order Finite Element Methods. Chapman and Hall,
CRC Press (2003)

59. Szegö, G.: Orthogonal Polynomials. AMS Colloquium Publications, Vol. XXIII. 3rd edn.
(1974)

60. Tricomi, F.G.: Vorlesungen über Orthogonalreihen. Springer, Berlin (1955)
61. Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and “q”)

multisum/integral identities. Invent. Math. 108(3), 575–633 (1992)
62. Zaglmayr, S.: High Order Finite Elements for Electromagnetic Field Computation. PhD thesis,

Johannes Kepler University, Linz, Austria (2006)
63. Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Dis-

crete. Math. 80, 207–211 (1990)
64. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl.

Math. 32(3), 321–368 (1990)
65. Zeilberger, D.: The method of creative telescoping. J. Symbolic Comput. 11, 195–204 (1991)

Fast Solvers and A Posteriori Error Estimates
in Elastoplasticity

Peter G. Gruber, Johanna Kienesberger, Ulrich Langer, Joachim Schöberl,
and Jan Valdman

Abstract The paper reports some results on computational plasticity obtained
within the Special Research Program “Numerical and Symbolic Scientific Com-
puting” and within the Doctoral Program “Computational Mathematics” both
supported by the Austrian Science Fund FWF under the grants SFB F013 and
DK W1214, respectively. Adaptivity and fast solvers are the ingredients of efficient
numerical methods. The paper presents fast and robust solvers for both 2D and 3D
plastic flow theory problems as well as different approaches to the derivations of a
posteriori error estimates. In the last part of the paper higher-order finite elements
are used within a new plastic-zone concentrated setup according to the regularity of
the solution. The theoretical results obtained are well supported by the results of our
numerical experiments.

1 Introduction

The theory of plasticity has a long tradition in the engineering literature. These
classical results on plasticity together with the introduction of the Finite Element
Method (FEM) into engineering computations provides the basis for the modern
computational plasticity (see [59] and the references therein). The rigorous math-
ematical analysis of plastic flow theory problems and of the numerical methods
for their solution started in the late 70ies and in the early 80ies by the work of
C. Johnson [33, 34], H. Matthies [43, 44], V.G. Korneev and U. Langer [42], and
others. Since then many mathematical contributions to Computational Plasticity
have been made. We here only refer to the monographs by J.C. Simo and
T.J.R. Hughes [53] and W. Han and B.D. Reddy[31], to the habilitation theses by

U. Langer (�) � P.G. Gruber � J. Kienesberger � J. Schöberl � J. Valdman
Institute of Computational Mathematics, Johannes Kepler University Linz, 4040 Linz, Austria
e-mail: ulanger@numa.uni-linz.ac.at

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 3,
© Springer-Verlag/Wien 2012

45

ulanger@numa.uni-linz.ac.at

46 P.G. Gruber et al.

C. Carstensen [12] and C. Wieners [57], to the collection [54], and the references
given therein.

The incremental elastoplasticity problem can be reformulated as a minimization
problem for a convex but not-smooth functional, where the unknowns are the
displacements u and the plastic strains p. One method to deal with this non-
smoothness relies on regularization techniques which were initially studied in [37].
However, eliminating the plastic strains p and using Moreau’s theorem, we see that
the reduced functional, that is now only a functional in the displacements u, is
actually continuously Fréchet differentiable. The elimination of the plastic strains
can be done locally and with the help of symbolic techniques. Unfortunately,
the second derivative of the reduced functional does not exist. As a remedy, the
concept of slanting functions, introduced by X. Chen, Z. Nashed, and L. Qi in
[17], allows us to construct and analyze generalized Newton methods which show
fast convergence in all our numerical experiments. More precisely, we can prove
super-linear convergence of these generalized Newton methods at least in the finite
element setting.

The second part of this paper is devoted to the a posteriori error analysis of
elastoplastic problems. Two different techniques were developed: the first one is
exploring a residual-type estimator respecting certain oscillations, and the second
one is based on functional a posteriori estimates introduced by S. Repin [48].

Finally, we consider spatial discretizations of the incremental plasticity problems
based on hp finite element techniques. A straightforward application of the classical
h-FEM yields algebraic convergence. However, the regularity results presented in
[6, 41], namely H2

loc regularity of the displacements in the whole domain, and C1
regularity apart from plastic zones and the boundary of the computational domain,
justify the application of high order finite element methods in the elastic part, but
not necessarily in the plastic part. A few hp-adaptive strategies, as well as a related
technique, the so-called Boundary Concentrated Finite Element Method (BC-FEM)
introduced by B.N. Khoromskij and J.M. Melenk [35], are discussed in this paper.

The rest of the paper is organized as follows: In Sect. 2, we describe the initial-
boundary value problem of elastoplasticity which is studied in this paper. Section 3
is devoted to the incremental elastoplasticity problems and strategies for their
solution. In Sect. 4 we derive a posteriori error estimates which can be used in the
adaptive h-FEM providing an effective spatial discretization in every incremental
step. Section 5 deals with the use of the hp-FEM in elastoplasticity. Finally, we
draw some conclusions.

2 Modeling of Elastoplasticity

There are many mathematical models describing the elastoplastic behavior of mate-
rials under loading. In this paper we follow the description given by C. Carstensen
in [12–15]. The classical equations of elastoplasticity can be found in the standard
literature on plasticity, see, e.g., [31,53]. Let us first recall these describing relations.

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity 47

Let � WD Œ0; T � be a (pseudo) time interval, and let ˝ be a bounded domain in R
3

with a Lipschitz continuous boundary � WD @˝ . In the quasi-static case which is
considered throughout this paper, the equilibrium of forces reads

� div.�.x; t// D f .x; t/ 8 .x; t/ 2 ˝ �� ; (1)

where �.x; t/ 2 R
3�3 is called Cauchy’s stress tensor and f .x; t/ 2 R

3 represents
the volume force acting at the material point x 2 ˝ at the time t 2 �. Let u.x; t/ 2
R
3 denote the displacements of the body, and let

".u/ WD 1

2

�ruC .ru/T
�

(2)

be the linearized Green-St. Venant strain tensor. In elastoplasticity, the total strain "
is additively split into an elastic part e and a plastic part p, that is,

" D e C p: (3)

We assume a linear dependence of the stress on the elastic strain by Hooke’s law

� D C e: (4)

Since we assume the material to be isotropic, the single components of the elastic
stiffness tensor C 2 R

3�3�3�3 are defined by Cijkl WD �ıij ıkl C�.ıikıjl C ıil ıjk/.
Here, � > 0 and � > 0 denote the Lamé constants, and ıij the Kronecker symbol.

Let the boundary � be split into a Dirichlet part �D and a Neumann part �N
such that � D �D [�N . We assume the boundary conditions

u D uD on �D and � � n D g on �N ; (5)

where n.x; t/ denotes the exterior unit normal, uD.x; t/ 2 R
3 denotes a prescribed

displacement and g.x; t/ 2 R
3 denotes a prescribed traction. If p D 0 in (3), the

system (1)–(5) describes the linear elastic behavior of the continuum˝ .
Two more properties, incorporating the admissibility of the stress � with respect

to a certain hardening law and the time evolution of the plastic strain p, are
required to describe the plastic behavior of some body ˝ . Therefore, we introduce
the hardening parameter ˛ and define the generalized stress .�; ˛/, which we call
admissible if for a given convex yield functional � the inequality

�.�; ˛/ � 0: (6)

holds. The explicit form of � depends on the choice of the hardening law, see,
e.g., formula (9) for isotropic hardening. The second property addresses the time
development of the generalized plastic strain .p;�˛/, described by the normality
rule

48 P.G. Gruber et al.

h. Pp;� P̨ /; .	; ˇ/ � .�; ˛/iF � 0 8 .	; ˇ/ which satisfy �.	; ˇ/ � 0; (7)

where Pp and P̨ denote the first time derivatives of p and ˛, respectively. Finally, let

p.x; 0/ D p0.x/ and ˛.x; 0/ D ˛0.x/ 8 x 2 ˝; (8)

for given initial values p0 W ˝ ! R
3�3
sym and ˛0 W ˝ ! Œ0;1Œ.

Problem 1 (classical formulation). Find .u; p; ˛/, which satisfies (1)–(8).

In this paper we concentrate on the isotropic hardening law, where the hardening
parameter ˛ is a scalar function ˛ W ˝ ! R and the yield functional � is defined by

�.�; ˛/ WD
(
kdev �kF � �y.1CH˛/ if ˛ � 0;
C1 if ˛ < 0:

(9)

Here, the Frobenius norm kAkF WD hA; Ai1=2F is defined by the matrix scalar
product hA; BiF WD P

ij aij bij for A D .aij / 2 R
3�3 and B D .bij / 2 R

3�3.
The deviator is defined for square matrices by devA D A � trA

tr I I , where the trace
of a matrix is defined by trA D hA; I iF and I denotes the identity matrix. The
real material constants �y > 0 and H > 0 are called yield stress and modulus of
hardening, respectively.

3 The Incremental Elastoplasticity Problems and Solvers

We turn to the specification of proper function spaces. For a fixed time t 2 �, let

u 2 V WD �H1.˝/
�3
; p 2 Q WD ŒL2.˝/�3�3sym ; ˛ 2 L2.˝/:

Further, let VD WD fv 2 V j vj�D D uDg, and V0 WD fv 2 V j vj�D D 0g, with

hu; viV WD
Z

˝

�
uT vC hru; rviF

�
dx; kvkV WD hv; vi1=2V ;

hp; qiQ WD
Z

˝

hp; qiF dx; kqkQ WD hq; qi1=2Q :

Starting from Problem 1, one can derive a uniquely solvable time dependent
variational inequality for unknown displacement u 2 fv 2 H1.�IV / j vj�D D uDg
and plastic strain p 2 H1.�IQ/ (see [31, Theorem 7.3] for details). However,
the numerical treatment requires a time discretization. Therefore, we pick a fixed
number of time ticks 0 D t0 < t1 < : : : < tN� D T out of �, and define

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity 49

uk WD u.tk/; pk WD p.tk/; ˛k WD ˛.tk/; fk WD f .tk/; gk WD g.tk/; : : : ;

and approximate time derivatives by the backward difference quotients

Ppk � .pk � pk�1/ = .tk � tk�1/ and P̨k � .˛k � ˛k�1/ = .tk � tk�1/ :

Consequently, the time dependent problem is approximated by a sequence
of time independent variational inequalities of the second kind. Each of these
variational inequalities can be equivalently expressed by a minimization problem,
which by definition of the set of extended real numbers, R WD R [f˙1g, reads
[14, Example 4.5]:

Problem 2. Find .uk; pk/ 2 VD �Q such that Jk.uk; pk/ D inf.v;q/2VD�Q Jk.v; q/,
where Jk W VD �Q! R is defined by

Jk.v; q/ WD 1

2
k".v/� qk2

C
C k.q/� lk.v/; (10)

with

hq1; q2iC WD
Z

˝

hC q1.x/; q2.x/iF dx; kqkC WD hq; qi
1
2

C
; (11)

Q̨k.q/ WD ˛k�1 C �yHkq � pk�1kF ; (12)

 k.q/ WD
� R

˝

�
1
2
Q̨k.q/2 C �ykq � pk�1kF

�
dx if tr.q � pk�1/ D 0;

C1 else;
(13)

lk.v/ WD
Z

˝

fk � v dx C
Z

�N

gk � v ds: (14)

The convex functional Jk expresses the mechanical energy of the deformed
system at the kth time step. It is smooth with respect to the displacements v, but
not with respect to the plastic strains q. Notice, that no minimization with respect
to the hardening parameter ˛k is necessary. It is computed in the post-processing
by ˛k D Q̨k.pk/, with Q̨k defined as in (12). A short summary on the modeling of
Problem 2 starting from the classical formulation can be found in [40]. The problem
is uniquely solvable due to [22, Proposition 1.2 in Chap. II].

J. Valdman together with M. Brokate and C. Carstensen published results on
the analysis [10] and numerical treatment [11] of multi-yield elastoplastic models
based on the PhD-thesis of J. Valdman [55] and its extension. The main feature of
the multi-yield models is a higher number of plastic strains p1; : : : ; pN used for
more realistic modeling of the elastoplastic-plastic transition. Since the structure
of the minimization functional in the multi-yield plasticity model remains the
same as for the single-yield model, it was possible to prove the existence and
uniqueness of the solution of the corresponding variational inequalities and design
a FEM based solution algorithm. In terms of a software development, an existing

50 P.G. Gruber et al.

Fig. 1 Example of two-yield
plasticity distribution

0

2e-07

4e-07

6e-07

8e-07

1e-06

1.2e-06

1.4e-06

1.6e-06

-1.5e-06 -1e-06 -5e-07 0 5e-07 1e-06 1.5e-06

|p|
quadratic spline

cubic spline
shifted cubic spline

Fig. 2 Plot of jpj and its regularizations

elastoplasticity package [36], written as a part of the NETGEN/NGSolve software
of J. Schöberl, was modified to make the computations of a two-yield elastoplastic
problem feasible [39]. Figure 1 displays elastic (blue), first (red) and second (green)
plastic deformational zones of the shaft model. The numerical treatment of the
two-yield problem requires to resolve the plastic-strain increment matrices P1 and
P2 from a local minimization problem with a convex but non-smooth functional.
Since there are typically millions of such minimizations, iterative techniques such as
alternating minimizations, Newton based methods or even partially exact analytical
solutions were studied in [32].

The first class of algorithms is based on a regularization of the objective,
where the modulus is smoothed for making the objective J .ı/

k twice differentiable.
Figure 2 shows the modulus jpj WD kpk � pk�1kF and possible regularizations
jpj.ı/ depending on the regularization parameter ı, where ı is here chosen as
10�6. The quadratic regularization has a smooth first derivative within the interval

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity 51

.�ı; ı/, but the second derivative is piecewise constant and discontinuous. Thus,
the local quadratic convergence of Newton type methods cannot be guaranteed. The
piecewise cubic spline has a piecewise linear continuous second derivative. Thus,
Newton type methods can be applied. As a final choice of regularization, the cubic
spline function is shifted to the origin, so that jpj.ı/ D 0 holds for p D 0.

For instance, in case of a quadratic regularization (green), we have

jpjı WD
� jpj if jpj � ı;

1
2ı
jpj2 C ı

2
if jpj < ı;

with a small regularization parameter ı > 0.
The algorithm is based on alternating minimization with respect to the two

variables, and on the reduction of the objective to a quadratic functional with respect
to the plastic strains. This can be interpreted as a linearization of the nonlinear
elastoplastic problem.

The minimization problem with respect to the plastic part of the strain is
separable and the analytical solution p.ı/.u/ can be calculated in explicit form.
Problem 2 formally reduces to

J
.ı/

k .u/ D min
v
J
.ı/

k .v; p.ı/.v//: (15)

After the finite element (FE) discretization and the elimination of plastic strains,
the FE displacement field results from the solution of a linear Schur complement
system. The solution of this linear system can efficiently be computed by a multi-
grid preconditioned conjugate gradient solver, see [38, 39].

Using Moreau’s theorem, that is well known in the scope of convex analysis
[46], we can avoid the regularization of the original functional Jk . The formula for
minimizing Jk.u; p/ with respect to the plastic strain p for a given displacement u
is explicitly known [2], i. e., we know a function Qpk.".u//, such that there holds

Jk.u/ WD Jk.u; Qpk.".u/// D inf
q
Jk.u; q/:

In detail, the plastic strain minimizer reads as follows

Qpk.".v// D
 maxf0; kdev�k.".v//kF � �yg dev �k.".v//

kdev �k.".v//kF C pk�1; (16)

with the constant
 WD
�
1C �2yH2

��1
, the trial stress �k.".v// WD C .".v/� pk�1/,

and the deviatoric part dev � WD � � .tr �=3/ I . Thus, it remains to solve a
minimization problem with respect to one variable only, i.e. Jk.u/ ! min. The
theorem of Moreau says, that, due to the specific structure of Jk.u; p/, the functional
Jk.u/ is continuously Fréchet differentiable and strictly convex. Moreover, the
explicit form of the derivative is also provided. The Gâteaux differential is given

52 P.G. Gruber et al.

by the relation

D Jk.vIw/ D h".v/� Qpk.".v//; ".w/iC � lk.w/: (17)

Hence, it suffices to find u such that the first derivative of F vanishes. This approach
was first discussed in the master thesis [25] by P.G. Gruber. Several numerical
examples can also be found in [24, 29, 30].

The second derivative of Jk does not exist. As a remedy, the concept of
slanting functions, introduced by X. Chen, Z. Nashed, and L. Qi in [17], allows
the application of the following Newton-like method: Let v0 2 VD be a given
initial guess for the displacement field. Then, for j D 0; 1; 2; ::: and given vj , find
vjC1 2 VD such that

.D Jk/
o .vj I vjC1 � vj ;w/ D �D Jk.vj Iw/ (18)

holds for all w 2 V0, where the slanting function of D Jk is defined by the identity

.D Jk/
o .v I w1;w2/ D h".w1/ � Qpko.".v/ I ".w1//; ".w2/iC 8w1;w2 2 V0:

Here, .D Jk/
o is a slanting function for D Jk in (17) if and only if Qpko serves

as a slanting function for Qpk in (16). By using the definition ˇk.".v// WD 1 �
�y kdev �k.".v//k�1F , and the abbreviations ˇk.".v// WD ˇk and �k.".v// WD �k ,
a candidate for the slanting function reads

Qpko.".v/ I q/ D
8
<

:
0 if ˇk � 0;

�
ˇk devq C .1 � ˇk/ hdev�k; dev qiF

kdev�kk2F dev �k
�

else:

Utilizing this concept, P. G. Gruber and J. Valdman [29, 30] were able to prove
the local super-linear convergence of the resulting Newton-like solver in the spatial
discretized case (see Table 1). It is still an open problem, if Qpo

k serves as a slanting
function for Qpk in the continuous setting, i. e., when Qpk is a Nemytskii operator
mapping from Lp.˝/ into L2.˝/ with p � 2. The assumption, that the Newton-
like iterates vj of (18) are in the Sobolev space W 1;2C�j .˝/, where .�j /j2N is
a strictly decreasing positive sequence, may be helpful in this respect, see also
[23]. At least the convergence of a damped Newton-like method could be shown
in the dissertation of P. Gruber [27] by using a concept of E. Zeidler [58]. An
extension of the numerical solver to other kinds of time-dependent models with
internal variables, as discussed in [28], is possible and left for future investigation.

The slant Newton method is tested on a benchmark problem in computational
plasticity [54]. The left plot of Fig. 3 shows the mesh for the right upper quarter of a
plate with geometry .�10; 10/� .�10; 10/� .0; 2/ and a circular hole of the radius
r D 1 in the middle. One elastoplastic time step is performed, where a surface load
g with the intensity jgj D 450 is applied to the plate’s upper and lower edge in outer
normal direction. Due to the symmetry of the domain, the solution is calculated on

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity 53

Table 1 Convergence behavior of the slant Newton method for different refinement levels

DOF: 717 5736 45888 367104

step 1: 1.000eC00 1.000eC00 1.000eC00 1.000eC00
step 2: 1.013e�01 1.254e�01 1.367e�01 1.419e�01
step 3: 7.024e�03 6.919e�03 7.159e�03 6.993e�03
step 4: 1.076e�04 9.359e�05 1.263e�04 1.176e�04
step 5: 2.451e�08 6.768e�07 1.744e�06 1.849e�06
step 6: 7.149e�15 6.887e�12 4.874e�09 1.001e�08
step 7: 4.298e�13 2.368e�14

Fig. 3 Coarsest triangulation (left) and the Frobenius norm of the plastic strain field p (right)

one quarter of the domain only. Thus, homogeneous Dirichlet boundary conditions
in the normal direction (gliding conditions) are considered for both symmetry axes.
The material parameters are set to

� D 1:1074 � 105; � D 8:0194 � 104; �y D 450
p
2=3; H D 0:5:

Differently to the original problem in [54], the modulus of hardeningH is nonzero,
i. e. hardening effects are considered. The numerical results for the original problem
(HD 0) can be found in [24]. The two plots in Fig. 3 show the coarsest tetrahedral
FE-mesh with the applied traction g (left), and the Frobenius norm of the plastic
strain field p (right). Table 1 outlines the convergence of the slant Newton method,
where the initial values for the displacement are chosen to be zero at each level
of refinement. The number of degrees of freedom (DOF) is given in the first row.
The following rows show the super-linear convergence of the Newton iterates with
respect to the Cauchy test kui � ui�1k=.kuik C kui�1k/. The implementation was
done in the NETGEN/NGSolve software package developed by J. Schöberl [51].

54 P.G. Gruber et al.

4 Adaptive h-FEM and A Posteriori Error Estimates
for Elastoplasticity

The efficient numerical treatment of problems with poor regularity of the solution
can be realized with adaptive mesh refinement techniques based on a posteriori error
estimators. An h�finite element adaptive algorithm consists of successive loops of
the form

SOLVE ! ESTIMATE ! MARK ! REFINE (19)

designed to produce more efficient meshes by targeted local refinements with
less computational effort. The a posteriori error analysis of (19) started with the
pioneering work of [4] for a two-point elliptic boundary value problem and with
the step MARK realized by the max refinement rule. This marking rule currently
employed in the engineering literature consists in looking at the elements with
the largest error and refining these in order to achieve a better accuracy. Let
�2 WDPM �

2
M denote a typical reliable error estimator with local contributions �M

associated with an edge, face, or elementM in the current mesh, the max refinement
rule marks a subset M according to

L 2M if and only if �L � �max
M

�M (20)

with 0 � � � 1. The analysis of [4], however, does not provide information on the
convergence rate and its extension to higher dimensions still remains unsolved. It is
only after the contribution of Dörfler [20] with the introduction of a new marking
strategy for error reduction (hereafter referred to as bulk criterion or fixed fraction
criterion) that the convergence analysis of AFEMs has experienced significant
development. With such criterion, one defines the set M of the marked objects
using the rule X

M2M

�2M � � �2 (21)

with 0��� 1. The condition (21) together with local discrete efficiency estimates,
and the Galerkin orthogonality yields a linear error reduction rate for the energy
norm towards a preassigned tolerance TOL in finite steps for the Poisson problem.

In [16], a proof of convergence of AFEM with indication of the rate of
convergence for the primal formulation of plasticity is provided under the
application of the bulk criterion (21). Applications include several plasticity models:
linear isotropic-kinematic hardening, linear kinematic hardening, multi-surface
plasticity as model for nonlinear hardening laws, and perfect plasticity. Exploiting
properties of a non-differentiable energy functional J , and the reliability of a new
edge-based residual error estimate, we obtain the following results:

.i/ Energy reduction: for some data oscillations osc2
` � 0 and positive constants

E , C with E < 1 there holds

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity 55

J.w`C1/� J.w/ � E.J.w`/� J.w//C C osc2`:

Here, J.w/ denotes a minimal energy and J.w`/ and J.w`C1/ are energies on
refined triangulations T` and T`C1.

.i i/ R�linear convergence for the stresses: up to oscillation terms there holds

kj� � �`jkC�1I˝ � ˛` for ` D 0; 1; 2; : : :

with ˛` ! 0 and linear convergent, and kj � jkC�1I˝ the energy norm induced by
the Hooke tensor C. Here, � denotes the stress at the exact solution and �` its
approximation on the triangulation T`.

In [50], the framework introduced in the book [47] is applied to elastoplasticity,
where the estimates are derived by the analysis of the variational problem and its
dual counterpart. A computable upper bound of the error is obtained on a purely
functional level without exploitation of specific properties of the approximation
or the method used for its computation. Estimates of such a type are often called
“functional a posteriori estimates”. Application to linear isotropic hardening allows
us to express another reliability estimate

1

2
jjjw� vjjj2 �M .v; 	; �/ (22)

which bounds an error of a discrete solution v, i.e. its distance from the exact
solution w by an expression on the right-hands side called a functional majorant
M .v; 	; �/. The functional majorant can be generally minimized with respect to free
parameters 	; � to keep the estimate (22) as sharp as possible. Numerical verification
of this estimate will be the topic of the forthcoming paper, where it should be
profited from the experience in problems with nonlinear boundary conditions [49]
and an application of a multigrid preconditioned solver to a majorant computation
[56].

5 High Order FEM for Elastoplasticity: hp-FEM and BC-FEM

In nowadays computer simulations of elastoplasticity, adaptive h-FEM (as presented
in Sect. 4) is probably the most propagated and well known discretization technique.
However, as computers become faster, and parallelization is no longer just a
scientific topic, the mixture of low and high order finite element methods (hp-
FEM) becomes more and more attractive in daily practice. Applying a high order
method means to increase the polynomial degree of the shape functions on an
element instead of refining it. The major drawback of a high order method is the
expensive assembling of the system matrix. As long as this handicap can be settled

56 P.G. Gruber et al.

Algorithm 1 The hp-adaptive Algorithm:
Require: A mesh T , a polynomial degree vector .pK/K2T , a Finite Element Solution uFE.
Ensure: A refined mesh Tref, a new polynomial degree vector .pK/K2Tref .

1: Determine which elements to refine ! Th.
2: Determine where the polynomial degree should be increased ! Tp .
3: Obtain a preliminary refined mesh ! T 0

ref.
4: Elimination of hanging nodes ! Tref.
5: Increase the polynomial degree pK D pK C 1 for all elements K 2 Tref \ Tp . In particular:

Elements to which an h-refinement is applied inherit the polynomial degree from their father.

(e.g., by finding recurrences via symbolic computation [5, 8, 9]), the application of
such methods are definitely worth their price. The idea of hp-FEM [3, 52] is to
increase the polynomial degree locally on elements, where the solution has high
regularity. In such areas of the domain we can expect local exponential convergence
of the approximate towards the solution. On other elements, i. e. where the regularity
is low, mesh refinement is applied, which locally yields algebraic convergence.
Moreover, by choosing proper hp-adaptive refinement strategies, an exponential
convergence rate can be achieved globally [3].

In elastoplasticity, the solution in each time step is known to be in H2
loc.˝/, and,

moreover, analytic in balls where the plastic strain p vanishes [6, 41]. Thus, the
application of an hp-FEM is a natural choice. In those parts of the interior domain,
where the material reacts purely elastic, the polynomial degree is increased, whereas
the mesh is refined in plastic areas and towards rough boundary data or geometry.

The basic hp-adaptive algorithm reads as follows:
Note, that Items 3–5 are straight forward, whereas, one still has to decide on

the exact realization of Items 1 and 2. In general, the set of all adaptive strategies
divides into two classes: strategies which are problem dependent, and those which
are not. In problem dependent strategies, the decision whether to refine in h, or in
p, or not at all, relies on the evaluation of problem dependent quantities, typically
the error estimator. Algorithms of this class can be found, e.g., in [1, 21]. Problem
independent algorithms, such as discussed in [18, 19], estimate the regularity of the
solution without using problem dependent quantities.

Due to the lack of a reliable and efficient error estimator for elastoplasticity, the
use of problem independent algorithms is a natural choice. The application of an
algorithm presented in [21] to elastoplastic problems in two dimensions is discussed
in [26]. This adaptive algorithm is based on the following idea:

Expressing the solution u to the (elastoplastic) problem as an expansion with
respect to orthogonal Legendre polynomials

u D
X

p;q2N0
upq pq (23)

results in a sequence of coefficients upq , which decays exponentially if and only if
the solution u is analytic:

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity 57

Proposition 1. Define on the reference triangle OK the L2. OK/-orthogonal basis
 pq , p; q 2 N0 by

 pq D Q pq ıD�1; Q pq D P .0;0/
p .�1/

	
1 � �2
2

p
P .2pC1;0/
q .�2/;

where P .˛;ˇ/
p is the (well known) p-th Jacobi polynomial with respect to the weight

� 7! .1 � �/˛.1 C �/ˇ and D the Duffy transformation, defined as in [21]. Let

u 2 L2. OK/ be written as in (23). Then u is analytic on OK if and only if there exist
constants C; b > 0 such that jupqj � C e�b.pCq/ for all p; q 2 N0.

Proof. See [45]. ut
Since the true solution u is not available, the idea for the hp-adaptive algorithm is
to estimate the decay of the coefficients upq of the expansion of the finite element
solution uFEjK ı FK D

P
p;q upq pq instead. If the decay is exponentially, then the

polynomial degree p will be increased, otherwise, the mesh will be refined:
Additionally to the presented adaptive strategy in Algorithm 1, a different

discretization approach applied to elastoplasticity is investigated in [26]. This
approach is still of an hp-adaptive Finite Element type, but with a slightly different
aim: Considering a general boundary value problem, where the regularity of the
solution is known to be low at the boundary and high in the interior of the domain,
the parameters h and p are chosen to be small in a neighborhood of the boundary
and to be growing towards the interior of the domain. This growth is done in a
manner, such that

• The convergence rate is of the same order as in h-FEM.
• The number of total unknowns is proportional to the number of unknowns on the

boundary (such as in BEM).

Algorithm 2 Realization of Items 1 and 2 in Algorithm 1:
Require: A mesh T , a polynomial degree vector .pK/K2T , a parameter b > 0, a Finite Element

Solution uFE.
Ensure: The marked elements Tp and Th.

1: For all elements K 2 T compute the expansion coefficients

uij;K D k ij k�2

L2. OK/
huFEjK ı FK; ij iL2. OK/

for 0 � i C j � pK .
2: Estimate the decay coefficient bK by a least squares fit of

lnjuij;K j � CK � bK.i C j /:

3: Determine Tp D fK 2 T j bK � bg and Th D fK 2 T j bK < bg.

58 P.G. Gruber et al.

Table 2 Comparison of the degrees of freedom at each numerical example

DOFs at Level 1 2 3 4 5 6

Plate with Hole (h-FEM) 2018 7810 30722 121858 485378 1937410
Plate with Hole (BC-FEM) 2018 5010 14658 37874 103050 307330
Screw Wrench (h-FEM) 474 1778 6882 27074 107394 427778
Screw Wrench (BC-FEM) 474 1618 4266 10290 24490 58474

Due to the second property, the method is called a Boundary Concentrated Finite
Element Method (BC-FEM) [35]. The method exploits the knowledge about the
regularity of the solution in a way, that it searches for the smallest (and sparse)
system which allows for the same convergence rate as is obtained in a classical
h-FEM.

In elastoplasticity, BC-FEM can be applied for the purely elastic region, where
the solution is known to be analytic [6], whereas the plastic region, where the
solution is known to be in H2

loc.˝/ [41], is discretized by using h-FEM. However,
the interface between plastic (kpk > 0) and elastic (kpk D 0) parts of the domain is
not known in advance, since the calculation of the plastic strain field p depends on
the displacement field, as it is pointed out in (16). Thus, one has to estimate, which
parts of the domain will be plastic at the next step of refinement. This task can be
again handled by Algorithm 2. The resulting method has the same accuracy as a
classical h-FEM, i.e., the error satisfies ku � uhkH1.˝/ D O.h/, but the number of
degrees of freedom is significantly smaller: Considering h-FEM in two dimensions
(d D 2), the number degrees of freedom is roughlyO.N2/, withN D h�1 denoting
the number of nodes on the boundary of the domain, whereas in BC-FEM it is
O.NE/CO.N2

P /, where NE is the number of nodes on the boundary of the purely
elastic sub-domain, and NP the number of nodes on the boundary of the plastic
sub-domain (compare Table 2). It is possible to generalize the primal and dual
domain decomposition solvers proposed in [7] for solving interface-concentrated
finite element equations to the plastic-zone concentrated finite element equations
which we have to solve at each incremental step.

Finally, we present the results of the following two numerical experiments. More
examples regarding some adaptive strategies in hp-FEM for elastoplastic problems
can be found in [26].

• A plate with a hole fx 2 Œ�10; 10�2 W kxk � 1g is torn on the top and the
bottom edge in normal direction with a traction of intensity jgj D 450. Due
to the symmetry of the problem, only the top right quarter is considered in the
numerical simulation. The material parameters are chosen as follows: Young’s
modulus E D 20690, Poisson ratio � D 0:29, yield stress �y D 450

p
2=3, and

modulus of hardeningH D 0:1. On the left of Fig. 4 one can see the mesh after
5 steps of BC-refinement. The elements are colored from blue to red, indicating
increasing polynomial degree. On the right of Fig. 4, the elastic (blue) and plastic
(red) zones are plotted. Figure 5 shows the adaptive mesh (left), and a zoom

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity 59

Fig. 4 Plate with a hole: polynomial order (left) and plastic zones (right)

Fig. 5 Plate with a hole: the adaptive mesh

towards the boundary and elastoplastic interface (right). Plastic zones are red,
elastic zones are blue.

• A screw wrench sticks on a screw (homogeneous Dirichlet condition) and is
pressed down at its handhold in normal direction with an intensity jgj D 1e6. The
material parameters are chosen as follows: Young’s modulus E D 2e8, Poisson
ratio � D 0:3, yield stress �y D 1e6, modulus of hardening H D 0:01. On top
of Fig. 6, one can see the mesh after 5 steps of BC-refinement. The elements are
colored from blue to red, indicating increasing polynomial degree. On bottom of
Fig. 6, the elastic (blue) and plastic (red) zones are plotted.

Table 2 shows the number of degrees of freedom for both examples in case of an
h-FEM and a BC-FEM discretization.

60 P.G. Gruber et al.

Fig. 6 Screw Wrench: polynomial order (top) and plastic zones (bottom)

6 Conclusion

We presented two strategies to deal with the non-smoothness of the functional
arising at each incremental step in elastoplasticity. The first one uses traditional
regularization techniques whereas the second one makes use of Moreau’s theorem
for the reduced functional. Generalized Newton-methods are derived and analyzed
on the basis of the concept of slanting functions. Furthermore, we proposed residual-
based and functional-based a posteriori error estimates for elastoplastic problems
which can be used in an AFEM. In some cases the convergence of the AFEM can be
shown. Finally, we studied the use of higher-order finite elements in elastoplasticity.
The approximation quality of higher-order elements strongly depends on the
local regularity of the solution. The new plastic-zone concentrated finite element
approximation used low-order elements in the plastic zones and boundary or, more

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity 61

precisely, interface concentrated finite element approximations in the elastic zone
where higher and higher order finite elements are used in dependence on the distance
to the elastic-plastic interface and the boundary. Regularity detectors can be used to
predict the elastic-plastic interface at each incremental step.

References

1. Ainsworth, M., Senior, B.: An adaptive refinement strategy for hp-finite element computations.
In: Proceedings of international centre for mathematical sciences on Grid adaptation in
computational PDES: theory and applications, pp. 165–178. Elsevier Science Publishers B.
V., Amsterdam, The Netherlands (1998)

2. Alberty, J., Carstensen, C., Zarrabi, D.: Adaptive numerical analysis in primal elastoplasticity
with hardening. Comput. Methods Appl. Mech. Eng. 171(3–4), 175–204 (1999)

3. Babuska, I., Guo, B.: The h-p version of the finite element method – Part 1: The basic
approximation results. Comput. Mech. 1, 21–41 (1986)

4. Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional
boundary value problems. Numer. Math. 44(1), 75–102 (1984)

5. Becirovic, A., Paule, P., Pillwein, V., Riese, A., Schneider, C., Schöberl, J.: Hypergeometric
summation algorithms for high order finite elements. Computing 78(3), 235–249 (2006)

6. Bensoussan, A., Frehse, J.: Regularity results for nonlinear elliptic systems and applications.
Applied Mathematical Sciences, vol. 151. Springer, Berlin (2002)

7. Beuchler, S., Eibner, T., Langer, U.: Primal and dual interface concentrated iterative substruc-
turing methods. SIAM J. Numer. Anal. 46(6), 2818–2842 (2008)

8. Beuchler, S., Pillwein, V.: Sparse shape functions for tetrahedral p-FEM using integrated
Jacobi polynomials. Computing 80(4), 345–375 (2007)

9. Beuchler, S., Pillwein, V.: Completions to sparse shape functions for triangular and tetrahedral
p-FEM. In: Langer, U., Discacciati, M., Keyes, D., Widlund, O., Zulehner, W. (eds.) Domain
Decomposition Methods in Science and Engineering XVII, Lecture Notes in Computational
Science and Engineering, vol. 60, pp. 435–442. Springer, Heidelberg (2008)

10. Brokate, M., Carstensen, C., Valdman, J.: A quasi-static boundary value problem in multi-
surface elastoplasticity: Part 1 – analysis. Math. Meth. Appl. Sci. 27(14), 1697–1710 (2004)

11. Brokate, M., Carstensen, C., Valdman, J.: A quasi-static boundary value problem in multi-
surface elastoplasticity: Part 2 – numerical solution. Math. Meth. Appl. Sci. 28(8), 881–901
(2005)

12. Carstensen, C.: Nonlinear interface problems in solid mechanics: Finite element and boundary
element couplings. Habilitationsschrift, Universität Hannover (1993)

13. Carstensen, C.: Coupling of fem and bem for interface problems in viscoplasticity and
plasticity with hardening. SIAM J. Numer. Anal. 33(1), 171–207 (1996)

14. Carstensen, C.: Domain decomposition for a non-smooth convex minimization problem and its
application to plasticity. Numer. Linear Algebra Appl. 4(3), 177–190 (1997)

15. Carstensen, C.: Numerical analysis of the primal elastoplasticity with hardening. Numer. Math.
(82), 577–597 (2000)

16. Carstensen, C., Orlando, A., Valdman, J.: A convergent adaptive finite element method for the
primal problem of elastoplasticity. Internat. J. Numer. Methods Engrg. 67(13), 1851–1887
(2006)

17. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferen-
tiable operator equations. SIAM J. Numer. Anal. 38(4), 1200–1216 (2001)

18. Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic hp-adaptivity. In: Proceedings
of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01)
(Uppsala), vol. 17, pp. 117–142 (2002)

62 P.G. Gruber et al.

19. Demkowicz, L., Šolı́n, P.: Goal-oriented hp-adaptivity for elliptic problems. Comput. Methods
Appl. Mech. Engrg. 193(6–8), 449–468 (2004)

20. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal.
33(3), 1106–1124 (1996)

21. Eibner, T., Melenk, J.M.: An adaptive strategy for hp-FEM based on testing for analyticity.
Comput. Mech. 39(5), 575–595 (2007)

22. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. SIAM, New York (1999)
23. Griesse, R., Meyer, C.: Optimal control of static plasticity with linear kinematic hardening.

Tech. rep. (2009). Weierstrass Institute for Applied Analysis and Stochastics, WIAS Preprint
1370

24. Gruber, P., Valdman, J.: Implementation of an elastoplastic solver based on the Moreau-Yosida
theorem. Math. Comput. Simul. 76(1–3), 73–81 (2007)

25. Gruber, P.G.: Solution of elastoplastic problems based on the Moreau-Yosida theorem.
Master’s thesis, Institute of Computational Mathematics, Johannes Kepler University Linz,
Austria (2006)

26. Gruber, P.G.: Adaptive strategies for hp-FEM in elastoplasticity. DK-Report 2010-02,
Johannes Kepler University Linz, DK W1214 “Doctoral Program on Computational Mathe-
matics” (2010)

27. Gruber, P.G.: Fast solvers and adaptive high-order FEM in elastoplasticity. Ph.D. thesis,
Institute of Computational Mathematics, Johannes Kepler University Linz, Austria (2011)

28. Gruber, P.G., Knees, D., Nesenenko, S., Thomas, M.: Analytical and numerical aspects of
time-dependent models with internal variables. Z. angew. Math. Mech. 90, 861–902 (2010)

29. Gruber, P.G., Valdman, J.: Newton-like solver for elastoplastic problems with hardening and
its local super-linear convergence. In: Kunisch, K., Of, G., Steinbach, O. (eds.) Numerical
Mathematics and Advanced Applications. Proceedings of ENUMATH 2007, pp. 795–803.
Springer, Berlin (2008)

30. Gruber, P.G., Valdman, J.: Solution of one-time-step problems in elastoplasticity by a slant
Newton method. SIAM J. Sci. Comput. 31(2), 1558–1580 (2009)

31. Han, W., Reddy, B.D.: Plasticity, Interdisciplinary Applied Mathematics, vol. 9. Springer,
New York (1999)

32. Hofinger, A., Valdman, J.: Numerical solution of the two-yield elastoplastic minimization
problem. Computing 81(1), 35–52 (2007)

33. Johnson, C.: Existence theorems for plasticity problems. J. Math. Pures Appl. 55, 431–444
(1976)

34. Johnson, C.: On plasticity with hardening. J. Math. Anal. Appls. 62, 325–336 (1978)
35. Khoromskij, B.N., Melenk, J.M.: Boundary concentrated finite element methods. SIAM J.

Numer. Anal. 41(1), 1–36 (2003)
36. Kienesberger, J.: Multigrid preconditioned solvers for some elastoplastic problems. In: Lirkov,

I., Margenov, S., Waśniewski, J., Yalamov, P. (eds.) Proceedings of LSSC 2003, Lecture Notes
in Computer Science, vol. 2907, pp. 379–386. Springer, Berlin (2004)

37. Kienesberger, J.: Efficient solution algorithms for elastoplastic problems. Ph.D. thesis, Institute
of Computational Mathematics, Johannes Kepler University Linz (2006)

38. Kienesberger, J., Langer, U., Valdman, J.: On a robust multigrid-preconditioned solver for
incremental plasticity problems. In: Blaheta, R., Starý, J. (eds.) Proceedings of IMET 2004 –
Iterative Methods, Preconditioning & Numerical PDEs, pp. 84–87. Institute of Geonics AS CR
Ostrava (2004)

39. Kienesberger, J., Valdman, J.: Multi-yield elastoplastic continuum-modeling and computa-
tions. In: Dolejsi, V., Feistauer, M., Felcman, J., Knobloch, P., Najzar, K. (eds.) Numerical
mathematics and advanced applications. Proceedings of ENUMATH 2003, pp. 539–548.
Springer, Berlin (2004)

40. Kienesberger, J., Valdman, J.: An efficient solution algorithm for elastoplasticity and its first
implementation towards uniform h- and p- mesh refinements. In: Castro, A.B., Gomez, D.,
Quintela, P., Salgado, P. (eds.) Numerical mathematics and advanced applications: Proceedings
of ENUMATH 2005, pp. 1117–1125. Springer, Berlin (2006)

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity 63

41. Knees, D., Neff, P.: Regularity up to the boundary for nonlinear elliptic systems arising in
time-incremental infinitesimal elasto-plasticity. SIAM J. Math. Anal. 40, 21–43 (2008)

42. Korneev, V.G., Langer, U.: Approximate solution of plastic flow theory problems. Teubner-
Texte zur Mathematik, vol. 69. Teubner-Verlag, Leipzig (1984)

43. Matthies, H.: Existence theorems in thermoplasticity. J. Mécanique 18(4), 695–712 (1979)
44. Matthies, H.: Finite element approximations in thermo-plasticity. Numer. Funct. Anal. Optim.

1(2), 145–160 (1979)
45. Melenk, J.M.: hp-finite element methods for singular perturbations, Lecture Notes in Mathe-

matics, vol. 1796. Springer, Berlin (2002)
46. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–

299 (1965)
47. Neittaanmäki, P., Repin, S.: Reliable methods for computer simulation, Studies in Mathematics

and its Applications, vol. 33. Elsevier Science B.V., Amsterdam (2004)
48. Repin, S.: A Posteriori Estimates for Partial Differential Equations, Radon Series on Compu-

tational and Applied Matehmatics, vol. 4. Walter de Gruyter, Berlin, New York (2008)
49. Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear

boundary conditions. J. Numer. Math. 16(1), 51–81 (2008)
50. Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-

plasticity. Cent. Eur. J. Math. 7(3), 506–519 (2009)
51. Schöberl, J.: Netgen – an advancing front 2d/3d-mesh generator based on abstract rules.

Comput. Visual. Sci. 1, 41–52 (1997)
52. Schwab, C.: P- and hp- finite element methods: theory and applications in solid and fluid

mechanics. Oxford University Press, Oxford (1998)
53. Simo, J.C., Hughes, T.J.R.: Computational inelasticity, Interdisciplinary Applied Mathematics,

vol. 7. Springer, New York (1998)
54. Stein, E.: Error-controlled Adaptive Finite Elements in Solid Mechanics. Wiley, Chichester

(2003)
55. Valdman, J.: Mathematical and numerical analysis of elastoplastic material with multi-surface

stress-strain relation. Ph.D. thesis, Christian-Albrechts-Universität zu Kiel (2002)
56. Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on

H(div) multigrid-preconditioned CG method. Advances in Numerical Analysis 2009(Article
ID 164519), 15 pages (2009). DOI 10.1155/2009/164519

57. Wieners, C.: Multigrid methods for finite elements and the application to solid mechanics.
Theorie und Numerik der Prandtl-Reuß Plastizität (2000). Habilitationsschrift, Universität
Heidelberg

58. Zeidler, E.: Nonlinear functional analysis and its applications. III. Springer-Verlag, New York
(1985). Variational methods and optimization, Translated from the German by Leo F. Boron

59. Zienkiewicz, O.: The Finite Element Method, 3rd Expanded & rev. ed. edn. McGraw-Hill,
New York (1977)

A Symbolic-Numeric Algorithm for Genus
Computation

Mădălina Hodorog and Josef Schicho

Abstract We report on a symbolic-numeric algorithm for computing the genus of
a plane complex algebraic curve defined by a squarefree polynomial with exact
and inexact coefficients. For the inexact data we are given a positive real number,
which measures the error (noise) level in the coefficients. The symbolic numeric
algorithm proceeds as follows: (i) firstly, we compute the numerical singularities of
the plane complex algebraic curve by using subdivision methods; (ii) secondly, we
compute the link of each singularity by intersecting the plane complex algebraic
curve with a small sphere centered in the singularity; (iii) we then compute
the Alexander polynomial of each link of the singularity by using combinatorial
methods from knot theory; (iv) from the computed Alexander polynomial we
compute the delta-invariant of each singularity; (iv) finally, from the delta-invariants
of all the singularities we derive a formula for the genus of the plane complex
algebraic curve. The computed results are approximate and thus we interpret them
using regularization principles. We perform several test experiments, which indicate
that the computed results are valid in the presence of noisy coefficients.

1 Introduction

To raise new questions, new possibilities, to regard old problems
from a new angle, requires creative imagination and marks real
advance in science

Albert Einstein

M. Hodorog (�) � J. Schicho
Johann Radon Institute for Computational and Applied Mathematics, Altenbergerstr. 69,
4040 Linz, Austria
e-mail: madalina.hodorog@oeaw.ac.at; josef.schicho@oeaw.ac.at

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 4,
© Springer-Verlag/Wien 2012

65

madalina.hodorog@oeaw.ac.at
josef.schicho@oeaw.ac.at

66 M. Hodorog and J. Schicho

The genus computation problem is a classical subject in computer algebra.
Presently, several symbolic algorithms are available for computing the genus of
plane algebraic curves over an algebraically closed field, see [17, 19, 32]. There
exist also good implementations for these algorithms in several packages of some
well-known computer algebra systems such as: Maple, Magma, Singular, Axiom.
We shortly recall these packages, for further details see [16, 18, 20, 22, 28]:

1. Algcurves package developed at the Florida University, by Mark van Hoeij,
written in Maple.

2. CASA (Computer algebra system for algebraic geometry) package developed at
the Research Institute for Symbolic Computation, Hagenberg Austria, written in
Maple.

3. GHS (Gaundry, Hess, Smart) attack package developed at Berlin University,
written in Magma.

4. normal.lib package developed at Kaiserslautern University, written in Singular.
5. PAFF (Package for algebraic function fields in one variable) package developed

at INRIA-Roquencort, by Gaétan Haché, written in Axiom.

On the other hand, there are situations when computing with numerical coefficients
is preferable, for instance when the coefficients are obtained by measurements. At
present numerical algorithms for genus computation are reported in the literature. In
[4] the genus of any one-dimensional irreducible component of an algebraic set is
computed using the homotopy continuation method, whereas in [30] the numerical
genus of a plane algebraic curve with all of its singularities ordinary and affine is
computed. In this paper, we propose such an algorithm for the computation of the
genus of plane complex algebraic curves which makes use of the advantages of both
symbolic and numeric algorithms. The method is based on combinatorial techniques
from knot theory (see [10,25]), that allow us to successfully analyse the singularities
of the plane complex algebraic curve by computing their topology. Previous research
and results have successfully shown that the topology of the singularities of a
plane complex algebraic curve is mainly determined by their algebraic link, see
[27]. The algebraic link can be uniquely identified by its corresponding Alexander
polynomial, see [40]. From the Alexander polynomial we derive a general formula
for the delta-invariant of each singularity of the plane complex algebraic curve,
which allows us to compute the value for the genus of the plane complex algebraic
curve.

We have to pay further attention while formulating the genus computation
problem due to the existence of numeric errors. As expected, we deduce that
the value of the computed genus is highly sensitive to tiny perturbations of the
coefficients of the defining polynomial of the input plane complex algebraic curve.
Therefore we have to take a decision regarding the interpretation of the results or the
reformulation of the input problem. We intend to use the same approach proposed
by Z. Zeng for solving other numerical problems from algebraic geometry such as:
the computation of the greatest common divisors of polynomials, the computation
of the rank of matrices or the computation of the solutions of systems of polynomial
equations, see [12, 41]. Other approaches are also taken into considerations, see

A Symbolic-Numeric Algorithm for Genus Computation 67

[11,34]. Further tests in these different directions of research will guide us in making
the best decision.

In this paper we present a symbolic-numeric algorithm for computing the genus
of plane complex algebraic curves. In Sect. 2 we introduce the genus computation
problem and we propose a strategy for solving it. In Sect. 3 we describe the steps
that solve the genus computation problem. In Sect. 4 we present the numerical
difficulties for the genus computation problem, which arise when numerical data
are used; we test several approaches before proposing the final remedy for these
difficulties. We include several tests and experiments in Sect. 5, while in Sect. 6 we
outline the conclusions and the future directions of research.

2 The Genus Computation Problem

There are no big problems, there are just a lot of little problems.
Henry Ford

2.1 Genus of Plane Algebraic Curves

The objects of our study are the plane algebraic curves over the field of complex
numbers. We define the plane algebraic curves over an algebraically closed field in
the following way:

Definition 1. Let K be an algebraically closed field, and f .x; y/ 2 KŒx; y� a
nonconstant squarefree polynomial in x and y with coefficients in K . A plane
algebraic curve over K is defined as the set of all solutions in K2 of the equation
f .x; y/ D 0, i.e. the set C D f.x; y/ 2 K2jf .x; y/ D 0g. For the curve C , f is
called the defining polynomial of C . The degree of the polynomial f .x; y/ is called
the degree of the curve C .

For a plane complex algebraic curve we are interested in a special type of points
and that is its singularities (or singular points or multiple points). Informally, the
singularities of an algebraic curve are the points where the curve has nasty behaviour
such as a cusp or a point of self-intersection. A cusp is a point at which two branches
of the curve meet such that the tangents at each branch are equal, while a point of
self-intersection (or double point) is a point at which two branches of the curve meet
such that the tangents at each branch are distinct, see Fig. 1.

Formally, we can give the following definition for the singularities of a plane
algebraic curve over an algebraically closed field:

Definition 2. Let K be a field (i.e. the complex numbers) and f .x; y/ 2 KŒx; y�
be a polynomial in x and y with coefficients over the field K . Let C D f.x; y/ 2
K2jf .x; y/ D 0g be a plane algebraic curve defined over K and .a; b/ 2 C be a
point on the curve, i.e. f .a; b/ D 0. The point .a; b/ is a singularity of C if the x
and y partial derivatives of f are both zero at the point .a; b/, i.e.

68 M. Hodorog and J. Schicho

Fig. 1 Cusp in the origin of
the curve x3 � y2 and double
point in the origin of the
curve x3 � x2C y2

df

dx
.a; b/;

df

dy
.a; b/

!
D .0; 0/:

In the theory of plane algebraic curves, one is interested in computing their
genus, which is a birational invariant that plays an important role in the rational
parametrization property of plane algebraic curves. From the theory we know that
an irreducible plane algebraic curve is rational parametrizable if and only if its genus
is 0. The main purpose of this paper is to compute the genus of plane complex
algebraic curves.

For algebraic curves with only ordinary singularities we have a method for
computing the genus, based on the multiplicities of the ordinary singularities. We
will not focus on the details of this method, as this is not the purpose of our paper.
We advise the reader to consult [7, 15, 33, 38] for more information on this method.

We compute the genus of a plane algebraic curve over an algebraically closed
field using the following definition:

Definition 3. Let C be a plane algebraic curve defined over an algebraically closed
field K , Sing.C / the set of singularities of C , and d the degree of C . Then the
genus of the plane algebraic curve, denoted with genus.C /, is computed using the
following formula:

genus.C / D 1

2
.d � 1/.d � 2/�

X

P2Sing.C /

ı-invariant.P /;

where genus.C / 2 Z:

We notice that the computation of the genus reduces to the computation of the
ı-invariant of each singularity of the curve. We present the method for computing
the ı-invariant of each singularity in detail in Sect. 3.

A Symbolic-Numeric Algorithm for Genus Computation 69

Thus the problem that we want to solve is the following: given a plane complex
algebraic curve whose defining polynomial contains numeric coefficients, the degree
of the curve and the set of its singularities, we want to compute the value for the
genus of the given plane complex algebraic curve.

2.2 Strategy for Solving the Problem

In order to solve the genus computation problem, we first divide it into several
subproblems (some of which are interdependent), we solve each of these subprob-
lems and then we combine the solutions to these subproblems to get the solution to
our original problem. We divide the genus computation problem into the following
subproblems:

1.Plane complex algebraic curve

compute numerically

��

2.Singularities

compute symbolically

��

3.Each singularity in origin
compute

numerically

�� 4.Algebraic Link

algorithmcompute by a numeric/symbolic

��

6.ı-invariant 5.Alexander Polynomial
symbolically

compute
��

compute symbolically

��

7.GENUS

and that is:

1. We compute the singularities of the plane complex algebraic curve.
2. We translate each computed singularity in the origin.

70 M. Hodorog and J. Schicho

3. We compute the algebraic link for each translated singularity.
4. We compute the Alexander polynomial for each singularity from the algebraic

link.
5. We derive a formula for the ı-invariant for each singularity from the Alexander

polynomial.
6. We compute the genus from the ı-invariants of all the singularities.

We use for our implementation the AXEL (see [39]) algebraic geometric modeler
developed in the Galaad research team at INRIA, Sophia-Antipolis, which provides
algebraic tools for the manipulation and the computation with implicit algebraic
curves and implicit algebraic surfaces.

3 Why Knot? Alternative Solution to the Genus Computation
Problem

Mathematician 1: Okay, so there are three steps to your
algorithm. Step one is the input and step three is the output.
What is step two?
Mathematician 2: Step two is when a miracle occurs.
Mathematician 1: Oh, I see. Uh, perhaps you could explain that
second step a bit more?

K.O.Geddes, S.R.Czapor, G.Labahn

3.1 Computing the Singularities of the Algebraic Curve

The first subproblem that we solve is to compute the singularities of the plane
complex algebraic curve C . Given the defining polynomial F.z;w/ 2 CŒz;w� of
C with numerical coefficients, we compute the set of all its singularities, that is the

set Sing.C / D f.z0;w0/ 2 C
2jF.z0;w0/ D 0;

dF

dz
.z0;w0/ D 0;

dF

dw
.z0;w0/ D 0g.

In order to compute the set Sing.C / we need to solve an overdetermined system of
polynomial equations in C

2:

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

F.z0;w0/ D 0

dF

dz
.z0;w0/ D 0

dF

dw
.z0;w0/ D 0

(1)

or equivalently, by replacing F.z;w/ D F.x C iy; u C iv/ D s.x; y; u; v/ C
it.x; y; u; v/, an overdeterminate system of polynomial equations in R

4:

A Symbolic-Numeric Algorithm for Genus Computation 71

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

s.x0; y0; u0; v0/ D t.x0; y0; u0; v0/ D 0
ds

dx
.x0; y0; u0; v0/ D dt

dx
.x0; y0; u0; v0/ D 0

ds

du
.x0; y0; u0; v0/ D dt

du
.x0; y0; u0; v0/ D 0

. (2)

For solving the systems (1), (2), we use subdivision methods introduced by
[1, 2, 24, 29] and implemented in Mathemagix [23] and Axel [39]. The subdivision
methods compute the real solutions for Sing.C /. In the future, we intend to use
algebraic methods to compute the complex solutions for Sing.C / as proposed in
[8]. We also mention the work in progress in the same direction of research done in
parallel by [5], and by [26]. Further work in this direction is still required so that
we can use these methods for our systems. Using Axel’s subdivision algorithm we
compute a list of points in R

2 denoted with S with two properties:

1. Each real singularity of the algebraic curve C is close to one of the points in S .
2. The first derivatives of the defining polynomial of the algebraic curve in each

point from S is small.

For Sing.C / we compute all distinct singularities in the projective space. To do
this we homogenize the equation of C and dehomogenize it with respect to different
variables. We get three affine open subsets of the projective curve, and we have to
be careful not to return singularities in the overlaps twice. We give a schematic
summary of this algorithm:

Algorithm 3 Singularities of the algebraic curve C SING.F; d/
Input: C D f.z;w 2 C

2jF.z;w/ D 0/g; F 2 CŒz;w� has numeric coefficients
d the degree of C

Output: Sing.C /
where Sing.C / is the set of all singularities of C .

1. Homogenize F.z;w/ w.r.t. u obtaining F1.z;w; u/

a. Dehomogenize F2.z;w/ WD F1.z;w; 1/
b. Get S1 by solving the system of equations F2 D dzF2 D dwF2 D 0

c. Dehomogenize F3.w; u/ WD F1.1;w; u/
d. Get S2 by solving the system F3 D dwF3 D duF3 D u D 0

e. Dehomogenize F4.z; u/ WD F1.z; 1; u/
f. Get S3 by solving the system F4 D dzF4 D duF4 D z D u D 0

2. Return Sing.C / D S1 [S2 [S3

3.2 Computing the Algebraic Link of an Isolated Singularity

The second subproblem that we need to solve is to compute the algebraic link for
each isolated singularity of the plane complex algebraic curve. In this subsection

72 M. Hodorog and J. Schicho

we first present the main reasons for studying the algebraic link of an isolated
singularity of a plane complex algebraic curve, we then define the algebraic link
of an isolated singularity, and we conclude with giving a method for computing the
algebraic link of an isolated singularity.

We consider a plane complex algebraic curve as a real two-dimensional subset
in C

2 Š R
4. We need to study and to understand the topology of these subsets near

their singularities, which can be determined by the corresponding algebraic link
associated to each singularity.

Milnor proved the following important result concerning the topology of com-
plex hypersurfaces:

Theorem 1 (Milnor[27]). Let V � C
nC1 be a hypersurface in C

nC1, i.e. an
algebraic variety defined by a single polynomial. Assume 0 2 V and 0 is an isolated
singularity, i.e. there is no other singularity on a sufficiently small neighborhood of
0; S� is the sphere centered in 0 and of radius �; and D� is the disk centered in 0
of radius �. Then, for sufficiently small �, K D S� \ V is a .2n � 1/-dimensional
nonsingular set andD� \ V is homeomorphic to the cone overK .

In the curve case, n D 1 and all singularities are isolated. Next we describe how
one can compute the algebraic link associated to an isolated singularity of a plane
complex algebraic curve. What we also want is to move the computed algebraic link
from R

4 to R
3, and the stereographic projection allows us to accomplish this goal.

We compute the algebraic link of an isolated singularity of the plane complex
algebraic curve C in the following way: we consider the curve C which has an
isolated singularity in the origin; we take the sphere centered in the origin and of
a small radius �; we intersect the curve C with this sphere obtaining a set in the
4-dimensional space, which based on Theorem 1 is an algebraic link for sufficiently
small radius. Next, we follow Brauner and Heergaard technique [6] to move the
algebraic link from the 4-dimensional space to the 3-dimensional space using the
stereographic projection. The stereographic projection allows us not only to project
the 4-dimensional link into the 3-dimensional space, but it actually preserves all
the topological properties of the link from the the 4-dimensional space into the
3-dimensional space.

In 3-dimensions, the stereographic projection is a certain mapping that projects
a sphere onto a plane. It is constructed in the following way: we take a sphere; we
draw a line from the north pole of the sphere to a point P in the equator plane to
intersect the sphere at a point Q. The stereographic projection of P is Q. The map
is defined at the sphere minus the north pole. In fact, the stereographic projection
gives an explicit homeomorphism from the unit sphere minus the north pole to the
Euclidean plane.

More generally, the stereographic projection may be applied to a n-sphere Sn in
the .nC 1/-dimensional Euclidean space RnC1 in the following way:

Definition 4. Consider an n-sphere Sn D f.x1; x2; : : : ; xnC1/ � R
nC1jx21 C x22 C

: : : C x2nC1 D 1g 2 R
nC1 in the .n C 1/ dimensional Euclidean space R

nC1, and
Q.0; 0; 0; : : : ; 1/ 2 Sn the north point of the n-sphere. IfH is a hyperplane in R

nC1

A Symbolic-Numeric Algorithm for Genus Computation 73

not containingQ, then the stereographic projection of the point P 2 Sn nQ is the
point P

0

of the intersection of the line QP with H . The stereographic projection is
a homeomorphism from Sn nQ! R

n.

We now describe the method used for computing the algebraic link of an isolated
singularity. For the given algebraic curve C considered as a real two-dimensional
subset in C

2 Š R
4:

C D f.x; y; u; v/ 2 R
4jF.x; y; u; v/ D 0g � C

2 Š R
4

for which the origin .0; 0; 0; 0/ is a singularity, that is:

�
F.0; 0; 0; 0/;

ıF

ıx

�
0; 0; 0; 0

�
;
ıF

ıy

�
0; 0; 0; 0

�
;
ıF

ıu

�
0; 0; 0; 0

�
;
ıF

ıv

�
0; 0; 0; 0

��

D .0; 0; 0; 0; 0/,

we consider the 3-sphere centered in the origin and of small radius �:

S3 D f.z;w/ 2 C
2jjzj2 C jwj2 D �2g

D f.x; y; u; v/ 2 R
4jx2 C y2 C u2 C w2 D �2g � R

4.

We intersect the given curve with this sphere:

XDC
\
S3Df.x; y; u; v/ 2 R

4jF.x; y; u; v/ D 0; x2Cy2Cu2Cv2 D �2g � R
4,

obtainingX , a real 1-dimensional set in the 4-dimensional space.
We take a point on the sphere which is not on the curve, that is:

P.0; 0; 0; �/ 2 S3 n C.F.0; 0; 0; �/ ¤ 0/,

and we apply the stereographic projection for projecting the set X from the
4-dimensional space into the 3-dimensional space. We define the stereographic
projection using the following homeomorphism:

f W S3 n fP g � R
4 ! R

3

.x; y; u; v/! .a; b; c/T D
� x

� � v
;
y

� � v
;

u

� � v

�
.

Based on Milnor’s results we know that for sufficiently small � the image ofX under
the stereographic projection f is a link, i.e. f .X/ is a link. Next we compute this
set f .X/:

f .X/ D f.a; b; c/ 2 R
3j9.x; y; u; v/ 2 C \ S3 W .a; b; c/ D f .x; y; u; v/g.

74 M. Hodorog and J. Schicho

We notice that we can rewrite f .X/ in the following way:

f .X/ D f.a; b; c/ 2 R
3j9.x; y; u; v/ D f �1.a; b; c/ 2 C \ S3g,

since f is an homeomorphism, and so it is a bijection, and therefore f is invertible
and it admits an inverse. We compute the inverse f �1:

f �1 W R3 ! S3 n fP g

.a; b; c/! .x; y; u; v/ D
�
2a�

n
;
2b�

n
;
2c�

n
;
�� C a2� C b2� C c2�

n

�
,

where n D 1C a2 C b2 C c2.
Now we can finally compute the set f .X/:

f .X/ D ˚.a; b; c/ 2 R
3jf �1.a; b; c/ 2 V.F /�

D
	
.a; b; c/ 2 R

3j
�
2a�

n
;
2b�

n
;
2c�

n
;
�� C a2� C b2� C c2�

n

�
2 V.F /

D
	
.a; b; c/ 2 R

3jF
�
2a�

n
;
2b�

n
;
2c�

n
;
�� C a2� C b2� C c2�

n

�
D 0

D

8
ˆ̂<

ˆ̂:
.a; b; c/ 2 R

3j
G WD Re

�
F

�
2a�

n
;
2b�

n
;
2c�

n
;
��C a2�C b2�C c2�

n

��
D 0;

H WD Im

�
F

�
2a�

n
;
2b�

n
;
2c�

n
;
��C a2�C b2�C c2�

n

��
D 0

:

9
>>=

>>;

We notice that G and H are two polynomials in .a; b; c/ with real coefficients.
Their common zero set in R

3 is equal to the algebraic link.
We give a schematic summary of the algorithm used to compute the algebraic

link of an isolated singularity of a plane complex algebraic curve.

3.3 Computing the Alexander Polynomial of an Algebraic Link

3.3.1 Knot Theory and the Alexander Polynomial

For our purpose, we distinguish between the following types of knots:

Definition 5. 1. A knot is a piecewise linear or a differentiable simple closed curve
in the 3-dimensional space R3.

2. A link is a finite union of disjoint knots. The individual knots which make up a
link are called the components of the link. A knot will be considered a link with
one component (Fig. 2 produced with Mathematica).

A Symbolic-Numeric Algorithm for Genus Computation 75

Algorithm 4 Algebraic link of the isolated singularity .0; 0/ ALGLINK.F; �/
Input: F 2 CŒz;w� with (0,0) an isolated singularity ; � 2 R

� with � > 0
Output: G; H 2 RŒa; b; c�

where the common zero set of G;H is the algebraic link of F in .0; 0/.

1. Substitute z D x C iy and w D uC iv in the defining polynomial F.z;w/ of the plane curve
C :

C D f.z;w/ 2 C
2jF.z;w/ D 0g , C D f.x; y; u; v/ 2 R

4jF.x; y; u; v/D 0g ,

that has an isolated singularity in the origin .0; 0; 0; 0/.
2. Rewrite F.x; y; u; v/ D R.x; y; u; v/ C iI.x; y; u; v/, with R.x; y; u; v/; I.x; y; u; v/ 2

RŒx; y; u; v� and obtain:

C D f.x; y; u; v/ 2 R
4jR.x; y; u; v/D I.x; y; u; v/D 0g:

3. Consider the sphere centrated in the origin and of small radius �:

S3 D f.x; y; u; v/ 2 R
4jx2C y2 C u2 C v2 � �2 D 0g .

4. Obtain X D C \ S3 � R
4 and P a point on the sphere but not on the curve;

5. Introduce the inverse:
f �1 W R3! S3 n fP g

.a; b; c/! .x; y; u; v/D . 2a�
n
; 2b�
n
; 2c�
n
; ��Ca2�Cb2�Cc2�

n
/ ,

where n D 1C a2 C b2 C c2 .
6. Compute f .X/ using the inverse f �1 finding G;H :

f .X/ D
(
.a; b; c/jG WD R. 2a�

n
; 2b�
n
; 2c�
n
; ��Ca2�Cb2�Cc2�

n
/ D 0;

H WD I. 2a�
n
; 2b�
n
; 2c�
n
; ��Ca2�Cb2�Cc2�

n
/ D 0

:

)
.

7. Return G;H 2 RŒa; b; c� as computed in step 6:

3. A link is called algebraic if it arises as the intersection of an algebraic curve with
a sufficiently small sphere, as described in Subsection 3.2.

In our approach, we approximate a differentiable algebraic link, namely the
intersection ofG andH computed in Subsection 3.2, by a piecewise linear algebraic
link, as we will explain in Subsubsection 3.3.2. From now on, we only consider
piecewise linear links. When we work with knots, we work with their projection in
the 2-dimensional space.

Definition 6. A regular projection is a linear projection for which no three points
on the knot project to the same point, and no vertex projects to the same point as
any other point on the knot. A crossing point is an image of two knot points of such
a regular projection from R

3 to R
2. Then:

76 M. Hodorog and J. Schicho

Fig. 2 Trefoil knot. The
figure is produced with
Mathematica

1. A link diagram (or simply diagram) is the image under regular projection,
together with the information on each crossing point telling which branch
goes over and which goes under. Thus we speak about overcrossings and
undercrossings.

2. A diagram together with an arbitrary orientation of each knot in the link is called
an oriented diagram.

We are interested in the following elements of a diagram:

Definition 7. 1. A crossing is lefthanded if the underpass traffic goes from left to
right or it is righthanded if the underpass traffic goes from right to left. We denote
a lefthanded crossing with �1 and a righthanded crossing withC1.

2. An arc is the part of a diagram between two undercrossings (Fig. 3). Whether
lefthanded or righthanded, each crossing is determined by three arcs and we
denote the overgoing arc with i , and the undergoing arcs with j and k (Fig. 4).
We notice that the number of arcs in a link diagram is equal to the number of
crossings in the same link diagram.

The main problem in knot theory is to distinguish between different links and to
establish whether two links are equivalent or not. We define the equivalence of links
by the following definition called (ambient) isotopy:

Definition 8. We define a homeomorphism as a continuous bijective function with
a continuous inverse. Then we say that two links are equivalent if there exists an
orientation-preserving homeomorphism on R

3 that maps one link onto the other.

To prove that two links are not equivalent we use the notion of link invariants:

Definition 9. A link invariant is a function from link diagrams to some discrete set
(Z or ZŒt �) which is unchanged under the Reidemeister moves of type I, II or III (see
Fig. 5).

A Symbolic-Numeric Algorithm for Genus Computation 77

Fig. 3 Oriented diagram of
the trefoil with 3 arcs and 3
lefthanded crossings

2

3

1

1(-1)

2(-1)

3(-1)

Fig. 4 Types of crossings:
lefthanded .�1/ and
righthanded.C1/

������

k ��������

i

j

���������������

�1

��

������

k
��������

i

j

���������������

C1

��

$ $ $

Fig. 5 Reidemeister moves of type I, II, III

Some link invariants are: the tricolorability, the unknotting number, the Jones
polynomial, the Alexander polynomial. For further details the reader can consult
[10, 25]. At present, there exists no complete invariant for links.

Still for our purpose we are interested only in the invariants of the algebraic links.
An important result in this direction of research was proved by Yamamoto in 1984
(see [40]), who showed that the Alexander polynomial is a complete invariant for the
algebraic links, that is the Alexander polynomial uniquely defines all the algebraic
links up to an (ambient) isotopy.

We now focus our attention on the definition and on the computation of the
Alexander polynomial of a link. The Alexander polynomial was introduced by

78 M. Hodorog and J. Schicho

Alexander in 1928 (see [3]). It depends on the fundamental group of the complement
of the link in R

3 and we define it as follows:

Definition 10. Let L be a link with m components. The multivariate Alexander
polynomial is a Laurent polynomial �L 2 ZŒt˙11 ; : : : ; t˙1m �, which is uniquely
defined for each link up to a factor of ˙tk11 : : : tkmm ; with ki 2 Z and up to a

substitution ti WD 1

ti
; for all i 2 f1; : : : ; mg ([9]).

We follow [25] in our approach to compute the Alexander polynomial. We
distinguish three steps when computing the Alexander polynomial�L of an oriented
link diagramD.L/:

D.L/ �� Labelling matrix.L/ �� Prealexander matrix.L/ �� �L

First of all, we compute the labelling matrix of D.L/ defined as follows:

Definition 11. Let D.L/ be an oriented link diagram with m components and
n crossings xq : q 2 f1; : : : ; ng. We denote the arcs of D.L/ with the labels
f1; : : : ; ng and separately the crossings of D.L/ with the labels f1; : : : ; ng. We
denote the labelling matrix of D.L/ with LM.L/ 2 M .n; 4;Z/. We define
LM.L/ D .bql /q;l with q 2 f1; : : : ; ng; l 2 f1; : : : ; 4g row by row for each crossing
xq as follows:

• On position bq1 we store the type of the crossing xq (C1 or � 1).
• On position bq2 we store the label of the arc i of the crossing xq in D.L/.
• On position bq3 we store the label of the arc j of the crossing xq in D.L/.
• On position bq4 we store the label of the arc k of the crossing xq in D.L/.

Secondly, we compute the prealexander matrix of D.L/ defined using the
labelling matrix LM.L/ as follows:

Definition 12. Let D.L/ be an oriented link diagram with m components and n
crossings xq : q 2 f1; : : : ; ng. We denote the arcs and the crossings of D.L/ as in
Definition 11. We considerLM.L/ the labelling matrix ofD.L/ as in Definition 11.
We denote the prealexander matrix of L with PM.L/ 2M .n; n;ZŒt1; t2; : : : ; tm�/.
We define PM.L/ row by row for each crossing xq depending on LM.L/. For
xq we consider the variable ts , where s 2 f1; : : : ; mg is the s-th knot component
of D.L/, which contains the overgoing arc that determines the crossing xq .
Then:

• If the crossing xq is righthanded, i.e. bq1 D C1 in LM.L/ then at position bq2
of PM.L/ we store the label 1 � ts , at position bq3 we store the label �1 and at
position bq4 we store the label ts .

A Symbolic-Numeric Algorithm for Genus Computation 79

• If the crossing xq is lefthanded, i.e. bq1 D �1 in LM.L/ then at position bq2
of PM.L/ we store the label 1 � ts , at position bq3 we store the label ts and at
position bq4 we store the label �1.

• If two or all of the positions bq2; bq3; bq4 have the same value, then
we store the sum of the corresponding labels at the corresponding posi-
tion.

• All other entries of the matrix are 0.

Finally, we define the Alexander polynomial of D.L/ depending on the number
of components in L:

Definition 13. Let D.L/ be an oriented link diagram with m components and n
crossings, LM.L/ be its labelling matrix as in Definition 11 and PM.L/ be its
prealexander matrix as in Definition 12.

1. Univariate case, (L has one component, m D 1, see [25]). The univariate
Alexander polynomial�L.t1/ 2 ZŒt˙11 � is the normalized polynomial computed
as the determinant of any .n � 1/ � .n � 1/ minor of the prealexander matrix of
D.L/.

2. Multivariate case, (L has more than one component, m � 2, see [9]). The
multivariate Alexander polynomial �L.t1; : : : ; tm/ 2 ZŒt˙11 ; : : : ; t˙1m � is the nor-
malized polynomial computed as the greatest common divisor of all the .n�1/�
.n � 1/ minor determinants of the prealexander matrix of D.L/.

A normalized polynomial is a polynomial in which the term of the lowest degree
is a positive constant.

Example 1. We compute the Alexander polynomial of the oriented diagram of the
trefoil knot L from Fig. 3. We denote the arcs and separately the crossings of
the diagram with the labels f1; 2; 3g. We compute the labelling matrix of L with
Definition 11:

LM.L/ D

0
BB@

type labeli labelj labelk
c1 �1 2 1 3

c2 �1 1 3 2

c3 �1 3 2 1

1
CCA

From LM.L/ we compute the prealexander matrix of D.L/ with Definition 7
and Definition 12. We notice that L has only one knot component so s D 1 in
Definition 12:

PM.L/ D

0

BBBBBBBBB@

labeli labelj labelk
c1 2 1 3

�1 1 � t1 t1 �1
c2 1 3 2

�1 1 � t1 t1 �1
c3 3 2 1

�1 1 � t1 t1 �1

1

CCCCCCCCCA

D

0

BB@

1 2 3

c1 t1 1 � t1 �1
c2 1 � t1 �1 t1
c3 �1 t1 1 � t1

1

CCA

80 M. Hodorog and J. Schicho

From PM.L/ we compute the Alexander polynomial with Definition 13:

det
�

Minor33
�
PM.L/

�� D det

�
t1 1 � t1

1 � t1 �1
�
D �t21 C t1 � 1

�L.t1/ D Normalize.�t21 C t1 � 1/ D t21 � t1 C 1
We give a schematic summary of the algorithm used to compute the Alexander

polynomial of an algebraic link diagram D.L/.

Algorithm 5 Alexander polynomial for D.L/ ALEXPOLY.D.L/;m; n/
Input: D.L/ oriented algebraic link diagram withm components, n crossings
Output: �L.t1; : : : ; tm/ 2 ZŒt˙1

1 ; : : : ; t˙1
m �

where �L.t1; : : : ; tm/ is the Alexander polynomial of D.L/.

1. Denote the arcs and separately the crossings of D.L/ with f1; : : : ; ng.
2. Compute LM.L/ the labelling matrix of D.L/ .
3. Compute PM.L/ the prealexander matrix of D.L/.
4. If m D 1 then:

a. Compute M any .n� 1/� .n� 1/ minor of PM.L/.
b. Compute D the determinant of the minor M .
c. Return �L.t1/ D Normalize.D/.

5. If m � 2 then:

a. Compute all the .n� 1/ � .n� 1/ minors of PM.L/.
b. Compute G the greatest common divisor of all the computed minors in 5.(a).
c. Return �L.t1; : : : tm/ D Normalize.G/.

3.3.2 Alexander Polynomial and Computational Geometry

In Subsection 3.3 we noticed that in order to compute the Alexander polynomial of
an algebraic link L we need to compute the diagram of L denoted with D.L/. We
compute L using the stereographic projection method described in Subsection 3.2
and using the Axel system [39] for the actual implementation. We remember that
for the plane complex algebraic curve C with F.z;w/ 2 CŒz;w�; � 2 R

�; � > 0 and
.0; 0/ an isolated singularity, we compute two polynomials G;H 2 RŒa; b; c�. We
have shown that the algebraic link L of .0; 0/ is the zero common set of G;H , that
is L is a smooth and closed implicit algebraic curve in R

3 given as the intersection
of two implicit algebraic surfaces in R

3 whose defining polynomials areG;H . Axel
uses certified algorithms to compute a piecewise linear approximation L

0

for L,
which is isotopic to L [24]. L

0

is computed as a graph G D hP;E i, where P is a
set of points (or vertices) together with their Euclidean coordinates and E is a set of
edges connecting them. From now on we denote L

0 WD Graph.L/:

A Symbolic-Numeric Algorithm for Genus Computation 81

Fig. 6 Algebraic link as intersection of surfaces in Axel

Example 2. For C4 D f.z;w/ 2 C
2jz3 � w2 D 0g � R

4 with .0; 0/ isolated
singularity and � D 1 we get L, the algebraic link of .0; 0/ by the stereographic
projection method proposed in Subsection 3.2:

f .C 4 \ S/ WD L D f.a; b; c/ 2 R
3jG WD ReF.: : :/ D 0;H WD ImF.: : :/ D 0g

and with Axel we get Graph.L/ as the intersection of the two surfaces G;H :

Graph.L/ D hP;E i; P D fp D .m; n; q/ 2 R
3g; E D f.i; j /ji; j 2Pg

such that Graph.L/ Šisotopic L, see Fig. 6.

Next, from the output computed by Axel, Graph.L/, we need to computeD.L/,
the diagram of the algebraic link L. We then use D.L/ to compute the Alexander
polynomial of L with the algorithm proposed in Subsection 3.3.

We compute the elements of D.L/, i.e. the arcs of the diagram and the number
of knot components in the diagram, plus for each knot component its crossings
with their types. We develop new computational algorithms for computing D.L/
given Graph.L/. The main idea is that all these algorithms operate on the data
structure Graph.L/ returned by Axel. Each point in the graph is given as a 4-
tuple p.index; x; y; z/, where index is an integer that uniquely identifies each point,
and .x; y; z/ 2 R

3 are the Euclidean coordinates of p. We use xyzcoord(index)
for denoting the x; y; z coordinates of index, xycoord.index/ for denoting the x; y
coordinates of index, xcoord for denoting the x coordinate of index, and ycoord
for denoting the y coordinate of index. Each edge in the graph is given by a
pair e.source; destination/, where source is the index of the source point of e,
and destination is the index of the destination point of e. For simplicity reasons,
we denote the pair e.source; destination/ WD e.s; d /. We consider the edges of
Graph.L/ to be “small” edges, i.e. the projection of any edge of Graph.L/ has at
most one crossing point. Here we shortly describe these computational algorithms,
for more information the reader can consult [21].

The first algorithm is an adapted version of the Bentley–Ottman algorithm [13].
For Graph.L/ 2 R

3 with the set of points pi D .xi ; yi ; zi / 2 R
3 we consider its

projection in R
2 with the set of points pi D .xi ; yi / 2 R

2. We also consider no
vertical edges in the projection. This algorithm computes the intersection points of
all the edges of the projection of Graph.L/ and some extra information:

82 M. Hodorog and J. Schicho

1. For each intersection point p the pair of edges .ei ; ej / that contains p.
2. And each pair of edges .ei ; ej / is ordered, i.e. ei is under ej in R

3.

These intersection points together with the extra information coincide with the
crossings ofD.L/. Our adapted Bentley-Ottman algorithm operates as follows:

• The edges of the projection of Graph.L/ are oriented from left to right and they
are ordered in a list E D fe0; : : : ; eN g as follows: (1) by the x-coordinates of
their source points; (2) if the x-coordinates of the source points of two edges
coincide, then the two edges are ordered by the two slopes of their supporting
lines; (3) if the x-coordinates of the source points and the slopes of two edges
coincide, then the two edges are ordered by the y-coordinates of their destination
points. The ordering criteria is necessary for the correctness of the algorithm.

• We consider a vertical sweep line l that sweeps the plane from left to right.
While l moves, it intersects several edges from E. The list of edges that intersect
l at one point during the sweeping procees, denoted SW , is called the sweep
list. SW changes while l sweeps the plane. The algorithm is based on the key
observation that SW is updated only at certain points of the edges fromE called
event points. The sweep list SW is ordered in this algorithm by the y-coordinates
of the intersections of the edges of E with the sweep line l .

• We notice that in E each index appears two times in E. Due to this property,
we can manage SW in a simpler way in our adapted Benttley-Ottman algorithm
than in the original version.

• While we traverse E, we insert the current edge em.sm; dm/ from E in SW
in the right position and that is: (1) we search for an edge en.sn; dn/ in SW
such that its destination coincide with the source of em 2 E, i.e. dn D sm;
if we find such an en 2 SW we replace it with em 2 E; (2) if such an edge
en 2 SW does not exist, we insert em in SW depending on its position against
the current edges from SW . We assume SW D fei1 ; ei2 ; ei3 ; : : : ; eik g, with
eiq 2 E for all q 2 f1; : : : ; kg: There exists a unique index j with 0 � j � k
such that ycoord.sm/ is larger than the y-coordinates of all the intersections of
ei1 ; : : : ; eij with l and smaller than the y-coordinates of all the intersections
of eijC1

; : : : ; eik with l . This index j can be found by checking all the signs
of the determinants det

��
xycoord.sm/; 1

�
;
�
xycoord.sij /; 1

�
;
�
xycoord.dij /; 1

��
:

Then we insert em in SW between the two edges eij and eijC1
and we obtain

SW D fei1; ei2 ; : : : ; eij ; em; eijC1
; : : : ; eik g:When we insert an edge from E into

SW on the right position we have to additionally update SW depending on the
encountered event points:

– We test each inserted edge in SW against its two neighbours for intersection.
If an intersection point p is found we report it together with the ordered pair
of edges that contains it. In addition we swap the edges that intersect in SW .
As opposed to the original Bentley-Ottman algorithm after swaping the edges
in SW , we do not test the edges against their new neighbours for intersections
because we consider only “small” edges.

A Symbolic-Numeric Algorithm for Genus Computation 83

– We test each inserted edge in SW against its two neighbours for common
destination. In addition, when two edges are swapped in SW after reporting
their intersection point, we test them against their new neighbours for
common destination. Whenever we find two consecutive edges with common
destinations we erase them from SW . As opposed to the original Bentley-
Ottman algorithm after deleting edges from SW , we do not test the new
neighbours for intersection because we consider only “small” edges.

The second algorithm constructs the knot components of the diagram from the
projection of Graph.L/. It also returns the total number of knot components. We
consider E as in the previous algorithm. We denote a positive edge in R

2 with
e.s; d /, and its corresponding negative edge with �e.d; s/. The positive edges are
oriented from left to right, while the negative ones are oriented from right to left.
We denote the knots with Ki; i 2 N. All Ki have the properties:

1. For each edge ek.sk; dk/ 2 Ki there exists ekC1.skC1; dkC1/ 2 Ki with dk D
skC1.

2. For Ki D fe0.s0; d0/; : : : ; en.sn; dn/g: dn D s0.
As opposed to the list E; which contains only positive edges oriented from left
to right, each list Ki contains both positive and negative edges. We initialize the
first knot K0 with the first edge e0.s0; d0/ from E. Next we look for the edge
en in E which has a common index, either source or destination, with d0. If we
find en.d0; dn/ 2 E then we insert en.d0; dn/ in K0 as a positive edge. If we find
en.sn; d0/ 2 E then we insert �en.d0; sn/ in K0 as a negative edge. After we insert
en in K0 we erase it from E. We will always find such an edge en in E, because
each index such as d0 appears two times in E. We continue with inserting edges in
K0 from E until the destination of an inserted edge coincide with s0 the source of
the first edge fromK0. We apply the same strategy to constructs all the knotsKi of
D.L/ until E is empty, increasing i each time a new knot starts being constructed.
At the end of the algorithm, the index i returns the total number of knot components
of D.L/.

The third algorithm constructs the arcs for each knot component of the link.
It also decides the type of crossings (righthanded or lefthanded) for each knot
component. For constructing the arcs, we consider E as in the previous algorithms.
This algorithm operates on the outputs of the previous two algorithms, i.e. the list of
intersection points I together with the list of ordered pairs of edgesEI , and the lists
of edges for all the knot componentsKi ; i 2 N. The key point of the algorithm is to
search in Ki all the undergoing edges from EI and to splitt them in two parts. For
instance, we assume that for E D fe0; : : : ; en; em; : : : ; el ; ek : : : ; et ; es; : : : ; elast g,
we compute the following outputs with the previous two algorithms:

I D f.x1; y1/; .x2; y2/; .x3; y3/g; EI D f.�en; em/; .el ; ek/; .es;�et /g

K0 D fe0; : : : ; ek; : : : ; es; : : : ; em; : : : ; el ; : : : ;�et ; : : : ;�en; : : : ;�e1g

84 M. Hodorog and J. Schicho

We search the three undergoing edges �en; el ; es one by one in K0 and we replace
them with �en ! .�edn ;�eu

n/; el ! .edl ; e
u
l /; es ! .eds ; e

u
s / obtaining:

K
0

0 D fe0; ::; ek; ::; eds ; eu
s ; ::; em; ::; e

d
l ; e

u
l ; ::;�et ; ::;�edn ;�eu

n; ::;�e1g:

From Definition 7, we conjecture that an arc contains the list of edges from a
modified knot component K

0

i ; i 2 N starting with an edge of type eu
j ; j 2 N from

K
0

i and ending with the next consecutive edge of type edk ; k 2 N fromK
0

i . While we
insert the edges from K

0

i into the list of edges representing the arcs we erase them
fromK

0

i . Thus from the modified loopK
0

0 we compute the following three arcs until
K

0

0 is empty:

K
0

0 D fe0; ::; ek; ::; eds ;�������
Œeu
s ; ::; em; ::; e

d
l �; e

u
l ; ::;�et ; ::;�edn ;�eu

n; ::;�e1g
arc0 D feu

s ; : : : ; em; : : : ; e
d
l g

K
0

0 D fe0; ::; ek; ::; eds ;��������
Œeu
l ; ::;�et ; ::;�edn �;�eu

n; ::;�e1g
arc1 D feu

l ; ::;�et ; ::;�edn g
K

0

0 D f�������
Œe0; ::; ek; ::; e

d
s �;������Œ�eu

n; ::;�e1�g
arc2 D feu

n; ::;�e1; e0; ::; ek; ::; eds g

For deciding the type of crossings, we observe that in each knot component
for a positive edge ei .si ; di / : xcoord.si / < xcoord.di / and for a negative edge
�ej .sj ; dj / : xcoord.sj / > xcoord.dj /. Each type of crossing depends on the
pair of edges .eunder ; eover / that contains the corresponding intersection point, and
that is:

1. On the orientation of eunder ; and eover , i.e. whether they are oriented from left to
right (positive) or from right to left (negative).

2. On the comparison relation between the slope of eunder and the slope of eover .

Depending on these three parameters, we have 23 possible cases for deciding the
type of crossings. For instance, we consider a crossing c determined by the pair of
ordered edges

� � el .sl ; dl /; ek.sk; dk/
�
, for which �el is the undergoing edge and

ek is the overgoing edge in R
3. We have xcoord.sl / > xcoord.dl/ for the negative

undergoing edge el , and xcoord.sk/ < xcoord.dk/ for the positive overgoing edge
ek. If additionally we suppose that slope.el/ < slope.ek/, then c is a lefthanded
crossing.

We give the schematic algorithm for the computation of the diagram D.L/ of a
differentiable algebraic link L computed as in Subsection 3.2 and approximated by
a piecewise linear algebraic link Graph.L/.

A Symbolic-Numeric Algorithm for Genus Computation 85

Algorithm 6 Diagram of piecewise linear links DIAGRAM.Graph.L//
Input: Graph.L/ D hP; E i piecewise linear algebraic link which approximates

L a differentiable algebraic link as computed in Subsection3.2

P set of points with their euclidean coordinates

E set of edges connecting them
Output: D.L/
where D.L/ is the diagram of Graph.L/ Šisotopic L.

1. Compute the crossings of D.L/.

a. Compute I the intersections of the edges of E .
b. Compute EI the pairs of ordered edges containing each intersection.

2. Compute Ki; i 2 N the lists of edges from E for all the knots of D.L/.
3. Compute the arcs of D.L/ and the type of crossings in D.L/.
4. Return D.L/.

3.4 Computing the Delta-Invariant of an Isolated Singularity

We use Milnor results [27] for computing the ı-invariant of the isolated singularity
.0; 0/ of a plane complex algebraic curve:

• We consider � a positive integer that measures the amount of degeneracy at the
critical point .0; 0/ of the complex polynomial F.z;w/. In fact, � is the Milnor
number. It is shown that � is the degree of the characteristic polynomial� of the
link L D V \ S� determined by V D F �1.0/. The characteristic polynomial �
coincides with the Alexander polynomial �L.t/ if L has one knot component,

and � D .t � 1/
˙t i �L.t; : : : ; t/ if L has more than one knot components. We

observe that � is the degree of the characteristic polynomial �. Based on this
observation we deduce that � is the degree of the Alexander polynomial if L has
one knot component, and � is the degree of the Alexander polynomialC1 if L
has more than one knot components.

• We consider r the number of local analytic branches of V D F�1.0/ with L D
V \ S� passing through origin. That is r is the number of knot components in
the link L determined by V , i.e. r is the number of variables in the Alexander
polynomial of the link L.

We base our algorithm for the computation of the ı-invariant on the following
theorem proved by Milnor:

Theorem 2 ([27]). Suppose that r branches of the curve V D F�1.0/ pass through
the origin s D .0; 0/, which is an isolated singularity for V . Then the delta-invariant
of the isolated singularity s D .0; 0/ denoted with ıs is related to the Milnor number
� by the equation 2ıs D �C r � 1 and it is always an integer.

