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Preface

For more than 10 years, the numerical analysis and symbolic computation groups
at the Johannes Kepler University Linz (JKU) have made serious efforts to combine
two different worlds of scientific computing, numerics and symbolics. This work
has been carried out in the frame of two excellence programs of the Austrian
Science Funds (FWF), a special research program (SFB, 1998-2008) and a doctoral
program (DK, 2008-). In addition to the JKU institutes for Applied Geometry,
Computational Mathematics, Industrial Mathematics, and the Research Institute for
Symbolic Computation (RISC), the Radon Institute for Computational and Applied
Mathematics (RICAM), a branch of the Austrian Academy of Sciences, have been
partners in this enterprise.

This book presents an offspring of this initiative. It contains surveys of the state
of the art and of results achieved after more than 10 years of SFB/DK work. In
addition, we included chapters that go beyond, this means, which set pointers for
future developments. All of the chapters have been carefully refereed. Most of them
center around the theme of partial differential equations. Major aspects are: fast
solvers in elastoplasticity, symbolic analysis for boundary problems (from rewriting
to parametrized Groebner bases), symbolic treatment of operators, use of computer
algebra in the finite element method for the construction of recurrence relations in
special high-order Maxwell solvers and for the construction of sparsity optimized
high-order finite element basis functions on simplices, a symbolic approach to finite
difference schemes, cylindrical algebraic decomposition and symbolic local Fourier
analysis of multigrid methods, and white noise analysis for stochastic PDEs. The
scope of other numerical-symbolic topics range from applied and computational
geometry (approximate implicitization of space curves, symbolic-numeric genus
computation, automated discovery in geometry) to computer algebra methods
used for total variation energy minimization. One chapter deals with verification
conditions in connection with functional recursive programs.

The contributions to this book are arranged in alphabetical order.



vi Preface

The editors express their sincerest thanks to all authors for their interesting con-
tributions, the anonymous referees for their valuable work, Silvia Schilgerius and
Wolfgang Dollhdubl from Springer-Verlag Wien and Gabriela Hahn from the DK.

Last but not least, we would like to acknowledge the moral and financial support
by the Austrian Science Fund (FWF), the Johannes Kepler University Linz (JKU),
the Government of Upper Austria, and the City of Linz.

Linz, June 2011 Ulrich Langer
Peter Paule
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Approximate Implicitization of Space Curves

Martin Aigner, Bert Jittler, and Adrien Poteaux

Abstract The process of implicitization generates an implicit representation of a
curve or surface from a given parametric one. This processis potentially interesting
for applications in Computer Aided Design, where the robustness and efficiency
of intersection algorithm can be improved by simultaneously considering implicit
and parametric representations. This paper gives an brief survey of the existing
techniquesfor approximateimplicitization of hyper surfaces. In addition it describes
aframework for the approximate implicitization of space curves.

1 Introduction

There exist two main representations of curves and surfaces in Computer Aided
Geometric Design: theimplicit and the parametric form. In both cases, the functions
which describe the curve or surface are amost always chosen as polynomial or
rational functionsor, moregenerally, as polynomial or rational splinefunctions[15].
Consequently, one deal swith segmentsand patches of a gebraic curvesand surfaces.

Each of the two different representation is particularly well suited for certain
applications. Parametric representations are well suited to generate points, e.g.,
for displaying curves and surfaces, and to apply the results of the classical
differential geometry of curves and surfaces, e.g., for shape interrogation. Implicit
representationsencompassalarger class of shapesand are more powerful for certain
geometric queries. Moreover, the class of algebraic curves and surfaces is closed
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2 M. Aigner et d.

under certain geometric operations, such as offsetting, while the class of rational
parametric curves and surfacesis not.

Consequently, it is often desirable to change from one representation to the other
one. For instance, the implicitization of a planar curve reduces the computation of
theintersection of two curvesgiven in the parametric form to aroot finding problem
for asingle polynomial [23].

The exact conversion procedures, implicitization and parameterization, have
been studied in classical algebraic geometry and in symbolic computation. Their
practical application in Computer Aided Design is rather limited, due to the
feasibility reasons outlined below. As an alternative, approximate techniques have
emerged recently. These aternatives contribute to the use of symbolic-numerical
techniquesin Computer Aided Geometric Design.

The remainder of this paper consists of four parts. First we introduce the
notation. Section 3 then presents a survey of related techniquesfor the approximate
implicitization of hypersurfaces. The following section describes a new framework
for the approximate implicitizaton of space curves. Finally we conclude this paper.

2 Preliminaries

We dtart by introducing a few notations. A parametric representation of a curve
segment or a surface patch is a mapping

p: 2 >Rt p(t) (1)

where 2 C RF isthe parameter domain (typically a closed interval in R or a box
in R?). A curve or surface is described for k = 1 and k = 2, respectively. In
many applications, e.g. in Computer-Aided Design, the mapping p is represented
by piecewise rational functions (rational spline functions), see [15].
An implicitly defined hypersurface .% in R? is the zero-set of a function f; :
R - R,
Z ={xeR?: fi(x) =0}. 2

Ifd =30ord = 2,thenitiscaled an implicitly defined surface or planar curve,
respectively.

The subscript represents a vector s € RY which collects the parameters which
characterize the function f;(x). They are called the shape parameters, since they
control the shape of the curve or surface. For instance, if f; isapolynomial of some
finite degree,

N
[0 =) si (%), (3)
i=l1

thens = (s1,...,sy) contains the coefficients with respect to a suitable basis
(¢1)_, of the space of polynomials.
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Fig. 1 Animplicitly defined
space curve

An implicitly defined space curve
@ ={xeR: fs(x) = 0 A gs(x) = 0} 4

is defined by two intersecting implicitly defined surfaces % and ¢, see Fig. 1.
Clearly, fs and gs are not unique. This space curveis said to be regular at the point
X € F N, if there exists a representation (4) such that the two gradient vectors
Vi f5(x) and Vygs(x) with V, = (L, % 2 ) arelinearly independent.

Typicaly, the two functions defining .# and ¢ are characterized by two
independent sets of shape parameters, say s, and s,. In order to simplify the
notation, we shall use the convention that both functions depend on the union of
these two sets, hence on s = s, U s,. If the two functions fs(x) and gs(x) are
polynomials, then ¥’ is said to be an algebraic space curve.

3 Approximate Implicitization

Exact techniques for the implicitization of curves and surfaces have been studied
for a long time. In 1862, Salmon [20] noted that the surface implicitization can
be performed by eliminating the parameters. This was improved by Dixon in 1908
[8], who published a more compact resultant for eliminating two variables from
three polynomials. In 1983, Sederberg [21] considered theimplicitization of surface
patches for Computer Aided Geometric Design.

From a theoretical point of view, the problem of the implicitization of a given
rational curve or surface is always solvable. However, there remains a number of
challenging computational difficulties. As described in [15, chapter 12], while the
2D case can be handled satisfactorily by building the Bezout resultant, the 3D case
ismore complicated: for instance, atensor product surface of degree (m, n) leadsto
animplicit formulaof degree2mn. Then,inthesimplecasem = n = 3, we aready
have an algebraic representation of degree 18. After expanding this polynomial in
monomial basis this would lead to 1330 terms.
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Practical problems associated with the exact implicitization of curves and
surfaces are addressed in [22] and [5]. Grobner bases can also be used [7]. For
more details on resultant based methods, the reader may also consult [6].

To conclude, as shown in [15, 22], exact implicitization has many associated
difficulties, in particular in the case of surfaces. Moreover, the computed implicit
form of acurve or surface can be difficult to use, since the degree of the polynomial
is often too high. On the other hand, CAD (Computer-Aided Design) systems are
based on floating point computations, and so al quantities are represented with a
rounding error. Therefore, if we apply any of the exact implicitization method in
this context, the result is not exact.

The existing techniquesfor approximateimplicitization can be classified asdirect
ones, where the result is found in a single step, and evolution-based techniques,
where an iterative processis needed to find the result.

3.1 Direct Techniques

We describe three approaches to approximate implicitization. The first two
approachesare due to Dokken, who also coined the notion of Al. Thethird approach
comprises various fitting-based techniques.

3.1.1 Dokken’s method

In order to adapt implicitization to the need for approximate computation in CAD,
and to achieve more practical agorithms, Dokken introduced the approximate
implicitization of acurve or surface[9,10]. In the sequel werecall Dokken’s method
to compute the approximate implicitization of a curve or surface. See also [12] for
asurvey of these and related techniques.

Given a parametric curve or surface p(t), t € £2, a polynomial fs(x) is caled
approximate implicitization of p(t) with tolerancee > 0 if we can find a continuous
direction function g(t) and a continuous error function n(t) such that

Ss(p® + n®g(®) =0, ©)

with ||g(t)||>, = 1 and |5(t)| < € (see[9, Definition 35]). We denote by » the degree
of the parametrization p and by m the degree of .
Dokken observesthat the composition f; o p can be factorized as

f(p®) = (D9)" (), (6)

where D is a matrix build from certain products of the coordinate functions of
p(t), s isthe vector of parametersthat characterize the function f;(x). Furthermore,
a(t) = (ai(b),...,ay(t)7 isthe basis of the space of polynomials of degree mn,
which is used to describe f;(p(t)) and N isthe dimension of polynomial space.
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Thisbasisis assumed to form a partition of unity,

and in addition, the basis «(t) is assumed to be non-negativefor t € §2:
a;(t) >0, Vi, Vte Q.

For instance, one may use the Bernstein-Bézier basis with respect to the interval §2
or with respect to a triangle which contains £2 in the case of curves and surfaces,
respectively.

Consequently we obtain that

| (M) = [(Ds)" a(t)] < [Ds|l2[le(®V)]|2 < [IDs]), (7)

hence we are led to find a vector s which makes ||Ds||, small. Using the Singular
Value Decomposition (SVD) of the matrix D, one can show that || fs, (P(1)))]lec <
/01, where oy is the smallest singular value, and s; is the corresponding singular
vector. This strategy enables the use of Linear Algebratools to solve the problem
of approximate implicitization. Moreover, this approach provides high convergence
rates, see[12, Table 1 and 2].

3.1.2 Dokken’s weak method

Dokken’'s original method has several limitations: for instance, it is relatively
costly to build the matrix D. Moreover, it isimpossible to use spline functions for
describing fs, since no suitable basis for the composition f; o p can be found.

This problem can be avoided by using the weak form of approximate impliciti-
zation which was introduced in [11], see also [12, section 10]. For a given curve or
surface p with parameter domain £2, we now find the approximate implicitization
by minimizing

/Q (fu(p())’dt = sT As ®

where

A=D7 ( /9 a(t)a(t)Tdt) D. 9)

The matrix A can be analyzed by eigenvalue decomposition, similar to the original
approach, where the matrix D was analyzed with singular value decomposition.
Note that one can apply this strategy even if no explicit expression is available: one
only needs to be able to evaluate points on the curve or surface. The integrals can
then be approximately evaluated by numerical integration.
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Choosing the eigenvector which is associated with the smallest eigenvalue of the
matrix A is equivalent to minimizing the objective function defined in (8) subject
to the congtraint ||s|| = 1. This can be seen as a specia case of fitting, see next
section.

3.1.3 Algebraic curve and surface fitting

Given a number of points (p;)_,, which have been sampled from a given curve
or surface, one may fit a curve or surface by minimizing the sum of the squared
residuals (also called algebraic distances),

N
> (fpi)*. (10)

i=1

This objective function can be obtained by applying a simple numerical integration
to (8).

If the algebraic curve or surface is given as in (3), then this objective function
hasthetrivial minimums = 0. In order to obtain a meaningful result by minimizing
(10), several additional constraints have been introduced.

Pratt [19] picks one of the coefficients and restrictsit to 1, e.g.

s = 1. (11)

For instance, if f; is a polynomial which is represented with respect to the usual
power basis, then one may consider the absolute term. This constraint is clearly not
geometrically invariant, since the curve and surface cannot pass through the origin
of the system of coordinates.

Geometrically invariant constraints can be obtained by considering quadratic
functions of the unknown coefficients s. An interesting normalization has been
suggested by Taubin [24], who proposed to use the norm of the squared gradient
vectors at the given data,

N
> IVx s> = 1. (12)
i=1

Adding this constraint leads to a generalized eigenvalue problem. Taubin’s method
gives results which are independent of the choice of the coordinate system.

Finally, Dokken’sweak method —when combined with numerical integration for
evaluating the objective function (8) — uses the constraint

N
Is|> = "s? = 1. (13)
i=l1

These three approaches are able to provide meaningful solutions which mini-
mize the squared algebraic distances (10). However, they may still lead to fairly
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unexpected results. Additional branchesand isolated singular points may be present,
even for datawhich are sampled from regular curves or surfaces.

If amethod for approximate implicitization is to reproduce the exact results for
sufficiently high degrees, then this unpleasant phenomenon is always present. For
instance, consider a cubic planar curve with a double point. Even if we take sample
points only from one of the two branches which pass through the singular point,
any of the above-mentioned methods will generate the cubic curve with the double
point, provided that the degree of f; isat least 3.

These difficulties can be avoided by using additional normal (or gradient)
information. More precisely, a nontrivial solution of the minimization problem can
befound by considering a convex combination of the two objective functions(8) and

N
D IV fsP) = i, (14)

i=l1

where the vectors (n,-){\’= , represent additional normal vector information at the
given points.

Thisgivesaquadratic function of the unknown coefficientss, hence the minimum
isfound by solving a system of linear equations. This approach has been introduced
in [16], and it has later been extended in [17, 25, 26]. Among other topics, these
papers also consider the case of curves which contain singular points, where a
globally consistent propagation of the normalsis needed.

3.2 lterative (Evolution-Based) Techniques

Iterative (evolution-based) methods have been considered for several reasons. First,
they lead to a uniform framework for handling various representations of curves
and surfaces, which can handle implicitly defined curves and surfaces as well as
parametric ones[1, 13]. Second, they makeit possibleto include various conditions,
such as constraints on the gradient field, volume constraints or range constraints
[14,27,28]. Finaly, the sequence of curves or surfaces generated by an iterative
method can be seen as discrete instances of a continuous evolution process, which
links this approach to the level set method and to active curves and surfaces in
Computer Vision [4,18].

We recall the evolution-based framework for fitting point data (p;) j=1....
implicitly defined hypersurfaces, which was described in [1]. In this framework,
the approximate solutions which are generated by an iterative algorithm are seen as
discrete instances of a continuous movement of an initial curve or surface towards
the target points (the given point data).

More precisely, we assume that the shape parameters s depend on a time-
like parameter ¢, and consider the evolution of the hypersurface described by the
parameters s(¢) for t — oo. Each data point p; attracts a certain point f; on the
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hypersurface .# which is associated with it. Usually f; is chosen to be the closest
pointon .#, i.e.
f; =agmin|ip —p;|. (15)

These attracting forces push the time-dependent hypersurfacetowards the data. This
is realized by assigning certain velocities to the points on the hypersurface. For
a point lying on a time-dependent implicitly defined curve or surface, which is
described by afunction f;, the normal velocity is given by

Vo £l
IV fsll?

where the dot indicates the derivative with respect to ¢ and the gradient operator

ad d
Ve=—,...,— 17
s (asl’ 8sN) ( )

gives the row vector of the first partial derivatives. Note that we omitted the time
dependency of s in (16), in order to simplify the notation.

Thefirst term —V; 5 § in (16) specifies the absolute value of the normal velocity.
The second term isthe unit normal vector of the curve, which identifiesthe direction
of the velocity vector.

As the number of data points exceeds in general the degrees of freedom of the
hypersurface, the vel ocities are found as the least squares solution of

ORI
TRNAAE

=V fs$ (16)

M
> ((v; —d;)Tn;)* — min, (18)
j=1 )

whered; = f; —p; istheresidual vector from adata point to its associated point on

the hypersurface n;, = gxﬁ isthe unit normal in this point and v; isthe velocity
computed via (16) at f;. More precisely, this |eads to the minimization problem

=1

M A 5
(Vs )P (Vx/BP) o ,T)M i g
Z<( TCA AT L A TUAATHT) M

We use Tikhonov regularization in order to obtain a unique solution. In addition, we
apply adistancefield constraint, in order to avoid the trivial solution, cf. [27].

The geometric interpretation of this approach is as follows: The bigger the
distance to the associated data point, the greater is the velocity that causes the
movement of the hypersurface at the corresponding point. Note that (18) takes only
the normal component of the velocity into account, as a tangential motion does not
change the distance to the data.
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The objective function in (19) dependson s aswell as on $. For a given value of
s, we can find § by solving a system of linear equations. Conseguently, (19) leads to
an ordinary differential equation for the vector of shape parameters. We can solve it
by using Euler steps with a suitable stepsize control, see[1] for details.

The solution converges to a stationary point, which defines the solution of the
fitting problem. It can be shown that this evolution-based approach is equivalent to
a Gauss-Newton method for the implicit fitting problem, and the stationary point of
the ODE is a (generally only) local minimum of the objective function

M
> llpy —fiI, (20)
ji=1

wheref; has been defined in (15), see[2].

The evolution viewpoint has several advantages. It providesageometric interpre-
tation of the initial solution, which is now seen as the starting point of an evolution
that drives the hypersurface towards the data. It also provides a geometrically
motivated stepsize control, which is based on the velocity of the points during the
evolution (see [1]). Finally, the framework makes it possible to introduce various
other constraints on the shape of the hypersurface, see[13, 14].

In the remainder of this paper we will apply the evolution framework to the
approximate implicitization of space curves. In this situation we need to generate
two surfaces which intersect in the given space curve. Moreover, these two surfaces
should intersect transversely, in order to obtain arobustly defined intersection curve.

4 Approximate Implicitization of Space Curves

curve. Recall that a point p; lies on an implicitly defined space curve ¢ if it
is contained in both surfaces defining the curve. Consequently we fit the spatial
data with two surfaces .# and ¢. The desired solution ¢ is then contained in the
intersection of .% and ¢. We need to couple the fitting of the two surfaces, in order
to obtain a well-defined intersection curve.

4.1 Fitting Two Implicitly Defined Surfaces

Following the ideain [2] we use an approximation of the exact geometric distance
from a data point to a space curve. More precisely, we use the Sampson distance
which was originally introduced for the case of hypersurfaces [24]. The oriented
distancefromapoint p; to acurveor surface which is defined implicitly asthe zero
set of some function f; can be approximated by
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Js(P))
IV fs(PIl

Geometrically speaking, the equation of the surface is linearized in the point p;
and the distance from this point to the zero-set of the linearization is taken as an
approximation of the exact distance. Consequently, this measure is exact for planes,
as they coincide with their linearization. The Sampson distance is not defined at
points with vanishing gradients, which have to be excluded.

A natural extension of this distance to two surfaces defining a space curveis

(21)

)2 2
dj _ fs(p/) . 4 gS(pj) . (22)
[Vis@HI*  Vxgs(P))ll
If both surfaces intersect each other orthogonally in the data points, i.e.
(VufsVxg )|, = 0. (23)

then this expression approximates the distance to the implicitly defined space curve.

In order to approximate a set of points which has been sampled from a space
curve, we minimize the sum of the squared distances, which leads to the objective
function

s(pj)? gs(p;)? .
d? = J J . 24
Z Z VAR T g (@)

Note that both functions fS and g depend formally on the same vector s of shape
parameters. Typically, each shape parameter s; is uniquely associated with either f;
or gs. Consequently, (24) minimizes the Sampson distances from apoint p; to each
of the surfaces.# and ¢ independently.

We adapt the evolution based-framework [2] in order to deal with the obj ective
function (24). We consider the combination of the two evolutions for .# and ¢
which is defined by the minimization problem £ — min, where

S

fS Vst -)2 ( 8s Vsgs .)2
E(f,g) = E . 25
(8) (||fos|| * ||fos||s * [ Vxgsll * ||ngs||s ()

In order to simplify the notation, we omit the argument p; from now on and omit
the range of the sum, which is taken over all sampled points (p;);=1,...a. Thissum
can also be seen as simple numerical integration along the given space curve.

The geometric meaning of this objective function is as follows: The normal
velocity (cf. 16) of thelevel set of f; (and analogously for gs) which passes through
the given point p; isto be equal to the estimated oriented distance, see (21), to the
surface. Later we will provide another interpretation of this evolution as a Gauss-
Newton-type method.
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Similar to (19), the objective function in (25) dependson s and on $. For agiven
value of s, we find $ by solving a system of linear equations. Consequently, (25)
leadsto an ordinary differential equation for the vector of shape parameters. We can
again solve it simply by using Euler steps with a suitable stepsize control.

Asanecessary condition for aminimum of (25), the first derivativeswith respect
to the vector § have to vanish. Thisyields the linear system

Z[ stsT Vs fs n ng;r Vsgs j| Z fsVst gSVSg;r (26)

IV Sl IV Ssll 11Vxgsll I Vxgsll 9 el? " Vgl

If there existsazero-residual solution, then theright hand side vanishes, as fs(p;) =
gs(pj) = 0forall j.Hence$ = 0 isasolutionfor the problem and we have reached
a stationary point of the evolution. However, the solution may not be unique.

First, the trivial (and unwanted) functions f; = 0 and gs = 0 solve always the
minimum problem (24) for all datasets (p;)j=1..a. Of course these solutions have
to be avoided.

Second, the evolution defined via (25) pushes both surfaces independently
towards the data points p;. This may lead to the unsatisfying result fs = gs (where
thetwo functionsareidentical up to afactor A). Consequently, we need to introduce
additional termswhich guaranteethat f; and gs do not vanish and that they intersect
orthogonally in the data points.

4.2 Regularization

So far, the implicitization problem is not wellposed. If f; is a solution to the
problem, then A f; is a solution as well. In this section we discuss several strategies
that shall prevent the functions f; and gs from vanishing and that shall guarantee
a unique solution to the individual fitting problems for the two defining surfaces
% and ¢. Additionally, we propose a coupling term that ensures a well-defined
intersection curve of the surfaces .# and ¢.

Distance field constraint. In order to avoid the unwanted solutions f; = 0 and
gs = 0 we use the distance field constraint which was described in [27]. Consider
theterm

d 2
D(F) = (1D AN + 190l 1) @

It pushes the function f; in apoint x closer to a unit distance field, hence

[Vx s = 1. (28)

If the length of the gradient in (27) equals 1, it is expected to remain unchanged.
Consequently, its derivative shall be 0. Otherwise (27) modifies f; such that the
norm of its gradient gets closer to 1.
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We apply this penalty term to both functions f; and gs.

This side condition has also an important influence on the robustness of the
implicit representation of the two surfaces . and ¢, cf. [3]. Roughly speaking, the
closer the defining functions f; and gs are to a unit gradient field, the less sensible
is the representation to potential errorsin its coefficients.

Theoretically, this condition can be integrated over the entire domain of interest.
In order to obtain a robust representation of the implicit space curve, the robustness
of the two generating surfaces is mainly required along their intersection, i.e. near
the data points. This leads to the idea of imposing the distance field constraint only
in the datapointsp; .

We note two more observations. First, the term is quadratic in the unknowns §
which follows directly from expanding the derivative in (27),

Y .
Vi)l = g VsV 8 29

Consequently, the objective function with the distance field constraint is still
guadratic in the unknowns, and we can compute the derivative vector $ of the shape
parameters by solving a system of linear equations.

Second, the constrained problem does in general not reproduce exact solutions
which would be available without any constraints. For instance, if the data were
sampled from alow degree algebraic space curve, then the approximation technique
would not provide an exact equation of this curve. Only if that solution possesses
a unit gradient field along the data, then it can be recovered. In the next section
we introduce another regularization term which makes it possible to reproduce the
exact solution.

4
dt

Averaged gradient constraint. This technique is related to a method that was
introduced by Taubin [24]. The core idea is to restrict the sum of the norms of
the gradients. Hence, not all the gradient lengths are expected to be uniform, but the
average gradient length

1
o7 2 Vel = 1. (30)
This can be dealt with by adding the term

d 2
ACf) = (Z @1 S0+ 1 o0 1) (31)

to our framework.

Although (28) and (31) look quite similar, their effects on the solution are rather
different. Note that (30) is only one constraint, whereas (28) is a set of constraints,
which depends on the number of points.

Consequently, the condition on the average norm of the gradient can only
handle the singularity that is due to the scalability of implicit representations.
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If the ambiguity of the solution arises from an incorrectly chosen degree of the
polynomial, then Taubin’s method and the term (31) do not provide a unique
solution.

For instance, when fitting a straight line with two quadratic surfaces, the obtained
linear system issingular as the number of unknowns exceeds the number of linearly
independent equations provided by the data points. On the other hand, if we use the
distancefield constraint (27), then we will obtain a unique solution.

Orthogonality constraint. The distance field constraint leads to a robust represen-
tation of each of the two surfaces which define the curve. Now we introduce an
additional term which provides a robust representation of the curve itself.

Ideally, the two surfaces would intersect orthogonally along the space curve €,
i.e. (23) holds.

In this case, small displacementsin the two surfaces cause only small errorsin
the curve. Moreover, the term (22) then approximatesthe distance to the space curve
very well. On the other hand, if the two surfaces intersect tangentially

(Ve fy" x Vg, =0 (32)

even small perturbations may cause big changes of the curve.
In order to obtain two surfaces that intersect each other approximately orthogo-
nally, we add the term

2

d ( Vfs wg) Vi fe WQ)
o(f, = — 33
(-2 E:Lhﬁwummmm T Al TV (33)

to the objective function. This term penalizes deviations from the optimal case
Vy f:Vxgs = 0. More precisely, if the gradients of the surfaces are not orthogonal
in apoint where (33) is applied to, then the time derivative of the product of the unit
gradients forces the surfaces to restore this property. Theoretically, this term should
beimposed along the intersection of the surfaces.# and ¢. Asthe exact intersection
curveis not known, we apply (33) to the data pointsp; .

We analyze the structure of this term in more detail. The time derivative of the
first product in (33) gives

d Vifs Vigd  VafsVxgd + VafsVidd
At |V /sl IVxgsll IVl Vsl

AN W&wé')
IV P IVxgsl IV /ol Vigs I

— Vi fsVxgd (
(34

Since fo; = ViV 158 and Vygs = Vi Vsgs$, theterm (33) isquadraticin §.
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4.3 Putting Things Together

Summing up, we obtain the minimization problem
F(8,5) — min (35)
S
where

F = E(f.8)+o1(D(f)+D(2) + @2 0(f. 8)+ w3 (A(f) + A(g) +wi§”.  (36)

The non-negative weights w;, w,, ws and w4 control the influence of the distance
field constraint, the orthogonality constraint, the averaged gradient constraint and
the Tikhonov regularization, respectively. Due to the special structure (36) is
quadratic in the vector §. Hence, for a given vector s of shape parameters, we
can find § by solving a system of linear equations. The evolution of the implicit
representation of the space curve can then be traced using explicit Euler steps with
asuitable stepsize control (cf. [1]).

We conclude this section by discussing the coupled evolution from the optimiza-
tion viewpoint. We show that the constrained optimizationisin fact a Gauss-Newton
method for a particular fitting problem.

Consider the optimization problem

— £V g\’ , .
¢ = Z(”fos”) + (”ngs”) + i ((”fos” — D"+ (|Vkgsll = 1) )

foé ngST )2 ( 2
‘”Z(nvxgsn Vegsl ) (X Ivetieni-1)

(191 1)) - min. @7)

Obvioudly, a solution of (37) minimizes simultaneously the Sampson distances
from the data points to the space curve (term 1 and 2) the distance field constraint
(term 3), the orthogonality constraint (term 4) and the averaged gradient constraint
(term 5 and 6). Hence a zero residua solution of (37) interpolates all data points,
the defining surfaces have slope one in the data points and furthermore, the surfaces
intersect orthogonally.

Since (37) is non-linear in the vector of unknowns s, we consider an iterative
solution technique. A Gauss-Newton approach for (37) solves iteratively the
linearized version of (37),

C* - min (38)
As
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where

\Y 2 \Y 2
Z( s Js AS) +( &s i s&s AS)
RAAREAA Vsl Vgl
+ o1 [ IV AT+ VsV sl =129 + (| Vxgs [ —1+ Vs Vg -1 45)°
2
Vi fs ngs'l' +V, Vi fs ngs'l' As
19 Al Vg 19 Al Vg
2 2
( DIV A1+ VsV fll45)+ (3 Vgl = 14V Vicgsll 4s) )

(39)

and computes an update of the previous solution vias™ = s + As. By comparing
(36) and (39) we arrive at the following observation.

An explicit Euler step for the evolution equation (36) with stepsize 1 is equiv-
alent to the Gauss-Newton update (39) for the optimization problem (37).

Indeed, if we use that for any function (s(z)),
Ch0)) = Voh(sto))s, 0

then we can replace the time derivativesin (36). Subgtituting § for As then givesthe
desired result.

4.4 Examples

Finally we present some examples.

Example 1. We sampled 50 points from a parametric space curve of degree 6. The
two implicit patchesthat represent the implicit space curve are of degree 2. Asinitial
configuration we have chosen two surfaces deviating from each other slightly, see
Fig. 2(a).

The obtained result after 15 iterations is shown in Fig. 2(b). In order to demon-
strate the robustness of the representation we note that the norm of the gradients
of the two surfaces in the data points varies between 0.94 and 1.94. The maximal
deviation of the gradients from orthogonality at the data pointsis 0.49 degrees.

Example 2. We choose again the same data set, but modify the various weights in
order to demonstrate their influence. First we omit the orthogonality constraint. That
is, the evolution is not coupled, and both surfaces move independently towards the
data. The result is obvious, both surfaces converge towards the same result, as the
initial values are quite similar, cf. Fig. 3(a).
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Fig. 2 Implicitization of a space curve represented by data points sampled from a parametric
curve. Left: Initial surfaces, right: Final result

Fig. 3 Result with omitted orthogonality constraint (Ieft) and omitted distance field constraint
(right)

Fig. 4 Implicit description of a curve represented by perturbed data. Left: Initial surfaces, right:
Final result

Alternatively, we omit the distance field constraint. The results can be seen in
Fig. 3(b).

As one can verify, the two surfaces match still the data. However, one of the
surfaceshasasingularity. Thisisdueto thefact that the averaged gradient constraint
allows also vanishing gradients. For the distance field constraint this is not true, as
the norm of the gradients in the data points is forced to be close to one, hence
singular points are unlikely to appear.

Example 3. For this example we added a random error of maxima magnitude
0.05% of the diameter of the bounding box to the data points from the previous
example. The fitted space curveis represented in Fig. 4.
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Fig. 5 Implicit representation of a curve described by exact point data. Left: Initial surfaces, right:
Final result

Example4. In afourth example we consider a parametric curve of degree 8. The
two surfaces were chosen to have degree 3. This example shall illustrate again the
good convergence behavior, as the two initial surfaces are far away from the final
result (Fig. 5).

5 Conclusion

In the first part of the paper we reviewed some of the existing techniques for
approximate implicitization of hypersurfaces. Starting with Dokken's approach,
which relies on the use of singular value decomposition, we observed that the weak
version of Dokken's method can be seen as a special instance of a fitting method.
Finally we described a general framework for evolution based fitting techniques.

The second part of the paper extended the existing evolution framework to the
implicitization of space curves, by coupling the evolution of two implicitly defined
surfaces. Astheimplicit representation of acurve or surfaceis not unique, additional
regularization terms have to be added in order to achieve the uniqueness of the
solution. We discussed two possibilities.

Thefirst, called the distance field constraint, tries to achieve a unit gradient field
along the intersecting surfaces. Hence a unique solution to the fitting problem is
aways guaranteed. Furthermore, it can even cope with an incorrectly chosen degree,
that is when the degrees of the defining polynomials have been chosen too high.
However, this approach preventsthe evolution from finding the exact solution.

The second proposed regularization eliminates only the redundancy which is
caused by the scalability of the underlying functions. As an advantage, it allowsto
find the exact solution, provided that the degrees of the implicitly defined surfaces
are sufficiently high.
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In order to obtain also arobust representation of the intersection curve we intro-

duced another constraint which is to guarantee that the defining surfaces intersect as
orthogonal as possible. Consequently, small perturbations of the coefficients of the
defining functionslead only to small deviations of the intersection points of the two
surfaces.

For future work we plan to use adaptive spline spaces to improve the quality

of the approximation of the space curves. Furthermore a theoretical analysis of the
approximation order, (which is until now only available for hypersurfaces) is under
investigation.
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Sparsity Optimized High Order Finite Element
Functions on Simplices

Sven Beuchler, Veronika Pillwein, Joachim Schdberl, and Sabine Zaglmayr

Abstract This article reports several results on sparsity optimized basis functions
for hp-FEM on triangular and tetrahedral finite element meshes obtained within
the Special Research Program “Numerical and Symbolic Scientific Computing”
and within the Doctoral Program “Computational Mathematics” both supported
by the Austrian Science Fund FWF under the grants SFB FO13 and DK W1214,
respectively. We give an overview on the sparsity pattern for mass and stiffness
matrix in the spaces L,, H', H(div) and H(curl). The construction relies on a
tensor-product based construction with properly weighted Jacobi polynomials.

1 Introduction

Finite element methods (FEM) are among the most powerful tools for the approx-
imate solution of eliptic boundary value problems of the form: Find u € WV such
that
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a(uv) = F(v) VveV, (1)

where V is an infinite dimensional Sobolev space of functions on a bounded
Lipschitz domain 2 ¢ RY, d = 2,3, a(--) : Vx V R isan dliptic and
bounded bilinear formand F () : V + R isabounded linear functional. Examples
for the choice of a(-,-) and V are:

1. The L, case, where V = L,(£2) anda(u,v) = [, uv

2. The H' case, where V = H'(£2) anda(u,v) = [, Vu- Vv + uv

3. The H(div) case, where V = H(div, 2) anda(u,v) = [,V-uV.v+u-v

4. The H(curl) case, where V = H(curl, 2) anda(u,v) = fQ Vxu-Vxv+u-v

where the space V coincides with {v € L,(£2) : a(v,v) < oo}. For a generd
overview of the involved spaces including their finite element approximation we
refer to [48]. In all examples, the computation of an approximate solution uy to u
of (1) requiresthe solution of alinear system of algebraic equations

du=f with o = [a(Wj’wf)]szl @

whereyr = [y1,...,¥n] isabass of afinite dimensiona subspace Vy of V, see
e.g.[21,26,53].

In order to obtain a good approximation uy to u for a fixed space dimension
N of Vy, finite elements with higher polynomial degrees p, e.g. the p and
hp-version of the FEM, are preferred if the solution is piecewise smooth, see e.g.
[8, 28, 31, 42, 56, 58] and the references therein. The fast solution of (2) with an
iterative solution method like the preconditioned conjugate gradient method requires
two main ingredients:

« A fast matrix vector multiplication <7 u,
« Thechoice of agood preconditioner in order to accelerate the iteration process.

Preconditioners based on domain decomposition methods (DD) for hp-FEM are
extensively investigated in the literature, see e.g. [2,5,7,12,13,18,33,38-41, 44,46,
51] for the construction of DD-preconditionersand see [4, 10, 11, 27, 29, 30, 49] for
extension operatorswhich are required as one ingredient of the DD-preconditioners.
The matrix vector multiplication becomesfast if o7 isamatrix that has as many non-
zero entries as possible, i.e., it is a sparse matrix. Since the global stiffness matrix
& in finite element methods is the result of assembling of local stiffness matrices,
it is sufficient to consider the matrices on the element level.

In thissurvey, we will summarizethe choice of sparsity optimized basisfunctions
and the results for the above defined bilinear forms on triangular and tetrahedral
finite elements. The results and their proofs have been presented in [14-16, 19], see
aso[3,9,32,34,54,57] for the construction of scalar- and vector-valued high-order
finite elements. For fast integration techniqueswe refer to [36, 42, 47].

For proving the sparsity pattern of the various system matrices we use asymbolic
rewriting procedure to evaluate the integrals that determine the matrix entries
explicitly. For this rewriting procedure several identities relating several orthogonal
polynomialsare necessary. Over the past decadesalgorithmsfor proving and finding
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such identities have been developed such as Zeilberger’s algorithm [61, 63-65] or
Chyzak’s approach [23-25]. For a general overview on this type of algorithms see,
eg., [52].

The outline of this overview is as follows. Section 2 comprises severa results
about Jacobi and integrated Jacobi polynomialswhich are crucial for the sparsity of
the system matrices. Some general basics for the definition of tensor product based
shape functions on simplicia finite elements are presented in Sect. 3. The Sects. 4-7
include asummary of the definition of the basis functionsand the sparsity resultsfor
mass and maintermin L,, H', H(V-), and H (curl), respectively. Section 8 gives
a brief overview on the algorithm applied for symbolic computation of the matrix
entries.

2 Properties of Jacobi Polynomials with Weight (1 — x)“

Sparsity optimization of high-order basis functions on simplices relies on using
Jacobi-type polynomials and their basic properties which will be introduced in this
section.

Forn >0,a,8 >—1andx € [-1,1] let

cr
21011 — x)*(1 + x)P dx»

Pn(oz,ﬁ)(x) — ((1 — x)”+°‘(1 + )C)n+ﬁ) (3)

be the nth Jacobi polynomial with respect to the weight function (1 — x)*(1 + x)P.
The function P“? (x) is a polynomial of degreen, i.e. P“ (x) € P,((~1, 1)),
where IP,, (1) is the space of all polynomials of degree n on the interval 7. In the
special casea = B = 0, the functions po (x) are caled Legendre polynomials.
Mainly, we will use Jacobi polynomiaswith § = 0. For sake of simple notation we
therefore omit the second index in (3) and write p&(x) := p0 (x).

These polynomials are orthogonal with respect to the weight (1 — x)*, i.e. there
holds

! o o o o o 2a+1
/_1(1 —x) Pi(x)p; (x) dx = ijgjl, where p; = m- (4)

Thisrelation will be heavily used in computing the entries of the different mass and
stiffness matrices. Moreover forn > 1, let

() = /_ B0y, with 500 =1, (5)

be the nth integrated Jacobi polynomial. Obviously, p%(—1) = 0 forn > 1.
Integrated Legendre polynomials, by the orthogonality relation (4), vanish at both
endpoints of the interval. Summarizing, one obtains
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(=) =0, p’(1)=0 forn>2. (6)

Factoring out these roots, integrated Jacobi polynomials (5) can be expressed in
terms of Jacobi polynomials (3) with modified weights, i.e.,

o LHX
pr(x) = TP,f‘ill Y(x), n=>1, @)
~0 1—x%
Pp(x) = mpn—'z (), n>2. (8)

Thereare several further identitiesrelating Jacobi polynomials p¢ (x) and integrated
Jacobi polynomials (5) that have been provenin [19], [14] and [15]. These include
three term recurrencesfor fast evaluation as well asidentities necessary for proving
the sparsity pattern of the mass and stiffness matrices below. We give a summary of
all necessary identitiesin Sect. 8. For more details on Jacobi polynomials we refer
the interested reader to the books of Abramowitz and Stegun [1], Szegd [59], and
Tricomi [60].

3 Preliminary Definitions

We assume a conforming affine ssmplicial mesh. Although the basis functions are
defined on arbitrary simplices, the analysis of the basis functions can be performed
only on the reference elements 7" as defined in Fig. 1. The sparsity result on affine
meshes then follows by the mapping principle. An arbitrary simplex can be mapped
by an affine transformation to these reference elements. We mention that affine
transformations guarantee that polynomials are mapped to polynomials of the same
degree. The basis functions will be defined by means of barycentric coordinates
A; that are functions depending on x, y (and 2). For our reference triangle they are
given as

1-2x—y 1+2x—y I1+y
rMx,y)=——— hx,y)=—— ad A;(x,y)=——,
4 4 2
C=(0.1) D=(0,0,1)
El=[B,C] Fl=[AB.C|
E2=]C.A| F2=[A.C.D|
E3=[A.B| F3=[B,C.D|
Fi=[A.B.D|
E2 El
A=(-1,-D E3 B=(1,-1) A=(=1,-1,-1) B=(l-1-1)

Fig. 1 Notation of the vertices and edges/faces on the reference element 7* for 2d and 3d
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and for the reference tetrahedron they are defined as

1F4x —-2y—2z 1+2y—2z
Mpyg) = —— V7L Gy = 2T
8 4
142z
and A7) = 2

We mention that the barycentric coordinatesadd up to 1.

By viewing the triangle (tetrahedron) as a collapsed quadrilateral (hexahedron)
as suggested by Dubiner [34] and Karniadakis, Sherwin [42], we can construct
a tensorial-type basis also for smplices. For this purpose, we need the Duffy
transformation that maps the tensoria element to the simplicial element.

In two dimensions the Duffy transformation 2 mapping the unit square to the
reference triangle is defined as

2:0=[-1,1P-> T ith x=51-n), 9
En -y it y=n. ®

Using the inverse of the Duffy transformation, we can parameterize the triangle A
by

2x :Az(X,Y)—Al(an)
I—y  Aa(x,y) +Ai(x, )’

§= and 7=y =2A(x,y) -1
Besidesthe Duffy transformation, polynomial basis functionswhich vanish on some
or al edges of the triangle are required. Therefore, we introduce several auxiliary
bubbl e functions, which areimportant for the definition of our basisfunctions. More
precisely, the authors introduce the edge based function

N Aey—Ae i
gF (e y) =5 (5252 ) Qe + A’ (10)
ontheedge E = [ey, e2], running from vertex V,, to V,, and the bubbles

g ) =AY (BE) G+ ) and hy(xy) = 2@ - 1), (A1)

where the barycentric coordinates depend on x and y. Note that the functions in
(10) and (11) are polynomia functions of degreesi, i and j, respectively. Using
(6), one observes that the functions g© as defined in (10) vanish at the endpoints of
the edge E. In the same way, the functions g; (x, y) vanish at theedges E2 = [1, 3]
and E3 = [2, 3], whereas h;; vanishesat theedge E1 = [1,2].

In three dimensions the Duffy transformation mapping the unit cube to the
reference tetrahedron is defined as
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x=51-nl -0,

7:0=0LIF > T gy,

¢End -2

z=2_.
Using the inverse of the Duffy transformation we can parameterize the triangle A
b
Y £ = 4x My -Mx,p.2
1-2y—2z Aa(x,y.2+Ai(x,9,2’
p = 2y M(x,y,2) —Aa(x, y,2) —Ai(x,y,2)

1—z  A3(x,9.2) +A(x. 9.2 + A (x,y.2)]
§=2z=2X(x,y,2 — 1.
Here, the edge-based functions

W (v, 3.2) = B (F9552) e + h) (12)

are introduced on the edge £ = [ey, e3], running from vertex V,, to V,,. The face
based functions

o f Ap—A i 2i
uf == py (—Af +AJ; ) (Ap+an). Vi=p7""Ap—rpn—2s) (13)
2 1

are defined on the face F' = [ fi, f2, f3] characterized by the vertices V,, V, and
V. Thefunctions

ui(x,y,2) = (ikz_) (A2 + A1),
2+
Vi (x,y.2) := pi' 1(—2)&3 1__(1[ M)) (1—Aa)/, a4

and Wy (x,y,2) = pp P2k = 1)

will be central in the definition of the interior bubble functions. Again, the
barycentric coordinates depend on x, y and z For vector valued problems, the
lowest-order Nédélec function [50] corresponding to the edge E = [ey, e;] and the
lowest order Raviart-Thomas function, [20, 50], correspondingto F = [ f1, />, f3],
characterized by the vertices Vy,, Vy, and V, are defined by

O1E = Vg Aoy — Ao VA, and (15)

1//5 = Ir/f([)ﬁ’fzyj‘é] =AAVAE X VAL + A5 VAa X VA +A5VAg X VAg,

(16)

respectively.
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Thefunctions (10)—(14) and the choice of the weights for the Jacobi polynomials
are pivotal for obtaining the sparsity resultsin mass and stiffness matrices.

4 The L, Orthogonal Basis Functions of Dubiner

These basis functions have been introduced by [34], see also [42]. Another possible
construction principleis based on Appell polynomials, [6, 22, 35].

Let A; be atriangle with its baryzentrical coordinates A,,(x, y), m = 1,2,3.
Instead of (11), we introduce the auxiliary functions

Ay — Ay
A+ A

gi(x,y):=p} ( ) A 4" and hy(x,y) = P?iﬂ(zh - 1),

and define the L, orthogonal functions

Vi (x,y) = &, Dhy (x,9), 0<i,j, i+j<p
We prove this orthogonality for the reference triangle given in Fig. 1. The com-
putations are straight forward: after using the Duffy transformation the integrals

can be evaluated by a mere application of the orthogonality relation (4) for Jacobi
polynomials:

2x 2x 1-— itk
/fp?(l_y)p;?(l_y)( 2y) Y e () dix, y)

1 PN
— [ poneos [ (F31) Ara e
-1 -1

5 Do\ '
= m&k/l (T) P?H(’I)PIZIH(W) dn

_ 28k 1
IUEEYETN)

Now, let A, be a tetrahedron with its baryzentrical coordinates A,,(x,y), m =
1,2, 3, 4. With the auxiliary functions

Ay — Ay
A+ A

ﬂi(xvyvz) = p’O( )(AZ"‘AI)i,

] i (A= da—2 .
Vi (x,9,2) = pi't! (ﬁ) (A3 + A2+ A1),

and Wik (x, 9,2 = pp TP a— A — Ao — A3)
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the basis functionsread as
ik (x,y,2) = Ui (x,y, Vi (x,y, D)W (x,¥,2), i+j+k=<pi jk=0.

The evaluation of the L,-inner product is completely analogous to the triangular
case. For the reference tetrahedron as defined in Fig. 1, the final result is

48i18jn18kn
Qi+ +j+1)(2i +2j+2k+3)°

/f Vit (s 3. D (5. 9. 2) d(x, y.2) =

Also the sparsity results for the basis functions for H', H(div) and H(curl) are
proved by evaluation that proceeds by rewriting until the orthogonality relation (4)
for Jacobi polynomials can be exploited. These computations, however, become
much more evolved as indicated in the sections below and ultimately this task is
handed over to an algorithm, see Sect. 8.

5 Sparsity Optimized H'-Conforming Basis Functions

The construction of the basis functionsin this section follows [ 14, 15, 19]. Through-
out we assume a uniform polynomial degree p.

In order to obtain H '-conforming functions, the global basis functions have to
be globally continuous. In 2D, the functions are split into three different groups, the
vertex based functions, the edge bubble functions and the interior bubbles. In order
to guarantee a simple continuous extension to the neighboring element, the interior
bubblesare defined to vanish at all element edges, the edge bubbles vanish on two of
the three edges whereas the vertex functions are chosen as the usual hat functions.
In 3D, there additionally exist face bubble functions.

5.1 Sparse H!'-Conforming Basis Functionson the Triangle

Using the integrated Jacobi polynomials (5), we define the shape functions on the
affinetriangle A with baryzentrical coordinates A, (x, y),m = 1,2, 3.

* The vertex functions are chosen as the usual linear hat functions

Yym(x,y) = Au(x,y), m=1,2,3.

Let W2 := [Yv1, Yva, Yr3] bethe basis of the vertex functions.
» Foreachedge E = [ey, e2], running from vertex V,, to V,,, we define

W[El,ez].i(xv J’) = giE(xv J’)
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with the integrated Legendre type functions (10). BY Wi, c;) = [Vier.esi ]F—ss
we denote the basis of the edge bubble functions on the edge [e, e,]. ¥2 =
[¥i12). Y23, W11 | isthe basis of all edge bubble functions.

* Theinterior bubbles are defined as

sz(X,)’)=gz(xv)’)h:](x7)’)a l+.]§p31227.]217 (17)

where the auxiliary bubble functions g; and h;; are given in (11). Moreover,
w2 = [y;]:2/=" denotesthe basis of all interior bubbles.

i>2,j>1
Finally, let Wy, = [¥2. W2, 7] bethe set of all shape functionson A,.
Theinterior block of the mass and stiffness matrix on thetriangle A are denoted
by

. i+j<pk+I<p
Miss, = [ Wi =[] ad (19
A, i dik=2;j,1=1
s i+j<pk+I<p
KII,S,VZ = / [VWIZ]T . [qulz] = [aljzkl] ) s (19)
Ay K ik=2;jl=1

respectively.

Theorem 5.1. Let M, v, be defined via (18), then the matrix has &'(p?) nonzero
matrix entries. More precisely, ijz;kz =0if|i —k| €{0,2}or|i —k+j—1]| > 4.

Let K/ v, be defined via (19), then the matrix has &'(p*) nonzero matrix
entries. More precisely, a5, = 0if |i —k| > 20r [i =k + j — 1| > 2.

Proof. This sparsity result is proven by explicit evaluation of the matrix entries
using the algorithm described in Sect. 8, see also [ 14, 15]. However, we will givethe
interested reader a short impression of the proofs. After the affine linear mapping of
the element A, to the reference element A it sufficesto prove the results there. We
start with sketching the result for the mass matrix.

On the reference element 7', we have

2x 1=\ . 2x 1—y\F
@ _ [ o Y\ s2i-10,) 50 Y
()2 () (5

x PP (y) d(x, y)

by (11) and (17). With the substitution ¢ = f_—‘y and n = y, cf. (9), the integral
simplifiesto

@ 1 1 l_n i+k+1 ) .
i = [ pores [ (1) Ao oa

Using (35) for @ = 0, the integrated L egendre polynomials can be expressed as the
sum of two Legendre polynomials. The orthogonality relation (4) implies that the
first integral iszeroif |i — k| & {0, 2}.
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Fori = k, weobtain

o Lo\ 4
[y = ci /_1(—2) Py mpr ™ () dny

with some constants ;. Now, relation (36) is applied for 55~" () and 7'~ (7).
Thisgives

R L]\ 2F
i =an [ (F52) G+ R a0+ )

By the orthogonality relation (4), the term (p3'~' (1)) + p3'5' (1)) is orthogonal to
2i—

all polynomialsof maximal degree j — 2 with respect to the weight (—) ,eg.,
is orthogonal to ( ) (P () + p’ I(n)) € P;. Therefore, ;11(}2), = 0 for
j—1>4. Bywmmetry,weobtam,u 4y =0for|j —I]>4.Fork =i—2,one
obtains

~(2) ll—flzilzl ~2i—5

uf,, o = C‘/ (—2 ) i mpr' () dn.

—1

Again, by (36) and (4), theresult fi;;;;—» = 0for|j +2—1| > 4 follows.
For the stiffness matrix, the proof is similar. Starting point is the computation of
the gradient on the reference element, which is given by

Vi = pio—l‘(z—_xy) (?)H JZ )
T L () () e+ () () )

With this closed form representation at hand the computations follow the same
pattern as outlined for the mass matrix. O

Remark 5.2. Thefamily of basis functions defined by the auxiliary functions

Ay —
A

g = 7 (50 Gk 2 and (e = 7@ ), (20

for 0 < a < 4 havebeen considered in [15]. For a = 1, the functions coincide with
the functions given in (11). The sparsity optimal basis for H'! for both mass and
stiffness matrix is given by the choice « = 0 which also yields the best condition
numbersfor the system matrix.

The nonzero pattern obtained by Theorem 5.1 is displayed in Fig.2 for the
interior basis functions (17) obtained by (20) witha = 0 and ¢ = 1. The best
sparsity results are obtained for a = 0 with amaximum of nine nonzero entries per
row for the element stiffness matrix on the reference element A. Because of this
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Fig. 2 Nonzero pattern for p = 14: mass matrix M;; ; v, (above), stiffness matrix If,,,vz onT
(middle), stiffness matrix K;; 5 v, on general element (below) for the interior bubbles based on the
functions (20) witha = 0 (left) and @ = 1 (right)

change of the weightsin (20), the bandwidths of the nonzero blocks become larger
fora = 1.

This nonzero pattern has a stencil like structure which makesit simpler to solve
systemswith linear combinationsof M;; ; v, and K;; s v, using sparsedirect solvers
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Fig. 3 Maximal and reciprocals of the minimal eigenvalues for the stiffness matrix 13”_% (29)
on the reference dlement 7' for the basis functions based on (20) witha =0anda =1

as the method of nested dissection, [37], embedded in a DD-preconditioner. Thisis
an important tool if static condensation is used in order to solve the system (2). We
refer the interested reader for amore detailed discussion to [19].

Besides the sparsity, aso the condition numbers of the local matrices are
important. Figure 3 displays the diagonally preconditioned condition numbers of
the stiffness matrix K;; v, (19) on the reference element T for several polynomial
degrees. Numerically the condition number growsat least as & p?) for thefunctions
with @ =0. This is the best possible choice for interior bubbles in two space
dimensions.

5.2 Sparse H!'-Conforming Basis Functions on the Tetrahedron

The construction principle follows[14].

* Thevertex functions are defined as the usual hat functions, i.e.
Yym(x, 9,2 = An(x,y,2, m=1,234.

Let W) = [Yy.]h _, denotethe basis of the hat functions.
* With (12), the edge bubbles are defined as
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Yyl y) = uf (), forz<i<p

for an edge E = [ey, e2], running from vertex V,, to V,,. We denote the basis of
all edge bubble functions by

Vg = [[wi[l,z]];D:z ’ [w"[zﬂ]f:z ’ [w’p,l]]f:z ’ [wi[l,4]]f=2 ’ [%[2'4]];22 ’

[w"[&‘t]];”:z] '

» Foreachface F = [ fi, f2, f3], characterized by thevertices V,, Vy, and Vg, the
face bubbles are defined as

w{k(x,y,z) =u (X, y. ) Vi(x.y.2, i=2.j=lLi+j<p

using the functions (13). We denote the basis of all face bubble functions by

i+j=p i+j=p i+j=p
3 = [ [132,3]] [ [2:3,4]] [ [314,1]] ’
£ [ 1//”1 i=2,j=1 1/’,,, i=2,j=1 W,,, i=2,j=1

41271/ =r
[1//"’1' ]i=2,j=li|'
« With the functions (14), the interior bubblesread as

I//ijk(xv J’,Z) = ui(-xs Y, Z)Vij(.x, y,Z)Wijk(Jﬂ J’,Z)v

i+j4+k<pi=>2jk=>1.

i+j+k<p

Moreover, ¥} = [V | denotes the basis of the interior bubbles.

Let Wy 3 = [¥}, ¥}, ¥}, &} ] bethebasis of all shapefunctions.
Theinterior block of the mass and stiffness matrix on thetriangle A are denoted
by

s i+j+k<p;l+m+n<p
Mipsv; = / (N UZ R S and  (20)
Ay ’ il=2;jmln=1
s i+j+k<pil+m+n=<p
KII’S’V3 = / [VW?]T . [qu;] = I:azj?clmn] L. s (22)
Ay ’ i1=2;jkmn=1

respectively.

Theorem 5.3. The inner block of the mass matrix M;; v, has in total O(p?)
nonzero matrix entries. More precisely, ;jx;min = 0if [i—I| > 2, [i—l+j—m| > 4
orli—Il+j—m+k—n|>6.



34 S. Beuchler et al.

The inner block of the stiffness matrix K 5 v, hasin total O(p?) nonzero matrix
entries. More precisaly, wijksmin = 0if i =1| > 2, i =1 + j —m| > 3 or
i—l+j—m+k—n|>4
Proof. Evaluation of the matrix entries using the algorithm described in Sect. 8, see
also[14,15]. |

Remark 5.4. In[15], the auxiliary functions are defined in the more general form

(A=A l.
Ui (x,7.2) == p?(kjﬂ‘l)uzul),
243 — (1 — As) (23)
Vij (x,y,2) := ﬁ?i_a (31_—/\44) (1—24),

and i (x, 7. 2) i= p¢ T 2he = 1),

where the integersa and b satisfy 0 < @ < 4,a < b < 6. Theinterior bubbles
coincide with the functions given in [57], see also [42], if a = b = 0. To make
this equivalence obvious use the identities (7) and (8). This choice corresponds to
the sparsity optimal case for H'! for both mass and stiffness matrix. In this case the
results of Theorem 5.3 reduceto |i — /| > 2,|i =l + j —m| > 3or|i — [ +
j—m+k—n|>4forthemassmatrixand |i — 1| > 2,|i —[ + j —m| > 3 or
i =1+ j —m+k—n| > 2 for the stiffness matrix. The auxiliary polynomialsused
in this paper correspond to settinga = 1 and b = 2.

Again astencil like structure for mass and stiffness matrix is obtained. However,
the elimination of the interior bubbles by static condensation with nested dissection
is much more expensive in the 3D case than in the 2D case. The computational
complexity isnow &'( p®) flopsin comparisonto &' ( p?) flopsin the two-dimensional
case.

Besides the sparsity, also the condition numbers of the local matrices are
important. Figure 4 displays the condition numbers of the stiffness matrix K, 1.V;

a=1,b=2 10t a=1,b=2
a=1,b=1 > a=1,b=1 .
10° f|-4- a=1,b=0 -9~ a=1,b=0 ¥
*- a=0b=2 -+ a=0,b=2 T

5 a=0,b=1 a=0,b=1 2 e

107 H x a=0b=0 N * a=0,b=0 B 5 .3
-o- a=0b=-1 _ & -o- a=0,b=-1 PR 3
a4 N ’/0‘ PR RIS )“'
<F 10 o e 3 ,,;/o Jpes
< v L& < AL =3
’ - - £ 4
10° v~ Lo g ; o
o &% 5 o
& g ¥ o H

2 e & -8 2 e
10 A g7 * R et

N P ot
10 Tt g & ‘»‘ﬁ“

ok -
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p p

Fig. 4 Maximal (right) and minimal (left) eigenvalues for the diagonally preconditioned stiffness
matrix K, v, (22) on the reference element 7" for different values of a and b in (23)
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(22) on the reference element T for severa polynomial degrees and several choices
of auxiliary functions (14) and (23). Numerically, the condition number grows as
least with &'(p*).

6 Sparsity Optimization of H(div)-Conforming
Basis Functions

The following construction of H (div)-conforming finite elements applies the ideas
on sparsity optimization on simplices of [14, 15, 19] to the general construction
principles of H (div)-conforming high-order fe bases developed in [62] and [55]. A
detailed description of both the two and three dimensional case can befoundin [16].
In the sequel, we only report the results for tetrahedra.

Let A, denote an arbitrary non-degenerated simplex A, C R3, its set of four
vertices by v = {Vl, V2, Vi3, V4}, V: € RS, and A, A2, A3, Ay € PI(AS) its
barycentric coordinates. Globa H (div) conformity requires normal continuity over
element interfaces, which can be easily achieved by using aface-interior-based high-
order finite element basis. The general construction follows [55, 62]: The set of
face-based shape functions consists of low-order Raviart-Thomas shape functions
and divergence-free shape functions. The set of interior based shape functions are
split into a set of divergence-freefields (rotations) and a set of non-divergence-free
completion functions. Using the appropriately weighted Jacobi-type polynomials of
Sect. 3 the H (div)-conforming shape functions on the tetrahedron are defined as
follows.

