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Chapter 5. Bernstein–Bézier Methods for Spline Spaces

5.1. The B-form Representation of Splines 127
5.2. Storing, Evaluating and Rendering Splines 128
5.3. Control Surfaces and the Shape of Spline Surfaces 129
5.4. Dimension and a Local Basis for S0

d (△) 130
5.5. Spaces of Smooth Splines 132
5.6. Minimal Determining Sets 135
5.7. Approximation Power of Spline Spaces 137
5.8. Stable Local Bases 141
5.9. Nodal Minimal Determining Sets 143
5.10. Macro-element Spaces 146
5.11. Remarks 147
5.12. Historical Notes 149

Chapter 6. C1 Macro-element Spaces

6.1. A C1 Polynomial Macro-element Space 151
6.2. A C1 Clough–Tocher Macro-element Space 155



Contents vii

6.3. A C1 Powell–Sabin Macro-element Space 159
6.4. A C1 Powell–Sabin-12 Macro-element Space 163
6.5. A C1 Quadrilateral Macro-element Space 166
6.6. Comparison of C1 Macro-element Spaces 171
6.7. Remarks 172
6.8. Historical Notes 173

Chapter 7. C2 Macro-element Spaces

7.1. A C2 Polynomial Macro-element space 174
7.2. A C2 Clough–Tocher Macro-element Space 178
7.3. A C2 Powell–Sabin Macro-element Space 182
7.4. A C2 Wang Macro-element Space 186
7.5. A C2 Double Clough–Tocher Macro-element 189
7.6. A C2 Quadrilateral Macro-element Space 192
7.7. Comparison of C2 Macro-element Spaces 196
7.8. Remarks 197
7.9. Historical Notes 198

Chapter 8. Cr Macro-element Spaces

8.1. Polynomial Macro-element Spaces 199
8.2. Clough–Tocher Macro-element Spaces 203
8.3. CT Spaces with Natural Degrees of Freedom 209
8.4. Powell–Sabin Macro-element Spaces 214
8.5. PS Spaces with Natural Degrees of Freedom 220
8.6. Quadrilateral Macro-element Spaces 226
8.7. Remarks 231
8.8. Historical Notes 233

Chapter 9. Dimension of Spline Spaces

9.1. Dimension of Spline Spaces on Cells 234
9.2. Dimension of Superspline Spaces on Cells 238
9.3. Bounds on the Dimension of Sr

d(△) 240
9.4. Dimension of Sr

d(△) for d ≥ 3r + 2 244
9.5. Dimension of Superspline Spaces 249
9.6. Splines on Type-I and Type-II Triangulations 253
9.7. Bounds on the Dimension of Superspline Spaces 255
9.8. Generic Dimension 262
9.9. The Generic Dimension of S1

3
(△) 265

9.10. Remarks 272
9.11. Historical Notes 274

Chapter 10. Approximation Power of Spline Spaces

10.1. Approximation Power 276
10.2. C0 Splines and Piecewise Polynomials 277
10.3. Approximation Power of Sr

d(△) for d ≥ 3r + 2 277



viii Contents

10.4. Approximation Power of Sr
d(△) for d < 3r + 2 286

10.5. Remarks 304
10.6. Historical Notes 306

Chapter 11. Stable Local Minimal Determining Sets

11.1. Introduction 308
11.2. Supersplines on Four-cells 309
11.3. A Lemma on Near-degenerate Edges 317
11.4. A Stable Local MDS for S

r,µ
d (△) 318

11.5. A Stable MDS for Splines on a Cell 325
11.6. A Stable Local MDS for S

r,ρ
d (△) 327

11.7. Stability and Local Linear Independence 328
11.8. Remarks 331
11.9. Historical Notes 333

Chapter 12. Bivariate Box Splines

12.1. Type-I Box Splines 334
12.2. Type-II Box Splines 343
12.3. Box Spline Series 347
12.4. The Strang–Fix Conditions 351
12.5. Polynomial Reproducing Formulae 355
12.6. Box Spline Quasi-interpolants 359
12.7. Half Box Splines 363
12.8. Finite Shift-invariant Spaces 366
12.9. Remarks 375
12.10. Historical Notes 377

Chapter 13. Spherical Splines

13.1. Spherical Polynomials 378
13.2. Derivatives of Spherical Polynomials 391
13.3. Spherical Triangulations 396
13.4. Spaces of Spherical Splines 397
13.5. Spherical Macro-element Spaces 406
13.6. Remarks 407
13.7. Historical Notes 408

Chapter 14. Approximation Power of Spherical Splines

14.1. Radial Projection 409
14.2. Projections of Triangulations 409
14.3. Norms on the Sphere 414
14.4. Spherical Sobolev Spaces 416
14.5. Sobolev Seminorms 419
14.6. Clusters of Spherical Triangles 421
14.7. Local Approximation by Spherical Polynomials 423
14.8. The Markov Inequality for Spherical Polynomials 424



Contents ix

14.9. Spaces with Full Approximation Power 425
14.10. Remarks 432
14.11. Historical Notes 433

Chapter 15. Trivariate Polynomials

15.1. The Space Pd 434
15.2. Barycentric Coordinates 435
15.3. Bernstein Basis Polynomials 437
15.4. The B-form of a Trivariate Polynomial 438
15.5. Stability of the B-form 440
15.6. The de Casteljau Algorithm 441
15.7. Directional Derivatives 442
15.8. B-coefficients and Derivatives at a Vertex 443
15.9. B-coefficients and Derivatives on Edges 446
15.10. B-coefficients and Derivatives on Faces 449
15.11. B-Coefficients and Hermite Interpolation 451
15.12. The Markov Inequality on Tetrahedra 452
15.13. Integrals and Inner-products 452
15.14. Conditions for Smooth Joins 453
15.15. Approximation Power in the Maximum Norm 454
15.16. Averaged Taylor Polynomials 455
15.17. Approximation Power in the q-Norms 456
15.18. Subdivision 457
15.19. Degree Raising 458
15.20. Remarks 458
15.21. Historical Notes 460

Chapter 16. Tetrahedral Partitions

16.1. Properties of a Tetrahedron 461
16.2. General Tetrahedral Partitions 463
16.3. Regular Tetrahedral Partitions 464
16.4. Euler Relations 465
16.5. Constructing and Storing Tetrahedral Partitions 469
16.6. Clusters of Tetrahedra 470
16.7. Refinements of Tetrahedral Partitions 472
16.8. Delaunay Tetrahedral Partitions 479
16.9. Remarks 479
16.10 Historical Notes 480

Chapter 17. Trivariate Splines

17.1. C0 Trivariate Spline Spaces 481
17.2. Spaces of Smooth Splines 483
17.3. Minimal Determining Sets 484
17.4. Approximation Power of Trivariate Spline Spaces 486
17.5. Stable Local Bases 489



x Contents

17.6. Nodal Minimal Determining Sets 490
17.7. Hermite Interpolation 492
17.8. Dimension of Trivariate Spline Spaces 494
17.9. Remarks 499
17.10. Historical Notes 500

Chapter 18. Trivariate Macro-element Spaces

18.1. Introduction 502
18.2. A C1 Polynomial Macro-element 503
18.3. A C1 Macro-element on the Alfeld Split 508
18.4. A C1 Macro-element on the Worsey–Farin Split 513
18.5. A C1 Macro-element on the Worsey–Piper Split 517
18.6. A C2 Polynomial Macro-element 520
18.7. A C2 Macro-element on the Alfeld Split 524
18.8. A C2 Macro-element on the Worsey–Farin Split 530
18.9. Another C2 Worsey–Farin Macro-element 537
18.10. A C2 Macro-element on the Alfeld-16 Split 544
18.11. A Cr Polynomial Macro-element 548
18.12. Remarks 557
18.13. Historical Notes 558

References 559

Index 587



Preface

The theory of univariate splines began its rapid development in the early
sixties, resulting in several thousand research papers and a number of books.
This development was largely over by 1980, and the bulk of what is known
today was treated in the classic monographs of deBoor [Boo78] and Schu-
maker [Sch81]. Univariate splines have become an essential tool in a wide
variety of application areas, and are by now a standard topic in numerical
analysis books.

If 1960–1980 was the age of univariate splines, then the next twenty
years can be regarded as the age of multivariate splines. Prior to 1980
there were some results for tensor-product splines, and engineers were us-
ing piecewise polynomials in two and three variables in the finite element
method, but multivariate splines had attracted relatively little attention.
Now we have an estimated 1500 papers on the subject.

The purpose of this book is to provide a comprehensive treatment of
the theory of bivariate and trivariate polynomial splines defined on triangu-
lations and tetrahedral partitions. We have been working on this book for
more than ten years, and initially planned to include details on some of the
most important applications, including for example CAGD, data fitting,
surface compression, and numerical solution of partitial differential equa-
tions. But to keep the size of the book manageable, we have reluctantly
decided to leave applications for another monograph.

For us, a multivariate spline is a function which is made up of pieces
of polynomials defined on some partition △ of a set Ω, and joined together
to ensure some degree of global smoothness. We will focus primarily on the
case where △ is a triangulation of a planar region, a triangulation on the
sphere, or a tetrahedral partition of a set Ω in R

3.

The term “multivariate spline” has been used in the literature for other
types of functions, see Remark 5.7 and the discussion in [Boo88] on “what
is a multivariate spline?”. Here we are following Schoenberg, who in 1966
discussed certain bivariate piecewise polynomials which he called splines.
In particular, in the paper [CurS66] he and Curry examined certain analogs
of the univariate B-spline. For some interesting correspondence involving
these early developments, see the discussion in [Mic95].

As we shall see, multivariate polynomial splines have many of the same
features which make the univariate splines such powerful tools for applica-
tions. In particular:

• splines are easy to work with computationally, and there are stable
and efficient algorithms for evaluating their derivatives and integrals,

• there is a very convenient representation which provides a strong con-
nection between the shape of a spline and its associated coefficients,

xi
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• splines are capable of approximating smooth functions well, and we can
establish the exact relationship between the smoothness of a function
and its order of approximation.

The book is organized as follows.

Chapter 1 is a self-contained treatment of bivariate polynomials. Of spe-
cial interest here is the discussion of local approximation properties of poly-
nomials. These are a form of Whitney theorems, and are the basis for our
later treatment of the approximation power of bivariate spline spaces, as
well as error bounds for various macro-element schemes. Interpolation with
bivariate polynomials is also discussed here.

Chapter 2 deals with the Bernstein–Bézier representation of polynomials.
This representation is the main tool for our theoretical developments, but
is also critical for the efficient computational use of multivariate splines.
In addition to introducing barycentric coordinates, Bernstein basis polyno-
mials, and the B-form, we discuss derivatives, integrals, smoothness condi-
tions, subdivision, degree raising, dual bases, quasi-interpolation, and the
Bernstein operator. A thorough understanding of the notation and results
of this chapter is an essential prerequisite to reading the rest of the book.

Chapter 3 should be of special interest to the computer-aided geomet-
ric design community as it contains a careful treatment of the connection
between the shape of a polynomial surface patch and its associated set of
B-coefficients. We discuss positivity, monotonicity, and convexity, as well
as subdivision and degree raising as possible rendering schemes.

Chapter 4 introduces triangulations, and deals with their construction,
storage, and combinatorics. Here we also discuss optimal triangulations
and various refinement algorithms which are of particular importance for
our later discussion of macro-element spaces, which are important tools
for data fitting and the numerical solution of partial differential equations.
This chapter also includes a discussion of triangulated quadrangulations.

Chapter 5 provides details on the Bernstein–Bézier approach to dealing
with bivariate splines, and on methods for storing, evaluating, and render-
ing such splines. It also contains a discussion of the spline space S0

d (△),
and introduces the important concept of minimal determining sets which is
the key tool in discussing various properties of spline spaces, including di-
mensions, building local bases, and the construction of quasi-interpolation
operators. The idea of nodal minimal determining sets is also introduced
here. It is used heavily in Chapters 6–8 in the study of macro-element
spaces.

Chapter 6 collects results on C1 macro-element spaces associated with
different splitting schemes. These spaces are particularly useful for appli-
cations since they have stable local bases and full approximation power.
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Chapter 7 treats C2 macro-element spaces associated with various split-
ting schemes. These spaces also have stable local bases and full approxi-
mation power.

Chapter 8 is concerned with families of Cr macro-element spaces based
on various triangle splits including the Clough–Tocher, Powell–Sabin, and
Powell–Sabin-12 splits, as well as certain splits based on quadrangulations.
For each macro-element space we give both a stable local minimal determin-
ing set and a stable local nodal minimal determining set. In addition, for
each element we construct a corresponding Hermite interpolation operator
and give error bounds for it. The methods of this chapter and the previous
two chapters have direct applications to scattered data fitting. Moreover,
the macro-element spaces discussed here and in Chapters 6 and 7 can be
used directly for the numerical solution of partial differential equations, and
should be of special interest to the finite-element community.

Chapter 9 presents what is currently known about the dimension of bi-
variate spline spaces. For general triangulations and arbitrary smoothness
r and degree d, we have to be satisfied with upper and lower bounds on
dimension. However, exact dimension results are available for several im-
portant spaces including Sr

d(△) for d ≥ 3r+2. We also give results for fairly
general superspline subspaces of Sr

d (△). To get dimension statements for
values of d < 3r + 2, we have to restrict ourselves to special partitions.
Here we give results for type-I and type-II partitions. In this chapter we
also compute the generic dimension of the space S1

3
(△). The problem of

finding the dimension of S1

3
(△) for arbitrary triangulations remains one of

the most challenging open questions in bivariate spline theory.

Chapter 10 is devoted to the question of how well smooth functions can
be approximated by bivariate splines on triangulations. In particular, we
show that for d ≥ 3r + 2, the spaces Sr

d(△) have full approximation order
d + 1, but have suboptimal approximation power for smaller d, and in fact
for d < (3r + 2)/2 have no approximation power at all.

Chapter 11 provides an explicit construction of stable local minimal de-
termining sets for the space Sr

d(△) for d ≥ 3r+2 and for certain superspline
subspaces of Sr

d(△). These results ensure that at least for d ≥ 3r+2, spline
spaces on arbitrary triangulations are guaranteed to have full approxima-
tion power. The connection between stable local bases and local linear
independence is also explored in this chapter.

Chapter 12 is devoted to a compact description of the theory of box splines
as examples of polynomial spline spaces defined on special triangulations.
Special emphasis is given to what we call type-I and type-II box splines.
For more on box splines and related simplex splines, we recommend the
survey articles of [DahM83] and [DaeL91], and the references therein. For
a comprehensive monograph on box splines, see [BooHR93].
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Chapter 13 contains a complete theory of certain spaces of splines defined
on spherical triangulations introduced and studied extensively by Alfeld,
Neamtu, and Schumaker. These splines are made up of pieces of trivariate
homogeneous polynomials restricted to the sphere, and thus are actually
piecewise spherical harmonics. The beauty of these spaces is the fact that
the entire algebraic theory of bivariate splines can be carried over immedi-
ately. These spaces are valuable tools for fitting data and approximating
functions defined on the sphere. In particular, there are spherical spline
analogs of all of the bivariate macro-element spaces, which we expect will
be useful numerical tools for the approximate solution of partial differential
equations on the sphere.

Chapter 14 provides approximation results for spherical spline spaces.
The key tool here is a certain radial projection mapping a spherical cap
into a plane which is tangent to the sphere. The mapping provides a means
of transferring results about bivariate splines to spherical splines.

Chapter 15 and the following three chapters are devoted to the theory
of trivariate polynomial splines. This chapter lays the groundwork with
a detailed discussion of trivariate polynomials paralleling our treatment of
bivariate polynomials in Chapters 1 and 2. Of special importance is the
discussion of trivariate Bernstein basis polynomials and the associated B-
form of trivariate polynomials. A thorough understanding of the notation
and results of this chapter is critical to the study of trivariate splines in the
last three chapters of the book.

Chapter 16 can also be regarded as preparation for our treatment of
trivariate splines. Here we introduce tetrahedral partitions, and discuss
Euler relations, refinement methods, and properties of clusters.

Chapter 17 is our main chapter on trivariate splines defined over tetrahe-
dral partitions. It contains all of the main features of our earlier develop-
ment of the theory of bivariate splines, including minimal determining sets,
stable local bases, dimension, and approximation power.

Chapter 18 is devoted to an exposition of the properties of several different
C1 and C2 trivariate macro-element spaces which are suitable for trivari-
ate data fitting and as approximating spaces for use in the finite element
method. General Cr polynomial macro-element spaces are also treated.

Each chapter of the book includes a section with remarks, and a sec-
tion with historical notes. We have collected most of the remarks in each
chapter in a separate section at the end of the chapter with the aim of
providing interesting and useful tangential information without interupting
the flow of the book. We believe that historical notes are important to an
understanding and appreciation of the development of this material, and
we have made every effort to explain the history as accurately as possible.
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We apologize in advance to anyone whose work has not been adequately
acknowledged.

Having described the contents of the book, we now would like to say
a few words about the list of references. Of the approximately 1500 papers
on polynomial splines on triangulations and tetrahedral partitions, here we
have listed only those works which are explicitly cited in this book. To find
additional references, see the online bibliography of deBoor and Schumaker
at www.math.vanderbilt.edu/∼schumake/splinebib.html.

To help the reader recognize both the authors and year of a citation, we
have adopted a coding system which is based on the first three letters of the
first author’s name. When that is not unique, we add a fourth letter, and
when there are co-authors, we add the first letter of the last name of each
coauthor. Finally, each code word also includes the last two digits of the
year of publication. Thus, for example, our joint paper on approximation
by splines which appeared in 1998 is coded as [LaiS98].

Writing this book has been a long and arduous task. It began more
than ten years ago when we realized that each of us had each prepared
lecture notes on multivariate splines for classes that we were teaching at
the time. Over the years, we have both taught the material again numerous
times, and have benefited greatly from comments and suggestions from our
many graduate students. We have also benefited from feedback from many
of our colleagues. We do not attempt to list them all here, but we would like
to mention especially Peter Alfeld, Oleg Davydov, Manfred von Golitschek,
Tom Lyche, and Frank Zeilfelder, who not only frequently discussed the
material in this book with us, but also commented on several drafts and
provided corrections. Our special thanks go to Simon Foucart for his careful
reading of the final manuscript. The first author would like to thank Charles
Chui for introducing him to spline functions more than twenty years ago,
and for his continued support.

Finally, we would like to thank our families for their patience over the
years. This project has taken innumerable hours that could have been spent
with them, and we gratefully acknowledge their support and understanding.





Bivariate Polynomials

In this chapter we discuss bivariate polynomials and their approximation
and interpolation properties.

1.1. Introduction

Given a nonnegative integer d, throughout Chapters 1–12, we write Pd for
the space of bivariate polynomials of degree d, i.e., the linear space of all
real-valued functions of the form

p(x, y) :=
∑

0≤i+j≤d

cijx
iyj, (1.1)

where {cij}0≤i+j≤d are real numbers. It is easy to see that the monomials

{xiyj}0≤i+j≤d (1.2)

form a basis for Pd. Indeed, to check that they are linearly independent,
note that if

p(x, y) =
∑

0≤i+j≤d

cijx
iyj = 0, all (x, y) ∈ R

2,

then Dα
x Dβ

y p(0, 0) = α ! β ! cαβ = 0 for each 0 ≤ α + β ≤ d. Arranging the
monomials in the lexicographical order

1, x, y︸︷︷︸, x2, xy, y2

︸ ︷︷ ︸, . . . , xd, xd−1y, . . . , xyd−1, yd

︸ ︷︷ ︸, (1.3)

we immediately see that the dimension of Pd is 1+2+ · · ·+(d+1) =
(
d+2

2

)
.

In Chapter 2 we shall construct a different basis for Pd which is far more
useful for our purposes.

1.2. Norms of Polynomials on Triangles

Given any domain Ω in R
2, we define the usual ∞-norm of a function by

‖f‖Ω := ess supu∈Ω
|f(u)|.

If f is continuous on Ω, we can replace the essential supremum by the
maximum. For 1 ≤ q < ∞, we define the usual q-norm by

‖f‖q,Ω :=
[ ∫

Ω

|f(u)|q du
]1/q

.

In the sequel we shall frequently work with norms of polynomials on
triangles. In particular, we need the following result connecting the q-norms
and the ∞-norms of polynomials.
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Theorem 1.1. Let T be a triangle, and let AT be its area. Then for all
p ∈ Pd and all 1 ≤ q < ∞,

A
−1/q

T ‖p‖q,T ≤ ‖p‖T ≤ K A
−1/q

T ‖p‖q,T , (1.4)

where K is a constant depending only on d.

Proof: The first inequality follows immediately from the definition of the
norms. To prove the second inequality, consider the standard triangle T̃ =
{(x, y) : 0 ≤ x, y ≤ 1, x + y ≤ 1}. Since all norms on the finite dimensional
space of polynomials are equivalent, it follows that

‖g‖
T̃
≤ K ‖g‖

q,T̃
,

for all polynomials g ∈ Pd, where K is a constant depending only on d. A
change of variables maps any polynomial p ∈ Pd into a polynomial g ∈ Pd

with ‖g‖
T̃

= ‖p‖T and ‖g‖
q,T̃

= A
−1/q

T ‖p‖q,T , and the second inequality in

(1.4) follows.

1.3. Derivatives of Polynomials

If p ∈ Pd, then its partial derivative Dα
x Dβ

y p belongs to Pd−α−β. In partic-
ular, if p is written in the form (1.1), then

Dα
xDβ

y p =
∑

0≤i+j≤d−α−β

dijx
iyj ,

with

dij :=
(i + α) !

i !

(j + β) !

j !
ci+α,j+β ,

for 0 ≤ i + j ≤ d − α − β.
In the following sections, we will need a version of the Markov inequality

comparing the size of the derivative of a polynomial to the size of the
polynomial itself, measured on a given triangle T . Let ρ

T
be the radius of

the largest disk contained in T .

Theorem 1.2. There exists a constant K depending only on d such that
for every polynomial p ∈ Pd,

‖Dα
x Dβ

y p‖
q,T

≤
K

ρ
α+β
T

‖p‖q,T , 0 ≤ α + β ≤ d, (1.5)

for all 1 ≤ q ≤ ∞.

This theorem was proved for q = ∞ in [Coa66]. For a different proof,
see [Wil74]. We give a proof for general 1 ≤ q ≤ ∞ in Section 2.12.
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We also need to work with directional derivatives. Given a vector
u := (ux, uy), the associated directional derivative of a function f is defined
by

Duf(x, y) =
d

dt
f
(
x + tux, y + tuy)

)∣∣∣
t=0

. (1.6)

It is well known from calculus that

Duf(x, y) = uxDxf(x, y) + uyDyf(x, y).

This shows that the directional derivative of a polynomial of degree d is a
polynomial of degree d − 1.

1.4. Polynomial Approximation in the Maximum Norm

Our aim in this section is to give a bound on how well a smooth function
defined on a set Ω ⊂ R

2 can be approximated by a polynomial of degree
d, measured in the maximum norm. To describe the smoothness of f , we
make use of the seminorms

|f |m+1,Ω := max
i+j=m+1

‖Di
xDj

yf‖Ω
. (1.7)

Let
|Ω| := max

v,w∈Ω

|v − w| (1.8)

be the diameter of Ω.

Theorem 1.3. Suppose that Ω is the closure of a convex domain in R
2.

Then for every f ∈ Cd+1(Ω), there exists a polynomial pf ∈ Pd such that

‖Dα
xDβ

y (f − pf )‖
Ω
≤ K |Ω|d+1−α−β |f |d+1,Ω, (1.9)

for all 0 ≤ α + β ≤ d. The constant K depends only on d.

Proof: Let (xc, yc) be the center of the largest disk contained in Ω, and
let

Tdf(x, y) :=
∑

0≤i+j≤d

1

i ! j !
Di

xDj
yf(xc, yc)(x − xc)

i(y − yc)
j

be the Taylor expansion of f about the point (xc, yc) with remainder

f(x, y) − Tdf(x, y) =
∑

i+j=d+1

1

i ! j !
Di

xDj
yf(x̃, ỹ)(x − xc)

i(y − yc)
j ,

where (x̃, ỹ) is some point on the line between (x, y) and (xc, yc). Taking
the norm over Ω immediately gives (1.9) for α = β = 0. The general result
follows from the fact that for any 0 ≤ α + β ≤ d,

Dα
x Dβ

y Td f = Td−α−β Dα
xDβ

y f.
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Theorem 1.3 provides a bound on the distance of f to Pd. In particular,
if f ∈ Cd+1(Ω), then

d(f,Pd)Ω := inf
p∈Pd

‖f − p‖
Ω

= O(|Ω|d+1). (1.10)

It is known (see Remark 1.4) that (1.10) is best possible in the sense that
no matter how smooth f may be, the exponent cannot be increased. For an
analog of Theorem 1.3 which holds for nonconvex sets Ω, see Section 1.7.

1.5. Averaged Taylor Polynomials

Let B := B(u0, v0, ρ) := {(x, y) : (x − u0)
2 + (y − v0)

2 ≤ ρ2} be a disk in
R

2 of radius ρ with center (u0, v0). Let

gB(u, v) :=

{
ce−ρ2/(ρ2−(u−u0)

2−(v−v0)
2
), (u, v) ∈ B(u0, v0, ρ),

0, otherwise,

where c is chosen so that

∫

B

gB(u, v)dudv = 1.

Definition 1.4. Given an integrable function f ∈ L1(B(x, y, ρ)), let

Fd,Bf(x, y) :=
∑

0≤i+j≤d

(−1)i+j 1

i ! j !

∫

B(u0,v0,ρ)

f(u, v)

× Di
uDj

v

[
(x − u)i(y − v)jgB(u, v)

]
dudv.

(1.11)

We call Fd,Bf the averaged Taylor polynomial of degree d relative to B asso-

ciated with f .

Clearly, Fd,Bf is a bivariate polynomial of degree at most d. If f ∈

Cd(R2), then integrating (1.11) by parts shows that

Fd,Bf(x, y) =

∫

B(u0,v0,ρ)

Td,(u,v)f(x, y)gB(u, v)dudv, (1.12)

where

Td,(u,v)f(x, y) :=
∑

0≤i+j≤d

1

i ! j !
Di

uDj
vf(u, v)(x − u)i(y − v)j

is the ordinary Taylor polynomial of degree d of f centered at (u, v). The
following result makes use of the Sobolev spaces Wm

q defined in Section 1.6.
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Lemma 1.5. For every 0 ≤ α + β ≤ d and f ∈ W
α+β
1

(B(u0, v0, ρ)),

Dα
xDβ

y Fd,Bf = Fd−α−β,B(Dα
x Dβ

y f).

Moreover, p = Fd,B p for every polynomial p ∈ Pd.

Proof: For the first assertion, we have

Dα
xDβ

y Fd,Bf(x, y) =

∫

B(u0,v0,ρ)

Dα
xDβ

y Td,(u,v)f(x, y)gB(u, v)dudv

=

∫

B(u0,v0,ρ)

Td−α−β,(u,v)D
α
x Dβ

y f(x, y)gB(u, v)dudv

= Fd−α−β,B(Dα
x Dβ

y f)(x, y).

For the second assertion, we recall the following formula for the exact
remainder of the classical Taylor polynomial:

f(x, y) − Td,(u,v)f(x, y)

= (d + 1)
∑

α+β=d+1

(x − u)α(y − v)β

α ! β !

∫
1

0

Dα
1
D

β
2
f((x, y) + t(u − x, v − y))td dt.

Here the differential operators D1 and D2 denote differentiation with re-
spect to the first and second variables, respectively. This implies that

f(x, y) − Fd,Bf(x, y)

=

∫

B(u0,v0,ρ)

[
f(x, y) − Td,(u,v)f(x, y)

]
gB(u, v) dudv

=
∑

α+β=d+1

d + 1

α ! β !

∫

B(u0,v0,ρ)

∫
1

0

gB(u, v)(x − u)α(y − v)β

× Dα
1
D

β
2
f((x, y) + t(u − x, v − y))td dtdudv, (1.13)

which immediately implies the second assertion.

Now suppose Ω is the closure of a convex domain in R
2, and let B

Ω
be

the largest disk that can be inscribed in Ω. Then the associated averaged
Taylor expansion Fd,B

Ω
maps functions defined on B

Ω
into polynomials of

degree d. We now give a bound on the size of Fd,B
Ω
f in terms of the size

of f . The bound will depend on the shape of Ω, as measured by

κ
Ω

:=
|Ω|

ρ
Ω

, (1.14)

where ρ
Ω

is the radius of B
Ω

and |Ω| is the diameter of Ω as defined in
(1.8). This ratio can be large if the set Ω is long and thin.
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Lemma 1.6. There exists a constant K depending only on d and κ
Ω

such
that

||Fd,B
Ω
f ||q,Ω ≤ K ||f ||q,B

Ω
, (1.15)

for all f ∈ Lq(BΩ
) with 1 ≤ q ≤ ∞.

Proof: It is easy to check that there exists a constant K1 depending only
on d such that

‖Dα
uDβ

v gB
Ω
‖L∞(R

2
)
≤

K1

ρα+β+2

Ω

,

for all nonnegative integers α, β ≤ d. For fixed (x, y) ∈ Ω, by the Leibniz
formula and the definition of κ

Ω
,

|Dα
uDβ

v (x − u)α(y − v)βgB
Ω
(u, v)|

≤
∑

i≤α

j≤β

[(α

i

)(
β

j

)]2
i ! j !

∣∣(x − u)α−i(y − v)β−jDα−i
u Dβ−j

v gB
Ω
(u, v)

∣∣

≤
∑

i≤α

j≤β

[(α

i

)2(
β

j

)]2
i ! j ! |Ω|α−i+β−j K1

ρα−i+β−j+2

Ω

≤
K2

ρ2

Ω

,

for every (u, v) ∈ R
2. Given 1 ≤ q < ∞, let 1/q + 1/q̃ = 1. Then for all

f ∈ Lq(BΩ
), we have

‖Fd,B
Ω
f‖q,Ω

≤
∑

α+β≤d

1

α ! β !

∥∥∥
∫

B
Ω

f(u, v)Dα
uDβ

v

[
(x − u)α(y − v)βgB

Ω
(u, v)

]
dudv

∥∥∥
q,Ω

≤
∑

α+β≤d

1

α ! β !

∥∥∥
( ∫

B
Ω

|f(u, v)|qdudv
)1/q

×

( ∫

B
Ω

|Dα
uDβ

v (x − u)α(y − v)βgB
Ω
(u, v)|q̃ dudv

)1/q̃∥∥∥
q,Ω

≤
∑

α+β≤d

1

α ! β !
||f ||q,B

Ω

[∫

Ω

(∫

B
Ω

(
K2

1

ρ2

Ω

)q̃

dudv
)q/q̃

dxdy

]1/q

≤ K3 ||f ||q,B
Ω

[(
ρ−2q̃

Ω
πρ2

Ω

)q/q̃
|Ω|2

]1/q

≤ K4 ||f ||q,B
Ω
.

Since K4 depends only on d and κ
Ω
, this completes the proof for 1 ≤ q < ∞.

The proof for q = ∞ is similar and simpler.
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1.6. Polynomial Approximation in the q-Norm

In this section we give bounds on how well functions in Sobolev spaces
can be approximated by polynomials, measured in a q-norm. Throughout
this section we suppose that Ω is the closure of a convex domain in R

2.
We extend the results to the case where Ω is nonconvex in the following
section. Suppose 1 ≤ q ≤ ∞ and 0 ≤ d. Then the associated Sobolev space

is defined by
W d+1

q (Ω) := {f : ‖f‖d+1,q,Ω < ∞},

where

‖f‖d+1,q,Ω :=






( d+1∑

k=0

|f |
q
k,q,Ω

)1/q

, 1 ≤ q < ∞

d+1∑

k=0

|f |k,∞,Ω, q = ∞,

with

|f |k,q,Ω :=





( ∑

ν+µ=k

‖Dν
xDµ

y f‖
q

q,Ω

)1/q

, 1 ≤ q < ∞

max
ν+µ=k

‖Dν
xDµ

y f‖
∞,Ω

, q = ∞.

Suppose B
Ω

is the largest closed disk that can be inscribed in Ω. Given
a function f in L1(Ω), let Fd,B

Ω
f be the associated averaged Taylor poly-

nomial defined in the previous section. We now give an error bound for
how well Fd,B

Ω
f approximates f on Ω. Let κ

Ω
be as in (1.14).

Theorem 1.7. Let Ω be the the closure of a convex domain in R
2, and let

d ≥ 0. Then there exists a positive constant K depending only on d and
κ

Ω
such that for every f ∈ W d+1

q (Ω) with 1 ≤ q ≤ ∞,

‖Dα
x Dβ

y

(
f − Fd,B

Ω
f
)
‖q,Ω ≤ K |Ω|d+1−α−β |f |d+1,q,Ω,

for all 0 ≤ α + β ≤ d.

Proof: We need only prove

||f − Fd,B
Ω
f ||q,Ω ≤ K |Ω|d+1|f |d+1,q,Ω, (1.16)

since by Lemma 1.5,

||Dα
x Dβ

y

(
f − Fd,B

Ω
f
)
||q,Ω = ||Dα

x Dβ
yf − Fd−α−β,B

Ω
(Dα

x Dβ
y f)||q,Ω.