We give the schematic algorithm for the computation of the ı-invariant of the
isolated singularity .0; 0/.

86 M. Hodorog and J. Schicho

Algorithm 7 Delta-invariant of the isolated singularity .0; 0/ DELTA.�L; �; r/

Input: �L.t1; : : : ; tm/ the Alexander polynomial of L
L the algebraic link of the isolated singularity s D .0; 0/,

d the degree of �L, m the number of variables in�L

Output: ıs 2 Z
�

C

where ıs is the delta-invariant of s D .0; 0/.

1. If m D 1 then return ıs D d

2

2. If m � 2 then return ıs D d Cm
2

Algorithm 8 Genus of a plane complex algebraic curve GENUS.F; d; �/
Input: C D f.z;w/ 2 C

2jF.z;w/ D 0g,
F.z;w/ 2 CŒz;w� with numeric coefficients,

d the degree of C , � 2 R
�; � > 0

Output: genus.C / 2 Z

where genus.C / is the approximate genus of C .

1. sumDeltaInv D 0.
2. Compute Sing.C / D SING.F; d/.
3. For each si D .zi ;wi / 2 Sing.C / do:

a. Move si in .0; 0/ W C D f.zC zi ;wC wi / 2 C
2jF.zC zi ;wC wi / D 0g.

b. Compute L D ALGLINK.F; �/ (L is approximated by Graph.L/).
c. Compute D.L/ D DIAGRAMLINK.Graph.L//.
d. Compute �L.t1; : : : ; tm/ D ALEXPOLY.D.L/;m; n/.
e. Compute ısi D DELTA.�L; �; r/.
f. sumDeltaInv D sumDeltaInvC ısi .

4. Return genus.C / D .d � 1/.d � 2/
2

� sumDeltaInv.

3.5 Computing the Genus of the Algebraic Curve

We now give the schematic algorithm for computing the genus of a plane complex
algebraic curve whose defining polynomial has numeric coefficients. The computed
genus is the approximate genus, which is defined as the lowest possible genus of a
curve defined by a nearby polynomial. We discuss the notion of approximate genus
in detail in Sect. 4.

4 What Precisely Means “Approximate Computation”?

It is the mark of an instructed mind to rest satisfied with the
degree of precision to which the nature of the subject admits and
not to seek exactness when only an approximation of the truth is
possible.

Aristotle

A Symbolic-Numeric Algorithm for Genus Computation 87

The fact that the genus computation problem is ill-posed and our desire to
compute the genus for approximate inputs seems to be incompatible at first glance.
On the other hand, similar situations have been considered before: for ill-posed
problems in the field of partial differential and integral equations, regularization
theory (see [14]) has been introduced. In approximate algebraic computation, some
principles have been established that aim at computing discontinuous properties
of approximately given data (see [35, 41]). A probabilistic interpretation of a
similar situation can be found in [31]. In this section, we discuss the regularization
theory approach as much as it is relevant here, and relate it to our specific
situation.

Let A and B be metric spaces. Let F W A!B be a function that is not
continuous. Then the problem of computing F.y/ for given y 2 A is ill-posed,
as the desired output does not continuously depend on the given input. Instead
of computing F , we approximate F by a set of functions that converge towards
F . More precisely, let R W A � RC ! B be a function that is continuous. The
additional input parameter � 2 RC is called “regularization parameter”. For y 2 A,
a perturbation of y is a function from RC to A, � ! y� , such that d.y; y�/ � � for
all � 2 RC.

We say that R is a regularization of F if there exists a bijective monotonic
function ˛ W RC ! RC, also known as “parameter choice rule”, such that for
any y 2 A and any perturbation � ! y� of y, we have

lim
�!0 R.y�; ˛.�// D F.y/: (3)

One consequence of this is “convergence for exact data”:

lim
�!0 R.y; �/ D F.y/

(just set y� D y, the constant perturbation). More important, however, is that if we
know the “error level” ı of the input, then we may assume that the input we have is
of the form yı for some perturbation. Then we calculate the value R.yı; ˛.ı//. This
value is an estimate for F.y/. If we could decrease the error level, then the limit of
these estimates would be F.y/.

In our situation, A is the set of coefficient vectors of polynomials of fixed
degree, B is discrete, and F is the function that assigns to the given polynomial the
Alexander polynomial of the singular point at the origin of the defined curve. (If the
origin is not a singular point, then the Alexander polynomial is 1.) The function R
assigns to � > 0 the Alexander polynomial of the �-link, arising as the intersection
of the curve with the �-sphere (see Algorithm 2). Note that this function is not
everywhere defined, because it may happen that the intersection has singularities
and is therefore not a link. But it is easy to see that the function R is continuous
in its domain of definition. Since B is discrete, this amounts to saying that R is
constant in every connected component of its domain of definition. The Alexander

88 M. Hodorog and J. Schicho

polynomial can only change if the intersection has singularities, otherwise we have
an isotopy, which leaves the Alexander polynomial fixed.

Note that the convergence for exact data is a straightforward consequence of
Theorem 1. On the other hand, we admit that we cannot (yet) say that computing
the �-link is a regularization for the problem of computing the link of a singularity,
because we do not yet know the parameter choice rule ˛ satisfying (3). An
observation that may help is that the Alexander polynomial is constant in each
family with constant Milnor number [37] and that the Milnor number function is
an upper semicontinuous function of the coefficients of the algebraic curve [36].
Unfortunaly, regularization theory for discontinuous algebraic algorithms is not as
well developed as the theory for differential equations.

Discontinuities arise not only in Algorithm 2, but also in Algorithm 1 where
we compute the singularities of a curve given by coefficients. (It is clear that
singularities disappear under generic pertubations, for instance.) Using subdivision,
we can compute “numerical singularities”, which are points in the plane where the
value of the polynomial and its derivatives are small. Moreover, it is guaranteed that
every singularity lies in the vicinity of such a computed numerical singularity.

5 Numerical Experiments

There is no such thing as a failed experiment, only experiments
with unexpected outcomes.

R. B. Fuller

In this paper, we will give some experimental evidence for the statement that
our algorithm is a regularization as explained in Sect. 4. All the experiments,
numerical and symbolical, are done with the software, GENOM3CK-Symbolic
numeric techniques for GENus cOMputation of Complex algebraiC Curves using
Knot theory. GENOM3CK is implemented and included as a library in the free
system Axel [39], written in CCC with Qt Script for Applications (QSA).

As evidences for the convergence for exact data property we consider an input
polynomial F.x; y/ 2 CŒx; y� with both exact and inexact coefficients and we
computeA�.F.x; y//with the approximate algorithmA� . We computeA�.F.x; y//
with the approximate algorithm for different values of the parameter �. We obtain
several outputs such as: the singularities of the input curve defined by F.x; y/, the
algebraic link of each singularity (i.e. the topology of the singularity), the Alexander
polynomial of each algebraic link, the delta-invariant of each singularity, and the
genus of the curve. The computation of the Alexander polynomial, delta-invariant
and the genus depends on the computation of the algebraic link of each singularity.
From the experiments, we observe that the approximate solution computed with A�
converges to the exact solution as � tends to 0.

A Symbolic-Numeric Algorithm for Genus Computation 89

Example 3. We consider F.x; y/ D x2 � xy � y3. We notice that x2 � xy D
x.x � y/ thus F.x; y/ has a vertical tangent x D 0 in C

2. In order to assure a
valid stereographic projection in R

3 we make the substitution fx ! y; y ! xg in
F.x; y/ obtaining F.x; y/ D �x3�xyCy2, and thus we consider this polynomial
as the input of the problem. We use Arnold’s results concerning the analysis of
curve singularities and we deduce that the algebraic link of the singularity .0; 0/ of
the polynomial �x3 � xy C y2 is the same as the algebraic link of the singularity
.0; 0/ of the polynomial�xyCy2 which is the Hopf link, and which represents the
exact solution for the algebraic link of the singularity .0; 0/ of F.x; y/. We notice
in Table 1 that the approximate solution converges to the exact solution as � tends
to 0.

We can consider the input polynomial with both exact and inexact coefficients,
such asF.x; y/ D �x3�xyCy2�0:01. We observe in Table 2 that the approximate
solution converges to the exact solution when � tends to 0. This is an evidence
for property (3) from Sect. 4, which is also called the convergence for noisy data
property.

Example 4. We consider F.x; y/ D x2 � y2 � y3. We use Arnold’s results
concerning the analysis of curve singularities and we deduce that the algebraic link
of the singularity .0; 0/ of F.x; y/ is the same as the algebraic link of the singularity
.0; 0/ of the polynomial x2 � y2 which is the Hopf link, and which represent the
exact solution for the algebraic link of the singularity .0; 0/ of F.x; y/. We notice
in Table 3 that the approximate solution converges to the exact solution as � tends
to 0.

As evidences for the continuity property we consider an input curve defined
by the polynomial F.x; y/ 2 CŒx; y� with exact and inexact coefficients and we
compute A�.F.x; y// with the approximate algorithm A� . The continuity property
of A� states that small changes in the input polynomial F.x; y/ produce constant
output for the computed approximate solution. To observe this we proceed in the
following way:

Table 1 Convergence of �x3 � xyC y2 with exact coefficients

Equation and � Link Alexander, ı invariants, genus

�x3 � xy C y2 1:00 Trefoil knot �.t1/ D t 21 � t1 C 1 ı D 1 g D 0

�x3 � xy C y2 0:5 Trefoil knot �.t1/ D t 21 � t1 C 1 ı D 1 g D 0

�x3 � xy C y2 0:25 Hopf link �.t1; t2/ D 1 ı D 1 g D 0

�x3 � xy C y2 0:14 Hopf link �.t1; t2/ D 1 ı D 1 g D 0

Table 2 Convergence of �x3 � xyC y2 � 0:01 with inexact coefficients

Equation and � Link Alexander, ı invariants, genus

�x3 � xyC y2 � 0:01 1:00 Trefoil knot �.t1/ D t 21 � t1 C 1 ı D 1 g D 0

�x3 � xyC y2 � 0:01 0:5 Hopf link �.t1; t2/ D 1 ı D 1 g D 0

�x3 � xyC y2 � 0:01 0:25 Hopf link �.t1; t2/ D 1 ı D 1 g D 0

�x3 � xyC y2 � 0:01 0:22 Hopf link �.t1; t2/ D 1 ı D 1 g D 0

90 M. Hodorog and J. Schicho

Table 3 Convergence of x2 � y2 � y3 with exact coefficients

Equation and � Link Alexander, ı invariants, genus

x2 � y2 � y3 1:00 1 singularity curve � � �
x2 � y2 � y3 0:7 Hopf link �.t1; t2/ D 1 ı D 1 g D 0

x2 � y2 � y3 0:5 Hopf link �.t1; t2/ D 1 ı D 1 g D 0

x2 � y2 � y3 0:19 Hopf link �.t1; t2/ D 1 ı D 1 g D 0

Table 4 Continuity for perturbations of type I of �x3 � xy C y2
Perturbations I and � � D 10�e ; e 2 N

� Link Invariants

�x3 � xyC y2 � 10�e 0:5 f10�2; : : : ; 10�10g Trefoil knot �.t1/ D t 21 � t1 C 1
ı D 1 g D 0

�x3 � xyC y2 � 10�e 0:25 f10�2; : : : ; 10�10g Hopf link �.t1; t2/D 1

ı D 1 g D 0

• We consider a polynomial p.x; y/ 2 CŒx; y� which contains only exact
coefficients.

• For � 2 R
�, we slightly perturbed the coefficients of the polynomial p.x; y/

obtaining some new polynomials denoted with p�.x; y/ that we call pertur-
bations of the polynomial p.x; y/. We call � the perturbation of the exact
polynomial p.x; y/.

• We consider several values for the parameter �. For each of these values, we
execute the approximate algorithm A� on the perturbed polynomials p�.x; y/
for different values of � 2 R

�. The perturbed polynomials p�.x; y/ represent
the input polynomialsF.x; y/ with exact and inexact coefficients, i.e. F.x; y/ D
p�.x; y/, for � 2 R

�.

We distinguish between two types of perturbations:

1. Perturbations of type I : For these types of perturbations, p�.x; y/ is of the
following form: p�.x; y/ D p.x; y/C � , where p.x; y/ is the exact polynomial
and � 2 R

� is a real number different from 0.
2. Perturbations of type II : For these types of perturbations, p�.x; y/ is of the

following form: p�.x; y/ D p.x; y/ C �q.x; y/, where p.x; y/ is the exact
polynomial, � 2 R

� and q.x; y/ 2 CŒx; y� is an arbitrary exact polynomial.

From the experiments, we observe that for the perturbed polynomials the approxi-
mate computed solution is preserved, that is for small changes of the input data we
obtain constant output for the computed approximate solution.

Example 5. For the exact polynomial p.x; y/ D �x3 � xy C y2, we consider
perturbations of type I of the form p�.x; y/ D �x3 � xy C y2 � � , with � 2
f10�2; : : : ; 10�10g. We notice in Table 4 that for perturbations of type I of �x3 �
xy C y2 we obtain constant approximate solution.

For the perturbations of type II we consider the exact polynomial p.x; y/ D
�x3 � xy C y2, the arbitrary exact polynomial q.x; y/ D �x3 � 2xy C y2 and
� 2 f10�1; : : : ; 10�10g, obtaining the perturbed polynomials p�.x; y/ D p.x; y/C
C�q.x; y/ D �x3�xyCy2C�.�x3�2xyCy2/ D �.1C�/x3�.1C2�/xyC.1C

A Symbolic-Numeric Algorithm for Genus Computation 91

Table 5 Continuity for perturbations of type II of �x3 � xyC y2
Perturbations II and � � D 10�e ; e 2 N

� Link Invariants

�.1C 10�e/x3 � .1C 2 � 10�e/ 0:15 f10�1; : : : 10�10g Hopf link �.t1; t2/ D 1

xy C .1C 10�e/y2 ı D 1 g D 0

�.1C 10�e/x3 � .1C 2 � 10�e/ 0:14 f10�1; : : : 10�10g Hopf link �.t1; t2/ D 1

xy CC.1C 10�e/y2 ı D 1 g D 0

Table 6 Continuity for perturbations of type I of x2 � y2 � y3
Perturbations I and � � D 10�e ; e 2 N

� Link Invariants

x2 � y2 � y3 � 10�e 0:5 f10�1; : : : ; 10�10g Hopf link �.t1; t2/ D 1 ı D 1 g D 0

x2 � y2 � y3 � 10�e 0:14 f10�1; : : : ; 10�10g Hopf link �.t1; t2/ D 1 ı D 1 g D 0

Table 7 Continuity for perturbations of type II of x2 � y2 � y3
Perturbations II and � � D 10�e ; e 2 N

� Link Invariants

.1C 10�e/x2 � .1C 3 � 10�e/y2 0:25 f10�1; : : : 10�10g Hopf link �.t1; t2/ D 1

�.1C 4 � 10�e/y3 ı D 1 g D 0

.1C 10�e/x2 � .1C 3 � 10�e/y2 0:14 f10�1; : : : 10�10g Hopf link �.t1; t2/ D 1

�.1C 4 � 10�e/y3 ı D 1 g D 0

�/y2. For � D 0:1we obtain the perturbed polynomialp� 0:1 D �1:1x3�1:2xyC
1:1y2; for � D 0:01 we obtain the perturbed polynomial p� 0:01 D �1:01x3 �
1:02xy C 1:01y2; for � D 0:001 we obtain the perturbed polynomial p� 0:001 D
�1:001x3 � 1:002xy C 1:001y2, etc. We notice in Table 5 that for perturbations of
type II of �x3 � xy C y2 we obtain constant approximate solution.

Example 6. For the exact polynomial p.x; y/ D x2 � y2 � y3, we consider
perturbations on type I of the form p�.x; y/ D x2 � y2 � y3 � � , with
� 2 f10�1; : : : ; 10�10g. We notice in Table 6 that for perturbations of type I of
x2 � y2 � y3 we obtain constant approximate solution.

For the perturbations of type II we consider the exact polynomial p.x; y/ D
x2 � y2 � y3, the arbitrary exact polynomial q.x; y/ D x2 � 3y2 � 4y3 and � 2
f10�1; : : : ; 10�10g, obtaining the perturbed polynomials p�.x; y/ D p.x; y/C
C�q.x; y/ D x2�y2�y3C�.x2�3y2�4y3/ D .1C�/x2�.1C3�/y2�.1C4�/y3.
For � D 0:1 we obtain the perturbed polynomial p� 0:1 D 1:1x2 � 1:3y2 � 1:4y3;
for � D 0:01 we obtain the perturbed polynomial p� 0:01 D 1:01x2 � 1:03y2 �
1:04y3; for � D 0:001 we obtain the perturbed polynomial p� 0:001 D 1:001x2 �
1:003y2 � 1:004y3, etc. We notice in Table 7 that for perturbations of type II of
x2 � y2 � y3 we obtain constant approximate solution.

6 Conclusion and Future Work

If I have seen further than others, it is by standing upon the
shoulders of giants.

Isaac Newton

92 M. Hodorog and J. Schicho

For each input plane complex algebraic curve C defined by the polynomial
F.z;w/ with numeric coefficients, GENOM3CK performs the following compu-
tational operations:

1. It computes the set of all distinct real singularities in the projective real plane of
C .

2. It computes and visualizes the algebraic link L of each singularity of the input
curve C in the three-dimensional space; for each algebraic link L, which is
a smooth, implicitly defined closed algebraic curve in R

3, it computes and
visualizes the two implicit algebraic surfaces that define the algebraic link L.
In fact these surfaces represent the Milnor fibration.

3. It computes the diagram of each algebraic link L.
4. It computes the Alexander polynomial of each algebraic link L.
5. It computes the ı-invariant of each singularity.
6. It computes the genus of the curve C .
7. It also computes the time needed for performing each of these operations.

We have reported on a symbolic-numeric algorithm for genus computation
of plane complex algebraic curves whose defining polynomials have coefficients
of limited accuracy, i.e the coefficients of the polynomial are both exact and
inexact data. We have successfully realized a complete automatization for the
steps of the proposed symbolic-numeric algorithm in the GENOM3CK library
using Axel, an algebraic geometric modeler. The library allows us to compute
several invariants of an input plane complex algebraic curve, such as: the algebraic
link, the Alexander polynomial and the delta-invariant of each singularity of
the curve. In addition, the library allows us to analyse the performance of the
proposed symbolic-numeric algorithm. As expected, the test experiments indicate
the efficiency of the proposed symbolic-numeric algorithm. Moreover, we use the
library in order to offer practical evidences for the convergence and the continuity
properties of the proposed symbolic-numeric algorithm. These tests also indicate
that the proposed symbolic numeric algorithm can be described using principles
from regularization theory and approximate algebraic computation. Using these
principles, we intend to give a precise meaning to the notion of approximate genus
of the input plane complex algebraic curve computed using the proposed symbolic-
numeric algorithm.

Acknowledgements Many thanks to Bernard Mourrain who also contributed to the implementa-
tion of GENOM3CK and offered important computational and mathematical support and guidance
whenever required. Many thanks to Julien Wintz, who contributed to the implementation of the
library in its starting phase. We would like to especially thank Esther Klann and Ronny Ramlau, and
the other colleagues from the “Doctoral Program-Computational Mathematics” for their helpful
discussions and comments, which contributed with many useful insights to handling the numerical
part of our problem.

A Symbolic-Numeric Algorithm for Genus Computation 93

References

1. Alberti, L., Mourrain, B.: Regularity criteria for the topology of algebraic curves and surfaces.
In Proceeding IMA Conference of the Mathematics of Surfaces, pp. 1–28 (2007)

2. Alberti, L., Mourrain, B.: Visualization of implicit algebraic curves. In Proceeding 15th Pacific
Conference on Computer Graphics and Applications, pp. 303–312 (2007)

3. Alexander, J.W.: Topological invariant of knots and links. Trans. Am. Math. Soc. 30, 275–306
(1928)

4. Bates, D.J., Peterson, C., Sommese, A.J., Wampler, C.W.: Numerical computation of the genus
of an irreducible curve within an algebraic set. J. Pure. Appl. Algebra 215(8), 1844–1851
(2011)

5. Béla, S., Jüttler, B.: Fat arcs for implicitly defined curves. Mathematical Methods for Curves
and Surfaces. Lecture Notes in Computer Science, vol. 5862, pp. 26–40. Springer, New York
(2010)

6. Brauner, K.: Zur Geometrie der Funktionen zweier komplexer Veränderlichen Abh. Math. Sem.
Hamburg 6, 1–54 (1928)

7. Brieskorn, E., Knorrer, H.: Plane Algebraic Curves. Birkhäuser, Berlin (1986)
8. Busé, L., Khalil, H., Mourrain, B.: Resultant-based methods for plane curves intersection

problems. In Proceeding CASC 2005, vol. 3718, pp. 75–92 (2005)
9. Cimasoni, D.: Studying the multivariable Alexander polynomial by means of Seifert surfaces.

Bol. Soc. Mat. Mexicana (3), 10, 107–115 (2004)
10. Colin, C.A.: The knot book. An elementary introduction to the mathematical theory of knots.

W.H. Freeman and Company, USA (2004)
11. Corless, R.M., Watt, S.M., Zhi, L.: QR factoring to compute the GCD of univariate approxi-

mate polynomials. IEEE Trans. Signal Process 52, 3394–3402 (2004)
12. Dayton, B.H., Zeng, Z.:1 The approximate GCD of inexact polynomials. part ii: A multivariate

algorithm. In Proceeding 2004 Internat. Symp. Symbolic Algebraic Comput, pp. 320–327
(2004)

13. de Berg, M., Krefeld, M., Overmars, M., Schwarzkopf, O.: Computational geometry: algo-
rithms and applications. Second edition. Springer, Berlin (2008)

14. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Kluwer Academic
Publishers Group, Dordrecht (1996)

15. Fulton, W.: Algebraic curves-An introduction to algebraic geometry. Addison-Wesley, Red-
wood City California (1989)

16. Greuel, G.M., Pfister, G.: A Singular introduction to commutative algebra. Springer, Berlin
(2002)

17. Gutierrez, J., Rubio, R., Schicho, J.: Polynomial parametrization of curves without affine
singularities. Comput. Aided Geomet. Des. 19, 223–234 (2002)

18. Haché, G.: Computation in algebraic function fields for effective construction of algebraic-
geometric codes. In: Cohen, G., Giusti, M., T. Mora (eds.) Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science, vol. 948, pp.
262–278. Springer, Berlin (1995)

19. Hess, F.: Computing Riemann-Roch spaces in algebraic function fields and related topics.
Symbolic Comput. 33, 425–445 (2002)

20. Hess, F.: Generalising the GHS attack on the elliptic curve discrete logarithm. LMS Comput.
Math. 7, 167–192 (2004)

21. Hodorog, M., Schicho, J.: Computational geometry and combinatorial algorithms for the
genus computation problem. Doctoral Program “Computational Mathematics”, Linz, Austria,
7 (2010)

22. Deconinck, B., Patterson, M.: Computing with plane algebraic curves and riemann surfaces:
The algorithms of the maple package “Algcurves”. In: Bobenko, A.I., Klein, C. (eds.)
Computational Approach to Riemann Surfaces. Lecture Notes in Mathematics, vol. 2013,
pp. 67–123. Springer, Berlin (2011)

94 M. Hodorog and J. Schicho

23. van der Hoeven, J., Lecerf, G., Mourrain, B., Trebuchet, P., Berthomieu, J., Diatta, D.N.,
Mantzaflaris, A.: The quest of modularity and efficiency for symbolic and certified numeric
computation. ACM SIGSAM Communications in Computer Algebra (2011)

24. Liang, C., Mourrain, B., Pavone, J.P.: Subdivision methods for 2d and 3d implicit curves,
chapter 11, pp. 199–214. Springer, Geometric Modeling and Algebraic Geometry (eds. Jüttler
B. Piene R.) edition, August (2008)

25. Livingston, C.: Knot theory. Mathematical Association of America, Washington, DC, USA
(1993)

26. Mantzaflaris, A., Mourrain, B., Tsigaridas, E.: Continued fraction expansion of real roots of
polynomial systems. In Proceeding 2009 SNC Conference on Symbolic-Numeric Computa-
tion, pp. 85–94 (2009)

27. Milnor, J.: Singular points of complex hypersurfaces. Princeton University Press and the
University of Tokyo Press, New Jersey (1968)

28. Mnuk, M., Winkler, F.: CASA – A system for computer aided constructive algebraic
geometry. In Proceeding International Symposium on Design and Implementation of Symbolic
Computation Systems, pp. 297–307 (1996)

29. Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations. J. Symbolic
Comput. 44(3), 292–306 (2009)

30. Pérez-Dı́az, S., Sendra, J.R., Rueda, S.L., Sendra, J.: Approximate parametrization of plane
algebraic curves by linear systems of curves. Comput. Aided Geomet. Des. 27(2), 212–231
(2010)

31. Pikkarainen, H.K., Schicho, J.: A Bayesian model for root computation. Math. in Comp. Sci.
2, 567–586 (2009)

32. Sendra, J.R., Winkler, F.: Parametrization of algebraic curves over optimal field extensions.
Symbolic Comput. 23, 191–208 (1997)

33. Sendra, J.R., Winkler, F., Diaz, S.P.: Rational algebraic curves. A computer algebra approach.
Springer, Berlin (2008)

34. Shuhong, G., Kaltofen, E., May, J., Yang, Z., Zhi, L.: Approximate factorization of multivariate
polynomials via differential equations. Symbolic Comput. 43, 359–376 (2008)

35. Stetter, H.J.: Numerical polynomial algebra. SIAM, Philadelphia (2004)
36. Tougeron, J.C.: Ideaux de fonctions differentiables. Springer, Berlin (1972)
37. Tráng, L.D., Ramanujam, C.P.: The invariance of Milnor’s number implies the invariance of

the topological type. Amer. J. Math. 98, 67–78 (1976)
38. Walker, R.J.: Algebraic curves. Springer, New York (1978)
39. Wintz, J.: Algebraic methods for geometric modelling. PhD thesis, University of Nice, Sophia-

Antipolis (2008)
40. Yamamoto, M.: Classification of isolated algebraic singularities by their Alexander polynomi-

als. Topology, 23, 277–287 (1984)
41. Zeng, Z.: Computing multiple roots of inexact polynomials. Math. Comp. 74, 869–903 (2005)

The “Seven Dwarfs” of Symbolic Computation

Erich L. Kaltofen

Abstract We present the Seven Dwarfs of Symbolic Computation, which are
sequential and parallel algorithmic methods that today carry a great majority of all
exact and hybrid symbolic compute cycles.

SymDwf 1. Exact linear algebra, integer lattices

SymDwf 2. Exact polynomial and differential algebra, Gröbner bases

SymDwf 3. Inverse symbolic problems, e.g., interpolation and parameterization

SymDwf 4. Tarski’s algebraic theory of real geometry

SymDwf 5. Hybrid symbolic-numeric computation

SymDwf 6. Computation of closed form solutions

SymDwf 7. Rewrite rule systems and computational group theory

We will elaborate on each dwarf and compare with Colella’s seven and the Berkeley
team’s thirteen dwarfs of scientific computing.

1 Introduction

Phillip Colella [7] in his 2004 presentation “Defining Software Requirements
for Scientific Computing” about DARPA’s High Productivity Computing Systems
(HPCS) program gave his list of the now-famous “Seven Dwarfs” of algorithms for
high-end simulation in the physical sciences.

HPCS 1. Structured Grids HPCS 4. Dense Linear Algebra HPCS 7. Monte
HPCS 2. Unstructured Grids HPCS 5. Sparse Linear Algebra Carlo
HPCS 3. Fast Fourier Transform HPCS 6. Particles

E.L. Kaltofen (�)
North Carolina State University, Department of Mathematics, Raleigh, NC 27695-8205, USA
http://www.math.ncsu.edu/�kaltofen

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 5,
© Springer-Verlag/Wien 2012

95

http://www.math.ncsu.edu/~kaltofen

96 E.L. Kaltofen

The dwarfs in allusion to the fairy tale mine compute cycles for golden results.
Recently, the term “killer kernels” has been used to replace the notion of dwarf,
but the dwarfs seem more like library procedures than operating system kernels.
Following Colella, researches in parallel computation at the University of California
at Berkeley, who include David Patterson and Katherine Yelick, have modified and
upgraded to 13 dwarfs, where “A dwarf is an algorithmic method that captures
a pattern of computation and communication [http://view.eecs.berkeley.edu/wiki/
Dwarf Mine]:”

Berkeley 1. Dense Linear Algebra Berkeley 8. Combinational Logic
Berkeley 2. Sparse Linear Algebra Berkeley 9. Graph Traversal
Berkeley 3. Spectral Methods Berkeley 10. Dynamic Programming
Berkeley 4. N-Body Methods Berkeley 11. Backtrack and Branch-and-Bound
Berkeley 5. Structured Grids Berkeley 12. Graphical Models
Berkeley 6. Unstructured Grids Berkeley 13. Finite State Machines
Berkeley 7. MapReduce

Both lists are notably numerical computing oriented. They exclude symbolic
computation, i.e., methods with exact arithmetic, or logic programming, say
rewriting via rules, altogether. However, they inspire to make a corresponding list,
and here we will do so for symbolic computation. Bruno Buchberger [5] in his
1985 editorial in the first issue of the Journal of Symbolic Computation makes an
attempt to define the discipline of symbolic computation. We adopt his breadth and
view symbolic computation to include all of computer algebra [18, 25] and also
algebraic methods for analysis, statistics and combinatorics, logic programming,
computational geometry and program synthesis. The report [3] offers a then glimpse
into the future of symbolic computation and has made several accurate predictions
(see, e.g., Sect. 6 below).

Here we add to this taxonomy via our seven dwarfs of symbolic computation.
Our methods are oriented to mid-level and high performance computation tasks,
and should not be considered comprehensive. A subject on the boundary not
included is computational number theory. The important application of symbolic
computation to mathematics education is not discussed. Education tasks can be
compute intensive. For example, the automatic grading of the Maple homework
worksheets of our calculus classes by NCSU’s egrader software consumes an entire
night. On the low performance side, micro symbolic computation systems for
compact devices such as cell phones constitute an important educational application
of the discipline: vastly more people world-wide own cell phones than computers.

We presented the list in the talk “The Seven Dwarfs of Symbolic Computation
and the Discovery of Reduced Symbolic Models” [http://www.math.ncsu.edu/�
kaltofen/bibliography/07/SNSC07.pdf] at 4th International Conference on Sym-
bolic and Numerical Scientific Computing SNSC ’08 at RISC Linz, Hagenberg,
Austria, on July 24, 2008. In the following, we briefly discuss each dwarf and give
selected references, which are meant to highlight some past and current results and
not as a complete survey as other important work could not be included.

http://view.eecs.berkeley.edu/wiki/Dwarf_Mine
http://view.eecs.berkeley.edu/wiki/Dwarf_Mine
http://www.math.ncsu.edu/~kaltofen/bibliography/07/SNSC07.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/07/SNSC07.pdf

The “Seven Dwarfs” of Symbolic Computation 97

2 Exact Linear Algebra, Integer Lattices

Important breakthroughs in exact linear algebra actually happened later than those
in polynomial algebra, notably after Buchberger’s Gröbner basis algorithm. One is
the discovery of exact sparse iterative algorithms based on the numeric Krylov and
Lanczos algorithms [29, 51] and their block versions [8, 26, 48] whose probabilistic
analysis for small coefficient fields is being completed today [11]. The algorithms
are available in the open source LinBox library [www.linalg.org], callable from
the SAGE and Maple platforms, and put to important use. A second breakthrough
are the lattice basis reduction algorithms [12, 37] that today have greatly improved
implementations [40] and are used extensively for discovery of exact identities from
numeric approximations ([20], “the inverse symbolic calculator” [http://oldweb.
cecm.sfu.ca/projects/ISC/ISCmain.html]).

We observe additional trends today: Strassen’s fast matrix multiplication algo-
rithm and cache-efficient BLAS libraries improve performance of exact linear
algebra [9]; characteristic polynomials and integer Smith normal forms of sparse
integer matrices [10, 15] are important invariants, for instance in computing the so-
called bar code of a persistent topology of data; and structured exact linear problem
solvers such as the matrix Berlekamp/Massey algorithm [32] form a fundamental
ingredient in sparse solvers.

Exact linear algebra algorithms are easily underestimated. Great progress has
been made in the past ten years, and the software has a wide range of applications.
Exact solutions are not only needed for finite field entries, but also for diophantine
problems and when the exact input forms an ill-conditioned matrix.

3 Exact Polynomial and Differential Algebra, Gröbner Bases

Polynomial arithmetic including the computation of multivariate polynomial great-
est common divisors, factorizations, and triangular and other canonical forms for
polynomial systems constitute the heart of computer algebra. Classical tools include
resultant computation and Hensel lifting and modern tools Buchberger’s Gröbner
basis algorithm. Truncated power series are represented by polynomials and thus
included in this dwarf.

The calculus of differentiation and differential ideals allows manipulation of
differential equations as polynomials with a derivative operator. In addition, one
can interpret the derivative (or difference) operator as a new symbol and construct
composed operators as polynomials with variables and derivative (difference)
symbols. Those operator rings are generalized to Ore extensions and have an
additional, special, non-commutative multiplication. Two references are [13, 43].
See also Sect. 7.

Efficient implementations of polynomial factoring and Gröbner basis algorithms,
for instance Jean-Charles Faugere’s FGb which is also callable from within Maple,

www.linalg.org
http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html
http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html

98 E.L. Kaltofen

make a serious use of the methods as easy as, say, Matlab gives access to numerical
linear algebra. Today’s applications are abundant, e.g., cryptosystems have be
broken with them.

Basic polynomial arithmetic of multivariate polynomials forms the core infras-
tructure of any symbolic manipulation system, and efficiency improvements can still
being made: any speedup will speed many application algorithms. This is the more
true with the arrival of multicore and multiprocessor workstations.

4 Inverse Symbolic Problems, e.g., Interpolation
and Parameterization

Interpolation and curve fitting are basic and important operations to build mathemat-
ical models from data. Zippel’s [53] and Ben-Or and Tiwari’s [1] sparse multivariate
polynomial algorithms are a fundamental contribution from symbolic computation
to the task of function/model recovery. The paradigm of early termination via
randomization has successfully been exploited [27]. In Sect. 6 we point to new
numerical methods that were derived from the exact symbolic algorithms. More
recently polynomial and rational function recovery with very high degree terms
have been achieved [14, 17, 34]. There the values are determined at roots of unity
to prevent size explosion. Beyond polynomial and rational function recovery is,
for instance, recovery of algebraic functions and differential equations from series
solutions.

The circle as an implicitly represented curve x2 C y2 D 1 can be rationally
parameterized as x D cos.˛/ D .1 � t2/=.t2 C 1/, y D sin.˛/ D 2t=.t2 C 1/

with �1 � t D tan.˛=2/ � 1. Not all real curves can be so parameterized, for
instance elliptic curves. A reference is the book [45]. Parametric curves form basic
objects in geometric rendering.

Interpolation and Chinese remaindering forms the recovery step in computing
with homomorphic images, where a computation is split by first computing the
solution for various values of a symbolic parameter and then the symbolic solution
is interpolated from those values. Because each value can be processed separately
and no intermediate degree/size growth occurs, the paradigm constitutes a powerful
and parallel/distributed approach.

5 Tarski’s Algebraic Theory of Real Geometry

Tarksi’s algorithm for eliminating quantifiers in sentences formed on semi-algebraic
sets makes most of Euclidean geometry and real polynomial optimization decid-
able. Unfortunately, the general method solves problems in a high complex-
ity class (super-exponential). Nonetheless, George Collins’s cylindrical algebraic

The “Seven Dwarfs” of Symbolic Computation 99

decomposition algorithm is implemented and has solved non-trivial problems.
References are the collection [6] and [4], which has references to newer work.

A fundamental quantifier elimination problem is to determine whether a multi-
variate polynomial f .x1; : : : ; xn/ has a real root, which we shall call Seidenberg’s
problem. For instance, deciding if a polynomial can attain negative values, i.e., is not
positive semidefinite, is equivalent to deciding if f .x1; : : : ; xn/x2

nC1 C 1 has a real
root. Thus all (unconstrained) polynomial inequalities are reduced to Seidenberg’s
problem. A more general fundamental problem is to compute a sample point in each
connected component of the real solution set of a system of polynomial equations.

Modern software, such as RAGlib [44], analyzes the real critical values via
Gröbner basis computation. A variant of Tarski’s quantifier elimination problem
that weakens the pre- and post conditions and thus lowers the intrinsic complexity
can be based on such real polynomial software [21].

Hilbert’s Problem on polynomial sums-of-squares and Artin’s Theorem offers
an additional approach to real polynomial optimization, which is made possible by
numerical non-linear optimization and discussed in Sect. 6.

6 Hybrid Symbolic-Numeric Computation

The use of approximate, floating point, arithmetic and approximations of irrational
functions by polynomials and rational functions is as old as logarithm tables
and Taylor series and Padé fractions. Section 2.12.3 in [18] describes what
constitutes hybrid symbolic-numeric computation. Our description already contains
the fundamental concept of computing a nearest polynomial, measured in some
distance norm, that satisfies a property which the input polynomial does not.
Classical properties are having non-trivial polynomial greatest common divisors and
factors, or common solutions (the nearest consistent system) or solutions that have
real components (the nearest polynomial with a real root) or higher multiplicities
(contracting clusters of zeros to a single common point). The inputs are not exact,
because of physical measurement or because the scalars come from a floating point
computation, and therefore lack the needed property. The sought property may have
to be avoided, and a lower bound on the distance yields a condition number. New
work and references are found in the proceedings [24, 47, 49].

Because there is a gradual transition to mostly numerical solution of, say,
algebraic geometry problems, e.g., via programs like Bertini [http://www.nd.
edu/�sommese/bertini/] and PHCpack [http://www.math.uic.edu/�jan/PHCpack/
phcpack.html], the symbolic computation component in the hybrid approach is
sometimes dismissed. Clearly, the algorithms for sparse approximate interpolation
[16,30] are based on the exact sparse polynomial interpolation algorithms by Zippel
and by Ben-Or and Tiwari. Those hybrid algorithms have applications to sparse
signal processing and compressive sensing. The approximate Buchberger-Möller
algorithm has found an application in analyzing data from oil wells [http://www.
algebraic-oil.uni-passau.de/].

http://www4.ncsu.edu/~kaltofen/bibliography/01/symnum.pdf
http://www.nd.edu/~sommese/bertini/
http://www.nd.edu/~sommese/bertini/
http://www.math.uic.edu/~jan/PHCpack/phcpack.html
http://www.math.uic.edu/~jan/PHCpack/phcpack.html
http://www.algebraic-oil.uni-passau.de/
http://www.algebraic-oil.uni-passau.de/

100 E.L. Kaltofen

Any positive semidefinite polynomial f with real (rational) coefficients (see
Sect. 5) can be written as a finite sum

f .x1; : : : ; xn/ D 1

g0.x1; : : : ; xn/2

kX

iD1

gi .x1; : : : ; xn/2; (1)

where gi are polynomials with real (rational) coefficients. If there exist gi with
g0 D 1, f is said to be SOS, but not all f are, e.g., Motzkin’s polynomial. Any
polynomial inequality f � h is equivalent to f � h being positive semidefinite;
h in global optimization is the real infimum (or a rational lower bound) of all
values of f . Therefore, any gi satisfying f � h D 1=g2

0

P
i g2

i constitute a proof
(exact certificate) for the inequality/optimum. Two recent developments have made
it possible to compute such certificates. The first are the numerical optimization
algorithms for semidefinite programming. The second is a symbolic technique for
converting an imprecise SOS with floating point coefficients to an exact identity over
the rational numbers [28, 33, 41]. Among the recent successes are the proof of the
Monotone Column Permanent Conjecture for n D 4 [31], which was completed
shortly before the general conjecture could be established, the Bessis-Moussa-
Villani (BMV) conjecture for m � 13 [35], new SOS proofs for many known
inequalities, and a deformation analysis approach to Seidenberg’s problem of Sect. 5
[22]. Optimization with additional polynomial inequality constraints are handled by
various so-called Positivstellensätze [38].

7 Computation of Closed Form Solutions

Robert Risch’s 1970 solution of Hardy’s problem to determine if an indefinite
integral can be expressed in closed form as an expression in elementary functions
is a hallmark of early symbolic computation. Closed form solutions to differential
equations and the inclusion of special functions, possibly defined by lower order
differential equations constitutes an active area of research. References are the book
[46] and [52], which has references to newer work. A connection to differential
elimination theory of Sect. 3 should be noted.

Algorithms for closed form solutions for discrete summations, difference equa-
tions, and combinatorial counts form an active subarea of symbolic computation
which could be named “symbolic combinatorics” (Michael F. Singer). The members
of Peter Paule’s research group, some of who are part of the Austrian DK research
grant “Numerical and Symbolic Scientific Computing,” have made significant recent
contributions to the area of symbolic combinatorics: http://www.risc.uni-linz.ac.at/
research/combinat/risc/publications/. An example is the closed form solution for the
generating function for counting so-called Gessel walks, which turned out to be an
algebraic function in three variables [2], which was discovered in collaboration with
the Algorithms Project at INRIA [http://algo.inria.fr/index.html].

http://www.risc.uni-linz.ac.at/research/combinat/risc/publications/
http://www.risc.uni-linz.ac.at/research/combinat/risc/publications/
http://algo.inria.fr/index.html

The “Seven Dwarfs” of Symbolic Computation 101

8 Rewrite Rule Systems and Computational Group Theory

Computational group and representation theory is a traditional subject lying in the
intersection of symbolic computation and combinatorics. Famous popular examples
are to compute the minimum number of moves necessary for solving Rubik’s cube
puzzle from any configuration [36], which was recently completed on a Google data
center http://cube20.org. Group decomposition plays a major role in the synthesis
of high performance FFT library [42].

Bruno Buchberger included rewrite rule systems as a subject of symbolic com-
putation, motivated perhaps by the interpretation of his Gröbner basis algorithm as
a critical-pair/completion method (Knuth-Bendix completion). Rewrite techniques
are often deployed for expression simplification in symbolic computation. The
RTA conference series [http://rewriting.loria.fr/rta/] covers the many applications
beyond symbolic computation (see also the Coq proof assistant http://www.lix.
polytechnique.fr/coq/). Algebraic techniques are also be applied to algorithm
synthesis, such as automatic differentiation [19] and the transposition principle for
matrix-times-vector products or elimination of divisions from algebraic algorithms.

Acknowledgements I thank Bruno Salvy for his thoughtful comments.
This material is based on work supported in part by the National Science Foundation under

Grants CCF-0830347, CCF-0514585 and DMS-0532140.

References

1. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpo-
lation. In Proceeding of the Twentieth Annual ACM Symposium on Theory of Computing,
pp. 301–309, ACM Press, New York (1988)

2. Bostan, A., Kauers, M.: The complete generating function for Gessel walks is algebraic. In
Proceedings of the AMS, (2010); with an Appendix by Mark van Hoeij. To appear. http://
www.risc.uni-linz.ac.at/people/mkauers/publications/bostan10.pdf

3. Boyle, A., Caviness, B.F. (ed.): Future Directions for Research in Symbolic Computation.
SIAM, Philadelphia (1989); Report of a Workshop on Symbolic and Algebraic Computation
April 29–30, 1988 Washington DC. Anthony C. Hearn Workshop Chairperson. http://www.cis.
udel.edu/�caviness/wsreport.pdf

4. Brown, C.W.: Fast simplification of Tarski formulas. In ISSAC’09 Proceedings of the 2009
International Symposium on Symbolic and Algebraic Computation, pp. 63–70, New York, NY,
USA (2009)

5. Buchberger, B.: Symbolic computation (an editorial). J. Symbolic Comput. 1(1), 1–6 (1985)
6. Caviness, B.F., Johnson, J.R. (ed.): Quantifier Elimination and Cylindrical Algebraic Decom-

position. Springer, Berlin (1998)
7. Colella, P.: Defining software requirements for scientific computing. Slide of 2004 presenta-

tion included in David Patterson’s 2005 talk, (2004); http://www.lanl.gov/orgs/hpc/salishan/
salishan2005/davidpatterson.pdf

8. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block Wiedemann
algorithm. Math. Comput. 62(205), 333–350 (1994)

http://cube20.org
http://rewriting.loria.fr/rta/
http://www.lix.polytechnique.fr/coq/
http://www.lix.polytechnique.fr/coq/
http://www.risc.uni-linz.ac.at/people/mkauers/publications/bostan10.pdf
http://www.risc.uni-linz.ac.at/people/mkauers/publications/bostan10.pdf
http://www.cis.udel.edu/~caviness/wsreport.pdf
http://www.cis.udel.edu/~caviness/wsreport.pdf
http://www.lanl.gov/orgs/hpc/salishan/salishan2005/davidpatterson.pdf
http://www.lanl.gov/orgs/hpc/salishan/salishan2005/davidpatterson.pdf

102 E.L. Kaltofen

9. Dumas, J.-G., Giorgi, P., Pernet, C.: Dense linear algebra over finite fields: the FFLAS and
FFPACK packages. ACM Trans. Math. Software 35(3), 1–42 (2008)

10. Dumas, J.-G., Saunders, B.D., Villard, G.: On efficient sparse integer matrix Smith normal form
computation. J. Symbolic Comput. 32(1/2), 71–99 (2001); Special issue on Computer Algebra
and Mechanized Reasoning: Selected St. Andrews’ ISSAC/Calculemus Contributions. Guest
editors: T. Recio and M. Kerber

11. Eberly, W.: Yet another block Lanczos algorithm: How to simplify the computation and reduce
reliance on preconditioners in the small field case. In [Watt 2010], page to appear, July 2010
International Symposium on Symbolic and Algebraic Computation, ACM, New York, NY,
USA (2010)

12. Ferguson, H.R.P., Forcade, R.W.: Multidimensional Euclidean algorithms. J. Reine Angew.
Math. 334, 171–181 (1982)

13. Gao, X.-S., der Hoeven, J.V., Yuan, C.M., Zhang, G.-L.: Characteristic set method for
differential-difference polynomial systems. J. Symb. Comput. 44(9), 1137–1163 (2009)

14. Garg, S., Schost, É.: Interpolation of polynomials given by straight-line programs. Theor.
Comput. Sci. 410(27–29), 2659–2662 (2009). ISSN 0304-3975. http://www.csd.uwo.ca/�
eschost/publications/interp.pdf

15. Giesbrecht, M.: Fast computation of the Smith form of a sparse integer matrix. Comput.
Complex. 10, 41–69 (2001)

16. Giesbrecht, M., Labahn, G., Shin Lee, W.: Symbolic-numeric sparse interpolation of multivari-
ate polynomials. J. Symbolic Comput. 44, 943–959 (2009)

17. Giesbrecht, M, Roche, D.S.: Interpolation of shifted-lacunary polynomials. Comput. Complex.
19(3), 333–354 (2010)

18. Grabmeier, J., Kaltofen, E., Weispfenning, V. (ed.): Computer Algebra Handbook. Springer,
Heidelberg, Germany (2003). ISBN 3-540-65466-6. 637 + xx pages + CD-ROM.

19. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-
tion. SIAM Publications, Philadephia (2008)

20. Håstad, J., Just, B., Lagarias, J.C., Schnorr, C.P.: Polynomial time algorithms for finding integer
relations among real numbers. SIAM J. Comput. 18(5), 859–881 (1989)

21. Hong, H., Safey El Din, M.: Variant real quantifier elimination: Algorithm and application. In
ISSAC’09, ACM, pp. 183–190 (2009)

22. Hutton, S.E., Kaltofen, E.L., Zhi, L.: Computing the radius of positive semidefiniteness of a
multivariate real polynomial via a dual of Seidenberg’s method. In [Watt 2010], page to appear,
July 2010 International Symposium on Symbolic and Algebraic Computation, pp. 227–234,
New York, NY, USA (2010); http://www.math.ncsu.edu/�kaltofen/bibliography/10/HKZ10.
pdf

23. Jeffrey, D. (ed.): ISSAC 2008. ACM Press. ISBN 978-1-59593-904-3
24. Kai, H., Sekigawa, H. (ed.): SNC’09 Proceeding 2009 International Workshop on Symbolic-

Numeric Computation, pp. 28–31, ACM Press, New York, NY, USA (2009). ISBN 978-1-
60558-664-9

25. Kaltofen, E.: Computer algebra algorithms. In: Traub, J.F. (eds.) Annual Review in Computer
Science, vol. 2, pp. 91–118. Annual Reviews Inc., Palo Alto, California (1987); http://www.
math.ncsu.edu/�kaltofen/bibliography/87/Ka87 annrev.pdf

26. Kaltofen, E.: Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution
of sparse linear systems. Math. Comput. 64(210), 777–806 (1995); http://www.math.ncsu.
edu/�kaltofen/bibliography/95/Ka95 mathcomp.pdf

27. Kaltofen, E., Lee, W.-S.: Early termination in sparse interpolation algorithms. J. Symbolic
Comput. 36(3–4), 365–400 (2003); Special issue Internat. Symp. Symbolic Algebraic Comput.
(ISSAC 2002). Guest editors: M. Giusti & L. M. Pardo. http://www.math.ncsu.edu/�kaltofen/
bibliography/03/KL03.pdf

28. Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification of global optimality of approximate
factorizations via rationalizing sums-of-squares with floating point scalars. In ISSAC’08,
pp. 155–163 ACM Press, New York, NY, USA (2008); http://www.math.ncsu.edu/�kaltofen/
bibliography/08/KLYZ08.pdf

http://www.csd.uwo.ca/~eschost/publications/interp.pdf
http://www.csd.uwo.ca/~eschost/publications/interp.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/10/HKZ10.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/10/HKZ10.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/87/Ka87_annrev.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/87/Ka87_annrev.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/95/Ka95_mathcomp.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/95/Ka95_mathcomp.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/03/KL03.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/03/KL03.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/08/KLYZ08.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/08/KLYZ08.pdf

The “Seven Dwarfs” of Symbolic Computation 103

29. Kaltofen, E., Saunders, B.D.: On Wiedemann’s method of solving sparse linear systems.
In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds.) Proceeding AAECC-9, Lect. Notes Comput.
Sci., vol. 539, pp. 29–38, Springer, Heidelberg, Germany (1991); http://www.math.ncsu.edu/�
kaltofen/bibliography/91/KaSa91.pdf

30. Kaltofen, E., Yang, Z., Zhi, L.: On probabilistic analysis of randomization in hybrid symbolic-
numeric algorithms. In ISSAC ’07 Proceedings of the 2007 international symposium on
Symbolic and algebraic computation, pp. 11–17 ACM Press, New York, NY, USA (2007);
http://www.math.ncsu.edu/�kaltofen/bibliography/07/KYZ07.pdf

31. Kaltofen, E., Yang, Z., Zhi, L.: A proof of the Monotone Column Permanent (MCP) Conjecture
for dimension 4 via sums-of-squares of rational functions. In SNC’09, pp. 65–69 (2009a);
http://www.math.ncsu.edu/�kaltofen/bibliography/09/KYZ09.pdf

32. Kaltofen, E., Yuhasz, G.: On the matrix Berlekamp-Massey algorithm, (2006); Manuscript,
29 pages. Submitted

33. Kaltofen, E.L., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial optimization
via sums-of-squares of rational functions with rational coefficients, January (2009b); Accepted
for publication in J. Symbolic Comput. http://www.math.ncsu.edu/�kaltofen/bibliography/09/
KLYZ09.pdf

34. Kaltofen, E.L., Nehring, M.: Supersparse black box rational function interpolation.
In: Leykin, A. (ed.) Proc. 2011 Internat. Symp. Symbolic Algebraic Comput, ISSAC
2011, pp. 177–185. Association for Computing Machinery, New York, (2011). ISBN
978-1-4503-0675-1

35. Klep, I., Schweighofer, M.: Sums of Hermitian squares and the BMV conjecture. J. Stat. Phys.
133, 739–760 (2008)

36. Kunkle, D., Cooperman, G.: Harnessing parallel disks to solve Rubik’s cube. J. Symbolic
Comput. 44(7), 872–890 (2009); http://www.ccs.neu.edu/home/gene/papers/jsc09.pdf

37. Lenstra, A.K., Lenstra, Jr., H. W., Lovász, L.: Factoring polynomials with rational coefficients.
Math. Ann. 261, 515–534 (1982)

38. Marshall, M.: Positive Polynomials and Sums of Squares. Amer. Math. Soc. 146, 187 (2008)
39. May, J.P. (ed.): ISSAC 2009 Proceeding 2009 International Symposium Symbolic Algebraic

Computation, ACM, (2009). ISBN 978-1-60558-609-0
40. Novocin, A., Stehlé, D., Villard, G.: An LLL-reduction algorithm with quasi-linear time

complexity: extended abstract. In: Proc. 43rd Annual ACM Symp. Theory Comput., pp. 403–
412. ACM, New York (2011)

41. Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational coefficients.
Theor. Comput. Sci. 409, 269–281 (2008)

42. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong,
J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL:
Code generation for DSP transforms. Proc. IEEE 93(2), 232–275 (2005); special issue on
“Program Generation, Optimization, and Adaptation”, http://spiral.ece.cmu.edu:8080/pub-
spiral/pubfile/paper 1.pdf

43. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear
ordinary differential equations in differential algebras. J. Symbolic Comput. 43(8), 515–544
(2008). ISSN 0747-7171

44. Safey El Din, M.: Computing the global optimum of a multivariate polynomial over the reals. In
ISSAC’08 Proceedings of the twenty-first international symposium on Symbolic and algebraic
computation, ACM Press, New York, NY (2008)

45. Sendra, J.R., Winkler, F., Pérez-Dı́az, S.: Rational Algebraic Curves A Computer Algebra
Approach, Algorithms and Computation in Mathematics. vol. 22, Springer, Heidelberg,
Germany (2007). ISBN ISSN 1431-1550, ISBN 978-3-540-73724-7

46. van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations, Grundlehren der
mathematischen Wissenschaften. vol. 328 Springer, Heidelberg, Berlin (2003); http://www4.
ncsu.edu/�singer/papers/dbook.ps

http://www.math.ncsu.edu/~kaltofen/bibliography/91/KaSa91.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/91/KaSa91.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/07/KYZ07.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/09/KYZ09.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/09/KLYZ09.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/09/KLYZ09.pdf
http://www.ccs.neu.edu/home/gene/papers/jsc09.pdf
http://spiral.ece.cmu.edu:8080/pub-spiral/pubfile/paper_1.pdf
http://spiral.ece.cmu.edu:8080/pub-spiral/pubfile/paper_1.pdf
http://www4.ncsu.edu/~singer/papers/dbook.ps
http://www4.ncsu.edu/~singer/papers/dbook.ps

104 E.L. Kaltofen

47. Verschelde, J., Watt, S.M. (ed.): SNC’07 Proceeding 2007 International Workshop on
Symbolic-Numeric Computation, ACM Press, New York, NY, USA (2007). ISBN 978-1-
59593-744-5

48. Villard, G.: Further analysis of Coppersmith’s block Wiedemann algorithm for the solution
of sparse linear systems. In: Küchlin, W. (eds) ISSAC 97 Proceeding 1997 International
Symposium Symbolic Algebraic Computation, pp. 32–39, ACM Press, New York, NY, USA
(1997). ISBN 0-89791-875-4

49. Wang, D., Zhi, L. (ed.): Symbolic-Numeric Computation. Trends in Mathematics. Birkhäuser
Verlag, Basel, Switzerland (2007). ISBN 978-3-7643-7983-4

50. Watt, S.M. (ed.): Proceeding 2010 International Symposium Symbolic Algebraic Computation
ISSAC 2010, Association for Computing Machinery (2010). ISBN 978-1-4503-0150-3

51. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory
32(1), 54–62 (1986)

52. Yuan, Q., van Hoeij, M.: Finding all Bessel type solutions for linear differential equations with
rational function coefficients. In [Watt 2010], page to appear, July 2010, pp.37–44 (2010)

53. Zippel, R.: Interpolating polynomials from their values. J. Symbolic Comput. 9(3), 375–403
(1990)

Computer Algebra Meets Finite Elements:
An Efficient Implementation
for Maxwell’s Equations

Christoph Koutschan, Christoph Lehrenfeld, and Joachim Schöberl

Abstract We consider the numerical discretization of the time-domain Maxwell’s
equations with an energy-conserving discontinuous Galerkin finite element for-
mulation. This particular formulation allows for higher order approximations of
the electric and magnetic field. Special emphasis is placed on an efficient imple-
mentation which is achieved by taking advantage of recurrence properties and the
tensor-product structure of the chosen shape functions. These recurrences have been
derived symbolically with computer algebra methods reminiscent of the holonomic
systems approach.

1 Introduction

This paper is dedicated to a successful cooperation between symbolic computation
and numerical analysis. The goal is to simulate the propagation of electromagnetic
waves using finite element methods (FEM). Such simulations play an important
role for constructing antennas, electric circuit boards, bodyworks, and many other
devices where electromagnetic radiation is involved. The numerical simulation of
such physical phenomena helps to optimize the shape of components and saves the
engineer from doing a long and expensive series of experiments.

Finite element methods serve to approximate the solution of partial differential
equations on a given domain � � �d subject to certain constraints (e.g., boundary
conditions). The domain� is partitioned into small elements (typically triangles or

C.Koutschan (�)
Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria

C. Lehrenfeld
Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Germany

J. Schöberl
Center for Computational Engineering Science, RWTH Aachen, Germany

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 6,
© Springer-Verlag/Wien 2012

105

106 C. Koutschan et al.

tetrahedra) and the solution is approximated on each element by means of certain
shape functions. In our application we deal with Maxwell’s equations which relate
the magnetic and the electric field. In Sect. 2 we describe how the problem can be
discretized using FEM and in Sect. 3 we give the details concerning an efficient
implementation.

An important ingredient for the fast execution of some operations in the FEM
are certain difference-differential relations that were derived with computer algebra
methods. The methods that we employ, originate in Zeilberger’s holonomic systems
approach [3,10,13] whose basic idea is to define functions and sequences in terms of
differential equations and recurrence equations plus initial values (these equations
have to be linear with polynomial coefficients). Luckily the shape functions used
in the chosen FEM discretization fit into the holonomic framework since they are
defined in terms of orthogonal polynomials. Section 4 explains how the desired
relations have been computed.

2 FEM Formulation of Maxwell’s Equations

In order to describe electromagnetic wave propagation problems, we consider the
loss-free time-domain Maxwell’s equations

"
@E

@t
D curlH;

�
@H

@t
D � curlE;

subject to appropriate initial and boundary conditions. Here E D E.x; t/ denotes
the electric and H D H.x; t/ the magnetic field strength (with x D .x1; x2; x3/

the space variables and t the time), and " and � > 0 are the permittivity and the
permeability, respectively. When discretizing these equations with the finite element
method, we go over to a weak formulation by multiplying both equations with test
functions e.x/ and h.x/ and integrating over the whole domain � � �3. The
solution of the Maxwell’s equations then has to fulfill the conditions

@

@t
."E; e/� D .curlH; e/�;

@

@t
.�H; h/� D �.curlE; h/�

(1)

for all test functions e and h, where .�; �/� is the short notation for the L2.�/ inner
product .a; b/� D

R
�
ab dx. Then we replace both the magnetic and electric field as

well as the test functions by finite-dimensional approximations on a triangulation Th
of the domain�. Herein h denotes some characteristic length of the elements in Th
(not to be confused with the test function h).

Computer Algebra Meets Finite Elements: An Efficient Implementation 107

Conforming finite elements ensure that the finite-dimensional approximations
are within a space which is appropriate for the partial differential equations under
consideration. For Maxwell’s equations this space is H.curl; �/ which demands
tangential components to be continuous across element interfaces. The discon-
tinuous Galerkin finite element method (DG) neglects this conformity condition
when building up a discrete basis for the approximation, but instead has to
incorporate stabilization terms to achieve a consistent and stable formulation. This
is normally done by applying integration by parts and replacing fluxes at element
boundaries with numerical fluxes [1, 7, 8, 11]. The latter approach has the major
advantage that the mass matrices M" and M�, i.e., the matrices that arise when
discretizing ."E; e/� and .�H; h/�, respectively, are block-diagonal which makes
the application of their inverses computationally more efficient.

We consider the approximation space

V k
h D

n
v 2 �L2.�/�3 W vjT 2

�
Pk.T /

�3 8T 2 Th
o

that consists of functions which are piecewise polynomial up to degree k. By
integration by parts of (1) on each element T 2 Th, and by adding a consistent
stabilization term on all element boundaries we get (again for all test functions e
and h)

@

@t

X

T2Th
."E; e/T D

X

T2Th

�
.H; curl e/T C .H� � �; e/@T

�
;

@

@t

X

T2Th
.�H; h/T D

X

T2Th

�� .curlE; h/T C .E� �E; h � �/@T
�
;

where � denotes the outer normal on each element boundary and H�, E� are the
numerical fluxes. The properties of different DG formulations mainly depend on
the choice of the numerical fluxes. As all derivatives are now shifted to the electric
fieldE and the according test functions e, it is reasonable to approximate the electric
field of one degree higher than the magnetic field. So we choose the approximation
spaces V kC1

h for E and e and V k
h forH and h.

2.1 Numerical Flux

Several choices for the numerical flux are used in practice. Our goal here is to
derive a numerical flux which ensures that the numerical approximation fulfills the
following two important properties which are already fulfilled on the continuous
level:

1. Conservation of the energy 1
2
."E;E/� C 1

2
.�H;H/�

2. Non-existence of spurious modes

108 C. Koutschan et al.

On the one hand using dissipative fluxes avoids spurious modes and is often used,
but as it introduces dissipation, the energy of the system is not conserved. On
the other hand the standard approach for energy conserving methods is the so
called central flux. Its mayor disadvantage is, that it introduces non-physical modes,
spurious modes.

Nevertheless we start with this approach to derive the stabilized central flux
formulation which gets rid of both problems. A more extensive discussion of
numerical fluxes (including the stabilized central flux) for Maxwell’s equations can
be found in [6, 8.2].

The central flux takes the averaged values of neighboring elements for the
numerical flux, i.e., H� D ffH gg and E� D ffEgg with ff�gg denoting the averaging
operator, and ends up with a semi-discrete system of the form

@

@t

�
M"

M�

��
E

H

�
D
� �CT

h

Ch

��
E

H

�
(2)

where Ch denotes the discrete curl operator stemming from the central flux
formulation. The matrix on the left side is symmetric and positive definite whereas
the matrix on the right side is antisymmetric. Then the evolution matrix for the

modified unknowns .M
1
2
" E;M

1
2
� H/

T is also antisymmetric and thus the proposed
energy is conserved. Nevertheless this matrix has a lot of eigenvalues close to
zero which correspond to the discretization, but not to the physical behavior of
the system. To motivate the modification which will stabilize the formulation, let
us have a brief look at the problem in frequency domain, i.e., for time-harmonic
electric and magnetic fields. Then the discrete problem in frequency domain reads
(with frequency !):

0 D .i!/2.M"E; e/C .M�1� ChE;Che/: (3)

The problem with non-physical zero eigenvalues now manifests in .ChE;Che/

being only positive semidefinite. We overcome this issue by adding a stabilization
bilinear form S.E; e/ to (3) as proposed in [6].

S.E; e/ WD
X

F2Fh

˛

h
.ŒŒE�� � �; ŒŒe�� � �/F

with ˛ > 0, whereFh is the union of all element boundaries and ŒŒ��� denotes the jump
operator, i.e., the difference between values of adjacent elements. This stabilization
bilinearform eliminates the nontrivial kernel of Ch and is consistent as ŒŒE�� � � is
zero for the exact solution. Before we can translate the formulation back to the time
domain, we introduce a new variable which is defined as

HF WD .ŒŒE�� � �/˛
i!h

Computer Algebra Meets Finite Elements: An Efficient Implementation 109

The new unknownHF is also piecewise polynomial on each face.
If we go back to the time-domain formulation we end up with the following

formulation (note that relations between ŒŒ��� and ff�gg were used):

@

@t

X

T2Th
."E; e/T D

X

T2Th

�
.H; curl e/T C .ffH gg � �; e/@T

�

C
X

F2Fh

.HF � �; ŒŒe��/F ;

@

@t

X

T2Th
.�H; h/T D

X

T2Th

�
�.h; curlE/T C

�
1

2
ŒŒE�� � �; h

�

@T

�
;

@

@t

X

F2Fh

˛

h
.HF ; hF /F D

X

F2Fh

.ŒŒE�� � �; hF /F :

For p-robust behavior ˛ should scale with p2, where p is the polynomial degree.
This is motivated by the symmetric interior penalty method for elliptic equations
(see e.g. [1]) where a scaling of ˛ with p2 in the bilinearform S is necessary for
stability to dominate over some terms stemming from inverse inequalities which
scale with p2 (see also [7]).

We again achieve a system of the form (2) where the vector H now consists of
element and face unknowns and the matrix representing the discrete curl operator is
the stabilized central flux curl operator now. Thus we conclude that the method now
conserves energy, and spurious modes, introduced by the central flux, vanish.

2.2 Numerical Examples (Spherical Vacuum Resonator)

We consider a spherical domain � WD fx 2 �3 W kxk2 � 1g and the frequency
domain formulation of the Maxwell’s equations subject to perfect electrical bound-
ary conditions

i!"E D curlH;
i!�H D � curlE;

�
on �;

E � � D 0 on @�;

To demonstrate the opportunities of higher order discretizations we consider a
coarse mesh consisting of 30 elements and increase the polynomial degree to
increase the spatial resolution. We are interested in the error of the eight smallest
resonance frequencies. Therefore we compare the eigenvalues of the numerical
discretization with those of a reference solution. In Fig. 1 we observe the expected
exponential convergence of the method.

110 C. Koutschan et al.

1e-10

1e-08

1e-06

0.0001

0.01

1

500 1000 2000 4000 8000 16000

re
la

tiv
e

er
ro

r

#unknowns

Testcase 2 - relative error of resonant frequencies

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
Mode 8

Fig. 1 Convergence of the resonance frequencies after p-refinement

3 Computational Aspects

As the spatial discretization conserves energy, we consider symplectic time integra-
tion methods which conserve the energy on a time-discrete level. The simplest one
is the symplectic Euler method which discretizes the semi-discrete system (2) in the
following way:

HnC1 D Hn C�t M�1� ChE
n

EnC1 D En ��t M�1" C T
h H

nC1

with the stability condition

�t � 2
�
�.M

� 12
� ChM

�1
e C T

h M
� 12
� /

��1

The matrix M
� 12
� ChM

�1
e C T

h M
� 12
� is symmetric and the spectral radius � can be

estimated once by an iterative method like the power iteration. When shifting the
electric or the magnetic field by a half time-step we can reconstruct the well-known
leap frog method. Nevertheless for our considerations it is less important which time
integration scheme is used as long as it is explicit. The matrix multiplications with
Ch andCT

h (see Sect. 3.2) as well as withM�1� andM�1" (see Sect. 3.3) decide about
the computational efficiency of an implementation.

The advantage of discontinuous Galerkin methods becomes evident now. The
mass matrices can be inverted in an element by element fashion and also the discrete
curl operations only need information of (element-)local and adjacent degrees of
freedom, which allows for straightforward parallelization. Element matrices such as

Computer Algebra Meets Finite Elements: An Efficient Implementation 111

mass matrices and the discrete curl operation can be stored once and applied at each
time step. This is how far one comes just because of the formulation itself.

With appropriate choices for the local shape functions we can use advanced
techniques to execute those operations with a lower complexity than local matrix-
vector multiplications. Furthermore we don’t even have to store the element
matrices, s.t. the techniques presented below are also much more memory-efficient.

The following ingredients are essential for the techniques proposed below, which
enhance the implementation of the DG method:

1. Definition of an L2-orthogonal basis of polynomial shape functions in tensor-
product form1 on a reference element OT

2. Use of curl-conforming (covariant) transformation for evaluations on the physi-
cal element T

3. Use of recurrences for the polynomial shape functions to evaluate gradients and
curls

4. Use of tensor-product structure to evaluate traces2

3.1 Local Shape Functions

For stability and fast computability we choose the L2-orthogonal Dubiner basis
[5,9]. Here, the basis functions on the reference element are constructed in a tensor-
product form of Jacobi polynomials P .˛;ˇ/

i for each spatial component (note that

the Legendre polynomials Pi D P
.0;0/
i are just a special case). For example, on the

reference triangle spanned by the points .0; 0/, .1; 0/ and .0; 1/ the shape functions
take the form

'i;j .x; y/ D Pi
�
2y

1 � x � 1
�
� .1 � x/i � P .2iC1;0/

j .2x � 1/: (4)

They are orthogonal on the reference triangle, and gradients can be evaluated
by means of recurrence relations as demonstrated in Sect. 3.2.2. Due to the tensor-
product form traces can be evaluated very fast, see Sect. 3.2.3.

3.2 Discrete curl Operations

At each time step we have to evaluate terms like .H; curl e/T on each element T
and .ffH gg � �; ŒŒe��/F on each face F . Similar expressions have to be evaluated for
the electric field E.

1These are polynomials which are products of univariate polynomials.
2Values at a boundary.

112 C. Koutschan et al.

3.2.1 Covariant Transformation

Let ˆ W OT ! T be a diffeomorphic mapping from the reference element to some
physical element T . Then the covariant transformation of a function Ou defined on
the reference element OT is

u WD .F �1/T Ou ıˆ�1 with F D rˆ:
If we define the shape functions on the mapped elements as the covariant trans-
formed shape functions on the reference element, then the tangential component
on the mapped element depends only on the tangential component of the reference
element. The transformation is called curl-conforming as it ensures that for any
function Ou 2 H.curl; O�/ the covariant transformed function u lies in H.curl; �/.
Furthermore it preserves certain integrals, s.t. the following relations hold for the
covariant transformationsH; e 2 H.curl; T / of OH; Oe 2 H.curl; OT /:

ˇ̌
ˇ̌
Z

T

H curl e dx

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

OT
OH curl Oe dx

ˇ̌
ˇ̌ ;

ˇ̌
ˇ̌
Z

@T

.H � �/e ds

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

@ OT
. OH � �/ Oe ds

ˇ̌
ˇ̌ :

This means that the integrals of these forms appearing in the formulation are
independent of the geometry of the particular elements. The matrices can be
computed once on the reference element. This trick was published in [4].

3.2.2 Evaluating Gradients

For computing curls it is sufficient to evaluate gradients, since the curl is a certain
linear combination of derivatives. We write the corresponding function OE in modal
representation, i.e., OE D

X

˛

a˛'˛; a˛ 2 �3;

where the sum ranges over the finite collection of (scalar) shape functions defined
on the reference element (in 2D the multi-index ˛ is .i; j / and in 3D ˛ D .i; j; k/).
With the use of the covariant transformation, we just have to consider the integral
on the reference element OT : Z

OT
Oh curl OE dx:

The idea is now to take advantage of recurrence relations between derivatives of
Jacobi polynomials and Jacobi polynomials itself. We aim for an operation which
gives the coefficients b˛ 2 �3 representing the gradient

r OE D
X

˛

b˛'˛:

Then L2-orthogonality can be used to evaluate the complete integral very fast.

Computer Algebra Meets Finite Elements: An Efficient Implementation 113

For ease of presentation let’s consider the far more easy case of evaluating the
derivative of a scalar one-dimensional function v.x/ D Pn

iD0 viPi .x/; vi 2 �
given in a modal basis of Legendre polynomials Pi , which fulfill the relation

P 0iC1.x/ D P 0i�1.x/C .2i C 1/Pi.x/: (5)

Then the problem is to find the modal representation of

v0.x/ D
nX

iD0
viP

0
i .x/ D

n�1X

iD0
wiPi .x/:

Let’s show the first step, i.e., how we get the highest order coefficient wn�1:

v0.x/ D
nX

iD0
viP

0
i .x/ D

n�1X

iD0
viP

0
i .x/C vnP

0
n.x/

D
n�1X

iD0
viP

0
i .x/C vnP

0
n�2.x/C vn.2n � 1/Pn�1

D
n�1X

iD0
QviP 0i .x/C wn�1Pn�1.x/

where we used the recurrence relation (5) forP 0n.x/ and thus get wn�1 D vn.2n�1/.
For the remaining polynomial

Pn�1
iD0 QviP 0i .x/ of degree n�1 we can apply the same

procedure to get wn�2. This can be continued until also w0 and thereby the complete
polynomial representation

Pn�1
iD0 wiPi .x/ of v0.x/ is determined.

An efficient CCC implementation of this procedure was achieved by template
meta-programming, where the compiler can generate optimized code for all ele-
ments up to an a priori chosen maximal polynomial order.

The same basically also works in three dimensions with Jacobi polynomials, but
the relations are far more complicated, see Sect. 4, and need three nested loops.

The overall costs for the evaluation of the element curl integral scales linearly
with the number of unknowns N on one element which is much better than the
matrix-vector multiplication which already has complexity O.N 2/.

3.2.3 Evaluating Traces

The boundary integrals that have to be evaluated can make use of the tensor-
product form to evaluate traces. Again we don’t want those traces to be evaluated
pointwise but in a modal sense and recurrences for the Jacobi polynomials make the
transformation from volume element shape functions to face shape functions with
O.N / operations possible. The procedure therefore is similar to the evaluation of
the gradient in the previous section.

114 C. Koutschan et al.

3.3 Mass Matrix Operations

So far we dealt only with the discrete curl operations. So the only thing that is left
to talk about is the application of the inverse mass matrices. Due to the covariant
transformation we have

..M"/˛;ˇ/l;m D
Z

T

" .'˛e
T
l / .'ˇem/ dx

D
Z

OT
j det.F /j " . O'˛eTl /F�1.F �1/T . O'ˇem/ dx (6)

with '˛ denoting the scalar-valued shape functions and en the n-th unit vector. Note
also the block structure ofM" that is indicated by the above notation. In some FEM
applications, symbolic methods related to those described in Sect. 4, can be used to
prove the sparseness of the corresponding system matrix, see [12].

3.3.1 Flat Elements

Let’s assume the material parameters " and � are piecewise constant and the
elements are flat, i.e., rˆ D F D const on each element. Then the integral (6)
simplifies to

Z

T

" .'˛e
T
l / .'ˇem/ dx D j det.F /j " .F�1.F �1/T /l;m

Z

OT
O'˛ O'ˇ dx

and as
R
OT O'˛ O'ˇ dx D ı˛;ˇ the matrix is .3 � 3/-block-diagonal and the inversion is

trivial. The computational effort is obviously of order O.N / whereN is the number
of unknowns.

3.3.2 Curved Elements

If we consider curved elements or non-constant material parameters " and �, the
approach has to be modified as the mass matrix arising from (6) may be fully
occupied. Let’s go a step back and consider a similar scalar problem3 with a non-
constant coefficient ":

Given: f .v/ D
Z

T

f v dx

Find: u; s.t.
Z

T

"uv dx D
Z

T

f v dx

3Extensions to 3D are straightforward.

Computer Algebra Meets Finite Elements: An Efficient Implementation 115

We now transform back to the reference element OT and get

Z

T

"uv dx D
Z

OT
j det.F /j "uv dx D

Z

OT
OuQv dx

where Qv D j det.F /j "Ov. If we now approximate Qv with the same basis we used
for v before, the mass matrix is diagonal again. Nevertheless the evaluation of the
functional f .v/ has to be transformed as well:

Z

T

f v dx D
Z

T

1

j det.F /j "f Qv dx D
Z

OT
1

"
f Qv dx

To evaluate the last term we will use numerical integration. But as (in our
application) f is not given pointwise, but in a modal sense, we have to calculate
a pointwise representation for the numerical integration of

R
T
f v dx first:

Given: f .v/ D
Z

T

f v dx D
Z

OT
j det.F /j f Ov dx

Find: fi ; s.t.
Z

T

f v dx D
X

i

j det.F /j.xi /fi!iv.xi /

Then we can divide (on each integration point) by " and with those new coefficients
we can, by numerical integration, get a good approximation to

R
OT
1
"
f Qv dx. The

“reverse numerical integration” and the numerical integration used here can be
accelerated by the use of the sum factorization technique. Doing so the complexity
of both “reverse numerical integration” and the numerical integration is O.p4/,
where p is the polynomial degree. Note that the approximate inverse QM�1" obtained
by this method is still symmetric and positive definite.

3.4 Overall Computational Effort

In the previous sections we saw that the overall computational effort scales linearly
with the degrees of freedom N as long as the elements are flat and coefficients
are piecewise constant. Even for curved elements (and variable coefficients) the
computational effort is only of order O.N 4

3 /. Furthermore no element matrices have
to be stored. Only the geometric transformations and the local topology have to be
kept in the memory.

3.5 Timings

Let’s also state some exemplary numbers that were achieved for this method and its
implementation on an Intel Xeon CPU 5160 at 3:00 GHz (64 bit) (single core) for a

116 C. Koutschan et al.

Table 1 Timings for flat elements (left), using O.1/ floating point operations per dof and curved
elements (right) using O.p/) floating point operations per dof

Order p Time .�s/

1 0.61
2 0.58
3 0.71
4 0.79
5 1.16
6 1.24
7 1.32
8 1.53
9 1.66
10 1.74

Order p Time .�s/

1 4.89
2 2.54
3 1.93
4 1.79
5 2.06
6 2.17
7 2.33
8 2.67
9 2.88
10 3.04

tetrahedral mesh with 2078 elements. The costs for one step of the symplectic Euler
method per 6 scalar degrees of freedom are listed in Table 1.

4 Symbolic Derivation of Relations

In this section we want to describe the symbolic methods that were employed for
finding the desired relations for the polynomial shape functions. These relations
allow for efficient computation of the discrete curl operations and traces as described
in Sect. 3.2. They have been computed by following the holonomic systems
approach [3, 10, 13], which works for all functions that satisfy sufficiently many
linear differential equations or recurrences or mixed ones; these relations have to
have polynomial coefficients. A large class of functions (like rational or algebraic
functions, exponentials, logarithms, and some of the trigonometric functions) as
well as a multitude of special functions is covered by this framework. Part of it are
algorithms for the “basic arithmetic” (that we will refer to as “closure properties”),
i.e., given two implicit descriptions for functions f and g, respectively, we can
compute such descriptions for f C g, fg, and for functions obtained by certain
substitutions into f or g. All computations in this section have been performed in
Mathematica using our package HolonomicFunctions (it is freely available
from the website http://www.risc.uni-linz.ac.at/research/combinat/software/).

4.1 Introductory Example

For demonstration purposes we show how to derive automatically the rewriting
formula (5) for Legendre polynomialsPn.x/. It is well known that these orthogonal
polynomials satisfy some linear relations, e.g., the second order differential equation

.x2 � 1/P 00n .x/C 2xP 0n.x/ � n.nC 1/Pn.x/ D 0

http://www.risc.uni-linz.ac.at/research/combinat/software/

Computer Algebra Meets Finite Elements: An Efficient Implementation 117

or the three term recurrence

.nC 2/PnC2.x/ � .2nC 3/xPnC1.x/C .nC 1/Pn.x/ D 0:

We will represent such linear relations in the convenient operator notation, using the
symbolsDx for the partial derivative with respect to x, and Sn for denoting the shift
operator with respect to n. Then the two relations above are written as

.x2 � 1/D2
x C 2xDx C .�n2 � n/

and
.nC 2/S2n C .�2nx � 3x/Sn C .nC 1/;

respectively, and we identify operators and relations with each other. The operators
can be regarded as elements of a (noncommutative) polynomial ring in Sn and
Dx with coefficients being rational functions in �.n; x/. We can obtain additional
relations for Pn.x/ by combining the given relations linearly, or by shifting and
differentiating them. In the operator setting these operations correspond to addition
and multiplication (from the left) and we can refer to the set of all operators
obtained in this way as the annihilating left ideal generated by the initially given
operators. In the following we will represent annihilating ideals by means of their
Gröbner bases; these are special sets of generators that allow for deciding the ideal
membership problem (i.e., the question whether some relation is indeed valid for
the function under consideration) and for obtaining unique representatives of the
residue classes modulo the ideal (see [2]). All algorithms mentioned below will
require Gröbner bases as input. A Gröbner basis of the annihilating ideal of the
Legendre polynomials is given by

G D ˚.nC 1/Sn C .1 � x2/Dx C .�nx � x/; .x2 � 1/D2
x C 2xDx C .�n2 � n/

�
:

Our main task will be to find elements with certain properties in an annihilating
ideal; this can be done via an ansatz as we demonstrate now. The relation (5) that
we are going to recover connects P 0nC2.x/, P 0n.x/, and PnC1.x/, and its coefficients
are free of x. These facts translate to an ansatz operator of the form

A D c1.n/DxS2n C c2.n/Dx C c3.n/Sn
where the coefficients ci are rational functions in �.n/, and hence free of x as
required. We have to determine the ci such that the operator A is an element of
the left ideal I generated by G, so that A.Pn.x// D 0. For this purpose we use
the Gröbner basis G to compute the unique representation of the residue class of A
modulo I (it is achieved by reduction). We have A 2 I if and only if the residue
class is represented by the zero operator and hence we can equate all its coefficients
to zero, obtaining the following two equations

118 C. Koutschan et al.

c1.2nx
2 C 3x2 � n � 2/C c2.nC 1/C c3.x2 � 1/ D 0;

c1.nC 1/.2nC 3/x C c3.nC 1/x D 0:

Note that in these equations the variable x occurs, since it is contained in the
coefficients of G. We get a solution that is free of x by performing a coefficient
comparison with respect to this variable. This yields in the end the linear system

0

@
�n � 2 nC 1 �1
2nC 3 0 1

.nC 1/.2nC 3/ 0 nC 1

1

A

0

@
c1
c2

c3

1

A D 0

whose solution is
c1 D �1; c2 D 1; c3 D 2nC 3;

and this gives rise to the desired relation.
Now what do we do if we don’t know the exact shape of the ansatz as given

here by A? Then we have to include all possible monomialsDi
xS

j
n up to some total

degree into our ansatz. Looping over the degree, we will finally find the relation,
but the effort can be tremendous. Therefore, as a preprocessing step, we determine
the shape of the ansatz by modular computations. This means plugging in concrete
values for some of the variables and reducing all integers in the coefficients modulo
some prime. These techniques have been described in detail in [10] and they are
crucial for getting results in a reasonable time.

All these steps have been implemented in the packageHolonomicFunctions
and it computes the relation (5) immediately:

In[1]:= << HolonomicFunctions:m

HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.3 (25.01.2010)
�! Type ?HolonomicFunctions for help

In[2]:= FindRelation
�
AnnihilatorŒLegendrePŒn; x��; Eliminate ! x

�

Out[2]= fS2n Dx C .�2n� 3/Sn �Dxg

4.2 Relations for the Shape Functions

A core functionality of our package HolonomicFunctions [10] is to execute
closure property algorithms (e.g., for addition, multiplication, and substitution) on
functions represented by their annihilating ideals. We can now use these algorithms
to obtain annihilating ideals for the shape functions ', since their definition in terms
of Jacobi and Legendre polynomials involves just the above mentioned operations.

Computer Algebra Meets Finite Elements: An Efficient Implementation 119

4.2.1 The 2D Case

We first consider triangular finite elements in two dimensions. For these, the shape
functions are defined as in (4). Analogously to the one-dimensional example in
Sect. 3.2.2 we want to express the partial derivatives (with respect to x and y,
respectively) in terms of the original shape functions. So the goal is to find relations
(free of x and y) that connect the partial derivatives with the original function.
More concretely, we are looking for a relation that allows to express some linear
combination of shifts of d

dx 'i;j .x; y/ as a linear combination of shifts of 'i;j .x; y/
(and similarly for y). This corresponds to an operator of the form

X

.m;n/2�2

c1;m;n.i; j /DxS
m
i S

n
j C

X

.m;n/2�2

c0;m;n.i; j /S
m
i S

n
j (7)

where the yet unknown coefficients cd;m;n 2 �.i; j / do not depend on x and y, and
the sums have finite support.

Since we have to find such a relation in the annihilating ideal for 'i;j .x; y/,
it is natural to start by computing a Gröbner basis for this ideal. The package
HolonomicFunctions provides a command Annihilator that analyzes a given
mathematical expression and performs the necessary closure properties for obtain-
ing its annihilating ideal. So in our example we can just type

In[3]:= ann D AnnihilatorŒ.1� x/Oi � LegendrePŒi; 2y=.1� x/� 1� �
JacobiPŒj; 2i C 1; 0; 2x � 1�; fSŒi �; SŒj �; DerŒx�; DerŒy�g�I

and after a second we have the result (which is already respectable in size, namely
340kB, corresponding to about 10 pages of output).

Having implemented noncommutative Gröbner bases, our first attempt was to use
them for eliminating the variables x and y. But it soon turned out that this attempt
did not produce optimal results, and in addition the computations were very time-
consuming. Therefore we came up with the ansatz described in Sect. 4.1. We use it
now to compute the desired relations (both computations take less than a minute):

In[4]:= FindRelationŒann;Eliminate ! fx; yg;Pattern ! f ; ; 0 j 1; 0g� == Factor

Out[4]= f.2i C j C 5/.2i C 2j C 5/SiS2j Dx C .j C 3/.2i C 2j C 5/S3j Dx
C 2.2i C 3/.i C j C 3/SiSjDx � 2.2i C 1/.i C j C 3/S2j Dx
� 2.i C j C 3/.2i C 2j C 5/.2i C 2j C 7/SiSj � .j C 1/.2i C 2j C 7/SiDx
� 2.i C j C 3/.2i C 2j C 5/.2i C 2j C 7/S2j � .2i C j C 3/.2i C 2j C 7/SjDxg

In[5]:= FindRelationŒann;Eliminate ! fx; yg;Pattern ! f ; ; 0; 0 j 1g� == Factor

Out[5]= f.2i C j C 6/.2i C j C 7/.2i C 2j C 7/S2i S2j Dy � .j C 3/.j C 4/.2i C 2j C 7/S4j Dy
� 4.j C 2/.i C j C 4/.2i C j C 6/S2i SjDy C 4.j C 3/.i C j C 4/.2i C j C 5/S3j Dy
C .jC1/.jC2/.2iC2jC9/S2i Dy�4.2iC3/.iCjC4/.2iC2jC7/.2iC2jC9/SiS2j
� .2i C j C 4/.2i C j C 5/.2i C 2j C 9/S2j Dyg

120 C. Koutschan et al.

Here the option Pattern specifies the admissible exponents for the operators,
e.g., in the first case we allow any exponent for the shift operators, whereasDx may
occur with power at most 1 only, and Dy must not appear at all in the result.

4.2.2 The 3D Case

When dealing with tetrahedra in three dimensions, the shape functions are denoted
by 'i;j;k.x; y; z/ and are defined by

.1 � x � y/i .1 � x/j Pi
�

2z
1�x�y � 1

	
P
.2iC1;0/
j

�
2y

1�x � 1
	
P
.2iC2jC2;0/
k .2x � 1/:

Again they have the nice property of being L2-orthogonal on the reference
tetrahedron

T D f.x; y; z/ 2 �3 j x � 0 ^ y � 0 ^ z � 0 ^ x C y C z � 1g:

Computing an annihilating ideal for 'i;j;k.x; y; z/ is already much more involved
than in the 2D case:

In[6]:= phi D .1� x � y/Oi .1� x/Oj LegendrePŒi; 2z=.1� x � y/� 1�

JacobiPŒj; 2i C 1; 0; 2y=.1� x/� 1� JacobiPŒk; 2i C 2j C 2; 0; 2x � 1�I
In[7]:= TimingŒann D AnnihilatorŒphi; fDerŒx�; SŒi �; SŒj �; SŒk�g�I �

Out[7]= f359:686;Nullg
The Gröbner basis for this annihilating ideal is about 117MB in size (corresponding
to several thousand of printed pages). Note also that it is more efficient to consider
only one derivation operator, and compute annihilating ideals for each of the cases
d

dx , d
dy , and d

dz separately (this applies to the 2D case, too).
In principle, the desired relations for the 3D case can be found in the same

way as for two dimensions. As described in Sect. 4.1 we find by means of modular
computations that the ansatz (for the case d

dx) contains the 16 monomials

SiSjS
2
k Dx; SiS

3
k Dx; S

2
j S

2
k Dx; SjS

3
k Dx; SiSjSkDx; SiS

2
k Dx; S

2
j SkDx; Sj S

2
k Dx;

SiSjSk; SiSjDx; SiS
2
k ; SiSkDx; S

2
j Sk; S

2
j Dx; Sj S

2
k ; SjSkDx:

However, in order to compute the corresponding coefficients, we did not succeed
with the standard approach used in Sect. 4.2.1. Instead, we had to employ modular
techniques again for many interpolation points, and then interpolate and reconstruct
the solution.

5 Conclusion

We have presented an efficient implementation for solving the time-domain
Maxwell’s equations with a finite element method that uses discontinuous Galerkin
elements. Besides many other optimizations that speed up the whole simulation,

Computer Algebra Meets Finite Elements: An Efficient Implementation 121

the usage of certain recurrence relations for the shape functions allows for a fast
evaluation of gradients and traces. These relations have been derived symbolically
with computer algebra methods.

It is widely believed that the mathematical subjects “numerical analysis” and
“symbolic computation” do not have much in common, or even that they are kind
of orthogonal. Experts from both areas can barely communicate with each other
unless they don’t talk about work. It was the great merit of the project SFB F013
“Numerical and Symbolic Scientific Computing” that had been established in 1998
at the Johannes Kepler University of Linz, Austria, to bring together these two
communities to identify potential collaborations. We consider our results as a perfect
example for such a fruitful cooperation.

Acknowledgements We would like to thank Veronika Pillwein for making contact between the
first- and the last-named author and for kindly supporting our work by interpreting between the
languages of symbolics and numerics. Christoph Koutschan was supported by the Austrian Science
Fund (FWF): SFB F013 and P20162-N18, and partially by NFS-DMS 0070567 as a postdoctoral
fellow.