» Foreachface F = [fi, f2. f3], characterized by the vertices Vy,, Vy, and V¢, we
construct the face based basis functions as follows. First, we choose the classica
Raviart-Thomas function of order zero v (16) and add the divergence-free
higher-order face based shape functions

Vi =V x ((p{f"fZ]Vﬁ»), 1=<j=p
w,f::vX(vav};):—vaxvvg, 2<isl<jii+j<p+1
(24)

where we use the face-based Jacobi-type polynomials (13) and the lowest-order
Nédélec function (15) corresponding to theedge [ f1, f>]. Let

ol = (v v v vy | (25)

denote the row vector of low-order shape functions,

=[] [
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denote the row vector of the faced-based high-order shape functions of one fixed
face F, and
(Wil = [[F] (@52 [wF] [wF ] (26)

be the row vector of al face-based high-order shape functions.
« The cell-based basis functions are constructed in two types. First we define the
divergence-free shape functions by the rotations

a 1,2
Y0 (x.y.2) =V x (016, .2 Vo (x. 9. 2) Waje (x. ¥, ).
Jk=1j+k<p,
b
Vi (x.y.2) =V x (VUi (x. y.2) Vij (x. y. D) Wijc (x. 7. D).
i>2%jk>1Li+j+k<p+2,

Vi y.2) 1=V x (VUi (x.5.2) Vij (x. . D) Wij (x. 1. 2)).

i>2%jk>1Li+j+k<p+2,
and complete the basis with the non-divergencefree cell-based shape functions
a 1,23
Vi (e 0.2 = 9y 2 o (x. v, 2),
l<k=<p-1,

b 1,2
V.2 =00 T (xy.2) x VWi (x. p.2) Vo (x. . ),

k=1 j+k=<p,

(t)

Vi (x.y.2) 1= Wik (x, y,2) VUi(x,y,2) x VV;(x, y,2),

i>2jk>1i+j+k=<p+2,

Wherew([)l’z’3] (x, y, 2) denotesthe Raviart-Thomasfunction (16) associated to the

bottom face 1, 2, 3] and go[l Z isthe Nédélec function (15) associated to the edge
[1,2]. Theauxiliary functionsu;, v;; and w;;; have been defined in (14).
Finally, we denote the row vectors of the corresponding basis functions as
_ (a) Jt+k=p
W] = [lek(x, Y Z)] kst
i+j+k<p+2

i>2,7.k,>1

) = [vi(x. 0.2
1=[v

() ]l+]+k_

+
Vi (X, 9,2) , for the divergence-free parts, and
7 i>2,jk>1

- @ = [T 2]
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A () Jrksr
W] = [Vfljk(x’y’z)]j,k,zl »and
~ ~(c) i+j+k<p+2 i i
A [wijk(m%z)] e for the non divergence-free polynomials.
i>2,j.k>

The set of the interior shape functionsis denoted by

W] =[] W] ] with  [¥] == [ [@.] [¥] [¥]].
(W] := [ W] (W3] [¥.]]. (27)

Using (25)—(27), the complete set of low-order-face-cell-based shape functions
on the tetrahedron is written as

[Wv.] = [[¥0] [¥;] [¥;]]- (28)

Let
K. = / [V-wy]T[V-¥y] (29)

s

be the element stiffness matrix with respect to the basis (28) and
Moo= [ W17 W) (30

be the block of the interior bubbles of the mass matrix. The following orthogonality
results can be shown.

Theorem 6.1. Let theset [Wy.] of basisfunctionsbe defined in (28). Then, the fluxes
[V - ¥;] are L,-orthogonal to [V - ¥y.]. Moreover, the stiffness matrix K. (29) is
diagonal up to the 4 x 4 low-order block agiv ([¥o], [¥0])-

The number of nonzero matrix entries per row in the matrix M;;,. (30) is
bounded by a constant independent of the polynomial degree p.

Proof. Thefirst result can be proved by straightforward computation. For the mass
matrix, the assertion follows by evaluation of the matrix entries using the algorithm
described in Sect. 8, see also [16]. O

Dueto aconstruction based on the Jacobi type polynomials(14), the nonzero pattern
of thematrix M/ ;. in (30) hasagain astencil like structure asthe matrices M;; ; v,
and K;7,.v, in (21) and (22) for the H' case. Also the growth of the condition
number is as &'(p*). However, the absolute numbers for a fixed polynomial degree
p are higher than for the H'! case.

The divergence of the inner basis functions vanishes for the first part and
coincides with the higher-order L,-optimal Dubiner basis functions for the second
part. Hence, the results for the element stiffness matrix K. are strongly related to
the L, results of Sect.4. Namely, K. is diagonal up to the low-order block. The
nonzero pattern for mass and stiffness matrix isdisplayedin Fig. 5 for p = 15.
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Fig. 5 Optimally weighted Jacobi-type basis [¥v.] for p = 15: Above: Sparsity pattern of inner
block M ;. of element mass (left, above) and element stiffness matrix K. (right, above) on

reference tetrahedron A . Below: Sparsity pattern of inner block M ;. of mass matrix (l€ft, below)
and stiffness matrix K. on agenerd affine tetrahedron A, (right, below)

Besides sparsity the appropriately chosen weights imply a tremendous improve-
ment in condition numbers of the system matrices (even for curved element
geometries) as reported in [16].

7 Sparsity Optimized H (curl)-Conforming Basis Functions

The sparsity results for H (curl)-conforming basis functionsincluded in this section
will be presented in a forthcoming paper [17]. Again, the general construction
principle follows [54] and [62]. The sparsity optimization will be performed only
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for the interior basis functions. Hence, in the sequel we restrict ourselves only to
the definition of interior functions, while the edge and face based functions can be
taken from [54].

The interior (cell-based) basis functions are constructed in two types. First we
define the curl-free shape functions by the gradients

Pu(x. 3.2 1= V(U(x.y.2) Vi (x. y.2) Wije (x. . D),

(31)
i>2jk>Li+j+k<p+1
and complete the basis with the non-curl free cell-based shape functions
5@ ( 2] , ,
P (X, 3.2 1= 7 (x, Y, Vi (x, ¥, Wik (x, ¥, D),
k=1 j+k=<p—1,
GuN(x. y.2) 1= VUi (x. 3. 2)Vyj (x, . Wik (x. . 2), -

i>2jk>Li+j+k<p+1,

i (x.3.2) = V (U(x, 3, 2Vij (x, ¥, 2)) Wyja (x, . 2,

i>25k>1i+j+k<p+1,

where (/)[1 2l s the Nédéec function (15), and u;, v;; and w;j; are defined in (14).
Finally, we denote the row vectors of the corresponding basis functions as
® 9 TSI s the gradient fields, and
(D] = [(P,,k(x ¥, Z)] o iy COSthegradientfields an
.3 (a) jt+k<p—1
@l =[Fn@],
LG [ i+j+k<p+l
[@0] = [ ’/k(x y,Z)] i>2,jk>1 and
5 (c i+j+k<p+1
@)= [Feer2]

asthe non curl free functions. The set of interior basis functionsis denoted by
(W] = [[@s] [@2]] with [@] :=[[@,] [@s] [@.]]. (33)

Finally, we introduce

Ks,[[,x = / [V X WVX]T . [V X WVX] and Ms,II,X = / [WVX]T : [WVX]
Ay A

s

(34)

as the stiffness and mass matrix with respect to the interior bubbles (33), respec-
tively.
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Theorem 7.1. The matrices K ;; x and M; ;; x (34) are sparse matrices having a
bounded number of nonzero entries per row. The total number of nonzero entries
growsas 0'(p3).

Proof. The result follows from the construction principle of the basis functions
in (31), (32) and Theorems 5.3 and 6.1. We refer the reader for a more detailed
discussion to [17]. O

8 Integration by Rewriting

In this section we present the algorithm that is used to evaluate the matrix entriesfor
different spaces and choices of basis functions. As indicated earlier, the basic idea
isto apply arewriting procedure to the given integrands that yields a reformulation
of theintegrand as a linear combination of products of the form

1—x\”
(T) pi (%) p§ (x).
These terms then can be evaluated directly by the Jacobi orthogonality relation (4).
Below we use the short-hand notation w, (x) = (15*)“ for the weight function.

For the necessary rewriting steps severa relations between Jacobi polynomials
and integrated polynomials are needed that have been provenin [14,15,19] and are

summarized in the next lemma.

Lemma 8.1 Let pf(x) and pS(x) be the polynomials defined in (3) and (5). Then
for all » > 1 we have therelations

P = (2n+j{(fl—§((12)n Ty P+ (2n+oe—2;;(2n+a) Pi=1(¥)
T nta i(’11)(_2;11)+ o« —2) P20 @z -1 (3
pp(x) = m[lﬁﬁ_l(x) + 7S ()], a>-1, (36
(@—1)pg(x) = (1 —=x) py_(x) +2 py (%), a>1. (37)
e LR A B e N TS R

After decoupling the integrands by means of the Duffy transformation, the
integrals are evaluated in the order given by the dependencies of the parametersa.
For each of these univariate integrals the following algorithm is executed:
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1. Collect integrands depending on the current integration variable.

. For each integrand: Rewrite integrated Jacobi polynomials in terms of Jacobi
polynomialsusing (35), (36), or (37).

3. Collect integrands depending on the current integration variable.

4. For each integrand: Adjust Jacobi polynomialsto appearing weight functions.

5

6

N

. Collect integrands depending on the current integration variable.
. For each integrand: Evaluate integrals using orthogonality relation (4).

The two steps of the algorithm that need further explanations are steps 2 and 4.
Indeed, let us consider steps 2 and 4 in detail: which of the identities relating
integrated Jacobi polynomials and Jacobi polynomials (35)—(37) have to be used
in step 2 depends on the difference y — o of the parameters of pg(¢) and of the
weight function w,, (¢).

2. Rewritew, (¢) p (¢) in terms of Jacobi polynomials

(8 y —«a > 0: transform integrated Jacobi polynomials to Jacobi polynomials
with same parameter using (35).

(b) y —a = —1: transform integrated Jacobi polynomials to Jacobi polynomials
with parameter o« — 1 using (36).
(¢) y —a = —2: usethe mixed relation (37) to obtain

2
W OF O = = (WEOPLO + W ©P]5©).

If none of the cases 2(a)-2(c) applies, the algorithms interrupts and returns the
unevaluated integrand for further examination. Such an output can lead either to
a readjustment of the parameters of the basis functions, or to the discovery of
a new relation between Jacobi polynomials that needs to be added to the given
rewrite rules. This finding of new, necessary identities can again be achieved with
the assistance of symbolic computation, e.g., by means of Koutschan's package
HolonomicFunctions[45] or Kauers package SumCracker [43].

Rewriting the Jacobi polynomials p%(¢) intermsof pj, (¢) fitting to the appearing
weights w,, ({) in step 4, means lifting the polynomia parameter o using (38)
(y — «) times. This transformation is performed recursively for each appearing
Jacobi polynomial.

4. Rewrite the Jacobi polynomials p¢ (¢) in terms of Jacobi polynomials fitting to
the appearing weightsw, () (y — « > 0) by lifting the polynomial parameter o
using (38) (y — a)-times, i.e., written in explicit form we have

y—a
o _ _1\k y —« (n—l—y—m)
PO = 3 (-1) ( - )(2n+y_m+

y=a=m m

e @n—2m+y+1)

m=0

X pr_m (),

whereak = a(a —1)-...- (a — k + 1) denotesthe falling factorial.
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If y—a < 0theagorithminterrupts. In this step of the algorithm polynomialsdown
to degreen — y + « are introduced. Hence this transformation is a costly one as it
increases the number of terms significantly.
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Fast Solversand A Posteriori Error Estimates
in Elastoplasticity

Peter G. Gruber, Johanna Kienesberger, Ulrich Langer, Joachim Schoberl,
and Jan Valdman

Abstract The paper reports some results on computational plasticity obtained
within the Special Research Program “Numerical and Symbolic Scientific Com-
puting” and within the Doctoral Program “Computational Mathematics” both
supported by the Austrian Science Fund FWF under the grants SFB F013 and
DK W1214, respectively. Adaptivity and fast solvers are the ingredients of efficient
numerical methods. The paper presents fast and robust solvers for both 2D and 3D
plastic flow theory problems as well as different approaches to the derivations of a
posteriori error estimates. In the last part of the paper higher-order finite elements
are used within a new plastic-zone concentrated setup according to the regularity of
the solution. The theoretical results obtained are well supported by the results of our
numerical experiments.

1 Introduction

The theory of plasticity has a long tradition in the engineering literature. These
classical results on plasticity together with the introduction of the Finite Element
Method (FEM) into engineering computations provides the basis for the modern
computational plasticity (see [59] and the references therein). The rigorous math-
ematical analysis of plastic flow theory problems and of the numerical methods
for their solution started in the late 70ies and in the early 80ies by the work of
C. Johnson [33, 34], H. Matthies [43, 44], V.G. Korneev and U. Langer [42], and
others. Since then many mathematical contributions to Computational Plasticity
have been made. We here only refer to the monographs by J.C. Simo and
T.J.R. Hughes [53] and W. Han and B.D. Reddy[31], to the habilitation theses by
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C. Carstensen [12] and C. Wieners [57], to the collection [54], and the references
given therein.

The incremental elastoplasticity problem can be reformulated as a minimization
problem for a convex but not-smooth functional, where the unknowns are the
displacements u and the plastic strains p. One method to deal with this non-
smoothness relies on regularization techniques which were initially studied in [37].
However, eliminating the plastic strains p and using Moreau’s theorem, we see that
the reduced functional, that is now only a functional in the displacements u, is
actually continuously Fréchet differentiable. The elimination of the plastic strains
can be done locally and with the help of symbolic techniques. Unfortunately,
the second derivative of the reduced functional does not exist. As a remedy, the
concept of slanting functions, introduced by X. Chen, Z. Nashed, and L. Qi in
[17], allows us to construct and analyze generalized Newton methods which show
fast convergence in all our numerical experiments. More precisely, we can prove
super-linear convergence of these generalized Newton methods at least in the finite
element setting.

The second part of this paper is devoted to the a posteriori error analysis of
elastoplastic problems. Two different techniques were developed: the first one is
exploring a residual-type estimator respecting certain oscillations, and the second
one is based on functional a posteriori estimates introduced by S. Repin [48].

Finally, we consider spatial discretizations of the incremental plasticity problems
based on Ap finite element techniques. A straightforward application of the classical
h-FEM vyields algebraic convergence. However, the regularity results presented in
[6,41], namely H2_ regularity of the displacements in the whole domain, and C >
regularity apart from plastic zones and the boundary of the computational domain,
justify the application of high order finite element methods in the elastic part, but
not necessarily in the plastic part. A few hp-adaptive strategies, as well as a related
technique, the so-called Boundary Concentrated Finite Element Method (BC-FEM)
introduced by B.N. Khoromskij and J.M. Melenk [35], are discussed in this paper.

The rest of the paper is organized as follows: In Sect. 2, we describe the initial-
boundary value problem of elastoplasticity which is studied in this paper. Section 3
is devoted to the incremental elastoplasticity problems and strategies for their
solution. In Sect. 4 we derive a posteriori error estimates which can be used in the
adaptive h-FEM providing an effective spatial discretization in every incremental
step. Section 5 deals with the use of the hp-FEM in elastoplasticity. Finally, we
draw some conclusions.

2 Modding of Elastoplasticity

There are many mathematical models describing the elastoplastic behavior of mate-
rials under loading. In this paper we follow the description given by C. Carstensen
in [12-15]. The classical equations of elastoplasticity can be found in the standard
literature on plasticity, see, e.g., [31,53]. Let us first recall these describing relations.
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Let ® := [0, T] be a (pseudo) time interval, and let §2 be a bounded domain in R3
with a Lipschitz continuous boundary I := d£2. In the quasi-static case which is
considered throughout this paper, the equilibrium of forces reads

—div(o(x,1)) = f(x,t) V (x,t) e 2x6O, 1)

where o (x,t) € R is called Cauchy’s stress tensor and f(x,t) € R? represents
the volume force acting at the material point x € §2 atthetimer € ®. Let u(x,?) €
R? denote the displacements of the body, and let

1

e(u) := = (Vu+ (Vu’) (2)

N |

be the linearized Green-St. Venant strain tensor. In elastoplasticity, the total strain ¢
is additively split into an elastic part e and a plastic part p, that is,

e=e+ p. 3)
We assume a linear dependence of the stress on the elastic strain by Hooke’s law
o =Ce. 4)

Since we assume the material to be isotropic, the single components of the elastic
stiffness tensor C € R¥>*3*3<3 are defined by Cyju; := A8i; ki + (8ix 81 + 818 k).
Here, A > 0 and p > 0 denote the Lamé constants, and §;; the Kronecker symbol.

Let the boundary I" be split into a Dirichlet part ', and a Neumann part I'y
such that I' = I'p U I'y. We assume the boundary conditions

u=up onlp and o-n=g only, (5)

where n(x, t) denotes the exterior unit normal, up (x, t) € R? denotes a prescribed
displacement and g(x,¢) € R? denotes a prescribed traction. If p = 0 in (3), the
system (1)—(5) describes the linear elastic behavior of the continuum £2.

Two more properties, incorporating the admissibility of the stress ¢ with respect
to a certain hardening law and the time evolution of the plastic strain p, are
required to describe the plastic behavior of some body §2. Therefore, we introduce
the hardening parameter « and define the generalized stress (o, @), which we call
admissible if for a given convex yield functional ¢ the inequality

¢(0,a) <0. (6)

holds. The explicit form of ¢ depends on the choice of the hardening law, see,
e.g., formula (9) for isotropic hardening. The second property addresses the time
development of the generalized plastic strain (p, —«), described by the normality
rule
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((p.—a), (v.p) = (0,@))r =0 V(7. B) which satisfy ¢(z, ) =0,  (7)
where p and ¢ denote the first time derivatives of p and «, respectively. Finally, let
p(x,0) = po(x) and a(x,0) =ag(x) VYxeL, (8)

for given initial values p : £2 — RJ5 and &g : 2 — [0, 00,
Problem 1 (classical formulation). Find (u, p, ), which satisfies (1)—(8).

In this paper we concentrate on the isotropic hardening law, where the hardening
parameter « is a scalar function « : £2 — R and the yield functional ¢ is defined by

|devo|r —oy(1+ Ha) ifa >0,
ifa <0.

p(0.a) = (9)

Here, the Frobenius norm ||A|r := (4, A)}V/2 is defined by the matrix scalar
product (4, B)r := Y, a;jbi; for A = (a;;) € R¥>3 and B = (b;;) € R¥S.
The deviator is defined for square matrices by devA4d = A4 — %I, where the trace
of a matrix is defined by tr A = (A, I)r and I denotes the identity matrix. The
real material constants o, > 0 and H > 0 are called yield stress and modulus of
hardening, respectively.

3 Thelncremental Elastoplasticity Problemsand Solvers

We turn to the specification of proper function spaces. For a fixed time ¢ € @, let

ueV :=[H'@)], peQ =L, acli(2).

sym >

Further, let Vp :={ve V [ v =up} and Vo :={veV |y, =0}, with

(u, vy = / (U'v+ (Vu, Vv)F) dx, IVllv == (v, v)}/?,
2
(roaloi= [ a)rdv laloi= o a)f"
2

Starting from Problem 1, one can derive a uniquely solvable time dependent
variational inequality for unknown displacementu € {ve H'(®;V) | Vi, =Up}
and plastic strain p € H'(®; Q) (see [31, Theorem 7.3] for details). However,
the numerical treatment requires a time discretization. Therefore, we pick a fixed
number of time ticks 0 = 7y < #; < ... <ty, = T outof &, and define
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We :=U(t), pr = plte), ox :==ate), fi:= f(t). ge:=gW), ...,
and approximate time derivatives by the backward difference quotients

Pk ~ (px — pk—1) [ (tx —tr—1) and oy ~ (o —o—1) / (tx — ti—1) -

Consequently, the time dependent problem is approximated by a sequence
of time independent variational inequalities of the second kind. Each of these
variational inequalities can be equivalently expressed by a minimization problem,
which by definition of the set of extended real numbers, R := R U {00}, reads
[14, Example 4.5]:

Problem 2. Find (ux, px) € Vp x Q such that Ji (Ug, px) = infygyevpxo Jk(V, q),
where J; : Vi x O — R is defined by

1
Jiv.q) = 3 16¥) — gl + Yila) ~ V) (10)
with
@1, go)e i= /Q Cq(). gardx, lalle == (g )2, (11)
(@) = s + 0y Hllq — pi . (12)

| Jo Gax(@)?* + oyllg — peillF) dx if tr(g — pr—1) =0,
Viq) = { Ja y o )

I (V) :=/ka-vdx+/r gk - v ds. (14)

The convex functional J; expresses the mechanical energy of the deformed
system at the kth time step. It is smooth with respect to the displacements v, but
not with respect to the plastic strains g. Notice, that no minimization with respect
to the hardening parameter o is necessary. It is computed in the post-processing
by ax = i (pr), with & defined as in (12). A short summary on the modeling of
Problem 2 starting from the classical formulation can be found in [40]. The problem
is uniquely solvable due to [22, Proposition 1.2 in Chap. I1].

J. Valdman together with M. Brokate and C. Carstensen published results on
the analysis [10] and numerical treatment [11] of multi-yield elastoplastic models
based on the PhD-thesis of J. Valdman [55] and its extension. The main feature of
the multi-yield models is a higher number of plastic strains p,, ..., py used for
more realistic modeling of the elastoplastic-plastic transition. Since the structure
of the minimization functional in the multi-yield plasticity model remains the
same as for the single-yield model, it was possible to prove the existence and
uniqueness of the solution of the corresponding variational inequalities and design
a FEM based solution algorithm. In terms of a software development, an existing
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Fig. 1 Example of two-yield
plasticity distribution
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Fig. 2 Plot of | p| and its regularizations

elastoplasticity package [36], written as a part of the NETGEN/NGSolve software
of J. Schoberl, was modified to make the computations of a two-yield elastoplastic
problem feasible [39]. Figure 1 displays elastic (blue), first (red) and second (green)
plastic deformational zones of the shaft model. The numerical treatment of the
two-yield problem requires to resolve the plastic-strain increment matrices P; and
P, from a local minimization problem with a convex but non-smooth functional.
Since there are typically millions of such minimizations, iterative techniques such as
alternating minimizations, Newton based methods or even partially exact analytical
solutions were studied in [32].

The first class of algorithms is based on a regularization of the objective,
where the modulus is smoothed for making the objective Jk(‘” twice differentiable.
Figure 2 shows the modulus |p| := ||px — px—1llF and possible regularizations
|p|® depending on the regularization parameter §, where § is here chosen as
107°. The quadratic regularization has a smooth first derivative within the interval
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(-4, 8), but the second derivative is piecewise constant and discontinuous. Thus,
the local quadratic convergence of Newton type methods cannot be guaranteed. The
piecewise cubic spline has a piecewise linear continuous second derivative. Thus,
Newton type methods can be applied. As a final choice of regularization, the cubic
spline function is shifted to the origin, so that | | = 0 holds for p = 0.

For instance, in case of a quadratic regularization (green), we have

R I T
3551+ 5 if | pl <8,
with a small regularization parameter § > 0.

The algorithm is based on alternating minimization with respect to the two
variables, and on the reduction of the objective to a quadratic functional with respect
to the plastic strains. This can be interpreted as a linearization of the nonlinear
elastoplastic problem.

The minimization problem with respect to the plastic part of the strain is
separable and the analytical solution p®(u) can be calculated in explicit form.
Problem 2 formally reduces to

Iy = min TP, p®vy). (15)

After the finite element (FE) discretization and the elimination of plastic strains,
the FE displacement field results from the solution of a linear Schur complement
system. The solution of this linear system can efficiently be computed by a multi-
grid preconditioned conjugate gradient solver, see [38, 39].

Using Moreau’s theorem, that is well known in the scope of convex analysis
[46], we can avoid the regularization of the original functional J;. The formula for
minimizing Ji (u, p) with respect to the plastic strain p for a given displacement u
is explicitly known [2], i. e., we know a function py (e(u)), such that there holds

Ji(W) 1= Jie(U. pr(e())) = inf Ji (u. g).

In detail, the plastic strain minimizer reads as follows

dev oy (e(V))

ldevor ey TP (49

pr(e(V)) = & max{0. [|devor (V)| r — oy}

with the constant £ := (1 + oﬁHZ) 1, the trial stress oy (e(Vv)) := C (e(V) — pr—1),
and the deviatoric part devo := o — (tro/3) 1. Thus, it remains to solve a
minimization problem with respect to one variable only, i.e. Ji(u) — min. The
theorem of Moreau says, that, due to the specific structure of J; (u, p), the functional
Ji(u) is continuously Fréchet differentiable and strictly convex. Moreover, the
explicit form of the derivative is also provided. The Gateaux differential is given
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by the relation
D Jk(v;w) = (&(V) — pr(e(V), eW))c — L (W). (17)

Hence, it suffices to find u such that the first derivative of F vanishes. This approach
was first discussed in the master thesis [25] by P.G. Gruber. Several numerical
examples can also be found in [24, 29, 30].

The second derivative of J; does not exist. As a remedy, the concept of
slanting functions, introduced by X. Chen, Z. Nashed, and L. Qi in [17], allows
the application of the following Newton-like method: Let V' € V) be a given
initial guess for the displacement field. Then, for j = 0,1, 2, ... and given v/, find
v/ 1 e Vp such that

(D J)° (Vv v w) = —D Ji (V ;w) (18)

holds for all w € V}, where the slanting function of D J; is defined by the identity
(D J)” (v Wi, Wo) = (e(Wr) — pi’(e(V) ; e(W1)), e(Wa))e VWi W5 € V.
Here, (D J;)° is a slanting function for D J; in (17) if and only if p;° serves
as a slanting function for p; in (16). By using the definition B (s(v)) := 1 —

o, |[devor (e(v))|| 7', and the abbreviations B (e(v)) := Bx and ok (s(V)) = oy,
a candidate for the slanting function reads

if B <0,
£ (ﬁk devg + (1 — By) Levondevalr dchrk) else.

2
lldev oy | %

pr’(e(V): q) =

Utilizing this concept, P. G. Gruber and J. Valdman [29, 30] were able to prove
the local super-linear convergence of the resulting Newton-like solver in the spatial
discretized case (see Table 1). It is still an open problem, if 5} serves as a slanting
function for p; in the continuous setting, i. e., when p; is a Nemytskii operator
mapping from L ,(£2) into L,(£2) with p > 2. The assumption, that the Newton-
like iterates v/ of (18) are in the Sobolev space W12+ (£2), where (¢;) ey is
a strictly decreasing positive sequence, may be helpful in this respect, see also
[23]. At least the convergence of a damped Newton-like method could be shown
in the dissertation of P. Gruber [27] by using a concept of E. Zeidler [58]. An
extension of the numerical solver to other kinds of time-dependent models with
internal variables, as discussed in [28], is possible and left for future investigation.

The slant Newton method is tested on a benchmark problem in computational
plasticity [54]. The left plot of Fig. 3 shows the mesh for the right upper quarter of a
plate with geometry (—10, 10) x (—10, 10) x (0, 2) and a circular hole of the radius
r = 1 in the middle. One elastoplastic time step is performed, where a surface load
g with the intensity |g| = 450 is applied to the plate’s upper and lower edge in outer
normal direction. Due to the symmetry of the domain, the solution is calculated on
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Table 1 Convergence behavior of the slant Newton method for different refinement levels

DOF: 717 5736 45888 367104
step 1: 1.000e+00 1.000e+00 1.000e+00 1.000e+00
step 2: 1.013e—01 1.254e—01 1.367e—01 1.419e—01
step 3: 7.024e—03 6.919e—03 7.159e—03 6.993e—03
step 4: 1.076e—04 9.359e—05 1.263e—04 1.176e—04
step 5: 2.451e—08 6.768e—07 1.744e—06 1.849e—06
step 6: 7.149e—15 6.887e—12 4.874e—09 1.001e—08
step 7: 4.298e—13 2.368e—14
WE,SQ%-OB 1.139e-02

Fig. 3 Coarsest triangulation (left) and the Frobenius norm of the plastic strain field p (right)

one quarter of the domain only. Thus, homogeneous Dirichlet boundary conditions
in the normal direction (gliding conditions) are considered for both symmetry axes.
The material parameters are set to

A= 1.1074%10°, pu =8.0194%10*, o, =450/2/3, H =025

Differently to the original problem in [54], the modulus of hardening H is nonzero,
i. e. hardening effects are considered. The numerical results for the original problem
(H =0) can be found in [24]. The two plots in Fig. 3 show the coarsest tetrahedral
FE-mesh with the applied traction g (left), and the Frobenius norm of the plastic
strain field p (right). Table 1 outlines the convergence of the slant Newton method,
where the initial values for the displacement are chosen to be zero at each level
of refinement. The number of degrees of freedom (DOF) is given in the first row.
The following rows show the super-linear convergence of the Newton iterates with
respect to the Cauchy test ||u; — u;—i||/(J|u; ]| + |[ui—1]]). The implementation was
done in the NETGEN/NGSolve software package developed by J. Schaberl [51].
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4 Adaptive h-FEM and A Posteriori Error Estimates
for Elastoplasticity

The efficient numerical treatment of problems with poor regularity of the solution
can be realized with adaptive mesh refinement techniques based on a posteriori error
estimators. An h—finite element adaptive algorithm consists of successive loops of
the form

SOLVE — ESTIMATE — MARK — REFINE (19)

designed to produce more efficient meshes by targeted local refinements with
less computational effort. The a posteriori error analysis of (19) started with the
pioneering work of [4] for a two-point elliptic boundary value problem and with
the step MARK realized by the max refinement rule. This marking rule currently
employed in the engineering literature consists in looking at the elements with
the largest error and refining these in order to achieve a better accuracy. Let
n* =", n, denote a typical reliable error estimator with local contributions 7,
associated with an edge, face, or element M in the current mesh, the max refinement
rule marks a subset .# according to

L e # ifandonlyifn, > ©® max (20)

with 0 < ® < 1. The analysis of [4], however, does not provide information on the
convergence rate and its extension to higher dimensions still remains unsolved. It is
only after the contribution of Dorfler [20] with the introduction of a new marking
strategy for error reduction (hereafter referred to as bulk criterion or fixed fraction
criterion) that the convergence analysis of AFEMs has experienced significant
development. With such criterion, one defines the set .# of the marked objects
using the rule
> Mz en (21)
Me.#
with 0 < ® < 1. The condition (21) together with local discrete efficiency estimates,
and the Galerkin orthogonality yields a linear error reduction rate for the energy
norm towards a preassigned tolerance TOL in finite steps for the Poisson problem.
In [16], a proof of convergence of AFEM with indication of the rate of
convergence for the primal formulation of plasticity is provided under the
application of the bulk criterion (21). Applications include several plasticity models:
linear isotropic-kinematic hardening, linear kinematic hardening, multi-surface
plasticity as model for nonlinear hardening laws, and perfect plasticity. Exploiting
properties of a non-differentiable energy functional J, and the reliability of a new
edge-based residual error estimate, we obtain the following results:

(i) Energy reduction: for some data oscillations osc? > 0 and positive constants
e, C with pg < 1 there holds
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J(Wet1) — J(W) < pg(J(We) — J(W)) + C osc?.

Here, J(w) denotes a minimal energy and J(w,) and J(wWy4+;) are energies on
refined triangulations 9 and Z;4.

(ii) R—linear convergencefor the stresses: up to oscillation terms there holds
llo —o¢lllc-1.0 < ¢ foré=0,1,2,...

with ¢y — 0 and linear convergent, and ||| - |||c-1.; the energy norm induced by
the Hooke tensor C. Here, o denotes the stress at the exact solution and oy its
approximation on the triangulation .7;.

In [50], the framework introduced in the book [47] is applied to elastoplasticity,
where the estimates are derived by the analysis of the variational problem and its
dual counterpart. A computable upper bound of the error is obtained on a purely
functional level without exploitation of specific properties of the approximation
or the method used for its computation. Estimates of such a type are often called
“functional a posteriori estimates”. Application to linear isotropic hardening allows
us to express another reliability estimate

1
§|||W—V|||2§///(V,t,/1) (22)

which bounds an error of a discrete solution v, i.e. its distance from the exact
solution w by an expression on the right-hands side called a functional majorant
(v, T, ). The functional majorant can be generally minimized with respect to free
parameters 1, A to keep the estimate (22) as sharp as possible. Numerical verification
of this estimate will be the topic of the forthcoming paper, where it should be
profited from the experience in problems with nonlinear boundary conditions [49]
and an application of a multigrid preconditioned solver to a majorant computation
[56].

5 High Order FEM for Elastoplasticity: hp-FEM and BC-FEM

In nowadays computer simulations of elastoplasticity, adaptive #-FEM (as presented
in Sect. 4) is probably the most propagated and well known discretization technique.
However, as computers become faster, and parallelization is no longer just a
scientific topic, the mixture of low and high order finite element methods (Ap-
FEM) becomes more and more attractive in daily practice. Applying a high order
method means to increase the polynomial degree of the shape functions on an
element instead of refining it. The major drawback of a high order method is the
expensive assembling of the system matrix. As long as this handicap can be settled
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Algorithm 1 The hp-adaptive Algorithm:

Require: A mesh T, a polynomial degree vector (px) ke, a Finite Element Solution uge.
Ensure: A refined mesh Trt, a new polynomial degree vector (px) ke -

. Determine which elements to refine — 7.

: Determine where the polynomial degree should be increased — 7,.

: Obtain a preliminary refined mesh — 7,%;.

. Elimination of hanging nodes — Tres.

. Increase the polynomial degree px = px + 1 for all elements K € Tt N 7, In particular:
Elements to which an /-refinement is applied inherit the polynomial degree from their father.

abwnN e

(e.g., by finding recurrences via symbolic computation [5, 8, 9]), the application of
such methods are definitely worth their price. The idea of hp-FEM [3,52] is to
increase the polynomial degree locally on elements, where the solution has high
regularity. In such areas of the domain we can expect local exponential convergence
of the approximate towards the solution. On other elements, i. e. where the regularity
is low, mesh refinement is applied, which locally yields algebraic convergence.
Moreover, by choosing proper hp-adaptive refinement strategies, an exponential
convergence rate can be achieved globally [3].

In elastoplasticity, the solution in each time step is known to be in Hlﬁc(sz), and,
moreover, analytic in balls where the plastic strain p vanishes [6, 41]. Thus, the
application of an Ap-FEM is a natural choice. In those parts of the interior domain,
where the material reacts purely elastic, the polynomial degree is increased, whereas
the mesh is refined in plastic areas and towards rough boundary data or geometry.

The basic hp-adaptive algorithm reads as follows:

Note, that Items 3-5 are straight forward, whereas, one still has to decide on
the exact realization of Items 1 and 2. In general, the set of all adaptive strategies
divides into two classes: strategies which are problem dependent, and those which
are not. In problem dependent strategies, the decision whether to refine in %, or in
p, or not at all, relies on the evaluation of problem dependent quantities, typically
the error estimator. Algorithms of this class can be found, e.g., in [1, 21]. Problem
independent algorithms, such as discussed in [18, 19], estimate the regularity of the
solution without using problem dependent quantities.

Due to the lack of a reliable and efficient error estimator for elastoplasticity, the
use of problem independent algorithms is a natural choice. The application of an
algorithm presented in [21] to elastoplastic problems in two dimensions is discussed
in [26]. This adaptive algorithm is based on the following idea:

Expressing the solution u to the (elastoplastic) problem as an expansion with
respect to orthogonal Legendre polynomials

u= Z Upg ¥ pg (23)

P.4€No

results in a sequence of coefficients uy,,, which decays exponentially if and only if
the solution u is analytic:
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Proposition 1. Define on the reference triangle K the Lz(lf)-orthogonal basis
Vpqs P-q € No by

7 - v 1-m\’
Vi = 0 D = POV (52) PO ),

where P}“‘ﬂ) isthe (well known) p-th Jacobi polynomial with respect to the weight
n — (1 —n*1 + n)? and D the Duffy transformation, defined as in [21]. Let

u € L,(K) bewritten asin (23). Then u is analytic on K if and only if there exist
constants C, b > 0 such that |u,,| < C e™**9 for all p,q € Ny.

Proof. See [45]. O

Since the true solution u is not available, the idea for the hp-adaptive algorithm is
to estimate the decay of the coefficients u,, of the expansion of the finite element
solution Urg |k o Fx =}, , Upg¥p, instead. If the decay is exponentially, then the
polynomial degree p will be increased, otherwise, the mesh will be refined:

Additionally to the presented adaptive strategy in Algorithm 1, a different
discretization approach applied to elastoplasticity is investigated in [26]. This
approach is still of an 2p-adaptive Finite Element type, but with a slightly different
aim: Considering a general boundary value problem, where the regularity of the
solution is known to be low at the boundary and high in the interior of the domain,
the parameters i and p are chosen to be small in a neighborhood of the boundary
and to be growing towards the interior of the domain. This growth is done in a
manner, such that

e The convergence rate is of the same order as in 2-FEM.
* The number of total unknowns is proportional to the number of unknowns on the
boundary (such as in BEM).

Algorithm 2 Realization of Items 1 and 2 in Algorithm 1:

Require: A mesh 7, a polynomial degree vector (pg)xe7, a parameter » > 0, a Finite Element
Solution Ugg.
Ensure: The marked elements 7, and 7.

1. For all elements K € 7 compute the expansion coefficients
ujx = v ”222(13) (Ureik © Fi, ¥ij) 1yi)

foro<i+j < pg.
2: Estimate the decay coefficient bx by a least squares fit of

In|u; x| ~ Cx — bg (i + ).

3: Determine 7, = {K € T | bx = b}and T, = {K € T | bx < b}.
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Table 2 Comparison of the degrees of freedom at each numerical example

DOFs at Level 1 2 3 4 5 6

Plate with Hole (:-FEM) 2018 7810 30722 121858 485378 1937410
Plate with Hole (BC-FEM) 2018 5010 14658 37874 103050 307330
Screw Wrench (2-FEM) 474 1778 6882 27074 107394 427778

Screw Wrench (BC-FEM) 474 1618 4266 10290 24490 58474

Due to the second property, the method is called a Boundary Concentrated Finite
Element Method (BC-FEM) [35]. The method exploits the knowledge about the
regularity of the solution in a way, that it searches for the smallest (and sparse)
system which allows for the same convergence rate as is obtained in a classical
h-FEM.

In elastoplasticity, BC-FEM can be applied for the purely elastic region, where
the solution is known to be analytic [6], whereas the plastic region, where the
solution is known to be in H2_(£2) [41], is discretized by using h-FEM. However,
the interface between plastic (|| p|| > 0) and elastic (|| p|| = 0) parts of the domain is
not known in advance, since the calculation of the plastic strain field p depends on
the displacement field, as it is pointed out in (16). Thus, one has to estimate, which
parts of the domain will be plastic at the next step of refinement. This task can be
again handled by Algorithm 2. The resulting method has the same accuracy as a
classical 2-FEM, i.e., the error satisfies [[u — Uy || 12y = O(h), but the number of
degrees of freedom is significantly smaller: Considering #-FEM in two dimensions
(d = 2), the number degrees of freedom is roughly O(N?), with N = h~! denoting
the number of nodes on the boundary of the domain, whereas in BC-FEM it is
O(Ng) + O(N}), where N is the number of nodes on the boundary of the purely
elastic sub-domain, and Np the number of nodes on the boundary of the plastic
sub-domain (compare Table 2). It is possible to generalize the primal and dual
domain decomposition solvers proposed in [7] for solving interface-concentrated
finite element equations to the plastic-zone concentrated finite element equations
which we have to solve at each incremental step.

Finally, we present the results of the following two numerical experiments. More
examples regarding some adaptive strategies in hp-FEM for elastoplastic problems
can be found in [26].

» A plate with a hole {x € [-10,10]*> : |x|| > 1} is torn on the top and the
bottom edge in normal direction with a traction of intensity |g| = 450. Due
to the symmetry of the problem, only the top right quarter is considered in the
numerical simulation. The material parameters are chosen as follows: Young’s
modulus E = 20690, Poisson ratio v = 0.29, yield stress o, = 450 /2/3, and
modulus of hardening H = 0.1. On the left of Fig. 4 one can see the mesh after
5 steps of BC-refinement. The elements are colored from blue to red, indicating
increasing polynomial degree. On the right of Fig. 4, the elastic (blue) and plastic
(red) zones are plotted. Figure 5 shows the adaptive mesh (left), and a zoom
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Fig. 4 Plate with a hole: polynomial order (left) and plastic zones (right)

I
10008200 2.2808°00 3. 5008200 60008000

Fig. 5 Plate with a hole: the adaptive mesh

towards the boundary and elastoplastic interface (right). Plastic zones are red,
elastic zones are blue.

* A screw wrench sticks on a screw (homogeneous Dirichlet condition) and is
pressed down at its handhold in normal direction with an intensity |g| = 1e6. The
material parameters are chosen as follows: Young’s modulus £ = 2e8, Poisson
ratio v = 0.3, yield stress o, = 1e6, modulus of hardening H = 0.01. On top
of Fig. 6, one can see the mesh after 5 steps of BC-refinement. The elements are
colored from blue to red, indicating increasing polynomial degree. On bottom of
Fig. 6, the elastic (blue) and plastic (red) zones are plotted.

Table 2 shows the number of degrees of freedom for both examples in case of an
h-FEM and a BC-FEM discretization.
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Fig. 6 Screw Wrench: polynomial order (top) and plastic zones (bottom)

6 Conclusion

We presented two strategies to deal with the non-smoothness of the functional
arising at each incremental step in elastoplasticity. The first one uses traditional
regularization techniques whereas the second one makes use of Moreau’s theorem
for the reduced functional. Generalized Newton-methods are derived and analyzed
on the basis of the concept of slanting functions. Furthermore, we proposed residual-
based and functional-based a posteriori error estimates for elastoplastic problems
which can be used in an AFEM. In some cases the convergence of the AFEM can be
shown. Finally, we studied the use of higher-order finite elements in elastoplasticity.
The approximation quality of higher-order elements strongly depends on the
local regularity of the solution. The new plastic-zone concentrated finite element
approximation used low-order elements in the plastic zones and boundary or, more
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precisely, interface concentrated finite element approximations in the elastic zone
where higher and higher order finite elements are used in dependence on the distance
to the elastic-plastic interface and the boundary. Regularity detectors can be used to
predict the elastic-plastic interface at each incremental step.
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A Symbolic-Numeric Algorithm for Genus
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Abstract We report on a symbolic-numeric algorithm for computing the genus of
a plane complex algebraic curve defined by a squarefree polynomial with exact
and inexact coefficients. For the inexact data we are given a positive real number,
which measures the error (noise) level in the coefficients. The symbolic numeric
algorithm proceeds as follows: (i) firstly, we compute the numerical singularities of
the plane complex algebraic curve by using subdivision methods; (ii) secondly, we
compute the link of each singularity by intersecting the plane complex algebraic
curve with a small sphere centered in the singularity; (iii) we then compute
the Alexander polynomial of each link of the singularity by using combinatorial
methods from knot theory; (iv) from the computed Alexander polynomia we
computethe delta-invariant of each singularity; (iv) finally, from the delta-invariants
of al the singularities we derive a formula for the genus of the plane complex
algebraic curve. The computed results are approximate and thus we interpret them
using regularization principles. We perform several test experiments, which indicate
that the computed results are valid in the presence of noisy coefficients.
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The genus computation problem is a classical subject in computer algebra.
Presently, several symbolic algorithms are available for computing the genus of
plane algebraic curves over an algebraicaly closed field, see [17, 19, 32]. There
exist also good implementations for these algorithms in several packages of some
well-known computer algebra systems such as: Maple, Magma, Singular, Axiom.
We shortly recall these packages, for further details see [16, 18, 20, 22, 28]:

1. Algcurves package developed at the Florida University, by Mark van Hoeij,
written in Maple.

2. CASA (Computer algebra system for algebraic geometry) package developed at
the Research Ingtitute for Symbolic Computation, Hagenberg Austria, written in
Maple.

3. GHS (Gaundry, Hess, Smart) attack package developed at Berlin University,

written in Magma.

. normal.lib package developed at Kaiserdautern University, writtenin Singular.

5. PAFF (Package for algebraic function fields in one variable) package developed
at INRIA-Roquencort, by Gaétan Haché, written in Axiom.

N

On the other hand, there are situations when computing with numerical coefficients
is preferable, for instance when the coefficients are obtained by measurements. At
present numerical algorithmsfor genus computation are reported in the literature. In
[4] the genus of any one-dimensional irreducible component of an algebraic set is
computed using the homotopy continuation method, whereasin [30] the numerical
genus of a plane algebraic curve with all of its singularities ordinary and affine is
computed. In this paper, we propose such an agorithm for the computation of the
genus of plane complex algebraic curves which makes use of the advantages of both
symbolic and numeric algorithms. The method is based on combinatorial techniques
from knot theory (see[10,25]), that allow usto successfully analysethe singularities
of the plane complex algebraic curve by computing their topology. Previousresearch
and results have successfully shown that the topology of the singularities of a
plane complex algebraic curve is mainly determined by their algebraic link, see
[27]. The algebraic link can be uniquely identified by its corresponding Alexander
polynomial, see [40]. From the Alexander polynomial we derive a general formula
for the delta-invariant of each singularity of the plane complex algebraic curve,
which allows us to compute the value for the genus of the plane complex algebraic
curve.

We have to pay further attention while formulating the genus computation
problem due to the existence of numeric errors. As expected, we deduce that
the value of the computed genus is highly sensitive to tiny perturbations of the
coefficients of the defining polynomial of the input plane complex algebraic curve.
Thereforewe have to take a decision regarding the interpretation of the results or the
reformulation of the input problem. We intend to use the same approach proposed
by Z. Zeng for solving other numerical problems from algebraic geometry such as:
the computation of the greatest common divisors of polynomials, the computation
of therank of matrices or the computation of the solutions of systems of polynomial
equations, see [12, 41]. Other approaches are also taken into considerations, see
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[11,34]. Further testsin these different directions of research will guide usin making
the best decision.

In this paper we present a symbolic-numeric algorithm for computing the genus
of plane complex algebraic curves. In Sect. 2 we introduce the genus computation
problem and we propose a strategy for solving it. In Sect. 3 we describe the steps
that solve the genus computation problem. In Sect.4 we present the numerical
difficulties for the genus computation problem, which arise when numerical data
are used; we test several approaches before proposing the final remedy for these
difficulties. We include several tests and experimentsin Sect. 5, while in Sect. 6 we
outline the conclusions and the future directions of research.

2 TheGenusComputation Problem

There are no hig problems, there are just a ot of little problems.
Henry Ford

2.1 Genusof Plane Algebraic Curves

The objects of our study are the plane algebraic curves over the field of complex
numbers. We define the plane algebraic curves over an algebraically closed field in
the following way:

Definition 1. Let K be an algebraically closed field, and f(x,y) € K|[x,y] a
nonconstant squarefree polynomia in x and y with coefficients in K. A plane
algebraic curve over K is defined as the set of all solutions in K2 of the equation
f(x,y) =0,i.etheset C = {(x,y) € K?| f(x,y) = 0). For thecurve C, f is
called the defining polynomial of C. The degree of the polynomial f(x, y) iscalled
the degree of the curve C.

For a plane complex algebraic curve we are interested in a special type of points
and that is its singularities (or singular points or multiple points). Informally, the
singularitiesof an algebraic curve are the pointswhere the curve has nasty behaviour
such asacusp or apoint of self-intersection. A cusp isapoint at which two branches
of the curve meet such that the tangents at each branch are equal, while a point of
self-intersection (or double point) isapoint at which two branches of the curve meet
such that the tangents at each branch are distinct, see Fig. 1.

Formally, we can give the following definition for the singularities of a plane
algebraic curve over an algebraically closed field:

Definition 2. Let K be afield (i.e. the complex numbers) and f(x, y) € K|[x, y]
be a polynomial in x and y with coefficients over the field K. Let C = {(x,y) €
K?| f(x,y) = 0} be aplane algebraic curve defined over K and (a,b) € C bea
point on the curve, i.e. f(a,b) = 0. The point (a, b) isasingularity of C if the x
and y partia derivativesof f areboth zero at the point (a, b), i.e.
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Fig. 1 Cuspintheorigin of
the curve x* — y? and double

point in the origin of the
curve x3 — x2 + y?
q

(df (@.b). ?j—f(a,b)) = (0,0).

Cusp of x*—y? Double point of x*—x*+y?

dx v

In the theory of plane algebraic curves, one is interested in computing their
genus, which is a birational invariant that plays an important role in the rational
parametrization property of plane algebraic curves. From the theory we know that
anirreducible planealgebraic curveisrational parametrizableif and only if itsgenus
is 0. The main purpose of this paper is to compute the genus of plane complex
algebraic curves.

For agebraic curves with only ordinary singularities we have a method for
computing the genus, based on the multiplicities of the ordinary singularities. We
will not focus on the details of this method, as this is not the purpose of our paper.
We advise the reader to consult [ 7, 15, 33, 38] for more information on this method.

We compute the genus of a plane algebraic curve over an algebraically closed
field using the following definition:

Definition 3. Let C beaplane algebraic curve defined over an algebraically closed
field K, Sng(C) the set of singularities of C, and d the degree of C. Then the
genus of the plane algebraic curve, denoted with genus(C), is computed using the
following formula:

genus(C) = %(d —1)(d-2)— Y s-invaiant(P),
PeSng(C)

where genus(C) € Z.

We notice that the computation of the genus reduces to the computation of the
d-invariant of each singularity of the curve. We present the method for computing
the §-invariant of each singularity in detail in Sect. 3.
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Thus the problem that we want to solve is the following: given a plane complex
algebraic curvewhose defining polynomial contains numeric coefficients, the degree
of the curve and the set of its singularities, we want to compute the value for the
genus of the given plane complex algebraic curve.

2.2 Strategy for Solving the Problem

In order to solve the genus computation problem, we first divide it into several
subpraoblems (some of which are interdependent), we solve each of these subprob-
lems and then we combine the solutions to these subproblemsto get the solution to
our original problem. We divide the genus computation problem into the following
subproblems:

1.Plane complex algebraic curve

‘ compute numerically

2.Singularities

| compute symbolically

compute
3.Each singularity in origin | 4.Algebraic Link

numerically

compute by a numeric/symbolic | agorithm

compute

5.Alexander Polynomial

symbolically

compute symbolically

and that is:

1. We compute the singularities of the plane complex algebraic curve.
2. We trandate each computed singularity in the origin.
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3. We computethe algebraic link for each trandated singularity.

4. We compute the Alexander polynomial for each singularity from the algebraic
link.

5. We deriveaformulafor the §-invariant for each singularity from the Alexander
polynomial.

6. We compute the genus from the §-invariants of all the singularities.

We use for our implementation the AXEL (see[39]) algebraic geometric modeler
developed in the Galaad research team at INRIA, Sophia-Antipolis, which provides
algebraic tools for the manipulation and the computation with implicit algebraic
curves and implicit algebraic surfaces.

3 Why Knot? Alternative Solution to the Genus Computation
Problem

Mathematician 1: Okay, so there are three steps to your
algorithm. Sep one isthe input and step three is the output.
What is step two?
Mathematician 2: Step two is when a miracle occurs.
Mathematician 1: Oh, | see. Uh, perhaps you could explain that
second step a bit more?

K.O.Geddes, SR.Czapor, G.Labahn

3.1 Computing the Singularities of the Algebraic Curve

The first subproblem that we solve is to compute the singularities of the plane
complex algebraic curve C. Given the defining polynomial F(z,w) € Clz,w] of
C with numerical coefficients, we compute the set of all its singularities, that isthe

i dr dr
set Sng(C) = {(z9, W) € C?|F(z, W) = 0, E(ZO’ wWo) = 0, m(zo,wo) = 0}.
In order to compute the set Sng(C') we need to solve an overdetermined system of
polynomial equationsin C2:

F(zp,Wp) =0

dF

E(ZO,WO) =0 (1)
dF

M(ZO’WO) =0

or equivalently, by replacing F(zw) = F(x + iy,u+iv) = s(x,y,u,v) +
it(x, y, u, V), an overdeterminate system of polynomial equationsin R*:
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5(x0, Y0, Uo, Vo) = (X0, Yo, Uo, Vo) = 0

B 0r 00U ¥0) = S (. i, U, Vo) = 0 2
— (Xo, s s = —(Xo, 5 5 == .

oy 00 Yo, Uo, Vo a0 Yo, Uo, Vo 2
ds dr

—(x0, Yo, Up, Vo) = — (X0, Yo, Uy, Vo) = 0

du( 0, Y0, Up, Vo) du( 0, Yo, U, Vo)

For solving the systems (1), (2), we use subdivision methods introduced by
[1,2,24,29] and implemented in Mathemagix [23] and Axel [39]. The subdivision
methods compute the real solutions for Sng(C). In the future, we intend to use
algebraic methods to compute the complex solutions for Sing(C) as proposed in
[8]. We also mention the work in progressin the same direction of research donein
paralel by [5], and by [26]. Further work in this direction is still required so that
we can use these methods for our systems. Using Axel’s subdivision algorithm we
compute alist of pointsin R? denoted with S with two properties:

1. Eachreal singularity of the algebraic curve C iscloseto one of the pointsin S.
2. The first derivatives of the defining polynomial of the algebraic curve in each
point from S issmall.

For Sing(C) we compute all distinct singularitiesin the projective space. To do
thiswe homogenize the equation of C and dehomogenizeit with respect to different
variables. We get three affine open subsets of the projective curve, and we have to
be careful not to return singularities in the overlaps twice. We give a schematic
summary of this algorithm:

Algorithm 3 Singularities of the algebraic curve C SING(F, d)

Input: C = {(zw € C?|F(zw) = 0)}, F € C[z w] has numeric coefficients
d thedegree of C

Output: Sng(C)

where Sng(C) isthe set of al singularities of C.

1. Homogenize F(z w) w.r.t. u obtaining F;(z w, u)

Dehomogenize F>(z, w) := Fi(zw, 1)

. Get S| by solving the system of equations F, = d,F;, = dyF, =0
. Dehomogenize F5(w, u) := F;(1,w, u)

Get S, by solving thesystem F; = dyF; = dyFs =u=0
Dehomogenize F,(z, u) := Fi(z 1,u)

. Get S5 by solvingthesystem Fy = d,Fy = dyFy, =z=u=0

P QP TW

2. Return Sng(C) = S; U S, U S5

3.2 Computing the Algebraic Link of an I solated Singularity

The second subproblem that we need to solve is to compute the algebraic link for
each isolated singularity of the plane complex algebraic curve. In this subsection
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we first present the main reasons for studying the algebraic link of an isolated
singularity of a plane complex algebraic curve, we then define the algebraic link
of an isolated singularity, and we conclude with giving a method for computing the
algebraic link of an isolated singularity.

We consider a plane complex algebraic curve as a real two-dimensional subset
in C? = R*. We need to study and to understand the topology of these subsets near
their singularities, which can be determined by the corresponding algebraic link
associated to each singularity.

Milnor proved the following important result concerning the topology of com-
plex hypersurfaces:

Theorem 1 (Milnor[27]). Let V c C"*' be a hypersurface in C"*!, i.e. an
algebraic variety defined by a single polynomial. Assume 0 € V and Oisanisolated
singularity, i.e. thereis no other singularity on a sufficiently small neighborhood of
0; S. isthe sphere centered in 0 and of radius ¢; and D, isthe disk centered in O
of radius €. Then, for sufficiently small ¢, K = Sc NV isa (2n — 1)-dimensional
nonsingular set and D, N V' is homeomorphic to the cone over K.

Inthecurvecase, n = 1 and all singularities are isolated. Next we describe how
one can compute the algebraic link associated to an isolated singularity of a plane
complex algebraic curve. What we also want isto move the computed algebraic link
from R* to R?, and the stereographic projection allows us to accomplish this goal.

We compute the algebraic link of an isolated singularity of the plane complex
algebraic curve C in the following way: we consider the curve C which has an
isolated singularity in the origin; we take the sphere centered in the origin and of
a small radius €; we intersect the curve C with this sphere obtaining a set in the
4-dimensional space, which based on Theorem 1isan algebraic link for sufficiently
small radius. Next, we follow Brauner and Heergaard technique [6] to move the
algebraic link from the 4-dimensional space to the 3-dimensional space using the
stereographic projection. The stereographic projection allows us not only to project
the 4-dimensional link into the 3-dimensional space, but it actually preserves all
the topological properties of the link from the the 4-dimensional space into the
3-dimensional space.

In 3-dimensions, the stereographic projection is a certain mapping that projects
a sphere onto a plane. It is constructed in the following way: we take a sphere; we
draw aline from the north pole of the sphere to a point P in the equator plane to
intersect the sphere at a point Q. The stereographic projection of P is Q. The map
is defined at the sphere minus the north pole. In fact, the stereographic projection
gives an explicit homeomorphism from the unit sphere minus the north pole to the
Euclidean plane.

More generally, the stereographic projection may be applied to an-sphere S” in
the (n + 1)-dimensional Euclidean space R"*! in the following way:

Definition 4. Consider an n-sphere S” = {(x1,x2,...,xy+1) C R"T|x? + x7 +
...+ x2, =1} e R"* inthe (n + 1) dimensional Euclidean space R"*!, and
0(0,0,0,..., 1) € S” thenorth point of the n-sphere. If H isahyperplanein R"*!
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not containing Q, then the stereographic projection of the point P € S” \ Q isthe
point P of the intersection of the line O P with H . The stereographic projection is
ahomeomorphismfrom S” \ Q0 — R”.

We now describe the method used for computing the algebraic link of an isolated
singularity. For the given algebraic curve C considered as a real two-dimensional
subset in C? =~ R*:

C ={(x.y,uv) eR*F(x,y,uv) =0} c C> = R*
for which the origin (0, 0, 0, 0) isasingularity, that is:

F(0,0,0,0) 8F(0000) SF(oooo) SF(oooo) 8F(0000)
9 b 9 9 8x bl 9 bl 9 8y bl 9 bl 9 8u bl 9 b bl SV 9 bl 9
= (0,0,0,0,0),
we consider the 3-sphere centered in the origin and of small radiuse:
S ={(zw) e C?|Z* + |w* = €%}
={(x.y.uVv) e RYx? + 2 + > + W =’} C R%.
We intersect the given curve with this sphere:

X=C[8’={(x.y.uv) e R}F(x.y.u.v) =0, x’+y> + 1 +V’ = €’} CR*,

obtaining X, areal 1-dimensional set in the 4-dimensional space.
We take a point on the sphere which is not on the curve, that is:

P(0,0,0,¢) € S*\ C(F(0,0,0,¢) # 0),
and we apply the stereographic projection for projecting the set X from the
4-dimensiona space into the 3-dimensional space. We define the stereographic

projection using the following homeomorphism:

f:S\{P}CR' >R’

(x,y,u,v)—>(a,b,c)T:( X y u )

e—Ve—Ve-v/

Based on Milnor’sresultswe know that for sufficiently small € theimageof X under
the stereographic projection f isalink, i.e. f(X) isalink. Next we compute this
set f(X):

f(X)={(a,b,c) eR}Ax.y,uv) e CNS>:(a,b,c) = f(x,y.u,V)}.
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We notice that we can rewrite f(X) in the following way:
f(X) ={(a,b,c) e R*|3(x,y,u,v) = f(a,b,c) € C NS>},

since f is an homeomorphism, and so it is a bijection, and therefore f is invertible
and it admits an inverse. We compute the inverse f!:

TR - S\ (P}

2ae 2be 2ce —e + a’e + b%e + 3¢
(avbsc)%(xvyvusv): ) 3 ) 1
n

n n n
wheren = 1 +a® + b + ¢%.
Now we can finally compute the set f(X):
f(X)={(@.b.c) eR|f7(a.b.c) € V(F)}

2a€ 2be 2ce — 2e + b? 2
={(a,b,c)eR3|(%,—€,ﬁ, €+a‘e+ 6+C€)€V(F)}

n n n

= {(a,b,c) eR|F (%%Zﬁ _6+a2€+b26+626) =O}
n

n’' n’ n

_ 2 2 2
G:=Re(F(%,&,&, E+a€+b€+c‘€) —o0.
_ n' n’ n

= (a,b,c)€R3| _ 2 n 2 2 .
H:=]m(F(% 2be 2ce —eta‘e+be+c 6))=0

s s B
n n n n

We notice that G and H are two polynomialsin (a, b, ¢) with real coefficients.
Their common zero set in R? is equal to the algebraic link.

We give a schematic summary of the algorithm used to compute the algebraic
link of an isolated singularity of a plane complex algebraic curve.

3.3 Computing the Alexander Polynomial of an Algebraic Link

3.3.1 Knot Theory and the Alexander Polynomial

For our purpose, we distinguish between the following types of knots:

Definition 5. 1. A knot isapiecewiselinear or adifferentiable simple closed curve
in the 3-dimensional space R3.

2. A link is afinite union of digoint knots. The individual knots which make up a
link are called the components of the link. A knot will be considered alink with
one component (Fig. 2 produced with Mathematica).
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Algorithm 4 Algebraic link of theisolated singularity (0, 0) ALGLINK(F, €)
Input: F € C[z w] with (0,0) an isolated singularity , ¢ € R* withe > 0

Output: G, H € Rla, b, c]

where the common zero set of G, H isthe agebraic link of F in (0, 0).