To establish (1.16) we use the formula (1.13). We need an estimate of

∫

B
Ω

∫
1

0

gB
Ω
(u, v)(x− u)α(y − v)βDα

1
D

β
2
f((x, y) + t(u− x, v − y))tddtdudv
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for every (x, y) ∈ Ω. Let (µ, ν) = (x, y) + t(u − x, v − y). Then dµdνdt =
t2dudvdt. Let

G :=
{
(µ, ν, t) : t ∈ (0, 1],

∣∣∣
(µ, ν) − (x, y)

t
+ (x − x0, y − y0)

∣∣∣ ≤ ρ
Ω

}
,

where (x0, y0) is the center of the disk B
Ω
. Then for (u, v, t) ∈ B

Ω
× (0, 1],

(µ, ν, t) ∈ G. Since

√
(µ − x)2 + (ν − y)2

t
< ρ

Ω
+
√

(x − x0)2 + (y − y0)2,

we have

t0(µ, ν) :=

√
(µ − x)2 + (ν − y)2

ρ
Ω

+
√

(x − x0)2 + (y − y0)2
< t.

Thus, letting χ
G

be the characteristic function of G, we have

∫

B
Ω

∫
1

0

gB
Ω
(u, v)(x − u)α(y − v)βDα

1
D

β
2
f((x, y) + t(u − x, v − y))tddtdudv

=

∫

G

gB
Ω

((µ − x, ν − y)

t
+ (x, y)

)
(x − µ)α(y − ν)βDα

1
D

β
2
f(µ, ν)t−3dtdµdν

=

∫

〈(x,y),B
Ω
〉

[
(x − µ)α(y − ν)βDα

µDβ
ν f(µ, ν)

×

∫
1

0

χ
G
(µ, ν, t)gB

Ω
((x, y) + (µ − x, ν − y)/t)t−3dt

]
dµdν,

where 〈(x, y), B
Ω
〉 denotes the convex hull of (x, y) and B

Ω
. Note that

∣∣∣
∫

1

0

χ
G
(µ, ν, t)gB

Ω
((x, y) + (µ − x, ν − y)/t)t−3dt

∣∣∣ ≤ K1

ρ2

Ω

∫
1

t0(µ,ν)

t−3dt

=
K1

2ρ2

Ω

((
ρ

Ω
+
√

(x − x0)2 + (y − y0)2
)2

(µ − x)2 + (ν − y)2
− 1

)

≤
K1

2

(
1 +

√
(x − x0)2 + (y − y0)2

ρ
Ω

)2 (
(µ − x)2 + (ν − y)2

)−1

.

By (1.14), √
(x − x0)2 + (y − y0)2

ρ
Ω

≤ κ
Ω
.
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Now suppose 1 ≤ q < ∞ and 1/q + 1/q̃ = 1. Then

||f − Fd,BΩ
f ||q,Ω

≤
K1

2
(1 + κ

Ω
)2

∑

α+β=d+1

(d + 1)

α ! β !

∥∥∥
∫

〈(x,y),B
Ω
〉

|Dα
µDβ

ν f(µ, ν)|

× [(x − µ)2 + (y − ν)2)](d−1)/2dµdν

∥∥∥
q,Ω

≤ K
∑

α+β=d+1

(d + 1)

α ! β !

[ ∫

Ω

( ∫

Ω

|Dα
µDβ

ν f(µ, ν)|

× [(x − µ)2 + (y − ν)2](d−1)/2dµdν
)q

dxdy

]1/q

≤ K
∑

α+β=d+1

[ ∫

Ω

||Dα
µDβ

ν f ||
q
q,Ω

( ∫

Ω

|Ω|(d−1)q̃dµdν
)q/q̃

dxdy

]1/q

≤ K |f |d+1,q,Ω

[(
|Ω|(d−1)q̃+2

)q/q̃

|Ω|2
]1/q

= K |Ω|d+1 |f |d+1,q,Ω.

where the constant K := K1(1 + κ
Ω
)2/2 depends only on d and κ

Ω
. This

completes the proof for 1 ≤ q < ∞. The proof for q = ∞ is similar and
simpler.

Theorem 1.7 provides a bound on the Lq-distance of f to Pd. In par-
ticular, if f ∈ Cd+1(Ω), then

d(f,Pd)q,Ω := inf
p∈Pd

‖f − p‖q,Ω = O(|Ω|d+1). (1.17)

It is known, see Remark 1.5, that (1.17) is best possible in the sense that
no matter how smooth f may be, the exponent cannot be increased.

1.7. Approximation on Nonconvex Ω

In this section we extend Theorem 1.7 to the case where Ω is the closure
of an arbitrary bounded (not necessarily convex) domain. We begin by
recalling an extension theorem due to Stein [Ste70, p. 181] which applies to
bounded domains with Lipschitz smooth boundaries.

Theorem 1.8. Let Ω be a bounded domain with a Lipschitz smooth
boundary. Then there exists a linear extension operator E extending func-
tions from Ω to the convex hull co(Ω) of Ω so that for all f ∈ W d+1

q (Ω),
E(f)|Ω = f , and

‖Dα
x Dβ

y E(f)‖
q,co(Ω)

≤ K ‖Dα
xDβ

y f‖q,Ω,
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1 ≤ q ≤ ∞, and all 0 ≤ α + β ≤ d + 1. The constant K depends only on d,
q, and the Lipschitz constant of the boundary of Ω.

Here we are primarily interested in the case where Ω is a polygonal

domain, i.e., a bounded domain with a polygonal boundary. In this case the
Lipschitz constant of the boundary of Ω depends on the size of the smallest
angle (which may be either inside or outside of Ω) between successive edges
of the boundary of Ω.

Theorem 1.9. Let Ω be the closure of a bounded domain in R
2, and let

B
Ω

be the largest disk contained in co(Ω), where co(Ω) is the convex hull
of Ω. Fix d ≥ 0 and 1 ≤ q ≤ ∞. Given f ∈ W d+1

q (Ω), let Fd,B
Ω
f be the

associated averaged Taylor polynomial. Then

‖Dα
x Dβ

y

(
f − Fd,B

Ω
f
)
‖q,Ω ≤ K |Ω|d+1−α−β |f |d+1,q,Ω, (1.18)

for all 0 ≤ α + β ≤ d + 1. If Ω is convex, the constant K depends only on
d and the shape parameter κ

Ω
defined in (1.14). If Ω is not convex, K also

depends on q and the Lipschitz constant of the boundary of Ω.

Proof: After extending f to co(Ω) using Theorem 1.8, the result follows
immediately from Theorem 1.7.

1.8. Interpolation by Bivariate Polynomials

Since the linear space Pd of polynomials of degree d has dimension n :=(
d+2

2

)
, it is natural to try to use polynomials p ∈ Pd to interpolate prescribed

real values {zj}
n
j=1

at n given points A := {tj}
n
j=1

in R
2. However, as we

shall see, this is not possible for all sets A.
Suppose {gi}

n
i=1

is the set of monomials (1.2), arranged in the lexico-
graphical order (1.3). Then the interpolation problem

p(ti) = zi, i = 1, . . . , n, (1.19)

amounts to finding coefficients {cj}
n
j=1

such that

n∑

j=1

cjgj(ti) = zi, i = 1, . . . , n.

This system will have a unique solution whenever the matrix

M :=
[
gj(ti)

]n
i,j=1

(1.20)

is nonsingular.
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In contrast to the univariate case where interpolation at d + 1 distinct
points by a polynomial of degree d is always uniquely defined, in the bivari-
ate case whether or not we can interpolate arbitrary values at the points in
A depends on the location of the points. For some locations of the points
in A, the matrix M in (1.20) is singular. For example, let d = 1, and sup-
pose that A consists of three points ti = (xi, yi), i = 1, 2, 3, which lie on a
straight line y = ax + b. Then

M =




1 x1 y1

1 x2 y2

1 x3 y3



 =




1 x1 ax1 + b

1 x2 ax2 + b

1 x3 ax3 + b



 ,

which is clearly singular.
A set of points A is call poised with respect to Pd provided that the

matrix M is nonsingular. The following theorem gives sufficient conditions
on the locations of the points in a set A in order for it to be poised.

Theorem 1.10. Given d, let n :=
(
d+2

2

)
. Suppose that A = {ti}

n
i=1

:=⋃d+1

i=1
{tij}

i
j=1

is a set of distinct points in R
2 such that for some collection

{Li}
d+1

i=1
of distinct lines in the plane, for each i = 1, . . . , d + 1, the points

{tij}
i
j=1

lie on Li but not on Li+1 ∪ · · · ∪ Ld+1. Then A is poised with
respect to Pd.

Proof: We proceed by induction on d. If d = 0 the result is trivial. Now
suppose the result holds for d − 1. Let M be the matrix in (1.20), and let
c := (c1, . . . , cn) be a solution of the system Mc = 0. To show that M is
nonsingular, it suffices to show that c must be zero. This is equivalent to
showing that if p ∈ Pd satisfies

p(ti) = 0, i = 1, . . . , n, (1.21)

then p is the identically zero polynomial. For each i = 1, . . . , d + 1, let
αix + βiy = γi be the equation of the line Li.

Suppose now that p satisfies (1.21). Since p reduces to a univariate
polynomial of degree d on Ld+1 that vanishes at the d + 1 distinct points
{td+1,j}

d+1

j=1
on Ld+1, it follows that p vanishes identically on Ld+1, and so

p(x, y) = (αd+1x + βd+1y − γd+1) q(x, y),

where q is a polynomial of degree d − 1. But now since none of the points
in Ã :=

⋃d

i=1
{tij}

i
j=1

lie on Ld+1, we see that q vanishes at all of the points

in Ã, and by the inductive hypothesis must be identically zero. But then
p ≡ 0, and the proof is complete.

The following special case of Theorem 1.10 will be of interest later.
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Theorem 1.11. Let T be a triangle with vertices v1, v2, v3, and let

ξijk :=
(iv1 + jv2 + kv3)

d
, i + j + k = d. (1.22)

Then the set of
(
d+2

2

)
points A := {ξijk}i+j+k=d is poised with respect to

Pd.

ξ300

ξ210

ξ120

ξ030

ξ201

ξ102

ξ003

ξ021 ξ012

ξ111

Fig. 1.1. The points in Theorem 1.11 for d = 3.

Figure 1.1 shows the locations of the points in Theorem 1.11 for d = 3.
We now show how to explicitly express the polynomial that interpolates
given data at the points ξijk of (1.22) in terms of the Lagrange polynomials

pijk(v) :=

i−1∏

µ=0

aµ(v)

aµ(ξijk)

j−1∏

ν=0

bν(v)

bν(ξijk)

k−1∏

κ=0

cκ(v)

cκ(ξijk)
, (1.23)

where aµ, bν , cκ are linear polynomials such that

aµ(v) ∼ the line passing through the points ξµjk with µ + j + k = d,

bν(v) ∼ the line passing through the points ξiνk with i + ν + k = d,

cκ(v) ∼ the line passing through the points ξijκ with i + j + κ = d.

Here we are using the convention that a product appearing in (1.23) is
defined to be 1 when the upper limit is negative. It is clear by construction
that for all i + j + k = d, pijk is a polynomial of degree d that satisfies

pijk(ξνµκ) =

{
1, (ν, µ, κ) = (i, j, k),

0, all other ν + µ + κ = d.
(1.24)

This property of the pijk immediately implies that for every {zijk}i+j+k=d,
the unique polynomial of degree d that interpolates zijk at the points ξijk

is
p :=

∑

i+j+k=d

zijkpijk. (1.25)
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We now give a bound on how well this interpolating polynomial approxi-
mates smooth functions and their derivatives. Given a triangle T , let

ρ
T

:= the radius of the largest disk contained in T ,

|T | := the length of the longest edge of T ,

θ
T

:= the smallest angle in the triangle T .

(1.26)

By elementary trigonometry, it is easy to see that the associated shape
parameter (1.14) satisfies

κ
T

:=
|T |

ρ
T

≤
2

tan(θ
T
/2)

≤
2

sin(θ
T
/2)

. (1.27)

Theorem 1.12. Let {ξijk}i+j+k=d be the points defined in (1.22), and
let {pijk}i+j+k=d be the corresponding Lagrange polynomials (1.23). Then
there exists a constant K depending only on d and θ

T
such that for every

f ∈ Cm+1(T ) with 0 ≤ m ≤ d, the interpolating polynomial

pf :=
∑

i+j+k=d

f(ξijk)pijk (1.28)

satisfies

‖Dα
x Dβ

y (f − pf )‖
T
≤ K |T |m+1−α−β |f |m+1,T , (1.29)

for all 0 ≤ α + β ≤ m.

Proof: Fix (x, y) ∈ T , and let ξijk = (ξx
ijk , ξ

y
ijk) for all i + j + k = d. Using

the Taylor expansion of f about (x, y), we have

f(ξijk) =
∑

0≤µ+ν≤m

1

µ ! ν !
Dµ

xDν
yf(x, y)(ξx

ijk − x)µ(ξy
ijk − y)ν

+
∑

µ+ν=m+1

1

µ ! ν !
Dµ

xDν
yf(η)(ξx

ijk − x)µ(ξy
ijk − y)ν ,

where η := η(x, y, ξijk) is some point on the line from ξijk to (x, y). Then
for any nonnegative integers α and β with α + β ≤ m + 1, we have

Dα
xDβ

y pf (x, y) =
∑

i+j+k=d

f(ξijk)Dα
xDβ

y pijk(x, y) =

∑

0≤µ+ν≤m

1

µ ! ν !

∑

i+j+k=d

Dµ
xDν

yf(x, y)(ξx
ijk − x)µ(ξy

ijk − y)ν Dα
x Dβ

y pijk(x, y)

+
∑

µ+ν=m+1

1

µ ! ν !

∑

i+j+k=d

Dµ
xDν

yf(η)(ξx
ijk − x)µ(ξy

ijk − y)ν Dα
x Dβ

y pijk(x, y).
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Now since interpolation reproduces polynomials up to degree d, we have

∑

i+j+k=d

(ξx
ijk − x)µ(ξy

ijk − y)ν Dα
x Dβ

y pijk(x, y)

= Dα
uDβ

v

∑

i+j+k=d

(ξx
ijk − x)µ(ξy

ijk − y)ν pijk(u, v)
∣∣∣
(u,v)=(x,y)

= Dα
uDβ

v (u − x)µ(v − y)ν
∣∣∣
(u,v)=(x,y)

=

{
α ! β ! , if (µ, ν) = (α, β),

0, otherwise.

This implies that the expression on the second line in the formula for
Dα

x Dβ
y pf(x, y) reduces to Dα

x Dβ
y f(x, y), and it follows that

∣∣Dα
xDβ

y [f(x, y) − pf (x, y)]
∣∣ =

∣∣∣
∑

µ+ν=m+1

1

µ ! ν !

∑

i+j+k=d

Dµ
xDν

yf(η)

× (ξx
ijk − x)µ(ξy

ijk − y)ν Dα
x Dβ

y pijk(x, y)
∣∣∣

≤ K1 |T |m+1
∑

i+j+k=d

‖Dα
x Dβ

y pijk‖T
|f |m+1,T .

By Theorem 1.2,

‖Dα
xDβ

y pijk‖T
≤

K2

ρ
α+β
T

‖pijk‖T
.

But by (1.23), it is easy to see that

‖pijk‖T
≤ dd, i + j + k = d.

Combining these facts shows that

‖Dα
xDβ

y (f − pf )‖
T
≤ K3

|T |m+1

ρ
α+β
T

|f |m+1,T . (1.30)

The bound (1.29) then follows immediately from (1.27).

The exact size of the constant K appearing in Theorem 1.12 can be
determined by a close inspection of the proof. For example, if f ∈ C2(T ),
then the linear polynomial pf that interpolates at the vertices satisfies

‖f − pf‖T ≤ |T |2 |f |2,T . (1.31)
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1.9. Remarks

Remark 1.1. It is standard to refer to polynomials in the spaces P1,P2,P3,
P4,P5, . . . as linear, quadratic, cubic, quartic, quintic, etc.

Remark 1.2. Given any index set Λ = {(iν, jν)}m
ν=1

, we can define an
associated linear space of polynomials PΛ = span{xiyj}(i,j)∈Λ, see Chap-
ter 13 in [Sch81]. The space Pd of polynomials of degree d corresponds to
the choice Λ = {(i, j) : 0 ≤ i + j ≤ d}. In the literature such polynomials
are often referred to as being of total degree d. For simplicity, throughout
this book we simply say that the polynomials in Pd are of degree d.

Remark 1.3. The choice Λ = {(i, j) : 0 ≤ i ≤ d, 0 ≤ j ≤ d̃} leads to the
class Pd,d̃ of tensor polynomials of degree (d, d̃). For example, P1,1, P2,2,
and P3,3 are the well-known bilinear, biquadratic, and bicubic polynomi-
als. These classes of polynomials are most suitable for use on rectangular
domains.

Remark 1.4. The exponent in the estimate (1.10) for the distance of a
function f ∈ Cd+1(Ω) to the space of polynomials Pd is best possible in the
sense that the exponent cannot be increased from d + 1 to anything larger.
To see this, let Ω be the triangle with vertices at (0, 0), (h, 0), (h/2, h/2),
and let F := xd+1/(d + 1) ! . Then |Ω| = h and |F |d+1,Ω = 1. Now suppose
there exists a polynomial p of degree d such that

‖F − p‖Ω ≤ K |Ω|d+1+ǫ |F |d+1,Ω = K hd+1+ǫ,

with some ǫ > 0. But then

( h

d + 1

)d+1

= |△d+1F (0, 0)| = |△d+1(F − p)(0, 0)|

≤ 2d+1‖F − p‖Ω ≤ 2d+1K hd+1+ǫ,

where △ is the forward difference operator with spacing h/(d+1) operating
on the x-variable. This is a contradiction for sufficiently small h.

Remark 1.5. The exponent in the estimate (1.17) for the distance of a
function f ∈ Cd+1(Ω) to the space of polynomials Pd is also best possible
in the sense that the exponent cannot be increased from d + 1 to anything
larger. To see this, fix 1 ≤ q < ∞, and let Ω and F be as in the previous
remark. Suppose there exists a polynomial p of degree d such that

‖F − p‖q,Ω ≤ K |Ω|d+1+ǫ |F |d+1,q,Ω ≤ K hd+1+ǫ (h/2)2/q

with some ǫ > 0. Let T̃ be the triangle with vertices (0, 0), (h/2, 0), and
(h/4, h/4). It is easy to see that for any g ∈ C(Ω),

‖g(· + u(1, 0))‖
q,T̃

≤ ‖g‖q,Ω,
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for all 0 ≤ u ≤ h/2. Let △ be the forward difference operator with spacing
t := h/(2(d + 1)) acting on the x-variable. Then

( h

2(d + 1)

)d+1

(h2/16)1/q = ‖△d+1F‖
q,T̃

= ‖△d+1(F − p)‖
q,T̃

≤

d+1∑

i=0

(
d + 1

i

)
‖(F − p)(· + it(1, 0))‖

q,T̃

≤ 2d+1‖F − p‖q,Ω ≤ 2d+1Khd+1+ǫ(h/2)2/q.

This is a contradiction for sufficiently small h.

Remark 1.6. Theorem 1.9 can be extended to work with different norms
on the right- and left-hand sides. It can be shown by standard techniques
(see e.g. [Sch81]) that there exists a constant K depending on the same
quantities as in Theorem 1.9, such that if f ∈ Wm+1

q (Ω) for some 1 ≤ q ≤

∞, then

‖Dα
xDβ

y (f − Fm,BΩ
f)‖

q̃,Ω
≤ K |Ω|m+1−α−β+1/q̃−1/q |f |m+1,q,Ω, (1.32)

for all 0 ≤ α + β ≤ m + 1 and all 1 ≤ q̃ ≤ q ≤ ∞.

Remark 1.7. A special version of Theorem 1.10 was originally established
in [ChunY77]. An explicit formula for the determinant of the matrix M in
(1.20) in the special case corresponding to Theorem 1.10 can be found in
[ChuL87a]. To state this formula, let mk :=

(
k+2

2

)
for k = 0, . . . , d, and let

dist(u, v) and dist(w, Lk) denote the distance between two points u and v,
and between a point w and a line Lk, respectively. Then

detM = ±

d∏

k=1

[ ∏

mk−1+1≤i<j≤mk

dist(tj , ti)

mk−1∏

p=1

dist(tp, Lk)
]
.

Remark 1.8. The sufficient conditions of Theorem 1.10 are quite restric-
tive. It is easy to see that “almost all” sets of

(
d+2

2

)
distinct points in

R
2 are poised for interpolation by Pd. Indeed, the determinant D of the

matrix M appearing in (1.20) is a polynomial function in the 2n variables
x1, y1, . . . , xn, yn, where ti = (xi, yi) are the interpolation nodes. Since D

is nontrivial (we know there are some point sets where it does not vanish),
a set of points can be nonpoised only if it lies in the zero set of D. But
since D is a polynomial, this is a set of measure zero in R

2n.
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Remark 1.9. In the finite-element literature, the Bramble–Hilbert lemma
[BraH71] has often been used to give error bounds for approximation pro-
cesses which reproduce polynomials locally. Here we do not use this lemma,
and instead have constructed more explicit quasi-interpolation methods.
This has the advantage that it gives more information on the nature of the
constants involved.

1.10. Historical Notes

Polynomials have played a key role in approximation theory and numerical
analysis for hundreds of years, and there is no need to try to trace their
history here. However, we make a few remarks about the specific results of
this chapter.

The Markov inequality is well known for univariate polynomials, but
seems to be less well known for bivariate polynomials. For the maximum
norm two different proofs can be found in [Coa66, Wil74]. In Section 2.12
we give a completely different proof of the inequality for general q-norms.
It is based on our paper [LaiS98].

The approximation power of polynomials is a major topic in approx-
imation theory. However, most of the results in the classical literature
express the order of approximation in terms of the degree d of the polyno-
mials (so-called Jackson theorems) rather than in terms of the size of the
domain (so-called Whitney theorems). Whitney type results on triangles
and clusters of triangles are essential to giving error bounds for spline ap-
proximation and for the finite-element method. We have not attempted
to trace the history of such theorems, but two early references are [Coa66,
CiaR72]. Our proof of Theorem 1.7 and the construction of averaged Taylor
polynomials follows [BreS94].

Sobolev spaces play a major role in approximation. For a detailed
treatment, see [Ada75].

Interpolation by univariate polynomials is well understood, and is
treated in every numerical analysis text. In the univariate case, every set of
d + 1 distinct nodes is poised for interpolation by polynomials of degree d.
The multivariate problem is much more difficult. Theorem 1.10 is a more
general version of a result of Chung–Yao [ChunY77]. More explicit results
on the determinant of the corresponding collocation matrix were given in
[ChuL87a], see also [Bos91]. For error bounds for Chung–Yao interpolation,
see [Boo97].



Bernstein–Bézier Methods
for Bivariate Polynomials

In this chapter we show that a bivariate polynomial can be written in an es-
pecially convenient form in terms of the barycentric coordinates associated
with a triangle. We then discuss some properties of this form, and show
how to use it in practice to efficiently evaluate polynomials, their deriva-
tives, integrals, and inner products. In addition, we discuss the Markov
inequality, smoothness conditions for polynomials on adjoining triangles,
subdivision, degree raising, dual bases, and the Bernstein approximation
operator.

2.1. Barycentric Coordinates

In this section we discuss barycentric coordinates, which as we shall see, are
much more useful than the usual Cartesian coordinates for working with
polynomials on triangles. Suppose T is a nondegenerate triangle (one with
nonzero area) in R

2 with vertices

vi := (xi, yi), i = 1, 2, 3.

It will be convenient to write T := 〈v1, v2, v3〉. Throughout this book we
will assume that the vertices are numbered in counter-clockwise order.

Lemma 2.1. Every point v := (x, y) ∈ R
2 has a unique representation in

the form

v = b1v1 + b2v2 + b3v3, (2.1)

with

1 = b1 + b2 + b3. (2.2)

The numbers b1, b2, b3 are called the barycentric coordinates of the point v

relative to the triangle T .

Proof: In matrix form, equations (2.1) and (2.2) become




1 1 1
x1 x2 x3

y1 y2 y3






b1

b2

b3


 =




1
x

y


 . (2.3)
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The area of T is given by

AT =
1

2
det (M), (2.4)

where M is the matrix in (2.3). AT is positive whenever T is nondegenerate
and its vertices are numbered in counter-clockwise order. Thus, (2.3) is a
nonsingular system, and by Cramer’s rule

b1 =
1

2AT

det




1 1 1
x x2 x3

y y2 y3


 , (2.5)

with similar expressions for b2 and b3.

v1

v2 v3

v

v1

v2 v3

T3 T2

T1

Fig. 2.1. Barycentric coordinates of a point v in a triangle T .

Barycentric coordinates have an interesting geometric interpretation.
Given v ∈ T , let T1 := 〈v, v2, v3〉, T2 := 〈v, v3, v1〉, and T3 := 〈v, v1, v2〉, see
Figure 2.1. Then the barycentric coordinates of v relative to T are given
by

bi =
ATi

AT

, i = 1, 2, 3. (2.6)

For this reason, barycentric coordinates are also referred to as areal coordi-

nates.
It is clear from their definition that the barycentric coordinates of a

point v = (x, y) vary as we move the point v, i.e., the bi are functions of v.
More specifically, we have the following result.

Lemma 2.2. For each i = 1, 2, 3, the function bi is a linear polynomial

in x and y which assumes the value 1 at the vertex vi and vanishes at all
points on the edge of T opposite to vi.

Proof: Expanding (2.5) by the first column, we get

b1 =
(x2y3 − y2x3) − x(y3 − y2) + y(x3 − x2)

2AT

,

which shows that b1 is a linear polynomial. The other two assertions about
b1 follow directly from (2.5). The proofs for b2 and b3 are similar.
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v1

v2 v3

+ −−

+ + − + − +

+ + +

− + − −− +

− + +

Fig. 2.2. Subregions of R
2

defined by the signs of the barycentric coordinates.

We now show that the location of a point v ∈ R
2 relative to a triangle

T is indicated by the signs of its barycentric coordinates.

Theorem 2.3. Given a triangle T , let {Ωi}
6

i=0
be the interiors of the seven

regions obtained by extending the edges of T indefinitely, see Figure 2.2.
Then for each fixed 0 ≤ i ≤ 6, the signs of each of the barycentric coordi-
nates b1, b2, b3 are the same for all points v ∈ Ωi. In particular, a point v

lies in the interior of T if and only if all three of its barycentric coordinates
are positive.

Proof: As noted above, each bi is a linear polynomial which vanishes on
the line containing the edge opposite to vi. Thus it has one sign on one side
of the line, and the opposite sign on the other side. The fact that bi > 0
for points v ∈ T follows from (2.6).

2.2. Bernstein Basis Polynomials

Throughout this section let T be a fixed triangle, and for each v = (x, y) ∈
R

2, let b1, b2, b3 be its barycentric coordinates. Given nonnegative integers
i, j, k summing to d, let

Bd
ijk :=

d !

i ! j ! k !
bi
1
b
j
2
bk
3
. (2.7)

Since, as observed in the previous section, each of the bi is a linear polyno-
mial in x and y, it follows that Bd

ijk(x, y) is a polynomial of degree d. We
call these polynomials the Bernstein basis polynomials of degree d relative to

T . At times it will be convenient to allow negative subscripts, in which case
we define Bd

ijk to be identically zero by convention. Often we shall write

Bd
ijk(v) using v as the argument rather than (x, y).

Bernstein basis polynomials have many nice properties. For example,
it follows from the trinomial expansion

1 = (b1 + b2 + b3)
d

=
∑

i+j+k=d

d !

i ! j ! k !
bi
1
b
j
2
bk
3

(2.8)
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that the Bd
ijk form a partition of unity, i.e.,

∑

i+j+k=d

Bd
ijk(v) ≡ 1, for all v ∈ R

2
. (2.9)

Combining this with Theorem 2.3 we see that

0 ≤ Bd
ijk(v) ≤ 1, for all v in the triangle T . (2.10)

We now show that the set of Bernstein basis polynomials forms a basis for
Pd.

Theorem 2.4. The set

Bd := {Bd
ijk}i+j+k=d (2.11)

of Bernstein basis polynomials is a basis for the space of polynomials Pd.

Proof: Since the number of Bernstein basis polynomials in Bd is equal to
the dimension

(
d+2

2

)
of Pd, we need only establish that all of the polynomials

xνyµ for 0 ≤ ν+µ ≤ d are in the span of Bd. The partition of unity property
(2.9) shows that 1 ∈ span(Bd). Now by (2.1),

[
x

y

]
= b1

[
x1

y1

]
+ b2

[
x2

y2

]
+ b3

[
x3

y3

]
,

and using (2.9) with d − 1, we have

x = b1x1 + b2x2 + b3x3

= (b1x1 + b2x2 + b3x3)
( ∑

i+j+k=d−1

Bd−1

ijk (x, y)
)

=
∑

i+j+k=d

1

d

(
ix1 + jx2 + kx3

)
Bd

ijk(x, y). (2.12)

The analogous relation for y is

y =
∑

i+j+k=d

1

d

(
iy1 + jy2 + ky3

)
Bd

ijk(x, y).

This shows that both x and y are in span(Bd).
We now proceed by induction. Assuming the theorem holds for poly-

nomials of degree d − 1, we know that

xν−1yµ =
∑

i+j+k=d−1

cijkBd−1

ijk (x, y)
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for some coefficients cijk. But then

xνyµ = (b1x1 + b2x2 + b3x3)
∑

i+j+k=d−1

cijkBd−1

ijk (x, y).

Multiplying these sums out and collecting terms, we have

xνyµ =
∑

i+j+k=d

dijkBd
ijk(x, y)

for some constants dijk . This completes the proof.

We conclude this section by showing that the Bernstein basis function
Bd

ijk has a unique maximum at the point ξijk := (iv1 + jv2 + kv3)/d.

Theorem 2.5. For any i + j + k = d,

Bd
ijk(v) < Bd

ijk(ξijk), v ∈ T, v 6= ξijk .

Proof: We consider first i, j, k > 0, in which case ξijk is in the interior
of T and Bd

ijk vanishes on all three edges of T . In order to identify an

extreme point of Bd
ijk , we need to compute its derivative in two different

directions. Suppose the vertices of T are v1, v2, v3. For any v ∈ T , applying
Lemma 2.11 below, we get

Dv1−v2
Bd

ijk(v) = Bd
ijk(v)

(
i

b1

−
j

b2

)
,

Dv1−v3
Bd

ijk(v) = Bd
ijk(v)

(
i

b1

−
k

b3

)
.

Since Bd
ijk(v) > 0, these two expressions vanish simultaneously if and only

if
ib2 − jb1 = 0,

i(1 − b1 − b2) − kb1 = 0.

The unique solution of this system is (b1, b2, b3) = (i/d, j/d, k/d), which
are the barycentric coordinates of ξijk. It follows that Bd

ijk takes a unique
maximum at ξijk . The proof for other choices of i, j, k is similar.

2.3. The B-form

In view of Theorem 2.4, given any triangle T , every polynomial p of degree
d can be written uniquely in the form

p =
∑

i+j+k=d

cijkBd
ijk, (2.13)
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ξ300

ξ210

ξ120

ξ030

ξ201

ξ102

ξ003

ξ021 ξ012

ξ111

c300

c210

c120

c030

c201

c102

c003

c021 c012

c111

Fig. 2.3. Domain points ξijk and B-coefficients cijk of a cubic polynomial.

where Bd
ijk are the Bernstein basis polynomials associated with T . We refer

to the representation (2.13) as the B-form of p relative to T . We call the
cijk the B-coefficients of p, and define the associated set of domain points to
be

Dd,T := {ξijk := (iv1 + jv2 + kv3)/d}i+j+k=d. (2.14)

For later use, we need to agree on an ordering for the
(

d+2

2

)
coefficients

in (2.13). In the sequel we shall always assume that they are in lexicograph-

ical order. This means that cνµκ comes before cijk provided ν > i, or if
ν = i, then µ > j, or if ν = i and µ = j, then κ > k. Thus, for example,
for d = 3 the order is

c300, c210, c201︸ ︷︷ ︸, c120, c111, c102︸ ︷︷ ︸, c030, c021, c012, c003︸ ︷︷ ︸ .

We can now think of the coefficients of a polynomial written in the
B-form (2.13) as components of a vector c. We already encountered the
domain points in Theorem 1.11, where we noticed that they are uniformly
spaced in T . Figure 2.3 (left) shows the locations of the domain points ξijk

for d = 3. In Figure 2.3 (right) we have placed each coefficient cijk next to
its corresponding domain point ξijk to indicate the association. At times
we will write Bd

ξ to stand for Bd
ijk when ξ = ξijk.

For later use we introduce two additional pieces of notation. Given
0 ≤ m ≤ d, we refer to the set of domain points RT

m(v1) := {ξd−m,j,m−j}
m
j=0

as the ring of radius m around the vertex v1. We refer to the set DT
m(v1) :=

∪m
n=0

RT
n (v1) as the disk of radius m around the vertex v1. The rings and

disks around v2 and v3 are defined similarly.
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2.4. Stability of the B-form Representation

In this section we show that the set Bd of Bernstein basis polynomials is
a stable basis for Pd in the sense that for any polynomial p written in the
B-form (2.13), its size measured in the uniform norm is comparable to the
size of its coefficient vector c measured by

‖c‖∞ := max
i+j+k=d

|cijk|. (2.15)

Let {g1, . . . , gn} be the Bernstein basis polynomials of degree d, ar-
ranged in lexicographical order, and let {t1, . . . , tn} be the associated do-
main points (2.14) arranged in the same order, where n :=

(
d+2

2

)
. Theo-

rem 2.4 together with Theorem 1.11 imply that the matrix

M :=
[
gj(ti)

]n
i,j=1

(2.16)

is nonsingular. Let
K := ‖M−1‖∞, (2.17)

where ‖M‖∞ := max{‖Mc‖∞/‖c‖∞ : c 6= 0} is the usual infinity matrix
norm. Since the entries of M depend only on the barycentric coordinates
of the points ξijk, it follows that both M and K depend only on d.