References

1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin
methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach
einem nulldimensionalen Polynomideal. Ph.D. thesis, University of Innsbruck, Innsbruck,
Austria (1965)

3. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions.
Discrete Math. 217(1–3), 115–134 (2000)

4. Cohen, G., Ferries, X., Pernet, S.: A spatial high-order hexahedral discontinuous Galerkin
method to solve Maxwell’s equations in time domain. J. Comput. Phys. 217, 340–363 (2006)

5. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6(4), 345–390
(1991)

6. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods–Algorithms, Analysis
and Applications. Text in Applied Mathematics. Springer, Berlin (2007)

7. Hesthaven, J.S., Warburton, T.: On the constants in hp-finite element trace inverse inequalities.
Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003)

8. Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the
Maxwell operator. SIAM J. Numer. Anal. 42(1), 434–459 (2004)

9. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid
Dynamics. Oxford Science Publications, Oxford (2005)

10. Koutschan, C. Advanced Applications of the Holonomic Systems Approach. Ph.D. thesis,
RISC, Johannes Kepler University, Linz, Austria (2009)

11. Perugia, I., Schötzau, D., Monk, P.: Stabilized interior penalty methods for the time-harmonic
Maxwell equations. Comput. Methods Appl. Mech. Eng. 191, 4675–4697 (2002)

12. Pillwein, V.: Computer Algebra Tools for Special Functions in High Order Finite Element
Methods. Ph.D. thesis, Johannes Kepler University, Linz, Austria (2008)

13. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl.
Math. 32(3), 321–368 (1990)

A Symbolic Approach to Generation
and Analysis of Finite Difference Schemes
of Partial Differential Equations

Viktor Levandovskyy and Bernd Martin

Abstract We discuss three symbolic approaches for the generation of a finite
difference scheme of a general single partial differential equation (PDE). We
concentrate on the case of a linear PDE with constant coefficients and prove, that
these three approaches are equivalent. We systematically use another symbolic
technique, namely the cylindrical algebraic decomposition, in order to derive condi-
tions for the von Neumann stability of a given difference scheme. We demonstrate
algorithmic symbolic approaches for the computation of both continuous resp.
discrete dispersion relations of a linear PDE with constant coefficients resp. a
finite difference scheme. We present an implementation of tools for the generation
of schemes in the computer algebra system SINGULAR. Numerous examples are
computed with our implementation and presented in details. Some of the methods
we propose can be generalized to nonlinear PDEs as well as to the case of variable
coefficients and to the case of systems of equations.

1 Introduction

The finite difference method for linear PDEs belongs to a very classical topics in
mathematics. Its exposition in the classical books like [26] often relies on huge
experience, gathered in last centuries. In particular, some important steps are based
on a posteriori analysis. A pure algebraist is often confused with such exposition
and asks, whether there is a way to split the whole picture into a purely analytic

V. Levandovskyy (�)
Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany
e-mail: viktor.levandovskyy@math.rwth-aachen.de

B. Martin
Lehrstuhl Algebra und Geometrie, BTU Cottbus, 03013 Cottbus, Germany
e-mail: martin@math.tu-cottbus.de

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 7,
© Springer-Verlag/Wien 2012

123

viktor.levandovskyy@math.rwth-aachen.de
martin@math.tu-cottbus.de

124 V. Levandovskyy and B. Martin

and an algebraic part and how is it possible to automatize the process of scheme
generation and further analysis of its properties. The ideas to generate a finite
difference scheme in an algebraic (or a symbolic) way are folklore, see for instance
[9, 21] for approaches and older implementations.

Terminologically, we address a difference scheme polynomial as symbolic
polynomial expression involving unknown function and partial shift (or difference)
operators. A fully described difference scheme also includes initial and/or boundary
conditions in addition to the difference scheme polynomial. However, since the
generation of a difference scheme polynomial is independent on initial and/or
boundary conditions, through this paper we call a difference scheme polynomial
also a difference scheme, if no confusion arises.

In the article [13], Gerdt et al. used for the first time several new ideas like the
application of integral relations in discrete form (especially useful if one deals with
conservation laws), the formulation of the scheme generation problem as a task
for difference elimination and the systematic use of involutive and Gröbner bases.
Inspired by these ideas, we present our approaches, which will make the overall
picture of scheme generation and analysis (meaning investigation of von Neumann
stability and dispersion) more complete for the special situation.

Namely, in this article our primary target is a single linear PDE with constant
coefficients. We will comment on cases, when some methods can be applied to
more general setting.

As we will see, von Neumann stability can be regarded as global result, always
being a necessary condition for stability of a problem with initial and/or boundary
conditions (and sometimes sufficient condition as well). Of course, one uses initial
and/or boundary conditions for numerical solving, but the splitting of the whole
problem into purely symbolic pre-processing and numerical post-processing seems
to be the way to address such problems in the future.

The ideas of algebraic analysis suggest a separation of a problem into analytic
and algebraic parts. This allows, in the case of linear PDEs, to treat systems of
equations via modules over algebras (D-module theory, homological algebra etc.).
There exist many algorithms and several powerful implementations. Gröbner bases
and involutive bases play a fundamental role in such algorithms, see e. g. [3,22,24].

On the other side, the theories of differential algebra (e. g. [23]) and of
difference algebra ([5, 20]) allow to tackle nonlinear equations as well, though the
algorithms in these realms are very complicated. In particular, we do not know
any implementation of a basis construction algorithm for the difference algebra.
Notably, a new algorithmic approach to nonlinear difference equations might arise
from the letterplace approach [18]. However, one needs to elaborate all details of
this promising direction.

The technique of cylindrical algebraic decomposition (CAD) has its origins in
real algebraic geometry. It has been applied to von Neumann stability problems
already in [17, 21]. Since that time more implementations of the CAD have been
evolved and their performance has been greatly enhanced.

This paper is organized as follows. We start with minimal prerequisites and
revisit the basic concepts of scheme generation, paying attention to the algebraic
background including Gröbner bases and elimination tools in Sect. 2.

A Symbolic Approach to Generation and Analysis 125

We discuss three symbolic methods, used in applications in Sect. 3 and prove
their equivalence in the case of a linear PDE with constant coefficients in Theorem 1.
In cases of more general PDEs and systems of such PDEs only one method
works in general, see Remark 3. For a linear PDE with constant coefficients we
propose a novel way to generate finite difference scheme by using Gröbner basis
for eliminating module components in a submodule of a free module. The latter
can be seen as a natural generalization of the Gaussian elimination to matrices
over rings. We show the merits of this method, applied to the classical equations of
mathematical physics (heat, wave, advection equations) for various approximations.
Note, that the method we propose can handle high order approximations, which are
seldom used in the theory of PDE, but quite often arise in the theory of ODE as high
order Runge-Kutta methods.

In Sect. 5 we present an algebraic and constructive formulation of von Neumann
stability via ring homomorphism. We shortly revisit the concepts of cylindrical
algebraic decomposition and connect its use to questions, arising from difference
schemes.

In Sect. 6 we consider the �-wave equation ut t D �uxx for a nonzero parameter
� and perform generation as well as stability analysis of several difference schemes,
obtained with different approximations. We demonstrate the merits of the semi-
factorized form of a difference scheme, it turns out to be especially useful for higher
dimensional situations.

In Sect. 7 we show, that the determination of continuous dispersion relation for
a linear PDE with constant coefficients as well as discrete dispersion relation with
respect to a finite difference scheme can be algebraized to a large extent as well.

All examples have been computed with our implementation of tools for differ-
ence schemes in the freely available computer algebra system SINGULAR [6]. The
corresponding library findifs.lib is distributed with SINGULAR starting with
version 3-1-2. For the cylindrical algebraic decomposition we use the commercial
system MATHEMATICA; indeed there are freely available systems like QEPCAD [2]
and REDLOG [7], which can compute the decomposition as well.

In Appendix we present a detailed example of the use of our toolbox together
with short introduction to the system SINGULAR.

Often a general skepticism is met about the use of symbolic methods connected
with numerical analysis. We want to stimulate a discussion between scientists of
both fields based on a realistic viewpoint.

2 Algebraization of Differential and Difference Equations

2.1 Types of Operator Algebras

At first we fix a computable field k, the base field, it is mostly the field of
rational numbers Q or complex rational numbers QŒi �. (Computing with real or

126 V. Levandovskyy and B. Martin

complex numbers is in principle possible, but only with a fixed precision, i.e. with
a rational approximation, or one can compute with algebraic extensions in roots
of polynomials - this being not so interesting for our purpose.) We can extend
the base field by indeterminate constants, i.e. rational functions in the constants:
K D k.a; b; c; : : :/. K is called the field of constants.

We fix a set of variables x WD .x1; : : : ; xn/ and an ‘algebra’ of functions
C D C.x/, for instance differentiable functions or functions in discrete (shiftable)
arguments.C is not our object of computation. Instead we consider various operator
algebras, consisting of operators, which act on C . There are many operators, which
one can handle in this framework, for example:

1. Multiplication with a variable: xi W u.x/ 2 C 7! xiu.x/ 2 C .
2. Multiplication with a function f 2 C : mf W u.x/ 2 C 7! f .x/ � u.x/ 2 C .
3. Partial differentiation: @i W u.x/ 2 C 7! @u.x/

@xi
2 C .

4. Partial shift operators: Ti W u.x/ 2 C 7! u.x1; : : : ; xi C 1; : : : ; xn/ 2 C .
5. Partial �-shift operators: T �i W u.x/ 2 C 7! u.x1; : : : ; xi C �; : : : ; xn/ 2 C ,

clearly Ti D T 1i .
6. Partial difference operators: �i D T �i � 1I u.x/ 2 C 7! T �i .u.x//� u.x/ 2 C ;
7. q-dilation operators: Dd W u.x/ 2 C 7! u.x1; : : : ; qxi ; : : : ; xn/ 2 C for q 2 K .

Fix a set S of operators, we consider the operator algebra O WD KhSi being the
subalgebra of all (linear) operators HomK.C;C / generated by S , i.e. the smallest
linear subspace closed under composition of operators. As long as S consists of
a finite number of pairwise commuting and independent operators the resulting
algebra is isomorphic to a polynomial ring: KŒt1; : : : ; tm�. Otherwise we get (non-
commutative) quotient algebra of the free algebra KhSi by the two-sided ideal of
all relations of S .

Example 1 (Algebras with constant coefficients). The algebras of linear partial
differential and shift (or difference) operators with constant coefficients are
commutative K-algebras, isomorphic to KŒx1; : : : ; xn�. We denote them by
KŒ@1; : : : ; @n� andKŒT1; : : : ; Tn� respectively.

Example 2 (Algebra with polynomial coefficients). The algebra of linear partial
differential operators with polynomial coefficients is the Weyl algebra. It is non-
commutative but is has simple commuting relations. We denote this algebra by
Khx; @ j @x D x@C 1i, what means that this algebra is generated by the variables
x and @ over the field K . Moreover, multiplication is defined on its generators:
x � @ D x@; @ � x D x@ C 1 and extended to arbitrary products inductively. The
generalization to the multivariate case is easy, the variable xi commutes with any
xk and also with variable @j except for the case j D i , here the relation as above
applies.

Why do the variables satisfy this relation? Consider the multiplication of two
operators, x WD xi and @ WD @

@xi
. Take some differentiable function f .x/ and apply

the Leibnitz rule to the product: .@x/.f / D @.xf / D x@.f /C f D .x@C 1/.f /.
Hence, in the operator form .@x � x@ � 1/.f / D 0.

A Symbolic Approach to Generation and Analysis 127

Consider the algebra of linear �-shift operators with polynomial coefficients,
having in mind � D 4x. As above, we can derive the relation between operators
T WD T � and x. For any function f of discrete arguments, .T x/.f / D T .xf / D
T .x/T .f / D .x C 4x/T .f / D .xT /.f / C 4x � T .f /. This relation can be
expressed in the operator form as T x D xT C4x � T . The algebra, corresponding
to the difference operator� D T4x � 1 has the relation�x D x�C�C 1. These
algebras are so called G-algebras, in which Gröbner basis algorithms exist and are
implemented in the system SINGULAR:PLURAL ([15]), see e. g. [19].

Example 3 (Algebra with coefficients in rational functions). Algorithmic compu-
tations are possible in the algebras whose coefficient fields are rational functions in
x: K.x/h@ j @x D x@ C 1i and K.4x; x/hT j T x D xT C 4x � T i, which are
called rational Weyl algebras resp. rational shift algebras. Algebraically speaking,
a passage from a polynomial algebra to a rational algebra may be achieved by means
of so-called Ore localization.

Example 4 (Differential and Difference Algebra). In order to handle non-linear
differential resp. difference equations with polynomial nonlinearities, one can
consider a full differential resp. difference algebra KŒfOˇ1

1 � � �Oˇn
n u j ˇi 2 Ng�,

where Oi stands for a partial differential resp. difference operator. Note, that
Oˇu WD O

ˇ1
1 � � �Oˇn

n u is a variable, representing Oˇ.u/, where u D u.x1; : : : ; xm/
symbolizes an unknown function in variables x1; : : : ; xm. Note, that such an algebra
is commutative and its infinitely many generators are algebraically independent. In
particular, such an algebra is not Noetherian.

The given nonlinear equations can be taken as generators of the differential
resp. difference ideal. Such ideal is defined to be a minimal ideal, containing
given equations, which is closed under the action of corresponding differential resp.
difference operators in the corresponding algebra.

Since such algebras are not Noetherian, Gröbner basis-like algorithms are not
terminating in general. Nevertheless, some parts of the theory in the linear situation
can be extended to this general situation.

In this paper we work algorithmically with linear partial differential operators
with constant coefficients. However, in some parts we address and discuss more
general situations as well.

2.2 Presentation of a System of Differential Equations

Any linear partial differential equation (depending of its kind) defines an element of
an algebra of corresponding linear differential operators. A solution of a system
of equations, if it exists, must be a solution to any equation from the left ideal
generated by the equations of the system in the algebra. Hence, the solution does
not depend on the choice of a basis (that is, a generating set) of the ideal. A first
possible application of symbolic algebra is to compute a better basis of the ideal,

128 V. Levandovskyy and B. Martin

such as Gröbner basis or an involutive basis like Janet basis (see [11, 22, 25]) –
as far as it is possible. The advantage of such a pre-processing could be: check
the consistency of the system of equations, find hidden constraints or integrability
conditions of the system, determine the dimension of the solution space.

These data are well known for standard equations from mathematical physics, but
the methods we propose are methodologically applicable to any system of equations.
Let us recall a small example (by W. Seiler [25]) as an illustration.

Example 5.

�
uz C y ux D 0
uy D 0 H)

�
uyz C y uxy C ux D 0
uxy D uyz D 0 H) ux D 0

Hence, the initial system is equivalent to fux D uy D uz D 0g.
Let F be a space of functions and O be an algebra of operators, acting on F .

We denote by a � f the action of an operator a 2 O on a function f 2 F . In the
case of a linear system (S)

Si D
nX

jD1
Dij � uj ; i D 1; : : : m; Dij 2 O

we associate to (S) the submodule P D P.S/ � On generated by the columns of
the presentation matrix D 2 Mat.m; nIO/, and, finally, a factor-module M.S/ WD
On=P.S/. We can simplify the system finding a special presentation matrix, or we
can read properties of the system from computable invariants of the moduleM.S/.

In the example above, the system can be written as

�
@z C y@x
@y

�
� .u/ D

�
0

0

�
.

Hence, the system algebra is O D K.x; y; z/h@x; @y; @z j @xx D x@x C 1; @yy D
y@y C 1; @zz D z@z C 1i (that is the 3rd rational Weyl algebra) and the presentation
matrix for the system moduleM.S/, written in columns of the original presentation
(that is, transposed to the usual row presentation) is P.S/ D .@z C y@x; @y/ 2
O1�2. As a submodule of O , P.S/ is an ideal and it has two polynomial generators
f@z C y@x; @yg. The Gröbner basis of P.S/ is equal to Q.S/ D h@x; @y; @zi and
hence, M.S/ D O=Q.S/ Š K.x; y; z/ as O-module. Thus, dimK.x;y;z/ M.S/ D 1

is the dimension of the space of holomorphic solutions of S .

2.3 Gröbner Basis Algorithm and Elimination Tools

The notion of Gröbner basis can be given in a common way for different classes of
algebras. Recall the basic notation for monomials and monomial ordering. We shall
use the short notation @˛ WD @

˛1
1 @

˛2
2 : : : @

˛n
n , ˛ 2 N

n. Finitely generated operator

A Symbolic Approach to Generation and Analysis 129

algebras, which we are dealing with, have infinite dimension as K-vector spaces.
The infinite set of monomials constitutes a K-basis.

• For operator algebras in operators f@1; : : : ; @ng with constant coefficients, the
monomials are f@˛ j ˛ 2 N

ng, they form the basis of the algebra over the fieldK .
• In the case where the coefficients are polynomials in fx1; : : : ; xmg, the monomials

are fx˛ � @ˇ j ˛ 2 N
m; ˇ 2 N

ng and they form the basis of the algebra overK .
• When the coefficients are rational functions, the monomials f@˛ j ˛ 2 N

ng
constitute the basis of the algebra over K.x1; : : : ; xm/.

We are dealing not only with ideals of an algebra O , but also with submodules of
the free module Or D ˚riD1Oei , where ei stands for the canonical i -th basis vector.
We extend the notion of a monomial to Ar by supplying a monomial with one of the
unit vectors. Clearly, if Mon.O/ WD fm˛g is the set of monomials of O , bijective to
N
r , then a monomial of Or is m˛ei with ˛ 2 N

n; 1 � i � r .

Definition 1. A (global) monomial ordering on an algebra O is a total ordering �
on the set of monomials Mon.O/ bounded from below and compatible with the
multiplication, i.e. it fulfills the following conditions for all ˛; ˇ; � 2 N

n:

• 1 � m˛.
• m˛ � mˇ) m˛m� � mˇm� .

Since � is total, any nonzero polynomial f 2O can be uniquely sorted according
to its monomials. The highest term (that is a monomial times a nonzero coefficient)
is called the leading term of f . We say, thatm˛ j mˇ (m˛ dividesmˇ), if81 � i � n
˛i � ˇi . Note, that divisibility induces a partial ordering.

Any monomial ordering can be extended to a module monomial ordering in several
ways. The most common ways are: either sorting module monomials first by the
monomial ordering and then by the number of the component, or first by the
component and then by the monomial ordering.

Definition 2. Given a monomial ordering � of O , then monomial orderings �top
(term-over-position) and �pot (position-over-term) on the set of monomial of Or

are defined by:

.m˛; ei / �top .mˇ; ej / iff .m˛ � mˇ or if m˛ D mˇ; then i < j /;

respectively

.m˛; ei / �pot .mˇ; ej / iff .i < j or if i D j; then m˛ � mˇ/:

Definition 3. A Gröbner basis of a submodule M � Or is a finite subset G � M
that satisfies the following property. For any f 2 M n f0g, there exists a element
of the basis g 2 G, such that the leading monomial lm.f / D m˛ei is divisible by
lm.g/ D mˇei , i. e. mˇ j m˛.

130 V. Levandovskyy and B. Martin

An immediate application of Gröbner basis is the normal form of a vector of
polynomials. Namely, if G D fg1; : : : ; gmg is a Gröbner basis of a submoduleM �
Or , then 8 v 2 Or 9 w; ai 2 O , such that

v D
mX

iD1
aigiCw; where either aigi D 0 or lm.v/ � lm.aigi / and either w D 0 or

lm.w/ � lm.v/. One denotes w D NF.v; G/ and calls w a normal form of v with
respect to G. Note, that v 2M D hGi if and only if w D NF.v; G/ D 0.

A Gröbner basis G D fg1; : : : ; gmg is called reduced, if for any 1 � i � m

and j 6D i , no monomial of gj is divided by lm.gi /. Having a Gröbner basis, a
reduced Gröbner one is computed in a finite number of steps. Recall, that a nonzero
element from a ring is called monic or normalized, it its leading coefficient is 1. Any
nonzero element can be made monic. Notably, monic reduced Gröbner with respect
to a fixed monomial ordering is unique as well as monic reduced normal form of an
element.

There are effective ways to compute a Gröbner basis, like the Buchberger’s
Algorithm, involutive algorithm and Faugère’s F4 or F5 algorithm. Gröbner bases
have been implemented in all major computer algebra systems. More details for
the commutative case can be found in any standard textbook on computer algebra,
e. g. in [16]. See [4, 19] for the non-commutative case of operators with variable
coefficients.

Note, that the result of a Gröbner basis algorithm (with respect to position-over-
term ordering), applied to a module generated by the columns of a constant matrix,
is the row-reduced normal form by Gaussian elimination.

The Gröbner basis algorithm with respect to certain monomial orderings can be
used to eliminate some of the variables fui j i 2 I g of a given system, i.e. to
compute a basis of MI WD M \ Or

I , O D OI hui ; i 2 I i.
Lemma 1. (Elimination of variables). Let� be an elimination monomial ordering
for fui j i 2 I g on Mon.O/ (that is, m˛ 2 OI and j 62 I implies m˛ � uj). Let G
be a Gröbner basis of M , then G \OI is a Gröbner basis of MI .

Obviously, a lexicographical ordering of monomials by u1 > u2 > : : : > un induces
an elimination monomial ordering for any set fui ; : : : ; ung.

We can also eliminate module components. Usually it is much easier than the
elimination of variables.

Lemma 2. (Elimination of components). Let G be a Gröbner basis of a sub-
module M � Or with respect to the module monomial ordering �pot , let Fs WD
Oe1˚� � �˚Oes � Or be the free submodule of the first s components, thenG\Fs
is a Gröbner basis of M \ Fs .
The proofs of both lemmata on elimination are easy and can be found in e. g. [16,19]
for various situations.

A Symbolic Approach to Generation and Analysis 131

Remark 1. We want to stress the fact, that the proposed algorithm, based on the
operator formulation will be faster, than the algorithm in difference algebra, which is
used by Gerdt et al. in [13], when applied to a linear PDE with constant coefficients.

The difference in complexity lies in the number of variables/components and the
intrinsic differences between two similar-looking elimination concepts. Computing
in the case, when the functions and discretizations of their derivatives u; ut ; uxx; : : :
appear as variables (difference algebra approach), one has to distinguish between
the two multiplications, firstly the action of difference operators on u’s (denoted
by �), and secondly the composition of difference operators (denoted by �). The
involutive basis approach with its partition of variables into multiplicative and non-
multiplicative ones forbids the multiplications between u’s in the Gröbner basis
algorithm. In addition, one has to employ a complicated elimination ordering, which
respects the special role of u’s.

We do not use unknown functions u at all by passing to the submodule of a free
module of finite rank over a ring of partial difference operators. The linearity of
equations allows to consider them as linear operators, presented by polynomials in
difference operators with constant coefficients, involving parameters. Thus, we need
less variables, and we use simple and efficient module orderings, which eliminate
components. The attention of Gröbner basis algorithm is shifted from single
polynomials to their components, which results in easier and faster computation,
not speaking on optimized memory usage.

3 Three Equivalent Approaches and the Main Theorem

Assume we are dealing with m spatial variables x1; : : : ; xm and one temporal
variable t D xmC1. We denote x˛ WD x

˛1
1 � � �x˛mm t˛mC1 for ˛ 2 N

mC1 and
j˛j DP˛i . Then we use notations

ux˛ D u˛ WD @j˛ju
@x˛

D @j˛juQ
@x

˛i
i

:

A single linear PDE with constant coefficients, to which we further refer as to P ,
can be written as follows X

ˇ2B
cˇuxˇ D 0; (1)

where B � N
mC1 is a finite set and for ˇ 2 B one has cˇ 2 K n f0g.

We introduce a uniform rectangular grid on R
mC1 with steps4x1; : : : ;4xm;4t .

Thus, a point on the grid can be presented as N� D .i14x1; : : : ; im4xm; n4t/ 2 G WD
Z4x1 	 � � � 	 Z4xn 	 Z4t (where G can be identified with Z

mC1). Let us write
the PDE P in an arbitrary interior point (that is, the one lying far enough from the
initial point and/or boundary region) of the grid N�.

X

ˇ2B
cˇuN�

xˇ
D
X

ˇ2B
cˇuxˇ .i14x1; : : : ; im4xm; n4t/ D 0: (2)

132 V. Levandovskyy and B. Martin

Define � WD f� 2 N
mC1 j j� j < jˇj8 ˇ 2 Bg, a finite subset of N

mC1.
On the grid G, one needs to give an approximation to a function uN�

xˇ
by a finite

linear combination of expressions uN�x� of order, lower than the order of uxˇ , that is
8N� 2 G;8ˇ 2 B n f0g

uN�
xˇ
D

X

�2�;N�2G
d�;N�uN�x� with j � j<j ˇ j; d�;N� 2 K: (3)

We refer to this approximation as to AN�ˇ .

Assume we are given a set A of approximations to the terms uN�
xˇ

. We call
an approximation global, if it is defined on the whole interior region through its
definition in an arbitrary point N�. In such a case, AN�ˇ depends only on ˇ and shift
operators (see below). From now on we assume, that we are dealing with global
approximations only.

Remark 2. The restriction to global approximations on uniform rectangular grid
is not essential for the theory. However, the restriction holds in order to simplify
the exposition. Allowing different subdomains with different grids on them can
be approached in a similar fashion. Namely, on each subdomain we proceed as
in the global case and obtain a difference scheme polynomial. In addition, there
will be equations from compatibility conditions, which arise from the specific
decomposition of a domain.

Any expression of the form E D uN�
xˇ
� P�2�;N�2G d�;N�uN�x� can be brought

(by sorting its terms with respect to the order of u�) to the form H � L where
H D H.E/ is the sum of terms of the highest order and L D L.E/ D E �H .

We say, that a general problem of approximation of a partial differential equation,
given by the set of global approximationsA is admissible, if:

1. All E 2 A are written in the formH.E/�L.E/.
2. H.E/ D kuN�x� for k 2 K n f0g (that is H.E/ consists of precisely one term).
3. For all ˇ 2 B n f0g (that is for any uxˇ , appearing in the equation with non-zero

coefficient except for u itself) a unique approximationE from A exists.

From now on we assume, that an admissible set of approximations is given.
After sorting we can reveal inconsistencies in a given set of global approx-

imations. It might happen, that the given set is not complete (there are no
approximations for some uxˇ after the proper sorting) or inconsistent (two nonequal
approximation for some uxˇ). In practice one is interested in approximations, having
certain order in4xi ;4t .

On the grid G we have natural shift operators Txi W vN� 7! vN�C	i , where 	i is the i -th
canonical basis vector. That is Txi .v.: : : ; �i ; : : :// D v.: : : ; �i C4xi ; : : ://. Clearly
Txi is the well-known forward shift operator, which is invertible, since its inverse
is the associated backward shift operator. Thus we allow exponents of monomials
of Txi to be integers. For an exponent vector ˛ 2 Z

mC1, denote T ˛ D T ˛1x1 � : : : �
T ˛mxm T

˛mC1

t . In what follows we will use the field K.T / WD K.Tx1; : : : ; Txm; Tt /.

A Symbolic Approach to Generation and Analysis 133

The equation 3 can be rewritten in a single generic point N� of the grid in terms of
shift operators:

Lemma 3. In the notations from above, there exist exponent vectors ı.N�/; ı. N�/, N� 2
G such that there are two equivalent formulas

T ı.N�/.uxˇ /N� D
X

�2�;N�2G
d�;N�T ı.N�/.ux� /N�; .uxˇ /N� D

X

�2�;N�2G
d�;N�T ı.N�/�ı.N�/.ux� /N�: (4)

Proof. For 1 � k � m C 1 set
k WD minf�k; �k j � 2 G; � 2 �; d�;N� 6D 0g. By
setting ı.N�/ WD N�� N
 and respectively ı. N�/ WD N� � N
 we obtain two exponent vectors
for the monomials in shift operators. ut

According to the lemma, we will derive and encode approximations for functions
on the grid by shift operators. This allows us to drop the grid point notation as soon
as shift operators are present. In other words, we use shift operators to formulate the
problem in a generic point of the grid.

Several approaches exist for the computation of a finite difference scheme of a
single partial differential equation with constant coefficients.

3.1 Mimicking Difference Algebra Approach

Consider the formal consequences of equalities P as in (1) and Aˇ as in (3) over
the commutative finitely generated ring RB WD K.T /Œuxˇ j ˇ 2 B�. Recall, that the
variables fuxˇg are algebraically independent. In other words, we consider an ideal
I of the ring RB , generated by P [fAˇ j ˇ 2 Bg. Since B is finite, the ring RB is
Noetherian and contains the subring R WD K.T /Œu�. The ideal J WD I \K.T /Œu� is
computable (e. g. by the elimination of all but one variables as in Lemma 1). Since
R is a principal ideal domain, J is generated by a single element, say p 2 K.T /Œu�.
Clearing denominators, we obtain a polynomial expression Qp 2 KŒT �Œu�. Dividing
by its leading coefficient, we obtain monic f 2 KŒT �Œu�, which is the unique result.

Note, that we do not work with difference ideal, but with an algebraic ideal in a
difference ring.

3.2 Algebraic Analysis Approach

We order the set fuxˇ j ˇ 2 Bg according to the monomial ordering and write
the resulting ordered list as a column vector U D Œuxˇmax ; : : : ; u�

T . Since P and
Aˇ are linear equations with coefficients in KŒT � in the entries of U , we put each
equation as a row in a matrix M , with entries in KŒT �, such that M � U D 0,
where � stands for the action of shift operators with coefficients in K on functions
in discrete arguments. Then we can perform algebraic operations from the left on

134 V. Levandovskyy and B. Martin

the matrixM , without engaging the unknown functions uˇ, as it is done in algebraic
analysis. We compute the intersection ofKŒT �-moduleM with the free submodule,
generated by u, the last component of the vectorU . The latter intersection is an ideal
J � KŒT � of all polynomials p in shift operators, such that p � u D 0. Define a
K-linear map ? W KŒT �! KŒT �Œu�, which sends T ˛ for ˛ 2 N

n to T ˛u. The latter
can be interpreted as an element from the difference algebra.

3.3 Term Rewriting System Approach

Consider the equations from Lemma (4) in the monic form, that is

uxˇ D
X

�2�;N�2G
d�;N�T ı.N�/�ı.N�/ux� :

Let us treat them as rewriting rules for symbols fuxˇ j ˇ 2 B n f0gg, which
substitutes every uxˇ with the sum on the right hand side. We denote this system
by S . Since S involves ux� if and only if � � ˇ, we do the following. At
first, we order occurring variables with respect to the monomial ordering, getting
fuxˇmax ; : : : ; ug. Then, in the same sequence, the variable ux" is substituted with the
right hand side of the corresponding approximationA". The result of the substitution
does not contain variables, which are higher than ux" with respect to the monomial
ordering. In such a way we obtain an equivalent rewriting system, each right hand
side of which depends only on u. Then we apply this new rewriting system to the
operator P .

Theorem 1. Consider a single linear partial differential equation with constant
coefficientsP as in (1). Assume that the set of given approximationsA is admissible
and its elements are written in a point of a grid G as in (4). Let us define the
following polynomials:

1. f , a monic polynomial from KŒT �Œu� satisfying I \ K.T /Œu� D hf i in
the notations of 3.1.

2. g D ?. Qg/ D Qgu, a monic polynomial from KŒT �Œu�; Qg 2 KŒT � satisfies J D
h Qgi, such that for r WD jBj one has KŒT �r
 M \ KŒT �er D J � KŒT � in
the notations of 3.2.

3. h, a monic polynomial from KŒT �Œu� satisfying P !S h in the notations of 3.3.

Then f D g D h, that is the three methods are equivalent.

Proof. a) Aˇ is already a Gröbner basis in K.T /Œuxˇ � by the product criterion,
because the leading monomials of its elements are coprime, since the set fuxˇ j
ˇ 2 Bg is algebraically independent. Since NF.P;Aˇ/ 2 K.T /Œu�, we obtain
that fNF.P;Aˇ/g [Aˇ is a Gröbner basis of P [Aˇ. The uniqueness follows
from the uniqueness of monic reduced normal form [16].

A Symbolic Approach to Generation and Analysis 135

b) Proceeding with the vector as above and starting with higher leading monomials,
the matrix representationM of the set Aˇ is already upper triangular with entries
in KŒT �. Moreover, the last row has exactly two nonzero elements (say, the
last two ones in that row). Thus M is already in a row-reduced form. Making
complete reduction of the rows will produce a matrix M 0, where each row
contains exactly two nonzero elements: .0; : : : ; 0; fi .T /; 0; : : : ; 0; fr .T // with
fi ; fr 2 KŒT �. Hence M 0 simplifies the set of approximations and corresponds
to the completely reduced Gröbner basis.

Now, we append to M (orM 0, what is equivalent) the row P 0, corresponding
to the equationP , written in the operator form. The computation of the Gaussian
elimination of the resulting matrix amounts in reductions of P 0 with the rows
of row-reduced M 0. The result of such reductions is a row vector with the only
nonzero entry w.T / 2 KŒT � at the last position. Since it is a constant multiple of
the reduced normal form NF.P 0;M 0/ andM 0 is a Gröbner basis, the ideal J from
the statement is a principal ideal, generated by w.T /. Let us define Qg 2 KŒT � to
be the normalized monic w.T / and put g D Qgu 2 KŒT �Œu�. Then, since Qg is the
single operator of smallest order, acting on u, we conclude that g is the difference
scheme polynomial.

c) The application of rewriting rules in the sequence, as described above, leads to
the normal form NF.P;Aˇ/. Since by a) Aˇ is a Gröbner basis with respect to
any monomial well-ordering, monic normal form is unique. Fixing a monomial
ordering, we can produce another rewriting system S 0 by applying rewriting rules
to every right hand side of S , starting ascendingly from the smallest nonzero
ˇ 2 B . Then S 0 becomes f.uxˇ ! fˇ.T /u/ j ˇ 2 B n f0gg, where fˇ.T / 2
KŒT˙1� � K.T /. It is straightforward, that S 0 does not depend on the sequence
of reductions like S anymore. Since the set of approximationsA is admissible, it
follows that S 0 is confluent. The reduction of P with respect to S 0 is the same as
with respect to S , hence its monic form is unique.
Since in each of the proofs above we have guaranteed uniqueness and showed
that difference scheme polynomial has been computed, the final claim follows.

ut
Remark 3. Note, that the equivalences of the previous Theorem do not hold in
general. Algebraic Analysis Approach 3.2 works only for linear PDE, since it
relies on the module structure, which is linear per definition. Both a) and b) do
not necessarily deliver a difference scheme in the case of variable coefficients due
to different concepts of discretization. As soon as one deals with algebras, where
x and Tx do not commute, the left normal form of a vector (the computation
uses subtractions of left multiples of an approximation and thus invokes non-
commutative multiplication) is not necessarily the result of rewriting of any term
uxˇ (which just plugs the right hand side expression into the place where the term
resides and does not invoke non-commutative multiplication).

Provided all approximations from A are linear with respect to uˇ as in (3), the
Term Rewriting System Approach 3.3 will successfully lead to a finite difference
scheme for a nonlinear PDE with variable coefficients.

136 V. Levandovskyy and B. Martin

4 Generation of Difference Schemes

Armed with the methods from the previous section, we proceed with the generation
of schemes for a linear equation with constant coefficients. We prefer the method of
algebraic analysis from 3.2, in contrast to Gerdt et al. [13], who used the method
of difference algebra because of the reasons of practical complexity, which is
significantly lower if one uses the approach 3.2. However, Gerdt et al. systematically
follow the difference algebra approach for nonlinear equations. Notably, in [13]
they have obtained an interesting nice-behaving scheme with cubic nonlinearities.
The original equation contains quadratic nonlinearities, but the new non-traditional
scheme does not contain switches as traditional schemes.

A large class of equations might be written in a so-called conservation law
form, which can be obtained e.g. by applying the Green’s formula. For example,
the equation @Q

@x
� @P

@y
D 0 is equivalent to the equation

H
�

Pdx C Qdy D 0 for

arbitrary piecewise smooth closed contour � .
We choose some discretized integration contours and approximations rules for

the integrals and proceed as above. The difference schemes, which we obtain by
elimination are fully consistent by construction [13] .

4.1 Approximation Rules and Their Operator Form

A general way for approximation of a PDE consists in the application of integral
relations (like

R tnC1

tn
ut t .x; t/dt D ut .x; tnC1/ � ut .x; tn/) together with further

approximations of derivatives (like ut) and integrals.
Contour approximations. Many possibilities exist for choosing contours and

approximations. We are using rather rectangular than quadratic grids, the two most
frequently used approximations on contours are node points of the rectangle and
midpoints of the grid with double distance, as illustrated by the pictures below.

�

�
�

�

�

��

�k � 1

k

k C 1

j � 1 j j C 1
� �

�
��

�

�

�� �

��

k � 1

k

kC 1

j � 1 j j C 1

A Symbolic Approach to Generation and Analysis 137

By applying the Green’s formula we lower the order of an equation by 1. The
approximation formulas derived from the contour are usually more complicated,
than the approximations derived from the original equation and integral relations.
This is not a problem for an implementation, since complicated manipulations with
polynomial expressions can be performed effectively with modern computer algebra
systems.

Approximation of derivatives via Taylor series. Applying the Taylor expansion
up to the 2nd order, we obtain u.x ˙ 4x/ D u.x/ ˙ 4xux.x/ C 4x22 uxx.x/ C
O.4x3/. Hence, we can approximate as follows:

ux.x/ D u.xC4x/�u.x/
4x C O.4x/ (forward difference)

or ux.x/ D u.x/�u.x�4x/
4x CO.4x/ (backward difference). Subtracting these two

equalities we obtain u.xC4x/�u.x/Cu.x/�u.x�4x/ D 24xux.x/CO.4x3/,
hence ux.x/ D u.xC4x/�u.x�4x/

24x C O.4x2/ (central 1st order difference).
Adding these two equalities and rewriting the result, we obtain

u.xC4x/�2u.x/Cu.x�4x/
4x2 D uxx.x/C O.4x2/.central 2 nd order difference/:

Approximation of integrals. Closed Newton-Cotes formulas give rise to so-
called trapezoid an pyramid rules, whereas open Newton-Cotes formulas lead us to
midpoint rule. The trapezoid rule is expressed as follows:

x0C4xZ

x0

f .x/dx D 1

2
4x.f .x0/Cf .x0C4x//� 1

124x3 f
00

.�/; x0 � � � x0C4x:

We obtain as approximation for ux.x/:

u.x0 C4x/ � u.x0/ D
x0C4xZ

x0

ux.x/dx D 1

2
4x.ux.x0/C ux.x0 C4x//;

and hence .Tx � 1/ � u D 1
2
4x.Tx C 1/ � ux .

Pyramid (or Simpson’s) rule looks as follows:

x0C24xZ

x0

f .x/dx D 1

3
4x.f .x0/C4f .x0C4x/Cf .x0C24x//� 1

904x5 f
.4/.�/;

hence its difference form is 1
3
4x � .T 2x C 4Tx C 1/ � ux D .T 2x � 1/ � u.

Open Newton-Cotes formula for one point

x0C24xZ

x0

f .x/dx D 24xf .x0 C4x/C O.4x2f 0

/;

138 V. Levandovskyy and B. Martin

leads us to the midpoint formula4x � Tx � ux D .T 2x � 1/ � u.
Summary. We gather the most used approximations in difference operator

form:

• Forward difference .4x; 1 � Tx/ � .ux; u/T D 0
• Backward difference .4x � Tx; 1 � Tx/ � .ux; u/T D 0
• A 1st order central appr. .24x � Tx; 1 � T 2x / � .ux; u/T D 0
• A 2nd order central appr. .�4x2 � Tx; .1� Tx/2/ � .uxx; u/T D 0
• Trapezoid rule . 1

2
4x � .Tx C 1/; 1 � Tx/ � .ux; u/T D 0

• Midpoint rule .24x � Tx; 1 � T 2x / � .ux; u/T D 0.
• Pyramid rule . 1

3
4x � .T 2x C 4Tx C 1/; 1 � T 2x / � .ux; u/T D 0

• Lax method1 .24t � Tx; T 2x � 2TtTx C 1/ � .ut ; u/T D 0
• Parametric temporal difference for 0 � � � 1: .4t � .�Tt C .1 � �//; 1 �
Tt / � .ut ; u/T D 0. If � D 0 resp. � D 1, it becomes forward resp. backward
difference.

We assume that the difference scheme involves quantities 4x1; : : : ;4xm;4t
and originates from a typical set of approximations. The difference scheme is of
the smallest difference order by construction, hence the associated shift polynomial
p is irreducible. In many situations we want to present p as the sum of products
of operators. We propose the following notation considered in application to von
Neumann stability.

Definition 4. A semi-factorized presentation of a linear difference scheme of order
O.4xb11 , : : : ;4xbmm ;4t c/ is the sum p D 4xb11 p1 C : : :C4xbmm pm C4t cpt for
pi 2 KŒT �, such that pi does not involve4xi in its coefficients and most (if not all)
pj do not involve4x1; : : : ; xm;4t .

Unlike nodal form, a semi-factorized form allows compact descriptions of very
complicated and higher dimensional schemes. Note, that in the examples it turns
out, that there exists a unique (up to constant factors) semi-factorized presentation.
We have a method for computing a semi-factorized form constructively.

Example 6. Consider the 1D heat equation ut � a2uxx D 0 with parameter a. We
approximate ut with backwards difference4t � Tt � ut D .Tt � 1/ � u, resp. in the
nodes of the grid,4t � .ut /mC1i D .u/mC1i � .u/mi . uxx is approximated with the 2nd
order weighted centered space method, that is

4x2 � Tx � uxx D .�Tt C .1 � �// � .Tx � 1/2 � u; where 0 � � � 1:

We obtain the following matrix formulation of the problem

0

@
1 �a2 0

�4t � Tt 0 Tt � 1
0 �4x2TxTt .�Tt C .1 � �// � .T x � 1/2

1

A �
0

@
ut

uxx
u

1

A D 0:

1Used in the discretization of the advection equation

A Symbolic Approach to Generation and Analysis 139

By computing a Gröbner basis (with the algebraic analysis approach), we obtain
a single polynomial in shift operators for the scheme �a24t�T 2x TtCa24t .��1/T 2x C
.2a24t� C4x2/TxTt � .2a24t .� � 1/C4x2/Tx � a24t�Tt C a24t .� � 1/

Its semi-factorized form is4x2Tx.Tt � 1/� a24t.Tx � 1/2.�Tt C 1 � �/ D 0.
In the following example we show SINGULAR code for obtaining these objects and
for producing a nodal presentation of the scheme, which is

1

a24t �.u
nC1
jC1�unjC1/�

�

4x2 �.u
nC1
jC2�2unC1jC1CunC1j /� .1� �/4x2 .unjC2�2unjC1Cunj /D0:

The obtained scheme is called FTCS if � D 0, BTCS if � D 1 and Crank-
Nicholson, if � D 1

2
.

This scheme is consistent with the original differential equation for any � 2 R.

Since
unC1
jC1�unjC1

4t D ut C O.4t/ and
unC1
jC2�2unC1

jC1CunC1
j

4x2 D uxx C O.4x2/, we have

1
a2

ut � �uxx � .1 � �/uxx D 1
a2

ut � uxx D O.4t/C O.4x2/:

The order of the scheme is .4t;4x2/.
Example 7. In this example, we demonstrate computations with SINGULAR

and with findifs.lib. In the matrix formulation above the parameters are
4t;4x; a; � . We introduce an additional parameter d , which will be needed later
for the check of stability. The variables of the ring are Tt and Tx. We define the ring
in SINGULAR and the matrix of equations as follows:

ring r = (0,a,dx,dt,theta,d),(Tx,Tt),(c,Dp);
matrix M[3][3]=
1, -aˆ2, 0, // the equation itself
-dt*Tt, 0, Tt-1, // appr. u_t with backward difference
0, -dxˆ2*Tt*Tx,(theta*Tt+(1-theta))*(Tx-1)ˆ2; // appr. u_xx

where uxx is approximated with the 2nd order weighted centered space method. We
transpose the matrix and call the std routine for the Gröbner basis computation.

module R = module(transpose(M)); module S = std(R);
print(S);
=> 0, 0, 1,

0, (-aˆ2*dt)*Tt,(-aˆ2),
S[3,1],Tt-1, 0

The first column vector of the resulting matrix is the only one with non-zero
entry only in the 3rd component. The symbol S[3,1] is displayed since this entry,
which is the difference scheme polynomial, is big in size.

poly p = S[3,1]; p; // assign and print the answer
=>(-aˆ2*dt*theta)*Txˆ2*Tt+(aˆ2*dt*theta-aˆ2*dt)*Txˆ2+

(2*aˆ2*dt*theta+dxˆ2)*Tx*Tt+(-2*aˆ2*dt*theta+2*aˆ2*dt-
dxˆ2)*Tx+(-aˆ2*dt*theta)*Tt+(aˆ2*dt*theta-aˆ2*dt)

We proceed with the construction of the semi-factorized form.

140 V. Levandovskyy and B. Martin

LIB "findifs.lib"; // load the library for schemes
ideal I = decoef(p,dt); // see Appendix for details
I; // the sum of elements of I gives p
=>I[1]=(dxˆ2)*Tx*Tt+(-dxˆ2)*Tx

I[2]=(-aˆ2*dt*theta)*Txˆ2*Tt+(aˆ2*dt*theta-aˆ2*dt)*Txˆ2+
(2*aˆ2*dt*theta)*Tx*Tt+(-2*aˆ2*dt*theta+2*aˆ2*dt)*Tx+
(-aˆ2*dt*theta)*Tt+(aˆ2*dt*theta-aˆ2*dt)

Next, we can obtain the semi-factorized operator form of the scheme:

factorize(I[1]); // we suppress the output
factorize(I[2]); // factors with multiplicities
=> [1]:

_[1]=(-aˆ2*dt)
_[2]=Tx-1
_[3]=(theta)*Tt+(-theta+1)

[2]:
1,2,1

The semi-factorized form is4x2Tx.Tt � 1/� a24t.Tx � 1/2.�Tt C 1� �/ D 0.

list L; L[1] = theta;
difpoly2tex(I,L); // see Appendix
=> \frac{-1}{aˆ{2} \tri t}\cdot (uˆ{n+1}_{j+1}-uˆ{n}_{j+1})+...

The string above in tex format (we showed above only a part of it) is the nodal
presentation of the scheme, which was obtained already in the previous example.

5 Symbolic Methods for von Neumann Stability Analysis

5.1 Stability Rings, Morphisms and Polynomials

We refer the reader to e. g. [8, 26] for details about stability. Suppose that t is
the temporal variable and x1; : : : ; xm are the spatial variables. We start with a finite
difference scheme, written in the nodal form on a uniform orthogonal grid with steps
4t;4x1; : : : ;4xm. We suppose to work in the interior region, which is bounded,
say, by L1; : : : ; Lm in spatial directions.

In the von Neumann stability analysis, one presents the functions on the grid as
discrete Fourier modes, that is

.unj1j2:::jm/ D gn
mY

kD1
eijk`k�4xk ;

where is a linear map, g is a new symbolic variable, 0 � `k4xk � Lk . We
abbreviate ˇjk WD �`k4xk . We substitute this presentation of nodes into the
equation, perform simplifications and obtain a polynomialG in one variable g with
constant coefficients.

A Symbolic Approach to Generation and Analysis 141

The von Neumann stability criterion (see e. g. [8,26]) states, that the difference
scheme is stable if j�j � 1 for every root � of G.

The Lax-Richtmeyer equivalence theorem can be stated in the following
form (adopted from [26]). A consistent scheme for a well-posed linear initial
value problem is convergent if and only if it is stable. For a well-posed linear
initial-boundary-value problem, however, stability is only a necessary condition for
convergence.

We do not address algorithms for an algorithmic check of consistency of a
difference scheme with its differential equation. Several methods using algebraic
tools can be found in e. g. [9, 10, 14]. However, we demonstrate the usage of semi-
factorized form for a positive conclusion about consistency in some examples.

Let A be the algebra of functions on a given grid. It carries a natural module
structure over the algebra R of linear partial difference operators with constant
coefficients C ŒTt ; Tx1 ; : : : ; Txm� over some field C � Q.4t;4x1; : : : ;4xm/. The
action ofR on discrete Fourier nodes by the map can be written as follows, for all
jk :

.T at �unj1j2:::jm/ D ga �.unj1j2:::jm/ and .T bjs � unj1j2:::jm/ D eijs ls�4xk �.unj1j2:::jm/:

The map and this action give rise to an homomorphism of C -algebras

 W C ŒTt ; Tx1 ; : : : ; Txm� �! C
�
Œi; sinx1 ; cosx1 ; : : : ; sinxm; cosxm�=Jm

�
Œg�;

where Jm D hi 2 C 1; sin2x1 C cos2x1 � 1; : : : ; sin2xm C cos2xm � 1i is an ideal.
We denote this constructive stability morphism by the same letter and note its
C -linearity. It is defined by its values on the generators of the source algebra
.Tt / D g and .Tjs / D eils�4xs D cosˇs C i � sinˇs for all 1 � s � m.

The constructive nature of this approach and its applicability in computer algebra
systems, lies in the following. We choose the complex-rational numbers QŒi �=hi 2C
1i as basic numeric field. We can do on demand further algebraic extensions. We
avoid complex exponentials by passing to the sine and cosine and by including
their algebraic relations in the factor ideal. A stability morphism can be defined
in computer algebra systems.

Let P D P
a;˛ ca;˛T

a
t T

˛
x be the operator form of the finite difference scheme

P �u D 0, where T ˛x stands for T ˛1x1 � : : : �T ˛mxm for a multi-index ˛ D .˛1; : : : ; ˛m/ 2
N
m. Then,

.P / D
X

a;˛

ca;˛.Tt /
a.Tx/

˛ D
X

a;˛

ca;˛

mY

kD1
.cosˇk C i � sinˇk/˛kga D

X

a

dag
a

is the univariate polynomial in g, which we call the stability polynomial of a given
difference scheme. Obviously, the degree of .P / is the same as the highest degree
of Tt in P .

142 V. Levandovskyy and B. Martin

Example 8. Let us continue with the Example 6. In order to prepare the scheme for
stability analysis, one can rewrite it as follows:

unC1jC1 � unjC1 D a2d
�
� � .unC1jC2 � 2unC1jC1C unC1j /C .1� �/ � .unjC2 � 2unjC1C unj /

�
;

with d WD 4t
4x2 . We prefer to work with the semi-factorized operator form of the

scheme
4x2Tx.Tt � 1/� a24t.Tx � 1/2.�Tt C 1 � �/ D 0:

By creating the stability ring and performing simplification and factorization
(see the next example for the SINGULAR code), we obtain the following linear
polynomial in the variable g

.icosC sin/ � ...�2a2d�/ sinC2a2d�C1/ � gC.2a2d� � 2a2d/ sin�2a2d�
C2a2d�1/:

The first factor i � cos.ˇ/ C sin.ˇ/ is ignored in stability analysis, since it is of
magnitude 1.

Example 9. We continue with the Example 7. Define the semi-factorized scheme
again.

poly P = Tx*(Tt-1)+(-aˆ2)*d*(Tx-1)ˆ2*((theta)*Tt+(-theta+1));
ring r2 = (0,a,theta,d),(Tx,Tt),(c,Dp);
poly P = imap(r,P);

Now, we create the stability ring ST, which will be Q.a; �; d /Œg; i; sin; cos� and
a map from r2, which is Q.a; �; d /ŒTx; Tt �) to ST.

ring ST = (0,a,d,theta),(g,i,sin,cos),lp;
ideal Rels = std(ideal(i2+1,sinˆ2+cosˆ2-1));
map chi = r2,ideal(sin+i*cos,g);
poly P = chi(P); // the mapping
P = NF(P,Rels); P; // reduction wrt ideal Rels
=>(-2*aˆ2*d*theta)*g*i*sin*cos+(2*aˆ2*d*theta+1)*g*i*cos+ ...
ideal FP = factorize(P); // factorization

The polynomial P together with its factorization have been presented in the
previous example.

We obtained from a system of linear equations a single univariate polynomial in
the stability ring. Next we face the following problem:

Given a univariate parametric polynomial P , find out, under which conditions on
parameters all the roots of P lie in the complex unit circle.

As already mentioned in [17,21], this problem can be solved algorithmically with
the help of CAD (Cylindrical Algebraic Decomposition).

A Symbolic Approach to Generation and Analysis 143

5.2 Cylindrical Algebraic Decomposition

The algorithm for CAD goes back to G. Collins et al. It is one of the most important
algorithms, for quantifier elimination not only in real algebraic geometry [1]. Its
algorithmic complexity is high and can be double exponential in the number of
variables. Nevertheless, the universality of the method makes it very powerful and
applicable to various problems.

A finite set of polynomials fp1; : : : ; pmg 2 RŒx1; : : : ; xn� induces a decompo-
sition (partition) of R

n into maximal sign-invariant cells. A cell in the algebraic
decomposition of fp1; : : : ; pmg 2 RŒx1; : : : ; xn� is a maximal connected subset of
R
n, on which all the pi are sign invariant.

Definition 5. For n 2 N, let �n W Rn ! R
n�1, .x1; : : : ; xn�1; xn/ 7! .x1; : : : ; xn�1/

denote the canonical projection. Let fp1; : : : ; pmg 2 QŒx1; : : : ; xn�. The algebraic
decomposition of fp1; : : : ; pmg is called cylindrical, if:

• For any two cells C;D of the decomposition, the images �.C /; �.D/ are either
identical or disjoint.

• The algebraic decomposition of fp1; : : : ; pmg \QŒx1; : : : ; xn�1� is cylindrical.

For instance, any algebraic decomposition of R1 is cylindrical.

There are several sophisticated implementations of the CAD algorithm. We are
using the one from the system MATHEMATICA, where two commands, Reduce
and CylindricalDecomposition are available in the context of CAD. There
are also freely available systems QEPCAD by C. Brown [2] and REDLOG by
A. Dolzmann et al. [7].

5.3 CAD and von Neumann Stability

Example 10. Let us continue with the examples 6, 8. Let us represent the root of a
stability polynomial as c

d 0 , where c D 2a2d.1 � �/ sin�2a2d.1 � �/ C 1, d 0 D
2a2d�.1� sin/C 1.

Since d 0 � 0, we have to solve the inequality�d � c � d , that is cCd � 0 and
d � c. The first inequality 2a2d.1 � sin/ � 0 is always satisfied, and the second
is equivalent to a2d.2� � 1/.1 � sin/ C 1 � 0. In this example, we compare the
functions CylindricalDecomposition and Reduce of MATHEMATICA

CylindricalDecomposition[{aˆ2*d*(2*theta-1)*(1-s) + 1 >= 0,
-1 <= s <= 1, a > 0, d > 0}, {theta, a, d, s}]

returns
�
� <

1

2
&& a > 0&&

�
0 < d � � 1

�2a2 C 4a2�
�

&& � 1 � s � 1
�
jj

144 V. Levandovskyy and B. Martin

�
d > � 1

�2a2 C 4a2� &&
1 � a2d C 2a2d�
�a2d C 2a2d� � s � 1

�
jj

�
� >

1

2
&& a > 0 && d > 0 && � 1 � s � 1

�
:

Executing more specialized call,

Reduce[a > 0 && d > 0 && 0 <= theta <= 1 && ForAll[s, -1 <=
s <= 1, aˆ2*d*(2*theta - 1)*(1-s) + 1 >= 0], {theta, d}]

we obtain a more informative and structured answer:

a > 0 && .0 � � < 1
2

&& 0 < d � � 1
�2a2C4a2� / jj . 12 � � � 1 && d > 0/:

We conclude:

• If 1
2
� � � 1, the scheme is unconditionally stable.

• If 0 � � < 1
2
, the scheme is stable under the condition d D 4t

4x2 � 1
2a2.1�2�/ .

The quantity d D 4t
4x2 if often called Courant (or Courant-Friedrichs-Lewy)

number. It is classical to express conditions on the von Neumann stability in terms
of the Courant number.

Example 11. Consider the 1D advection equation ut C aux D 0. We approximate
ut with the parametric temporal method and ux with the trapezoid rule. As a result,
we obtain the difference scheme in the semi-factorized form 4x � .Tx C 1/ �
.Tt � 1/ C 2a4t � .Tx � 1/ � .�Tt � .� � 1// D 0, which reads as follows in
the nodal form:

1
2a4t � .unC1jC1�unjC1CunC1j �unj /C 1

4x � .�.unC1jC1�unC1j /�.� �1/.unjC1�unj // D 0:

This scheme is consistent with its differential equation. The stability polynomial is
linear with complex coefficients, so we present it as a fraction. The reformulated
stability problem, which we have to solve, is

�2 � 4a2d2.2� � 1/
4a2d2.� � 1/2 C 1Csin.ˇ/

1�sin.ˇ/

� 0; 8ˇ 62 �
2
Z

Since t WD 1Csin.ˇ/
1�sin.ˇ/ � 0, the right hand side inequality is equivalent to � � 1

2
.

The left hand side is equivalent to 4a2d2.2� � 1/ C 2.4a2d2.� � 1/2 C t// � 0.
Since t 2 Œ0;1/, we have to show that 0 � 4a2d2.2� � 1/ C 8a2d2.� � 1/2 D
4a2d2.�2 C .� � 1/2/, what is true for all d . Of course, computations with CAD
confirm this answer.

Thus, this scheme is unconditionally stable if � � 1
2

and unstable otherwise.

A Symbolic Approach to Generation and Analysis 145

6 Examples for �-Wave Equation

We consider a parametric equation ut t � �2uxx D 0, � 6D 0 and its higher
dimensional versions. We construct finite difference schemes for several different
approximations and analyze their stability.

6.1 Conservative Law with Parametric Time Approximation

The presentation via the conservation law is
H

�

�2uxdtCut dx D 0. We use trapezoid

rule for the contour integral and spatial integral relations. For temporal integral
relations we use parametric difference with � 2 Œ0; 1�.

We obtain the following system of difference equations:

0

@
4h � .�TxTt C Tx C Tt � 1/ �24t � .TxTt � Tt � Tx C 1/ 0

0 1
2
4x � .Tx C 1/ 1 � Tx

4t � .�Tt C .1 � �// 0 1 � Tt

1

A�
0

@
ut
ux
u

1

A D 0:

After the computation of Gröbner basis, we obtain the scheme

0 D 4h2
2�24t2

�
unC2j � 2unC1j C unj

�
� 4h2
2�24t2

�
unC2jC2 � 2unC1jC2C unjC2

�

C �
�

unC2jC2 � 2unC2jC1 C unC2j

�
� .2� � 1/

�
unC1jC2 � 2unC1jC1 C unC1j

�

C .� � 1/
�

unjC2 � 2unjC1 C unj
�
:

The stability polynomial of 2nd degree is rather complicated. However, fac-
torization reveals a factor g � 1. The other factor is linear, but with complicated
coefficients. We present it as g � c

d 0 . Since both c and d 0 are complex numbers, we
compute absolute values of them. Then, jjd 0jj D .4�2d4 � 1/ � .cos.ˇx/ � 1/ � 2
and jjcjj D jjd 0jj � 4d4.2� � 1/.cos.ˇx/ � 1/.

Hence, jj c
d 0
jj � 1, 0 � 4d4 sin.ˇx=2/2

.2� � 1/
.4�2d4 � 1/ sin.ˇx=2/2 C 1 � 1:

Consider the left hand side inequality

0 � 4d4 sin.ˇx=2/2
.2� � 1/

.4�2d4 � 1/ sin.ˇx=2/2 C 1 , 0

� .2� � 1/..4�2d4 � 1/ sin.ˇx=2/
2 C 1/:

146 V. Levandovskyy and B. Martin

Since 4�2d4 > 0, 4�2d4 � 1 > �1 � � 1
sin.ˇx=2/2

, the second factor is always

positive. Hence, the inequality is satisfied as soon as � � 1
2
.

The second inequality reads as 4d4 sin.ˇx=2/2
.2��1/

.4�2d4�1/ sin.ˇx=2/2C1 � 1. Then,

4�2d4 sin.ˇx=2/2 C 1 � sin.ˇx=2/2 � .4d4 sin.ˇx=2/2/.2� � 1/,

�2 C cos.ˇx=2/2

4d4 sin.ˇx=2/2
� .2� � 1/, .� � 1/2 C cos.ˇx=2/2

4d4 sin.ˇx=2/2
� 0;

what is always the case. Summarizing, we obtain that this scheme is uncondi-
tionally stable, if � � 1

2
and unstable otherwise.

6.2 Integral Relations and 2nd Order Central Approximations

Using direct 2nd order central approximations for both t and x, we obtain the
following scheme:

�
unC2jC1 � 2unC1jC1 C unjC1

�
� �24t

2

4h2 �
�

unC1jC2 � 2unC1jC1C unC1j

�
D 0:

We denote d WD �4t4h , then the scheme is described by the polynomial

p D d2T 2x Tt�TxT 2t C.�2d2C2/TxTt�T xCd2Tt D Tx.Tt�1/2�d2.Tx�1/2Tt ;

which is presented in a semi-factorized form. After simplifications the stability
polynomial reads as g2 C .4d2 sin2.a=2/ � 2/g C 1 D 0. Denote b WD �1 C
2d2 sin2.a=2/, i.e. g2 C 2bg C 1 D 0. The roots are b ˙pb2 � 1. If b2 > 1, then
one of the roots has modulus bigger, than one. If b2 D 1, the roots are˙1. If b2 < 1,
the absolute value of both roots equals b2C 1� b2 D 1. Hence, b2 � 1, if and only
if d � 1, that is 4t4h � 1

�
. The same condition is produced with the help of CAD in

MATHEMATICA.
This scheme is conditionally stable if the Courant number d D �4t4h � 1.

6.3 Explicit Integration for t and Trapezoid Rule for x

We use explicit integration (that is, a backward difference) for t and trapezoid rule
for x and obtain the following scheme.

1

44t2 �
�

unC2jC2 � 2unC1jC2 C unjC2C2
�

unC2jC1 � 2unC1jC1CunjC1
�
CunC2j �2unC1j Cunj

�

� �2

4h2 �
�

unC2jC2 � 2unC2jC1 C unC2j

�
D 0:

A Symbolic Approach to Generation and Analysis 147

The difference scheme polynomial is

T 2x T
2
t �2T 2x Tt C 2TxT 2t C T 2x � 4TxTt C T 2t C 2Tx � 2Tt C 1

� 4�
24t2
4h2 .T 2x T

2
t � 2TxT 2t C T 2t /:

Denote d2 WD 4�24t 2
4h2 . After performing substitutions, we obtain g2 � 2bg C

b D 0, where b D .1 C d2 tan2.a//�1. Its solutions are straightforward: g D
b ˙ pb2 � b. If b2 � b > 0, we have b > 1 and hence one root is too big. If
b2 � b � 0, the absolute value of a root is just b2 C b � b2 D b, what is not
bigger than 1. b � 1 is satisfied, since b�1 D 1C d2 tan2.a/. Hence, this scheme is
unconditionally stable. With the help of CAD and MATHEMATICA, we arrive to the
same conclusion.

6.4 Higher Dimensional �-Wave Equation

One of the crucial advantages of our approach and its implementation is the
scalability. We employ the algorithms in a very general setting. The algorithms
can be easily modified for the case of more functions. In particular, we are able
to generate schemes and test them for stability in a higher-dimensional setting.

Consider the approach from Subsection 6.2 which led us to a conditionally stable
scheme. We apply the same approximations to all spatial variables.
Two spatial dimensions. We have ut t � �2.uxx C uyy/ D 0. The scheme is

0 D 1

4t2 �
�

unC2jC1;kC1 � 2unC1jC1;kC1 C unjC1;kC1
�

� �2

4x2 �
�

unC1jC2;kC1 � 2unC1jC1;kC1 C unC1j;kC1
�

� �2

4y2 �
�

unC1jC1;kC2 � 2unC1jC1;kC1 C unC1jC1;k
�
:

In a semi-factorized form, the scheme looks as follows

TxTy.Tt � 1/2 � d2x � .Tx � 1/2TyTt � d2y � Tx.Ty � 1/2Tt D 0:

The stability polynomial in a simplified form is

g2 � 2.d2x cos.ˇx/C d2y cos.ˇy/ � d2x � d2y � 2/ � g C 1 D 0:

Using CAD, we conclude, that this scheme is conditionally stable with the
condition d2x C d2y � 1 for the Courant numbers dx WD �4t4x , dy WD �4t4y .

148 V. Levandovskyy and B. Martin

Three spatial dimensions. The equation is ut t � �2.uxx C uyy C uzz/ D 0.
The difference scheme is analogous to the two-dimensional one, in a semi-factorized
form it has the following form (from which one easily deduces, how the scheme
looks for higher dimensions):

TxTyTz.Tt�1/2�d2x �.Tx�1/2TyTzTt�d2y �Tx.Ty�1/2TzTt�d2z �TxTy.Tz�1/2Tt D 0:

Running CAD, we obtain, that this scheme, as its lower-dimensional analogues,
is conditionally stable if d2x C d2y C d2z � 1 holds for the Courant numbers dx , dy
and dz WD �4t4z .

7 Dispersion Analysis

7.1 Continuous Dispersion

Recall, that a Fourier node in nC 1 dimensions is a function of the form

ei.hk;xi�!t/; hk; xi WD
nX

jD1
kj xj

Respectively, in 1 C 1 dimensions it is just ei.kx�!t/. One obtains continuous
dispersion from the given linear PDE by substituting Fourier nodes into the PDE
and by deriving an equation for ! in terms of k from the result. The latter equation
! D !.k/ is called the continuous dispersion relation.

Example 12. For the equation ut t � �2uxx D 0 we have

0 D
�
@

@t2
� �2 @

@x2

�
ei.kx�!t/ D �ei.kx�!t/ � .!2 � �2k2/:

Hence, ! D ˙�k is the continuous dispersion relation for the �-wave equation.

We can write down the action of partial derivatives on a Fourier mode. Namely,

@a

@ta
.ei.hk;xi�!t// D .�i!/aei.hk;xi�!t/ and

@bj

@x
bj
j

.ei.hk;xi�!t// D .ikj /bj ei.hk;xi�!t/:

Hence, the monomial in partial differentiations has its eigenvalue

@a

@ta

nY

jD1

@bj

@x
bj
j

.ei.hk;xi�!t// D .�i!/a
nY

jD1
.ikj /

bj � .ei.hk;xi�!t//

A Symbolic Approach to Generation and Analysis 149

Let us denote F D ei.hk;xi�i!t/. Then @˛.F / D c.˛/ � F , where ˛ WD
.a; b1; : : : ; bn/ 2 N

nC1. Extending this action by linearity to the ring of partial
differentiations with constant coefficients R D KŒ@t ; @x1 ; : : : ; @xn �, we are able
to compute the eigenvalue of a linear PD operator P 2 R, corresponding to the
eigenfunction F :

P.F / D
X

˛

p˛@
˛.F / D

X

˛

p˛c.˛/

!
� F:

The continuous dispersion relation is obtained by solving with respect to ! the
equation X

˛

p˛c.˛/ D 0; p˛ 2 K; c˛ 2 K.k1; : : : ; kn; !/;

which is called the continuous dispersion equation (CDE) for P .

Example 13. For the 1Cn-dimensional heat equation ut �a2 �Pn
jD1 uxj xj D 0 the

continuous dispersion equation and relation are

0 D �i! � a2
nX

jD1
i2k2j ” ! D �ia2

nX

jD1
k2j :

Example 14. For 1 C n-dimensional modified �i -wave equation ut t �Pn
jD1 �2j �

uxj xj D 0 the continuous dispersion relation is w D ˙
qPn

jD1 �2j k2j .

7.2 Discrete Dispersion

In the discrete case, we consider a discrete Fourier node, corresponding to the grid
point .tm; .x1/l1 ; : : : ; .xn/ln/,

Fm
l D eihk;x.l/i�!tm; hk; x.l/i WD

nX

jD1
kj .xj /lj :

One substitutes a discrete Fourier node into the difference scheme and derives an
expression of ! in terms of k from the result. The latter equation ! D !.k/ is called
the discrete dispersion relation. Let us write down the formula for the eigenvalue of
a monomial:

T at

nY

jD1
T
bj
xj .e

ihk;x.l/i�!tm/ D .e�i!4t /a
nY

jD1
.eikj4xj /bj � .eihk;x.l/i�!tm/:

150 V. Levandovskyy and B. Martin

As in the continuous case, we extend this action by linearity to polynomials. For
a polynomial P 2 KŒTt ; Tx1 ; : : : ; Txn� one has

P.Fm
l / D

X

˛

p˛T
˛.F m

l / D

X

˛

p˛c.˛/

!
� Fm

l ;

so we solve the discrete dispersion equation (DDE) for P

X

˛

p˛c.˛/ D 0; p˛ 2 K; c.˛/ 2 K.fkj g; !/

and obtain the discrete dispersion relation. Note, that in contrast to the continuous
case, this relation is not of polynomial form in general.

Presenting discrete Fourier nodes via trigonometrical functions, we are able
to compute discrete dispersion relations symbolically. We prefer not to use the
de Moivre’s formula, but to express dispersion relations in terms of sine and
cosine of a single argument. We work in the commutative ring C.4t;4x/
Œsint ; cost ; fsinj ; cosj g�modulo the ideal hfsin2j Ccos2j �1g; sin2t Ccos2t �1i, where
cosj WD cos.k4xj /, cost WD cos.!4t/. Then,

T at

nY

jD1
T
bj
xj .F

m
l / D .cost �i sint /

a

nY

jD1
.cosj Ci sinj /

bj � .F m
l /:

Example 15. Consider the �-wave equation ut t � �2uxx D 0 and the difference
scheme

d2T 2x Tt � TxT 2t C .�2d2 C 2/TxTt � Tx C d2Tt D 0;
obtained with the 2nd order central approximations for x and t , where d D �4t4x .

Performing computations, we obtain after simplification d2 cosx �cost C 1 �
d2 D 0, that is cos.!4t/ D 1 � d2.1 � cos.k4x//. In the stability limit d ! 1,
we have cos.!4t/ D cos.k4x/, hence ! D ˙4x4t k C 2�m;m 2 Z. Since d ! 1

implies 4x4t ! �, in the stability limit the discrete dispersion relation becomes
! D ˙�kC2�m. By settingm D 0 we recover the continuous dispersion relation.

8 Conclusion and Future Work

The advantages of presented methods include, among other, their scalability and
tendency towards automatization. Indeed, we do not make distinction between
classical types of PDEs (hyperbolic, elliptic, parabolic). Thus these methods are
very general. Symbolic methods are able to generate automatically many difference
schemes of standard linear PDEs with constant coefficients, as it was demonstrated
in [13] and by ourselves.

A Symbolic Approach to Generation and Analysis 151

Moreover, for the same situation we presented an approach to determine
conditions for von Neumann stability, using cylindrical algebraic decomposition,
and a symbolic approach to the determination of continuous and discrete dispersion
relations. The generalization of these methods to systems of equations, to the case
of variable coefficients and nonlinear equations is very important. It is known to
be hard in general and even the notion of stability might differ from one case to
another. On the other hand, Lax-Richtmeyer equivalence theorem can be generalized
to some more general, even nonlinear, situations. Thus the investigation about the
applicability of symbolic methods for obtaining conditions on stability will continue
primarily for the cases, where generalized Lax-Richtmeyer theorem holds.

We decided not to include the treatment of systems of linear PDEs in this paper.
However, we want to remark, that by the rewriting system approach the number
of the discretized equations is exactly the number of PDEs one started with. By
using Gröbner or involutive bases, we get in general more equations, which reveal
the interplay between discretized equations. Such interplay is not detected by the
rewriting approach at all; it seems to us that such interplay has not been investigated
before.

An important issue for future research is a partial algebraization of the con-
sistency analysis of a generated scheme of the given PDE or a system of PDEs.
Provided such a check, one could work with general multi-parametric schemes,
where the conditions on parameters arise from the consistency check and the
symbolic stability approach. This has been investigated in case of a system of linear
PDEs with constant [9] and variable [14] coefficients.

Within his recent PhD thesis Christian Dingler (TU Kaiserslautern, Germany)
presented a new package findiff.lib for SINGULAR with QEPCAD as an
engine for cylindrical algebraic decomposition. This package, already distributed
with SINGULAR, extends the tools for the generation of finite difference schemes to
the cases of a single linear PDE and of a system of linear PDEs. Another problem
for further research is the generalization of von Neumann stability for systems,
which is clear only for some classes of equations. Thus further generalization of
our methods will go into several directions: allowing variables coefficients and/or
allowing nonlinearity.

A very important question concerns the role of differential and difference
Gröbner bases for nonlinear equations in the scheme generation and stability
analysis. The recent papers [12–14] show for some cases, that a systematic use of the
interplay between equations can produce more universal, though more complicated,
schemes.

Arising from the letterplace philosophy, see [18], the development of new theory
and algorithms for infinite difference Gröbner bases will be of great interest.

Acknowledgements The authors express their deep gratitude to Vladimir P. Gerdt (JINR, Russia)
for his interest, discussions and suggestions during the work on this paper. We would also like
to thank M. Kauers (RISC, Linz, Austria), W. Zulehner (J. Kepler University of Linz, Austria),
M. Fröhner (BTU Cottbus, Germany) and A. Klar (TU Kaiserslautern, Germany) for discussions
on various topics around stability in this paper. We have learned many examples from the scripts

152 V. Levandovskyy and B. Martin

and papers of colleagues, mentioned above. A special thanks goes to H. Engl (Vienna, Austria) for
his constructive critics, which helped to improve the presentation of the results. At last, but not at
least, we thank to anonymous referees for their remarks and questions.

The first author is grateful to the SFB F013 “Numerical and Symbolic Scientific Computing”
of the Austrian FWF for partial financial support in 2005-2007.

9 Appendix. The Detailed SINGULAR Code of an Example

9.1 A Quick Introduction to the System SINGULAR

We want to describe shortly by examples how to read SINGULAR language and
how to obtain and interpret the output – as far as it is used to generate a difference
scheme. The very detailed documentation of SINGULAR can be found online at
www.singular.uni-kl.de.

9.1.1 Definition of an Algebra

Nearly any computation with SINGULAR takes place inside of a ring, which has to
be defined first. Consider the following input:

ring R = (0,dt,dh),(Tx,Tt),(c,dp);

This command defines commutative polynomial ring R D Q.dt; dh/ŒTx; Tt �

equipped with the position-over-term monomial module ordering �. Here, the
ground field is K D Q.dt; dh/, that is the field of rational functions over Q in
transcendental parameters dt; dh. These constant parameters have the following
meaning here: dt D 4r , dh D 4h are step sizes of the grid. R is the ring in the
variables Tx; Tt , corresponding to shift operators, over the field K . The monomial
module ordering� will be used in Gröbner basis computations. In the example, dp
stands for the degree reverse lexicographical ordering on polynomials. A small c at
the first place indicates, the polynomial vectors will be sorted first by components
in descending order, i. e., e1 > e2 > : : : and then by the monomial ordering dp.

9.1.2 Creation of a Matrix

Starting with a linear system of PDEs with constant coefficients and approximation
rules, one has to deal with an extended system QAU D 0. We need only the matrix
with entries in the ring R of shift operators:

ring R = (0,dt,dh),(Tx,Tt),(c,dp);
matrix A[3][3] =
(-Tx*Ttˆ2+Tx), (Txˆ2*Tt - Tt), 0 ,
0, (dh/2)*(Tx+1), 1-Tx,
(dt/2)*(Tt+1), 0, 1-Tt;

A Symbolic Approach to Generation and Analysis 153

One has to indicate row- and column-size in the definition of a matrix. On the right
hand side follows a list of polynomials, describing the entries of a matrix.

9.1.3 Elimination of Components

We have to eliminate all but last components from the matrix A, In this example,
the anonymous vector U stands for .ut ; ux; u/t . We want to produce within a row
module of A a row, having entries only in the last component. This is done most
efficiently by a Gröbner basis computation of a submodule with respect to the
given monomial module ordering. The last nonzero component of the first column
generator corresponds to the difference scheme.

module M = transpose(A);
module M1 = std(M); // Groebner basis computation
print(M1); // we suppress its output

Note, that the command print, applied to a module, does not necessarily displays
every entry completely. However, one can display every single element separately.
In this example, the difference scheme polynomial is

M1[3,1];
=>(-dt)*Txˆ2*Tt+(dh)*Tx*Ttˆ2+(2*dt-2*dh)*Tx*Tt+(dh)*Tx+(-dt)*Tt.

9.1.4 Evaluation of the Constants

There are several ways for the evaluation of the constants. One of them is to use
the command subst. In the running example, suppose one wants to evaluate the
scheme in4t D 10�1;4h D 10�2.

poly p = M1[3,1]; // the polynomial as above
poly pnew = p;
pnew = subst(pnew,dt,1/10);
pnew = subst(pnew,dh,1/100);
pnew;
=> -1/10*Txˆ2*Tt+1/100*Tx*Ttˆ2+9/50*Tx*Tt+1/100*Tx-1/10*Tt

9.2 Tools for Difference Schemes

The library findifs.lib has been created to automate numerous processes
during the generation of finite difference schemes. An important role is played by
the routines, transforming the different forms of objects into some classical ones.
One can generate complicated schemes and easily present them for instance in
nodal form or in polynomial operator presentation including semi-factorized form,
which is used in stability analysis.

154 V. Levandovskyy and B. Martin

decoef(P,n);whereP is a polynomial and n is a number.decoef decomposes
the polynomial P into summands with respect to the presence of the number n in the
coefficients and returns an ideal in usually two generators. For example,

ring r = (0,dh,dt),(Tx,Tt),dp;
poly P = (4*dhˆ2-dt)*Txˆ3*Tt + dt*dh*Ttˆ2 + dh*Tt;
P;
=> (4*dhˆ2-dt)*Txˆ3*Tt+(dh*dt)*Ttˆ2+(dh)*Tt
decoef(P,dt);
=>_[1]=(4*dhˆ2)*Txˆ3*Tt+(dh)*Tt // the part, not containing dt

_[2]=(-dt)*Txˆ3*Tt+(dh*dt)*Ttˆ2 // the part which contains dt
decoef(P,dh);
=>_[1]=(-dt)*Txˆ3*Tt // the part, not containing dh

_[2]=(4*dhˆ2)*Txˆ3*Tt+(dh*dt)*Ttˆ2+(dh)*Tt

difpoly2tex(S,P[,Q]); where S is an ideal, P is a list and Q is an optional
list. difpoly2tex converts the difference scheme, given in the ideal S , to its
the nodal form in a LaTeX string. The ideal S is assumed to be the result of
decoef, list P contains parameters, which will be controlled in order to remain
in numerators. The optional list Q contains polynomials, which will be added to the
scheme (written in the function u) the part in terms of a function p. For example,

ring r = (0,dh,dt,V),(Tx,Tt),dp;
poly M = (2*dh*Tx+dt)ˆ2*(Tt-1) + V*Tt*Tx;
M;
=> (4*dhˆ2)*Txˆ2*Tt+(-4*dhˆ2)*Txˆ2+(4*dh*dt+V)*Tx*Tt+

(-4*dh*dt)*Tx+(dtˆ2)*Tt+(-dtˆ2)
ideal I = decoef(M,dt); // see above
I;
=> I[1]=(4*dhˆ2)*Txˆ2*Tt+(-4*dhˆ2)*Txˆ2+(V)*Tx*Tt

I[2]=(4*dh*dt)*Tx*Tt+(-4*dh*dt)*Tx+(dtˆ2)*Tt+(-dtˆ2)
list L; L[1] = V; // V stands for nu
difpoly2tex(I,L);
=> \frac{1}{4 \tri t}\cdot (uˆ{n+1}_{j+2}-uˆ{n}_{j+2}+

\frac{ \nu}{4 \tri h ˆ{2}} uˆ{n+1}_{j+1})+ \frac{1}{4\tri h}
\cdot (uˆ{n+1}_{j+1}-uˆ{n}_{j+1}+\frac{ \tri t}{4 \tri h}
uˆ{n+1}_{j}+ \frac{- \tri t}{4 \tri h} uˆ{n}_{j})

The last output, compiled with TeX, produces

1

44t �
�

unC1jC2 � unjC2 C
�

44h2 unC1jC1
�

C 1

44h �
�

unC1jC1 � unjC1 C
4t
44hunC1j C �4t

44hunj

�
:

Now let us illustrate the use of the optional list Q. Suppose there are two
equations in the operator form, denoted by U and P . We want to treat them as
corresponding to two different unknown functions u and p.

ring D = (0,ro,K,dt,dh),(Tx,Tt),(c,Dp);
poly U = (-K*dt)*Txˆ2*Tt+(K*dt)*Tt;

A Symbolic Approach to Generation and Analysis 155

poly P = (-2*ro*dh)*Tx*Tt+(2*ro*dh)*Tx;
list V; V[1] = K; V[2] = ro;
difpoly2tex(-U,V,-P);
=> \frac{K}{2 \tri h}\cdot (uˆ{n+1}_{j+2}-uˆ{n+1}_{j})+

\frac{ \rho}{ \tri t} \cdot (pˆ{n+1}_{j+1}-pˆ{n}_{j+1})

Here, we have produced the nodal form of a scheme for two functions u and p:

K

24h �
�

unC1jC2 � unC1j

�
C �

4t �
�
pnC1jC1 � pnjC1

�
:

References

1. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algorithms and
Computation in Mathematics. 10. Springer (2003)

2. Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets using CADs.
SIGSAM Bull. 37(4), 97–108 (2003). DOI 10.1145/968708.968710. http://www.usna.edu/
Users/cs/qepcad/B/QEPCAD.html

3. Chyzak, F., Quadrat, A., Robertz, D.: Linear control systems over Ore algebras. effective
algorithms for the computation of parametrizations. Applicable Algebra in Engineering, Com-
munication and Computing 16(5), 938–1279 (2005). http://www.springerlink.com/content/
y61643p573387258

4. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate
identities. J. Symbolic Comput. 26(2), 187–227 (1998)

5. Cohn, R.M.: Difference algebra. R.E. Krieger (1979)
6. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: SINGULAR 3-1-2 — A Computer

Algebra System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern (2010). http://www.singular.uni-kl.de

7. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM
Bulletin 31(2), 2–9 (1997). http://redlog.dolzmann.de

8. Fröhner, M.: Numerische Methoden in der Hydrodynamik. Wiss. Schriftenr. Tech. Hochsch.
Karl-Marx-Stadt 12 (1984)

9. Ganzha, V., Vorozhtsov, E.: Computer-Aided Analysis of Difference Schemes for Partial
Differential Equations. Wiley Interscience (1996)

10. Ganzha, V.G., Vorozhtsov, E.V.: Parallel implementation of stability analysis of differ-
ence schemes with Mathematica. J. Math. Sci. 108, 1070–1088 (2002). DOI 10.1023/A:
1013500723898. http://dx.doi.org/10.1023/A:1013500723898

11. Gerdt, V.: Involutive algorithms for computing Groebner bases. In: Pfister, G., Cojocaru, S.,
Ufnarovski V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry.
IOS Press (2005)

12. Gerdt, V., Blinkov, Y.: Involution and difference schemes for the Navier-Stokes equations.
Proceedings CASC 2009, Kobe, Japan (2009)

13. Gerdt, V., Blinkov, Y., Mozzhilkin, V.: Gröbner bases and generation of difference schemes for
partial differential equations. SIGMA 2, 051 (2006). http://arxiv.org/abs/math/0605334

14. Gerdt, V., Robertz, D.: Consistency of finite difference approximations for linear PDE systems
and its algorithmic verification. In: Proceedings of the International Symposium on Symbolic
and Algebraic Computation (ISSAC’10). ACM Press (2010). DOI 10.1145/1837934.1837950

15. Greuel, G.M., Levandovskyy, V., Motsak, A., Schönemann, H.: PLURAL. A SINGULAR

3.1 Subsystem for Computations with Non-commutative Polynomial Algebras. Centre for
Computer Algebra, TU Kaiserslautern (2010). http://www.singular.uni-kl.de

http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
http://www.springerlink.com/content/y61643p573387258
http://www.springerlink.com/content/y61643p573387258
http://www.singular.uni-kl.de
http://redlog.dolzmann.de
http://dx.doi.org/10.1023/A:1013500723898
http://arxiv.org/abs/math/0605334
http://www.singular.uni-kl.de

156 V. Levandovskyy and B. Martin

16. Greuel, G.M., Pfister, G.: A SINGULAR Introduction to Commutative Algebra. Springer
(2002)

17. Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. J. Symbolic
Comput. 24(2), 161–187 (1997). http://www.sciencedirect.com/science/journal/07477171

18. La Scala, R., Levandovskyy, V.: Letterplace ideals and non-commutative Gröbner bases.
J. Symbolic Comput. 44(10), 1374–1393 (2009). DOI doi:10.1016/j.jsc.2009.03.002

19. Levandovskyy, V.: Non-commutative computer algebra for polynomial algebras: Gröbner
bases, applications and implementation. Ph.D. Thesis, Universität Kaiserslautern (2005). http://
kluedo.ub.uni-kl.de/volltexte/2005/1883/

20. Levin, A.: Difference algebra. Algebra and Applications. Springer, New York (2008)
21. Liska, R., Drska, L.: FIDE: a REDUCE package for automation of FInite difference method for

solving pDE. In: Watanabe, S., Nagata M. (eds.) Proceedings of the International Symposium
on Symbolic and Algebraic Computation (ISSAC’90), pp. 169–176. ACM Press and Addison-
Wesley (1990). http://www.acm.org:80/pubs/citations/proceedings/issac/96877/p169-liska/

22. Pommaret, J.F.: Partial differential control theory. Vol. 1: Mathematical tools. Vol. 2: Control
systems. Mathematics and its Applications (Dordrecht) 530. Dordrecht: Kluwer Academic
Publishers (2001)

23. Ritt, J.F.: Differential algebra. American Mathematical Society (AMS) (1950)
24. Saito, S., Sturmfels, B., Takayama, N.: Gröbner Deformations of Hypergeometric Differential

Equations. Springer (2000)
25. Seiler, W.M.: Involution. The formal theory of differential equations and its applications in

computer algebra. Algorithms and Computation in Mathematics 24. Springer, Berlin (2010).
DOI 10.1007/978-3-642-01287-7

26. Thomas, J.: Numerical partial differential equations: Finite difference methods. Springer
(1995)

http://www.sciencedirect.com/science/journal/07477171
http://kluedo.ub.uni-kl.de/volltexte/2005/1883/
http://kluedo.ub.uni-kl.de/volltexte/2005/1883/
http://www.acm.org:80/pubs/citations/proceedings/issac/96877/p169-liska/

White Noise Analysis for Stochastic Partial
Differential Equations

Hermann G. Matthies

Abstract Stochastic partial differential equations arise when modelling uncertain
phenomena. Here the emphasis is on uncertain systems where the randomness
is spatial. In contrast to traditional slow computational approaches like Monte
Carlo simulation, the methods described here can be orders of magnitude more
efficients. These more recent methods are based on some kind stochastic Galerkin
approximations, approximating the unknown quantities as functions of independent
random variables, hence the name “white noise analysis”. We outline the steps
leading to the fully discrete equations, commenting on one possible numerical
solution method. Key to many of the developments is tensor product structure of
the solution, which must be exploited both theoretically and numerically. For two
examples with polynomial nonlinearities the computations are shown to be quite
explicit and can be performed largely analytically.

1 Introduction

Oftentimes, numerical simulations of real-world systems are required even though
not all parameters are exactly known. The uncertainties inherent in the model result
in uncertainties in the results of numerical simulations, a fact which is often ignored
in common practise. Clearly, it is desirable to quantify the uncertainties in the
solution depending on the model’s uncertainties.

Stochastic models are one way to quantify uncertainties. Uncertain parameters
are modelled by random variables, uncertain time-dependent functions by stochastic
processes, and uncertain spatial properties by random fields [2, 3, 9, 50]. If the
physical system is described by a partial differential equation (PDE), then the

H.G. Matthies (�)
Institute of Scientific Computing, Technische Universität Braunschweig, 38092, Braunschweig,
Germany
e-mail: wire@tu-bs.de; http://www.wire.tu-bs.de

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 8,
© Springer-Verlag/Wien 2012

157

wire@tu-bs.de
http://www.wire.tu-bs.de

158 H.G. Matthies

combination with the stochastic model results in a stochastic PDE (SPDE) [11, 18,
27, 42]. The solution of the SPDE is a random field describing both the expected
system-response and its quantitative uncertainty.

These are parametrised equations, and such parametrised equations naturally
have solutions in tensor product spaces. Solution methods for such a problem
range over a wide set of approaches, see [23, 24, 30, 32–34, 43, 44, 48] for some
developments mainly in the field of stochastic mechanics.

Next to the well-known spatial and temporal discretisation of the partial differ-
ential equation, the stochastic processes and random fields have to be discretised,
and for the purpose of computation be approximated by a finite number of
random variables. For computational purposes it is advantageous to describe and
approximate the problem in independent random variables, a technique also known
as “white noise analysis” [17–19, 22, 28].

The next step is to compute the response and its stochastic description in terms
of the stochastic input. To start, we need a description of the mathematical setting
which allows one to see that such stochastic models are well-posed in the sense
of Hadamard essentially if the underlying deterministic model is so, and if this also
holds for every possible realisation [4,13,27,32,34,41]. This will be briefly sketched
here in Sects. 2 and 3.

Solution methods [34] comprise direct integration, including Monte Carlo [7,45]
and its relatives, as well as deterministic integration methods such as Smolyak
sparse-grid methods [14, 38, 40], stochastic collocation [6, 36, 37], and stochastic
Galerkin methods [1, 4, 5, 16, 20, 26, 31, 32, 41, 51, 52, 52, 53], to name a few of
the more popular ones. Here a variational framework for stochastic Galerkin (SG)
methods will be given, numerical experiments may be found in the references
just cited. The usual deterministic part will be summarised in Sect. 4, and the
stochastic discretisation will be given for a simple but important kind of choice
of approximating subspaces in Sect. 5.

In Sect. 6 a very brief description of a possible numerical method for the solution
of the fully discrete set of nonlinear equations is given, one that gives promising
results [32–34] and observes the highly structured nature of the operations on tensor
product spaces.

Two examples are given in Sect. 7 where the nonlinearity is polynomial, in
Subsection 7.1 a nonlinear diffusion, and in Subsection 7.2 the stationary Navier-
Stokes equation is considered. With the properties of the Hermite algebra, given in
Appendices C and D, the computation of the nonlinearities can be quite explicit,
with a large part of the computations performed analytically. We close with a
conclusion and outlook on further work in Sect. 8.

2 Deterministic Model Problem

The model problem is formally one of stationary diffusion, and it is intended to serve
as a motivating example on how SPDEs may arise. It may for example describe the
seepage of groundwater through a porous subsurface rock/sand formation, or heat
conduction in an inhomogeneous medium.

White Noise Analysis for Stochastic Partial Differential Equations 159

We first introduce the deterministic problem, where G � R
d is the spatial domain

of interest, u is the diffusing quantity, � is the diffusion tensor in the non-linear
diffusion law for the flow q D ��.u/ru. As the diffusion tensor may depend on
u, the problem may be nonlinear. The quantity f represents sinks and sources in
the domain. For simplicity we assume homogeneous Dirichlet boundary conditions.
The stationary diffusion equation then is

� r � .�.x; u.x//ru.x// D f .x/; x 2 G � R
d : (1)

For the sake of simplicity also the conductivity tensor � is represented by just a
scalar field �. None of these simplifications have any influence on what we want to
show later.