1. Substitute z = x + iy and w = u + ivin the defining polynomia F(z w) of the plane curve
C:

C ={(zw € C’|F(zw) =0} & C = {(x,y,u,v) € R*F(x, y,u,v) =0},

that has an isolated singularity in the origin (0, 0, 0, 0).
2. Rewrite F(x,y,u,v) = R(x,y,u,Vv) + il(x,y,u,v), with R(x,y,u,v), I(x,y,uVv) €
R[x, y, u, V] and obtain:

C = {(x,y,u,v) € R*|R(x, y,u,v) = I(x, y,u,v) = 0}.
3. Consider the sphere centrated in the origin and of small radius e:
S3={(x,y,uv) € R¥x2 4+ y2 + > + V> — 2 = 0}.

4. Obtain X = C N S? C R* and P apoint on the sphere but not on the curve;
5. Introduce the inverse:
FTRY > $3\ {P}
—etatetbietcle
)

— (2ae 2be 2ce
(a,b,c) = (x,y,u,v) = (55, =, =

where n = 1 +a®> + b> + 2.
6. Compute f(X) usingtheinverse f~! finding G, H:

2 2 2
G = R(Zae’ 2be’ 2ce’ —e+ta‘e+be+tc e) =0,
f(X) = (a,b,c)| :zle 2;1’6 2;’6 7e+aze‘ﬁbze+czf -
Hi=1(58 55 50— ———)=0

7. Return G, H € R[a, b, ¢] as computed in step 6.

3. Alinkiscalled algebraicif it arises as the intersection of an algebraic curve with
a sufficiently small sphere, as described in Subsection 3.2.

In our approach, we approximate a differentiable algebraic link, namely the
intersection of G and H computed in Subsection 3.2, by apiecewiselinear algebraic
link, as we will explain in Subsubsection 3.3.2. From now on, we only consider
piecewise linear links. When we work with knots, we work with their projection in
the 2-dimensional space.

Definition 6. A regular projection is a linear projection for which no three points
on the knot project to the same point, and no vertex projects to the same point as
any other point on the knot. A crossing point is an image of two knot points of such
aregular projection from R* to R2. Then:
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>

Fig. 2 Trefoil knot. The
figure is produced with
Mathematica

1. A link diagram (or simply diagram) is the image under regular projection,
together with the information on each crossing point telling which branch
goes over and which goes under. Thus we speak about overcrossings and
undercrossings.

2. A diagram together with an arbitrary orientation of each knot in the link is called
an oriented diagram.

We are interested in the following elements of a diagram:

Definition 7. 1. A crossing is lefthanded if the underpass traffic goes from left to
right or itisrighthanded if the underpasstraffic goesfrom right to left. We denote
alefthanded crossing with —1 and arighthanded crossing with +1.

2. An arc is the part of a diagram between two undercrossings (Fig. 3). Whether
lefthanded or righthanded, each crossing is determined by three arcs and we
denote the overgoing arc with i, and the undergoing arcs with j and k (Fig. 4).
We notice that the number of arcsin alink diagram is equal to the number of
crossingsin the same link diagram.

The main problem in knot theory is to distinguish between different links and to
establish whether two links are equivalent or not. We define the equivalence of links
by the following definition called (ambient) isotopy:

Definition 8. We define a homeomorphism as a continuous bijective function with
a continuous inverse. Then we say that two links are equivalent if there exists an
orientation-preserving homeomorphism on R? that maps one link onto the other.

To provethat two links are not equivalent we use the notion of link invariants:

Definition 9. A link invariant is afunction from link diagramsto some discrete set
(Z or Z[t]) which isunchanged under the Reidemeister movesof typel, Il or 111 (see
Fig.5).
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Fig. 3 Oriented diagram of
the trefoil with 3 arcsand 3
|efthanded crossings

Fig. 4 Types of crossings:
lefthanded (—1) and
righthanded(4-1)

T - X

Some link invariants are: the tricolorability, the unknotting number, the Jones
polynomial, the Alexander polynomial. For further details the reader can consult
[10,25]. At present, there exists no complete invariant for links.

Still for our purposewe areinterested only in theinvariants of the algebraiclinks.
An important result in this direction of research was proved by Yamamoto in 1984
(see[40]), who showed that the Alexander polynomial isacompleteinvariant for the
algebraic links, that is the Alexander polynomial uniquely defines all the algebraic
links up to an (ambient) isotopy.

We now focus our attention on the definition and on the computation of the
Alexander polynomial of a link. The Alexander polynomia was introduced by
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Alexander in 1928 (see[3]). It depends on the fundamental group of the complement
of thelink in R3 and we define it as follows:

Definition 10. Let L be alink with m components. The multivariate Alexander
polynomia is a Laurent polynomial A, e Z[tt!,... "], which is uniquely
defined for each link up to a factor of it{“ ..thn withk; € Z and up to a
I 1
substitution ¢; := e forali e {1,...,m} ([9]).
We follow [25] in our approach to compute the Alexander polynomial. We
distinguish three steps when computing the Alexander polynomial A, of an oriented
link diagram D(L):

|D(L)|—> |Labe||ing matrix(L) |—> |Prea|exander matrix(L) |—>|AL |

First of al, we compute the labelling matrix of D(L) defined as follows:

Definition 11. Let D(L) be an oriented link diagram with m components and
n crossings x, :q € {l,...,n}. We denote the arcs of D(L) with the labels
{1,...,n} and separately the crossings of D(L) with the labels {1,...,n}. We
denote the labelling matrix of D(L) with LM(L) € .#(n,4,7Z). We define
LM(L) = (bg1)q; Withg € {1,...,n},l € {1,...,4} row by row for each crossing
x4 asfollows:

+ On position b, we store the type of the crossing x, (+1 or — 1).

* On position by, we store the label of thearci of the crossing x, in D(L).
* On position b,3 we store the label of thearc j of the crossing x, in D(L).
* On position b,4 we store the label of the arc k of the crossing x, in D(L).

Secondly, we compute the prealexander matrix of D(L) defined using the
labelling matrix LM (L) asfollows:

Definition 12. Let D(L) be an oriented link diagram with m components and n
crossings x, : ¢ € {1,...,n}. We denote the arcs and the crossings of D(L) asin
Definition 11. We consider LM (L) thelabelling matrix of D(L) asin Definition 11.
We denote the prealexander matrix of L with PM(L) € .# (n,n,Zt1,t2, ..., ty]).
We define PM (L) row by row for each crossing x, depending on LM (L). For
X, we consider the variable #;, where s € {1,...,m} is the s-th knot component
of D(L), which contains the overgoing arc that determines the crossing x,.
Then:

* If the crossing x, is righthanded, i.e. b, = +1in LM(L) then at position b,»
of PM(L) we store the label 1 — ¢, at position b,3 we store the label —1 and at
position b,4 we store the label ;.
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 If the crossing x, is lefthanded, i.e. b;; = —1in LM (L) then at position b,»
of PM(L) we store the label 1 — ¢, &t position b,3 we store the label ¢, and at
position b,4 we store the label —1.

* If two or al of the postions b,,,b,3, b4 have the same value, then
we store the sum of the corresponding labels at the corresponding posi-
tion.

» All other entries of the matrix are 0.

Finally, we define the Alexander polynomial of D(L) depending on the number
of componentsin L:

Definition 13. Let D(L) be an oriented link diagram with m components and n
crossings, LM (L) be its labelling matrix as in Definition 11 and PM(L) be its
prealexander matrix asin Definition 12.

1. Univariate case, (L has one component, m = 1, see [25]). The univariate
Alexander polynomia Ay (t;) € Z[tE'] is the normalized polynomial computed
as the determinant of any (n — 1) x (n — 1) minor of the prealexander matrix of

D(L).
2. Multivariate case, (L has more than one component, m > 2, see [9]). The
multivariate Alexander polynomial Ay (t1,...,t,) € Z[tE, ..., ¢F!] isthenor-

malized polynomia computed as the greatest common divisor of al the (n — 1) x
(n — 1) minor determinants of the prealexander matrix of D(L).

A normalized polynomial is a polynomial in which the term of the lowest degree
is a positive constant.

Example 1. We compute the Alexander polynomial of the oriented diagram of the
trefoil knot L from Fig.3. We denote the arcs and separately the crossings of
the diagram with the labels {1, 2, 3}. We compute the labelling matrix of L with
Definition 11
|type label; label; Iabely

ci|—1 2 1 3

col—1 1 3 2

c3l—1 3 2 1

From LM (L) we compute the prealexander matrix of D(L) with Definition 7
and Definition 12. We notice that L has only one knot component so s = 1 in
Definition 12:

LM(L) =

label; label; label;
cr| 2 1 3

1 2 3

1=t # -1 e

1 1 I S

PMI) = | e 1 32 [=loh-y -1 o
R | 2 ! !

c3| 3 2 1
—1|1—-1 1 -1
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From PM (L) we compute the Alexander polynomial with Definition 13:

det (Minorsy(PM(L)) ) = det(1 ﬁzl 1__1’1) = 4+n-1

Ap(ty) = Normalize(—t2 + 1, — 1) =t} —t; + 1

We give a schematic summary of the algorithm used to compute the Alexander
polynomial of an algebraic link diagram D(L).

Algorithm 5 Alexander polynomial for D(L) ALEXPOLY (D(L), m,n)
Input: D(L) oriented algebraic link diagram with m components, n crossings
output: Ay (11.....t,) € Z[rE', ... 1]

where A (¢4, ..., t,n) isthe Alexander polynomial of D(L).

. Denote the arcs and separately the crossings of D(L) with{1,...,n}.
. Compute L M (L) the labelling matrix of D(L) .

. Compute PM (L) the prealexander matrix of D(L).

. 1f m =1 then:

A WN P

a. Compute M any (n — 1) X (n — 1) minor of PM(L).
b. Compute D the determinant of theminor M.
c. Return A (t;) = Normalize(D).

5. If m > 2 then:

a. Compute al the (n — 1) X (n — 1) minorsof PM(L).
b. Compute G the greatest common divisor of al the computed minorsin 5.(a).
c. Return Ap (¢4, .. .t,) = Normalize(G).

3.3.2 Alexander Polynomial and Computational Geometry

In Subsection 3.3 we noticed that in order to compute the Alexander polynomial of
an algebraic link L we need to compute the diagram of L denoted with D(L). We
compute L using the stereographic projection method described in Subsection 3.2
and using the Axel system [39] for the actual implementation. We remember that
for the plane complex algebraic curve C with F(z,w) € C[z w], e € R*, ¢ > 0 and
(0,0) an isolated singularity, we compute two polynomials G, H € R[a, b, c]. We
have shown that the algebraic link L of (0, 0) isthe zero common set of G, H, that
is L isasmooth and closed implicit algebraic curve in R? given as the intersection
of two implicit algebraic surfacesin R? whose defining polynomiasare G, H. Axel
uses certified algorithms to compute a piecewise linear approximation L for L,
which isisotopicto L [24]. L' is computed asagraph G = (2, &), where 2 isa
set of points (or vertices) together with their Euclidean coordinatesand & is a set of
edges connecting them. From now on we denote L' := Graph(L).
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Fig. 6 Algebraic link asintersection of surfaces in Axel

Example2. For C* = {(zw) € C*Z2 —w? = 0} c R* with (0,0) isolated
singularity and ¢ = 1 we get L, the algebraic link of (0, 0) by the stereographic
projection method proposed in Subsection 3.2:

f(C*NS):=L ={(a.b,c) eR}G:=ReF(..)=0,H :=ImF(...) =0}
and with Axel we get Graph(L) as the intersection of the two surfaces G, H:
Graph(L) = (2,&), P ={p = (m,n,q) €R*}, & ={(i,))li,j € P}

such that Graph(L) =;0s0pic L, SE€Fig.6.

Next, from the output computed by Axel, Graph(L), we need to compute D (L),
the diagram of the algebraic link L. We then use D(L) to compute the Alexander
polynomial of L with the algorithm proposed in Subsection 3.3.

We compute the elements of D(L), i.e. the arcs of the diagram and the number
of knot components in the diagram, plus for each knot component its crossings
with their types. We develop new computational algorithms for computing D(L)
given Graph(L). The main idea is that al these algorithms operate on the data
structure Graph(L) returned by Axel. Each point in the graph is given as a 4-
tuple p(index, x, y, z), where index is an integer that uniquely identifies each point,
and (x,y,2) € R3? are the Euclidean coordinates of p. We use xyzcoord(index)
for denoting the x, y, z coordinates of index, xycoord(i ndex) for denoting the x, y
coordinates of index, xcoord for denoting the x coordinate of index, and ycoord
for denoting the y coordinate of index. Each edge in the graph is given by a
pair e(source, destination), where source is the index of the source point of e,
and destination is the index of the destination point of e. For simplicity reasons,
we denote the pair e(source, destination) := e(s, d). We consider the edges of
Graph(L) to be “small” edges, i.e. the projection of any edge of Graph(L) has at
most one crossing point. Here we shortly describe these computational algorithms,
for more information the reader can consult [21].

Thefirst algorithm isan adapted version of the Bentley—Ottman algorithm [13].
For Graph(L) € R3 with the set of points p; = (x;, y;,z) € R we consider its
projection in R? with the set of points p; = (x;, y;) € R% We also consider no
vertical edges in the projection. This algorithm computes the intersection points of
all the edges of the projection of Graph(Z) and some extrainformation:
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1. For each intersection point p the pair of edges (e;, e;) that contains p.
2. And each pair of edges (e;, e;) isordered, i.e. e; isunder e; in R3.

These intersection points together with the extra information coincide with the
crossings of D(L). Our adapted Bentley-Ottman algorithm operates as follows:

» The edges of the projection of Graph(L) are oriented from left to right and they
are ordered in alist E = {ep,...,en} asfollows: (1) by the x-coordinates of
their source points; (2) if the x-coordinates of the source points of two edges
coincide, then the two edges are ordered by the two slopes of their supporting
lines; (3) if the x-coordinates of the source points and the slopes of two edges
coincide, then the two edges are ordered by the y-coordinates of their destination
points. The ordering criteriais necessary for the correctness of the algorithm.

* We consider a vertical sweep line [ that sweeps the plane from left to right.
Whilel moves, it intersects several edgesfrom E. Thelist of edgesthat intersect
[ at one point during the sweeping procees, denoted SW, is called the sweep
list. SW changes while [ sweeps the plane. The algorithm is based on the key
observation that S W isupdated only at certain points of the edgesfrom E called
event points. Thesweeplist S W isorderedin thisalgorithm by the y-coordinates
of the intersections of the edges of E with the sweep line!.

* We noticethat in E each index appearstwo timesin E. Due to this property,
we can manage S W in asimpler way in our adapted Benttley-Ottman algorithm
than in the original version.

* While we traverse E, we insert the current edge e, (s, d,,) from E in SW
in the right position and that is: (1) we search for an edge e, (s,,d,) in SW
such that its destination coincide with the source of ¢,, € E, i.e. d, = su;
if wefind such ane, € SW we replace it with e,, € E; (2) if such an edge
e, € SW does not exist, we insert e,, in SW depending on its position against
the current edges from SW. We assume SW = {e;,, e, e, ..., e}, With
e, € Eforalq e {l,...,k}. Thereexistsauniqueindex j with0 < j < k
such that ycoord(s,,) is larger than the y-coordinates of all the intersections of
ei,...,e;; With [ and smaler than the y-coordinates of al the intersections
of €iiyysnnnsCi with /. This index j can be found by checking all the signs
of the determinants der[ (xycoord(s,), 1), (xycoord(s;, ). 1), (xycoord(d;, ). 1)].
Then we insert e,, in SW between the two edges e;; and €y and we obtain
SW ={ei,ei,....ei;,em, €iiyyse s Cig ) When we insert an edge from E into
SW on the right position we have to additionally update S W depending on the
encountered event points:

— Wetest each inserted edgein S W against its two neighboursfor intersection.
If an intersection point p is found we report it together with the ordered pair
of edgesthat containsit. In addition we swap the edges that intersectin SW.
As opposed to the original Bentley-Ottman algorithm after swaping the edges
in S W, wedo not test the edges against their new neighboursfor intersections
because we consider only “small” edges.
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— We test each inserted edge in SW against its two neighbours for common
destination. In addition, when two edges are swapped in SW after reporting
their intersection point, we test them against their new neighbours for
common destination. Whenever we find two consecutive edges with common
destinations we erase them from SW. As opposed to the original Bentley-
Ottman algorithm after deleting edges from SW, we do not test the new
neighbours for intersection because we consider only “small” edges.

The second algorithm constructs the knot components of the diagram from the
projection of Graph(L). It aso returns the total number of knot components. We
consider E as in the previous algorithm. We denote a positive edge in R? with
e(s, d), and its corresponding negative edge with —e(d, s). The positive edges are
oriented from left to right, while the negative ones are oriented from right to left.
We denote the knotswith K;,i € N. All K; havethe properties:

1. For each edge ex (s, dy) € K; there exists ex41(sx+1,dr+1) € K; with d, =

Sk+1-
2. ForK; = {EO(S(), d()), e, € (Sn, dn)}: d, = 5.

As opposed to the list E, which contains only positive edges oriented from left
to right, each list K; contains both positive and negative edges. We initialize the
first knot K, with the first edge eo(so, do) from E. Next we look for the edge
e, in E which has a common index, either source or destination, with d. If we
find e,(dy, d,) € E then weinsert e,(dy, d,) in K, as a positive edge. If we find
en(sy,do) € E thenweinsert —e, (do, s,) in K, as a hegative edge. After we insert
e, In Ky we erase it from E. We will always find such an edge ¢, in E, because
each index such as d appearstwo timesin E. We continue with inserting edgesin
K, from E until the destination of an inserted edge coincide with s, the source of
thefirst edge from K. We apply the same strategy to constructs all the knots K; of
D(L) until E isempty, increasing i each time a new knot starts being constructed.
At the end of the algorithm, theindex i returnsthe total number of knot components
of D(L).

The third algorithm constructs the arcs for each knot component of the link.
It also decides the type of crossings (righthanded or lefthanded) for each knot
component. For constructing the arcs, we consider £ asin the previous algorithms.
Thisagorithm operates on the outputs of the previoustwo algorithms, i.e. thelist of
intersection points I together with the list of ordered pairs of edges E;, and thelists
of edgesfor all the knot components K;,i € N. Thekey point of the algorithm isto
search in K; al the undergoing edges from E; and to splitt them in two parts. For
instance, we assume that for £ = {eq,...,€n,€ms ... €1, €% ..., €t,€s,. ., Clast}
we compute the following outputs with the previous two algorithms:

I ={(x1, 1), (x2,¥2), (x3,¥3)}, Ef = {(—en.em). (e1.er). (€5, —€;)}

Ko=1{€0,. s Chyees sy sy @y —Cyunn,—Cyye..,—€1}
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We search the three undergoing edges —e,,, ¢;, e; one by one in K, and we replace
them with —e,, — (—e?, —el), e, — (e, el), e, — (e?, e) obtaining:

’ d _u d _u d u
Ky ={eo,...ex,...el e, ...en, ...e] e, ..., —e,.,—e,,—e€,, .., —ei}.

From Definition 7, we conjecture that an arc contains the list of edges from a
modified knot component K;,i € N starting with an edge of type e;!, Jj € Nfrom
K{ and ending with the next consecutive edge of type e,‘f, k € Nfrom K{. Whilewe
insert the edges from K l’ into the list of edges representing the arcs we erase them
from K l' Thus from the modified loop K(; we compute the following three arcs until
K, isempty:

’ d u u d u
K, ={eo,...ex,...e; e —~emr €/l e,...,—e,...,—€,,—e,, .., —ei}

arcy = {e;‘,...,em,...,efl}

K{) = {eo, ... ex,...el  [e} ey ], e, . e}
arcy = {ef,...—e, .., —e,‘,j}

Ko = {leperrer ] [zep—eil}
arcy = {ey....—ey.,eq. ... . ...e’ }

For deciding the type of crossings, we observe that in each knot component
for a positive edge e; (s;, d;) : xcoord(s;) < xcoord(d;) and for a negative edge
—ej(s;,d;)  xcoord(s;) > xcoord(d;). Each type of crossing depends on the
pair of edges (euqer €over) that contains the corresponding intersection point, and
that is:

1. Ontheorientation of ey, 4.,, and ey, i.€. Whether they are oriented from left to
right (positive) or from right to left (negative).
2. On the comparison relation between the slope of e, 4., and the slope of e,y -

Depending on these three parameters, we have 2° possible cases for deciding the
type of crossings. For instance, we consider a crossing ¢ determined by the pair of
ordered edges ( — ¢;(s;. d;). ex (sk. di)), for which —e; is the undergoing edge and
e, istheovergoing edgein R3. We have xcoord(s;) > xcoord(d;) for the negative
undergoing edgee;, and xcoord(si) < xcoord(dy) for the positive overgoing edge
er. If additionally we suppose that slope(e;) < slope(ex), then ¢ is alefthanded
crossing.

We give the schematic algorithm for the computation of the diagram D(L) of a
differentiable algebraic link L. computed as in Subsection 3.2 and approximated by
apiecewise linear algebraic link Graph(L).
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Algorithm 6 Diagram of piecewise linear links DIAGRAM (Graph(L))

Input: Graph(L) = (£, &) piecewise linear algebraic link which approximates

L adifferentiable algebraic link as computed in Subsection3.2
2 set of points with their euclidean coordinates
& set of edges connecting them

Output: D(L)
where D(L) isthe diagram of Graph(L) =;,/opic L-

1. Compute the crossings of D(L).

a. Compute / the intersections of the edges of E.
b. Compute E; the pairs of ordered edges containing each intersection.

2. Compute K;,i € N thelistsof edgesfrom E for all the knotsof D(L).
3. Compute the arcs of D(L) and the type of crossingsin D(L).
4. Return D(L).

3.4 Computing the Delta-Invariant of an Isolated Singularity

We use Milnor results [27] for computing the §-invariant of the isolated singularity
(0, 0) of aplane complex algebraic curve:

We consider  a positive integer that measures the amount of degeneracy at the
critical point (0, 0) of the complex polynomial F(z w). In fact, u is the Milnor
number. Itis shown that « isthe degree of the characteristic polynomial A of the
link L = V N S, determined by V = F~!(0). The characteristic polynomial A
coincides with the Alexander polynomia Ay (z) if L has one knot component,

and A = (t il)AL(t, ...,t) if L has more than one knot components. We
observe that i is the degree of the characteristic polynomial A. Based on this
observation we deduce that i isthe degree of the Alexander polynomial if L has
one knot component, and 1 is the degree of the Alexander polynomial +1 if L
has more than one knot components.

We consider » the number of local analytic branchesof V = F~!(0) with L =
V N S, passing through origin. That is r is the number of knot componentsin
the link L determined by V, i.e. r is the number of variables in the Alexander
polynomial of thelink L.

We base our algorithm for the computation of the §-invariant on the following

theorem proved by Milnor:

Theorem 2 ([27]). Supposethat r branchesof thecurve V = F~1(0) passthrough
theorigins = (0, 0), whichisanisolated singularity for V. Then the delta-invariant
of theisolated singularity s = (0, 0) denoted with §; isrelated to the Milnor number
w by theequation 26, = 4+ r — 1 and it is always an integer.

We give the schematic algorithm for the computation of the §-invariant of the

isolated singularity (0, 0).
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Algorithm 7 Delta-invariant of theisolated singularity (0,0) DELTA(AL, i, r)
Input: Ap(t,..., tn) the Alexander polynomial of L
L thealgebraic link of the isolated singularity s = (0, 0),
d thedegree of A, m the number of variablesin A,
Output: & € Z7
where §; isthe deltarinvariant of s = (0, 0).

1. If m = 1 then return g; =%
d+m
2

2. If m > 2thenreturn §; =

Algorithm 8 Genus of a plane complex algebraic curve GENUS(F, d, €)
Input: C = {(zw) € C?|F(zw) = 0},
F(z, w) € C[z,w] with numeric coefficients,
d thedegreeof C,e e R*, e > 0
Output: genus(C) € Z
where genus(C) is the approximate genus of C.

1. sumDeltalnv = 0.
2. Compute Sng(C) = SING(F, d).
3. Foreachs; = (z,w;) € Sng(C) do:

Moves; in(0,0): C ={(z+z.w+w;) € C?|F(z+ z,w+w;) = 0}.
. Compute L = ALGLINK(F, ¢) (L isapproximated by Graph(L)).

. Compute D(L) = DIAGRAMLINK (Graph(L)).

. Compute A, (¢4, ..., t,) = ALEXPOLY (D(L), m, n).

. Compute §;, = DELTA(AL, i, 7).

. sumDeltalnv = sumDeltalnv + §, .

(d =1 —=2)
2

-0 Qo0 OC®

4. Return genus(C) = — sumDeltalnv.

3.5 Computing the Genus of the Algebraic Curve

We now give the schematic algorithm for computing the genus of a plane complex
algebraic curve whose defining polynomial has numeric coefficients. The computed
genus is the approximate genus, which is defined as the lowest possible genus of a
curve defined by a nearby polynomial. We discuss the notion of approximate genus
in detail in Sect. 4.

4 What Precisely Means* Approximate Computation” ?

It isthe mark of an instructed mind to rest satisfied with the
degree of precision to which the nature of the subject admits and
not to seek exactness when only an approximation of the truth is
possible.

Aristotle
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The fact that the genus computation problem is ill-posed and our desire to
compute the genus for approximate inputs seems to be incompatible at first glance.
On the other hand, similar situations have been considered before: for ill-posed
problems in the field of partial differential and integral equations, regularization
theory (see[14]) has been introduced. In approximate algebraic computation, some
principles have been established that aim at computing discontinuous properties
of approximately given data (see [35, 41]). A probabilistic interpretation of a
similar situation can be found in [31]. In this section, we discuss the regularization
theory approach as much as it is relevant here, and relate it to our specific
situation.

Let A and B be metric spaces. Let F : A— B be a function that is not
continuous. Then the problem of computing F(y) for given y € A isill-posed,
as the desired output does not continuously depend on the given input. Instead
of computing F, we approximate F by a set of functions that converge towards
F. More precisely, let R : A x Ry — B be afunction that is continuous. The
additional input parameter € € R iscalled “regularization parameter”. For y € A,
aperturbation of y isafunctionfromR4 to 4, € — y,, suchthat d(y, y.) < € for
dlee Ry.

We say that R is a regularization of F if there exists a bijective monotonic
function @ : Ry — R, aso known as “parameter choice rule’, such that for
any y € A and any perturbatione — y. of y, we have

lim R(ye.a(€)) = F(y). ©
One consequence of thisis “convergencefor exact data’:
limR(y.€) = F(y)

(just set y. = y, the constant perturbation). More important, however, is that if we
know the “error level” § of the input, then we may assume that the input we haveis
of theform y; for some perturbation. Then we calculate the value R(ys, «(§)). This
valueis an estimate for F(y). If we could decrease the error level, then the limit of
these estimates would be F(y).

In our situation, A is the set of coefficient vectors of polynomials of fixed
degree, B isdiscrete, and F isthe function that assignsto the given polynomial the
Alexander polynomial of the singular point at the origin of the defined curve. (If the
origin is not a singular point, then the Alexander polynomial is 1.) The function R
assignsto € > 0 the Alexander polynomial of the e-link, arising as the intersection
of the curve with the e-sphere (see Algorithm 2). Note that this function is not
everywhere defined, because it may happen that the intersection has singularities
and is therefore not a link. But it is easy to see that the function R is continuous
in its domain of definition. Since B is discrete, this amounts to saying that R is
constant in every connected component of its domain of definition. The Alexander
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polynomial can only changeif the intersection has singularities, otherwise we have
an isotopy, which leaves the Alexander polynomial fixed.

Note that the convergence for exact data is a straightforward consequence of
Theorem 1. On the other hand, we admit that we cannot (yet) say that computing
the e-link is aregularization for the problem of computing the link of a singularity,
because we do not yet know the parameter choice rule o satisfying (3). An
observation that may help is that the Alexander polynomia is constant in each
family with constant Milnor number [37] and that the Milnor number function is
an upper semicontinuous function of the coefficients of the algebraic curve [36].
Unfortunaly, regularization theory for discontinuous algebraic algorithmsis not as
well developed as the theory for differential equations.

Discontinuities arise not only in Algorithm 2, but aso in Algorithm 1 where
we compute the singularities of a curve given by coefficients. (It is clear that
singularities disappear under generic pertubations, for instance.) Using subdivision,
we can compute “numerical singularities’, which are points in the plane where the
value of the polynomial and its derivatives are small. Moreover, it is guaranteed that
every singularity liesin the vicinity of such a computed numerical singularity.

5 Numerical Experiments

There is no such thing as a failed experiment, only experiments
with unexpected outcomes.
R. B. Fuller

In this paper, we will give some experimental evidence for the statement that
our algorithm is a regularization as explained in Sect.4. All the experiments,
numerical and symbolical, are done with the software, GENOM3CK-Symbolic
numeric techniques for GENus cOMputation of Complex algebraiC Curves using
Knot theory. GENOM3CK is implemented and included as a library in the free
system Axel [39], written in C++ with Qt Script for Applications (QSA).

Asevidencesfor the conver gencefor exact data property we consider an input
polynomial F(x,y) € C|x,y] with both exact and inexact coefficients and we
compute A (F(x, y)) with the approximateal gorithm A.. We compute A, (F(x, y))
with the approximate algorithm for different values of the parameter €. We obtain
several outputs such as: the singularities of the input curve defined by F(x, y), the
algebraiclink of each singularity (i.e. the topology of the singularity), the Alexander
polynomial of each algebraic link, the delta-invariant of each singularity, and the
genus of the curve. The computation of the Alexander polynomial, delta-invariant
and the genus depends on the computation of the algebraic link of each singularity.
From the experiments, we observe that the approximate solution computed with A.
convergesto the exact solution as e tendsto 0.
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Example3. We consider F(x,y) = x> — xy — y>. We notice that x> — xy =
x(x — y) thus F(x,y) has a vertica tangent x = 0 in C2. In order to assure a
valid stereographic projection in R* we make the substitution {x — y,y — x}in
F(x, y) obtaining F(x, y) = —x* — xy + y?, and thus we consider this polynomial
as the input of the problem. We use Arnold’s results concerning the analysis of
curve singularities and we deduce that the algebraic link of the singularity (0, 0) of
the polynomial —x* — xy + y? isthe same as the algebraic link of the singularity
(0, 0) of the polynomial —xy + y? which is the Hopf link, and which representsthe
exact solution for the algebraic link of the singularity (0, 0) of F(x, y). We notice
in Table 1 that the approximate solution converges to the exact solution as ¢ tends
to 0.

We can consider the input polynomial with both exact and inexact coefficients,
suchas F(x, y) = —x*—xy+y2—0.01. We observein Table 2 that the approximate
solution converges to the exact solution when ¢ tends to 0. This is an evidence
for property (3) from Sect. 4, which is also called the convergence for noisy data

property.

Example4. We consider F(x,y) = x?> — y> — y3. We use Arnold’s results
concerning the analysis of curve singularities and we deduce that the algebraic link
of thesingularity (0, 0) of F(x, y) isthe sameasthealgebraic link of the singularity
(0,0) of the polynomial x*> — y* which is the Hopf link, and which represent the
exact solution for the algebraic link of the singularity (0, 0) of F(x, y). We notice
in Table 3 that the approximate solution converges to the exact solution as ¢ tends
to 0.

As evidences for the continuity property we consider an input curve defined
by the polynomial F(x,y) € C|x, y] with exact and inexact coefficients and we
compute A, (F(x, y)) with the approximate algorithm A.. The continuity property
of A. states that small changes in the input polynomial F(x, y) produce constant
output for the computed approximate solution. To observe this we proceed in the
following way:

Table 1 Convergence of —x> — xy + y? with exact coefficients
Equation and € Link Alexander, § invariants, genus
—x*—xy+y* 100 Trefoilknot A@f)=2—t,+1 §=1 g=0
—x*=xy+y> 05 Trefoilknot A@)=t-t+1 §=1 g=0
—x3—xy+y> 025 Hopflink At 1) =1 §=1 g=0

—x>—xy+y%> 0.4 Hopf link At 1) =1 =1 g=0

Table 2 Convergence of —x> — xy + y? — 0.01 with inexact coefficients

Equation and € Link Alexander, § invariants, genus

—x3—xy+y2—001 100 Trefoilknot A@t)=t}—t;,+1 =1 g=0
—x3—xy+y2—001 0.5  Hopflink At 1) =1 §=1 g=0
—x3—xy+y2—0.01 025 Hopflink At 1) =1 §=1 g=0

—x>—xy+y2—0.01 022 Hopflink At ) =1 =1 g=0
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Table 3 Convergence of x> — y? — y3 with exact coefficients

Equation and € Link Alexander, § invariants, genus
x?—y*—y3 1.00 1singularity curve — - -
x2—y*—y3> 0.7  Hopflink Alt,)=1 8§=1 g=0
x2—y*—y3 05  Hopflink Alt, ) =1 =1 g=0
x2—y*—y3 019 Hopflink Alt,h)=1 =1 g=0

Table 4 Continuity for perturbations of type I of —x3 — xy + y?2

Perturbations 7 and ¢ o=10"¢%eeN* Link Invariants

—x3—xy+y2—10"¢ 05 {1072,..., 10719} Trefoil knot  A(t) =12 —1 + 1
§=1g=0

—x¥—xy+y2—10"¢ 025 {1072%,..., 10719} Hopf link A, 1) =1
5=1g=0

* We consider a polynomial p(x,y) € C[x,y] which contains only exact
coefficients.

* For o € R*, we dightly perturbed the coefficients of the polynomial p(x, y)
obtaining some new polynomials denoted with p,(x, y) that we cal pertur-
bations of the polynomia p(x,y). We cal o the perturbation of the exact
polynomial p(x, y).

* We consider several values for the parameter €. For each of these values, we
execute the approximate algorithm A, on the perturbed polynomials p,(x, y)
for different values of ¢ € R*. The perturbed polynomials p, (x, y) represent
theinput polynomials F (x, y) with exact and inexact coefficients, i.e. F(x, y) =
ps(x,y), foro e R*.

We distinguish between two types of perturbations:

1. Perturbations of type I: For these types of perturbations, p,(x,y) is of the
following form: p,(x, y) = p(x,y) + o, where p(x, y) isthe exact polynomial
and o € R* isarea number different from 0.

2. Perturbations of type 717: For these types of perturbations, p,(x, y) is of the
following form: p,(x,y) = p(x,y) + oq(x,y), where p(x, y) is the exact
polynomial, o € R* and g(x, y) € C|x, y] isan arbitrary exact polynomial.

From the experiments, we observe that for the perturbed polynomials the approxi-
mate computed solution is preserved, that is for small changes of the input data we
obtain constant output for the computed approximate sol ution.

Example 5. For the exact polynomia p(x,y) = —x> — xy 4+ y?, we consider
perturbations of type I of the form p,(x,y) = —x* — xy + y> — o, witho €
{1072,...,1071%}. We notice in Table 4 that for perturbations of type I of —x3 —
xy + y* we obtain constant approximate sol ution.

For the perturbations of type 71 we consider the exact polynomial p(x,y) =
—x3 — xy + y?, the arbitrary exact polynomial g(x,y) = —x* — 2xy + y? and
o €{107!,...,107'%}, obtaining the perturbed polynomias p, (x,y) = p(x,y)+
+0oq(x,y) = = —xy+y>+o(=x’=2xy+y?) = —(1+0)x’ —=(1+20)xy +(1+
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Table 5 Continuity for perturbations of type I7 of —x* — xy + y?

Perturbations /7 and € o=10"¢e €N* Link Invariants

—(14+1079)x>=(1+2-107¢) 0.15 {1071,...10719}  Hopflink A(r;,0) =1
xy + (14 107¢)y? §=1g=0

—(14+107)x>—=(1+2-107¢) 0.14 {1071,...1071°}  Hopflink A(r;,5) =1
xy + +(1 4+ 107¢)y? §=1g=0

Table 6 Continuity for perturbations of type 7 of x2 — y? — »?

Perturbations / and e oc=10"¢e€N* Link Invariants
x2—y2—y3—107¢ 05 {107',...,107'°} Hopflink A(.,)=18=1g=0
x2—y?—y3—10"¢ 0.14 {107',..., 10719 Hopflink  A(t;,t) =18=1g=0

Table 7 Continuity for perturbations of type 77 of x2 — y? — y3

Perturbations 77 and € o=10"¢e € N* Link Invariants

A+107)x2—=(14+3-107¢)y> 025 {107',...1071°9}  Hopflink A(r,1) =1
—(144-1079))3 §=1g=0

A+1079)x2—(1+3-107¢)y? 0.14 {107!,...1071°}  Hopflink A(r,1) =1
—(1+4-107%)y° §=1g=0

0)y?. Foro = 0.1 weobtain the perturbed polynomial py« o1 = —1.1x3—1.2xy+
1.1y%; for o = 0.01 we obtain the perturbed polynomia p,< o1 = —1.01x3 —
1.02xy + 1.01y?; for o = 0.001 we obtain the perturbed polynomial p, <9001 =
—1.001x3 — 1.002xy + 1.001y?, etc. We notice in Table 5 that for perturbations of
type 71 of —x* — xy + y? we obtain constant approximate solution.

Example6. For the exact polynomia p(x,y) = x> — y? — y3, we consider
perturbations on type I of the form p,(x,y) = x> — y2 — y* — o, with
o € {107!,...,1071°}, We notice in Table 6 that for perturbations of type I of
x? — y? — y3 we obtain constant approximate solution.

For the perturbations of type 71 we consider the exact polynomial p(x,y) =
x? — y? — y3, the arbitrary exact polynomial ¢(x,y) = x> —3y?> —4y*ando €
{1071,...,1071%}, obtaining the perturbed polynomials p, (x, y) = p(x, y)+
+oq(x,y) = x>—y*—y3+0(x2=3y*—4y>) = (14+0)x>—(1430) y>*—(1+40) y>.
For o = 0.1 we obtain the perturbed polynomial p,« o1 = 1.1x% — 1.3y? — 1.4y3;
for o = 0.01 we obtain the perturbed polynomial p,<« o = 1.01x> — 1.03y? —
1.04y3; for o = 0.001 we obtain the perturbed polynomial p,<« o0 = 1.001x% —
1.003y% — 1.004y3, etc. We notice in Table 7 that for perturbations of type 17 of
x? — y? — y3 we obtain constant approximate solution.

6 Conclusion and Future Work

If I have seen further than others, it is by standing upon the
shoulders of giants.
Isaac Newton
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For each input plane complex algebraic curve C defined by the polynomial
F(z, w) with numeric coefficients, GENOM3CK performs the following compu-
tational operations:

1. It computesthe set of all distinct real singularitiesin the projective real plane of
C.

2. It computes and visualizes the algebraic link L of each singularity of the input
curve C in the three-dimensiona space; for each algebraic link L, which is
a smooth, implicitly defined closed algebraic curve in R3, it computes and
visualizes the two implicit algebraic surfaces that define the algebraic link L.
In fact these surfaces represent the Milnor fibration.

. It computes the diagram of each algebraiclink L.

. It computesthe Alexander polynomial of each algebraiclink L.

. It computes the 5-invariant of each singularity.

. It computesthe genus of the curve C.

. It also computes the time needed for performing each of these operations.

~NOoO ok~ w

We have reported on a symbolic-numeric algorithm for genus computation
of plane complex algebraic curves whose defining polynomials have coefficients
of limited accuracy, i.e the coefficients of the polynomia are both exact and
inexact data. We have successfully realized a complete automatization for the
steps of the proposed symbolic-numeric agorithm in the GENOM3CK library
using Axel, an agebraic geometric modeler. The library allows us to compute
several invariants of an input plane complex algebraic curve, such as: the algebraic
link, the Alexander polynomial and the delta-invariant of each singularity of
the curve. In addition, the library allows us to analyse the performance of the
proposed symbolic-numeric algorithm. As expected, the test experiments indicate
the efficiency of the proposed symbolic-numeric algorithm. Moreover, we use the
library in order to offer practical evidences for the convergence and the continuity
properties of the proposed symbolic-numeric algorithm. These tests also indicate
that the proposed symbolic numeric algorithm can be described using principles
from regularization theory and approximate algebraic computation. Using these
principles, we intend to give a precise meaning to the notion of approximate genus
of the input plane complex algebraic curve computed using the proposed symbolic-
numeric algorithm.
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part of our problem.
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The* Seven Dwarfs’ of Symbolic Computation

Erich L. Kaltofen

Abstract We present the Seven Dwarfs of Symbolic Computation, which are
sequential and parallel algorithmic methods that today carry a great majority of all
exact and hybrid symbolic compute cycles.

SymDwf 1. Exact linear algebra, integer lattices

SymDwf 2. Exact polynomial and differential algebra, Grébner bases

SymDwf 3. Inverse symbolic problems, e.g., interpolation and parameterization
SymDwf 4. Tarski’s algebraic theory of real geometry

SymDwf 5. Hybrid symbolic-numeric computation

SymDwf 6. Computation of closed form solutions

SymDwf 7. Rewrite rule systems and computational group theory

We will elaborate on each dwarf and compare with Colella’s seven and the Berkeley
team’s thirteen dwarfs of scientific computing.

1 Introduction

Phillip Colella [7] in his 2004 presentation “Defining Software Requirements
for Scientific Computing” about DARPA’s High Productivity Computing Systems
(HPCS) program gave his list of the now-famous ““Seven Dwarfs’ of algorithms for
high-end simulation in the physical sciences.

HPCs 1. Structured Grids HPCS 4. Dense Linear Algebra  HPCS 7. Monte
HPCs 2. Unstructured Grids HPCS 5. Sparse Linear Algebra Carlo
HPCS 3. Fast Fourier Transform  HPCS 6. Particles
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The dwarfs in allusion to the fairy tale mine compute cycles for golden results.
Recently, the term “killer kernels” has been used to replace the notion of dwarf,
but the dwarfs seem more like library procedures than operating system kernels.
Following Colella, researches in parallel computation at the University of California
at Berkeley, who include David Patterson and Katherine Yelick, have modified and
upgraded to 13 dwarfs, where “A dwarf is an algorithmic method that captures
a pattern of computation and communication [http://view.eecs.berkeley.edu/wiki/
Dwarf_Mine]:”

Berkeley 1. Dense Linear Algebra  Berkeley 8. Combinational Logic
Berkeley 2. Sparse Linear Algebra  Berkeley 9. Graph Traversal

Berkeley 3. Spectral Methods Berkeley 10. Dynamic Programming
Berkeley 4. N-Body Methods Berkeley 11. Backtrack and Branch-and-Bound
Berkeley 5. Structured Grids Berkeley 12. Graphical Models

Berkeley 6. Unstructured Grids Berkeley 13. Finite State Machines
Berkeley 7. MapReduce

Both lists are notably numerical computing oriented. They exclude symbolic
computation, i.e., methods with exact arithmetic, or logic programming, say
rewriting via rules, altogether. However, they inspire to make a corresponding list,
and here we will do so for symbolic computation. Bruno Buchberger [5] in his
1985 editorial in the first issue of the Journal of Symbolic Computation makes an
attempt to define the discipline of symbolic computation. We adopt his breadth and
view symbolic computation to include all of computer algebra [18, 25] and also
algebraic methods for analysis, statistics and combinatorics, logic programming,
computational geometry and program synthesis. The report [3] offers a then glimpse
into the future of symbolic computation and has made several accurate predictions
(see, e.9., Sect. 6 below).

Here we add to this taxonomy via our seven dwarfs of symbolic computation.
Our methods are oriented to mid-level and high performance computation tasks,
and should not be considered comprehensive. A subject on the boundary not
included is computational number theory. The important application of symbolic
computation to mathematics education is not discussed. Education tasks can be
compute intensive. For example, the automatic grading of the Maple homework
worksheets of our calculus classes by NCSU’s egrader software consumes an entire
night. On the low performance side, micro symbolic computation systems for
compact devices such as cell phones constitute an important educational application
of the discipline: vastly more people world-wide own cell phones than computers.

We presented the list in the talk “The Seven Dwarfs of Symbolic Computation
and the Discovery of Reduced Symbolic Models” [http://www.math.ncsu.edu/~
kaltofen/bibliography/07/SNSC07.pdf] at 4th International Conference on Sym-
bolic and Numerical Scientific Computing SNSC ’08 at RISC Linz, Hagenberg,
Austria, on July 24, 2008. In the following, we briefly discuss each dwarf and give
selected references, which are meant to highlight some past and current results and
not as a complete survey as other important work could not be included.
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2 Exact Linear Algebra, Integer Lattices

Important breakthroughs in exact linear algebra actually happened later than those
in polynomial algebra, notably after Buchberger’s Grobner basis algorithm. One is
the discovery of exact sparse iterative algorithms based on the numeric Krylov and
Lanczos algorithms [29, 51] and their block versions [8, 26, 48] whose probabilistic
analysis for small coefficient fields is being completed today [11]. The algorithms
are available in the open source LinBox library [www.linalg.org], callable from
the SAGE and Maple platforms, and put to important use. A second breakthrough
are the lattice basis reduction algorithms [12, 37] that today have greatly improved
implementations [40] and are used extensively for discovery of exact identities from
numeric approximations ([20], “the inverse symbolic calculator” [http://oldweb.
cecm.sfu.ca/projects/ISC/ISCmain.html]).

We observe additional trends today: Strassen’s fast matrix multiplication algo-
rithm and cache-efficient BLAS libraries improve performance of exact linear
algebra [9]; characteristic polynomials and integer Smith normal forms of sparse
integer matrices [10, 15] are important invariants, for instance in computing the so-
called bar code of a persistent topology of data; and structured exact linear problem
solvers such as the matrix Berlekamp/Massey algorithm [32] form a fundamental
ingredient in sparse solvers.

Exact linear algebra algorithms are easily underestimated. Great progress has
been made in the past ten years, and the software has a wide range of applications.
Exact solutions are not only needed for finite field entries, but also for diophantine
problems and when the exact input forms an ill-conditioned matrix.

3 Exact Polynomial and Differential Algebra, Grobner Bases

Polynomial arithmetic including the computation of multivariate polynomial great-
est common divisors, factorizations, and triangular and other canonical forms for
polynomial systems constitute the heart of computer algebra. Classical tools include
resultant computation and Hensel lifting and modern tools Buchberger’s Grobner
basis algorithm. Truncated power series are represented by polynomials and thus
included in this dwarf.

The calculus of differentiation and differential ideals allows manipulation of
differential equations as polynomials with a derivative operator. In addition, one
can interpret the derivative (or difference) operator as a new symbol and construct
composed operators as polynomials with variables and derivative (difference)
symbols. Those operator rings are generalized to Ore extensions and have an
additional, special, non-commutative multiplication. Two references are [13, 43].
See also Sect. 7.

Efficient implementations of polynomial factoring and Grobner basis algorithms,
for instance Jean-Charles Faugere’s FGb which is also callable from within Maple,


www.linalg.org
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make a serious use of the methods as easy as, say, Matlab gives access to numerical
linear algebra. Today’s applications are abundant, e.g., cryptosystems have be
broken with them.

Basic polynomial arithmetic of multivariate polynomials forms the core infras-
tructure of any symbolic manipulation system, and efficiency improvements can still
being made: any speedup will speed many application algorithms. This is the more
true with the arrival of multicore and multiprocessor workstations.

4 Inverse Symbolic Problems, e.g., Interpolation
and Parameterization

Interpolation and curve fitting are basic and important operations to build mathemat-
ical models from data. Zippel’s [53] and Ben-Or and Tiwari’s [1] sparse multivariate
polynomial algorithms are a fundamental contribution from symbolic computation
to the task of function/model recovery. The paradigm of early termination via
randomization has successfully been exploited [27]. In Sect.6 we point to new
numerical methods that were derived from the exact symbolic algorithms. More
recently polynomial and rational function recovery with very high degree terms
have been achieved [14, 17, 34]. There the values are determined at roots of unity
to prevent size explosion. Beyond polynomial and rational function recovery is,
for instance, recovery of algebraic functions and differential equations from series
solutions.

The circle as an implicitly represented curve x> 4+ y?> = 1 can be rationally
parameterized as x = cos(a) = (1 —2)/(t> + 1), y = sin(e) = 2t/(t> + 1)
with —oo < ¢ = tan(«/2) < oo. Not all real curves can be so parameterized, for
instance elliptic curves. A reference is the book [45]. Parametric curves form basic
objects in geometric rendering.

Interpolation and Chinese remaindering forms the recovery step in computing
with homomorphic images, where a computation is split by first computing the
solution for various values of a symbolic parameter and then the symbolic solution
is interpolated from those values. Because each value can be processed separately
and no intermediate degree/size growth occurs, the paradigm constitutes a powerful
and parallel/distributed approach.

5 Tarski'sAlgebraic Theory of Real Geometry

Tarksi’s algorithm for eliminating quantifiers in sentences formed on semi-algebraic
sets makes most of Euclidean geometry and real polynomial optimization decid-
able. Unfortunately, the general method solves problems in a high complex-
ity class (super-exponential). Nonetheless, George Collins’s cylindrical algebraic
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decomposition algorithm is implemented and has solved non-trivial problems.
References are the collection [6] and [4], which has references to newer work.

A fundamental quantifier elimination problem is to determine whether a multi-
variate polynomial f(xi,...,x,) has a real root, which we shall call Seidenberg’s
problem. For instance, deciding if a polynomial can attain negative values, i.e., is not
positive semidefinite, is equivalent to deciding if f(x,... ,xn)x,fJrl + 1 has a real
root. Thus all (unconstrained) polynomial inequalities are reduced to Seidenberg’s
problem. A more general fundamental problem is to compute a sample point in each
connected component of the real solution set of a system of polynomial equations.

Modern software, such as RAGIib [44], analyzes the real critical values via
Grobner basis computation. A variant of Tarski’s quantifier elimination problem
that weakens the pre- and post conditions and thus lowers the intrinsic complexity
can be based on such real polynomial software [21].

Hilbert’s Problem on polynomial sums-of-squares and Artin’s Theorem offers
an additional approach to real polynomial optimization, which is made possible by
numerical non-linear optimization and discussed in Sect. 6.

6 Hybrid Symbolic-Numeric Computation

The use of approximate, floating point, arithmetic and approximations of irrational
functions by polynomials and rational functions is as old as logarithm tables
and Taylor series and Padé fractions. Section 2.12.3 in [18] describes what
constitutes hybrid symbolic-numeric computation. Our description already contains
the fundamental concept of computing a nearest polynomial, measured in some
distance norm, that satisfies a property which the input polynomial does not.
Classical properties are having non-trivial polynomial greatest common divisors and
factors, or common solutions (the nearest consistent system) or solutions that have
real components (the nearest polynomial with a real root) or higher multiplicities
(contracting clusters of zeros to a single common point). The inputs are not exact,
because of physical measurement or because the scalars come from a floating point
computation, and therefore lack the needed property. The sought property may have
to be avoided, and a lower bound on the distance yields a condition number. New
work and references are found in the proceedings [24, 47, 49].

Because there is a gradual transition to mostly numerical solution of, say,
algebraic geometry problems, e.g., via programs like Bertini [http://www.nd.
edu/~sommese/bertini/] and PHCpack [http://www.math.uic.edu/~jan/PHCpack/
phcpack.html], the symbolic computation component in the hybrid approach is
sometimes dismissed. Clearly, the algorithms for sparse approximate interpolation
[16,30] are based on the exact sparse polynomial interpolation algorithms by Zippel
and by Ben-Or and Tiwari. Those hybrid algorithms have applications to sparse
signal processing and compressive sensing. The approximate Buchberger-Moller
algorithm has found an application in analyzing data from oil wells [http://Avww.
algebraic-oil.uni-passau.de/].
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Any positive semidefinite polynomial f with real (rational) coefficients (see
Sect. 5) can be written as a finite sum

1 k
f(xl,...,x,,)z— Zgi(xl,...,xn)z, (1)

go(x1. ... xn)?
where g; are polynomials with real (rational) coefficients. If there exist g; with
go = 1, f is said to be SOS, but not all f are, e.g., Motzkin’s polynomial. Any
polynomial inequality f > h is equivalent to f — & being positive semidefinite;
h in global optimization is the real infimum (or a rational lower bound) of all
values of f. Therefore, any g; satisfying f —h = 1/g3 Y, g7 constitute a proof
(exact certificate) for the inequality/optimum. Two recent developments have made
it possible to compute such certificates. The first are the numerical optimization
algorithms for semidefinite programming. The second is a symbolic technique for
converting an imprecise SOS with floating point coefficients to an exact identity over
the rational numbers [28, 33, 41]. Among the recent successes are the proof of the
Monotone Column Permanent Conjecture for n = 4 [31], which was completed
shortly before the general conjecture could be established, the Bessis-Moussa-
Villani (BMV) conjecture for m < 13 [35], new SOS proofs for many known
inequalities, and a deformation analysis approach to Seidenberg’s problem of Sect. 5
[22]. Optimization with additional polynomial inequality constraints are handled by
various so-called Positivstellensatze [38].

7 Computation of Closed Form Solutions

Robert Risch’s 1970 solution of Hardy’s problem to determine if an indefinite
integral can be expressed in closed form as an expression in elementary functions
is a hallmark of early symbolic computation. Closed form solutions to differential
equations and the inclusion of special functions, possibly defined by lower order
differential equations constitutes an active area of research. References are the book
[46] and [52], which has references to newer work. A connection to differential
elimination theory of Sect. 3 should be noted.

Algorithms for closed form solutions for discrete summations, difference equa-
tions, and combinatorial counts form an active subarea of symbolic computation
which could be named “symbolic combinatorics” (Michael F. Singer). The members
of Peter Paule’s research group, some of who are part of the Austrian DK research
grant “Numerical and Symbolic Scientific Computing,” have made significant recent
contributions to the area of symbolic combinatorics: http://www.risc.uni-linz.ac.at/
research/combinat/risc/publications/. An example is the closed form solution for the
generating function for counting so-called Gessel walks, which turned out to be an
algebraic function in three variables [2], which was discovered in collaboration with
the Algorithms Project at INRIA [http://algo.inria.fr/index.html].


http://www.risc.uni-linz.ac.at/research/combinat/risc/publications/
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8 Rewrite Rule Systems and Computational Group Theory

Computational group and representation theory is a traditional subject lying in the
intersection of symbolic computation and combinatorics. Famous popular examples
are to compute the minimum number of moves necessary for solving Rubik’s cube
puzzle from any configuration [36], which was recently completed on a Google data
center http://cube20.org. Group decomposition plays a major role in the synthesis
of high performance FFT library [42].

Bruno Buchberger included rewrite rule systems as a subject of symbolic com-
putation, motivated perhaps by the interpretation of his Grobner basis algorithm as
a critical-pair/completion method (Knuth-Bendix completion). Rewrite techniques
are often deployed for expression simplification in symbolic computation. The
RTA conference series [http://rewriting.loria.fr/rta/] covers the many applications
beyond symbolic computation (see also the Coq proof assistant http://www.lix.
polytechnique.fr/cog/). Algebraic techniques are also be applied to algorithm
synthesis, such as automatic differentiation [19] and the transposition principle for
matrix-times-vector products or elimination of divisions from algebraic algorithms.

Acknowledgements | thank Bruno Salvy for his thoughtful comments.
This material is based on work supported in part by the National Science Foundation under
Grants CCF-0830347, CCF-0514585 and DMS-0532140.
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Computer Algebra Meets Finite Elements:
An Efficient Implementation
for Maxwell’s Equations

Christoph Koutschan, Christoph L ehrenfeld, and Joachim Schober|

Abstract We consider the numerical discretization of the time-domain Maxwell’s
equations with an energy-conserving discontinuous Galerkin finite element for-
mulation. This particular formulation allows for higher order approximations of
the electric and magnetic field. Special emphasis is placed on an efficient imple-
mentation which is achieved by taking advantage of recurrence properties and the
tensor-product structure of the chosen shape functions. These recurrences have been
derived symbolically with computer algebra methods reminiscent of the holonomic
systems approach.

1 Introduction

This paper is dedicated to a successful cooperation between symbolic computation
and numerical analysis. The goal is to simulate the propagation of electromagnetic
waves using finite element methods (FEM). Such simulations play an important
role for constructing antennas, electric circuit boards, bodyworks, and many other
devices where electromagnetic radiation is involved. The numerical simulation of
such physical phenomena helps to optimize the shape of components and saves the
engineer from doing a long and expensive series of experiments.

Finite element methods serve to approximate the solution of partial differential
equations on a given domain < R¢ subject to certain constraints (e.g., boundary
conditions). The domain €2 is partitioned into small elements (typically triangles or
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tetrahedra) and the solution is approximated on each element by means of certain
shape functions. In our application we deal with Maxwell’s equations which relate
the magnetic and the electric field. In Sect. 2 we describe how the problem can be
discretized using FEM and in Sect. 3 we give the details concerning an efficient
implementation.

An important ingredient for the fast execution of some operations in the FEM
are certain difference-differential relations that were derived with computer algebra
methods. The methods that we employ, originate in Zeilberger’s holonomic systems
approach [3,10,13] whose basic idea is to define functions and sequences in terms of
differential equations and recurrence equations plus initial values (these equations
have to be linear with polynomial coefficients). Luckily the shape functions used
in the chosen FEM discretization fit into the holonomic framework since they are
defined in terms of orthogonal polynomials. Section 4 explains how the desired
relations have been computed.

2 FEM Formulation of Maxwell’s Equations

In order to describe electromagnetic wave propagation problems, we consider the
loss-free time-domain Maxwell’s equations

oE

e— =curl H,
ot

oH = —curl E
o = ’

subject to appropriate initial and boundary conditions. Here £ = E(x,t) denotes
the electric and H = H(x,t) the magnetic field strength (with x = (x1, x2, x3)
the space variables and ¢ the time), and ¢ and ;. > 0 are the permittivity and the
permeability, respectively. When discretizing these equations with the finite element
method, we go over to a weak formulation by multiplying both equations with test
functions e(x) and Z(x) and integrating over the whole domain Q@ c IR?. The
solution of the Maxwell’s equations then has to fulfill the conditions

a

—(eE,e)q = (curl H, e)q,

88t 1)
g(MH, h)q = —(curl E, h)q

for all test functions e and &, where (-, -)q is the short notation for the L>(Q) inner
product (a, b)q = [, ab dx. Then we replace both the magnetic and electric field as
well as the test functions by finite-dimensional approximations on a triangulation 7,
of the domain 2. Herein & denotes some characteristic length of the elements in 7,
(not to be confused with the test function #).
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Conforming finite elements ensure that the finite-dimensional approximations
are within a space which is appropriate for the partial differential equations under
consideration. For Maxwell’s equations this space is H(curl, ) which demands
tangential components to be continuous across element interfaces. The discon-
tinuous Galerkin finite element method (DG) neglects this conformity condition
when building up a discrete basis for the approximation, but instead has to
incorporate stabilization terms to achieve a consistent and stable formulation. This
is normally done by applying integration by parts and replacing fluxes at element
boundaries with numerical fluxes [1, 7, 8, 11]. The latter approach has the major
advantage that the mass matrices M, and M,, i.e., the matrices that arise when
discretizing (¢E, e)q and (uH, h)q, respectively, are block-diagonal which makes
the application of their inverses computationally more efficient.

We consider the approximation space

Vi = {v e (LX)’ :Vir € (PE(T)) VT € T,}

that consists of functions which are piecewise polynomial up to degree k. By
integration by parts of (1) on each element T € 7, and by adding a consistent
stabilization term on all element boundaries we get (again for all test functions e
and k)

d
P Z (¢E,e)r Z ((H.curle)r + (H* xv,e)ar),

TeT, TeT)

Y "
o D (wH.hyr =) (= (Curl E.J)r + (E* = E.h x v)ir),
TeT, TET)

where v denotes the outer normal on each element boundary and H*, E* are the
numerical fluxes. The properties of different DG formulations mainly depend on
the choice of the numerical fluxes. As all derivatives are now shifted to the electric
field E and the according test functions e, it is reasonable to approximate the electric
field of one degree higher than the magnetic field. So we choose the approximation
spaces V! for E and e and V¥ for H and h.