Theorem 2.6. Let p be a polynomial written in the B-form (2.13) with
coefficient vector c. Then

‖c‖∞
K

≤ ‖p‖T ≤ ‖c‖∞, (2.18)

where K is the constant in (2.17) and depends only on d.

Proof: We can compute the coefficient vector c (whose components are
the cijk in lexicographical order) from the system of equations Mc = r,
where r := (p(t1), . . . , p(tn))T . But then

‖c‖∞ = ‖M−1r‖∞ ≤ ‖M−1‖∞ ‖r‖∞.

Since ‖r‖∞ ≤ ‖p‖T , this establishes the first inequality in (2.18). The
second inequality follows immediately from the nonnegativity (2.10) and
the partition of unity property (2.9) of the Bernstein basis polynomials.

We now extend this stability result to the q-norms.

Theorem 2.7. Given 1 ≤ q < ∞, there exists a constant K > 0 depending
only on d such that if p is a polynomial written in the B-form (2.13), then

A
1/q

T

K
‖c‖q ≤ ‖p‖q,T ≤ A

1/q

T ‖c‖q. (2.19)
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Proof: By Theorem 2.6, ‖p‖T ≤ ‖c‖∞ ≤ K1‖p‖T . Combining this with
(1.4) and ‖c‖q

q ≤
(

d+2

2

)
‖c‖q

∞ yields the first inequality. Combining it with
(1.4) and ‖c‖∞ ≤ ‖c‖q yields the second inequality.

2.5. The de Casteljau Algorithm

It is clear from Theorem 2.4 that to store a polynomial written in the B-
form (2.13), we need only store its coefficient vector c. We now present an
efficient and stable algorithm for evaluating p at a given point v := (x, y).
The algorithm is based on the simple recurrence relation

Bd
ijk = b1B

d−1

i−1,j,k + b2B
d−1

i,j−1,k + b3B
d−1

i,j,k−1
, all i + j + k = d, (2.20)

which is an immediate consequence of the definition of Bd
ijk . Here we are

using the convention agreed to in Section 2.2 whereby expressions with
negative subscripts are to be considered to be zero. Thus, for example,

Bd
d00

= b1B
d−1

d−1,0,0 + b2B
d−1

d,−1,0 + b3B
d−1

d,0,−1
= b1B

d−1

d−1,0,0.

Theorem 2.8. Let p be a polynomial written in the B-form (2.13) with
coefficients

c
(0)

ijk := cijk, i + j + k = d. (2.21)

Suppose v has barycentric coordinates b := (b1, b2, b3), and for all ℓ =
1, . . . , d, let

c
(ℓ)

ijk := b1c
(ℓ−1)

i+1,j,k + b2c
(ℓ−1)

i,j+1,k + b3c
(ℓ−1)

i,j,k+1
, (2.22)

for i + j + k = d − ℓ. Then

p(v) =
∑

i+j+k=d−ℓ

c
(ℓ)

ijkBd−ℓ
ijk (v), (2.23)

for all 0 ≤ ℓ ≤ d. In particular,

p(v) = c
(d)

000
. (2.24)

Proof: We proceed by induction on ℓ. Equation (2.23) is trivially true for
ℓ = 0. Now assume it holds for ℓ − 1. Then using the recursion relation
(2.20) for Bernstein basis polynomials of degree d − ℓ + 1, we have

p(v) =
∑

i+j+k=d−ℓ+1

c
(ℓ−1)

ijk Bd−ℓ+1

ijk (v)

=
∑

i+j+k=d−ℓ+1

c
(ℓ−1)

ijk

[
b1B

d−ℓ
i−1,j,k(v) + b2B

d−ℓ
i,j−1,k(v) + b3B

d−ℓ
i,j,k−1

(v)
]
.
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This can be split into three sums. The first sum can be rewritten as

∑

i+j+k=d−ℓ+1, i≥1

b1c
(ℓ−1)

ijk Bd−ℓ
i−1,j,k(v) =

∑

i+j+k=d−ℓ

b1c
(ℓ−1)

i+1,j,kBd−ℓ
ijk (v),

with similar formulae for the other two sums. Combining them leads to
(2.23). Finally, for ℓ = d, (2.23) reduces to (2.24) in view of the fact that
the only Bernstein polynomial of degree zero is B0

000
≡ 1.

Theorem 2.8 immediately leads to an algorithm for evaluating a poly-
nomial p in the B-form (2.13).

Algorithm 2.9. (de Casteljau)
For ℓ = 1, . . . , d

For all i + j + k = d − ℓ

c
(ℓ)

ijk := b1c
(ℓ−1)

i+1,j,k + b2c
(ℓ−1)

i,j+1,k + b3c
(ℓ−1)

i,j,k+1

Discussion: By Theorem 2.8 the value of p(v) is given by c
(d)

000
. The

operation count (multiplications and divisions) for this algorithm is (d3 +
3d2 +2d)/2 = 3[

(
d+1

2

)
+
(
d

2

)
+ · · ·+

(
2

2

)
]. There is a simplified version of this

algorithm if v falls on an edge of T , see Remark 2.5.

c200

c110 c101

c020 c011
c002

c
(1)

100

c
(1)

010
c
(1)

001

c
(2)

000

Fig. 2.4. The intermediate coefficients produced by the de Casteljau algorithm.

Figure 2.4 illustrates the progress of the algorithm in the case d = 2.
It produces a sequence of coefficient vectors c(ℓ) of length mℓ :=

(
d−ℓ+2

2

)

whose components are obtained from the coefficients at the previous level
by taking combinations of three neighboring coefficients at a time, using
the weights (b1, b2, b3). For points v ∈ T , this algorithm is numerically
very stable, since in this case the barycentric coordinates b1, b2, b3 are all
nonnegative and add to one, and so each step of the algorithm involves
taking a convex combination of previously computed quantities.
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The de Casteljau algorithm has several very important consequences,
some of which we will explore in more detail below. It is of interest to

note that the intermediate coefficients c
(ℓ)

ijk produced by the de Casteljau

algorithm are in fact polynomials of degree ℓ in v. For example,

c
(1)

ijk = ci+1,j,kb1 + ci,j+1,kb2 + ci,j,k+1b3, i + j + k = d − 1, (2.25)

are linear polynomials since b1, b2, and b3 are each linear polynomials in v.
More explicitly, we have the following result.

Theorem 2.10. The coefficients in the de Casteljau algorithm and in equa-
tion (2.23) are given by

c
(ℓ)

ijk =
∑

ν+µ+κ=ℓ

ci+ν,j+µ,k+κBℓ
νµκ(v), i + j + k = d − ℓ. (2.26)

Proof: We first rewrite (2.25) as

c
(1)

ijk = (b1E1 + b2E2 + b3E3)cijk ,

where E1cijk = ci+1,j,k, E2cijk = ci,j+1,k and E3cijk = ci,j,k+1. With this
notation, we can write the formula in Algorithm 2.9 as

c
(ℓ)

ijk = (b1E1 + b2E2 + b3E3)c
(ℓ−1)

ijk .

We now use the formula again for c
(ℓ−1)

ijk and repeat the process ℓ−1 times.
Using a minor variant of the trinomial expansion (2.8), this leads to

c
(ℓ)

ijk = (b1E1 + b2E2 + b3E3)
ℓcijk =

∑

ν+µ+κ=ℓ

Bℓ
νµκ(v)Eν

1
E

µ
2
Eκ

3
cijk

=
∑

ν+µ+κ=ℓ

ci+ν,j+µ,k+κBℓ
νµκ(v).

2.6. Directional Derivatives

Suppose u is a vector in R
2. Then for any differentiable function f , we

define its directional derivative at v with respect to u to be

Duf(v) :=
d

dt
f
(
v + tu

)∣∣∣
t=0

. (2.27)

In this section we present formulae for directional derivatives of a polyno-
mial written in B-form.
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In working with directional derivatives, it is important to pay attention
to the difference between u and v appearing in (2.27): v is a point in R

2,
and u is a vector. Each point v := (vx, vy) in R

2 is uniquely defined by its
barycentric coordinates (b1, b2, b3). Each vector u is also uniquely described
by a triple (a1, a2, a3), namely

ai := αi − βi, i = 1, 2, 3,

where (α1, α2, α3) and (β1, β2, β3) are the barycentric coordinates of two
points w and w̃ such that u := w−w̃. Note that the barycentric coordinates
b1, b2, b3 of v sum to 1, while the a1, a2, a3 describing u sum to 0. We call
the triple (a1, a2, a3) the directional coordinates of u.

Lemma 2.11. Suppose u is a vector whose directional coordinates are
(a1, a2, a3). Then for any i + j + k = d,

DuBd
ijk(v) = d

[
a1B

d−1

i−1,j,k(v) + a2B
d−1

i,j−1,k(v) + a3B
d−1

i,j,k−1
(v)
]
. (2.28)

Proof: Suppose bi := bi(v), i = 1, 2, 3, are the barycentric coordinates of
the point v. Then the barycentric coordinates of the point v + tu are

(
b1 + ta1, b2 + ta2, b3 + ta3

)
,

and thus

Bd
ijk(v + tu) =

d !

i ! j ! k !

[
(b1 + ta1)

i(b2 + ta2)
j(b3 + ta3)

k
]
.

Now differentiating with respect to t and evaluating at t = 0, we get

DuBd
ijk(v) =

d !

i ! j ! k !

[
ibi−1

1
a1b

j
2
bk
3

+ bi
1
jb

j−1

2
a2b

k
3

+ bi
1
b
j
2
kbk−1

3
a3

]
,

which immediately gives (2.28).

In using (2.28), it is important to keep in mind our convention that
Bernstein basis polynomials with negative subscripts are taken to be iden-
tically zero.

We also note that in defining the directional derivative Du, we did not

assume that u is a unit vector. In fact, the value of Dup will in general
depend on the length of u relative to the size of T as well as its direction. For
a specific example, suppose T has vertices v1, v2, v3 and let w = (v1 +v2)/2.
Then the direction vector u := v2 − v1 corresponds to the triple (−1, 1, 0),
while the direction vector ũ := w− v1 corresponds to the triple (−.5, .5, 0).
Thus, (2.28) will give different results for the two direction vectors u and ũ,
even though they point in the same direction. For example, DuB1

010
(v) =

B0

000
(v) = 1 while DũB1

010
(v) = .5B0

000
(v) = .5, for all v ∈ T .

We are now ready to give a formula for the derivative of a general
polynomial in B-form.
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Theorem 2.12. Let p be a polynomial written in the B-form (2.13) relative
to a triangle T , and let u be a direction vector described by the triple
a := (a1, a2, a3). Then the directional derivative at v of p in the direction
u is given by

Dup(v) = d
∑

i+j+k=d−1

c
(1)

ijk(a)Bd−1

ijk (v), (2.29)

where c
(1)

ijk(a) are the quantities arising in the first step of the de Casteljau
algorithm based on the triple a.

Proof: Applying Du to (2.13), we get

Dup(v) =
∑

i+j+k=d

cijkDuBd
ijk(v).

Inserting (2.28), collecting the coefficients of Bd−1

ijk (v) for i + j + k = d− 1,
and taking account of (2.25) gives (2.29).

Equation (2.29) gives a simple formula for the coefficients of the first
derivative of a polynomial p written in B-form: they are just d times the

quantities c
(1)

ijk(a) obtained in the first step of the de Casteljau algorithm
using the triple a. Thus, to evaluate Dup at a point v with barycentric
coordinates b = (b1, b2, b3) using the de Casteljau algorithm, we simply
apply one step of the algorithm using a, followed by d − 1 steps using b.

We now give a formula for higher-order directional derivatives of p.

Theorem 2.13. Let 1 ≤ m ≤ d, and suppose we are given a set u1, . . . , um

of m directions described by the triples

a(i) := (a
(i)
1

, a
(i)
2

, a
(i)
3

), with a
(i)
1

+ a
(i)
2

+ a
(i)
3

= 0,

for i = 1, . . . , m. Then

Dum
· · ·Du1

p(v) =
d !

(d − m) !

∑

i+j+k=d−m

c
(m)

ijk (a(1), . . . , a(m))Bd−m
ijk (v),

(2.30)

where c
(m)

ijk (a(1), . . . , a(m)) are the quantities obtained after carrying out m

steps of the de Casteljau algorithm using a(1), . . . , a(m) in order.

Proof: The result follows by applying Theorem 2.12 repeatedly.

Equation (2.30) reaffirms that the m-th mixed directional derivative of
a polynomial p is a polynomial of degree d−m. To evaluate Dum

· · ·Du1
p(v)

at a point v with barycentric coordinates b := (b1, b2, b3), we simply apply
the de Casteljau algorithm to the coefficient vector of p using the triples
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a(1), a(2), . . . , a(m) in order, and then follow these m steps with an additional
d − m steps using the triple b of barycentric coordinates of v.

Since polynomials are infinitely differentiable functions, the order in
which the derivatives are taken in (2.30) does not matter. The following
lemma verifies this directly by showing that if we apply the deCasteljau
algorithm with two different triples, we get the same result no matter which
one we use first.

Lemma 2.14. Suppose c(2)(a, b) is the vector of coefficients obtained by
applying the de Casteljau algorithm to a vector c, first using the triple
a := (a1, a2, a3) and then using the triple b := (b1, b2, b3). Let c(2)(b, a) be
the result obtained if we first use b and then a. Then

c(2)(a, b) = c(2)(b, a).

Proof: It suffices to focus on what happens to a typical triangle of six
coefficients in the array c. We denote them by cijk with i + j + k = 2.
Applying the de Casteljau algorithm first with a and then with b to these
six coefficients, we get

b1(a1c200 + a2c110 + a3c101) + b2(a1c110 + a2c020 + a3c011)

+ b3(a1c101 + a2c011 + a3c002).

Reversing the use of a and b, we get

a1(b1c200 + b2c110 + b3c101) + a2(b1c110 + b2c020 + b3c011)

+ a3(b1c101 + b2c011 + b3c002).

Since these two expressions are equal, the result follows.

We can now establish the following higher-order version of (2.29) along
with its dual form.

Theorem 2.15. Let p be a polynomial written in B-form, and suppose u

is a direction vector described by a triple a as in Theorem 2.12. Then for
any 1 ≤ m ≤ d,

Dm
u p(v) =

d !

(d − m) !

∑

i+j+k=d−m

c
(m)

ijk (a)Bd−m
ijk (v), (2.31)

where c
(m)

ijk (a) are the quantities obtained after m steps of the de Casteljau
algorithm applied to the coefficients of p using the triple a. In addition,

Dm
u p(v) =

d !

(d − m) !

∑

i+j+k=m

c
(d−m)

ijk (b)Bm
ijk(u), (2.32)
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where b := b(v) := (b1, b2, b3) is the triple of barycentric coordinates of v.

Proof: The first formula is just a specialization of (2.30). The second one
follows from Lemma 2.14 and Theorem 2.8.

This result says that to evaluate Dm
u p(v), we can apply the de Casteljau

algorithm in two different ways. We can either carry out m steps of the
algorithm with the triple a describing u followed by d − m steps with the
triple b of barycentric coordinates of v, or we can reverse the process and
carry out d − m steps of the algorithm with b followed by m steps with a.

It is clear from (2.31) that the m-th order derivative restricted to the
edge 〈v2, v3〉 opposite to v1 depends only on the coefficients cijk of p with
0 ≤ i ≤ m. Referring to Figure 2.3, these are the coefficients which are in
the bottom m + 1 rows of the array of coefficients. In particular, the first
derivative depends only on the coefficients in the bottom two rows.

For later purposes, we now present a formula for the directional deriva-
tive in a direction u defined by the difference of two of the vertices of T .

Theorem 2.16. Let p be as in (2.13). Then for any 1 ≤ m ≤ d, the m-th
order directional derivative of p in the direction u = v2 − v1 is given by
(2.31) with

c
(m)

ijk :=

m∑

ℓ=0

(
m

ℓ

)
(−1)ℓci+ℓ,j+m−ℓ,k, i + j + k = d − m. (2.33)

Proof: For this direction we have a = (−1, 1, 0), and so by (2.26),

c
(m)

ijk (a) =
∑

ν+µ=m

m ! (−1)ν

ν ! µ !
ci+ν,j+µ,k, i + j + k = d − m,

which immediately reduces to (2.33).

The expression (2.33) is just the m-th forward difference of m + 1
consecutive coefficients corresponding to domain points lying on a line par-
allel to the left edge of the triangular tableau of coefficients of p. Similar
formulae hold for the derivatives in the directions v3 − v1 and v3 − v2.

2.7. Derivatives at a Vertex

In this section we investigate the connection between the derivatives of a
polynomial p at a vertex and its B-coefficients corresponding to domain
points in a disk (see page 23) around that vertex.

The following lemma is easily proved by double induction. A set M of
pairs of nonnegative integers is called a lower set if for any (m, n) ∈ M , all
pairs of the form (i, j) with 0 ≤ i ≤ m and 0 ≤ j ≤ n also belong to M .
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Lemma 2.17. Suppose that M is a lower set, and that

f(m, n) =

m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)
(−1)i+jg(i, j), all (m, n) ∈ M.

Then

g(i, j) =

i∑

m=0

j∑

n=0

(
i

m

)(
j

n

)
(−1)m+nf(m, n), all (i, j) ∈ M.

Theorem 2.18. Let T := 〈v1, v2, v3〉, and fix 0 ≤ ρ ≤ d. Then the set of
derivatives {Dm

v2−v1
Dn

v3−v1
p(v1)}m+n≤ρ can be computed from the set of

coefficients of p corresponding to domain points lying in the disk DT
ρ (v1)

and vice versa. Moreover,

|Dm
v2−v1

Dn
v3−v1

p(v1)| ≤
2m+n d !

(d − m − n) !
max

ξ∈DT
m+n

(v1)

|cξ|, all m + n ≤ ρ,

(2.34)
and

|cξ| ≤ 2ρ max
m+n≤ρ

|Dm
v2−v1

Dn
v3−v1

p(v1)|, all ξ ∈ DT
ρ (v1). (2.35)

Similar assertions hold for v2 and v3.

Proof: Evaluating (2.30) at v1, we get

Dm
v2−v1

Dn
v3−v1

p(v1)

=
(−1)m+nd !

(d − m − n) !

m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)
(−1)i+jcd−i−j,i,j ,

(2.36)

for any 0 ≤ m + n ≤ d. All of the coefficients in (2.36) lie in the disk
DT

m+n(v1), and (2.34) follows immediately.
To establish the converse, we apply Lemma 2.17 to (2.36) to get

cd−i−j,i,j =

i∑

m=0

j∑

n=0

(
i

m

)(
j

n

)
(d − m − n) !

d !
Dm

v2−v1
Dn

v3−v1
p(v1), (2.37)

which immediately gives (2.35).

We conclude this section with a useful variant of Theorem 2.18. As
before, given a triangle T , we write ρ

T
for the radius of the largest disk

that can be inscribed in T .
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Theorem 2.19. Let T := 〈v1, v2, v3〉, and fix 0 ≤ ρ ≤ d and 1 ≤ i ≤ 3.
Then the set of derivatives {Dm

x Dn
y p(vi)}m+n≤ρ can be computed from the

set of coefficients of p corresponding to domain points lying in the disk
DT

ρ (vi), and vice versa. Moreover, for each 1 ≤ i ≤ 3,

|Dm
x Dn

y p(vi)| ≤
d !

(d − m − n) !
ρ
−(m+n)

T max
ξ∈DT

m+n
(vi)

|cξ|, all m + n ≤ ρ,

(2.38)
and

|cξ| ≤ 2ρ

ρ∑

ν=0

2ν |T |ν max
m+n=ν

|Dm
x Dn

y p(vi)|, all ξ ∈ DT
ρ (vi). (2.39)

Proof: Suppose vi := (xi, yi) for i = 1, 2, 3. We first establish (2.38)
for i = 1. The other vertices can be treated in the same way. First we
note that the unit direction vector pointing in the direction of the x-axis
has directional coordinates (a1, a2, a3) := (y2 − y3, y3 − y1, y1 − y2)/2AT ,
where AT is the area of T . Similarly, the unit direction vector pointing
in the direction of the y-axis has directional coordinates (ã1, ã2, ã3) :=
(x3 − x2, x1 − x3, x2 − x1)/2AT . Using the fact that the area of a triangle
is equal to its perimeter times ρ

T
/2, it follows that

ρ
T

2

(
|y2 − y3| + |y3 − y1| + |y1 − y2|

)
≤ AT ,

ρ
T

2

(
|x2 − x3| + |x3 − x1| + |x1 − x2|

)
≤ AT .

(2.40)

This implies

|a1| + |a2| + |a3| ≤
1

ρ
T

,

|ã1| + |ã2| + |ã3| ≤
1

ρ
T

.

(2.41)

By Theorem 2.13 we can compute the coefficients of Dm
x Dn

y p by carrying
out m + n steps of the deCasteljau algorithm starting with the coefficients
of p. By (2.41) the coefficients obtained in step ℓ are at most ρ−1

T as large
as those in step ℓ − 1, and (2.38) follows.

To prove (2.39), we use the elementary identities

Dv2−v1
p(v1) = (x2 − x1)Dxp(v1) + (y2 − y1)Dyp(v1),

Dv3−v1
p(v1) = (x3 − x1)Dxp(v1) + (y3 − y1)Dyp(v1).

Then (2.39) follows directly from (2.35).
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2.8. Cross Derivatives

Let T := 〈v1, v2, v3〉, and suppose u is some vector which is not parallel
to the edge e := 〈v2, v3〉. Then we say that the directional derivative Du

is a cross derivative to e. At times it may be convenient to take u to be
perpendicular to e, but we do not require this in general. Also, we do not
require that u be a unit vector. In this section we explore the connection
between the B-coefficients of a polynomial p defined on T and its cross
derivatives evaluated at points v lying on the edge e.

First we examine the formulae for computing cross derivatives from
the B-coefficients {cijk}i+j+k=d of p. Suppose a := (a1, a2, a3) is the triple
of directional coordinates of u. Then by Theorem 2.15,

Dm
u p(v) =

d !

(d − m) !

∑

j+k=d−m

c
(m)

0jk (a)Bd−m
0jk (v), (2.42)

where c
(m)

0jk (a) are obtained from the cijk by applying the de Casteljau al-

gorithm using the vector a. Examining this algorithm, we see that the c
(m)

0jk

involve only coefficients cijk with 0 ≤ i ≤ m. These coefficients correspond
to domain points lying on e or on the next m rows parallel to e. Since it
is based on the de Casteljau algorithm, it is clear that the computation of
cross derivatives along an edge from the coefficients of p is a stable process.

We now turn to the converse. Suppose we know all of the coefficients
{cijk}0≤i≤m−1 of p. These lie on e and in the first m− 1 rows parallel to e.
We now show how to compute the coefficients {cmjk}j+k=d−m from values
of the cross derivatives Dm

u p(v) at d − m + 1 points along the edge e.

Lemma 2.20. Suppose the coefficients {cijk}0≤i≤m−1 of the polynomial
p are known. Suppose we are also given r := (Dm

u p(η0), . . . , D
m
u p(ηd−m))T

for some distinct points η0, . . . , ηd−m in the interior of e := 〈v2, v3〉. Then
the coefficients c := (cm,d−m,0, . . . , cm,0,d−m)T can be uniquely computed
from r and {cijk}0≤i≤m−1. Moreover, if we choose ηi := v2 + (i + 1)(v3 −

v2)/(d−m + 2) for i = 0, . . . , d−m, then the computation is stable in the
sense that

‖c‖∞ ≤ K
[
‖r‖∞ + max

0≤i≤m−1

|cijk|
]
, (2.43)

where K is a constant depending only on m, d, and the vector a of direc-
tional coordinates of u.

Proof: Evaluating (2.42) at η0, . . . , ηd−m leads to the system of equations

Mc = r,

for the vector c := (c
(m)

0,d−m,0, . . . , c
(m)

0,0,d−m)T of coefficients in (2.42), where
M is the (d − m + 1) × (d − m + 1) matrix

M :=
d !

(d − m) !

[
Bd−m

0,d−m−j,j(ηi)
]d−m

i,j=0
.
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This matrix contains the values of the univariate Bernstein basis polynomi-
als (cf. Remark 2.4), and is thus nonsingular for any distinct η0, . . . , ηd−m.
For equally spaced ηi, it depends only on m and d. Thus,

‖c‖∞ ≤
∥∥M−1

∥∥
∞

‖r‖∞.

But by Theorem 2.10, for each 0 ≤ j ≤ d − m,

c
(m)

0,d−m−j,j(a) =
∑

ν+µ+κ=m

cν,d−m−j+µ,j+κBm
νµκ(a)

= cm,d−m−j,j +
∑

ν+µ+κ=m
ν 6=m

cν,d−m−j+µ,j+κBm
νµκ(a).

Since all of the coefficients in the last sum are known, we can solve for
cm,d−m−j,j, and (2.43) follows.

In practice we often know the coefficients of p not only for domain
points in the first m − 1 rows parallel to e, but also for domain points in
both of the disks DT

ρ (v2) and DT
ρ (v3) for some m ≤ ρ < d/2. In this case

we have the following variant of Lemma 2.20.

Lemma 2.21. Let m ≤ ρ < d/2. Suppose we are given the coefficients

C :=
m−1⋃

i=0

{cijk}j+k=d−i ∪ {cξ}ξ∈Dρ(v2)
∪ {cξ}ξ∈Dρ(v3)

of the polynomial p. Suppose for distinct points ηρ−m+1, . . . , ηd−ρ−1 on the
edge e := 〈v2, v3〉, we also know r := (Dm

u p(ηρ−m+1), . . . , D
m
u p(ηd−ρ−1))

T .
Then c := (cm,d−ρ−1,ρ−m+1, . . . , cm,ρ−m+1,d−ρ−1)

T can be uniquely com-
puted from the known coefficients C and the vector r. Moreover, if we
choose ηi := v2+(ρ−m+i)(v3−v2)/(d−2ρ+m) for i = ρ−m+1, . . . , d−ρ−1,
then the computation is stable in the sense that

‖c‖∞ ≤ K
[
‖r‖∞ + max

cijk∈C
|cijk|

]
, (2.44)

where K is a constant depending only on m, d, and the directional coordi-
nates a of u.

Proof: Evaluating (2.42) at ηρ−m+1, . . . , ηd−ρ−1 leads to the system of
equations

Mc = r,

for the vector c(m) := (c
(m)

0,d−ρ−1,ρ−m+1
, . . . , c

(m)

0,ρ−m+1,d−ρ−1
)T of coefficients

in (2.42), where M is the matrix

M :=
d !

(d − m) !

[
Bd−m

0,d−m−j,j(ηi)
]d−ρ−1

i,j=ρ−m+1
.
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As in the previous theorem, this matrix corresponds to the values of uni-
variate Bernstein polynomials, and thus is nonsingular for any distinct ηi.
For equally spaced ηi, it depends only on m and d. Thus,

‖c(m)‖∞ ≤
∥∥M−1

∥∥
∞
‖r‖∞.

But by Theorem 2.10, for each 1 ≤ j ≤ d − 2ρ + m − 1,

c
(m)

0,d−ρ−j,ρ−m+j(a) =
∑

ν+µ+κ=m

cν,d−ρ−j+µ,ρ−m+j+κBm
νµκ(a)

= cm,d−ρ−j,ρ−m+j +
∑

ν+µ+κ=m

ν 6=m

cν,d−ρ−j+µ,ρ−m+j+κBm
νµκ(a).

Since all of the coefficients in the last sum are known, we can solve for
cm,d−ρ−j,ρ−m+j , and (2.44) follows.

2.9. Computing Coefficients by Interpolation

Theorem 1.11 shows that if we are given the values of a polynomial at the
set of

(
d+2

2

)
domain points Dd,T = {ξijk}i+j+k=d associated with a triangle

T , then we can uniquely compute the B-coefficients of p. For later use in the
study of macro-elements, we need a generalization of this result where some
of the B-coefficients are already known, and the rest are to be determined
by interpolation at an appropriate subset of Dd,T . In this regard, we have
the following conjecture of the second author, see Remark 2.7.

Conjecture 2.22. Given d and a triangle T := 〈v1, v2, v3〉, let Γ be an
arbitrary subset of Dd,T . Then the matrix

M :=
[
Bd

η(ξ)
]
ξ,η∈Γ

(2.45)

is nonsingular. Thus, for any real numbers {zξ}ξ∈Γ, there is a unique
p :=

∑
η∈Γ

cηBd
η such that p(ξ) = zξ for all ξ ∈ Γ.

Discussion: Note that the matrix M does not depend on the size or shape
of the triangle T since the entries are in terms of barycentric coordinates.
The determinant of M is also independent of the order assigned to the
elements of Γ, as long as we use the same order for both the rows and
columns. We may assume they are in lexicographical order, see page 23. It
has also been conjectured that this determinant is always positive.

It is easy to check directly that this conjecture is valid for d ≤ 3. It has
also been verified numerically for d ≤ 7, but as yet, has not been established
for general d except for special classes of Γ. It is trivially true for Γ := Dd,T

by Theorem 1.11. We now establish the conjecture for two special cases
which will be needed later in the book. Suppose T := 〈v1, v2, v3〉.
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Lemma 2.23. Let Γ := Dd,T \ {ξd00, ξ0d0, ξ00d}. This set has cardinality

n :=
(
d+2

2

)
− 3, and the matrix (2.45) is nonsingular.

Proof: The matrix M0 :=
[
Bd

ξ (η)
]
ξ,η∈Dd,T

is nonsingular by Theorem 1.11.

Now by the properties of the Bernstein basis polynomials, the column of M0

corresponding to Bd
d00

has all zero entries except in the row corresponding to
ξd00 where Bd

d00
(ξd00) = 1. Similarly, the column corresponding to Bd

0d0
has

all zero entries except for Bd
0d0

(ξ0d0) = 1, while the column corresponding
to Bd

00d has all zero entries except for Bd
00d(ξ00d) = 1. It follows that

det [Bd
ξ (η)]ξ,η∈Γ = ±detM0, and the claim follows.









Fig. 2.5. The sets Γ of Examples 2.24 (left) and 2.26 (right).

Example 2.24. Let d = 7 and let Γ be as in Lemma 2.23. The 33 points
in this set are marked with a black dot in Figure 2.5 (left).

Lemma 2.25. Let Γ := Dd,T \ {ξijk : i ≥ m1, j ≥ m2, k ≥ m3} for some
m1, m2, m3 ≥ 0 with m := m1 + m2 + m3 < d. Then the matrix (2.45) is
nonsingular.

Proof: In this case the set Γ is just the set of domain points such that for
each i = 1, 2, 3, their distance to the edge 〈vi+1, vi+2〉 of T is at least mi.
This set has cardinality n :=

(
d−m+2

2

)
. After multiplying the columns of

M by appropriate ratios of factorials, and removing common factors of the

form ( ν
d
)m1(µ

d
)m2(κ

d
)m3 from each row of M , we find that M = aM̃ , where

a is a nonzero constant depending on m and d, and where M̃ is the n × n

matrix with entries Bd−m
ijk (ξνµκ) where i + j + k = d−m and (ν, µ, κ) runs

over Γ. Now the set of points {ξνµκ} satisfy the conditions of Theorem 1.10,

and it follows that M̃ is nonsingular.
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Example 2.26. Let d = 13 and suppose Γ is as in Lemma 2.25 with
m1 = m2 = m3 = 4.

Discussion: The three points in Γ are marked with a black dot in Fig-
ure 2.5 (right), and the matrix is

M :=




B13

544
(ξ544) B13

454
(ξ544) B13

445
(ξ544)

B13

544
(ξ454) B13

454
(ξ454) B13

445
(ξ454)

B13

544
(ξ445) B13

454
(ξ445) B13

445
(ξ445)


 .

Since ξT
ijk = ( i

13
,

j

13
, k

13
), we can factor 544444/1313 out of each row, and

after factoring out the factorials in each column, we obtain

M = a




5 4 4
4 5 4
4 4 5




for some nonzero constant a. This is clearly nonsingular.

For later use in the study of macro-elements, it is important to know
that the computation of coefficients by interpolation as described in Con-
jecture 2.22 is stable in the sense that the computed coefficients are not too
large compared to the known coefficients and the given data.

Theorem 2.27. Let Γ be a subset of Dd,T such that the matrix in (2.45)
is nonsingular. Suppose all of the B-coefficients of the polynomial p ∈ Pd

are known except for those with subscripts in the set Γ. Then given any
{zijk}(i,j,k)∈Γ, there exists a unique set of coefficients {cijk}(i,j,k)∈Γ such
that

p(ξνµκ) = zνµκ, all (ν, µ, κ) ∈ Γ.

Moreover, there exists a constant K depending only on m and d such that

|cijk| ≤ K
[

max
(i,j,k)∈Γ

|zijk| + max
(i,j,k) 6∈Γ

|cijk|
]

(2.46)

for all (i, j, k) ∈ Γ.

Proof: The interpolation conditions lead to a nonsingular system of equa-
tions for the unknown coefficients with matrix M as in (2.45). But then
(2.46) holds with K = ‖M−1‖∞.

2.10. Conditions for Smooth Joins of Polynomials

In preparation for our study of spline spaces, we now give conditions for a
smooth join between two polynomials on adjoining triangles.
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Theorem 2.28. Let T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 be triangles
sharing the edge e := 〈v2, v3〉. Let

p(v) :=
∑

i+j+k=d

cijkBd
ijk(v) (2.47)

and

p̃(v) :=
∑

i+j+k=d

c̃ijkB̃d
ijk(v), (2.48)

where {Bd
ijk} and {B̃d

ijk} are the Bernstein basis polynomials associated

with T and T̃ , respectively. Suppose u is any direction not parallel to e.
Then

Dn
up(v) = Dn

u p̃(v), all v ∈ e and n = 0, . . . , r, (2.49)

if and only if

c̃njk =
∑

ν+µ+κ=n

cν,k+µ,j+κBn
νµκ(v4),

j + k = d − n

n = 0, . . . , r.
(2.50)

Proof: Since p and p̃ reduce to univariate polynomials along e, it is clear
that they join continuously along e if and only if

c̃0jk = c0kj, j + k = d, (2.51)

which is the case r = 0. To show the result for r > 0, we first note that
(2.49) holds if and only if it holds for the direction u = v4 − v2. This is
because all derivatives of p and p̃ corresponding to the direction v3 − v2

agree at every point on e, and derivatives in all other directions will be
linear combinations of Du and Dv3−v2

.
Let b = (b1, b2, b3) be the barycentric coordinates of v4 relative to T .