For the possible solutions we choose a closed subspace of the Sobolev space
W 1
p .G/, namely the completion of the compactly supported smooth functions in the

W 1
p -norm

U WD VW 1
p .G/; (2)

so that the essential Dirichlet boundary conditions are satisfied, and allow for the
right-hand-side f 2 U� ' W �1q .G/, where as usual 1=p C 1=q D 1. To describe
the diffusive process, define the generalised Nemytskii-operator K W U ! Q WD
Lq.G;Rd / by

K W u.x/ 7! .~.x/C cu.x/2/ru.x/ DW �.x; u.x//ru.x/: (3)

This is a continuous map from U D VW 1
p .G/ into Q D Lq.G;Rd / for p D 4

because of the type of nonlinearity. Additionally we require c > 0, ~.x/ > 0 a.e.,
~ 2 L1.G/ and 1=~ 2 L1.G/.

This makes the semilinear (linear in v) form

a.v; u/ WD
Z

G
rv.x/ � K.u/.x/ dx (4)

hemicontinuous in u and continuous in v, and defines a hemicontinuous nonlinear
operator A W U ! U� such that

8u; v 2 U W a.v; u/ D hA.u/; viU ; (5)

where h�; �iU is the duality pairing between U and its dual U�. If there is no danger
of confusion, we will omit the index on the duality pairing.

Proposition 1. The operator A is hemicontinuous, strictly monotone and coercive.
Standard arguments on monotone operators e.g. [21, 39] allow us then to conclude
that under the conditions just described, the problem to find u 2 U such that

8v 2 U W a.v; u/ D hA.u/; vi D hf; vi (6)

has a unique solution. In the linear case this reduces to the Lax-Milgram lemma.

160 H.G. Matthies

This result shall serve as a reference of how we would like to formulate the
stochastic problem in the next Sect. 3, namely have a well-posed problem in the
sense of Hadamard. In the deterministic case it is well-known that this property of
well-posedness will be inherited by the numerical approximation if it is done right.

3 Stochastic Model Problem

In the stochastic case, we want to model ~ as well as f as random fields defined over
some probability space .˝;A;P/, where˝ is the basic probability set of elementary
events, A a �-algebra of subsets of ˝ , and P a probability measure. We require
additionally

~.x; !/ > 0 a.e.; k~kL1.G�˝/ <1; k1=~kL1.G�˝/ <1: (7)

The solution to (6) will also be a random field in that case, and we allow for that by
choosing as a solution space

W WD U ˝ S; (8)

where in this case we choose S D Lp.˝/ because of the type of nonlinearity. The
basic tensor product space is isomorphic to the space of finite rank linear maps
Lq.˝/ ' S� ! U which may be equipped with the Schatten-p-norm [46]. This is
the `p-norm of the sequence of singular values, and we take W to actually be the
completion of the so normed tensor product. This is a reflexive space, just as U , and
U is naturally isometrically embedded via u 7! u˝ 1 as a deterministic subspace.

We define a semilinear form a on W via

a.v; u/ WD E .aŒ!�.u.x; !; v.x; !/// ; (9)

where E .�/ is the expectation on˝ . The parameter-dependent semilinear forms are
just as for the deterministic problem (4):

aŒ!�.v; u/ WD
Z

G
rv.x; !/ � K.x; !; u.x; !// dx; (10)

where the generalised Nemytskii-operator on K WW D U ˝ S ! Q˝ S� is given
by

K W u.x; !/ 7! .~.x; !/C cu.x; !/2/:ru.x; !/: (11)

Again, this defines a hemicontinuous nonlinear operator A WW !W� such that

8u; v 2W W a.v; u/ D hhA.u/; vii; (12)

where hh�; �ii is the duality pairing between W� and W . Here W� is isomorphic to
the completion of U� ˝ S� in the Schatten-q-norm.

White Noise Analysis for Stochastic Partial Differential Equations 161

A linear form f on W is similarly defined through its deterministic but parameter-
dependent counterpart for all v 2 U

hf .!/; vi WD
Z

G
v.x/f .x; !/ dx; (13)

by hhf;wii WD E .hf .!/;w.!/i/ for all w 2W .

Proposition 2. The operator A is hemicontinuous, strictly monotone and coercive,
and standard arguments on monotone operators (cf. Proposition 1) allow us then to
conclude that the problem to find u 2W such that

8v 2W W a.v; u/ D hhA.u/; vii D hhf; vii (14)

has a unique solution. In the linear case this reduces to the Lax-Milgram lemma
again.

4 Discretisation in Space

Almost any technique may be used for the spatial discretisation, e.g. finite differ-
ences or finite elements, and we use a finite element discretisation of the region
G � R

d with a vector of ansatz-functions �.x/ D Œ�1.x/; : : : ; �N .x/�, e.g. [10,47].
We define UN WD spanf�n j 1 � n � N g � U : An ansatz for the solution in
terms of �.x/ yields a semi-discretisation of (14). Similarly to the method of lines
for instationary boundary value problems where the coefficients would be time-
dependent, we obtain an expansion

usemi.x; !/ D
NX

nD1
un.!/�n.x/ D �.x/u.!/; (15)

where the coefficients are random variables u.!/ D Œu1.!/; : : : ; uN .!/�T .
By inserting the ansatz into the SPDE (14) and applying Galerkin conditions, a

system of N nonlinear stochastic equations in R
N results,

AŒ!�.u.!// D f .!/ for P-almost all ! 2 ˝: (16)

Here the n-th equation is given by aŒ!�.usemi.�; !//; �n/ DW .AŒ!�.u.!///n and
.f .!//n WD hf .�; !/; �ni. It is worth noting that almost surely in !, the operator in
(16) inherits the properties of Propositions 1 and 2 – in fact essentially uniformly in
! due to (7) – as it is a symmetric Bubnov-Galerkin projection onto the subspace
UN ˝ S [10, 32, 34, 47].

162 H.G. Matthies

5 Discretisation of the Probability Space

In the following we will use a stochastic Galerkin (SG) method to fully discretise
(16) [1,4,5,15,16,20,26,31,32,41,51,52]. To effect the full Galerkin approximation
one still has to choose ansatz functions – effectively functions of known RVs –
in which to express the unknown coefficients (RVs) un.!/. We choose as ansatz
functions Wiener’s polynomial chaos expansion (PCE) [16, 25, 31, 32, 34], i.e.
multivariate Hermite polynomials H˛ in Gaussian RVs. The multivariate Hermite
polynomials are given in Appendix B. Reassuringly, the Cameron-Martin theorem
[17–19, 22, 28] tells us that the algebra of Gaussian variables is dense in all Lp.˝/
with 1 � p <1, hence in particular in S D L4.˝/.

For example, if we simply decide to have an approximation in K Gaussian RVs
with a total polynomial degree of P to choose a finite basis, then one chooses a A
as a finite subset of J WD N

.N/
0 , the set of all finite non-negative integer sequences,

i.e. of multi-indices, see Appendix A.

A D f˛ D .˛1; : : : ; ˛K; : : :/ 2 J j ˛k D 0 for k > K; and j˛j1 < P g;

where the cardinality of A is

A WD jAj D .K C P/Š
KŠP Š

:

Although the set A is finite and J is countable, there is no natural order on it; we
therefore do not impose one at this point. The determination of A via K and P as
above is in many cases too crude, not least because the cardinality changes very
unevenly with changing K and M . More elaborate ways to define A have to be
employed using different functionals than just the `1-norm.

As ansatz in the probabilistic or stochastic space we take

u.!/ D
X

˛2A
u˛H˛.�.!//; (17)

with u˛ WD Œu˛1 ; : : : ; u
˛
N �
T . Through the discretisation the stochastic space S has

been replaced by a subspace SA WD spanfH˛j ˛ 2 Ag.
The Bubnov-Galerkin method applied to (16) with the ansatz (17) requires that

the weighted residuals vanish:

8ˇ 2 A W E

 "
f .!/ �AŒ!�

X

˛2A
u˛H˛.�.!//

!#
Hˇ.!/

!
D 0: (18)

This may be concisely written – with quantities in the fully discrete space RN ˝R
A

denoted by an upright bold font – as

r.u/ WD f � A.u/ D 0; or A.u/ D f; (19)

White Noise Analysis for Stochastic Partial Differential Equations 163

where .f/ˇn WD E
�
.f .!//nHˇ.!/

�
, u WD .u˛n/, and

.A.u//ˇn D E

AŒ!�

X

˛2A
u˛H˛.!/

!!

n

Hˇ.!/

!
:

A quantity like u may be thought of as an array of numbers .u˛n/, exploiting the
isomorphy R

N ˝ R
A ' R

N�A, or as an abstract tensor
P

˛ u˛ ˝ e˛ , where the
e˛ are the canonical unit vectors in R

A, or – in a purely linear algebra fashion –
regard the symbol˝ consistently as a Kronecker product. It may be noted that (19)
are A � N equations, and the system (19) inherits the properties of Propositions 1
and 2 as it is a symmetric Bubnov-Galerkin projection onto the finite dimensional
subspace WN;A WD UN ˝ SA.

Proposition 3. Convergence of the full Galerkin approximation [32, 34] with
coefficients the solution from eq:stoch-nonlineq

uf.x; !/ WD
X

˛

.�.x/u˛/H˛.�.!// D
X

n;˛

u˛n�n.x/H˛.�.!//; (20)

to the solution of the SPDE u from (14) with increasing densly filling subspaces
WN;A �W may be established with Céa’s lemma [10, 47] as being quasi-optimal:

ku � ufkW � C inf
v2WN;A

ku � vkW : (21)

For better convergence estimates, one would need results on the regularity of the
solution u to (14). For norms weaker than the Schatten-p-norm used in (21), one
may take the results in [8], these show the benefit of not only increasing the
polynomial degree, but also the total numberK of RVs used in the approximation.

6 Solution Methods

We may solve the nonlinear system (19) by the BFGS method with line-searches,
e.g. cf. [12,29]. In every iteration a correction of the current iterate uk is computed as

ukC1 � uk D �Hkr.uk/; (22)

Hk D H0 C
kX

jD1
.rjpj ˝ pj C sjqj ˝ qj /: (23)

The tensors pj ;qj and the scalars rj ; sj are results of the previous iterations of
the BFGS method, cf. [12, 29]. A preconditioner or initial H0 is necessary in order
to obtain good convergence. Most preconditioners have the form H0 D M ˝ �

164 H.G. Matthies

with matrices M 2 R
N�N and � 2 R

A�A [32, 49], and hence display a typical
tensor-product structure. One may note that (22) is an iteration on tensors, and that
the update to the operator is also in form of a rank-2-tensor. Needless to say that in
actual computations, neither in (22) nor anywhere else are the tensor products like
in (23) actually formed [29]. This would completely destroy the very sparse nature
of the computations, but rather the components are always only used in the form of
an operator and stored separately [54].

7 Polynomial Nonlinearities

While the development of the previous sections gives a general avenue to approach
not only the formulation and discretisation of nonlinear SPDEs, but also the actual
numerical solution process for the discrete solution, in many cases one can be
more specific. Often the nonlinearity is just a polynomial in the solution (or may
be represented by a power series in the solution), e.g. the Navier-Stokes Equation,
where the nonlinearity is just quadratic. For this it is advantageous to have a direct
representation of polynomials of random variables.

In Appendices C and D it is shown how to treat polynomial nonlinearities in
terms of the Hermite-algebra and Hermite transform, and that will be employed
here.

Computationally we will represent random variables r1; r2; : : : by the sequence
of their PCE-coefficients .�1/ D H .r1/; .�2/ D H .r2/ etc., see Appendix D. This
then allows us to express products of two – see (65) and (66), or more random
variables similarly to (67) – all with the help of the Hermite transform.

7.1 Nonlinear Diffusion

Let us take a look at the introductory example of a nonlinear diffusion equation (1)
with the specific nonlinearity (11). After semi-discretisation the (16) may be written
as

AŒ!�.u.!/ D .K 0.!/CK c.u.!/// u.!/ D f .!/; (24)

where u.!/ and f .!/ are as before, and almost as a usual stiffness matrix

.K 0.!//n;m WD
Z

G
r�n.x/ � ~.x; !/r�m.x/ dx; (25)

and

.K c.u.!///n;m WD
Z

G
r�n.x/ � c .uf.x; !//2r�m.x/ dx; (26)

White Noise Analysis for Stochastic Partial Differential Equations 165

with uf.x; !/ WDP˛.�.x/u
˛/H˛.�.!//. This quantity may also be expressed with

u D Œu˛n� for later use as uf.u/ WD uf.x; !/ DPn;˛ u˛n�n.x/H˛.�.!//. By denoting
uf
˛.x/ WD �.x/u˛ D

P
n u˛n�n.x/, we recognise these coefficients to be the Hermite

transform H .uf.x; !// D .uf
˛.x//˛2J , see Appendix D. From this and with the

notation .ui / D .: : : ; u˛i ; : : : / one sees that the PCE of .uf.x; !//2 is

.uf.u//2.uf.x; !//2 DH �1.C2..u
f
˛.x//; .u

f
˛.x////

D
X

�

2

4
X

i;j

�i .x/..ui /C
�
2 .uj //�j .x/

3

5H�.�.!//: (27)

There are different ways of going on from here, the simplest seems to be
to set in (25) K 0.!/ D P

� H� .�.!//K
�
0 , with K

�
0 WD E

�
H�K 0

�
=�Š, as

the H� are orthogonal. For (26) this looks just as simple, setting K c.u.!// DP
� H�.�.!//K

�
c .uf/ with K �

c .uf/ WD E
�
H�.�.!//K c.u.!//

�
=�Š. The terms in

the last expression may be facilitated with (27), so that

.K �
c .u

f//n;m D
Z

G
r�n.x/ c

2

4
X

i;j

�i .x/..ui /C
�
2 .uj //�j .x/

3

5r�m.x/ dx: (28)

Both matrices now have a PCE.
Using these PCEs when computing the terms of (19) with the help (18), we obtain

�
K0 CKc.u

f.u//
�

u D f; (29)

where f and u are as before in (19). For K0 the Galerkin projections in (18) result in

.K0/˛;ˇ WD
X

�

E
�
H˛H�Hˇ

�
K
�
0 DW

X

�

�
�

˛;ˇK
�
0 ; with (30)

�
�

˛;ˇ WD E
�
H˛H�Hˇ

� D c�˛;ˇ�Š (see Appendix C): (31)

This can be written as a tensor product

K0 D
X

�

K
�
0 ˝�� : (32)

Similarly, for Kc the Galerkin projections in (18) result in

.Kc/˛;ˇ.u
f.u// WD

X

�

�
�

˛;ˇK
�
c .u

f/: (33)

This can again be written as a tensor product

166 H.G. Matthies

Kc.u
f.u// D

X

�

K �
c .u

f/˝�� : (34)

All the terms of the nonlinear (29) have now explicitly computed, most of them
purely analytically. This shows the power of the Hermite algebra calculus for such
polynomial nonlinearities, giving the explicit form of (29) as

X

�

K
�
0 ˝�� C

X

�

K �
c .u

f.u//˝��

!
u D f: (35)

One should note that, regarding the discussion following (19), the operation˝ has
to be interpreted according to the context. If H 2 R

N�N , ‰ 2 R
A�A, h 2 R

N , and
 2 R

A, then the operatorH ˝‰ acts on the tensor h˝ as

.H ˝‰/h˝ WD .Hh/˝ .‰ /;

and is extended by continuity to the whole space. If, as already mentioned, the
symbol˝ is consistently interpreted as a Kronecker product, one gets a fully linear
algebra like description, whereas interpreting u as a matrix U D Œu˛n�, the operator
acts asHU‰T .

7.2 Stationary Navier-Stokes

Let us take as another example the stationary incompressible Navier-Stokes equa-
tion (with appropriate boundary conditions), where the nonlinearity is quadratic:

v � rv � 1

Re
r2vCrp D g; and r � v D 0; (36)

where v.x/ is the velocity vector at position x, the pressure at x is given by p.x/,
the body force per unit mass is g.x/, and Re is the Reynolds number. Assuming
that boundary conditions, or initial conditions, or right hand side g are uncertain,
we model the response as random fields v.x; !/ and p.x; !/.

In a discretised version, the (36) will look like

N .v; v/CKvCBp D g; andBT v D 0; (37)

where the type of discretisation is not really important for the formulation of
the stochastic response. The bilinear operator N .�; �/ comes from the nonlinear
convective acceleration term, K is the matrix corresponding to the diffusive part,
and B is a discrete gradient; v and p are the vectors for the discrete representation
of the velocity v and pressure p.

White Noise Analysis for Stochastic Partial Differential Equations 167

Remark 1. It may be injected here, that if the Reynolds number – or rather the
viscosity as the density is constant for an incompressible flow – were to be regarded
as random field, then the matrix K in (37) would be a random matrix like K 0 in
(24) with a corresponding PCE.

Expressing the quantities involved in their PCE

v.�.!// D
X

˛2A
v˛H˛.�.!//; (38)

p.�.!// D
X

ˇ2A
pˇHˇ.�.!//; (39)

g.�.!// D
X

�2A
g�H� .�.!//; (40)

one obtains with the help of Appendices C and D

X

ˇ;�2A
N .vˇ; v� /HˇH� C

X

˛2A
Kv˛H˛ C

X

˛2A
Bp˛H˛ D

X

˛2A
g˛H˛; (41)

and X

˛2A
BT v˛H˛ D 0: (42)

With the help of (57), the nonlinear term in (41) can be rewritten as

X

ˇ;�2A
N .vˇ; v� /HˇH� D

X

˛

0

@
X

ˇ;�

c˛ˇ�N .v
ˇ; v� /

1

AH˛ (43)

Inserting this into (41) and projecting onto each H˛ gives

8˛ 2 A W
X

ˇ;�

c˛ˇ�N .v
ˇ; v� /CKv˛ CBp˛ D g˛; (44)

andBT v˛ D 0: (45)

Using tensor products v and p as before, and defining in the matrix representation

N.v; v/ D
2

4: : : ;
X

ˇ;�

c˛ˇ�N .v
ˇ; v� /; : : :

3

5 ; (46)

this may be succinctly written as

N.v; v/C .K ˝ I/vC .B ˝ I/p D g; (47)

and .BT ˝ I/v D 0: (48)

168 H.G. Matthies

This is an explicit PCE representation of the nonlinear stationary incompress-
ible Navier-Stokes equation, making the Hermite-algebra calculus quite explicit.
Observe that all high-dimensional integrations were done analytically.

8 Conclusion

We have tried to provide a short introduction to nonlinear SPDEs and stochastic
Galerkin methods based on white noise analysis. But the computational effort is
often still very high even though there may be tremendous gains compared to
the ubiquitous Monte Carlo method. The references mentioned in the introduction
contain many interesting directions how the computational burden may be alleviated
through adaptivity and model reduction or reduced order models. Some recent
references to this kind of work may be found for example in [34, 35].

A Multi-Indices

In the above formulation, the need for multi-indices of arbitrary length arises.
Formally they may be defined by

˛ D .˛1; : : : ; ˛| ; : : :/ 2 J WD N
.N/
0 ; (49)

which are sequences of non-negative integers, only finitely many of which are non-
zero. As by definition 0Š WD 1, the expressions

j˛j1 WD
1X

|D1
˛| and ˛Š WD

1Y

|D1
˛| Š

are well defined for ˛ 2 J .

B Hermite Polynomials

As there are different ways to define – and to normalise – the Hermite polynomials,
a specific way has to be chosen. In applications with probability theory it seems
most advantageous to use the following definition [17–19, 22, 28]:

hk.t/ WD .�1/ket2=2
�

d

dt

�k
e�t 2=2I 8t 2 R; k 2 N0; (50)

White Noise Analysis for Stochastic Partial Differential Equations 169

where the coefficient of the highest power of t – which is tk for hk – is equal to
unity.

The first five polynomials are:

h0.t/ D 1; h1.t/ D t; h2.t/ D t2 � 1;
h3.t/ D t3 � 3t; h4.t/ D t4 � 6t2 C 3:

The recursion relation for these polynomials is

hkC1.t/ D t hk.t/� k hk�1.t/I k 2 N: (51)

These are orthogonal polynomials w.r.t standard Gaussian probability measure� ,
where �.dt/ D .2	/�1=2e�t 2=2 dt – the set fhk.t/=

p
kŠ j k 2 N0g forms a complete

orthonormal system (CONS) in L2.R; �/ – as the Hermite polynomials satisfy

Z 1

�1
hm.t/ hn.t/ �.dt/ D nŠ ın;m: (52)

Multi-variate Hermite polynomials will be defined right away for an infinite
number of variables, i.e. for t D .t1; t2; : : : ; t| ; : : :/ 2 R

N, the space of all sequences.
For ˛ D .˛1; : : : ; ˛| ; : : :/ 2 J remember that except for a finite number all other
˛| are zero; hence in the definition of the multi-variate Hermite polynomial

H˛.t/ WD
1Y

|D1
h˛| .t| /I 8t 2 R

N; ˛ 2 J ; (53)

except for finitely many factors all others are h0, which equals unity, and the infinite
product is really a finite one and well defined.

The space RN can be equipped with a Gaussian (product) measure [17–19,22,28],
again denoted by � . Then the set fH˛.t/=

p
˛Š j ˛ 2 J g is a CONS in L2.RN; �/

as the multivariate Hermite polynomials satisfy

Z

RN

H˛.t/Hˇ.t/ �.dt/ D ˛Š ı˛ˇ; (54)

where the Kronecker symbol is extended to ı˛ˇ D 1 in case ˛ D ˇ and zero
otherwise.

C The Hermite Algebra

Consider first the usual univariate Hermite polynomials fhkg as defined in
Appendix B, (50). As the univariate Hermite polynomials are a linear basis for
the polynomial algebra, i.e. every polynomial can be written as linear combination

170 H.G. Matthies

of Hermite polynomials, this is also the case for the product of two Hermite
polynomials hkh`, which is clearly also a polynomial:

hk.t/h`.t/ D
kCX̀

nDjk�`j
cnk`hn.t/; (55)

where n is an index, not an exponent. The coefficients are only non-zero [28] for
integer g D .k C ` C n/=2 2 N and if g � k ^ g � ` ^ g � n. They can be
explicitly given

cnk` D
kŠ `Š

.g � k/Š .g � `/Š .g � n/Š ; (56)

and are called the structure constants of the univariate Hermite algebra.
For the multivariate Hermite algebra, analogous statements hold [28]:

H˛.t/Hˇ.t/ D
X

�

c
�

˛ˇH� .t/: (57)

with the multivariate structure constants

c
�

˛ˇ D
1Y

|D1
c
�|
˛| ˇ|

; (58)

defined in terms of the univariate structure constants (56).
From this it is easy to see that

E
�
H˛HˇH�

� D E

H�

X

"

c"˛ˇH"

!
D c�˛ˇ�Š: (59)

Products of more than two Hermite polynomials may be computed recursively,
we here look at triple products as an example, using (57):

H˛HˇHı D

X

�

c
�

˛ˇH�

!
Hı D

X

"

X

�

c"�ıc
�

˛ˇ

!
H": (60)

D The Hermite Transform

A variant of the Hermite transform maps a random variable onto the set of expansion
coefficients of the PCE [18]. Any random variable which may be represented with
a PCE

r.!/ D
X

˛2J
%˛H˛.�.!//; (61)

White Noise Analysis for Stochastic Partial Differential Equations 171

is mapped onto
H .r/ WD .%˛/˛2J D .%/ 2 R

J : (62)

On the other hand, from a sequence indexed by J , as a mapping � W J ! R W ˛ 7!
�˛, one may obtain the random variable

H �1..�// DH �1..�˛/˛2J / WD
X

˛2J
�˛H˛; (63)

which defines the inverse Hermite transform.
These sequences may be seen also as the coefficients of power series in infinitely

many complex variables z 2 C
N, namely by

X

˛2J
%˛z˛;

where z˛ WD Q| z
˛|
| . This is the original definition of the Hermite transform [18].

It can be used to easily compute the Hermite transform of the ordinary product
like in (57), as

H .H˛Hˇ/ D .c�˛ˇ/�2J : (64)

With the structure constants (58) one defines the matrices C �
2 WD .c�˛ˇ/ with indices

˛ and ˇ. The Hermite transform of the product of two random variables r1.!/ DP
˛2J %˛1H˛.
/ and r2.!/ DPˇ2J %

ˇ
2Hˇ.�/ is hence

H .r1r2/ D
�
.%1/C

�
2 .%2/

T /
�
�2J (65)

Each coefficient is a bilinear form in the coefficient sequences of the factors, and the
collection of all those bilinear forms C2 D .C �

2 /�2J is a bilinear mapping that maps
the coefficient sequences of r1 and r2 into the coefficient sequence of the product

H .r1r2/ DW C2..%1/; .%2// D C2 .H .r1/;H .r2// : (66)

Products of more than two random variables may now be defined recursively
through the use of associativity. e.g. r1r2r3r4 D ...r1r2/r3/r4/:

8k > 2 W H

0

@
kY

|D1
r|

1

A WD Ck..%1/; .%2/; : : : ; .%k//

WD Ck�1.C2..%1/; .%2//; .%3/ : : : ; .%k//: (67)

Each Ck is again composed of a sequence of k-linear forms fC �

kg�2J , which define
each coefficient of the Hermite transform of the k-fold product.

172 H.G. Matthies

References

1. Acharjee, S., Zabaras, N.: A non-intrusive stochastic Galerkin approach for modeling uncer-
tainty propagation in deformation processes. Comput. Struct. 85, 244–254 (2007)

2. Adler, R.J.: The Geometry of Random Fields. Wiley, Chichester (1981)
3. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, Berlin (2007)
4. Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic

elliptic partial differential equations. SIAM J. Num. Anal. 42, 800–825 (2004)
5. Babuška, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with

uncertain coefficients by the finite element method: the stochastic formulation. Comp. Meth.
Appl. Mech. Engrg. 194, 1251–1294 (2005)

6. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial
differential equations with random input data. SIAM J. Num. Anal. 45, 1005–1034 (2007)

7. Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 7, 1–49 (1998)
8. Cao, Y.: On the rate of convergence of Wiener-Ito expansion for generalized random variables.

Stochastics 78, 179–187 (2006)
9. Christakos, G.: Random Field Models in Earth Sciences. Academic Press, San Diego, CA

(1992)
10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam

(1978)
11. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University

Press, Cambridge (1992)
12. Dennis J.E. Jr., Schnabel, R.B.: Numerical methods for unconstrained optimization and

nonlinear equations. Classics in applied mathematics. SIAM, Philadelphia, PA (1996)
13. Frauenfelder, Ph., Schwab, Chr., Todor, R.A.: Finite elements for elliptic problems with

stochastic coefficients. Comp. Meth. Appl. Mech. Engrg. 194, 205–228, (2005)
14. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18,

209–232 (1998)
15. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements – A Spectral Approach. Springer-Verlag,

Berlin (1991)
16. Ghanem, R.: Stochastic finite elements for heterogeneous media with multiple random non-

Gaussian properties. ASCE J. Engrg. Mech. 125, 24–40 (1999)
17. Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White Noise – An Infinite Dimensional Calculus.

Kluwer, Dordrecht (1993)
18. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.-S.: Stochastic Partial Differential Equations.

Birkhäuser Verlag, Basel (1996)
19. Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997)
20. Jardak, M., Su, C.-H., Karniadakis, G.E.: Spectral polynomial chaos solutions of the stochastic

advection equation. SIAM J. Sci. Comput. 17, 319–338 (2002)
21. Jeggle, H.: Nichtlineare Funktionalanalysis. Teubner, Stuttgart (1979)
22. Kallianpur, G.: Stochastic Filtering Theory. Springer-Verlag, Berlin (1980)
23. Karniadakis, G.E., Sue, C.-H., Xiu, D., Lucor, D., Schwab, C., Tudor, R.A.: Generalized

polynomial chaos solution for differential equations with random input. Research Report
2005-1, SAM, ETH Zürich, Zürich (2005)

24. Keese, A.: A review of recent developments in the numerical solution of stochastic PDEs
(stochastic finite elements). Informatikbericht 2003-6, Institute of Scientific Computing,
Department of Mathematics and Computer Science, Technische Universitt Braunschweig,
Brunswick (2003) http://opus.tu-bs.de/opus/volltexte/2003/504/

25. Krée, P., Soize, C.: Mathematics of Random Phenomena. D. Reidel, Dordrecht (1986)
26. Le Maı̂tre, O.P., Najm, H.N., Ghanem, R.G., Knio, O.M.: Multi-resolution analysis of Wiener-

type uncertainty propagation schemes. J. Comp. Phys. 197, 502–531 (2004)

http://opus.tu-bs.de/opus/volltexte/2003/504/

White Noise Analysis for Stochastic Partial Differential Equations 173

27. Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations. C. R.
Acad. Sci. Paris, Série I. 326, 1085–1092 (1998)

28. Malliavin, P.: Stochastic Analysis. Springer, Berlin (1997)
29. Matthies, H., Strang, G.: The solution of nonlinear finite element equations. Int. J. Numer.

Methods Engrg. 14, 1613–1626 (1979)
30. Matthies, H.G., Brenner, C.E., Bucher, C.G., Guedes Soares, C.: Uncertainties in probabilistic

numerical analysis of structures and solids – stochastic finite elements. Struct. Safety 19, 283–
336 (1997)

31. Matthies, H.G., Bucher, C.G.: Finite elements for stochastic media problems. Comp. Meth.
Appl. Mech. Engrg. 168, 3–17 (1999)

32. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial
differential equations. Comp. Meth. Appl. Mech. Engrg. 194, 1295–1331, (2005)

33. Matthies, H.G.: Quantifying Uncertainty: Modern Computational Representation of Proba-
bility and Applications. In: A. Ibrahimbegović and I. Kožar (eds.), Extreme Man-Made and
Natural Hazards in Dynamics of Structures. NATO-ARW series. Springer, Berlin (2007)

34. Matthies, H.G.: Stochastic Finite Elements: Computational Approaches to Stochastic Partial
Differential equations. Z. Angew. Math. Mech. 88, 849–873 (2008)

35. Matthies, H.G., Zander, E.: Solving stochastic systems with low-rank tensor compression.
Submitted to Linear Algebra and its Applications (2009)

36. Nobile, F., Tempone, R., Webster, C.G.: Sparse grid stochastic collocation method for elliptic
partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345
(2008)

37. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation
method for partial differential equations with random input data. SIAM J. Numer. Anal. 46,
2411–2442 (2008)

38. Novak, E., Ritter, K.: The curse of dimension and a universal method for numerical integration.
In: Nürnberger, G., Schmidt, J.W., Walz, G. (eds.) Multivariate Approximation and Splines,
ISNM. pp. 177–188. Birkhäuser Verlag, Basel (1997)

39. Oden, J.T.: Qualitative Methods in Nonlinear Mechanics. Prentice-Hall, Englewood Cliffs, NJ
(1986)

40. Petras, K.: Fast calculation of coefficients in the Smolyak algorithm. Numer. Algorithms 26,
93–109 (2001)

41. Roman, L.J., Sarkis, M.: Stochastic Galerkin Method for Elliptic SPDEs: A White Noise
Approach. Discrete and Continuous Dynamical Systems – Series B 6, 941–955 (2006)

42. Rozanov, Yu.: Random Fields and Stochastic Partial Differential Equations. Kluwer, Dordrecht
(1996)

43. Schuëller, G.I.: A state-of-the-art report on computational stochastic mechanics. Prob. Engrg.
Mech. 14, 197–321 (1997)

44. Schuëller, G.I.: Recent developments in structural computational stochastic mechanics. In:
Topping, B.H.V. (eds.) Computational Mechanics for the Twenty-First Century. pp. 281–310.
Saxe-Coburg Publications, Edinburgh (2000)

45. Schuëller, G.I., Spanos, P.D. (ed.): Monte Carlo Simulation. Balkema, Rotterdam (2001)
46. Segal, I.E., Kunze, R.A.: Integrals and Operators. Springer, Berlin (1978)
47. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Wellesley-Cambridge Press,

Wellesley, MA (1988)
48. Sudret, B., Der Kiureghian, A.: Stochastic finite element methods and reliability. A state-of-

the-art report. Report UCB/SEMM-2000/08, Department of Civil & Environmental Engineer-
ing, University of California, Berkeley, CA (2000)

49. Ullmann, E.: A Kronecker product preconditioner for stochastic Galerkin finite element
discretizations. SIAM J. Sci. Comput. 32, 923–946 (2010)

50. Vanmarcke, E.: Random Fields: Analysis and Synthesis. The MIT Press, Cambridge, MA
(1988)

51. Wan, X., Karniadakis, G.E.: An adaptive multi-element generalized polynomial chaos method
for stochastic differential equations. J. Comp. Phys. 209, 617–642 (2005)

174 H.G. Matthies

52. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via
generalized polynomial chaos. Comp. Meth. Appl. Mech. Engrg. 191, 4927–4948 (2002)

53. Xu, X.F.: A multiscale stochastic finite element method on elliptic problems involving
uncertainties. Comp. Meth. Appl. Mech. Engrg. 196, 2723–2736 (2007)

54. Zander, E., Matthies, H.G.: Tensor product methods for stochastic problems. Proc. Appl. Math.
Mech. 7, 2040067–2040068 (2008)

Smoothing Analysis of an All-at-Once
Multigrid Approach for Optimal Control
Problems Using Symbolic Computation

Stefan Takacs and Veronika Pillwein

Abstract The numerical treatment of systems of partial differential equations
(PDEs) is of great interest as many problems from applications, including the
optimality system of optimal control problems that is discussed here, belong to
this class. These problems are not elliptic and therefore both the construction of
an efficient numerical solver and its analysis are hard. In this work we will use all-
at-once multigrid methods as solvers. For sake of simplicity, we will only analyze
the smoothing properties of a well-known smoother.

Local Fourier analysis (or local mode analysis) is a widely-used tool to analyze
numerical methods for solving discretized systems of PDEs which has also been
used in particular to analyze multigrid methods. The rates that can be computed
with local Fourier analysis are typically the supremum of some rational function.
In several publications this supremum was merely approximated numerically by
interpolation. We show that it can be resolved exactly using cylindrical algebraic
decomposition which is a well established method in symbolic computation.

S. Takacs (�)
Doctoral Program Computational Mathematics, Johannes Kepler University, Altenbergerstr. 69,
4040 Linz, Austria
e-mail: stefan.takacs@dk-compmath.jku.at

V. Pillwein
Research Institute for Symbolic Computation, Johannes Kepler University, Altenbergerstr. 69,
4040 Linz, Austria
e-mail: veronika.pillwein@risc.jku.at

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 9,
© Springer-Verlag/Wien 2012

175

stefan.takacs@dk-compmath.jku.at
veronika.pillwein@risc.jku.at

176 S. Takacs and V. Pillwein

1 Introduction

Local Fourier analysis (or local mode analysis) is a commonly used approach for
designing and analyzing convergence properties of multigrid methods. In the late
1970s A. Brandt proposed to use Fourier series to analyze multigrid methods, see,
e.g., [2]. Local Fourier analysis provides a framework to analyze various numerical
methods with a unified approach that gives quantitative statements on the methods
under investigation, i.e., it leads to the determination of sharp convergence rates.
Other work on multigrid theory such as [1, 6, 9, 10] – to mention only a few –
typically just show convergence and do not give sharp or realistic bounds for
convergence rates.

Local Fourier analysis can be justified rigorously only in special cases, e.g.,
on rectangular domains with uniform grids and periodic boundary conditions.
However, results obtained with local Fourier analysis can be carried over to more
general problems, see, e.g. [3]. In this sense it can be viewed as heuristic approach
for a wide class of applications.

Understanding local Fourier analysis as a machinery for analyzing a multigrid
method, we apply it in this paper to a model problem and some specific solvers. Still,
we keep in mind that this analysis can be carried over to a variety of other problems
and solvers. This type of generalization has been carried out, e.g., for methods
to solve optimal control problems that have been discussed in [14], [1] and [9].
In [16] the method is explained as machinery and a local Fourier analysis software
LFA is presented. This software can be configured using a graphical user interface
and allows to approximate (numerically) smoothing and convergence rates based on
local Fourier analysis approaches for various problems and multigrid approaches.

Neither the proposed multigrid method nor its application to the optimal
control problem discussed in this paper are new and numerical results have been
published in various papers. The proposed smoother belongs to the class of Vanka
smoothers [15]. In [1] this smoother was used in a finite difference framework
and – beside a second kind of analysis – local Fourier analysis was used to analyze
the method. In that paper the condition characterizing the smoothing rate was
approximated numerically.

The goal of this paper is to show that the analysis can be carried out in an entirely
symbolic way and as such leads to sharp estimates on the smoothing rate for a
collective Jacobi relaxation and collective Gauss-Seidel iteration scheme. For this
purpose we restrict ourselves to the case of a one-dimensional model problem and to
piecewise linear ansatz functions (Courant elements). Aiming at an audience from
both numerical and symbolic mathematics we try to stay at an elementary level and
keep this note self-contained.

The key for involving symbolic algorithms is a proper reformulation of the
quantities to be analyzed in terms of logical formulas on polynomial inequalities.
These real formulas can then be simplified by means of quantifier elimination
using cylindrical algebraic decomposition. This tool has been applied earlier in the
analysis of (systems of) ordinary and partial differential-difference equations [8]

Smoothing Analysis of an All-at-Once Multigrid Approach 177

where the necessary conditions for stability, asymptotic stability and well-posedness
of the given systems were transformed into statements on polynomial inequalities
using Fourier or Laplace transforms.

This paper is organized as follows. In subsection 1.1 we introduce a simple
model problem and in subsection 1.2 we propose a multigrid approach to solve
the discretized optimality system of this model problem. The local Fourier analysis
is introduced and carried out in Sects. 2 and 4, respectively. Section 3 gives a brief
overview on quantifier elimination and cylindrical algebraic decomposition, i.e., on
the symbolic methods applied in order to resolve smoothing rates symbolically.

1.1 Model Problem

As a model problem we consider the following optimal control problem of tracking
type: Minimize

J.y; u/ WD 1

2
ky � yDk2L2.˝/

C ˛

2
kuk2

L2.˝/
;

subject to the elliptic boundary value problem (BVP)

��y D u in ˝ and y D 0 on @˝; (1)

where y 2 H 1
0 .˝/ is the state variable and u 2 L2.˝/ is the control variable. The

function yD 2 L2.˝/ is given, ˛ > 0 is some fixed regularization or cost parameter
and ˝ is a given domain with boundary @˝ . Here, the Banach space L2.˝/ is the
set of square integrable functions on ˝ with associated standard norm kf kL2.˝/ WD
.f; f /

1=2

L2.˝/
, where .f; g/L2.˝/ WD

R
˝

f .x/ g.x/ dx. The Sobolev space H 1
0 .˝/ is

the set of L2-functions vanishing on the boundary with weak derivatives in L2.˝/.
Note that for this setting the boundary value problem is (in weak sense) uniquely

solvable in y for every given control u. At first we rewrite the BVP (1) in variational
form: Find y 2 H 1

0 .˝/ such that

.ry;rp/L2.˝/ D .u; p/L2.˝/

holds for all p 2 H 1
0 .˝/, where rT is the weak gradient.

Solving the model problem is equivalent to finding a saddle point of the Lagrange
functional which leads to the first order optimality conditions (the Karush-Kuhn-
Tucker system or, in short, KKT system), given by: Find .y; u; p/ 2 H 1

0 .˝/ �
L2.˝/ �H 1

0 .˝/ such that

.y;ey/L2.˝/ C .rp;rey/L2.˝/D .yD;ey/L2.˝/

˛ .u;eu/L2.˝/ � .p;eu/L2.˝/ D 0

.ry;rep/L2.˝/ � .u;ep/L2.˝/ D 0

178 S. Takacs and V. Pillwein

holds for all .ey;eu;ep/ 2 H 1
0 .˝/ � L2.˝/ � H 1

0 .˝/. The second equation
immediately implies that u D ˛�1p, which allows a reduction to the following
system (2 � 2 formulation of the KKT system): Find .y; p/ 2 X WD V � V WD
H 1

0 .˝/ �H 1
0 .˝/ such that

.y;ey/L2.˝/ C .rp;rey/L2.˝/D .yD;ey/L2.˝/

.ry;rep/L2.˝/ � ˛�1.y;ep/L2.˝/D 0

holds for all .ey;ep/ 2 X .
For finding the approximate solution to this problem we use finite element

methods (FEM). Therefore we assume to have a sequence of grids partitioning the
given domain ˝ starting from an initial (coarse) grid on grid level k D 0. The grids
on grid levels k D 1; 2; : : : are constructed by refinement, i.e., the grid points of
level k � 1 are also grid points of level k. Using standard finite element techniques
(Courant elements), we can construct finite dimensional subsets Vk � V , where the
dimension Nk depends on the grid level k. By Galerkin principle, the finite element
approximation .yk; pk/ 2 Xk WD Vk � Vk fulfills

.yk;eyk/L2.˝/ C .rpk;reyk/L2.˝/D .yD;eyk/L2.˝/

.ryk;repk/L2.˝/ � ˛�1.yk;epk/L2.˝/D 0
(2)

for all .eyk;epk/ 2 Xk.
Assuming to have a (nodal) basis ˚k WD .'k;i /

Nk

iD1 for Vk , we can rewrite the
optimality system (2) in matrix-vector notation as follows:

�
Mk Kk

Kk �˛�1Mk

�

„ ƒ‚ …
Ak WD

y

k

p
k

!

„ƒ‚…
xk WD

D

g
k

0

!

„ƒ‚…
f

k
WD

; (3)

where the mass matrix Mk and the stiffness matrix Kk are given by

Mk WD ..'k;j ; 'k;i /L2.˝//
Nk

i;jD1 and Kk WD ..r'k;j ;r'k;i /L2.˝//
Nk

i;jD1;

respectively, and the right hand side vector g
k

is given by

g
k
WD ..yD; 'k;i /L2.˝//

Nk

iD1:

The symbols y
k

and p
k

denote the coordinate vectors of the corresponding
functions yk and pk with respect to the nodal basis ˚k .

Smoothing Analysis of an All-at-Once Multigrid Approach 179

1.2 Multigrid Methods and Collective Point Smoothers

In this section we briefly introduce the multigrid framework that we analyze in this
paper. Starting from an initial approximation x

.0/

k one step of the multigrid method
with �1 C �2 smoothing steps for solving a discretized equation Ak xk D f

k
on

grid level k is given by:

• Apply �1 (pre-)smoothing steps

x
.0;m/

k WD x
.0;m�1/

k C � OA �1
k .f

k
�Ak x

.0;m�1/

k / for m D 1; : : : ; �1 (4)

with x
.0;0/

k WD x
.0/

k , where the choice of the damping parameter � and the

preconditioner OAk is discussed below.

• Apply coarse-grid correction

– Compute the defect and restrict to the coarser grid
– Solve the problem on the coarser grid
– Prolongate and add the result

If the problem on the coarser grid is solved exactly (two-grid method), then we
obtain

x
.1;��2/

k WD x
.0;�1/

k C I k
k�1A

�1
k�1I

k�1
k .f

k
�Ak x

.0;�1/

k /:

• Apply �2 (post-)smoothing steps

x
.1;m/

k WD x
.1;m�1/

k C � OA �1
k .f

k
�Ak x

.1;m�1/

k / for m D ��2 C 1; : : : ; 0

to obtain the next iterate x
.1/

k WD x
.1;0/

k .

The smoothing steps are applied in order to reduce the high-frequency error,
whereas the coarse-grid correction takes care of the low-frequency parts of the
overall defect. In practice the problem on grid level k � 1 is handled by applying
one step (V-cycle) or two steps (W-cycle) of the proposed method, recursively, and
just on the coarse grid level k D 0 the problem is solved exactly. The convergence
of the two-grid method implies the convergence of the W-cycle multigrid method
under mild assumptions, so we restrict ourselves to the analysis of the two-grid
method only.

The intergrid-transfer operators I k
k�1 and I k�1

k are chosen in a canonical way: we
use the canonical embedding for the prolongation operator I k

k�1 and its adjoint as
restriction operator I k�1

k .
Next we need to specify the smoothing procedure (4). The preconditioning

matrix OAk is typically some easy-to-invert approximation of the matrix Ak. In
case of positive definite matrices (which may result from discretizing elliptic
scalar BVPs), the preconditioning matrix can be composed in an either additive
or multiplicative Schwarz manner based on local problems which live on patches,

180 S. Takacs and V. Pillwein

boxes or, which is the easiest case, just on points. The two main pointwise
methods are Jacobi relaxation (additive Schwarz method) and Gauss-Seidel iteration
(multiplicative Schwarz method).

We extend these methods to block-systems by combining (again in an additive or
multiplicative Schwarz manner) local problems which involve the complete system
of BVPs. Therefore we first recall that standard Jacobi relaxation, which can be used
as smoother for the linear system Ak xk D f

k
, where Ak is symmetric and positive

definite, reads as

x
.0;mC1/
i WD x

.0;m/
i C � a�1

i i

0

@fi �
NkX

jD1

aij x
.0;m/
j

1

A;

where x
.0;m/
i , fi and aij are the components of the vectors x

.0;m/

k and f
k

and the
matrix Ak , respectively. This iteration scheme can be carried over to the saddle
point problem (3), which leads to the collective Jacobi relaxation:

x.0;mC1/
i WD x.0;m/

i C � A �1
i i

0

@fi �
NkX

jD1

Aij x.0;m/
j

1

A; (5)

where

x.0;m/
i WD .y

.0;m/
i ; p

.0;m/
i /T ; fi WD .gi ; 0/T and Aij WD

�
mij kij

kij �˛�1mij

�
:

(6)
Here again y

.0;m/
i , p

.0;m/
i , gi , mij and kij are the components of y.0;m/

k
, p.0;m/

k
, g

k
,

Mk and Kk.
Collective iteration schemes can be represented in the compact notation (4) using

the preconditioning matrix OA
.jac/

k , given by

OA
.jac/

k WD
 OM .jac/

k
OK.jac/

kOK.jac/

k �˛�1 OM .jac/

k

!
WD
�

diag Mk diag Kk

diag Kk �˛�1diag Mk

�
;

i.e., OM .jac/

k and OK.jac/

k are defined as the diagonals of Mk and Kk , respectively. The
damping parameter � is chosen to be in .0; 1/.

The preconditioning matrix of the collective Gauss-Seidel iteration can be
constructed in the same way and is given by

OA .gs/

k WD
 OM .gs/

k
OK.gs/

kOK.gs/

k �˛�1 OM .gs/

k

!
;

Smoothing Analysis of an All-at-Once Multigrid Approach 181

where OM .gs/

k and OK.gs/

k are the lower left triangular parts (including the diagonals) of
Mk and Kk, respectively and the damping parameter � is chosen to be 1. We should
mention that in both cases the preconditioning matrices OM .jac/

k , OK.jac/

k , OM .gs/

k and
OK.gs/

k are the preconditioning matrices that represent classical Jacobi or Gauss-
Seidel iteration for linear systems with system matrices Mk and Kk , respectively.

Numerical examples show good behavior of multigrid methods using such
iterations as smoothing procedures and have been discussed in, e.g., [1] or [9].

We want to stress that in either case the application of the preconditioning
matrix OAk can be realized efficiently if the iteration is implemented analogously
to standard Jacobi or Gauss-Seidel iteration, as done in (5) and (6) for the case of
collective Jacobi iteration. Executing the algorithm then only vectors in R

2 need to
be multiplied with 2 � 2 matrices and 2 � 2 linear systems need to be solved. For
more detailed information on how to implement collective iteration schemes see,
e.g., [9].

2 Local Fourier Analysis

Convergence properties of multigrid methods for the model problem have been
investigated in a wide range of papers [1, 6, 9, 10]. In this paper we want to con-
centrate on an analysis, where symbolic computation can contribute significantly.
For the time being, we complete the first step by analyzing the smoothing iteration.
As mentioned earlier, we restrict the smoothing analysis to the case of a one
dimensional domain ˝ . While the proposed numerical method can be applied also
to higher dimensions, the analysis of this case as well as the analysis of the full
two-grid cycle is ongoing work.

For the analysis of the smoothing procedure introduced in the last section, we
define the iteration matrix of the smoothing step by

Sk WD I � � OA �1
k Ak;

which represents the modification of the error effected by the smoothing procedure,
i.e.,

x
.0;m/

k � x�k D Sk.x
.0;m�1/

k � x�k /;

where x�k WD A �1
k f

k
denotes the exact solution to the system.

Certainly, if it can be shown that the spectral radius of the iteration matrix or,
even better, its norm, are smaller than 1, then this yields convergence of the iterative
scheme. At present time, we do not aim at proving convergence, but at showing
that it is a good smoother. In other words, we want to show that it reduces the high
frequency error terms which we do using local Fourier analysis that is introduced
next.

182 S. Takacs and V. Pillwein

2.1 Local Fourier Analysis Framework

Since for local Fourier analysis the boundary is neglected by assuming periodic
boundary conditions that allow to extend a bounded domain ˝ to the entire space
R, see [3], from now on we assume that ˝ D R. Let us repeat that good
convergence and smoothing rates computed using local Fourier analysis for simple
cases, typically also indicate good behavior of the analyzed methods in more general
cases.

On this domain ˝ D R, we assume to have on each grid level k D 0; 1; 2; : : : a
uniform grid with nodes

xk;n WD n hk for n 2 Z;

where the uniform grid size is given by hk D 2�k . The functions in Vk are assumed
to be continuous on the domain and to be linear between two nodes (Courant
elements). This way the discretized function can be specified by prescribing the
values on the nodes only.

The first step of local Fourier analysis consists of constructing Fourier vectors
that diagonalize both mass and stiffness matrix. For every � 2 � WD Œ��; �/ and
every grid level k, we can define a Fourier vector 'k.�/ 2 R

Z as follows:

'k.�/ WD .ei�xk;n=hk /n2Z:

It is easy to see that every vector in R
Z can be expressed as linear combination of

countable infinitely many Fourier vectors. In case of a bounded domain, just finitely
many Fourier vectors or functions would be necessary. Nonetheless for the analysis,
all � 2 � D Œ��; �/ are considered.

2.2 Operators in Local Fourier Space

The Fourier vectors defined in the preceding subsection diagonalize the blocks
of our system matrix. Since we consider grids with uniform mesh-size hk , the
(infinitely large) mass matrix Mk and the (infinitely large) stiffness matrix Kk can
be computed explicitly:

Mk D hk

6

0

BBBB@

: : :
: : :

: : :

1 4 1

1 4 1
: : :

: : :
: : :

1

CCCCA
and Kk D 1

hk

0

BBBB@

: : :
: : :

: : :

�1 2 �1

�1 2 �1
: : :

: : :
: : :

1

CCCCA
:

Smoothing Analysis of an All-at-Once Multigrid Approach 183

It is easy to see that the multiplication of one of these matrices with the vector
'k.�/ equals the multiplication of this vector with the symbol of the matrix, where
the symbols are given by:

Mk 'k.�/D .4Cei�Ce�i� /hk

6„ ƒ‚ …
Mk.�/WD

'k.�/ and Kk 'k.�/ D 2 � ei� � e�i�

hk„ ƒ‚ …
Kk.�/WD

'k.�/:

Thus indeed the Fourier vectors are the eigenvectors with eigenvalues Mk.�/ and
Kk.�/, respectively, and analogously for the preconditioning matrices. For the
collective Jacobi relaxation, the preconditioning matrix itself is a diagonal matrix,
therefore

OM .jac/

k 'k.�/ D 2hk

3„ƒ‚…
OM .jac/

k .�/WD

'k.�/ and OK.jac/

k 'k.�/ D 2

hk„ƒ‚…
OK.jac/
k .�/WD

'k.�/

holds. As the block matrices Ak and OAk are built from such matrices, we can
conclude that for all � 2 �,

span

(
'k.�/

0

!
;

0

'k.�/

!)

is invariant under the action of those block-matrices. Hence it suffices to consider
only the symbol of the block matrix Ak, given by

Ak.�/ WD
�

Mk.�/ Kk.�/

Kk.�/ �˛�1Mk.�/

�
;

and the symbol OA
.jac/

k .�/ defined analogously.
As mentioned earlier, the smoothing iteration shall reduce the high-frequency

parts of the error. To measure this phenomenon, we introduce the smoothing rate

q.�/ WD sup
�2�.high/

sup
hk>0

sup
˛>0

�.�; hk; ˛; �/; (7)

where �.high/ WD Œ��; �/nŒ��
2
; �

2
/ is the set of high frequencies and � is defined

as the spectral radius of the Fourier-transformed smoothing operator given by

�.�; hk; ˛; �/ WD 	
�

I � �
� OAk.�/

��1

A k.�/
„ ƒ‚ …

Sk.�/WD

�
: (8)

184 S. Takacs and V. Pillwein

In (7) the supremum is not only taken over all � 2 �.high/, but also over all grid sizes
hk > 0 and choices of the parameter ˛ > 0. Therefore, we compute an upper bound
for the smoothing rate which is independent of hk (which allows to show optimal
convergence) and the parameter ˛ (which allows to show robust convergence). For
obvious reasons, the supremum is not taken with respect to the damping parameter
� , but is adjusted within the method such that the smoothing rate is optimal for
Jacobi relaxation.

In principle it would be necessary to analyze the norm of the iteration matrix
in (8) rather than analyzing the spectral radius. The spectral radius, however, equals
the infimum over all matrix norms, which implies that for every
 > 0 there is a
matrix norm such that

kSk.�/k � .1C
/ 	.Sk.�//;

see [7]. For the model problem and both proposed smoothing procedures (collective
Jacobi relaxation and collective Gauss-Seidel iteration) straight-forward computa-
tions show that the spectral radius of the symbol of the smoothing operator 	.Sk.�//

is equal to its norm kSk.�/k OX , if the matrix-norm is chosen as

kM k OX WD
�����

�
˛1=2

1

�
M

�
˛1=2

1

��1
�����

`2

; (9)

where k � k`2 denotes the spectral norm. Observe that the scaling of the state y and
the adjoint state p in this norm equals to the scaling in the norm k � kX in classical
theory that can be found in [10].

An equivalent formulation for the definition of the smoothing rate (7) using
quantifiers is: Determine � such that

8 � 2 �.high/ 8 hk > 0 8 ˛ > 0 W �2.�; hk; ˛; �/ � � (10)

holds. Then for every � 2 .0; 1/ the value of q.�/ is the smallest such �.
The computation of �.�; hk; ˛; �/ is straight forward, but the computation of

q.�/ is non-trivial. This is where symbolic computation enters our analysis. In order
to determine q (that is either a polynomial in � or a constant) we invoke quantifier
elimination using cylindrical algebraic decomposition (CAD) that is introduced in
the next section. Note that for both preconditioners under consideration, (10) is a
quantified formula on trigonometric polynomials (after clearing denominators). For
the case of a collective Jacobi relaxation � is given by

�2.�; hk; ˛; �/ D h4
k..cos � C 2/� � 2/2 C 36˛..cos � � 1/� C 1/2

4
�
h4

k C 9˛
� :

CAD, as we detail in the next section, accepts as input only polynomial (or more
general rational) inequalities over the reals. This is a complication that is easily

Smoothing Analysis of an All-at-Once Multigrid Approach 185

resolved by replacing cos � by a real variable c 2 Œ�1; 1� and, if necessary, sin � by
a real variable s 2 Œ�1; 1� together with Pythagoras’ identity s2 C c2 D 1.

3 Quantifier Elimination Using Cylindrical Algebraic
Decomposition

So far we have reformulated the task of determining the smoothing rate for our
multigrid methods to the problem of resolving a quantified polynomial inequality.
That is, the given statement is of the form

Q1 x1 : : : Qn xn W A.x1; : : : ; xn; y1; : : : ; ym/;

where Qi denote quantifiers (either 8 or 9) and A.x1; : : : ; xn; y1; : : : ; ym/ is a
boolean combination of polynomial inequalities. The problem of finding an equiva-
lent, quantifier free formula B.y1; : : : ; ym/ consisting of a boolean combination of
polynomial inequalities depending only on the free variables is called quantifier
elimination. The first algorithm to solve this problem over the reals was given
by A. Tarski [13] in the early 1950s. His method, however, was practically not
efficient. Nowadays modern implementations [4, 11, 12] of G. Collins’ cylindrical
algebraic decomposition [5] make it possible to carry out nontrivial computations in
a reasonable amount of time.

A simple example is given by: Determine a bound B D B.z/ for 0 < z < 1 such
that

8 0 < x < 1 8 0 < y < 1 W x

y C z
C y

x C z
� B;

or equivalently,

8 x 8 y W 0 < x < 1 ^ 0 < y < 1) x

y C z
C y

x C z
� B:

A CAD-computation quickly yields that B.z/ � 1
z . In cases where no free variables

appear in the input, B is one of the logical constants True or False. Applied to a
quantifier free formula the result of a CAD-computation is an equivalent formula
that is normalized in a certain sense.

When executing the algorithm first the quantifier free part of the formula is
considered, i.e., in the example above the inequalities 0 < x < 1; 0 < y < 1

and x
yCz C y

xCz � B . These inequalities can be reformulated in terms of inequalities
by clearing denominators in the appropriate way. The given polynomials define a
natural decomposition of the real space (in the example R4) into maximal connected
cells on which the polynomials are sign invariant. This decomposition is then further
refined to obtain cells on which the polynomials are not only sign invariant, but also
cylindrically arranged. The orientation of this cylindrical arrangement depends on
the order of the variables that is fixed by the quantifiers for the bound variables and

186 S. Takacs and V. Pillwein

the user (or the implementation) for the free variables, respectively. In this sense
one may consider variables as being on the bottom (or innermost) level or on higher
levels of the resulting CAD. Once such a cylindrical decomposition is obtained the
quantifiers can be eliminated by considering each of the cells in an order determined
by the quantifiers. The result is a formula where all the bound variables have been
eliminated and the description of the cells where the formula holds is given solely
in terms of the free variables as shown in the example above.

This procedure may be a very costly one depending on the number of variables
and the degrees of the polynomials and even though termination of the algorithm is
proven, the actual computation might exceed the expected life-time of the authors.
Although it might seem a high price to pay, the gain is an optimal bound for the
given formula that is determined by a proving procedure that is not approximate in
any way.

The formula for � as stated above is a rational function in the given indetermi-
nates. Adding the necessary case distinctions for the denominators that arise when
multiplying both sides of an inequality (which is commonly handled internally by
the implementations), this is still a valid input for a CAD-computation.

A major issue is the runtime complexity of CAD that depends heavily on the
input parameters such as number of polynomial inequalities, polynomial degrees
and number of variables. In the worst case it is doubly exponential in the number of
variables and this worst case bound is not only met in theory, but often experienced
in practice. As we will see below, already for the one dimensional analysis suitable
substitutions of the variables are applied in order to speed up the computations.
These substitutions aim at reducing the number of variables on the one hand and
lowering the polynomial degrees on the other hand.

For the forthcoming analysis of the two (or even three) dimensional case, further
simplifications will be necessary because of the increase in both, the number of
unknowns as well as the polynomial degrees of the given formulas.

4 Computing the Smoothing Rate

Now we are in the position to state the main results of this paper, the smoothing
rates for collective Jacobi relaxation and collective Gauss-Seidel iteration.

4.1 Smoothing Property: Collective Jacobi Relaxation

In the smoothing step we are concerned with the high-frequency parts of the error.
Consequently, if we replace cos � by a real variable c, then the condition � 2 �.high/

translates to �1 � c � 0.
With this substitution in the case of a collective Jacobi relaxation � is given by

�.�; hk; ˛; �/ D e�.cos �; hk; ˛; �/, where

Smoothing Analysis of an All-at-Once Multigrid Approach 187

e�2.c; hk; ˛; �/ WD h4
k..c C 2/� � 2/2 C 36˛..c � 1/� C 1/2

4
�
h4

k C 9˛
� :

With this rewriting the condition in formula (10) has become a purely polynomial
inequality and can invoke CAD to determine q.�/. For this purpose we used the
CAD-implementation in Mathematica. The subscript 2 for � below indicates that
we are dealing with the square of the actual expression.

In[8]:= �2 D h4..c C 2/� � 2/2 C 36˛..c � 1/� C 1/2

4 .h4 C 9˛/
I

In[9]:= ResolveŒForAllŒc;�1 � c � 0;ForAllŒh; h > 0;ForAllŒ˛; ˛ > 0; �2 �
����; f�;�g;Reals�

Out[9]=
�
� � 0&&� � 4�2 � 4� C 1

� k
�

0 < � � 4

5
&&� � 1

4

�
�2 � 4� C 4

�� k
�

� >
4

5
&&� � 4�2 � 4� C 1

�

The computation takes about one second and the result is a quantifier-free formula
equivalent to the quantified formula given in (10). Note also that this is again a
statement formulated in terms of polynomial inequalities. It is normalized in the
sense that the parameter � is assumed to be on the bottom level, which is indicated
by the order of variables within the “Resolve”-command. Thus the output is sorted
in a way that the conditions on � are inequalities comparing to (algebraic) numbers,
whereas the conditions on � on the next higher level are formulated in terms of � .

So for every � the function value q2.�/ is the smallest � fulfilling Out[2]. For
instance, if we plug � D 1

2
into Out[2], the formula reduces to:

False _
�

True^ � � 3

4

�
_ False:

As q2
�

1
2

�
is the smallest � fulfilling the inequality, we have q2

�
1
2

� D 3
4
. Guided by

this example we read off the general form for q2.�/ which is a piecewise quadratic
function given by

q2.�/ D

8
ˆ̂<

ˆ̂:

4�2 � 4� C 1 for � � 0
1

4

�
�2 � 4� C 4

�
for 0 < � � 4

5
4�2 � 4� C 1 for 4

5
< �

: (11)

Summarizing we have determined the supremum in (7) and therefore the smoothing
rate q.�/. If we take the square root of (11) and restrict ourselves to the relevant
range � 2 Œ0; 1�, we obtain the smoothing rates for the collective Jacobi relaxation:

188 S. Takacs and V. Pillwein

Fig. 1 Smoothing factor
depending on damping
parameter �

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
qSM

q.�/ D

8
<̂

:̂

1

2
.2 � �/ for 0 � � � 4

5

2� � 1 for
4

5
< � � 1

: (12)

Since our method gives an equivalent reformulation, we know that these bounds on
the smoothing rate are sharp. The graph of the function q can be seen in Fig. 1. From
this we see that q.�/ takes its minimum for � D 4

5
with value q

�
4
5

� D 3
5
. For the

canonical choice � D 1
2
, we obtain q

�
1
2

� D 3
4
.

A smoothing analysis in a similar setting has been carried out in [1], where
the authors obtain estimates for smoothing and convergence rates using numerical
interpolation. To the knowledge of the authors (12) and (13) below provide the first
rigorously proven sharp bounds for the smoothing rate.

4.2 Smoothing Property: Collective Gauss-Seidel Iteration

In this subsection we carry over the smoothing analysis which we have done for the
collective Jacobi relaxation to the collective Gauss-Seidel iteration. Again we can
determine the symbol of the involved preconditioning matrices:

OM .gs/

k 'k.�/ D .4C e�i� /hk

6„ ƒ‚ …
OM .gs/

k .�/WD

'k.�/ and OK.gs/

k 'k.�/ D 2 � e�i�

hk„ ƒ‚ …
OK.gs/

k .�/WD

'k.�/:

The procedure for determining �.�; h; ˛/ (which now is independent of �) is
completely analogous to the previous case. Again, by our choice of matrix norm
k � k OX , the same value for � is obtained no matter whether we consider the spectral
radius or the norm.

Smoothing Analysis of an All-at-Once Multigrid Approach 189

In order to have a purely polynomial input for the CAD computations, we
simplify the formula for � : the occurrences of cos � and sin � are replaced by c

and s, respectively. Moreover we expand numerator and denominator and replace
all occurrences of s2 by 1 � c2 thus arriving at numerator and denominator
being linear in s. After these simple rewriting steps we obtain �.�; hk; ˛/ D
e�.sin �; cos �; hk; ˛/, where

e�2.s; c; hk; ˛/ WD
�
h4

k C 36˛
� �

.17C 8c/h4
k C 72h2

k˛1=2jsj C 36.5� 4c/˛
�

.17C 8c/2h8
k C 72.40c2 � 28c C 13/h4

k˛ C 1296.5� 4c/2˛2
:

The smoothing rate q is again the supremum over all high frequencies, grid sizes
and choices of the parameter ˛ and is given by

q2 D sup
.s;c/2D

sup
hk>0

sup
˛>0

e�2.s; c; hk ; ˛/;

where D WD f.s; c/ 2 R
2 W s2 C c2 D 1; c � 0g.

Note that in this definition above still the absolute value of s and a term ˛1=2

occurs. Before we can invoke CAD-computations, we have to rewritee� as rational
function. A first simplification is that as e� does not depend on the sign of s, we
can restrict ourselves to assuming only non-negative values and thus replace jsj by
s � 0. To eliminate also ˛1=2 in the numerator, we replace ˛ by ę2, where ę > 0.
Having completed these rewritings the final formula for q reads as

q2D sup
.s;c/2 QD

sup
hk>0

sup
Q̨>0

�
h4

kC36ę2
� �

.17C 8c/h4
kC72h2

kęsC36.5� 4c/ę2
�

.17C 8c/2h8
kC72.40c2 � 28cC13/h4

kę2C1296.5� 4c/2ę4
;

where eD WD f.s; c/ 2 R
2 W s2 C c2 D 1; c � 0; s � 0g. We can again rewrite the

supremum as quantified expression where the quantifiers can be eliminated with the
help of a CAD computation. With Mathematica’s quantifier elimination algorithm,
we obtain the smoothing rate for the collective Gauss-Seidel iteration after about
twenty minutes:

q D 1
7
.3Cp2/ � 0:63: (13)

Even though twenty minutes are not a very long time to wait for a result that needs
to be obtained only once, it still seems too long for such a simple formula. We can
speed up the calculation significantly by reducing both the number of variables and
the degrees of the polynomials by substitution using the variable WD h2

k=ę > 0.
This substitution reduces the formula for q to

q2 D sup
.s;c/2eD

sup
>0

�
2 C 36

� �
.17C 8c/2 C 72s C 36.5� 4c/

�

.17C 8c/24 C 72.40c2 � 28c C 13/2 C 1296.5� 4c/2
:

190 S. Takacs and V. Pillwein

Based on this representation Mathematica’s quantifier elimination algorithm is able
to derive q within about twenty seconds.

5 Concluding Remarks

In this paper we have shown a strategy to compute the smoothing rate for a multigrid
method using collective Jacobi relaxation or Gauss-Seidel iteration by means of
symbolic computation in an entirely automatic manner. The proposed strategy
strongly relies on the fact that local Fourier analysis is a systematic machinery which
is applied to the problem and the given numerical method. Typically this approach
leads to determining the supremum of an explicitly given term.

On the one hand, the smoothing rates we obtained this way may be viewed as an
interesting result on their own. On the other hand, these rates will also enter a full
two- or multigrid analysis which again can be done using local Fourier analysis.

Also for the full analysis, or the extension to higher dimensional cases, Fourier
analysis leads to an expression that in the first step is a rational function in the mesh
size hk , the regularization parameter ˛, the damping parameter � , and trigonometric
expressions of the frequencies � . This is in particular the case for the model problem
described in this paper for the above mentioned generalizations.

Theoretical results guarantee that also these problems can be solved with the
methods applied in this work. To obtain the full results in reasonable time, it is
necessary to apply proper strategies to reduce the complexity of the problems in the
formulation of the input which is ongoing work.

Acknowledgements We thank the anonymous referees for their remarks that have significantly
improved the quality of this paper. This work is supported by the Austrian Science Fund (FWF)
under grants W1214/DK12 and DK6.

References

1. Borzi, A., Kunisch, K., Kwak, D.Y.: Accuracy and convergence properties of the finite
difference multigrid solution of an optimal control optimality system. SIAM J. Control Optim
41(5), 1477–1497 (2003)

2. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31, 333–
390 (1977)

3. Brandt, A.: Rigorous quantitative analysis of multigrid, I: Constant coefficients two-level cycle
with L2-norm. SIAM J. Numer. Anal. 31(6), 1695–1730 (1994)

4. Brown, C.W.: QEPCAD B – a program for computing with semi-algebraic sets. Sigsam
Bulletin 37(4), 97–108 (2003)

5. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposi-
tion. In Automata theory and formal languages (Second GI Conference, Kaiserslautern, 1975),
Lecture Notes in Computer Science, Vol. 33, pp. 134–183. Springer, Berlin (1975)

6. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)
7. Holmes, R.B.: A formula for the spectral radius of an operator. Am. Math. Mon. 75(2), 163–

166 (1968)

Smoothing Analysis of an All-at-Once Multigrid Approach 191

8. Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. J. Symbolic
Comput. 24(2), 161–187 (1997); Applications of quantifier elimination (Albuquerque, NM,
1995).

9. Lass, O., Vallejos, M., Borzi, A., Douglas, C.C.: Implementation and analysis of multigrid
schemes with finite elements for elliptic optimal control problems. Computing 84(1–2), 27–48
(2009)

10. Schöberl, J., Simon, R., Zulehner, W.: A Robust Multigrid Method for Elliptic Optimal Control
Problems. SIAM J. Numer. Anal. 49, 1482 (2011)

11. Seidl, A., Sturm, T.: A generic projection operator for partial cylindrical algebraic decom-
position. In Proceedings of the 2003 International Symposium on Symbolic and Algebraic
Computation, pp 240–247 (electronic), ACM Press, New York (2003)

12. Strzeboński, A.: Solving systems of strict polynomial inequalities. J. Symbolic Comput. 29(3),
471–480 (2000)

13. Tarski, A.: A decision method for elementary algebra and geometry. 2nd ed. University of
California Press, Berkeley and Los Angeles, California (1951)

14. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001)
15. Vanka, S.P.: Block-implicit multigrid solution of Navier-Stokes equations in primitive vari-

ables. J. Comput. Phys. 65, 138–158 (1986)
16. Wienands, R., and Joppich, W. Practical Fourier analysis for multigrid methods. Chapman &

Hall, CRC (2005)

Analytical Evaluations of Double Integral
Expressions Related to Total Variation

Carsten Pontow and Otmar Scherzer

Abstract In this paper, for certain classes of functions, we present analytical
evaluations of double integral expressions representing approximations of the total
variation seminorm. These calculations are carried out by using the Maple computer
algebra software package in a sophisticated way.

The derived expressions can be used for approximations of the total variation
seminorm, and, in particular, can be used for efficient numerical total variation
regularization energy minimization.

1 Introduction

Let N 2 f1; 2g and let � denote a bounded connected subset of RN with Lipschitz-
continuous boundary. In this paper we address the problem of evaluating double
integrals of the kind

Rn.f / WD
Z

�

Z

�

jf .x/ � f .y/j
jx � yj 'n.x � y/ dx dy:

where f is a measurable real function defined on � and .'n/ denotes a sequence of
non-negative, radially symmetric, and radially decreasing functions from L1.RN /

satisfying for every ı > 0

O. Scherzer (�)
RICAM, Austrian Academy of Sciences & Computational Science Center, University of Vienna,
Altenbergerstraße 69, 4040 Linz, Austria
e-mail: otmar.scherzer@univie.ac.at

C. Pontow
Computational Science Center, University of Vienna, Nordbergstraße 15, 1090 Wien, Austria
e-mail: carsten.pontow@univie.ac.at

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 10,
© Springer-Verlag/Wien 2012

193

otmar.scherzer@univie.ac.at
carsten.pontow@univie.ac.at

194 C. Pontow and O. Scherzer

lim
n!1

Z

fxWjxj>ıg
'n.x/ dx D 0 (1)

and for all n 2 N Z

�

'n.x/ dx D 1: (2)

Conditions (1) and (2) imply that the unit mass of the functions 'n concentrates
around the origin as n strives to infinity. The properties of .'n/ imply further that
this sequence represents an approximation of the identity.

The integral expression above occurred in papers by Bourgain et al. [3] and
Dávila [6], providing new characterizations of the total variation seminorm. In fact,
they proved that for every function f of bounded variation

1

K1;N

lim
n!1Rn.f / D jDf j (3)

and that the above limit diverges to infinity if f is not a function of bounded
variation. In the above equation the constantK1;N is a real constant depending only
on dimensionN and jDf j denotes the total variation seminorm of f .

Prominent applications of the total variation seminorm lie in the field of image
processing, where the seminorm represents a usefool tool for measuring the amount
of variation within an image. For example, total variation regularization, i.e., the
search for a minimum of functionals of the type (Rudion, Osher, Fatemi functional
[12])

F .f / WD 1

2

Z

�

.f � f ı/2.x/ dx C ˛jDf j

is a prominent method for the denoising of images. Here f ı is an image corrupted by
noise and ˛ represents a positive real constant. The first summand of the functional
above is called the fidelity term and penalizes the deviation of an image f from
the data f ı. The second summand is named regularization term and penalizes the
rate of variation within f . While the first summand provides that the outcome
of the minimization process (the denoised image) preserves similarity to f ı, the
second term is intended to reduce the oscillations within the argument f , in order
to generate an approximation to f ı that contains a small amount of inherent noise.
In fact, this denoising strategy has proven to be successful and even more, the total
variation seminorm has proven to be superior to other regularization terms in the
sense that edges within the image are preserved.

Since in many cases the total variation seminorm of a function cannot be
determined analytically, appropriate simplifications are introduced when such an
evaluation has to be done. A first step lies in the discretization of the function.
Typically, a mesh is introduced on � and the functions f is approximated by
linear combinations of piecewise constant or piecewise linear ansatz functions
defined with respect to that mesh. For example, a one-dimensional function
f W.0; 1/ ! R can be approximated by a linear combination of indicator functions

Analytical Evaluations of Double Integral Expressions Related to Total Variation 195

Pn
kD1 ak�. k�1

n ; kn /
where the coefficients ak represent mean values of f over the

intervals . k�1
n
; k
n
/. The total variation seminorm of this discrete approximation of

f equals
Pn

kD1 jak � ak�1j. This approximation in turn can be used in standard
numerical procedures for problems involving total variation. In the case of total
variation regularization such procedures include the method of steepest descent
[7, 8] and other algorithms like [4, 11]. In this paper, we discuss whether other
discrete schemes can also be justified as approximations of the total variation
seminorm: We base this discussion on the limit relation (3), which opens up new
possibilities for computing approximations of the total variation seminorm for
special functions. Instead of computing the total variation seminorm of a finite
dimensional approximation fd of f , the integral expressions Rn may be considered
for the evaluation of fd and in fact the main subject of this work is an investigation
of such analytical evaluations.

In a standard numerical setting one would try to approximate the integral
expressions within Rn.fd / by some quadrature rules associated with the mesh
underlying fd . However, the singularity within the integrand in Rn.f / causes
difficulties when treated with standard numerical techniques and thus we decided to
follow a different approach, which to our knowledge has not been applied before in
this setting, namely to evaluate Rn.fd / analytically for special functions. It became
soon obvious that without the power of computer algebra systems in many cases
such evaluations are close to being impossible because of the size of the algebraic
terms that occur in the computations of Rn.fd /. However, with the help of the
Maple software program we could actually do some evaluations for some special,
practically important, cases of fd . We present the respective results here together
with some descriptions of how we proceeded.

In terms of total variation regularization our results may be particularly useful
because it can be shown that indeed minimizers of functionals

Fn.f / WD
1

2

Z

�

.f � f ı/2.x/ dx C ˛

K1;N

Rn.f /: (4)

are converging to minimizers of the total variation regularization functional

F .f / WD 1

2

Z

�

.f � f ı/2.x/ dx C ˛jDf j: (5)

We give a short review about this result in Sect. 3.
However,we want to state as well that we will not give a detailed convergence

analysis of the resulting discrete functionals, and we will not explore all degrees of
freedom associated with our approach of the analytical evaluation of functionals
Rn.fd /. We just want to demonstrate here that this approach actually can be
carried out successfully and give some hints that these evaluations can provide some
new tools for the numerical treatment of functionals involving the total variation
seminorm, in particular total variation regularization.

196 C. Pontow and O. Scherzer

Notations. We summarize some further general assumptions and notations that
will be used throughout the rest of this paper.

For p � 1 the space of Lp-functions on � with mean value zero is symbolized
by

L
p
˘.�/ WD

�
f 2 Lp.�/ W

Z

�

f .x/ dx D 0
�
:

All occurring functions in this paper defined on� are supposed to be real-valued.
Let C1c .�/ be the space of infinitely differentiable functions from � to R with

compact support. For the total variation seminorm of a locally integrable function
f we use the symbol

jDf j D sup

�Z

�

f .x/r � .x/dx W 2 C1c .�IRN /; j .x/j � 1for all x 2 �
�
I

Here j .x/j denotes the Euclidean distance of the vector .x/. The space of
functions of bounded variation on � is the set

BV.�/ WD ff 2 L1.�/ W jDf j <1g:

The constantsK1;N are defined by

K1;N D
�

2
�

if N D 2;
1 if N D 1:

2 Some Examples of Evaluations of Rn.fd/

In this section we present some analytical evaluations of integral expressions
Rn.fd / where fd is a linear combination of piecewise constant or piecewise linear
functions representing a discrete approximation to some continuous or integrable
function f as sketched in the introduction. For these evaluations we had to choose
some domain�, some approximation of identity .'n/ and some linear combinations
fd of the kind stated above. Since we could not find any examples to follow in
literature we decided to start with choices as simple and intuitive as possible and
then gradually to increase the complexity of the setting.

For the sake of simplicity, we chose generally for� in the one-dimensional case
the open interval .0; 1/ and in the two-dimensional case the open square .0; 1/ �
.0; 1/. For the sake of intuiveness, we chose for .'n/ approximations of the identity
that comply with the discretization fd in the sense that fd depends on the index n,
too, i.e., we treat evaluations of type Rn.fn/ where fn is of the form

fn D
nX

kD1
akgk

Analytical Evaluations of Double Integral Expressions Related to Total Variation 197

where for k 2 f1; : : : ; ng the symbols ak denote real constants and the symbols gk
stand for elements of a familiy of piecewise constant or piecewise linear functions
associated to a regular mesh on � that itself depends on n. As we will see below
in this way the standard discretization of the total variation seminorm in dimension
one is recoverable.

2.1 The One-Dimensional Case

We work on the domain
� WD .0; 1/:

and consider evaluation of Rn with piecewise constant or piecewise linear functions
defined on a regular mesh.

1. The first two schemes are for piecewise constant functions. They can be
computed manually rather easily:

a. We use the sequence of kernel functions .'n/ defined by

'n WD n

2
�.� 1

n ;
1
n /
:

Let a1; : : : ; an 2 R. Evaluating the one-dimensional piecewise constant
function

fn WD
nX

iD1
ai�.� 1

n ;
1
n /

with Rn yields the standard total variation seminorm of fn:

Rn.fn/ D
nX

iD2
jai � ai�1j D jDfnj:

b. Using instead of .'n/ the family of kernels .'.2/n / defined by

'.2/n WD
n

4
�.� 2

n ;
2
n /

yields

Rn.fn/ D
n�1X

iD2

1 � ln.2/

2
jaiC1 � ai�1j C

nX

iD2
ln.2/jai � ai�1j: (6)

We recall that ln.2/ � 0:7.

198 C. Pontow and O. Scherzer

2. Now we consider piecewise linear functions for evaluation. Let a0; : : : ; an 2 R

and fn be the piecewise linear spline interpolating the nodes . k
n
; ak/; k D 0 : : : n,

i.e.,

fn WD
nX

iD0
ai gi

where

gi .x/ WD max

�
1 � n

ˇ̌
ˇ̌x � i

n

ˇ̌
ˇ̌ ; 0

�
:

Inserting fn in Rn and using the kernel functions 'n yields

Rn.fn/ D
nX

iD1

jai � ai�1j
2

C
n�1X

iD1
t.ai�1; ai ; aiC1/

where

t.ai�1; ai ; aiC1/

D

8
<̂

:̂

jaiC1�ai�1j
4

if sgn.ai�1 � ai / D sgn.ai � aiC1/;

.ai�ai�1/2C.ai�aiC1/
2

4.jai�ai�1jCjai�aiC1j/ if sgn.ai�1 � ai / ¤ sgn.ai � aiC1/:

The change from piecewise constant to piecewise linear ansatz functions results
in a huge increase of the complexity of the evaluation. Thus, we applied the
computer algebra program Maple for this evaluation. We provide a sketch of
some parts of the computation for the case n � 2.

Before we start we would like to note that Maple is far from being capable of
evaluating an expression Rn.fn/ on its own; the user has to design a strategy for
the evaluation, has to divide the problem in appropriate substeps that Maple can
treat, has to keep track of the many occurring case distinctions and in particular
has to check whether the program misses some simplifications or even delivers
wrong results in some cases.

We want to compute

Z 1

0

Z 1

0

ˇ̌Pn
iD0 ai gi .x/ �

Pn
iD0 aigi .y/

ˇ̌

jx � yj 'n.x � y/ dxdy:

which is equal to

n

2

nX

kD1

Z k
n

k�1
n

Z min.1;yC 1
n /

max.0;y� 1
n /

ˇ̌Pn
iD0 aigi .x/ �

Pn
iD0 aigi .y/

ˇ̌

jx � yj dxdy:

Analytical Evaluations of Double Integral Expressions Related to Total Variation 199

Looking at the supports of the functions gi we realize that the latter double
integral equals

n

2

0

@
Z 1

n

0

Z yC 1
n

0

ˇ̌
ˇ
P2

iD0 ai gi .x/ �
P1

jD0 aj gj .y/
ˇ̌
ˇ

jx � yj dxdy

C
n�1X

kD2

Z k
n

k�1
n

Z yC 1
n

y� 1
n

ˇ̌
ˇ
PkC1

iDk�2 aigi .x/ �
Pk

jDk�1 aj gj .y/
ˇ̌
ˇ

jx � yj dxdy

C
Z 1

n�1
n

Z 1

y� 1
n

ˇ̌
ˇ
Pn

iDn�2 ai gi .x/ �
Pn

jDn�1 aj gj .y/
ˇ̌
ˇ

jx � yj dxdy

1

A:

We only treat the second double integral, the other two are evaluated
analogously. Let 2 � k � n� 1.

Then

Z k
n

k�1
n

Z yC 1
n

y� 1
n

ˇ̌
ˇ
PkC1

iDk�2 aigi .x/ �
Pk

jDk�1 aj gj .y/
ˇ̌
ˇ

jx � yj dxdy

can be decomposed into the sum

Z k
n

k�1
n

Z k�1
n

y� 1
n

ˇ̌
ˇ
Pk�1

iDk�2 aigi .x/ �
Pk

jDk�1 aj gj .y/
ˇ̌
ˇ

y � x dxdy

C
Z k

n

k�1
n

Z k
n

k�1
n

ˇ̌
ˇ
Pk

iDk�1 aigi .x/ �
Pk

jDk�1 aj gj .y/
ˇ̌
ˇ

jx � yj dxdy

C
Z k

n

k�1
n

Z yC 1
n

k
n

ˇ̌
ˇ
PkC1

iDk aigi .x/ �
Pk

jDk�1 aj gj .y/
ˇ̌
ˇ

x � y dxdy:

whose summands we denote by Ik;�; Ik and Ik;C, respectively. The integrand of
Ik is of the simple form

Ik D jak � ak�1j
n

:

By an application of Fubini’s theorem

Ik;� D Ik�1;C:

Thus, it suffices to treat the evaluation of Ik;� whose integrand J.x; y/ is
reshaped as follows:

200 C. Pontow and O. Scherzer

1

y � x

ˇ̌
ˇ̌
ˇ.ak�1 � ak/ ny C .ak�1 � ak�2/ nx

C .ak�2 C ak � 2 ak�1/ k � ak�2 C 2 ak�1 � ak:
ˇ̌
ˇ̌
ˇ

From this representation it is already visible that the evaluation will be
dependent from the sign of the differences

�k WD ak � ak�1 and �k�1 D ak�1 � ak�2:

We treat here one instance of the more complex case when

sgn.�k/ ¤ sgn.�k�1/;

namely the subcase where the middle coefficient ak�1 is the maximum of the
three coefficients; the other subcase where ak�1 is the minimum can be treated
just the same. The less complex case where ak�1 lies between ak�2 and ak needs
fewer case distinctions but apart from that can be treated analogously. Note that
in the chosen subcase the second difference�2

k D ak�2�2 ak�1Cak is negative.
The numerator JN .x; y/ of J.x; y/ now reads

JN .x; y/ D
ˇ̌��kny C�k�1nx C�2

k.k � 1/
ˇ̌

and is positive if and only if

x > fN .y/ WD �kny ��2
k.k � 1/

�k�1n
:

Thus, to evaluate the inner integral of Ik;� we have to determine the intersections
of its integration domain .y � 1

n
; k�1

n
/ with the intervals .fN .y/;C1/ and

.�1; fN .y//, respectively, for all y 2 . k�1
n
; k
n
/.

We get that

fN .y/ <
k � 1
n

” k � 1
n

< y

and

y � 1
n
< fN .y/ ” y <

1

n

�
k � �k

�2
k

�
:

Let C WD 1
n

�
k � �k

�2k

�
. Note that C < k

n
. Then

Ik;� D �
Z C

k�1
n

Z fN .y/

y� 1
n

J.x; y/ dxdy C
Z C

k�1
n

Z k�1
n

fN .y/

J.x; y/ dxdy

Analytical Evaluations of Double Integral Expressions Related to Total Variation 201

C
Z k

n

C

Z k�1
n

y� 1
n

J.x; y/ dxdy:

Integrating J.x; y/ with respect to x yields the primitive function

K.x; y/ D �.ny � k C 1/�2
k

	
ln.y � x/ � xn�k�1:

Inserting the limits of the inner integral of the third summand yields

K

�
y � 1

n
; y

�
D �.k � 1 � ny/�2

k

	
ln.n/ � .ny � 1/�k�1;

K

�
k � 1
n

; y

�
WD �.ny � k C 1/�2

k

	
ln

�
y � k � 1

n

�
� .k � 1/�k�1

and

L3.y/ WD
Z k�1

n

y� 1
n

J.x; y/ dx

D �.ny � k C 1/�2
k

	
ln.ny � k C 1/C .ny � k/�k�1:

A primitive function for L3 is

M3.y/ WD .ny � k C 1/
2 �2

k

2n
ln.ny � k C 1/

� 1

4n
.ny � k C 1/2 �2

k C
1

2
y.nk � 2y/�k�1:

Analogous computations for the first and second summand yield the functions

L2.y/ D .ny C 1 � k/
�
�2
k ln

�
��k�1
�2
k

�
C�k

�

and

M2.y/ D 1

2
y.ny � 2k C 2/

�
�2
k ln

�
��k�1
�2
k

�
C�k

�

and

L1.y/ D
���2

k

	
.ny � k C 1/

�
ln

�
��

2
k.ny � k C 1/

�k�1

�
� 1

�
C�k�1

and

202 C. Pontow and O. Scherzer

M1.y/ D� �2
k

2

y .�ny � 2C 2 k/ ln

�
��k�1
�2
k

�

C .ny � k C 1/2 ln .ny � k C 1/
n

� .ny � k C 1/
2 C 2 ny .ny � 2 k/
2n

!

C .ak � ak�1/ y;
respectively.

Now

Ik;� DM1

�
k � 1
n

�
�M1.C /CM2.C /�M2

�
k � 1
n

�

CM3

�
k

n

�
�M3.C /

D .ak�1 � ak/
2 C .ak�1 � ak�2/2
4n�k

2
:

From this result and the results from above the final result follows easily.
3. The results of the following example gives some hints that even the evaluation

of very simple piecewise constant functions with Rn can get quite complicated
if the size of the supports of the piecewise constant functions on the one hand
and the size of the supports of the functions .'n/ on the other hand are not
proportional to each other.

Here we fix the ansatz functions and 'n for a fixed n. In this example we
evaluate Rn for the Haar-functions h.k/j using the kernel functions .'n/. For

j D k D 0 the function h.k/j is defined by

h
.0/
0 .x/ WD 1

for all x 2 �. For k 2 N0; 1 � j � 2k we have

h
.k/
j .x/ WD

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

p
2k if x 2

�
2j�2
2kC1 ;

2j�1
2kC1

�
;

�p2k if x 2
�
2j�1
2kC1 ;

2j

2kC1

�
;

0 otherwise:

Since h.0/0 is constant

Rn

�
h
.0/
0

�
D 0:

Analytical Evaluations of Double Integral Expressions Related to Total Variation 203

For h.0/1 we get

Rn

�
h
.1/
0

�
D
8
<

:

2 ln.2/ if n D 1;

2 if n > 1:

Note that by symmetry for k � 1 and 1 � j � 2k�1

Rn

�
h
.k/
j

�
D Rn

�
h
.k/

2k�jC1
�
: (7)

For k � 1, Rn

�
h
.k/
1

�
equals

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

p
2k
��
k C 1

2k�1

	
ln.2/� �1 � 1

2k

	
ln
�
2k � 1		 if n D 1;

np
2k
..k C 2/ ln.2/� ln.n/C 1/ if 2 � n � 2k;

p
2kn

�
kC1
2k�1 ln.2/� 1

2k�1 ln.n/C 1

2k�1 � 1
n

	
if 2k � n � 2kC1;

3
p
2k if n � 2kC1:

For k � 2 and j D 2; : : : ; 2k�1 the inner functions h.k/j , evaluate to

Rn

�
h
.k/
j

�
D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

p
2k
�
j ln.j /
2k
� .j�1/ ln.j�1/

2k

�
�
1 � j

2k

�
ln
�
2k � j 	

C
�
1 � j�1

2k

�
ln
�
2k � j C 1	C ln.2/

2k�1

�
if n D 1;

np
2k
.j ln .j /C .j � 1/ ln .j � 1/

C .k C 2/ ln .2/� ln .n/C 1/ if
2k

2k � j �n�
2k

j
;

n
p
2k
�
.j�1/ ln.j�1/

2k
� .jC1/ ln.n/

2k
�

.kjCkC2/ ln.2/
2k

C jC1
2k
� 1

n

�
if
2k

j
�n� 2k

j � 1 ;
2np
2k
..kC1/ ln .2/� ln .n/C1/ if

2k

j�1�n�2
kC1;

4
p
2k if n � 2kC1:

204 C. Pontow and O. Scherzer

0
50

100
150

0
10

20
30

40
0

10

20

30

40

nj

R
n(

h
j(k

))

Fig. 1 Visualization of the size of Rn

�
h
.k/
j

�
for k D 6; n D 1; : : : ; 150; k D 2; : : : ; 32

The evaluation of h.k/j for j D 2k�1 C 1; : : : ; 2k is reduced to the evaluations
directly above via (7).

Some of the results for k D 6 are visualized by Fig. 1. Note that despite the

many case distinctions the size of the results Rn

�
h
.k/
j

�
does not vary very much

over j . For fixed j the size of the results increases concavely for growing n until
the total variation of h.k/j is obtained for n � 128.