2.1 Numerical Flux

Several choices for the numerical flux are used in practice. Our goal here is to
derive a numerical flux which ensures that the numerical approximation fulfills the
following two important properties which are already fulfilled on the continuous
level:

1. Conservation of the energy %(sE, E)g + %(,uH, H)q
2. Non-existence of spurious modes
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On the one hand using dissipative fluxes avoids spurious modes and is often used,
but as it introduces dissipation, the energy of the system is not conserved. On
the other hand the standard approach for energy conserving methods is the so
called central flux. Its mayor disadvantage is, that it introduces non-physical modes,
spurious modes.

Nevertheless we start with this approach to derive the stabilized central flux
formulation which gets rid of both problems. A more extensive discussion of
numerical fluxes (including the stabilized central flux) for Maxwell’s equations can
be found in [6, 8.2].

The central flux takes the averaged values of neighboring elements for the
numerical flux, i.e., H* = {H}} and E* = { E}} with {{-}} denoting the averaging
operator, and ends up with a semi-discrete system of the form

i (") ()= () () ®

where C;, denotes the discrete curl operator stemming from the central flux
formulation. The matrix on the left side is symmetric and positive definite whereas
the matrix on the right side is antisymmetric. Then the evolution matrix for the

modified unknowns (MjE, M,%H)T is also antisymmetric and thus the proposed
energy is conserved. Nevertheless this matrix has a lot of eigenvalues close to
zero which correspond to the discretization, but not to the physical behavior of
the system. To motivate the modification which will stabilize the formulation, let
us have a brief look at the problem in frequency domain, i.e., for time-harmonic
electric and magnetic fields. Then the discrete problem in frequency domain reads
(with frequency w):

0= (iw)’(M.E.e) + (M;'C,E, Cye). (3)

The problem with non-physical zero eigenvalues now manifests in (C,E, Cpe)
being only positive semidefinite. We overcome this issue by adding a stabilization
bilinear form S(E, e) to (3) as proposed in [6].

S(E.e):=) %([[E]] x v, [e] X v)r

FeF,

with ¢ > 0, where 7, is the union of all element boundaries and [-] denotes the jump
operator, i.e., the difference between values of adjacent elements. This stabilization
bilinearform eliminates the nontrivial kernel of Cj, and is consistent as [E] x v is
zero for the exact solution. Before we can translate the formulation back to the time
domain, we introduce a new variable which is defined as

_ (IE] x v)a

HE .
iwh
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The new unknown H f is also piecewise polynomial on each face.
If we go back to the time-domain formulation we end up with the following
formulation (note that relations between [-] and {-} were used):

% Y (eE.e)r = Y ((H.curle)r + ({H} x v.e)ar)

TET; TET,
+ Y (H" xv,[eDr.
FeFy
d 1
% Z (uH, h)r = Z (—(h,CU“ E)r + (E[[E] X V,h) ) ,
tTeT;, TET, aT
0 o
o > pHL =3 (E]x v h)r.
FeFy, FeF,

For p-robust behavior « should scale with p?, where p is the polynomial degree.
This is motivated by the symmetric interior penalty method for elliptic equations
(see e.g. [1]) where a scaling of o with p? in the bilinearform S is necessary for
stability to dominate over some terms stemming from inverse inequalities which
scale with p? (see also [7]).

We again achieve a system of the form (2) where the vector H now consists of
element and face unknowns and the matrix representing the discrete curl operator is
the stabilized central flux curl operator now. Thus we conclude that the method now
conserves energy, and spurious modes, introduced by the central flux, vanish.

2.2 Numerical Examples (Spherical Vacuum Resonator)

We consider a spherical domain Q := {x € R’ : ||x|» < 1} and the frequency
domain formulation of the Maxwell’s equations subject to perfect electrical bound-
ary conditions

iweE = curl H,
iopH = —curl E,
Exv=0 on 0%,

Qa

To demonstrate the opportunities of higher order discretizations we consider a
coarse mesh consisting of 30 elements and increase the polynomial degree to
increase the spatial resolution. We are interested in the error of the eight smallest
resonance frequencies. Therefore we compare the eigenvalues of the numerical
discretization with those of a reference solution. In Fig. 1 we observe the expected
exponential convergence of the method.
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Testcase 2 - relative error of resonant frequencies
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Fig. 1 Convergence of the resonance frequencies after p-refinement
3 Computational Aspects

As the spatial discretization conserves energy, we consider symplectic time integra-
tion methods which conserve the energy on a time-discrete level. The simplest one
is the symplectic Euler method which discretizes the semi-discrete system (2) in the
following way:

H"™' = H" + At M['C,E"
E" = E"— At MT'CPHT!

with the stability condition
-1
_1 _1
At <2 (,o(M,L oM el my, 2))

1 1

The matrix M, >*C,M'CI' M, * is symmetric and the spectral radius p can be
estimated once by an iterative method like the power iteration. When shifting the
electric or the magnetic field by a half time-step we can reconstruct the well-known
leap frog method. Nevertheless for our considerations it is less important which time
integration scheme is used as long as it is explicit. The matrix multiplications with
Cj and ChT (see Sect. 3.2) as well as with Mljl and M ! (see Sect. 3.3) decide about
the computational efficiency of an implementation.

The advantage of discontinuous Galerkin methods becomes evident now. The
mass matrices can be inverted in an element by element fashion and also the discrete
curl operations only need information of (element-)local and adjacent degrees of
freedom, which allows for straightforward parallelization. Element matrices such as
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mass matrices and the discrete curl operation can be stored once and applied at each
time step. This is how far one comes just because of the formulation itself.

With appropriate choices for the local shape functions we can use advanced
techniques to execute those operations with a lower complexity than local matrix-
vector multiplications. Furthermore we don’t even have to store the element
matrices, s.t. the techniques presented below are also much more memory-efficient.

The following ingredients are essential for the techniques proposed below, which
enhance the implementation of the DG method:

1. Definition of an L2-orthogonal basis of polynomial shape functions in tensor-
product form?! on a reference element 7'

2. Use of curl-conforming (covariant) transformation for evaluations on the physi-
cal element T

3. Use of recurrences for the polynomial shape functions to evaluate gradients and
curls

4. Use of tensor-product structure to evaluate traces?

3.1 Local Shape Functions

For stability and fast computability we choose the L,-orthogonal Dubiner basis
[5,9]. Here, the basis functions on the reference element are constructed in a tensor-
product form of Jacobi polynomials Pi("‘ﬁ) for each spatial component (note that

the Legendre polynomials P; = Pi(o’o) are just a special case). For example, on the
reference triangle spanned by the points (0, 0), (1, 0) and (0, 1) the shape functions
take the form

¢ij(x,y) =P (12_—yx - 1) “(1=x)" - P;2i+1’0)(2x —1). 4)

They are orthogonal on the reference triangle, and gradients can be evaluated
by means of recurrence relations as demonstrated in Sect. 3.2.2. Due to the tensor-
product form traces can be evaluated very fast, see Sect. 3.2.3.

3.2 Discrete curl Operations

At each time step we have to evaluate terms like (H, curle)r on each element T
and ({H} x v, [e])r on each face F. Similar expressions have to be evaluated for
the electric field E.

1These are polynomials which are products of univariate polynomials.
2V/alues at a boundary.
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3.2.1 Covariant Transformation

Let ® : 7 — T be a diffeomorphic mapping from the reference element to some
physical element 7'. Then the covariant transformation of a function G defined on
the reference element 7 is

u:=(FHT0o ! with F =Vo.

If we define the shape functions on the mapped elements as the covariant trans-
formed shape functions on the reference element, then the tangential component
on the mapped element depends only on the tangential component of the reference
element. The transformation is called curl-conforming as it ensures that for any
function 0 € H(curl, Q) the covariant transformed function u lies in H(curl, 2).
Furthermore it preserves certain integrals, s.t. the following relations hold for the
covariant transformations H, e € H(curl, T) of H,é € H(curl, T):

/ H curledx
T

(H x v)eds
aT

3

/ H curl édx
T

= ‘/(I-AI x v)é ds
It

This means that the integrals of these forms appearing in the formulation are
independent of the geometry of the particular elements. The matrices can be
computed once on the reference element. This trick was published in [4].

3.2.2 Evaluating Gradients

For computing curls it is sufficient to evaluate gradients, since the curl is a certain
linear combination of derivatives. We write the corresponding function E in modal
representation, i.e., .
E = Zaaq)a, a, € R3,
o

where the sum ranges over the finite collection of (scalar) shape functions defined
on the reference element (in 2D the multi-index « is (i, j) and in 3D @ = (i, J, k)).
With the use of the covariant transformation, we just have to consider the integral
on the reference element 7°: R

/ heurl E dx.

T

The idea is now to take advantage of recurrence relations between derivatives of
Jacobi polynomials and Jacobi polynomials itself. We aim for an operation which
gives the coefficients b, € IR? representing the gradient

VE = Zb(,%.

Then L?-orthogonality can be used to evaluate the complete integral very fast.
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For ease of presentation let’s consider the far more easy case of evaluating the
derivative of a scalar one-dimensional function v(x) = Y /_ viP;i(x), i € R
given in a modal basis of Legendre polynomials P;, which fulfill the relation

Pl (x) = Pl_(x) + (2i + 1) Pi(x). (5)

Then the problem is to find the modal representation of
n n—1
V()= ViP/(x) =) W Pi(x).
i=0 i=0

Let’s show the first step, i.e., how we get the highest order coefficient w,_:

n n—1
V() =D ViP/(x) =Y ViP/(x) + Vo P(x)
i=0 i=0
n—1
= Vi P/(x) +Vu Py_y(x) + Va(2n — 1) P,y
i=0
n—1
= Z\?, Pi/(X) + Wn—IPn—l(x)
i=0

where we used the recurrence relation (5) for P, (x) and thus getw,—; = v,(2n—1).
For the remaining polynomial Zf;(l) V; P/(x) of degree n — 1 we can apply the same
procedure to get w,—,. This can be continued until also wy and thereby the complete
polynomial representation Zf;é w; P; (x) of V/(x) is determined.

An efficient C++ implementation of this procedure was achieved by template
meta-programming, where the compiler can generate optimized code for all ele-
ments up to an a priori chosen maximal polynomial order.

The same basically also works in three dimensions with Jacobi polynomials, but
the relations are far more complicated, see Sect. 4, and need three nested loops.

The overall costs for the evaluation of the element curl integral scales linearly
with the number of unknowns N on one element which is much better than the
matrix-vector multiplication which already has complexity O(N?).

3.2.3 Evaluating Traces

The boundary integrals that have to be evaluated can make use of the tensor-
product form to evaluate traces. Again we don’t want those traces to be evaluated
pointwise but in a modal sense and recurrences for the Jacobi polynomials make the
transformation from volume element shape functions to face shape functions with
O(N) operations possible. The procedure therefore is similar to the evaluation of
the gradient in the previous section.
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3.3 Mass Matrix Operations

So far we dealt only with the discrete curl operations. So the only thing that is left
to talk about is the application of the inverse mass matrices. Due to the covariant
transformation we have

((Ma)a,ﬂ)l,m = /TS((PaelT) (ppem) dx
- /T | det(F) | e (Guel ) F~ (F~)T (@pem) dx (6)

with ¢, denoting the scalar-valued shape functions and e, the n-th unit vector. Note
also the block structure of M, that is indicated by the above notation. In some FEM
applications, symbolic methods related to those described in Sect. 4, can be used to
prove the sparseness of the corresponding system matrix, see [12].

3.3.1 Flat Elements
Let’s assume the material parameters ¢ and p are piecewise constant and the

elements are flat, i.e., V& = F = const on each element. Then the integral (6)
simplifies to

/ ¢ (pue?) (ppen) dx = |det(F)| & (F~ (F™) )y / Gap dx
T T

and as [; @,¢p dx = 8u,p the matrix is (3 x 3)-block-diagonal and the inversion is
trivial. The computational effort is obviously of order O(N) where N is the number
of unknowns.

3.3.2 Curved Elements
If we consider curved elements or non-constant material parameters ¢ and w, the
approach has to be modified as the mass matrix arising from (6) may be fully

occupied. Let’s go a step back and consider a similar scalar problem® with a non-
constant coefficient ¢:

Given: f(v):/fvdx
T

Find: u, s.t. /suvdx=/fvdx
T T

3Extensions to 3D are straightforward.
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We now transform back to the reference element 7" and get

/euvdx:[|det(F)|euvdx:[Gde
T T T

where V = | det(F)| eV. If we now approximate ¥ with the same basis we used
for v before, the mass matrix is diagonal again. Nevertheless the evaluation of the
functional f(v) has to be transformed as well:

Y i
LdeX=LWdeX—A€deX

To evaluate the last term we will use numerical integration. But as (in our
application) f is not given pointwise, but in a modal sense, we have to calculate
a pointwise representation for the numerical integration of . fvdx first:

Given: f(v)=/fvdx=[|det(F)|f0dx
T T

Find: f;, s.t./fvdx=Z|det(F)|(xi)ﬁwiv(xi)
r i

Then we can divide (on each integration point) by ¢ and with those new coefficients
we can, by numerical integration, get a good approximation to /; éf\”/dx. The
“reverse numerical integration” and the numerical integration used here can be
accelerated by the use of the sum factorization technique. Doing so the complexity
of both “reverse numerical integration” and the numerical integration is O(p*),
where p is the polynomial degree. Note that the approximate inverse M;l obtained
by this method is still symmetric and positive definite.

3.4 Overall Computational Effort

In the previous sections we saw that the overall computational effort scales linearly
with the degrees of freedom N as long as the elements are flat and coefficients
are piecewise constant. Even for curved elements (and variable coefficients) the
computational effort is only of order (’)(N%). Furthermore no element matrices have
to be stored. Only the geometric transformations and the local topology have to be
kept in the memory.

3.5 Timings

Let’s also state some exemplary numbers that were achieved for this method and its
implementation on an Intel Xeon CPU 5160 at 3.00 GHz (64 bit) (single core) for a
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Table 1 Timings for flat elements (left), using O(1) floating point operations per dof and curved
elements (right) using O(p)) floating point operations per dof

Order p  Time (us) Order p  Time (uS)

1 0.61 1 4.89
2 0.58 2 2.54
3 0.71 3 1.93
4 0.79 4 1.79
5 1.16 5 2.06
6 1.24 6 2.17
7 1.32 7 2.33
8 1.53 8 2.67
9 1.66 9 2.88
10 1.74 10 3.04

tetrahedral mesh with 2078 elements. The costs for one step of the symplectic Euler
method per 6 scalar degrees of freedom are listed in Table 1.

4 Symbolic Derivation of Relations

In this section we want to describe the symbolic methods that were employed for
finding the desired relations for the polynomial shape functions. These relations
allow for efficient computation of the discrete curl operations and traces as described
in Sect.3.2. They have been computed by following the holonomic systems
approach [3, 10, 13], which works for all functions that satisfy sufficiently many
linear differential equations or recurrences or mixed ones; these relations have to
have polynomial coefficients. A large class of functions (like rational or algebraic
functions, exponentials, logarithms, and some of the trigonometric functions) as
well as a multitude of special functions is covered by this framework. Part of it are
algorithms for the “basic arithmetic” (that we will refer to as “closure properties”),
i.e., given two implicit descriptions for functions f and g, respectively, we can
compute such descriptions for f + g, fg, and for functions obtained by certain
substitutions into f or g. All computations in this section have been performed in
Mathematica using our package Hol onom cFuncti ons (it is freely available
from the website http://www.risc.uni-linz.ac.at/research/combinat/software/).

4.1 Introductory Example

For demonstration purposes we show how to derive automatically the rewriting
formula (5) for Legendre polynomials P, (x). It is well known that these orthogonal
polynomials satisfy some linear relations, e.g., the second order differential equation

(x* = )P/ (x) 4+ 2xP/(x) —n(n + 1) P,(x) =0


http://www.risc.uni-linz.ac.at/research/combinat/software/
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or the three term recurrence
n+2)P42(x) — 2n + 3)xPyt1(x) + (n + D) P,(x) = 0.

We will represent such linear relations in the convenient operator notation, using the
symbols D, for the partial derivative with respect to x, and S, for denoting the shift
operator with respect to n. Then the two relations above are written as

(x? — l)Dx2 +2xD, + (—n* —n)

and
(n+2)S* + (—2nx —3x)S, + (n + 1),

respectively, and we identify operators and relations with each other. The operators
can be regarded as elements of a (noncommutative) polynomial ring in S, and
D, with coefficients being rational functions in Q(#n, x). We can obtain additional
relations for P,(x) by combining the given relations linearly, or by shifting and
differentiating them. In the operator setting these operations correspond to addition
and multiplication (from the left) and we can refer to the set of all operators
obtained in this way as the annihilating left ideal generated by the initially given
operators. In the following we will represent annihilating ideals by means of their
Grobner bases; these are special sets of generators that allow for deciding the ideal
membership problem (i.e., the question whether some relation is indeed valid for
the function under consideration) and for obtaining unique representatives of the
residue classes modulo the ideal (see [2]). All algorithms mentioned below will
require Grobner bases as input. A Grodbner basis of the annihilating ideal of the
Legendre polynomials is given by

G={n+1S, + (1 —x")Ds + (—nx —x), (x> = 1) D] + 2xD, + (—-n* —n)}.

Our main task will be to find elements with certain properties in an annihilating
ideal; this can be done via an ansatz as we demonstrate now. The relation (5) that
we are going to recover connects P, ,(x), P, (x), and P,+(x), and its coefficients
are free of x. These facts translate to an ansatz operator of the form

A= Cl(n)DxS,,2 + c2(n) Dy + c3(n) S,

where the coefficients ¢; are rational functions in Q(n), and hence free of x as
required. We have to determine the ¢; such that the operator A4 is an element of
the left ideal / generated by G, so that A(P,(x)) = 0. For this purpose we use
the Grébner basis G to compute the unique representation of the residue class of A
modulo 7 (it is achieved by reduction). We have A € [ if and only if the residue
class is represented by the zero operator and hence we can equate all its coefficients
to zero, obtaining the following two equations
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a@nx? +3x> —n—=2)4+c(n + 1) + c3(x> = 1) = 0,
ci(n+1)2n +3)x + c3(n + 1)x = 0.

Note that in these equations the variable x occurs, since it is contained in the
coefficients of G. We get a solution that is free of x by performing a coefficient
comparison with respect to this variable. This yields in the end the linear system

—n—-2 n+1 —1 c1
2n +3 0 1 ] =0
mn+1)2n+3) 0 n+1 c3

whose solution is
cir=-=1, =1, c¢3=2n+3,

and this gives rise to the desired relation.

Now what do we do if we don’t know the exact shape of the ansatz as given
here by A? Then we have to include all possible monomials D/ S up to some total
degree into our ansatz. Looping over the degree, we will finally find the relation,
but the effort can be tremendous. Therefore, as a preprocessing step, we determine
the shape of the ansatz by modular computations. This means plugging in concrete
values for some of the variables and reducing all integers in the coefficients modulo
some prime. These techniques have been described in detail in [10] and they are
crucial for getting results in a reasonable time.

All these steps have been implemented in the package Hol onomi cFuncti ons
and it computes the relation (5) immediately:

2= << HolonomicFunctions.m

HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.3 (25.01.2010)
— Type ?HolonomicFunctions for help

miz1= FindRelation[Annihilator [LegendreP[n, x]], Eliminate — x]

ouz= {S? Dy + (—2n — 3)S, — D, }

4.2 Relationsfor the Shape Functions

A core functionality of our package Hol ononi cFuncti ons [10] is to execute
closure property algorithms (e.g., for addition, multiplication, and substitution) on
functions represented by their annihilating ideals. We can now use these algorithms
to obtain annihilating ideals for the shape functions ¢, since their definition in terms
of Jacobi and Legendre polynomials involves just the above mentioned operations.
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421 The2D Case

We first consider triangular finite elements in two dimensions. For these, the shape
functions are defined as in (4). Analogously to the one-dimensional example in
Sect. 3.2.2 we want to express the partial derivatives (with respect to x and y,
respectively) in terms of the original shape functions. So the goal is to find relations
(free of x and y) that connect the partial derivatives with the original function.
More concretely, we are looking for a relation that allows to express some linear
combination of shifts of %go,;,» (x, y) as a linear combination of shifts of ¢; ; (x, y)
(and similarly for y). This corresponds to an operator of the form

>l )IDS"S! + Y comali. J)S"S) (7

(m,n)ElN2 (m,n)ElN2

where the yet unknown coefficients ¢;,,.» € Q(i, j) do not depend on x and y, and
the sums have finite support.

Since we have to find such a relation in the annihilating ideal for ¢; ;(x,y),
it is natural to start by computing a Grobner basis for this ideal. The package
Hol onomi cFunct i ons provides a command Annihilator that analyzes a given
mathematical expression and performs the necessary closure properties for obtain-
ing its annihilating ideal. So in our example we can just type

3= ann = Annihilator [(1 — x)™i * LegendreP[i,2y/(1 —x) — 1] *
JacobiP[j,2i +1,0,2x —1],{S[i], S[j], Der[x], Der[y1}1;
and after a second we have the result (which is already respectable in size, namely
340kB, corresponding to about 10 pages of output).

Having implemented noncommutative Grobner bases, our first attempt was to use
them for eliminating the variables x and y. But it soon turned out that this attempt
did not produce optimal results, and in addition the computations were very time-
consuming. Therefore we came up with the ansatz described in Sect. 4.1. We use it
now to compute the desired relations (both computations take less than a minute):

mi= FindRelation[ann, Eliminate — {x, y}, Pattern — {_, ,0]1,0}] // Factor

outa= {(2i + j +5)Q2i +2j + 558Dy + (j +3)(2i +2j +5)S; D,
+ 2Qi +3)(i +j + 388D —2Q2i + )i +j +3)S7D,
— 20+ +3)Qi+2j +5Qi +2j +DSS; — (j + D(Q2i +2j +7)SDx
— 264/ +3)Qi+2j +5Qi +2j + 7S} — Qi +j +3)@2i +2j +7)S;D.}
ns:= FindRelation[ann, Eliminate — {x, y}, Pattern — {_, ,0,0| 1}] // Factor
outsi= {(2i +j +6)2i +j +7)2i +2j + 1S*SIDy —(j +3)(j +4H@2i +2j + 7S/ D,
— 4G+ ++HQi+j+6)SS Dy +4( + 3+ +4HQ2i +j +55'D,
+ G+HDG+2)Qi+2/+9)8* Dy —4Q2i +3)(i +j +4)(2i +2j +7)(2i +2j +9)S S}
- Qi+j+HQi+j+50i +2j +95'D,}
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Here the option Pattern specifies the admissible exponents for the operators,
e.g., in the first case we allow any exponent for the shift operators, whereas D, may
occur with power at most 1 only, and D, must not appear at all in the result.

4.2.2 The3D Case

When dealing with tetrahedra in three dimensions, the shape functions are denoted
by @i jx(x, y,2) and are defined by

(1—x—y)(l— x)fP,»(—l_ff_y - 1) Pf"“’o)(f_—yx - 1) PRFUF0O 0y ),
Again they have the nice property of being L2-orthogonal on the reference
tetrahedron

T={x,9.2eR|x>0Ay>0AZ2>0Ax+y+2z<1}.

Computing an annihilating ideal for ¢; ; x (x, y, 2) is already much more involved
than in the 2D case:
me= phi = (1 —x — )~ (1 —x)"j LegendreP[i,2z/(1 —x — y) — 1]
JacobiP[j,2i +1,0,2y/(1 — x) — 1] JacobiP[k,2i + 2j +2,0,2x — 1];
7= Timing[ann = Annihilator [phi, {Der[x], S[i], S[j1, S[k1}];1

out7= {359.686, Null}

The Grobner basis for this annihilating ideal is about 117MB in size (corresponding
to several thousand of printed pages). Note also that it is more efficient to consider
only one derivation operator, and compute annihilating ideals for each of the cases
L, % and £ separately (this applies to the 2D case, t0o).

In principle, the desired relations for the 3D case can be found in the same
way as for two dimensions. As described in Sect. 4.1 we find by means of modular

computations that the ansatz (for the case %) contains the 16 monomials

SiSj SkZDXa SiSk3DX7 SJ'ZSkzDXa Sj SkSDXa SzS] Sk Dx, Sl‘Sksz, szska’ Sj Sksz’
S5/ 5.5 Do S.S2. S5 Do, S2Sc, S2Dy. S S2. S, S D

However, in order to compute the corresponding coefficients, we did not succeed
with the standard approach used in Sect. 4.2.1. Instead, we had to employ modular
techniques again for many interpolation points, and then interpolate and reconstruct
the solution.

5 Conclusion

We have presented an efficient implementation for solving the time-domain
Maxwell’s equations with a finite element method that uses discontinuous Galerkin
elements. Besides many other optimizations that speed up the whole simulation,
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the usage of certain recurrence relations for the shape functions allows for a fast
evaluation of gradients and traces. These relations have been derived symbolically
with computer algebra methods.

It is widely believed that the mathematical subjects “numerical analysis” and
“symbolic computation” do not have much in common, or even that they are kind
of orthogonal. Experts from both areas can barely communicate with each other
unless they don’t talk about work. It was the great merit of the project SFB FO13
“Numerical and Symbolic Scientific Computing” that had been established in 1998
at the Johannes Kepler University of Linz, Austria, to bring together these two
communities to identify potential collaborations. We consider our results as a perfect
example for such a fruitful cooperation.
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A Symbolic Approach to Generation
and Analysis of Finite Difference Schemes
of Partial Differential Equations

Viktor Levandovskyy and Bernd Martin

Abstract We discuss three symbolic approaches for the generation of a finite
difference scheme of a general single partial differential equation (PDE). We
concentrate on the case of a linear PDE with constant coefficients and prove, that
these three approaches are equivalent. We systematically use another symbolic
technique, namely the cylindrical algebraic decomposition, in order to derive condi-
tions for the von Neumann stability of a given difference scheme. We demonstrate
algorithmic symbolic approaches for the computation of both continuous resp.
discrete dispersion relations of a linear PDE with constant coefficients resp. a
finite difference scheme. We present an implementation of tools for the generation
of schemes in the computer algebra system SINGULAR. Numerous examples are
computed with our implementation and presented in details. Some of the methods
we propose can be generalized to nonlinear PDEs as well as to the case of variable
coefficients and to the case of systems of equations.

1 Introduction

The finite difference method for linear PDES belongs to a very classical topics in
mathematics. Its exposition in the classical books like [26] often relies on huge
experience, gathered in last centuries. In particular, some important steps are based
on a posteriori analysis. A pure algebraist is often confused with such exposition
and asks, whether there is a way to split the whole picture into a purely analytic
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and an algebraic part and how is it possible to automatize the process of scheme
generation and further analysis of its properties. The ideas to generate a finite
difference schemein an algebraic (or a symbolic) way are folklore, see for instance
[9,21] for approaches and older implementations.

Terminologically, we address a difference scheme polynomial as symbolic
polynomial expression involving unknown function and partial shift (or difference)
operators. A fully described difference scheme a so includesinitia and/or boundary
conditions in addition to the difference scheme polynomial. However, since the
generation of a difference scheme polynomial is independent on initial and/or
boundary conditions, through this paper we call a difference scheme polynomial
also a difference scheme, if no confusion arises.

In the article [13], Gerdt et a. used for the first time several new idess like the
application of integral relationsin discrete form (especially useful if one deals with
conservation laws), the formulation of the scheme generation problem as a task
for difference elimination and the systematic use of involutive and Grobner bases.
Inspired by these ideas, we present our approaches, which will make the overall
picture of scheme generation and analysis (meaning investigation of von Neumann
stability and dispersion) more complete for the special situation.

Namely, in this article our primary target is a single linear PDE with constant
coefficients. We will comment on cases, when some methods can be applied to
more general setting.

Aswe will see, von Neumann stability can be regarded as global result, always
being a necessary condition for stability of a problem with initial and/or boundary
conditions (and sometimes sufficient condition as well). Of course, one uses initial
and/or boundary conditions for numerical solving, but the splitting of the whole
problem into purely symbolic pre-processing and numerical post-processing seems
to be the way to address such problemsin the future.

The ideas of algebraic analysis suggest a separation of a problem into analytic
and algebraic parts. This allows, in the case of linear PDEs, to treat systems of
equations via modules over algebras (D-module theory, homological algebra etc.).
There exist many algorithms and several powerful implementations. Grobner bases
and involutive bases play afundamental rolein such algorithms, seee. g. [3,22,24].

On the other side, the theories of differential algebra (e. g. [23]) and of
difference algebra ([5, 20]) alow to tackle nonlinear equations as well, though the
agorithms in these realms are very complicated. In particular, we do not know
any implementation of a basis construction algorithm for the difference algebra.
Notably, a new agorithmic approach to nonlinear difference equations might arise
from the letterplace approach [18]. However, one needs to elaborate all details of
this promising direction.

The technique of cylindrical algebraic decomposition (CAD) has its originsin
real algebraic geometry. It has been applied to von Neumann stability problems
aready in [17,21]. Since that time more implementations of the CAD have been
evolved and their performance has been greatly enhanced.

This paper is organized as follows. We start with minimal prerequisites and
revisit the basic concepts of scheme generation, paying attention to the algebraic
background including Grobner bases and elimination toolsin Sect. 2.
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We discuss three symbolic methods, used in applications in Sect. 3 and prove
their equivalencein the case of alinear PDE with constant coefficientsin Theorem 1.
In cases of more general PDEs and systems of such PDEs only one method
works in general, see Remark 3. For a linear PDE with constant coefficients we
propose a novel way to generate finite difference scheme by using Grobner basis
for eliminating module components in a submodule of a free module. The latter
can be seen as a natural generalization of the Gaussian elimination to matrices
over rings. We show the merits of this method, applied to the classical equations of
mathematical physics (heat, wave, advection equations) for various approximations.
Note, that the method we propose can handle high order approximations, which are
seldom used in the theory of PDE, but quite often arisein the theory of ODE as high
order Runge-Kutta methods.

In Sect. 5 we present an algebraic and constructive formulation of von Neumann
stability via ring homomorphism. We shortly revisit the concepts of cylindrical
algebraic decomposition and connect its use to questions, arising from difference
schemes.

In Sect. 6 we consider the A-wave equation u,, = Au,, for anonzero parameter
A and perform generation aswell as stability analysis of several difference schemes,
obtained with different approximations. We demonstrate the merits of the semi-
factorized form of adifference scheme, it turnsout to be especially useful for higher
dimensional situations.

In Sect. 7 we show, that the determination of continuous dispersion relation for
alinear PDE with constant coefficients as well as discrete dispersion relation with
respect to afinite difference scheme can be algebraized to alarge extent as well.

All examples have been computed with our implementation of tools for differ-
ence schemes in the freely available computer algebra system SINGULAR [6]. The
corresponding library fi ndi fs. | i b isdistributed with SINGULAR starting with
version 3-1-2. For the cylindrical algebraic decomposition we use the commercial
system MATHEMATICA; indeed there are freely available systemslike QEPCAD [2]
and REDLOG [7], which can compute the decomposition as well.

In Appendix we present a detailed example of the use of our toolbox together
with short introduction to the system SINGULAR.

Often a general skepticism is met about the use of symbolic methods connected
with numerical analysis. We want to stimulate a discussion between scientists of
both fields based on arealistic viewpoint.

2 Algebraization of Differential and Difference Equations

2.1 Types of Operator Algebras

At first we fix a computable field k, the base field, it is mostly the field of
rational numbers Q or complex rational numbers Q[i]. (Computing with real or
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complex numbersisin principle possible, but only with afixed precision, i.e. with
a rational approximation, or one can compute with algebraic extensions in roots
of polynomials - this being not so interesting for our purpose.) We can extend
the base field by indeterminate constants, i.e. rational functions in the constants:
K =k(a,b,c,...). Kiscaledthefield of constants.

We fix a set of variables x := (x;,...,x,) and an ‘agebra of functions
C = C(x), for instance differentiable functions or functions in discrete (shiftable)
arguments. C isnot our object of computation. Instead we consider various operator
algebras, consisting of operators, which act on C. There are many operators, which
one can handle in this framework, for example:

1. Multiplication with avariable: x; : u(x) € C > x;u(x) € C.

2. Multiplication with afunction f € C: my 1 u(x) € C — f(x)-u(x) € C.

3. Partial differentiation: 3; : u(x) € C > 39 € C,

4, Partial shift operators: T; : u(x) € C +— u(xl,.. Xxi+1,..0,x,) € C.

5. Partial A-shift operators: T : u(x) € C + u(xy,...,x; +A,...,x,) € C,
clearly T; = T}

6. Partia differenceoperators: A; = T/ —1; u(x) € C + T} (u(x)) — u(x) € C;

7. g-dilation operators. Dy : u(x) € C — u(xy,...,gx;,...,x,) € C forq € K.

Fix aset S of operators, we consider the operator algebra & := K(S) being the
subalgebra of all (linear) operators Homg(C, C) generated by S, i.e. the smallest
linear subspace closed under composition of operators. As long as S consists of
a finite number of pairwise commuting and independent operators the resulting
algebrais isomorphic to a polynomia ring: K|[t1, ..., t,]. Otherwise we get (non-
commutative) quotient algebra of the free algebra K (S) by the two-sided ideal of
al relationsof S.

Example 1 (Algebraswith constant coefficients). The algebras of linear partial
differential and shift (or difference) operators with constant coefficients are
commutative K-algebras, isomorphic to K[xi,...,x,]. We denote them by
KJ[di,...,0,) and K|[T1, ..., T,] respectively.

Example 2 (Algebra with polynomial coefficients). The algebra of linear partial
differential operators with polynomial coefficients is the Weyl algebra. It is non-
commutative but is has simple commuting relations. We denote this algebra by
K{x,0| dx = xd + 1), what meansthat this algebrais generated by the variables
x and d over the field K. Moreover, multiplication is defined on its generators:
x-0 = x0,0-x = xd + 1 and extended to arbitrary products inductively. The
generalization to the multivariate case is easy, the variable x; commutes with any
xx and also with variable d; except for the case j = i, here the relation as above
applies.

Why do the variables satisfy this relation? Consider the multiplication of two
operators, x := x; and d := . Take some differentiable function f(x) and apply
the Leibnitz rule to the product (0xX)(f)=0(xf) =x0(f) + f = (x0+ 1)(f).
Hence, in the operator form (dx — xd — 1)(f) = 0.
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Consider the algebra of linear A-shift operators with polynomial coefficients,
having in mind A = Ax. As above, we can derive the relation between operators
T := T* and x. For any function f of discrete arguments, (Tx)(f) = T(xf) =
TX)T(f) = (x + AxX)T(f) = (xT)(f) + Ax - T(f). This relation can be
expressed in the operator formas7Tx = xT + Ax - T. The algebra, corresponding
to the difference operator A = T2* — 1 hastherelation Ax = xA + A + 1. These
algebras are so called G-algebras, in which Grobner basis algorithms exist and are
implemented in the system SINGULAR:PLURAL ([15]), seee. g. [19].

Example 3 (Algebra with coefficientsin rational functions). Algorithmic compu-
tations are possible in the algebras whose coefficient fields are rational functionsin
x: K(x){(0 | 0x = x0 + 1) and K(Ax,x){T | Tx = xT + Ax - T), which are
called rational Weyl algebrasresp. rational shift algebras. Algebraically speaking,
apassagefrom apolynomial algebrato arational algebramay be achieved by means
of so-called Orelocalization.

Example 4 ( Differential and Difference Algebra). In order to handle non-linear
differential resp. difference equations with polynomial nonlinearities, one can
consider a full differential resp. difference algebra K[{O{s1 <. 0Py | B; € N},
where O; stands for a partial differential resp. difference operator. Note, that
Obu := 0{3‘ .- 0P"uisavariable, representing O (U), where u = u(xi, . .., xn)
symbolizesan unknown functionin variables xy, . . ., x,,. Note, that such an algebra
is commutative and its infinitely many generators are algebraically independent. In
particular, such an algebrais not Noetherian.

The given nonlinear equations can be taken as generators of the differential
resp. difference ideal. Such ideal is defined to be a minimal ideal, containing
given equations, which is closed under the action of corresponding differential resp.
difference operatorsin the corresponding algebra.

Since such algebras are not Noetherian, Grobner basis-like algorithms are not
terminating in general. Nevertheless, some parts of the theory in the linear situation
can be extended to this general situation.

In this paper we work algorithmically with linear partia differential operators
with constant coefficients. However, in some parts we address and discuss more
general situations as well.

2.2 Presentation of a System of Differential Equations

Any linear partial differential equation (depending of its kind) defines an element of
an algebra of corresponding linear differential operators. A solution of a system
of equations, if it exists, must be a solution to any equation from the left ideal
generated by the equations of the system in the algebra. Hence, the solution does
not depend on the choice of a basis (that is, a generating set) of the ideal. A first
possible application of symbolic algebra is to compute a better basis of the ideal,
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such as Grobner basis or an involutive basis like Janet basis (see [11, 22, 25]) —
as far as it is possible. The advantage of such a pre-processing could be: check
the consistency of the system of equations, find hidden constraints or integrability
conditions of the system, determine the dimension of the solution space.

Thesedataare well known for standard equationsfrom mathematical physics, but
the methodswe propose are methodol ogically applicableto any system of equations.
Let usrecall asmall example (by W. Seiler [25]) as an illustration.

Example 5.

Uz +y Uy =0 == Uz + 7 Uy + U =0 == u, =0
u, =0 Uy =Uy,; =0

Hence, theinitial system is equivalent to {u, = u, = u, = 0}.

Let .# be a space of functions and &' be an algebra of operators, acting on .%.
We denote by a e f the action of an operator « € ¢ on afunction f € .Z. Inthe
case of alinear system (S)

n
Si=Y Djeuji=1..m Dye0
j=l1

we associate to (S) the submodule P = P(S) C 0" generated by the columns of
the presentation matrix D € Mat(m,n; ©), and, finally, afactor-module M(S) :=
0"/ P(S). We can smplify the system finding a special presentation matrix, or we
can read properties of the system from computable invariants of the module M (S).

In the example above, the system can be written as (82 —g ya’“) o (U) = (8)
Hence, the system algebraiis ¢ = K(x, y,2){dx, 0,0, | 8xx} =x0y + 1,0,y =
¥4y + 1,0,z = 79, + 1) (that is the 3rd rational Wey!| algebra) and the presentation
matrix for the system module M (S), written in columns of the original presentation
(thet is, transposed to the usua row presentation) is P(S) = (0; + y0.,dy) €
02, Asasubmoduleof &, P(S) isanideal and it has two polynomial generators
{0z + y0y, dy}. The Grobner basis of P(S) is equal to Q(S) = (o, d,, d;) and
hence, M(S) = 0/Q(S) = K(x,y,2) as -module. Thus, dimg (., M(S) = 1
is the dimension of the space of holomorphic solutions of S.

2.3 Grobner Basis Algorithm and Elimination Tools

The notion of Grobner basis can be given in a common way for different classes of
algebras. Recall the basic notation for monomials and monomial ordering. We shall
use the short notation 0% := 097'95*...9%, @ € N". Finitely generated operator
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algebras, which we are dealing with, have infinite dimension as K -vector spaces.
The infinite set of monomials constitutes a K -basis.

» For operator algebras in operators {d;,...,d,} with constant coefficients, the
monomialsare {0* | « € N"}, they form the basis of the algebraover thefield K.

 Inthecasewherethe coefficientsare polynomiasin {x, ..., x,, }, themonomials
are{x*- 9% |« € N, B € N"} and they form the basis of the algebra over K.

« When the coefficients are rational functions, the monomias {9* | @« € N"}
congtitute the basis of the algebraover K(x, ..., x;).

We are dealing not only with ideals of an algebra ¢, but also with submodul es of
thefreemodule 6" = @]_, Oe;, wheree; standsfor the canonical i -th basis vector.
We extend the notion of amonomial to A” by supplying amonomial with one of the
unit vectors. Clearly, if Mon(&) := {m,} isthe set of monomialsof &, bijectiveto
N”, then amonomial of &” ismye; withae e N, 1 <i <r.

Definition 1. A (global) monomial ordering on an algebra ¢ is atotal ordering <
on the set of monomials Mon(¢’) bounded from below and compatible with the
multiplication, i.e. it fulfills the following conditionsfor all «, 5,y € N":

e 1 <my.
¢ Mg <Mg = Mgy, < Mghy,.

Since < istotal, any honzero polynomial f'e¢ can be uniquely sorted according
to its monomials. The highest term (that is amonomial times a nonzero coefficient)
iscaledtheleadingtermof f. Wesay, that m, | mg (m. dividesmyg),if V1 <i <n
a; < B;. Note, that divisibility induces a partial ordering.

Any monomial ordering can be extended to a module monomial ordering in severa
ways. The most common ways are: either sorting module monomials first by the
monomial ordering and then by the number of the component, or first by the
component and then by the monomial ordering.

Definition 2. Given a monomial ordering < of ¢, then monomial orderings <,
(term-over-position) and < ,,; (position-over-term) on the set of monomial of &
are defined by:

(M, ei) <iop (Mg, e;)iff (my < mg orif my = mg,theni < j),
respectively
(Mo, ;) <por (mpg,e;)iff (i < jorifi = j thenm, < mpg).
Definition 3. A Grobner basis of asubmodule M C ¢" isafinitesubset G C M
that satisfies the following property. For any f € M \ {0}, there exists a element

of the basis g € G, such that the leading monomial Im(f) = mge; isdivisible by
Im(g) =mge;,i.emg | my.
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An immediate application of Grobner basis is the normal form of a vector of
polynomials. Namely, if G = {gy, ..., gn} isaGrobner basis of asubmodule M C
0", thenVve 0" 3w,a; € 0, suchthat

m
V= Zaigi +w, whereeither a;g; = 0 or Im(v) < Im(a; g;) and either w = 0 or

i=l1

Im(w) =< Im(v). One denotesw = NF(v, G) and calls w a normal form of v with
respectto G. Note, thatve M = (G) if and only if w = NF(v, G) = 0.

A Grobner basis G = {g1,...,gn} iscdled reduced, if forany 1 < i < m
and j # i, no monomial of g; is divided by Im(g;). Having a Grobner basis, a
reduced Grobner oneis computed in afinite number of steps. Recall, that a nonzero
element from aring is called monic or normalized, it itsleading coefficientis 1. Any
nonzero element can be made monic. Notably, monic reduced Grobner with respect
to afixed monomial ordering is unique aswell as monic reduced normal form of an
element.

There are effective ways to compute a Grobner basis, like the Buchberger’s
Algorithm, involutive algorithm and Faugere's F4 or F5 algorithm. Grobner bases
have been implemented in al major computer algebra systems. More details for
the commutative case can be found in any standard textbook on computer algebra,
e. g. in [16]. See [4, 19] for the non-commutative case of operators with variable
coefficients.

Note, that the result of a Grobner basis algorithm (with respect to position-over-
term ordering), applied to a module generated by the columns of a constant matrix,
is the row-reduced normal form by Gaussian elimination.

The Grobner basis algorithm with respect to certain monomial orderings can be
used to eliminate some of the variables {u; | i € I} of a given system, i.e. to
computeabasisof M; :== M N O}, 0 = O {u;,i € I).

Lemma 1. (Elimination of variables). Let < bean elimination monomial ordering
for {u; | i € I} onMon(&) (thatis, m, € €; and j & I impliesm, < u;). Let G
be a Grobner basisof M, then G N & isa Grobner basisof M.

Obvioudly, alexicographical ordering of monomialsby u; > u, > ... > u, induces
an elimination monomial ordering for any set {u;, ..., u,}.

We can aso eliminate module components. Usually it is much easier than the
elimination of variables.

Lemma 2. (Elimination of components). Let G be a Grobner basis of a sub-
module M C & with respect to the module monomial ordering < ., let Fy :=
Oe1®---® Oes; C 0" bethefree submodule of the first s components, then G N F;
isa Grobner basisof M N F;.

The proofsof both lemmataon elimination are easy and can befoundine. g. [16,19]
for various situations.
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Remark 1. We want to stress the fact, that the proposed algorithm, based on the
operator formulationwill befaster, than the algorithmin differencealgebra, whichis
used by Gerdt et al. in[13], when applied to alinear PDE with constant coefficients.

The differencein complexity liesin the number of variables/componentsand the
intrinsic differences between two similar-looking elimination concepts. Computing
in the case, when the functions and discretizations of their derivativesu, u;, Uy, . ..
appear as variables (difference algebra approach), one has to distinguish between
the two multiplications, firstly the action of difference operators on u's (denoted
by ), and secondly the composition of difference operators (denoted by -). The
involutive basis approach with its partition of variablesinto multiplicative and non-
multiplicative ones forbids the multiplications between u’s in the Grobner basis
algorithm. In addition, one has to employ acomplicated elimination ordering, which
respects the special role of u's.

We do not use unknown functions u at all by passing to the submodule of afree
module of finite rank over a ring of partia difference operators. The linearity of
equations alows to consider them as linear operators, presented by polynomiasin
difference operatorswith constant coefficients, involving parameters. Thus, we need
less variables, and we use simple and efficient module orderings, which eliminate
components. The attention of Grobner basis agorithm is shifted from single
polynomials to their components, which results in easier and faster computation,
not speaking on optimized memory usage.

3 Three Equivalent Approaches and the Main Theorem

Assume we are dealing with m spatia variables x, ..., x, and one temporal
variable t = x,41. We denote x® := xj'---x%%+1 for « € N"*! and
|e| = > «;. Then we use notations

a‘a‘u a‘a‘u

Upe = Uy '= — = —=——-
y “ axe  Jlox

A singlelinear PDE with constant coefficients, to which we further refer asto P,
can be written as follows

Z cpUyp = 0, (1)
BeB
where B ¢ N"*! jsafiniteset andfor 8 € B onehascg € K \ {0}.
We introduce auniform rectangular grid on R”+! with steps Axy, ..., Ax,,, At.
Thus, apointonthegridcan bepresentedast = (i1 Axy,...,inAxy,,nAt) € G :=

ZAx| x -+ x ZAXx, x ZAt (where G can be identified with Z"+1). Let us write
the PDE P in an arbitrary interior point (that is, the one lying far enough from the
initial point and/or boundary region) of the grid .

Zcﬂuiﬁ = Zcﬂuxﬂ(ilel,...,imAxm,nAt) =0. 2
BeB BeB
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Define I' := {y € N"*! | |y| < |B|V B € B}, afinite subset of N"+!,
On the grid G, one needs to give an approximation to a function u' ; by a finite

linear combination of expressions u®, of order, lower than the order of u,, that is
Vie G,VB € B\ {0}

U= Y dyeU, with [y |<|B|.dyz € K. ©)

yelrkeG

We refer to this approximation as to Af_g-

Assume we are given a set A of approximations to the terms u‘ . We call
an approximation global, if it is defined on the whole interior region through its
definition in an arbitrary point 7. In such a case, Ajs depends only on 8 and shift
operators (see below). From now on we assume, that we are dealing with global
approximationsonly.

Remark 2. The restriction to global approximations on uniform rectangular grid
is not essential for the theory. However, the restriction holds in order to simplify
the exposition. Allowing different subdomains with different grids on them can
be approached in a similar fashion. Namely, on each subdomain we proceed as
in the global case and obtain a difference scheme polynomial. In addition, there
will be equations from compatibility conditions, which arise from the specific
decomposition of adomain.

Any expression of the form E = U, — D eriec d,zU<, can be brought
(by sorting its terms with respect to the order of uy) to the form H — L where
H = H(E) isthe sum of terms of the highest orderand L = L(E) = E — H.

We say, that ageneral problem of approximation of apartial differential equation,
given by the set of global approximations 4 isadmissible, if:

1. All E € A arewrittenintheform H(E) — L(E).

2. H(E) = kU<, fork € K \ {0} (thatis H(E) consists of precisely one term).

3. Fordl B € B\ {0} (that isfor any u,s, appearing in the equation with non-zero
coefficient except for u itself) a unique approximation E from A exists.

From now on we assume, that an admissible set of approximationsis given.

After sorting we can reveal inconsistencies in a given set of globa approx-
imations. It might happen, that the given set is not complete (there are no
approximationsfor someu, s after the proper sorting) or inconsistent (two nonequal
approximationfor someu, ). In practice oneisinterested in approximations, having
certainorder in Ax;, At.

Onthegrid G we have natural shift operators 7, : V' > V'T< wheree; isthei-th
canonical basis vector. That is T, (V(...,t,...)) = V(... i + Ax;,...)). Clearly
T, is the well-known forward shift operator, which is invertible, since its inverse
is the associated backward shift operator. Thus we allow exponents of monomials
of T, to be integers. For an exponent vector « € Z"*!, denote T* = T - ... -

TenT "' Inwhat followswe will usethefield K(T) := K(T,.....T,.T}).
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The equation 3 can be rewritten in asingle generic point ¢ of the grid in terms of
shift operators:

Lemma 3. Inthe notationsfrom above, there exist exponent vectors §(), 8(i), k €
G such that there are two equivalent formulas

T&(T) (uxﬁ)f — Z dl’s’? TS(/?)(UXV)T7 (uxﬁ)f — Z d%’? TS(’?)_S(Z)(UXV)T. (4)
yerkeG yelrkeG

Proof. For1 <k <m+ 1 settp := minfkx, i | €« € G,y € I'd,z # 0}. By
setting §(¢) := 7 — 7 and respectively §(k) := k — T we obtain two exponent vectors
for the monomialsin shift operators. O

According to thelemma, we will derive and encode approximationsfor functions
on the grid by shift operators. This alows usto drop the grid point notation as soon
as shift operators are present. In other words, we use shift operatorsto formulate the
problem in ageneric point of the grid.

Several approaches exist for the computation of a finite difference scheme of a
single partia differential equation with constant coefficients.

3.1 Mimicking Difference Algebra Approach

Consider the formal consequences of equalities P asin (1) and Ag asin (3) over
the commutative finitely generated ring Rp := K(T')[u,s | B € B]. Recdll, that the
variables {u,s} are algebraically independent. In other words, we consider an ideal
I of thering R, generated by P U {Ag | B € B}. Since B isfinite, thering R is
Noetherian and containsthe subring R := K(T')[u]. Theidea J := I N K(T)[u] is
computable (e. g. by the elimination of all but one variablesasin Lemma1l). Since
R isaprincipal ideal domain, J isgenerated by asingle element, say p € K(T')[u].
Clearing denominators, we obtain a polynomial expression p € K[T][u]. Dividing
by itsleading coefficient, we obtain monic f € K[T'][u], whichisthe uniqueresult.

Note, that we do not work with difference ideal, but with an algebraic ideal in a
differencering.

3.2 Algebraic Analysis Approach

We order the set {u,s | B € B} according to the monomia ordering and write
the resulting ordered list as a column vector U = [Uy g, - .., U]”. Since P and
Ap are linear equations with coefficients in K[7'] in the entries of U, we put each
equation as arow in a matrix M, with entries in K[T], such that M ¢ U = 0,
where e stands for the action of shift operators with coefficientsin K on functions
in discrete arguments. Then we can perform algebraic operations from the left on



134 V. Levandovskyy and B. Martin

the matrix M , without engaging the unknown functionsug, asit is donein agebraic
analysis. We compute the intersection of K[T']-module M with the free submodule,
generated by u, the last component of the vector U . Thelatter intersectionisanideal
J C K]T] of dl polynomials p in shift operators, such that p e u = 0. Define a
K-linear map x : K[T] — K|[T][u], which sends T“ for « € N" to T*u. The latter
can be interpreted as an element from the difference algebra.

3.3 Term Rewriting System Approach

Consider the equations from Lemma (4) in the monic form, that is

o= Y deri @0y,
yerkeG

Let us treat them as rewriting rules for symbols {u,s | B € B \ {0}}, which
substitutes every u,s with the sum on the right hand side. We denote this system
by S. Since S involves u,, if and only if y < g, we do the following. At
first, we order occurring variables with respect to the monomial ordering, getting
{U,pmax » - - - , U}. Then, in the same sequence, the variable u,: is substituted with the
right hand side of the corresponding approximation A.. Theresult of the substitution
does not contain variables, which are higher than u,. with respect to the monomial
ordering. In such a way we obtain an equivalent rewriting system, each right hand
side of which depends only on u. Then we apply this new rewriting system to the
operator P.

Theorem 1. Consider a single linear partial differential equation with constant
coefficients P asin (1). Assume that the set of given approximations A isadmissible
and its elements are written in a point of a grid G as in (4). Let us define the
following polynomials:

1. f, a monic polynomial from K[T][u] satisfying I N K(T)[u] = (f) in
the notations of 3.1.

2. g = *(g) = gu, a monic polynomial from K[T][u]; & € K|[T] satisfies J =
(g), such that for r := |B| onehas K[T]" D M N K[T]e, = J C K[T]in
the notations of 3.2.

3. h, amonic polynomial from K[T'][u] satisfying P —g & in the notations of 3.3.

Then f = g = h, that isthe three methods are equivalent.

Proof. @) Ag is dready a Grobner basis in K(T')[u,s] by the product criterion,
because the leading monomials of its elements are coprime, since the set {u,s |
B € B} isalgebraically independent. Since NF(P, Ag) € K(T)[u], we obtain
that {NF(P, Ag)} U Ag is a Grobner basis of P U Ag. The uniqueness follows
from the uniqueness of monic reduced normal form [16].
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b) Proceeding with the vector as above and starting with higher leading monomials,
the matrix representation M of the set Ag is already upper triangular with entries
in K[T]. Moreover, the last row has exactly two nonzero elements (say, the
last two ones in that row). Thus M is aready in a row-reduced form. Making
complete reduction of the rows will produce a matrix M’, where each row
contains exactly two nonzero elements: (0,...,0, f;(T),0,...,0, f.(T)) with
fi, f+ € K[T]. Hence M’ simplifies the set of approximations and corresponds
to the completely reduced Grobner basis.

Now, we appendto M (or M’, what is equivalent) the row P’, corresponding
to the equation P, written in the operator form. The computation of the Gaussian
elimination of the resulting matrix amounts in reductions of P’ with the rows
of row-reduced M'. The result of such reductionsis a row vector with the only
nonzeroentry wW(T') € K|[T] at the last position. Sinceit is a constant multiple of
thereduced normal formNF(P’, M) and M’ isaGrobner basis, theideal J from
the statement is a principal ideal, generated by w(7'). Let usdefine g € K[T] to
be the normalized monic w(7") and put ¢ = gu € K[T][u]. Then, since g isthe
single operator of smallest order, acting on u, we concludethat g isthe difference
scheme polynomial.

¢) The application of rewriting rules in the sequence, as described above, leads to
the normal form NF(P, Ag). Since by &) Ag is a Grobner basis with respect to
any monomial well-ordering, monic normal form is unique. Fixing a monomial
ordering, we can produce another rewriting system S’ by applying rewriting rules
to every right hand side of S, starting ascendingly from the smallest nonzero
B € B. Then S’" becomes {(u,s — fg(T)u) | B € B\ {0}}, where f3(T) €
K[T*'] ¢ K(T). Itisstraightforward, that S’ does not depend on the sequence
of reductionslike S anymore. Since the set of approximations 4 isadmissible, it
followsthat S’ is confluent. The reduction of P with respect to S’ isthe same as
with respect to S, henceits monic formis unique.

Since in each of the proofs above we have guaranteed uniqueness and showed
that difference scheme polynomial has been computed, the final claim follows.
a

Remark 3. Note, that the equivalences of the previous Theorem do not hold in
general. Algebraic Analysis Approach 3.2 works only for linear PDE, since it
relies on the module structure, which is linear per definition. Both @) and b) do
not necessarily deliver a difference scheme in the case of variable coefficients due
to different concepts of discretization. As soon as one deals with algebras, where
x and T, do not commute, the left normal form of a vector (the computation
uses subtractions of left multiples of an approximation and thus invokes non-
commutative multiplication) is not necessarily the result of rewriting of any term
u,s (which just plugs the right hand side expression into the place where the term
resides and does not invoke non-commutative multiplication).

Provided all approximations from A are linear with respect to ug asin (3), the
Term Rewriting System Approach 3.3 will successfully lead to a finite difference
scheme for a nonlinear PDE with variabl e coefficients.
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4 Generation of Difference Schemes

Armed with the methods from the previous section, we proceed with the generation
of schemesfor alinear equation with constant coefficients. We prefer the method of
algebraic analysis from 3.2, in contrast to Gerdt et al. [13], who used the method
of difference agebra because of the reasons of practical complexity, which is
significantly lower if one usesthe approach 3.2. However, Gerdt et a. systematically
follow the difference algebra approach for nonlinear equations. Notably, in [13]
they have obtained an interesting nice-behaving scheme with cubic nonlinearities.
The original equation contains quadratic nonlinearities, but the new non-traditional
scheme does not contain switches as traditional schemes.

A large class of equations might be written in a so-called conservation law
form, which %an beaobtai ned e.g. by applying the Green’s formula. For example,

P

the equation % -3 = 0 is equivalent to the equation ¢ Pdx + Qdy = 0 for
r

arbitrary piecewise smooth closed contour I".

We choose some discretized integration contours and approximations rules for
the integrals and proceed as above. The difference schemes, which we obtain by
elimination are fully consistent by construction [13] .

4.1 Approximation Rulesand Their Operator Form

A general way for approximation of a PDE consists in the application of integral
relations (like f;”“ Uy (x,0)dt = U(x,t,+1) — U(x,t,)) together with further
approximations of derivatives (like u,) and integrals.

Contour approximations. Many possibilities exist for choosing contours and
approximations. We are using rather rectangular than quadratic grids, the two most
frequently used approximations on contours are node points of the rectangle and
midpoints of the grid with double distance, asillustrated by the pictures below.

k+1 * k+1 @—@—¢
k ¢——@ k

k—1 ® k—1 &—o—e
J—1 J J+1 Jj—1 J J+1
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By applying the Green's formula we lower the order of an equation by 1. The
approximation formulas derived from the contour are usually more complicated,
than the approximations derived from the original equation and integral relations.
Thisis not a problem for an implementation, since complicated manipulationswith
polynomial expressions can be performed effectively with modern computer algebra
systems.

Approximation of derivativesvia Taylor series. Applying the Taylor expansion
up to the 2nd order, we obtain u(x += Ax) = u(x) £ Axu,(x) + AT"zum(x) +
O(Ax3). Hence, we can approximate as follows:

Uy (x) =SB0 1 5 (Ax) (forward difference)

or uy(x) = %}:_m) + O0(Ax) (backward difference). Subtracting these two
equalitieswe obtain u(x + Ax) —u(x) +u(x) —u(x — Ax) = 2AxU, (x) + O(Ax3),
hence U, (x) = “HADUE—A) | 5(Ax2) (central 1st order difference).

2Ax
Adding these two equalities and rewriting the result, we obtain

HOEAN-ZU)HUC—BY) = . (x) + O(Ax?)(central 2 nd order difference).

Approximation of integrals. Closed Newton-Cotes formulas give rise to so-
called trapezoid an pyramid rules, whereas open Newton-Cotes formulas lead usto
midpoint rule. The trapezoid ruleis expressed as follows:

xo+Ax

Fedx = ZAx(F(00)+ (ot A~ £ (€)% < £ < xo b A

1
12A X3

X0
We obtain as approximation for u, (x):

xo+Ax
U(xo + Ax) —u(xg) = / U, (x)dx = %Ax(ux (x0) + Uy (xo + AX)),

X0

and hence (T, — 1) e U= JAX(T + 1) e U,.
Pyramid (or Simpson’s) rule looks as follows:

xo+2Ax

f(x)dx = %Ax(f(xo)+4f(xo+Ax)+f(x0+2Ax))— !