Then the directional coordinates (see page 28) of u relative to the triangles

T and T̃ are a = (b1, b2 − 1, b3) and ã := (1, 0,−1), respectively. By
Theorem 2.15, for each 0 ≤ n ≤ r,

Dn
up|e =

d !

(d − n) !

∑

j+k=d−n

c
(n)

0jk(a)Bd−n
0jk ,

Dn
u p̃|e =

d !

(d − n) !

∑

j+k=d−n

c̃
(n)

0jk(ã)B̃d−n
0jk ,

where c
(n)

ijk(a) and c̃
(n)

ijk(a) are the coefficients obtained by applying n steps of
the de Casteljau algorithm to {cijk} and {c̃ijk} using a and ã, respectively.
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Since for points v on e, B̃d−n
0jk (v) = Bd−n

0kj (v), it follows that (2.49) holds if
and only if

c̃
(n)

0jk(ã) = c
(n)

0kj(a), j + k = d − n, n = 0, . . . , r. (2.52)

Arguing as in the proof of Theorem 2.16, we have

c̃
(n)

0jk(ã) =

n∑

m=0

(−1)n−m

(
n

m

)
c̃m,j,d−j−m j + k = d − n.

On the other hand, following the proof of Theorem 2.10 leads to

c
(n)

0kj(a) = (b1E1 + (b1 − 1)E2 + b3E3)
nc0kj

= (b1E1 + b2E2 + b3E3 − E2)
nc0kj

=

n∑

m=0

(−1)n−m

(
n

m

)
(b1E1 + b2E2 + b3E3)

mc0,k+n−m,j

=

n∑

m=0

(−1)n−m

(
n

m

)
c
(m)

0,d−j−m,j(b), j + k = d − n.

It follows that (2.52) holds if and only if

c̃n,j,d−j−n = c
(n)

0,d−j−n,j(b), j = 0, . . . , n, n = 0, . . . , r,

which is equivalent to (2.50).

The conditions (2.50) can be interpreted geometrically if we define the
control points associated with the polynomial p in (2.47) to be the points
Cijk := (ξT

ijk , cijk) in R
3 with a similar definition for the control points

C̃ijk associated with the polynomial p̃. Then the condition (2.51) for C0

continuity says that the control points of p and p̃ associated with domain
points along the edge e must agree. The condition for C1 smoothness across

the edge is that (2.51) holds along with

c̃1jk = b1c1,k,j + b2c0,k+1,j + b3c0,k,j+1, j + k = d − 1. (2.53)

Since

ξ̃1jk = b1ξ1,j,k + b2ξ0,k+1,j + b3ξ0,k,j+1, j + k = d − 1,

we can rewrite (2.53) in terms of control points as

C̃1jk = b1C1,k,j + b2C0,k+1,j + b3C0,k,j+1, j + k = d − 1. (2.54)
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C200

C110

C101

C020

C011

C002

C̃110

C̃
101

C̃200

Fig. 2.6. Geometric interpretation of C
1 smoothness conditions.

These conditions hold if and only if for each j + k = d − 1, there is a
plane which contains the four control points in (2.54). Figure 2.6 illustrates
the case d = 2. It is also possible to interpret Cr smoothness conditions
geometrically, see [Lai97] and [Kas98].

2.11. Computing Coefficients from Smoothness

In this section we explore how smoothness conditions between two adjoin-
ing polynomials can be used to compute some B-coefficients from others.
Suppose that T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 are two adjoining trian-
gles which share the edge e := 〈v2, v3〉. Let p and p̃ be two polynomials of

degree d with B-coefficients cijk and c̃ijk relative to T and T̃ , respectively,
see (2.47) and (2.48). Throughout this section we suppose that p and p̃ join
with Cr continuity across the edge e.

First, suppose we know all of the B-coefficients of p. Then clearly
(2.50) can be used to compute the B-coefficients of p̃ corresponding to the
domain points in the first r rows parallel to the edge e. The following
lemma shows that this is a stable process.

Lemma 2.29. Suppose that p and p̃ are polynomials on T and T̃ which
join with Cr smoothness across a common edge e as described in Theo-
rem 2.28. Suppose the coefficients {cijk}0≤i≤r of p are known, and that
C := max0≤i≤r |cijk|. Then the coefficients {c̃mjk}m≤r of p̃ can be com-
puted from (2.50), and are bounded by KC, where K is a constant depend-

ing only on the smallest angle θ△ in the triangulation △ := {T, T̃}.

Proof: Suppose that (b1, b2, b3) are the barycentric coordinates of v4 with
respect to T . Each of them is a ratio of the areas of two triangles which
share a common edge. Now the area of the triangle T with edges e and ẽ

separated by an angle θ is given by AT = 1

2
|e||ẽ| sin θ. By (4.3), the edges

of T and of T̃ are of comparable size with a constant depending only on
θ△. It follows that |b1|, |b2|, |b3| are bounded by a constant depending only
on θ△, and the result follows.
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There is another important way in which the smoothness conditions
can be used to compute coefficients of a spline from given coefficients.

Lemma 2.30. Let 0 ≤ ℓ + 1 ≤ q, q̃ and q + q̃ − ℓ ≤ m ≤ d. Suppose p

and p̃ are as in Lemma 2.29, where the vertices v1, v2, v4 of T and T̃ are
not collinear. Suppose that we know all coefficients cijk and c̃ijk of the poly-

nomials p and p̃ corresponding to domain points in DT
m−1

(v2) ∪ DT̃
m−1

(v2).
In addition suppose that we also know the coefficients of p and p̃ on the ring
Rm(v2) within a distance q+ q̃−ℓ of e := 〈v2, v3〉, except for the coefficients

cν := cν,d−m,m−ν , ν = ℓ + 1, . . . , q,

c̃ν := c̃ν,m−ν,d−m, ν = ℓ + 1, . . . , q̃.
(2.55)

Then these coefficients are uniquely determined by the smoothness condi-
tions

c̃n,m−n,d−m =
∑

i+j+k=n

ci,j+d−m,k+m−nBn
ijk(v4), ℓ + 1 ≤ n ≤ q + q̃ − ℓ.

(2.56)

Proof: Let c := (cℓ+1, . . . , cq, c̃ℓ+1, . . . , c̃q̃)
T , and let α1, α2, α3 be the

barycentric coordinates of v4 relative to T , i.e., v4 = α1v1 + α2v2 + α3v3.
By the noncollinearity assumption, α1 and α3 cannot be zero. Now (2.56)
can be written in the form

Mc = b, (2.57)

with

M :=

[
A −I

B O

]
,

where I is the (q̃ − ℓ) × (q̃ − ℓ) identity matrix, O is the (q − ℓ) × (q̃ − ℓ)
zero matrix,

Aij :=

(
ℓ + i

ℓ + j

)
α

ℓ+j
1

α
i−j
3

,
i = 1, . . . , q̃ − ℓ,

j = 1, . . . , q − ℓ,

and

Bij :=

(
q̃ + i

ℓ + j

)
α

ℓ+j
1

α
q̃−ℓ+i−j
3

, i, j = 1, . . . , q − ℓ.

The right-hand side of (2.57) is given by

bν =

{
− aν , 1 ≤ ν ≤ q̃ − ℓ,

c̃ℓ+ν − aν , q̃ − ℓ + 1 ≤ ν ≤ q + q̃ − 2ℓ,

where
aν :=

∑

i+j+k=ℓ+ν

′
ci,j+d−r+ν+ℓ−n,k+r−ν−ℓB

ℓ+ν
ijk (v4).
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v1

v4

Fig. 2.7. Use of Lemma 2.30 in Example 2.31.

Here the prime on the sum means that the sum is taken over all i, j, k such
that ci,j+d−r+ν+ℓ−n,k+r−ν−ℓ is not one of the coefficients defined in (2.55).

By the block structure, to prove that M is nonsingular, it suffices to
examine B. Let B̃ be the matrix obtained by factoring the nonzero term
α

ℓ+j
1

/(ℓ + j)! from the j-th column of B for each j = 1, . . . , q − ℓ. We
note that the matrix B̃ is the Gram matrix corresponding to the functions
{xq̃+i}

q−ℓ
i=1

, and the linear functionals {ǫα3
Dℓ+j}

q−ℓ
j=1

, where ǫα3
is point

evaluation at α3. Now if det (B̃) were zero, there would exist a nontrivial

polynomial f :=
∑q−ℓ

i=1
aix

q̃+i satisfying Dℓ+jf(α3) = 0, for j = 1, . . . , q−ℓ.
But then g := Dℓ+1f would be a nontrivial polynomial of degree q+q̃−2ℓ−1
which vanishes q̃ − ℓ times at 0 and q − ℓ times at α3. This is impossible,
and we conclude that C cannot be zero.

Lemma 2.30 cannot be used when the points v1, v2, v4 are collinear. In
this case we say that the edge e := 〈v2, v3〉 is degenerate. It should also not
be used when e is near-degenerate, i.e., when α3 becomes very small, since
in this case the computation is not stable, see Section 10.3.1.

Example 2.31. Let d = 10, m = r = 8, q = 2, q̃ = 4, and ℓ = 0 in
Lemma 2.30.

Discussion: Figure 2.7 shows the domain points of two adjoining trian-
gles. We assume that we know the coefficients of p and p̃ corresponding
to points marked with dots, and that we want to compute the coefficients
c127, c226 of p and c̃172, c̃262, c̃352, c̃442 of p̃ which correspond to the domain
points marked with squares. These six coefficients lie on R8(v2), and by the
lemma, are uniquely determined by the C1, . . . , C6 smoothness conditions
listed in (2.56). We have shaded the support of this set of smoothness con-
ditions. Note that it is not necessary to know all the coefficients of p and p̃
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corresponding to domain points in the disk D7(v2), just those involved in
these six smoothness conditions.

2.12. The Markov Inequality on Triangles

In this section we prove the Markov inequality for bivariate polynomials.

Theorem 2.32. Let T := 〈v1, v2, v3〉 be a triangle, and fix 1 ≤ q ≤ ∞.
Then there exists a constant K depending only on d such that for any
polynomial p ∈ Pd and any nonnegative integers α and β with 0 ≤ α+β ≤

d,

‖Dα
xDβ

y p‖
q,T

≤
K

ρ
α+β

T

‖p‖q,T , (2.58)

where ρT denotes the radius of the largest circle inscribed in T .

Proof: As observed in the proof of Theorem 2.19, the unit vector u pointing
in the direction of the x-axis has barycentric coordinates (y2−y3, y3−y1, y1−

y2)/2AT , where AT is the area of T . Thus, if p :=
∑

i+j+k=d cijkBd
ijk, then

by (2.29),

Dxp =
d

2AT

∑

i+j+k=d−1

[
(y2 − y3)ci+1,j,k + (y3 − y1)ci,j+1,k

+ (y1 − y2)ci,j,k+1

]
Bd−1

ijk .

Since the Bd−1

ijk form a partition of unity, it follows that

‖Dxp‖∞,T ≤
d ‖c‖∞(|y2 − y3| + |y3 − y1| + |y1 − y2|)

2AT

.

Then by (2.40),

‖Dxp‖∞,T ≤
d ‖c‖∞

ρT

.

Now (2.58) follows for α = 1, β = 0, and q = ∞ from the stability result
of Theorem 2.6. To prove (2.58) for general 1 ≤ q ≤ ∞, we combine
‖c‖∞ ≤ ‖c‖q with Theorems 1.1 and 2.7 to get

‖Dxp‖q,T ≤ A
1/q

T ‖Dxp‖∞,T ≤
dA

1/q

T

ρT

‖c‖∞ ≤
dA

1/q

T

ρT

‖c‖q ≤
dK

ρT

‖p‖q,T ,

where K is the constant in (2.19). The same proof can be used to estimate
‖Dyp‖q,T , and the general result follows by induction.
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2.13. Integrals and Inner Products of B-Polynomials

In this section we give explicit formulae for integrals and inner products of
polynomials in B-form.

Theorem 2.33. Given a triangle T , let p be a polynomial of degree d

written in the B-form (2.13). Then
∫

T

p(x, y)dxdy =
AT(
d+2

2

)
∑

i+j+k=d

cijk , (2.59)

where AT is the area of T .

Proof: Using (2.3), it is easy to see that
[

x

y

]
=

[
x1 − x3 x2 − x3

y1 − y3 y2 − y3

][
b1

b2

]
+

[
x3

y3

]
,

where by (2.4), the value of the corresponding determinant is 2AT . Then
using the fact that

∫
1

0

xi(1 − x)jdx =
i ! j !

(i + j + 1) !
,

we get

i ! j ! k !

d !

∫

T

Bd
ijk(x, y)dxdy

=

∫

T

bi
1
b
j
2
(1 − b1 − b2)

kdxdy = 2AT

∫
1

0

∫
1−b1

0

bi
1
b
j
2
(1 − b1 − b2)

kdb2db1

= 2AT

∫
1

0

bi
1
(1 − b1)

j+k+1

∫
1−b1

0

( b2

1 − b1

)j(
1 −

b2

1 − b1

)k db2

(1 − b1)
db1

= 2AT

∫
1

0

ui(1 − u)j+k+1du

∫
1

0

tj(1 − t)kdt

= 2AT

i ! (j + k + 1) !

(i + j + k + 2) !

j ! k !

(j + k + 1) !
,

which immediately implies
∫

T

Bd
ijk(x, y)dxdy =

2AT

(d + 2)(d + 1)
=

AT(
d+2

2

) , (2.60)

for all i+j+k = d. Then (2.59) follows by integrating (2.13) term by term.

Theorem 2.33 leads directly to an explicit formula for the inner product
of any two Bernstein basis polynomials. First, we note that

Bd
ijk Bd

νµκ =

(
i+ν

i

)(
j+µ

j

)(
k+κ

k

)
(
2d
d

) B2d
i+ν,j+µ,k+κ. (2.61)

Using (2.60), we immediately get the following inner product formula.
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Theorem 2.34.

∫

T

Bd
ijk(x, y)Bd

νµκ(x, y)dxdy =

(
i+ν

i

)(
j+µ

j

)(
k+κ

k

)
AT

(
2d
d

)(
2d+2

2

) . (2.62)

Theorem 2.34 implies that for any two polynomials

p :=
∑

i+j+k=d

cijkBd
ijk and q :=

∑

ν+µ+κ=d

c̃νµκ Bd
νµκ,

the inner product of p and q is given by

∫

T

p(x, y)q(x, y)dxdy

=
AT(

2d

d

)(
2d+2

2

)
∑

i+j+k=d

ν+µ+κ=d

cijk c̃νµκ

(
i + ν

i

)(
j + µ

j

)(
k + κ

k

)
.

This inner product can be written in the form

∫

T

p(x, y)q(x, y)dxdy =
AT(

2d

d

) (
2d+2

2

) cT G c̃, (2.63)

where c and c̃ are the vectors of coefficients of p and q, respectively (in
lexicographical order), and G is a

(
d+2

2

)
square matrix.

Example 2.35. When d = 1,

G =




2 1 1
1 2 1
1 1 2


.

Example 2.36. When d = 2,

G =




6 3 3 1 1 1
3 4 2 3 2 1
3 2 4 1 2 3
1 3 1 6 3 1
1 2 2 3 4 3
1 1 3 1 3 6



.
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Example 2.37. When d = 3,

G =




20 10 10 4 4 4 1 1 1 1
10 12 6 9 6 3 4 3 2 1
10 6 12 3 6 9 1 2 3 4
4 9 3 12 6 2 10 6 3 1
4 6 6 6 8 6 4 6 6 4
4 3 9 2 6 12 1 3 6 10
1 4 1 10 4 1 20 10 4 1
1 3 2 6 6 3 10 12 9 4
1 2 3 3 6 6 4 9 12 10
1 1 4 1 4 10 1 4 10 20




.

2.14. Subdivision

Suppose that p is a polynomial written in B-form on a triangle T with
vertices v1, v2, and v3. Then, clearly any point w in the interior of T splits
T into three subtriangles

T1 := 〈w, v2, v3〉, T2 := 〈w, v3, v1〉, T3 := 〈w, v1, v2〉,

see Figure 2.1 (right). In this section we show how to write p in B-form on
each of the subtriangles.

Theorem 2.38. Given a triangle T , let w be a point in the interior of T

with barycentric coordinates a := (a1, a2, a3). For each ℓ = 1, 2, 3, let B
Tℓ,d
ijk

be the Bernstein basis polynomials associated with Tℓ := 〈w, vℓ+1, vℓ+2〉.
Then for any polynomial p with B-coefficients as in (2.13),

p(v) =






∑

i+j+k=d

c
(i)

0jkB
T1,d
ijk (v), v ∈ T1,

∑

i+j+k=d

c
(j)

i0kB
T2,d
ijk (v), v ∈ T2,

∑

i+j+k=d

c
(k)

ij0B
T3,d
ijk (v), v ∈ T3,

where c
(ν)

ijk := c
(ν)

ijk(a) are the quantities obtained in the ν-th step of the
de Casteljau algorithm based on the triple a, starting with the coefficients

c
(0)

ijk := cijk.

Proof: Given v ∈ T1, let b̃1(v), b̃2(v), b̃3(v) be the barycentric coordinates
of v relative to the triangle T1. Substituting w = a1v1 + a2v2 + a3v3 in
v = b̃1w + b̃2v2 + b̃3v3, we get

v = b̃1a1v1 + (b̃1a2 + b̃2)v2 + (b̃1a3 + b̃3)v2.
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c200

c020 c002

c110 c101

c011

c
(1)

100

c
(1)

010
c
(1)

001

c
(2)

000

Fig. 2.8. Subdivision coefficients.

Thus,

B
T,d
νβγ(v) =

d ! (b̃1a1)
ν(b̃1a2 + b̃2)

β(b̃1a3 + b̃3)
γ

ν ! β ! γ !

=

β∑

µ=0

γ∑

κ=0

B
T1,d
ν+µ+κ,β−µ,γ−κ(v)BT,ν+µ+κ

νµκ (w),

for all ν + β + γ = d. Now substituting this in

p(v) =
∑

ν+β+γ=d

cνβγB
T,d
νβγ(v),

we get

p(v) =
∑

ν+β+γ=d

cνβγ

β∑

µ=0

γ∑

κ=0

B
T1,d
ν+µ+κ,β−µ,γ−κ

(v)BT,ν+µ+κ
νµκ (w).

Choosing β = j+µ, γ = k+κ, and ν +µ+κ = i, we see that the coefficient
of B

T1,d
ijk in this expansion is

∑

ν+µ+κ=i

cν,j+µ,k+κBT,i
νµκ(w),

which is just c
(i)

0jk by (2.26). A similar proof works if v is in one of the other
two triangles T2 and T3.

One can visualize the coefficients of p in subdivided form as a pyra-
mid of coefficients formed by stacking up the intermediate results in the
de Casteljau algorithm as shown in Figure 2.8 for the case d = 3.
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The formulae in Theorem 2.38 remain valid in case w lies on the interior
of one of the edges of T . In this case T is split into just two triangles rather
than three, and the amount of computation to find the new coefficients
is significantly reduced. It can be made even smaller if w is chosen to
be the midpoint of an edge, say w = (v2 + v3)/2. Then the barycentric
coordinates of w are (0, 1/2, 1/2), and no multiplications are needed to find
the new coefficients, just division by 2 (which is a binary shift operator).
This observation leads to a highly efficient algorithm (see Method 3 in
Section 3.8) for evaluating a polynomial in B-form at a large number of
points in T for the purposes of displaying the associated surface.

2.15. Degree Raising

It is clear that a polynomial of degree d can also be regarded as a polynomial
of any degree d̃ > d. In this section we show how to find the B-coefficients
of the degree-raised polynomial.

Theorem 2.39. Let p be a polynomial of degree d defined on a triangle T

written in the B-form (2.13). Let c
[d]

ijk := cijk be its coefficients. Then

p =
∑

i+j+k=d+1

c
[d+1]

ijk Bd+1

ijk , (2.64)

where Bd+1

ijk are the Bernstein basis polynomials of degree d + 1 associated
with T , and where

c
[d+1]

ijk :=
ic

[d]

i−1,j,k + jc
[d]

i,j−1,k + kc
[d]

i,j,k−1

d + 1
, (2.65)

for i + j + k = d + 1. Here coefficients with negative subscripts are taken
to be zero.

Proof: Multiplying both sides of the equation (2.13) by 1 = b1 + b2 + b3,
we get

p =
∑

i+j+k=d

c
[d]

ijk

d !

i ! j ! k !
bi
1
b
j
2
bk
3
(b1 + b2 + b3).

Then multiplying out and collecting terms, we get (2.65).

To raise the degree of a polynomial by more than one, we simply repeat
the above process.

2.16. Dual Bases for the Bernstein Basis Polynomials

A set of linear functionals Λd = {λijk}i+j+k=d defined on Pd with the
property

λνµκBijk = δijk,νµκ, all i + j + k = d and ν + µ + κ = d, (2.66)
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is called a dual basis for Bd. In this section we explicitly construct a set
of linear functionals defined on C(T ) that form a dual basis for Bd, and a
second set defined on Cd(T ) that also form a dual basis.

We use the notation of Section 2.4. In particular, with m :=
(

d+2

2

)
, let

{g1, . . . , gm} be the Bernstein basis polynomials {Bijk}i+j+k=d arranged in
lexicographical order, and let {t1, . . . , tm} be the associated domain points
{ξijk}i+j+k=d arranged in the same order. Let M be the nonsingular matrix
(2.16). Now given i + j + k = d, let rijk be the vector of length m with zeros
in all positions except for 1 in position

ℓ :=

(
d − i + 1

2

)
+ d − i − j + 1,

which is the index such that tℓ = ξijk. Let aijk := (aijk
1

, . . . , aijk
m )T be the

solution of the system
Maijk = rijk . (2.67)

Define

λijk p :=

m∑

ν=1

aijk
ν p(tν).

Theorem 2.40. The linear functionals {λijk}i+j+k=d form a dual basis
for Bd.

Proof: The equations (2.67) assert that

λνµκBd
ijk =

{
0, (ν, µ, κ) 6= (i, j, k),

1, (ν, µ, κ) = (i, j, k),

for all ν + µ + κ = d, and the duality follows.

The dual functionals λijk constructed in Theorem 2.40 are defined for
all continuous functions on T . The following lemma shows that their norms
are uniformly bounded.

Lemma 2.41. There exists a constant K depending only on d such that

|λijk f | ≤ K ‖f‖T , all i + j + k = d, (2.68)

for all f ∈ C(T ).

Proof: By (2.67), |aijk
ν | ≤ ‖M−1‖∞ for all i + j + k = d. But then

|λijk f | ≤

m∑

ν=1

|aijk
ν | |f(tν)| ≤ ‖f‖T

m∑

ν=1

|aijk
ν | ≤ K ‖f‖T ,

where K :=
(
d+2

2

)
‖M−1‖∞.

The linear functionals of Theorem 2.40 are based on point evaluations
and are defined for all continuous functions. In the following theorem we
give a set of linear functionals defined in terms of derivatives which also
gives a dual basis for Pd.
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Theorem 2.42. The linear functionals

λ̃d−i−j,i,j p :=

i∑

m=0

j∑

n=0

(
i

m

)(
j

n

)
(d − m − n) !

d !
Dm

v2−v1
Dn

v3−v1
p(v1),

0 ≤ i + j ≤ d, form a dual basis for Bd.

Proof: It is clear from (2.37) that for any polynomial p of degree d,

λ̃d−i−j,i,j p gives its B-coefficient cd−i−j,i,j . But this immediately implies

λ̃νµκBijk = δijk,νµκ, all i + j + k = d and ν + µ + κ = d.

2.17. A Quasi-interpolant

In Theorem 1.12 we showed that any function in Cd+1(T ) on a triangle T

is approximated to order O(|T |d+1) by the polynomial p of degree d which
interpolates f at the set of domain points Dd,T := {ξijk}i+j+k=d described
in (2.14), where |T | is the diameter of the triangle T . In this section we
show how to construct another polynomial with the same approximation
order.

Let {λijk}i+j+k=d be the dual linear functionals to the Bernstein basis
polynomials {Bd

ijk}i+j+k=d of Theorem 2.40. Recall that λijk f is a linear
combination of the values of f at the points of Dd,T . For any function f

defined on Dd,T , let

Qf :=
∑

i+j+k=d

(λijk f) Bd
ijk. (2.69)

We can think of Q as an operator mapping functions defined on Dd,T into
the space Pd of polynomials of degree d. It is customary to call this type
of operator a quasi-interpolation operator.

Theorem 2.43. Q is a projector mapping C(T ) onto Pd. Moreover,

‖Qf‖T ≤ K ‖f‖T , (2.70)

for all f ∈ C(T ), where K depends only on d.

Proof: Suppose p :=
∑

i+j+k=d cijkBd
ijk . Then by the duality (2.66),

λijk p = cijk for all i + j + k = d, and so

Qp =
∑

i+j+k=d

(λijk p)Bd
ijk =

∑

i+j+k=d

cijkBd
ijk = p,
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which establishes that Qp = p for all p ∈ Pd. To show that Q is bounded on
C(T ), we use the bound (2.68) on the λijk and the fact that the Bernstein
basis polynomials form a partition of unity as in (2.9). Then for any v ∈ T ,

|Qf(v)| ≤
∑

i+j+k=d

|λijk f | Bd
ijk(v)

≤ K ‖f‖T

∑

i+j+k=d

Bd
ijk(v) = K ‖f‖T ,

which immediately implies (2.70) with the constant in (2.68).

Corollary 2.44. For any f ∈ C(T ),

‖f − Qf‖T ≤ (1 + K) d(f,Pd)T , (2.71)

where

d(f,Pd)T := inf
p∈Pd

‖f − p‖T

is the distance of f from the space of polynomials Pd measured in the uniform
norm on T .

Proof: Since Qp = p for any p ∈ Pd,

‖f − Qf‖T ≤ ‖f − p‖T + ‖p − Qp‖T + ‖Q(p− f)‖T

≤ (1 + ‖Q‖) ‖f − p‖T ,

where ‖Q‖ is the usual operator norm defined by ‖Q‖ := sup{‖Qf‖/‖f‖ :
f 6= 0}. Then (2.71) follows from (2.70) since p is arbitrary.

Combining (2.71) with Theorem 1.3, it follows that

‖f − Qf‖T ≤ K |T |m+1 |f |m+1,T ,

for all f ∈ Cm+1(T ) with 0 ≤ m ≤ d. Here |f |m+1,T is the seminorm of f

defined in (1.7), and K is a constant depending only on d.

2.18. The Bernstein Approximation Operator

Given a triangle T := 〈v1, v2, v3〉, let {ξijk}i+j+k=d be the corresponding
domain points. Then for any function f ∈ C(T ), we can define a mapping
Bd from C(T ) into Pd by

Bdf :=
∑

i+j+k=d

f(ξijk)Bd
ijk. (2.72)
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Bd is called the Bernstein operator, and Bdf is called the Bernstein polyno-

mial associated with f . It has been studied extensively in the literature.
We do not have space here to present all of its interesting properties.

Bd is a quasi-interpolation operator which is much simpler than the Q

defined in (2.69), and which has certain nice properties. For example Bd

is a positive or monotone operator in the sense that if f(v) ≥ 0 on T , then
Bdf(v) ≥ 0 on T . On the other hand, it is not a projector, and does not
produce as good an approximation as Q for functions that are smoother
than C2(T ), see Remark 2.11. Let

ω(f, h) := max{|f(x, y) − f(x̃, ỹ)| : (x, y), (x̃, ỹ) ∈ T,

|x − x̃|2 + |y − ỹ|2 ≤ h2}
(2.73)

be the modulus of continuity of f relative to the triangle T .

Theorem 2.45. For any d,

‖f − Bdf‖T ≤





ω(f, |T |), if f ∈ C(T ),

|T ||f |1,T , if f ∈ C1(T ),

|T |2

d
|f |2,T , if f ∈ C2(T ).

Proof: Using the partition of unity property (2.9),

Bdf(v) − f(v) =
∑

i+j+k=d

[
f(ξijk) − f(v)

]
Bd

ijk(v),

which implies the result for f ∈ C(T ). The result for f ∈ C1(T ) follows
immediately from the fact that for any such function,

ω(f, h) ≤ h|f |1,T . (2.74)

We now prove the result for f ∈ C2(T ). For any i + j + k = d,

f(ξijk) − f(v) = Dijkf(v) +
1

2
D2

ijkf
(
v + ηijk(ξijk − v)

)
,

for some ηijk ∈ [0, 1], where Dijk := Dξijk−v is the directional derivative.
Thus,

Bdf(v) − f(v) =
∑

i+j+k=d

[f(ξijk) − f(v)]Bd
ijk(v)

=
∑

i+j+k=d

Dijkf(v)Bd
ijk(v) +

1

2

∑

i+j+k=d

D2

ijkf
(
v + ηijk(ξijk − v)

)
Bd

ijk(v).
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Suppose v = (x, y). In the proof of Theorem 2.4 we showed that

x =
∑

i+j+k=d

ξx
ijkBd

ijk(v),

y =
∑

i+j+k=d

ξ
y
ijkBd

ijk(v),
(2.75)

where ξijk := (ξx
ijk , ξ

y
ijk). Since

Dijkf(v) = (ξx
ijk − x)Dxf(v) + (ξy

ijk − y)Dyf(v),

it follows that∑

i+j+k=d

Dijkf(v)Bd
ijk(v)

= Dxf(v)
∑

i+j+k=d

(ξx
ijk − x)Bd

ijk(v) + Dyf(v)
∑

i+j+k=d

(ξy
ijk − y)Bd

ijk(v) = 0.

Now
|D2

ijkf(v + ηijk(ξijk − v))| ≤ 2|v − ξijk|
2 |f |2,T ,

and thus

|f(v) − Bdf(v)| ≤ |f |2,T

∑

i+j+k=d

|v − ξijk|
2Bd

ijk(v).

To complete the proof, we apply the following lemma.

Lemma 2.46. For any v ∈ T ,

∑

i+j+k=d

|v − ξijk |
2Bd

ijk(v) ≤
|T |2

d
. (2.76)

Proof: Let b1, b2, b3 be the barycentric coordinates of v := (x, y) relative
to T . An elementary calculation shows that

∑

i+j+k=d

ijBd
ijk(x, y) = d(d − 1)b1b2,

∑

i+j+k=d

ikBd
ijk(x, y) = d(d − 1)b1b3,

∑

i+j+k=d

jkBd
ijk(x, y) = d(d − 1)b2b3,

∑

i+j+k=d

i2Bd
ijk(x, y) = d(d − 1)b2

1
+ db1,

∑

i+j+k=d

j2Bd
ijk(x, y) = d(d − 1)b2

2
+ db2,

∑

i+j+k=d

k2Bd
ijk(x, y) = d(d − 1)b2

3
+ db3.

(2.77)
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Then
∑

i+j+k=d

|v − ξijk |
2Bd

ijk(v) =
∑

i+j+k=d

[
(ξx

ijk − x)2 + (ξy
ijk − y)2

]
Bd

ijk(v)

=
∑

i+j+k=d

[ i

d
(x1 − x) +

j

d
(x2 − x) +

k

d
(x3 − x)

]2
Bd

ijk(v)

+
∑

i+j+k=d

[ i

d
(y1 − y) +

j

d
(y2 − y) +

k

d
(y3 − y)

]2
Bd

ijk(v).

Using (2.77) and the identities 1 = b1 + b2 + b3 and x = b1x1 + b2x2 + b3x3,
we have

∑

i+j+k=d

[ i

d
(x1 − x) +

j

d
(x2 − x) +

k

d
(x3 − x)

]2
Bd

ijk(v)

=
d(d − 1)

d2
[b1(x1 − x) + b2(x2 − x) + b3(x3 − x)]2

+
1

d
[b1(x1 − x)2 + b2(x2 − x)2 + b3(x3 − x)2]

=
1

d
[b1(x1 − x)2 + b2(x2 − x)2 + b3(x3 − x)2].

Similarly, using y = b1y1 + b2y2 + b3y3, we have

∑

i+j+k=d

[ i

d
(y1 − y) +

j

d
(y2 − y) +

k

d
(y3 − y)

]2
Bd

ijk(v)

=
1

d
[b1(y1 − y)2 + b2(y2 − y)2 + b3(y3 − y)2].

Combining these inequalities gives (2.76).

Theorem 2.45 gives precise information on how quickly Bdf converges
to f as |T | → 0. Our next theorem describes the rate of convergence as
d → ∞.

Theorem 2.47. For any d,

‖f − Bdf‖T ≤





(1 + |T |2)ω(f, 1√
d
), if f ∈ C(T ),

(1+|T |2)
√

d
|f |1,T , if f ∈ C1(T ),

|T |2

d
|f |2,T , if f ∈ C2(T ).

(2.78)

Proof: We begin by proving the result for f ∈ C(T ). Given h > 0 and
points v := (x, y), ṽ := (x̃, ỹ) ∈ T , let m := m(v, ṽ, h) be the integer

m :=

⌊(
|x − x̃|2 + |y − ỹ|2

) 1

2

h

⌋
.