2.2 The Two-Dimensional Case

We now switch to the two-dimensional case and evaluate Rn for a piecewise
constant function defined on a subset of R2. In detail, let � be chosen as the open
square .0; 1/ � .0; 1/ and f be defined on � via

f .Ev/ WD
nX

i;jD1
ai;j �Ii;j .Ev/

for all Ev 2 � where Ik;l WD Ik � Il with Ik WD . k�1n ; kn / for all k; l 2 f1; : : : ; ng.
The following computations are much more complicated than those of the

one-dimensional case. The sheer size alone of the occurring expressions makes
them extremely difficult to handle, and a manual evaluation seems close to being
impossible. Certainly, the same considerations concerning the use of the Maple
software as already stated in point two of the previous subsection apply to the cases
treated here, too. A priori it was everything but clear whether those integrals below
could be evaluated at all using Maple, and we ran more than one time into dead-ends
during the computations while trying to divide the problem in subproblems that we
supposed to be treatable by Maple. Sometimes transformations between different
representations of the occurring terms were needed in order to allow Maple to do
some crucial simplification or integration steps, or the order of computation steps

Analytical Evaluations of Double Integral Expressions Related to Total Variation 205

did matter. Thus, the successful approaches presented below may not be the most
elegant ones from an analytical point of view. Our excuse for their choice is simply
that they work at all.

In the following we investigate two cases of piecewise constant kernel functions,
which differ by the ratio between the size of the support and the grid size. At the
present stage of research it is not clear what the optimal ratio actually is.

2.2.1 Piecewise Constant Ansatz I

We choose the kernel functions

'n.Ev/ WD n2

�
�B.0; 1n /

.Ev/

for all Ev in R
2 where B

�
0; 1

n

	
denotes the ball around the origin with radius 1

n
. The

sequence .'n/ satisfies all conditions stated in the introduction. We note that for two
points .x; y/ and .w; z/ from� we have .x; y/ � .w; z/ 2 B �0; 1

n

	
if and only if

.w; z/ 2 S�
�
x; y;

1

n

�
WD ..0; 1/ � .0; 1// \ B

�
.x; y/;

1

n

�
:

We further define the intersection of the circle B..x; y/; 1
n
/ with the square Ik;l by

Sk;l

�
x; y;

1

n

�
WD Ik;l \ B

�
.x; y/;

1

n

�
:

We have to evaluate

R1
n.f / D

Z

�

Z

�

jf .x; y/ � f .w; z/j
j.x; y/ � .w; z/j '..x; y/ � .w; z// d.w; z/ d.x; y/

Dn
2

�

Z 1

0

Z 1

0

Z Z

S�.x;y; 1n /

ˇ̌
ˇ
Pn

i;jD1 ai;j �Ii;j .x; y/ �
Pn

k;lD1 ak;l�Ik;l .w; z/
ˇ̌
ˇ

j.x � w; y � z/j
d.w; z/ dydx:

The occurring quadruple integral can be rewritten as follows:

nX

i;jD1

nX

k;lD1

Z i
n

i�1
n

Z j
n

j�1
n

Z Z

Sk;l .x;y; 1n /

ˇ̌
ai;j � ak;l

ˇ̌

j.x � w; y � z/j d.w; z/ dydx:

For fixed 1 � i; j � n and fixed x; y 2 Ii;j the domain Sk;l
�
x; y; 1

n

	
of the inner

double integral is empty if ji � kj � 2 or jj � l j � 2. Thus, it suffices to evaluate

206 C. Pontow and O. Scherzer

those summands of the inner sum above that fulfill ji � kj � 1 and jj � l j � 1.
However, in the case where i D k and j D l the integrand of the corresponding
summand vanishes such that this case may be left out, too.

Given a pair of indices .i; j / let

Ii;j WD f.k; l/ 2 f1; : : : ; ng2 W ji � kj � 1; jj � l j � 1; .k; l/ ¤ .i; j /g:

denote the set of pairs of indices for which the corresponding summands of the inner
sum in the integral expression above do not vanish generally.

Then the above quadruple integral equals

nX

i;jD1

X

.k;l/2Ii;j

ˇ̌
ai;j � ak;l

ˇ̌ Z i
n

i�1
n

Z j
n

j�1
n

Z Z

Sk;l .x;y; 1n /

1

j.x � w; y � z/j d.w; z/ dydx:

We denote for all 1 � i; j � n and all .k; l/ 2 Ii;j the quadruple integral expression
on the right hand side above with J k;li;j , i.e.

J
k;l
i;j WD

Z i
n

i�1
n

Z j
n

j�1
n

Z Z

Sk;l .x;y; 1n /

1

j.x � w; y � z/j d.w; z/ dydx:

Again, let 1 � i; j � n be fixed. The set of pairs of indices with non-vanishing
summands Ii;j may be partitioned into the sets

Idi;j WD f.k; l/ 2 Ii;j W k ¤ i and l ¤ j g

of pairs of indices marking squares diagonally adjacent to the square Ii;j and

I li;j WD f.k; l/ 2 Ii;j W k D i or l D j g

collecting pairs of indices that denote squares laterally adjacent to Ii;j . By simple
transformations of the kind .x;w/ 7! .x˙ 1

n
;w˙ 1

n
/ etc. and applications of Fubini’s

theorem (as in the one-dimensional case) (or by geometric insight) we realize that
the integrals J k;li;j are equal for all .k; l/ 2 Idi;j and the same holds true for all

.k; l/ 2 I li;j . Further, the respective values of the two evaluations are independent
of i and j .

Thus, it suffices to compute the values of J i��1;j��1
i�;j�

and J i�;j��1
i�;j�

for some fixed
2 � i�; j� � n, and the final result will be

�

2n2
R1
n.f /

D
0

@
nX

iD2

nX

jD2

ˇ̌
ai;j � ai�1;j�1

ˇ̌C
n�1X

iD1

nX

jD2

ˇ̌
ai;j � aiC1;j�1

ˇ̌
1

AJ i��1;j��1
i�;j�

(8)

Analytical Evaluations of Double Integral Expressions Related to Total Variation 207

C
0

@
nX

iD1

nX

jD2

ˇ̌
ai;j � ai;j�1

ˇ̌C
nX

iD2

nX

jD1

ˇ̌
ai;j � ai�1;j

ˇ̌
1

AJ i�;j��1
i�;j�

:

We begin with the more complex case of laterally adjacent squares and evaluate

J
i;j�1
i;j D

Z i
n

i�1
n

Z j
n

j�1
n

Z Z

Si;j�1.x;y; 1n /

1

j.x � w; y � z/j d.w; z/ dydx

for some fixed 2 � i; j � n.
We first point out that

J1
2
WD
Z i

n

i�1
n C 1

2n

Z j
n

j�1
n

Z Z

Si;j�1.x;y; 1n /

1

j.x � w; y � z/j d.w; z/ dydx D

Z i�1
n C 1

2n

i�1
n

Z j
n

j�1
n

Z Z

Si;j�1.x;y; 1n /

1

j.x � w; y � z/j d.w; z/ dydx

such that
J
i;j�1
i;j D 2J1

2
:

The above can be established by application of the transformations .x;w/ 7!
. 2i�1

n
� x; 2i�1

n
� w/.

Let .x; y/ be chosen from Ii;j with x � i�1
n
C 1

2n
. We analyze the inner double

integral Z Z

Si;j�1.x;y; 1n /

1

j.x � w; y � z/j d.w; z/

of J1
2
. We use the abbreviations

a WD x � i � 1
n

; b WD y � j � 1
n

and d WD x � i

n
:

for the distances of x and y to some of the nodes. Note that by our choice of x and
y we have the inequalities a; b > 0, d < 0 and, in particular, a > jd j.

Let .w; z/ 2 Si;j�1
�
x; y; 1

n

	
. It follows that

.x � w/2 <
1

n2
� .y � z/2:

and therefore,

z > y � 1
n

and x �
r
1

n2
� .y � z/2 < w < x C

r
1

n2
� .y � z/2:

208 C. Pontow and O. Scherzer

Thus, z 2
�
y � 1

n
;
j�1
n

�
and we have to analyze the intersection of intervals

Iw WD
�
i � 1
n

;
i

n

�
\

x �

r
1

n2
� .y � z/2; x C

r
1

n2
� .y � z/2

!
: (9)

(The index w in the symbol Iw is just used as a symbol to indicate that we are dealing
with the integration domain of the variable w but does not stand for the values of w.
The same applies to Iz etc. below.) We first point out that

i � 1
n

< x �
r
1

n2
� .y � z/2 ” z < y �

r
1

n2
� a2: (10)

Thus the result of (9) is dependent from the intersection

Iz WD
�
y � 1

n
;
j � 1
n

�
\

�1; y �

r
1

n2
� a2

!
: (11)

While it is clear that y �
q

1
n2
� a2 > y � 1

n
we have

y �
r
1

n2
� a2 < j � 1

n
” y <

j � 1
n
C
r
1

n2
� a2 (12)

with j�1
n
<

j�1
n
C
q

1
n2
� a2 < j

n
.

We first consider the case that y 2 Iy WD
�
j�1
n
;
j�1
n
C
q

1
n2
� a2

�
. Then Iz D

�
y � 1

n
; y �

q
1
n2
� a2

�
.

We look at the subcase z 2 Iz. It follows by (10) that now the lower bound of Iw

is x �
q

1
n2
� .y � z/2.

Considering its upper bound we have to find the minimum of

x C
q

1
n2
� .y � z/2 and i

n
. Similarly to (10) we get that

i

n
> x C

r
1

n2
� .y � z/2 ” z < y �

r
1

n2
� d2: (13)

Since a2 > d2 it is true that y �
q

1
n2
� d2 2 Iz implying that the treated subcase

has two more subsubcases: z 2 Iz;1 WD
�
y � 1

n
; y �

q
1
n2
� d2

�
and z 2 Iz;2 WD

�
y �

q
1
n2
� d2; y �

q
1
n2
� a2

�
.

Analytical Evaluations of Double Integral Expressions Related to Total Variation 209

By (13) and (9) the upper bound of Iw is xC
q

1
n2
� .y � z/2 if z 2 Iz;1 and equals

i
n

if z 2 Iz;2. Thus, the treated subcase gives rise to the following two quadruple
integrals

Z i
n

i�1
n C 1

2n

Z j�1
n C

q
1

n2
�a2

j�1
n

Z y�
q

1

n2
�d2

y� 1
n

Z xC
q

1

n2
�.y�z/2

x�
q

1

n2
�.y�z/2

1

j.x � w; y � z/jdwd zdydx

Z i
n

i�1
n C 1

2n

Z j�1
n C

q
1

n2
�a2

j�1
n

Z y�
q

1

n2
�a2

y�
q

1

n2
�d2

Z i
n

x�
q

1

n2
�.y�z/2

1

j.x � w; y � z/j dwd zdydx

which we denote by K1 and K2, respectively.

We turn to the subcase that z … Iz, i.e. z 2
�
y �

q
1
n2
� a2; j�1

n

�
. By (10) the

lower bound of Iw is in this subcase i�1
n

. Since y �
q

1
n2
� a2 > y �

q
1
n2
� d2 by

(13) in this subcase the upper bound of Iw is i
n

. This subcase yields the quadruple
integral

K3 WD
Z i

n

i�1
n C 1

2n

Z j�1
n C

q
1

n2
�a2

j�1
n

Z j�1
n

y�
q

1

n2
�a2

Z i
n

i�1
n

1

j.x � w; y � z/j dwd zdydx:

We still need to analyze the case y … Iy , that is, y 2
�
j�1
n
C
q

1
n2
� a2; j

n

�
. In

this case by (12) and (11) the interval Iz equals
�
y � j�1

n
;
j�1
n

�
. By (12) and (11) it

is clear that the lower bound of Iw is x �
q

1
n2
� .y � z/2. The determination of the

upper bound is a little more intricate including two subcases concerning the choice
of the domain of y, one of which generating two subsubcases concerning the domain
of z. However, its computation processes similarly enough to the computations in
the first case that we skip it here and just state the resulting quadruple integrals
which we name K4;K5 and K6, respectively.

Z i
n

i�1
n C 1

2n

Z j�1
n C

q
1

n2
�d2

j�1
n C

q
1

n2
�a2

Z y�
q

1

n2
�d2

y� 1
n

Z xC
q

1

n2
�.y�z/2

x�
q

1

n2
�.y�z/2

1

j.x � w; y � z/jdwd zdydx;

Z i
n

i�1
n C 1

2n

Z j�1
n C

q
1

n2
�d2

j�1
n C

q
1

n2
�a2

Z j�1
n

y�
q

1

n2
�d2

Z i
n

x�
q

1

n2
�.y�z/2

1

j.x � w; y � z/j dwd zdydx;

210 C. Pontow and O. Scherzer

Z i
n

i�1
n C 1

2n

Z j
n

j�1
n C

q
1

n2
�d2

Z j�1
n

y� 1
n

Z xC
q

1

n2
�.y�z/2

x�
q

1

n2
�.y�z/2

1

j.x � w; y � z/j dwd zdydx:

Altogether,

J1
2
D

6X

iD1
Ki :

The evaluation of the six quadruple integrals Ki involves the transformation of
the respective inner double integrals to polar coordinates. In order to simplify this
procedure we first translate the integration domain of the respective inner double
integral to the rectangle .� 1

n
; 1
n
/ � .0; 1

n
/. In all six cases given a point .x; y/ from

the domain of the respective outer double integral this is done by application of the
transformation .w; z/ 7! .x � w; y � z/. Let Li be the result of this application to
Ki . Then

L1 D
Z i

n

i�1
n C 1

2n

Z j�1
n C

q
1

n2
�a2

j�1
n

Z 1
n

q
1

n2
�d2

Z q
1

n2
�z2

�
q

1

n2
�z2

1

j.w; z/j dwd zdydx;

L2 D
Z i

n

i�1
n C 1

2n

Z j�1
n C

q
1

n2
�a2

j�1
n

Z q
1

n2
�d2

q
1

n2
�a2

Z q
1

n2
�z2

d

1

j.w; z/j dwd zdydx;

L3 D
Z i

n

i�1
n C 1

2n

Z j�1
n C

q
1

n2
�a2

j�1
n

Z q
1

n2
�a2

b

Z a

d

1

j.w; z/j dwd zdydx;

L4 D
Z i

n

i�1
n C 1

2n

Z j�1
n C

q
1

n2
�d2

j�1
n C

q
1

n2
�a2

Z 1
n

q
1

n2
�d2

Z q
1

n2
�z2

�
q

1

n2
�z2

1

j.w; z/j dwd zdydx;

L5 D
Z i

n

i�1
n C 1

2n

Z j�1
n C

q
1

n2
�d2

j�1
n C

q
1

n2
�a2

Z q
1

n2
�d2

b

Z q
1

n2
�z2

d

1

j.w; z/j dwd zdydx;

L6 D
Z i

n

i�1
n C 1

2n

Z j
n

j�1
n C

q
1

n2
�d2

Z 1
n

b

Z q
1

n2
�z2

�
q

1

n2
�z2

1

j.w; z/j dwd zdydx:

Let for 1 � i � 6 the function Fi be the evaluation function of the inner double
integral of Li defined on the domain of the outer double integral of Li .

In L1;L4 and L6 the integration domain of the inner double integral is a segment
of the circle B.0; 1

n
/ that results from the intersection of that circle with a parallel to

the x-axis. A straight-forward transformation to polar coordinates .r; �/ yields for
example for F1:

Analytical Evaluations of Double Integral Expressions Related to Total Variation 211

F1.x; y/ D
Z 1

n

q
1

n2
�d2

Z arcsin

0

@�
r

1
n2

�d2

r

1

AC�

arcsin

0

@

r
1
n2

�d2

r

1

A

d�dr

D
Z 1

n

q
1

n2
�d2

� � 2 arcsin

0

B@�
q

1
n2
� d2
r

1

CA dr

D � r � 2 r arcsin

0

B@

q
1
n2
� d2
r

1

CA

� 2
r
1

n2
� d2 arcoth

0
B@

r
q
r2 � 1

n2
C d2

1
CA

ˇ̌
ˇ̌
ˇ

1
n

q
1

n2
�d2

D �

n
� 2

arcsin
�q

1
n2
� d2n

�

n
C

r
1

n2
� d2

�
ln

�
1

n
C d

�
� ln

�
1

n
� d

��
;

and F4 and F6 are treated analogously.
The integration domain of F3 is a rectangle with edges parallel to the axes

stretching across both quadrants of the upper half plane. In order to transform
this domain to polar coordinates we split it along the y-axis in two axis-parallel
rectangles that reside in the second and first quadrant, respectively,

F3.x; y/ D
Z q

1

n2
�a2

b

Z 0

d

1

j.w; z/j dwd zC
Z q

1

n2
�a2

b

Z a

0

1

j.w; z/j dwd z;

and call the resulting double integrals A.x; y/ and B.x; y/.
We turn to the computation ofA.x; y/. The transformation of a rectangle domain

located in the second quadrant to polar coordinates depends on whether its bottom
left vertex or its top right vertex is more distant from the origin. In the case of
A.x; y/ this conditions reads

j.d; b/j <
ˇ̌
ˇ̌
�
0;
1

n2
� a2

�ˇ̌
ˇ̌ : (14)

In the case where (14) holds true the transformation to polar coordinates yields

212 C. Pontow and O. Scherzer

A.x; y/ D
Z j.d;b/j

b

Z � arcsin. br /C�
�
2

d�dr C
Z ˇ̌

ˇ
�
0; 1
n2
�a2

�ˇ̌
ˇ

j.d;b/j

Z arccos. dr /

�
2

d�dr

C
Z ˇ̌

ˇ
�
d;
q

1

n2
�a2

�ˇ̌
ˇ

ˇ̌
ˇ
�
0; 1
n2
�a2

�ˇ̌
ˇ

Z arccos. dr /

� arcsin

0

@

r
1
n2

�a2

r

1

AC�
d�dr;

in the opposite case A.x; y/ equals

Z ˇ̌
ˇ
�
0; 1
n2
�a2

�ˇ̌
ˇ

b

Z � arcsin. br /C�
�
2

d�dr C
Z j.d;b/j
ˇ̌
ˇ
�
0; 1
n2
�a2

�ˇ̌
ˇ

Z � arcsin. br /C�

� arcsin

0

@

r
1
n2

�a2

r

1

AC�
d�dr

C
Z ˇ̌

ˇ
�
d;
q

1

n2
�a2

�ˇ̌
ˇ

j.d;b/j

Z arccos. dr /

� arcsin

0

@

r
1
n2

�a2

r

1

AC�
d�dr:

In both cases the occurring three double integrals can be evaluated similarly like
F1.x; y/ above. Summing together the respective three results yields in both cases
the same result: a sum consisting of summands that are of one of the following three
types: binary products where one factor is a logarithmic expression, binary products
where one factor is an arcsin- or arccos-expression or binary products of a square
root and � . By use of the appropriate transformation rules for arcus-expressions the
two latter groups of binary products cancel each other out. Therefore, in both cases
A.x; y/ equals

1

2

b
�

ln
�p

d2 C b2 C d
�
� ln

�p
d2 C b2 � d

��

C d

ln
�p

d2 C b2 C b
�
� ln

�p
d2 C b2 � b

�

C ln

 r
1

n2
� a2 C d2 �

r
1

n2
� a2

!
� ln

 r
1

n2
� a2 C d2 C

r
1

n2
� a2

!!

C
r
1

n2
� a2

ln

 r
1

n2
� a2 C d2 � d

!
� ln

 r
1

n2
� a2 C d2 C d

!!!
:

The double integral B.x; y/ is evaluated in a completely analogous fashion.
The integration domains of F2 and F5 have a similar geometric structure. We give

a short overview of the evaluation of F2. As in the case of F3 we split the integration
domain along the y-axis in order to have less case distinction when transforming to
polar coordinates:

Analytical Evaluations of Double Integral Expressions Related to Total Variation 213

F2.x; y/ WD
Z q

1

n2
�d2

q
1

n2
�a2

Z 0

d

1

j.w; z/j dwd zC
Z q

1

n2
�d2

q
1

n2
�a2

Z q
1

n2
�z2

0

1

j.w; z/j dydx:

The first double integral has an axis-parallel rectangle domain located in the second
quadrant and is treated like A.x; y/. The domain of the second double integral is
the intersection of two shapes: an axis-parallel rectangle domain located in the first
quadrant whose lower right vertexB lies on the circleB.0; 1

n
/, and the circleB.0; 1

n
/

itself. This means that by the intersection the right edge of the rectangle and parts of
its top edge are exchanged with a circular arc around zero with radius 1

n
. The double

integral is translated to polar coordinates as follows:

Z q
1

n2
�d2

q
1

n2
�a2

Z �
2

arcsin

0

@

r
1
n2

�a2

r

1

A
d�dr C

Z 1
n

q
1

n2
�d2

Z arcsin

0

@

r
1
n2

�d2

r

1

A

arcsin

0

@

r
1
n2

�a2

r

1

A

d�dr:

For the evaluation of F5 proceed as for F2. The only difference to F2 lies in the
fact that by the intersection with the circle B.0; 1

n
/ also parts of the bottom line of

the corresponding underlying rectangle are removed. In symbols this is reflected by

exchanging every occurrence of the term
q

1
n2
� a2 with b in the double integral

directly above.
The integration of the functions Fi with respect to y can be executed in all cases

by standard means. Note that the double integrals related to F1, F2 and F4 do not
depend on y such that those integrations are mere multiplications of the respective
functions with the difference between the limits of the respective integrals. After all
the resulting functions of the variable x have been summed up the fourth integration
can be carried out yielding

J1
2
D

6X

iD1
Ki D

6X

iD1
Li D 1

3n3
and J

i;j�1
i;j D 2J1

2
D 2

3n3
:

This solves the case of laterally adjacent squares
The case of diagonally adjacent squares is much simpler. For 2 � i; j � n we

have to compute

J
i�1;j�1
i;j D

Z i
n

i�1
n

Z j
n

j�1
n

Z Z

Si�1;j�1.x;y; 1n /

1

j.x � w; y � z/j d.w; z/ dydx:

where

Si�1;j�1
�
x; y;

1

n

�
D
��

i � 2
n

;
i � 1
n

�
�
�
j � 2
n

;
j � 1
n

��
\ B

�
.x; y/;

1

n

�
:

214 C. Pontow and O. Scherzer

An easy computation shows that the latter set is empty if and only if j.a; b/j � 1
n

.

Therefore, for the computation of the inner double integral of J i�1;j�1i;j we may

restrict ourselves to points .x; y/ 2 Ii;j that satisfy j.a; b/j < 1
n

. By similar

reasoning as in the lateral case we infer that J i�1;j�1i;j equals

Z i
n

i�1
n

Z j�1
n C

q
1

n2
�a2

j�1
n

Z j�1
n

y�
q

1

n2
�a2

Z i�1
n

x�
q

1

n2
�.z�y/2

1

j.x � w; y � z/j dwd zdydx:

By applying the transformation .w; z/ 7! .x � w; y � z/ this quadruple integral
transforms to

Z i
n

i�1
n

Z j�1
n C

q
1

n2
�a2

j�1
n

Z q
1

n2
�a2

b

Z q
1

n2
�z2

a

1

j.w; z/j dwd zdydx;

and by changing the inner double integral to polar coordinates we get

J
i�1;j�1
i;j D

Z i
n

i�1
n

Z j�1
n C

q
1

n2
�a2

j�1
n

Z 1
n

j.a;b/j

Z arccos. ar /

arcsin. br /

1

j.w; z/j dwd zdydx

D 1

6n3
:

Altogether, by (8) the final result is

R1
n.f / D

1

3�n

0

@
nX

iD2

nX

jD2

ˇ̌
ai;j � ai�1;j�1

ˇ̌C
n�1X

iD1

nX

jD2

ˇ̌
ai;j � aiC1;j�1

ˇ̌
1

A

C 4

3�n

0

@
nX

iD1

nX

jD2

ˇ̌
ai;j � ai;j�1

ˇ̌C
nX

iD2

nX

jD1

ˇ̌
ai;j � ai�1;j

ˇ̌
1

A:

2.2.2 Piecewise Constant Ansatz II

With f as above we also evaluated R1
n.f / with the kernel functions

'n.Ev/ WD n2

4
�.� 1

n ;
1
n /�.� 1

n ;
1
n /
.Ev/

for all Ev in R
2. Note that these kernel functions are not radial such that in this case

the assumptions on .'n/ from the introduction are not fully satisfied.
The evaluation proceeds similar to the above one. As a result we get

Analytical Evaluations of Double Integral Expressions Related to Total Variation 215

Rn.f / D
1

3

p
2 � 1
n

0

@
nX

iD2

nX

jD2

ˇ̌
ai;j � ai�1;j�1

ˇ̌C
n�1X

iD1

nX

jD2

ˇ̌
ai;j � aiC1;j�1

ˇ̌
1

A

C 1

12

3 ln
�p

2C 1
�
� 3 ln

�p
2 � 1

�
� 2 .p2 � 1/

n

�
0

@
nX

iD1

nX

jD2

ˇ̌
ai;j � ai;j�1

ˇ̌C
nX

iD2

nX

jD1

ˇ̌
ai;j � ai�1;j

ˇ̌
1

A :

3 Connection to Total Variation Regularization

In this section we give a short summary of the theoretical background on approxi-
mation properties of the minimizers of (4) to the minimizer of (5). This justifies the
minimizers of the Galerkin approximations, where the calculations of the previous
section have to be used, as approximations of the minimizer of the total variation
functional. In the following we review existence and uniqueness of a minimizer of
the functional Fn defined in (4) as in [1].

The first stated result is on weak lower semicontinuity of the functional Rn. The
proof uses standard techniques from convex analysis and functional analysis and is
therefore omitted.

Lemma 1. Let 1 � q <1. For all n 2 N, Rn is weakly lower semicontinuous on
Lq.�/, that is,

Rn.g/ � lim inf
k!1 Rn.gk/

for every sequence .gk/ 2 Lq.�/ that converges weakly with respect to the Lq-
topology to a function g 2 Lq.�/.
Moreover, by using the following variant of compactness results established by
Bourgain et al. [3] and Ponce [9]), we can prove existence and uniqueness of
minimizers of F in a very similar manner as in [1].

Theorem 2. Assume that .gn/ is a sequence of functions in L1˘.�/ such that
Rn.gn/ is uniformly bounded. Then the sequence .gn/ is relatively compact in
L1˘.�/ and has a subsequence .gnk / converging (in theL1-norm) to a limit function
g that lies in BV.�/.

We note that the regularization term of the functional F depends exclusively on a
derivative. Therefore, for data f ı and f ıCC , where C is a constant, the according
minimizers of the functional F also differs by C . The same holds true for the
functionalsFn. Thus, we may reduce our investigations to the case where we assume
that the mean of f ı is zero, and consequently, also the mean of the minimizers of
Fn and F is zero.

216 C. Pontow and O. Scherzer

Proposition 3. Let ˛ > 0 and assume that f ı 2 L2˘.�/.
1. Then the functional Fn attains a unique minimizer fn over L2˘.�/ that also

belongs to L1˘.�/.
2. The function fn is also a minimizer of Fn over L1.�/.
3. The sequence of numbers .Rn.fn// is uniformly bounded over n 2 N, and the

sequence fn is relatively compact in L1˘.�/ and has a convergent subsequence
whose limit f is an element ofBV.�/. With the help of� -convergence (s. below)
it can be established that in fact, the whole sequence .fn/ is converging to f .

It remains to clarify whether the limit function f is a minimum of the respective
limit functional F . The concerning questions are answered to a large extent by a
result of Ponce [10] in terms of � -convergence. This technique has also been used
in [1]

We recall the notion of � -convergence in L1.�/ [5]. Let .Fn/ denote a sequence
of lower semicontinuous functionals mapping functions from L1.�/ to the set of
extended real numbers NR, and let F be a functional of this kind, too. Then the
sequence .Fn/ � -converges to F with respect to the L1.�/-topology if and only if
the following two conditions are satisfied:

• For every g 2 L1.�/ and for every sequence .gn/ in L1.�/ converging to g in
the L1-norm we have

F.g/ � lim inf
n!1 Fn.gn/I

• For every g 2 L1.�/ there exists a sequence .gn/ in L1.�/ converging to g in
the L1-norm with

F.g/ D lim
n!1Fn.gn/:

In this case we write
�L1.�/- lim

n!1Fn D F:
We note that all of the functionals Fn and F are lower semicontinuous with respect
to the topology of L1.�/.

Theorem 4. The sequence of functionals .Fn/ converges in the �L1.�/-sense to the
limit functional F .

Corollary 5. The limit function f of the sequence of minimizers .fn/ of Fn is the
unique minimum of the limit functionalF overL1.�/. The minimum f also belongs
to the space L2˘.�/ \ BV.�/.

4 Discussion and Outlook

In Sect. 2 of this paper we have shown that analytical evaluations of double
integrals Rn.fd / are possible for some types of discrete approximations fd to
a continuous or integrable function f by using the functionalities of computer

Analytical Evaluations of Double Integral Expressions Related to Total Variation 217

algebra software systems. By such evaluations, we have produced new candidates
for approximation schemes of the total variation seminorm of a function, which can
be implemented in standard numerical algorithms for solving problems like total
variation regularization.

In Sect. 3 we reviewed that in fact solutions of total variation regularization can
be approximated by minimizers of the functional that results from the total variation
regularization functional by exchanging the total variation seminorm with a double
integral functional Rn.

We have already started to investigate the usefulness of the new approximation
schemes in numerical applications. For example, approximation scheme (6) has
been applied to total variation regularization within the framework of a gradient
descent algorithm, and indeed, promising results have been obtained this way [2].

However, from the theoretical point of view there are many important points
open, for example a systematic analysis of the integral expression Rn.fd / in
terms of analytical evaluation exploring all its degrees of freedom, a detailed
convergence analysis for the resulting discrete functionals and further numerical
tests for appropriate applications involving the evaluation of the total variation
seminorm.

Altogether, we have presented a new approach to the treatment of the total
variation seminorm in numerical applications. Our contribution might pave the way
for the development of more sophisticated tools for the treatment of double integrals
of the kind Rn.fd / as well as the development of new approximation schemes to
the total variation seminorm.

Acknowledgements The authors would like to express their gratitude to Paul F. X. Müller for
introducing us to the recent work on the new characterizations of Sobolev spaces and BV and
some stimulating discussions. This work has been supported by the Austrian Science Fund (FWF)
within the national research networks Industrial Geometry, project 9203-N12, and Photoacoustic
Imaging in Biology and Medicine, project S10505-N20. Moreover, the authors thank a referee for
the careful reading of the manuscript and many detailed comments.

References

1. Aubert, G., Kornprobst, P.: Can the nonlocal characterization of Sobolev spaces by Bourgain
et al. be useful for solving variational problems? SIAM J. Numer. Anal. 47(2), 844–860 (2009)

2. Boulanger, J., Elbau, P, Pontow, C, Scherzer, O.: Non-local functionals for imaging. In:
Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.)
Springer Optimization and Its Applications. Fixed-Point Algorithms for Inverse Problems in
Science and Engineering, vol. 49, 1st edn., pp. 131–154. Springer, New York (2011). ISBN
978-1-4419-9568-1

3. Bourgain, J., Brézis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L.,
Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations-Innovations &
Applications: In honor of Professor Alain Bensoussan’s 60th anniversary, pp. 439–455. IOS
press, Amsterdam (2000)

4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math.
Imaging Vis. 20(1–2), 89–97 (2004)

218 C. Pontow and O. Scherzer

5. Dal Maso, G.: An Introduction to � -Convergence, volume 8 of Progress in Nonlinear
Differential Equations and their Applications. Birkhäuser (1993)

6. Dávila, J.: On an open question about functions of bounded variation. Calc. Var. Partial Differ.
Equ. 15(4), 519–527 (2002)

7. Dobson, D., Scherzer, O.: Analysis of regularized total variation penalty methods for
denoising. Inverse Probl. 12(5), 601–617 (1996)

8. Dobson, D.C., Vogel, C.R.: Convergence of an iterative method for total variation denoising.
SIAM J. Numer. Anal. 34(5), 1779–1791 (1997)

9. Ponce, A.: An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc. (JEMS) 6(1),
1–15 (2004)

10. Ponce, A.: A new approach to Sobolev spaces and connections to � -convergence. Calc. Var.
Partial Differ. Equ. 19, 229–255 (2004)

11. Vogel, C.R.: Computational Methods for Inverse Problems, volume 23 of Frontiers in Applied
Mathematics. SIAM, Philadelphia (2002)

12. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms.
Phys. D. Nonlinear Phenom. 60(1–4), 259–268 (1992)

Sound and Complete Verification Condition
Generator for Functional Recursive Programs

Nikolaj Popov and Tudor Jebelean

Abstract We present a method for verifying recursive functional programs by
defining a verification condition generator (VCG) which covers the most frequent
type of recursive programs. These programs may operate on arbitrary domains. We
prove soundness and completeness of the VCG and this provides a warranty that any
system based on our results will be sound.

We introduce here the notion of completeness of a VCG as a duality of soundness.
It is important for the following two reasons: theoretically, it is the dual of
soundness and practically, it helps debugging. Any counterexample for the failing
verification condition will carry over to a counterexample for the given program
and specification. Moreover, the failing proof gives information about the place
of the bug.

Furthermore, we introduce a specialized strategy for termination. The termina-
tion problem is reduced to the termination of a simplified version of the program.
The conditions for the simplified versions are identical for special classes of
functional programs, thus they are highly reusable.

1 Introduction

Since the beginning of program verification back in the 1950-s, a good deal of
theoretical and practical results have been achieved in research, and the concrete
application of these in industrial software development is slowly but steadily
progressing. We are convinced that in order to increase the quality of the software
production, program verification and formal methods should play a bigger role
during the process of software design and composition.

N. Popov (�) � T. Jebelean
Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
e-mail: popov@risc.uni-linz.ac.at; jebelean@risc.uni-linz.ac.at

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 11,
© Springer-Verlag/Wien 2012

219

popov@risc.uni-linz.ac.at
jebelean@risc.uni-linz.ac.at

220 N. Popov and T. Jebelean

The research on program verification presented here is dedicated to the study and
development of a relevant theory, which may serve as a basis for the practical need
of proving program correctness in an automatic manner. Additionally this basis can
be used in a tutorial way for the introduction of formal verification techniques to the
students in computer science.

We are primarily concerned with the generation of verification conditions, while
the actual proving of these verification conditions is subject to further research,
in particular in the frame of the Theorema project (www.theorema.org). One
important purpose of this research is to create a mechanism for the generation of the
verification conditions which is very simple, but still provably correct and complete
in the context of predicate logic.

Program specification (or formal specification of a program) is the definition of
what a program is expected to do. Normally, it does not describe, and it should
not, how the program is implemented. The specification is usually provided by
logical formulas describing a relationship between input and output parameters. We
consider specifications which are pairs, containing a precondition (input condition)
and a postcondition (output condition).

Given such a specification, it is possible to use formal verification techniques to
demonstrate that a program is correct with respect to the specification.

A precondition (or input predicate) of a program is a condition that must always
be true just prior to the execution of that program. It is expressed by a predicate on
the input of the program. If a precondition is violated, the effect of the program
becomes undefined and thus may or may not carry out its intended work. For
example: the factorial is only defined for integers greater than or equal to zero. So a
program that calculates the factorial of an input number would have preconditions
that the number be an integer and that it be greater than or equal to zero.

A postcondition (or output predicate) of a program is a condition that must
always be true just after the execution of that program. It is expressed by a predicate
on the input and the output of the program.

We do not consider informal specifications, which are normally written as
comments between the lines of code.

Formal verification is, in general, the act of proving mathematically the correct-
ness of a program with respect to a certain formal specification. Software testing,
in contrast to verification, cannot prove that a system does not contain any defects,
neither that it has a certain property, e.g., correctness with respect to a specification.
Only the process of formal verification can prove that a system does not have a
certain defect or does have a certain property.

The problem of verifying programs is usually split into two subproblems:
generate verification conditions which are sufficient for the program to be correct
and prove the verification conditions, within the theory of the domain for which the
program is defined. In this work we will concentrate on the generation of verification
conditions.

A verification condition generator (VCG) is a device – normally implemented by
a program – which takes a program, actually its source code, and the specification,

Sound and Complete Verification Condition Generator 221

and produces verification conditions. These verification conditions do not contain
any part of the program text, and are expressed in some logical formalism.

Let us say, the program is F and the specification IF (input predicate), and OF
(output predicate) is provided. The verification conditions generated by VCG are:
VC1; VC2; : : : ; VCn: After having the verification conditions at hand, one has to
prove them as logical formulas in the theory of the domainDF on which the program
F is defined, e.g., integers, reals, etc.

Normally, these conditions are given to an automatic or semi-automatic theorem
prover. If all of them hold, then the program is correct with respect to its
specification. The latter statement we call soundness of the VCG.

Formally, soundness is expressed as follows: Given a program F and a specifi-
cation hIF ;OF i, if the verification conditions generated by the VCG hold as logical
formulas, then the program F is correct with respect to the specification hIF ;OF i.

It is clear that whenever one defines a VCG, the first task to be done is proving
its soundness statement.

Completing the notion of soundness of a VCG, we introduce its dual notion –
completeness. The respective completeness statement of the VCG is :

Given a programF and a specification hIF ;OF i, if the programF is correct with
respect to the specification hIF ;OF i, then the verification conditions generated by
the VCG hold as logical formulas.

The notion of completeness of a VCG is important for the following two
reasons: theoretically, it is the dual of soundness and practically, it helps debugging.
Any counterexample for the failing verification condition would carry over to a
counterexample for the program and the specification, and thus give a hint on “what
is wrong”.

Indeed, most books about program verification present methods for verifying
correct programs. However, in practical situations, it is the failure which occurs
more often until the program and the specification are completely debugged.

A distinction is made between total correctness, which additionally requires that
the program terminates, and partial correctness, which simply requires that if an
answer is returned (that is, the program terminates) it will be correct.

For example, if we are successively searching through integers 1; 2; 3; : : : to see
if we can find an example of some phenomenon – say an odd perfect number – it
is quite easy to write a partially correct program (use integer factorization to check
n as perfect or not). But to say this program is totally correct would be to assert
something currently not known in number theory.

The relation between partial and total correctness is informally given by:

Total Correctness D Partial CorrectnessC Termination:

The precise definition is as follows: Let us consider the program F (which
takes an input and should produce an output) and the specification hIF ;OF i. The
restriction to one input and one output is not important, because these could also
be vectors of values. We denote by F Œx� the output of the program. Since when the
program does not terminate this output does not exists, one should use F Œx� with a

222 N. Popov and T. Jebelean

certain care. The input condition IF is a unary predicate expressing the restrictions
on the possible inputs; the output conditionOF is a binary predicate expressing the
relationship between the input and the output of F .

Moreover, by # we denote the predicate expressing termination. We will write
F Œx� # and say “F terminates on x”. The notation F Œx� # is used in most papers
and textbooks, so we also use it here in order to avoid confusion. However, from the
logical point of view, the correct notation should be F # x. Partial correctness of F
is expressed by the formula:

.8x W IF Œx�/.F Œx� #H) OF Œx; F Œx��/: (1)

Termination of F is expressed by:

.8x W IF Œx�/F Œx� #; (2)

and total correctness of F is respectively:

.8x W IF Œx�/.F Œx� # ^OF Œx; F Œx��/: (3)

Logically, it is clear that partial correctness (1) and termination (2) imply total
correctness (3).

The above considerations apply to all type of programs which have input and
output, however in the current work we concentrate on functional programs. From
our point of view, a logical program for a functionF is collection of logical formulas
of the type:

8x' H) F Œx� D �;
where ' is a formula and � is a term using the predicate and the function symbols
from the underlying theory of the domain[s] of the objects manipulated by the
program. It is easy to see that the usual programming construct If-then-else can
be used to abbreviate such a collection of formulas into an expression like e.g., (17).
Thus, an important feature of our approach is that the programs are logical formulas
in the signature of the underlying theory of the objects manipulated by the program.1

This simplifies the process of reasoning about programs, because there is no need
of translation from the programming language into the language of logic, and also
no need to define the semantics of the programs, besides the semantics of the logic
language itself.

Note that F is used both for denoting the program itself as well as the function
implemented by the program, but the different meanings are easy to differentiate by
the context.

1This approach is in fact borrowed from the Theorema system.

Sound and Complete Verification Condition Generator 223

Automatic theorem proving, and more generally, automated reasoning is a border
area of computer science and mathematics dedicated to understanding different
aspects of reasoning in a way that allows the creation of software which makes
computers to reason completely or nearly completely automatically. Automatic
theorem proving is, in particular, the proving of mathematical theorems by an
algorithm. In contrast to proof checking, where an existing proof for a theorem is
certified valid, automatic theorem provers generate the proofs themselves. A recent
and relatively comprehensive overview on that area may be found in [40].

The research presented in this paper is performed in the frame of the Theorema
system [12], a mathematical computer assistant which aims at supporting the entire
process of mathematical theory exploration: invention of mathematical concepts,
invention and verification (proof) of propositions about concepts, invention of
problems formulated in terms of concepts, invention and verification (proof of
correctness) of algorithms, and storage and retrieval of the formulas invented and
verified during this process. The system includes a collection of general as well as
specific provers for various interesting domains (e.g., integers, sets, reals, tuples,
etc.). More details about Theorema are available at www.theorema.org. The
papers [11–13] are surveys, and point to earlier relevant papers.

1.1 Related Research

There is a huge amount of literature on program verification and a comprehensive
overview on the topic may evolve into PhD thesis itself. However, summarizing,
there are two main types of presentations:

• Classical approaches which are concerned more with the theory of computation
and less with possible implementation of verification systems.

• Practical approaches to proving program correctness automatically or semi-
automatically, which are less concerned with the theoretical foundations.

1.1.1 Theoretical Approaches

One of the first approaches to program verification was the axiomatic reasoning,
which was initially developed by Floyd [16] for the verifications of flowcharts. This
method was then further developed by Hoare [20] for dealing with while-programs
and became known as Hoare Logic. The method provides a set of logical rules
allowing to reason about the correctness of (imperative) computer programs with
the methods of mathematical logic.

The central feature of Hoare logic is the Hoare triple. It describes how the
execution of a piece of code changes the state of the computation. A Hoare triple is
of the form:

fP gC fQg; (4)

224 N. Popov and T. Jebelean

where P and Q are assertions (normally given by logical formulas) and C is a
command, or a program. In the literature, P is called the precondition and Q the
postcondition. Hoare logic has axioms and inference rules for all the constructs of
simple imperative programming languages.

Although P and Q are very similar to the pre– and post–condition used in
our approach, one should note that they are specifically designed for imperative
constructs, since C is a piece of program (succession of imperative statements).
In our approach the pre– and post–condition refer to the whole program, more
specifically to the function implemented by the program.

Fixpoint induction or Scott induction is a proof principle due to Dana Scott [2].
It is useful for proving continuous properties of least fixed points of continuous
operators. Scott semantics treats programs as continuous operators, and the com-
putable functions they define are the least fixpoints of the operators [29]. Using
Scott induction one may prove continuous properties (e.g., partial correctness) of
programs, and therefore applying Scott induction for proving properties of programs
is a very powerful technique. However, in automated reasoning proving by induction
can get computationally very expensive, much more than proving predicate logic
formulas.

Other important techniques exposed in classical books (e.g., [27, 29]) are very
comprehensive, however, their orientation is theoretical rather than practical and
mechanized. Verification in that context is normally a process in which the reader is
required to understand the concept and perform creatively.

Furthermore, in order to perform verification, one uses a certain model of
computation, which significantly increases the proving effort.

1.1.2 Practical Approaches

In contrast to classical books, practical computer aided verification is oriented
towards verification of practical and popular types of programs (like in Java, C,
Lisp) implementing primitive recursive functions, mutual recursive functions, etc.
Performing creatively there is normally not required and the aim is to speed up the
verification of relatively large programs.

In the PVS system [35] the approach is type theoretical and relies on exploration
of certain subtyping properties. The realization is based on Church’s higher-order
logic.

The HOL system [21], originally constructed by Gordon, is also based on gen-
eralization of Church’s higher-order logic. It mainly deals with primitive recursive
functions, however, there is a very interesting work dedicated to transforming non-
primitive recursive to primitive recursive functions [38]. There are various versions
of HOL – in [17] one may find how it evolved over the years.

The Coq system [4] is based on a framework called “Calculus of Inductive
Constructions” that is both a logic and a functional programming language. Coq
has relatively big library with theories (e.g., N, Z, Q, lists, etc.) where the individual
proofs of the verification conditions may be carried over [5].

Sound and Complete Verification Condition Generator 225

The KeY system [3] is not a classical verification condition generator, but a
theorem prover for program logic. It is distinguished from most other deductive
verification systems in that symbolic execution of programs, first-order reasoning,
arithmetic simplification, external decision procedures, and symbolic state simplifi-
cation are interleaved. KeY is mainly dedicated to support object-oriented models,
where for loop- and recursion-free programs, symbolic execution is performed in an
automated manner.

The Sunrise system [37] contains embedding of an imperative language within
the HOL theorem prover. A very specific feature of the system is that its VCG is
verified as sound, and that soundness proof is checked by the HOL system. The
programming language containing assignments, conditionals, and while commands,
and also mutually recursive procedures, however, all variables have the type N.

The ACL2 system [1] is, in our opinion, one of the most comprehensive systems
for program verification. It contains a programming language, an extensible theory
in a first-order logic, and a theorem prover. The language and implementation of
ACL2 are built on Common Lisp. ACL2 is intended to be an industrial strength
version of the Boyer-Moore theorem prover NQTHM [6], however its logical basis
remains the same.

Furthermore, in [30] it is shown how a theorem prover may be used directly on
the operational semantics to generate verification conditions. Thus no separate VCG
is necessary, and the theorem prover can be employed both to generate and to prove
the verification conditions.

All these practical systems are very important and interesting, however they do
not investigate the theoretical basis of verification, thus are not so relevant from
the point of view of the research presented here. Moreover most of these practical
approaches address programs written in imperative languages (see also some recent
results in [15, 26, 41]), where the verification process has a quite different flavor.

1.2 Summary of Main Results

• We define a verification condition generator (VCG) which covers the most
frequent type of recursive programs operating on arbitrary domains.

• As a distinctive feature of our method, the verification conditions do not refer
to a theoretical model for program semantics or program execution, but only
to the theory of the domain used in the program. This is very important for the
automatic verification, because any additional theory present in the system would
significantly increase the proving effort.

• We introduce here the notion of completeness of a VCG as a duality of soundness.
It is important for the following two reasons: theoretically, it is the dual of
soundness and practically, it helps debugging. Any counterexample for the failing
verification condition will carry over to a counterexample for the given program
and specification. Moreover, the failing proof gives information about the place
of the bug.

226 N. Popov and T. Jebelean

• We prove soundness and completeness of the VCG and this provides a warranty
that any system based on our results will be sound and will detect all bugs.

• We introduce a specialized strategy for termination. The termination problem is
reduced to the termination of a simplified version of the program. The conditions
for the simplified versions are identical for special classes of functional programs,
thus they are highly reusable.

2 Automation of the Verification: VCG

In this section we develop a theoretical framework whose results are then used for
automatic verification.

In the literature, there is a variety of strategies for obtaining proof rules. However,
some of them have been discovered to be unsound [22]. Soundness of verification
condition generators is automatically assumed, however many of them have not been
proven sound. This implies that any of the programs which were verified by the help
of an unsound VCG may, in fact, be incorrect.

In this paper we define necessary and also sufficient conditions for a program (of
certain kind) to be totaly correct. We then construct a VCG which generates these
conditions.

We prove soundness and completeness of the respective verification conditions.
This implies that the validity of the verification conditions is necessary and sufficient
to verify the total correctness of the program under consideration.

These proofs of soundness and completeness form the basis of an implementation
of the VCG that ensures the verification of concrete programs.

2.1 Program Schemata

Considering program schemata [28] instead of concrete programs has a relatively
long tradition. Early surveys on the theory of program schemata can be found in
[18], and in more general splitting programs into types of programs is well studied
in [33].

More generally, the use of schemata (axiom schemata, proposition schemata,
problem schemata, and algorithm schemata) plays a very important role for
algorithm-supported mathematical theory exploration [7, 10].

Program schemata are (almost) programs where the concrete constants, functions
and predicates are replaced by symbolic expressions.

When investigating program schemata instead of concrete programs, one may
derive properties which concern not just one concrete program, but many similar
programs, more generally – a whole class of programs – those which fit into the
schema.

Sound and Complete Verification Condition Generator 227

Moreover, for a given schema, each concrete program can be obtained from it
by an instantiation which gives concrete meanings to the constant, function and
predicate symbols in the schema.

Smith proposed the use of schemata for synthesis of functional programs [36].
In fact, his work spans over more than two decades, and has produced some of the
more important results in practical program synthesis.

A recent result on the application of program schemata to program synthesis
is available at [7, 10]. There one may find how even non-trivial algorithms,
e.g., Buchberger’s algorithm for Gröbner bases [8, 9] may be synthesized fully
automatically starting from the specification and the schema.

We approach the problem of program verification by studying one concrete
program schema. When deriving necessary (and also sufficient) conditions for
program correctness, we actually prove at the meta-level that for any program of
that class (defined by the schema) it suffices to check only the respective verification
conditions. This is very important for the automation of the whole process, because
the production of the verification conditions is not expensive from the computational
point of view.

The following example will give more intuition on the notions of program
schemata and concrete programs. Let us consider the schema defining simple
recursive programs :

F Œx� D If QŒx� then SŒx� else C Œx; F ŒRŒx���; (5)

whereQ is a predicate and S , C , R are auxiliary functions.
Consider also, the program Fact for computing the factorial function:

FactŒn� D If n D 0 then 1 else FactŒn � 1�: (6)

It is now obvious, that the program Fact fits to the simple recursive program
schema. In order to automate the process of reasoning about programs like Fact
we reason at the meta-level about their schemata.

2.2 Coherent Programs

Here we state the general principles we use for writing coherent programs with the
aim of building up a non-contradictory system of verified programs. Although, these
principles are not our invention (similar ideas appear in [24]), we state them here
because we want to emphasize on and later formalize them. Similar to these ideas
appear also in software engineering – they are called there design by contract or
programming by contract [31].

We build our system such that it preserves the modularity principle, that is,
a subprogram may be replaced by any other program that satisfies the same
specification.

228 N. Popov and T. Jebelean

Building up correct programs: Firstly, we want to ensure that our system of
coherent programs would contain only correct (verified) programs. This we achieve,
by:

• Start from basic (trustful) functions e.g., addition, multiplication, etc.;
• Define each new function in terms of already known (defined previously)

functions by giving its source text, the specification (input and output predicates)
and prove their total correctness with respect to the specification.

This simple inductively defined principle would guarantee that no wrong pro-
gram may enter our system. Next we want to ensure is the easy exchange (mobility)
of our program implementations. This principle is usually referred as:

Modularity: Once we define the new function and prove its correctness, we
“forbid” using any knowledge concerning the concrete function definition. The
only knowledge we may use is the specification. This gives the possibility of easy
replacement of existing functions. For example we have a powering function P ,
with the following program definition (implementation):

P Œx; n� D If n D 0 then 1 else P Œx; n � 1� � x: (7)

The specification ofP is: the domainD D R
2, the precondition IP Œx; n� ” n2N

and the postconditionOP Œx; n; y� ” y D xn.
Additionally, we have proven the correctness of P . Later, after using the

powering functionP for defining other functions, we decide to replace its definition
(implementation) by another one, however, keeping the same specification. In this
situation, the only thing we should do (besides preserving the name) is to prove that
the new definition (implementation) ofP meets the specification as defined initially.

In order to achieve the modularity, we need to ensure that when defining a new
program, all the calls made to the existing (already defined) programs obey the input
restrictions of that programs – we call this principle the appropriate values for the
function calls principle.

We now define naturally the class of coherent programs as those which obey the
appropriate values to the function calls principle. The general definition comes in
two parts: for functions defined by superposition and for functions defined by the
If-then-else construct.

Definition 1. Let F be obtained fromH , G1, : : : , Gn by superposition:

F Œx� D HŒG1Œx�; : : : ; GnŒx��: (8)

The program F with the specification hIF ;OF i is coherent with respect to its
auxiliary functions H , Gi and their specifications hIH ;OH i, hIGi ; OGi i if and
only if

.8x W IF Œx�/.IG1 Œx� ^ : : : ^ IGnŒx�/ (9)

Sound and Complete Verification Condition Generator 229

and

.8x W IF Œx�/.8y1 : : : yn/.OG1Œx; y1� ^ � � �^OGnŒx; yn� H) IH Œy1; : : : yn�/: (10)

Definition 2. Let F be obtained fromH and G by the If-then-else construct:

F Œx� D If QŒx� then HŒx� else GŒx�: (11)

The program F with the specification hIF ;OF i is coherent with respect to its
auxiliary functionsH , G and their specifications hIH ;OH i, hIG;OGi if and only if

.8x W IF Œx�/.QŒx� H) IH Œx�/ (12)

^
.8x W IF Œx�/.:QŒx� H) IGŒx�/:

Throughout this paper we deal mainly with coherent functions. As a first step of
the verification process we check if the program is coherent. Incoherent programs
need not be incorrect. However, if we want to achieve the modularity of our system,
we need to restrict ourselves to deal with coherent programs only.

In order to demonstrate the importance of the coherence we give an example
of a function GM , defined in terms of an auxiliary function M . Initially GM is
correct with respect to its specification but it is not coherent. However, after a slight
modification of the implementation of M , GM will not be correct any more and
therefore the modularity principle is not met.

Let us have GM and M with the following program definitions (implementa-
tions):

GMŒx; y� D SqrtŒM Œx; y�� (13)

MŒx; y� D jx � yj:
The specifications of GM , M and Sqrt are: the domain for the first two is R

2,
and the domain for the Sqrt is R. The precondition of GM is IGM Œx; y� ” T,
the postcondition of GM is OGM Œx; y; z� ” z4 D .x:y/2, the precon-
dition of M is IM Œx; y� ” x � 0 ^ y � 0, the postcondition of M is
OMŒx; y; z� ” z D x:y, the precondition of Sqrt is ISqrt Œx� ” x � 0 and
the postcondition of Sqrt is OSqrt Œx; y� ” y2 D x ^ y � 0.

The function GM is expected for positive numbers to compute their geometric
means, but it is also defined for any combination of positive and negative numbers.
The function M is computing the absolute value of the multiplication of two
numbers.

It is easy to see that GM and M are correct with respect to their specifications.
Moreover, we do not concentrate here on the implementation of Sqrt – we just
assume it is correct with respect to the given specification. We will however show
that GM is not coherent. The coherence conditions are:

230 N. Popov and T. Jebelean

.8x; y W T/ .x � 0 ^ y � 0/ (14)

and
.8x; y W T/ .8z/ .z D x:y H) z > 0/: (15)

As we can see both conditions for GM to be coherent are violated, but the
program GM is correct. Now comes the question: “Why do we need to require
our functions to be coherent if non-coherent ones may still be correct?”. In fact, the
function GM is correct due to the special behavior of the function M – it makes
sure that its output is nonnegative. Let us now change the implementation ofM and
remove this special feature (which is not needed, because it is not required by its
specification). The new definition is:

MŒx; y� D x � y: (16)

We preserve however its specification unchanged, i.e., the precondition of M
.IM Œx; y� ” x � 0 ^ y � 0/, and the postcondition of M .OMŒx; y; z� ”
z D x:y/.

It is easy to check that the new implementation of M meets its specification. If
we now execute the function GM on one positive and one negative numbers, say 2
and �2, M will return a negative output (MŒ2;�2� D �4) and therefore we may
not expect a correct output from the function Sqrt executed on a negative input.

3 General Recursive Programs

In this section we study the class of general recursive programs (more precisely:
recursive programs with multiple recursive calls and multiple conditional branches)
and we extract the purely logical conditions which are sufficient for the program
correctness. These are inferred using Scott induction [27, 29] and induction on
natural numbers in the fixpoint theory of functions and constitute a meta-theorem
which is proven once for the whole class. The concrete verification conditions for
each program are then provable without having to use the fixpoint theory.

We approach the correctness problem by splitting it into two parts: partial
correctness (prove that the program satisfies the specification provided the program
terminates), and termination (prove that the program always terminates).

General recursive programs are programs of the form:

F Œx� D If Q0Œx� then SŒx� (17)

elseif Q1Œx� then C1Œx; F ŒR1;1Œx��; : : : ; F ŒR1;k1 Œx���

: : :

elseif QnŒx� then CnŒx; F ŒRn;1Œx��; : : : ; F ŒRn;kn Œx���;

Sound and Complete Verification Condition Generator 231

where Qi are predicates and S;Ci ; Ri;j are auxiliary functions (SŒx� is a “simple”
function (the bottom of the recursion), CiŒx; y1; : : : ; yki � are “combinator” func-
tions, and Ri;j Œx� are “reduction” functions).

We assume that the functions S , Ci , and Ri;j satisfy their specifications
given by hIS Œx�;OS Œx; y�i, hICi Œx; y1; : : : ; yki �; OCi Œx; y1; : : : ; yki ; z�i, hIRi;j Œx�;
ORi;j Œx; y�i.

Without loss of generality, we may assume that the Qi predicates are exhaustive
and mutually disjoint, that is:

Qi) :Qj ; for each i ¤ j;

and:
Q0 _ � � � _Qn:

As an important note, we point out that functions with multiple arguments also
fall into this scheme, because the arguments x; y; z could be vectors (tuples).

In practice Qi may also be implemented by programs, and they may also have
input conditions, but we do not want to complicate the present discussion by
including this aspect, which has a special flavor.

Type (or domain) information does not appear explicitly in this formulation,
however it may be included in the input conditions.

Note that the “programming language” used here contains only the construct If-
then-else in addition to the language of first order predicate logic.

One may also use some additional restrictions on the shape of the definitions
of Qi , S , Ci , and Ri;j (e.g., that they do not contain quantifiers) in order to
make the program “easy” to execute. However, this depends on the complexity of
the “interpreter” (“compiler”) and does not influence the actual generation of the
verification conditions. In general, the auxiliary functions may already be defined in
the underlying theory, or by other programs (that includes logical terms).

3.1 Coherent General Recursive Multiple Conditional Programs

As already discussed, we first check if the program is coherent, that is, all function
calls are applied to arguments obeying the respective input specifications.

The corresponding conditions for this class of programs, which are derived from
the definition of coherent programs (1) and (2), are:

Definition 3. Let for all i; j , the functions S , Ci , and Ri;j be such that they satisfy
their specifications hIS ;OS i, hICi ; OCi i, and hIRi;j ; ORi;j i. Then the program F as
defined in (17) with its specification hIF ;OF i is coherent with respect to S , Ci ,
Ri;j , and their specifications, if and only if the following conditions hold:

.8x W IF Œx�/.Q0Œx� H) IS Œx�/ (18)

232 N. Popov and T. Jebelean

.8x W IF Œx�/.Q1Œx� H) IF ŒR1;1Œx�� ^ � � � ^ IF ŒR1;k1 Œx��/ (19)

. . .

.8x W IF Œx�/.QnŒx� H) IF ŒRn;1Œx�� ^ � � � ^ IF ŒRn;kn Œx��/ (20)

.8x W IF Œx�/.Q1Œx� H) IR1;1 Œx� ^ � � � ^ IR1;k1 Œx�/ (21)

. . .

.8x W IF Œx�/.QnŒx� H) IRn;1 Œx� ^ � � � ^ IRn;kn Œx�/ (22)

.8x; y1; : : : ; yk1 W IF Œx�/.Q1Œx� ^OF ŒR1;1Œx�; y1� ^ � � � ^OF ŒR1;k1 Œx�; yk1 � (23)

H)
IC1Œx; y1; : : : ; yk1 �/

: : :

.8x; y1; : : : ; ykn W IF Œx�/.QnŒx�^OF ŒRn;1Œx�; y1�^ � � � ^OF ŒRn;kn Œx�; ykn � (24)

H)
IC1Œx; y1; : : : ; ykn �/

Again we see that the respective conditions for coherence correspond very much
to our intuition about coherent programs, namely:

• (18) treats the base case, that is,Q0Œx� holds and no recursion is applied, thus the
input x must fulfill the precondition of S .

• (19) – (20) treat the general case, that is, :Q0Œx�, and say QiŒx� holds and
recursion is applied, thus all the new inputs Ri;1Œx�, . . . , Ri;ki Œx� must fulfill the
precondition of the main function F .

• (21) – (22) treat the general case, that is, :Q0Œx�, and say QiŒx� holds and
recursion is applied, thus the input x must fulfill the preconditions of the
reduction functionsRi;1, . . . , Ri;ki .

• (23) – (24) treat the general case, that is, :Q0Œx�, and say QiŒx� holds and
recursion is applied, thus the input x, together with any y1, . . . , yki (where for
each j , yj is a possible output F ŒRi;j Œx��) must fulfill the precondition of the
function Ci .

3.2 Verification Conditions and Their Soundness

As we already discussed, in order to be sure that a program is correctly proven to
be correct, one has to formally rely on the technique used for verification. Thus
we formulate here a soundness theorem, for the class of coherent general recursive
programs.

Sound and Complete Verification Condition Generator 233

Theorem 1. Let for each i; j : S , Ci , and Ri;j be functions which satisfy their
specifications hIS ;OS i, hICi ; O 0Ci rangle, and hIRi;j ; ORi;j i. Let also the general
recursive program F as defined in (17) with its specification hIF ;OF i be coherent
with respect to S , Ci , Ri;j , and their specifications. Then F is totally correct with
respect to hIF ;OF i if the following verification conditions hold:

.8x W IF Œx�/.Q0Œx� H) OF Œx; SŒx��/ (25)

.8x; y1; : : : ; yk1 W IF Œx�/.Q1Œx� ^OF ŒR1;1Œx�; y1�^ � � � ^OF ŒR1;k1 Œx�; yk1 � (26)

H)
OF Œx; C1Œx; y1; : : : ; yk1 ��/

: : :

.8x; y1; : : : ; ykn W IF Œx�/.QnŒx�^ OF ŒRn;1Œx�; y1�^� � �^OF ŒRn;kn Œx�; ykn � (27)

H)
OF Œx; CnŒx; y1; : : : ; ykn ��/

.8x W IF Œx�/.F 0Œx� D T/ (28)

where:

F 0Œx� D If Q0Œx� then T (29)

elseif Q1Œx� then F 0ŒR1;1Œx�� ^ � � � ^ F 0ŒR1;k1 Œx��
: : :

elseif QnŒx� then F 0ŒRn;1Œx�� ^ � � � ^ F 0ŒRn;kn Œx��:

The above conditions constitute the following principle:

• (25) prove that the base case is correct.
• (26) – (27) for any else branch, prove that the recursive expression is correct

under the assumption that the reduced calls are correct.
• (28) prove that a simplified version F 0 of the initial program F terminates.

Proof. The proof of the soundness statement is split into two major parts:

• (A) – prove termination.
• (B) prove partial correctness using Scott induction.

(A): From the assumption that for all i : S , Ci , and Ri;j are totally correct (with
respect to IS , ICi , and IRi;j) by the coherence of F , we obtain that all the calls to
the auxiliary functions S , Ci , and Ri;j will terminate.

Take arbitrarily x and assume IF Œx�. From (28), we obtain that F 0Œx� D T.
Now we construct the recursive tree RTF 0 Œx� of F 0, starting form x in the

following way:

234 N. Popov and T. Jebelean

• x is the root of the tree, that is, the uppermost node.
• For any node u, ifQ0Œu� holds, then stop further construction on that branch, and

put the symbol >.
• For any node u, if QiŒu� holds, for some i ¤ 0, then construct all the ki

descendent nodesRi;1Œu�, . . . , Ri;ki Œu�.

x

�
�
�

�
�

�

������

������
Ri;1Œx� Ri;2Œx�

>
Ri;ik Œx�: : : : : :

�
�
�
��

�
�

�

���������

�
�
�

������

Rj;1ŒRi;1Œx��

>
:::

:::
:::

Rj;kj ŒRi;1Œx��

>
: : : Rm;1ŒRi;ik Œx�� : : : : : :

Qi Œx�

Qj ŒRi;1Œx�� Q0ŒRi;2Œx�� > QmŒRi;ik Œx��

Q0ŒRj;1ŒRi;1Œx��� > Q0ŒRj;kj ŒRi;1Œx��� >
We first show that RTF 0 Œx� is finite.
We prove this statement by contradiction, i.e. assume RTF 0 Œx� is infinite. Hence,

there exists an infinite path .hi1; j1i; hi2; j2i; : : : ; hil ; jl i : : : /, such that:

:Q0Œx� but:Qi1Œx� (30)

:Q0ŒRi1;j1 Œx�� but: Qi2ŒRi1;j1 Œx��

: : :

:Q0ŒRil ;jl Œ: : : ŒRi1;j1 Œx���� but: QilC1
ŒRil ;jl Œ: : : ŒRi1;j1 Œx����

: : : :

Now, we look at the construction of F 0 as being the least fixpoint of the operator
F 0 as defined in (29).

Let us denote the nowhere defined function by ˝ (˝ D �x:?). Let f0; f1; : : :
fm; : : : be the finite approximations of F 0 obtained in the following way:

Sound and Complete Verification Condition Generator 235

f0Œx� D ˝Œx�

fmC1Œx� D If Q0Œx� then T

elseif Q1Œx� then fmŒR1;1Œx�� ^ � � � ^ fmŒR1;k1 Œx��
: : :

elseif QnŒx� then fmŒRn;1Œx�� ^ � � � ^ fmŒRn;kn Œx��:

The computable function F 0, corresponding to (29) is defined as

F 0 D
[

m

fm;

that is, the least fixpoint of (29).
Since for our particular x (it was taken arbitrarily) we have F 0.x/ D T, there

must exist a finite approximation fm, such that:

fmŒx� D T:

If m D 0, then f0Œx� D T, but on the other hand, by its definition f0 D ˝ , thus
this is not a case. Hence, we conclude that m > 0.

From the assumption (30), and in particular:Q0Œx� andQi1Œx�, by the definition
of fm we obtain:

fmŒx� D fm�1ŒRi1;1Œx�� ^ � � � ^ fm�1ŒRi1;ki1 Œx��:

From here, and fmŒx� D T we obtain that:

fm�1ŒRi1;1Œx�� D T ^ � � � ^ fm�1ŒRi1;ki1 Œx�� D T;

and hence fm�1ŒRi1;j1 Œx�� D T.
By repeating the same kind of reasoning m times (in fact, formally it is done by

induction), we obtain that:

f0ŒRim;jm Œ: : : ŒRi1;jmŒx���� D T:

On the other hand f0 D ˝ and hence:

f0ŒRim;jm Œ: : : ŒRi1;j1 Œx���� D ?:

This is the desired contradiction, and hence, we have proven that the recursive tree
RTF 0 Œx� is finite.

236 N. Popov and T. Jebelean

Now we continue the proof of the termination of F . We prove this statement by
contradiction, i.e. assume RTF 0 Œx� is finite and F Œx� D ?.

For our particular x (it was taken arbitrary but fixed, IF Œx�), we consider the
following two cases:

• Case 1: Q0Œx�.
Now by the definition of F , we have F Œx� D SŒx�. We chose x such that IF Œx�,
and by (18) we obtain that SŒx� # and hence F Œx� # and thus we obtain a
contradiction.

• Case 2: :Q0Œx�, and assume Qi1Œx�. Now, by following the definition of F , we
have,

F Œx� D Ci1Œx; F ŒRi1;1Œx�; : : : ; Ri1;ki1 Œx���;
and since F is coherent, we have IRi1;1 Œx�, IRi1;2 Œx�, and IRi1;ki1

Œx�, and
IC Œx; y1; : : : ; yki1 �. Thus there exist j1, such that Ri1;j1 Œx� D ?.

Applying the same kind of reasoning we obtain the infinite path
.hi1; j1i; hi2; j2i; : : : ; hil ; jl i : : : /, that is:
:Q0Œx� but: Qi1Œx�

:Q0ŒRi1;j1 Œx�� but: Qi2ŒRi1;j1 Œx��

. . .

:Q0ŒRil ;jl Œ: : : ŒRi1;j1 Œx���� but: QilC1
ŒRil ;jl Œ: : : ŒRi1;j1 Œx����

. . . .
This implies that the threeRTF 0 Œx� is infinite, which is the desired contradiction.

(B): Using Scott induction, we will show that F is partially correct with respect to
its specification, namely:

.8x W IF Œx�/.F Œx� #H) OF Œx; F Œx��/: (31)

As it is well known (e.g., [27, 29]), not every property is admissible and may be
proven by Scott induction. However, properties which express partial correctness
are known to be admissible.

Let us remind the definition of these properties: A property � is said to be a
partial correctness property if and only if there are predicates I and O , such that:

.8f /.�Œf �” .8a/ .f Œa� # ^I Œa� H) OŒa; f Œa��//: (32)

We now consider the following partial correctness property �:

.8f /.�Œf �” .8a/ .f Œa� # ^IF Œa� H) OF Œa; f Œa��//:

Sound and Complete Verification Condition Generator 237

The first step in Scott induction is to show that � holds for ˝ . By the definition
of � we obtain:

�Œ˝�” .8a/ .˝Œa� # ^IF Œa� H) OF Œa;˝Œa��//;

and so, �Œ˝� holds, since ˝Œa� # never holds.
In the second step of Scott induction, we assume �Œf � holds for some f :

.8a/.f Œa� # ^IF Œa� H) OF Œa; f Œa��/; (33)

and show �Œfnew�, where fnew is obtained from f by the main program (17) as
follows:

fnewŒx� D If Q0Œx� then SŒx�

elseif Q1Œx� then C1Œx; f ŒR1;1Œx��; : : : ; f ŒR1;k1 Œx���

: : :

elseif QnŒx� then CnŒx; f ŒRn;1Œx��; : : : ; f ŒRn;kn Œx���;

Now, we need to show now that for an arbitrary a,

fnewŒa� # ^IF Œa� H) OF Œa; fnewŒa��:

Assume fnewŒa� # and IF Œa�. We have now the following two cases:

• Case 1: Q0Œa�.
By the definition of fnew we obtain fnewŒa� D SŒa� and since fnewŒa� #, we

obtain that SŒa� must terminate as well, that is SŒa� #. Now using verification
condition (25) we may concludeOF Œa; SŒa�� and hence OF Œa; fnewŒa��.

• Case 2: QiŒa� for some i , 1 � i � n.
By the definition of fnew we obtain:

fnewŒa� D CiŒa; f ŒRi;1Œa��; : : : ; f ŒRi;ki Œa���

and since fnewŒa� #, we conclude that all the others involved in this computation
must also terminate, that is:

Ci Œa; f ŒRi;1Œa��; : : : ; f ŒRi;ki Œa��� #;

f ŒRi;1Œa�� #; : : : ; f ŒRi;ki Œa�� #
and

Ri;1Œa� #; : : : ; Ri;ki Œa� # :
Since F is coherent, namely from IF Œa�, by (19)–(20), we obtain:

IF ŒRi;1Œx�� ^ � � � ^ IF ŒRi;k1 Œx��:

238 N. Popov and T. Jebelean

Knowing that for each j : f ŒRi;j Œa�� #, by the induction hypothesis (33) we
obtain OF ŒRi;j Œa�; f ŒRi;j Œa���.

Considering the appropriate i th verification condition (26)–(27), note that all
the assumptions from the left part of the implication are at hand and thus we can
conclude:

OF Œa; Ci Œa; f ŒRi;1Œa��; : : : ; f ŒRi;ki Œa����;

which is
OF Œa; fnewŒa��:

Now we conclude that the property � holds for the least fixpoint of (17) and
hence, � holds for the function computed by (17), which completes the proof of
Theorem 1.

3.3 Completeness of the Verification Conditions

Completing the notion of soundness, we introduce its dual notion – completeness.
As we already mentioned, after generating the verification conditions, one has to

prove them as logical formulas. If all of them hold, then the program is correct with
respect to its specification – Theorem 1.

Now, we formulate the completeness theorem for the class of coherent general
recursive programs.

Theorem 2. Let for any i; j the functionsS ,Ci , andRi;j satisfy their specifications
hIS ;OS i, hIC ;OC i, and hIRi;j ; ORi;j i. Let also the general recursive program F

(17) with its specification hIF ;OF i be coherent with respect to S , Ci , Ri;j , and
their specifications, and the output specification of F , .OF / is functional one.

Then if F is totally correct with respect to hIF ;OF i then the following verification
conditions hold:

.8x W IF Œx�/.Q0Œx� H) OF Œx; SŒx��/ (34)

.8x; y1; : : : ; yk1 W IF Œx�/.Q1Œx� ^OF ŒR1;1Œx�; y1�^ � � � ^OF ŒR1;k1 Œx�; yk1 � (35)

H)
OF Œx; C1Œx; y1; : : : ; yk1 ��/

: : :

.8x; y1; : : : ; ykn W IF Œx�/.QnŒx�^ OF ŒRn;1Œx�; y1�^� � �^OF ŒRn;kn Œx�; ykn � (36)

H)
OF Œx; CnŒx; y1; : : : ; ykn ��/

.8x W IF Œx�/.F 0Œx� D T/ (37)

Sound and Complete Verification Condition Generator 239

where:

F 0Œx� D If Q0Œx� then T (38)

elseifQ1Œx� then F 0ŒR1;1Œx�� ^ � � � ^ F 0ŒR1;k1 Œx��
: : :

elseif QnŒx� then F 0ŒRn;1Œx�� ^ � � � ^ F 0ŒRn;kn Œx��;

which are the same as (25), (26)–(27), (28), and (29) from Theorem 1.

Proof. We assume now that:

• For all i; j the functions S , Ci , and Ri;j are totally correct with respect to their
specifications hIS ;OS i, hICi ; OCi i, and hIRi;j ; ORi;j i.

• The program F (17) with its specification hIF ;OF i is coherent.
• The output specification of F , OF is functional one, that is:

.8x W IF Œx�/.9Šy/.OF Œx; y�/:

• The program F (17) is correct with respect to its specification, that is, the total
correctness formula holds:

.8x W IF Œx�/.F Œx� # ^OF Œx; F Œx��/: (39)

We show that (34), (35) – (36), and (37) hold as logical formulas.
We start now with proving (34) and (35) – (36) simultaneously.
Take arbitrarily x and assume IF Œx�. We consider the following two cases:

• Case 1: Q0Œx�

By the definition of F , we have F Œx� D SŒx�, and by using the correctness
formula (39) of F , we conclude (34) holds. The formulas (35) – (36) hold,
because the predicatesQ are consistent and noncontradictory, and hence:QiŒx�

for all i , 1 � i � n.
• Case 2: QiŒx� for some i , 1 � i � n.

Now, the formulas (34) and all except one of (35) – (36) hold trivially, because
at the left hand side of the implication we have :QiŒx�.
Assume y1; : : : ; yki are such that:

OF ŒRi;1Œx�; y1�; : : : ; OF ŒRi;ki Œx�; yki �:

Since F is correct, we obtain that:

y1 D F ŒRi;1Œx��; : : : ; yki D F ŒRi;ki Œx��

because OF is a functional predicate.

240 N. Popov and T. Jebelean

On the other hand, by the definition of F , we have:
F Œx� D CiŒa; F ŒRi;1Œa��; : : : ; F ŒRi;ki Œa��� and hence F Œx� D Ci Œx; y1; : : : ; yki �.
Again, from the correctness of F , we obtain OF Œx; Ci Œx; y1; : : : ; yki ��, which
had to be proven.

Now, we show that the simplified version F 0Œx� D T. Moreover,F 0 terminates if
F terminates, which is equivalent to F 0Œx� D T.

Take arbitrarily x and assume IF Œx�.
Now we construct the recursive tree RTF Œx� of F , starting form x in the

following way:

• x is the root of the tree, that is, the uppermost node.
• For any node u, ifQ0Œu� holds, then stop further construction on that branch, and

put the symbol >.
• For any node u, if QiŒu� holds, for some i ¤ 0, then construct all the ki

descendent nodesRi;1Œu�, . . . , Ri;ki Œu�.

x

�
�
�

�
�

�

������

������
Ri;1Œx� Ri;2Œx�

>
Ri;ik Œx�: : : : : :

�
�
�
��

�
�

�

���������

�
�
�

������

Rj;1ŒRi;1Œx��

>
:::

:::
:::

Rj;kj ŒRi;1Œx��

>
: : : Rm;1ŒRi;ik Œx�� : : : : : :

Qi Œx�

Qj ŒRi;1Œx�� Q0ŒRi;2Œx�� > QmŒRi;ik Œx��

Q0ŒRj;1ŒRi;1Œx��� > Q0ŒRj;kj ŒRi;1Œx��� >
Note that the recursive tree of F , RTF Œx� is the same as the recursive tree of F 0,

RTF 0 Œx�. Thus RTF Œx� is finite.
Now we need to show termination of F 0. For our particular x (it was taken

arbitrary but fixed, IF Œx�), we consider the following two cases:

• Case 1: Q0Œx�.
Now by the definition of F 0, we have F Œx� D T and hence F 0Œx� #.

Sound and Complete Verification Condition Generator 241

• Case 2::Q0Œx�, and sayQiŒx�. Now, by following the definition of F 0, we have,

F 0Œx� D F 0ŒRi;1Œx�� ^ � � � ^ F 0ŒRi;ki Œx��:

We need to apply the same kind of reasoning to all the nodes of the recursive tree
RTF Œx�. Since the tree is finite, after unfolding finitely many times we reach the
leaves. Moreover, for each leaf we arrive at the Case 1 and thus F 0Œx� #.

By this we completed our proof of the completeness theorem.

4 Two Relevant Examples

4.1 Binary Powering

In order to make clear our contributions, we first consider a relatively simple
example, namely an implementation of the binary powering algorithm:

P Œx; n� D If n D 0 then 1

elseif EvenŒn� then P Œx � x; n=2�
else x � P Œx � x; .n � 1/=2�:

This program is in the context of the theory of real numbers, and in the following
formulas, all variables are implicitly assumed to be real. Additional type information
(e.g., n 2 N) may be explicitly included in some formulas.

The specification is:

hIP Œx; n� ” n 2 N; OP Œx; n; y� ” y D xni: (40)

The conditions for coherence are:

.8x; n W n 2 N/ .n D 0) T/ (41)

.8x; n W n 2 N/.n ¤ 0 ^ EvenŒn�) EvenŒn�/ (42)

.8x; n W n 2 N/.n ¤ 0 ^ :EvenŒn�) OddŒn�/ (43)

.8x; n;m W n 2 N/.n ¤ 0 ^ EvenŒn� ^m D .x � x/n=2) T/ (44)

.8x; n;m W n 2 N/.n ¤ 0 ^ :EvenŒn� ^m D .x � x/.n�1/=2) T/ (45)

.8x; n W n 2 N/.n ¤ 0 ^ EvenŒn�) n=2 2 N/ (46)

.8x; n W n 2 N/.n ¤ 0 ^ :EvenŒn�) .n � 1/=2 2 N/ (47)

242 N. Popov and T. Jebelean

One sees that the formulas (41), (44) and (45) are trivially valid, because we have
the logical constant T at the right side of an implication. The origin of these T come
from the preconditions of the 1 constant-function-one and the � multiplication.

The formulas (42), (43), (46) and (47) are easy consequences of the elementary
theory of reals and naturals. For the further check of correctness the generated
conditions are:

.8x; n W n 2 N/.n D 0) 1 D xn/ (48)

.8x; n;m W n 2 N/.n ¤ 0 ^ EvenŒn� ^m D .x � x/n=2) m D xn/ (49)

.8x; n;m W n 2 N/.n ¤ 0^:EvenŒn�^m D .x �x/.n�1/=2) x �m D xn/ (50)

.8x; n W n 2 N/P 0Œx; n� D T; (51)

where

P 0Œx; n� D If n D 0 then T

elseif EvenŒn� then P 0Œx � x; n=2�
else P 0Œx � x; .n � 1/=2�:

The proofs of these verification conditions are straightforward.
Now comes the question: What if the program is not correctly written? Thus, we

introduce now a bug. The program P is now almost the same as the previous one,
but in the base case (when n D 0) the return value is 0.

P Œx; n� D If n D 0 then 0

elseif EvenŒn� then P Œx � x; n=2�
else x � P Œx � x; .n � 1/=2�:

Now, for this buggy version of P we may see that all the respective verification
conditions remain the same except one, namely, (48) is now:

.8x; n W n 2 N/.n D 0) 0 D xn/ (52)

which itself reduces to:
0 D 1

(because we consider a theory where 00 D 1).
Therefore, according to the completeness of the method, we conclude that the

program P does not satisfy its specification. Moreover, the failed proof gives a hint
for “debugging”: we need to change the return value in the case n D 0 to 1.

Furthermore, in order to demonstrate how a bug might be located, we construct
one more “buggy” example where in the “Even” branch of the program we have
P Œx; n=2� instead of P Œx � x; n=2�:

Sound and Complete Verification Condition Generator 243

P Œx; n� D If n D 0 then 1

elseif EvenŒn� then P Œx; n=2�

else x � P Œx � x; .n � 1/=2�:

Now, we may see again that all the respective verification conditions remain the
same as in the original one, except one, namely, (49) is now:

.8x; n;m W n 2 N/.n ¤ 0 ^ EvenŒn� ^m D .x/n=2) m D xn/ (53)

which itself reduces to:
m D xn=2) m D xn

From here, we see that the “Even” branch of the program is problematic and one
should satisfy the implication. The most natural candidate would be:

m D .x2/n=2) m D xn

which finally leads to the correct version of P .

4.2 Neville’s Algorithm

Neville’s algorithm [19], [34] constructs the polynomial of degree n�1which passes
through given n different points.

The original problem is as follows:

• Given a fieldK and two non-empty tuples x and a overK of same length n, such
that

.8i; j W i; j D 1; : : : ; n/.i ¤ j) xi ¤ xj /;
that is, no two xi from x are the same.

• Find a polynomial p over the field K , such that

– DegŒp� � n � 1 and
– .8i W i D 1; : : : ; n/.EvalŒp; xi � D ai /,
where the Eval function evaluates a polynomial p at value xi .

This original problem, as stated here, was solved by E. H. Neville [25] by
inventing an algorithm for the construction of such a polynomial [32]. The algorithm
itself may be formulated as follows:

P Œx; a� D If kak � 1then FirstŒa� (54)

else
.X � FirstŒx�/.P ŒTailŒx�;TailŒa��/ � .X � LastŒx�/.P ŒBgnŒx�;BgnŒa��/

LastŒx� � FirstŒx�
;

244 N. Popov and T. Jebelean

where we use the following notation:

• kak gives the number n of elements of a,
• First Œa� gives the first element of a,
• Last Œa� gives the last element of a,
• Tail Œa� gives a without its first element,
• Bgn Œa� gives a without its last element, and
• X is a constant expressing the single polynomial of degree 1, leading coefficient
1 and free coefficient 0.

In fact, in abstract algebra X may also be interpreted as an indeterminate of the
polynomials, that is, the variable in polynomial functions. This is a discussion which
is not relevant for this presentation, however, it is very important when constructing
the theory of polynomials, on which the verification conditions would have to be
proven.

In order to illustrate how Neville’s algorithm works, we consider the following
example: x D h�1; 0; 1i and a D h3; 4; 7i. After executing (54), we obtain:

P Œh�1; 0; 1i; h3; 4; 7i�D � � � D X 2 C 2X C 4:

This polynomial has a degree 2, as expected, and if we now evaluate it at the values
�1, 0, and 1, we obtain:

EvalŒX 2 C 2X C 4;�1� D 3;

EvalŒX 2 C 2X C 4; 0� D 4;
and

EvalŒX 2 C 2X C 4; 1� D 7;
which corresponds to the initial a.

In order to verify (54), we first formalize the specification, and then produce the
respective verification conditions.

We give here some notations which we use for the formalization of the
specification:

• kaki gives the i th element ai of a tuple a. Sometimes, ai is used as an
abbreviation for kaki . In addition to it, we have the restriction 1 � i � kak.

• IsPolyŒpoly� is a predicate standing that the expression poly is a polynomial.
For example I sPolyŒX 2 C 2X C 4�.

• IsTuple Œa� is a predicate standing that the expression a is a tuple. For example
IsTupleŒh3; 4; 7i�.

• Deg[poly] gives the degree of the polynomial poly. For example DegŒX 2 C
2X C 4� D 2.

• Eval[poly; x� evaluates a polynomial poly at value x.

The preconditions of the functions used for the definition of (54) are as follows:

Sound and Complete Verification Condition Generator 245

• First: IFirst Œa�” IsTuple Œa� ^ kak � 1
• Last: ILast Œa�” IsTuple Œa� ^ kak � 1
• Tail: ITail Œa�” IsTuple Œa� ^ kak � 1
• Bgn: IBgn Œa�” IsTuple Œa� ^ kak � 1
• kaki : IProjectionŒa; i �” IsTuple Œa� ^ 1 � i � kak
• u

v : IDivŒu; v�” v ¤ 0
• uv: IMultŒu; v�” T

• uC v: IAddŒu; v�” T

• u � v: ISubŒu; v�” T

We are now ready to give the formal specification of (54). The precondition is:

.8x; a/.IpŒx; a�” (55)

” IsTuple Œx� ^ IsTuple Œa� ^ kxk D kak ^ kak � 1^
^..8i; j W i; j 2 N/ .1 � i; j � kak ^ i ¤ j H) kxki ¤ kxkj ///;

and the postcondition is:

.8x; a/ .OpŒx; a; p�” (56)

” IsPoly Œp� ^ DegŒp� � kak � 1^
^..8i W i 2 N/.1 � i � kak ^ i ¤ j H) EvalŒp; xi � D ai ///:

The conditions for coherence are:

.8x; a/.IsTuple Œx� ^ IsTuple Œa� ^ kxk D kak ^ kak � 1^ (57)

^..8i; j W i; j 2 N/ .1 � i; j � kak ^ i ¤ j H) kxki ¤ kxkj // ^ kak � 1
H)

IsTuple Œa� ^ kak � 1/
.8x; a/.IsTuple Œx� ^ IsTuple Œa� ^ kxk D kak ^ kak � 1^ (58)

^..8i; j W i; j 2 N/ .1 � i; j � kak ^ i ¤ j H) kxki ¤ kxkj // ^ :.kak � 1/
H)

.IsTuple ŒTailŒx�� ^ IsTuple ŒTail Œa�� ^ kTail Œx�k D kTail Œa�k ^ kTail Œa�k � 1^
^..8i; j W i; j 2 N/ .1 � i; j � kTail Œa�k^i ¤ j H) kTail Œx�ki ¤ kTail Œx�kj //

.8x; a/.IsTuple Œx� ^ IsTuple Œa� ^ kxk D kak ^ kak � 1^ (59)

^..8i; j W i; j 2 N/.1 � i; j � kak ^ i ¤ j H) kxki ¤ kxkj // ^ :.kak � 1/
H)

.IsTuple ŒBgn Œx��^ IsTuple ŒBgn Œa��^kBgnŒx�k D kBgn Œa�k^kBgn Œa�k � 1^

246 N. Popov and T. Jebelean

^..8i; j W i; j 2 N/ .1 � i; j�kBgn Œa�k^i ¤ j H)kBgn Œx�ki ¤ kBgn Œx�kj ////
.8x; a/.IsTuple Œx� ^ IsTuple Œa� ^ kxk D kak ^ kak � 1^ (60)

^..8i; j W i; j 2 N/ .1 � i; j � kak ^ i ¤ j H) kxki ¤ kxkj // ^ :.kak � 1/
H)

.IsTuple Œx� ^ kxk � 1 ^ IsTuple Œa� ^ kak � 1//
.8x; a/.IsTuple Œx� ^ IsTuple Œa� ^ kxk D kak ^ kak � 1^ (61)

^..8i; j W i; j 2 N/ .1 � i; j � kak ^ i ¤ j H) kxki ¤ kxkj // ^ :.kak � 1/
H)

.IsTuple Œx� ^ kxk � 1 ^ IsTuple Œa� ^ kak � 1//

.8x; a; p1; p2/.IsTuple Œx� ^ IsTuple Œa� ^ kxk D kak ^ kak � 1^
^..8i; j W i; j 2 N/ .1 � i; j � kak ^ i ¤ j H) kxki ¤ kxkj // ^ :.kak � 1/^
^IsPoly Œp1� ^ ..8i W i 2N/.1� i �kTail Œx�kH)Eval Œp1; kTail Œx�ki � D kTail Œa�ki �^

^DegŒp1� � kTailŒa�k � 1^
^IsPoly Œp2� ^ ..8i W i 2 N/ .1 � i � kBgn Œx�k H) Eval Œp2; kBgnŒx�ki � D kBgnŒa�ki �^

^DegŒp2� � kBgn Œa�k � 1
H)

.LastŒx� � First Œx� ¤ 0/ ^ IsTuple Œx� ^ kxk � 1///: (62)

At the first side, the formulas look very complicated, however, they are almost trivial
to prove.

For example in (57) the outermost symbol is “H)” and, at the right-hand-side,
we have to prove:

IsTuple Œa� ^ kak � 1;
which is assumed at the left-hand-side. Thus, the formula holds.

After proving that the algorithm is coherent, we generate the verification
conditions which would ensure the total correctness of the algorithm.

The condition treating the base case, that is, the bottom of the recursion is:

.8x; a/.IsTuple Œx� ^ IsTuple Œa� ^ kxk D kak ^ kak � 1^
^..8i; j W i; j 2 N/ .1 � i; j � kak ^ i ¤ j H) kxki ¤ kxkj // ^ kak � 1

Sound and Complete Verification Condition Generator 247

H)
IsPolyŒF irstŒa��^

^..8i W i 2 N/.1 � i � kak H) EvalŒF irstŒa�; kxki � D kaki / ^
^DegŒFirstŒa�� � kak � 1//: (63)

The condition treating the general case, that is, the recursive calls is:

.8x; a; p1; p2/.IsTuple Œx� ^ IsTuple Œa� ^ kxk D kak ^ kak � 1^
^..8i; j W i; j 2 N/ .1 � i; j � kak ^ i ¤ j H) kxki ¤ kxkj // ^ :.kak � 1/^

^IsPolyŒp1� ^ ..8i W i 2 N/ .1 � i � kTailŒx�k H) EvalŒp1; kTailŒx�ki � D kTailŒa�ki �/^
^DegŒp1� � kTailŒa�k � 1^

^I sPolyŒp2� ^ ..8i W i 2 N/ .1 � i � kBgnŒx�k H) EvalŒp2; kBgnŒx�ki � D kBgnŒa�ki �^
^DegŒp2� � kBgnŒa�k � 1

H)

IsPolyŒ
.X � FirstŒx�/p1�.X � LastŒx�/p2

LastŒx� � FirstŒx�
�^

^.8i W i 2 N/.1� i � kxk H)EvalŒ
.X � FirstŒx�/p1 � .X � LastŒx�/p2

LastŒx� � FirstŒx�
; kxki � D kaki /^

^DegŒ
.X � FirstŒx�/p1 � .X � LastŒx�/p2

LastŒx� � FirstŒx�
� � kak � 1//: (64)

5 Termination

In this section we present a specialized strategy for proving termination of recursive
functional programs. The detailed termination proofs may in many cases be skipped,
because the termination conditions are reusable and thus collected in specialized
libraries. Enlargement of the libraries is possible by proving termination of each
candidate, but also by taking new elements directly from existing libraries.