90A x>

4@,

X0

henceits differenceformis 1 Ax - (T2 + 4T + 1) eu, = (T2 — 1) e u.
Open Newton-Cotes formulafor one point

xo+2Ax
F(x)dx = 2Axf(xo + Ax) + O(AXEf),

X0
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leads us to the midpoint formula Ax - T, e U, = (sz —1)eu.
Summary. We gather the most used approximations in difference operator
form:

« Forward difference (Ax, 1 —T) o (u,, )" =0

+ Backward difference (Ax - Ty, 1 = Ty) o (U, u)’ =0

s A lstorder central appr. 2Ax - Ty, 1 —T2) e (u,,u)” =0

« A2ndorder central appr. (—Ax?- Ty, (1 —Ty)?) e (U, u)T =0

« Trapezoidrule Ax - (Tx + 1), 1 —=Ty) o (U, u)” =0

« Midpoint rule 2Ax - Ty, 1 —T2) e (u,, )" = 0.

« Pyramidrule GAx- (T2 + 4T + 1), 1 -T2 e (U, u)” =0

s Laxmethod! 2A¢ - Ty, T? = 2T, T + 1) o (U, )" =0

e Parametric temporal differencefor 0 < 6 < 1: (At - (0T + (1 — 9)),1 —
T)) - (U, w7 = 0.1f & = 0resp. # = 1, it becomes forward resp. backward
difference.

We assume that the difference scheme involves quantities Axy, ..., Ax,, At
and originates from a typical set of approximations. The difference scheme is of
the smallest difference order by construction, hence the associated shift polynomial
p isirreducible. In many situations we want to present p as the sum of products
of operators. We propose the following notation considered in application to von
Neumann stability.

Definition 4. A semi-factorized presentation of alinear difference scheme of order
O(Axf‘, oo AxPn A€ isthesum p = Axf‘pl + ...+ AxInp,, + At€p, for

pi € K[T], suchthat p; doesnotinvolve A x; inits coefficients and most (if not all)
pj donotinvolve Axiy, ..., x,, At.

Unlike nodal form, a semi-factorized form allows compact descriptions of very
complicated and higher dimensional schemes. Note, that in the examples it turns
out, that there exists a unique (up to constant factors) semi-factorized presentation.
We have a method for computing a semi-factorized form constructively.

Example 6. Consider the 1D heat equation u; — a’u,, = 0 with parameter a. We
approximate u, with backwards difference At - T, e u, = (T; — 1) e u, resp. in the
nodes of the grid, Az - (u)" " = (W' — (U)"". u,, isapproximated with the 2nd
order weighted centered space method, that is

Ax* Tyeu, = 0T, +(1—0))- (T —1)>eu, where0 < 6 < 1.

We obtain the following matrix formulation of the problem

1 _Clz 0 U,
—At- T, 0 T, —1 e|u., | =0
0 —AXTLT, (0T, + (1 —0)) - (Tx — 1)? u

1Used in the discretization of the advection equation
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By computing a Grobner basis (with the algebraic analysis approach), we obtain
asingle polynomial in shift operatorsfor the scheme —a? At6T2T, +a®> At (0 —1)T? +
Q2a’ At + AxXHT T, — a*At(0 — 1) + AxH)T — a®> AtOT, + a> At(H — 1)

Its semi-factorized formis Ax?T (T, — 1) — a?>At(Ty — 1)>(0T, + 1 —6) = 0.
In the following example we show SINGULAR code for obtaining these objects and
for producing anodal presentation of the scheme, whichis

1
a’ At

(1-6)

0
n—+1 71 . q+1 q+1 q+1
(UjJrl—ujJrl)——x2 (U 20 U ) ————

(U} 42U} 1 +U})=0.
The obtained scheme is called FTCS if 8§ = 0, BTCSif § = 1 and Crank-
Nicholson, if 6 = 1.
This scheme is consistent with the original differential equation for any 6 € R.

. U oyt
Since L = u, + O(Ar) and “E—H—— = u,, + O(Ax?), we have

LU — OUr — (1 = DUy = HU — Uy = O(AL) 4 O(AX?).

The order of the schemeis (At, Ax?).

Example7. In this example, we demonstrate computations with SINGULAR
and with findi fs.|ib. In the matrix formulation above the parameters are
At, Ax,a, . We introduce an additional parameter d, which will be needed later
for the check of stability. The variables of thering are 7, and T,. We definethe ring
in SINGULAR and the matrix of equations as follows:

ring r = (0,a,dx,dt,theta,d), (Tx, Tt), (c, Dp);

matrix M3][3]=

1, -a”2, 0, /1 the equation itself

-dt*Tt, 0O, Tt-1, /1 appr. u_t with backward difference
0, -dx"2+«Tt*Tx, (thetaxTt+(1-theta))*(Tx-1)"2; // appr. u_xx

where u,, isapproximated with the 2nd order weighted centered space method. We
transpose the matrix and call the st d routine for the Grobner basis computation.

modul e R = nodul e(transpose(M); nodule S = std(R);

print(S);

=> 0, 0, 1,
0, (-a"2xdt)*Tt,(-a"2),
S[3,1], Tt-1, 0

The first column vector of the resulting matrix is the only one with non-zero
entry only in the 3rd component. The symbol S[ 3, 1] isdisplayed since this entry,
which is the difference scheme polynomial, isbigin size.

poly p = §[3,1]; p; // assign and print the answer

=>(-a " 2xdt*theta)*Tx" 2+*Tt+(a" 2xdt *t het a-a” 2+dt ) * Tx" 2+

(2xa" 2+xdt xt het a+dx™ 2) * Tx*x Tt +(- 2*a” 2=dt xt het a+2xa” 2= dt -
dx"2)*Tx+(-a" 2xdt*t heta) * Tt +(a” 2«dt *t het a- a” 2*dt)

We proceed with the construction of the semi-factorized form.
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LIB "findifs.lib"; // load the library for schenes

ideal | = decoef(p,dt); // see Appendix for details

I; /] the sumof elenents of | gives p

=>[ [ 1] =(dx" 2) * Tx* Tt +( - dx” 2) * Tx

I[2]=(-a"2*dtxtheta) *Tx" 2+«Tt +(a" 2*dt xt het a- a" 2+xdt ) * Tx" 2+

(2+a" 2+«dt *t heta) * Tx* Tt +( - 2*a” 2«dt *t het a+2*a” 2+« dt ) * Tx+
(-a"2+«dt+theta)*Tt+(a" 2«dt *t het a-a” 2+dt)

Next, we can obtain the semi-factorized operator form of the scheme:

factorize(l1[1]); // we suppress the output
factorize(1[2]); // factors with multiplicities
= [1]:

_[1]=(-a"2xdt)

_[2]=Tx-1

_[3]=(theta)*Tt+(-theta+l)

[2]:

1,2,1

The semi-factorized formis Ax2T (T; — 1) —a? At (T, — 1)?(OT; + 1 —0) = 0.
list L; L[1] = theta;
di f pol y2tex(l,L); // see Appendi x
=> \frac{-1}{a" {2} \tri t}\cdot (u {n+1}_{j+1}-u"{n}_{j+1})+. ..

The string above in tex format (we showed above only a part of it) is the nodal
presentation of the scheme, which was obtained already in the previous example.

5 Symbolic Methods for von Neumann Stability Analysis

5.1 Stability Rings, Morphisms and Polynomials

We refer the reader to e. g. [8, 26] for details about stability. Suppose that ¢ is
the temporal variable and x, . .., x,, are the spatial variables. We start with afinite
difference scheme, written in the nodal form on a uniform orthogonal grid with steps
At, Axy, ..., Ax,. We suppose to work in the interior region, which is bounded,
say,by Ly,..., L, inspatial directions.

In the von Neumann stability analysis, one presents the functions on the grid as
discrete Fourier modes, that is

m
7 o n ijxlem Axg
X(ujljZ---jrn) - g l—[ e ’
k=1

where y is alinear map, g is a new symbolic variable, 0 < ¢, Ax;y < L. We
abbreviate B;, = mliAx;. We substitute this presentation of nodes into the
equation, perform simplifications and obtain apolynomial G in onevariable g with
constant coefficients.



A Symbolic Approach to Generation and Analysis 141

Thevon Neumann stability criterion (seee. g. [8,26]) states, that the difference
schemeis stableif |&| < 1 for every root £ of G.

The Lax-Richtmeyer equivalence theorem can be stated in the following
form (adopted from [26]). A consistent scheme for a well-posed linear initial
value problem is convergent if and only if it is stable. For a well-posed linear
initial-boundary-value problem, however, stability is only a necessary condition for
convergence.

We do not address algorithms for an agorithmic check of consistency of a
difference scheme with its differential equation. Several methods using algebraic
toolscan befoundin e. g. [9, 10, 14]. However, we demonstrate the usage of semi-
factorized form for a positive conclusion about consistency in some examples.

Let A be the algebra of functions on a given grid. It carries a natural module
structure over the algebra R of linear partial difference operators with constant
coefficients C[T;, Ty, , . .., Ty, ] over somefield C 2 Q(At, Axy,..., Axy). The
action of R on discrete Fourier nodes by the map y can be written asfollows, for all
Jk-

a 7 — 5. 7 b 7 _ Lijslsm Axy 7
(T ol g, ) =85 X, ) and (T el ;) ) = e X gy

The map y and this action give rise to an homomorphism of C-algebras
x:CIT. Ty, ....Ty,] — C([i,Siny,,COSy,, ..., SNy, . coS, 1/ Ju)lg].

where J,, = (i 4+ 1,sin}, 4 cosl —1,....sin} + cos. — 1) is an ideal.
We denote this constructive stability morphism by the same letter y and note its
C-linearity. It is defined by its values on the generators of the source agebra
x(T,) = g and x(T};,) = e's" 5% =cosB, +i-sinB,foral 1 <s < m.

The constructive nature of this approach and its applicability in computer algebra
systems, liesin the following. We choose the complex-rational numbers Q[i]/ (i +
1) as basic numeric field. We can do on demand further algebraic extensions. We
avoid complex exponentials by passing to the sine and cosine and by including
their algebraic relations in the factor ideal. A stability morphism can be defined
in computer algebra systems.

Let P = >, ,caaT/T¢ bethe operator form of the finite difference scheme
Peu=0,whereT; standsfor 77! -...- T foramulti-index e = (a1, ..., an) €
N". Then,

X(P) = caat(TY 1(T)* = Y cau | [(cOSBx +i -sinBi)%g" =) " dug"
a,o k=1 a

a,o

isthe univariate polynomial in g, which we call the stability polynomial of agiven
difference scheme. Obvioudly, the degree of y(P) isthe same as the highest degree
of T, in P.
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Example 8. Let us continue with the Example 6. In order to prepare the scheme for
stability analysis, one can rewrite it asfollows:

n+1 7 n+1 u" n+1
Wi Uy = a?d (0 (U =200 + 0D + (1= 0) - (U], — 2u5 4+ U)),

with d :=
scheme

sz We prefer to work with the semi-factorized operator form of the

AX’T(T, — 1) —a*At(Ty — 1)*(OT, +1—6) = 0.

By creating the stability ring and performing simplification and factorization
(see the next example for the SINGULAR code), we abtain the following linear
polynomial in the variable g

(icos+ sin) - (((—2a*d0) sin+2a’d0+1) - g+(2a*d0 — 2a*d) Sn—2ad0
+2a%d—1).

The first factor i - cos(B) + sin(B) isignored in stability analysis, since it is of
magnitude 1.

Example 9. We continue with the Example 7. Define the semi-factorized scheme
again.

poly P = Txx(Tt-1)+(-a"2)*d+x(Tx-1)"2«((theta)*Tt+(-theta+l));
ring r2 = (0,a,theta,d), (Tx, Tt), (c, Dp);
poly P = imap(r,P);

Now, we create the stability ring ST, which will be Q(a, 8, d)[g, i, sin, cos] and
amap y fromr 2, whichisQ(«, 0, d)[T, T;]) to ST.

ring ST = (0,a,d,theta),(g,i,sin,cos),|p;
ideal Rels = std(ideal (i2+1,sin"2+co0s"2-1));
map chi = r2,ideal (sin+i*cos,g);

poly P = chi(P); // the mapping

P = NF(P,Rels); P; // reduction wt ideal Rels

=>(-2+a" 2+xd+theta) xg*i *si nrcos+(2+a” 2xd*t het a+1) xg*i rcos+ ...
ideal FP = factorize(P); // factorization

The polynomial P together with its factorization have been presented in the
previous example.

We obtained from a system of linear equations a single univariate polynomial in
the stability ring. Next we face the following problem:

Given a univariate parametric polynomial P, find out, under which conditionson
parameters all the roots of P liein the complex unit circle.

Asalready mentionedin[17,21], this problem can be solved algorithmically with
the help of CAD (Cylindrical Algebraic Decomposition).
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5.2 Cylindrical Algebraic Decomposition

Theagorithm for CAD goesback to G. Collinset al. It is one of the most important
algorithms, for quantifier elimination not only in real algebraic geometry [1]. Its
algorithmic complexity is high and can be double exponentia in the number of
variables. Nevertheless, the universality of the method makes it very powerful and
applicableto various problems.

A finite set of polynomials {p,..., pm} € R[xy,...,x,] induces a decompo-
sition (partition) of R” into maximal sign-invariant cells. A cell in the algebraic
decomposition of {p1,..., pm} € R[xy,...,x,] isamaxima connected subset of
R”, on which all the p; aresigninvariant.

Definition 5. Forn e N,letm, : R" — R (x1,..., X1, X0) = (X1,..., Xp—1)
denote the canonical projection. Let {p;,..., pn} € Q[xi,...,x,]. The algebraic
decompositionof {py,..., p,}iscaled cylindrical, if:

» For any two cells C, D of the decomposition, the images 7 (C), (D) are either
identical or digoint.
e Thealgebraic decompositionof {py,..., pn} N Q[x1,...,x,—1] iscylindrical.

For instance, any algebraic decomposition of R! iscylindrical.

There are several sophisticated implementations of the CAD algorithm. We are
using the one from the system MATHEMATICA, where two commands, Reduce
and Cyl i ndri cal Deconposi ti on are availablein the context of CAD. There
are aso freely available systems QEPCAD by C. Brown [2] and REDLOG by
A.Dolzmann et al. [7].

5.3 CAD and von Neumann Stability

Example 10. Let us continue with the examples 6, 8. Let us represent the root of a
stability polynomial as <, where ¢ = 2a%d(1 — 9)sin—2a*d(1 —0) +1,d’ =
2a’dO(1 —sin) + 1.

Sinced’ > 0, we haveto solvetheinequality —d < ¢ < d,thatisc+d > 0 and
d > c. Thefirst inequality 2a%d(1 — sin) > 0 is aways satisfied, and the second
is equivalent to a>d (26 — 1)(1 — sin) + 1 > 0. In this example, we compare the
functionsCyl i ndri cal Deconposi ti onand Reduce of MATHEMATICA

Cylindrical Deconposition[{a”2*d*x(2*theta-1)*(1-s) + 1 >= O,

-l <=s <=1, a>0, d>0}, {theta, a, d, s}]

returns

1 1
f<-88a>088&8 ([0<d<-—— ) && —1<s<1) ||
2 —2a? + 44?6
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1 1 —a*d + 2a>do
d>-————__ g& <1
( 7 T 242 + 4a20 “a?d +2a2d6 — = ) I

IA

1
(9>§&&a>0&&d>0&& —1<s<l1

N———

Executing more specialized call,

Reduce[a > 0 & d > 0 & 0 <= theta <= 1 & ForAll[s, -1 <=
s <= 1, a 2+«d+(2+theta - 1)*(1-s) + 1 >= 0], {theta, d}]

we obtain a more informative and structured answer:

a>08&& (0<60<18&&0<d=< 7)1 G<0=<18&&d >0).

1
T —2a%+4a
We conclude:

o |If % < 0 < 1, the schemeis unconditionally stable.

* 1f0 < 6 < 1, thescheme s stable under the conditiond = 25 < m
The quantity d = ﬁ if often called Courant (or Courant-Friedrichs-Lewy)

number. It is classical to express conditions on the von Neumann stability in terms
of the Courant number.

Example 11. Consider the 1D advection equation u; + au, = 0. We approximate
U, with the parametric temporal method and u, with the trapezoid rule. As aresult,
we obtain the difference scheme in the semi-factorized form Ax - (T, + 1) -
(T, — 1) + 2aAt - (Tx — 1) - (8T, — (6 — 1)) = 0, which reads as follows in
the nodal form:

1 +1 +1 1 +1 +1
sanr (W —Uj U —U) + 25 (O U ) — (0 - 1)U, —U}) = 0.

This scheme is consistent with its differential equation. The stability polynomial is
linear with complex coefficients, so we present it as a fraction. The reformulated
stability problem, which we haveto solve, is

4a’d*(20 — 1
2= 2 2a (2 lz-sin(ﬁ) =0, V,Bgz/%Z
4a2d?(0 — 1) + T—sn(B)

Sincet = t:—:((g; > 0, the right hand side inequality is equivalent to 6 < %
The left hand side is equivalent to 4a%d?(20 — 1) + 2(4a%d*(0 — 1)?> +¢t)) > 0.
Sincet € [0, c0), we have to show that 0 < 4a2d?(20 — 1) + 8a*d*(H — 1)* =
4a’d*(6* + (9 — 1)?), what is true for all d. Of course, computations with CAD
confirm this answer.

Thus, this schemeis unconditionally stableif 6 < % and unstable otherwise.
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6 Examplesfor A-Wave Equation

We consider a parametric equation u;, — A’u,, = 0, A # 0 and its higher
dimensional versions. We construct finite difference schemes for several different
approximations and analyze their stability.

6.1 Conservative Law with Parametric Time Approximation

The presentation viathe conservation law isgS A2u,dt+u,dx = 0. We usetrapezoid

r
rule for the contour integral and spatial integral relations. For temporal integral
relations we use parametric differencewith 9 € [0, 1].
We obtain the following system of difference equations:

0 5Ax- (T + 1) 1- T,

Ah- (=T, T, + T+ T, — ) ANt - (LT, =T, —Te +1) 0 u
° =0
At - (0T, + (1 —6)) 0 1-T

After the computation of Grobner basis, we obtain the scheme

A/’lz Ahz
= 2 ptl ! n+2 n+1 n
O_zszIZ (uj _2Uj +Uj)—m<uj+2—2uj+2+uj+2)

+0 (w3 — 2wt + wt?) - 20 — 1) (w2t +urt)
+O-1) (W20, + ).

The stability polynomial of 2nd degree is rather complicated. However, fac-
torization reveals a factor g — 1. The other factor is linear, but with complicated
coefficients. We present it as ¢ — 7. Since both ¢ and d” are complex numbers, we
compute absolute values of them. Then, ||d’|| = (46%d* — 1) - (cos(B,) — 1) — 2
and||c|| = ||d’|| — 4d*(26 — 1)(cos(By) — 1).

26-1)

@0d — Dsn(B 2211 =

Hence, ||di’,|| <14 0<4d*sn(B,/2)

Consider the |eft hand side inequality

< 444 g 2 (26— 1)
0 < 4d*sin(B./2) @02 — Dsno2r +1 "

< (20 — 1)((46%d* — 1) sin(B./2)* + 1).
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Since46%d* > 0 & 40%d*—1> -1 > —m the second factor is always
1

positive. Hence, the inequality is satisfied assoonas 6 > 3.

The second inequality reads as 4d* sin(By/2)* (492(14_32;(1;’(/2)%1 < 1. Then,

46°d*sin(B+/2)* + 1 —sin(B/2)* = (4d* sin(B./2)*)(20 — 1) &

cos(B:/2) cos(B:/2)°
0+ —— 2 > (20 —1 0—1)Y2+———" >0
T aarsnggar = DO iang i =0
what is always the case. Summarizing, we obtain that this scheme is uncondi-
tionally stable, if # > 1 and unstable otherwise.

6.2 Integral Relationsand 2nd Order Central Approximations

Using direct 2nd order central approximations for both ¢z and x, we obtain the
following scheme:

Ar?
(w2 =2t + ) -2 (- 2wt ) = o,

We denoted = A%, then the scheme is described by the polynomial
p =TT, —T,. T} +(-2d> + )T, T, —Tx+d°T, = To(T,— 1)’ —d*(T, — 1)*T,,

which is presented in a semi-factorized form. After simplifications the stability
polynomial reads as g2 + (4d*sin*(a/2) —2)g + 1 = 0. Denote b = —1 +
2d%sin*(a/2),i.e g2 +2bg + 1 = 0. Therootsare b + /b2 — 1. 1f b2 > 1, then
one of the rootshas modulusbigger, than one. If b2 = 1, therootsare £1. 1f b < 1,
the absolute value of both rootsequals b> + 1 — b* = 1. Hence, b* < 1, if and only
ifd <1, that is% < % The same condition is produced with the help of CAD in
MATHEMATICA.
This schemeis conditionally stable if the Courant number d = A% <1.

6.3 Explicit Integration for ¢t and Trapezoid Rulefor x

We use explicit integration (that is, a backward difference) for ¢ and trapezoid rule
for x and obtain the following scheme.

1
n+2 A p+l n n+2 _ A p+l n n+2__ A n+l n
4At2-(ujJr2 U, + U2 (ujJrl 2uj+1+uj+1) +u; =20 +uj)

AZ
+2 +2 +2
—m-(u;{+2—2u'}+l+uﬁ )=0
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The difference scheme polynomial is

T2T? —2T>T, 4 2T, T? + T? — 4T, T, + T? + 2T, — 2T, + 1
42212
Ah?

(TAT} - 2T, T? + TP).

Denote d? = “AzhAz’Q. After performing substitutions, we obtain g2 — 2bg +
b = 0, where b = (1 + d*tan*(a))". Its solutions are straightforward: g =
b+ b2—b.1f b>—b > 0,wehaveb > 1 and hence one root is too big. If
b?> — b < 0, the absolute value of aroot isjust b + b — b> = b, what is not
bigger than 1. b < 1 issatisfied, sinceb~! = 1 + d? tan?(a). Hence, this schemeis
unconditionally stable. With the help of CAD and MATHEMATICA, we arrive to the
same conclusion.

6.4 Higher Dimensional A-Wave Equation

One of the crucial advantages of our approach and its implementation is the

scalability. We employ the agorithms in a very general setting. The agorithms

can be easily modified for the case of more functions. In particular, we are able

to generate schemes and test them for stability in a higher-dimensional setting.
Consider the approach from Subsection 6.2 which led usto a conditionally stable

scheme. We apply the same approximationsto all spatial variables.

Two spatial dimensions, We have u,, — A2(Uy, + Uy,) = 0. The schemeis

1
_ +2 +1
0= Nl (u;l'+1,k+1 =200 U’}'+1,k+1)
A U"+1 2un+1 U"+1
T A2\ 2k T S Lkt + k41
A? +1 +1 +1
N (uj+1,k+2 =204 e T uj+1,k) :
In a semi-factorized form, the scheme looks as follows
T.Ty(T; — )2 —d? - (Ty — D*T, T, —d} - To(Ty — 1)’T; = 0.
The stability polynomial in asimplified formis

8> —2(d; cos(By) + d;cos(By) —d; —d; —2)-g+1=0.

Using CAD, we conclude, that this scheme is conditionally stable with the
condition d? + d? < 1 for the Courant numbersd, := AL, d, := Aﬁ—;.
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Three spatial dimensions. The equationisu,; — A% (U, + Uy, + Uz) =0.
Thedifference schemeis analogousto the two-dimensional one, in asemi-factorized
form it has the following form (from which one easily deduces, how the scheme
looksfor higher dimensions):

Ty TATi—1)’—d - (Te— 1) Ty T, Ty —d; - To(Ty—1)* Ty Ti—d; - T Ty (T—1)° T, = 0.

Running CAD, we obtain, that this scheme, as its lower-dimensional anal ogues,
isconditionally stableif d? + d; + d; < 1 holdsfor the Courant numbers d,, d,

. 1A
and d, == A 4L,

7 Dispersion Analysis
7.1 ContinuousDispersion

Recadll, that aFourier nodeinn + 1 dimensionsis afunction of the form
ei((k,x)—wl)’ (k’x> = ijxj
j=1

Respectively, in 1 4 1 dimensionsit is just ¢**=“")_ One obtains continuous
dispersion from the given linear PDE by substituting Fourier nodes into the PDE
and by deriving an equation for w in terms of k£ from the result. The latter equation
w = w(k) iscalled the continuous dispersion relation.

Example 12. For the equation u;, — A%u,, = 0 we have

d 0 ‘ ,
0= (ﬁ _AZW) ez(kx—a)t) — _et(kx—a)t) . (wZ _ A2k2)'

Hence, w = +Ak isthe continuous dispersion relation for the A-wave equation.

We can write down the action of partial derivativeson a Fourier mode. Namely,
0 i((k,x)—wt) - Na i ((kx)—wt) abf i((k,x)—wt) . bi i({k.x)—wt)
— (e ) = (—iw)e'™ and—bf(e : ) = (ik;)7 e’ .

are 8x]

Hence, the monomial in partial differentiations hasits eigenvalue

n

a? b “ .
— l_[ _b/l(el((k,x)—wt)) — (_iw)u l—[(lk])b/ . (ez((k,x)—wt))
ot e axj’

Jj=1
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Let us denote F = e!(kx)=ion) Then §*(F) = c(a) - F, where o :=
(a,by,...,b,) € N"T1 Extending this action by linearity to the ring of partial
differentiations with constant coefficients R = KJd,,d,,...,dy,], we are able
to compute the eigenvalue of a linear PD operator P € R, corresponding to the
eigenfunction F:

P(F) =Y p.d"(F) = (Z pac(a)) -F

The continuous dispersion relation is obtained by solving with respect to w the
equation

Zpac(oe) =0, po € K, ¢q € K(ky,..., ky,w),
which is called the continuous disper sion equation (CDE) for P.

Example 13. For the 1 + n-dimensional heat equation u; —a” - Z’;’:l Uy;x; = Othe
continuous dispersion equation and relation are

n n
0:—iw—a2§ i’k; = a)z—ia2§ k3.
Jj=1 j=1

Example 14. For 1 + n-dimensional modified A;-wave equation u,, — Z?:l )L§ .
Uy;x; = 0 the continuous dispersion relationisw = :tJZZzl A%k?.

7.2 Discrete Dispersion

In the discrete case, we consider a discrete Fourier node, corresponding to the grid
point (¢u, (x1)1,s- -+, (Xn)1,),

Flm = ei<k’x”)>_wt”’, (k, )C(l) Zk (xj)l

One substitutes a discrete Fourier node into the difference scheme and derivesan
expression of w intermsof k& fromtheresult. Thelatter equation w = w(k) iscalled
the discrete dispersion relation. Let uswrite down the formulafor the eigenval ue of
amonomial:

n n
7’;&{ l—[ Tf/j (ei(k,x(l)>_a)lm) — (e—ia)Al)a l_[(eiijx/')bj . (ei(k,xu))—a)l‘m)'

=1 =1
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Asin the continuous case, we extend this action by linearity to polynomials. For
apolynomia P € K[T;, Ty,, ..., Ty,] Onehas

P(F") =) puT*(F/") = (Z mc(a)) -FP,
so we solve the discrete dispersion equation (DDE) for P

Y Pec(@) =0, py € K, c(@) € K({k;}, )

and obtain the discrete dispersion relation. Note, that in contrast to the continuous
case, thisrelation is not of polynomial formin general.

Presenting discrete Fourier nodes via trigonometrical functions, we are able
to compute discrete dispersion relations symbolically. We prefer not to use the
de Moivre's formula, but to express dispersion relations in terms of sine and
cosine of a single argument. We work in the commutative ring C(At, Ax)
[sin;, cos,, {sin; , cos; }] modulotheideal ({sin? +cos; —1}, sin} 4 cos; — 1), where
cos; := cos(k Ax;), cos := cos(wAt). Then,

T T] 7/ (F") = (cos —i sin)® [ [ (cos; +i sinj)® - (F}").

j=1 j=1

Example 15. Consider the A-wave equation u;, — A%u,, = 0 and the difference
scheme
d’T*T, — T, T? + (=2d? + 2)T T, — Ty + d*T, = 0,

obtained with the 2nd order central approximationsfor x and ¢, whered = /\%.
Performing computations, we obtain after simplification d? cos, —cos, + 1 —
d?> = 0, thatiscos(wAt) = 1 — d*(1 — cos(k Ax)). In the stability limitd — 1,
we have cos(w At) = cos(k Ax), hencew = :I:%k +2mm,m € Z.Sinced — 1
implies % — A, in the stability limit the discrete dispersion relation becomes

w = Ak +2xm. By setting m = 0 werecover the continuous dispersion relation.

8 Conclusion and Future Work

The advantages of presented methods include, among other, their scalability and
tendency towards automatization. Indeed, we do not make distinction between
classical types of PDEs (hyperbolic, eliptic, parabolic). Thus these methods are
very genera. Symbolic methods are able to generate automatically many difference
schemes of standard linear PDEs with constant coefficients, as it was demonstrated
in [13] and by ourselves.
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Moreover, for the same situation we presented an approach to determine
conditions for von Neumann stability, using cylindrical algebraic decomposition,
and a symbolic approach to the determination of continuous and discrete dispersion
relations. The generalization of these methods to systems of equations, to the case
of variable coefficients and nonlinear equations is very important. It is known to
be hard in general and even the notion of stability might differ from one case to
another. On the other hand, L ax-Richtmeyer equival encetheorem can be generalized
to some more general, even nonlinear, situations. Thus the investigation about the
applicability of symbolic methodsfor obtaining conditions on stability will continue
primarily for the cases, where generalized L ax-Richtmeyer theorem holds.

We decided not to include the treatment of systems of linear PDEs in this paper.
However, we want to remark, that by the rewriting system approach the number
of the discretized equations is exactly the number of PDESs one started with. By
using Grobner or involutive bases, we get in general more equations, which reveal
the interplay between discretized equations. Such interplay is not detected by the
rewriting approach at all; it seemsto usthat such interplay has not been investigated
before.

An important issue for future research is a partial algebraization of the con-
sistency analysis of a generated scheme of the given PDE or a system of PDEs.
Provided such a check, one could work with general multi-parametric schemes,
where the conditions on parameters arise from the consistency check and the
symbolic stability approach. Thishas been investigated in case of a system of linear
PDEs with constant [9] and variable[14] coefficients.

Within his recent PhD thesis Christian Dingler (TU Kaiserdautern, Germany)
presented a new package fi ndi ff.lib for SINGULAR with QEPCAD as an
engine for cylindrical algebraic decomposition. This package, already distributed
with SINGULAR, extendsthe tools for the generation of finite difference schemesto
the cases of a single linear PDE and of a system of linear PDEs. Another problem
for further research is the generalization of von Neumann stability for systems,
which is clear only for some classes of equations. Thus further generalization of
our methods will go into several directions: allowing variables coefficients and/or
allowing nonlinearity.

A very important question concerns the role of differential and difference
Grobner bases for nonlinear equations in the scheme generation and stability
analysis. The recent papers[12-14] show for some cases, that a systematic use of the
interplay between equations can produce more universal, though more complicated,
schemes.

Arising from the | etter place philosophy, see [18], the development of new theory
and algorithms for infinite difference Grobner bases will be of great interest.
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9 Appendix. The Detailed SINGULAR Code of an Example

9.1 A Quick Introduction to the System SINGULAR

We want to describe shortly by examples how to read SINGULAR language and
how to obtain and interpret the output — as far as it is used to generate a difference
scheme. The very detailed documentation of SINGULAR can be found online at
www. si ngul ar. uni -kl . de.

9.1.1 Definition of an Algebra

Nearly any computation with SINGULAR takes place inside of aring, which has to
be defined first. Consider the following input:

ring R = (0,dt,dh),(Tx, Tt), (c,dp);

This command defines commutative polynomia ring R = Q(dt,dh)[Tx, T;]
equipped with the position-over-term monomial module ordering <. Here, the
ground field is K = Q(dt,dh), that is the field of rational functions over Q in
transcendental parameters dt, dh. These constant parameters have the following
meaning here: dt = Ar, dh = Ah are step sizes of the grid. R isthering in the
variables T, T;, corresponding to shift operators, over the field K. The monomial
module ordering < will be used in Grobner basis computations. In the example, dp
stands for the degree reverse lexicographical ordering on polynomials. A small ¢ at
the first place indicates, the polynomial vectors will be sorted first by components
in descending order, i. €., e; > e, > ... and then by the monomial ordering dp.

9.1.2 Creation of aMatrix

Starting with alinear system of PDEs with constant coefficients and approximation
rules, one has to deal with an extended system AU = 0. We need only the matrix
with entriesin thering R of shift operators:

ring R= (0,dt,dh),(Tx, Tt), (c, dp);
matrix A[3][3] =

(-Tx*Tt"2+Tx), (Tx"2*Tt - Tt), O,
0, (dh/2)*(Tx+1), 1-Tx,
(dt/2)*(Tt+1), 0, 1-Tt;
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One has to indicate row- and column-size in the definition of a matrix. On the right
hand side follows alist of polynomials, describing the entries of a matrix.

9.1.3 Elimination of Components

We have to eliminate all but last components from the matrix A, In this example,
the anonymous vector U stands for (u,, u,, u)’. We want to produce within a row
module of A a row, having entries only in the last component. This is done most
efficiently by a Grobner basis computation of a submodule with respect to the
given monomial module ordering. The last nonzero component of the first column
generator correspondsto the difference scheme.

nmodul e M transpose(A);
module ML = std(M; // Goebner basis conputation
print(M); // we suppress its output

Note, that the command pr i nt , applied to amodule, does not necessarily displays
every entry completely. However, one can display every single element separately.
In this example, the difference scheme polynomial is

M3, 1];
=>(-dt)*TX" 2% Tt +( dh) * Tx* Tt " 2+( 2+ dt - 2+ dh) * Tx* Tt +( dh) * Tx+( - dt ) * Tt .

9.1.4 Evaluation of the Constants

There are several ways for the evaluation of the constants. One of them is to use
the command subst . In the running example, suppose one wants to evaluate the
schemein At = 107!, Ah = 1072,

poly p = M[3,1]; // the polynom al as above

poly pnew = p;

pnew = subst (pnew, dt, 1/ 10);

pnew = subst ( pnew, dh, 1/ 100) ;

pnew,

=> -1/10*Tx" 2* Tt +1/ 100+ Tx* Tt ~ 2+9/ 50* Tx* Tt +1/ 100* Tx- 1/ 10+ Tt

9.2 Toolsfor Difference Schemes

The library findi fs.|ib has been created to automate numerous processes
during the generation of finite difference schemes. An important role is played by
the routines, transforming the different forms of objects into some classical ones.
One can generate complicated schemes and easily present them for instance in
nodal form or in polynomial operator presentation including semi-factorized form,
which is used in stability analysis.
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decoef (P, n) ; where P isapolynomial andn isanumber. decoef decomposes
the polynomial P into summandswith respect to the presence of the number nin the
coefficients and returns an ideal in usually two generators. For example,

ring r = (0,dh,dt), (Tx, Tt), dp;
poly P = (4xdh™2-dt)*Tx"3*Tt + dt*dh*Tt 2 + dh*Tt;
p:

=> (4xdh”2-dt)*Tx" 3* Tt +(dh+dt) * Tt " 2+(dh) * Tt

decoef (P, dt);

=> [1]=(4+*dh™2)*Tx" 3* Tt +(dh)*Tt // the part, not containing dt
_[2]=(-dt)*Tx"3*Tt +(dh*dt)*Tt"2 // the part which contains dt

decoef (P, dh);

=> [1]=(-dt)*Tx" 3+ Tt /1 the part, not containing dh
_[2]=(4+dh”2) *Tx" 3* Tt +(dh+dt ) * Tt “ 2+( dh) * Tt

di f pol y2tex(S, P[, Q) ;whereS isanideal, P isalist and Q isan optional
list. di f pol y2t ex converts the difference scheme, given in the ideal S, to its
the nodal form in a LaTeX string. The ideal S is assumed to be the result of
decoef, list P contains parameters, which will be controlled in order to remain
in numerators. The optional list Q contains polynomials, which will be added to the
scheme (written in the function u) the part in terms of afunction p. For example,

ring r = (0,dh,dt,V), (Tx, Tt), dp;
poly M= (2+xdh*Tx+dt) "2« (Tt-1) + V«xTt*Tx;
M

=> (4xdh”2) * TX" 2* Tt +( - 4xdh” 2) * TX" 2+(4*xdh* dt +V) * Tx* Tt +
(-4xdh*dt) * Tx+(dt " 2) * Tt +(-dt " 2)

ideal | = decoef(Mdt); // see above

I

=> | [1] =(4*dh”2) * Tx" 2% Tt +( - 4+dh” 2) » TX" 2+( V) * Tx* Tt
I[2] =(4xdh*dt) * Tx* Tt +(- 4xdh*dt ) * Tx+(dt " 2) * Tt +( - dt ~ 2)

list L; L[1] =V, // V stands for nu

di f pol y2tex(l,L);

=> \frac{1}{4 \tri t}\cdot (u {n+l1} _{j+2}-u"{n}_{j+2}+
\frac{ \nu}{4 \tri h "{2}} u {n+1} _{j+1})+ \frac{1}{4\tri h}
\cdot (u"{n+1} {j+1}-u"{n}_{j+1}+\frac{ \tri t}{4 \tri h}
u {n+1} _{j}+ \frac{- \tri t}{4 \tri h} v {n}_{j})

Thelast output, compiled with TeX, produces

1 v
n+1 7 n+1
YNE (uj+2 —Ujip t+ AAR2 hzuj+l)

At ~At
— (utl —uytly — ).
taan ( I I R Ry N Ay

Now let us illustrate the use of the optional list Q. Suppose there are two
equations in the operator form, denoted by U and P. We want to treat them as
corresponding to two different unknown functionsu and p.

ring D= (0,ro, K dt,dh),(Tx, Tt), (c, Dp);
poly U = (-Kedt)*Tx 2+« Tt +(Kxdt)*Tt;
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poly P = (-2xroxdh)*Tx*Tt+(2*roxdh) > Tx;

list V; V[1] = K V[2] =ro;

di f pol y2tex(-U, V,-P);

=> \frac{K}{2 \tri h}\cdot (u {n+1} _{j+2}-u"{n+1} {j})+
\frac{ \rho}{ \tri t} \cdot (p {n+l1}_{j+1}-p {n}_{j+1})

Here, we have produced the nodal form of a scheme for two functionsu and p:

K /4
aan (=) + 5 (i - o).
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White Noise Analysisfor Stochastic Partial
Differential Equations

Hermann G. Matthies

Abstract Stochastic partial differential equations arise when modelling uncertain
phenomena. Here the emphasis is on uncertain systems where the randomness
is spatial. In contrast to traditional slow computational approaches like Monte
Carlo simulation, the methods described here can be orders of magnitude more
efficients. These more recent methods are based on some kind stochastic Galerkin
approximations, approximating the unknown quantities as functions of independent
random variables, hence the name “white noise analysis’. We outline the steps
leading to the fully discrete equations, commenting on one possible numerical
solution method. Key to many of the developments is tensor product structure of
the solution, which must be exploited both theoretically and numerically. For two
examples with polynomial nonlinearities the computations are shown to be quite
explicit and can be performed largely analytically.

1 Introduction

Oftentimes, numerical simulations of real-world systems are required even though
not all parameters are exactly known. The uncertaintiesinherent in the model result
in uncertaintiesin the results of numerical simulations, afact whichis often ignored
in common practise. Clearly, it is desirable to quantify the uncertainties in the
solution depending on the model’s uncertainties.

Stochastic models are one way to quantify uncertainties. Uncertain parameters
are modelled by random variables, uncertain time-dependent functions by stochastic
processes, and uncertain spatial properties by random fields [2, 3, 9, 50]. If the
physical system is described by a partial differential equation (PDE), then the
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combination with the stochastic model results in a stochastic PDE (SPDE) [11, 18,
27,42]. The solution of the SPDE is a random field describing both the expected
system-response and its quantitative uncertainty.

These are parametrised equations, and such parametrised equations naturally
have solutions in tensor product spaces. Solution methods for such a problem
range over a wide set of approaches, see [23, 24, 30, 32—34, 43, 44, 48] for some
developmentsmainly in the field of stochastic mechanics.

Next to the well-known spatial and temporal discretisation of the partial differ-
ential equation, the stochastic processes and random fields have to be discretised,
and for the purpose of computation be approximated by a finite number of
random variables. For computational purposes it is advantageous to describe and
approximate the problem in independent random variables, a technique also known
as “white noise analysis’ [17-19, 22, 28].

The next step is to compute the response and its stochastic description in terms
of the stochastic input. To start, we need a description of the mathematical setting
which alows one to see that such stochastic models are well-posed in the sense
of Hadamard essentially if the underlying deterministic model is so, and if thisalso
holdsfor every possiblerealisation [4,13,27,32,34,41]. Thiswill bebriefly sketched
herein Sects. 2 and 3.

Solution methods [34] comprise direct integration, including Monte Carlo [7,45]
and its relatives, as well as deterministic integration methods such as Smolyak
sparse-grid methods [14, 38, 40], stochastic collocation [6, 36, 37], and stochastic
Galerkin methods [1, 4, 5, 16, 20, 26, 31, 32, 41, 51, 52, 52, 53], to name a few of
the more popular ones. Here a variational framework for stochastic Galerkin (SG)
methods will be given, numerical experiments may be found in the references
just cited. The usual deterministic part will be summarised in Sect.4, and the
stochastic discretisation will be given for a simple but important kind of choice
of approximating subspacesin Sect. 5.

In Sect. 6 avery brief description of apossible numerical method for the solution
of the fully discrete set of nonlinear equations is given, one that gives promising
results [32—34] and observesthe highly structured nature of the operationson tensor
product spaces.

Two examples are given in Sect.7 where the nonlinearity is polynomial, in
Subsection 7.1 a nonlinear diffusion, and in Subsection 7.2 the stationary Navier-
Stokes equation is considered. With the properties of the Hermite algebra, given in
Appendices C and D, the computation of the nonlinearities can be quite explicit,
with a large part of the computations performed analytically. We close with a
conclusion and outlook on further work in Sect. 8.

2 Deterministic Model Problem

Themodel problemisformally one of stationary diffusion, andit isintended to serve
as amotivating example on how SPDEs may arise. It may for example describe the
seepage of groundwater through a porous subsurface rock/sand formation, or heat
conduction in an inhomogeneous medium.
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We first introduce the deterministic problem, where G c R? isthe spatial domain
of interest, u is the diffusing quantity, « is the diffusion tensor in the non-linear
diffusion law for the flow ¢ = —k (u)Vu. As the diffusion tensor may depend on
u, the problem may be nonlinear. The quantity f represents sinks and sources in
the domain. For simplicity we assume homogeneous Dirichlet boundary conditions.
The stationary diffusion equation then is

— V- (k(x,u(x)Vux)) = f(x), xeGCR”L 1)

For the sake of simplicity also the conductivity tensor « is represented by just a
scalar field «. None of these simplifications have any influence on what we want to
show later.

For the possible solutions we choose a closed subspace of the Sobolev space
Wp1 (G), namely the completion of the compactly supported smooth functionsin the

Wp1 -norm
U= W), &)

so that the essential Dirichlet boundary conditions are satisfied, and alow for the
right-hand-side f € U* ~ Wq—l(g), whereasusua 1/p + 1/q = 1. To describe
the diffusive process, define the generalised Nemytskii-operator K : f — Q :=
Ly(G.RY) by

K:u(x) — (x(x) + cu(x)?)Vu(x) =: k(x, u(x))Vu(x). 3

This is a continuous map from Y = ﬁ’/pl(g) into @ = L,(G,RY) for p = 4
because of the type of nonlinearity. Additionally we requirec > 0, x(x) > 0 ae,
% € Loo(G)and 1/x € Loo(G).

This makes the semilinear (linear in v) form

a(v,u) := /g Vv(x) - K(u)(x) dx 4

hemicontinuous in u and continuousin v, and defines a hemicontinuous nonlinear
operator A : U — U* such that

Yuvel: a(v,u) = (AU), )y, 5)

where (-, -}, is the duality pairing between ¢/ and its dual Z/*. If there is no danger
of confusion, we will omit the index on the duality pairing.

Proposition 1. The operator A is hemicontinuous, strictly monotone and coercive.

Standard arguments on monotone operators e.g. [21, 39] allow us then to conclude

that under the conditions just described, the problem to find u € ¢/ such that
Yveld: a(v,u) = (AU),v) = (fv) (6)

has a unique solution. In the linear case this reducesto the Lax-Milgram lemma.
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This result shall serve as a reference of how we would like to formulate the
stochastic problem in the next Sect. 3, namely have a well-posed problem in the
sense of Hadamard. In the deterministic case it is well-known that this property of
well-posednesswill beinherited by the numerical approximationif it is doneright.

3 Stochastic Model Problem

In the stochastic case, wewant to model x aswell as f asrandom fields defined over
some probability space (£2, 2, P), where §2 isthe basic probability set of elementary
events, 2 a o-algebra of subsets of §2, and P a probability measure. We require
additionally

x(x,w) >0 ae, |[x|rooxe) <00, |[[1/x%|Lo@xe) < o0 (7)

The solution to (6) will also be arandom field in that case, and we allow for that by
choosing as a solution space
Wi =U®S, 8

where in this case we choose § = L ,(§2) because of the type of nonlinearity. The

basic tensor product space is isomorphic to the space of finite rank linear maps

L,(£2) ~ §* — U which may be equipped with the Schatten- p-norm [46]. Thisis

the £,-norm of the sequence of singular values, and we take WV to actually be the

completion of the so normed tensor product. Thisis areflexive space, just asi{, and

U isnaturally isometrically embedded viau — u ® 1 as adeterministic subspace.
We defineasemilinear forma on W via

a(v,u) := E (a[o](u(x, w, v(x, w))), (9

where EE (-) isthe expectation on £2. The parameter-dependent semilinear formsare
just asfor the deterministic problem (4):

alw](v,u) := /gVV(x,a)) -K(x, w, u(x, w)) dx, (10)

where the generalised Nemytskii-operator onK : W =U ® § — Q ® S* isgiven

by
K :u(x, o) = (x(x, o) + cu(x, w)?).Vu(x, o). (11

Again, this defines a hemicontinuous nonlinear operator A : WW — W?* such that
Yuve W: a(v,u) = {(A(u), V), (12

where (-, -)) is the duality pairing between W* and W. Here W* isisomorphic to
the completion of U/* ® S* in the Schatten-¢g-norm.
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A linear formf on W issimilarly defined through its deterministic but parameter-
dependent counterpart for all v e U

(F@)V) = /g V(r) £ (x. ) d, (13)

by (f,w)) ;= E ({ f(w),W(w))) foral we W.

Proposition 2. The operator A is hemicontinuous, strictly monotone and coercive,
and standard arguments on monotone operators (cf. Proposition 1) allow us then to
conclude that the problem to find u € W such that

YveW: a(v.u) = (AU),v) = (/) (14)

has a unique solution. In the linear case this reduces to the Lax-Milgram lemma
again.

4 Discretisation in Space

Almost any technique may be used for the spatia discretisation, e.g. finite differ-
ences or finite elements, and we use a finite element discretisation of the region
G C R? with avector of ansatz-functions¢ (x) = [¢1(x), ..., ¢n(x)], €0.[10,47].
We define Uy := span{¢p, | 1 < n < N} C U. An ansatz for the solution in
terms of ¢ (x) yields a semi-discretisation of (14). Similarly to the method of lines
for instationary boundary value problems where the coefficients would be time-
dependent, we obtain an expansion

N
U™ (x, @) = ) Uy (@) (x) = $(x)u(@), (15)

n=1

where the coefficients are random variablesu(w) = [u;(w), .. ., uy (@)]”.
By inserting the ansatz into the SPDE (14) and applying Galerkin conditions, a
system of N nonlinear stochastic equationsin RY results,

Alo]l(u(w)) = f(w) for P-amost all w € £2. (16)

Here the n-th equation is given by a[w](USM (-, )), ¢,) =: (A[w]u(w))), and
(f (), = {f(,w), ¢,). Itisworth noting that almost surely in w, the operator in
(16) inherits the properties of Propositions 1 and 2 —in fact essentially uniformly in
w dueto (7) —asit is a symmetric Bubnov-Galerkin projection onto the subspace
Uy ® S [10,32,34,47].
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5 Discretisation of the Probability Space

In the following we will use a stochastic Galerkin (SG) method to fully discretise
(16) [1,4,5,15,16,20,26,31,32,41,51,52]. To effect the full Galerkin approximation
one still has to choose ansatz functions — effectively functions of known RVs —
in which to express the unknown coefficients (RVS) u,(w). We choose as ansatz
functions Wiener's polynomial chaos expansion (PCE) [16, 25, 31, 32, 34], i.e.
multivariate Hermite polynomials H, in Gaussian RVs. The multivariate Hermite
polynomials are given in Appendix B. Reassuringly, the Cameron-Martin theorem
[17-19, 22, 28] tells usthat the algebra of Gaussian variablesis denseinall L ,(£2)
with 1 < p < oo, hencein particular in S = L4(£2).

For example, if we simply decide to have an approximation in K Gaussian RVs
with atotal polynomial degree of P to choose afinite basis, then one choosesa A
as afinite subset of 7 := N(()N) , the set of all finite non-negative integer sequences,
i.e. of multi-indices, see Appendix A.

A={a=(a,..., ag,...) € J|ox =0fork > K, and ||, < P},

where the cardinality of A is

(K + P)!

A=Al = 1P

Although the set A isfinite and J is countable, there is no natural order on it; we
therefore do not impose one at this point. The determination of .4 via K and P as
above is in many cases too crude, not least because the cardinality changes very
unevenly with changing K and M. More elaborate ways to define A have to be
employed using different functionalsthan just the £,-norm.

As ansatz in the probabilistic or stochastic space we take

() = Y U Hy(6 (), (17)

a€gl

with u* := [u?,...,u%]”. Through the discretisation the stochastic space S has
been replaced by asubspace S 4 := span{H, |« € A}.

The Bubnov-Galerkin method applied to (16) with the ansatz (17) requires that
the weighted residuals vanish:

VBeA: E <|:f(w) — A[w] (Z u“Ha(O(a))))] Hﬁ(w)) =0. (18)
aeA

This may be concisely written —with quantitiesin the fully discrete space RY @ R4
denoted by an upright bold font —as

r(uy:=f—A@u) =0, orA(u) =f, (19
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where ()} := E ((f (@), Hs(®)), u := (%), and

AU =E ((A (] (Z u“Ha«o))) Hﬂ(w)) :
a€A n

A quantity like u may be thought of as an array of numbers (u?), exploiting the
isomorphy RY ® R4 ~ RV*4 or as an abstract tensor )", u® ® e,, where the
e, are the canonical unit vectors in R4, or —in a purely linear algebra fashion —
regard the symbol ® consistently as a Kronecker product. It may be noted that (19)
are A x N equations, and the system (19) inherits the properties of Propositions 1
and 2 as it is a symmetric Bubnov-Galerkin projection onto the finite dimensional
subspace Wy 4 := Uy ® S4.

Proposition 3. Convergence of the full Galerkin approximation [32, 34] with
coefficients the solution from eq:stoch-nonlineq

U'(x,0) = D (U Ho (0 (@) = Y W) Ho(8(@),  (20)

to the solution of the SPDE u from (14) with increasing dendly filling subspaces
Why.a € W may be established with Céa'slemma [10,47] as being quasi-optimal:

lu—ullw =€ _infflu—v]w. (21)
VEWN, A
For better convergence estimates, one would need results on the regularity of the
solution u to (14). For norms weaker than the Schatten- p-norm used in (21), one
may take the results in [8], these show the benefit of not only increasing the
polynomial degree, but also the total number K of RV's used in the approximation.

6 Solution Methods

We may solve the nonlinear system (19) by the BFGS method with line-searches,
e.g.cf.[12,29]. Inevery iteration acorrection of the current iterate u; iscomputed as

U1 — U = —Hgr (ug), (22)
Kk

Hi =Ho+ Y (r;p; ® p; +5,d; ® Q). (23)
j=1

The tensors p;,q; and the scalars r;, s; are results of the previous iterations of
the BFGS method, cf. [12,29]. A preconditioner or initial H, is necessary in order
to obtain good convergence. Most preconditioners have thefoomHy = M ® £
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with matrices M € RV*N and & e R4*4 [32, 49], and hence display a typical
tensor-product structure. One may note that (22) is an iteration on tensors, and that
the update to the operator is also in form of arank-2-tensor. Needless to say that in
actual computations, neither in (22) nor anywhere else are the tensor products like
in (23) actually formed [29]. This would completely destroy the very sparse nature
of the computations, but rather the components are always only used in the form of
an operator and stored separately [54].

7 Polynomial Nonlinearities

While the devel opment of the previous sections gives a general avenue to approach
not only the formulation and discretisation of nonlinear SPDEs, but also the actual
numerical solution process for the discrete solution, in many cases one can be
more specific. Often the nonlinearity is just a polynomial in the solution (or may
be represented by a power series in the solution), e.g. the Navier-Stokes Equation,
where the nonlinearity is just quadratic. For thisit is advantageousto have a direct
representation of polynomials of random variables.

In Appendices C and D it is shown how to treat polynomia nonlinearities in
terms of the Hermite-algebra and Hermite transform, and that will be employed
here.

Computationally we will represent random variablesry, r,, ... by the sequence
of their PCE-coefficients (o1) = 22(r1), (02) = F2(r,) €etc., see Appendix D. This
then allows us to express products of two — see (65) and (66), or more random
variables similarly to (67) — al with the help of the Hermite transform.

7.1 Nonlinear Diffusion

Let ustake alook at the introductory example of a nonlinear diffusion equation (1)
with the specific nonlinearity (11). After semi-discretisation the (16) may bewritten
as

Alo](u(w) = (Ko(@) + K (u())) u(@) = f (o), (24)

whereu(w) and f (w) are as before, and almost as a usual stiffness matrix

(Ko(@)),  := /quﬁn(X)-%(x,w)Vflﬁm(X) dx, (25)

(K. U@)), , = /g V() - ¢ (U (x. )2 Vb (x) . (26)
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withu'(x, ®) := 3, (¢ (x)u®) H, (8 (»)). Thisquantity may also be expressed with
u = [u?] for later useasuf(u) := U'(x, ) = Y, , U, (x) Ha (8 (w)). By denoting
Ul (x) == @ (x)u® = Y u¥¢,(x), werecognise these coefficients to be the Hermite
transform 27 (U (x, w)) = (U, (x))ses, See Appendix D. From this and with the
notation (u;) = (..., u?,...) oneseesthat the PCE of (u(x,w))? is

U)W (x, 0))* = 271 Cr((U, (¥)), (U (x))))

Y i.j

=> {Z i (X)((u)Ch(U)))g; (x)} Hy(0()). (27)

There are different ways of going on from here, the simplest seems to be
to set in (25) Ko(w) = 3., H,(0(w))K}, with K} := E(H,K,)/y!, as
the H, are orthogonal. For (26) this looks just as simple, setting K . (u(w)) =
>, Hy(0(w)KZ(u) with K (u) := E(H,(6(w))K.(u())) /y!. The termsin
the last expression may be facilitated with (27), so that

(K2 (U)o = / Vo, (x) ¢ {qul(x)((ul)c U, (x)} Vo (x)dx. (28)
i,j

Both matrices now have a PCE.
Using these PCEs when computing the termsof (19) with the help (18), we obtain

(Ko + K (uf(u))u =1, (29)
wheref and u are as beforein (19). For K, the Galerkin projectionsin (18) result in

(Ko)ap := Y _E(HyH,Hg) K ZA K, with (30)

14

A} ;= E(HyHy,Hg) = c] 5y! (see Appendix C). (31)
This can be written as a tensor product

Ko=) Kj® A (32)
Y

Similarly, for K. the Galerkin projectionsin (18) result in

(Kap () := " AL KW, (33)
Y

This can again be written as atensor product
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Keiw) => KIu) e A (34)
Y

All the terms of the nonlinear (29) have now explicitly computed, most of them
purely analytically. This shows the power of the Hermite algebra calculus for such
polynomial nonlinearities, giving the explicit form of (29) as

K/ @A+ K'U(u)® A’ |u=H. (35)
Z 0 Z c
Y Y

One should note that, regarding the discussion following (19), the operation ® has
to be interpreted according to the context. If H € R¥V*V W ¢ R4 h e RV, and
¥ € R4, then the operator H ® ¥ actsonthetensor h ® ¢ as

HRQWV)h @y :=(Hh) @ (YY),

and is extended by continuity to the whole space. If, as already mentioned, the
symbol ® is consistently interpreted as a Kronecker product, one gets afully linear
algebralike description, whereas interpreting u as amatrix U = [u?], the operator
actsas HU VT,

7.2 Stationary Navier-Stokes

Let us take as another example the stationary incompressible Navier-Stokes equa-
tion (with appropriate boundary conditions), where the nonlinearity is quadratic:

1
V'VV—R—eVZV—i—Vp:g, andV-v=0, (36)

where v(x) is the velocity vector at position x, the pressure at x is given by p(x),
the body force per unit massis g(x), and Re is the Reynolds number. Assuming
that boundary conditions, or initial conditions, or right hand side g are uncertain,
we model the response as random fields v(x, w) and p(x, w).

In adiscretised version, the (36) will look like

N(.v)+ Kv+Bp =g, and B'v=0, (37)

where the type of discretisation is not really important for the formulation of
the stochastic response. The bilinear operator N (-,-) comes from the nonlinear
convective acceleration term, K is the matrix corresponding to the diffusive part,
and B isadiscrete gradient; v and p are the vectors for the discrete representation
of the velocity v and pressure p.
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Remark 1. It may be injected here, that if the Reynolds number — or rather the
viscosity asthe density is constant for an incompressible flow — were to be regarded
as random field, then the matrix K in (37) would be a random matrix like K in
(24) with a corresponding PCE.

Expressing the quantities involved in their PCE

V(0(@) = YV He(8 (), (38)
a€A

p0(@) =Y p’Hy(6(w)), (39)
BeA

g0() =) g'Hy(0(w)) (40)
yeA

one obtains with the help of AppendicesC and D

Y NV V)HgH, + > KV'Hy+ Y Bp*Hy =Y g'H,  (41)

B.yeA a€A a€A a€A
and
> B"V'H, =0. (42)
aeA

With the help of (57), the nonlinear term in (41) can be rewritten as
> NW.V)HgH, =) (Z cgyN(vﬂ,vV)) H, (43)
B.yeA o By
Inserting thisinto (41) and projecting onto each H, gives

Yo e A: chyN(Vﬂ,vV)JrKv“Jer“:g“, (44)
By

and BTV = 0. (45)
Using tensor productsv and p as before, and defining in the matrix representation
N(V,V) = { LY g, NV, } , (46)
By

this may be succinctly written as

Nv,v) + (K QI)v+ (BQI)p =g, 47
and (BT ® I)v = 0. (48)
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This is an explicit PCE representation of the nonlinear stationary incompress-
ible Navier-Stokes equation, making the Hermite-algebra calculus quite explicit.
Observethat all high-dimensional integrations were done analytically.

8 Conclusion

We have tried to provide a short introduction to nonlinear SPDEs and stochastic
Galerkin methods based on white noise analysis. But the computational effort is
often still very high even though there may be tremendous gains compared to
the ubiquitous Monte Carlo method. The references mentioned in the introduction
contain many interesting directions how the computational burden may be alleviated
through adaptivity and model reduction or reduced order models. Some recent
referencesto this kind of work may be found for examplein [34, 35].

A Multi-Indices

In the above formulation, the need for multi-indices of arbitrary length arises.
Formally they may be defined by

oe=(al,...,a],...)€j:=NéN), (49)

which are sequences of non-negativeintegers, only finitely many of which are non-
zero. As by definition 0! := 1, the expressions

o0 o0
el =Y "o, ad al:=]]a
J=1 J=1

arewell defined foro € J.

B Hermite Polynomials

Asthere are different ways to define — and to normalise — the Hermite polynomials,
a specific way has to be chosen. In applications with probability theory it seems
most advantageous to use the following definition [17-19, 22, 28]:

d k
hie(t) := (=Dke'’/? (E) e VieR, k eN,, (50)
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where the coefficient of the highest power of + — which is t* for i, —is equal to
unity.
Thefirst five polynomiasare:

hot) =1, (@) =t hy(t) =1*—1,
ha(t) = 13 = 3¢, hy(t) = t* — 61> 4 3.