56 2. Bernstein–Bézier Methods for Bivariate Polynomials

Then
|f(v) − f(ṽ)| ≤ (1 + m)ω(f, h),

and using Lemma 2.46, it follows that

|f(v) − Bdf(v)| ≤
∑

i+j+k=d

|f(v) − f(ξijk)|Bd
ijk(v)

≤ ω(f, h)
∑

i+j+k=d

[1 + m(v, ξijk, h)]Bd
ijk(v)

≤ ω(f, h)
∑

i+j+k=d

[
1 +

|x − ξx
ijk |

2 + |y − ξ
y
ijk|

2

h2

]
Bd

ijk(v)

≤ ω(f, h)
[
1 +

1

dh2
|T |2

]
.

Letting h = 1/
√

d implies the first inequality in (2.78). The result for f ∈

C1(T ) follows immediately from (2.74). Finally, the result for f ∈ C2(T )
was already established in Theorem 2.45.

We conclude this section with an interesting result about the behavior
of the Bernstein polynomials Bdf in the case where f is convex. The proof
is based on degree raising. Recall that f is convex on T if and only if for
all m,

m∑

i=1

αif(vi) ≥ f

(
m∑

i=1

αivi

)

for any points vi ∈ T and any αi ≥ 0 with

m∑

i=1

αi = 1.

Theorem 2.48. Suppose f is convex on the triangle T . Then

B1f(v) ≥ B2f(v) ≥ · · · ≥ Bdf(v) ≥ · · · ≥ f(v), all v ∈ T .

Proof: Using equations (2.75), it is clear that

Bdf(v) =
∑

i+j+k=d

f(ξd
ijk)Bd

ijk(v) ≥ f
( ∑

i+j+k=d

ξd
ijkBd

ijk(v)
)

= f(v),

where we now write the superscript on ξd
ijk to emphasize that they are

domain points associated with polynomials of degree d. This implies the
last inequality in the statement of the theorem.

To complete the proof, we now show that Bd+1f(v) ≤ Bdf(v) for all
v ∈ T and all d. First, it is easy to check that

ξd+1

ijk =
iξd

i−1,j,k + jξd
i,j−1,k + kξd

i,j,k−1

d + 1
, all i + j + k = d + 1.
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Since f is convex,

f(ξd+1

ijk ) ≤
if(ξd

i−1,j,k) + jf(ξd
i,j−1,k) + kf(ξd

i,j,k−1
)

d + 1
,

for all i + j + k = d + 1. Now applying the degree-raising formula (2.65),
we have

Bd+1f − Bdf =
∑

i+j+k=d+1

f(ξd+1

ijk )Bd+1

ijk −
∑

ν+µ+κ=d

f(ξd
νµκ)Bd

νµκ

=
∑

i+j+k=d+1

[
f(ξd+1

ijk ) −
if(ξd

i−1,j,k) + jf(ξd
i,j−1,k) + kf(ξd

i,j,k−1
)

d + 1

]
Bd+1

ijk ,

which is less than or equal to zero. This completes the proof.

2.19. Remarks

Remark 2.1. It is clear from their interpretation in terms of areas of
triangles that the barycentric coordinates of a point v in a triangle T do not
depend on the orientation or location of the triangle in the plane. Actually,
more is true: barycentric coordinates are affine invariant. In particular, let
φ be the map taking points (x, y) ∈ R

2 into R
2 defined by

φ

[
x

y

]
:= A

[
x

y

]
+

[
x0

y0

]
,

where A is a 2 × 2 matrix. Maps of this form are called affine maps,
and include both translation and rotation as special cases. Suppose the
barycentric coordinates of the point v := (x, y)T relative to the triangle
T := 〈v1, v2, v3〉 are (b1, b2, b3). Then

φ
( 3∑

i=1

bivi

)
= A

3∑

i=1

bivi + v0 =
3∑

i=1

biAvi +
3∑

i=1

biv0

=

3∑

i=1

bi(Avi + v0) =

3∑

i=1

biφ(vi),

where we are now thinking of v, v0 := (x0, y0)
T , and the vi as 2-vectors.

This shows that the barycentric coordinates of φ(v) relative to φ(T ) are the
same as those of v relative to T .

Remark 2.2. Many authors use multi-indices in working with the B-form,
see e.g. [Boo87, Far88, HosL93]. However, in this book we have chosen to
write all subscripts explicitly because we think it enhances understanding.
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Remark 2.3. It is easy to prove that

b1 =
1

d

∑

i+j+k=d

iBd
ijk.

A similar formula holds for b2 and b3, and it follows that the B-coefficients
of these functions are

cijk :=





i/d, for b1,

j/d, for b2,

k/d, for b3,

i + j + k = d.

Remark 2.4. It is clear that if we restrict a bivariate polynomial to a
line, we get a univariate polynomial. The situation where we restrict a
polynomial p in the B-form (2.13) to an edge of the associated triangle T

is especially interesting. Suppose the vertices of T are v1, v2, v3, and that
we restrict p to the edge 〈v2, v3〉 where the barycentric coordinate function
b1(v) is identically zero. Then

p(v) =
∑

j+k=d

c0jk

d !

j ! k !
b
j
2
bk
3

=

d∑

j=0

c0,j,d−j

d !

j ! (d − j) !
b
j
2
(1− b2)

d−j . (2.79)

This is just a sum of univariate Bernstein basis polynomials, which in standard
notation are defined on the interval [0, l] by

φd
j (t) :=

d !

j ! (d − j) !

( t

l

)j( l − t

l

)d−j

, j = 0, . . . , d, (2.80)

for 0 ≤ t ≤ l. Univariate Bernstein basis polynomials have been extensively
studied in approximation theory and more recently in CAGD where they
are extremely useful for describing curves both in functional form and in
parametric form. For details and references, see [Lor53, GonM83, GonM86,
Far88, HosL93, Gal00, CohRE01, FarHK02, PraBP02].

Remark 2.5. Suppose T := 〈v1, v2, v3〉 is a triangle, and let p be a bivariate
polynomial in the B-form (2.13). Then in view of the previous remark, if a
point v falls on the edge 〈v2, v3〉 of T , we can compute p(v) by evaluating
the univariate polynomial in (2.79). In this case, we can use the following

simplified version of the deCasteljau Algorithm 2.9. Let c
(0)

0jk := c0jk for all
j + k = d, and let (0, b2, b3) be the barycentric coordinates of v.

Algorithm 2.49. (Univariate de Casteljau)
For ℓ = 1, . . . , d

For all j + k = d − ℓ

c
(ℓ)

0jk := b2c
(ℓ−1)

0,j+1,k + b3c
(ℓ−1)

0,j,k+1

By Theorem 2.8 the value of p(v) is given by c
(d)

000
. The operation count

(multiplications and divisions) for this algorithm is d2 + d as compared to
(d3 + 3d2 + 2d)/2 for Algorithm 2.9.
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Remark 2.6. Any basis for the space of polynomials can be orthogonalized
with respect to the usual L2 inner product on a fixed triangle, but depending
on what basis we start with, there may not be nice expressions for the
resulting orthogonal polynomials. For a recursive construction where the
orthogonal polynomials are expressed in B-form, see [FaroGS03].

Remark 2.7. Conjecture 2.22 was formulated in 2003 by the second au-
thor. It was stated formally for the first time in [AlfS03].

Remark 2.8. Suppose p is a bivariate polynomial of degree d. Then clearly
p can also be considered as a tensor-product polynomial of degree at most
d in x and y. Now suppose we are given the B-form of p relative to a
triangle T , and suppose H is a rectangular subset of T . Explicit formula
for the control points of the tensor-product representation of p in terms of
the control points of the B-form of p can be found in [Las02]. To get a
tensor-product representation of p on all of T , one can split T into three
rectangular subregions, see [Hu96, LinW91].

Remark 2.9. Subdivision of a polynomial in B-form as discussed in Sec-
tion 2.14 can also be explained in terms of so-called blossoms or polar forms.
For details and references, see [Sei89].

Remark 2.10. Since for any f ∈ C(T ), ω(f ; t) goes to zero as t goes to
zero, Theorem 2.47 implies that Bdf converges uniformly to f as d → ∞.
This establishes the celebrated Weierstrass Approximation Theorem, which
asserts that any continuous function can be approximated to arbitrary ac-
curacy by a polynomial of sufficiently high degree.

Remark 2.11. Since the Bernstein operator Bd introduced in (2.72) is a
positive operator, it is saturated. This means that no matter how smooth
f may be, we cannot get a rate of convergence which exceeds 1

d
, which is

the rate given in Theorem 2.47 for f ∈ C2(T ). For more on saturation, see
[Lor53]. See also [Lai92a] for the asymptotic expansion of f − Bd.

Remark 2.12. In [SchV86] it was suggested that for practical computa-
tions, there may be some advantage in replacing the B-form by a repre-
sentation which uses renormalized Bernstein basis polynomials where the
factorials in (2.7) are dispensed with. This leads to an evaluation algorithm
which is more efficient than the de Casteljau algorithm. However, a recent
comparison of the representations indicates that the B-form is somewhat
more stable [MaiP06a].

Remark 2.13. Given a triangle T , let b1, b2, b3 be the linear polynomi-
als describing the barycentric coordinates of points in T . Then we can
define the associated trigonometric Bernstein basis functions of degree d as
TBd

ijk := sini(b1) sinj(b2) sink(b3)/sind(1) for i + j + k = d. Clearly these
functions reduce to trigonometric polynomials of degree d along any line
cutting through T , and in particular along the edges. It was shown in
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[Wal97] that these functions have some of the properties of the Bernstein
basis polynomials Bd

ijk discussed in this chapter, including the partition of
unity property.

2.20. Historical Notes

There is a rich literature on the univariate Bernstein polynomials intro-
duced by Bernstein in 1912, see [Lor53] or any of the standard approx-
imation theory books. For a more recent list of references on Bernstein
polynomials and related matters, see [GonM83, GonM86]. The use of uni-
variate Bernstein polynomials in representing curves for CAGD purposes
seems to have been implicit in the work P. Bézier (an engineer who led a
design laboratory at Renault). For an account of Bézier’s work at Renault,
see Chapter 1 of [Far88], which also discusses work carried out at General
Motors and at Citroen in the early 1960’s. For a more detailed biogra-
phy of Bézier, see [LauS01]. While Bézier was working at Renault in the
early 1960’s, P. de Casteljau led a similar design laboratory at Citroen. In
1959 he had published a technical report [Cas59] (in French) which con-
tains a version of his algorithm for curves. The bivariate analog contained
in Algorithm 2.9 can be found in [Cas63], see [BoeM99] for the history and
photocopies of the relevant pages from [Cas59, Cas63]. de Casteljau’s work
seems not to have been known in the mathematical world until W. Boehm
discovered these technical reports in 1975.

Bivariate Bernstein basis polynomials associated with a triangle were
studied in the approximation theory literature in the early 1950’s, but did
not attract a lot of attention at the time, see [Lor53, Sta59] and also [Sta80].
Barycentric coordinates relative to a triangle were used much earlier, and
can be found already in the work of Moebius in 1827, see his collected works
[Moe86].

The study of bivariate Bernstein basis polynomials as a tool for repre-
senting surface patches in a CAGD context seems to have begun in the mid
1970’s, see [Far77, Far79, Sab77]. The expansion of a bivariate polynomial
in terms of Bernstein basis polynomials became known as the Bernstein–
Bézier representation, see [BoeFK84], and is still called that in much of the
literature. Here we have adopted the suggestion of de Boor [Boo87] to call it
the B-form to honor both Bernstein and Bézier. The stability of the Bern-
stein basis polynomials in the univariate setting was studied in [FaroG96].
We could not find a reference for the stability of the bivariate basis de-
scribed in Theorem 2.6. Formulae for computing directional derivatives of
polynomials written in B-form can be found in Sabin’s thesis [Sab77].

The discovery that C1 smoothness across the common edge between
two polynomials defined on adjoining triangles can be characterized by
very simple linear conditions on the coefficients was a major step forward
in making the B-form an essential tool in studying multivariate splines.
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The C1 case was discussed in [Sab77], while the geometric meaning of the
conditions was first explained in [Far82]. The smoothness conditions for
Cr joins between two polynomials in B-form were introduced in [Far80],
see also [Far86]. The geometric meaning of Cr smoothness conditions was
explored in [Lai97] and [Kas98]. Alternative smoothness conditions in terms
of the angles of the triangles involved were described in [Hon95].

Various versions of Lemma 2.30 on the use of smoothness conditions
to compute certain coefficients of a pair of polynomials on adjoining tri-
angles seem to have been discovered independently by several authors, see
[BooH88, IbrS91]. The result in the general form presented here comes from
[AlfS02a].

Conjecture 2.22 on interpolation by restricted sets of Bernstein basis
polynomials was formulated by the second author in 2003. A formal state-
ment can be found in [AlfS05a]. The results for the special choice of Γ in
Lemma 2.25 are new. The Markov inequality (2.58) for bivariate polynomi-
als was established for the maximum norm in [Coa66], and also in [Wil74]
by an argument based on the univariate result. Our proof of Theorem 2.32,
which establishes the inequality for general q-norms, is based on the B-form,
and comes from our paper [LaiS98].

The simple formulae (2.60) for the integrals of the Bernstein basis
polynomials may have been derived by probabilists, but we have not found
a reference. These formulae are mentioned in the survey [BoeFK84], and
also show up in [Far88]. The formulae for inner products in Theorem 2.34
can be found in [ChuL90a].

The observation that the de Casteljau algorithm can be used to find
the coefficients of a subdivided B-polynomial can be found in [Far80], see
also [Gol83, Pra84]. The formulae of Theorem 2.39 for degree raising of
B-polynomials seems to have been known even earlier, see [Far79] where it
was also noted that the sequence of degree-raised surfaces converges to the
corresponding polynomial surface.

Dual bases for the Bernstein basis polynomials were constructed in-
dependently by several authors, see [ZhaS88, Lai91, Wu93]. The results
presented in Section 2.16 follow [Lai91]. The use of quasi-interpolants to
establish approximation results is well established in approximation theory.
They were studied in the context of univariate splines in [Boo68, Boo73,
BooF73, LycS75]. For work in the bivariate setting, see [Boo90, ChuL90b],
and references therein. For a discussion of how to get bivariate approxima-
tion results without using quasi-interpolants, see [Boo92].

The univariate analog of the Bernstein approximation operator dis-
ussed in Section 2.18 is well known in classical approximation theory, see
[Lor53]. For some asymptotic expansions connected with the bivariate op-
erator, see [FenK92] and [Lai92a]. Bernstein basis functions and the Bern-
stein polynomial operator have several other interesting properties which
we do not have space to discuss here.



B-Patches

In this chapter we discuss properties of surface patches associated with
polynomials defined on a triangle. In particular, we show that their shapes
are closely related to properties of two useful control structures – control
nets and control surfaces. In addition to discussing positivity, monotonicity,
and convexity, we show how interpolation, degree raising, and subdivision
can be used to efficiently render surface patches.

3.1. Control Nets and Control Surfaces

Given a function f defined on a triangle T , let

Gf := {(x, y, f(x, y)) : (x, y) ∈ T }

be its graph. Gf is a surface lying in R
3 which we call the surface patch asso-

ciated with f . We call Gp a B-patch when it corresponds to a B-polynomial

p :=
∑

i+j+k=d

cijkBd
ijk. (3.1)

There is another surface associated with p which will play an important
role in this chapter. Given a triangle T := 〈v1, v2, v3〉, let

Dd,T :=
{
ξijk =

iv1 + jv2 + kv3

d

}

i+j+k=d
(3.2)

be the corresponding set of domain points. Let △T,d be the triangulation
of T obtained by connecting neighboring points ξijk of Dd,T , where two
domain points ξijk and ξνµκ are considered to be neighbors provided

|i − ν| + |j − µ| + |k − κ| = 2.

The triangulation △T,d consists of
(
d+1

2

)
+

(
d
2

)
congruent triangles

Tijk := 〈ξi+1,j,k, ξi,j+1,k , ξi,j,k+1〉, i + j + k = d − 1,

T̃ijk := 〈ξi,j+1,k+1 , ξi+1,j,k+1, ξi+1,j+1,k〉, i + j + k = d − 2,
(3.3)

see Figure 3.1. Given a B-polynomial (3.1), let

sp(v) :=

{
sijk(v), for v ∈ Tijk, i + j + k = d − 1,

s̃ijk(v), for v ∈ T̃ijk, i + j + k = d − 2,
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T200

T110 T101

T020 T011 T002

T̃001T̃010

T̃100

Fig. 3.1. The triangulation △T,3 of a triangle T .

where sijk is the linear polynomial which interpolates the values {ci+1,j,k,

ci,j+1,k, ci,j,k+1} at the vertices of Tijk, and s̃ijk is the linear polynomial
which interpolates the values{ci,j+1,k+1, ci+1,j,k+1, ci+1,j+1,k} at the ver-

tices of T̃ijk . Let Cp := Gsp
be the surface patch associated with sp. We

call it the control surface associated with p.
By definition, sp is a continuous piecewise linear function, i.e., a C0

linear spline. The control surface Cp is the union of the triangular facets

Tijk := 〈Ci+1,j,k , Ci,j+1,k, Ci,j,k+1〉, i + j + k = d − 1

and

T̃ijk := 〈Ci,j+1,k+1 , Ci+1,j,k+1, Ci+1,j+1,k〉, i + j + k = d − 2,

where
Cijk := (ξijk , cijk), i + j + k = d.

These triangles lie in R
3 and are in one-to-one correspondence with the

triangles Tijk and T̃ijk which make up △T,d.
The union of the edges of Cp is a wireframe object Np which is called

the control net associated with p. The vertices {Cijk}i+j+k=d of Np are
called the control points of p. For a typical patch and its control net, see
Figure 3.2.

Clearly, the shape of a B-patch Gp depends on the choice of the coef-
ficients {cijk}i+j+k=d of p or, equivalently, on the locations of the control
points {Cijk}i+j+k=d in R

3. Our aim in this chapter is to show that there
is a close geometric relationship between a B-patch and its control points,
control net, and control surface. This connection can be employed as a de-
sign tool. The idea is to plot both the patch and its control net (or control
surface) on a display screen. Then we can interactively edit the shape of
the patch by adjusting the control points, which amounts to adjusting the
values of the coefficients cijk of the polynomial p.
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Fig. 3.2. A quadratic patch Gp and its associated control net Np.

Since all of the Bernstein basis polynomials are nonnegative on T , if we
move a control point Cijk up or down (i.e., increase or decrease the value
of cijk), the B-patch Gp always moves in the same direction. Since Bd

ijk

takes its maximum at ξijk by Theorem 2.5, it follows that when we move
the control point Cijk := (ξijk , cijk), the largest change in the surface takes
place for points in T near ξijk . The following theorem is also helpful for
adjusting the shape of a B-patch.

Theorem 3.1. Let Gp be the B-patch associated with a polynomial p.
Then:

1) Gp passes through the points Cd00 := (v1, cd00), C0d0 := (v2, c0d0), and
C00d := (v3, c00d), which are the corner vertices of the control net Np.

2) The intersection of Gp with the vertical plane containing the edge
〈v1, v2〉 is a curve whose tangent vector at the point Cd00 points in
the same direction as the vector Cd−1,1,0 − Cd00.

The analogous assertions hold for the other edges and vertices.

Proof: The fact that Gp passes through the point (v1, cd00) follows im-
mediately from the fact that the only Bernstein polynomial with nonzero
value at v1 is Bd

d00
. A similar proof works at v2 and v3. To establish 2), let

P (t) :=
∑

i+j+k=d CijkBd
ijk|e. where e := 〈v1, v2〉. Suppose l is the length

of e. Then we can write

P (t) =
d∑

i=0

Cd−i,i,0 φd
i (t)

in terms of the univariate Bernstein polynomials (2.80) defined on [0, l].
This is a parametric curve in R

3 with

P ′(0) =
d [Cd−1,1,0 − Cd00]

l
.
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3.2. The Convex Hull Property

In this section we establish an important geometric connection between the
surface patch Gp associated with a polynomial p, its control net Np, and its
control surface Cp.

Theorem 3.2. The B-patch Gp lies in the convex hull of its control net
Np or control surface Cp.

Proof: The convex hull of Np is the same as the convex hull of Cp. Fix
(x, y) ∈ T with barycentric coordinates b1, b2, b3. Then in view of (2.75),
points on the surface Gp can be written as

P (x, y) :=




x

y

p(x, y)


 =

∑

i+j+k=d




ξx
ijk

ξ
y
ijk

cijk


Bd

ijk(x, y) =
∑

i+j+k=d

CijkBd
ijk(x, y),

(3.4)
where ξijk := (ξx

ijk , ξ
y
ijk) and Cijk := (ξx

ijk , ξ
y
ijk , cijk) are the control points.

Since the Bd
ijk are nonnegative and sum to one, this simply states that the

point P (x, y) is a convex combination of the control points, and hence lies
in the convex hull of the control net Np.

There is a more geometric proof of Theorem 3.2 which is quite instruc-
tive. For each ℓ = 0, . . . , d, let

C
(ℓ)

ijk := (ξℓ
ijk , cℓ

ijk), i + j + k = d − ℓ,

be the intermediate values obtained from the deCasteljau algorithm start-

ing with C
(0)

ijk := Cijk = (ξijk , cijk) for i + j + k = d. Then each of the

points C
(ℓ)

ijk lies on the triangular facet

T
(ℓ)

ijk := 〈C
(ℓ−1)

i+1,j,k, C
(ℓ−1)

i,j+1,k , C
(ℓ−1)

i,j,k+1
〉

formed from the three control points at the previous level, and hence re-
mains in the convex hull of Np. Now by Theorem 2.8 and (3.4),

ξ
(d)

000
=

∑

i+j+k=d

ξijkBd
ijk(x, y) = (x, y),

and thus the final point C
(d)

000
= (ξ

(d)

000
, c

(d)

000
) = (x, y, p(x, y)) also lies in the

convex hull of Np.

3.3. Positivity of B-patches

In the next three sections we examine to what extent properties of the
coefficients of a polynomial in B-form (or equivalently of its control net)
determine the shape of the corresponding surface patch. In this section
we discuss positivity. The following theorem gives a simple sufficient con-
dition on the coefficients of a polynomial p in B-form to ensure that the
corresponding surface patch is positive or nonnegative.
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Theorem 3.3. If all of the coefficients {cijk}i+j+k=d of p are positive
(nonnegative), then p is positive (nonnegative) on T .

Proof: The statement about nonnegativity follows immediately from the
fact that each of the Bernstein basis polynomials Bd

ijk is nonnegative on T .
The statement about positivity follows from the fact that at each point, at
least one basis polynomial is strictly positive since their sum is one.

In view of the fact that Cp consists of triangular facets, it is clear that
Cp is positive (nonnegative) if and only if the coefficients {cijk}i+j+k=d of
p are positive (nonnegative). But then by the convex hull property, the
B-patch Gp will also be positive (nonnegative) under the same conditions.
We can restate Theorem 3.3 in a more geometric form.

Theorem 3.4. Suppose Cp is a control surface associated with a polyno-
mial p. Then the corresponding B-patch Gp is positive (nonnegative) if Cp

is positive (nonnegative).

Theorem 3.3 gives only sufficient conditions for positivity (or nonneg-
ativity) of p. It is easy to see that for d = 1, these conditions are also
necessary. However, this is no longer the case for d ≥ 2. A polynomial p

can be positive on T even if some of its coefficients are negative (in which
case the associated control surface also becomes negative). Here is an ex-
plicit example.

Example 3.5. Consider the quadratic polynomial p whose coefficients in
B-form are {0, 0, 0, 1,−1, 1}, in lexicographical order.

Discussion: Let b1, b2, b3 be the barycentric coordinate functions asso-
ciated with T . Then p = b2

2
− 2b2b3 + b2

3
= (b2 − b3)

2 is a nonnegative
polynomial. The minimum value of p in T is zero, and occurs at all points
on the line defined by b2 = b3. If we increase all coefficients of p by .5,
the resulting polynomial q still has one negative coefficient, but is strictly
positive on T .

For d > 1, it seems to be a difficult problem to give necessary and
sufficient conditions on the B-form coefficients of a polynomial p for it to
be positive (nonnegative) on T . There is, however, a characterization for
the case d = 2. First we note that a quadratic polynomial p in B-form can
be written as p = bT Ab, where b = (b1, b2, b3)

T , and

A :=




c200 c110 c101

c110 c020 c011

c101 c011 c002


.

We also note that the restriction of p to the edge 〈v1, v2〉 is

p = c200 b2

1
+ 2c110b1b2 + c020b2

2
, (3.5)

with similar formulae for the other two edges of T .
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Theorem 3.6. A quadratic polynomial p is nonnegative on T if and only
if

1) c200 ≥ 0, c020 ≥ 0, c002 ≥ 0,

2) c110 ≥ −
√

c200c020, c101 ≥ −
√

c200c002, c011 ≥ −
√

c002c020,

3a) det (A) ≥ 0, or

3b) c011

√
c200 + c101

√
c020 + c110

√
c002 +

√
c200c020c002 ≥ 0.

The polynomial p is positive on T if and only if these inequalities are strict.

Proof: We first prove the sufficiency. Let C := {c110, c101, c011}. Suppose
that conditions 1), 2), 3a) hold. If all coefficients in C are nonnegative,
then it is clear that p is nonnegative on T . If any one of the coefficients in
C is negative, say c110, then conditions 1), 2), 3a) imply that all principal
minors of A are nonnegative, and thus it is a symmetric nonnegative definite
matrix. But then it is clear from p = bT Ab that p(v) ≥ 0 not only in T ,
but even for all points in R

2. Now suppose conditions 1), 2), 3b) hold. We
examine three cases.

Case S1. (Exactly one of the coefficients in C is negative.) Suppose c110 <

0 while c101, c011 ≥ 0, and let p̂(v) := c200b
2

1
+ 2c110b1b2 + c020b

2

2
. Clearly,

p(v) ≥ p̂(v). Now since the coefficients of p̂ satisfy conditions 1), 2), 3a),
we conclude that p(v) ≥ 0.

Case S2. (Two of the coefficients in C are negative.) Suppose c110, c101 < 0
while c011 ≥ 0. Then condition 3b) implies that there exists −

√
c002c020 ≤

ĉ011 ≤ c011 such that

ĉ011

√
c200 + c101

√
c020 + c110

√
c002 +

√
c200c020c002 = 0.

Clearly, p̂(v) := p(v)−2c011b2b3 +2ĉ011b2b3 ≤ p(v). It is easy to check that
the coefficients of p̂ satisfy the conditions 1) and 2). We now check that

they satisfy 3a). Let Â be the coefficient matrix associated with p̂. It is a
simple calculation using condition 2) to check that

det (Â) = c200c020c002 + 2c110c101ĉ011 − c2

110
c002 − c2

101
c020 − (ĉ011)

2c200

= 2(
√

c200c020 + c110)(
√

c200c002 + c101)(
√

c020c002 + ĉ011)

− (ĉ011

√
c200 + c101

√
c020 + c110

√
c002 +

√
c200c020c002)

2

= 2(
√

c200c020 + c110)(
√

c200c002 + c101)(
√

c020c002 + ĉ011) ≥ 0.

This shows p̂ and thus p is nonnegative.

Case S3. (All of the coefficients in C are negative.) Here c200, c020, c002

must all be positive since otherwise condition 2) could not hold. Let

λ1 =
√

c200 b1, λ2 =
√

c020 b2, λ3 =
√

c002 b3.
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This implies that p(v) is given by

λ2

1
+ λ2

2
+ λ2

3
+ 2

c110
√

c200c020

λ1λ2 + 2
c101

√
c200c002

λ1λ3 + 2
c011

√
c020c002

λ2λ3

≥ λ2

1
+ λ2

2
+ λ2

3
+

c110
√

c200c020

(λ2

1
+ λ2

2
) +

c101
√

c200c002

(λ2

1
+ λ2

3
)

+
c011

√
c020c002

(λ2

2
+ λ2

3
)

= λ2

1

(
1 +

c110
√

c200c020

+
c101

√
c200c002

)
+ λ2

2

(
1 +

c110
√

c200c020

+
c011

√
c020c002

)

+ λ2

3

(
1 +

c011
√

c020c002

+
c101

√
c200c002

)

=
λ2

1
√

c200c002c020

(√
c200c002c020 + c110

√
c002 + c101

√
c020

)

+
λ2

2
√

c200c002c020

(√
c200c002c020 + c110

√
c002 + c011

√
c200

)

+
λ2

3
√

c200c002c020

(√
c200c002c020 + c101

√
c020 + c011

√
c200

)
≥ 0,

where we have used 3b) and the inequality 2xy ≤ x2 + y2.
This completes the proof of sufficiency. We turn now to necessity.

Since the c200, c020 and c002 are the values of p at the vertices, condition
1) is clearly necessary. To show the necessity of 2), we choose c110 =
−
√

c200c020. Then evaluating the resulting polynomial (3.5) at the point
whose barycentric coordinates are

( √
c020

√
c200 +

√
c020

,

√
c200

√
c200 +

√
c020

, 0
)
,

we get zero. Thus, if c110 were any smaller, we would get negative values
on the edge 〈v1, v2〉. A similar argument establishes the other inequalities
in condition 2).

It remains to establish the necessity of condition 3). We may assume
that conditions 1) and 2) hold. There are two cases.

Case N1. (One of the coefficients c200, c020, c002 is zero.) Say c200 =
0. Then condition 2) implies that c110 ≥ 0 and c101 ≥ 0 which implies
condition 3b) must hold in this case.

Case N2. (All of the coefficients c200, c020, c002 are positive.) We now
assume that condition 3b) does not hold, and show that 3a) does. Let

w1 =
c110

√
c020c200

, w2 =
c101

√
c200c002

, w3 =
c011

√
c020c002

.
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By condition 2), wi ≥ −1 for i = 1, 2, 3. Since we are assuming 3b) fails, it
follows that 1+w1 +w2 +w3 < 0, and so wi < 1, i = 1, 2, 3, and w1w2−w3,
w1w3 − w2, and w2w3 − w1 are all positive. Now let

D :=




1/
√

c200 0 0
0 1/

√
c020 0

0 0 1/
√

c002


 , B :=




1 w1 w2

w1 1 w3

w2 w3 1


 .

Then A = D−1BD−1 and φ := det (B) =
det (A)

c200c002 c020

. To complete the

proof, it suffices to show that φ ≥ 0.

Clearly, CB = φI3 where I3 is the 3 × 3 identity matrix, and

C :=




1 − w2

3
w2w3 − w1 w1w3 − w2

w2w3 − w1 1 − w2

2
w1w2 − w3

w1w3 − w2 w1w2 − w3 1 − w2

1



 .

Note that all entries of C and thus of DCD are nonnegative. Now let v0

be a point in T whose barycentric coordinates are

b := (b1, b2, b3) =
uDCD

g
,

where u = (1, 1, 1) and g := uDCDuT . Then we have

p(v0) = bA bT =
uDCDD−1BD−1DCDuT

g2
=

φ

g
≥ 0.

The proof that p is positive when all the inequalities in 1)–3) are strict is
similar.

Although no analogous characterization is known for the positivity of
cubic polynomials, it is possible to give a similar sufficient condition. Let

A1 :=




c300 c210 c201

c210 c120 c111

c201 c111 c102



, A2 :=




c210 c120 c111

c120 c030 c021

c111 c021 c012



,

and

A3 :=




c201 c111 c102

c111 c021 c012

c102 c012 c003



.
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Theorem 3.7. Suppose the B-coefficients of a cubic polynomial p satisfy

1) c300 ≥ 0, c030 ≥ 0, c003 ≥ 0,

2) c300c120 ≥ c2

210
, c030c012 ≥ c2

021
, c003c201 ≥ c2

102
,

3) det (A1) ≥ 0, det (A2) ≥ 0, det (A3) ≥ 0.

Then p is nonnegative on T . Moreover, p is positive on T provided these
inequalities are strict.

Proof: Given v ∈ T , let b := (b1, b2, b3)
T be its barycentric coordinates.

Then

p(v) = b1b
T A1b + b2bT A2b + b3bT A3b.

Now the hypotheses imply that the leading principal minors of A1 are non-
negative, and thus it is a symmetric nonnegative definite matrix. Similarly,
the hypotheses imply that the leading principal minors of the matrix Ã2

obtained from A2 by permuting rows and columns to the order {2, 3, 1}
are nonnegative. It follows that Ã2 and thus also A2 is symmetric and
nonnegative definite. The proof for A3 is similar, and the result follows.

We conclude this section with a theorem which gives a necessary and

sufficient condition for a patch Gp to be positive. Let C
(ℓ)
p be the control

surface associated with the B-form coefficients of p after degree raising ℓ

times.

Theorem 3.8. The patch Gp is positive on T if and only if the control

surface C
(ℓ)
p is positive for some sufficiently large ℓ.

Proof: By Theorem 3.4, if C
(ℓ)
p is positive, then Gp is positive. The converse

follows from the fact established in Theorem 3.23 below that the sequence

of control surfaces C
(ℓ)
p converges to Gp uniformly on T as ℓ → ∞.

3.4. Monotonicity of B-patches

We begin by defining monotonicity of a bivariate function.

Definition 3.9. Let u be a vector in R
2. We say that a function f defined

on T is monotone increasing in the direction u provided that f(w2) ≥ f(w1)
for all points w1, w2 in T such that the vector w2 − w1 points in the same
direction as u. If f has a directional derivative in the direction u, this is
equivalent to Duf(v) ≥ 0 for all v ∈ T .

If f is monotone increasing in the direction u, then intersecting the
surface patch Gf with a vertical plane containing the direction vector u, we
get a curve which is monotone increasing as we move along the line in T

described by u.
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The concepts of strictly monotone increasing and (strictly) monotone
decreasing are defined in the analogous way. In the remainder of this section
we shall deal only with the monotone increasing case, as the other cases
can be handled in the same way.