Termination proofs of individual programs are, in general, expensive from the
automatic theorem proving point of view – they normally involve induction and thus
an induction prover must be applied. In some cases, program termination, however,
may be ensured – and this is the main contribution of this section – by matching
against simplified versions (of programs) collected in specialized libraries.

As we already saw, proving total correctness of a program is split into three
distinct steps: first – proving coherence, second – proving partial correctness, and
third – proving termination.

248 N. Popov and T. Jebelean

Furthermore, partial correctness and termination, expressed as verification con-
ditions which themselves may be proven without taking into account their order.
Moreover, as we have shown in the previous sections, a coherent program (of a
certain recursive type) is totaly correct if and only if its verification conditions hold
as logical formulas.

Proving any of the three kinds of verification conditions has its own difficulty,
however, our experience shows that proving coherence is relatively easy, proving
partial correctness is more difficult and proving the termination verification condi-
tion (it is only one condition) is in general the most difficult one.

The proof typically needs an induction prover and the induction step may
sometimes be difficult to find. Fortunately, due to the specific structure, the proof
is not always necessary, and this is what we discuss here.

5.1 Libraries of Terminating Programs

In this subsection we describe the idea of proving termination of recursive programs
by creating and exploring libraries of terminating programs, and thus avoiding
redundancy of induction proofs. The core idea is that different recursive programs
may have the same simplified version.

Let us reconsider the following very simple recursive program for computing the
factorial function:

FactŒn� D If n D 0 then 1 else n � FactŒn � 1�; (65)

with the specification of Fact , input:

8n.IFactŒn�” n 2 N/ (66)

and Output:
8n;m .OFactŒn;m�” nŠ D m/ : (67)

The verification condition for the termination of Fact is expressed using a
simplified version of the initial function:

Fact0Œn� D If n D 0 then T else Fact0Œn � 1�; (68)

namely, the verification condition is

.8n W n 2 N/.Fact 0Œn� D T/; (69)

where T expresses the logical constant true.
Note, that different recursive programs may have the same simplified version.

Let us now consider another very simple recursive program for computing the sum

Sound and Complete Verification Condition Generator 249

function:
SumŒn� D If n D 0 then 0 else nC SumŒn � 1�; (70)

with the specification of Sum, input:

8n.ISumŒn�” n 2 N/ (71)

and Output:

8n;m
�
OSumŒn;m�” n � .nC 1/

2
D m

�
: (72)

The verification condition for the termination of Sum is expressed using a
simplified version of the initial function:

Sum0Œn� D If n D 0 then T else Sum0Œn � 1�; (73)

namely, the verification condition is

.8n W n 2 N/.Sum0Œn� D T/: (74)

Notably, the termination verification conditions (69) and (74) of the programs
(68) and (73) are the same.

Primitive recursive functions (75) comprise a very large and powerful class of
functions [23]. It is well known that they always terminate [39]. The schemata of
the recursive part of a primitive recursive function is:

P rimŒn� D If n D 0 then SŒn� else C Œn;PrimŒn � 1��; (75)

Now, the simplified version of (75) is:

P rim0Œn� D If n D 0 then T else Prim0Œn � 1�; (76)

namely, the verification condition is

.8n W n 2 N/.Prim0Œn� D T/: (77)

which is the same as (69).
For serving the termination proofs, we are now creating libraries containing

simplified versions together with their input conditions, whose termination is
proven. The proof of the termination may now be skipped if the simplified version
is already in the library and this membership check is much easier than an induction
proof – it only involves matching against simplified versions.

Starting from a small library – actually it is not only one, but more, because each
recursive schema has several domain based libraries – we intend to enlarge it. One

250 N. Popov and T. Jebelean

way of doing so is by carrying over the whole proof of any new candidate, appearing
during a verification process.

5.2 Enlargement Within libraries

Enlargement within a library is also possible by applying special knowledge
retrieval. As we have seen, termination depends on the simplified version F 0 and
on the input condition IF . Considering again the factorial example (65), in order to
prove its termination we need to prove (69). Assume, now the pair (68), (69) is in
our library. We may now strengthen the input condition IFact and actually produce
a new one:

IF�newŒn�” .n 2 N ^ n � 100/:
The simplified version Fact0 remains the same (68) – we did not change the initial
program (65), however, the termination condition becomes:

.8n W n 2 N ^ n � 100/.Fact0Œn� D T/; (78)

and (after proving them) we add it to the library. It is easy to see that any new version
of a simplified program which is obtained by strengthening the input condition can
also be included in the library without further proof. Assume

.8x W IF Œx�/.F 0Œx� D T/

is a member of a library. Then for any “stronger” input condition IF�strng, we have:

IF�strngŒx� H) IF Œx�;

and thus
.8x W IF�strngŒx�/.F

0Œx� D T/:

This is of course not the case for weakening the input condition. Consider the
following weakening of IFact :

IF�realŒn�” .n 2 R/;

which leads to nontermination of our Fact 0 (69), that is:

.8n W n 2 R/.Fact0Œn� D T/;

which does not hold.

Sound and Complete Verification Condition Generator 251

Strengthening of input conditions leads to preserving the termination properties
and thus enlarging a library without additional proof is possible. However, for a
fixed simplified version, keeping (and collecting in some cases) the weakest input
condition is the most efficient strategy, because then proving the implication from
stronger to weaker condition is relatively easier.

5.3 A Note on the Termination of Fibonacci-like Programs

In this subsection we share some thoughts about proving termination of Fibonacci-
like programs. In fact, we show that certain simplification is not possible by
constructing a counterexample.

Consider the following program (already a simplified version) for computing F :

F Œx� D If QŒx� then T else F ŒR1� ^ F ŒR2�: (79)

The question we want to ask is the following: In order to prove termination of
F , would it be sufficient to prove termination of a split of F , namely to prove
termination of F1 and F2, where:

F1Œx� D IfQŒx� then TelseF ŒR1�; (80)

F2Œx� D If QŒx� then T elseF ŒR2�: (81)

We do not want to go into discussions on if this were so. We give an example in
order to show that this is not a case. Let us have:

QŒx�” x D 0

R1Œ0� D 1;R1Œ1� D 2;R1Œ2� D 0
R2Œ0� D 2;R2Œ1� D 0;R2Œ2� D 1

IF Œx�” IR1 Œx�” IR2Œx�” x D 0 _ x D 1 _ x D 2:
First check if the programF is coherent. In order to perform the coherence check,

we instantiate the relevant conditions:

.8x W x D 0 _ x D 1 _ x D 2/.x D 0 H) x D 0 _ x D 1 _ x D 2/

.8x W x D 0 _ x D 1 _ x D 2/.x ¤ 0 H) R1Œx� D 0 _R1Œx� D 1 _R1Œx� D 2/

.8x W x D 0 _ x D 1 _ x D 2/.x ¤ 0 H) R2Œx� D 0 _R2Œx� D 1 _R2Œx� D 2/
.8x W x D 0 _ x D 1 _ x D 2/.x ¤ 0 H) x D 0 _ x D 1 _ x D 2/
.8x W x D 0 _ x D 1 _ x D 2/.x ¤ 0 H) x D 0 _ x D 1 _ x D 2/

.8x W x D 0 _ x D 1 _ x D 2/.x ¤ 0 ^ : : : H) T/:

252 N. Popov and T. Jebelean

After we are convinced that F is coherent, we first observe that its split F1 and
F2 both terminate.

For F1, all the possibilities are:

F1Œ0� D T

F1Œ1� D F1Œ2� D F1Œ0� D T

F1Œ2� D F1Œ0� D T;

and for F2:
F2Œ0� D T

F2Œ1� D F2Œ0� D T

F2Œ2� D F2Œ1� D F2Œ0� D T:

Now we will show that F Œ1� does not terminate. Indeed:

F Œ1� D F ŒR1Œ1�� ^ F ŒR2Œ1�� D F Œ2� ^ F Œ0� D F ŒR1Œ2�� ^ F ŒR2Œ2�� D

D F Œ0� ^ F Œ1� D T ^ F Œ1�:
Thus, proving termination of Fibonacci-like programs requires proving termina-

tion of the whole simplified version, and, in general, no split into parts is possible.

5.4 Further Examples

Let us recall the definition of the binary powering algorithm analysed in
subsection 4.1:

P Œx; n� D If n D 0 then 1

elseif EvenŒn� then P Œx � x; n=2�
else x � P Œx � x; .n � 1/=2�:

In this case the simplified function is:

P 0Œn� D If n D 0 then T

elseif EvenŒn� then P 0Œn=2�

else P 0Œ.n � 1/=2�:

Sound and Complete Verification Condition Generator 253

Note that the first argument x of P is removed, because it does not occur in the
conditions. For termination one needs to show that P 0Œn� D T for all naturals n,
which can be easily done by induction on n.

Likewise, the definition of the Neville’s algorithm analtyzed in subsection 4.2
was:

P Œx; a� D If kak � 1then FirstŒa� (82)

else
.X � FirstŒx�/.P ŒTailŒx�;TailŒa��/ � .X � LastŒx�/.P ŒBgnŒx�;BgnŒa��/

LastŒx� � FirstŒx�
;

Correspondingly, the simplified function is:

P 0Œa� D If kak � 1then T else P 0ŒTailŒa�� ^ P 0ŒBgnŒa��: (83)

The termination condition is: .8a/.P 0Œa� D T/; which is provable by a simple
induction on the lenght of a.

6 Conclusions and Further Work

Our theoretical framework for the verification of functional programs is relatively
simple, although sound and complete.

In contrast to most approaches which expose methods for verifying correct
programs, we put a special emphasis on falsifying incorrect programs.

We first perform a check whether the program under consideration is coherent
with respect to its specification, that is, each function call is applied to arguments
obeying the respective input specification. The completeness of the method relies
on the coherence of the program.

The program correctness is then transformed into a set of first-order predicate
logic formulas by a verification condition generator (VCG) – a device, which takes
the program (its source code) and the specification (precondition and postcondition)
and produces several verification conditions, which themselves, do not refer to any
theoretical model for program semantics or program execution, but only to the
theory of the domain used in the program.

For coherent programs we are able to define a necessary and sufficient set of
verification conditions, thus our condition generator is not only sound, but also
complete. This distinctive feature of our method is very useful in practice for
program debugging.

We would like to address not only logicians (interested on program verification
and automatic theorem proving), but also mathematicians, physicists and engineers
who are inventing algorithms for solving concrete problems. On one hand, the help
comes with the automatically obtained correctness proof. On the other hand, the
inventor may try to prove the correctness of any conjecture, and in case of a failure
obtain a counterexample, which may eventually help making a new conjecture.

254 N. Popov and T. Jebelean

The approach to program verification presented here is a result of an theoretical
work with the long term aim of practical verification of recursive programs.
Although the examples presented here appear to be relatively simple, they already
demonstrate the usefulness of our approach in the general case. We aim at extending
these experiments to more practical examples, because these, usually, are not more
complex from the mathematical point of view. Furthermore we aim at improving
the education of future software engineers by exposing them to successful examples
of using formal methods (and in particular automated reasoning) for the verification
and the debugging of concrete programs.

Another possible direction of our further work is the development of methods
for proving total correctness of tail recursive programs. More precisely, methods for
programs having a specific structure in which an auxiliary tail recursive function
is driven by a main nonrecursive function, and only the specification of the main
function is provided.

The difficulty there is that it is impossible to find automatically, in general,
verification conditions for an arbitrary tail recursive function without knowing its
specification. However, in many particular cases this is, nevertheless, possible. The
specification of the auxiliary function could be obtained automatically, for example
by solving coupled linear recursive sequences with constant coefficients.

References

1. ACL2. http://www.cs.utexas.edu/users/moore/acl2/
2. de Bakker, J.W., Scott, D.: A Theory of Programs. In IBM Seminar, Vienna, Austria (1969)
3. Bernhard, B., Reiner, H., Peter, H.S. (ed.): Verification of Object-Oriented Software: The KeY

Approach. vol. 4334, LNCS, Springer (2007)
4. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The

Calculus of Inductive Constructions. Springer, Berlin (2004)
5. Blanqui, F., Hinderer, S., Coupet-Grimal, S., Delobel, W., Kroprowski, A.: CoLoR, a Coq

Library on Rewriting and Termination. In: Geser, A., Søndergaard, H. (eds.) Proceedings of
8th International Workshop on Termination, Seattle, WA, USA (2006)

6. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook. Academic Press Professional,
Incorporation, San Diego, CA, USA (1988)

7. Buchberger, B.: Algorithm Supported Mathematical Theory Exploration: A Personal View
and Stragegy. In: Buchberger, B. John Campbell, (eds.) Proceedings of AISC 2004 (7th
International Conference on Artificial Intelligence and Symbolic Computation), Springer
Lecture Notes in Artificial Intelligence, vol. 3249, pp. 236–250. Springer, Berlin 22–24 (2004)

8. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the
Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical
Institute, University of Innsbruck, Austria (1965). (English translation Journal of Symbolic
Computation 41 (2006) 475–511).

9. Buchberger, B.: Gröbner-Bases: An Algorithmic Method in Polynomial Ideal Theory. In: Bose,
N.K. (eds.) Multidimensional Systems Theory – Progress, Directions and Open Problems
in Multidimensional Systems, pp. 184–232. Reidel Publishing Company, Dodrecht, Boston,
Lancaster (1985)

http://www.cs.utexas.edu/users/moore/acl2/

Sound and Complete Verification Condition Generator 255

10. Buchberger, B.: Towards the Automated Synthesis of a Groebner Bases Algorithm.
RACSAM – Revista de la Real Academia de Ciencias (Review of the Spanish Royal Academy
of Science), Serie A: Mathematicas, 98(1), 65–75 (2004)

11. Buchberger, B., Affenzeller, M., Ferscha, A., Haller, M., Jebelean, T., Klement, E.P., Paule,
P., Pomberger, G., Schreiner, W., Stubenrauch, R., Wagner, R., Weiß, G., Windsteiger, W.:
Hagenberg Research. Springer, 1st edition (2009)

12. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F.,
Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards Computer-Aided
Mathematical Theory Exploration. J. Appl. Logic pp. 470–504 (2006)

13. Buchberger, B., Dupre, C., Jebelean, T., Kriftner, F., Nakagawa, K., Vasaru, D., Windsteiger,
W.: The Theorema Project: A Progress Report. In Calculemus 2000: Integration of Symbolic
Computation and Mechanized Reasoning, Calculemus (2000)

14. Buchberger, B., Lichtenberger, F.: Mathematics for Computer Science I – The Method of
Mathematics (in German). Springer, 2nd edition (1981)

15. Chlipala, A.: A Verified Compiler for an Impure Functional Language. In Proceedings of
the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’10), pp. 237–248. New York, NY, USA (2010)

16. Floyd, R.W.: Assigning Meanings to Programs. In Proceedings of Symphosia in Applied
Mathematics 19, pp. 19–37 (1967)

17. Gordon, M.: From LCF to HOL: A Short History. pp. 169–185. MIT Press, MA, USA (2000)
18. Greibach, S.A.: Theory of Program Structures: Schemes, Semantics, Verification. Springer,

New York, Secaucus, NJ, USA (1985)
19. Hildebrand, B.F.: Introduction to Numerical Analysis: 2nd Edition. Dover Publications,

New York, NY, USA (1987)
20. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. ACM 12(10), 576–580

(1969)
21. HOL. http://hol.sourceforge.net/
22. Homeier, P.V., Martin, D.F.: Secure Mechanical Verification of Mutually Recursive Procedures.

Inf. Comput. 187(1), 1–19 (2003)
23. Neil, I.: Computability and Complexity. In: Edward, N. Zalta, (eds) The Stanford

Encyclopedia of Philosophy (Fall 2008 Edition). http://plato.stanford.edu/archives/fall2008/
entries/computability

24. Kaufmann, M., Moore, J.S.: An Industrial Strength Theorem Prover for a Logic Based on
Common Lisp. Software Eng. 23(4), 203–213 (1997)

25. Langford, W.J., Broadbent, T.A.A., Goodstein, R.L.: Obituary: Professor Eric Harold Neville.
Math. Gaz. 48(364), 131–145 (1964)

26. Rustan, K., Leino, M., Peter, M., Jan, S.: Verification of Concurrent Programs with Chalice.
In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) Foundations of Security Analysis and Design V,
pp. 195–222. Springer, New York (2009)

27. Loeckx, J., Sieber, K.: The Foundations of Program Verification. Teubner, 2nd edition (1987)
28. Luckham, D.C., Park, D.M.R., Paterson, M.: On Formalised Computer Programs. J. Comput.

Syst. Sci. 4(3), 220–249 (1970)
29. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill, New York (1974)
30. Matthews, J., Moore, J.S., Ray, S., Vroon, D.: Verification Condition Generation Via Theorem

Proving. In: Hermann, M., Voronkov, A. (eds.) In Proceedings of the 13th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2006),
LNCS, vol. 4246, pp. 362–376. Phnom Penh, Cambodia (2006)

31. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)
32. Neville, E.H.: Iterative Interpolation. J. Indian Math. Soc. 20, 87–120 (1934)
33. Peter, R.: Rekursive Funktionen in der Komputer-Theorie. Verlag d. ungarisch. Akademie d.

Wiss., Budapest (1976)
34. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The

Art of Scientific Computing. Cambridge University Press, 2 edition (1992)
35. PVS group: PVS Specification and Verification System. http://pvs.csl.sri.com (2004)

256 N. Popov and T. Jebelean

36. Smith, D.R.: Top-Down Synthesis of Divide-and-Conquer algorithms. Artif. Intell. 27(1), 43–
96 (1985)

37. Sunrise: http://www.cis.upenn.edu/�hol/sunrise/
38. van der Voort, M.: Introducing Well-founded Function Definitions in HOL. In Higher

Order Logic Theorem Proving and its Applications: Proceedings of the IFIP TC10/WG10.2
Workshop, pp. 117–132 (1992)

39. Walter, S.B., Lawrence, H.L.: Theory of Computation. Wiley, New York, NY, USA (1974)
40. Wiedijk, F. (ed.): The Seventeen Provers of the World, Foreword by Dana, S. Scott, Lecture

Notes in Computer Science. vol. 3600, Springer (2006)
41. Zee, K., Kuncak, V., Rinard, M.C.: Full Functional Verification of Linked Data Structures. In

Proceedings of the 30th ACM Conference on Programming Language Design and Implemen-
tation, pp. 349–361 (2008)

http://www.cis.upenn.edu/~{}hol/sunrise/

An Introduction to Automated Discovery
in Geometry through Symbolic Computation

Abstract In this chapter we will present, for the novice, an introduction to the
automated discovery of theorems in elementary geometry. Here the emphasis is on
the rationale behind different possible formulations of goals for discovery.

1 Introduction

This paper rises from the survey lecture given by the first author at the SNSC-project
final Conference, that took place at RISC-Linz, July 2008. It aims to introduce
the novice (and curious) reader to automatic discovery of elementary geometry
theorems, by means of the algebraic geometry approach that has already shown
its success for automatic theorem proving (see Sect. 2 below).

Different approaches to discovery have already been presented by the authors
([10, 13, 15]), all of them illustrated with many examples. The emphasis here is on
building up and discussing the rationale behind the potential alternative formulations
of goals and methods for discovery. We refer the reader interested in details about
each one of the protocols, to the above articles. Parts of of them have been
summarily sketched in this chapter.

T. Recio (�)
Universidad de Cantabria, Avda. Los Castros, Santander, Spain
e-mail: tomas.recio@unican.es

M.P. Vélez
Universidad Antonio de Nebrija, Pirineos, 55, Madrid, Spain

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 12,
© Springer-Verlag/Wien 2012

257

Tomas Recio and María P. Vélez

tomas.recio@unican.es

258 T. Recio and M.P. Vélez

2 Automatic Proving

Automatic proving of elementary geometry theorems through symbolic computa-
tion has reached a certain mature status. More than thirty years after the foundational
paper by Wu “On the decision problem and the mechanization of theorem-proving
in elementary geometry” [20], and over twenty years after the popular book of
Chou “Mechanical geometry theorem proving” [7], the topic seems active enough to
deserve the publication of new books, such as [14] or [21], and continues gathering
the international community of researchers at the series of biennial Automated
Deduction in Geometry (ADG) conferences1. We refer the reader to the impressive
bibliography on the subject kept by Prof. D. Wang in [19].

The goal of this particular approach to automatic proving through symbolic com-
putation is to provide algorithms, using computer algebra methods, for confirming
(or refuting) the truth of some given geometric statement. More precisely, it aims
to decide if a given statement is true (except for some degenerate cases, to be
described by the algorithm). Hundreds of non-elementary theorems in elementary
geometry have been successfully –and almost instantaneously– verified by a variety
of symbolic computation methods. Different collections of examples are presented
on the books we referred to in the precedent paragraph.

Briefly, this particular automatic proving approach proceeds by translating a
geometric statement T fH) T g into algebraic terms, after adopting a coordinate
system. More precisely, geometric instances verifying the hypotheses H (respec-
tively, the theses T) can be expressed as the set of solutions2 of a system of
polynomial equations H D fh1 D 0; : : : ; hr D 0g (T D ft1 D 0; : : : ; ts D 0g,
respectively). As it is usual in algebraic geometry we will denote by V.H/ or V.T /

the solution set of the corresponding system of equations. At this point it seems
reasonable to say that our statement T is true if and only if V.H/ � V.T /.

But this interpretation is, in some sense, too strong, because it requires that all
instances verifying the polynomial system H should satisfy, as well, the polynomial
system T . In fact, it often happens that the algebraic formulation of the given
hypotheses includes, for instance, degenerate cases of the proposed geometric
configuration (triangles that collapse to a line, parallel lines that coincide, etc.),
that should not be considered for the validity of our statement. Therefore, it seems
more convenient to rephrase our formulation of the truth of a statement, by just
requiring that a (Zariski) open subset of V.H/ is included in V.T /. Thus, we
are thinking of an algebraic procedure that automatically generates a set ff1 ¤
0 _ � � � _ fs ¤ 0g of inequations, the complement of the closed set defined
by R D ff1 D 0; : : : ; fs D 0g, such that, by avoiding degeneracy conditions,

1Visit https://lsiit-cnrs.unistra.fr/adg2010/index.php/Main Page for information about the ADG-
2010 conference, with links to the URLs of previous meetings.
2To be considered over a suitable field. There will be different interpretations for different choices
of this field. Here we will assume to be in the algebraically closed case, so we will miss, for
instance, oriented geometry.

https://lsiit-cnrs.unistra.fr/adg2010/index.php/Main_Page

An Introduction to Automated Discovery in Geometry through Symbolic Computation 259

V.H/nV.R/ � V.T /. That is, our original statement now merely claims that
H ^:R) T , for some suitable collection of degeneracy conditions R that should
be obtained by algebraic manipulation from the given theses and hypotheses.

But, even in this summary and rough description, the reader should be warned
that it does not reflects the existence of some subtle, but serious, difficulties. Diverse
foundational problems may arise in the geometric/algebraic translation process (see
the references to this issue that appear, for instance, at the book [7], or at the papers
[1, 8, 15], or in the introduction to [2]). In particular, we should point out that
different ideas of truth, diverse protocols to grasp it and several methods to perform
them, have been considered in this algebraic geometry approach to automated
theorem proving (in particular, see the general discussion on the relative concept
of truth in this context, included in the papers [5, 9]).

3 Automatic Discovery

A closely related, yet different, issue is that of the automatic discovery of theorems.
While automatic proving deals with establishing that some statement holds in most
instances, automatic discovery addresses the case of statements that are false in
most relevant cases. In fact, it aims to produce, automatically, additional hypotheses
for the statement to be correct. In other words, when proving fails, we might try
discovering why. . .

Let us consider the following example from [13]: we draw a triangle and, then,
the feet of the corresponding altitudes. These feet are the vertices of a new triangle,
the so called orthic triangle for the given triangle. We state that this orthic triangle is
isosceles, but it is not so, in general. That is, we fail proving that the orthic triangle
of any given triangle is isosceles. It seems quite obvious that our statement holds
if the original triangle is itself isosceles, but, only in this case? Searching for other
possibilities is the task of the automatic discovery of theorems protocols (see Fig. 1
below).

..
.....................

..

.......

.......

.......

.......

........................

.......................

A.�1;0/ B.1;0/

C.x;y/

C 0.e;f /

A0.a;b/

B0.c;d/

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

..
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

........

..............
..............
...............

..............
..............
...............

..............
..............
...............

..............
...............

..............
..............
...............

..............
..............
...............

..............
...............

..............
..............
.....

..

..

....................
....................

....................
....................

....................
........

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.....

Fig. 1 The triangle ABC and its orthic triangle A0B 0C 0

260 T. Recio and M.P. Vélez

The interest of developing such automatized discovery procedure is quite obvious.
First, it could help finding out missing cases in intriguing classical theorems. For
instance, searching for the conditions that a triangle has to verify in order to have two
or three equal length internal or external bisectors, corresponding to different ver-
tices (extending the Theorem of Steiner-Lehmus, see [4, 17, 18] or [12] and the ref-
erences thereof). Second, in the context of CAD, automatic discovery could be used
as an auxiliary tool for determining further constraints verified by the elements of a
given sketch if the user imposes among them some geometric restrictions (an obser-
vation already remarked in [11]). For instance, we draw a triangle, then its orthic
triangle, but we want to make our sketch so that the later triangle is isosceles. Then
we should be warned that this obliges the first triangle to be drawn with some special
features (and the CAD program should provide information about all of them).

Finally, automated discovery could be also useful in the educational context,
since it would allow a dynamic geometry program (provided with a link to a
computer algebra program, as shown in [3] or [16]) to act as an intelligent agent,
being able to know in advance the response for most (right or wrong) conjectures
made by a user attempting to construct a certain figure on the screen; in this way, the
dynamic geometry program could act as a tutor, guiding in the right direction the
efforts of the user towards the assigned task. Suppose the student is given a triangle
and one arbitrary point P and is asked to determine the locus of P so that the three
symmetrical points P1; P2; P3 of P , with respect to the three sides of the triangle,
are aligned. After dragging P around for a while, the student finds some positions
where P1; P2; P3 are close to be on a line, but it could happen that he/she does not
have any further insight on this problem (Fig. 2).
The student could ask the computer for a (partial or total) answer to the query.
The machine, provided with an automatic discovery tool, will “know” the locus
of P is, precisely, the circle through the three vertices of the given triangle
[15], and –if adequately programmed– could present to the student different hints
towards finding the solution. A project regarding the implementation of proving
and discovering features on GeoGebra, a popular dynamic geometry program for
mathematics education, is being currently considered (see http://www.ciem.unican.
es/proving2010)

�
�
�
�
�
��

�A � B

�

C

�P

�P1

�P2

�P3

Fig. 2 Locus of P for the alignment of its reflections on the three sides of a triangle

http://www.ciem.unican.es/proving2010
http://www.ciem.unican.es/proving2010

An Introduction to Automated Discovery in Geometry through Symbolic Computation 261

4 Stating Our Goal

As in the automatic proving context, we start considering an algebraically translated
statement of the kind fH) T g (such as: for any given triangle, if we construct
its orthic triangle then. . . it is isosceles, or: given any triangle and a point P

and its reflections with respect to the triangle’s sides, then. . . they are aligned),
where H stands for the equations describing the construction (orthic triangle,
symmetries, etc.) and T describes the desired property (isosceles, aligned, etc.).
By abuse of notation, we will denote also by H and T the ideals generated by
the polynomials involved in the equations describing the statement. Suppose that
H D .h1; : : : ; hr / and T D .t1; : : : ; ts/) are these ideals of polynomials in a
ring KŒX�, X D fx1; : : : ; xng, over a field K , with algebraic closure K. Then,
the geometric instances verifying the hypotheses (respectively, the theses) of the
statement are the algebraic sets V.H/ (respectively, V.T /) over the affine space K

n
.

Following the tradition of automatic theorem proving it is also natural here
to search for complementary hypotheses of inequality type, taking account of
degeneracy conditions. But, since it is quite reasonable to assume that the given
discovery statement is generally false, we should also search for complementary
hypotheses of equality type (such as: P is on the circle described by the three
vertices), so that, adding them to the given hypotheses and avoiding degeneracies,
the given statement becomes true. Let us denote by R0 the collection of polynomials
describing these equality type conditions and by R00 the system of polynomials
representing degeneracy conditions. Thus, a natural goal for discovering theorems
could be finding sets R0; R00, such that f.H ^ R0 ^ :R00/) T g, assuming
fH ^ R0 ^ :R00g is not empty. But this formulation is, in fact, too slack to be
of any use. In fact, by taking R0 D T and a trivial R00, we will obtain, in general,
a (useless) solution to our goal (such as: for any given triangle, if we construct its
orthic triangle and it is isosceles then. . . it is isosceles).

Therefore we should reconsider the formulation of the goal, taking into account
that we actually need to find the complementary hypotheses in terms of some
specific set of variables ruling our statement, as the following example shows.

Example 1. Suppose we are searching conditions for the orthic triangle of a given
one to be isosceles. That is, we want to find new hypotheses to achieve this property,
and these hypotheses should be expressed in terms of the variables assigned to the
vertices of the given triangle, and not, for example, in terms of the variables naming
the vertices of the orthic triangle.

Without loss of generality let us assume that, up to a change of coordinates, the
vertices of the triangle are A D .�1; 0/, B D .1; 0/ and C D .x; y/. Denote by
A0 D .a; b/, B 0 D .c; d / and C 0 D .e; f / the corresponding vertices of the orthic
triangle. Then, the given construction is described by the following six equations in
eight variables (H):

.a � 1/y � b.x � 1/ D 0; .c C 1/y � d.x C 1/ D 0; f D 0;

.aC 1/.x � 1/C by D 0; .c � 1/.x C 1/C dy D 0; e � x D 0;

262 T. Recio and M.P. Vélez

where first line states that vertices A0, B 0 and C 0 belong to the corresponding side of
the given triangle and the second line expresses these vertices are also points lying
in the corresponding altitude.

Now we would like to know when this orthic triangle is isosceles. Remark that
there are three possibilities for a triangle to be isosceles depending on which couple
of sides is to be considered having equal length. Again, for simplicity, let us analyze
here only one of these cases, for example, when the two sides meeting at vertex C 0
are equal, yielding to the following thesis

T W .e � c/2 C .d � f /2 � .e � a/2 � .b � f /2 D 0:

In order to search for the extra constraints yielding to an isosceles orthic triangle
it seems obvious we should proceed finding R0; R00 as polynomials in variables
x; y. In fact, the system H has two degrees of freedom, as expected, because
variables x; y have been freely chosen and variables a; b; c; d; e; f depend
on them. Now, let us remark that the mere consideration of the algebraic system
does not allow to highlight a meaningful set of variables –such as x; y– carrying
the relevant geometric information (to build the orthic triangle). In this system H

there are, as well, other sets of two free variables. For instance, we could express all
involved variables in terms of a; c.

Different and more complicated examples show that it is impossible to determine
a set of meaningful variables in an automatic way, even relying on heuristics, such
as considering those variables that are not involved in the thesis, etc. It should
be human intuition (i.e. the user) who has to point out the concrete collection of
variables that will turn meaningful the discovery process. Thus, our goal, as stated
above, should be modified by referring to some specific set of variables for the
complementary hypotheses.

But this requirement is not enough. In fact, we should notice that, once the
equality type extra hypotheses R0 are found, the degenerate conditions R00 should
be expressed in terms of some subset of the selected variables, since the whole
construction, after adding R0, could possess, then, less degrees of freedom (for
instance, in the example above, if R0 is found and it states –say– that the given
triangle must be isosceles and, therefore, that x D 0, then the degree of freedom,
of the new system of hypotheses, will be reduced from two to one). Bearing this in
mind, our goal should be reformulated to look for the existence of two subsets of
variables U 0 � U � X , and two ideals .R0; R00/, in KŒU � and KŒU 0�, respectively,
such that .H ^R0 ^ :R00/) T and fH ^ R0 ^ :R00g is not contradictory.

Now, a more subtle consideration must be taken into account. It is true that, if
we could find a couple .R0; R00/ verifying the above conditions, we would have a
true statement, keeping the given theses T and adding some extra hypotheses fH ^
R0^:R00g. But nothing guarantees that such statement really covers all possibilities
related to the given statement H) T .

In the example above, imagine that some R0 is found expressing that the given
triangle should be isosceles; then it will yield to a true statement (in fact, the orthic
triangle of an isosceles triangle is also isosceles), but there are other restrictions on

An Introduction to Automated Discovery in Geometry through Symbolic Computation 263

ABC (far less evident) for the given statement to hold. That the given triangle is
isosceles is, indeed, a sufficient condition for the orthic triangle to be isosceles, but
it is not a necessary condition. So, if we want to avoid discovering just some trivial
statements, what we really need to find out is a collection of non contradictory (i.e.
such that there is at least one instance of the given hypotheses were they actually
hold) extra hypotheses R0; R00,

(a) Expressed in the right variables, .R0 � KŒU �; R00 � KŒU 0�, with U 0 �
U � X/.

(b) Which are, when added to H , sufficient for T , so that f.H ^R0^:R00/) T g.
(c) Which are as well necessary for the thesis T to hold under the given hypotheses

H , so that f.T ^H/) .H ^ R0 ^ :R00/g.
Coming back to the above example, what we wish to obtain is that the orthic

triangle of the given one is isosceles if and only if one of the following conditions
hold for the vertex .x; y/:

• x D 0, that is, the triangle is isosceles, as expected, or
• x2 C y2 � 1 D 0 and .x; y/ ¤ .˙1; 0/, (a degenerate case), or
• x2 � y2 � 1 D 0 and .x; y/ ¤ .˙1; 0/.

5 Refining Our Goal

It seems we have achieved a sound description of our automatic discovery goal. Yet,
some more difficulties arise. In fact, assume we have found R0; R00 verifying the
above conditions. This equivalent to fH ^ T g � fH ^ R0 ^ :R00g. Now consider
the projection �.V.H/ \ V.T // of V.H/ \ V.T / over the affine space described
by the variables U . It is easy to show that fH ^ T g � fH ^ R0 ^ :R00g implies

�.V.H/ \ V.T // D �.V.H/ \ .V .R0/nV.R00//

Moreover, since we would have chosen the variables U as those freely ruling our
construction V.H/, in many statements every assignment of the U variables should
yield to at least one instance on V.H/. That is, in the standard case when V.H/

projects onto the whole U -variables affine space, the projection of V.H/ \ V.T /

will be equal to V.R0/nV.R00/, i.e. to the difference of two algebraic sets.
But the projection of an algebraic variety is a general constructible set, that is,

a finite union of sets, each one being the intersection of an algebraic variety and
the complement of another one, such as V.R0/nV.R00/. It is a finite union, and not,
in general, just one of the terms of such union3, as we have concluded from our

3For instance, the constructible set .V .R0

1/ n V .R00

1 // [V .R0

2/, where V .R0

1/ D a plane, V .R00

1 / D
a line on the plane, V .R0

2/ D a point on this line, can not be expressed as V .R0

3/nV .R00

3 /, for
whatever sets of polynomials R0

3; R00

3 .

264 T. Recio and M.P. Vélez

assumption about the existence of R0; R00 verifying the three conditions a/; b/; c/

above. This means that declaring these three conditions as the goal for the discovery
of theorems would yield to failure (no couple R0; R00 would exist) in most instances,
due to the lack of an appropiate language in our setting to express all necessary and
sufficient conditions.

At this point two possibilities arise. One, that of reformulating the whole
approach to discovery, allowing, from the beginning, the introduction of a finite
union of collections of equations R0

i in the U -variables, and inequations R00
i (some

of them in the variables U , to take care of the possible degenerate cases of the free
variables for H , and some in the U 0-variables, to consider the possible degenerate
cases after including the new hypotheses R0

i), which would provide:

• When added to H , sufficient conditions for T , so that f.H ^ ._i .R
0
i ^ :R00

i ///

) T g.
• Which are as well necessary, so that f.T ^H/) .H ^ ._i .R

0
i ^ :R00

i ///g.
It is, obviously, a more complex (albeit more complete) approach. We will deal with
it in the next Sect. 6.

A second possibility is that of weakening condition c/ in such a way that the
discovery goal is redirected to finding out a collection of non contradictory extra
hypotheses R0; R00,

(a) Expressed in the right variables, .R0 � KŒU �; R00 � KŒU 0�, with U 0 �
U � X/.

(b) Which are, when added to H , sufficient for T , so that f.H ^R0^:R00/) T g.
(c) And verifying that R0 is necessary for T to hold on H , i.e. f.T ^H/) R0g.

Notice that we have deleted the reference to R00 in the last item, at the risk
of losing some necessary inequality-type conditions. Since these conditions, in
general, only describe the degeneracy cases that should be avoided for the statement
to become true, we think it is quite safe to keep the new formulation of condition
c/ in our approach, as we will not miss any interesting results just because of not
paying attention to some degenerate cases. We will study this approach in Sect. 7.

6 Comprehensive Bases

In this Section let us assume that we had settled our discovery goal to finding a
finite union of collections of equations R0

i in U , and inequations R00
i , some in U

and some in U 0, so that f.H ^ ._i .R
0
i ^ :R00

i /// is not empty, f.H ^ ._i .R
0
i ^

:R00
i ///) T g and f.T ^ H/) .H ^ ._i .R

0
i ^ :R00

i ///g. That is, V.H/ \
V.T / D V.H/ \S

i .V .R0
i /nV.R00

i //. Then, as argued above, the projection over
the U variables of V.H/\V.T / will be equal to the projection of V.H/ intersected
with

S
i .V .R0

i /nV.R00
i //.

An Introduction to Automated Discovery in Geometry through Symbolic Computation 265

Let the projection of V.H/ over the U -affine space be described by another
finite union of collections of equations P 0

j and inequations P 00
j , in the U variables,

as
S

j .V .P 0
j /nV.P 00

j //.
Then we remark that if we have succeeded finding R0

i ; R00
i verifying the above

conditions, it will also hold that

f.H ^ ._i .R
0
i ^ :R00

i // ^ ._j .P 0
i ^ :P 00

i ///) T g

and
f.T ^H/) .H ^ ._i .R

0
i ^ :R00

i // ^ ._j .P 0
i ^ :P 00

i ///g
But ._i .R

0
i ^ :R00

i // ^ ._j .P 0
i ^ :P 00

i // can be as well explicitly expressed
as ._k.M 0

k ^ :M 00
k /// for some new set of equations and inequations M 0

k; M 00
k .

Thus, for this particular set we would have f.H ^ ._k.M 0
k ^ :M 00

k ///) T g,
f.T ^H/) .H ^ ._k.M 0

k ^:M 00
k ///g and the projection over the U variables of

V.H/ \ V.T / will be exactly equal to
S

k.V .M 0
k/nV.M 00

k //.
Therefore, setting our discovery goal in such broad way (i.e. allowing unions

of basic constructible sets in its formulation), we are driven to describing the
projection of V.H/\V.T /. More precisely, it is easy to prove that if there is a finite
union of collections of equations and inequations R0

i ; R00
i fulfilling our discovery

goal, then there will be another finite union of sets, described by analogous
equations and inequations, M 0

k; M 00
k , accomplishing the goal and yielding directly

the projection of V.H/ \ V.T /. Conversely, if there is a finite union of collections
of equations and inequations R0

i ; R00
i fulfilling our discovery goal, any descriptionS

k.V .M 0
k/nV.M 00

k // of the projection of V.H/ \ V.T / will satisfy as well the
discovery goal.

Thus, in this setting, we face two main issues:

• Deciding if there is a collection of couples R0
i ; R00

i , verifying the conditions (as
stated at the beginning of this Section) for discovery.

• And, in the affirmative case, computing a description of the V.H/ \ V.T /

projection.

Let C be the cylinder over the projection V.H/ \ V.T / onto the U -variables.
That is, the set of points in the X - affine space that project over V.H/ \ V.T /.

Proposition 1. There is a collection of couples R0
i ; R00

i , verifying the conditions for
discovery, if and only if V.H/ \ C D V.H/ \ V.T /.

Proof. First remark that always V.H/ \ C � V.H/ \ V.T /. Now, as we have
already shown, there is a collection R0

i ; R00
i of couples holding the discovery

conditions, if and only if those M 0
k; M 00

k describing the projection of V.H/ \ V.T /

verify as well these conditions. But, then, the equality V.H/\C D V.H/\ V.T /

is just a reformulation of V.H/ \ V.T / D V.H/ \ S
k.V .M 0

k/nV.M 00
k //, i.e.

accomplishing the discovery goal. ut

266 T. Recio and M.P. Vélez

Let H 0 D .H C T / \ KŒU �, i.e. H 0 is the elimination ideal of H C T for the
U -variables. Then consider H C H 0e , where H 0e provides the extension of H 0 to
KŒX�. Its variety V.H CH 0e/ is the intersection of V.H/ with the cylinder V.H 0e/

over the Zariski closure of the projection of V.H/\V.T /. It might be strictly larger
than C (think of H D f.xu � 1/.u/ D 0g; T D f.xu � 1/ D 0g, then U D fug is a
free variable for H , H 0 D .0/; H CH 0e D H , but the projection of V.H/\ V.T /

over the u-line is u ¤ 0 and V.H/ \ C D V.T / which is strictly smaller than
V.H/).

Proposition 2. If T is contained in all the minimal primes of H CH 0e , there is a
collection of couples R0

i ; R00
i , verifying the conditions for discovery for all U 0 � U .

Proof. It always holds that H � H CH 0e � H C T . Thus

V.H/ \ V.T / � V.H/ \ V.H 0e/ � V.H/

But if T is contained in all the minimal primes of HCH 0e , we have also V.H/\
V.H 0e/ � V.T /, so V.H/\V.H 0e/ D V.H/\V.T /. As a side remark, conversely,
if this equality holds, then,

p
H CH 0e D p

.H C T / � T , and T is contained in
all the minimal primes of H CH 0e .

Now, since it always hods that V.H/\ V.T / � V.H/\C � V.H/\ V.H 0e/,
the equality V.H/\V.H 0e/ D V.H/\V.T / implies V.H/\C D V.H/\V.T /

and thus, by the above proposition, there is a collection of couples of ideals verifying
the discovery conditions. ut

The converse does not hold, and the previous example H Df.xu � 1/.u/D 0g,
T D f.xu � 1/ D 0g, with U D fug shows that there are cases with suitable
discovery conditions but where T does not vanish over all the minimal primes of
H CH 0e .

Finally, remark that, even if there is not a finite union of collections of equations
and inequations R0

i ; R00
i fulfilling our discovery goal, any set .V .M 0

k/nV.M 00
k //

being part of the projection of V.H/ \ V.T /, will provide a necessary condition
for H) T .

Therefore, a reasonable way to proceed in order to find R0
i ; R00

i verifying the
above conditions consists in computing the projection of V.H/\V.T / and express
it as

S
i .V .R0

i /nV.R00
i //. Then, we should check if this set of equations and

inequations are sufficient for T .
In some sense, this is what has been achieved in [13] or [6] and can be seen as

quite close to performing a certain kind of quantifier elimination procedure. But let
us remark that, in the theorem proving context, this formulation (i.e. requiring that
fH ^ T g) f:R00g for non-degeneracy conditions) has not been followed in most
works, perhaps due to its complexity. But we refer to [13] for a large collection of
discovery results using this protocol.

An Introduction to Automated Discovery in Geometry through Symbolic Computation 267

7 FSDIC

As mentioned above, a second procedure for automatic discovery is that of [10],
related to finding a Full Set of (Discovering) Interesting Conditions (FSDIC).
Assume we are setting our goal to find out a collection of non contradictory extra
hypotheses R0; R00:
(a) Expressed in the right variables, .R0 � KŒU �; R00 � KŒU 0�, with U 0 � U �

X/.
(b) Which are, when added to H , sufficient for T , so that f.H ^R0^:R00/) T g.
(c) And verifying that R0 is necessary for T to hold on H , i.e. f.T ^H/) R0g.

This can be formally translated into the following definition. First, some notation.
Let us consider some subsets of a main set of variables X D fx1; : : : ; xng, namely
U 0 � U � X . Then, we will often deal with the extension KŒU 0� ,! KŒU � ,!
KŒX� of polynomial rings on the corresponding variables, with coefficients in
a fixed field K . Let A be an ideal in KŒU 0�, B an ideal in KŒU �, and C an
ideal in KŒX�. We will denote –as it is standard in Commutative Algebra– by
Ae0 D AKŒU �, the extended ideal; by Ae D AKŒX�, and by Be D BKŒX�.
Clearly .Ae0

/e D Ae . Moreover we will denote by C c0 D C \ KŒU 0�, its
contraction ideal; by C c D C \ KŒU �, and by Bc0 D B \ KŒU 0�. Again, it
is clear that .C c/c0 D C c0

. Finally, if I is an ideal in KŒX�, we will denote by
V.I / D f.x1; : : : ; xn/ 2 K

n j f .x1; : : : ; xn/ D 0; 8f 2 I g the algebraic set
defined by I in K

n
, where K is the algebraic closure of K .

Definition 1. Let T be a statement, of the kind H) T , where the ideals H; T �
KŒx1; : : : ; xn� will be the corresponding hypothesis ideal and thesis ideal. Let U 0 �
U � fx1; : : : ; xng D X .
Then a couple .R0; R00/ of ideals, respectively in KŒU � and KŒU 0�, will be called a
Full Set of (Discovering) Interesting Conditions (FSDIC) for T with respect to
U and U 0 if the following conditions hold:

(a) R0 � KŒU � and R00 � KŒU 0�.
(b) V.H CR0e/nV.R00e/ � V.T /.
(c) V.H C T / � V.R0e/.
(d) If f 2 KŒU 0� is such that V.H CR0e/nV..f /e/ � V.T /, then f 2 pR00.
(e) V.H CR0e/nV.R00e/ ¤ ;.

Remark 1. Condition d/ is equivalent to the following:

d 0/ if R000 � KŒU 0� is an ideal such that V.H C .R0/e/nV..R000/e/ � V.T /, then
K

n nV..R000/e/ � K
n nV..R00/e/. See [10] for details.

Following [10], we address now two issues: when such pair of ideals R0; R00
exist and how can we compute them. The following propositions give us a complete
answer to these questions (we refer the reader to [10] for proofs):

Theorem 1. Let H 0 D .H CT /\KŒU � and H 00 D ..H CH 0e/ W .T /1/\KŒU 0�
(the saturation by T). Then there exist two ideals R0; R00 such that .R0; R00/ is an

268 T. Recio and M.P. Vélez

FSDIC for T with respect to U and U 0 if and only if .H 0; H 00/ is FSDIC for T with
respect to U and U 0.

Remark 2. If .R0; R00/ is an FSDIC, we have that

V.H CR0e/nV.R00e/ D V.H CH 0e/nV.R00e/

Remark 3. Suppose, as motivated at the end of the previous Sect. 5, that an alternate
definition of FSDIC is given, in which we drop property d/. Then the statement of
the theorem above will still hold. Thus the existence of an FSDIC, with or without
condition d/, is always equivalent to .H 0; H 00/ being an FSDIC in the stronger
sense we have formally introduced in Definition 1.

The above theorem tells us that, if an FSDIC exists, then the couple .H 0; H 00/ is
indeed one such full set of conditions, providing an extra algebraic set of equality-
type constraints that is the smallest one in terms of the variety given by the first
ideal of the couple (since V.H 0e/ � V.R0e/, see Remark 2) and also providing the
largest set of non degeneracy conditions in terms of the complement of the variety
given by the second ideal of the couple (as we have shown in the proof that always
V.R00e/ � V.H 00e/).

Moreover, the above Remark 2 shows that the hypotheses of equality type
H C R0e arising from whatever FSDIC will be always geometrically equivalent
to H CH 0e (after adding the non-degeneracy hypotheses), and in this sense we can
conclude that our protocol yields, essentially, to a unique solution (when it exists
one) on the additional hypotheses of equality-type for the statement to become true.

Now let us see describe here some further results of [10] for the existence of an
an FSDIC, determining some necessary and sufficient algorithmic conditions for
.H 0; H 00/ to be an FSDIC.

Theorem 2. .H 0; H 00/ is FSDIC for T with respect to U and U 0 if and only if
1 62 .H 0/c0 W H 001 (equivalently, iff H 00 ª

p
.H 0/c0).

Corollary 1. Moreover, if U 0 is a set of algebraically independent variables for H 0,
then .H 0; H 00/ is an FSDIC for T with respect to U and U 0 if and only if H 00 ¤ .0/.

Proposition 3. Notation as in the previous section. Suppose that U 0 � U is a set
of algebraically independent variables for H CH 0e . Then T is contained in all the
minimal primes of H CH 0e where U 0 are independent if and only if 1 62 .H 0/c0 W
H 001 (and this is equivalent to the couple .H 0; H 00/ being an FSDIC).

Remark 4. Compare to Proposition 2, for the Comprehensive bases approach. It
shows, in some sense, that the existence of couples verifying the FSDIC protocol
implies the existence of such couples for the Comprehensive bases setting, but not
conversely, according to the counterexample after Proposition 2.

The above proposition can be refined in a quite useful sense (see example 2)

An Introduction to Automated Discovery in Geometry through Symbolic Computation 269

Proposition 4. Suppose that U 0 � U � X is a set of algebraically independent
variables for H CH 0e and, moreover, suppose it is maximal among the subsets of
X with this property (ie. KŒ QU � \ .H CH e/ ¤ .0/ for any U 0 � QU � X).

Then, the couple .H 0; H 00/ is not an FSDIC is equivalent to the fact that T is
not contained in all the minimal primes of H CH 0e where U 0 are independent, but
also that it is contained in at least one of them.

Finally, let us introduce an example from [10] showing that, even when there is
no FSDIC, we know –sometimes– it is due to the fact that the thesis holds over
some relevant component (but not over all) and this information can be the clue to
discover a statement. Further examples can be consulted at [10].

Example 2. The example deals with a generalization of the Steiner-Lehmus The-
orem on the equality of lengths of the angle bisectors on a given triangle, an issue
which has attracted along the years a considerable interest (see references at Sect. 3).

Without loss of generality we will consider a triangle of vertices A.0; 0/; B.1; 0/;

C.x; y/. Then at each vertex we can determine two bisectors (one internal, another
one external) for the angles described by the lines supporting the sides of the triangle
meeting at that vertex. We want to discover what kind of triangle has, say, one
bisector at vertex A and one bisector at vertex B , of equal length. Recall that the
Steiner-Lehmus Theorem states that this is the case, for internal bisectors, if and
only if the triangle is isosceles. So the question here is about the equality of lengths
when we consider external bisectors, too.

Algebraically we translate the construction of a bisector, say, at vertex A, as
follows. We take a point .p; q/ at the same distance as C D .x; y/ from A, so it
verifies p2 C q2 � .x2 C y2/ D 0. Then, we place this point at the line AB , by
adding the equation q D 0. Then the midpoint from .p; q/ and C will be ..x C
p/=2; .y C q/=2/ and the line defined by A and by this midpoint intersects the
opposite side BC (or its prolongation) at point .a; b/, verifying fp2 C q2 � .x2 C
y2/ D 0; q D 0;�a.y C q/=2 C b.x C p/=2 D 0;�ay C b.x � 1/ C y D 0g.
Finally, distance from .a; b/ to A is given as a2 C b2, and this quantity provides the
length of the bisector(s) associated to A. Notice that by placing .p; q/ at different
positions in the line AB , the previous construction provides both the internal and
the external bisector through A. There is no way of distinguishing both bisectors,
without introducing inequalities, something alien to our setting (since we work on
algebraically closed fields).

Likewise, we associate a set of equations to determine the length of the
bisector(s) at B , introducing a point .r; s/ in the line AB , so that its distance to
B is equal to that of vertex C . Then we consider the midpoint of .r; s/ and C and
place a line through it and B . This line intersects side AC at a point .m; n/, which
is defined by the following set of equations: f.r � 1/2 C s2 � ..x � 1/2 C y2/ D 0,
s D 0;�m..yC s/=2/Cn..xC r/=2� 1/C .yC s/=2 D 0;�myCnx D 0g. The
length of this bisector will be .m � 1/2 C n2.

Finally, we apply our discovery protocol to the hypotheses H given by the two
sets of equations and having as thesis T the equality .a2Cb2/�..m�1/2Cn2/ D 0.

270 T. Recio and M.P. Vélez

It is clear the that the only two (geometrically meaningful for the construction)
independent variables are fx; yg, so we eliminate in H C T all variables except
these two, getting in this way the ideal H 0. The result is a polynomial that factors as
the product of y3 (a degenerate case), 2x�1 (triangle is isosceles) and the degree 10
polynomial 14x2y4Cy2C246y2x6C76x8�y6C8x10C9y10�164y2x5C12y4x�
10x2y2�4x4�44y8x�136y4x3C278y4x4�64x7�164x7y2C122y6x2�6y4C
8x5�36y6xC20y2x3C84y4x6C86x4y6C44x2y8C16x6C41y2x8C31y2x4�
40x9 � 252y4x5 � 172y6x3 C 14y8 (cf.[18], page 150, also [4] for a picture of the
curve given by this polynomial).

Next, in order to compute H 00 we must choose one of the variable x; y, say,
variable x, and eliminate y in the saturation of H C H 0 by T . The result is .0/,
so there is no FSDIC, according to Corollary 1. In fact it is hard to expect that for
almost all triangles with vertex C placed at the locus of H 0 and for any interpretation
of the bisectors at A and B , they will all have simultaneously an equal length. But it
also means (by Proposition 4) that adding H 0 to the set of hypotheses, for instance,
placing vertex C at any point on the degree 10 curve, there will be an interpretation
for the bisectors such that the equality of lengths follow. It is easy to deduce
that this is so (except for some degenerate cases) considering internal/external,
external/internal and external/external bisectors (since the internal/internal case
holds only for isosceles triangles). Moreover, intersecting this curve with the line
2x � 1 D 0 we can find out two points x D 1=2; y D .1=2/RootOf .�1C 3Z2/

(aprox. x D 0:5000000000; y D C � 0:2886751346) where all four bisectors (the
internal and external ones of A and B) have equal length. The other two points of
intersection correspond to the case of equilateral triangles, where the two internal
bisectors and the two infinite external bisectors of A; B have pairwise equal length,
but the length is not equal for the internal and external bisectors.

Acknowledgements First author supported by grant “Algoritmos en Geometrı́a Algebraica de
Curvas y Superficies” (MTM2008-04699-C03-03) from the Spanish MICINN. Second author
supported by grant “Geometrı́a Algebraica y Analı́tica Real” (UCM-910444). Thanks also to
the Austrian FWF Special Research Program SFB F013 “Numerical and Symbolic Scientific
Computing” for the invitation to present this talk and paper.

References

1. Bazzotti, L., Dalzotto, G., Robbiano, L.: Remarks on geometric theorem proving”, in
automated deduction in geometry (Zurich, 2000), Lecture Notes in Computer Science 2061,
104–128, Springer, Berlin (2001)

2. Beltrán, C., Dalzotto, G., Recio, T.: The moment of truth in automatic theorem proving in
elementary geometry, in Proceedings ADG 2006 (extended abstracts). Botana, F., Roanes-
Lozano, E. (eds.) Universidad de Vigo (2006)

3. Botana, F., Recio, T.: Towards solving the dynamic geometry bottleneck via a symbolic
approach in Proceedings ADG (Automatic Deduction in Geometry) 2004. Springer. Lec. Not.
Artificial Intelligence LNAI 3763, pp. 761–771 (2005)

An Introduction to Automated Discovery in Geometry through Symbolic Computation 271

4. Botana, F.: Bringing more intelligence to dynamic geometry by using symbolic computation,
in Symbolic Computation and Education. Edited by Shangzhi. L., Dongming, W., Jing-Zhong,
Z. World Scientific, pp. 136–150 (2007)

5. Bulmer, M., Fearnley-Sander, D., Stokes, T.: The Kinds of Truth of Geometric Theorems, in
Automated Deduction in Geometry (Zurich, 2000), Lecture Notes in Computer Science 2061,
129–142, Springer, Berlin (2001)

6. Chen, X.F., Li, P., Lin, L., Wang, D.K.: Proving Geometric Theorems by Partitioned -
Parametric Groebner Bases, Automated Deduction in Geometry, LNAI 3763, 34–43, Springer,
Berlin (2006)

7. Chou, S.-C.: Mechanical Geometry Theorem Proving, in Mathematics and its Applications, D.
Reidel Publ. Comp. (1987)

8. Conti, P., Traverso, C.: A case of automatic theorem proving in Euclidean geometry: the
Maclane 83 theorem, in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes
(Paris, 1995), Lecture Notes in Computer Science, 948, 183–193, Springer, Berlin (1995)

9. Conti, P., Traverso, C.: Algebraic and Semialgebraic Proofs: Methods and Paradoxes, in
Automated deduction in geometry (Zurich, 2000), Lecture Notes in Comput. Sci. 2061,
83–103, Springer, Berlin (2001)

10. Dalzotto, G., Recio, T.: On Protocols for the Automated Discovery of Theorems in Elementary
Geometry. J. Autom. Reasoning 43, 203–236 (2009)

11. Kapur, D.: Wu’s method and its application to perspective viewing. In: Geometric Reasoning.
Kapur, D. Mundy, J.L. (eds.) The MIT press, Cambridge, MA (1989)

12. Losada, R., Recio, T., Valcarce, J.L.: Sobre el descubrimiento automático de diversas gener-
alizaciones del Teorema de Steiner-Lehmus, Boletı́n de la Sociedad Puig Adam, 82, 53–76
(2009) (in Spanish)

13. Montes, A., Recio, T.: Automatic discovery of geometry theorems using minimal canonical
comprehensive Groebner systems, In Botana, F., Recio, T. (eds.) Automated Deduction in
Geometry, LNAI (Lect. Notes Artificial Intelligence) 4869, pp. 113–139, Springer, Berlin
(2007)

14. Pech, P.: Selected topics in geometry with classical vs. computer proving. World Scientific
Publishing Company (2007)

15. Recio, T., Pilar Vélez, M.: Automatic Discovery of Theorems in Elementary Geometry,
J. Autom. Reasoning 23, 63–82 (1999)

16. Recio, T., Botana, F.: Where the truth lies (in automatic theorem proving in elementary
geometry), in Proceedings ICCSA (International Conference on Computational Science and
its Applications) 2004. Springer. Lec. Not. Com. Sci. 3044, pp. 761–771 (2004)

17. http://www.mathematik.uni-bielefeld.de/�sillke/PUZZLES/steiner-lehmus
18. Wang, D.: Elimination practice: software tools and applications, Imperial College Press,

London (2004)
19. http://www-calfor.lip6.fr/�wang/
20. Wen-Tsün, W.: On the decision problem and the mechanization of theorem-proving in

elementary geometry. Sci. Sinica 21, 159–172 (1978); Also in: Automated theorem proving:
After 25 years (Bledsoe, W. W., Loveland, D. W., eds.), AMS, Providence, pp. 213–234 (1984)

21. Zeliberger, D.: Plane geometry: an elementary textbook by Shalosh B. Ekhad, XIV, (Circa
2050), http://www.math.rutgers.edu/�zeilberg/PG/gt.html

http://www.mathematik.uni-bielefeld.de/~sillke/PUZZLES/steiner-lehmus
http://www-calfor.lip6.fr/~wang/
http://www.math.rutgers.edu/~zeilberg/PG/gt.html

Symbolic Analysis for Boundary Problems:
From Rewriting to Parametrized
Gröbner Bases

Markus Rosenkranz, Georg Regensburger, Loredana Tec,
and Bruno Buchberger

Abstract We review our algebraic framework for linear boundary problems (con-
centrating on ordinary differential equations). Its starting point is an appropriate
algebraization of the domain of functions, which we have named integro-differential
algebras. The algebraic treatment of boundary problems brings up two new alge-
braic structures whose symbolic representation and computational realization is
based on canonical forms in certain commutative and noncommutative polynomial
domains. The first of these, the ring of integro-differential operators, is used for
both stating and solving linear boundary problems. The other structure, called
integro-differential polynomials, is the key tool for describing extensions of integro-
differential algebras. We use the canonical simplifier for integro-differential poly-
nomials for generating an automated proof establishing a canonical simplifier for
integro-differential operators. Our approach is fully implemented in the Theorema
system; some code fragments and sample computations are included.

M. Rosenkranz (�)
School of Mathematics, Statistics and Actuarial Science (SMSAS), University of Kent,
Canterbury CT2 7NF, UK
e-mail: m.rosenkranz@kent.ac.uk

G. Regensburger
Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian
Academy of Sciences, 4040 Linz, Austria
INRIA Saclay – Île de France, Project DISCO, L2S, Supélec, 91192 Gif-sur-Yvette Cedex,
France
e-mail: georg.regensburger@ricam.oeaw.ac.at

L. Tec � B. Buchberger
Research Institute for Symbolic Computation (RISC), Johannes Kepler University,
4032 Hagenberg, Austria
e-mail: ltec@risc.uni-linz.ac.at; bruno.buchberger@risc.uni-linz.ac.at

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 13,
© Springer-Verlag/Wien 2012

273

m.rosenkranz@kent.ac.uk
georg.regensburger@ricam.oeaw.ac.at
ltec@risc.uni-linz.ac.at
bruno.buchberger@risc.uni-linz.ac.at

274 M. Rosenkranz et al.

1 Introduction

1.1 Overall View

When problems from Analysis – notably differential equations – are treated by
methods from Symbolic Computation, one speaks of Symbolic Analysis, as in the
eponymous workshops of the FoCM conference series [34]. Symbolic Analysis
is based on algebraic structures, as all other symbolic branches, but its special
flavor comes from its connection with analytic and numeric techniques. As most
differential equations arising in the applications can only be solved numerically,
this connection is absolutely vital.

If symbolic techniques cannot solve “most” differential equations, what else can
they do? The answers are very diverse (reductions, normal forms, symmetry groups,
singularity analysis, triangularization etc), and in the frame of this paper we can only
point to surveys like [79] and [36, �2.11]. In fact, even the notion of “solving” is
quite subtle and can be made precise in various ways. Often a symbolic method will
not provide the “solution” in itself but valuable information about it to be exploited
for subsequent numerical simulation.

Our own approach takes a somewhat intermediate position while diverging
radically in another respect: Unlike most other symbolic methods known to us, we
consider differential equations along with their boundary conditions. This is not
only crucial for many applications, it is also advantageous from an algebraic point
of view: It allows to define a linear operator, called the Green’s operator, that maps
the so-called forcing function on the right-hand side of an equation to the unique
solution determined by the boundary conditions. This gives rise to an interesting
structure on Green’s operators and on boundary problems (Sect. 5). Algebraically,
the consequence is that we have to generalize the common structure of differential
algebras to what we have called integro-differential algebras (Sect. 3).

Regarding the solvability issues, the advantage of this approach is that it
uncouples the task of finding an algebraic representation of the Green’s operator
from that of carrying out the quadratures involved in applying the Green’s operator
to a forcing function. While the latter may be infeasible in a symbolic manner, the
former can be done by our approach (with numerical quadratures for integrating
forcing functions).

The research program just outlined has been pursued in the course of the SFB
project F013 (see below for a brief chronology), and the results have been reported
elsewhere [66, 70, 72]. For the time being, we have restricted ourselves to linear
boundary problems, but the structure of integro-differential polynomials [73] may
be a first stepping stone towards nonlinear Green’s operators. Since the algebraic
machinery for Green’s operators is very young, our strategy was to concentrate first
on boundary problems for ordinary differential equations (ODEs), with some first
steps towards partial differential equations (PDEs) undertaken more recently [74].
For an application of our methods in the context of actuarial mathematics, we refer
to [2], for a more algebraic picture from the skew-polynomial perspective see [67].

Symbolic Analysis for Boundary Problems 275

1.2 New Results

In the present paper, we will present a new confluence proof for the central data
structure used in our approach: As the algebraic language for Green’s operators,
the integro-differential operators (Sect. 4) are defined as a ring of noncommutative
polynomials in infinitely many variables, modulo an infinitely generated ideal.
While the indeterminates represent the basic operations of analysis (differentiation,
integration, extraction of boundary values and multiplication by one of infinitely
many coefficient functions), this ideal specifies their interaction (e.g. the fundamen-
tal theorem of calculus describing how differentiation and integration interact). Our
new proof is fully automated within the TH9OREM8 system (Sect. 2), using a generic
noncommutative polynomial reduction based on a noncommutative adaption of
reduction rings [22]; see also [83] for a short outline of the proof.

In a way, the new proof completes the circle started with the ad-hoc confluence
proof in [69]. For the latter, no algebraic structure was available for coping with
certain expressions that arise in the proof because they involved generic coefficient
functions along with their integrals and derivatives (rather than the operator
indeterminates modeling integration and differentiation!), while this structure is now
provided by the afore-mentioned integro-differential polynomials (Sect. 6). Roughly
speaking, this means within the spectrum between rewrite systems (completion
by the Knuth-Bendix procedure) and Gröbner bases (completion by Buchberger’s
algorithm), we have moved away from the former towards the latter [18]. We will
come back to this point later (Sect. 7).

Moreover, the paper includes the following improvements and innovations: The
setting for Gröbner bases and the Buchberger algorithm are introduced generically
for commutative and noncommutative rings (allowing infinitely many variables
and generators), based on reduction rings and implemented in the TH9OREM8
system (Sect. 2). The presentation of integro-differential algebras is streamlined
and generalized (Sect. 3). For both of the main computational domains – integro-
differential operators and integro-differential polynomials – we have a basis free
description while a choice of basis is only need for deciding equality (Sects. 4, 6).
The construction of integro-differential polynomials, which was sketched in [73], is
carried out in detail (Sect. 6). In particular, a complete proof of the crucial result on
canonical forms (Theorem 42) is now given.

1.3 Chronological Outline

As indicated above, this paper may be seen as a kind of target line for the research
that we have carried out within Project F1322 of the SFB F013 supported by the
Austrian Science Fund (FWF). We have already pointed out the crucial role of
analysis/numerics in providing the right inspirations for the workings of Symbolic

276 M. Rosenkranz et al.

Analysis. The development of this project is an illuminating and pleasant case in
point. It was initiated by the stimulating series of Hilbert Seminars conducted jointly
by Bruno Buchberger and Heinz W. Engl from October 2001 to July 2002, leading
to the genesis of Project F1322 as a spin-off from Projects F1302 (Buchberger) and
F1308 (Engl). Triggered by the paper [42], the idea of symbolic operator algebras
emerged as a common leading theme. It engendered a vision of transplanting certain
ideas like the Moore-Penrose inverse on Hilbert spaces from their homeground in
functional analysis into a new domain within Symbolic Analysis, where powerful
algebraic tools like Gröbner bases are available [9, 19, 20, 24]. This vision even-
tually crystallized in the algebraic machinery for computing Green’s operators as
described before.

In the early stage of the project, those two main tools from analysis (Moore-
Penrose inverse) and algebra (Gröbner bases) were welded together in a rather
ad-hoc manner, but it did provide a new tool for solving boundary problems [71].
In the course of the dissertation [69], a finer analysis led to a substantial simpli-
fication where the Moore-Penrose inverse was superseded by a purely algebraic
formulation in terms of one-sided inverses and the expensive computation of a
new noncommutative Gröbner basis for each boundary problem was replaced by
plain reduction modulo a fixed Gröbner basis for modeling the essential operator
relations. The resulting quotient algebra (called “Green’s polynomials” at that time)
is the precursor of the integro-differential operators described below (Sect. 4). The
final step towards the current setup was the reformulation and generalization in a
differential algebra setting [72] and in an abstract linear algebra setting [66].

The advances on the theoretical side were paralleled by an early implementation
of the algorithm for computing Green’s operators. While the ad-hoc approach
with computing Gröbner bases per-problem was carried out by the help of NCAl-
gebra, a dedicated Mathematica package for noncommutative algebra [42], the
fixed Gröbner basis for simplifying Green’s operator was implemented in the
TH9OREM8 system [26]; see Sect. 2 for a general outline of this system. As the new
differential algebra setting emerged, however, it became necessary to supplant this
implementation by a new one. It was again integrated in the TH9OREM8 system, but
now in a much more intimate sense: Instead of using a custom-tailored interface as
in [69], the new package was coded directly in the TH9OREM8 language using the
elegant structuring constructs of functors [25]. Since this language is also the object
language of the provers, this accomplishes the old ideal of integrating computation
and deduction.

The presentation of several parts of this paper – notably Sects. 3–5 – benefited
greatly from a lecture given in the academic year 2009/10 on Symbolic Integral
Operators and Boundary Problems by the first two authors. The lecture was
associated with the Doctoral Program “Computational Mathematics: Numerical
Analysis and Symbolic Computation” (W1214), which is a follow-up program to
the SFB F013. We would like to thank our students for the lively discussions and
valuable comments.

Symbolic Analysis for Boundary Problems 277

1.4 Overview of the Paper

We commence by having a closer look at the TH9OREM8 system (Sect. 2), which
will also be used in all sample computations presented in subsequent sections;
both the sample computations and the TH9OREM8 program code is available in an
executable Mathematica notebook from www.theorema.org. We discuss canonical
simplifiers for quotient structures and Gröbner bases in reduction rings, and we
give a short overview of the functors used in building up the hierarchy of the
algebraic structures used in the computations. The main structure among these is
that of an integro-differential algebra (Sect. 3), which is the starting point for the
integro-differential operators as well as the integro-differential polynomials. Since
the former are, in turn, the foundation for computing Green’s operators for boundary
problems, we will next summarize the construction of integro-differential operators
and their basic properties (Sect. 4), while the algorithms for solving and factoring
boundary problems are explained and exemplified thereafter (Sect. 5). Driving
towards the focus point of this paper, we describe then the algebra of integro-
differential polynomials (Sect. 6), which will be the key tool to be employed for
the confluence proof. Since this proof is reduced to a computation in TH9OREM8,
we will only explain the main philosophy and show some representative fragments
(Sect. 7). We wind up with some thoughts about open problems and future work
(Sect. 8).

2 Data Structures for Polynomials in Theorema

2.1 The Theorema Functor Language

The TH9OREM8 system [26] was designed by B. Buchberger as an integrated
environment for proving, solving and computing in various domains of mathe-
matics. Implemented on top of Mathematica, its core language is a version of
higher-order predicate logic that contains a natural programming language such that
algorithms can be coded and verified in a unified formal frame. In this logic-internal
programming language, functors are a powerful tool for building up hierarchical
domains in a modular and generic way. They were introduced and first implemented
in TH9OREM8 by B. Buchberger. The general idea – and its use for structuring those
domains in which Gröbner bases can be computed – is described in [22, 25], where
one can also find references to pertinent early papers by B. Buchberger. See also [87]
for some implementation aspects of functor programming.

The notion of functor in TH9OREM8 is akin to functors in ML, not to be
confused with the functors of category theory. From a computational point of
view, a TH9OREM8 functor is a higher-order function that produces a new domain

www.theorema.org

278 M. Rosenkranz et al.

from given domains, where each domain is considered as a bundle of operations
(including relations qua boolean-valued operations – in particular also carrier
predicates). Operations in the new domain are defined in terms of operations in
the underlying domains.

Apart from this computational aspect, functors also have an important reasoning
aspect – a functor transports properties of the input domains to properties of the
output domain, typical examples being the various “preservation theorems” in
mathematics: “If R is a ring, then RŒx� is also a ring”. This means the functor
R 7! RŒx� preserves the property of being a ring, in other words: it goes from
the “category of rings” to itself. In this context, a category is simply a collection
of domains characterized by a common property (a higher-order predicate on
domains).

See below for an example of a functor named LexWords. It takes a linearly
ordered alphabet L as input domain and builds the word monoid over this alphabet:

Definition "Word Monoid", any L ,

LexWords L Functor W, any v, w, , , , ,

W
w

is tuple w

i 1, , w L
wi

W

v
W
w v w

,
W

True

W
False

,
W

,
L

W

Here N� , N� are sequence variables, i.e. they can be instantiated with finite sequences
of terms. The new domain W has the following operations: WŒ2� denotes the carrier
predicate, the neutral element is given by WŒ��, the multiplication W[�] is defined as
concatenation, and WŒ>� defines the lexicographic ordering on W.

In the following code fragments, we illustrate one way of building up polyno-
mials in TH9OREM8 starting from the base categories of fields with ordering and
ordered monoids. Via the functor FreeModule, we construct first the free vector
space V over a field K generated by the set of words in an ordered monoid W. The
elements of V are described by VŒ2� as lists of pairs, each pair containing one (non-
zero) coefficient from K and one basis vector from W, where the basis vectors are
ordered according to the ordering on W. The operations of addition, subtraction and
scalar multiplication are defined recursively, using the operations on K and W:

Symbolic Analysis for Boundary Problems 279

Definition "Free Module", any K, W ,

FreeModule K, W Functor V, any c, d, x, y, , , A, x, y ,

V
x where z x ,

is-tuple x

i 1, ,z

is-tuple xi
xi 2

is-coeff
V

xi 1

is-bvec
V

xi 2

i 1, ,z 1
xi 2

W
xi 1 2

is-bvec
V W

is-coeff
V

c
K
c c 0

K

0
V

c, , x
V

d, , y

c, x
V

d, , y
W

d, c, , x
V

y
W

c
K
d, x

V
y c

K
d 0

K

x
V

y otherwise

x
V
0

0
V
y

c
V

d, , y c
K
d, c

V
y

c, , x
V
d c

K
d, x

V
d

By the MonoidAlgebra functor we extend this domain, introducing a multi-
plication using the corresponding operations in K and W:

MonoidAlgebra K, W where V FreeModule K, W ,

Functor P, any c, d, f, g, , , m, n ,

linear operations from V

multiplication

P
g

f
P

c, , m
P

d, , n c
K
d,

W P
c,

P
n

P
m

P
d, , n

The new domain inherits the structure on the elements of V.

280 M. Rosenkranz et al.

The main advantage of the above construction is that it is fully generic: Not only
can it be instantiated for different coefficient rings (or fields) and different sets of
indeterminates, it comprises also the commutative and noncommutative case (where
W is instantiated respectively by a commutative and noncommutative monoid).

2.2 Quotient Structures and Canonical Simplifiers

In algebra (and also in the rest of mathematics), one encounters quotient structures
on many occasions. The general setting is a setAwith various operations (an algebra
in the general sense used in Sect. 6) and a congruence relation � on A, meaning
an equivalence relation that is compatible with all the operations on A. Then one
may form the quotient A=�, which will typically inherit some properties of A.
For example, A=� belongs to the category of rings if A does, so we can view the
quotient construction A 7! A=� as a functor on the category of rings.

But for computational purposes, the usual set-theoretic description of A=� as
a set of equivalence classes is not suitable (since each such class is typically
uncountably infinite). We will therefore use an alternative approach that was
introduced in [27] as a general framework for symbolic representations. The starting
point is a canonical simplifier for A=�, meaning a map � WA! A such that

�.a/ � a and �.a/ D �.a0/ whenever a � a0: (1)

The set QA D �.A/ is called the associated system of canonical forms for A=�.
Clearly canonical simplifiers exist for every quotientA=�, but for computational

purposes the crucial question is whether � is algorithmic. Depending on A=�, it
may be easy or difficult or even impossible to construct a computable � WA! A. In
the examples that we will treat, canonical simplifiers are indeed available.

Canonical simplifiers are also important because they allow us to compute in the
quotient structure. More precisely, one can transplant the operations on A to QA by
defining !.a1; : : : ; an/ D �.!.a1; : : : ; an// for every operation ! on A. With these
new operations, one may easily see that QA is isomorphic to the quotient A=�; see
the Theorem “Canonical simplification and computation” in [27, p. 13].

There is an intimate relation between canonical forms and normal forms for
rewrite systems (Sect. 4 contains some basic terminology and references). In
fact, every rewrite system ! on an algebraic structure A creates an equivalence
relation �, the symmetric closure of

�!. Thus a � a0 if and only if a and
a0 can be connected by an equational chain (using the rewrite rules in either
direction). Typically, the relation � will actually be a congruence on A, so that the
quotientA=� has a well-defined algebraic structure. Provided the rewrite system is
noetherian, the normal forms of! are then also canonical forms for A=�. Hence
we will often identify these terms in a rewriting context.

For our implementation, we use canonical simplifiers extensively. In fact, the
observation made above about computing in the quotient structure is realized by a

Symbolic Analysis for Boundary Problems 281

TH9OREM8 functor, which is applied at various different places. Here A is typically
a K-algebra, with the ground field K being� or computable subfields of� and�.

2.3 Reduction Rings and Gröbner Bases

For defining reduction on polynomials, we use the reduction ring approach in the
sense of [17, 22]. For commutative reduction rings, see also [81, 82]; for another
noncommutative approach we refer to [57–59].

To put it simply, a reduction ring is a ring in which Gröbner bases can be done.
A full axiomatization for the commutative case is given in [17]. If such rings satisfy
certain additional axioms (defining the category of so-called “Gröbner rings”), then
Gröbner bases can be computed by iterated S-polynomial reduction in the given
ring – this is the Gröbner Ring Extension Theorem, stated and proved in [17].

A detailed presentation of their construction in the TH9OREM8 setting was given
in [21, 23]; it is the starting point for our current work. At this point we do not give
an axiomatic characterization for noncommutative reduction rings, but we do use a
construction that is similar to the commutative setting. Thus we endow a polynomial
domain P, built via the MonoidAlgebra functor with word monoid W and
field K, with the following three operations: a noetherian (partial) ordering, a binary
operation least common reducible, and a binary operation reduction multiplier. The
noetherian ordering is defined in the usual way in terms of the given orderings on K
and W.

The basic idea of reduction multipliers is to answer the question: “With which
monomial do I have to multiply a given polynomial so that it cancels the leading
term of another given polynomial?” In the noncommutative case, the corresponding
operation rdm splits into left reduction multiplier lrdm and its right counterpart
rrdm defined as follows:

lrdm
P

c, , m , d, , n
1
K
, lquot

W
, rdm

K
c, d 0

K W

0
P

otherwise

rrdm
P

c, , m , d, , n
rdm
K

c, d , rquot
W

, rdm
K

c, d 0
K W

0
P

otherwise

Here the divisibility relation j on W checks whether a given word occurs within
another word, and the corresponding quotients lquot and rquot yield the word
segments respectively to the left and to the right of this occurrence. Since the scalars
from K commute with the words, it is an arbitrary decision whether one includes it
in the right (as here) or left reduction multiplier. In typical cases, this scalar factor
is just rdm[c,d] D c/d.

The operations relating Gröbner bases are introduced via a functor which is
called GroebnerExtension. It defines polynomial reduction using reduction

282 M. Rosenkranz et al.

multipliers (note that this includes also the commutative case, where one actually
needs only one reduction multiplier, the other one being unity):

hred
G

f, g f
P
lrdm

P
f, g

P
g

P
rrdm

P
f, g

The next step is to introduce reduction modulo a system of polynomials. For
some applications (like the integro-differential operators described in Sect. 4), it
is necessary to deal with infinite reduction systems: the polynomial ring contains
infinitely many indeterminates, and reduction is applied modulo an infinite set of
polynomials. In other words, we want to deal with an infinitely generated ideal in
an infinitely generated algebra.

This is a broad topic, and we cannot hope to cover it in the present scope.
In general one must distinguish situations where both the generators of the ideal
and the algebra are parametrized by finitely many families involving finitely many
parameters and more general algebras/ideals where this is not so. In the latter
case, one works with finite subsets, and all computations are approximate: one
never catches the whole algebraic picture. Fortunately, the applications we have
in mind – in particular the integro-differential operators – are of the first type where
full algorithmic control can be achieved. However, most of the common packages
implementing noncommutative Gröbner bases do not support such cases [55, 56].
For some recent advances, we refer the reader to [3, 14, 43, 51] as well as
Ufnarovski’s extensive survey chapter [86].

Let us point out just one important class of decidable reductions in infinitely
generated algebras – if an infinite set of (positively weighted) homogeneous
polynomials is given, which is known to be complete for each given degree (see [51]
for the proof) since one can compute a truncated Gröbner basis of such a graded
ideal, which is finite up to a given degree. But if the given set is not homogeneous
or cannot be clearly presented degree by degree, basically nothing can be claimed
in general. Unfortunately, the applications we have in mind seem to be of this type.

In our setting, infinitely generated ideals are handled by an algorithmic operation
for instantiating reduction rules. The reduction of polynomial f modulo a system S
is realized thus:

hredp
G

f, l, g, r f
P
l

P
g

P
r

hred
G

f, S where q S f , hredp
G

f, q1, q2, q3

where S[f] is the operation that decides if there exists g modulo which f can
be reduced, and it returns a triple containing the g and the left/right reduction
multipliers needed for performing the reduction.

The main tool for the Gröbner bases construction, namely the notion of S-
polynomial, can now be defined in terms of the least common reducible:

spol
G

f, g where L lcrd
P

f, g , hredp
G

L, f
G
hredp

G
L, g

Symbolic Analysis for Boundary Problems 283

Here lcrd[f,g] represents the smallest monomial that can be reduced both
modulof and modulog, built from the least common reducible of the corresponding
coefficients in K and the least common multiple of the words in W:

lcrd
P

c, , m , d, , n lcrd
K

c, d , lcm
W

,

In our setting, the lcrd[c,d] can of course be chosen as unity since we work
over a field K, but in rings like � one would have to use the least common multiple.

Finally, Gröbner bases are computed by the usual accumulation of S-
polynomials reduction, via the following version of Buchberger algorithm [24]:

Gb
G

R, S where pairs Ri, Rj
i 1, , R

j 1, , R

Ri Rj , Gb
G

R, pairs, S

Gb
G

R, , S R

Gb
G

R, f, g , m , S where h tred
G

spol
G

f, g , S ,

Gb
G

R, m , S h 0
P

Gb
G

R h, h R m R h , S otherwise

Total reduction modulo a system, denoted here by tred, is computed by iteratively
performing reductions, until no more reduction is possible. The above implemen-
tation of Buchberger’s algorithm is again generic since it can be used in both
commutative and noncommutative settings. For finitely many indeterminates, the
algorithm always terminates in the commutative case (by Dickson’s Lemma); in the
noncommutative setting, this cannot be guaranteed in general. For our applications
we also have to be careful to ensure that the reduction systems we use are indeed
noetherian (Sect. 4).

3 Integro-Differential Algebras

For working with boundary problems in a symbolic way, we first need an algebraic
structure having differentiation along with integration. In the following definitions,
one may think of our standard example F D C1.�/, where @ D 0 is the usual
derivation and

�
the integral operator

f 7!
Z x

a

f .�/ d�

for a fixed a 2 �.

284 M. Rosenkranz et al.

3.1 Axioms and Basic Properties

Let K be a commutative ring. We first recall that .F ; @/ is a differential K-algebra
if @WF ! F is a K-linear map satisfying the Leibniz rule

@.fg/ D @.f / gC f @.g/: (2)

For convenience, we may assumeK � F , and we write f 0 as a shorthand for @.f /.
The following definition [72] captures the algebraic properties of the Fundamental
Theorem of Calculus and Integration by Parts.

Definition 1. We call .F ; @;
�
/ an integro-differential algebra if .F ; @/ is a

commutative differential K-algebra and
�

is a K-linear section (right inverse) of
@, i.e.

.
�
f /0 D f; (3)

such that the differential Baxter axiom

.
�
f 0/.

�
g0/C �

.fg/0 D .� f 0/g C f .� g0/ (4)

holds.

We refer to @ and
�

respectively as the derivation and integral of F and to (3) as
section axiom. Moreover, we call a section

�
of @ an integral for @ if it satisfies (4).

For the similar notion of differential Rota-Baxter algebras, we refer to [39] but see
also below.

Note that we have applied operator notation for the integral; otherwise, for
example, the section axiom (3) would read .

�
.f //0 D f , which is quite unusual at

least for an analyst. We will likewise often use operator notation for the derivation,
so the Leibniz rule (2) can also be written as @fg D .@f /gC f .@g/. For the future
we also introduce the following convention for saving parentheses: Multiplication
has precedence over integration, so

�
f

�
g is to be parsed as

�
.f

�
g/.

Let us also remark that Definition 1 can be generalized: First, no changes are
needed for the noncommutative case (meaning F is noncommutative). This would
for example be an appropriate setting for matrices with entries in F D C1Œa; b�,
providing an algebraic framework for the results on linear systems of ODEs. Second,
one may add a nonzero weight in the Leibniz axiom, thus incorporating also discrete
models where @ is the difference operator defined by .@f /k D fkC1 � fk . The nice
thing is that all other axioms remain unchanged. For both generalizations confer
also to [39].

We study first some direct consequences of the section axiom (3). For further
details on linear left and right inverses, we refer for example to [13, p. 211] or to [63]
in the context of generalized inverses. We also introduce the following names for the
projectors and modules associated with a section of a derivation.

Symbolic Analysis for Boundary Problems 285

Definition 2. Let .F ; @/ be a differentialK-algebra and
�

a K-linear section of @.
Then we call the projectors

J D � ı @ and E D 1 � � ı @
respectively the initialization and the evaluation of F . Moreover, we refer to

C D Ker.@/ D Ker.J/ D Im.E/ and I D Im.
�
/ D Im.J/ D Ker.E/

as the submodules of respectively constant and initialized functions.

Note that they are indeed projectors since J ı J D � ı .@ ı �
/ ı @ D J by (3),

which implies E ı E D 1� J� JC J ı J D E. As is well known [13, p. 209], every
projector is characterized by its kernel and image – they form a direct decomposition
of the module into two submodules, and every such decomposition corresponds to
a unique projector. We have therefore a canonical decomposition

F D C uI ;

which allows to split off the “constant part” of every “function” in F .
Before turning to the other axioms, let us check what all this means in the

standard example F D C1.�/ with @ D d
dx

and
� D R x

a . Obviously, the
elements of C are then indeed the constant functions f .x/ D c, while I consists
of those functions that satisfy the homogeneous initial condition f .a/ D 0. This
also explains the terminology for the projectors: Here Ef D f .a/ evaluates f at
the initialization point a, and Jf D f � f .a/ enforces the initial condition. Note
that in this example the evaluation E is multiplicative; we will show below that this
holds in any integro-differential algebra.

The Leibniz rule (2) and the differential Baxter axiom (4) entail interesting
properties of the two submodules C and I . For understanding these, it is more
economic to forget for a moment about integro-differential algebras and turn to the
following general observation about projectors on an algebra. We use again operator
notation, giving precedence to multiplication over the linear operators.

Lemma 3. Let E and J be projectors on a K-algebra with E C J D 1, set

C D Im.E/ D Ker.J / and I D Ker.E/ D Im.J /:

Then the following statements are equivalent:

1. The projector E is multiplicative, meaning Efg D .Ef /.Eg/.
2. The projector J satisfies the identity .Jf /.Jg/C Jfg D .Jf /g C f .Jg/ .
3. The submodule C is a subalgebra and the submodule I an ideal.

Proof. 1., 2. Multiplicativity of E D 1 � J just means

fg � Jfg D fg � .Jf /g � f .Jg/C .Jf /.Jg/:

286 M. Rosenkranz et al.

1.) 3. This follows immediately because C is the image and I the kernel of the
algebra endomorphismE.
3.) 1. Let f; g be arbitrary. Since the given K-algebra is a direct sum of C and
I , we have f D fC C fI and g D gC C gI for fC D Ef; gC D Eg 2 C and
fI D Jf; gI D Jg 2 I . Then

Efg D EfCgC C EfCgI C EfIgC C EfIgI
Since I is an ideal, the last three summands vanish. Furthermore,C is a subalgebra,
so fCgC 2 C . This implies EfCgC D fC gC because E is a projector onto C . ut

This lemma is obviously applicable to integro-differential algebras F with the
projectors E D E and J D J and with the submodules C D C and I D I
because the differential Baxter axiom (4) is exactly condition 2. From now on, we
will therefore refer to C as the algebra of constant functions and to I as the ideal
of initialized functions. Moreover, we note that in any integro-differential algebra
the evaluation E D 1 � � ı @ is multiplicative, meaning

Efg D .Ef /.Eg/: (5)

Altogether we obtain now the following characterization of integrals (note that the
requirement that C be a subalgebra already follows from the Leibniz axiom).

Corollary 4. Let .F ; @/ be a differential algebra. Then a section
�

of @ is an
integral if and only if its evaluation E D 1 � � ı @ is multiplicative, and if and
only if I D Im.

�
/ is an ideal.

Note that the ideal I corresponding to an integral is in general not a differential
ideal of F . We can see this already in the standard example C1Œ0; 1�, where I
consists of all f 2 C1Œ0; 1� with f .0/ D 0. Obviously I is not differentially
closed since x 2 I but x0 D 1 62 I .

The above corollary implies immediately that an integro-differential algebra F
can never be a field since then the only possibilities for I would be 0 and F .
The former case is excluded since it means that Ker.@/ D F , contradicting the
surjectivity of @. The latter case corresponds to Ker.@/ D 0, which is not possible
because @1 D 0.

Corollary 5. An integro-differential algebra is never a field.

In some sense, this observation ensures that all integro-differential algebras are
fairly complicated. The next result points in the same direction, excluding finite-
dimensional algebras.

Proposition 6. The iterated integrals 1;
�
1;

� �
1; : : : are all linearly independent

overK . In particular, every integro-differential algebra is infinite-dimensional.

Proof. Let .un/ be the sequence of iterated integrals of 1. We prove by induction
on n that u0; u1; : : : ; un are linearly independent. The base case n D 0 is trivial. For
the induction step from n to nC1, assume c0u0C� � �CcnC1unC1 D 0. Applying @nC1

Symbolic Analysis for Boundary Problems 287

yields cnC1 D 0. But by the induction hypothesis, we have then also c0 D � � � D
cn D 0. Hence u0; : : : ; unC1 are linearly independent. ut

Let us now return to our discussion of the differential Baxter axiom (4). We will
offer an equivalent description that is closer to analysis. It is more compact but
less symmetric. (In the noncommutative case one has to add the opposite version –
reversing all products – for obtaining equivalence.)

Proposition 7. The differential Baxter axiom (4) is equivalent to

f
�
g D �

fgC �
f 0

�
g; (6)

in the presence of the Leibniz axiom (2) and the section axiom (3).

Proof. For proving (6) note that since I is an ideal, f
�
g is invariant under the

projector J and thus equal to
�
.f

�
g/0 D �

f 0
�
g C �

fg by the Leibniz axiom (2)
and the section axiom (3). Alternatively, one can also obtain (6) from (4) if one
replaces g by

�
g in (4). Conversely, assuming (6) we see that I is an ideal of F ,

so Corollary 4 implies that
�

satisfies the differential Baxter axiom (4). ut
For obvious reasons, we refer to (6) as integration by parts. The usual formula-

tion
�
f G0 D f G � �

f 0G is only satisfied “up to a constant”, or if one restricts G
to Im.

�
/. Substituting G D �

g then leads to (6). But note that we have now a more
algebraic perspective on this well-known identity of Calculus: It tells us how I is
realized as an ideal of F .