Therecursion relation for these polynomialsis
hic1(2) =t hye (1) — k he—1(1);  k €N (51)

These are orthogonal polynomialsw.r.t standard Gaussian probability measure I,
where T'(dr) = (27r)~/2e~""/2 dr —the set {hi(t)/Vk! | k € Ny} formsacomplete
orthonormal system (CONS) in L, (R, I') — as the Hermite polynomials satisfy

/oo B (1) 1 () T (D) = 11 8,y (52)

Multi-variate Hermite polynomials will be defined right away for an infinite
number of variables,i.e.fort = (11,1,....1,,...) € RY, the space of all sequences.
Foro = (oy,...,0,,...) € J remember that except for afinite number all other
o, are zero; hencein the definition of the multi-variate Hermite polynomial

Hy(t) := [ ha,(t)): VteRY 0 eJ. (53)

J=1

except for finitely many factorsall othersare i, which equals unity, and the infinite
product isreally afinite one and well defined.

Thespace R" can be equipped with aGaussian (product) measure[17-19,22,28],
again denoted by T". Then the set {H,(t)/va!| @ € J}isaCONSin L,(RY,T")
as the multivariate Hermite polynomials satisfy

/ Hy(t) Hg(t) T(dt) = ! 8, (54)
RN

where the Kronecker symbol is extended to .3 = 1 incase ¢ = f and zero
otherwise.

C TheHermite Algebra

Consider first the usua univariate Hermite polynomials {h;} as defined in
Appendix B, (50). As the univariate Hermite polynomials are a linear basis for
the polynomial algebra, i.e. every polynomial can be written as linear combination
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of Hermite polynomials, this is aso the case for the product of two Hermite
polynomials i, b, which is clearly also a polynomial:

k+¢

he@he(®) = Y feha(0), (55)

n=|k—{|

where n is an index, not an exponent. The coefficients are only non-zero [28] for
integer g = (k+{+n)/2 e Nandif g > k Ag > { A g > n. They can be
explicitly given

" ke (56)
CL) = s
“ g g -0 g —n)
and are called the structure constants of the univariate Hermite algebra.
For the multivariate Hermite algebra, analogous statements hold [28]:
Hy(t)Hp(t) =) cly Hy(0). (57)
14
with the multivariate structure constants
o0
= TTell, ©
j=1
defined in terms of the univariate structure constants (56).
Fromthisit is easy to see that
E(H,HgH,) = E (Hy Zc;ﬂHg) = chyy!. (59)
&

Products of more than two Hermite polynomials may be computed recursively,
we herelook at triple products as an example, using (57):

H,HgHs = (Z chy Hy) Hy= )" (Z c;gcgﬁ) H.. (60)
Y € 14

D TheHermite Transform

A variant of the Hermite transform maps a random variabl e onto the set of expansion
coefficients of the PCE [18]. Any random variable which may be represented with
aPCE

r@) =) 0" Ho(0 (@), (61)

aed
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is mapped onto
A1) = (0")ues = (@) € R7. (62)

On the other hand, from a sequenceindexed by 7, asamappingp : J — R : o —
p%, one may obtain the random variable

AT(P) = AT (0 )aeg) = ) p"Ha, (63)
a€J

which defines the inverse Hermite transform.
These sequences may be seen also as the coefficients of power seriesin infinitely
many complex variablesz € CN, namely by

PILES

aeJ

wherez* :=[] ; 23" . Thisisthe origina definition of the Hermite transform [18].
It can be used to easily compute the Hermite transform of the ordinary product
likein (57), as
%(HaHﬂ) = (C(i/ﬁ)yej- (64)

With the structure constants (58) one definesthe matrices C'; := (c),) withindices
a and . The Hermite transform of the product of two random variables ry (w) =

Y wes O Ho(0) and ry(w) = Zﬂej Q/;Hﬁ(a) is hence
H(Nr) = ((Ql)C;/(Qz)T))yEJ (65)
Each coefficient isabilinear form in the coefficient sequences of the factors, and the

collection of all those bilinear formsC, = (C?), 7 isabilinear mapping that maps
the coefficient sequences of r; and r; into the coefficient sequence of the product

H(1ry) =: Cy((01). (02)) = Co (J(11), H(12)) . (66)

Products of more than two random variables may now be defined recursively
through the use of associativity. e.g. rirarsry = (((rir2)rs)ry):

= Cx—1(Ca((01); (02)), (03) - .., (k). (67)

Each Cy is again composed of a sequence of k-linear forms{C} }, ¢, which define
each coefficient of the Hermite transform of the k-fold product.
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Smoothing Analysis of an All-at-Once
Multigrid Approach for Optimal Control
Problems Using Symbolic Computation

Stefan Takacs and Veronika Pillwein

Abstract The numerical treatment of systems of partial differential equations
(PDEs) is of great interest as many problems from applications, including the
optimality system of optimal control problems that is discussed here, belong to
this class. These problems are not elliptic and therefore both the construction of
an efficient numerical solver and its analysis are hard. In this work we will use all-
at-once multigrid methods as solvers. For sake of simplicity, we will only analyze
the smoothing properties of a well-known smoother.

Local Fourier analysis (or local mode analysis) is a widely-used tool to analyze
numerical methods for solving discretized systems of PDEs which has also been
used in particular to analyze multigrid methods. The rates that can be computed
with local Fourier analysis are typically the supremum of some rational function.
In severa publications this supremum was merely approximated numerically by
interpolation. We show that it can be resolved exactly using cylindrical algebraic
decomposition which is awell established method in symbolic computation.
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1 Introduction

Local Fourier analysis (or local mode analysis) is a commonly used approach for
designing and analyzing convergence properties of multigrid methods. In the late
1970s A. Brandt proposed to use Fourier series to analyze multigrid methods, see,
e.g., [2]. Local Fourier analysis provides a framework to analyze various numerical
methods with a unified approach that gives quantitative statements on the methods
under investigation, i.e., it leads to the determination of sharp convergence rates.
Other work on multigrid theory such as [1, 6, 9, 10] — to mention only a few —
typically just show convergence and do not give sharp or realistic bounds for
convergencerates.

Local Fourier analysis can be justified rigorously only in specia cases, e.g.,
on rectangular domains with uniform grids and periodic boundary conditions.
However, results obtained with local Fourier analysis can be carried over to more
general problems, see, e.g. [3]. In this sense it can be viewed as heuristic approach
for awide class of applications.

Understanding local Fourier analysis as a machinery for analyzing a multigrid
method, we apply it in this paper to amodel problem and some specific solvers. Still,
we keep in mind that this analysis can be carried over to avariety of other problems
and solvers. This type of generalization has been carried out, e.g., for methods
to solve optimal control problems that have been discussed in [14], [1] and [9].
In [16] the method is explained as machinery and alocal Fourier analysis software
LFA is presented. This software can be configured using a graphical user interface
and allows to approximate (numerically) smoothing and convergencerates based on
local Fourier analysis approaches for various problems and multigrid approaches.

Neither the proposed multigrid method nor its application to the optimal
control problem discussed in this paper are new and numerical results have been
published in various papers. The proposed smoother belongs to the class of Vanka
smoothers [15]. In [1] this smoother was used in a finite difference framework
and — beside a second kind of analysis—local Fourier analysis was used to analyze
the method. In that paper the condition characterizing the smoothing rate was
approximated numerically.

The goal of this paper isto show that the analysis can be carried out in an entirely
symbolic way and as such leads to sharp estimates on the smoothing rate for a
collective Jacobi relaxation and collective Gauss-Seidel iteration scheme. For this
purposewe restrict ourselvesto the case of aone-dimensional model problem and to
piecewise linear ansatz functions (Courant elements). Aiming at an audience from
both numerical and symbolic mathematics we try to stay at an elementary level and
keep this note self-contained.

The key for involving symbolic algorithms is a proper reformulation of the
quantities to be analyzed in terms of logical formulas on polynomial inegqualities.
These real formulas can then be simplified by means of quantifier elimination
using cylindrical algebraic decomposition. This tool has been applied earlier in the
analysis of (systems of) ordinary and partial differential-difference equations [8]
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wherethe necessary conditionsfor stability, asymptotic stability and well-posedness
of the given systems were transformed into statements on polynomial inequalities
using Fourier or Laplace transforms.

This paper is organized as follows. In subsection 1.1 we introduce a simple
model problem and in subsection 1.2 we propose a multigrid approach to solve
the discretized optimality system of this model problem. The local Fourier analysis
isintroduced and carried out in Sects. 2 and 4, respectively. Section 3 gives a brief
overview on quantifier elimination and cylindrical algebraic decomposition, i.e., on
the symbolic methods applied in order to resolve smoothing rates symbolically.

1.1 Modd Problem

Asamodel problemwe consider the following optimal control problem of tracking
type: Minimize

1 o
J(ys U) = E”y - yD||i2(_Q) + 5“””%2(9),
subject to the elliptic boundary value problem (BVP)
— Ay =uin2 and y=00n0d52, (@D}

where y € H/(£2) isthe state variable and u € L?(£2) is the control variable. The
function yp € L?(£2) isgiven, a > 0 issome fixed regularization or cost parameter
and £2 is a given domain with boundary 952. Here, the Banach space L?(£2) is the
set of square integrable functionson §2 with associated standard norm || /|| ;2(g) :=

(f. f)lL/f(Q), where (f, g) 2@ = [, f(x) g(x) dx. The Sobolev space H (£2) is
the set of L2-functions vanishing on the boundary with weak derivativesin L?(£2).

Note that for this setting the boundary value problemis (in weak sense) uniquely
solvablein y for every given control u. At first we rewritethe BVP (1) in variational

form: Find y € H, (£2) such that

(Vy, VP)LZ(.Q) = (u, P)LZ(.Q)

holdsfor al p € H}!(§2), where VT isthe weak gradient.

Solving the model problemis equivalent to finding a saddle point of the Lagrange
functional which leads to the first order optimality conditions (the Karush-Kuhn-
Tucker system or, in short, KKT system), given by: Find (y,u, p) € H/}(£2) x
L*(£2) x H}(£2) such that

ARV + VP, V) 120 = (VD V) 122
o (UT) 20 — (P, U2 =0
(Vy. VD) 2y — (UP)12g) =0



178 S. Takacs and V. Pillwein

holds for al (3.0, p) € H(£2) x L?(2) x H}(£2). The second equation
immediately implies that u = o~! p, which allows a reduction to the following
system (2 x 2 formulation of the KKT system): Find (y,p) € X = V xV =
H}(£22) x H}(£2) suchthat

Mgy V.V e = 0. Y) 1)
(VY. VD)2 — ' (0. P2y =0

holdsfor all (¥,7p) € X.

For finding the approximate solution to this problem we use finite element
methods (FEM). Therefore we assume to have a sequence of grids partitioning the
given domain £2 starting from an initial (coarse) grid on grid level k = 0. Thegrids
on grid levelsk = 1,2,... are constructed by refinement, i.e., the grid points of
level k — 1 are aso grid points of level k. Using standard finite element techniques
(Courant elements), we can construct finite dimensional subsets V;, C V, wherethe
dimension N, dependson the grid level k. By Galerkin principle, the finite element
approximation (yx, px) € Xy := Vi x Vj fulfills

(ykv’)\;k)Lz(.Q) + (Vpx, V,)\;k)LZ(.Q) = (YD,7k)L2(9) @
(Vyi, VP 129y — ¢ (k. Pi) 12(2) = 0

for all @k,fﬁk) € Xy.
Assuming to have a (nodal) basis & = (<pk,,<)f\’;1 for Vi, we can rewrite the
optimality system (2) in matrix-vector notation as follows:

(Mk Ki ) Ye ) = [ 8 (3)
Kk —o le pk 0 ’
‘—/_’\,_/ N —

,Q{kl= Ek:: ik:=

where the mass matrix M and the stiffness matrix K are given by

My = ((@k,jsfﬂk,f)um))%:l and Kj := ((Vor;, V@k,i)LZ(Q)),{Yj':lv

respectively, and the right hand side vector 8, isgiven by

8, = ((YDa(Pk,i)LZ(Q))zNLI'

The symbols y and P, denote the coordinate vectors of the corresponding
functions y; ancf Dk W|th respect to the nodal basis &y.
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1.2 Multigrid Methods and Collective Point Smoothers

In this section we briefly introduce the multigrid framework that we analyze in this
paper. Starting from an initial approximation x x( ) one step of the multigrid method
with v; + v, smoothing steps for solving a d|scretized equation <% x, = ik on
grid level k isgiven by:

* Apply v; (pre-)smoothing steps

" =M TN - x0T form=1L TR
with ﬁ]({0,0) = x,(co), where the choice of the damping parameter ¢ and the

preconditioner ,Q%k is discussed below.
» Apply coarse-grid correction

— Compute the defect and restrict to the coarser grid
— Solve the problem on the coarser grid
— Prolongate and add the result

If the problem on the coarser grid is solved exactly (two-grid method), then we
obtain . o N
7= M AN NS~ g,

* Apply v, (post-)smoothing steps
XM= el szk—l(ik — e x"" Yy form=—v 4+ 1,...,0

to obtain the next iterate x _(1 0

The smoothing steps are applied in order to reduce the high-frequency error,
whereas the coarse-grid correction takes care of the low-frequency parts of the
overall defect. In practice the problem on grid level £ — 1 is handled by applying
one step (V-cycle) or two steps (W-cycle) of the proposed method, recursively, and
just on the coarse grid level & = 0 the problem is solved exactly. The convergence
of the two-grid method implies the convergence of the W-cycle multigrid method
under mild assumptions, so we restrict ourselves to the analysis of the two-grid
method only.

Theintergrid-transfer operanrs _,and I k=1 are chosen in acanonica way: we
use the canonical embedding for the prolongatlon operator ,f_l and its adjoint as
restriction operator 7}~

Next we need to specify the smoothing procedure (4). The preconditioning
matrix 7 is typically some easy-to-invert approximation of the matrix <. In
case of positive definite matrices (which may result from discretizing elliptic
scalar BVPs), the preconditioning matrix can be composed in an either additive
or multiplicative Schwarz manner based on local problems which live on patches,
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boxes or, which is the easiest case, just on points. The two main pointwise
methodsare Jacobi rel axation (additive Schwarz method) and Gauss-Seidel iteration
(multiplicative Schwarz method).

We extend these methods to block-systems by combining (again in an additive or
multiplicative Schwarz manner) local problemswhich involve the complete system
of BVPs. Thereforewefirst recall that standard Jacobi rel axation, which can be used
as smoother for the linear system Ay x;, = ik, where Ay is symmetric and positive
definite, reads as

N
©Om+1) ,_ _(0m) 1| £ Om)
X; =x; +rva; | fi— E aij X; ,
=1

where x*", f; and a;; are the components of the vectors x> and f and the

matrix ., respectively. This iteration scheme can be carried over to_tﬁe saddle
point problem (3), which leads to the collective Jacobi relaxation:

Ny
(D = O e =D ey X, (5)

ii
Jj=1

where

mii ki
X0 = (O pOT g = (gi,0)T and o = ( v )

kij —0 mi;
(6)
Here again y ", p®™, ¢;, m;; and k;; are the components of yom, pom, g
M, and K. B N
Collectiveiteration schemes can be represented in the compact notation (4) using
the preconditioning matrix d;(’“") , given by

e (MR ) (diag My diag Ki
T\ RY et ) T\ diag Ky —adiag My )’

i.e, M) and K\/* are defined asthe diagonalsof M; and K, respectively. The
damping parameter t is chosento bein (0, 1).

The preconditioning matrix of the collective Gauss-Seidel iteration can be
constructed in the same way and is given by

&) . (Mk(gS) Iezigs) )
k = > (gs) 117 |
Kk —a Mk
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where Mk(g” and K ,ig” arethelower left triangular parts (including the diagonal's) of
M. and K, respectively and the damping parameter 7 is chosen to be 1. We should
mention that in both cases the preconditioning matrices M,f/“), K ,i’ ac), M]fgs) and
I?,ig” are the preconditioning matrices that represent classical Jacobi or Gauss-
Seidel iteration for linear systems with system matrices M, and K}, respectively.

Numerical examples show good behavior of multigrid methods using such
iterations as smoothing procedures and have been discussed in, e.g., [1] or [9].

We want to stress that in either case the application of the preconditioning
matrix 7, can be realized efficiently if the iteration is implemented analogously
to standard Jacobi or Gauss-Seidel iteration, as done in (5) and (6) for the case of
collective Jacobi iteration. Executing the algorithm then only vectorsin R? need to
be multiplied with 2 x 2 matrices and 2 x 2 linear systems need to be solved. For
more detailed information on how to implement collective iteration schemes see,

eg., [9l.

2 Local Fourier Analysis

Convergence properties of multigrid methods for the model problem have been
investigated in a wide range of papers[1,6,9,10]. In this paper we want to con-
centrate on an analysis, where symbolic computation can contribute significantly.
For the time being, we complete the first step by analyzing the smoothing iteration.
As mentioned earlier, we restrict the smoothing analysis to the case of a one
dimensional domain 2. While the proposed numerical method can be applied also
to higher dimensions, the analysis of this case as well as the analysis of the full
two-grid cycleis ongoing work.

For the analysis of the smoothing procedure introduced in the last section, we
define the iteration matrix of the smoothing step by

Sp:=1-— tJZf,];_lJka,

which represents the modification of the error effected by the smoothing procedure,
ie,

A0 =5 = S - 6D,
wherex? := 7' f denotesthe exact solution to the system.

Certainly, if it can be shown that the spectral radius of the iteration matrix or,
even better, its norm, are smaller than 1, then thisyields convergenceof theiterative
scheme. At present time, we do not aim at proving convergence, but at showing
that it isa good smoother. In other words, we want to show that it reduces the high
frequency error terms which we do using local Fourier analysis that is introduced
next.
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2.1 Local Fourier Analysis Framework

Since for local Fourier analysis the boundary is neglected by assuming periodic
boundary conditions that allow to extend a bounded domain £2 to the entire space
R, see [3], from now on we assume that 2 = R. Let us repeat that good
convergence and smoothing rates computed using local Fourier analysis for simple
cases, typically aso indicate good behavior of the analyzed methodsin more general
Cases.

Onthisdomain 2 = R, we assumeto haveon each gridlevel k = 0,1,2,...a
uniform grid with nodes

Xkn =N hi forn € Z,

where the uniform grid sizeis given by i, = 27%. The functionsin V; are assumed
to be continuous on the domain and to be linear between two nodes (Courant
elements). This way the discretized function can be specified by prescribing the
vaues on the nodes only.

The first step of local Fourier analysis consists of constructing Fourier vectors
that diagonalize both mass and stiffness matrix. For every 6 € ® := [z, ) and
every grid level k, we can define a Fourier vector ¢, (6) € R” asfollows:

o (0) := (&™), ez,

Itiseasy to see that every vector in RZ can be expressed as linear combination of
countableinfinitely many Fourier vectors. In case of abounded domain, just finitely
many Fourier vectors or functionswould be necessary. Nonetheless for the analysis,
al 0 € ® = [—m, ) are considered.

2.2 Operatorsin Local Fourier Space

The Fourier vectors defined in the preceding subsection diagonalize the blocks
of our system matrix. Since we consider grids with uniform mesh-size &y, the
(infinitely large) mass matrix M; and the (infinitely large) stiffness matrix K can
be computed explicitly:

and K, = —
K= —12 -1

TR =
C
=
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It is easy to see that the multiplication of one of these matrices with the vector
or (0) equalsthe multiplication of this vector with the symbol of the matrix, where
the symbols are given by:

44e'4e")h 2—elf — 0
M@= ) wd Kip®) = 25 o)
S—— N——
My (0):= Kr(0):=

Thus indeed the Fourier vectors are the eigenvectors with eigenvalues M, (9) and
K (0), respectively, and analogously for the preconditioning matrices. For the
collective Jacobi relaxation, the preconditioning matrix itself is a diagonal matrix,
therefore

“~r(jac 2h g Lac 2
MY 0 (0) = Tk e(0) and KO p0) = = pul0)
- 3 —=

OB R 0):=

holds. As the block matrices <7, and ,a%; are built from such matrices, we can

concludethat for all 6 € ©,
or(0) 0
o} (%) (utn )

is invariant under the action of those block-matrices. Hence it suffices to consider
only the symbol of the block matrix 7, given by

6 = (Vk(e) Ki(0) ) |

Ki(0) —a~"My(6)

and the symbol /" (§) defined analogously.
As mentioned earlier, the smoothing iteration shall reduce the high-frequency
parts of the error. To measure this phenomenon, we introduce the smoothing rate

q(v):= sup sup sup o(f, @, 1), @)
ge@high) hp>0 a>0
where ©#i€h .= [, m)\[-Z, I) isthe set of high frequenciesand o is defined

as the spectral radius of the Fourier-transformed smoothing operator given by

0O hio.7) = p(I —1 (Z(@))_1 7). @)

Sk (0):=
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In (7) the supremumis not only taken over all € ®@"¢M put also over al grid sizes
hy > 0 and choices of the parameter « > 0. Therefore, we compute an upper bound
for the smoothing rate which is independent of 4 (which alows to show optimal
convergence) and the parameter o (which allows to show robust convergence). For
obvious reasons, the supremum is not taken with respect to the damping parameter
7, but is adjusted within the method such that the smoothing rate is optimal for
Jacobi relaxation.

In principle it would be necessary to analyze the norm of the iteration matrix
in (8) rather than analyzing the spectral radius. The spectral radius, however, equals
the infimum over al matrix norms, which implies that for every ¢ > 0 thereisa
matrix norm such that

ISk = (1 +€) p(Sk(0)),

see[7]. For the model problem and both proposed smoothing procedures (collective
Jacobi relaxation and collective Gauss-Seidel iteration) straight-forward computa-
tions show that the spectral radius of the symbol of the smoothing operator p(S (6))
isequal to itsnorm || S, (9) | ¢, if the matrix-norm s chosen as

1/2 12\ !
I = H (a 1) i (a 1)

where || - ||~ denotes the spectral norm. Observe that the scaling of the state y and
the adjoint state p in this norm equalsto the scaling in the norm || - || x in classica
theory that can be found in [10].

An equivalent formulation for the definition of the smoothing rate (7) using
quantifiersis: Determine A such that

: (9)

(2

VOeOtW vV >0Va>0:0%0, he,a,7) <A (10)

holds. Then for every t € (0, 1) the value of g(t) isthe smallest such A.

The computation of o (0, hy,«, ) is straight forward, but the computation of
¢ () isnon-trivial. Thisiswhere symbolic computation entersour analysis. In order
to determine ¢ (that is either a polynomial in T or a constant) we invoke quantifier
elimination using cylindrical algebraic decomposition (CAD) that is introduced in
the next section. Note that for both preconditioners under consideration, (10) is a
quantified formula on trigonometric polynomials (after clearing denominators). For
the case of acollective Jacobi relaxation o is given by

hi((cos® + 2)t —2)? + 36a((cosd — 1)t + 1)°

20, by, 7) =
(0. i . 7) 4 (h? + 9a)

CAD, as we detail in the next section, accepts as input only polynomial (or more
general rational) inequalities over the reals. This is a complication that is easily
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resolved by replacing cosd by areal variablec € [—1, 1] and, if necessary, sin6 by
ared variable s € [—1, 1] together with Pythagoras’ identity s + ¢? = 1.

3 Quantifier Elimination Using Cylindrical Algebraic
Decomposition

So far we have reformulated the task of determining the smoothing rate for our
multigrid methods to the problem of resolving a quantified polynomial inequality.
That is, the given statement is of the form

O1x1...00 Xyt AX1, .o s X0, Vs oo vy Vi)

where Q; denote quantifiers (either V or J) and A(xy,...,X,, y1,...,¥Ym) IS @
boolean combination of polynomial inequalities. The problem of finding an equiva
lent, quantifier free formula B(yy, ..., y.) consisting of a boolean combination of
polynomial inequalities depending only on the free variables is called quantifier
elimination. The first algorithm to solve this problem over the reals was given
by A. Tarski [13] in the early 1950s. His method, however, was practically not
efficient. Nowadays modern implementations [4, 11, 12] of G. Collins' cylindrical
algebraic decomposition [5] makeit possibleto carry out nontrivial computationsin
areasonable amount of time.

A simple exampleis given by: Determineabound B = B(2) for 0 < z < 1 such
that

VO<x<1VO<y<l: Y < B,
y+z x+12
or equivalently,
VxVy:0<x<IlAlD<y<l= + ) < B.
y+z x+z

A CAD-computation quickly yieldsthat B(z) > % In cases where no free variables
appear in the input, B is one of the logical constants True or False. Applied to a
quantifier free formula the result of a CAD-computation is an equivalent formula
that is normalized in a certain sense.

When executing the algorithm first the quantifier free part of the formula is
considered, i.e., in the example above the inequalities0 < x < 1, 0 < y < 1
and -3 + xiz < B. Theseinequalities can be reformulated in terms of inequalities
by cfearing denominators in the appropriate way. The given polynomials define a
natural decomposition of the real space (in the example R*) into maximal connected
cellson which the polynomiasare sign invariant. This decompositionisthen further
refined to obtain cells on which the polynomialsare not only sign invariant, but also
cylindrically arranged. The orientation of this cylindrical arrangement depends on

the order of the variables that is fixed by the quantifiers for the bound variables and
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the user (or the implementation) for the free variables, respectively. In this sense
one may consider variables as being on the bottom (or innermost) level or on higher
levels of the resulting CAD. Once such a cylindrical decomposition is obtained the
quantifiers can be eliminated by considering each of the cellsin an order determined
by the quantifiers. The result is a formulawhere al the bound variables have been
eliminated and the description of the cells where the formula holds is given solely
in terms of the free variables as shown in the example above.

This procedure may be a very costly one depending on the number of variables
and the degrees of the polynomials and even though termination of the algorithm is
proven, the actual computation might exceed the expected life-time of the authors.
Although it might seem a high price to pay, the gain is an optimal bound for the
given formulathat is determined by a proving procedure that is not approximate in
any way.

The formulafor o as stated above is a rational function in the given indetermi-
nates. Adding the necessary case distinctions for the denominators that arise when
multiplying both sides of an inequality (which is commonly handled internaly by
the implementations), thisis still avalid input for a CAD-computation.

A major issue is the runtime complexity of CAD that depends heavily on the
input parameters such as number of polynomial inequalities, polynomial degrees
and number of variables. In the worst case it is doubly exponential in the number of
variables and this worst case bound is not only met in theory, but often experienced
in practice. As we will see below, aready for the one dimensional analysis suitable
substitutions of the variables are applied in order to speed up the computations.
These substitutions aim at reducing the number of variables on the one hand and
lowering the polynomial degrees on the other hand.

For the forthcoming analysis of the two (or even three) dimensional case, further
simplifications will be necessary because of the increase in both, the number of
unknowns as well as the polynomial degrees of the given formulas.

4 Computing the Smoothing Rate

Now we are in the position to state the main results of this paper, the smoothing
rates for collective Jacobi relaxation and collective Gauss-Seidel iteration.

4.1 Smoothing Property: Collective Jacobi Relaxation

In the smoothing step we are concerned with the high-frequency parts of the error.
Consequently, if wereplace cosé by areal variablec, thenthe condition § € @gh)
trandatesto —1 < ¢ < 0.

With this substitution in the case of a collective Jacobi relaxation o is given by
0(0, h,a,t) =0(cosb, hi,a, t), where
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hi((c +2)t —2)* 4+ 36a((c — 1)1 + 1)?

~2
7h b bl ::
o (c b, ) 4 (h? + 9a)

With this rewriting the condition in formula (10) has become a purely polynomial
inequality and can invoke CAD to determine ¢(t). For this purpose we used the
CAD-implementation in Mathematica. The subscript 2 for ¢ below indicates that
we are dealing with the square of the actual expression.
B ((c +2)t —2)% + 36a((c — DT + 1)? .

4(h* + 90) ’
ng= Resolve[ForAllfe,—1 =< ¢ =< O0,ForAlllh,h > 0,ForAllje,e¢ > 0,0, =<

A0 {7, A}, Reals]

In[g]:= 0 =

4 1
ougl- (T < 0&&A > 472 — 47+ 1) || (0< < g&&)& > Z(12—4f+4)) I
4 2
f>§&&kz4r —4r +1

The computation takes about one second and the result is a quantifier-free formula
equivalent to the quantified formula given in (10). Note also that this is again a
statement formulated in terms of polynomial inequalities. It is normalized in the
sense that the parameter 7 is assumed to be on the bottom level, which is indicated
by the order of variables within the “ Resolve’-command. Thus the output is sorted
in away that the conditionson t are inequalities comparing to (algebraic) numbers,
whereas the conditionson A on the next higher level are formulated in terms of z.

So for every t the function value ¢2(t) is the smallest A fulfilling out2). For
instance, if weplug t = % into out[2], the formulareduces to:

Fase v (True/\k > %) v False.

Asg? (1) isthe smallest A fulfilling the inequality, we have ¢* (1) = 3. Guided by
this example we read off the general form for ¢2(z) which is a piecewise quadratic
function given by

472 — 47 4+ 1 for T

IA

(O I =)

1
q*(r) = 1 (t2—4t+4) for 0 <7< (11)

412 — 47+ 1 for§<r
Summarizing we have determined the supremum in (7) and therefore the smoothing
rate ¢(t). If we take the square root of (11) and restrict ourselves to the relevant
range t € [0, 1], we obtain the smoothing rates for the collective Jacobi relaxation:
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Fig. 1 Smoothing factor
depending on damping 1.0

parameter
0.8+
0.6 -

0.4+

0.0 0.2 0.4 0.6 0.8 1.0

1 4

-2-1) for 0 <7< -
q(r) =4 2 5. (12)
1

4
2t —1 for§<r§

Since our method gives an equivalent reformulation, we know that these bounds on
the smoothing rate are sharp. The graph of the function ¢ can beseenin Fig. 1. From
this we see that ¢ () takes its minimum for = = £ with value ¢ () = 2. For the
canonical choicer = 1, weobtaing (3) = 3.

A smoothing analysis in a similar setting has been carried out in [1], where
the authors obtain estimates for smoothing and convergence rates using numerical
interpolation. To the knowledge of the authors (12) and (13) below provide the first

rigorously proven sharp bounds for the smoothing rate.

4.2 Smoothing Property: Collective Gauss-Seidel Iteration

In this subsection we carry over the smoothing analysis which we have done for the
collective Jacobi relaxation to the collective Gauss-Seidel iteration. Again we can
determine the symbol of the involved preconditioning matrices:

~ (os (4+ ey 5 (g5 2-e”
Mg (6) = ————5 gu(6) ad K{¥gu(0) = —— @u(0).
A4 —_— k
MligA)(e):z K‘»I({L'A)(e):z

The procedure for determining o (0, h,«) (which now is independent of 7) is
completely analogous to the previous case. Again, by our choice of matrix horm
| - Il ¢, the same value for o is obtained no matter whether we consider the spectral
radius or the norm.
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In order to have a purely polynomia input for the CAD computations, we
simplify the formula for o: the occurrences of cos6 and sinf are replaced by ¢
and s, respectively. Moreover we expand numerator and denominator and replace
al occurrences of s> by 1 — ¢? thus arriving at numerator and denominator
being linear in s. After these simple rewriting steps we obtain o (0, hy,a) =
o(siné,cosb, hy, o), where

(h} +360) (17 + 8c)hi + T2ha'/?|s| + 36(5 — 4c)a)
(17 + 8¢)2h} + 72(40c% — 28¢ + 13)hfa + 1296(5 — 4¢)2a?’

(s, ¢, h ) ==

The smoothing rate ¢ is again the supremum over al high frequencies, grid sizes
and choices of the parameter « and is given by

¢ = sup sup sup G3(s,c.hi, ),

(s,¢)€D hi>0 o>0

where D := {(s,c) e R? : s> +¢c>=1, ¢ <0}

Note that in this definition above still the absolute value of s and a term «!/?
occurs. Before we can invoke CAD-computations, we have to rewrite ¢ as rational
function. A first simplification is that as ¢ does not depend on the sign of s, we
can restrict ourselves to assuming only non-negative values and thus replace |s| by
s > 0. To eliminate also «'/? in the numerator, we replace « by &%, where@ > 0.
Having completed these rewritings the final formulafor ¢ reads as

- (hg+3662) ((17 + 8c)hi+72h7as +36(5 — 4c)a?)
q"= Sup_Sup sup 27,8 2 4= 2547
ored =030 (17 4 8¢)*hG +72(40¢? — 28c+13) i@ +1296(5 — 4¢)*@

where D := {(s,c) e R? : s2+¢2 =1, ¢ <0, s > 0}. We can again rewrite the
supremum as quantified expression where the quantifiers can be eliminated with the
help of a CAD computation. With Mathematica’'s quantifier elimination algorithm,
we obtain the smoothing rate for the collective Gauss-Seidel iteration after about
twenty minutes:

q=103++2) ~063. (13)

Even though twenty minutes are not a very long time to wait for aresult that needs
to be obtained only once, it still seemstoo long for such a simple formula. We can
speed up the calculation significantly by reducing both the number of variables and
the degrees of the polynomials by substitution using the variable  := hi /a > 0.
This substitution reduces the formulafor g to

5 (7% +36) (17 + 8c)n* + 72ns + 36(5 — 4c))

= QU SU .
O B 8 (74 807y + 724062 = 28¢ + 13)72 + 1296(5 — 4c)?
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Based on this representation Mathematica’s quantifier elimination algorithmis able
to derive ¢ within about twenty seconds.

5 Concluding Remarks

In this paper we have shown a strategy to compute the smoothing rate for amultigrid
method using collective Jacobi relaxation or Gauss-Seidel iteration by means of
symbolic computation in an entirely automatic manner. The proposed strategy
strongly relieson thefact that local Fourier analysisisasystematic machinery which
is applied to the problem and the given numerical method. Typically this approach
leads to determining the supremum of an explicitly given term.

On the one hand, the smoothing rates we obtained this way may be viewed as an
interesting result on their own. On the other hand, these rates will also enter afull
two- or multigrid analysis which again can be done using local Fourier analysis.

Also for the full analysis, or the extension to higher dimensional cases, Fourier
analysisleadsto an expression that in thefirst step is arational function in the mesh
size hy, the regularization parameter «, the damping parameter z, and trigonometric
expressionsof thefrequenciesf. Thisisin particular the case for the model problem
described in this paper for the above mentioned generalizations.

Theoretical results guarantee that also these problems can be solved with the
methods applied in this work. To obtain the full results in reasonable time, it is
necessary to apply proper strategies to reduce the complexity of the problemsin the
formulation of the input which is ongoing work.
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Analytical Evaluations of Double Integral
Expressions Related to Total Variation

Car sten Pontow and Otmar Scher zer

Abstract In this paper, for certain classes of functions, we present analytical
evaluations of doubleintegral expressions representing approximations of the total
variation seminorm. These cal culationsare carried out by using the Maple computer
algebra software package in a sophisticated way.

The derived expressions can be used for approximations of the total variation
seminorm, and, in particular, can be used for efficient numerical total variation
regularization energy minimization.

1 Introduction

Let N € {1,2} and let Q denote a bounded connected subset of RV with Lipschitz-
continuous boundary. In this paper we address the problem of evaluating double
integrals of the kind

Ry(f) 1= /Q

where 1" isameasurablereal function defined on 2 and (¢,) denotes a sequence of
non-negative, radially symmetric, and radially decreasing functions from L' (R")
satisfying for every § > 0

[ =IO -y axay.
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li (X)) dx = 1
im /{X:IX>8}<p (x)dx =0 (@D}

n—o0

andfordln e N
/ on(x)dx = 1. (2
Q

Conditions (1) and (2) imply that the unit mass of the functions ¢, concentrates
around the origin as n strives to infinity. The properties of (¢,) imply further that
this sequence represents an approximation of the identity.

The integral expression above occurred in papers by Bourgain et a. [3] and
Davila[6], providing new characterizations of the total variation seminorm. In fact,
they proved that for every function f of bounded variation

L im ®,(f) = |Df| )

1.N n—>oo

and that the above limit diverges to infinity if f is not a function of bounded
variation. In the above equation the constant K y isarea constant depending only
ondimension N and | Df | denotes the total variation seminorm of f.

Prominent applications of the total variation seminorm lie in the field of image
processing, where the seminorm represents a usefool tool for measuring the amount
of variation within an image. For example, total variation regularization, i.e., the
search for a minimum of functionals of the type (Rudion, Osher, Fatemi functional

[12) 1
F()i=3 [ (7 = £ dx +ely]

isaprominent method for the denoising of images. Here £ isanimage corrupted by
noise and o represents a positive real constant. The first summand of the functional
above is called the fidelity term and penalizes the deviation of an image f from
the data f*. The second summand is named regularization term and penalizes the
rate of variation within f. While the first summand provides that the outcome
of the minimization process (the denoised image) preserves similarity to f9, the
second term is intended to reduce the oscillations within the argument £, in order
to generate an approximationto % that contains a small amount of inherent noise.
In fact, this denoising strategy has proven to be successful and even more, the total
variation seminorm has proven to be superior to other regularization terms in the
sense that edges within the image are preserved.

Since in many cases the total variation seminorm of a function cannot be
determined analytically, appropriate simplifications are introduced when such an
evaluation has to be done. A first step lies in the discretization of the function.
Typicaly, a mesh is introduced on © and the functions f is approximated by
linear combinations of piecewise constant or piecewise linear ansatz functions
defined with respect to that mesh. For example, a one-dimensional function
f:(0,1) — R can be approximated by alinear combination of indicator functions
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Y ke Ak X(k=t k) where the coefficients a; represent mean values of f* over the
intervals ("T‘l, ’5). The total variation seminorm of this discrete approximation of
f equals >} _, |lax — ax—|. This approximation in turn can be used in standard
numerical procedures for problems involving total variation. In the case of total
variation regularization such procedures include the method of steepest descent
[7, 8] and other algorithms like [4, 11]. In this paper, we discuss whether other
discrete schemes can also be justified as approximations of the total variation
seminorm: We base this discussion on the limit relation (3), which opens up new
possibilities for computing approximations of the total variation seminorm for
special functions. Instead of computing the total variation seminorm of a finite
dimensional approximation f; of f, theintegral expressions’R, may be considered
for the evaluation of f; and in fact the main subject of thiswork is an investigation
of such analytical evaluations.

In a standard numerical setting one would try to approximate the integral
expressions within R, (f;) by some quadrature rules associated with the mesh
underlying f;. However, the singularity within the integrand in R, (f) causes
difficulties when treated with standard numerical techniques and thus we decided to
follow adifferent approach, which to our knowledge has not been applied beforein
this setting, namely to evaluate R, ( f) analytically for special functions. It became
soon obvious that without the power of computer algebra systems in many cases
such evaluations are close to being impossible because of the size of the algebraic
terms that occur in the computations of R, ( f;). However, with the help of the
Maple software program we could actually do some evaluations for some special,
practically important, cases of f;. We present the respective results here together
with some descriptions of how we proceeded.

In terms of total variation regularization our results may be particularly useful
because it can be shown that indeed minimizers of functionals

1 o
Ff) =5 [ = 10 R @
2 Ja Kin
are converging to minimizers of the total variation regularization functional

F(yi=5 [(f = P @dx +alDf | ®

We give a short review about thisresult in Sect. 3.

However,we want to state as well that we will not give a detailed convergence
analysis of the resulting discrete functionals, and we will not explore al degrees of
freedom associated with our approach of the analytical evaluation of functionals
R, (fs4). We just want to demonstrate here that this approach actually can be
carried out successfully and give some hints that these eval uations can provide some
new tools for the numerical treatment of functionals involving the total variation
seminorm, in particular total variation regularization.
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Notations. We summarize some further general assumptions and notations that
will be used throughout the rest of this paper.

For p > 1 the space of L?-functionson © with mean value zero is symbolized
by

L2(Q) ::%fELP(Q) : /f(x)dxzo}.
Q

All occurring functionsin this paper defined on 2 are supposed to be real-valued.

Let C>°(2) bethe space of infinitely differentiable functions from 2 to R with
compact support. For the total variation seminorm of alocally integrable function
f we use the symbol

IDf| = supUQ FEV -y (x)dx ¥ € CP(RY), [y (x)| < fordl x e Q};

Here |y (x)| denotes the Euclidean distance of the vector vy (x). The space of
functions of bounded variation on €2 is the set

BV(Q):={f € L\(Q) : |Df| < oc}.

The constants K y are defined by

2 Some Examples of Evaluationsof R, (fz)

In this section we present some analytical evaluations of integral expressions
R, (fs) where f; isalinear combination of piecewise constant or piecewise linear
functions representing a discrete approximation to some continuous or integrable
function 1 as sketched in the introduction. For these evaluations we had to choose
some domain €2, some approximation of identity (¢, ) and some linear combinations
fa of the kind stated above. Since we could not find any examples to follow in
literature we decided to start with choices as simple and intuitive as possible and
then gradually to increase the complexity of the setting.

For the sake of simplicity, we chose generally for Q2 in the one-dimensional case
the open interva (0, 1) and in the two-dimensional case the open square (0, 1) x
(0, 1). For the sake of intuiveness, we chose for (¢, ) approximations of the identity
that comply with the discretization f; in the sense that f; depends on theindex n,
too, i.e., we treat evaluations of type R, ( f,) where f, is of the form

n
fo=D arg
k=1
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wherefor k € {1,...,n} the symbolsa; denoterea constants and the symbols g
stand for elements of a familiy of piecewise constant or piecewise linear functions
associated to a regular mesh on Q2 that itself depends on n. As we will see below
in this way the standard discretization of the total variation seminorm in dimension
oneisrecoverable.

2.1 TheOne-Dimensional Case

We work on the domain
Q:=(0,1).

and consider evaluation of R, with piecewise constant or piecewise linear functions
defined on aregular mesh.

1. The first two schemes are for piecewise constant functions. They can be
computed manually rather easily:

a. We use the sequence of kernel functions (¢, ) defined by

n
$n = EX(_#%)-
Let ay,...,a, € R. Evaluating the one-dimensional piecewise constant

function
n
foi= Do aixet
i=1
with R, yields the standard total variation seminorm of f,:

n

R, (f) =Y lai —ai—1| = |Df,|.

i=2

b. Using instead of (¢, ) the family of kernels (¢.\>) defined by

y._ 1
W = 2X=ED
yields
n—1 n
1 —1In(2)
R,(f) = Tlai+l —ai1|+ Y _In@la; —ai—1|.  (6)
i=2 i=2

We recall that In(2) &~ 0.7.
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2. Now we consider piecewise linear functions for evaluation. Let g, ...,a, € R
and f, bethe piecewiselinear splineinterpolatingthenod&e(%,ak),k =0...n,

i.e,
n
f;1 = Zaigi
i=0

where

) —

gi(x) := max (1 —n

i
0).
n

Inserting f, in R, and using the kernel functions ¢, yields
n n—1
a; —aj—
R,(fn) = ; Il—211| + ;t(ai—lvaisai-i-l)
where
t(ai—1,a;,ai+1)
w if sgn(ai—1 —a;) = sgn(a; — aj+1).

(ai—ai—1)*+(ai—a;j41)?
4(|lai—aj—1|+|ai—aj41|)

if sgn(a;—1 —a;) # sgn(a; — a;+1).

The change from piecewise constant to piecewise linear ansatz functions results
in a huge increase of the complexity of the evaluation. Thus, we applied the
computer algebra program Maple for this evaluation. We provide a sketch of
some parts of the computation for the casen > 2.

Before we start we would like to note that Mapleis far from being capable of
evaluating an expression R, (f,) onits own; the user hasto design a strategy for
the evaluation, has to divide the problem in appropriate substeps that Maple can
treat, has to keep track of the many occurring case distinctions and in particular
has to check whether the program misses some simplifications or even delivers
wrong results in some cases.

We want to compute

/1/1 |27=0“igf(x)—Z?=o“ig"(y)|qo (x — ) dxdy
o Jo " |

lx — |

which isequal to

n k i -
n Z L pminy+h |Z?=o aigi(x) — Y r_,aigi (y)\ dxd
2ol ’

max(0,y—1) |x — ]
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Looking at the supports of the functions g; we realize that the latter double
integral equals

w (bt [Demsn - X a8 0)
— / / dxdy
2\Jo Jo |x — ¥l

N Z_:/ /y+; Zf-‘ikl_zaigi(X)—Z’}=k_1a;gj(y)) e
xdy
iV 5t Iy lx — ¥l

- ‘Z?zn_z aigi(x) =3 _,_1a;8; (J’)‘
+ / / dxdy
”n;l y—1 I)C - yl

We only treat the second double integral, the other two are evaluated
analogoudly. Let2 <k <n—1.
Then

k k
Lopvtn Zi:kl—Zaigi(x)_Zj=k—lajgj(y)‘
/ / dxdy
it Jy 1 lx =l

n

can be decomposed into the sum
k k=1 k—1 k

st Zi:k—zaigi(x)_Zj=k—1ajgj(Y)‘ ed

Jol -

n

(y)‘ dxdy

k k
o ‘Zi:k—laigi(x)_Zj:k—lajgj
“ ).
=1 Jist |x =yl
k k
C ot |2 a0 - X5 a8, 0)
+/ / dxdy.
s Y

whose summands we denote by 7 —, I and i 4, respectively. The integrand of
I isof the simple form

I = lak _ak—l|'
n
By an application of Fubini’s theorem

Iy — = Ir—1 4.

Thus, it suffices to treat the evaluation of I, — whose integrand J(x, y) is
reshaped as follows:
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- (ax—1 —ar)ny + (ax—1 — ap—2) nx

+ (ak—2 +ar —2ax—1)k —ar— +2ar—1 —ay.

From this representation it is aready visible that the evaluation will be

dependent from the sign of the differences
Ay i=ar—ar—1 and Ay = ax—1 — ax—o.
We treat here one instance of the more complex case when
SgN(Ax) # sgn(Ag—1),

namely the subcase where the middle coefficient a;—; is the maximum of the
three coefficients; the other subcase where ay_; is the minimum can be treated
just the same. The less complex case where a—; lies between a;_, and a; needs
fewer case distinctions but apart from that can be treated analogously. Note that

in the chosen subcase the second differenceAi = ap—y—2ar—1+a; isnegative.
The numerator Jy (x, y) of J(x, y) now reads

In(x,y) = |[-Axny + A_inx + Af(k —1)]
and is positiveif and only if

Agny — Ai(k -1
Ak_ln ’

x> fn(y) =

Thus, to evaluate theinner integral of 7, — we haveto determine the intersections
of its integration domain (y — 1, X1 with the intervals (fy (), +o0) and

n

(—o0. fv(»)), respectively, forall y e (&1, £),
We get that
k—1 k—1
Ny <—— = <y
n n
e 1 1 A
y——-<M0) y<—(k—_’;),
n n Ak

LetC =} (k= 4% ). Notethat C < £. Then

C
-
k—1

n

NG c 5t
/ J(x,y) dxdy + / / J(x,y) dxdy
y B J v

1
n
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ko k=1
+ / / 1 J(x,y) dxdy.
C =y

Integrating J(x, y) with respect to x yields the primitive function
K(x,y) = ((ny —k + 1)Ai) In(y —x) —xnlp_.

Inserting the limits of the inner integral of the third summand yields

K (y - %y) = ((k —1—ny)A) In(n) — (ny — 1) Ag—1.

K (k%l,y) = ((ny —k + 1)A})In (y — %) — (k= 1A,
and

k—1

Ly(y) = / " Uy d
-

n

=((ny —k + DAY) In(ny —k + 1) + (ny — k) Ag—i.
A primitivefunctionfor L; is

ny —k + 1)> A2
) = D By )

1 1
— — (ny —k 4+ D*A? + —y(nk —2y) A1
4n 2

Analogous computationsfor thefirst and second summand yield the functions

Ly(y) = (ny +1—k) (Ag In (— AA";‘) + Ak)

k

and | N
My(y) = 5 y(ny =2k +2) (Aﬁ In(— k;) + Ak)
2 A2
and
A2(ny —k +1
Li(y) = (=AF) (ny —k + 1) (In (_%) _ 1) + A

and
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Mi(y) =

respectively.
Now

]k,— =M, (

"—_1) _ My(C) + Ma(C) — My ("—_1)
n n

C. Pontow and O. Scherzer

A7 Ag—y
_ 7(y(—ny—2+2k)|n(— A2 )

k

N (ny —k+1*In(ny —k + 1)
n

C(y =k + 1) +2ny (ny —2k))
2n

+ (ax —ax—1) y,

+ M (5) My (C)

(a1 — @)’ + (k-1 — ax)’

4}1Ak2

From this result and the results from above the final result follows easily.

3. The results of the following example gives some hints that even the evaluation
of very simple piecewise constant functions with R, can get quite complicated
if the size of the supports of the piecewise constant functions on the one hand
and the size of the supports of the functions (¢,) on the other hand are not
proportional to each other.

Here we fix the ansatz functions and ¢, for a fixed n. In this example we

evaluate R, for the Haar-functions hy" using the kernel functions (¢,). For
j =k = 0thefunction 7' is defined by

O (x) =1

foral x € Q.Fork e Ny, 1 < j < 2% wehave

Yoyl 2j—2 2j—1
2k ifx € (T‘T’Z"T)’

(k) . . i— i
W)= =V it x e (Y. ),

Since 1\ is constant

0 otherwise.

R, (k") =o.
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For 1\ we get
202 if n = 1,

o <hél)) B 2 ifn>1.

Note that by symmetry fork > 1 and 1 < j < 2~k~!
k)\ _ (k)
R, (1) =R, (AS,)-
Fork>1,R, (h(lk)) equals

V2R ((k + 55) In@) = (1= %) In(2F = 1)) ifn =1,

n

32k if n > 2K+,

ﬁ((k+2)|n(2)—ln(n)+1) if 2 <n <2k,

V2kn (5 InQ2) — 55 In(r) + 5 — 1) if2F <n < 2k

Fork>2andj =2,... 21! theinnerfunctionshgk), evaluateto

DG
/oK (J ;}f/)_(/ 1)22(1 1)
—(1—2’—}{>In(2k—j)
+<1—f2;k1)|n(2k_j+1)+'22;_23) ifn =1,

77 UG+ G =DIn@G =1)

L2k 2k
+k+2)In2)=In(n)+1) if -<n<—,
k) 2k — j J
R, (1) =
n/2k ((j—1)2|2<j—1) — UDinG)_

. . 2k 2k
(kj+k+2)In(2) j+1 1 .
z—k+2—k—z) Ifj—.kfnfj_l,

2
2n _ ; k+1
Z= ((k+1D)In@) ~In(m) +1) if j_1§n§2 ,

4+/2k if n > 2k+1

203

(")
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The evaluation of h;k’ for j = 2571 4+ 1,...,2% isreduced to the evaluations
directly abovevia(7).

Some of the results for k = 6 are visualized by Fig. 1. Note that despite the
many case distinctions the size of theresults R, (hﬁ,k)) does not vary very much
over j. For fixed j the size of the results increases concavely for growing n until
the total variation of hﬂk) isobtained for n > 128.

2.2 The Two-Dimensional Case

We now switch to the two-dimensional case and evaluate R, for a piecewise
constant function defined on a subset of R2. In detail, let  be chosen as the open
square (0, 1) x (0, 1) and f be defined on 2 via

fV) = Z aijxr,; (V)

ij=1

foral Ve Q where I, := Ij x I with I, :== (&L 5y foral k7 € {1,....n}.
The following computations are much more complicated than those of the
one-dimensional case. The sheer size alone of the occurring expressions makes
them extremely difficult to handle, and a manual evaluation seems close to being
impossible. Certainly, the same considerations concerning the use of the Maple
software as already stated in point two of the previous subsection apply to the cases
treated here, too. A priori it was everything but clear whether those integrals below
could be evaluated at all using Maple, and we ran more than onetimeinto dead-ends
during the computations while trying to divide the problem in subproblemsthat we
supposed to be treatable by Maple. Sometimes transformations between different
representations of the occurring terms were needed in order to alow Maple to do
some crucial simplification or integration steps, or the order of computation steps
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did matter. Thus, the successful approaches presented below may not be the most
elegant ones from an analytical point of view. Our excuse for their choiceis simply
that they work at all.

In the following we investigate two cases of piecewise constant kernel functions,
which differ by the ratio between the size of the support and the grid size. At the
present stage of research it is not clear what the optimal ratio actually is.

2.2.1 Piecewise Constant Ansatz |

We choose the kernel functions

_ . n? _
n(V) 1= ;XB((),%)(V)

for all Vin R? where B (0, 1) denotesthe ball around the origin with radius 1. The

sequence (¢, ) satisfies all conditions stated in the introduction. We note that for two
points (x, ) and (w, 2) from  we have (x, y) — (W, 2) € B (0, 1) if and only if

w,2) € Sq (x,y, %) = ((0,1)x (0,1))N B ((x,y), %)

We further define the intersection of the circle B((x, y), %) with the square I ; by

1 1
Sk,l (x,y, ;) = Ik,[ NnB ((x,y), ;)

We have to evaluate

o [ e - fwa)
RIH = [ [ T () - w2) dw 2 dx.y)

n2 /1/1// )Z?ﬁj:]ai,j)(li_j(xvy)_ZZ,I=lakle1k.l(W’z)
o Jo J saeyn) l(x —w,y —2)|

dw,2) dydx.

The occurring quadrupleintegral can be rewritten as follows:

> Z/ / //skl(wl)|(z|cal—]w_;—|)| 4(.2) dydx.

i,j=lkl=1

Forfixed1 < i, j <nandfixedx, y € I; ; thedomain S, (x,y, %) of theinner
doubleintegral isempty if i —k| = 2 or |j — | > 2. Thus, it suffices to evaluate
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those summands of the inner sum above that fulfill i —k| < 1and |j — | < 1.
However, in the case wherei = k and j = [ the integrand of the corresponding
summand vanishes such that this case may be left out, too.

Given apair of indices (i, j) let

Tij=A{( D) efl,ccony® o li—k| < L|j =1 < LGk D) # (G, )}

denotethe set of pairs of indicesfor which the corresponding summands of the inner
sum in the integral expression above do not vanish generally.
Then the above quadrupleintegral equals

Z Z |a,,-—ak,|/ / //S ! d(w,2) dydx.

i.j=1(k1)eT; kz(vyl)|(x_Wy_ 2)|

Wedenoteforall 1 <i,j <nandall (k,!) € Z; ; thequadrupleintegral expression

on theright hand side abovewith J/, i.e.

/ / //Skl(” 1) |(X—W1y—z)| d(w,2) dydx.

Again, let 1 <i,j < n befixed. The set of pairs of indices with non-vanishing
summandsZ; ; may be partitioned into the sets

I ={(k.])eTi; : k#iandl # j}
of pairs of indices marking squares diagonal ly adjacent to the square /; ; and
I ={(k)eL; : k=iorl=j}

collecting pairs of indices that denote squares laterally adjacent to /; ;. By simple
transformationsof thekind (x,w) — (x++,w=1) etc. and applicationsof Fubini’s
theorem (as in the one-dimensional case) (or by geometric insight) we realize that
the integrals Jf}’ are equal for al (k,l) € I;fj and the same holds true for all

(k,1) € Il{ ;- Further, the respective values of the two evaluations are independent
of i and j.

Thus, it suffices to compute the values of J’*j*l =1 and J’* ’* " for some fixed
2 <ix, jx < n,and thefina result will be

T 51

n—1 n (8)
(ZZM} di1.j- 1‘+ZZ|‘111 aAi41,j— 1|) ll**J_*lj*_l

i=2j=2 i=1j=2
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ZZ’(L/ aj,j— 1’+ZZ|011 ai— 1]| ll:j]**_l

i=1j=2 i=2j=1

We begin with the more complex case of laterally adjacent squares and evaluate

B / / //s, 1(vyl)l(x—Wy— 2)| A 2) dydx

for somefixed2 <i,j <n.
We first point out that

dWw,2)dydx =
/‘+2n/ //, (> )|(x—wy—Z)|
SR 1
—  dW,2)dydx
/',,1 /j,,_l//Szzl(xV,I,) [(x —w,y — 2| w2 dr

N\-—

such that N
JT =21
’ 2
The above can be established by application of the transformations (x,w)
(L —x, 2 —w).

Let (x, y) be chosen from /; ; with x > % + ﬁ We analyze the inner double
integral

1
— d(W,2)
//S,;j_l(x,y,,l,) |(x _va _Z)|
of J 1. We use the abbreviations

1 1 .
! : ] and d:=x—l—.
n n n

for the distances of x and y to some of the nodes. Note that by our choice of x and
y we havetheinegualitiesa, b > 0, d < 0 and, in particular,a > |d]|.
Let (W, 2) € S;j—1 (x,y. 1). It followsthat

1
(x—W)2< ﬁ—(y—z)z.

and therefore,

1 1 1
Z>y—— and  x—5-0-2P<w<x+,/5-(0-2%
n n n



208 C. Pontow and O. Scherzer

n

i—11 1 1
IW:=( ,—)ﬂ(x— —2—()’—2)2,X+ —2_()’_2)2)‘
n n n n

(Theindex winthe symboal 1, isjust used asasymbol to indicatethat we are dealing
with the integration domain of the variable w but does not stand for the values of w.
The same appliesto 7, etc. below.) We first point out that

[ — 1 1 1
: <X—4|=5-0—-2% &= z<y—/5 —a> (10)
n n? n?

Thusthe result of (9) is dependent from the intersection

1 j—1 1
7= (y——,] )ﬂ (—oo,y—‘/—z—az). (12)
n n n
Whileitisclear that y — /-5 —a? > y — 1 wehave
1 i —1 i — 1 1
y—,/—z—a2<] <:>y<J—+ — —a? (12)
n n n n
Withjn;1<jn;l+,/nl2—a2<£.

We first consider the casethat y € I, := (j_l, Tl S ,/nlz—cﬂ). Then I, =

Thus, z € (y -5 /_1> and we have to analyze the intersection of intervals

(y— Y= —az)-

We look at the subcase z € 1. It follows by (10) that now the lower bound of 1,
isx — 1/nlz —(y -2~

Considering its upper bound we have to find the minimum of
x+ /5 —(y—2?%and L. Similarly to (10) we get that

n2
i 1 1
—>x44/5 (-2 &= z<y— 5 —d~ (13)
n n? n?

Sincea? > d*itistruethat y — /-5 — d? € I, implying that the treated subcase
has two more subsubcases: z € I, = (y —Ly—y+ —d2) andze I, =

(y—,/;j—dz,y—,/n%—az).
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By (13) and (9) the upper bound of IWISx+,/— —(y —2?ifze I, andequals

% if z € I,. Thus, the treated subcase gives rise to the following two quadruple
integrals

dwdzdydx

7_a2 /y \/”iz—dz x-l—\/n%—(y—z)2 1
y—1 = Jh =2 [(x =W,y —2)|

[l
211
e e |
/ =14 L / / & /x_\/nlz_(y_z)z x—w,y—2)]|

which we denote by K; and K, respectively.
We turn to the subcasethat z ¢ I,,i.e. z € (y — nlz —a?, f%) By (10) the

lower bound of I isin thissubcase =1. Since y — /-5 —a? > y — /-5 —d? by

(13) in this subcase the upper bound of 1, is ’Z This subcase yields the quadruple
integral

o, )
l+2n

We till need to analyzethecase y ¢ I,, thatis, y € (’n;l + /5 —a fq—) In
this case by (12) and (11) theinterval I, equals (y _izt E). By (12) and (1) it

n n

dwdzdydx

dwdzdydx.

\/Tﬁ
/y_ﬁ/m

is clear that the lower bound of 1,y isx — ,/nlz — (y — 2)%2. Thedetermination of the

upper bound is a little more intricate including two subcases concerning the choice
of thedomain of y, one of which generating two subsubcases concerning the domain
of z. However, its computation processes similarly enough to the computations in
the first case that we skip it here and just state the resulting quadruple integrals
which we name K4, K5 and K, respectively.