Theorem 3.10. Let u be a direction vector corresponding to the triple
a := (a1, a2, a3) with a1 + a2 + a3 = 0 as described in Section 2.6. Suppose
p is a polynomial of degree d whose B-coefficients satisfy

c
(1)

ijk := a1ci+1,j,k + a2ci,j+1,k + a3ci,j,k+1 ≥ 0, i + j + k = d− 1. (3.6)

Then p and its associated B-patch Gp are monotone increasing in the direc-
tion u.

Proof: The c
(1)

ijk are just the quantities arising in the first step of the
de Casteljau algorithm based on a. By Theorem 2.12, they are the coeffi-
cients of 1

d
Dup, which is a polynomial of degree d−1. But then Theorem 3.3

implies that Dup(v) ≥ 0 for all v ∈ T .

Corollary 3.11. If the control surface Cp associated with a polynomial p

is monotone increasing in a direction u, then so is p.

Proof: For each i+j+k = d−1, c
(1)

ijk can be interpreted as the value of the
directional derivative Duqijk of the linear polynomial qijk corresponding to
the control surface Cp on the subtriangle Tijk defined in (3.3). Thus the
assumption that Cp is monotone increasing in the direction u implies that

all of the c
(1)

ijk ≥ 0, and Theorem 3.10 applies.

Theorem 3.10 and Corollary 3.11 give sufficient conditions for a B-
patch to be monotone in a given direction. However, they are not necessary

since, as we saw in Example 3.5, the surface Dup can be positive without
the conditions (3.6) being satisfied.

By Theorem 3.10, we can make a polynomial p be monotone in the
direction u by forcing its coefficients to satisfy the linear side conditions

(3.6). To make p be monotone in two different directions, say u1 and u2,
we can enforce two sets of such conditions. If this is done, then p will in
fact be monotone for all directions u in the cone

{u = α1u1 + α2u2 : α1, α2 ≥ 0}.

Indeed, for any such vector u,

Dup = α1Du1
p + α2Du2

p,

and so if the derivatives on the right are both positive, so is the one on the
left.
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For the remainder of this section we consider the special case where the
direction of interest is aligned with an edge of the triangle T . In this case
the conditions (3.6) can be written in a convenient form involving certain
coefficient differences. Given ν, µ ∈ {1, 2, 3}, we define

∆νµcijk := Eνcijk − Eµcijk, i + j + k = d − 1,

where

Eνcijk :=





ci+1,j,k, if ν = 1,

ci,j+1,k , if ν = 2,

ci,j,k+1, if ν = 3.

It follows immediately from the definition that

∆νµ = −∆µν ,

∆νµ = ∆να − ∆µα,

∆νµ∆αβ = ∆αβ∆νµ,

for all ν, µ, α, β.

Theorem 3.12. Let u = v2−v1, and suppose the coefficients of p are such
that

∆21cijk = ci,j+1,0 − ci+1,j,0 ≥ 0, i + j + k = d − 1.

Then p is monotone increasing in the direction u.

Proof: The assertion is an immediate corollary of Theorem 3.10, since the
direction vector u is described by the triple a = (−1, 1, 0).

3.5. Convexity of B-patches

A function f defined on a triangle T is said to be convex in the direction u

provided
f(w3) − f(w2)

|w3 − w2|
≥

f(w2) − f(w1)

|w2 − w1|
,

for all ordered sets of points w1, w2, w3 in T lying on a line pointing in the
direction of u. We say that f is convex on T provided it is convex in all
directions.

As is well known from calculus, if f has two derivatives in the direction
u, then this definition of convexity in the direction u is equivalent to

D2

uf(v) ≥ 0, all v ∈ T .

If the function f is convex in the direction u, then the intersection of the
surface patch Gf associated with f with a vertical plane containing u is a
curve which is convex as we move in the direction described by u.

We now present a sufficient condition on the B-coefficients of a poly-
nomial p for it to be convex in the direction of one of the edges of T .
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Theorem 3.13. The polynomial p is convex in the direction u := v2 − v1

provided that

∆2

21
cijk = ci,j+2,k − 2ci+1,j+1,k + ci+2,j,k ≥ 0, i + j + k = d − 2. (3.7)

Proof: The direction u is described by the triple a = (−1, 1, 0). This

implies that the B-coefficients of 1

d(d−1)
D2

up in (2.42) are c
(2)

ijk := ∆2

21
cijk,

and it follows from (3.7) that the second derivative of p in the direction u

is positive at all points in T .

Conditions for convexity in an arbitrary direction u are somewhat more
complicated.

Theorem 3.14. Suppose

u := η2(v2 − v1) + η3(v3 − v1), (3.8)

for some real numbers η2 and η3. Then p is convex in the direction u

provided that

(η2, η3)Aijk

[
η2

η3

]
≥ 0, i + j + k = d − 2, (3.9)

where

Aijk :=

[
∆2

21
cijk ∆21∆31cijk

∆21∆31cijk ∆2

31
cijk

]
. (3.10)

Proof: In this case,

D2

up = d(d − 1)
∑

i+j+k=d−2

[( 3∑

m=2

ηm∆m,1

)2

cijk

]
Bd−2

ijk

= d(d − 1)
∑

i+j+k=d−2

[ 3∑

m=2

3∑

n=2

ηmηn∆m,1∆n,1cijk

]
Bd−2

ijk

= d(d − 1)
∑

i+j+k=d−2

(η2, η3)Aijk

[
η2

η3

]
Bd−2

ijk , (3.11)

and the condition (3.9) is clearly sufficient.

We can now use Theorem 3.14 to give sufficient conditions for p to be
convex in all directions.
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Theorem 3.15. Suppose each of the matrices Aijk in (3.10) is nonnegative
definite. Then p is convex on T . This condition is also necessary when
d = 2 and d = 3.

Proof: The sufficiency is obvious, since if the Aijk are nonnegative definite,
then the coefficients of Bd−2

ijk in (3.11) will be nonnegative for all choices of

(η2, η3), and hence D2

up(v) ≥ 0 for all directions u and all v ∈ T . We now
prove the necessity for d = 2. In this case D2

up has the constant value

(η2, η3)A000

[
η2

η3

]
.

This is nonnegative for all choices of (η2, η3) only if A000 is nonnegative
definite. When d = 3, D2

up is a linear polynomial which interpolates the
three values

(η2, η3)A100

[
η2

η3

]
, (η2, η3)A010

[
η2

η3

]
, (η2, η3)A001

[
η2

η3

]
,

at the three vertices v1, v2, v3 of T , respectively. Thus, D2

up(v) ≥ 0 for all
v ∈ T can only hold if all three of these quantities are nonnegative. Since
this has to hold for all directions u, and thus for all (η2, η3), we conclude
that the matrices A100, A010, A001 must be nonnegative definite.

We now translate Theorem 3.15 into conditions directly on the coeffi-
cients.

Theorem 3.16. Suppose the B-coefficients of a polynomial p satisfy

∆2

21
cijk ≥ |∆21∆31cijk| (3.12)

and
∆2

31
cijk ≥ |∆21∆31cijk|, (3.13)

for all i + j + k = d − 2. Then p is convex on T .

Proof: A 2 × 2 symmetric matrix is nonnegative definite if and only if
its principal minors are nonnegative. Thus, the matrix Aijk in (3.10) is
nonnegative definite if and only if

∆2

21
cijk ≥ 0, (3.14)

∆2

21
cijk ∆2

31
cijk − (∆21∆31cijk)2 ≥ 0. (3.15)

Clearly, (3.12)–(3.13) imply these conditions, and the result follows.

Using the simple relations

∆2

21
cijk = ∆21∆23cijk + ∆21∆31cijk,

∆2

31
cijk = ∆31∆32cijk + ∆31∆21cijk,

(3.16)

we can rewrite the two conditions in Theorem 3.16 as the following four
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linear conditions:

∆21∆23cijk ≥ 0, ∆21∆23cijk + 2∆21∆31cijk ≥ 0,

∆31∆32cijk ≥ 0, ∆31∆32cijk + 2∆21∆31cijk ≥ 0.

In the following theorem we weaken these conditions even further.

Theorem 3.17. Suppose the B-coefficients of a polynomial p satisfy

∆21∆23cijk + 2∆21∆31cijk ≥ 0,

2∆21∆23cijk + ∆21∆31cijk ≥ 0,

∆31∆32cijk + 2∆21∆31cijk ≥ 0,

2∆31∆32cijk + ∆21∆31cijk ≥ 0,

∆21∆23cijk + 2∆31∆32cijk ≥ 0,

2∆21∆23cijk + ∆31∆32cijk ≥ 0,

(3.17)

for all i + j + k = n − 2. Then p is convex.

Proof: We claim that conditions (3.17) imply

∆2

21
cijk ≥

|∆21∆31cijk|

2
,

∆2

31cijk ≥
|∆21∆31cijk|

2
,

2∆2

21
cijk + ∆2

31
cijk ≥ 3|∆21∆31cijk|,

∆2

21
cijk + 2∆2

31
cijk ≥ 3|∆21∆31cijk|.

(3.18)

Suppose ∆21∆31cijk ≥ 0. Then by (3.16) and the first inequality in (3.17),

∆2

21
cijk = ∆21∆23cijk + ∆21∆31cijk ≥

∆21∆31cijk

2
.

On the other hand if ∆21∆31cijk < 0, then by the second inequality in
(3.17),

∆2

21
cijk = ∆21∆23cijk + ∆21∆31cijk ≥ ∆21∆23cijk ≥

−∆21∆31cijk

2
.

These two inequalities imply the first inequality in (3.18). The other in-
equalities in (3.18) follow in a similar way.

We now show that the inequalities (3.18) imply the nonnegative defi-
niteness of the matrix Aijk in (3.10). Note that ∆2

21
cijk ≥ 0. Suppose that

∆2

21
cijk ≥ ∆2

31
cijk. Then if ∆2

31
cijk ≥ |∆21∆31cijk|, we are done since

∆2

21
cijk∆2

31
cijk ≥ (∆2

31
cijk)2 ≥ |∆21∆31cijk|

2,
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that is, det (Aijk) ≥ 0. Hence, Aijk is nonnegative definite. On the other
hand, if ∆2

31
cijk < |∆21∆31cijk|, then (3.18) implies

det (Aijk) = ∆2

21
cijk∆2

31
cijk − |∆21∆31cijk|

2

= (∆2

21
cijk + 2∆2

31
cijk − 3|∆21∆31cijk |)∆

2

31
cijk

+ 2(|∆21∆31cijk| − ∆2

31
cijk)

(
∆2

31
cijk −

|∆21∆31cijk|

2

)
≥ 0,

which again implies that Aijk is nonnegative definite. The case ∆2

31
cijk ≥

∆2

21
cijk is similar.

In the remainder of this section we explore the connection between
convexity of a B-patch and convexity of its control surface.

Theorem 3.18. If the control surface Cp associated with a polynomial p

is convex, then p is also convex.

Proof: First we show that (3.14) together with the conditions

∆21∆31cijk ≥ 0,

∆12∆32cijk ≥ 0,

∆13∆23cijk ≥ 0,

i + j + k = d − 2, (3.19)

imply that p is convex. Indeed, assuming these conditions, it follows that

∆2

21
cijk − ∆21∆31cijk = ∆21(∆21 − ∆31)cijk

= ∆21∆23cijk = ∆12∆32cijk ≥ 0.

But then
∆2

21
cijk ≥ ∆21∆31cijk = |∆21∆31cijk|.

A similar argument shows that ∆2

31
cijk ≥ |∆21∆31cijk|, and Theorem 3.16

applies.
Now we show that if Cp is convex, then (3.14) and (3.19) must hold.

The fact that Cp is convex along the edge corresponding to 〈v1, v2〉 imme-
diately implies (3.14). The condition

∆21∆31cijk ≥ 0
can be written as

ci,j+1,k+1 + ci+2,j,k − ci+1,j+1,k − ci+1,j,k+1 ≥ 0.

This states that the part of the control surface consisting of the two triangles

Ti+1,j,k = 〈Ci+2,j,k, Ci+1,j+1,k , Ci+1,j,k+1〉,

T̃ijk = 〈Ci,j+1,k+1 , Ci+1,j,k+1, Ci+1,j+1,k〉

sharing the edge 〈Ci+1,j+1,k, Ci+1,j,k+1〉 is convex. Similarly, the second
and third conditions in (3.19) assert that certain other adjoining pairs of
triangles form a convex part of the control surface.
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The converse of Theorem 3.18 does not hold, i.e., there exists a convex
surface patch Gp whose control surface Cp is not convex.

Example 3.19. Let p be the cubic polynomial with B-coefficients {.2, 0,
0, 0,−.4, 0, .2, 0, 0, .2}.

Discussion: It is easy to check that the hypotheses of Theorem 3.16 are
satisfied, and we conclude that p is convex. On the other hand, since the
value of ∆21∆31c100 is negative, it follows from the proof of Theorem 3.18
that the control surface Cp is not convex.

3.6. Control Surfaces and Subdivision

We have shown that the control surface Cp associated with a B-polynomial
p defined on a triangle T does a good job of modeling the shape of the
corresponding B-patch Gp. In this section we give a bound on the differ-
ence between these two surfaces. In addition, we show how to construct a
sequence of control surfaces which converges uniformly to Gp.

Since Gp and Cp are graphs of bivariate functions defined on the triangle
T , we define ‖Gp − Cp‖T

to be the maximum distance between the two
surfaces measured in the direction of the z-axis. It follows that

‖Gp − Cp‖T
= ‖p − sp‖T

,

where sp is the C0 linear spline on △T,d which defines Cp.

Theorem 3.20. There exists a constant K depending only on d such that
for every polynomial p of degree d,

‖p − sp‖T
≤ K |T |2 |p|2,T . (3.20)

Proof: By the triangle inequality,

‖p− sp‖T
≤ ‖p − s∗‖T + ‖s∗ − sp‖T

, (3.21)

where s∗ is the C0 linear spline on △T,d that interpolates p at the points
{ξijk}i+j+k=d. We now consider the norm of p − s∗ on subtriangles of the
triangulation △T,d defined in Section 3.1. Since each of these subtriangles
has diameter |T |/d, applying (1.31) and taking the maximum over all such
subtriangles, we get

‖p− s∗‖T ≤
|T |2

d2
|p|2,T .

Both sp and s∗ are C0 linear splines on △T,d, where sp(ξijk) = cijk

and s∗(ξijk) = p(ξijk). It follows that

‖s∗ − sp‖T
≤ max

i+j+k=d
|p(ξijk) − cijk|.
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The Bernstein polynomial (2.72) associated with p is Bdp =
∑

p(ξijk)Bd
ijk .

Applying Theorem 2.6 (the stability of the Bernstein basis polynomials) and
Theorem 2.45 (on the approximation power of the Bernstein polynomial
operator), we get

max
i+j+k=d

|p(ξijk) − cijk| ≤ K1 ‖Bdp − p‖T ≤
K1

d
|T |2 |p|2,T ,

where K1 is the constant in Theorem 2.6. Combining these inequalities
yields the desired result.

We now show how to create a sequence of control surfaces which con-
verge to Gp. Suppose we apply the subdivision method of Section 2.14 to
partition T into subtriangles {Ti}

n
i=1

. Suppose that {pi}
n
i=1

are the associ-
ated polynomials such that

p(v) =





p1(v), v ∈ T1

...
pn(v), v ∈ Tn.

For each i = 1, . . . , n, let spi
be the linear splines defining the control

surfaces associated with pi, and let

s(1)

p (v) :=






sp1
(v), v ∈ T1

...
spn

(v), v ∈ Tn.

Then s
(1)

p is a continuous linear spline, and its graph C
(1)

p can be regarded
as an alternate control surface for the B-patch Gp. Clearly,

‖Gp − C(1)

p ‖
T

= ‖p − s(1)

p ‖
T

= max
i

‖pi − spi
‖

Ti
.

Applying Theorem 3.20 to each of the pieces pi of p, we get the bound

‖p− s(1)

p ‖
T
≤ K

(
max

i
|Ti|

)2

|p|2,T ,

where K is as in (3.20). Thus, s
(1)

p will be closer to p than sp provided

max
i

|Ti| < |T |.

Theorem 3.21. Suppose A is a subdivision algorithm which splits a given
triangle T into subtriangles such that the maximum diameter of the sub-

triangles is at most α times the diameter of T , where α < 1. Let C
(m)

p be
the control surface obtained after m applications of the algorithm. Then

‖Gp − C(m)

p ‖
T
≤ K α2m |T |2 |p|2,T ,

where K is the constant in Theorem 3.20 and depends only on d.
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Fig. 3.3. Two levels of six-refinement of a triangle.

This result shows that the sequence C
(i)
p converges uniformly to Gp at

a geometric rate. To apply Theorem 3.21 in practice, we need a convenient
algorithm to subdivide a B-patch so that the sizes of the subtriangles are
at most α times as large as the original triangle. This can be done in many
ways. The following algorithm achieves a factor of α = 1/2, and is based
on performing the basic subdivision step six times.

Algorithm 3.22. (Six-refinement of T = 〈v1, v2, v3〉)

1) Subdivide T into two triangles using the midpoint η of the side 〈v2, v3〉.

2) Subdivide each of these triangles into two parts using the midpoints of
the sides 〈v1, v2〉 and 〈v1, v3〉.

3) Subdivide the two triangles which have one vertex at v1 by using the
midpoint of the edge 〈v1, η〉.

This algorithm is based on subdividing at midpoints of edges. It cre-
ates six subtriangles. Given a B-polynomial defined on T , we can use the
de Casteljau algorithm to create the B-coefficients of the polynomial pieces
corresponding to the subtriangles obtained in each step. This is particu-
larly efficient since each step involves splitting on the midpoint of an edge,
and so the triple used in the de Casteljau algorithm is always a permutation
of (.5, .5, 0).

Figure 3.3 (left) shows the result of performing one cycle of this refine-
ment process. Figure 3.3 (right) shows the result after applying it again to
each of the six subtriangles obtained in the first cycle (giving 36 triangles).

3.7. Control Surfaces and Degree Raising

In this section we show that it is also possible to use degree raising to create
a sequence of control surfaces which converge uniformly to a B-patch. Given
a polynomial p in B-form (3.1), after ℓ degree raising steps, we can write p

as

p[d+ℓ] :=
∑

i+j+k=d+ℓ

c
[d+ℓ]

ijk Bd+ℓ
ijk .
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For each ℓ, let C[d+ℓ] be the control surface associated with p[d+ℓ]. It
is the graph of a linear spline s[d+ℓ] defined on the triangulation △T,d+ℓ

associated with the set of domain points

DT,d+ℓ :=
{
ξ
[d+ℓ]

ijk =
(iv1 + jv2 + kv3)

d + ℓ

}

i+j+k=d+ℓ
, (3.22)

where v1, v2, v3 are the vertices of T . The following theorem shows that the
control surfaces C[d+ℓ] converge uniformly to the B-patch Gp as ℓ → ∞.

Theorem 3.23. There exists a constant K depending only on the size of
T such that

‖Gp − C [d+ℓ]‖
T

= ‖p − s[d+ℓ]‖T ≤
K

(d + ℓ)
|p|2,T , (3.23)

for all ℓ ≥ 0.

Proof: By the triangle inequality,

‖p − s[d+ℓ]‖T ≤ ‖p − s̃[d+ℓ]‖T + ‖s̃[d+ℓ] − s[d+ℓ]‖T , (3.24)

where s̃[d+ℓ] is the linear spline describing the control surface defined by
the Bernstein polynomial

Bd+ℓ p :=
∑

i+j+k=d+ℓ

p
(
ξ
[d+ℓ]

ijk

)
Bd+ℓ

ijk (3.25)

associated with p. Since s̃[d+ℓ] interpolates p at the points ξ
[d+ℓ]

ijk , it follows
from (1.31) that

‖p − s̃[d+ℓ]‖T ≤

(
|T |

d + ℓ

)2

|p|2,T .

It remains to bound the second term in (3.24).
Since s[d+ℓ] and s̃[d+ℓ] are linear splines on the triangulation △d+ℓ,T ,

their difference is bounded by the maximum of the differences at the domain

points ξ
[d+ℓ]

ijk . But s[d+ℓ](ξ
[d+ℓ]

ijk ) = c
[d+ℓ]

ijk while s̃[d+ℓ]
(
ξ
[d+ℓ]

ijk

)
= p

(
ξ
[d+ℓ]

ijk

)
, and

thus
‖s[d+ℓ] − s̃[d+ℓ]‖T ≤ max

i+j+k=d+ℓ

∣∣p
(
ξ
[d+ℓ]

ijk

)
− c

[d+ℓ]

ijk

∣∣.

Taking account of (3.25), Theorem 2.6 (the stability of the Bernstein ba-
sis polynomials) and Theorem 2.45 (on the approximation power of the
Bernstein polynomial operator), we get

max
i+j+k=d

∣∣p(ξ
[d+ℓ]

ijk ) − cijk

∣∣ ≤ K1 ‖Bd+ℓ p − p‖T ≤
K1

d + ℓ
|T |

2 |p|2,T ,

where K1 is the constant in Theorem 2.6. Combining the above inequalities
yields (3.23).
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Fig. 3.4. The B-patch of Example 3.24 and its control surface.

Fig. 3.5. The control surfaces corresponding to degrees 5, 6, 7, 10, 15, and 20.

Example 3.24. Let p be the polynomial of degree 4 with the following
B-coefficients:

3
2.5 2.5
2.5 2.5 2
3 2.5 2.5 1.5
2 1.5 2 2 1

Figure 3.4 shows the associated surface and control net. The control nets
corresponding to degrees 5, 6, 7, 10, 15, and 20 are shown in Figure 3.5.
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Fig. 3.6. Wire-frame and shaded renderings.

3.8. Rendering a B-Patch

The process of creating an image of a surface on a display is called render-

ing. In this section we discuss several approaches to rendering B-patches
associated with a given polynomial p. Depending on the type of computing
facilities available, there are two basic ways to render surfaces:

1) Display a wire frame model of the surface,

2) Display a colored and shaded image of the surface, assuming that it is
illuminated by some light source(s).

Figure 3.6 shows a typical B-patch rendered in both ways. Usually, the
shaded image gives a better “feel” for the shape of the surface, particularly
if we are working on a computer which permits rotating the object in space
so that we can observe how the light is reflected off the surface.

Both images in Figure 3.6 were produced with standard available soft-
ware which is capable of rendering faceted surfaces in R

3. While these
software products are typically capable of working with facets with four
or more vertices, for our purposes it is natural to work with triangular
facets which are associated with the graph of a C0 linear spline s defined
over a subtriangulation of the domain triangle T . In practice, the B-patch
surfaces Gp we want to render are not of this form, and so the first step
in the rendering process is to create a C0 linear spline s (on a fairly fine
triangulation △T of T ) which approximates p. This can be done in several
ways. We discuss the following four methods:

1) Choose s to be the control surface of p.

2) Choose s to be the control surface of a degree-raised version of p.
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3) Choose s to be the control surface of a subdivided version of p.

4) Choose s to interpolate p at the vertices of some triangulation of T .

Method 1. Using the control surface of p. This is the method of
choice if the control surface Cp is sufficiently close to the B-patch Gp and
if it has sufficiently small facets to give a smooth looking rendering. This
is usually not the case in practice, since we typically work with low degree
B-patches, and the size of a typical facet of Cp is approximately |T |/d (see
Figure 3.4).

Method 2. Rendering by Degree Raising. In order to get a faceted
surface associated with p which has smaller facets and which is closer to

the B-patch Gp, we can take the control surface C
[d+ℓ]
p associated with the

B-form obtained after applying ℓ steps of degree raising to p. This surface
has facets of size approximately |T |/(d+ ℓ), and Theorem 3.23 assures that
as ℓ → ∞, the control surfaces Cℓ

p approach the B-patch Gp. The inequality

(3.23) shows that the order of convergence is O
(

1

d+ℓ

)
.

Method 3. Rendering by Subdivision. Here we use the control sur-

faces C
(ℓ)
p of Theorem 3.21. By the theorem, these surfaces converge to

the B-patch with order α2ℓ, where ℓ is the number of cycles of subdivision
performed. Using the six-refinement method of Algorithm 3.22, we have

α = 1/2, which gives a convergence order of O
(

1

2

)2ℓ
.

Method 4. Rendering by Interpolation. Instead of working with
control surfaces, we can create a C0 linear spline approximating p by inter-
polation. Indeed, given a uniform triangulation △T,ℓ of T (see Figure 3.1),
by Theorem 1.11 there is a unique C0 linear spline defined on △T,ℓ that
interpolates p at the vertices of △T,ℓ. It suffices to compute the values of
p at these vertices since they uniquely determine the triangular pieces of s.
These values can be efficiently computed using the de Casteljau algorithm.
Theorem 1.3 implies that

‖p− s‖T ≤ K
|T |2

ℓ2
|p|2,T ,

and so here the convergence order is O
(

1

ℓ2

)
.

Comparison of Methods. To decide which of these methods is best in
practice, we have to carry out an operation count for each method. The ge-
ometric convergence of the subdivision method looks impressive compared
to the linear convergence of degree raising, and the quadratic convergence
of interpolation, but we should keep in mind that the amount of calculation
for the interpolation method grows linearly with ℓ, while for the subdivision
method it grows much faster.
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3.9. Parametric Patches

The B-patches discussed in this chapter are the graphs of bivariate functions
on a triangle T . To get true 3D objects, we can use B-polynomials to form
parametric patches. In particular, given a triangle T and points cccccccccijk ∈ R

3,
we can define the associated parametric patch to be the surface consisting
of the points {S(v) : v ∈ T }, where

S(v) :=
∑

i+j+k=d

cccccccccijkBd
ijk(v).

To get an associated control surface, we can connect neighboring points
cccccccccijk with each other in the same way as was done in Section 3.1. This
again gives a faceted surface which closely models the shape of the patch.
For details, see any of the standard CAGD books such as [Far88, HosL93,
Gal00, PraBP02,,CohRE01, FarHK02].

3.10. Remarks

Remark 3.1. In Section 3.5 we have discussed convexity of B-polynomials
and B-patches. We can extend all of the result there to the case of strict
convexity by simply replacing “greater than or equal” by “greater than”
everywhere.

Remark 3.2. Several authors have worked on the problem of giving esti-
mates for the difference between a B-patch and its corresponding control
surface, see [Dah86, PraK94, NaiPL99, Rei00]. The last paper gives both
pointwise estimates as well as bounds in the p-norms for all 1 ≤ p ≤ ∞.
The bounds are in terms of certain second differences of the control points,
and are shown to have best possible constants.

3.11. Historical Notes

The idea of adjusting the shape of a curve or surface patch by adjusting
the vertices of a control polygon or control net goes back to the early work
of de Casteljau and Bézier in the automobile industry, see the discussion
of their work in Section 2.20. Control nets and control surfaces as defined
in Section 3.1 appear in the mathematical literature in the dissertations
[Far77, Far79] and [Sab77], and later in the journal publications [ChaW81,
Far82, BoeFK84].

The question of nonnegativity and positivity of a B-patch associated
with a Bernstein polynomial on a triangle was addressed in [ChaW81,
WangL88, He97]. These papers focused on sufficient conditions with no
matching necessary conditions. The if and only if conditions of Theorem 3.6
in the quadratic case were obtained in the late 1980’s by E. Nadler, but
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were not published until [Nad93]. Alternative proofs were given in [MicP89,
ChaS94]. Here we follow the proof of [MicP89].

We could not find much in the literature on monotonicity of B-patches,
but there have been a lot of papers written on the convexity of B-patches,
starting with [ChaD84]. A geometric interpretation of their result can
be found in [BarnW84]. Additional results on convexity can be found in
[ChaF84, ChaH85, ChaSu85, DahM88, WangL88, Gra89, Dah91, FenK91,
GreZ91, Pra92, Lai93, He95, CarFP97, He97]. Theorems 3.15 and 3.16 are
contained in [Lai93], which we have followed here. An improvement of
Theorem 3.16 is given in [CarFP97]. The proof of Theorem 3.17 is new.

Connections between convexity and subdivision were addressed in
[Goo91, FenCZ94, GooP95]. Necessary and sufficient conditions for a weak-
er convexity condition called axial convexity can be found in [Sau91].

The fact that the control surfaces obtained by repeated subdivision
converge to the B-patch seems to have been a kind of folk theorem in
the CAGD community. For a proof of this fact along with the rate of
convergence, see [Dah86, Dah90].

The convergence of degree raising was observed in [Far79]. A proof
showing quadratic convergence was presented in [Fen87]. Our proof here
uses techniques introduced in [CohS85] for the univariate case. For a com-
pletely different proof, see [PraK94]. A related variation diminishing prop-
erty was established in [Goo87].



Triangulations and

Quadrangulations

In this chapter we discuss various properties of triangulations and quad-
rangulations, including how to store, construct, and refine them.

4.1. Properties of Triangles

Before defining triangulations in the next section, we briefly review some
facts about triangles. Suppose we are given three noncollinear points v1,
v2, v3 in R

2. Then the convex hull of these points form a triangle which we
write as T := 〈v1, v2, v3〉. We call the points vi := (xi, yi) the vertices of
T , and denote the three edges of T by 〈v1, v2, 〉, 〈v2, v3〉, and 〈v3, v1〉. The
area of T is given by

AT =
1

2
det (M), (4.1)

where

M =




1 1 1
x1 x2 x3

y1 y2 y3


.

Note that the area of a triangle is positive if the vertices of T are listed in
counterclockwise order, and is negative otherwise. Throughout this book
we shall always list the vertices of triangles in counterclockwise order unless
otherwise specified.

We now introduce some ways to measure the size and shape of a tri-
angle.

Definition 4.1. Given a triangle T , we write |T | for the length of its
longest edge, and ρ

T
for the radius of the largest disk that can be inscribed

in T . The center of this disk is called the incenter of T , and ρ
T

is called the
inradius of T . We call the ratio κ

T
:= |T |/ρ

T
the shape parameter of T .

For an equilateral triangle, κ
T

= 2
√

3. Any other triangle has a larger
shape parameter. Another way to measure the shape of a triangle is in
terms of its angles. Let θ

T
be the smallest angle in T . We now show that

the size of θ
T

can be used to bound the shape parameter κ
T
.
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Lemma 4.2. For any triangle T ,

1

tan(θ
T
/2)

≤ κ
T
≤

2

tan(θ
T
/2)

≤
2

sin(θ
T
/2)

. (4.2)

Proof: Let v be a vertex with angle θ
T
, and let e be an attached edge. The

line connecting the incenter of T to v must bisect the angle at that vertex.
Thus, ρ

T
/|e| ≤ tan(θ

T
/2), which immediately implies the first inequality.

The second inequality was proved in (1.27).

It is also useful to have a bound on the ratio of the lengths of any two
edges e and ẽ of a triangle T . The law of sines immediately gives

|e|

|ẽ|
≤

1

sin θ
T

. (4.3)

4.2. Triangulations

Definition 4.3. A collection △ := {T1, . . . , TN} of triangles in the plane

is called a triangulation of Ω =
⋃N

i=1
Ti provided that if a pair of triangles in

△ intersect, then their intersection is either a common vertex or a common
edge.

This definition allows quite general triangulations. For example, △

may consist of two triangles which are completely separated, or it may con-
sist of two triangles which touch only at a vertex. Moreover, the definition
also allows triangulations of domains Ω with one or more holes as shown
in Figure 4.1. Such triangulations arise frequently in the finite-element
method for solving partial differential equations. The configuration of tri-
angles in Figure 4.2 is not a triangulation.

Definition 4.4. The vertices of the triangles of △ are called the vertices
of the triangulation △. If a vertex v is a boundary point of Ω, we say that
it is a boundary vertex. Otherwise, we call it an interior vertex. Similarly,
the edges of the triangles of △ are called the edges of the triangulation △.
If an edge e lies on the boundary of Ω, we say that it is a boundary edge.
Otherwise, we say it is an interior edge. We denote the sets of interior and
boundary vertices of △ by VI and VB, respectively. Similarly, we write EI

and EB for the sets of interior and boundary edges of △, respectively.

Given a triangulation △, we shall often need to work with certain
subtriangulations called stars.
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Fig. 4.1. Two triangulations.

Fig. 4.2. An example of a set of triangles which do not form a triangulation.

Fig. 4.3. star(v) (dark grey) and star2(v) (medium and dark grey).

Definition 4.5. If v is a vertex of a triangulation △, then we define the
star of v, which we denote by star(v) := star1(v), to be the set of all
triangles in △ which share the vertex v. We define stari(v) inductively for
i > 1 to be the set of all triangles in △ which have a nonempty intersection
with some triangle in stari−1(v). Similarly, we define star0(T ) := T , and
starj(T ) :=

⋃
{star(v) : v ∈ starj−1(T )} for all j ≥ 1.

By definition, starj(v) and starj(T ) are sets of triangles. However, in
the sequel we will also use this notation for the corresponding sets of points
in R

2. We illustrate this concept in Figure 4.3 where v is marked with a
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black dot, star(v) is the set of points in dark grey, while star2(v) is the set
of points shown in either dark or medium grey.

4.3. Regular Triangulations

We emphasize that most of the results of this book hold for general triangu-
lations as described in Definition 4.3. However, some of our results require
triangulations with more structure.

Definition 4.6. We say that a triangulation △ is shellable provided it
consists of a single triangle, or if it can be obtained from a shellable trian-
gulation △̃ by adding a triangle T that intersects △̃ precisely along either
one or two edges.

Not all triangulations are shellable. For example, a triangulation con-
sisting of two triangles touching only at a vertex is clearly not shellable.
The triangulations in Figure 4.1 are also not shellable, since no matter how
we try to build them by adding one triangle at a time, eventually we will
get two triangles which touch only at a vertex.

Definition 4.7. We say that a triangulation △ is regular provided

1) △ is shellable, or

2) it can be obtained from a shellable triangulation △̃ by removing one
or more shellable subtriangulations, all of whose vertices are interior
vertices of △̃.