Sometimes a variation of (6) is useful. Applying
�

to the Leibniz axiom (2) and
using the fact that E D 1 � J is multiplicative (5), we obtain

�
fg0 D fg � �

f 0g � .Ef /.Eg/; (7)

which we call the evaluation variant of integration by parts (a form that is also used
in Calculus). Observe that, we regain integration by parts (6) upon replacing g by�
g in (7) since E

�
g D 0.

Note that in general one cannot extend a given differential algebra to an integro-
differential algebra since the latter requires a surjective derivation. For example, in
.KŒx2�; x@/ the image of @ does not contain 1. As another example (cf. Sect. 6), the
algebra of differential polynomials F D Kfug does not admit an integral in the
sense of Definition 1 since the image of @ does not contain u.

How can we isolate the integro part of an integro-differential algebra? The
disadvantage (and also advantage!) of the differential Baxter axiom (4) is that it
entangles derivation and integral. So how can one express “integration by parts”
without referring to the derivation?

Definition 8. Let F be a K-algebra and
�

a K-linear operation satisfying

.
�
f /.

�
g/ D �

f
�
g C �

g
�
f: (8)

Then .F ;
�
/ is called a Rota-Baxter algebra (of weight zero).

288 M. Rosenkranz et al.

Rota-Baxter algebras are named after Glen Baxter [7] and Gian-Carlo Rota [75];
see also [37,38] for further details. In the following, we refer to (8) as Baxter axiom;
in contrast to the differential Baxter axiom (4), we will sometimes also call it the
pure Baxter axiom.

One might now think that an integro-differential algebra .F ; @;
�
/ is a differ-

ential algebra .F ; @/ combined with a Rota-Baxter algebra .F ;
�
/ such that the

section axiom (3) is satisfied. In fact, such a structure was introduced independently
by Guo and Keigher [39] under the name differential Rota-Baxter algebras. But we
will see that an integro-differential algebra is a little bit more – this is why we also
refer to (8) as “weak Baxter axiom” and to (4) and (6) as “strong Baxter axioms”.

Proposition 9. Let .F ; @/ be a differential algebra and
�

a section for @. Then
�

satisfies the pure Baxter axiom (8) if and only if I D Im.
�
/ is a subalgebra of F .

In particular, .F ;
�
/ is a Rota-Baxter algebra for any integro-differential algebra

.F ; @;
�
/.

Proof. Clearly (8) implies that I is a subalgebra of F . Conversely, if .
�
f /.

�
g/ is

contained in I , it is invariant under the projector J and must therefore be equal to�
@ .

�
f /.

�
g/ D �

f
�
g C �

g
�
f by the Leibniz axiom (2). ut

So the strong Baxter axiom (4) requires that I be an ideal, the weak Baxter
axiom (8) only that it be a subalgebra. We will soon give a counterexample for
making sure that (4) is indeed asking for more than (8), see Example 14. But before
this we want to express the difference between the two axioms in terms of a linearity
property. Recall that both @ and

�
were introduced as K-linear operations on F .

Using the Leibniz axiom (2), one sees immediately that @ is even C -linear. It is
natural to expect the same from

�
, but this is exactly the difference between (4)

and (8).

Proposition 10. Let .F ; @/ be a differential algebra and
�

a section for @. Then
�

satisfies the differential Baxter axiom (4) if and only if it satisfies the pure Baxter
axiom (8) and is C -linear.

Proof. Assume first that
�

satisfies the differential Baxter axiom (4). Then the pure
Baxter axiom (8) holds by Proposition 9. For proving

�
cg D c

�
g for all c 2 C

and g 2 F , we use the integration-by-parts formula (6) and c0 D 0.
Conversely, assume the pure Baxter axiom (8) is satisfied and

�
is C -linear. By

Proposition 7 it suffices to prove the integration-by-parts formula (6) for f; g 2 F .
Since F D CuI , we may first consider the case f 2 C and then the case f 2 I .
But the first case follows from C -linearity; the second case means f D � Qf for
Qf 2 F , and (6) becomes the pure Baxter axiom (8) for Qf and g. ut

Let us now look at some natural examples of integro-differential algebras, in
addition to our standard examples C1.�/ and C1Œa; b�.

Example 11. The analytic functions on the real interval Œa; b� form an integro-
differential subalgebra C!Œa; b� of C1Œa; b� overK D � or K D �. It contains in
turn the integro-differential algebra KŒx; eKx� of exponential polynomials, defined

Symbolic Analysis for Boundary Problems 289

as the space of allK-linear combinations of xne�x , with n 2 � and � 2 K . Finally,
the algebra of ordinary polynomialsKŒx� is an integro-differential subalgebra in all
cases.

All the three examples above have algebraic analogs, with integro-differential
structures defined in the expected way.

Example 12. For a fieldK of characteristic zero, the formal power seriesKŒŒx�� are
an integro-differential algebra. One sets @xk D kxk�1 and

�
xk D xkC1=.k C 1/;

note that the latter needs characteristic zero. The formal power series contain
a highly interesting and important integro-differential subalgebra: the holonomic
power series, defined as those whose derivatives span a finite-dimensionalK-vector
space [29, 77].

Of course KŒŒx�� also contains (an isomorphic copy of) the integro-differential
algebra of exponential polynomials. In fact, one can define KŒx; eKx� algebraically
as a quotient of the free algebra generated by the symbols xk and e�x , with �
ranging overK . Derivation and integration are then defined in the obvious way. The
exponential polynomials contain the polynomial ringKŒx� as an integro-differential
subalgebra. WhenK D � orK D �, we use the notationKŒx� andKŒx; eKx� both
for the analytic and the algebraic object since they are isomorphic.

The following example is a clever way of transferring the previous example to
coefficient fields of positive characteristic.

Example 13. Let K be an arbitrary field (having zero or positive characteristic).
Then the algebra H.K/ of Hurwitz series [46] over K is defined as the K-vector
space of infinite K-sequences with the multiplication defined as

.an/ � .bn/ D

nX

iD0

n

i

!
aibn�i

!

n

for all .an/; .bn/ 2 H.K/. If one introduces derivation and integration by

@ .a0; a1; a2; : : : / D .a1; a2; : : : /;�
.a0; a1; : : : / D .0; a0; a1; : : : /;

the Hurwitz series form an integro-differential algebra .H.K/; @;
�
/, as explained

by [47] and [37]. Note that as an additive group, H.K/ coincides with the formal
power seriesKŒŒz��, but its multiplicative structure differs: We have an isomorphism

1X

nD0
an zn 7! .nŠ an/

from KŒŒz�� to H.K/ if and only if K has characteristic zero. The point is that one
can integrate every element of H.K/, whereas the formal power series zp�1 does
not have an antiderivative in KŒŒz�� if K has characteristic p > 0. ut

290 M. Rosenkranz et al.

Now for the promised counterexample to the claim that the section axiom would
suffice for merging a differential algebra .F ; @/ and a Rota-Baxter algebra .F ;

�
/

into an integro-differential algebra .F ; @;
�
/.

Example 14. SetR D KŒy�=.y4/ forK a field of characteristic zero and define @ on
F D RŒx� as usual. Then .F ; @/ is a differential algebra. Let us define a K-linear
map

�
on F by �

f D � �
f C f .0; 0/ y2; (9)

where
� � is the usual integral on RŒx� with xk 7! xkC1=.k C 1/. Since the second

term vanishes under @, we see immediately that
�

is a section of @. For verifying the
pure Baxter axiom (8), we compute

.
�
f /.

�
g/ D .� �f /.� �g/C y2 � ��

g.0; 0/ f C f .0; 0/ g�C f .0; 0/ g.0; 0/ y4;�
f

�
g D �

f
�� �
g C g.0; 0/ y2� D � �

f
� �
g C g.0; 0/ y2 � �

f:

Since y4 � 0 and the ordinary integral
� � fulfills the pure Baxter axiom (8), this

implies immediately that
�

does also. However, it does not fulfill the differential
Baxter axiom (4) because it is not C -linear: Observe that C is here Ker.@/ D R, so
in particular we should have

�
.y � 1/ D y � � 1. But one checks immediately that the

left-hand side yields xy, while the right-hand side yields xy C y3. ut

3.2 Ordinary Integro-Differential Algebras

The following example shows that our current notion of integro-differential algebra
includes also algebras of “multivariate functions”.

Example 15. Consider F D C1.�2/ with the derivation @u D ux C uy . Finding
sections for @ means solving the partial differential equation ux C uy D f . Its
general solution is given by

u.x; y/ D
Z x

a

f .t; y � x C t/ dt C g.y � x/;

where g 2 C1.�/ and a 2 � are arbitrary. Let us choose a D 0 for simplicity. In
order to ensure a linear section, one has to choose g D 0, arriving at

�
f D

Z x

0

f .t; y � x C t/ dt;

Using a change of variables, one may verify that
�

satisfies the pure Baxter
axiom (8), so .F ;

�
/ is a Rota-Baxter algebra.

Symbolic Analysis for Boundary Problems 291

We see that the constant functions C D Ker.@/ are given by .x; y/ 7! c.x � y/
with arbitrary c 2 C1.�/, while the initialized functions I D Im.

�
/ are those

F 2 F that satisfy F.0; y/ D 0 for all y 2 �. In other words, C consists
of all functions constant on the characteristic lines x � y D const, and I of
those satisfying the homogeneous initial condition on the vertical axis (which plays
the role of a “noncharacteristic initial manifold”). This is to be expected since�

integrates along the characteristic lines starting from the initial manifold. The
evaluation EWF ! F maps a function f to the function .x; y/ 7! f .0; y � x/.
This means that f is “sampled” only on the initial manifold, effectively becoming
a univariate function: the general point .x; y/ is projected along the characteristics
to the initial point .0; y � x/.

Since E is multiplicative on F , Lemma 3 tells us that .F ; @;
�
/ is in fact an

integro-differential algebra. Alternatively, note that I is an ideal and that
�

is C -
linear. Furthermore, we observe that here the polynomials are given by KŒx�. ut

In the following, we want to restrict ourselves to boundary problems for ordinary
differential equations. Hence we want to rule out cases like Example 15. The most
natural way for distinguishing ordinary from partial differential operators is to look
at their kernels since only the former have finite-dimensional ones. Note that in
the following definition we deviate from the standard terminology in differential
algebra [48, p. 58], where ordinary only refers to having a single derivation.

From now on, we restrict the ground ring K to a field. We can now characterize
when a differential algebra is ordinary by requiring that C be one-dimensional over
K , meaning C D K .

Definition 16. A differential algebra .F ; @/ is called ordinary if dimK Ker.@/ D 1.

Note that except for Example 15 all our examples have been ordinary integro-
differential algebras. The requirement of ordinariness has a number of pleasant
consequences. First of all, the somewhat tedious distinction between the weak and
strong Baxter axioms disappears since now F is an algebra over its own field of
constants K D C . Hence

�
is by definition C -linear, and Lemma 10 ensures that

the pure Baxer axiom (8) is equivalent to the differential Baxter axiom (4). Let us
summarize this.

Corollary 17. In an ordinary integro-differential algebra, the constant functions
coincide with the ground field, and the strong and weak Baxter axioms are
equivalent.

Recall that a character on an algebra (or group) is a multiplicative linear
functional; this may be seen as a special case of the notion of character in
representation theory, namely the case when the representation is one-dimensional.
In our context, a character on an integro-differential algebra F , is a K-linear map
'WF ! K satisfying '.fg/ D '.f / '.g/ and a fortiori also '.1/ D 1. So we just
require ' to be a K-algebra homomorphism, as for example in [52, p. 407].

Ordinary integro-differential algebras will always have at least one character,
namely the evaluation: One knows from Linear Algebra that a projector P onto

292 M. Rosenkranz et al.

a one-dimensional subspace Œw� of a K-vector space V can be written as P.v/ D
'.v/w, where 'WV ! K is the unique functional with '.w/ D 1. If V is moreover
a K-algebra, a projector onto K D Œ1� is canonically described by the functional '
with normalization '.1/ D 1. Hence multiplicative projectors like E can be viewed
as characters. In the next section, we consider other characters on F ; for the moment
let us note E as a distinguished character. We write F � for the set of all nonzero
characters on a K-algebra F , in other words all algebra homomorphisms F ! K .

One calls a K-algebra augmented if there exists a character on it. Its kernel I
is then known as an augmentation ideal and forms a direct summand of K; see for
example [33, p. 132]. Augmentation ideals are always maximal ideals (generalizing
the C1Œa; b� case) since the direct sum F D K uI induces a ring isomorphism
F=I Š K . Corollary 4 immediately translates to the following characterization of
integrals in ordinary differential algebras.

Corollary 18. In an ordinary differential algebra .F ; @/, a section
�

of @ is an
integral if and only if its evaluation is a character if and only if I D Im.

�
/ is an

augmentation ideal.

3.3 Initial Value Problems

It is clear that in general we cannot assume that the solutions of a differential
equation with coefficients in F are again in F . For example, in F D KŒx�, the
differential equation u0 � u D 0 has no solution. In fact, its “actual” solution space
is spanned by u.x/ D ex ifK D � orK D �. So in this case we should have taken
the exponential polynomials F D KŒx; eKx� for ensuring that u 2 F . But if this
is the case, we can also solve the inhomogeneous differential equation u0 � u D f

whose general solution is Kex C ex� e�xf , with
� D � x

0
as usual. Of course we

can also incorporate the initial condition u.0/ D 0, which leads to u D ex� e�xf .
This observation generalizes: Whenever we can solve the homogeneous dif-

ferential equation within F , we can also solve the initial value problem for the
corresponding inhomogeneous problem. The classical tool for achieving this explic-
itly is the variation-of-constants formula [30, p. 74], whose abstract formulation is
given in Theorem 20 below.

As usual [64], we will write F Œ@� for the ring of differential operators with
coefficients in F , see also Sect. 4. Let

T D @n C cn�1@n�1 C � � � C c0
be a monic (i.e. having leading coefficient 1) differential operator in F Œ@� of degree
n. Then we call u1; : : : ; un 2 F a fundamental system for T if it is a K-basis for
Ker.T /, so it yields the right number of solutions for the homogeneous differential
equation T u D 0. A fundamental system will be called regular if its associated
Wronskian matrix

Symbolic Analysis for Boundary Problems 293

W.u1; : : : ; un/ D

0

BBB@

u1 � � � un
u01 � � � u0n
:::

: : :
:::

u.n�1/1 � � � u.n�1/n

1

CCCA

is invertible in F n�n or equivalently if its Wronskian detW.u1; : : : ; un/ is invertible
in F . Of course this alone implies already that u1; : : : ; un are linearly independent.

Definition 19. A monic differential operator T 2 F Œ@� is called regular if it has a
regular fundamental system.

For such differential operators, variation of constants goes through – the canon-
ical initial value problem can be solved uniquely. This means in particular that
regular differential operators are always surjective.

Theorem 20. Let .F ; @;
�
/ be an ordinary integro-differential algebra. Given a

regular differential operator T 2 F Œ@� with degT D n and a regular fundamental
system u1; : : : ; un 2 F , the canonical initial value problem

T u D f
Eu D Eu0 D � � � D Eu.n�1/ D 0 (10)

has the unique solution

u D
nX

iD1
ui

�
d�1 dif (11)

for every f 2 F , where d D detW.u1; : : : ; un/, and di is the determinant of the
matrix Wi obtained from W by replacing the i -th column by the n-th unit vector.

Proof. We can use the usual technique of reformulating T u D f as a system
of linear first-order differential equations with companion matrix A 2 F n�n. We
extend the action of the operators

�
; @; E componentwise to F n. Setting now

Ou D W�
W �1 Of

with Of D .0; : : : ; 0; f /> 2 F n, we check that Ou 2 F n is a solution of the first-
order system Ou0 D AOuC Of with initial condition E.Ou/ D 0. Indeed we have Ou0 D
W 0

�
W �1 Of C WW �1 Of by the Leibniz rule and AW D W 0 since u1; : : : ; un are

solutions of T u D 0; so the differential system is verified. For checking the initial
condition, note that E

�
W �1 Of is already the zero vector, so we have also E.Ou/ D 0

since E is multiplicative.
Writing u for the first component of Ou, we obtain a solution of the initial value

problem (10), due to the construction of the companion matrix. Let us now compute
Og D W �1 Of . Obviously Og is the solution of the linear equation system W Og D Of .

294 M. Rosenkranz et al.

Hence Cramer’s rule, which is also applicable for matrices over rings [53, p. 513],
yields Ogi as d�1dif and hence

u D .W� Og/1 D
nX

iD1
ui

�
d�1 dif

since the first row of W is .u1; : : : ; un/.
For proving uniqueness, it suffices to show that the homogeneous initial value

problem only has the trivial solution. So assume u solves (10) with f D 0 and
choose coefficients c1; : : : ; cn 2 K such that

u D c1u1 C � � � C cnun:

Then the initial conditions yield E.W c/ D 0 with c D .c1; : : : ; cn/> 2 Kn. But we
have also E.W c/ D .EW /c because E is linear, and det EW D E.detW / because it
is moreover multiplicative. Since detW 2 F is invertible, EW 2 Kn�n is regular,
so c D .EW /�10 D 0 and u D 0. ut

4 Integro-Differential Operators

With integro-differential algebras, we have algebraized the functions to be used
in differential equations and boundary problems, but we must also algebraize the
operators inherent in both – the differential operators on the left-hand side of the
former, and the integral operators constituting the solution of the latter. As the name
suggests, the integro-differential operators provide a data structure that contains
both of these operator species. In addition, it has as a third species the boundary
operators needed for describing (global as well as local) boundary conditions of any
given boundary problem for a LODE.

4.1 Definition

The basic idea is similar to the construction of the algebra of differential operators
F Œ@� for a given differential algebra .F ; @/. But we are now starting from an
ordinary integro-differential algebra .F ; @;

�
/, and the resulting algebra of integro-

differential operators will accordingly be denoted by F Œ@;
�
�. Recall that F Œ@� can

be seen as the quotient of the free algebra generated by @ and f 2 F , modulo the
ideal generated by the Leibniz rule @f D f @Cf 0. For F Œ@;

�
�, we do the same but

with more generators and more relations. In the following, all integro-differential
algebras are assumed to be ordinary.

Symbolic Analysis for Boundary Problems 295

Apart from
�

, we will also allow a collection of “point evaluations” as new
generators since they are needed for the specification of boundary problems. For
example, the local boundary condition u.1/ D 0 on a function u 2 F D C1Œ0; 1�
gives rise to the functional E1 2 F� defined by u 7! u.1/. As one sees immediately,
E1 is a character on F , meaning E1.uv/ D E1.u/ E1.v/ for all u; v 2 F . This
observation is the key for algebraizing “point evaluations” to an arbitrary integro-
differential algebra where one cannot evaluate elements as in C1Œ0; 1�. We will
see later how the characters serve as the basic building blocks for general local
conditions like 3u.�/ � 2u.0/ or global ones like

� 1
0
�u.�/ d�. Recall that we write

F � for the set of all characters on integro-differential algebra F . In Sect. 3 we have
seen that every integro-differential algebra .F ; @;

�
/ contains at least one character,

namely the evaluation E D 1 � �
@ associated with the integral. Depending on the

application, one may add other characters.

Definition 21. Let .F ; @;
�
/ be an ordinary integro-differential algebra over a

fieldK and˚ � F �. The integro-differential operators F˚ Œ@;
�
� are defined as the

free K-algebra generated by @, and
�

, the “functions” f 2 F , and the characters
' 2 ˚ [fEg, modulo the rewrite rules in Table 1. If ˚ is understood, we write
F Œ@;

�
�.

The notation U � f , used in the right-hand side of some of the rules above, refers
to the action of U 2 F h@; � i on a function f 2 F ; in particular, f � g denotes
the product of two functions f; g 2 F . It is an easy matter to check that the rewrite
rules of Table 1 are fulfilled in .F ; @;

�
/, so we may regard � as an action of F Œ@;

�
�

on F . Thus every element T 2 F Œ@;
�
� acts as a map T WF ! F .

We have given the relations as a rewrite system, but their algebraic meaning is
also clear: If in the free algebra F h@; � i of Definition 21 we form the two-sided
ideal g generated by the left-hand side minus right-hand side for each rule, then
F˚ Œ@;

�
� D F h@; � i=g. Note that there are infinitely many such rules since each

choice of f; g 2 F and '; 2 ˚ yields a different instance (there may be just
finitely many characters in ˚ but the coefficient algebra F is always infinite), so g
is an infinitely generated ideal (it was called the “Green’s ideal” in [70] in a slightly
more special setting). Note that one gets back the rewrite system of Table 1 if one
uses the implied set of generators and a suitable ordering (see Sect. 7).

The reason for specifying g via a rewrite system is of course that we may use it
for generating a canonical simplifier for F Œ@;

�
�. This can be seen either from the

term rewriting or from the Gröbner basis perspective: In the former case, we see
Table 1 as a confluent and terminating rewrite system (modulo the ring axioms); in
the latter case, as a noncommutative Gröbner basis with noetherian reduction (its
elements are of course the left-hand side minus right-hand side for each rule). While

Table 1 Rewrite rules for integro-differential operators

fg! f � g @f ! f @C @ � f �
f

� ! .
� � f / � � �

.
� � f /

' ! @' ! 0
�
f @! f � �

.@ � f /� .E � f / E
'f ! .' � f / ' @

� ! 1
�
f '! .

� � f / '

296 M. Rosenkranz et al.

we cannot give a detailed account of these issues here, we will briefly outline the
Gröbner basis setting since our new proof in Sect. 7 will rely on it.

4.2 Noncommutative Gröbner Bases

As detailed in Sect. 2, it is necessary for our application to deal with infinitely
generated ideals and an arbitrary set of indeterminates. The following description
of such a noncommutative Gröbner basis setting is based on the somewhat dated
but still highly readable Bergman paper [9]; for a summary see [28, �3.3]. For other
approaches we refer the reader to [61, 62, 85, 86].

Let us first recall some notions for abstract reduction relations [4]. We consider
a relation ! � A � A for a set A; typically ! realizes a single step in
a simplification process like the transformation of integro-differential operators
according to Table 1. The transitive closure of ! is denoted by

C!, its reflexive-
transitive closure by

�!. We call a 2 A irreducible if there is no a0 2 A with
a! a0; we write A# for the set of all irreducible elements. If a

�! a0 with a0 2 A#,
we call a0 a normal form of a, denoted by # a D a0 in case it is unique.

If all elements are to have a unique normal form, we have to impose two
conditions: termination for banning infinite reductions and confluence reuniting
forks. More precisely, ! is called terminating if there are no infinite chains
a1! a2! : : : and confluent if for all a; a1; a2 2 A the fork a1

� a
�! a2 finds a

reunion a1
�! a0

� a2 for some a0 2 A. If! is both terminating and confluent, it
is called convergent.

Turning to noncommutative Gröbner bases theory, we focus on reduction
relations on the free algebra KhXi over a commutative ring K in an arbitrary
set of indeterminates X ; the corresponding monomials form the free monoid hXi.
Then a reduction system for KhXi is a set ˙ � hXi � KhXi whose elements
are called rules. For a rule � D .W; f / and monomials A;B 2 hXi, the K-module
endomorphism ofKhXi that fixes all elements of hXi except sendingAWB toAfB
is denoted by A�B and called a reduction. It is said to act trivially on a 2 KhXi if
the coefficient of AWB in a is zero.

Every reduction system˙ induces the relation!˙ � KhXi�KhXi defined by
setting a!˙ b if and only if r.a/ D b for some reduction acting nontrivially on a.
We call its reflexive-transitive closure

�!˙ the reduction relation induced by˙ , and
we say that a reduces to b when a

�!˙ b. Accordingly we can speak of irreducible
elements, normal forms, termination and confluence of ˙ .

For ensuring termination, one can impose a noetherian monoid ordering on hXi,
meaning a partial ordering such that 1<A for all A2 hXi and such that B <B 0
implies ABC <AB 0C for A;B;B 0; C 2 hXi. Recall that for partial (i.e. not nec-
essarily total) orderings, noetherianity means that there are no infinite descending
chains or equivalently that every nonempty set has a minimal element [8, p. 156].
Note that in a noetherian monoid ordering (like the divisibility relation on natural
numbers), elements are not always comparable.

Symbolic Analysis for Boundary Problems 297

Now if one has a noetherian monoid ordering on hXi, then˙ will be terminating
provided it respects < in the sense that W 0 < W for every rule .W; f / 2 ˙ and
every nonzero monomial W 0 of f . (Let us also remark that the condition 1 < A

from above might as well be dropped, as in [9]: The given rewrite system cannot
contain a rule 1 ! f since then W < 1 for at least one nonzero monomial W
of f , so 1 > W > WW > � � � would yield an infinite descending chain. Such rules
precluded, it is not stringent that constants in K be comparable with the elements
in X . But since it is nevertheless very natural and not at all restrictive, we stick to
the monoid orderings as given above.)

It is typically more difficult to ensure confluence of a reduction system ˙ .
According to the definition, we would have to investigate all forks a1

� a
�! a2,

which are usually infinite in number. The key idea for a practically useful criterion
is to consider only certain minimal forks (called ambiguities below, following
Bergman’s terminology) and see whether their difference eventually becomes zero.
This was first described by Buchberger in [24] for the commutative case; see
also [19, 20]. The general intuition behind minimal forks is analyzed in [18],
where Gröbner bases are compared with Knuth-Bendix completion and Robinson’s
resolution principle.

An overlap ambiguity of ˙ is given by a quintuple .�; 	; A;B; C / with ˙-rules
� D .W; f /, 	 D .V; g/ and monomials A;B;C 2 hXinf1g such that W D AB

and V D BC . Its associated S-polynomial is defined as f C�Ag, and the ambiguity
is called resolvable if the S-polynomial reduces to zero. (In general one may also
have so-called inclusion ambiguities, but it turns out that one can always remove
them without changing the resulting normal forms [9, �5.1]. Since the reduction
system of Table 1 does not have inclusion ambiguities, we will not discuss them
here.)

For making the connection to ideal theory, we observe that every reduction
system ˙ gives rise to a two-sided ideal I˙ generated by all elements W � f
for .W; f / 2 ˙ ; we have already seen this connection for the special case of the
integro-differential operators. Note that a

�!˙ 0 is equivalent to a 2 I˙ .
In the given setting, the task of proving convergence can then be attacked by the

so-called Diamond Lemma for Ring Theory, presented as Theorem 1.2 in Bergman’s
homonymous paper [9]; see also Theorem 3.21 in [28]. It is the noncommutative
analog of Buchberger’s criterion [19] for infinitely generated ideals. (In the version
given below, we have omitted a fourth equivalent condition that is irrelevant for our
present purposes.)

Theorem 22. Let ˙ be a reduction system for KhXi and � a noetherian monoid
ordering that respects ˙ . Then the following conditions are equivalent:

• All ambiguities of ˙ are resolvable.
• The reduction relation

�!˙ is convergent.
• We have the direct decompositionKhXi D KhXi# u I˙ as K-modules.

When these conditions hold, the quotient algebra KhXi=I˙ may be identified with
the K-moduleKhXi#, having the multiplication a � b D # ab.

298 M. Rosenkranz et al.

We will apply Theorem 22 in Sect. 7 for proving that Table 1 constitutes a
Gröbner basis for the ideal g. Hence we may conclude that F Œ@;

�
� can be identified

with the algebra F h@; � i# of normal forms, and this is what gives us an algorithmic
handle on the integro-differential operators. It is thus worth investigating these
normal forms in some more detail.

4.3 Normal Forms

We start by describing a set of generators, which will subsequently be narrowed
to the normal forms of F˚ Œ@;

�
�. The key observation is that in any monomial we

never need more than one integration while all the derivatives can be collected at its
end.

Lemma 23. Every integro-differential operator in F˚ Œ@;
�
� can be reduced to a

linear combination of monomials f '
�
g @i , where i 	 0 and each of f; ';

�
; g;

may also be absent.

Proof. Call a monomial consisting only of functions and functionals “algebraic”.
Using the left column of Table 1, it is immediately clear that all such monomials
can be reduced to f or ' or f '. Now let w be an arbitrary monomial in the
generators of F˚ Œ@;

�
�. By using the middle column of Table 1, we may assume

that all occurrences of @ are moved to the right, so that all monomials have the form
w D w1 � � �wn@i with i 	 0 and each of w1; : : : ;wn either a function, a functional
or

�
. We may further assume that there is at most one occurrence of

�
among the

w1; : : : ;wn. Otherwise the monomials w1 � � �wn contain
� Qw�

, where each Qw D f '

is an algebraic monomial. But then we can reduce

� Qw� D .� f '/� D .� � f /'�

by using the corresponding rule of Table 1. Applying these rules repeatedly, we
arrive at algebraic monomials left and right of

�
(or just a single algebraic monomial

if
�

is absent). ut
In TH9OREM8, the integro-differential operators over an integro-differential

algebra F of coefficient functions are built up by FreeIntDiffOp[F ,K]. This
functor constructs an instance of the monoid algebra with the word monoid over the
infinite alphabet consisting of the letters @ and

�
along with a basis of F and with

all multiplicative characters induced by evaluations at points in K:

Definition "IntDiffOp", any , K ,
IntDiffOp , K where FreeIntDiffOp , K , GreenSystem , K

QuotAlg GBNF ,

Symbolic Analysis for Boundary Problems 299

In this code fragment, the GreenSystem functor contains the encoding of the
aforementioned rewrite system (Table 1), here understood as a noncommutative
Gröbner basis. Normal forms for total reduction modulo infinite Gröbner bases are
created by the GBNF functor, while the QuotAlg functor constructs the quotient
algebra from the corresponding canonical simplifier (see Sect. 2 for details). For
instance, multiplying the integral operator

�
by itself triggers an application of the

Baxter rule:

Compute 1, " " 1, " " FormatP

A x x A

Here integral operators are denoted by A, following the notation in the older
implementation [70].

We turn now to the normal forms of boundary conditions. Since they are intended
to induce mappings F ! K , it is natural to define them as those integro-differential
operators that “end” in a character ' 2 ˚ . For example, if ' is the point evaluation
E1 considered before, the composition E1@ describes the local condition u0.1/ D 0,
the composition E1

�
the global condition

� 1
0
u.�/ d� D 0. In general, boundary

conditions may be arbitrary linear combinations of such composites; they are known
as “Stieltjes conditions” in the literature [15, 16].

Definition 24. The elements of the right ideal

j˚/ D ˚ �F˚ Œ@;
�
�

are called boundary conditions over F .

It turns out that their normal forms are exactly the linear combinations of local
and global conditions as in the example mentioned above. As a typical representative
over F D C1.�/, one may think of an element like

E0@
2 C 3 E� � 2 E2�

�
sin x;

written as u00.0/C 3 u.�/� 2� 2�
0

sin �u.�/ d� in traditional notation.

Proposition 25. Every boundary condition of j˚/ has the normal form

X

'2˚

X

i2�
a';i '@

i C '�
f'

!
; (12)

with only finitely many a';i 2 K and f' 2 F nonzero.

Proof. By Lemma 23, every boundary condition of j˚/ is a linear combination of
monomials having the form

300 M. Rosenkranz et al.

w D
f '�
g @i or w D
f '@i (13)

where each of f; g; '; may also be missing. Using the left column of Table 1, the
prefix
f ' can be reduced to a scalar multiple of a functional, so we may as well
assume that f and ' are not present; this finishes the right-hand case of (13). For
the remaining case w D
�

g @i , assume first that is present. Then we have

 .
�
g / D
 .� � g/ D .
� � g/
 D .
� � g/ ;

so w is again a scalar multiple of @i , and we are done. Finally, assume we have
w D
�

g@i . If i D 0, this is already a normal form. Otherwise we obtain

w D
 .� g@/ @i�1 D .
 � g/
@i�1 �
�
g0@i�1 � .E � g/ E@i�1;

where the first and the last summand are in the required normal form, while the
middle summand is to be reduced recursively, eventually leading to a middle term
in normal form˙
�

g0@0 D ˙
�
g0. ut

Most expositions of boundary problems – both analytic and numeric ones –
restrict their attention to local conditions, even more specifically to those with
just two point evaluation (so-called two-point boundary problems). While this is
doubtless the most important case, there are at least three reasons for considering
Stieltjes boundary conditions of the form (12).

• They arise in certain applications (e.g. heat radiated through a boundary) and in
treating ill-posed problems by generalized Green’s functions [70, p. 191].

• As we shall see (Sect. 5), they are needed for factoring boundary problems.
• Their algebraic description as a right ideal is very natural.

Hence we shall always mean all of j˚/ when we speak of boundary conditions.
Let us now turn to the other two ingredients of integro-differential operators: We

have already mentioned the differential operators F Œ@�, but we can now see them as
a subalgebra of F˚ Œ@;

�
�. They have the usual normal forms since the Leibniz rule

is part of the rewrite system. Analogously, we introduce the subalgebra of integral
operators generated by the functions and

�
. Using Lemma 23, it is clear that the

normal forms of integral operators are F itself and linear combinations of f
�
g,

and the only rule applicable to them is
�
f

� ! � � � in Table 1. Since we have
already included F in F Œ@�, we introduce F Œ

�
� as the F -bimodule generated by�

so that it contains only the monomials of the form f
�
g.

Finally, we must consider the two-sided ideal .˚/ of F˚ Œ@;
�
� generated by ˚

whose elements are called boundary operators. A more economical description
of .˚/ is as the left F -submodule generated by j˚/ because by Lemma 23
any w
 Qw with w; Qw 2 F Œ@;

�
� can be reduced to f '

�
g @i
 Qw. Note that .˚/

includes all finite dimensional projectors P along Stieltjes boundary conditions.
Any such projector can be described in the following way: If u1; : : : ; un 2 F and
ˇ1; : : : ; ˇn 2 j˚/ are biorthogonal (meaning ˇi .uj / D ıij), then

Symbolic Analysis for Boundary Problems 301

P D
nX

iD1
ui ˇi W F ! F (14)

is the projector onto Œu1; : : : ; un�whose kernel is the subspace of all u 2 F such that
ˇ.u/ D 0 for all ˇ 2 Œˇ1; : : : ; ˇn�. See for example [50, p. 71] or [66] for details.
Note that all elements of .˚/ have the normal form (14), except that the .uj / need
not be biorthogonal to the .ˇi /.

We can now characterize the normal forms of F˚ Œ@;
�
� in a very straightforward

and intuitive manner: Every monomial is either a differential operator or an integral
operator or a boundary operator. Hence every element of F˚ Œ@;

�
� can be written

uniquely as a sum T C G C B , with a differential operator T 2 F Œ@�, an integral
operatorG 2 F Œ

�
�, and a boundary operator B 2 .˚/.

Proposition 26. For an integro-differential algebra F and characters ˚ � F �,
we have the direct decomposition F˚ Œ@;

�
� D F Œ@�uF Œ

�
�u .˚/.

Proof. Inspection of Table 1 confirms that all integro-differential operators having
the described sum representation T CGCP are indeed in normal form. Let us now
prove that every integro-differential operator of F˚ Œ@;

�
� has such a representation.

It is sufficient to consider its monomials w. If w starts with a functional, we obtain
a boundary condition by Proposition 25; so assume this is not the case. From
Lemma 23 we know that

w D f '�
g @i or w D f '@i ;

where each of '; g; may be absent. But w 2 .˚/ unless ' is absent, so we may
actually assume

w D f �
g @i or w D f @i :

The right-hand case yields w 2 F Œ@�. If is present in the other case, we may
reduce

�
g to .

� � g/ , and we obtain again w 2 .˚/. Hence we are left with
w D f

�
g@i , and we may assume i > 0 since otherwise we have w 2 F Œ

�
�

immediately. But then we can reduce

w D f .� g@/ @i�1 D f �g � �
.@ � g/ � .E � g/ E

�
@i�1

D .fg/ @i�1 � f �
.@ � g/ @i�1 � .E � g/ f E @i�1;

where the first term is obviously in F Œ@� and the last one in .˚/. The middle term
may be reduced recursively until the exponent of @ has dropped to zero, leading to
a term in F Œ

�
�. ut

We can observe the direct decomposition F˚ Œ@;
�
� D F Œ@�uF Œ

�
�u .˚/ in the

following sample multiplication of
�
@ and @@xex

�
:

302 M. Rosenkranz et al.

Compute 1, " ", " " 1, " ", " ", " ", 1, 1 , " " FormatP

2 E 2 x 2 x x 2 x A x x A x x D

As in the previous computation, A stands for the integral
�

, moreover D for the
derivation @, and E for the evaluation. As we can see, the sum is composed of one
differential operator (the last summand), two integral operators (in the middle), and
three boundary operators (the first summands). Observe also that the input operators
are not in normal form but the output operator is.

4.4 Basis Expansion

Regarding the canonical forms for F Œ@;
�
�, there is one more issue that we have

so far swept under the rug. The problem is that in the current setup elements like
x@C 3x2@ and .xC 3x2/@ are considered distinct normal forms. More generally, if
f C g D h holds in F , there is no rule that allows us to recognize that f C g 2
F Œ@;

�
� and h 2 F Œ@;

�
� are the same. Analogously, if � Qf D Qg holds in F with

� 2 K , then � Qf and Qg are still considered to be different in F Œ@;
�
�. A slightly

less trivial example is when f D .cos x/.cos2 x2/ and g D �.sin x/.sin x2/ so
that h D cos .x C x2/. What is needed in general is obviously a choice of basis for
F . But since such a choice is always to some degree arbitrary, we would like to
postpone it as much as possible.

An unbiased way of introducing all K-linear relations in F is simply to collect
them in all in the two-sided ideal

l D .f C g � h; � Qf � Qg j f C g D h and � Qf D Qg in F / � F h@; � i;
which we shall call the linear ideal. Since l C g corresponds to a unique ideal Ql in
F Œ@;

�
�, the necessary refinement of F Œ@;

�
� can now be defined as

F #Œ@;
�
� D F Œ@;

�
�=Ql Š F h@; � i=.lC g/

whose elements shall be called expanded integro-differential operators. Note that
Ql is really the “same” ideal as l except that now f; g; h; Qf ; Qg 2 F Œ@;

�
�. By the

isomorphism above, coming from the Third Isomorphism Theorem [31, Theorem
1.22], we can think of F #Œ@;

�
� in two ways: Either we impose the linear relations on

F Œ@;
�
� or we merge them in with the Green’s ideal – let us call these the a-posteriori

and the combined approach, respectively.
For computational purposes, we need a ground simplifier on the free algebra [70,

p. 525], which we define here as a K-linear canonical simplifier for F h@; � i=l.
Since all reduction rules of Table 1 are (bi)linear in f; g 2 F , any ground simplifier
descends to a canonical simplifier � on F #Œ@;

�
�. In our implementations, � always

Symbolic Analysis for Boundary Problems 303

operates by basis expansion (see below), but other strategies are conceivable. We
can apply � either a-posteriori or combined:

• In the first case we apply � as a postprocessing step after computing the normal
forms with respect to Table 1. We have chosen this approach in the upcoming
Maple implementation [49].

• In the combined approach, � may be used at any point during a reduction along
the rules of Table 1. It may be more efficient, however, to use � on the rules
themselves to create a new reduction system on F h@; � i; see below for an
example. We have taken this approach in our earlier implementation [69,70] and
in the current implementation.

Generally the first approach seems to be superior, at least when � tends to create
large expressions that are not needed for the rewriting steps of Table 1; this is what
typically happens if the ground simplifier operates by basis expansion.

Assume now we choose a K-basis .bi /i2I of F . If . Obi/i2I is the dual basis, we
can describe the linear ideal more economically as

l D
�
f �

X

i2I
Obi .f / bi j f 2 F

�
;

so the linear basis .bi /i2I gives rise to an ideal basis for l. Its generators f �Pi � � �
can be oriented to create a ground simplifier � Wf 7! P

i � � � effecting basis
expansion.

If one applies now such a ground simplifier coming from a basis .bi /i2I in the
combined approach, one can restrict the generators of F h@; � i to basis elements
bi 2 F rather than all f 2 F , and the reduction rules can be adapted accordingly.
For example, when F contains the exponential polynomials, the Leibniz rule @f !
f @C .@ � f / gets instantiated for f D xex as @.xex/! .xex/@C ex C x, where
the right-hand side now has three instead of two monomials! This is why the choice
of basis was built into the definition of the precursor of F #Œ@;

�
� as in [70].

Before leaving this section on integro-differential operators, let us mention
some interesting related work on these objects, carried out from a more algebraic
viewpoint. In his papers [5, 6], Bavula establishes an impressive list of various
(notably ring-theoretic) properties for algebras of integro-differential operators. The
setup considered in these papers is, on the one hand, in many respects more general
since it deals with partial rather than ordinary differential operators but, on the other
hand, the coefficients are restricted to polynomials.

Seen from the more applied viewpoint taken here, the most significant difference
is the lack of multiple point evaluations (and thus boundary conditions). Apart
from these obvious differences, there is also a somewhat subtle difference in the
meaning of E D 1 � � ı @ that we have tried to elucidate in a skew-polynomial
setting [67]. The upshot is that while our approach views E as a specific evaluation
(the prototypical example is given after Definition 2), it does not have a canonical
action in V. Bavula’s setting (and neither in our skew-polynomial approach). This is
a subtle but far-reaching difference that deserves future investigation.

304 M. Rosenkranz et al.

5 Applications for Boundary Problems

In this section we combine the tools developed in the previous sections to build
an algorithm for solving linear boundary problems over an ordinary integro-
differential algebra; see also [72] for further details. We also outline a factorization
method along a given factorization of the defining differential operator applicable
to boundary problems for both linear ordinary and partial differential equations;
see [66] in an abstract linear algebra setting and [74] for an overview.

For motivating our algebraic setting of boundary problems, let us consider
our standard example of an integro-differential algebra .F ; @;

�
/ with the integral

operator � W f 7!
Z x

0

f .�/ d�

for F D C1Œ0; 1�. The simplest two-point boundary problem reads then as follows:
Given f 2 F , find u 2 F such that

u00 D f;
u.0/ D u.1/ D 0: (15)

In this and the subsequent examples, we letD and A denote respectively the deriva-
tion @ and the integral operator

�
. Moreover, we denote by L the corresponding

evaluation E, which is the character

L W f 7! f .0/:

To express boundary problems we need additionally the evaluation at the endpoint
of the interval

R W f 7! f .1/:

Note that u is annihilated by any linear combination of these functionals so that
problem (15) can be described by the pair .D2; ŒL;R�/, where ŒL;R� is the subspace
generated by L, R in the dual space F�.

The solution algorithm presupposes a constructive fundamental system for the
underlying homogeneous equation but imposes no other conditions (in the literature
one often restricts to self-adjoint and/or second-order boundary problems). This
is always possible (relative to root computations) in the important special case of
LODEs with constant coefficient.

5.1 The Solution Algorithm

In the following, we introduce the notion of boundary problem in the context of ordi-
nary integro-differential algebras. Unless specified otherwise, all integro-differential
algebras in this section are assumed to be ordinary and over a fixed field K .

Symbolic Analysis for Boundary Problems 305

Definition 27. Let .F ; @;
�
/ be an ordinary integro-differential algebra. Then a

boundary problem of order n is a pair .T;B/, where T 2 F Œ@� is a regular
differential operator of order n and B � jF �/ is an n-dimensional subspace of
boundary conditions.

Thus a boundary problem is specified by a differential operator T and a boundary
space B D Œˇ1; : : : ; ˇn� generated by linearly independent boundary conditions
ˇ1; : : : ; ˇn 2 jF �/. In traditional notation, the boundary problem .T;B/ is then
given by

T u D f;
ˇ1u D � � � D ˇnu D 0: (16)

For a given boundary problem, we can restrict to a finite subset ˚ � F �, with the
consequence that all subsequent calculations can be carried out in F˚ Œ@;

�
� instead

of F Œ@;
�
�. We will disregard this issue here for keeping the notation simpler.

Definition 28. A boundary problem .T;B/ is called regular if for each f 2 F
there exists a unique solution u 2 F in the sense of (16).

The condition requiring T to have the same order as the dimension of B
in Definition 27 is only necessary but not sufficient for ensuring regularity: the
boundary conditions might collapse on Ker.T /. A simple example of such a singular
boundary problem is .�D2; ŒLD;RD�/ using the notation from before; see also [70,
p. 191] for more details on this particular boundary problem.

For an algorithmic test of regularity, one may also apply the usual regularity
criterion for two-point boundary problems, as described in [66]. Taking any
fundamental system of solutions u1; : : : ; un for the homogeneous equation, one can
show that a boundary problem .T;B/ is regular if and only if the evaluation matrix

ˇ.u/ D

0
B@
ˇ1.u1/ � � � ˇ1.un/
:::

: : :
:::

ˇn.u1/ � � � ˇn.un/

1
CA 2 Kn�n

is regular.
For a regular boundary problem .T;B/, we can now define its Green’s operator

G as the linear operator mapping a given forcing function f 2 F to the unique
solution u 2 F of (16). It is characterized by the identities

TG D 1 and Im.G/ D B?;

where B? D fu 2 F j ˇ.u/ D 0 for all ˇ 2 Bg is the subspace of all “functions”
satisfying the boundary conditions. We also write

306 M. Rosenkranz et al.

G D .T;B/�1

for the Green’s operator of .T;B/.
The investigation of singular boundary problems (i.e. non-regular ones) is very

enlightening but leads us too far afield; we shall investigate it at another junction.
Let us just mention that it involves so-called modified Green’s operators and
functions [80, p. 216] and that is paves the way to an interesting non-commutative
analog of the classical Mikusiński calculus [60].

We will now recast Theorem 20 in the language of Green’s operators of initial
value problems. Given a regular differential operator T of order n, the theorem
implies that the initial value problem .T; ŒE; E@; : : : ; E@n�1�/ is regular. We call its
Green’s operator the fundamental right inverse of T and denote it by T �.

Corollary 29. Let .F ; @;
�
/ be an ordinary integro-differential algebra and let T 2

F Œ@� be a regular differential operator of order n with regular fundamental system
u1; : : : ; un. Then its fundamental right inverse is given by

T � D
nX

iD1
ui

�
d�1di 2 F Œ@;

�
�; (17)

where d; d1; : : : ; dn are as in Theorem 20.

Before turning to the solution algorithm for boundary problems, let us also
mention the following practical formula for specializing Corollary 29 to the
important special case of LODEs with constant coefficients, which could also be
proved directly e.g. via the Lagrange interpolation formula. For simplicity, we
restrict ourselves to the case where the characteristic polynomial is separable.

Corollary 30. Let .F ; @;
�
/ be an ordinary integro-differential algebra and con-

sider the differential operator T D .@��1/ � � � .@��n/ 2 F Œ@� with �1; : : : ; �n 2 K
mutually distinct. Assume each u0 D �i u; E � u D 1 has a solution u D e�i x 2 F
with reciprocal u�1 D e��i x 2 F . Then we have

T � D
nX

iD1
�i e

�i x
�
e��i x;

where ��1i D .�i � �1/ � � � .�i � �i�1/.�i � �iC1/ � � � .�i � �n/.
Proof. Let us write V for the n� n Vandermonde determinant in �1; : : : ; �n and Vi
for the .n � 1/ � .n � 1/ Vandermonde determinant in �1; : : : ; �i�1; �iC1; : : : ; �n.
Evaluating the quantities of (17), one sees immediately that

d D e.�1C����n/x V and di D .�1/nCi e.�1C���C�i�1C�iC1C���C�n/x Vi :

Symbolic Analysis for Boundary Problems 307

Hence we have di=d D .�1/nCi e��i x Vi=V . Using the well-known formula for
the Vandermonde determinant, one obtains di=d D �i e

��i x , and now the result
follows from Corollary 29. ut

Summarizing our earlier results, we can now give a solution algorithm for
computing G D .T;B/�1, provided we have a regular fundamental system
u1; : : : ; un for T u D 0 and a K-basis ˇ1; : : : ; ˇn for B. The algorithm proceeds
in three steps:

1. Construct the fundamental right inverse T � 2 F Œ@;
�
� as in Corollary 29.

2. Determine the projector P DPn
iD1ui Q̌i 2 F Œ@;

�
� as in (14).

3. Compute G D .1 � P/T � 2 F Œ@;
�
�.

Theorem 31. The above algorithm computes the Green’s operator G 2 F Œ@;
�
�

for any regular boundary problem .T;B/.

Proof. See [72]. ut
The computation of Green’s operators for boundary problems for ODEs using

the above algorithm takes on the following concrete form in TH9OREM8 code.

GreensOp
P

F, 1 Proj
P

,F RightInv
P

F

Here B is a basis for the boundary space and F a regular fundamental system.
Let us consider again example (15): Given f 2 F , find u 2 F such that

u00 D f;
u.0/ D u.1/ D 0:

The Green’s operatorG of the boundary problem can be obtained by our implemen-
tation via the following computation

G GreensOp D2, L, R

A x x B x A x x B x

where we use the notation from before: Au D R x
0

u.�/ d�, Lu D u.0/, Ru D u.1/

and in addition,Bu D R 1
x

u.�/ d�. The corresponding Green’s function is computed
in an immediate postprocessing step:

GreensFct G

g x,
x

xx x

x

308 M. Rosenkranz et al.

As noted in [70], the Green’s function provides a canonical form for the Green’s
operator. Moreover, one can obtain the function u.x/ and thus solve the boundary
problem through knowledge of the Green’s function in the following identity:

u.x/ D Gf.x/ D
Z 1

0

g.x; �/f .�/ d�:

By replacing the Green’s function obtained above in the latter integral we obtain

u.x/ D .x � 1/
Z x

0

�f .�/ d� C x
Z 1

x

.� � 1/f .�/ d�:

Furthermore, we can look at some specific instances of the forcing function f .x/.
Let us first consider the simple example f .x/ D x. By an immediate calculation,
we obtain the expression for the action of G on f .x/, which is u.x/:

GreensOpAct G, x

x

6

2x4

3
x3

5

6

The expression for the solution function u.x/ can easily become more complicated,
as we can see in the next example, where we consider the instance

f .x/ D e2x C 3x2sinx3:

Relying on Mathematica for handling symbolic integration, we obtain:

GreensOpAct G, 2 x 3x2 Sin x 3

1

4

2 x

4

x

4

2 x

4

3

2
2 x x 2 x x2 9 xCos 1

1

9
xCos 3 18 xCos x 27x2Cos x

9

2
x3Cos x

9

2
x4Cos x

2

9
xCos 3x

1

3
x2Cos 3x

1

2
x3Cos 3x

1

2
x4Cos 3x

45

4
xSin 1

1

36
xSin 3

27Sin x

2
27 xSin x

45

4
x2Sin x

27

2
x3Sin x

1

18
Sin 3x

1

9
xSin 3x

5

12
x2Sin 3x

1

2
x3Sin 3x

As a last example, let us consider f .x/ D sin sin x. As we can notice below, it
cannot be integrated with Mathematica:

GreensOpAct G, Sin Sin x

1

x

x x Sin Sin
0

x

x Sin Sin

Symbolic Analysis for Boundary Problems 309

In order to carry out the integrals involved in the application of the Green’s operator
to a forcing function, one can use any numerical quadrature method (as also
available in many computer algebra systems).

5.2 Composing and Factoring Boundary Problems

In the following, we discuss the composition of boundary problems corresponding
to their Green’s operators. We also describe how factorizations of a boundary
problem along a given factorization of the defining operator can be characterized
and constructed. We refer again to [66, 72] for further details. We assume that
all operators are defined on suitable spaces such that the composition is well-
defined. It is worth mentioning that the following approach works in an abstract
setting, which includes in particular boundary problems for linear partial differential
equations (LPDEs) and systems thereof; for simplicity, we will restrict ourselves in
the examples to the LODE setting.

Definition 32. We define the composition of boundary problems .T1;B1/ and
.T2;B2/ by

.T1;B1/ ı .T2;B2/ D .T1T2;B1 � T2 CB2/:

So the boundary conditions from the first boundary problem are “translated” by
the operator from the second problem. The composition of boundary problems is
associative but in general not commutative. The next proposition tells us that the
composition of boundary problems preserves regularity.

Proposition 33. Let .T1;B1/ and .T2;B2/ be regular boundary problems with
Green’s operators G1 and G2. Then .T1;B1/ ı .T2;B2/ is regular with Green’s
operatorG2G1 so that

..T1;B1/ ı .T2;B2//
�1 D .T2;B2/

�1 ı .T1;B1/
�1:

The simplest example of composing two boundary (more specifically, initial
value) problems for ODEs is the following. Using the notation from before, one
sees that

.D; ŒL�/ ı .D; ŒL�/ D .D2; ŒLD�C ŒL�/ D .D2; ŒL;LD�/:

Let now .T;B/ be a boundary problem and assume that we have a factorization
T D T1T2 of the defining differential operator. We refer to [66, 72] for a
characterization and construction of all factorizations

.T;B/ D .T1;B1/ ı .T2;B2/

into boundary problems. In particular, if .T;B/ is regular, it can be factored into
regular boundary problems: the left factor .T1;B1/ is unique, while for the right

310 M. Rosenkranz et al.

factor .T2;B2/ we can choose any subspace B2 � B that makes the problem
regular. We can compute the uniquely determined boundary conditions for the
left factor by B1 D B � G2, where G2 is the Green’s operator for some regular
right factor .T2;B2/. By factorization, one can split a problem of higher order
into subproblems of lower order, given a factorization of the defining operator.
For algorithms and results about factoring ordinary differential operators we refer
to [64, 78, 84].

Given a fundamental system of the differential operator T and a right inverse of
T2, one can factor boundary problems in an algorithmic way as shown in [66] and
in an integro-differential algebra [72]. As described in [74], we can also compute
boundary conditions B2 � B such that .T2;B2/ is a regular right factor, given
only a fundamental system of T2. The unique left factor can be then computed as
explained above. This allows us to factor a boundary problem if we can factor the
differential operator and compute a fundamental system of only one factor. The
remaining lower order problems can then also be solved by numerical methods.

Here is how we can compute the boundary conditions of the left and right factor
problems for the boundary problem .D2; ŒL;R�/ from previous example (15), along
the trivial factorization with T1 D T2 D D. The indefinite integral A D R x

0
is the

Green’s operator for the regular right factor .D; ŒL�/.

Fact D, D, L, R , R

A B , L

This factorization reads in traditional notation as

u0 D fR 1
0

u.�/ d� D 0 ı
u0 D f
u.0/ D 0 D

u00 D f
u.0/ D u.1/ D 0 :

Note that the boundary condition for the unique left factor is an integral (Stieltjes)
boundary condition.

We consider as a second example the fourth order boundary problem [72,
Example 33]:

u0000 C 4u D f;
u.0/ D u.1/ D u0.0/ D u0.1/ D 0: (18)

Factoring the boundary problem along D4 C 4 D .D2 � 2i/.D2 C 2i/, we obtain
the following boundary conditions for the factor problems.

Fact D2 2 , D2 2 , L, R, L D, R D , 1 x, 1 x

A Complex 1,1 x B Complex 1,1 x, A Complex 1, 1 x B Complex 1, 1 x , L, R

Symbolic Analysis for Boundary Problems 311

6 Integro-Differential Polynomials

In this section, we describe the algebra of integro-differential polynomials [73]
obtained by adjoining an indeterminate function to a given integro-differential
algebra .F ; @;

�
/. Intuitively, these are all terms that one can build using an

indeterminate u, coefficient functions f 2 F and the operations C; �; @; � ,
identifying two terms if one can be derived from the other by the axioms of integro-
differential algebras and the operations in F . A typical term for .KŒx�; @;

�
/ looks

like this:

.4uu0
�
.x C 3/u03/.u0� u002/C �

x6uu005
�
.x2 C 5x/u3u02� u

From the computational point of view, a fundamental problem is to find a canonical
simplifier (see Sect. 2) on these objects. For example, the above term can be
transformed to

4uu02
�
xu03

�
u002 C 4uu02

�
u002

�
xu03 C 12uu02

�
u03

�
u002 C 12uu02

�
u002

�
u03

C �
x6uu005

�
x2u3u02

�
uC 5� x6uu005

�
xu3u02

�
u:

by the Baxter axiom and the K-linearity of the integral.
As outlined in the next subsection, a notion of polynomial can be constructed for

any variety in the sense of universal algebra. (In this general sense, an algebra is
a set with an arbitrary number of operations, and a variety is a collection of such
algebras satisfying a fixed set of identities. Typical examples are the varieties of
groups, rings, and lattices.)

For sample computations in the algebra of integro-differential polynomials, we
use a prototype implementation of integro-differential polynomials, based on the
TH9OREM8 functor mechanism (see Sect. 2).

6.1 Polynomials in Universal Algebra

In this subsection, we describe the idea of the general construction of polynomials
in universal algebra [45]. We refer to [54] for a comprehensive treatment; see also
the surveys [1, 27]. For the basic notions in universal algebra used below, see for
example [4] or [32, Chap. 1].

Let V be a variety defined by a set E of identities over a signature ˙ . Let
A be a fixed “coefficient domain” from the variety V , and let X be a set of
indeterminates (also called “variables”). Then all terms in the signature ˙ with
constants (henceforth referred to as coefficients) in A and indeterminates in X

represent the same polynomial if their equality can be derived in finitely many steps
from the identities in E and the operations inA. The set of all such terms T˙.A[X/

312 M. Rosenkranz et al.

modulo this congruence� is an algebra in V , called the polynomial algebra for V
in X over A and denoted by AV ŒX�.

The polynomial algebra AV ŒX� contains A as a subalgebra, and A [X is a
generating set. As in the case of polynomials for commutative rings, we have the
substitution homomorphism in general polynomial algebras. Let B be an algebra in
V . Then given a homomorphism '1WA ! B and a map '2WX ! B , there exists a
unique homomorphism

'WAV ŒX�! B

such that '.a/ D '1.a/ for all a 2 A and '.x/ D '2.x/ for all x 2 X . So in a
categorical sense the polynomial algebra AV ŒX� is a free product of the coefficient
algebra A and the free algebra over X in V ; see also [1].

For computing with polynomials, we will construct a canonical simplifier on
AV ŒX� with associated system of canonical forms R. As explained before (Sect. 2),
the canonical simplifier provides for every polynomial in AV ŒX�, represented by
some term T , a canonical form R 2 R that represents the same polynomial, with
different terms in R representing different polynomials; see also [54, p. 23].

The set R must be large enough to generate all of AV ŒX� but small enough to
ensure unique representatives. The latter requirement can be ensured by endowing
a given set of terms with the structure of an algebra in the underlying variety.

Proposition 34. Let V be a variety over a signature ˙ , let A be an algebra in V
andX a set of indeterminates. If R � T˙.A[X/ is a set of terms with A[X � R
that can be endowed with the structure of an algebra in V , then different terms in
R represent different polynomials in AV ŒX�.

Proof. Since R can be endowed with the structure of an algebra in the variety V
and A [X � R, there exists a unique substitution homomorphism

'WAV ŒX�! R

such that '.a/ D a for all a 2 A and '.x/ D x for all x 2 X . Let

�WR ! AV ŒX�

denote the restriction of the canonical map associated with �. Then we have ' ı
�.R/ D R for all R 2 R, so � is injective, and different terms in R indeed
represent different polynomials. ut

As a well-known example, take the polynomial ring RŒx� in one indeterminate
x over a commutative ring R, which is AV ŒX� for A D R and X D fxg with
V being the variety of commutative unital rings. The set of all terms of the form
anx

n C � � � C a0 with coefficients ai 2 R and an ¤ 0 together with 0 is a system of
canonical forms for RŒx�. One usually defines the polynomial ring directly in terms
of these canonical forms. Polynomials for groups, bounded lattices and Boolean
algebras are discussed in [54] along with systems of canonical forms.

Symbolic Analysis for Boundary Problems 313

6.2 Differential Polynomials

For illustrating the general construction described above, consider the algebra of
differential polynomials over a commutative differential K-algebra .F ; @/ in one
indeterminate function u, usually denoted by F fug. Clearly this is AV ŒX� for A D
F andX D fugwith V being the variety of differentialK-algebras. Terms are thus
built up with the indeterminate u, coefficients from F and the operationsC; �; @; a
typical example being

@2.f1u
2 C u/@.f2u

3/C @3.f3u/:

By applying the Leibniz rule and the linearity of the derivation, it is clear that every
polynomial is congruent to a K-linear combination of terms of the form

f

1Y

iD0
uˇii ; (19)

where f 2 F , the notation un is short for @n.u/, and only finitely many ˇi 2 �
are nonzero. In the following, we use the multi-index notation f uˇ for terms of this
form. For instance, u.1;0;3;2/ is the multi-index notation for u.u00/3.u000/2. The order
of a differential monomial uˇ is given by the highest derivative appearing in uˇ or
�1 if ˇ D 0.

Writing R for the set of all K-linear combinations of terms of the form (19), we
already know that every polynomial is congruent to a term in R. When F D KŒx�,
a typical element of R is given by

.3x3 C 5x/ u.1;0;3;2/ C 7x5u.2;0;1/ C 2xu.1;1/:

To show that R is a system of canonical forms for F fug, by Proposition 34 it
suffices to endow R with the structure of a commutative differential algebra. As
a commutative algebra, R is just the polynomial algebra in the infinite set of
indeterminates u0; u1; u2; : : :. For defining a derivation in a commutative algebra,
by the Leibniz rule and K-linearity, it suffices to specify it on the generators. Thus
R becomes a differential algebra by setting @.uk/ D ukC1. One usually defines
the differential polynomials directly in terms of these canonical forms, see for
example [48].

6.3 Integro Polynomials

We outline the integro polynomials over a Rota-Baxter algebra as in Definition 8.
This is related to the construction of free objects in general Rota-Baxter algebras;
we refer to [41] for details and references. By iterating the Baxter axiom (8), one

314 M. Rosenkranz et al.

obtains a generalization that is called the shuffle identity on F :

.
�
f1

� � � � � fm/ � .� g1� � � � � gn/ DX �
h1

� � � � � hmCn (20)

Here the sum ranges over all shuffles of .f1; : : : ; fm/ and .g1; : : : ; gn/; see [65, 68,
76] for details. The sum consists of

�
mCn
n

�
shuffles, obtained by “shuffling” together�

f1
� � � � � fm and

�
g1

� � � � � gn as words over the letters
�
fi and

�
gj , such that the

inner order in the words is preserved. For instance, we have

.
�
f1

�
f2/ � .

�
g1/ D

�
f1

�
f2

�
g1 C

�
f1

�
g1

�
f2 C

�
g1

�
f1

�
f2:

for the simple m D 2; n D 1 case.
The integro polynomials over F are defined as AV ŒX� for A D F and X D fug

with V being the variety of Rota-Baxter algebras over K . The full construction of
the canonical forms for integro polynomials is included in the following subsection.
But it is clear that by expanding products of integrals by the shuffle identity, every
integro polynomial is congruent to a K-linear combination of terms of the form

f uk
�
f1u

k1
� � � � � fmukm (21)

with f; f1; : : : ; fm 2 F and k; k1; : : : ; km 2 �. However, they cannot be canonical
forms, since terms like

�
.f C g/u and

�
f uC �

gu or
�
�f u and �

�
f u represent

the same polynomials.
Writing R for the set of all K-linear combinations of terms of the form (21),

the multiplication of two elements of R can now be defined via (20) as follows.
Since the product of (21) with another term gul

�
g1ul1

� � � � � gnuln should clearly be
given by fg ukCl .

�
f1uk1

� � � � � fmukm/ .
�
gulg1ul1

� � � �fnuln/, it remains to define
the so-called shuffle product on integral terms (those having the form (21) with
f D 1 and k D 0). This can be achieved immediately by using (20) with fiuki and
gj ulj in place of fi and gj , respectively. It is easy to see that the shuffle product is
commutative and distributive with respect to addition.

The shuffle product can also be defined recursively [68]. Let J and QJ range over
integral terms (note that 1 is included as the special case of zero nested integrals).
Then we have

.
�
f ukJ / � .� Qf u

Qk QJ / D .� f uk/ t J � .� Qf u
Qk QJ /C .� Qf u

Qk/ t .� f ukJ / � QJ ; (22)

where tWR � R ! R denotes the operation of nesting integrals (with the
understanding that � binds stronger than t), defined on basis vectors by

�
F1

� � � � � Fm t �
G1

� � � � �Gn D �
F1

� � � � � Fm�
G1

� � � � �Gn; (23)

and extended bilinearly to all of R. Here Fi and Gj stand for fiuki and gj ulj ,
respectively. For example,

�
F1

�
F2 and

�
G1 can be multiplied as

Symbolic Analysis for Boundary Problems 315

.
�
F1/t .

�
F2/ � .

�
G1/C .

�
G1/t 1 � .

�
F1

�
F2/ D .

�
F1/t .

�
F2

�
G1C

�
G1

�
F2/

C .�G1/ t .�F1�F2/ D �
F1

�
F2

�
G1 C

�
F1

�
G1

�
F2 C

�
G1

�
F1

�
F2;

analogous to the previous computation.

6.4 Representing Integro-Differential Polynomials

In the following, we describe in detail the universal algebra construction of the
integro-differential polynomials and their canonical forms. We refer to [39, 40] for
the related problem of constructing free objects in differential Rota-Baxter algebras.
We consider the variety of integro-differential algebras. Its signature ˙ contains:
the ring operations, the derivation @, the integral

�
, the family of unary “scalar

multiplications” .��/�2K , and for convenience we also include the evaluation E. The
identities E are those of aK-algebra, thenK-linearity of the three operators @,

�
, E,

the Leibniz rule (2), the section axiom (3), the Definition 2 of the evaluation, and
the differential Baxter axiom (6).

Definition 35. Let .F ; @;
�
/ be an integro-differential algebra. Then the algebra

of integro-differential polynomials in u over F , denoted by F fug in analogy to the
differential polynomials, is the polynomial algebraAV ŒX� forA D F andX D fug
with V being the variety of integro-differential algebras overK .

Some identities following from E describe basic interactions between operations
in F : the pure Baxter axiom (8), multiplicativity of the evaluation (5), the identities

E2 D E; @E D 0; E
� D 0; �

.Ef /g D .Ef /� g; (24)

and the variant (7) of the differential Baxter axiom connecting all three operations.
We need to introduce some notational conventions. We use f; g for coefficients

in F , and V for terms in T˙.F [fug/. As for differential polynomials, we write
un for the nth derivative of u. Moreover, we write

V.0/ for E.V / and u.0/˛ for
1Y

iD0
ui .0/

˛i ;

where ˛ is a multi-index.
As a first step towards canonical forms, we describe below a system of terms

that is sufficient for representing every integro-differential polynomial (albeit not
uniquely as we shall see presently).

Lemma 36. Every polynomial in F fug can be represented by a finite K-linear
combination of terms of the form

316 M. Rosenkranz et al.

f u.0/˛uˇ
�
f1u

�1
� � � � � fnu�n; (25)

where f; f1; : : : ; fn 2 F , and each multi-index as well as n may be zero.

Proof. The proof is done by induction on the structure of terms, using the above
identities (8), (5), (20) and (24) of integro-differential algebras. ut
With the aid of the previous lemma we can determine the constants of F fug.
Proposition 37. Every constant in F fug is represented as a finite sum

P
˛ c˛u.0/˛

with constants c˛ in F .

Proof. By the identity
�
@ D 1 � E, a term V represents a constant in F fug if and

only if E.V / � V . Since V is congruent to a finite sum of terms of the form (25)
and since Im.E/ D C , the identities for E imply that V is congruent to a finite sum
of terms of the form c˛u.0/˛. ut

The above representation (25) of the integro-differential polynomials is not
unique since for example when trying to integrate differential polynomials by using
integration by parts, terms like

�
f u0 and f u � �

f 0u � f .0/ u.0/

are equivalent. It becomes even more tedious to decide that, for instance,

2x u.0/.3;1/u.1;3;0;4/
�
.2x3 C 3x/ u.1;2;3/

�
.x C 2/ u.2/

and

4x u.0/.3;1/u.1;3;0;4/
�
x3u.1;2;3/

�
x u.2/ C 6x u.0/.3;1/u.1;3;0;4/

�
x u.1;2;3/

�
.x C 2/ u.2/

C12x u.0/.3;1/u.1;3;0;4/
�
x u.1;2;3/

�
u.2/

represent the same polynomial. In general, the following identity holds:

Lemma 38. We have

�
V uˇkk ukC1 � 1

ˇk C 1
�
V uˇkC1k � �

V 0uˇkC1k � V.0/ uk.0/
ˇkC1

�
(26)

where k; ˇk 	 0.

Proof. Using (7) and the Leibniz rule, the left-hand side becomes

�
.V uˇkk /.uk/

0 � V uˇkC1k � �
V 0uˇkC1k � ˇk

�
V uˇkk ukC1 � V.0/ uk.0/

ˇkC1;

and the equation follows by collecting the
�
V uˇkk ukC1 terms. ut

Symbolic Analysis for Boundary Problems 317

The important point to note here is that if the highest derivative in the differential
monomial uˇ of order k C 1 appears linearly, then the term

�
f uˇ is congruent to a

sum of terms involving differential monomials of order at most k. This observation
leads us to the following classification of monomials; confer also [10, 35].

Definition 39. A differential monomial uˇ is called quasiconstant if ˇ D 0,
quasilinear if ˇ 6D 0 and the highest derivative appears linearly; otherwise it is
called functional. An integro-differential monomial (25) is classified according to
its outer differential monomial uˇ , and its order is defined to be that of uˇ.

Proposition 40. Every polynomial in F fug can be represented by a K-linear
combination of terms of the form

f u.0/˛uˇ
�
f1u

�1
� � � � � fnu�n; (27)

where f; f1; : : : ; fn 2 F , the multi-indices ˛; ˇ as well as n may be zero and the
u�1 ; : : : ; u�n are functional.

Proof. By Lemma 36 we can represent every polynomial in F fug as a K-linear
combination of terms of the form

f u.0/˛uˇ
�
f1u

�1
� � � � � fnu�n; (28)

where the multi-indices and n can also be zero. Let us first prove by induction on
depth that every term can be written as in (28) but with nonzero multi-indices �k .
The base case n D 1 is trivial since

�
f1 can be pulled to the front. For the induction

step we proceed from right to left, using the identity

�
f

�
V � �

f � � V � �
V

�
f

implied by the pure Baxter axiom (8).
For proving that every multi-index �k in (28) can be made functional, we use

noetherian induction with respect to the preorder on J D �
f1u�1

� � � � � fnu�n that
first compares depth and then the order of u�1 . One readily checks that the left-hand
side of (26) is greater than the right-hand side with respect to this preorder, provided
that V is of this form.

Applying Lemma 38 inductively, a term
�
f1u�1 is transformed to a sum of terms

involving only integral terms with functional differential monomials, and the base
case n D 1 follows. As induction hypothesis, we assume that all terms that are
smaller than J D f u.0/˛uˇ

�
f1u�1

� � � � � fnu�n can be written as a sum of terms
involving only functional monomials. Since

�
f2u�2

� � � � � fnu�n is smaller than J , it
can be written as sum of terms involving only functional monomials; we may thus
assume that u�2 ; : : : ; u�n are all functional. Since �1 is nonzero, we are left with the
case when u�1 is quasilinear. Applying again Lemma 38 inductively, we can replace
u�1 in J by a sum of terms involving only integral terms with functional differential
monomials. The induction step follows then by the linearity of

�
. ut

318 M. Rosenkranz et al.

For implementing the integro-differential polynomials in TH9OREM8 we use
the functor hierarchy described in Sect. 2. The multi-index representation uˇ for
terms of the form (19) is realized by the monoid �� of natural tuples with finitely
many nonzero entries, generated by a functor named TuplesMonoid. The nested
integrals

�
f1u�1

� � � � � f nu�n are represented as lists of pairs of the form hfk; �ki,
with fk 2 F and �k 2 ��. The terms of the form (25) are then constructed via a
cartesian product of monoids as follows:

Definition "Term Monoid for IDP", , N ,
TermMonoid , N TuplesMonoid N TuplesMonoid N TuplesMonoid TuplesMonoid N

any

Using this construction, the integro-differential polynomials are built up by
the functor FreeModule[F ,B] that constructs the F -module with basis B. It is
instantiated with F being a given integro-differential algebra and B the term monoid
just described. We will equip this domain with the operations defined as below,
using a functor named IntDiffPol[F ,K]. Later in this section we will present
some sample computations.

6.5 Canonical Forms for Integro-Differential Polynomials

It is clear thatK-linear combinations of terms of the form (27) are still not canonical
forms for the integro-differential polynomials since by the linearity of the integral,
terms like

f
�
.g C h/u and f

�
guC f �

hu

or terms like
f

�
�gu and �f

�
gu

with f; g; h 2 F and � 2 K represent the same polynomial. To solve this problem,
we can consider terms of the form (27) modulo these identities coming from
linearity in the “coefficient” f and the integral, in analogy to the ideal l introduced
in Sect. 4 for F #Œ@;

�
�. Confer also [39], where the tensor product is employed for

constructing free objects in differential Rota-Baxter algebras. In the following, we
assume for simplicity that F is an ordinary integro-differential algebra.

More precisely, let R denote the set of terms of the form (27) and consider the
free K-vector space generated by R. We identify terms

f u.0/˛uˇ
�
f1u

�1
� � � � � fnu�n

with the corresponding basis elements in this vector space. Then we factor out the
subspace generated by the following identities (analogous to the construction of the
tensor product):

Symbolic Analysis for Boundary Problems 319

f U
�
f1u

�1
� � � � � .fk C Qfk/u�k � � � � � fnu�n

D f U �
f1u

�1
� � � � � fku�k

� � � � � fnu�n C f U �
f1u

�1
� � � � � Qfku�k

� � � � � fnu�n

f U
�
f1u

�1
� � � � � .�fk/u�k� � � � � fnu�n D �f U �

f1u
�1

� � � � � fku�k
� � � � � fnu�n

Here U is short for u.0/˛uˇ , and there are actually two more identities of the same
type for ensuringK-linearity in f . We write ŒR� for this quotient space and denote
the corresponding equivalence classes by

Œf u.0/˛uˇ
�
f1u

�1
� � � � � fnu�n �: (29)

By construction, the quotient module ŒR� now respects the linearity relations

Œf U
�
f1u

�1
� � � � � .fk C Qfk/u�k� � � � � fnu�n �

D Œf U �
f1u

�1
� � � � � fk� � � � � fnu�n�C Œf U �

f1u
�1

� � � � � Qfk� � � � � fnu�n �
Œf U

�
f1u

�1
� � � � � .�fk/u�k� � � � � fnu�n � D �Œf U �

f1u
�1

� � � � � fku�k
� � � � � fnu�n�:

together with the ones for linearity in f .
As for the tensor product, we have canonical forms for the factor space by

expanding the “coefficient” f and all the fk in (29) with respect to a K-basis B
for F , assuming B contains 1. Then every polynomial can be written as aK-linear
combination of terms of the form

bu.0/˛uˇ
�
b1u

�1
� � � � � bnu�n ; (30)

where b; b1; : : : ; bn 2 B with the condition on multi-indices as in Proposition 40.
To show that terms of the form (30) are canonical forms for the integro-

differential polynomials, we endow the quotient space ŒR� with an integro-
differential structure and invoke Proposition 34. For this we define the operations on
the generators (29) and check that they respect the above linearity relations on ŒR�.

First, we define a multiplication on ŒR�. Let R0 � R denote the K-subspace
generated by integral terms

�
f1u�1

� � � � � fnu�n , including 1 2 R as the case n D 0.
Clearly, the nesting operation (23) can be defined in a completely analogous manner
on such integral terms (the only difference being that we have now derivatives of
the indeterminate). Since it is clearly K-linear, it induces an operation tW ŒR0� �
ŒR0� ! ŒR0�. The next step is to define the shuffle product on R0 just as in (22),
again with obvious modifications. Passing to the quotient yields the shuffle product
� W ŒR0� � ŒR0� ! ŒR0�. This product is finally extending to a multiplication on all
of ŒR� by setting

Œf u.0/˛uˇJ �Œ Qf u.0/ Q̨u Q̌ QJ � D Œf Qf u.0/˛CQ̨uˇC Q̌.J � QJ /�

320 M. Rosenkranz et al.

where J and QJ range over R0. Let us compute an example:

MultIDP u 0 1 u 2 " " 3 x u 1,1 " " x2 u 0,2 , 3 u 0 2,3 u 3,1 " " x u 1,0,1

18 u 0 3,3 u 5,1 x u 1,1 u 0,2 x2 u 0,2 27 u 0 3,3 u 5,1 x u 1,1 x2 u 0,2 u 0,2

27 x u 0 3,3 u 6,2 x u 1,1 x2 u 0,2
9

2
x u 0 3,3 u 7,1 u 0,2 x2 u 0,2

27 u 0 4,4 u 5,1 x u 1,1 x2 u 0,2
3

2
u 0 5,3 u 5,1 u 0,2 x2 u 0,2

Since the multiplication on F and the shuffle product are commutative, associative,
and distributive over addition, the multiplication on ŒR� is well-defined and gives
ŒR� the structure of a commutativeK-algebra.

The definition of a derivation @ on this algebra is straightforward, using the fact
that it should respect K-linearity and the Leibniz rule (treating also the u.0/˛ as
constants), that it should restrict to the derivation on differential polynomials (which
in turn restricts to the derivation on F), and finally that it should also satisfy the
section axiom (3). Here is a sample computation:

DiffIDP u 0 1 u 2,1 " " x u 1,0,2 " " 3 x2 u 0,2 3 u 0 2,3 u 3,2 " " 2 x3 4 x u 2,1

6 u 0 1 u 1,2 x u 1,0,2 x2 u 0,2 3 u 0 1 u 2,0,1 x u 1,0,2 x2 u 0,2

3 x u 0 1 u 3,1,2 x2 u 0,2 18 u 2,3 u 2,3 x3 u 2,1 24 x 6 x3 u 0 2,3 u 5,3

12 u 0 2,3 u 3,1,1 x3 u 2,1 8 x u 0 2,3 u 6,1,1 3 u 0 5,3 u 2,3 2 u 0 5,3 u 3,1,1

0

Using the K-linearity of this derivation, one verifies immediately that it is well-
defined. From the definition it is clear that K-linear combinations of generators of
the form Œu.0/˛� are constants for @, and one can also check that all constants are
actually of this form.

Finally, we define a K-linear integral on the differential K-algebra .ŒR�; @/.
Since we have to distinguish three different types of integrals, here and subsequently

we will use the following notation: the usual big integral sign
Z

for the integration

to be defined, the small integral sign
�

for the elements of R as we have used it
before, and

R
F for the integral on F .

The definition of the integral on ŒR� is recursive, first by depth and then by order
of uˇ, following the classification of monomials from Definition 39. In the base case
of zero depth and order, we put

Z
Œf u.0/˛� D ŒRFf �Œu.0/˛�: (31)

Turning to quasiconstant monomials, we use the following definition (which
actually includes the base case when J D 1):

Z
Œf u.0/˛J � D Œu.0/˛.RFf /J � � Œu.0/˛

�
.
R
Ff /J

0�: (32)

Symbolic Analysis for Boundary Problems 321

In the quasilinear case we write the generators in form

Œf u.0/˛V uˇkk ukC1J � with V D uˇ00 � � �uˇk�1

k�1

and construct the integral via (26). Writing s D ˇkC1, we have uˇkk ukC1 D .usk/0=s,
so we can define
Z
Œf u.0/˛V .usk/

0J � D Œf u.0/˛V uskJ �� Œu.0/˛�
Z
Œf VJ �0Œusk�� f .0/ Œu.0/˛Cˇ OJ �;

(33)
where we write f .0/ for E.f / and OJ is 1 for J D 1 and zero otherwise. In the
functional case, we set

Z
Œf u.0/˛uˇJ � D Œu.0/˛� f uˇJ �; (34)

so here we can just let the integral sign slip into the equivalence class. One may
check that the integral is well-defined in all the cases by an easy induction proof,
usingK-linearity of the integral, the evaluation on F , and the derivation on ŒR�.

Here is a small example of an integral computed in the quasiconstant case (note
that IntIDP corresponds to the big integral and "

�
" to

�
in our notation):

IntIDP u 0 1 " " x u 1,0,2 " " x2 2 u 1,2

2 x u 0 1 x u 1,0,2 u 1,2 x u 0 1 x u 1,0,2 x2 u 1,2 2 u 0 1 x2 u 1,0,2 u 1,2

u 0 1 x2 u 1,0,2 x2 u 1,2

The next example computes an integral in the quasilinear case:

IntIDP u 0 3,2 u 2,1 " " x u 1,0,2 " " x2 u 1,1

1

6
u 0 5,2 x u 4,0,2

1

6
u 0 3,2 u 2 x u 4,0,2

1

6
x2x2 u 0 3,2 u 5 x u 1,0,2

1

6
u 0 5,2 u 3 x u 1,0,2

Note that all differential monomials within integrals are functional again, as it must
be by our definition of ŒR�.

By construction the integral defined above is a section of the derivation on ŒR�.
So for showing that ŒR� is an integro-differential algebra with operations, it remains
only to prove the differential Baxter axiom (4). Equivalently, we can show that the
evaluation

E D 1 �
Z
@

is multiplicative by Corollary 4.

322 M. Rosenkranz et al.

Recall that the algebra of constants C in .ŒR�; @/ consists of K-linear combina-
tions of generators of the form Œu.0/˛�. By a short induction proof, we see that

Z
Œu.0/˛�ŒR� D Œu.0/˛�

Z
ŒR�: (35)

Hence the integral is homogeneous over the constants.
For showing that the evaluation is multiplicative, we first reassure ourselves that

it operates in the expected way on integro-differential monomials.

Lemma 41. We have

E Œf u.0/˛uˇJ � D f .0/ Œu.0/˛Cˇ OJ �;

where OJ is 1 for J D 1 and zero otherwise as in (33).

Proof. Note that E is C -linear by (35), so we can omit the factor u.0/˛. Assume
first ˇ D 0. Then by the quasiconstant case (32) of the definition of the integral, we
have

E ŒfJ � D ŒfJ � �
Z
ŒfJ �0 D ŒfJ � � Œ.RFf 0/J �C

Z
Œ.
R

Ff
0/J 0� �

Z
ŒfJ 0�;

which by
R
Ff

0 D f � f .0/ gives

f .0/ ŒJ � � f .0/
Z
ŒJ �0 D f .0/Œ OJ �

because Z
ŒJ �0 D ŒJ � for J ¤ 1

by the functional case (34) and zero for J D 1. If ˇ ¤ 0 is of order k, we write
uˇ D V usk with s ¤ 0, and we compute

E Œf uˇJ � D Œf V uskJ � �
Z
Œf V uskJ �

0 D f .0/ Œu.0/ˇ OJ �

by the quasilinear case (33) and the Leibniz rule. ut
Theorem 42. With the operations defined as above, .ŒR�; @;

Z
/ has the structure

of an integro-differential algebra.

Proof. As mentioned above, it suffices to prove that E is multiplicative, and we need
only do this on the generators. Again omitting the u.0/˛, we have to check that

E Œf uˇJ �Œ Qf u
Q̌ QJ � D EŒf Qf uˇC Q̌ .J � QJ /� D EŒf uˇJ � � EŒ Qf u

Q̌ QJ �:

Symbolic Analysis for Boundary Problems 323

The case J D QJ D 1 follows directly from Lemma 41 and the multiplicativity of E
in F . Otherwise the shuffle product J � QJ is a sum of integral terms, each of them
unequal one. Using again Lemma 41 and the linearity of E, the evaluation of this
sum vanishes, as does EŒf uˇJ � � EŒ Qf u Q̌ QJ �. ut

Since ŒR� is an integro-differential algebra, we can conclude by Proposition 40
and Proposition 34 that ŒR� leads to canonical forms for integro-differential
polynomials, up to the linearity relations: After a choice of basis, terms of the
form (30) constitute a system of canonical forms for F fug. In the TH9OREM8
implementation, we actually compute in ŒR� and do basis expansions only for
deciding equality.

7 From Rewriting to Parametrized Gröbner Bases

Equipped with the integro-differential polynomials, we can now tackle the task
of proving the convergence of the reduction rules in Table 1. As explained in
Sect. 4, we will use the Diamond Lemma (Theorem 22) for this purpose. First of
all we must therefore construct a noetherian monoid ordering > on F h@; � i that
is compatible with the reduction rules. In fact, there is a lot of freedom in defining
such a >. It is sufficient to put @ > f for all f 2 F and extend this to words
by the graded lexicographic construction. The resulting partial ordering is clearly
noetherian (since it is on the generators) and compatible with the monoid structure
(by its grading). It is also compatible with the rewrite system because all rules reduce
the word length except for the Leibniz rule, which is compatible because @ > f .

Thus it remains to prove that all ambiguities of Table 1 are resolvable, and we
have to compute the corresponding S-polynomials and reduce them to zero. On the
face of it, there are of course infinitely many of these, suitably parametrized by
f; g 2 F and '; 2 ˚ . For example, let us look at the minimal fork generated by�

u
�

v
�

. In this case, the rule
�
f

�
may be applied either with f D u or with f D v

yielding the reductions

�
u
�

v
�

. &
.
� � u/ � v

� � �
.
� � u/v� �

u .
� � v/ � � �

u
�
.
� � v/

with the S-polynomial p D .� �u/ � v
� � �

.
� �u/v� � �

u .
� � v/ � C �

u
�
.
� � v/. But

actually we should not call p an S-polynomial since it represents infinitely many:
one for each choice of u; v 2 F .

How should one handle this infinitude of S-polynomials? The problem is that
for reducing S-polynomials like p one needs not only the relations embodied in the
reduction of Table 1 but also properties of the operations @;

� WF ! F acting on

324 M. Rosenkranz et al.

u; v 2 F . Since these computations can soon become unwieldy, one should prefer
a method that can be automated. There are two options that may be pursued:

• Either one retreats to the viewpoint of rewriting, thinking of Table 1 as a
two-level rewrite system. On the upper level, it applies the nine parametrized
rules with f; g 2 F and '; 2 ˚ being arbitrary expressions. After each
such step, however, there are additional reductions on the lower level for
applying the properties of @;

� WF ! F on these expressions. Using a custom-
tailored reduction system for the lower level, this approach was used in the old
implementation for generated an automated confluence proof [70].

• Or one views an S-polynomial like p nevertheless as a single element, not
in F h@; � i but in OF h@; � i with OF D F fu; vg. With this approach, one
remains within the paradigm of parametrized Gröbner bases, and the interlocked
operation of the two levels of reduction is clarified in a very coherent way: The
upper level is driven by the canonical simplifier on OF Œ@;

�
�, the lower level by

that on F fu; vg.
It is the second approach that we will explain in what follows.

Using OF h@; � i instead of F h@; � i takes care of the parameters f; g 2 F but
then there are also the characters '; 2 ˚ . The proper solution to this problem
would be to use a refined version of integro-differential polynomials that starts from
a whole family .

�
'
/'2˚ of integrals instead of the single integral

�
, thus leading to

a corresponding family of evaluations u.'/ instead of the single evaluation u.0/. We
plan to pursue this approach in a forthcoming paper. For our present purposes, we
can take either of the following positions:

• The characters '; may range over an infinite set ˚ , but they are harmless since
unlike the f; g 2 F they do not come with any operations (whose properties
must be accounted for by an additional level of reduction). In this case, Table 1
is still an infinitely generated ideal in OF h@; � i, and we have to reduce infinitely
many S-polynomials. But the ambiguities involving characters are all of a very
simple nature, and their reduction of their S-polynomials is straightforward.

• Alternatively, we may restrict ourselves to a finite set of characters (as in most
applications!) so that Table 1 actually describes a finitely generated ideal in
OF h@; � i, and we need only consider finitely many S-polynomials.

The second alternative is somewhat inelegant due to the proliferation of instances
for rules like ' ! . In our implementation, we have thus followed the first
alternative with a straightforward treatment of parametrization in '; but we will
ignore this issue in what follows.

We can now use the new TH9OREM8 implementation for checking that the nine
rules in Table 1 form a Gröbner basis in OF h@; � i. As explained before, we use
the Diamond Lemma for this purpose (note that the noetherian monoid ordering >
applies also to OF h@; � i except that we have now just two generators u; v 2 OF D
F fu; vg instead of all f 2 F). Hence it remains to check that all S-polynomials
reduce to zero. We realize this by using the appropriate functor hierarchy, as follows.

Symbolic Analysis for Boundary Problems 325

We first build up the algebra of the integro-differential polynomials having, in turn,
integro-differential polynomials as coefficients, via the functor

IntDiffPolysŒIntDiffPolysŒF ;K�;K�

and we denote the resulting domain by �. Then we consider an instance of the
functor constructing the integro-differential operators over �. Finally, the compu-
tations are carried out over the algebra created by the GroebnerExtension
functor taking the latter instance as input domain, that allows to perform polynomial
reduction, S-polynomials and the Gröbner basis procedure.

Of course, the S-polynomials are generated automatically, but as a concrete
example we check the minimal fork considered above:

ReducePol " " u 1 " " v 1 " " " " " " u 1 v 1 " "

" " u 1 " " v 1 " " " " u 1 " " " " v 1

0

As it turns out, there are 17 nontrivial S-polynomials, and they all reduce to zero.
This leads us finally to the desired convergence result for F Œ@;

�
�.

Theorem 43. The system of Table 1 represents a noncommutative Gröbner basis in
F h@; � i for any graded lexicographic ordering satisfying @ > f for all f 2 F .

Proof. By the Diamond Lemma we must show that all S-polynomials p 2 F h@; � i
reduce to zero. Since they may contain at most two parameters f; g 2 F , let us write
them as p.f; g/. But we have just observed that the corresponding S-polynomials
p.u; v/ 2 OF h@; � i with OF D F fu; vg reduce to zero. Using the substitution
homomorphism

'W OF ! F ; .u; v/ 7! .f; g/;

lifted to OF Œ@;
�
� ! F Œ@;

�
� in the obvious way, we see that p.f; g/ D ' p.u; v/

reduces to zero as well. ut
From the conclusion of the Diamond Lemma, we can now infer that Table 1 indeed
establishes a canonical simplifier for F Œ@;

�
�.

8 Conclusion

The algebraic treatment of boundary problems is a new development in Symbolic
Analysis that takes its starting point in differential algebra and enriches its structures
by introducing an explicit notion of integration and boundary evaluations. Recall the
three basic tools that we have introduced for this purpose:

326 M. Rosenkranz et al.

• The category of integro-differential algebras .F ; @;
�
/ for providing a suitable

notion of “functions”. (As explained in Sect. 2, here we do not think of categories
and functors in the sense of Eilenberg and Maclane – this is also possible and
highly interesting but must be deferred to another paper.)

• The functor creating the associated integro-differential operators F Œ@;
�
� as a

convenient language for expressing boundary problems (differential operators,
boundary operators) and their solving Green’s operators (integral operators).

• The functor creating the associated integro-differential polynomials F fug, which
describe the extension of an integro-differential algebra by a generic function u.