L-d? py—[EH-a? pxt[E-0-27
/71 2”/ +h=a? Sy} x—[F-0-27

dwdzdydx,

1
|(x —w,y —2)|

f_dz
1
/ / / / L awdzyax,
S S [ Viz—d? S [ E—(-22 |(x —w,y —2)|
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0 0 o022 1
/ / / —  dwdzydx.
g Sty [ Jyt e [T [(x =W,y =2

Altogether,

N\—-

The evaluation of the six quadruple mtegrals K; involves the transformation of
the respective inner double integrals to polar coordinates. In order to simplify this
procedure we first trandate the integration domain of the respective inner double
integral to the rectangle (—1, 1) x (0, 1). In all six cases given a point (x, y) from
the domain of the respective outer double integral thisis done by application of the
transformation (w,2) — (x —w, y — 2). Let L; bethe result of this application to
K;. Then

f_az f_zz
L= / / dwdzdydsx,
et N M l(w 2)]
f_dz \/f_zz
= » / dwdzdydx,
Sl L f;‘ N |(w, 2)]
+ /5 f_uz a
— "~ dwd zdydx,
/1+2” / / |(sz)|
——d2 7_22 1
_ / dwdzdydx,
g Sty e J A - [Tz (W, 2)]
L_ i_dz i_zz
=/ / " / /J U wazdydx.
=iyl Jis /7,_02 |(W, 2)|

be= /+/ \/ﬁ/ /Jél(wz)l dwdztydx.

Let for 1 <i < 6thefunction F; be the evaluation function of the inner double
integral of L; defined on the domain of the outer doubleintegral of L;.

In Ly, Ly and L theintegration domain of the inner doubleintegral is asegment
of thecircle B(0, %) that results from the intersection of that circle with aparallel to
the x-axis. A straight-forward transformation to polar coordinates (r, ¢) yields for
examplefor F:
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1

/m / ((F) A dvdr

Fl(-xsy)

1 E—
n . nZ
:/ m—2acsin| ——— | dr
1 _ g2 r

)

r

1
—24/— —d?arcoth S
n r2—’%+0l2

Tr—2rarcsn

1_ 2
l’lz d

1 1 1
V5 —d? (In(— +d) —In(——d)),
n n n
and F, and Fy are treated analogoudly.
The integration domain of F; is a rectangle with edges parallel to the axes
stretching across both quadrants of the upper half plane. In order to transform

this domain to polar coordinates we split it along the y-axis in two axis-paralléel
rectanglesthat reside in the second and first quadrant, respectively,

By = /_[, w.2)] de“/ _/ |(wfz)| dwdz

and call the resulting double integrals A(x, y) and B(x, y).

We turn to the computation of A(x, y). Thetransformation of arectangle domain
located in the second quadrant to polar coordinates depends on whether its bottom
left vertex or its top right vertex is more distant from the origin. In the case of
A(x, y) this conditionsreads

1
(O, ﬁ — 612) .

In the case where (14) holds true the transformation to polar coordinatesyields

I(d.b)| < (14)
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Al = /bl(d,b)l [mn(f)ﬁ dedr + /()(O,HIZ_QZ)) /;afccos(zri) dedr

d.b)| z

)(d,‘/niz—azj‘ arccos(4)
12 dod
* /)(0,’112—412)‘ /_arcsin("zra)+n pdr.

in the opposite case A(x, y) equals

1

/b((ovnz—“z))[[—m"(f)ﬂ dgbdr—i—/l(db)l ‘/a::E( )Jr_z;) ) dodr

2

+/((d,W/a:::((‘f)n%a2)+” dedr.

In both cases the occurring three double integrals can be evaluated similarly like
Fi(x, y) above. Summing together the respective three results yields in both cases
the same result: asum consisting of summandsthat are of one of the following three
types: binary productswhere one factor is alogarithmic expression, binary products
where one factor is an arcsin- or arccos-expression or binary products of a square
root and 7. By use of the appropriate transformation rules for arcus-expressionsthe
two latter groups of binary products cancel each other out. Therefore, in both cases

A(x,y) equals

o (0T +d) - (T )

d.b)|

+ d(ln(\/erb)— In(Va2+b7-b)

1 1 1 1
+ In<\/ﬁ—a2+d2— \/ﬁ—az) —In(\/ﬁ—a2+d2+ \/ﬁ—az))

The doubleintegral B(x, y) isevaluated in a completely analogous fashion.

Theintegration domainsof F, and Fs haveasimilar geometric structure. We give
ashort overview of the evaluation of F,. Asinthecaseof F; we split theintegration
domain along the y-axisin order to have less case distinction when transforming to
polar coordinates:
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EE e
Jia /d w.a ﬁ/

Thefirst double integral has an axis-parallel rectangle domain located in the second
quadrant and is treated like A(x, y). The domain of the second double integral is
the intersection of two shapes: an axis-parallel rectangle domain located in the first
quadrant whose lower right vertex B liesonthecircle B(0, %), andthecircle B(0, %)
itself. Thismeansthat by the intersection the right edge of the rectangle and parts of
itstop edge are exchanged with a circular arc around zero with radius % . Thedouble
integral istrandlated to polar coordinates as follows:

F(x,y) = (W z)|

L—q2 oz E
Ly

For the evaluation of F5 proceed as for F,. The only differenceto F, liesin the
fact that by the intersection with the circle B(0, %) also parts of the bottom line of
the corresponding underlying rectangle are removed. In symbols thisis reflected by

exchanging every occurrence of the term 1/ -5 —a? with b in the double integral

directly above.

Theintegration of the functions F; with respect to y can be executed in all cases
by standard means. Note that the double integrals related to Fy, F> and F, do not
depend on y such that those integrations are mere multiplications of the respective
functionswith the difference between the limits of the respective integrals. After al
the resulting functions of the variable x have been summed up the fourth integration
can be carried out yielding

This solves the case of laterally adjacent squares
The case of diagonally adjacent squaresis much smpler. For2 < i,j < n we
have to compute

i J
o o 1
g 1=/ / // —— d(W.,2)dydx.
"/ =l ,’771 Si—t,j—1(x..1) [(x —w,y —2)|

where

(o) (25522 o)
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An easy computation shows that the latter set isempty if and only if |(a, b)| > %
Therefore, for the computation of the inner double integral of Ji LT we may
restrict ourselves to points (x,y) € I;; that satisfy |(a,b)| < ; By similar
reasoning asin the lateral case weinfer that J’ M1 equals

=

By applying the transformation (w, z) — (x — w, y — 2) this quadruple integral
transformsto

L

and by changing the inner double integral to polar coordinates we get

. i
N e
Jz 1,j—1 _
1 i=1 Ji=t
n n

_ 1
T o6n3’

1

\/f—uQ / \/——(Z—y)2 |()C —W,y — Z)|

dwdzdydx.

f_az \/f_az \/”%_12 1
dwdzdydx,
/ /a l(w, 2)|

wd zdydx

+W/:b> /ar(()) w2 ¢

Altogether, by (8) the final result is

n—1 n

Rl(f) 37_”1 Zz‘au_az 1j— 1|+Zz‘a1/_az+1/ l‘

i=2j=2 i=1j=2

37m ZZ\a,j—a,] 1|+22|a,j—a, 1/‘

i=1j=2 i=2j=1

2.2.2 Piecewise Constant Ansatz ||

With f as above we also evaluated R ( /) with the kernel functions

> Ilz .
on(V) 1= Xt Hx-1. H W)

for al Vin R2. Note that these kernel functions are not radial such that in this case
the assumptionson (¢, ) from the introduction are not fully satisfied.
The evaluation proceeds similar to the above one. As aresult we get
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i=2j=2 i=1j=2

non n—1 n
R(f) = %ﬁn_ 1 (ZZ |af,j _ai—l-/‘—l‘ + ZZ |ai,j _ai+1,j—l|)

. 3|n(ﬁ+1)—3|n(ﬂ—1)—2(ﬁ—1)
T n

n n n n
X ZZ |a,<,j —a,;j_1| + Zz‘ai,j _ai—l,j‘ .

i=1j=2 i=2j=1

3 Connection to Total Variation Regularization

In this section we give a short summary of the theoretical background on approxi-
mation properties of the minimizers of (4) to the minimizer of (5). Thisjustifiesthe
minimizers of the Galerkin approximations, where the calculations of the previous
section have to be used, as approximations of the minimizer of the total variation
functional. In the following we review existence and uniqueness of a minimizer of
the functional F,, definedin (4) asin [1].

Thefirst stated result is on weak |ower semicontinuity of the functional R,,. The
proof uses standard techniques from convex analysis and functional analysisand is
therefore omitted.

Lemmal. Letl <g < oco.Foralln € N, R, isweakly lower semicontinuous on
L1(2), that is,
k—o0

for every sequence (gx) € L4(2) that converges weakly with respect to the L9-
topology to a function g € L9(L2).

Moreover, by using the following variant of compactness results established by
Bourgain et al. [3] and Ponce [9]), we can prove existence and uniqueness of
minimizersof F in avery similar manner asin [1].

Theorem 2. Assume that (g,) is a sequence of functions in L. (2) such that
R, (g,) is uniformly bounded. Then the sequence (g,) is relatively compact in
L! () and has a subsequence (g,, ) converging (in the L!-norm) to a limit function
g that liesin BV ().

We note that the regularization term of the functional F depends exclusively on a
derivative. Therefore, for data f° and f° + C, where C isaconstant, the according
minimizers of the functional F also differs by C. The same holds true for the
functionals F,,. Thus, we may reduce our investigationsto the case wherewe assume
that the mean of £ is zero, and consequently, also the mean of the minimizers of
F, and F is zero.
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Proposition 3. Leta > 0 and assumethat £ € L2(Q).

1. Then the functional 7, attains a unique minimizer £, over L2(S2) that also
belongsto L. ().

2. Thefunction f, isalso a minimizer of ¥, over L'(Q).

3. The sequence of numbers (R, (f»)) is uniformly bounded over n € N, and the
sequence f, is relatively compact in L (€2) and has a convergent subsequence
whoselimit f isanelement of BV (2). With the help of I"-convergence(s. below)
it can be established that in fact, the whole sequence ( f,,) is convergingto 1.

It remainsto clarify whether the limit function f isaminimum of the respective
limit functional F. The concerning questions are answered to a large extent by a
result of Ponce [10] in terms of I"-convergence. This technique has also been used
in[1]

We recall the notion of I"-convergencein L' () [5]. Let (F,) denote a sequence
of lower semicontinuous functionals mapping functions from L' () to the set of
extended real numbers R, and let F be a functional of this kind, too. Then the
sequence (F,) I"-convergesto F with respect to the L' (Q)-topology if and only if
the following two conditions are satisfied:

+ Forevery g € L'(Q) and for every sequence (g,) in L'(Q) convergingto g in
the L'-norm we have
F(g) < liminf F,(gn);

« For every g € L(Q) there exists a sequence (g,,) in L' () convergingto g in
the L'-norm with
F(g) = nll[go Fn(gn)-

In this case we write
FLI(Q)' ||m Fn == F
n—oo

We notethat all of the functionals 7, and F are lower semicontinuous with respect
to the topology of L' ().

Theorem 4. The sequence of functionals (F,,) convergesin the I'; 1 (q)-sense to the
limit functional F.

Corollary 5. The limit function f of the sequence of minimizers (f,) of F,, isthe
unique minimumof the limit functional F over L'(2). Theminimum # also belongs
to the space L2 () N BV(Q).

4 Discussion and Outlook

In Sect.2 of this paper we have shown that analytical evaluations of double
integrals R, (f;) are possible for some types of discrete approximations f; to
a continuous or integrable function f by using the functionalities of computer
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algebra software systems. By such evaluations, we have produced new candidates
for approximation schemes of the total variation seminorm of afunction, which can
be implemented in standard numerical algorithms for solving problems like total
variation regularization.

In Sect. 3 we reviewed that in fact solutions of total variation regularization can
be approximated by minimizers of the functional that results from the total variation
regularization functional by exchanging the total variation seminorm with a double
integral functional R,,.

We have already started to investigate the usefulness of the new approximation
schemes in numerical applications. For example, approximation scheme (6) has
been applied to total variation regularization within the framework of a gradient
descent algorithm, and indeed, promising results have been obtained this way [2].

However, from the theoretical point of view there are many important points
open, for example a systematic analysis of the integral expression R, (fy) in
terms of analytical evaluation exploring all its degrees of freedom, a detailed
convergence analysis for the resulting discrete functionals and further numerical
tests for appropriate applications involving the evaluation of the total variation
seminorm.

Altogether, we have presented a new approach to the treatment of the total
variation seminorm in numerical applications. Our contribution might pave the way
for the development of more sophisticated toolsfor the treatment of doubleintegrals
of the kind R, (fz) as well as the development of new approximation schemes to
thetotal variation seminorm.
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Sound and Complete Verification Condition
Generator for Functional Recursive Programs

Nikolaj Popov and Tudor Jebelean

Abstract We present a method for verifying recursive functional programs by
defining a verification condition generator (VCG) which covers the most frequent
type of recursive programs. These programs may operate on arbitrary domains. We
prove soundness and compl eteness of the VVCG and this provides awarranty that any
system based on our results will be sound.

We introduce herethe notion of completenessof aV CG asaduality of soundness.
It is important for the following two reasons. theoretically, it is the dua of
soundness and practically, it helps debugging. Any counterexample for the failing
verification condition will carry over to a counterexample for the given program
and specification. Moreover, the failing proof gives information about the place
of the bug.

Furthermore, we introduce a specialized strategy for termination. The termina-
tion problem is reduced to the termination of a simplified version of the program.
The conditions for the simplified versions are identical for specia classes of
functional programs, thus they are highly reusable.

1 Introduction

Since the beginning of program verification back in the 1950-s, a good deal of
theoretical and practical results have been achieved in research, and the concrete
application of these in industrial software development is dowly but steadily
progressing. We are convinced that in order to increase the quality of the software
production, program verification and formal methods should play a bigger role
during the process of software design and composition.
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The research on program verification presented hereis dedicated to the study and
development of arelevant theory, which may serve as a basis for the practical need
of proving program correctnessin an automatic manner. Additionally this basis can
be used in atutoria way for the introduction of formal verification techniquesto the
students in computer science.

We are primarily concerned with the generation of verification conditions, while
the actual proving of these verification conditions is subject to further research,
in particular in the frame of the Theorema project (ww. t heor ena. or g). One
important purpose of thisresearch isto create amechanism for the generation of the
verification conditionswhich is very simple, but still provably correct and complete
in the context of predicate logic.

Program specification (or formal specification of a program) is the definition of
what a program is expected to do. Normally, it does not describe, and it should
not, how the program is implemented. The specification is usually provided by
logical formulas describing a relationship between input and output parameters. We
consider specifications which are pairs, containing a precondition (input condition)
and a postcondition (output condition).

Given such a specification, it is possible to use formal verification techniques to
demonstrate that a program is correct with respect to the specification.

A precondition (or input predicate) of a program is a condition that must always
be true just prior to the execution of that program. It is expressed by a predicate on
the input of the program. If a precondition is violated, the effect of the program
becomes undefined and thus may or may not carry out its intended work. For
example: the factoria is only defined for integers greater than or equal to zero. So a
program that calculates the factorial of an input number would have preconditions
that the number be an integer and that it be greater than or equal to zero.

A postcondition (or output predicate) of a program is a condition that must
aways betruejust after the execution of that program. It is expressed by a predicate
on the input and the output of the program.

We do not consider informal specifications, which are normally written as
comments between the lines of code.

Formal verification is, in general, the act of proving mathematically the correct-
ness of a program with respect to a certain formal specification. Software testing,
in contrast to verification, cannot prove that a system does not contain any defects,
neither that it has a certain property, e.g., correctness with respect to a specification.
Only the process of formal verification can prove that a system does not have a
certain defect or does have a certain property.

The problem of verifying programs is usually split into two subproblems:
generate verification conditions which are sufficient for the program to be correct
and prove the verification conditions, within the theory of the domain for which the
programisdefined. Inthiswork wewill concentrate on the generation of verification
conditions.

A verification condition generator (V CG) is a device—normally implemented by
a program — which takes a program, actually its source code, and the specification,
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and produces verification conditions. These verification conditions do not contain
any part of the program text, and are expressed in some logical formalism.

Let us say, the program is F and the specification I (input predicate), and Of
(output predicate) is provided. The verification conditions generated by VCG are:
VC,VC,,...,VC,. After having the verification conditions at hand, one has to
provethem aslogical formulasin the theory of thedomain D on whichthe program
F isdefined, e.g., integers, reals, etc.

Normally, these conditions are given to an automatic or semi-automatic theorem
prover. If al of them hold, then the program is correct with respect to its
specification. The latter statement we call soundness of the VCG.

Formally, soundness is expressed as follows: Given a program F' and a specifi-
cation (I, OF), if the verification conditions generated by the VCG hold aslogical
formulas, then the program F is correct with respect to the specification (Ir, OF).

It is clear that whenever one defines a VCG, the first task to be doneis proving
its soundness statement.

Completing the notion of soundness of a VCG, we introduce its dual notion —
completeness. The respective compl eteness statement of the VCGis::

Givenaprogram F and aspecification (I, OF), if theprogram F iscorrect with
respect to the specification (I, Of), then the verification conditions generated by
the VCG hold as logical formulas.

The notion of completeness of a VCG is important for the following two
reasons: theoretically, it is the dual of soundness and practically, it helps debugging.
Any counterexample for the failing verification condition would carry over to a
counterexamplefor the program and the specification, and thus give a hint on “what
iswrong”.

Indeed, most books about program verification present methods for verifying
correct programs. However, in practical situations, it is the failure which occurs
more often until the program and the specification are completely debugged.

A distinction is made between total correctness, which additionally requires that
the program terminates, and partial correctness, which smply requires that if an
answer isreturned (that is, the program terminates) it will be correct.

For example, if we are successively searching throughintegers1, 2,3, ... to see
if we can find an example of some phenomenon — say an odd perfect number — it
is quite easy to write a partially correct program (use integer factorization to check
n as perfect or not). But to say this program is totally correct would be to assert
something currently not known in number theory.

The relation between partial and total correctnessisinformally given by:

Tota Correctness = Partial Correctness + Termination.

The precise definition is as follows. Let us consider the program F (which
takes an input and should produce an output) and the specification (I, Of). The
restriction to one input and one output is not important, because these could also
be vectors of values. We denote by F[x] the output of the program. Since when the
program does not terminate this output does not exists, one should use F[x] with a
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certain care. The input condition I is a unary predicate expressing the restrictions
on the possible inputs; the output condition OF is abinary predicate expressing the
relationship between the input and the output of F.

Moreover, by | we denote the predicate expressing termination. We will write
F[x] | and say “ F terminates on x”. The notation F[x] | isused in most papers
and textbooks, so we also use it herein order to avoid confusion. However, from the
logical point of view, the correct notation should be F | x. Partia correctnessof F
is expressed by the formula:

(Vx : Ip[x])(F[x] == OFr[x, F[x])). 1)
Termination of F isexpressed by:
(Vx: Ip[xDFlx] . )

and total correctnessof F isrespectively:
(Yx : Ip[xD(F[x] § AOp[x. F[x])). ©)

Logicaly, it is clear that partial correctness (1) and termination (2) imply total
correctness (3).

The above considerations apply to all type of programs which have input and
output, however in the current work we concentrate on functional programs. From
our point of view, alogical programfor afunction F iscollection of logical formulas
of the type:

Vxp = Flx] =1,

where ¢ isaformulaand t isaterm using the predicate and the function symbols
from the underlying theory of the domain[s] of the objects manipulated by the
program. It is easy to see that the usual programming construct 1f-then-else can
be used to abbreviate such a collection of formulasinto an expression like e.g., (17).
Thus, an important feature of our approachisthat the programsarelogical formulas
in the signature of the underlying theory of the objects manipul ated by the program.*
This simplifies the process of reasoning about programs, because there is no need
of trandation from the programming language into the language of logic, and also
no need to define the semantics of the programs, besides the semantics of the logic
language itself.

Note that F is used both for denoting the program itself as well as the function
implemented by the program, but the different meanings are easy to differentiate by
the context.

1This approach isin fact borrowed from the Theorema system.
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Automatic theorem proving, and more generally, automated reasoning is a border
area of computer science and mathematics dedicated to understanding different
aspects of reasoning in a way that alows the creation of software which makes
computers to reason completely or nearly completely automatically. Automatic
theorem proving is, in particular, the proving of mathematical theorems by an
algorithm. In contrast to proof checking, where an existing proof for a theorem is
certified valid, automatic theorem provers generate the proofs themselves. A recent
and relatively comprehensive overview on that areamay be found in [40].

The research presented in this paper is performed in the frame of the Theorema
system [12], a mathematical computer assistant which aims at supporting the entire
process of mathematical theory exploration: invention of mathematical concepts,
invention and verification (proof) of propositions about concepts, invention of
problems formulated in terms of concepts, invention and verification (proof of
correctness) of algorithms, and storage and retrieval of the formulas invented and
verified during this process. The system includes a collection of general as well as
specific provers for various interesting domains (e.g., integers, sets, reals, tuples,
etc.). More details about Theorema are available at www. t heor ema. or g. The
papers[11-13] are surveys, and point to earlier relevant papers.

1.1 Related Research

There is a huge amount of literature on program verification and a comprehensive
overview on the topic may evolve into PhD thesis itself. However, summarizing,
there are two main types of presentations:

 Classical approaches which are concerned more with the theory of computation
and less with possible implementation of verification systems.

« Practical approaches to proving program correctness automatically or semi-
automatically, which are less concerned with the theoretical foundations.

1.1.1 Theoretical Approaches

One of the first approaches to program verification was the axiomatic reasoning,
which wasinitially developed by Floyd [16] for the verifications of flowcharts. This
method was then further developed by Hoare [20] for dealing with while-programs
and became known as Hoare Logic. The method provides a set of logical rules
alowing to reason about the correctness of (imperative) computer programs with
the methods of mathematical logic.

The central feature of Hoare logic is the Hoare triple. It describes how the
execution of a piece of code changes the state of the computation. A Hoaretripleis
of the form:

{P}CLO3, (4)
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where P and Q are assertions (normally given by logical formulas) and C is a
command, or a program. In the literature, P is called the precondition and Q the
postcondition. Hoare logic has axioms and inference rules for all the constructs of
simple imperative programming languages.

Although P and Q are very similar to the pre- and post—condition used in
our approach, one should note that they are specifically designed for imperative
congtructs, since C is a piece of program (succession of imperative statements).
In our approach the pre— and post—condition refer to the whole program, more
specifically to the function implemented by the program.

Fixpoint induction or Scott induction is a proof principle due to Dana Scott [2].
It is useful for proving continuous properties of least fixed points of continuous
operators. Scott semantics treats programs as continuous operators, and the com-
putable functions they define are the least fixpoints of the operators [29]. Using
Scott induction one may prove continuous properties (e.g., partial correctness) of
programs, and therefore applying Scott induction for proving propertiesof programs
isavery powerful technique. However, in automated reasoning proving by induction
can get computationally very expensive, much more than proving predicate logic
formulas.

Other important techniques exposed in classical books (e.g., [27,29]) are very
comprehensive, however, their orientation is theoretical rather than practical and
mechanized. Verification in that context is normally a process in which the reader is
required to understand the concept and perform creatively.

Furthermore, in order to perform verification, one uses a certain model of
computation, which significantly increases the proving effort.

1.1.2 Practical Approaches

In contrast to classical books, practical computer aided verification is oriented
towards verification of practical and popular types of programs (like in Java, C,
Lisp) implementing primitive recursive functions, mutual recursive functions, etc.
Performing creatively there is normally not required and the aim is to speed up the
verification of relatively large programs.

In the PV'S system [35] the approach is type theoretical and relies on exploration
of certain subtyping properties. The realization is based on Church’s higher-order
logic.

The HOL system [21], originally constructed by Gordon, is also based on gen-
eralization of Church’s higher-order logic. It mainly deals with primitive recursive
functions, however, there is a very interesting work dedicated to transforming non-
primitive recursive to primitive recursive functions [38]. There are various versions
of HOL —in [17] one may find how it evolved over the years.

The Cog system [4] is based on a framework called “Calculus of Inductive
Congtructions’ that is both a logic and a functional programming language. Coq
hasrelatively big library with theories (e.g., N, Z, Q, lists, etc.) where the individual
proofs of the verification conditions may be carried over [5].



Sound and Complete Verification Condition Generator 225

The KeY system [3] is not a classical verification condition generator, but a
theorem prover for program logic. It is distinguished from most other deductive
verification systems in that symbolic execution of programs, first-order reasoning,
arithmetic simplification, external decision procedures, and symbolic state simplifi-
cation are interleaved. KeY is mainly dedicated to support object-oriented models,
where for loop- and recursion-free programs, symbolic execution is performedin an
automated manner.

The Sunrise system [37] contains embedding of an imperative language within
the HOL theorem prover. A very specific feature of the system is that its VCG is
verified as sound, and that soundness proof is checked by the HOL system. The
programming language containing assignments, conditionals, and while commands,
and also mutually recursive procedures, however, al variables have the type N.

The ACL2 system [1] is, in our opinion, one of the most comprehensive systems
for program verification. It contains a programming language, an extensible theory
in a first-order logic, and a theorem prover. The language and implementation of
ACL2 are built on Common Lisp. ACL2 is intended to be an industrial strength
version of the Boyer-Moore theorem prover NQTHM [6], however its logical basis
remainsthe same.

Furthermore, in [30] it is shown how a theorem prover may be used directly on
the operational semanticsto generate verification conditions. Thus no separate VCG
is necessary, and the theorem prover can be employed both to generate and to prove
the verification conditions.

All these practical systems are very important and interesting, however they do
not investigate the theoretical basis of verification, thus are not so relevant from
the point of view of the research presented here. Moreover most of these practical
approaches address programswritten in imperative languages (see al so some recent
resultsin [15, 26, 41]), where the verification process has a quite different flavor.

1.2 Summary of Main Results

* We define a verification condition generator (VCG) which covers the most
frequent type of recursive programs operating on arbitrary domains.

» As adistinctive feature of our method, the verification conditions do not refer
to a theoretical model for program semantics or program execution, but only
to the theory of the domain used in the program. This is very important for the
automatic verification, because any additional theory present in the system would
significantly increase the proving effort.

« Weintroduce herethe notion of completenessof aV CG asaduality of soundness.
It is important for the following two reasons: theoretically, it is the dual of
soundnessand practically, it hel psdebugging. Any counterexamplefor thefailing
verification condition will carry over to a counterexample for the given program
and specification. Moreover, the failing proof gives information about the place
of the bug.
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« We prove soundness and compl eteness of the VCG and this provides a warranty
that any system based on our results will be sound and will detect al bugs.

* We introduce a specialized strategy for termination. The termination problem is
reduced to the termination of asimplified version of the program. The conditions
for thesimplified versionsareidentical for special classes of functional programs,
thus they are highly reusable.

2 Automation of the Verification: VCG

In this section we develop atheoretical framework whose results are then used for
automatic verification.

Intheliterature, thereisavariety of strategiesfor obtaining proof rules. However,
some of them have been discovered to be unsound [22]. Soundness of verification
condition generatorsis automatically assumed, however many of them have not been
proven sound. Thisimpliesthat any of the programswhich were verified by the help
of an unsound VCG may, in fact, be incorrect.

In this paper we define necessary and also sufficient conditionsfor a program (of
certain kind) to be totaly correct. We then construct a VCG which generates these
conditions.

We prove soundness and completeness of the respective verification conditions.
Thisimpliesthat the validity of the verification conditionsis necessary and sufficient
to verify the total correctness of the program under consideration.

These proofsof soundnessand completenessform the basis of animplementation
of the VCG that ensures the verification of concrete programs.

2.1 Program Schemata

Considering program schemata [28] instead of concrete programs has a relatively
long tradition. Early surveys on the theory of program schemata can be found in
[18], and in more genera splitting programsinto types of programsis well studied
in[33].

More generaly, the use of schemata (axiom schemata, proposition schemata,
problem schemata, and algorithm schemata) plays a very important role for
algorithm-supported mathematical theory exploration [7, 10].

Program schemata are (almost) programswhere the concrete constants, functions
and predicates are replaced by symbolic expressions.

When investigating program schemata instead of concrete programs, one may
derive properties which concern not just one concrete program, but many similar
programs, more generally — a whole class of programs — those which fit into the
schema.
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Moreover, for a given schema, each concrete program can be obtained from it
by an instantiation which gives concrete meanings to the constant, function and
predicate symbolsin the schema.

Smith proposed the use of schemata for synthesis of functional programs [36].
In fact, his work spans over more than two decades, and has produced some of the
more important resultsin practical program synthesis.

A recent result on the application of program schemata to program synthesis
is available at [7, 10]. There one may find how even non-trivial algorithms,
e.g., Buchberger’s algorithm for Grobner bases [8, 9] may be synthesized fully
automatically starting from the specification and the schema.

We approach the problem of program verification by studying one concrete
program schema. When deriving necessary (and also sufficient) conditions for
program correctness, we actually prove at the meta-level that for any program of
that class (defined by the schema) it sufficesto check only the respective verification
conditions. Thisis very important for the automation of the whole process, because
the production of the verification conditionsis not expensivefrom the computational
point of view.

The following example will give more intuition on the notions of program
schemata and concrete programs. Let us consider the schema defining simple
recursive programs:

Flx] = If Q[x] then S[x] else C[x, F[R[x]]]. (5)

where Q isapredicateand S, C, R areauxiliary functions.
Consider also, the program Fact for computing the factorial function:

Fact[n] = If n = 0 then 1 else Fact[n — 1]. (6)

It is now obvious, that the program Fact fits to the smple recursive program
schema. In order to automate the process of reasoning about programs like Fact
we reason at the meta-level about their schemata.

2.2 Coherent Programs

Here we state the general principles we use for writing coherent programs with the
aim of building up a non-contradictory system of verified programs. Although, these
principles are not our invention (similar ideas appear in [24]), we state them here
because we want to emphasize on and later formalize them. Similar to these ideas
appear also in software engineering — they are called there design by contract or
programming by contract [31].

We build our system such that it preserves the modularity principle, that is,
a subprogram may be replaced by any other program that satisfies the same
specification.
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Building up correct programs. Firstly, we want to ensure that our system of
coherent programswould contain only correct (verified) programs. Thiswe achieve,

by:

» Start from basic (trustful) functions e.g., addition, multiplication, etc.;

e Define each new function in terms of aready known (defined previously)
functions by giving its source text, the specification (input and output predicates)
and provetheir total correctness with respect to the specification.

This simple inductively defined principle would guarantee that no wrong pro-
gram may enter our system. Next we want to ensureis the easy exchange (mobility)
of our program implementations. This principleis usualy referred as:

Modularity: Once we define the new function and prove its correctness, we
“forbid” using any knowledge concerning the concrete function definition. The
only knowledge we may use is the specification. This gives the possibility of easy
replacement of existing functions. For example we have a powering function P,
with the following program definition (implementation):

Plx,n] =1fn=0then1éese P[x,n — 1] * x. @)

The specification of P is: thedomainD = R?, theprecondition I [x,n] <= neN
and the postcondition Op[x,n,y] < y = x".

Additionally, we have proven the correctness of P. Later, after using the
powering function P for defining other functions, we decide to replaceits definition
(implementation) by another one, however, keeping the same specification. In this
situation, the only thing we should do (besides preserving the name) is to prove that
the new definition (implementation) of P meetsthe specification asdefined initially.

In order to achieve the modularity, we need to ensure that when defining a new
program, al the calls madeto the existing (already defined) programs obey the input
restrictions of that programs — we call this principle the appropriate values for the
function calls principle.

We now define naturally the class of coherent programs as those which obey the
appropriate values to the function calls principle. The general definition comes in
two parts: for functions defined by superposition and for functions defined by the
I f-then-else construct.

Definition 1. Let F beobtained from H, G4, ..., G, by superposition:
Flx] = H[G[x], ..., Gu[x]]. (8)

The program F with the specification (/g, Of) is coherent with respect to its
auxiliary functions H, G; and their specifications (I/y, On), (Ig,, Og,) if and
only if

(Vx : IpxDUg [x]I A ..o A g, [x]) €)
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and

(Vx  Ip[xD(Yy1 ... y)(Og, [x, 1] A---A Og,[x, ya] = Lu[y1, ... ya])- (10)
Definition 2. Let F be obtained from H and G by the If-then-else construct:
F[x] = If Q[x] then H[x] else G[x]. (11)

The program F with the specification (/r, OF) is coherent with respect to its
auxiliary functions H, G and their specifications (I, On), (Ig, Og) if and only if

(Vx : Ir[xD(Q[x] = Inu(x]) (12)

A\
(Vx : Ir[x])(=Q[x] = Ig[x]).

Throughout this paper we deal mainly with coherent functions. As afirst step of
the verification process we check if the program is coherent. Incoherent programs
need not be incorrect. However, if we want to achieve the modularity of our system,
we need to restrict ourselvesto deal with coherent programsonly.

In order to demonstrate the importance of the coherence we give an example
of a function GM, defined in terms of an auxiliary function M. Initidly GM is
correct with respect to its specification but it is not coherent. However, after a slight
modification of the implementation of M, GM will not be correct any more and
therefore the modularity principleis not met.

Let us have GM and M with the following program definitions (implementa-
tions):

GM[x. y] = Sqrt[M [x, y]] (13

Mlx, y] = |x * y|.

The specifications of GM, M and Sqrt are: the domain for the first two is R?,
and the domain for the Sgrt isR. The precondition of GM is Igu[x,y] < T,
the postcondition of GM is Ogy[x,y.7 < Z' = (x.y)?, the precon-
dition of M is Iy[x,y] <= x> 0Ay >0, the postcondition of M is
Oumlx,y,4 < z=x.y, theprecondition of Sqrt is Is,[x] <= x > 0 and
the postcondition of Sqrt is Osyr[x, y] < y>=x Ay >0.

The function GM is expected for positive numbers to compute their geometric
means, but it is also defined for any combination of positive and negative numbers.
The function M is computing the absolute value of the multiplication of two
numbers.

Itiseasy to seethat GM and M are correct with respect to their specifications.
Moreover, we do not concentrate here on the implementation of Sqr: — we just
assume it is correct with respect to the given specification. We will however show
that GM is not coherent. The coherence conditions are:
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Vx,y:T)(x>0Ay >0) 14

and
Vx,y:T) (V2 (z=x.y = 2> 0). (15)

As we can see both conditions for GM to be coherent are violated, but the
program GM is correct. Now comes the question: “Why do we need to require
our functions to be coherent if non-coherent ones may still be correct?’. In fact, the
function GM is correct due to the special behavior of the function M — it makes
surethat its output is nonnegative. Let us now change the implementation of M and
remove this special feature (which is not needed, because it is not required by its
specification). The new definition is:

Mix,y] =xx*y. (16)

We preserve however its specification unchanged, i.e., the precondition of M
(Ip[x,y] <= x =0Ay >0),andthe postcondition of M (Opy[x,y,7 <
Z=X.y).

It is easy to check that the new implementation of M meets its specification. If
we now execute the function GM on one positive and one negative numbers, say 2
and —2, M will return a negative output (M [2, —2] = —4) and therefore we may
not expect a correct output from the function Sgrt executed on a negative input.

3 General Recursive Programs

In this section we study the class of general recursive programs (more precisely:
recursive programswith multiple recursive calls and multiple conditional branches)
and we extract the purely logical conditions which are sufficient for the program
correctness. These are inferred using Scott induction [27, 29] and induction on
natural numbers in the fixpoint theory of functions and constitute a meta-theorem
which is proven once for the whole class. The concrete verification conditions for
each program are then provable without having to use the fixpoint theory.

We approach the correctness problem by splitting it into two parts. partial
correctness (prove that the program satisfies the specification provided the program
terminates), and termination (prove that the program always terminates).

General recursive programs are programs of the form:

F[x] = If Qo[x] then S[x] (17)
esaif Ql[x] then C1 [X, F[Rl,l[x]], N F[Rl,kl [)C]]]

elseif 0, [x] then C,[x, F[Rua[x]]. ... F[Rux,[X]]l,
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where Q; are predicatesand S, C;, R, ; are auxiliary functions (S[x] isa“simple”
function (the bottom of the recursion), C;[x, y1, ..., y,] are “combinator” func-
tions, and R; ;[x] are “reduction” functions).

We assume that the functions §, C;, and R;; satisfy their specifications
given by (Zs[x], Os[x. y1), (Ig[x. viseev i Oc [x. vt v 4Dy (Ik,, ],
Ok, [x. ¥])-

Without loss of generality, we may assume that the Q; predicates are exhaustive
and mutually digoint, that is:

0, = —Q;, foreachi # j,

and:
QO\/...\/ Qn

As an important note, we point out that functions with multiple arguments also
fall into this scheme, because the arguments x, y, z could be vectors (tuples).

In practice Q; may also be implemented by programs, and they may also have
input conditions, but we do not want to complicate the present discussion by
including this aspect, which has a specid flavor.

Type (or domain) information does not appear explicitly in this formulation,
however it may be included in the input conditions.

Note that the “ programming language” used here contains only the construct | f-
then-else in addition to the language of first order predicatelogic.

One may also use some additional restrictions on the shape of the definitions
of Q;, S, Ci, and R;; (eg., that they do not contain quantifiers) in order to
make the program “easy” to execute. However, this depends on the complexity of
the “interpreter” (“compiler”) and does not influence the actual generation of the
verification conditions. In general, the auxiliary functions may already be defined in
the underlying theory, or by other programs (that includes logical terms).

3.1 Coherent General Recursive Multiple Conditional Programs

As already discussed, we first check if the program is coherent, that is, all function
calls are applied to arguments obeying the respective input specifications.

The corresponding conditionsfor this class of programs, which are derived from
the definition of coherent programs (1) and (2), are:

Definition 3. Letforall i, j, thefunctions S, C;, and R; ; be such that they satisfy
their specifications (75, Os), (Ic;. Oc;), and (I, ;. Ok, ). Then the program F as
defined in (17) with its specification (/r, OF) is coherent with respect to S, C;,
R; j, and their specifications, if and only if the following conditions hold:

(Vx : Ip[x])(Qolx] = Is[x]) (18)
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(Vx : Ip[xD(Q1[x] = Tr[Ria[X]] A=+ A TF[Ry g [X]]) (19)
(Vx : Ip[x])(Qnlx] = IF[RualX]] A+ A TF[Ry i, [X]]) (20)
(Vx t Ip[xD(Q1[x] = g, [X] A - ARy, [X]) (21)
(Vx  Ip[xD(Qn[x] = g, [X] A-+- AR, [X]D (22)

VX, y1, vk S IR[XD(O1X] A Of[Rui[x], yi] Ao A OF[R1x, [x], yi,] (23)
_—

Ie\[x, y1,. .., Vi)

(VX v Vi S APIXD(Qu[X] A Op [Rua[x] yi] A< A OF[Ry i, [X]. vk, ] (24)
—

ICl[stIs---sYkn])

Again we see that the respective conditions for coherence correspond very much
to our intuition about coherent programs, namely:

« (18) treatsthe base case, that is, Q[x] holdsand no recursionis applied, thusthe
input x must fulfill the precondition of S.

e (19) — (20) treat the genera case, that is, —=Qo[x], and say Q;[x] holds and
recursion is applied, thus all the new inputs R; 1[x], ..., R, [x] must fulfill the
precondition of the main function F.

e (21) — (22) treat the genera case, that is, —=Qo[x], and say Q;[x] holds and
recursion is applied, thus the input x must fulfill the preconditions of the
reduction functions R; i, ..., R, .

e (23) — (24) treat the genera case, that is, —=Qo[x], and say Q;[x] holds and
recursion is applied, thus the input x, together with any yi, ..., yk, (where for
each j, y; is apossible output F[R; ;[x]]) must fulfill the precondition of the
function C;.

3.2 Veification Conditionsand Their Soundness

As we already discussed, in order to be sure that a program is correctly proven to
be correct, one has to formally rely on the technique used for verification. Thus
we formulate here a soundness theorem, for the class of coherent general recursive
programs.



Sound and Complete Verification Condition Generator 233

Theorem 1. Let for each i, j: S, C;, and R;; be functions which satisfy their
specifications (/s, Os), (Ic,, O¢,rangle, and (I, ;, O, ;). Let also the general
recursive program F as defined in (17) with its specification (I, Of) be coherent
with respect to S, C;, R; ;, and their specifications. Then F is totally correct with
respect to (I, OF) if the following verification conditions hold:

(Vx : Ir[x])(Qolx] = Or[x, S[x]]) (25)

VX, y15 - vk S IEIXD(O1[X] A OF[Ry[x], yi]l Ao A O [Ryk, [X], yi, ] (26)
_—

Or[x,Ci[x, y1,..., Vil

(Vx, v vk S AEXD(QnXIA OF[Ryalx] yil A-- - A OF[Ruk, [x]. yi, ] (27)

—
OF[X, Cn[x’ Yiseons Ykn]])
(Vx : Ip[x])(F'[x] = T) (28)
where:
F'[x] = If Qo[x] then T (29)

elseif Oy [x] then F'[Ry[x]] A -+ A F'[Ry g, [x]]

dsaif 0,[x] then F/[R,1[x]] A -+ A F'[Rus, [x]].

The above conditions constitute the following principle:

e (25) provethat the base caseis correct.

* (26) — (27) for any else branch, prove that the recursive expression is correct
under the assumption that the reduced calls are correct.

+ (28) provethat asimplified version F’ of theinitial program F' terminates.

Proof. The proof of the soundness statement is split into two major parts:

e (A) —provetermination.
« (B) prove partia correctness using Scott induction.

(A): From the assumption that for al i: S, C;, and R; ; are totaly correct (with
respect to /s, I¢;, and Ig, ;) by the coherence of F, we obtain that al the calls to
the auxiliary functions S, C;, and R; ; will terminate.

Take arbitrarily x and assume I [x]. From (28), we obtain that F'[x] = T.

Now we construct the recursive tree RTr/[x] of F’, starting form x in the
following way:
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« x istheroot of thetree, that is, the uppermost node.
e Forany nodeu, if Qg[u] holds, then stop further construction on that branch, and

put the symbol T.
e For any node u, if Q;[u] holds, for some i # 0, then construct all the k;

descendent nodes R; 1 [u], ..., R;x,[u].

X
Ri,l [)C] R,;g[x] e e Ri,ik [)C]

/\ T A

Rj1[R;1[x]] e Rk [Riq[x]] R 1[Ri i [x]]
T T

Qix]
O;[Ria[x]] QolRia[x]] > T Om(Ri i [x]]
Qo[R;([Ria[x]]l » T QolRji, [Ria[x]]] » T

We first show that R Tr/[x] isfinite.
We provethis statement by contradiction, i.e. assume R Ty [x] isinfinite. Hence,
there exists an infinite path ({(i1, j1), {i2, j2), ..., {i, Ji} . ..), such that:

—Qolx] but:0;, [x] (30)
~QolRi, ;i [x]] but: Qi [R;, j, [x]]

=Qo[Ri, [ - [Riy jy XN but: Qi [Riy i [ - - [Riy i [X]]]

Now, we look at the construction of F’ as being the least fixpoint of the operator
F’ asdefined in (29).

Let us denote the nowhere defined function by 2 (2 = Ax.1). Let fo, f1,...
... bethefinite approximationsof F’ obtained in the following way:
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Jolx] = £2[x]

fnri1lx] = If Qo[x] then T
dseif Oi[x] then f,[Ria[x]] A+ A fu[Rik [X]]

elseif O, [x] then fou[Rua[xX]] A -+ A fn[Ru i, [x]].

The computable function F’, corresponding to (29) is defined as
F/ = U fma

that is, the least fixpoint of (29).
Since for our particular x (it was taken arbitrarily) we have F’(x) = T, there
must exist afinite approximation #,,, such that:

Smlx] =T.
If m = 0, then fy[x] = T, but on the other hand, by its definition f, = £2, thus
thisis not a case. Hence, we conclude that m > 0.

From the assumption (30), and in particular —=Q[x] and Q;, [x], by the definition
of f,, we obtain:

JnlxX] = St [Riy a[X]] A - A fnt [Riy g, [X]]-
From here, and f,,[x] = T we obtain that:

Jon=t[Ria[xXl]] = T A=A fni[Riy i [X]] = T,
and hence f,,—i[R;, j,[x]] = T.

By repeating the same kind of reasoning m times (in fact, formally it is done by
induction), we obtain that:

Jo[Riy, jul - - [Riy g, [x]]]] = T.
On the other hand f, = £2 and hence:
ﬁ)[Rimajm [ .. [Rfl,jl [X]]]] =1

Thisis the desired contradiction, and hence, we have proven that the recursive tree
RTp[x] isfinite.
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Now we continue the proof of the termination of F. We prove this statement by
contradiction, i.e. assume R T [x] isfiniteand F[x] = L.

For our particular x (it was taken arbitrary but fixed, Ir[x]), we consider the
following two cases:

e Casel: Qolx].
Now by the definition of F, we have F[x] = S[x]. We chose x such that 1¢[x],
and by (18) we obtain that S[x] | and hence F[x] | and thus we obtain a
contradiction.

» Case 2: =Qy|x], and assume Q;, [x]. Now, by following the definition of F, we
have,

Flx) = Cylx. F[Ri [, Ry i, [2]]).
and since F is coherent, we have I, [x], Ig,,[x], and IR,.I_,ql [x], and
Ie[x,y1,..., Yk, ]- Thusthereexist ji, suchthat R;, j,[x] = L.

Applying the same kind of reasoning we obtain the infinite path

(i1, J1), {2y j2)s v s (s Ji) <), that s,

—Qo[x] but: Q;, [x]

=Qo[Ri, j,[x]] but: Oy, [Ri, j, [x]]

=Qo[Ri [ - [Riy jy [x]N but: Qi [Riy i [ - - [Riyjy [x]]]

Thisimpliesthat the three R T/ [x] isinfinite, which isthe desired contradiction.

(B): Using Scott induction, we will show that F is partially correct with respect to
its specification, namely:

(Vx : Ip[x]D(Fx] |= Or[x, F[x]]). (31)

Asitiswell known (e.g., [27,29]), not every property is admissible and may be

proven by Scott induction. However, properties which express partia correctness
are known to be admissible.

Let us remind the definition of these properties: A property ¢ is said to be a
partial correctness property if and only if there are predicates 7 and O, such that:

(V) @S] <= (Ya) (fla] | Alla] = Ola. flal])). (32)

We now consider the following partial correctness property ¢:

VH@Lf] &= (Ya) (flal | AMFla] = Orla. flal]).
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Thefirst step in Scott induction is to show that ¢ holds for §2. By the definition
of ¢ we obtain:

9[2] <= (Va) (2[a] | Alrlal = Orla, 2[al))).

and so, ¢[£2] holds, since £2[a] | never holds.
In the second step of Scott induction, we assume ¢[ /] holdsfor some f:

(Va)(flal I Arlal = Orla, flal]), (33)

and show @[ f,ew], Where f,. is obtained from f by the main program (17) as
follows:

fnew[x] = If QO[X] then S[X]
elsaif O[x] then Ci[x, f[Ri1[x]],. .., f[Rix[x]]]

elseif 0, [x] then G, [x, f[Rua[x]]. ... /R, [X]]].
Now, we need to show now that for an arbitrary a,

fnew[a] »L /\IF [a] — OF [av fné’W[a]]'

Assume f.wla] | and Ir[a]. We have now the following two cases:

e Casel: Qglal.

By the definition of f,. we obtain f,.w[a] = S[a] and since f,ew[a] |, we
obtain that S[a] must terminate as well, that is S[a] |. Now using verification
condition (25) we may conclude Of|[a, S[a]] and hence Of|a, f,ewlal]-

e Case2: Q;la] forsomei,1 <i <n.

By the definition of f,., we obtain:

fuewla]l = Cila., f[Rialall,. ... f[Rixlall]

and since f,.wla] |, we concludethat al the othersinvolved in this computation
must also terminate, that is:

Cila, f[Riala]l..... SRig[al]] |,
SIRidlall ... f[Rik[al]

and
Ri,l[a] i, ..... Ri,ki [a] \L :

Since F is coherent, namely from I [a], by (19)—20), we obtain:

TF[Ri[xX]] A <o« AT R[R; g, [X]].
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Knowing that for each j: f[R;;[a]] |, by the induction hypothesis (33) we
obtain Or[R; ;[a], f[R:;lall].

Considering the appropriate i’ verification condition (26)—(27), note that all
the assumptions from the left part of the implication are at hand and thus we can
conclude:

Orla.Cila, f[Rialall..... f[Rik/allll,
whichis
Orla, faewla]]-

Now we conclude that the property ¢ holds for the least fixpoint of (17) and
hence, ¢ holds for the function computed by (17), which completes the proof of
Theorem 1.

3.3 Completeness of the Verification Conditions

Completing the notion of soundness, we introduce its dual notion — compl eteness.
Aswe already mentioned, after generating the verification conditions, one hasto
provethem aslogical formulas. If all of them hold, then the programis correct with
respect to its specification — Theorem 1.
Now, we formulate the compl eteness theorem for the class of coherent general
recursive programs.

Theorem 2. Letfor anyi, j thefunctions S, C;, and R; ; satisfy their specifications
(Is, Os), {Ic, Oc), and (Ig, ;, Ok, ;). Let also the general recursive program F
(17) with its specification (/r, Or) be coherent with respect to S, C;, R; ;, and
their specifications, and the output specification of F', (OF) isfunctional one.

Thenif Fistotally correct with respect to (1, Or) then the following verification
conditions hold:

(Vx : Ir[x])(Qolx] = OF[x, S[x]]) (34
VX, y15 - vk S IEIXD(O1[X] A OF[Ry[x], yi] Ao A O [Ryk, [X], yi, ] (35)
R

OF[stI[stL---’}’kl]])

vYx, y1,. o vk IFIXD(Qn[XIA OF[Ruilx], yil A+ A OF[Ry k, [X], yi,] (36)
R

OF[x, Calx, Y1, ., Vi, 1)
(Vx : Ip[x])(F'[x] = T) (37)
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where:

F'[x] = If Qo[x] then T (38)
eseif O [x] then F'[Ry [x]] A+ A F'[Ri [x]]

dseif Q,[x] then F/[R, [x]] A+ A F'[Ryi,[x]].

which are the same as (25), (26)—27), (28), and (29) from Theorem 1.

Proof. We assume now that:

For al i, j thefunctions S, C;, and R; ; aretotally correct with respect to their
specifications (s, Os), (Ic;. Oc,), and (Ig, ;. O, ).

The program F (17) with its specification (I, OF) is coherent.

The output specification of F, O isfunctional one, that is:

(Vx : Ir[x])D@y)(OF[x. y]).

The program F (17) is correct with respect to its specification, that is, the total
correctness formulaholds:

(Vx : Ip[xD(F[x] § AOr[x, F[x])). (39)

We show that (34), (35) — (36), and (37) hold as logical formulas.
We start now with proving (34) and (35) — (36) simultaneoudly.
Take arbitrarily x and assume 7y [x]. We consider the following two cases:

Case 1: Qo[x]

By the definition of F, we have F[x] = S[x], and by using the correctness
formula (39) of F, we conclude (34) holds. The formulas (35) — (36) hold,
because the predicates Q are consistent and noncontradictory, and hence = Q; [x]
fordli,1 <i <n.

Case 2: Q;[x] forsomei, 1 <i <n.

Now, the formulas (34) and all except one of (35) — (36) hold trivialy, because
at the left hand side of the implication we have —Q; [x].

Assume yy, ..., yi, aresuch that:

Or[Ril[x], y1]. ..., OF[R;k; [x], yi; |-

Since F is correct, we obtain that:
yi = F[Rii[x]l,..., v, = F[Rix[x]]

because OF isafunctional predicate.
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On the other hand, by the definition of F, we have:

Flx] = Cila, F[Riald]l. ... F[Rix[a]]] and hence Flx] = Ci[x, y1..... yi].
Again, from the correctness of F, we obtain Of[x, C;[x, y1, ..., Y]], which
had to be proven.

Now, we show that the simplified version F’[x] = T. Moreover, F’ terminatesif
F terminates, which isequivalent to F'[x] = T.

Take arbitrarily x and assume ¢ [x].

Now we construct the recursive tree RTr[x] of F, starting form x in the
following way:

e x istheroot of thetree, that is, the uppermost node.

« Forany nodeu, if Qg[u] holds, then stop further construction on that branch, and
put the symbol T.

e For any node u, if Q;[u] holds, for some i # 0, then construct all the k;
descendent nodes R; 1 [u], ..., R;x,[u].

X
Ri,l [)C] R,;g[x] e e Ri,ik [)C]
/\ ' A
Rji[Ria[x] e RigIRGlBl Ry Ry []]
T T
Qix]
Q;[Rialx]] Qo[Ri[x]] » T Om[Ri [x]]
Qo[R;([Ria[x]]l » T QolRji, [Ria[x]]] » T

Notethat therecursivetree of F, RTr[x] isthe same astherecursivetree of F’,
RTp[x]. Thus RTg[x] isfinite.

Now we need to show termination of F’. For our particular x (it was taken
arbitrary but fixed, 7r[x]), we consider the following two cases:

e Casel: Qo[x].
Now by the definition of F’, wehave F[x] = T and hence F'[x] |.
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* Case2: —Qy[x], and say Q;[x]. Now, by following the definition of F’, we have,
F'Ix] = F'[Ri[xX]] A -+ A F'[R; 4, [X]].
We need to apply the same kind of reasoning to all the nodes of the recursivetree

RTr[x]. Since thetree isfinite, after unfolding finitely many times we reach the
leaves. Moreover, for each leaf we arrive at the Case 1 and thus F'[x] |.

By this we completed our proof of the completeness theorem.

4 Two Relevant Examples
4.1 Binary Powering

In order to make clear our contributions, we first consider a relatively simple
example, namely an implementation of the binary powering algorithm:
Plx,n] =1fn=0thenl
elsaif Even[n] then P[x * x,n/2]
esex x Plx xx,(n—1)/2].
Thisprogramisin the context of the theory of real numbers, and in the following
formulas, al variablesareimplicitly assumed to bereal. Additional typeinformation

(e.g., n € N) may be explicitly included in some formulas.
The specification is:

(Ip[x,n] < neN,Op[x,n,y] < y=x"). (40)

The conditionsfor coherence are:

MVMx,n:neN)mn=0=T1T) (41)
(Vx,n :n € N)(n # 0 A Even[n] = Even[n]) (42)
(Vx,n :n € N)(n # 0 A =Even[n] = Odd[n]) (43)

(Vx,n,m:neN)n #0AEvenn] Am = (x * x)"? = T) (44)
(Vx,n,m:n e N)(n #0A—Evenn] Am = (x * x)"" V2 = T) (45)
(Vx,n:neN)(n #0AEvenn] = n/2 eN) (46)
(Vx,n:neN)(n #0A-Evenn] = (n—1)/2 € N) 47
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One sees that the formulas (41), (44) and (45) are trivialy valid, because we have
thelogical constant T at theright side of an implication. The origin of these T come
from the preconditions of the 1 constant-function-one and the x multiplication.
The formulas (42), (43), (46) and (47) are easy consequences of the elementary
theory of reals and naturals. For the further check of correctness the generated
conditions are:
Vx,n:neNm=0=1=x") (48)

(Vx,n,m:neN)(n #0AEvenn] Am = (x * x)"? = m = x") (49)
(Vx,n,m:n e N)(n #0A—Evenn] Am = (x *x)" V2 = xsxm = x") (50)
(Vx,n:neN)P'[x,n] =T, (51)

where

P'lx,n]=1fn=0thenT
elseif Even[n] then P’'[x * x,n/2]
dse P'[x *x,(n —1)/2].

The proofs of these verification conditions are straightforward.

Now comesthe question: What if the program is not correctly written? Thus, we
introduce now a bug. The program P is now almost the same as the previous one,
but in the base case (when n = 0) thereturn valueis 0.

Plx,n] =1fn=0then0
elsaif Even[n] then P[x * x,n/2]
elsex x Plx xx,(n—1)/2].

Now, for this buggy version of P we may see that all the respective verification
conditions remain the same except one, namely, (48) is now:

Vx,n:neN)n=0=0=x") (52)

which itself reducesto:
0=1

(because we consider atheory where 0° = 1).

Therefore, according to the completeness of the method, we conclude that the
program P does not satisfy its specification. Moreover, the failed proof givesahint
for “debugging”: we need to change the return valuein the casen = 0 to 1.

Furthermore, in order to demonstrate how a bug might be located, we construct
one more “buggy” example where in the “Even” branch of the program we have
Plx,n/2] instead of P[x * x,n/2]:
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Plx,n] =I1fn =0thenl
elseif Even[n] then P[x,n/2]
esex x Plx xx,(n—1)/2].

Now, we may see again that all the respective verification conditions remain the
same as in the original one, except one, namely, (49) is now:

(Vx,n,m:n € N)(n #0AEvenn] Am = (x)"? = m = x") (53)
which itself reduces to:
m=x"*=m=x"
From here, we see that the “Even” branch of the program is problematic and one
should satisfy the implication. The most natural candidate would be:

m=x)"?=m=x"

which finally leads to the correct version of P.

4.2 Neville's Algorithm

Neville'salgorithm[19], [34] constructsthe polynomial of degreen—1 which passes
through given n different points.
The original problem isasfollows:

« Givenafield K and two non-empty tuplesx and @ over K of samelength n, such
that

~vVi,j:i,j=1,..., ni #j = xi #xj),

that is, no two x; from X are the same.
» Find apolynomial p over thefield K, such that

- Deglp] <n—1land
- (Vi:i=1,....,n)(Bva[p, x;] = a;),

where the Eval function evaluates a polynomial p at value x;.

This origina problem, as stated here, was solved by E. H. Neville [25] by
inventing an algorithm for the construction of such apolynomial [32]. The algorithm
itself may be formulated as follows:

P[x,a] = If ||a|| < Ithen First[a] (54)
(X First[x])(P[Tail[x], Tail[a]]) — (X — Last[x])(P[Bgn[x], Bgn[a]])
Last[x] — First[x]
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where we use the following notation:

 ||a|| givesthe number n of elements of @,

« First[a] givesthefirst element of @,

e Last[a] givesthelast element of @,

* Tail [a] givesa without its first element,

« Bgn|[a] givesa without its last element, and

e X isaconstant expressing the single polynomial of degree 1, leading coefficient
1 and free coefficient 0.

In fact, in abstract algebra X may also be interpreted as an indeterminate of the
polynomials, that is, thevariablein polynomial functions. Thisisadiscussion which
is not relevant for this presentation, however, it is very important when constructing
the theory of polynomias, on which the verification conditions would have to be
proven.

In order to illustrate how Neville's agorithm works, we consider the following
example x = (—1,0,1) anda = (3,4, 7). After executing (54), we obtain:

P[(~1,0,1),(3,4, )] =--- = X2 42X + 4.

This polynomial has a degree 2, as expected, and if we now evaluate it at the values
—1,0,and 1, we obtain:

Eval[X? +2X +4,—1] = 3,

Eval[X? 42X + 4,0] = 4,

and
Eval[X* +2X +4,1] =1,

which correspondsto the initial a.

In order to verify (54), we first formalize the specification, and then produce the
respective verification conditions.

We give here some notations which we use for the formalization of the
specification:

e |a|; gives the i"" element a; of a tuple @. Sometimes, a; is used as an
abbreviation for ||a||;. In addition to it, we have therestriction 1 <i < ||a|.

e IsPoly[poly] is a predicate standing that the expression poly is a polynomial.
For example I s Poly[X? + 2X + 4].

 IsTuple [a] is a predicate standing that the expression « is a tuple. For example
IsTuple[(3,4,7)].

» Deg[poly] gives the degree of the polynomia poly. For example Deg[X? +
2X +4]=2.

< Eval[poly, x] evaluatesa polynomial poly at value x.