The following result follows immediately from the above definition.

Lemma 4.8. Suppose △ is a regular triangulation. Then for every vertex
v of △, star(v) is a shellable subtriangulation of △.

Lemma 4.8 can be used to test whether a given triangulation △ is
regular. For example, we claim that the triangulation in Figure 4.1 (right)
is not regular. Indeed, for the vertex v at the top, star(v) is not shellable
since it consists of two triangles touching only at v. This triangulation can
be constructed from a shellable triangulation △̃ by removing a shellable
subtriangulation, but one with a vertex on the boundary of △̃.

4.4. Euler Relations

For later use we now present some formulae connecting the numbers of
vertices, edges, and triangles in a given triangulation △. This is one of
the situations where we need to restrict ourselves to regular triangulations
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since the results do not hold for general triangulations. Let

VI := number of interior vertices,

VB := number of boundary vertices,

V := total number of vertices,

EI := number of interior edges,

EB := number of boundary edges,

E := total number of edges

N := number of triangles,

H := number of holes.

(4.4)

We first give a result for shellable triangulations.

Theorem 4.9. Suppose △ is a shellable triangulation, and that in building
△, for each i = 1, 2, the number of times that we add a triangle which
touches on i edges is αi. Then

1) N = 1 + α1 + α2,

2) EI = α1 + 2α2,

3) EB = α1 − α2 + 3,

4) VI = α2,

5) VB = α1 − α2 + 3.

Proof: The proof is just a simple matter of counting. To get formula 1),
we start with one triangle, and note that αi is the number of times that we
add a triangle touching on i edges, so the total number of triangles added
is N = 1 + α1 + α2. To establish formula 2), we note that each time we
add a triangle to an existing shellable triangulation that touches on i edges,
the number of interior edges is increased by i. We conclude that the total
number of interior edges is given by EI = α1 +2α2. The proofs of the other
formulae are similar.

The formulae in Theorem 4.9 can be combined in various ways to
yield relationships between the number of vertices and edges of a shellable
triangulation. We give several typical such relationships in the following
theorem.

Theorem 4.10. Suppose △ is a shellable triangulation. Then

EB = VB ,

EI = 3VI + VB − 3,

N = 2VI + VB − 2.

(4.5)

We now extend this result to the class of regular triangulations.
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Theorem 4.11. Suppose △ is a regular triangulation of a domain Ω with
H holes. Then

EB = VB ,

EI = 3VI + VB + 3H − 3,

N = 2VI + VB + 2H − 2.

(4.6)

Proof: We proceed by induction on H . If △ has no holes, then it is
shellable, and the result follows from Theorem 4.10. Now suppose △ has
H holes, and that it can be obtained from a triangulation △̃ with H − 1
holes by removing a shellable subtriangulation △̂ of N̂ triangles. Let V̂B

and ṼB be the number of boundary vertices of △̂ and △̃, respectively. Now
with analogous notation for the other quantities, we have

VB = ṼB + V̂B , VI = ṼI − V̂I − V̂B ,

EB = ẼB + ÊB , EI = ẼI − ÊI − ÊB .

Then combining the inductive hypothesis with the formulae V̂B = ÊB,
ÊI = 3V̂I + V̂B − 3 and N̂ = 2V̂I + V̂B − 2 immediately gives (4.6) for △.

The formulae in Theorems 4.10 and 4.11 do not hold for general tri-
angulations. In particular they fail for a triangulation consisting of two
triangles touching at a vertex. They also fail for the triangulation shown
in Figure 4.1 (right). Combining the formulae in (4.6) leads to the classi-
cal Euler formula N − E + V = 1 − H . This formula is valid for general
connected triangulations, including those in Figure 4.1.

4.5. Storing Triangulations

In order to be able to use triangulations in practice, we need a way to store
them in a computer. This is a matter of choosing an appropriate data
structure, and is important in practice since we often have to deal with
very large triangulations involving many thousands of triangles.

Clearly, the first step in storing a triangulation is to store the locations
of the vertices vi = (xi, yi), i = 1, . . . , V . This involves storing the 2V

real numbers xi and yi. Next we have to store information about how
the vertices of a triangulation are connected. We discuss several different
approaches.

A Triangle List. In this approach we describe each triangle in the trian-
gulation with a triple of integers (αi, βi, γi) chosen so that the i-th triangle
is Ti = 〈vαi

, vβi
, vγi

〉. This storage scheme requires a total of 3N integers.
For regular triangulations, this is equal to 6VI + 3VB + 6H − 6.

An Edge List. In this approach we describe each edge in the triangulation
with a pair of integers (νi, µi) such that the i-th edge in the triangulation is
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given by ei := 〈vνi
, vµi

〉. This scheme requires 2E integers, which is equal to
6VI +4VB +6H−6 for regular triangulations. More information is required
to describe general regular triangulations, and in particular triangulations
with holes.

An Adjacency List. In this approach, for each vertex vi we store a
list of integers describing which other vertices are attached to vi in the
triangulation. This can be done most conveniently using a pair of linked
lists. The first list contains integers m1, . . . , mV , where mi is the number of
vertices attached to vi. The second list contains V blocks of integers, where
the i-th block contains the list of subscripts of vertices that are attached
to vi. In practice it is most convenient to arrange the integers in such a
block so that the corresponding vertices are connected in counterclockwise

order around vi. If vi is a boundary vertex, this uniquely determines the
first integer in the block, but if vi is an interior vertex, we can start with an
arbitrary vertex attached to vi. For shellable triangulations, this scheme
requires V integers for the first list, and 2E = 6VI + 4VB − 6 integers for
the second list. More information is required to describe general regular
triangulations, and in particular triangulations with holes.

Since the amount of storage required in all three cases is essentially the
same, the choice of data structure to use in a given application will depend
on other factors. In many applications it is useful to work with all three
data structures simultaneously. Figure 4.4 shows a typical triangulation
with the associated lists.

In some applications, we need even more information about the con-
nectivity of a triangulation. The following additional lists are often useful:

Triangle Edge List. This list consists of N integer triples (k1

i , k2

i , k3

i ) with
the property that for a given triangle Tj , ek1

j
, ek2

j
, and ek3

j
are the edges (in

the above edge list) which make up the edges of Tj . We can assume that as
we go around the boundary of Tj in counterclockwise order we encounter
the edges ek1

j
, ek2

j
, and ek3

j
in order, where ek1

j
follows the first vertex vαj

.

Neighboring Triangle List. This list consists of N integer triples
(n1

i , n
2

i , n
3

i ) with the property that for a given triangle Tj , the three tri-
angles Tn1

j
, Tn2

j
, and Tn3

j
are the triangles attached to Tj across the edges

ek1

j
, ek2

j
, and ek3

j
, respectively. A zero value for an n

j
i indicates a boundary

edge.

Neighbor lists are very useful in enforcing smoothness conditions across
edges, and are also useful in making evaluation of a piecewise surface more
efficient. In Figure 4.4, the vertices of the triangulation are numbered as
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v1

v2

v3

v4

v5

v6

v7

v8

e1

e2

e3

e4

e5

e6

e7

e8 e9

e10

e11
e12

e13
e14

e15

Edges:

i νi, µi

1 1,2
2 2,3
3 3,8
4 7,8
5 4,7
6 1,4
7 1,5
8 2,5
9 2,6

10 3,6
11 4,5
12 5,6
13 5,7
14 6,7
15 6,8

i αi, βi, γi e1

i , e
2

i , e
3

i n1

i , n
2

i , n
3

i

1 1,4,5 6,11,7 0,5,2
2 1,5,2 7,8,1 1,3,0
3 2,5,6 8,12,9 2,6,4
4 2,6,3 9,10,2 3,8,0
5 4,7,5 5,13,11 0,6,1
6 5,7,6 13,14,12 5,7,3
7 6,7,8 14,4,15 6,0,8
8 3,6,8 10,15,3 4,7,0

Adjacency Lists:

3,4,3,3,5,5,4,3
4,5,2, 1,5,6,3, 2,6,8, 7,5,1, 6,2,1,4,7, 2,5,7,8,3, 8,6,5,4, 3,6,7

Fig. 4.4. A triangulation and its associated lists.

Triangles:

1 to 8, and are labeled as v1, . . . , v8 in the figure. The 15 edges are labeled
as e1, . . . , e15. For example, the eighth edge connects vertex 2 with vertex
5. Looking in the triangle table, we see that the third triangle has vertices
2,5,6. The associated edges are 8,12,9, and the triangles lying on the other
sides of these edges are numbered 2,6,4. If an edge is a boundary edge there
is no triangle on the other side of the edge – this case is marked with 0.
The first adjacency list tells how many vertices are attached to each of the
vertices. For example, there are three vertices attached to vertex number 1.
Looking in the second list, we see that these are 4,5,2 (in counterclockwise
order). Similarly, there are four vertices attached to vertex number 2. These
are the next four numbers in the second list, namely, 1,5,6,3.
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4.6. Constructing Triangulations

Devising robust computer algorithms for constructing triangulations is an
important problem in computational geometry. No one algorithm is ap-
propriate in all cases since the starting information and ultimate use for
the triangulation both depend on the application. There are two rather
different situations.

Triangulating a Given Set of Vertices. This situation arises frequently
in data fitting, where the given vertices are often the points in the domain
at which measurements have been taken. In practice, we may be given the
following information:

A. Vertices Only. In this case we are given a set of points v1, . . . , vV

which are to serve as the vertices of the triangulation, and the aim is
to construct a triangulation △ of the convex hull of the vertices. There
are, of course, many such triangulations, and so in practice we need
some criterion to help select a suitable triangulation.

B. A List of Boundary Vertices. In some applications we may not want the
triangulation to cover the entire convex hull of the vertices, but have
a certain boundary shape in mind. Assuming we want a triangulation
without holes, we can describe the boundary with a list of integers
j1, . . . , jm such that vj1 , . . . , vjm

should be the boundary vertices in
counterclockwise order. If we want to include holes, we would need
additional lists of boundary vertices for each hole.

C. Some Prescribed Interior Edges. In some applications, for example in
modeling surfaces with faults, it is useful to ensure that the triangu-
lation to be constructed includes certain interior edges. This can be
accomplished by giving a list of the endpoints of edges which must be
included in △.

Grid Generation. In solving boundary-value problems involving partial
differential equations, the aim is to construct a suitable space of (smooth)
piecewise polynomials in which to seek a solution. The choice of triangula-
tion in this case is dictated by a variety of factors, including the following:

1) The associated space of splines should be capable of approximating the
solution well – this may mean that in certain areas (for example near
corners where a crack can occur in a material) we need more triangles
than in other areas. These are often called graded meshes.

2) Assuming the boundary is polygonal (or has been approximated by a
polygon), we want to include all corner points of the boundary in the
list of vertices.
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The problem of grid generation for use in solving boundary-value prob-
lems is an interesting and difficult problem. It is beyond the scope of this
book, but is treated in many papers and other books.

We conclude this section with a simple algorithm for constructing a
triangulation of the convex hull of a set V of vertices. However, it is not
particularly useful in practice, since it often produces unsatisfactory trian-
gulations. More useful algorithms will be discussed in Section 4.12.

If △ is a triangulation and v is a point in R
2, we say that a vertex w

of △ is visible to v provided it is possible to draw a line from v to w which
does not cross any of the edges of △.

Algorithm 4.12. (Vertex Insertion Algorithm)

Let V = {vi}
V
i=1

be a given set of points in R
2, and let Ω be the convex hull

of V .

1) Connect v1, v2, v3 to form an initial triangulation △(0) consisting of
one triangle.

2) For i = 1 step 1 until n − 3 do

a) If vi is strictly inside some triangle T of △(i−1), connect vi to the
three vertices of T . If vi is on an edge e of a triangle T in △(i−1),
connect it to the opposite vertex of all triangles sharing edge e.

b) Otherwise, connect vi to all of the vertices of △(i−1) which are
visible to vi.

c) Define △(i) to be the new triangulation.

This algorithm starts with a single triangle, and then adds additional trian-
gles in each step of the loop. At the i-th step we have a triangulation △(i)

with vertices in the set Vi := {v1, . . . , vi}, and the union of the associated
triangles will be the convex hull of Vi.

Fig. 4.5. Two different triangulations with the same set of vertices.

The triangulations in Figure 4.5 were both created by Algorithm 4.12,
but with a different numbering of the vertices. This example clearly shows
that the resulting triangulation is very sensitive to the way in which the
vertices are numbered. For most purposes, the triangulation on the right
is much better than the one on the left. This suggests that we should
introduce some criterion to distinguish between triangulations, and then
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use it to choose a “best” triangulation. We discuss this idea in Sections 4.9
through 4.12.

4.7. Clusters of Triangles

In dealing with spline spaces on triangulations, we often have to work with
small clusters of triangles contained in a given triangulation △. We say
that a collection T of triangles in △ is an ℓ-cluster of triangles provided
there is a vertex v in △ such that all of the triangles in T are contained in
starℓ(v).

In this section we establish several useful properties of clusters of tri-
angles. Our first result gives a bound on how many triangles there can be
in an ℓ-cluster in terms of the smallest angle in the triangles of T . For each
triangle T ∈ T , let θ

T
be the smallest angle in T . Let

θT := min
T∈T

θ
T
.

Lemma 4.13. Given an ℓ-cluster T of N triangles, let a := 2π/θT . Then

N ≤

ℓ∑

j=1

aj. (4.7)

Proof: It suffices to prove the result when T is starℓ(v) for some vertex v.
We first consider the case where ℓ = 1. Then there are N triangles attached
to v. Clearly NθT ≤ 2π, and so N ≤ a, which establishes (4.7) in this case.
Now suppose ℓ > 1. We say that a vertex w is at level j with respect to v

if the shortest path from v to w involves j edges of T . By the result for
star(v), we know that there are at most a vertices at level 1. Each of these
vertices can be surrounded by at most a triangles, and we conclude that a
2-cluster can contain at most a + a2 triangles, and at most a2 vertices at
level 2. The result now follows by induction.

The bound (4.7) in Lemma 4.13 can be improved by separating the
cases where ℓ is even and odd, and counting only triangles surrounding
vertices on every other level, see Remark 4.4. Recall that for any closed set
Ω in R

2, we define its diameter by

|Ω| := max
v,w∈Ω

|v − w|. (4.8)

The diameter of a triangle is just the length of its longest edge. Our next
result gives a bound on the relative sizes of edges and areas of triangles in
a cluster.
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Lemma 4.14. Given an ℓ-cluster T , let θT be the smallest angle in T , and
let b := 1/ sin θT and n := ⌈2(2ℓ− 1)π/θT + 2⌉. Then for any two triangles

T and T̃ in T ,
|T |

|T̃ |
≤ bn, (4.9)

AT

A
T̃

≤ b2n+1. (4.10)

Proof: Let e1 and e2 be two edges of T , and for each i = 1, 2, let wi be a
vertex on ei. Then w1 and w2 are connected by a path of at most 2ℓ edges
which pass through at most 2ℓ − 1 interior vertices of T . By Lemma 4.13
each of these has at most a := 2π/θT edges attached to it. By (4.3) the
ratio of any two edges sharing a vertex is bounded by b. Now we can
compare e1 and e2 by performing at most (2ℓ − 1)a comparisons around
interior vertices, plus an additional two which are needed if e1 and e2 are
not connected to any interior vertices. This gives (4.9). To prove (4.10),

we note that for any T, T̃ ∈ T , AT ≤ |e1||e2|/2, where e1, e2 are edges of

T , while A
T̃
≥ sin(θT )|e3||e4|/2, where e3, e4 are edges of T̃ . Thus, (4.10)

follows from (4.9).

Given an ℓ-cluster T , let ΩT be the union of the triangles in T . Let
|T | be the length of the longest edge in T . Then clearly

|ΩT | ≤ 2ℓ|T |. (4.11)

Moreover, if ρ
T

is the smallest inradius of the triangles in T , then combining
Lemmas 4.2 and 4.14 we have

|ΩT |

ρ
T

≤ K, (4.12)

where K is a constant depending only on ℓ and θT .

4.8. Refinements of Triangulations

Suppose that △ and △R are triangulations of a set Ω.

Definition 4.15. We say that △R is a refinement of △ provided

1) every vertex of △ is a vertex of △R,

2) every triangle t ∈ △R is a subtriangle of some triangle T in △.

When △R is a refinement of △, we call △ the coarser triangulation and
△R the finer triangulation. In this case we also say that the two triangula-
tions are nested.
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There are many ways to refine a given triangulation. In practice we are
often interested in systematic refinement algorithms in which a given refine-
ment scheme is applied to every triangle in △. In the following subsections
we describe several refinement schemes which we will use in Chapters 6–8
in the construction of certain macro-element spaces.

4.8.1 Clough–Tocher Refinement

Definition 4.16. Let T = 〈v1, v2, v3〉 be a triangle, and let v
T

:= (v1 +
v2 +v3)/3 be the barycenter of T . If we connect v

T
to each of the vertices of

T , then T is split into three triangles. We call this the Clough–Tocher split

T
CT

of T . If we apply this splitting operation to each of the triangles of a
triangulation △, we call the resulting triangulation △CT the Clough–Tocher

refinement of △.

Fig. 4.6. A triangulation and its Clough–Tocher refinement.

Figure 4.6 shows a typical triangulation and its Clough–Tocher refine-
ment. The following lemma provides some useful information on the shape
of the subtriangles in a Clough–Tocher split of a given triangle. This re-
sult will be useful later in our study of macro-element spaces based on
Clough–Tocher splits.

Lemma 4.17. Let T
CT

be the Clough–Tocher split of a triangle T , and
let θCT and θT be the smallest angles in T

CT
and T , respectively. Then

θCT ≥ 2θT /3π.

Proof: Suppose T = 〈v1, v2, v3〉. For each i = 1, 2, 3, let βi be the angle of
T at vi, and let li be the length of the edge ei of T opposite vi. A simple
computation shows that for each i = 1, 2, 3, if we extend the line 〈vi, vT

〉,
then it intersects the edge ei at the midpoint wi of ei. It is clear that for
each subtriangle Ti := 〈v

T
, vi+1, vi+2〉 of T

CT
, the angle at v

T
is larger than

βi. We now show that the angle α of T1 at v2 exceeds 2θT /3π. The proof
for the other angles in T

CT
is similar. The proof now divides into two cases.
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Case 1: l3 ≥ l2. Since the area of 〈v2, v3, w2〉 is exactly one-half the area
of T , it follows that

1

2
l1lm sin α =

1

4
l1l3 sin β2,

where lm is the length of the edge 〈v2, w2〉. Since l3 + l2/2 > lm, it follows
that

sin α ≥
l3

2(l3 + l2/2)
sin β2 ≥

l3

2(l3 + l3/2)
sin β2 ≥

1

3
sin θT ,

and the result follows from the fact that, in general, 2θ/π ≤ sin θ ≤ θ for
any θ ≤ π/2.

Case 2: l2 > l3. In this case

1

2
l1lm sin α =

1

4
l1l2 sin β3.

Thus,

sin α ≥
l2

2(l3 + l2/2)
sin β3 ≥

l2

2(l2 + l2/2)
sin β3 ≥

1

3
sin θT ,

and the result follows as before.

4.8.2 Powell–Sabin Refinement

Definition 4.18. Let △ be a triangulation, and suppose that for each tri-
angle T , uT denotes its incenter. For each triangle T , connect uT to each
of the three vertices of T . Connect uT and u

T̃
whenever the triangles T and

T̃ share a common edge. In addition, connect the middle of each bound-
ary edge to the incenter of the associated triangle. We call the resulting
triangulation △PS the Powell–Sabin refinement of △.

Fig. 4.7. A triangulation and its Powell–Sabin refinement.
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Figure 4.7 shows a typical triangulation and its Powell–Sabin refine-
ment. Note that each triangle in the original triangulation is split into six
subtriangles. It is not immediately clear that the Powell–Sabin refinement
is well defined for arbitrary triangulations, since we need the line segment
connecting the incenters of two adjoining triangles to intersect their com-
mon edge at an interior point of that edge. The following lemma ensures
that this always happens.

Lemma 4.19. Suppose T = 〈v1, v2, v3〉 and T̃ = 〈v4, v3, v2〉 are two trian-
gles sharing the edge e = 〈v2, v3〉, and that uT and u

T̃
are the corresponding

incenters. Then the line joining uT and u
T̃

intersects e at some point strictly
between v2 and v3.

Proof: Since uT is the incenter of T , the line through uT and perpendicular
to e intersects e at some point w strictly between v2 and v3. The same holds
for the analogous point w̃ associated with T̃ . Now the line from uT to u

T̃
must cross e at some point we lying between w and w̃, and the proof is
complete.

The following result gives information on the shape of the subtriangles
arising in the Powell–Sabin split of a given triangle. It will be useful later in
our study of macro-elements based on the Powell–Sabin split of a triangle.

Lemma 4.20. Suppose △PS is the Powell–Sabin refinement of a given
triangulation △. Then

θPS ≥
1

4π
θ△ sin θ△, (4.13)

where θPS is the smallest angle in △PS, and θ△ is the smallest angle in
△. For each edge e := 〈v1, v2〉, let we be the split point on the edge e.
Moreover, there exist constants 0 < K1 ≤ K2 depending only on θ△ such
that

0 < K1 ≤
h1

h2

≤ K2, (4.14)

where h1 = |〈v1, we〉| and h2 = |〈we, v2〉|.

Proof: Suppose T := 〈v1, v2, v3〉 is a triangle in △ with angles αi at the
vertices vi, and let u be the incenter of T . To prove (4.13), it suffices to
consider just one of the subtriangles in the Powell–Sabin refinement, say
t := 〈u, v1, we〉, where e := 〈v1, v2〉. Since the angle of t at v1 is α1/2, while
the angle at we is bounded below by α2/2, we conclude that these two
angles are bounded below by θ△/2. Let β be the angle of t at u, and let γ

be the angle of the triangle 〈u, we, v2〉 at u. We need to get a lower bound
on these two angles. We consider only the case where we is obtained by
joining incenters of neighboring triangles. The case where it is the midpoint
of the edge e is similar. Let T̃ := 〈v1, ṽ3, v2〉 be a triangle in △ sharing the

edge e, see Figure 4.8, and let ũ be its incenter. Let α̃i be the angles of T̃
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v1 v2

v3

ṽ3

u

ũ

Fig. 4.8. The geometry of incenters.

at its vertices. Now consider the triangle 〈u, v1, ũ〉 with angle (α1 + α̃1)/2
at v1. Using the law of sines in this triangle, we have

β ≥ sin β =
r̃ sin((α1 + α̃1)/2)

l + l̃
,

where r̃ := |〈v1, ũ〉|, l := |〈u, we〉|, and l̃ := |〈ũ, we〉|. A simple argument
shows that α1 + α2 ≤ π − θ△ which implies that β + γ > π, which in turn

implies ℓ ≤ |e|. A similar argument shows that ℓ̃ ≤ |e|. On the other hand,
r̃ ≥ |e| tan(θ△/2)/2 ≥ |e|θ△/2π, and (4.13) follows.

We turn now to the proof of (4.14). By the law of sines,

sin β

h1

=
sin(α1/2)

l
,

sin γ

h2

=
sin(α2/2)

l
.

This implies

h1

h2

=
sin(β) sin(α2/2)

sin(γ) sin(α1/2)
,

and the upper bound in (4.14) follows with a constant depending only on
θ△. The lower bound can be established by inverting this equation.

4.8.3 Powell–Sabin-12 Refinement

Definition 4.21. Given a triangulation △, let △CT be its Clough–Tocher
refinement based on splitting each triangle about its barycenter v

T
. Now

for each triangle T , connect v
T

to the midpoints wT
1

, wT
2

, wT
3

of the edges
of T , where wT

i is opposite vi. Also connect wT
i to wT

i+1
, where wT

4
is

identified with wT
1

. Then we call the resulting triangulation △PS12 the
Powell–Sabin-12 refinement of △.
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Fig. 4.9. A triangulation and its Powell–Sabin-12 refinement.

Figure 4.9 shows a typical triangulation and its Powell–Sabin-12 re-
finement. Each triangle T of △ is split into 12 subtriangles. Note that, in
contrast to the Powell–Sabin refinement, the split points on the edges of
triangles of △ are at the midpoints of the edges. As a result, this refinement
has shape properties which are as good as the Clough–Tocher refinement,
and much better than the Powell–Sabin refinement. The following result
provides a lower bound on the size of the angles in a Powell–Sabin-12 re-
finement of a triangle.

Lemma 4.22. Let TPS12 be the Powell–Sabin-12 split of a triangle T , and
let θ

PS12
and θT be the smallest angles in TPS12 and T , respectively. Then

θ
P S12

≥ 2θT /3π.

a
b

c

Fig. 4.10. Angles in the Powell–Sabin-12 Split.

Proof: Given T := 〈v1, v2, v3〉, let △4 be the split of T into four subtrian-
gles which is obtained by connecting the midpoints of each edge of T . Then
each of these four triangles is similar to T , and hence the smallest angle in
△4 is the same as the smallest angle in T . Now let v

T
be the barycenter

of T . A simple computation shows that v
T

is also the barycenter of the
middle triangle of △4. It follows from Lemma 4.17 that the bound holds
for all angles of TPS12 except for those of the type marked with a, b, c in
Figure 4.10. But a > b > c, and so it suffices to consider c. But since the
upper edge attached to the angle c is parallel to the bottom edge of T , we
see that c is the same as the angle at the lower left in the figure, which by
Lemma 4.17 is at least 2θT /3π.
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4.8.4 Uniform Refinement

Algorithm 4.23. (Uniform Refinement). Let △ be a given triangulation.
Let △u be the triangulation which is obtained by splitting each triangle
T ∈ △ into four subtriangles by connecting the midpoints of the edges of
T with straight lines.

Fig. 4.11. A triangulation and its uniform refinement.

Figure 4.11 shows a triangulation △ and its uniform refinement. It is
clear that the refined triangulation contains four times as many triangles
as △. Moreover, it is also clear that for each T ∈ △, the four new triangles
which cover T are all similar to T and thus have the same smallest angle as
T . We conclude that the smallest angle in △u is the same as the smallest
angle in △.

4.9. Optimal Triangulations

Suppose Ω is a polygonal domain, and let V be a set of points in Ω which
includes all the vertices of the polygon forming the boundary of Ω. Suppose
Tri (Ω,V) is the set of all possible triangulations of Ω with vertices V . Here
we are allowing Ω to be nonconvex and to have holes in it. In this section we
introduce a way of comparing triangulations in Tri (Ω,V) with each other,
and then use it to define optimal triangulations.

For simplicity, we focus on the case where we assign a single real num-
ber a(△) to each triangulation △ ∈ Tri (Ω,V), and seek to maximize this
number. For example, we can take a(△) to be the smallest angle among all
the triangles in △. For other choices of criteria, including vector criteria,
see Remark 4.9.

Definition 4.24. A triangulation △∗ ∈ Tri (Ω,V) is called an optimal tri-

angulation with respect to the criterion a provided there is no △ ∈ Tri (Ω,V)
with a(△) > a(△∗).

The following questions immediately arise:

1) Does there exist an optimal triangulation?

2) Is there a unique optimal triangulation?
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3) How can we characterize an optimal triangulation?

4) How can we construct an optimal triangulation?

The first question is easy. Since Tri (Ω,V) contains a finite number of
triangulations, it is clear that there always exists at least one optimal tri-
angulation. We give an example in the next section to show that optimal
triangulations need not be unique. In general, it is difficult to characterize
optimal triangulations, or even to recognize if a particular triangulation is
optimal. This makes the design of algorithms to find optimal triangula-
tions difficult. But as we shall see in the next section, if we choose a(△)
to measure the minimum angle in △, then there is a simple characteriza-
tion which leads to practical algorithms for constructing the corresponding
optimal triangulation.

4.10. Maxmin-angle Triangulations

In this section we examine optimal triangulations which are based on avoid-
ing triangles with small angles, i.e., we seek to maximize the smallest angle
a(△) in △. We call a triangulation which is optimal with respect to this
criterion a maxmin-angle triangulation. We emphasize that throughout this
section we allow Ω to be nonconvex and to have holes.

To begin our study of maxmin-angle triangulations, we first examine
the case where Ω is a quadrilateral whose vertices lie on a circle.

Lemma 4.25. Suppose Q is a quadrilateral whose vertices v1, v2, v3, v4

lie on a circle, and let △ and △̃ be the two possible triangulations of Q.
Then a(△) = a(△̃), i.e., both triangulations are optimal with respect to
the maxmin-angle criterion.

Proof: Suppose v1, . . . , v4 are the vertices of Q in counterclockwise order
as shown in Figure 4.12. Then the claim follows immediately from the fact
that if u1, u2, u3 are three points on a circle, then the angle between 〈u2, u1〉

and 〈u2, u3〉 is equal to one half the length of the subtended arc u1u3.

The situation where the vertices fall on a circle as in Lemma 4.25 is
called the neutral case. We refer to the diagonal edges in Figure 4.12 as
neutral edges. The situation is different if not all four points lie on a circle.

Lemma 4.26. Suppose Q is a strictly convex quadrilateral with vertices
v1, v2, v3, v4 in counterclockwise order as in Figure 4.13. Let C be the circle
passing through v1, v2, v3. If v4 is inside C, then the maxmin-angle trian-
gulation is the one that contains the edge 〈v2, v4〉. If v4 is outside C, then
the maxmin-angle triangulation is the one that contains the edge 〈v1, v3〉.

Proof: Suppose v4 is inside C, and label the angles as in Figure 4.13. Since
θ2 < θ4 and θ5 < θ1, it follows that neither θ1 nor θ4 can be the smallest
angle in the triangulation in Figure 4.13 (left). Similarly, neither θ̃1 nor θ̃4
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Fig. 4.12. Two triangulations of four points on a circle.
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Fig. 4.13. Two triangulations of four points not on a circle.

can be the smallest angle in the triangulation in Figure 4.13 (right). Let w

be the intersection with C of the extension of the edge 〈v2, v4〉. Let {θ̃′i}

be the angles in the triangles 〈v2, v3, w〉 and 〈v2, w, v1〉, numbered in the

same way as the θ̃i. Comparing arcs, we see that θ̃2 > θ̃′
2

= θ3, θ̃3 > θ6,

θ̃5 > θ̃′
5

= θ2, and θ̃6 > θ5. It follows that in this case the triangulation on
the right is the maxmin-angle triangulation. The case when v4 is outside
of C is similar.

Lemma 4.26 shows that to find the maxmin-angle triangulation of a
strictly convex quadrangulation, we can first triangulate with an arbitrary
pair of triangles T and T̃ . We then construct the circumcircle around T ,
i.e., the unique circle which passes through the three vertices of T . Next
we check to see if the fourth vertex is inside C, i.e., if it lies in the interior
of the corresponding disk. If it is inside, we can swap the diagonal of the
quadrilateral Q := T ∪ T̃ to get a triangulation △̃ with a(△̃) > a(△). This
observation suggests that to construct a maxmin-angle triangulation of a
domain Ω with an arbitrary set of given vertices V , we could start with
any triangulation △(0) and adjust its edges by swapping. We shall see later
that this actually works. Here is the basic swap algorithm.
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Algorithm 4.27. (Swap Algorithm) Let △(0) be an arbitrary triangula-
tion of a set Ω with vertices V . Set m = 0.

Do until no longer possible:

Let Q be the set of all strictly convex quadrilaterals Q in △(m) such
that swapping the diagonal of Q would increase the minimal angle in
the two triangles making up Q. If Q is empty, stop. Otherwise, choose
a Q∗ ∈ Q corresponding to the smallest minimal angle among all pairs
of triangles in the quadrilaterals Q of Q. Swap the diagonal of Q∗,
increase m by one, and let △(m) be the new triangulation.

Since a(△(m)) does not necessarily increase in each step, to see that this
algorithm always terminates after a finite number of steps, we now define a
vector measure of the quality of a triangulation. Associated with a triangu-
lation △ = {Ti}

N
i=1

, we define α(△) := (α1, . . . , αN ) := (a(T1), . . . , a(TN )),
where for each triangle T ∈ △, a(T ) is the minimum angle in T , and
where in forming α(△), the triangles of △ have been ordered so that
a(T1) ≤ a(T2) ≤ · · · ≤ a(TN ). If α̃ is the analogous vector correspond-

ing to an alternative triangulation △̃, then we define α < α̃ provided that
for some 1 ≤ m ≤ N , αi ≤ α̃i for i = 1, . . . , m − 1 and αm < α̃m. Now in
terms of this order, it is easy to see that α(△(m)) < α(△(m+1)), and since
there are only a finite number of triangulations in Tri (Ω,V), the algorithm
must stop after a finite number of steps.

Definition 4.28. We say that a triangulation △ is a locally optimized

triangulation with respect to the maxmin-angle criterion provided that for
every strictly convex quadrilateral Q in △, swapping its diagonal would
not increase the minimal angle in the two triangles making up Q.

Algorithm 4.27 can be applied to any triangulation to create a locally
optimized triangulation. We now show that any triangulation that is locally
optimized with respect to the maxmin-angle criterion must be a maxmin-
angle triangulation. Figure 4.14 shows that the converse is not true, i.e.,
there exist triangulations that are optimal with respect to the maxmin-
angle criterion, but are not locally optimized.

Fig. 4.14. A maxmin-angle triangulation which is not locally optimized.
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v1

v2
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v

Fig. 4.15. Triangles in the proof of Lemma 4.29.

Given a triangle T in a triangulation △ of a domain Ω and a vertex
v of △, we say that v is internally connected to T provided there is a line
segment joining v and T such that all points on the line segment (except
possibly for v) lie in the interior of Ω.