In each of these three cases, the differential algebra counterpart (i.e. without the
“integro-”) is well-known, and it appears as a rather simple substructure in the
full structure. For example, the differential polynomials F fug over a differential
algebra .F ; @/ are simple to construct since the Leibniz rule effectively flattens
out compound terms. This is in stark contrast to an integro-differential algebra
.F ; @;

�
/, where the Baxter rule forces the presence of nested integrals for ensuring

closure under integration.
The interplay between these three basic tools is illustrated in a new confluence

proof : For an arbitrary integro-differential algebra .F ; @;
�
/, the rewrite system for

the integro-differential operators F Œ@;
�
� is shown to be a noncommutative Gröbner

basis by the aid of the integro-differential polynomials F fu; vg. Having a confluent
rewrite system leads to a canonical simplifier, which is crucial for the algorithmic
treatment as expounded in Sect. 2.

Regarding our overall mission – the algebraic treatment of boundary problems
and integral operators – we have only scratched the surface, and much is left to
be done. We have given a brief overview of solving, multiplying and factoring
boundary problems in Sect. 5. But the real challenge lies ahead, namely how to
extend our framework to:

• Linear Boundary Problems for LPDEs: As mentioned at the start of Sect. 5,
the algebraic framework for multiplying and factoring boundary problems is
set up to allow for LPDEs; see [66] for more details. But the problematic
issue is how to design a suitable analog of F Œ@;

�
� for describing integral and

boundary operators (again the differential operators are obvious). This involves
more than replacing @ by @=@x; @=@y and

�
by

� x
0
,
� y
0

because even the simplest
Green’s operators employ one additional feature: the transformation of variables,
along with the corresponding interaction rules for differentiation (chain rule) and
integration (substitution rule); see [74] for some first steps in this direction.

• Nonlinear Boundary Problems: A radically new approach is needed for that, so it
seems appropriate to concentrate first on boundary problems for nonlinear ODEs
and systems thereof. A natural starting point for such an investigation is the
differential algebra setting, i.e. the theory of differential elimination [11, 12, 44].
By incorporating initial or boundary conditions, we can use explicit integral oper-
ators on equations, in addition to the usual differential operators (prolongations).

Symbolic Analysis for Boundary Problems 327

As a consequence, the natural objects of study would no longer be differential
but integro-differential polynomials.

We are well aware that such an approach will meet with many difficulties that
will become manifest only as we progress. Nevertheless, we are confident that an
algebraic – and indeed symbolic – treatment along these lines is possible.

Acknowledgements We acknowledge gratefully the support received from the SFB F013 in
Subproject F1322 (principal investigators Bruno Buchberger and Heinz W. Engl), in earlier stages
also Subproject F1302 (Buchberger) and Subproject F1308 (Engl). This support from the Austrian
Science Fund (FWF) was not only effective in its financial dimension (clearly a necessary but not
a sufficient condition for success), but also in a “moral” dimension: The stimulating atmosphere
created by the unique blend of symbolic and numerical communities in this SFB – in particular the
Hilbert Seminar mentioned in Sect. 1 – has been a key factor in building up the raw material for
our studies.

Over and above his general role in the genesis and evolution of the SFB F1322, we would like
to thank Heinz W. Engl for encouragement, critical comments and helpful suggestions, not only
but especially in the early stages of this project.

Loredana Tec is a recipient of a DOC-fFORTE-fellowship of the Austrian Academy of Sciences
at the Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz.
Georg Regensburger was partially supported by the Austrian Science Fund (FWF): J 3030-N18.

We would also like to thank an anonymous referee for giving us plenty of helpful suggestions
and references that certainly increased the value of this article.

References

1. Aichinger, E., Pilz, G.F.: A survey on polynomials and polynomial and compatible functions.
In: Proceedings of the Third International Algebra Conference, pp. 1–16. Kluwer, Acad. Publ.,
Dordrecht (2003)

2. Albrecher, H., Constantinescu, C., Pirsic, G., Regensburger, G., Rosenkranz, M.: An algebraic
operator approach to the analysis of Gerber-Shiu functions. Insurance Math. Econom. 46, 42–
51 (2010)

3. Aschenbrenner, M., Hillar, C.J.: An algorithm for finding symmetric Gröbner bases in infinite
dimensional rings. In: D. Jeffrey (ed.) Proceedings of ISSAC ’08, pp. 117–123. ACM, New
York NY, USA(2008)

4. Baader, F., Nipkow, T.: Term Rewriting and all that. Cambridge University Press, Cambridge
(1998)

5. Bavula, V.V.: The group of automorphisms of the algebra of polynomial integro-differential
operators (2009). http://arxiv.org/abs/0912.2537

6. Bavula, V.V.: The algebra of integro-differential operators on a polynomial algebra (2009).
http://arxiv.org/abs/0912.0723

7. Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity.
Pacific J. Math. 10, 731–742 (1960)

8. Becker, T., Weispfenning, V.: Gröbner bases, Graduate Texts in Mathematics, vol. 141.
Springer, New York (1993). A computational approach to commutative algebra, In cooperation
with Heinz Kredel

9. Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29(2), 178–218 (1978)
10. Bilge, A.H.: A REDUCE program for the integration of differential polynomials. Comput.

Phys. Comm. 71(3), 263–268 (1992)

http://arxiv.org/abs/0912.2537
http://arxiv.org/abs/0912.0723

328 M. Rosenkranz et al.

11. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely
generated differential ideal. In: Proceedings of ISSAC ’95, pp. 158–166. ACM, New York
(1995)

12. Boulier, F., Ollivier, F., Lazard, D., Petitot, M.: Computing representations for radicals of
finitely generated differential ideals. Appl. Algebra Engrg. Comm. Comput. 20(1), 73–121
(2009)

13. Bourbaki, N.: Algebra I. Chapters 1–3. Elements of Mathematics (Berlin). Springer-Verlag,
Berlin (1998)

14. Brouwer, A.E., Draisma, J.: Equivariant Gröbner bases and the Gaussian two-factor model
(2009). http://arxiv.org/abs/0908.1530

15. Brown, R.C., Krall, A.M.: Ordinary differential operators under Stieltjes boundary conditions.
Trans. Amer. Math. Soc. 198, 73–92 (1974)

16. Brown, R.C., Krall, A.M.: n-th order ordinary differential systems under Stieltjes boundary
conditions. Czechoslovak Math. J. 27(1), 119–131 (1977)

17. Buchberger, B.: A Critical-Pair/Completion Algorithm for Finitely Generated Ideals in Rings.
In: E. Boerger, G. Hasenjaeger, D. Roedding (eds.) Logic and Machines: Decision Problems
and Complexity, LNCS, vol. 171, pp. 137–161 (1984)

18. Buchberger, B.: History and basic features of the critical-pair/completion procedure. J. Sym-
bolic Comput. 3(1-2), 3–38 (1987)

19. Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gle-
ichungssystems. Aequationes Math. 4, 374–383 (1970). English translation: An algorithmical
criterion for the solvability of a system of algebraic equations. In: B. Buchberger, F. Winkler
(eds.) Gröbner bases and applications, Cambridge University Press (1998)

20. Buchberger, B.: Introduction to Gröbner bases. In: B. Buchberger, F. Winkler (eds.) Gröbner
bases and applications. Cambridge University Press (1998)

21. Buchberger, B.: Groebner Rings. Contributed talk at International Conference on Computa-
tional Algebraic Geometry, University of Hyderabad, India (2001)

22. Buchberger, B.: Groebner rings and modules. In: S. Maruster, B. Buchberger, V. Negru,
T. Jebelean (eds.) Proceedings of SYNASC 2001, pp. 22–25 (2001)

23. Buchberger, B.: Groebner Rings in Theorema: A Case Study in Functors and Categories. Tech.
Rep. 2003-49, Johannes Kepler University Linz, Spezialforschungsbereich F013 (2003)

24. Buchberger, B.: An algorithm for finding the bases elements of the residue class ring modulo a
zero dimensional polynomial ideal (German). Ph.D. thesis, Univ. of Innsbruck (1965). English
translation published in J. Symbolic Comput. 41(3-4), 475–511 (2006)

25. Buchberger, B.: Groebner bases in Theorema using functors. In: J. Faugere, D. Wang (eds.)
Proceedings of SCC ’08, pp. 1–15. LMIB Beihang University Press (2008)

26. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F.,
Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards computer-aided
mathematical theory exploration. J. Appl. Log. 4(4), 359–652 (2006)

27. Buchberger, B., Loos, R.: Algebraic simplification. In: Computer algebra, pp. 11–43. Springer,
Vienna (1983)

28. Bueso, J., Gómez Torrecillas, J., Verschoren, A.: Algorithmic Methods in Non-Commutative
Algebra: Applications to Quantum Groups. Springer (2003)

29. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate
identities. J. Symbolic Comput. 26(2), 187–227 (1998)

30. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Book
Company, Inc., New York-Toronoto-London (1955)

31. Cohn, P.M.: Introduction to Ring Theory. Springer, London (2000)
32. Cohn, P.M.: Further Algebra and Applications. Springer-Verlag, London (2003)
33. Cohn, P.M.: Basic Algebra: Groups, Rings and Fields. Springer, London (2003)
34. Cucker, F., Shub, M. (eds.): Foundations of Computational Mathematics. Springer (1997). See

http://www.focm.net/ for other FoCM based publications

http://arxiv.org/abs/0908.1530
http://www.focm.net/

Symbolic Analysis for Boundary Problems 329

35. Gelfand, I.M., Dikiı̆, L.A.: Fractional powers of operators, and Hamiltonian systems.
Funkcional. Anal. i Priložen. 10(4), 13–29 (1976). English translation: Functional Anal. Appl.
10 (1976), no. 4, 259–273 (1977)

36. Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.): Computer algebra handbook. Springer-
Verlag, Berlin (2003)

37. Guo, L.: Baxter algebras and differential algebras. In: Differential algebra and related topics
(Newark, NJ, 2000), pp. 281–305. World Sci. Publ., River Edge, NJ (2002)

38. Guo, L.: What is: : :a Rota-Baxter algebra? Notices Amer. Math. Soc. 56(11), 1436–1437
(2009)

39. Guo, L., Keigher, W.: On differential Rota-Baxter algebras. J. Pure Appl. Algebra 212(3), 522–
540 (2008)

40. Guo, L., Sit, W.Y.: Enumeration and generating functions of differential Rota-Baxter words.
Math. Comput. Sci. (2011). http://dx.doi.org/10.1007/s11786-010-0062-1

41. Guo, L., Sit, W.Y.: Enumeration and generating functions of Rota-Baxter words. Math.
Comput. Sci. (2011). http://dx.doi.org/10.1007/s11786-010-0061-2

42. Helton, J., Stankus, M.: NCGB 4.0: A noncommutative Gröbner basis package for mathematica
(2010). http://www.math.ucsd.edu/�ncalg/

43. Hillar, C.J., Sullivant, S.: Finite Gröbner bases in infinite dimensional polynomial rings and
applications (2009). http://arxiv.org/abs/0908.1777

44. Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms ii: Differential
systems. In: U. Langer, F. Winkler (eds.) Symbolic and Numerical Scientific Computations,
Lecture Notes in Computer Science, vol. 2630. Springer (2003)

45. Hule, H.: Polynome über universalen Algebren. Monatsh. Math. 73, 329–340 (1969)
46. Keigher, W.F.: On the ring of Hurwitz series. Comm. Algebra 25(6), 1845–1859 (1997)
47. Keigher, W.F., Pritchard, F.L.: Hurwitz series as formal functions. J. Pure Appl. Algebra 146(3),

291–304 (2000)
48. Kolchin, E.: Differential algebra and algebraic groups, Pure and Applied Mathematics, vol. 54.

Academic Press, New York (1973)
49. Korporal, A., Regensburger, G., Rosenkranz, M.: A Maple package for integro-differential

operators and boundary problems. ACM Commun. Comput. Algebra 44(3), 120–122 (2010).
Also presented as a poster at ISSAC ’10

50. Köthe, G.: Topological Vector Spaces (Volume I). Springer, New York (1969)
51. La Scala, R., Levandovskyy, V.: Letterplace ideals and non-commutative Gröbner bases.

J. Symbolic Comput. 44(10), 1374–1393 (2009)
52. Lang, S.: Real and Functional Analysis, Graduate Texts in Mathematics, vol. 142. Springer,

New York (1993)
53. Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York

(2002)
54. Lausch, H., Nöbauer, W.: Algebra of Polynomials, North-Holland Mathematical Library,

vol. 5. North-Holland Publishing Co., Amsterdam (1973)
55. Levandovskyy, V.: PLURAL, a non-commutative extension of SINGULAR: past, present and

future. In: Mathematical software—ICMS 2006, LNCS, vol. 4151, pp. 144–157. Springer,
Berlin (2006)

56. Levandovskyy, V.: Gröbner basis implementations: Functionality check and comparison.
Website (2008). http://www.ricam.oeaw.ac.at/Groebner-Bases-Implementations/

57. Madlener, K., Reinert, B.: String rewriting and Gröbner bases—a general approach to monoid
and group rings. In: Symbolic rewriting techniques, Progr. Comput. Sci. Appl. Logic, vol. 15,
pp. 127–180. Birkhäuser, Basel (1998)

58. Madlener, K., Reinert, B.: Gröbner bases in non-commutative reduction rings. In: B. Buch-
berger, F. Winkler (eds.) Gröbner Bases and Applications, pp. 408–420. Cambridge University
Press, Cambridge (1998)

59. Madlener, K., Reinert, B.: Non-commutative reduction rings. Rev. Colombiana Mat. 33(1),
27–49 (1999)

60. Mikusiński, J.: Operational Calculus. Pergamon Press, New York (1959)

http://dx.doi.org/10.1007/s11786-010-0062-1
http://dx.doi.org/10.1007/s11786-010-0061-2
http://www.math.ucsd.edu/~ncalg/
http://arxiv.org/abs/0908.1777
http://www.ricam.oeaw.ac.at/Groebner-Bases-Implementations/

330 M. Rosenkranz et al.

61. Mora, F.: Groebner bases for non-commutative polynomial rings. In: AAECC-3: Proceedings
of the 3rd International Conference on Algebraic Algorithms and Error-Correcting Codes,
pp. 353–362. Springer, London, UK (1986)

62. Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theoret.
Comput. Sci. 134(1), 131–173 (1994)

63. Nashed, M.Z., Votruba, G.F.: A unified operator theory of generalized inverses. In:
M.Z. Nashed (ed.) Generalized Inverses and Applications (Proc. Sem., Math. Res. Center,
Univ. Wisconsin, Madison, Wis., 1973), pp. 1–109. Academic Press, New York (1976)

64. van der Put, M., Singer, M.F.: Galois Theory of linear differential equations, Grundlehren der
Mathematischen Wissenschaften, vol. 328. Springer, Berlin (2003)

65. Ree, R.: Lie elements and an algebra associated with shuffles. Ann. Math. (2) 68, 210–220
(1958)

66. Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary
problems. Ann. Mat. Pura Appl. (4) 188(1), 123–151 (2009)

67. Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to integro-
differential operators. In: J.P. May (ed.) Proceedings of ISSAC ’09, pp. 287–294. ACM, New
York, NY, USA (2009)

68. Reutenauer, C.: Free Lie Algebras, vol. 7. The Clarendon Press Oxford University Press, New
York (1993)

69. Rosenkranz, M.: The Green’s algebra: A polynomial approach to boundary value problems.
Phd thesis, Johannes Kepler University, Research Institute for Symbolic Computation (2003).
Also available as RISC Technical Report 03-05, July 2003

70. Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems
on the level of operators. J. Symbolic Comput. 39(2), 171–199 (2005)

71. Rosenkranz, M., Buchberger, B., Engl, H.W.: Solving linear boundary value problems via non-
commutative Gröbner bases. Appl. Anal. 82, 655–675 (2003)

72. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear
ordinary differential equations in differential algebras. J. Symbolic Comput. 43(8), 515–544
(2008)

73. Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In:
D. Jeffrey (ed.) Proceedings of ISSAC ’08, pp. 261–268. ACM, New York (2008)

74. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic framework for
operations on linear boundary problems. In: V.P. Gerdt, E.W. Mayr, E.H. Vorozhtsov (eds.)
Computer Algebra in Scientific Computing. Proceedings of the 11th International Workshop
(CASC 2009), LNCS, vol. 5743, pp. 269–283. Springer, Berlin (2009)

75. Rota, G.C.: Baxter algebras and combinatorial identities (I, II). Bull. Amer. Math. Soc. 75,
325–334 (1969)

76. Rota, G.C.: Ten mathematics problems I will never solve. Mitt. Dtsch. Math.-Ver. (2), 45–52
(1998)

77. Salvy, B., Zimmerman, P.: Gfun: a maple package for the manipulation of generating and
holonomic functions in one variable. ACM Trans. Math. Softw. 20(2), 163–177 (1994)

78. Schwarz, F.: A factorization algorithm for linear ordinary differential equations. In: Proceed-
ings of ISSAC ’89, pp. 17–25. ACM, New York (1989)

79. Seiler, W.: Computer algebra and differential equations: An overview. mathPAD 7, 34–49
(1997)

80. Stakgold, I.: Green’s Functions and Boundary Value Problems. John Wiley & Sons, New York
(1979)

81. Stifter, S.: A generalization of reduction rings. J. Symbolic Comput. 4(3), 351–364 (1987)
82. Stifter, S.: Gröbner bases of modules over reduction rings. J. Algebra 159(1), 54–63 (1993)
83. Tec, L., Regensburger, G., Rosenkranz, M., Buchberger, B.: An automated confluence proof

for an infinite rewrite system parametrized over an integro-differential algebra. In: K. Fukuda,
J. van der Hoeven, M. Joswig, N. Takayama (eds.) Mathematical Software - Proceedings of
ICMS 2010., LNCS, vol. 6327, pp. 245–248. Springer (2010)

Symbolic Analysis for Boundary Problems 331

84. Tsarev, S.P.: An algorithm for complete enumeration of all factorizations of a linear ordinary
differential operator. In: Proceedings of ISSAC ’96, pp. 226–231. ACM, New York (1996)

85. Ufnarovski, V.: Introduction to noncommutative Gröbner bases theory. In: B. Buchberger,
F. Winkler (eds.) Gröbner bases and applications, pp. 259–280. Cambridge University Press
(1998)

86. Ufnarovskij, V.A.: Combinatorial and asymptotic methods in algebra. In: Algebra, VI,
Encyclopaedia Math. Sci., vol. 57, pp. 1–196. Springer, Berlin (1995)

87. Windsteiger, W.: Building up hierarchical mathematical domains using functors in Theorema.
Electr. Notes Theor. Comput. Sci. 23(3), 401–419 (1999)

Linear Partial Differential Equations and Linear
Partial Differential Operators in Computer
Algebra

Ekaterina Shemyakova and Franz Winkler

Abstract In this survey paper we describe our recent contributions to sym-
bolic algorithmic problems in the theory of Linear Partial Differential Operators
(LPDOs). Such operators are derived from Linear Partial Differential Equations
in the usual way. The theory of LPDOs has a long history, dealing with problems
such as the determination of differential invariants, factorization, and exact methods
of integration. The study of constructive factorization have led us to the notion of
obstacles to factorization, to the construction of a full generating set of invariants for
bivariate LPDOs of order 3, to necessary and sufficient conditions for the existence
of a factorization in terms of generating invariants, and a result concerning multiple
factorizations of LPDOs. We give links to our further work on generalizations of
these results to n-variate LPDOs of arbitrary order.

1 Introduction

The solution of Partial Differential Equations (PDEs) is one of the most important
problems of mathematics, and has an enormous area of applications in science,
engineering, and even finance. The study of PDEs started in the eighteenth century
with the work of Euler, d’Alembert, Lagrange and Laplace as a central tool in the
description of the mechanics of continua and, more generally, as the principal mode
of analytical study of models in the physical sciences. The analysis of physical
models has remained to the present day one of the fundamental concerns of the
development of PDEs. However, beginning in the middle of the nineteenth century,
particularly with the work of Riemann, PDEs also became an essential tool in other
branches of mathematics.

E. Shemyakova � F. Winkler (�)
RISC, Johannes Kepler University, Linz, Austria
e-mail: ekaterina.shemyakova@risc.jku.at; franz.winkler@risc.jku.at

U. Langer and P. Paule (eds.), Numerical and Symbolic Scientific Computing,
Texts and Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-0794-2 14,
© Springer-Verlag/Wien 2012

333

ekaterina.shemyakova@risc.jku.at
franz.winkler@risc.jku.at

334 E. Shemyakova and F. Winkler

As is the case for many other types of mathematical problems (for example inte-
gration), solution methods for PDEs can be classified into symbolic (or analytical)
and numerical methods. Of course, an analytical solution is to be preferred, if it can
be found.

Whereas some simple Ordinary Differential Equations (ODEs) can still be solved
analytically, this happens more and more rarely as the complexity of the equations
increases. Only few very special PDEs can be solved analytically. Such solutions
are often expressions in quadratures.

Algebraic methods for the solution of PDEs originate, e.g., from the work of
Galois, whose theory of transformation groups of solutions of algebraic equations
was applied to differential equations by Kolchin; Lie, who introduced continuous
transformation groups; Cartan, whose theory makes use of the equivalence method
of differential geometry, which determines whether two geometrical structures are
the same up to a diffeomorphism; Ritt, who studied the integration of algebraic
differential systems of equations; Weyl, who introduced the famous Weyl algebra
of differential operators with polynomial coefficients; Laplace and Darboux, who
developed exact integration methods for Linear Partial Differential Equations
(LPDEs).

In this survey paper we describe our recent contributions to some classical
problems appearing in the work of Laplace and Darboux on exact integration
methods for LPDEs. Linear Partial Differential Operators (LPDOs) are derived
from LPDEs in the usual way. Algebraic methods are in fact well suited for the
investigation of LPDEs and LPDOs, due to the nice algebraic structure of these
objects. Besides the problem of actually determining solutions to LPDEs, we are
also interested in understanding their structure and properties such as factorization
of the corresponding LPDOs and determination of generating sets of invariants.
Here, the coefficient field of the factors and of the invariants are considered to be
from universal [17] field. However, in most of the presented results one can have
factorization or invariants over the base field of a given operator.

The Laplace transformation method has been known for approximately two
centuries, and it has been generalized by Darboux about a century ago. It has served
as a basis for many modern exact integration algorithms. The original methods
interlace very elegantly ideas of generating sets of invariants of LPDOs with
respect to gauge transformations and of factoring these LPDOs. The transformations
of second-order bivariate LPDOs are described in terms of the values of their
generating invariants, and the test for the transformed operator to be factorable is
also described in terms of invariants.

Invariant descriptions of invariant properties and algorithms are actively used in
science, and the search for generating sets of invariants is an important problem in
itself. For the purpose of generalizing the results of Laplace, we need generating
sets of invariants for all types of LPDOs with respect to gauge transformations.
For bivariate operators of orders three and higher this problem had remained
unsolved for two centuries. The case of order two has been considered by Laplace;
he discovered a generating set of invariants for hyperbolic LPDOs of order two
consisting of two expressions in the coefficients of the LPDO, generally referred

Linear Partial Differential Equations and Linear Partial Differential Operators 335

to as the Laplace invariants h and k. We have been able to find a generating set of
invariants for bivariate LPDOs of order 3. Recently this result has been generalized
to n-variate operators of arbitrary order.

The next section, Sect. 2, contains an outline of the relevant results and notations.
Our own contributions are described in subsequent sections.

In Sect. 3 we generalize a phenomenon of second-order hyperbolic LPDOs
noticed by Laplace: there can be only two different types of incomplete factorization
and the corresponding remainders are the Laplace invariants h and k. For LPDOs of
order greater than 2 the remainders are not invariant and in fact there are infinitely
many of them. Thus, in Sect. 3, we consider instead incomplete factorizations in a
specially defined ring, which we call the ring of obstacles. Then the obstacle to a
factorization is a uniquely defined element of this ring and is invariant. Obstacles
to factorization have other interesting properties, some of which are described here.
Within this study we have generalized the factorization algorithm of Grigoriev and
Schwarz for LPDOs (see Theorems 3 and 4).

Factorization of LPDOs and many other related problems are invariant with
respect to gauge transformations. Thus, they can be defined in terms of differential
invariants with respect to the considered transformations. As there are infinitely
many such invariants, we look for a generating set of invariants. A generating set
of invariants for second-order hyperbolic LPDOs has been found by Laplace, and it
is a prerequisite for the integration method based on Laplace transformations. For
LPDOs of orders three and higher some individual invariants were known before,
but they were not enough to form a generating set of invariants. In Sect. 4 we show
how to determine 4 independent invariants for hyperbolic LPDOs of order 3 in the
plane using the invariability of obstacles to factorizations. A different method gave
us the fifth invariant. We have proved that these five invariants, together with the
trivial ones (the coefficients of the symbol, i.e. the highest order component, of an
LPDO), form a generating set of invariants.

Since the property of the existence of a factorization extending a given factor-
ization of the symbol of an LPDO is invariant under gauge transformations, we can
give an invariant description of this property, i.e. in terms of generating invariants.
In Sect. 5 we solve this problem for bivariate, hyperbolic third-order LPDOs. The
operation of taking the formal adjoint can also be defined for equivalence classes
of LPDOs, and explicit formulae defining this operation in terms of invariants are
obtained.

In Sect. 6 we outline a result which we have discovered unexpectedly while
studying generating sets of invariants and the invariant conditions for the existence
of factorizations extending a given factorization of the symbol of an LPDO. Namely,
a third-order bivariate LPDO has both first-order left and right factors with co-prime
symbols if and only if the operator has a factorization into three factors, the left
one of which is exactly the initial left factor and the right one is exactly the initial
right factor. For this property to hold, co-primality of the symbols and restriction to
operators of order 3 are of the essence.

In Sect. 7 we briefly describe our software package LPDOs, containing symbolic
algorithms for the investigation of LPDOs. The package LPDOs is based on Maple.

336 E. Shemyakova and F. Winkler

2 Algebraic Methods for LPDEs and LPDOs

2.1 Notations

Consider a field K of characteristic zero with commuting derivations @1; : : : ; @n,
and the corresponding non-commutative ring of linear partial differential operators
(LPDOs) KŒD� D KŒD1; : : : ;Dn�, where Di corresponds to the derivation @i for
all i 2 f1; : : : ; ng. In KŒD� the variablesD1; : : : ;Dn commute with each other, but
not with elements of K . We write multiplication in KŒD� as “ı”; i.e. L1 ı L2 for
L1;L2 2 KŒD�. As usual, the sign “ı” is often omitted, and we simply write L1L2.
An operator L 2 KŒD� is applied to an element c 2 K as follows:

• if L D L1 C L2, then L.c/ D L1.c/C L2.c/,
• if L D L1 ı L2, then L.c/ D L1.L2.c//,
• if L D Di , then L.c/ D @i .c/,
• if L D a, for a 2 K , then L.c/ D a � c.

In particular, for a 2 K , because of the Leibniz rule this means:

Di ı a.c/ D @i .a � c/ D .a ıDi C @i .a//.c/:

i.e., for a 2 K we have Dia D aDi C @i .a/. Note that the multiplication in KŒD�,
L ı a, and the application of L to an element a 2 K , L.a/, are strictly different
operations.

Any operator L 2 KŒD� has the form

L D
dX

jJ jD0
aJD

J ; aJ 2 K; (1)

where J D .j1; : : : ; jn/ is a multi-index in N
n, jJ j D j1 C � � � C jn, and DJ D

D
j1
1 : : : D

jn
n . The equation L.u/ D 0, where u ranges over K , is the linear partial

differential equation (LPDE) corresponding to the LPDO (1).
When considering the bivariate case n D 2, we use the following formal

notations: @1D @x , @2D @y , @1.f /Dfx , @2.f /Dfy , where f 2 K , and corre-
spondingly D1 � Dx , and D2 � Dy . Note that this does in no way insinuate that
K is a field of functions of x und y, i.e. f D f .x; y/. The notations @x; @y etc. are
introduced solely for ease of notation. Thus, instead of @1.a11/, for a11 2 K , we can
write a11x .

The homogeneous commutative polynomial

Sym.L/ D
X

jJ jDd
aJX

J (2)

Linear Partial Differential Equations and Linear Partial Differential Operators 337

in formal variables X1; : : : ; Xn is called the (principal) symbol of L. Vice versa,
given a homogeneous polynomial S 2KŒX�, we define the operator bS 2KŒD� as
the result of substituting Di for each variable Xi ; that is, for S defined by (2)
the corresponding operator is bS DL defined by (1). If there is no danger of
misunderstanding we use just S to denote the operatorbS .

The operator L is called hyperbolic if its symbol Sym.L/ can be factored into
first-order factors of multiplicity one each.

We will also have occasion to collect the summands of a given order i , for 0 �
i � d , in (1) and call this sum Li the component of order i of the operator L. With
this notation, the operator L 2 KŒD� can be written as L DPd

iD0 Li .
Below we assume, unless stated otherwise, that the field K is differentially

closed, i.e. it contains solutions of (non-linear in the generic case) differential
equations with coefficients in K .

Let K� denote the set of invertible elements in K . For L2KŒD� and every g 2
K� consider gauge transformation

L! Lg D g�1 ı L ı g:

Then an algebraic differential expression I in the coefficients of L is (differentially)
invariant under gauge transformations (we consider only these here) if it is unaltered
by these transformations. Trivial examples of invariants are the coefficients of the
symbol of an operator. We denote the set of all invariants of L by Inv.L/.

A set of algebraic expressionsG in the coefficients of L is invariationally closed
iff

• c � I 2 G, for all c 2 K and I 2 G,
• I1 C I2 2 G, for all I1; I2 2 G,
• I1 � I2 2 G, for all I1; I2 2 G,
• Di.I / 2 G, for all I 2 G and 1 � i � n.

Given a set of invariantsG of L, the set of invariants generated by G is the smallest
set of algebraic expressions in the coefficients of L, which contains G and is
invariationally closed. G is called a generating set for the invariants of L iff the
set of invariants generated by G is equal to Inv.L/, the set of all invariants of L.

Another important transformation of LPDOs is transposition. Given L 2 KŒD�,
the transposed operator is defined as

Lt.f / D
X

jJ j�d
.�1/jJ jDJ .aJ f /;

where f 2 K . If L D L1 ıL2, then Lt D Lt2 ı Lt1, that is if there is a factorization
for L then there is a analogous one for Lt . For this reason transposition is important
in studying factorizations of LPDOs.

338 E. Shemyakova and F. Winkler

2.2 Laplace Transformation Method and its Generalizations

Here we outline an old method, which illustrates several important ideas of exact
methods for LPDOs. The method was suggested by Laplace (1749–1827), and
then has been developed further and studied in depth by Darboux (1842–1917) [5].
The classical Laplace transformation method is applied to a second-order linear
hyperbolic PDE in the plane in its normalized form

zxy C azx C bzy C cz D 0; (3)

where a D a.x; y/; b D b.x; y/; c D c.x; y/. Consider the corresponding LPDO,

L D DxDy C aDx C bDy C c; (4)

and notice that there are at most two incomplete factorizations of this LPDO,
namely,

L D .Dx C b/ ı .Dy C a/C h D .Dy C a/ ı .Dx C b/C k; (5)

where the expressions for the “remainders” h and k can be computed explicitly:

h D c � ax � ab; k D c � by � ab: (6)

The differential algebraic expressions h and k in the coefficients of L are known as
the Laplace invariants. Indeed, Laplace proved the following theorem.

Theorem 1. The Laplace invariants are invariants of the operator L in (4) with
respect to gauge transformations. Both of them together form a generating set of all
(differential) invariants of the operator L.

The operator L is factorable if and only if h or k is zero.

2.2.1 The Laplace Transformation Method

1. If h or k is equal to zero, L is factorable, and hence the (3) is integrable. For
example, if h D 0, we have L D .Dx C b/.Dy C a/, and the problem of
integration of the equation (3) is reduced to the problem of integration of the two
first order equations: �

.Dx C b/.z1/ D 0;

.Dy C a/.z/ D z1:

Accordingly one gets the general solution of the initial equation (3) as

z D
�
A.x/C

Z
B.y/ exp

�Z
ady � bdx

�
dy
�
e�

R
ady (7)

with two arbitrary functions A.x/ and B.y/.

Linear Partial Differential Equations and Linear Partial Differential Operators 339

2. If neither h nor k are zero, one can apply the two Laplace transformations L!
L1 and L! L�1, which are defined by the substitutions

z1 D .Dy C a/.z/; z�1 D .Dx C b/.z/: (8)

Such transformations preserve the form of the equation. For example, L ! L1 D
Dx ıDy C a1Dx C b1Dy C c1, where a1 D a � @y.lnjhj/, b1 D b, c1 D c C by �
ax � b@y.lnjhj/.

The Laplace invariants of the new operators can be expressed in terms of the
invariants of the initial operator. Thus, for the operators L1 and L�1, we have

h1 D 2h� k � @xy.lnjhj/; k1 D h;
h�1 D k; k�1 D 2k � h� @xy.lnjkj/:

The invariants k1, and h�1 are non-zero. We check whether the invariants h1 and
k�1 are zero. If for example h1 D 0, we solve the new equation L1.z1/ D 0 in
quadratures as described above. Then, using the inverse substitution

z D 1

h
.z1/�1; (9)

we obtain the complete solution of the original equation L.z/ D 0. The case
k�1 D 0 is treated analogously. If neither h1 nor k�1 are equal to zero, we apply
the Laplace transformations again.

Thus, in the generic case, we obtain two sequences: � � � ! L�2 ! L�1 ! L

and L! L1 ! L2 ! : : : . The inverse substitution (9) implies L D h�1.L1/�1h,
and one can prove that the Laplace invariants do not change under such substitution.
This means that essentially we have one chain

� � � $ L�2 $ L�1 $ L$ L1 $ L2 $: : : ;

and the corresponding chain of invariants

� � � $ k�2 $ k�1 $ k $ h$ h1 $ h2 $: : : : (10)

In that way one iterates the Laplace transformations until one of the Laplace invari-
ants in the sequence (10) vanishes. In this case, one can solve the corresponding
transformed equation in quadratures. Using the same differential substitution (8)
one obtains the complete solution of the original equation.

One can also prove, cf. [5,10,11], that if the chain (10) is finite in both directions,
then one may obtain a quadrature free expression of the general solution of the
original equation.

340 E. Shemyakova and F. Winkler

2.2.2 Generalization to Non-Linear Case

Darboux [5] has also suggested an explicit integration method of non-linear second-
order scalar equations of the form F.x; y; z; zx ; zy; zxx; zxy; zyy/ D 0. The idea is
to consider a linearization of the equation, and then to apply the Laplace method.
The relationship between the Laplace invariants of the linearized operator P and
Darboux integrability of the initial equation was established by Sokolov, Ziber,
Startsev [29, 35], who proved that a second order hyperbolic non-linear equation is
Darboux integrable if and only if both Laplace sequences are finite. Later Anderson,
Juras, and Kamran [1, 2, 15] generalized this to the case of the equations of the
general form as a consequence of their analysis of higher degree conservation laws
for different types of partial differential equations.

2.2.3 Generalization to Multivariate Case

Dini [6, 7] suggested a generalization of the Laplace transformations for a certain
class of second-order operators in the space of arbitrary dimension. But no general
statement was given on the range of applicability of his trick. Recently Tsarev [39]
proved that for a generic second-order linear partial differential operator in three-
dimensional space,

L D
X

iCjCk�2
aijk.x; y; z/DxDyDz

there exist two Dini transformations under the assumption that its principal symbol
factors.

2.2.4 Generalization to Systems of LPDOs

There were also several attempts to generalize the Laplace method to some systems
of equations. Athorne and Yilmaz [3, 14] proposed a special transformation, which
is applicable to systems whose order coincides with the number of independent
variables. A serious effort to generalize the classical theory to operators of higher
order (in two independent variables) was undertaken by Roux [22]. Recently Tsarev
[38] described another procedure, which generalizes the Cascade Method to the case
of arbitrary order hyperbolic operators.

2.3 Factorization of LPDOs

Thus, the factorization of LPDOs, the theory of invariants for LPDOs, and exact
integration algorithms of Partial Differential Equations (PDEs) are closely related.

Linear Partial Differential Equations and Linear Partial Differential Operators 341

The Loewy decomposition method for exact integration, cf. [23], requires various
generalizations of the Laplace transformation method and factorization of LPDOs.

For an ordinary linear differential operator L the Loewy uniqueness theorem
[19] states that if L D P1 ı � � � ı Pk D eP 1 ı � � � ı eP l are two different irreducible
factorizations, then they have the same number of factors (that is k D l) and the
factors are pairwise “similar” in some transposed order. In contrast the factoring
of LPDOs can lead to very different factorizations: even different numbers of
irreducible factors are possible [4]: the operator L D D3

x C xD2
xDy C 2D2

x C
.2xC 2/DxDy CDx C .2Cx/Dy has two factorizations into different numbers of
irreducible factors:

L D Q ıQ ı P D R ıQ; (11)

for the operators P D Dx C xDy , Q D Dx C 1, R D D2
x C xDxDy CDx C .2C

x/Dy , where operator R is absolutely irreducible, that is one cannot factor it into a
product of first-order operators with coefficients in any extension of Q.x; y/.

2.3.1 Generalized Factorizations of LPDOs

One important direction of the development has consisted in attacking the non-
uniqueness of factorizations by inventing new definitions of factorizations [13, 18,
37]. Then the conventional factorization of ordinary operators becomes a special
case of the generalized factorization, and some analogues of the Loewy–Ore
uniqueness theorem can be proved. In one of the earliest attempts [18] the factoring
of a linear homogeneous partial differential system is treated as finding superideals
of a left ideal in the ring of LPDOs rather than factoring a single LPDO, and
a generalization of the Beke–Schlesinger algorithm for factoring LODOs with
coefficients in Q.x; y/ has been given. This approach is based on an algorithm
for finding hyperexponental solutions of such ideals. In [13] a given LPDO is
considered as a generator of a left D-module over an appropriate ring of differential
operators. In this algebraic approach decomposing a D-module means finding
supermodules which describe various parts of the solution of the original problem.

2.3.2 Factorization Algorithm of Grigoriev and Schwarz

Another direction was initiated by Miller [21], who suggested to use some analogue
of the well-known method of Hensel lifting in factorization of polynomials. Miller
considered LPDOs of order two and three only. Grigoriev and Schwarz [12] have
generalized Miller’s results to LPDOs of arbitrary order.

The result of Grigoriev and Schwarz is important because it determines a class
of LPDOs which have at most one factorization extending a given factorization of
the symbol. Here we sketch the suggested proof, because it is constructive and it is
also a description of the algorithm.

Theorem 2. Let L 2 KŒD�, and

SymL D S1 � S2; with gcd.S1; S2/ D 1: (12)

342 E. Shemyakova and F. Winkler

Then there exists at most one factorization of the form

L D F1 ı F2 ; with Sym.F1/ D S1 ; Sym.F2/ D S2:

Proof. Consider L;F1 and F2 as the sums of their components:

L D
dX

iD0
Li ; F1 D bS1 C

k1�1X

iD0
Gi ; F2 D bS2 C

k2�1X

iD0
Hi

where d D ord.L/, k1 D ord.bS1/, k2 D ord.bS2/. Then the considered factorization
has the form

dX

iD0
Li D

�
bS1 CGk1�1 C � � � CG0

�
ı
�
bS2 CHk2�1 C � � � CH0

�
:

By equating the components of the two sides of this equality, one gets the following
system in the homogeneous polynomials corresponding to the operatorsHi andGj ,
which we denote by the same letters:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Ld�1 D S1 �Hk2�1 C Gk1�1 � S2 ;
Ld�2 D S1 �Hk2�2 C Gk1�2 � S2 C Pd�2;
: : :

Li D S1 �Hi�k1 C Gi�k2 � S2 C Pi ;
: : :

where Pi are some expressions of derivatives of Hk2�j ; Gk1�j with j < i . Thus, if
one solves the system in descendent order, the polynomials Pi can be considered as
known. Also here Li stands for the homogeneous polynomial corresponding to the
componentLi of L.

Consider one equation of the system:

Li D S1 �Hi�k1 CGi�k2 � S2 C Pi :

It is equivalent to a linear algebraic system in the coefficients of the polynomials
Hi�k1 and Gi�k2 . Since S1 and S2 are coprime, there is at most one solution of the
system, and likewise for the equation. Thus, at every step one either gets the next
components of H and G, or (in case the linear algebraic system is inconsistent)
concludes that there is no factorization of the operator L extending the polynomial
factorization of the symbol (12). ut

By induction on the number of factors one proves the following theorem.

Theorem 3 (Grigoriev and Schwarz). Let L 2 KŒD�, and

SymL D S1 � S2 : : : Sk; with gcd.Si ; Sj / D 1 8i ¤ j:

Linear Partial Differential Equations and Linear Partial Differential Operators 343

Then there exists at most one factorization L D F1 ı � � � ıFk , such that SymFi
D Si

for i D 1; : : : k.

Despite all these results, and many others (for example [3, 38, 40]), the general
factorization problem remains wide open.

3 Obstacles to Factorizations

In this section we outline our results on the generalization of the incomplete
factorization idea of Laplace.

The commutativity of the symbols of LPDOs implies that any factorization of
an LPDO extends some factorization of its symbol. In general, if L 2 KŒD� and
Sym.L/ D S1 � � � � � Sk , then we say that the factorization L D F1 ı � � � ı Fk , with
Sym.Fi / D Si for all i 2 f1; : : : ; kg, is of the factorization type .S1/ : : : .Sk/.

In Sect. 2.2 we have seen that for second-order hyperbolic LPDOs the remainders
of the incomplete factorizations (5) of the factorization types .X/.Y / and .Y /.X/
are h and k, respectively, and h and k are invariants with respect to gauge trans-
formations of LPDOs. Note that any incomplete factorization of the type .X/.Y /
has remainder h, and any of the type .Y /.X/ has remainder k. Unfortunately, for
LPDOs of order greater than two this is not true any more.

In [30,32] we suggested instead the consideration of incomplete factorizations in
a specially defined ring, which we called the ring of obstacles. Then the obstacle to
a factorization is a uniquely defined element of this ring and is invariant. Other
interesting properties are also proved, among which is a generalization of the
Grigoriev–Schwarz Theorem to the case of non-coprime symbols of the factors.
Below we outline these results.

3.1 Generalization of Grigoriev–Schwarz Theorem
to Non-Coprime Case

In view of the Grigoriev–Schwarz factorization algorithm (see the proof of
Theorem 3) we introduce the following notation.

Definition 1. Let L;Fi 2 KŒD�; i D 1; : : : ; k and assume that for some t 2
f0; : : : ; ord.L/g

ord.L � F1 ı � � � ı Fk/ < t (13)

holds. Then we say that F1 ı � � � ı Fk is a partial factorization (incomplete
factorization) of order t of the operator L. If, in addition, Si D SymFi

, for
i D 1; : : : ; k (so SymL D S1 : : : Sk), then this partial factorization is of the
factorization type .S1/ : : : .Sk/.

344 E. Shemyakova and F. Winkler

Every factorization of L 2 KŒD� is a partial factorization of order 0, and if
SymL D S1 : : : Sk, then the corresponding composition of operatorsbS1 ı � � � ıbSk is
a partial factorization of order d .

Definition 2. Let L 2 KŒD�, SymL D S1 � � �Sk with ord.Si / D di ; i D 1; : : : ; k,
d D d1 C � � � C dk . Let

F1 ı � � � ı Fk; F 01 ı � � � ı F 0k
be two partial factorizations of orders t and t 0, respectively, where t 0 < t . Then
F 01 ı � � � ı F 0k is an extension of F1 ı � � � ı Fk iff

ord.Fi � F 0i / < t � .d � di /; 8i 2 f1; : : : ; kg:

Example 1. Consider the fifth-order operator L D .D2
x C Dy C 1/ ı .D2

xDy C
DxDy C Dx C 1/. Factorizations of the form .D2

x C : : : / ı .D2
xDy C : : : / are

partial factorizations of order 5. Their extensions are the following fourth-order
partial factorizations of the type .D2

x CDy C : : : / ı .D2
xDy CDxDy C : : : /.

Consider an operator L 2 KŒD� of some order d , and some factorization
of its symbol SymL D S1 � S2. If gcd.S1; S2/ D 1, then by the Grigoriev–
Schwarz Theorem, there exists at most one extension of this partial factorization
to a factorization of the whole operatorL .

Suppose now that there exists a nontrivial common divisor of S1 and S2. Then
extensions might not be unique (see, e.g., (11)). However we can prove the following
theorem:

Theorem 4 (Generalization of Grigoriev–Schwarz theorem to non-coprime case).
Let L 2 KŒD� be an operator of order d , and let

SymL D S1 � S2 ; gcd.S1; S2/ D S0 ; ord.S0/ D d0
be a factorization of the symbol of L. Then for every partial factorization of order
d�d0 of the type .S1/.S2/, there is at most one extension to a complete factorization
of L of the same type.

3.1.1 Obstacles to Factorizations

Definition 3. Let L 2 KŒD�, SymL D S1 : : : Sk. An operator R 2 KŒD� is called
a common obstacle to factorization of the type .S1/.S2/ : : : .Sk/ if there exists a
factorization of this type for the operator L �R and R has minimal possible order.

Common obstacles are closely related to partial factorizations.

Proposition 1. Let L 2 KŒD�; SymL D S1 � � �Sk. A common obstacle to a
factorization of the type .S1/ : : : .Sk/ is of order t if and only if the minimal order
of a partial factorization of this type is t C 1.

Linear Partial Differential Equations and Linear Partial Differential Operators 345

Though common obstacles are the natural generalization of the Laplace invari-
ants, they do not preserve the important properties of those. Neither common
obstacles nor their symbols are unique in general, or invariant. In order to describe
all factorable (or unfactorable) LPDOs in some algebraic terms, and understand
what actually prevents an LPDO to be factorable, we suggest to consider certain
factor rings.

Definition 4. Let L 2 KŒD� and SymL D S1 � � �Sk . Then

K.S1; : : : ; Sk/ WD KŒX�=I;

where I is the homogeneous ideal

I D
�

SymL

S1
; : : : ;

SymL

Sk

�
;

is the ring of obstacles to factorization of L of the type .S1/ : : : .Sk/.

The following property justifies the introduction of this new notion, the ring of
obstacles.

Theorem 5. Let L 2 KŒD� and SymL D S1 � � �Sk , where the Si are pairwise
coprime. Then the symbols of all common obstacles to factorization of the type
.S1/ : : : .Sk/ belong to the same class in the ring of obstaclesK.S1; : : : ; Sk/.

Definition 5. The class of common obstacles in the ring of obstacles is called the
obstacle to factorization.

Remark 1. Every element in the obstacle to factorization is a common obstacle.

The following theorems describes the major properties of obstacles to factori-
zations.

Theorem 6. Obstacles are invariant under gauge transformations.

Theorem 7. Let n D 2, L 2 KŒD�, ord.L/ D d , and let SymL D S1 � � �Sk , where
Si ; i 2 f1; : : : ; kg are pairwise coprime. Then common obstacles to the factoriza-
tion of L of this type are of order equal to or less than d � 2.

Theorem 8. LetL 2 KŒD� be a bivariate hyperbolic operator of order d . Then for
each type of factorization there is a unique common obstacle.

4 Generating Sets of Invariants for Hyperbolic Third-Order
LPDOs

The Laplace transformation method of Sect. 2.2 essentially uses the generating set
of invariants fh; kg for the considered class of operators. For generalizations of the
method we need generating sets of invariants with respect to gauge transformations

346 E. Shemyakova and F. Winkler

for LPDOs of order higher than two. The generating invariants are also used as
convenient terms in which all invariant properties can be expressed (see for example
Sect. 5). Often this leads to simplification of the corresponding problem. In addition,
with a generating set of invariants in hand we may be able to classify uniquely a
number of simple equations. For example, an equation of the form zxy C azx C
bzy C cz D 0, where a; b; c 2 K , is gauge equivalent to the wave equation zxy D 0
whenever h D k D 0.

Although the generating set of invariants fh; kg for hyperbolic bivariate second-
order LPDOs has been discovered two hundred years ago, for hyperbolic operators
of higher orders even in the plane not much has been known. Individual invariants
were discovered and rediscovered several times (see [39] and [16]), generating sets
of invariants were not found.

Following our generalization of the Laplace idea, we employ Theorem 6 to
obtain invariants for bivariate third-order hyperbolic operators. It is easy to see
that neither these invariants, nor individual invariants found in [39] and [16], nor
they all together can generate all differential invariants. Specifically, if we consider
normalized form (14)) of hyperbolic third-order LPDOs in the plane, we see that
neither of those individual invariants can generate any invariant depending on the
coefficient a00. Thus, some new invariants needed to be found and a minimal system
needed to be extracted. In [24, 31] we demonstrate a set of five invariants forming a
generating set of invariants for third-order hyperbolic LPDO in the plane given in a
normalized form.

Theorem 9. For some non-zero q 2 K consider operators of the form

L D .DxCqDy/DxDyCa20D2
xCa11DxDyCa02D2

yCa10DxCa01DyCa00; (14)

where the coefficients belong to K , q ¤ 0. Then the following is a generating set of
invariants with respect to gauge transformations:

Iq D q;

I1 D 2a20q
2 � a11q C 2a02;

I2 D @x.a20/q
2 � @y.a02/q C a02qy;

I3 D a10 C a20.qa20 � a11/C @y.a20/q � @y.a11/C 2a20qy;
I4 D a01q

2 C a022 � .3qx C a11q/a02 C qxqa11 � @x.a11/q2C q@x.a02/;

I5 D a00 � 1
2
@xy.a11/C qx@y.a20/C qxya20

C
�
2qa20 C 2

q
a02 � a11 C qy

�
@x.a20/ � 1

q
a02a10 � a01a20 C 1

q
a20a11a02:

Thus, an operator L0 2 KŒD�

Linear Partial Differential Equations and Linear Partial Differential Operators 347

L0 D .DxCqDy/DxDyCb20D2
xCb11DxDyCb02D2

yCb10DxCb01DyCb00 (15)

is equivalent to L (w.r.t. gauge transformations L ! g�1Lg) if and only if their
corresponding invariants I1; I2; I3; I4; I5 are equal.

Example 2. An interesting case is when all the coefficients are constants in the
differential field K . Then for the class of (14) the following is a generating set of
differential invariants:

Iq D q;
I1 D 2q2a20 � qa11 C 2a02;
I2 D 0;
I3 D �a20a11 C a10 C a220q;
I4 D a01q2C a022 � a02a11q;
I5 D a00q C a20a11a02 � a02a10 � a01a20q:

Notice that here the generating invariants are constant-valued functions. Also we
conclude that I2 D 0 is a necessary condition for an LPDO of the form (14) to have
constant coefficients only.

Example 3. Let us consider an LPDOR for which we know that it has factorization

R D R1 ıR2 ıR3;

whereR1 D DxC r1, R2 D DyC r2,R3 D DxCDyC r3 and r1; r2; r3 2 K . Then

R D DxDy.Dx CDy/C r2Dx2C .r1 C r2 C r3/DxDy C r1Dy2

C .r1r2 C r2r3 C r3y C r2x/Dx C .r1r2 C r1r3 C r2x C r3x/Dy

C r1r2r3 C r1r3y C r2xr3 C r2r3x C r3xy;

9
=

; (16)

R has the following generating set of differential invariants:

Iq D 1;

I1 D r2 C r1 � r3;
I2 D I3 D �r1y C r2x;
I4 D 0;

I5 D .r3xy � r1xy � r2xy/=2:

9
>>>>>=

>>>>>;

(17)

One can see that I4 D 0 is a necessary condition for the existence of a factorization
of the factorization type .X/.Y /.X C Y / for an LPDO with the symbol DxDy

.Dx CDy/.

348 E. Shemyakova and F. Winkler

Let us consider a subclass of the class of LPDOs (14) that contains only operators
of the form (16). Then every LPDO within this class has I4 D 0, and within this
new class gauge transformations form new equivalence classes, and the following is
a generating set of invariants:

r2 C r1 � r3 ;�r1y C r2x:

Applying gauge transformation with exp.x � y C x2 C y3/, we get the LPDO
Rexp.x�yCx2Cy3/. It has complicated coefficients, for example, the component of
order zero is

�2C 2r2r3x C 2r1r2x C r1r2r3 C 2r2 � r3 � 2x C 6yC2r2x � 4x2C3r1r2y2
C 3r1r3y2C6r1y2xC6r2y2xC6r3y2xC9y4�r3xCr3xyC12y2x2C9r1y4C6r1y
C 3r2xy2C3r3xy2C3r2y2 � 3r1y2C3r3y2C3y2Cr2r3C4r2x2 � r1r3C2r2xx
C r2r3x C r2xr3 C r1r3y � 2r1x C 2r3yx C 12xy C 18xy4C r3y � 2r3x:

Given an LPDO F for which no connection to R is known, we can compute the
values of the six invariants of the generating set of invariants from Theorem 9. If
they happen to be exactly the same as those for R, we conclude that F D Rf

for some f ¤ 0, f 2 K , and that F is factorable into first-order factors, as the
property of the existence of a factorization is invariant under gauge transformations
(see further details in Sect. 5).

5 Existence of Factorization in Terms of Invariants

In the case considered by Laplace, the invariants h and k can be simply obtained
from the incomplete factorizations, L D .Dx C b/ ı .Dy C a/C h D .Dy C a/ ı
.Dx C b/ C k. That is why the invariant necessary and sufficient condition for
factorizability becomes so simple: h D 0 or k D 0 . For hyperbolic operators of the
next higher order – three – the situation is much more difficult: the “remainder” of
an incomplete factorization is not invariant in the generic case (see Sect. 3).

However, the properties of the existence of a factorization and of the existence
of a factorization with given higher order terms of the factors are invariant with
respect to gauge transformations. Indeed, if L D F1 ıF2 ı � � �ıFk , for some LPDOs
L;Fi 2 KŒD�, then for every g 2 K� we have g�1 ı L ı g D �

g�1 ı F1 ı g
� ı�

g�1 ı F2 ı g
� ı � � � ı �g�1 ı Fk ı g

�
. This means that theoretically a description

in terms of invariants for the existence of such factorizations can be given. In [33]
invariant expressions (that is algebraic expressions in terms of generating invariants
and their derivations) defining all these properties for hyperbolic and non-hyperbolic
LPDOs in the plane were found. Also we showed that the operation of taking the
formal adjoint can be defined in terms of invariants, that is for equivalence classes

Linear Partial Differential Equations and Linear Partial Differential Operators 349

of LPDOs. Explicit formulae defining this operation in terms of invariants were
obtained. The operation of formal adjoint is highly interesting for factorization of
LPDOs; for if the initial operator has a factorization, then so does its adjoint, and
these factorizations are closely related.

5.1 Existence of Factorization for Hyperbolic Bivariate LPDOs
of Order Three in Terms of Invariants

Theorem 10. [33] Given the values of the invariants q; I1; I2; I3; I4; I5 (from
Theorem 9) for an equivalence class of operators of the form (14), the LPDOs of
this class have a factorization of factorization type (here we denote S D X C qY)
.S/.XY /if and only if

I3q3 � I1yq2C qyI1q � I4 C qI1x � 2qxI1 � 3qI2 D 0;
� q2I4y C 1=2q3I1xy � qI4x � 3=2q2qxI1y C q3I5 C q2I1xx
� 3=2I1q2qxy � 2I1qqxx C 5I1qqxqy C 6I1qx2C 3I4qx
C 3I4qqy � qI1I1x C I1I4 C 2qxI12 � 4I1xqqx � 3=2I1xq2qy
� 2q2I2x � q3I2y C I2qI1 C 4I2qqx C 2I2q2qy D 0I

9
>>>>>=

>>>>>;

(18)

.S/.X/.Y / if and only if (18) & � I4 C qI1x � 2qxI1 � qI2 D 0;

.X/.SY / if and only if

.D1/ W qqxx � I4 � 2qx D 0;
� 3=2qxqI1y � q3I3x C I5q2C 1=2q2I1xy � 1=2qqyI1x
C qxq2I3 C 2I1qxqy � 1=2I1qxyq � 4qxI2 C qI2x D 0I

9
=

; (19)

.X/.Y /.S/ if and only if (19) & .D1/;

.XY /.S/ if and only if

�qI2 C qqxqy C qyyq3 � q2qxy C qqxx C I3q3� I4 � 2qx2 D 0;
q3I5 C qI4x C 1=2q3I1xy � 3=2q2qxI1y C I1I4 C q2I2x C 2I1qqxqy
C 2I1qx2 � 5I4qx � 1=2I1q2qxy � I1qqxx C I4qqy � 1=2I1xq2qy � 4I2qqx
� 10qx3 � q2qxxx � q4I3x C I3q3qx C 2qq2xqy � q2qyqxx C 8qqxqxx D 0I

9
>>=

>>;

(20)

.YS/.X/ if and only if

.C1/ W �2qxI1 C qI1x � I4 � 2qI2 D 0;
�qI4y C 1=2q2I1xy C I5q2 � I2I1 � q2I2y C 2qyI4 C 3I1qxqy�
3=2I1qxyq � 1=2qqyI1x � 3=2qxqI1y D 0 W

9
=

; (21)

350 E. Shemyakova and F. Winkler

.S/.Y /.X/ if and only if (18) & .C1/;

.XS/.Y / if and only if

.B1/ W I3q2 � qI1y C qyI1 � 2I2 D 0
�1=2qqyI1x � 3=2qxqI1y C I5q2 � q3I3x C 1=2q2I1xy C qxq2I3
�2qxI2 C qI2x C 3I1qxqy � 3=2I1qxyq � I2I1C2q2yqxq�2qyqI2
�2qxyq2qy C 2qxyqqx � 2qyqx2I

9
>>=

>>;
(22)

.Y /.SX/ if and only if

.A1/ W I3 C qyy D 0;
�qI4y�3=2qxqI1yCI5q2C1=2q2I1xyC2qyI4 � 1=2qqyI1xC

3I1qxqy � 3=2I1qxyq � q2I2y D 0I

9
=

; (23)

.Y /.X/.S/ if and only if (20)& � qqxx C I4 C 2qx2C qI2 � qqxqy C q2qxy D 0I

.Y /.S/.X/ if and only if (21) & .A1/:

.X/.S/.Y /if and only if (19) & .B1/;

Consider the important case, where all coefficients of LPDOs in question are
constants. Example 2 implies that the generating invariants are constant-valued
functions, and the formulae of Theorem 10 can be simplified drastically.

Corollary 1. Given the values of the invariants q; I1; I2; I3; I4; I5 (from Theorem 9)
for an equivalence class of operators of the form (14), in which all coefficients are
constants. Then the LPDOs of this class have a factorization of factorization type
.S/.XY / if and only if

I3 � I4 � 3I2 D 0;
I5 C I1I4 C I2I1 D 0I

	
(24)

.S/.X/.Y / if and only if (24) & � I4 � I2 D 0;

.S/.Y /.X/ if and only if (24) & .C1/;

.X/.SY / if and only if
.D1/ W I4 D 0;

I5 D 0I
	

(25)

.X/.S/.Y / if and only if (25) & .B1/;

.X/.Y /.S/ if and only if (25) & .D1/;

.XY /.S/ if and only if
�I2 C I3 � I4 D 0;
I5 C I1I4 D 0I

	
(26)

.YS/.X/ if and only if
.C1/ W I4 C 2I2 D 0;

I5 � I2I1 D 0I
	

(27)

.XS/.Y / if and only if

Linear Partial Differential Equations and Linear Partial Differential Operators 351

.B1/ W I3 � I1y � 2I2 D 0
I5 � I2I1 D 0I

	
(28)

.Y /.SX/ if and only if
.A1/ W I3 D 0;

I5 D 0I
	

(29)

.Y /.X/.S/ if and only if (26) & I4 C I2 D 0I

.Y /.S/.X/ if and only if (27) & .A1/:

Example 4. Consider R from Example 3 in the form (16). Substituting the generat-
ing invariants computed in Example 3, we get in particular that L has a factorization
of the factorization type .X.X C Y //.Y / if and only if

r2x C r2y � r3y D 0 & .r2 C r1 � r3/.�r1y C r2x/ D 0I

and that L has a factorization of the factorization type .Y /..X C Y /X/ if and
only if

�r1y C r2x D 0 & r1yy � r2xy D 0:
So if r1; r2; r3 are constants, then L has both a factorization of factorization type
.Y /..X C Y /X/ and also of factorization type .X/.Y /.X C Y /. This observation
corresponds to the fact that factorizations with constant coefficients commute.

5.2 Formal Adjoint in Terms of Invariants

Below we consider the operation of taking the formal adjoint of an LPDO. We
also define this operation on the equivalence classes of third-order bivariate non-
hyperbolic LPDO. The original aim of this investigation was to reduce the number
of cases in the proof of Thereom 10, however we find this result interesting in itself.

For an operator L DP
jJ j�d aJDJ , where aJ 2 K; J 2 Nn and jJ j is the sum

of the components of J , the formal adjoint is defined as

L�.f / D
X

jJ j�d
.�1/jJ jDJ .aJ f / ; 8f 2 K:

The formal adjoint possesses the following properties which are useful in the theory
of factorization:

.L�/� D L ; .L1 ı L2/� D L�2 ı L�1 ; SymL D .�1/ord.L/SymL� :

The property of having a factorization is invariant under the operation of taking the
formal adjoint, while the property of having a factorization of certain factorization
type is not invariant under the operation of taking the formal adjoint. Indeed, an

352 E. Shemyakova and F. Winkler

operator L has a factorization of some factorization type .S1/.S2/ (where SymL D
S1S2) if and only if L� has a corresponding factorization of factorization type
.S2/.S1/.

The operation of taking the formal adjoint can be defined on equivalence classes
of LPDOs. Obviously the operations of taking the formal adjoint and applying a
gauge transformation commute: for every g 2 K�, and f D g�1 we have

.g�1 ı L ı g/� D g� ı L� ı .g�1/� D g ı L� ı g�1 D f �1 ı L� ı f:

Example 5 (LPDOs of order 2). Consider an operator L 2 KŒD� of the form L D
Dxy C aDx C bDy C c, and its generating set of invariants h D c � ax � ab and
k D c � by � ab. The formal adjoint is

L� D Dxy � aDx � bDx C c � ax � by
and h� D c � by � ab and k� D c � ax � ab; and so h� D k, k� D h.

Remark 2. Given an LPDO L of the form (14) the adjoint operator L� has symbol
�Sym.L/, and therefore, formulae (9) are not suitable for defining a generating
system of invariants. To obtain a generating set of invariants for the class of LPDOs
of the form

L D �.DxCqDy/DxDyCa20Dx2Ca11DxyCa02Dy2Ca10DxCa01DyCa00;
(30)

we substitute every occurrence of aij with �aij for all i; j in the formulae for

invariants in Theorem 9. The resulting invariants we denote by I �1 ; : : : ; I
�
5 .

Example 6. Consider again the operator LPDOR from Example 3 in the form (16).
The adjoint LPDO for R is

R� D �.Dx C qDy/DxDy C r2Dx2C .r1 C r2 C r3/Dxy C r1Dy2

C .�r1r2 � r2r3 C r3y C r2x C r1y C r2y/Dx

C .�r1r2 � r1r3 C r1x C 2r1y/Dy

C r1r2r3 � r1xr2 � r1r2x � r1yr2 � r1r2y C r1yr3 C r1xy C r1yy :

9
>>=

>>;
(31)

Theorem 11 (formal adjoint for equivalence classes). Consider the equivalence
classes of (14) given by the values of the invariants q; I1; I2; I3; I4; I5 (from
Theorem 9). Then the operation of taking the formal adjoint is defined by the
following formulae

I
�
1 D I1 � 2qx C 2qyq;
I
�
2 D �I2 � qqxy C qyqx;

I
�
3 D �I3 C

1

q2

�
2I2 � qyI1 C qI1y C qyyq2

�
;

Linear Partial Differential Equations and Linear Partial Differential Operators 353

I
�
4 D �I4 C

�
� 2qI2 � 2qxI1 C qI1x C 2qx2 � qqxx

�
;

I
�
5 D I5 C .4qxqy=q2� 2qxy=q/I1 C qxI3C2qy=q2I4�2qx=qI1y�qy=qI1xCI1xy
�qI3x � 1

q
I4y C qxqyy � I2y C 1

q
I2x C .�2q2qx � q2I1/=.q4/I2:

6 Multiple Factorizations of an LPDO

Studying generating sets of invariants and the invariant conditions for the existence
of factorization extending a given factorization of highest order terms, we have
discovered [27] unexpectedly an interesting result, which can be formulated very
simply: a third-order bivariate LPDO has first-order left and right factors such that
their symbols are co-prime if and only if the operator has a factorization into three
factors, the left one of which is exactly the initial left factor and the right one is
exactly the initial right factor. It has been also proved that the condition that the
symbols of the initial left and right factors are co-prime is essential, and that the
analogous statement “as it is” is not true for LPDOs of order four.

Theorem 12. A third-order bivariate operatorL has a first-order left factorF1 and
a first-order right factor F2 with gcd.Sym.F1/;Sym.F2// D 1 if and only if L has
a factorization into three factors, the left one of which is exactly F1 and the right
one is exactly F2.

The following diagram is an informal illustration of the statement of the theorem:

.L D F1 ı : : : ^ L D � � � ı F2/ ” L D F1 ı � � � ı F2:

Example 7 (Symbol .X C Y /XY , S1 D X C Y , S2 D Y). We found an operator
with two factorizations L D .Dx C Dy C x/ ı .Dxy C yDx C y2Dy C y3/ and
L D .Dxx CDxy C .x C y2/Dx C y2Dy C xy2C 2y/ ı .Dy C y/. Then L has
the factorization L D .Dx CDy C x/ ı .Dx C y2/ ı .Dy C y/.
Example 8 (Symbol X2Y , S1 D X , S2 D Y). We found an operator with two fac-
torizationsL D .DxCx/ı.DxyCyDxCy2DyCy3/ andL D .DxxC.xCy2/DxC
xy2/ı.DyCy/. ThenL has the factorizationL D .DxCx/ı.DxCy2/ı.DyCy/.
Example 9 (Symbol X2Y , S1 D Y , S2 D X). We found an operator with two fac-
torizations L D .Dy C x/ ı .Dxx C yDx C y3 � y4/ and L D .DxDy C
xDx C y2Dy C xy2 C 2y/ ı .Dx C y � y2/. Then L has the factorization
L D .Dy C x/ ı .Dx C y2/ ı .Dx C y � y2/.
Proposition 2. The condition gcd.S1; S2/ D 1 in Theorem 12 cannot be omitted.

Proof. Hyperbolic case: Consider the equivalence class of (14) defined by the
following values of the invariants from Thereom 9: q D 1, I1 D I2 D I5 D 0,

354 E. Shemyakova and F. Winkler

I3 D I4 D x � y. Using Theorem 10 one can verify that the operators of this class
have factorizations of the types .S/.XY / and .XY /.S/ only.

This equivalence class is not empty. For example, the operator A3 D D2
xDy C

DxD
2
y C .x � y/.Dx CDy/ belongs to this equivalence class. Only the following

two factorizations exist for A3: A3 D .DxDy C x � y/.Dx C Dy/ D .Dx C
Dy/.DxDy C x � y/.

Non-hyperbolic case: Consider the operator of Landau

D3
x C xD2

xDy C 2D2
x C .2x C 2/DxDy CDx C .2C x/Dy;

which has two factorizations into different numbers of irreducible factors:

L D Q ıQ ı P D R ıQ;

for the operators P D Dx C xDy; Q D Dx C 1; R D D2
x C xDxDy CDx C

.2Cx/Dy . That is, factorizations of the types .X/.SX/, .SX/.X/ exist, while those
of the type .X/.S/.X/ do not. Here we denote S D X C xY . ut
Proposition 3. The statement of Theorem 12 is not always true for a general fourth-
order hyperbolic operator.

Proof. For example, consider the operator

L D .Dx CDy/ ı .DxDy.Dx CDy/C xD2
x C .2 � x2/Dx C xDy � 2x C x2/

D .Dx.DxCDy/2�xDx.DxCDy/C.x � 2/DxC.x � 1/DyC1/ ı .DyCx/:

The second factor in the first factorization is irreducible. ut
Though there is no straightforward generalization, Theorem 12 been generalized

to LPDOs of higher orders. However, this result is beyond the scope of this survey.

7 Software Development: The Maple Package LPDOs

Our Maple based package LPDOs serves as a tool for investigations in the area of
symbolic algorithms for LPDOs. Since none of the existing packages for LPDOs
and PDEs in Maple suits our problems properly, we have started from scratch, and
introduced our own code for LPDOs and their basic manipulations. For example,
the well-known package

Ore_Algebra

requires us to declare all the parameters at the very beginning. It is not always pos-
sible, because new parameters with names unknown in advance may appear during
computation. For example, the output of pdsolve may contain new parameters

_C1, _F1(x+y)

and so on.

Linear Partial Differential Equations and Linear Partial Differential Operators 355

Besides basic manipulations of LPDOs, e.g., computing the conjugation of an
operator for a given non-zero function, the taking of the formal adjoint, our package
LPDOs can compute Laplace invariants, transformations, invariant chains (for the
classical case and for the Schrödinger case), as well as invariants for third-order
bivariate hyperbolic and non-hyperbolic LPDOs, obstacles to factorizations and
factorizations of LPDOs of orders two and three (Grigoriev–Schwarz algorithm).
Invariant definition of the existence of a factorization, and the operation of taking the
formal adjoint have been implemented. The package is compatible with the existing
internal MAPLE packages for LPDOs.

The package works with an arbitrary number of variables, arbitrary parameters,
and coefficients. The only restriction is that the number of independent variables,
and their names should be declared at the very beginning. For example, declare the
independent variables x; y:

>> > > LPDO__set_vars([x,y]):

To work with an operator, we declare its name:

>> > > L3:=LPDO__create():

At this stage, L3 is the zero-operator, that is the operator, that multiplies by zero.
Then one can change the operator, describing its coefficients. For example, define
L3 D DxDy.xDx C yDy/CDx C 1:

>> > > LPDO__add_value(L3, x, [2,1]):
>> > > LPDO__add_value(L3, y, [1,2]):
>> > > LPDO__add_value(L3, 1, [1,0]):
>> > > LPDO__add_value(L3, 1, [0,0]):

One can also create the same LPDO by specifying the list of its coefficient:

Create_LPDO_from_coeff([0,1,0,0,0,0,0,x,y,0]):

Compute, for example, invariants from Theorem 9 for LPDO

>> > > I1 := LPDO__Inv(1,L3);
I1 := 0

>> > > I2 := LPDO__Inv(2,L3);
I2 := 0

>> > > I3 := LPDO__Inv(3,L3);
2

I3 := x
>> > > I4 := LPDO__Inv(4,L3);

I4 := 0
>> > > I5 := LPDO__Inv(5,L3);

3
I5 := x y

Now, if C3 is the result of the gauge transformation of L3 with some f .x; y/,
then the invariants must be the same. Here f Œx; x; y� stands for fxxy , and so on.

356 E. Shemyakova and F. Winkler

>> > > C3:=LPDO__conj(L3,f(x,y)): LPDO__print(C3);
f + f[x] + x f[x, x, y] + y f[x, y, y]

[0, 0], --------------------------------------
f

f + 2 x f[x, y] + y f[y, y]
[1, 0], ---------------------------

f
x f[x, x] + 2 y f[x, y]

[0, 1], -----------------------
f

x f[y]
[2, 0], ------

f
2 (x f[x] + y f[y])

[1, 1], -------------------
f

y f[x]
[0, 2], ------

f
[2, 1], x
[1, 2], y

>> > > for i from 1 to 5 do print(i, LPDO__Inv(i,C3)): end do;
1, 0
2, 0

2
3, x
4, 0
3

5, x y

8 Summary and Conclusions

We have given a survey of classical and recent results in the theory of factorization
and invariants for LPDOs. In particular, we have focussed on the results obtained in
our research group. We have been able to extend the work of Laplace to operators
of order three; after this breakthrough we have realized that regularized moving
frames (cf. [8, 9]), a method in differential geometry, allow reformulation of our
results. Using moving frames, we have been able to find a method for determining
generating sets of invariants for LPDOs of arbitrary order and in arbitrarily many
variables [28]. Recently this result was also repeated and verified in [20], where
Vessiot’s methods were applied.

With generating sets of invariants in hand, we succeeded in finding algebraic-
differential invariant descriptions of LPDOs having a factorization for every factor-
ization type for order three [26]. Parametric factorization of LPDOs in the plane up
to order four has been studied in [25]. Additionally, we succeeded in constructing
differential transformations for parabolic LPDOs in the plane [36], which essentially
generalize those invented by Laplace. The result about multiple factorizations of
LPDOs has been generalized recently.

Linear Partial Differential Equations and Linear Partial Differential Operators 357

The area is actively developing. Thus, the very recent [34] theory of Hölden–
Cassidy sequences for factorization of LPDOs opens many new avenues.

Acknowledgements This work was supported by the Austrian Science Foundation (FWF) in the
projects SFB F013/F1304 and DIFFOP, Nr. P20336-N18.

References

1. Anderson, I., Juras, M.: Generalized Laplace invariants and the method of Darboux. Duke J.
Math. 89, 351–375 (1997)

2. Anderson, I., Kamran, N.: The variational bicomplex for hyperbolic second-order scalar partial
differential equations in the plane. Duke J. Math. 87, 265–319 (1997)

3. Athorne, C.: A z� r toda system. Phys. Lett. A. 206, 162–166 (1995)
4. Blumberg, H.: Über algebraische Eigenschaften von linearen homogenen Differen-

tialausdrücken. Ph.D. thesis, Göttingen (1912)
5. Darboux, G.: Leçons sur la théorie générale des surfaces et les applications géométriques du

calcul infinitésimal, vol 2. Gauthier-Villars, Paris (1889)
6. Dini, U.: Sopra una classe di equazioni a derivate parziali di second ordine con un numero

qualunque di variabili. Atti Acc. Naz. dei Lincei. Mem. Classe fis., mat., nat. 4(5), 121–178
(1901) (also Opere III (1901), 489–566)

7. Dini, U.: Sopra una classe di equazioni a derivate parziali di second ordine. Atti Acc. Naz. dei
Lincei. Mem. Classe fis., mat., nat., 4(5), 431–467 (1902) (also Opere III (1902), 613–660)

8. Fels, M., Olver, P.J.: Moving coframes. I. A practical algorithm. Acta Appl. Math. 51(2),
161–213 (1998)

9. Fels, M., Olver, P.J.: Moving coframes. II. Regularization and theoretical foundations. Acta
Appl. Math. 55(2), 127–208 (1999)

10. Forsyth, A.R.: Theory of Differential Equations, vol. VI. Cambridge University Press,
Cambridge (1906)

11. Goursat, E.: Leçons sur l’intégration des équations aux dérivées partielles du seconde ordre a
deux variables indépendants, vol. 2. Paris (1898)

12. Grigoriev, D., Schwarz, F.: Factoring and solving linear partial differential equations. Comput-
ing 73(2), 179–197 (2004)

13. Grigoriev, D., Schwarz, F.: Generalized loewy-decomposition of d-modules. In: ISSAC ’05:
Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation,
New York, NY, USA, pp. 163–170. ACM (2005)

14. Athorne, C., Yilmaz, H.: The geometrically invariant form of evolution equations. J. Phys. A.
35, 2619–2625 (2002)

15. Juras, M.: Generalized laplace invariants and classical integration methods for second order
scalar hyperbolic partial differential equations in the plane. Proceedings of the Conference
Differential Geometry and Applications, pp. 275–284. Brno, Czech Republic (1996)

16. Kartashova, E.: A hierarchy of generalized invariants for linear partial differential operators.
TMPh (Journal of Theoretical and Mathematical Physics), 147(3), 839–846 (2006)

17. Kolchin, E.: Differential Algebra and Algebraic Groups. Academic, New York (1973)
18. Li, Z., Schwarz, F., Tsarev, S.P.: Factoring systems of linear pdes with finite-dimensional

solution spaces. J. Symb. Comput. 36(3–4), 443–471 (2003)
19. Loewy, A.: Über reduzible lineare homogene Differentialgleichungen. Math. Ann. 56,

549—584 (1903)
20. Lorenz, A.: Jet Groupoids, Natural Bundles and the Vessiot Equivalence Method. Ph.D. thesis.

RWTH Aachen University (2009)

358 E. Shemyakova and F. Winkler

21. Miller, F.H.: Reducible and Irreducible Linear Differential Operators. Ph.D. thesis, Columbia
University (1932)

22. Le Roux, J.: Extensions de la méthode de laplace aux équations linéaires aux derivées partielles
d’ordre supérieur au second. Bull. Soc. Math. de France 27, 237–262 (1899) A digitized copy
is obtainable from http://www.numdam.org/

23. Schwarz, F.: Algorithmic Lie Theory for Solving Ordinary Differential Equations. Pure and
Applied Mathematics. Chapman & Hall/CRC, Boca Raton (2008)

24. Shemyakova, E.: A full system of invariants for third-order linear partial differential operators.
Lect. Notes Comput. Sci. 4120, 360–369 (2006)

25. Shemyakova, E.: The parametric factorizations of second-, third- and fourth-order linear partial
differential operators on the plane. Math. Comput. Sci. 1(2), 225–237 (2007)

26. Shemyakova, E.: Invariant properties of third-order non-hyperbolic linear partial differential
operators. Lect. Notes Comput. Sci. 5625, 154–169 (2009)

27. Shemyakova, E.: Multiple factorizations of bivariate linear partial differential operators. LNCS
5743, 299–309 (2009)

28. Shemyakova, E., Mansfield, E.: Moving frames for Laplace invariants. Proceedings of
ISSAC’08 (The International Symposium on Symbolic and Algebraic Computation), pp. 295–
302 (2008)

29. Sokolov, V.V., Startsev, S.Ya., Zhiber, A.V.: On non-linear darboux integrable hyperbolic
equations. Dokl. Acad. Nauk 343(6), 746–748 (1995)

30. Shemyakova, E., Winkler, F.: Obstacle to factorization of LPDOs. In: Dumas J.-G. (ed.)
Proceedings of Transgressive Computing 2006, Conference in Granada Spain, pp. 435–441,
Grenoble, France (2006) Universite J. Fourier

31. Shemyakova, E., Winkler, F.: A full system of invariants for third-order linear partial
differential operators in general form. Lect. Notes Comput. Sci. 4770, 360–369 (2007)

32. Shemyakova, E., Winkler, F.: Obstacles to the factorization of linear partial differential
operators into several factors. Program. Comput. Softw. 33(2), 67–73 (2007)

33. Shemyakova, E., Winkler, F.: On the invariant properties of hyperbolic bivariate third-order
linear partial differential operators. LNAI 5081 (2007)

34. Cassidy, P.J., Singer, M.F.: A Jordan-Höder theorem for differential algebraic groups. Elsevier,
Amsterdam (2010)

35. Sokolov, V.V., Zhiber, A.V.: On the darboux integrable hyperbolic equations. Phys. Lett. A
208, 303–308 (1995)

36. Tsarev, S.P., Shemyakova, E.: Differential transformations of parabolic second-order operators
in the plane. Proc. Steklov Inst. Math. (Moscow) 266, 219–227 (2009). http://arxiv.org/
abs/0811.1492, submitted on 10 Nov 2008

37. Tsarev, S.P.: Factorization of linear partial differential operators and darboux integrability
of nonlinear pdes. SIGSAM Bull. 32(4), 21–28 (1998). also Computer Science e-print
cs.SC/9811002 at http://arxiv.org/abs/cs/9811002, submitted on 31 Oct 1998

38. Tsarev, S.P.: Generalized laplace transformations and integration of hyperbolic systems of
linear partial differential equations. In: ISSAC ’05: Proceedings of the 2005 international
symposium on Symbolic and algebraic computation, New York, NY, USA, pp. 325–331. ACM
(2005)

39. Tsarev, S.P.: On factorization and solution of multidimensional linear partial differential
equations. In: Computer Algebra 2006: Latest Advances in Symbolic Algorithms: Proceedings
of the Waterloo Workshop in Computer Algebra 2006, Ontario, Canada, 10–12 April 2006,
p. 181. World Scientific, Singapore (2007)

40. Wu, M.: On Solutions of Linear Functional Systems and Factorization of Modules over
Laurent-Ore Algebras. Ph.D. thesis, Beijing (2005)

http://www.numdam.org/
http://arxiv.org/
abs/0811.1492
http://arxiv.org/abs/cs/9811002

	Cover
	Series Editors
	Title: Numerical and Symbolic Scientific Computing: Progress and Prospects
	Copyright
	(c) 2012 Springer-Verlag/Wien
	ISSN 0943-853X
	ISBN 978-3-7091-0793-5
	e-ISBN 978-3-7091-0794-2
	DOI 10.1007/978-3-7091-0794-2

	Preface
	Contents
	Approximate Implicitization of Space Curves
	1 Introduction
	2 Preliminaries
	3 Approximate Implicitization
	3.1 Direct Techniques
	3.1.1 Dokken's method
	3.1.2 Dokken's weak method
	3.1.3 Algebraic curve and surface fitting

	3.2 Iterative (Evolution-Based) Techniques

	4 Approximate Implicitization of Space Curves
	4.1 Fitting Two Implicitly Defined Surfaces
	4.2 Regularization
	4.3 Putting Things Together
	4.4 Examples

	5 Conclusion
	References

	Sparsity Optimized High Order Finite ElementFunctions on Simplices
	1 Introduction
	2 Properties of Jacobi Polynomials with Weight (1-x)α
	3 Preliminary Definitions
	4 The L2 Orthogonal Basis Functions of Dubiner
	5 Sparsity Optimized H1-Conforming Basis Functions
	5.1 Sparse H1-Conforming Basis Functions on the Triangle
	5.2 Sparse H1-Conforming Basis Functions on the Tetrahedron

	6 Sparsity Optimization of H(div)-Conforming Basis Functions
	7 Sparsity Optimized H(curl)-Conforming Basis Functions
	8 Integration by Rewriting
	References

	Fast Solvers and A Posteriori Error Estimates in Elastoplasticity
	1 Introduction
	2 Modeling of Elastoplasticity
	3 The Incremental Elastoplasticity Problems and Solvers
	4 Adaptive h-FEM and A Posteriori Error Estimates for Elastoplasticity
	5 High Order FEM for Elastoplasticity: hp-FEM and BC-FEM
	6 Conclusion
	References

	A Symbolic-Numeric Algorithm for Genus Computation
	1 Introduction
	2 The Genus Computation Problem
	2.1 Genus of Plane Algebraic Curves
	2.2 Strategy for Solving the Problem

	3 Why Knot? Alternative Solution to the Genus Computation Problem
	3.1 Computing the Singularities of the Algebraic Curve
	3.2 Computing the Algebraic Link of an Isolated Singularity
	3.3 Computing the Alexander Polynomial of an Algebraic Link
	3.3.1 Knot Theory and the Alexander Polynomial
	3.3.2 Alexander Polynomial and Computational Geometry

	3.4 Computing the Delta-Invariant of an Isolated Singularity
	3.5 Computing the Genus of the Algebraic Curve

	4 What Precisely Means ``Approximate Computation''?
	5 Numerical Experiments
	6 Conclusion and Future Work
	References

	The ``Seven Dwarfs'' of Symbolic Computation
	1 Introduction
	2 Exact Linear Algebra, Integer Lattices
	3 Exact Polynomial and Differential Algebra, Gröbner Bases
	4 Inverse Symbolic Problems, e.g., Interpolation and Parameterization
	5 Tarski's Algebraic Theory of Real Geometry
	6 Hybrid Symbolic-Numeric Computation
	7 Computation of Closed Form Solutions
	8 Rewrite Rule Systems and Computational Group Theory
	References

	Computer Algebra Meets Finite Elements: An Efficient Implementation for Maxwell's Equations
	1 Introduction
	2 FEM Formulation of Maxwell's Equations
	2.1 Numerical Flux
	2.2 Numerical Examples (Spherical Vacuum Resonator)

	3 Computational Aspects
	3.1 Local Shape Functions
	3.2 Discrete curl Operations
	3.2.1 Covariant Transformation
	3.2.2 Evaluating Gradients
	3.2.3 Evaluating Traces

	3.3 Mass Matrix Operations
	3.3.1 Flat Elements
	3.3.2 Curved Elements

	3.4 Overall Computational Effort
	3.5 Timings

	4 Symbolic Derivation of Relations
	4.1 Introductory Example
	4.2 Relations for the Shape Functions
	4.2.1 The 2D Case
	4.2.2 The 3D Case

	5 Conclusion
	References

	A Symbolic Approach to Generation and Analysis of Finite Difference Schemes of Partial Differential Equations
	1 Introduction
	2 Algebraization of Differential and Difference Equations
	2.1 Types of Operator Algebras
	2.2 Presentation of a System of Differential Equations
	2.3 Gröbner Basis Algorithm and Elimination Tools

	3 Three Equivalent Approaches and the Main Theorem
	3.1 Mimicking Difference Algebra Approach
	3.2 Algebraic Analysis Approach
	3.3 Term Rewriting System Approach

	4 Generation of Difference Schemes
	4.1 Approximation Rules and Their Operator Form

	5 Symbolic Methods for von Neumann Stability Analysis
	5.1 Stability Rings, Morphisms and Polynomials
	5.2 Cylindrical Algebraic Decomposition
	5.3 CAD and von Neumann Stability

	6 Examples for λ-Wave Equation
	6.1 Conservative Law with Parametric Time Approximation
	6.2 Integral Relations and 2nd Order Central Approximations
	6.3 Explicit Integration for t and Trapezoid Rule for x
	6.4 Higher Dimensional λ-Wave Equation

	7 Dispersion Analysis
	7.1 Continuous Dispersion
	7.2 Discrete Dispersion

	8 Conclusion and Future Work
	9 Appendix. The Detailed Singular Code of an Example
	9.1 A Quick Introduction to the System Singular
	9.1.1 Definition of an Algebra
	9.1.2 Creation of a Matrix
	9.1.3 Elimination of Components
	9.1.4 Evaluation of the Constants

	9.2 Tools for Difference Schemes

	References

	White Noise Analysis for Stochastic Partial Differential Equations
	1 Introduction
	2 Deterministic Model Problem
	3 Stochastic Model Problem
	4 Discretisation in Space
	5 Discretisation of the Probability Space
	6 Solution Methods
	7 Polynomial Nonlinearities
	7.1 Nonlinear Diffusion
	7.2 Stationary Navier-Stokes

	8 Conclusion
	References

	Smoothing Analysis of an All-at-Once Multigrid Approach for Optimal Control Problems Using Symbolic Computation
	1 Introduction
	1.1 Model Problem
	1.2 Multigrid Methods and Collective Point Smoothers

	2 Local Fourier Analysis
	2.1 Local Fourier Analysis Framework
	2.2 Operators in Local Fourier Space

	3 Quantifier Elimination Using Cylindrical Algebraic Decomposition
	4 Computing the Smoothing Rate
	4.1 Smoothing Property: Collective Jacobi Relaxation
	4.2 Smoothing Property: Collective Gauss-Seidel Iteration

	5 Concluding Remarks
	References

	Analytical Evaluations of Double Integral Expressions Related to Total Variation
	1 Introduction
	2 Some Examples of Evaluations of Rn(fd)
	2.1 The One-Dimensional Case
	2.2 The Two-Dimensional Case
	2.2.1 Piecewise Constant Ansatz I
	2.2.2 Piecewise Constant Ansatz II

	3 Connection to Total Variation Regularization
	4 Discussion and Outlook
	References

	Sound and Complete Verification Condition Generator for Functional Recursive Programs
	1 Introduction
	1.1 Related Research
	1.1.1 Theoretical Approaches
	1.1.2 Practical Approaches

	1.2 Summary of Main Results

	2 Automation of the Verification: VCG
	2.1 Program Schemata
	2.2 Coherent Programs

	3 General Recursive Programs
	3.1 Coherent General Recursive Multiple Conditional Programs
	3.2 Verification Conditions and Their Soundness
	3.3 Completeness of the Verification Conditions

	4 Two Relevant Examples
	4.1 Binary Powering
	4.2 Neville's Algorithm

	5 Termination
	5.1 Libraries of Terminating Programs
	5.2 Enlargement Within libraries
	5.3 A Note on the Termination of Fibonacci-like Programs
	5.4 Further Examples

	6 Conclusions and Further Work
	References

	An Introduction to Automated Discovery in Geometry through Symbolic Computation
	1 Introduction
	2 Automatic Proving
	3 Automatic Discovery
	4 Stating Our Goal
	5 Refining Our Goal
	6 Comprehensive Bases
	7 FSDIC
	References

	Symbolic Analysis for Boundary Problems: From Rewriting to Parametrized Grobner Bases
	1 Introduction
	1.1 Overall View
	1.2 New Results
	1.3 Chronological Outline
	1.4 Overview of the Paper

	2 Data Structures for Polynomials in Theorema
	2.1 The Theorema Functor Language
	2.2 Quotient Structures and Canonical Simplifiers
	2.3 Reduction Rings and Gröbner Bases

	3 Integro-Differential Algebras
	3.1 Axioms and Basic Properties
	3.2 Ordinary Integro-Differential Algebras
	3.3 Initial Value Problems

	4 Integro-Differential Operators
	4.1 Definition
	4.2 Noncommutative Gröbner Bases
	4.3 Normal Forms
	4.4 Basis Expansion

	5 Applications for Boundary Problems
	5.1 The Solution Algorithm
	5.2 Composing and Factoring Boundary Problems

	6 Integro-Differential Polynomials
	6.1 Polynomials in Universal Algebra
	6.2 Differential Polynomials
	6.3 Integro Polynomials
	6.4 Representing Integro-Differential Polynomials
	6.5 Canonical Forms for Integro-Differential Polynomials

	7 From Rewriting to Parametrized Gröbner Bases
	8 Conclusion
	References

	Linear Partial Differential Equations and Linear Partial Differential Operators in Computer Algebra
	1 Introduction
	2 Algebraic Methods for LPDEs and LPDOs
	2.1 Notations
	2.2 Laplace Transformation Method and its Generalizations
	2.2.1 The Laplace Transformation Method
	2.2.2 Generalization to Non-Linear Case
	2.2.3 Generalization to Multivariate Case
	2.2.4 Generalization to Systems of LPDOs

	2.3 Factorization of LPDOs
	2.3.1 Generalized Factorizations of LPDOs
	2.3.2 Factorization Algorithm of Grigoriev and Schwarz

	3 Obstacles to Factorizations
	3.1 Generalization of Grigoriev–Schwarz Theorem to Non-Coprime Case
	3.1.1 Obstacles to Factorizations

	4 Generating Sets of Invariants for Hyperbolic Third-Order LPDOs
	5 Existence of Factorization in Terms of Invariants
	5.1 Existence of Factorization for Hyperbolic Bivariate LPDOs of Order Three in Terms of Invariants
	5.2 Formal Adjoint in Terms of Invariants

	6 Multiple Factorizations of an LPDO
	7 Software Development: The Maple Package LPDOs
	8 Summary and Conclusions
	References