The preconditions of the functions used for the definition of (54) are asfollows:
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* First: Irirg [a] <= IsTuple[a] A |la| > 1

o Last: I ¢ [a] <= IsTuple[a] A |ja|| > 1

o Tail: Iy [a] <= IsTuple[a] A |la]| > 1

s Bgn: Ipg, [a] < IsTuple[a] A [[a] > 1

* llalli: Iprojection[a, i] <= IsTuple[a] A1 <i < [[a]|
o Uipi[u V<= V#0

o w: Iyut[u,v] <= T

e U+ V: Ipgg[u, V] <= T

e U—V: Igp[u,v] <= T

We are now ready to give the formal specification of (54). The preconditionis:
(Vx,a)(Ip[x,a] <= (55)

< IsTuple[x] A IsTuple[@] A ||X|| = |la|| A |la|| = 1A
ANV eN (=i j < lallni#j = [Xlli # IXl,))).
and the postconditionis:

(Vx,a) (O,[x,a, p] = (56)

< IsPoly [p] A Deglp] =< [la] — 1A
AVii eN( <i < |a|Ai#j= Eval[p,xi] = a;))).

The conditions for coherence are:
(Vx,a)(IsTuple[x] A IsTuple [a] A |X]| = |la|| A ||@]] > 1A (57)

ANV i jeN (=i, j <lalAi#j= IXll; # X)) Alla]l <1
—

IsTuple [@] A |@|| = 1)

(Vx,a)(IsTuple [x] A IsTuple[a] A ||X]| = ||@|| A ||@]] = 1A (58)
ANV jeN (=i j = allni #j = IIXlli # IX1;)) A =(lall = 1)
=

(IsTuple [Tail[x]] A ISTuple [Tail [a]] A || Tail [X]|| = || Tail [@]|| A ||Tail [@]]] = 1A

ANV i eNV (=i, ) < |Tail [a]l[ai # j = (| Tail [x][l; # [ Tail [x]1l;))

(Vx,a)(IsTuple[x] A IsTuple [a] A |X]| = |la|| A ||@]] > 1A (59)

ANV eNA =i ) < allni # )= Xl # Ix[1;)) A—(la]l < 1)
_—

(IsTuple [Bgn [x]] A IsTuple[Bgn [a]] A [| Bgn[X]|l = [|Bgn [a]]| A [|Bgn [a]l| = 1A
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AV, i j €N (1 =i, j<[Bgn(alllni # j = [IBan[x][l; # [Bgn[x][l;))))

(Vx,a)(IsTuple [x] A IsTuple[a] A ||X]| = ||a|| A ||@]] = 1A (60)
ANV eN A =i j < alni# = |xli #xl;)) A —(lal < 1)
=

(IsTuple [X] A |IX|| > 1 A IsTuple [@] A |j@| > 1))

(Vx,a)(IsTuple[x] A IsTuple [a] A |X]| = |la|| A ||@]] > 1A (61)
ANV i jeN A =i j<lalni# )= Ixlli #Ixl;)A=(lal =1)
=

(IsTuple [X] A ||X]| = 1 AlsTuple[a] A |@|| = 1))

(Vx,a, p1, p2)(IsTuple [X] A IsTuple [a] A ||X] = |la]l A |la]l = 1A

ANVt eN =i <llalni#j = Ix]: # 1X]1;) A =(lall < DA

AlsPoly [pi] A (Vi 1 i e N)(1 <i <||Tail [x]|| = Eval [p, || Tail [¥]||;] = || Tail [a]l:]A
ADeglpi1] < |Tailla]|| — 1A
AlIsPoly [pa] A (Vi :i € N) (1 < i < ||Bgn [X]|| = Eval [pa2. [Ban[x]|;] = [IBan[a]||;]A
nDeg[p2] < |Bgn[a]| —1
—
(Last[x] — First [¥] # 0) A IsTuple [¥] A [IX]| = 1))). (62)

At thefirst side, theformulaslook very complicated, however, they areamost trivial
to prove.
For example in (57) the outermost symbol is“=—" and, at the right-hand-side,
we have to prove:
IsTuple[a] A |ja| > 1,

which is assumed at the left-hand-side. Thus, the formulaholds.

After proving that the algorithm is coherent, we generate the verification
conditions which would ensure the total correctness of the algorithm.

The condition treating the base case, that is, the bottom of the recursioniis:

(Vx,a)(IsTuple [x] A IsTuple [a] A ||X|| = |la|| A |l@]| = 1A

ANV j i jeN A =i j<lalni#j= Ixli #IxI;) Allall <1
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—
IsPoly[First[a]]A
AYiti e N1 <i < |[a|| = Bval[Firstla], |x]:] = llall:) A
~Deg[Firgt[a]] < [all — 1)). (63)

The condition treating the general case, that is, the recursivecalsis:

(Vx.a, p1, p2)(IsTuple [x] A IsTuple [a] A [[X]| = [la]| A [la]l = 1A
ANV eN A =i j<lalni#j= Xl #Ixl;)A=(al < Dr
AlsPoly[pi] A (Vi i e N) (1 <i < || Tail[X]|| = Eval[py, [ Tail[x][;] = [ Tail[a][l:)A
ADeg[p1] < | Tail[a]l| — 1A
AlsPoly[p] A ((Vi:i € N) (1 < i < [|Bgn[x]|| = Eval[pz, [[Ban[x]|l:] = | Bgn[all:]A
ADeg[pa] < [|IBgnla]]| — 1

_
1sPoly[ = Firsﬁfs]t)[g]‘:(;fr;[;]“‘"[f])p 21n

AVis €N < = ] — Bl DB =P ) — g

ADeg SRR = DR <y - ) (64

5 Termination

In this section we present a specialized strategy for proving termination of recursive
functional programs. The detail ed termination proofsmay in many cases be skipped,
because the termination conditions are reusable and thus collected in specialized
libraries. Enlargement of the libraries is possible by proving termination of each
candidate, but also by taking new elements directly from existing libraries.

Termination proofs of individual programs are, in general, expensive from the
automatic theorem proving point of view —they normally involveinduction and thus
an induction prover must be applied. In some cases, program termination, however,
may be ensured — and this is the main contribution of this section — by matching
against smplified versions (of programs) collected in specialized libraries.

As we dready saw, proving total correctness of a program is split into three
distinct steps: first — proving coherence, second — proving partial correctness, and
third — proving termination.
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Furthermore, partial correctness and termination, expressed as verification con-
ditions which themselves may be proven without taking into account their order.
Moreover, as we have shown in the previous sections, a coherent program (of a
certain recursive type) is totaly correct if and only if its verification conditions hold
aslogical formulas.

Proving any of the three kinds of verification conditions has its own difficulty,
however, our experience shows that proving coherence is relatively easy, proving
partial correctness is more difficult and proving the termination verification condi-
tion (it is only one condition) isin general the most difficult one.

The proof typically needs an induction prover and the induction step may
sometimes be difficult to find. Fortunately, due to the specific structure, the proof
is not always necessary, and thisis what we discuss here.

5.1 Librariesof Terminating Programs

In this subsection we describe the idea of proving termination of recursive programs
by creating and exploring libraries of terminating programs, and thus avoiding
redundancy of induction proofs. The core idea s that different recursive programs
may have the same simplified version.

Let usreconsider the following very simple recursive program for computing the
factorial function:

Factfn] = If n = 0 then 1 elsen * Fact[n — 1], (65)
with the specification of Fact, input:
Vin(lpaat[n] <= n € N) (66)

and Output:
Vn,m (Opagt[n, m] <= n! =m). (67)

The verification condition for the termination of Fact is expressed using a
simplified version of theinitial function:

Fact'[n] = If n = 0 then T else Fact'[n — 1], (68)
namely, the verification condition is
(Vn :n € N(Fact'[n] = T), (69)
where T expressesthe logical constant true.

Note, that different recursive programs may have the same simplified version.
Let us now consider another very simple recursive program for computing the sum
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function:
Sum[n] = 1fn =0then0elsen + Sum[n — 1], (70)

with the specification of Sum, input:

VYn(Isun[n] <= n € N (71)
and Output:
Vn,m (OSum[n,m] = w = m) . (72)

The verification condition for the termination of Sum is expressed using a
simplified version of the initial function:

Sum’[n] = If n = 0then T else Sum’[n — 1], (73)
namely, the verification condition is
(Vn :n € N(Sum'[n] = T). (74)

Notably, the termination verification conditions (69) and (74) of the programs
(68) and (73) are the same.

Primitive recursive functions (75) comprise a very large and powerful class of
functions [23]. It is well known that they always terminate [39]. The schemata of
the recursive part of aprimitive recursive functionis:

Prim[n] = If n = 0 then S[n] else C[n, Primn — 1]], (75)
Now, the simplified version of (75) is:
Prim'[n] = lf n = 0then T else Prim'[n — 1], (76)
namely, the verification condition is
(Vn :n € N(Prim[n] = T). (77)

which is the same as (69).

For serving the termination proofs, we are now creating libraries containing
simplified versions together with their input conditions, whose termination is
proven. The proof of the termination may now be skipped if the simplified version
isalready in the library and this membership check is much easier than an induction
proof — it only involves matching against simplified versions.

Starting from asmall library — actually it is not only one, but more, because each
recursive schema has several domain based libraries — we intend to enlargeit. One
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way of doing so isby carrying over the whole proof of any new candidate, appearing
during a verification process.

5.2 Enlargement Within libraries

Enlargement within a library is also possible by applying special knowledge
retrieval. As we have seen, termination depends on the simplified version F’ and
on the input condition 7. Considering again the factorial example (65), in order to
prove its termination we need to prove (69). Assume, now the pair (68), (69) isin
our library. We may now strengthen the input condition /r,., and actually produce
anew one:

Ir_pew[n] <= (n € NA n > 100).

The simplified version Fact’ remains the same (68) — we did not change the initial
program (65), however, the termination condition becomes:

(Vn:n eNAn > 100)(Fact'[n] = T), (78)

and (after proving them) we add it tothelibrary. It is easy to see that any new version
of asimplified program which is obtained by strengthening the input condition can
also be included in the library without further proof. Assume

(Vx : Ip[xD(F'[x] = T)
isamember of alibrary. Then for any “stronger” input condition / 7 _grng, We have:

Ir—srng[x] = IF[x],

and thus
(Vx : Ip—gmg[x])(F'[x] = T).

This is of course not the case for weakening the input condition. Consider the
following weakening of Ig,.;:

Ir—ralln] <= (n € R),
which leads to nontermination of our Fact’ (69), that is:
(Vn:n e R(Fact'[n] = T),

which does not hold.
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Strengthening of input conditions leads to preserving the termination properties
and thus enlarging a library without additional proof is possible. However, for a
fixed simplified version, keeping (and collecting in some cases) the weakest input
condition is the most efficient strategy, because then proving the implication from
stronger to weaker condition is relatively easier.

5.3 A Noteon the Termination of Fibonacci-like Programs

In this subsection we share some thoughts about proving termination of Fibonacci-
like programs. In fact, we show that certain simplification is not possible by
constructing a counterexample.

Consider the following program (already a simplified version) for computing F:

F[x] = If Q[x]then T élse F[R,] A F[R). (79)

The question we want to ask is the following: In order to prove termination of
F, would it be sufficient to prove termination of a split of F, namely to prove
termination of F; and F», where:

Fi[x] = IfQ[x] then TelseF[R,], (80)

F[x] = If O[x] then T elseF[Rs]. (81)

We do not want to go into discussions on if this were so. We give an examplein
order to show that thisisnot acase. Let us have:

Olx] <= x=0

Ri0] =1 R[1] =2, Ri[2] =0
Ry[0] =2, Ry[1] = 0, Ro[2] =1
Ip[x] <= Ip/[x] &= Ipx] &= x=0vx=1vx=2.
First check if the program F iscoherent. In order to perform the coherencecheck,
we instantiate the relevant conditions:

Vx:x=0vx=1vx=2)(x=0=x=0vx=1vx=2)

MVMx:x=0vx=1vx=2)(x#0 = Ri|[x] =0V Ri[x] =1V R|[x] =2)
VMx:x=0vx=1vx=2)(x #0 = Ry[x] =0V Ry[x] =1V Ry[x] =2)
MVMx:x=0vx=1vx=2)(x#0 = x=0vx=1vx=2)
VMx:x=0vx=1vx=2)x#0 = x=0vx=1vx=2)
Vx:x=0vx=1vx=2(x#0A ...=T).
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After we are convinced that F is coherent, we first observe that its split F; and
F, both terminate.
For Fy, al the possihilities are:

F0]=T
F[l]=F(2]=FR[0]=T

Fi2] = F[0] =T,

and for F»:
B[0]=T

Bl = R0 =T
B2] = B[l] = K[0] =T.
Now we will show that F[1] does not terminate. Indeed:

Fll] = F[Ri[I]] A FIR[1]] = F[2] A F[0] = F[R:2]] A F[Ro[2]] =

= F[0] A F[1] = T A F[1].

Thus, proving termination of Fibonacci-like programs requires proving termina-
tion of the whole simplified version, and, in general, no split into partsis possible.

54 Further Examples

Let us recall the definition of the binary powering algorithm analysed in
subsection 4.1:
Plx,n] =I1fn=0thenl
elsaif Even[n] then P[x * x,n/2]
elsex x Plx xx,(n—1)/2].

In this case the simplified functioniis:

P'ln]=1fn=0thenT
elseif Even[n] then P’[n/2]
dse P'[(n —1)/2].
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Note that the first argument x of P is removed, because it does not occur in the
conditions. For termination one needs to show that P’[n] = T for all naturas n,
which can be easily done by induction on x.

Likewise, the definition of the Neville's algorithm analtyzed in subsection 4.2
was:

P[x,a] = If ||a|| < 1then First[a] (82)
oo\ X — FIrstE) (P [Tail [], Tail [@]]) — (X — Last[¥])(P [Bgn[¥], Bgnfal))
i Last[x] — First[x] ’

Correspondingly, the simplified functioniis:
P'la]l = If |a|| < 1then T else P'[Tail[a]] A P'[Bgn[a]). (83)

The termination condition is. (Va)(P’[a] = T), which is provable by a simple
induction on the lenght of a.

6 Conclusionsand Further Work

Our theoretical framework for the verification of functional programsis relatively
simple, although sound and complete.

In contrast to most approaches which expose methods for verifying correct
programs, we put a special emphasis on falsifying incorrect programs.

We first perform a check whether the program under consideration is coherent
with respect to its specification, that is, each function call is applied to arguments
obeying the respective input specification. The completeness of the method relies
on the coherence of the program.

The program correctness is then transformed into a set of first-order predicate
logic formulas by a verification condition generator (VCG) — a device, which takes
the program (its source code) and the specification (precondition and postcondition)
and produces several verification conditions, which themselves, do not refer to any
theoretical model for program semantics or program execution, but only to the
theory of the domain used in the program.

For coherent programs we are able to define a necessary and sufficient set of
verification conditions, thus our condition generator is not only sound, but also
complete. This distinctive feature of our method is very useful in practice for
program debugging.

We would like to address not only logicians (interested on program verification
and automatic theorem proving), but also mathematicians, physicists and engineers
who are inventing algorithms for solving concrete problems. On one hand, the help
comes with the automatically obtained correctness proof. On the other hand, the
inventor may try to prove the correctness of any conjecture, and in case of afailure
obtain a counterexample, which may eventually help making a new conjecture.



254 N. Popov and T. Jebelean

The approach to program verification presented here is a result of an theoretical
work with the long term aim of practical verification of recursive programs.
Although the examples presented here appear to be relatively smple, they already
demonstrate the usefulness of our approach in the general case. We aim at extending
these experiments to more practical examples, because these, usualy, are not more
complex from the mathematical point of view. Furthermore we aim at improving
the education of future software engineers by exposing them to successful examples
of using formal methods (and in particular automated reasoning) for the verification
and the debugging of concrete programs.

Another possible direction of our further work is the development of methods
for proving total correctness of tail recursive programs. More precisely, methodsfor
programs having a specific structure in which an auxiliary tail recursive function
is driven by a main nonrecursive function, and only the specification of the main
function is provided.

The difficulty there is that it is impossible to find automatically, in general,
verification conditions for an arbitrary tail recursive function without knowing its
specification. However, in many particular cases thisis, nevertheless, possible. The
specification of the auxiliary function could be obtained automatically, for example
by solving coupled linear recursive sequences with constant coefficients.
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An Introduction to Automated Discovery
in Geometry through Symbolic Computation

Tomas Recio and Maria P. Vélez

Abstract In this chapter we will present, for the novice, an introduction to the
automated discovery of theoremsin elementary geometry. Here the emphasisis on
the rationale behind different possible formulations of goals for discovery.

1 Introduction

This paper risesfrom the survey lecture given by thefirst author at the SNSC-project
fina Conference, that took place at RISC-Linz, July 2008. It aims to introduce
the novice (and curious) reader to automatic discovery of elementary geometry
theorems, by means of the algebraic geometry approach that has already shown
its success for automatic theorem proving (see Sect. 2 below).

Different approaches to discovery have already been presented by the authors
([10,13,15]), all of them illustrated with many examples. The emphasis here is on
building up and discussing the rational e behind the potential alternativeformulations
of goals and methods for discovery. We refer the reader interested in details about
each one of the protocols, to the above articles. Parts of of them have been
summarily sketched in this chapter.
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2 Automatic Proving

Automatic proving of elementary geometry theorems through symbolic computa-
tion hasreached a certain mature status. Morethan thirty years after the foundational
paper by Wu “On the decision problem and the mechanization of theorem-proving
in elementary geometry” [20], and over twenty years after the popular book of
Chou “Mechanical geometry theorem proving” [7], the topic seems active enough to
deserve the publication of new books, such as[14] or [21], and continues gathering
the international community of researchers at the series of biennial Automated
Deduction in Geometry (ADG) conferences’. We refer the reader to the impressive
bibliography on the subject kept by Prof. D. Wang in [19].

The goal of this particular approach to automatic proving through symbolic com-
putation is to provide algorithms, using computer algebra methods, for confirming
(or refuting) the truth of some given geometric statement. More precisely, it ams
to decide if a given statement is true (except for some degenerate cases, to be
described by the algorithm). Hundreds of non-elementary theorems in elementary
geometry have been successfully —and almost instantaneously— verified by avariety
of symbolic computation methods. Different collections of examples are presented
on the books we referred to in the precedent paragraph.

Briefly, this particular automatic proving approach proceeds by trandating a
geometric statement 7{H = T} into algebraic terms, after adopting a coordinate
system. More precisely, geometric instances verifying the hypotheses H (respec-
tively, the theses T') can be expressed as the set of solutions® of a system of
polynomial equations H = {hy = 0,...,h, = 0} (T = {t;, = 0,...,t; = 0},
respectively). Asit isusual in algebraic geometry we will denoteby V(H) or V(T')
the solution set of the corresponding system of equations. At this point it seems
reasonable to say that our statement 7 istrueif and only if V(H) C V(T).

But this interpretation is, in some sense, too strong, because it requires that all
instances verifying the polynomial system H should satisfy, aswell, the polynomial
system T'. In fact, it often happens that the algebraic formulation of the given
hypotheses includes, for instance, degenerate cases of the proposed geometric
configuration (triangles that collapse to a line, paralel lines that coincide, etc.),
that should not be considered for the validity of our statement. Therefore, it seems
more convenient to rephrase our formulation of the truth of a statement, by just
requiring that a (Zariski) open subset of V(H) is included in V(T'). Thus, we
are thinking of an algebraic procedure that automatically generates a set { f| #
0V .-V f; # 0} of inequations, the complement of the closed set defined
by R ={fi =0,...,f; = 0}, such that, by avoiding degeneracy conditions,

lvisit https:/Isiit-cnrs.unistra.fr/adg2010/index.php/Main_Page for information about the ADG-
2010 conference, with links to the URLs of previous meetings.

2To be considered over asuitable field. There will be different interpretations for different choices
of this field. Here we will assume to be in the algebraically closed case, so we will miss, for
instance, oriented geometry.
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V(H)\V(R) <€ V(T). That is, our origina statement now merely claims that
H A—=R = T, for some suitable collection of degeneracy conditions R that should
be obtained by algebraic manipulation from the given theses and hypotheses.

But, even in this summary and rough description, the reader should be warned
that it does not reflects the existence of some subtle, but serious, difficulties. Diverse
foundational problems may arise in the geometric/algebraic tranglation process (see
the referencesto thisissue that appear, for instance, at the book [7], or at the papers
[1, 8,15], or in the introduction to [2]). In particular, we should point out that
different ideas of truth, diverse protocolsto grasp it and several methodsto perform
them, have been considered in this algebraic geometry approach to automated
theorem proving (in particular, see the general discussion on the relative concept
of truth in this context, included in the papers[5, 9]).

3 Automatic Discovery

A closely related, yet different, issue isthat of the automatic discovery of theorems.
While automatic proving deals with establishing that some statement holds in most
instances, automatic discovery addresses the case of statements that are false in
most relevant cases. In fact, it aimsto produce, automatically, additional hypotheses
for the statement to be correct. In other words, when proving fails, we might try
discovering why. ..

Let us consider the following example from [13]: we draw atriangle and, then,
the feet of the corresponding altitudes. These feet are the vertices of anew triangle,
the so called orthic triangle for the given triangle. We state that this orthic triangleis
isosceles, but it isnot so, in general. That is, we fail proving that the orthic triangle
of any given triangle is isosceles. It seems quite obvious that our statement holds
if the original triangleis itself isosceles, but, only in this case? Searching for other
possibilitiesis the task of the automatic discovery of theorems protocols (see Fig. 1
below).

C(x.y)

B (c.d)

A (a.b)

A(—1,0) C'(e.f) B(1.0)

Fig. 1 Thetriangle ABC and itsorthic triangle A’B’C’
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The interest of developing such automatized discovery procedure is quite obvious.
First, it could help finding out missing cases in intriguing classical theorems. For
instance, searching for the conditionsthat atriangle hasto verify in order to havetwo
or three equal length internal or external bisectors, corresponding to different ver-
tices (extending the Theorem of Steiner-Lehmus, see [4,17,18] or [12] and the ref-
erencesthereof). Second, in the context of CAD, automatic discovery could be used
as an auxiliary tool for determining further constraints verified by the elements of a
given sketch if the user imposes among them some geometric restrictions (an obser-
vation already remarked in [11]). For instance, we draw a triangle, then its orthic
triangle, but we want to make our sketch so that the later triangle isisosceles. Then
we should bewarned that this obligesthefirst triangle to be drawn with some special
features (and the CAD program should provide information about all of them).
Finally, automated discovery could be also useful in the educational context,
since it would allow a dynamic geometry program (provided with a link to a
computer algebra program, as shown in [3] or [16]) to act as an intelligent agent,
being able to know in advance the response for most (right or wrong) conjectures
made by auser attempting to construct a certain figure on the screen; in thisway, the
dynamic geometry program could act as a tutor, guiding in the right direction the
efforts of the user towards the assigned task. Suppose the student is given atriangle
and one arbitrary point P and is asked to determine thelocus of P so that the three
symmetrical points Py, P,, P3 of P, with respect to the three sides of the triangle,
are aligned. After dragging P around for a while, the student finds some positions
where Py, P,, P; are closeto be on aline, but it could happen that he/she does not
have any further insight on this problem (Fig. 2).
The student could ask the computer for a (partial or total) answer to the query.
The machine, provided with an automatic discovery tool, will “know” the locus
of P is, precisely, the circle through the three vertices of the given triangle
[15], and —if adequately programmed— could present to the student different hints
towards finding the solution. A project regarding the implementation of proving
and discovering features on GeoGebra, a popular dynamic geometry program for
mathematics education, is being currently considered (see http://www.ciem.unican.
eg/proving2010)

Y
Aaﬁ\l
N

Py

Fig. 2 Locusof P for the aignment of its reflections on the three sides of atriangle
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4 Stating Our Goal

Asin the automatic proving context, we start considering an algebraically trandated
statement of the kind {H = T} (such as: for any given triangle, if we construct
its orthic triangle then...it is isosceles, or: given any triangle and a point P
and its reflections with respect to the triangle's sides, then...they are aligned),
where H stands for the equations describing the construction (orthic triangle,
symmetries, etc.) and 7' describes the desired property (isosceles, aligned, etc.).
By abuse of notation, we will denote also by H and T the ideals generated by
the polynomias involved in the equations describing the statement. Suppose that
H = (h,....,hy)and T = (t1,...,t,)) are these ideals of polynomials in a
ring K[X], X = {xi....,x,}, over afield K, with agebraic closure K. Then,
the geometric instances verifying the hypotheses (respectively, the theses) of the
statement arethe algebraic sets V(H ) (respectively, V(T')) over the affinespace K.

Following the tradition of automatic theorem proving it is also natura here
to search for complementary hypotheses of inequality type, taking account of
degeneracy conditions. But, since it is quite reasonable to assume that the given
discovery statement is generally false, we should also search for complementary
hypotheses of equality type (such as: P is on the circle described by the three
vertices), so that, adding them to the given hypotheses and avoiding degeneracies,
the given statement becomestrue. L et us denote by R’ the collection of polynomials
describing these equality type conditions and by R” the system of polynomials
representing degeneracy conditions. Thus, a natural goal for discovering theorems
could be finding sets R’, R”, such that {(H A R’ A =R"”) = T}, assuming
{H A R" A =R"} is not empty. But this formulation is, in fact, too slack to be
of any use. Infact, by taking R’ = T and atrivial R”, we will obtain, in general,
a (useless) solution to our goal (such as. for any given triangle, if we construct its
orthic triangle and it isisosceles then. . . it isisosceles).

Therefore we should reconsider the formulation of the goal, taking into account
that we actually need to find the complementary hypotheses in terms of some
specific set of variables ruling our statement, as the following example shows.

Example 1. Suppose we are searching conditions for the orthic triangle of a given
oneto beisosceles. That is, wewant to find new hypothesesto achieve this property,
and these hypotheses should be expressed in terms of the variables assigned to the
vertices of the given triangle, and not, for example, in terms of the variables naming
the vertices of the orthic triangle.

Without loss of generality let us assume that, up to a change of coordinates, the
vertices of the triangleare A = (—1,0), B = (1,0) and C = (x, y). Denote by
A" = (a,b), B’ = (c,d) and C’ = (e, f) the corresponding vertices of the orthic
triangle. Then, the given construction is described by the following six equationsin
eight variables (H):

(@a-1D)y—->b(x—-1)=0, (c+1)y—-dx+1)=0, f=0,
a@a+Dx—-1D)+by=0, c—1)x+1)+dy=0, e—x=0,
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wherefirst line states that vertices A’, B’ and C’ belong to the corresponding side of
the given triangle and the second line expresses these vertices are aso points lying
in the corresponding atitude.

Now we would like to know when this orthic triangle is isosceles. Remark that
there are three possibilities for atriangle to be isoscel es depending on which couple
of sidesisto be considered having equal length. Again, for simplicity, let usanalyze
here only one of these cases, for example, when the two sides meeting at vertex C’
are equal, yielding to the following thesis

T:(—c)P+d-f)YP—(—a)’—-bB-f)Y=0.

In order to search for the extra constraints yielding to an isosceles orthic triangle
it seems obvious we should proceed finding R/, R” as polynomials in variables
x, y. In fact, the system H has two degrees of freedom, as expected, because
variables x, y have been freely chosen and variablesa, b, ¢, d, e, f depend
on them. Now, let us remark that the mere consideration of the algebraic system
does not alow to highlight a meaningful set of variables —such as x, y— carrying
the relevant geometric information (to build the orthic triangle). In this system H
there are, aswell, other sets of two free variables. For instance, we could expressall
involved variablesin termsof a, c.

Different and more complicated examples show that it isimpossible to determine
a set of meaningful variablesin an automatic way, even relying on heuristics, such
as considering those variables that are not involved in the thess, etc. It should
be human intuition (i.e. the user) who has to point out the concrete collection of
variables that will turn meaningful the discovery process. Thus, our goal, as stated
above, should be modified by referring to some specific set of variables for the
complementary hypotheses.

But this requirement is not enough. In fact, we should notice that, once the
equality type extra hypotheses R’ are found, the degenerate conditions R” should
be expressed in terms of some subset of the selected variables, since the whole
construction, after adding R’, could possess, then, less degrees of freedom (for
instance, in the example above, if R’ is found and it states —say— that the given
triangle must be isosceles and, therefore, that x = 0, then the degree of freedom,
of the new system of hypotheses, will be reduced from two to one). Bearing thisin
mind, our goal should be reformulated to look for the existence of two subsets of
variablesU’ C U C X, andtwoideals (R’, R”), in K[U] and K[U’], respectively,
suchthat (H A R" A—=R") = T and{H A R’ A —=R"} isnot contradictory.

Now, a more subtle consideration must be taken into account. It is true that, if
we could find a couple (R’, R"”) verifying the above conditions, we would have a
true statement, keeping the given theses T' and adding some extra hypotheses { H A
R’ A=R"}. But nothing guaranteesthat such statement really coversall possibilities
related to the given statement H = T'.

In the example above, imagine that some R’ is found expressing that the given
triangle should be isosceles; then it will yield to atrue statement (in fact, the orthic
triangle of an isosceles triangle is a so isosceles), but there are other restrictions on
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ABC (far less evident) for the given statement to hold. That the given triangle is
isoscelesis, indeed, a sufficient condition for the orthic triangle to be isosceles, but
it isnot a necessary condition. So, if we want to avoid discovering just sometrivia
statements, what we really need to find out is a collection of non contradictory (i.e.
such that there is at least one instance of the given hypotheses were they actually
hold) extrahypotheses R’, R”,

(a) Expressed in the right variables, (R” ¢ K[U],R” C K[U’], with U’ C
UcC X).

(b) Which are, when added to H , sufficient for 7', sothat {(H A R’ A—=R") = T}.

(c) Which areaswell necessary for thethesis T' to hold under the given hypotheses
H,sothat {(T A H) = (H A R" A =R")}.

Coming back to the above example, what we wish to aobtain is that the orthic
triangle of the given one isisosceles if and only if one of the following conditions
hold for the vertex (x, y):

e x = 0,thatis, thetriangleisisosceles, as expected, or
o x24+y2—1=0and(x,y) # (£1,0), (adegenerate case), or
o x2—y?—1=0and(x,y) # (£1,0).

5 Refining Our Goal

It seems we have achieved a sound description of our automatic discovery goal. Yet,
some more difficulties arise. In fact, assume we have found R’, R” verifying the
above conditions. This equivalentto {H AT} = {H A R’ A =R"}. Now consider
the projection =(V(H) N V(T)) of V(H) N V(T) over the affine space described
by thevariablesU . Itiseasy toshowthat {H A T} = {H A R’ A—=R"} implies

n(V(H) N V(T)) = x(V(H) N (V(R)\V(R"))

Moreover, since we would have chosen the variables U as those freely ruling our
construction V(H ), in many statements every assignment of the U variables should
yield to at least one instance on V(H). That is, in the standard case when V(H)
projects onto the whole U -variables affine space, the projection of V(H) N V(T)
will be equal to V(R)\V(R"), i.e. to the difference of two algebraic sets.

But the projection of an algebraic variety is a general constructible set, that is,
a finite union of sets, each one being the intersection of an algebraic variety and
the complement of another one, such as V(R’)\V(R"). It isafinite union, and not,
in general, just one of the terms of such union®, as we have concluded from our

3For instance, the constructible set (V(R7) \ V(RY)) U V(R5), where V(R}) = aplane, V(R}) =
aline on the plane, V(R}) = apoint on this line, can not be expressed as V(R5)\V(RY), for
whatever sets of polynomials R}, RY .
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assumption about the existence of R’, R” verifying the three conditions ), b), ¢)
above. Thismeansthat declaring these three conditions as the goal for the discovery
of theoremswould yield to failure (no couple R’, R” would exist) in most instances,
due to the lack of an appropiate language in our setting to express all necessary and
sufficient conditions.

At this point two possibilities arise. One, that of reformulating the whole
approach to discovery, alowing, from the beginning, the introduction of a finite
union of collections of equations R} in the U -variables, and inequations R/ (some
of them in the variables U, to take care of the possible degenerate cases of the free
variables for H, and some in the U’-variables, to consider the possible degenerate
cases after including the new hypotheses R}), which would provide:

» When added to H, sufficient conditionsfor T, so that {(H A (V;(R! A =RY)))
=T}
* Which areaswell necessary, sothat {(T' A H) = (H A (Vi(R; A —=R/)))}.

Itis, obviously, amore complex (albeit more complete) approach. We will deal with
it in the next Sect. 6.

A second possibility is that of weakening condition ¢) in such a way that the
discovery goal is redirected to finding out a collection of non contradictory extra
hypotheses R’, R”,

(8) Expressed in the right variables, (R’ ¢ K[U],R” C K][U’], with U’ <
U C X).

(b) Which are, when added to H, sufficient for 7', so that {(H A R” A—=R") = T}.

(c) Andverifyingthat R’ isnecessary for T toholdon H,i.e. {(T A H) = R'}.

Notice that we have deleted the reference to R” in the last item, at the risk
of losing some necessary inequality-type conditions. Since these conditions, in
general, only describe the degeneracy cases that should be avoided for the statement
to become true, we think it is quite safe to keep the new formulation of condition
¢) in our approach, as we will not miss any interesting results just because of not
paying attention to some degenerate cases. We will study this approach in Sect. 7.

6 Comprehensive Bases

In this Section let us assume that we had settled our discovery goal to finding a
finite union of collections of equations R; in U, and inequations R/, some in U
and some in U’, so that {(H A (V;(R] A —=R))) is not empty, {(H A (V;(R] A
—R/)) = T} and {(T A H) = (H A (Vi(R! A —=R!)))}. That is, V(H) N
V(T) = V(H) N U;(V(R)\V(R!)). Then, as argued above, the projection over
the U variablesof V(H)NV(T) will be equal to the projection of V(H ) intersected
with U (V(RD\V(R)).
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Let the projection of V(H) over the U-affine space be described by another
finite union of collections of equations P; and inequations P/, in the U variables,
s, (V(P\V(P))).

Then we remark that if we have succeeded finding R, R/ verifying the above
conditions, it will also hold that

{(H A (Vi(RE A=R) AV (P{ A=P]"))) = T}

and
(T AH) = (HA V(R A=R]) A V(P A=P)))}

But (V;(R, A =R!)) A (V;j(P! A =P/")) can be as well explicitly expressed
as (Vi (M| A —=M,"))) for some new set of equations and inequations M/, M/’
Thus, for this particular set we would have {(H A (Vi(M] A =M}"))) = T},
{(TANH) = (H A (Vi(M] A—=M]')))} and the projection over the U variables of
V(H) N V(T) will be exactly equa to | J, (V(M))\V(M,)).

Therefore, setting our discovery goa in such broad way (i.e. alowing unions
of basic constructible sets in its formulation), we are driven to describing the
projectionof V(H)NV(T). Moreprecisely, it iseasy to provethat if thereisafinite
union of collections of equations and inequations R;, R! fulfilling our discovery
goal, then there will be another finite union of sets, described by analogous
equations and inequations, M/, M,’, accomplishing the goal and yielding directly
the projection of V(H) N V(T). Conversely, if thereis afinite union of collections
of equations and inequations R;, R/ fulfilling our discovery goal, any description
U (V(MD\V(M])) of the projection of V(H) N V(T) will satisfy as well the
discovery goal.

Thus, in this setting, we face two main issues:

+ Deciding if there is a collection of couples R;, R, verifying the conditions (as
stated at the beginning of this Section) for discovery.
* And, in the affirmative case, computing a description of the V(H) N V(T)

projection.

Let C be the cylinder over the projection V(H) N V(T) onto the U -variables.
That is, the set of pointsin the X - affine space that project over V(H) N V(T).

Proposition 1. Thereisa collection of couples R!, R/, verifying the conditions for

discovery,ifandonlyif V(H)NC = V(H) N V(T).

Proof. First remark that aways V(H) N C 2 V(H) N V(T). Now, as we have
aready shown, there is a collection R}, R/ of couples holding the discovery
conditions, if and only if those M/, M’ describing the projection of V(H) N V(T)
verify aswell these conditions. But, then, the equality V(H)NC = V(H) N V(T)
is just a reformulation of V(H) N V(T) = V(H) N U (V(MD\V(M])), i.e.
accomplishing the discovery goal. O
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Let H = (H + T) N K[U],i.e. H isthe elimination ideal of H + T for the
U -variables. Then consider H + H'’¢, where H' provides the extension of H' to
K[X]. Itsvariety V(H + H’®) istheintersection of V(H) with thecylinder V(H"®)
over the Zariski closure of the projectionof V(H)NV(T). It might be strictly larger
than C (thinkof H = {(xu—1)(u) =0}, T = {(xu—1) = 0},then U = {u}isa
freevariablefor H, H' = (0), H + H'®* = H, but the projectionof V(H) N V(T)
over the u-lineisu # 0 and V(H) N C = V(T) which is strictly smaller than
V(H)).

Proposition 2. If T is contained in all the minimal primesof H + H'¢, thereisa
collection of couples R, R, verifying the conditions for discovery for all U’ € U.

Proof. It awaysholdsthat H C H + H* C H + T. Thus
V(H)NV(T) C V(H)NV(H) C V(H)

Butif T iscontainedin al theminimal primesof H + H'®,wehaveaso V(H)N
V(H'®) CV(T), o V(H)NV(H") = V(H)NV(T). Asasideremark, conversely,
if this equality holds, then, VH + H** = \/(H + T) 2 T, and T is contained in
all the minimal primesof H + H’”.

Now, sinceit alwayshodsthat V(H) N V(T) CV(H)NC C V(H) N V(H"),
theequality V(H)NV(H'®) = V(H)NV(T) impliesV(H)NC = V(H)NV(T)
and thus, by the above proposition, thereisacollection of couples of idealsverifying
the discovery conditions. O

The converse does not hold, and the previous example H = {(xu — 1)(u) =0},
T = {(xu—1) = 0}, with U = {u} shows that there are cases with suitable
discovery conditions but where T' does not vanish over al the minimal primes of
H+ H".

Finally, remark that, even if thereis not afinite union of collections of equations
and inequations R;, R} fulfilling our discovery goal, any set (V(M))\V(M)))
being part of the projection of V(H) N V(T), will provide a necessary condition
forH = T.

Therefore, a reasonable way to proceed in order to find R;, R/ verifying the
above conditions consists in computing the projection of V(H) N V(T) and express
it as [J;(V(R)\V(R!)). Then, we should check if this set of equations and
inequations are sufficient for 7'.

In some sense, thisis what has been achieved in [13] or [6] and can be seen as
quite close to performing a certain kind of quantifier elimination procedure. But let
us remark that, in the theorem proving context, this formulation (i.e. requiring that
{H AT} = {—R"} for non-degeneracy conditions) has not been followed in most
works, perhaps due to its complexity. But we refer to [13] for alarge collection of
discovery results using this protocol.
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7 FSDIC

As mentioned above, a second procedure for automatic discovery is that of [10],
related to finding a Full Set of (Discovering) Interesting Conditions (FSDIC).
Assume we are setting our goal to find out a collection of non contradictory extra
hypotheses R’, R"”:

(8) Expressed in theright variables, (R’ C K[U],R” C K[U'],withU’ C U C

X).

(b) Which are, when added to H , sufficient for ', so that {(H A R’ A—=R") = T}.
(c) And verifyingthat R’ isnecessary for T toholdon H,i.e. {(T A H) = R'}.

Thiscanbeformally translated into the following definition. First, some notation.
Let us consider some subsets of amain set of variables X = {xy,...,x,}, namely
U’ C U C X. Then, we will often deal with the extension K[U’'] — K[U] —
K[X] of polynomia rings on the corresponding variables, with coefficients in
a fixed field K. Let A be an ideal in K[U’], B an ideal in K[U], and C an
ideal in K[X]. We will denote —as it is standard in Commutative Algebra— by
AY = AK][U)], the extended ideal; by 4° = AK[X], and by B® = BK[X].
Clearly (4¢)¢ = A°. Moreover we will denote by C¢ = C n K[U'], its
contraction ideal; by C¢ = C N K[U], and by B¢ = B N K[U']. Again, it
is clear that (C¢)¢ = C¢. Finadly, if I is an ideal in K[X], we will denote by
V() = {(x1,....x2) € K | f(x1.....xy) = 0, Vf € I} the algebraic set

defined by 7 in K", where K isthe algebraic closure of K.

Definition 1. Let 7 beastatement, of thekind H = T, wheretheideas H, T C
K{x1, ..., x,] will bethe corresponding hypothesisideal and thesisideal. Let U’ C
UC{x,....,.xp} = X.

Then acouple (R’, R”) of ideals, respectively in K[U] and K[U’], will be called a
Full Set of (Discovering) Interesting Conditions (FSDIC) for 7 with respect to
U and U’ if the following conditions hold:

(& R C K[U]and R" C K[U’].

(b) V(H + R™)\V(R") C V(T).

() V(H+T)CV(R").

(d) If f e K[U']issuchthat V(H + R)\V((f)) C V(T), then f € V/R”.

(€) V(H + R)\V(R"™) # 0.

Remark 1. Condition d) is equivalent to the following:

d’) if R” € K[U’] isanided suchthat V(H + (R)*)\V((R")¢) € V(T), then
K" \V((R")*) € K" \V((R")°). See[10] for details.
Following [10], we address now two issues: when such pair of ideals R’, R”
exist and how can we compute them. The following propositions give us acomplete
answer to these questions (we refer the reader to [10] for proofs):

Theorem 1. Lete H' = (H+T)NK[Uland H” = ((H + H®) : (T)*®°)N K[U']
(the saturation by T'). Then there exist two ideals R’, R” such that (R’, R”) is an
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FSDIC for T withrespectto U and U’ ifand onlyif (H', H") isFSDIC for T with
respectto U and U’.

Remark 2. If (R’, R”) isan FSDIC, we have that
V(H + R)\V(R") = V(H + H')\V(R")

Remark 3. Suppose, as motivated at the end of the previous Sect. 5, that an alternate
definition of FSDIC is given, in which we drop property d). Then the statement of
the theorem above will still hold. Thus the existence of an FSDIC, with or without
condition d), is always equivalent to (H’, H”) being an FSDIC in the stronger
sense we have formally introduced in Definition 1.

The abovetheorem tells us that, if an FSDIC exists, then the couple (H', H”) is
indeed one such full set of conditions, providing an extra algebraic set of equality-
type constraints that is the smallest one in terms of the variety given by the first
ideal of the couple (since V(H'"?) € V(R’), see Remark 2) and also providing the
largest set of non degeneracy conditions in terms of the complement of the variety
given by the second ideal of the couple (as we have shown in the proof that always
V(R//e) - V(H”e)).

Moreover, the above Remark 2 shows that the hypotheses of equality type
H + R’® arising from whatever FSDIC will be always geometrically equivalent
to H + H’* (after adding the non-degeneracy hypotheses), and in this sense we can
conclude that our protocol yields, essentially, to a unigue solution (when it exists
one) on the additional hypotheses of equality-typefor the statement to becometrue.

Now let us see describe here some further results of [10] for the existence of an
an FSDIC, determining some necessary and sufficient algorithmic conditions for
(H’, H") tobean FSDIC.

Theorem 2. (H', H") is FSDIC for T with respect to U and U’ if and only if
1 & (H') : H"™ (equivalently,iff H” ¢ \/(H')").

Corollary 1. Moreover, if U’ isa set of algebraically independent variablesfor H’,
then (H’, H"") isan FSDIC for T withrespectto U and U’ if and only if H” # (0).

Proposition 3. Notation asin the previous section. Suppose that U’ C U isa set
of algebraically independent variablesfor H + H’¢. Then T iscontainedin all the
minimal primes of H + H'® where U’ are independent if and only if 1 ¢ (H')" :
H"*° (and thisis equivalent to the couple (H’, H”) being an FSDIC).

Remark 4. Compare to Proposition 2, for the Comprehensive bases approach. It
shows, in some sense, that the existence of couples verifying the FSDIC protocol
implies the existence of such couples for the Comprehensive bases setting, but not
conversely, according to the counterexampl e after Proposition 2.

The above proposition can be refined in a quite useful sense (see example 2)
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Proposition 4. Supposethat U’ € U C X is a set of algebraically independent
variablesfor H + H’¢ and, moreover, suppose it is maximal among the subsets of
X with this property (ie. K[U] N (H + H¢) # (0) foranyU’ c U C X).

Then, the couple (H’, H”) is not an FSDIC is equivalent to the fact that T is
not contained in all the minimal primes of H + H’® where U’ are independent, but
also that it is contained in at |east one of them.

Finally, let us introduce an example from [10] showing that, even when thereis
no FSDIC, we know —sometimes— it is due to the fact that the thesis holds over
some relevant component (but not over al) and this information can be the clue to
discover a statement. Further examples can be consulted at [10].

Example2. The example deals with a generalization of the Steiner-Lehmus The-
orem on the equality of lengths of the angle bisectors on a given triangle, an issue
which has attracted along the yearsa considerabl einterest (seereferencesat Sect. 3).

Without loss of generality wewill consider atriangle of vertices A(0, 0), B(1,0),
C(x, y). Then at each vertex we can determine two bisectors (one internal, another
one external) for the angles described by the lines supporting the sides of thetriangle
meeting at that vertex. We want to discover what kind of triangle has, say, one
bisector at vertex A and one bisector at vertex B, of equal length. Recall that the
Steiner-Lehmus Theorem states that this is the case, for internal bisectors, if and
only if the triangle isisosceles. So the question here is about the equality of lengths
when we consider external bisectors, too.

Algebraically we trandate the construction of a bisector, say, at vertex 4, as
follows. We take a point (p, ¢) at the same distanceas C = (x, y) from 4, so it
verifies p? + ¢> — (x> + y?) = 0. Then, we place this point at the line AB, by
adding the equation ¢ = 0. Then the midpoint from (p, ¢) and C will be ((x +
P)/2,(y + ¢q)/2) and the line defined by A and by this midpoint intersects the
opposite side BC (or its prolongation) at point (a, b), verifying { p> + ¢> — (x> +
y?) =0,qg = 0,—a(y +q)/2 +b(x + p)/2 = 0,—ay + b(x — 1) +y = 0}.
Finally, distance from (a, b) to A isgiven asa? + b?, and this quantity providesthe
length of the bisector(s) associated to A. Notice that by placing (p, ¢) at different
positions in the line A B, the previous construction provides both the internal and
the external bisector through A. There is no way of distinguishing both bisectors,
without introducing inequalities, something alien to our setting (since we work on
algebraically closed fields).

Likewise, we associate a set of equations to determine the length of the
bisector(s) at B, introducing a point (r,s) in the line AB, so that its distance to
B is equal to that of vertex C. Then we consider the midpoint of (r,s) and C and
place alinethrough it and B. Thislineintersects side AC at apoint (m, n), which
is defined by the following set of equations: {(r — 1) + s> — ((x —1)2 + y?) =0,
s=0,—m((y +5)/2)+n((x+r)/2—1)+(y+s)/2=0,—my+nx = 0}. The
length of this bisector will be (m — 1)* + n2.

Finally, we apply our discovery protocol to the hypotheses H given by the two
sets of equationsand having asthesis T the equality (a2 +b%)—((m—1)2>4+n?) = 0.
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It is clear the that the only two (geometrically meaningful for the construction)
independent variables are {x, y}, so we eliminate in H + T all variables except
these two, getting in thisway theideal H’. Theresult is apolynomial that factors as
the product of y3 (adegenerate case), 2x — 1 (triangleisisosceles) and the degree 10
polynomial 14x2y*+ y24+246y2x0 4+76x8—y0 +8x10 49y 10 _164y2x> +12y4x—
10x%y2 —dx* —44y8x —136y*x3 +278y*x* —64x7 —164x7y? +122y°x2 —6y* +
8x° —36y°%x +20y%x3 + 84y*x6 + 86x*y® +44x2y% +16x6 +41y%x8 4+ 31y2x* —
40x° — 252y*x> — 172y%x3 + 148 (cf.[18], page 150, also [4] for apicture of the
curve given by this polynomial).

Next, in order to compute H” we must choose one of the variable x, y, say,
variable x, and eliminate y in the saturation of H + H' by T. The result is (0),
so thereis no FSDIC, according to Corollary 1. In fact it is hard to expect that for
almost all triangleswith vertex C placed at thelocusof H’ and for any interpretation
of the bisectorsat A and B, they will all have simultaneously an equal length. But it
also means (by Proposition 4) that adding H' to the set of hypotheses, for instance,
placing vertex C at any point on the degree 10 curve, there will be an interpretation
for the bisectors such that the equality of lengths follow. It is easy to deduce
that this is so (except for some degenerate cases) considering internal/external,
externa/internal and external/external bisectors (since the internal/internal case
holds only for isosceles triangles). Moreover, intersecting this curve with the line
2x —1 = 0 wecan find out two pointsx = 1/2,y = (1/2)RootOf(—1 + 3Z?)
(aprox. x = 0.5000000000, y = + — 0.2886751346) where all four bisectors (the
internal and external ones of 4 and B) have equal length. The other two points of
intersection correspond to the case of equilateral triangles, where the two internal
bisectors and the two infinite external bisectors of A, B have pairwise equal length,
but the length is not equal for the internal and external bisectors.
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Symbolic Analysis for Boundary Problems:
From Rewriting to Parametrized
Grobner Bases

Markus Rosenkranz, Georg Regensburger, Loredana Tec,
and Bruno Buchberger

Abstract We review our algebraic framework for linear boundary problems (con-
centrating on ordinary differential equations). Its starting point is an appropriate
algebraization of the domain of functions, which we have named integro-differential
algebras. The algebraic treatment of boundary problems brings up two new alge-
braic structures whose symbolic representation and computational realization is
based on canonical formsin certain commutative and noncommutative polynomial
domains. The first of these, the ring of integro-differential operators, is used for
both stating and solving linear boundary problems. The other structure, called
integro-differential polynomials, isthe key tool for describing extensions of integro-
differential algebras. We use the canonical simplifier for integro-differential poly-
nomials for generating an automated proof establishing a canonical simplifier for
integro-differential operators. Our approach is fully implemented in the Theorema
system; some code fragments and sample computations are included.
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1 Introduction

1.1 Overall View

When problems from Analysis — notably differential equations — are treated by
methods from Symbolic Computation, one speaks of Symbolic Analysis, as in the
eponymous workshops of the FOCM conference series [34]. Symbolic Analysis
is based on algebraic structures, as all other symbolic branches, but its special
flavor comes from its connection with analytic and numeric techniques. As most
differential equations arising in the applications can only be solved numerically,
this connection is absolutely vital.

If symbolic techniques cannot solve “most” differential equations, what else can
they do? The answers are very diverse (reductions, normal forms, symmetry groups,
singularity analysis, triangularization etc), and in the frame of this paper we can only
point to surveys like [79] and [36, §2.11]. In fact, even the notion of “solving” is
quite subtle and can be made precisein various ways. Often a symbolic method will
not provide the “solution” in itself but valuable information about it to be exploited
for subsequent numerical simulation.

Our own approach takes a somewhat intermediate position while diverging
radically in another respect: Unlike most other symbolic methods known to us, we
consider differential equations along with their boundary conditions. This is not
only crucia for many applications, it is also advantageous from an algebraic point
of view: It allows to define a linear operator, called the Green's operator, that maps
the so-called forcing function on the right-hand side of an equation to the unique
solution determined by the boundary conditions. This gives rise to an interesting
structure on Green's operators and on boundary problems (Sect. 5). Algebraically,
the consequence is that we have to generalize the common structure of differential
algebras to what we have called integro-differential algebras (Sect. 3).

Regarding the solvability issues, the advantage of this approach is that it
uncouples the task of finding an algebraic representation of the Green’s operator
from that of carrying out the quadraturesinvolved in applying the Green’s operator
to aforcing function. While the latter may be infeasible in a symbolic manner, the
former can be done by our approach (with numerical quadratures for integrating
forcing functions).

The research program just outlined has been pursued in the course of the SFB
project FO13 (see below for a brief chronology), and the results have been reported
elsewhere [66, 70, 72]. For the time being, we have restricted ourselves to linear
boundary problems, but the structure of integro-differential polynomials[73] may
be a first stepping stone towards nonlinear Green’s operators. Since the algebraic
machinery for Green’'s operatorsis very young, our strategy was to concentratefirst
on boundary problems for ordinary differential equations (ODES), with some first
steps towards partial differential equations (PDES) undertaken more recently [74].
For an application of our methods in the context of actuarial mathematics, we refer
to[2], for amore algebraic picture from the skew-polynomial perspective see [67].
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1.2 New Results

In the present paper, we will present a new confluence proof for the central data
structure used in our approach: As the algebraic language for Green's operators,
the integro-differential operators (Sect. 4) are defined as a ring of honcommutative
polynomials in infinitely many variables, modulo an infinitely generated ideal.
While the indeterminates represent the basic operations of analysis (differentiation,
integration, extraction of boundary values and multiplication by one of infinitely
many coefficient functions), thisideal specifiestheir interaction (e.g. the fundamen-
tal theorem of calculus describing how differentiation and integration interact). Our
new proof isfully automated within the THIOREMY system (Sect. 2), using ageneric
noncommutative polynomial reduction based on a noncommutative adaption of
reduction rings[22]; see also [83] for a short outline of the proof.

In away, the new proof completes the circle started with the ad-hoc confluence
proof in [69]. For the latter, no algebraic structure was available for coping with
certain expressions that arise in the proof because they involved generic coefficient
functions along with their integrals and derivatives (rather than the operator
indeterminates modeling integration and differentiation!), whilethis structureis now
provided by the afore-mentioned integro-differential polynomials (Sect. 6). Roughly
speaking, this means within the spectrum between rewrite systems (completion
by the Knuth-Bendix procedure) and Grdbner bases (completion by Buchberger’'s
agorithm), we have moved away from the former towards the latter [18]. We will
come back to this point later (Sect. 7).

Moreover, the paper includes the following improvements and innovations: The
setting for Grobner bases and the Buchberger algorithm are introduced generically
for commutative and noncommutative rings (allowing infinitely many variables
and generators), based on reduction rings and implemented in the THIOREMY
system (Sect. 2). The presentation of integro-differential algebras is streamlined
and generalized (Sect. 3). For both of the main computational domains — integro-
differential operators and integro-differential polynomials — we have a basis free
description while a choice of basisis only need for deciding equality (Sects. 4, 6).
The construction of integro-differential polynomials, which was sketched in [73], is
carried out in detail (Sect. 6). In particular, a complete proof of the crucial result on
canonical forms (Theorem 42) is now given.

1.3 Chronological Outline

As indicated above, this paper may be seen as akind of target line for the research
that we have carried out within Project F1322 of the SFB F013 supported by the
Austrian Science Fund (FWF). We have already pointed out the crucial role of
analysis/numerics in providing the right inspirations for the workings of Symbolic
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Analysis. The development of this project is an illuminating and pleasant case in
point. It wasinitiated by the stimulating series of Hilbert Seminars conducted jointly
by Bruno Buchberger and Heinz W. Engl from October 2001 to July 2002, leading
to the genesis of Project F1322 as a spin-off from Projects F1302 (Buchberger) and
F1308 (Engl). Triggered by the paper [42], the idea of symbolic operator algebras
emerged as acommon leading theme. It engendered avision of transplanting certain
ideas like the Moore-Penrose inverse on Hilbert spaces from their homeground in
functional analysis into a new domain within Symbolic Analysis, where powerful
algebraic tools like Grobner bases are available [9, 19, 20, 24]. This vision even-
tually crystallized in the algebraic machinery for computing Green's operators as
described before.

In the early stage of the project, those two main tools from analysis (Moore-
Penrose inverse) and algebra (Grobner bases) were welded together in a rather
ad-hoc manner, but it did provide a new tool for solving boundary problems [71].
In the course of the dissertation [69], a finer analysis led to a substantial simpli-
fication where the Moore-Penrose inverse was superseded by a purely algebraic
formulation in terms of one-sided inverses and the expensive computation of a
new noncommutative Grobner basis for each boundary problem was replaced by
plain reduction modulo a fixed Grobner basis for modeling the essential operator
relations. The resulting quotient algebra (called “ Green’s polynomials’ at that time)
is the precursor of the integro-differential operators described below (Sect.4). The
final step towards the current setup was the reformulation and generalization in a
differential algebra setting [72] and in an abstract linear algebra setting [66].

The advances on the theoretical side were paralleled by an early implementation
of the algorithm for computing Green's operators. While the ad-hoc approach
with computing Grobner bases per-problem was carried out by the help of NCAI-
gebra, a dedicated Mathematica package for noncommutative algebra [42], the
fixed Grobner basis for simplifying Green’s operator was implemented in the
THIOREMY system [26]; see Sect. 2 for ageneral outline of this system. Asthe new
differential algebra setting emerged, however, it became necessary to supplant this
implementation by anew one. It was again integrated in the THIOREMY system, but
now in a much more intimate sense: Instead of using a custom-tailored interface as
in [69], the new package was coded directly in the THHOREMY language using the
elegant structuring constructs of functors[25]. Since thislanguageis also the object
language of the provers, this accomplishes the old ideal of integrating computation
and deduction.

The presentation of several parts of this paper — notably Sects. 3-5 — benefited
greatly from a lecture given in the academic year 2009/10 on Symbolic Integral
Operators and Boundary Problems by the first two authors. The lecture was
associated with the Doctoral Program “Computational Mathematics: Numerical
Analysis and Symbolic Computation” (W1214), which is a follow-up program to
the SFB F013. We would like to thank our students for the lively discussions and
valuable comments.
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1.4 Overview of the Paper

We commence by having a closer ook at the THIOREMY system (Sect. 2), which
will also be used in all sample computations presented in subsequent sections;
both the sample computations and the THIOREMY program code is available in an
executable Mathematica notebook from www.theorema.org. We discuss canonical
simplifiers for quotient structures and Grobner bases in reduction rings, and we
give a short overview of the functors used in building up the hierarchy of the
algebraic structures used in the computations. The main structure among these is
that of an integro-differential algebra (Sect. 3), which is the starting point for the
integro-differential operators as well as the integro-differential polynomials. Since
theformer are, in turn, the foundation for computing Green’s operatorsfor boundary
problems, we will next summarize the construction of integro-differential operators
and their basic properties (Sect. 4), while the algorithms for solving and factoring
boundary problems are explained and exemplified thereafter (Sect.5). Driving
towards the focus point of this paper, we describe then the algebra of integro-
differentia polynomials (Sect. 6), which will be the key tool to be employed for
the confluence proof. Since this proof is reduced to a computation in THIOREMY,
we will only explain the main philosophy and show some representative fragments
(Sect. 7). We wind up with some thoughts about open problems and future work
(Sect. 8).

2 Data Structures for Polynomials in Theorema

2.1 The Theorema Functor Language

The THIOREMY system [26] was designed by B. Buchberger as an integrated
environment for proving, solving and computing in various domains of mathe-
matics. Implemented on top of Mathematica, its core language is a version of
higher-order predicate logic that contains anatural programming language such that
algorithms can be coded and verified in aunified formal frame. In thislogic-internal
programming language, functors are a powerful tool for building up hierarchical
domainsin amodular and generic way. They wereintroduced and first implemented
in THAIOREMY by B. Buchberger. The general idea—and its use for structuring those
domains in which Grobner bases can be computed — is described in [22, 25], where
one can also find referencesto pertinent early papersby B. Buchberger. See also [87]
for some implementation aspects of functor programming.

The notion of functor in THIOREMYV is &kin to functors in ML, not to be
confused with the functors of category theory. From a computational point of
view, a THIOREMY functor is a higher-order function that produces a new domain
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from given domains, where each domain is considered as a bundle of operations
(including relations qua boolean-valued operations — in particular also carrier
predicates). Operations in the new domain are defined in terms of operations in
the underlying domains.

Apart from this computational aspect, functors also have an important reasoning
aspect — a functor transports properties of the input domains to properties of the
output domain, typical examples being the various “preservation theorems’ in
mathematics: “If R is aring, then R[x] is aso aring”. This means the functor
R — RJ[x] preserves the property of being a ring, in other words: it goes from
the “category of rings’ to itself. In this context, a category is simply a collection
of domains characterized by a common property (a higher-order predicate on
domains).

See below for an example of a functor named LexWor ds. It takes a linearly
ordered alphabet L asinput domain and builds the word monoid over this alphabet:

Definition ["W)rd Monoi d*, any[L],

LexWords [L] = Funct or [W any[v, w, & n, &, 1'7],

is-tuple[w]
%[W]”[/\{ v f[W.]]