Lemma 4.29. Suppose the triangulation △ is locally optimized with re-
spect to the maxmin-angle criterion. Given any triangle T in △, let C be
its circumcircle. Then no vertex v of △ that is internally connected to T

can lie in the interior of C.

Proof: Suppose T := 〈v1, v2, v3〉, and that the vertex v is internally con-
nected to T and lies in the interior of the circumcircle C around T . If there
are several such vertices, we may assume that v is one which is closest to
the edge e := 〈v1, v3〉, see Figure 4.15. Since v is internally connected to
T , there must be a collection of triangles T1, . . . , Tk of △ lying between v

and T . Referring to the figure, suppose these are numbered from left to
right, with T1 sharing the edge e and Tk sharing the vertex v. Now since
△ is locally optimized, none of the vertices of T1 can lie in the interior of
C. Now consider the circumcircle C1 around T1. Since two distinct circles
can intersect in at most two points, we see that v is in the interior of C1.
By the local optimality, none of the vertices of T2 can lie in the interior of
C1. Repeating this argument, we find that v must lie in the interior of the
circumcircle around Tk−1. But this contradicts the assumption that △ is
locally optimized.

If Ω is convex, then it is easy to see that the condition that v be inter-
nally connected to T in Lemma 4.29 is automatically satisfied. However,
for general nonconvex domains Ω, the condition cannot be dropped. In-
deed, Figure 4.16 shows a locally optimized triangulation of a nonconvex
Ω which contains a triangle T whose circumcircle contains another vertex
v. Of course, in this example v is not internally connected to T . We now
establish a variant of Lemma 4.29 concerning points on the circumcircle.
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v

Fig. 4.16. A circumcircle in a locally optimized triangulation
can contain other vertices.

Lemma 4.30. Suppose the triangulation △ is locally optimized with re-
spect to the maxmin-angle criterion. Given a triangle T ∈ △, let C be its
circumcircle, and suppose there exists some vertex v 6∈ T that lies on C and
is internally connected to an edge e of T . Then e must be a neutral edge
of △.

Proof: Since v is internally connected to T , there must be a collection of
triangles T1, . . . , Tk of △ lying between v and T . Suppose T := 〈v1, v2, v3〉

and T1 := 〈v1, v3, v4〉. Since △ is locally optimized, v4 cannot lie inside of
C. If v4 lies on C, then e is a neutral edge, and we are done. If v4 is outside
C, then arguing in the same way as in the proof of Lemma 4.29 leads to a
contradiction of the assumption that △ is locally optimized.

We now show that except for possibly some neutral edges, any two
locally optimized triangulations must be the same.

Theorem 4.31. Suppose △ and △̃ are two triangulations of a domain Ω
corresponding to the same set of vertices V , and that both △ and △̃ are
locally optimized with respect to the maxmin-angle criterion. Suppose e

is an interior edge of △, but e is not a neutral edge. Then e must be an
interior edge of the triangulation △̃.

Proof: Let e be an interior edge of △ that is not a neutral edge of △, and
suppose that e is not an interior edge of △̃. We may suppose e := 〈v2, v3〉

and T := 〈v1, v2, v3〉 as shown in Figure 4.17. Then since the triangles of △̃

cover the same domain Ω as △, there must be some triangle T̃ := 〈v3, v4, v5〉

in △̃ such that a part of e near v3 is in the interior of T̃ . Note that v4

may be equal to v1, or it may be on the circumcircle C around T , but it
cannot be inside C since then it would be internally connected to T which
is impossible by Lemma 4.29. By the lemma, v5 cannot lie inside C, and
by Lemma 4.30, it cannot lie on C.

Now consider the circumcircle C̃ around T̃ which passes through v3, v4,
v5. Since v4 is not inside C and v5 is outside C, it follows that v2 must be in
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Fig. 4.17. Two of the possible configurations in the proof of Theorem 4.31.

the interior of C̃. But v2 is internally connected to T̃ , and by Lemma 4.29
this is a contradiction of the local optimality of △̃. We conclude that e

must also be an interior edge of △̃.

We can now prove our main result about triangulations that are locally
optimized with respect to the maxmin-angle criterion.

Theorem 4.32. Suppose △ is any triangulation that is locally optimized
with respect to the maxmin-angle criterion. Then △ is a maxmin-angle
triangulation.

Proof: Let △̃ be any maxmin-angle triangulation of the same domain Ω
and with the same vertices as △. Then we can apply the swap algorithm to
locally optimize △̃. But then by Theorem 4.31, △ and △̃ are the same up
to neutral edges, and it follows that △ is also a maxmin-angle triangulation,
i.e., a(△) = a(△̃).

4.11. Delaunay Triangulations

There is a close connection between maxmin-angle triangulations and the
classical Delaunay triangulations.

Definition 4.33. Suppose Ω is a convex polygonal domain. Then a trian-
gulation △ of Ω is called a Delaunay triangulation provided that for every
triangle T in △, there is no vertex v 6∈ T inside the circumcircle around T .

It follows from the results of the previous section that a triangulation of
a convex domain Ω is locally optimized with respect to the maxmin-angle
criterion if and only if it is a Delaunay triangulation. Thus, for convex
Ω, any algorithm for constructing a Delaunay triangulation can be used
to create a maxmin-angle triangulation. To deal with nonconvex Ω, we
introduce the following natural extension of Definition 4.33.
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Definition 4.34. Suppose Ω is a nonconvex domain. Then a triangulation
△ of Ω is called a Delaunay triangulation provided that for every triangle T

in △, no vertex v 6∈ T that is internally connected to T can lie inside the
circumcircle around T .

With this definition, it follows from the results of the previous sec-
tion that for a general domain Ω, a triangulation is locally optimized with
respect to the maxmin-angle criterion if and only if it is a Delaunay trian-
gulation.

4.12. Constructing Delaunay Triangulations

The problem of designing algorithms for constructing Delaunay triangu-
lations, or equivalently maxmin-angle triangulations, has received a great
deal of attention in the computational geometry community, and there are
several competing algorithms available. Here we briefly discuss two.

Method 4.35. (Swap Algorithm)

1) Construct an initial triangulation △ using any convenient method, for
example, Algorithm 4.12.

2) Apply the swapping Algorithm 4.27 to locally optimize △.

Method 4.36. (Modified Vertex Insertion Algorithm)

Add the following step to Algorithm 4.12:

3) Put the edges opposite to vi into a stack and check them one by one
to see if they can be swapped to improve the triangulation. If an edge
is swapped, put the new edges opposite to vi onto the stack. Continue
swapping until the stack is empty.

Theorem 4.31 can be used to show that both of these methods produce
a maxmin-angle triangulation. Both algorithms have a worst-case complex-
ity of O(V 2), where V is the number of vertices in V . This can become
prohibitive for very large vertex sets, but both methods are quite usable for
moderate numbers of vertices. For a Fortran implementation of the second
method, see [Ren84].

Because of the high order of complexity of these algorithms, the prob-
lem of finding more efficient algorithms for creating Delaunay triangulations
has attracted a lot of attention. Algorithms that achieve the minimal worst-
case complexity of O(V log V ) are based on a divide and conquer strategy,
see [PreS85, Ede87]. For an efficient C implementation of this idea, see
[She02].
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4.13. Type-I and Type-II Triangulations

Suppose
x0 < x1 < · · · < xk < xk+1,

y0 < y1 < · · · < yl < yl+1.

Then
Rk,l := {Hij := [xi, xi+1] × [yj , yj+1]}

k ℓ
i=0,j=0

provides a rectangular partition of the rectangle H := [x0, xk+1]× [y0, yl+1].
There are two triangulations associated with this partition which are of
special interest.

Definition 4.37. The triangulation △I obtained by drawing in the north-
east diagonals in all subrectangles Hij of Rk,l is called a type-I triangulation.
If both the {xi} and the {yj} are uniformly spaced, then we call △I a uni-

form type-I triangulation. It is also called a three-direction mesh.

Fig. 4.18. Nonuniform Type-I and Type-II Triangulations.

Figure 4.18 (left) shows a typical nonuniform type-I triangulation. It is
easy to see that with the notation of (4.4), the numbers of vertices, edges,
and triangles are given by

VI = kl,

VB = 2(k + l) + 4,

EI = 3kl + 2(k + l) + 1,

EB = 2(k + l) + 4,

N = 2(k + 1)(l + 1).

Definition 4.38. The triangulation △II obtained by drawing in both di-
agonals in all subrectangles Hij of Rk,l is called a type-II triangulation. If
both the {xi} and the {yj} are uniformly spaced, then we call △II a uniform

type-II triangulation. It is also called a four-direction mesh.
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Figure 4.18 (right) shows a typical nonuniform type-II triangulation.
With the notation of (4.4), the numbers of vertices, edges, and triangles
are

VI = 2kl + (k + l) + 1,

VB = 2(k + l) + 4,

EI = 6kl + 5(k + l) + 4,

EB = 2(k + l) + 4,

N = 4(k + 1)(l + 1).

4.14. Quadrangulations

Suppose {vi := (xi, yi)}
4

i=1
are four points in R

2. Then we say that the
convex hull Q := 〈v1, v2, v3, v4〉 is a quadrilateral. We say that Q is strictly

convex provided the angles at its four vertices are all less than π.

Definition 4.39. A set ♦ := {Qi}
n
i=1

of quadrilaterals is called a quadran-

gulation of Ω := ∪n
i=1

Qi provided the intersection of any two quadrilaterals
is either empty, a single point, or a common edge. We say that ♦ is strictly

convex provided every quadrilateral in ♦ is strictly convex.

This definition allows quite general quadrangulations. For example, ♦
may consist of two quadrilaterals which are completely separated, or it may
consist of two quadrilaterals which touch only at a vertex.

Definition 4.40. We say that a quadrangulation ♦ is regular provided
that for each vertex v, the set {Q1, . . . , Qm} of quadrilaterals sharing the
vertex v can be ordered so that Qi+1 shares at least one edge with Qi for
i = 1, . . . , m − 1.

Regular quadrangulations can cover domains Ω with one or more holes.
Such partitions are important in the finite-element method for solving par-
tial differential equations. A simple example of a nonregular quadrangula-
tion is one where two quadrilaterals touch only at a vertex. We now examine
the relationship between the number of vertices, edges, and quadrilaterals
in a regular quadrangulation. Let V

Q
I and V

Q
B be the number of interior

and boundary vertices of ♦, respectively.

Lemma 4.41. For any regular quadrangulation ♦ with no holes,

NQ := number of quadrilaterals in ♦ = (V Q
B + 2V

Q
I − 2)/2,

E
Q
I := number of interior edges of ♦ = (V Q

B + 4V
Q
I − 4)/2,

E
Q
B := number of boundary edges of ♦ = V

Q
B .

(4.15)

Proof: The formulae can be verified by straightforward induction on the
number of quadrilaterals in ♦.
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Fig. 4.19. A triangulation and the quadrangulation produced by Method 4.42.

It is clear from the first formula in this lemma that quadrangulations
exist only when V

Q
B is even. The problem of constructing quadrangulations

associated with a given set of vertices has been studied much less than the
corresponding problem for triangulations, see Remark 4.13. It seems there
are no known algorithms that are guaranteed to produce strictly convex
quadrangulations, even if Ω is strictly convex. On the other hand, it is
possible to convert an arbitrary triangulation into a strictly convex quad-
rangulation. We now present two methods for carrying out this conversion.

Method 4.42. Suppose △ is a regular triangulation of a polygon Ω with-
out holes. Then subdivide each triangle T ∈ △ by connecting its barycenter
to the midpoints of its edges.

A typical example of the use of this method is shown in Figure 4.19.
Each quadrilateral in ♦ has one vertex at a barycenter of a triangle T ∈ △,
one vertex at a vertex of T , and two vertices at midpoints of edges of T .

Method 4.43. Suppose △ is a regular triangulation without holes of a
polygon Ω. Let v1, . . . , vn be the boundary vertices of △, numbered in
clockwise order.

1) For each triangle T ∈ △, subdivide T into three subtriangles by con-
necting its barycenter to its three vertices.

2) Remove all interior edges of △.

3) For each boundary vertex v of △ and each triangle T attached to v,
remove the edge 〈v, w〉, where w is the barycenter of T .

4) For each boundary edge e of △, let p be its midpoint, and let w be the
barycenter of the triangle of △ with edge e. Insert the edge 〈p, w〉.

5) For each boundary vertex vi, 1 ≤ i ≤ n, suppose T1, . . . , Tm are the
triangles of △ that share the vertex vi, numbered in counterclockwise
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Fig. 4.20. A triangulation and the quadrangulation produced by Method 4.43.

order around vi. Let w1, . . . , wm be their barycenters. If m = 1, do
nothing further. If m > 1, do the following. For each j = 1, . . . , m− 1,
choose a point uj on ej := 〈vi, ṽj〉, where ej was the edge of △ shared
by Tj and Tj+1. Choose the point uj so that it is closer to vi than to
ṽj , and such that the angle between 〈uj , wj〉 and 〈uj , wj+1〉 is less than
π. Add the edges 〈uj , vi〉, 〈uj, wj〉, and 〈uj , wj+1〉 for j = 1, . . . , m−1.

The points uj in step 5) can always be selected to satisfy the required
angle condition. Indeed, the angle between 〈vi, wj〉 and 〈vi, wj+1〉 is less
than π, and thus if uj is sufficiently close to vi, the angle between 〈uj , wj〉

and 〈uj , wj+1〉 will also be less than π. This ensures that the algorithm is
well defined.

Figure 4.20 shows an example of the use of Method 4.43 to convert a
given triangulation to a quadrangulation. Both Methods 4.42 and 4.43 can
be extended to work with regular triangulations with holes.

Theorem 4.44. The quadrangulation produced by Methods 4.42 and 4.43
are strictly convex.

Proof: Consider first Method 4.42. Let T be a triangle in △ with barycen-
ter w. Then w must lie inside the subtriangle of T formed by connecting
the midpoints of the edges of T since every point on a line connecting mid-
points has one barycentric coordinate equal to 1/2, while the barycentric
coordinates of w are (1/3, 1/3, 1/3). This ensures that each of the three
quadrilaterals inserted into T is strictly convex since all four of its interior
angles are less than π.

Now consider Method 4.43. This method creates one quadrilateral
associated with each interior edge e := 〈v1, v2〉 of △. If neither vertex
of e is on the boundary of Ω, then we get the same quadrilateral as in
Method 4.42. If v1 is on the boundary, then instead of the quadrilateral of
Method 4.42, we get a slightly squashed quadrilateral where v1 is replaced
by a point u1 on e that was chosen so that the interior angle at u1 is
less than π. If both v1 and v2 are on the boundary of Ω, then instead of
the quadrilateral of Method 4.42, we get a slightly squashed quadrilateral



4.14. Quadrangulations 115

where v1, v2 are replaced by points u1, u2 on e chosen so that the interior
angles at those points are less than π. It remains to consider quadrilaterals
attached to boundary vertices of △. They are strictly convex since we used
midpoints of boundary edges in step 4), and in step 5) we chose the points
uj closer to vi than to ṽi.

We now give formulae for the number of points inserted and the number
of quadrilaterals produced by Methods 4.42 and 4.43.

Theorem 4.45. Let △ be a regular triangulation without holes. Let VI

and VB be the number of interior and boundary vertices, respectively. Let
E0 be the number of interior edges of △ where neither end is a boundary
vertex of △. Similarly, let E1, E2 be the number of interior edges of △

with one or two ends on the boundary of △, respectively. Let I1, I2 be the
number of inserted points for Methods 4.42 and 4.43, and let N1, N2 be the
number of quadrilaterals created. Then

I1 = 2VI + 2VB + E0 + E1 + E2 − 2,

N1 = 3VI + 2VB + E0 + E1 + E2 − 3,

I2 = 2VI + 2VB + E1 + 2E2 − 2,

N2 = 3VI + 2VB + E1 + 2E2 − 3.

Proof: Consider first Method 4.42. We add the barycenter of each triangle
and the midpoint of each edge of △. By the Euler relations (4.5), there
are 2VI + VB − 2 triangles and VB boundary edges. By Lemma 4.41 the
number of quadrilaterals in the quadrangulation ♦ is (V Q

B − 2)/2 + V
Q
I ,

where V
Q
B and V

Q
I are the number of boundary and interior vertices of

♦, respectively. Clearly, we have V
Q
B = 2VB , and it is easy to check that

V
Q
I = VI + NT + E0 + E1 + E2, where NT is the number of triangles in △.

The formula for N1 follows. It is also obvious from the construction that
N1 = 3NT . Now consider Method 4.43. The only difference in the insertion
count is that no points are inserted on interior edges that do not have any
vertex on the boundary, one point is inserted on interior edges that have
one vertex on the boundary, and two points are inserted on interior edges
that have two vertices on the boundary. For the quadrilateral count, the
difference is that now V

Q
I = VI + NT + E1 + 2E2. The formula for N2

follows.

When E0 is large compared to E2, Method 4.43 inserts many fewer
points and creates many fewer quadrilaterals than Method 4.42.

Definition 4.46. Given a quadrangulation ♦, let ♦R be the quadrangula-
tion obtained by connecting the midpoints of the four edges of each quadri-
lateral to the intersection of its two diagonals. We call ♦R the uniform

refinement of ♦.
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Fig. 4.21. A quadrangulation and its uniform refinement.

Fig. 4.22. A quadrangulation and its local refinement at a re-entrant corner.

Fig. 4.23. Two steps of refinement at a re-entrant corner and along a crack.

Figure 4.21 shows a typical quadrangulation and its uniform refine-
ment. Note that this definition is a bit different than uniform refinement
of triangulations where we simply connected the midpoints of the edges of
each triangle. We could do that here with quadrilaterals, but the resulting
refined quadrangulation is not as useful as the one we have defined.

Uniform refinement is useful for constructing sequences of nested quad-
rangulations for use in multilevel methods for partial differential equations
and for multiresolution approximation, see Section 4.16. We also note that
refinement can also be done locally as shown in Figures 4.22 and 4.23. Lo-
cal refinement is important in solving boundary value problems where there
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are singularities due to re-entrant corners and cracks in the domain Ω.

4.15. Triangulated Quadrangulations

Suppose ♦ is a strictly convex quadrangulation. We now discuss a natural
triangulation associated with ♦.

Definition 4.47. Given a strictly convex quadrangulation♦, we define the
induced triangulation ♦+ associated with ♦ to be the triangulation obtained
by drawing in both diagonals in each quadrilateral in ♦.

Fig. 4.24. A quadrangulation and its induced triangulation.

Figure 4.24 shows a typical strictly convex quadrangulation and its
induced triangulation. It is natural to expect that the smallest angle θ△ in
the induced triangulation will not be too small compared to the smallest
angle θ♦ in the quadrangulation ♦. However, this is not the case as shown
in the following example.

Example 4.48. Let Q be the quadrilateral with vertices (0, 0), (1, 0), (1, 1),
and (0, ǫ).

Discussion: Clearly, for all 0 < ǫ ≤ 1, the smallest angle in Q is at least
π/4. On the other hand, as ǫ goes to zero, the smallest angle in the induced
triangulation becomes arbitrarily small.

This example shows that in working with triangulated quadrangula-
tions, some care is needed in the choice of ♦ to make sure that the smallest
angles in the induced triangulation is not too small. This means we cannot
start with an arbitrary strictly convex quadrangulation. In this regard, it
is natural to ask what happens if we start with a triangulation △ and con-
struct ♦ by one of the methods discussed in Section 4.14. The following
two results follow immediately upon examining Figures 4.19 and 4.20.
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Theorem 4.49. Suppose ♦ is the quadrangulation obtained from a given
triangulation △ by applying Method 4.42. Then the associated induced
triangulation ♦+ is just the Powell–Sabin-12 refinement of △.

Theorem 4.50. Suppose ♦ is the quadrangulation obtained from a given
triangulation △ by applying Method 4.43. Then the associated induced
triangulation ♦+ is just the Powell–Sabin refinement of △.

Since refinement is important for applications, we devote the remain-
der of this section to a discussion of what happens to the angles in the
induced triangulations associated with a sequence of quadrangulations ob-
tained from a given quadrangulation by uniform refinement as discussed in
the previous section.

Theorem 4.51. Suppose ♦0,♦1, . . . is a sequence of quadrangulations,
where ♦m+1 is obtained from ♦m by uniform refinement. Let ♦+0,♦+1, . . .

be the corresponding induced triangulations, and let θm be the smallest
angle in ♦+m for all m ≥ 0. Then there exists a constant 0 < K < 1
depending only on θ0 such that

θm ≥ Kθ0, all m > 0. (4.16)

Proof: It is not hard to see that θm = θ1 for all m > 1. Thus, we need
only prove the inequality (4.16) holds for θ1. Let Q := 〈v1, v2, v3, v4〉 be
a quadrilateral in ♦0, and let vQ be the point where the diagonals of Q

intersect. Then Q is divided into four triangles with angles α1, . . . , α8 and
aQ, bQ as shown in Figure 4.25.

Without loss of generality we may assume aQ ≤ π/2 ≤ bQ. Suppose
m1, . . . , m4 are the midpoints of the sides of Q. After refinement, Q is
subdivided into 16 triangles, and as shown in Figure 4.26, many of the
angles are of exactly the same size as in the original triangulation of Q. In
fact the only new angles are β1, . . . , β8. We now show that

βi ≥ KQ θ0, i = 1, . . . , 8,

where

KQ :=
2

π
sin(aQ/2).

Since aQ ≤ π/2 and the line 〈m1, m4〉 bisects the line 〈v1, vQ〉, it follows
that tan β1 ≥ tanα1 and so β1 ≥ α1. A similar argument shows that
β4 ≥ α4, β5 ≥ α5, and β8 ≥ α8. We now examine β2 and β3 and consider
only the case β2 ≤ β3 as the alternative case is very similar. This implies
that α2 ≤ π/2, and also β3 ≥ aQ/2 since β2 + β3 = aQ. Clearly, the edges
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Fig. 4.25. Angles in a triangulated quadrilateral.
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Fig. 4.26. Angles in a refined quadrilateral.

〈v1, m1〉 and 〈m1, v2〉 have a common length which we denote by H . Let
M denote the length of the edge 〈m1, vQ〉. Then by the law of sines,

sin β2

H
=

sin α2

M
,

sin β3

H
=

sin α3

M
.

Combining these identities with 2x/π ≤ sin x ≤ x for 0 ≤ x ≤ π/2, we
conclude that

β2 ≥ sin β2 =
sin β3 sinα2

sinα3

≥ sin
(aQ

2

)
sin(θ0) ≥

2

π
sin

(aQ

2

)
θ0 = KQ θ0.

But then β3 ≥ β2 is also greater than or equal to KQ θ0. A similar argument
applies to β6, β7. We conclude that the smallest angle in the 16 triangles
in the refinement of Q is at least KQ θ0. Now taking the minimum of KQ

over all Q in ♦0, it follows that θ1 ≥ Kθ0, where

K :=
2

π
sin

( ā

2

)
, ā := min

Q∈♦
aQ.
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4.16. Nested Sequences of Triangulations

A sequence of triangulations △0,△1,△2, . . . , such that △n is a refinement
of △n−1 for each n is called a nested sequence of triangulations. Spline spaces
built on nested sequences of triangulations are useful for creating multi-
level methods for the numerical solution of partial differential equations,
see [Osw88, Bra97]. They can also be used for multiresolution approxima-
tion and the construction of wavelet spaces which are useful for image and
surface compression, see Remark 5.9. For applications, it is important to
have nested sequences of triangulations with the following two properties:

1) |△n| → 0 as n → ∞,

2) for some fixed constant K, the smallest angle θn in △n satisfies θn ≥

Kθ1 for all n ≥ 2.

In Section 4.8 we have described several methods for constructing a
refinement of a given triangulation. Any of these methods can be used to
create a nested sequence of triangulations by starting with an arbitrary
triangulation △1, and repeatedly applying the refinement method to create
△2, △3, etc. However, only some of the methods can be used to create
sequences of triangulations with properties 1) and 2).

Method 4.52. (Uniform Refinement) In view of the discussion in Sec-
tion 4.8.4, it is clear that starting with an arbitrary triangulation △1 and
using uniform refinement to create △2,△3, . . ., we get a sequence of trian-
gulations satisfying both 1) and 2). In fact, the smallest angle θn in △n

satisifes θn = θ1 for all n.

Method 4.53. (Clough–Tocher Refinement) The sequence of triangula-
tions resulting from repeatedly applying Clough–Tocher refinement to a
given triangulation △1 satisfies 1). By Theorem 4.17, θn ≥ (2/3π)nθ1.
Since for any initial triangulation △1, θn goes to zero as n → ∞, it follows
that 2) is not satisfied.

Method 4.54. (Powell–Sabin Refinement) The sequence of triangulations
resulting from repeatedly applying Powell–Sabin refinement to a given tri-
angulation △1 satisfies 1). Lemma 4.20 shows that the size of θn can be
bounded below by θn−1 sin(θn−1)/4π. But for any initial triangulation △1,
it is easy to see that θn goes to zero as n → ∞, so 2) is not satisfied.

Method 4.55. (Powell–Sabin-12 Refinement). The sequence of triangu-
lations resulting from repeatedly applying Powell–Sabin-12 refinement to
a given triangulation △1 will also fail to satisfy 2). However, there is a
way to get a sequence of Powell–Sabin-12 triangulations that does satisfy
both 1) and 2). We proceed as follows. Given an initial triangulation △1,

let △̃2, △̃3, . . . be the the sequence of triangulations obtained by repeated
uniform refinement. Then for all n, the smallest angle θ̃n in △̃n is the same
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as the smallest angle in △1. Now let △n be the result of applying the
Powell–Sabin-12 split to each triangle in △̃n. Clearly this sequence satisfies
1). Moreover, in view of Theorem 4.22, θn ≥ 2θ̃n/3π = 2θ1/3π, so 2) is
also satisfied.

Method 4.56. (Triangulated Quadrangulations with Uniform Refinement)
Suppose ♦0,♦1, . . . is a sequence of quadrangulations, where ♦n+1 is ob-
tained from ♦n by uniform refinement as described in Definition 4.46. Let
♦+0,♦+1, . . . be the corresponding induced triangulations, Clearly, this se-
quence of triangulations satisfies 1). Moreover, by Theorem 4.51, it also
satisfies 2).

Method 4.57. (Six Refinement) The six-refinement method described
in Algorithm 3.22 can also be used to create a sequence of triangulations
satisfying 1), but as can be seen from Figure 3.3, the size of the smallest
angle in △n will go to zero as n → ∞.

4.17. Remarks

Remark 4.1. The term regular triangulation has been used extensively in
mathematics, computer science, and engineering, but unfortunately, with
many different meanings. In some papers, it refers to a uniform type-
I triangulation. In computer graphics it is used for triangulations which
may involve triangles of different sizes, but which all have the same shape,
see e.g. [BalKV99]. In [Far82] it refers to a triangulation whose interior
vertices have degree 6 and whose boundary vertices have degree 4. In
much of the spline literature it is used for very general triangulations as
described in Definition 4.3, see [AlfS87, AlfPS87a–AlfPS87c] for some early
examples. In the computational geometry literature, it is a generalization
of the Delaunay triangulation which is obtained as the dual of a Voronoi
diagram where each point is assigned a weight, see e.g. [VigNC02] and
references therein. On the other hand, in the finite-element literature, it is
used to describe a property of families of triangulations which we describe
in the next remark.

Remark 4.2. Suppose F is a family of triangulations of a polygonal do-
main Ω. Then F is called quasi-uniform or quasi-regular provided that for
every triangulation △ in F , all triangles in △ have comparable sizes in the
sense that

|T |

ρ
T

≤ C < ∞, all triangles T ∈ △,

where ρ
T

is the inradius of T . For example, the class of all triangulations
whose smallest angles are bounded away from zero by a positive constant
have this property, see Lemma 4.2. Sequences of triangulations △n that
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are quasi-uniform and also have the property that |△n| → 0 as n → ∞

have been called regular, see [CiaR72, Cia78a].

Remark 4.3. In defining a triangulation of a set Ω, we have required that
the set Ω have a polygonal boundary. For much of what we want to do, we
could allow Ω to have a curved boundary, in which case triangles near the
boundary could have one or more curved edges.

Remark 4.4. It is possible to improve the bounds in Lemma 4.13 by
counting triangles on every other level, see [LaiS98]. This gives

N ≤






k∑

ν=0

a2ν+1, ℓ = 2k + 1,

k∑

ν=1

a2ν , ℓ = 2k.

Remark 4.5. Suppose the sides of a triangle T are of length a, b, c, and
that the angles opposite these sides are θa, θb, and θc, respectively. Then
the inradius of T is given by

ρ
T

=
1

2

[
(b + c − a)(c + a − b)(a + b − c)

a + b + c

] 1

2

=
2AT

a + b + c

= 4R sin
(θa

2

)
sin

(θb

2

)
sin

(θc

2

)
,

where AT is the area of T and R is the circumradius of T .

Remark 4.6. Theorem 4.10 can also be proved directly by induction.
Clearly, the formulae in (4.5) hold for a single triangle. Now suppose we

add a triangle to an existing shellable triangulation △̃, and that it touches
△̃ along k edges with k = 1, 2. Let δVB be the change in the number of
boundary vertices after adding T . Then, with analogous notation for the
other quantities, we have the following table:

k δVB δVI δEB δEI

1 1 0 1 1
2 −1 1 −1 2

The desired formulae follow.

Remark 4.7. In Definition 4.24 we have chosen to call a triangulation △∗

optimal provided a(△∗) is maximal. Alternatively, we could have chosen
to call △∗ optimal if a(△∗) is minimal. We have chosen this definition
since in Section 4.10 we seek to maximize minimum angles. In any case,
minimization problems can always be converted to maximization problems.
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Remark 4.8. It is by no means obvious that any triangulation of the
convex hull of a given set of vertices V can be obtained from any other
triangulation by a series of swaps. That this is possible was established
in [Law72]. The fact that the same thing holds for triangulations of a
nonconvex domain Ω was established more recently in [DynGR93].

Remark 4.9. Many other criteria have been suggested for comparing
triangulations with each other besides the maxmin-angle criterion, although
none of them lead to as elegant a theory as we have for the Delaunay
triangulations. For example, one could try to minimize the maximum angle
in the triangulation, leading to a so-called minmax-angle triangulation. This
criterion does not have many of the nice properties of maxmin. For example,
locally optimized triangulations are not necessarily optimal. For an explicit
example due to G. Nielson in 1987, see [Sch93a]. For a surveys of some of
the other criteria in the literature, see [Sch87, Sch93b].

Remark 4.10. It should be noted that none of the triangulation methods
discussed here are affine invariant. Thus, if we change the scale used for the
x and y axes, we may get an entirely different triangulation. The question
of how to build affine invariant triangulations has been discussed in [Nie93].

Remark 4.11. There is a close connection between Delaunay triangula-
tions and classical Voronoi tilings which are also called Thiessen tesselations

and Dirichlet tesselations. Suppose V := {vi}
V
i=1

is a set of points in the
plane. Then for each 1 ≤ i ≤ V , the set

Ri := {v ∈ R
2 : d(v, vi) ≤ d(v, vj), all 1 ≤ j ≤ V }

is called the Voronoi tile associated with vi. Ri is just the set of all points
in the plane which are at least as close to vi as they are to any other point
in V . In some applications it is called the region of influence of vi. Ri are
closed (possibly unbounded) sets, and their union provides a tiling of all of
R

2. Now vi and vj are called strong neighbors provided that their Voronoi
regions Ri and Rj intersect in a nontrivial line segment. It is known that
a Delaunay triangulation △ is the dual of the Voronoi tiling in the sense
that two vertices vi and vj are connected to form an edge of △ if and only
if they are strong neighbors.

Remark 4.12. The standard definition of a Delaunay triangulation works
only with convex Ω. Definition 4.34 is an extension to nonconvex Ω. The
key point is that the circle criterion of Definition 4.33 is not required to be
satisfied by some of the triangles (near the boundary).

Remark 4.13. In the mid 1990’s we asked people in computational geom-
etry about constructing quadrangulations with given vertices. This ques-
tion led to the paper [BoseT97], which contains an algorithm that creates
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a quadrangulation of the convex hull Ω of the points whenever the boundary
of Ω contains an even number of points. The algorithm has complexity
O(n log(n)), but has a serious defect for our purposes since in general the
quadrilaterals obtained need not be strictly convex. It can also lead to
quadrilaterals with very small angles.

Remark 4.14. Several authors have considered the problem of converting
a given triangulation to a quadrangulation, see [Hei83, JohSK91, RamRT98,
LaiS99, BoseRTT02]. These algorithms generally require adding additional
vertices, and do not always produce strictly convex quadrangulations. The
algorithms based on Methods 4.42 and 4.43 do guarantee strict convexity of
all quadrilaterals. They come from [LaiS99], although we have reformulated
Method 4.43 to make its operation clearer.

Remark 4.15. It is possible to define spline spaces on more general par-
titions. Let Ω be a simply connected polygonal domain. Suppose that Ω
is the union of polygons P1, . . . , Pn such that no vertex of a polygon lies
in the interior of an edge of another polygon. Such a partition is called a
rectilinear partition. In the special case that the partition is formed by draw-
ing straight lines connecting pairs of boundary points of Ω, the partition is
called a cross-cut partition.

4.18. Historical Notes

Piecewise polynomial functions defined on triangulated domains have been
used in mathematics and engineering for a long time. They play a major
role in data fitting, and are the basic tool for most finite-element methods.
However, the question of exactly what constitutes a triangulation has of-
ten been glossed over in the literature, and there is some confusion in the
literature about what is an acceptable triangulation for a given purpose.
Such triangulaions are often called regular, but with completely different
meanings. Thus, we have taken extra care to be very precise about what
we mean by a triangulation and by a regular triangulation.

It is essential for finite-element applications to allow triangulations
with holes, so it is with this mind that we have formulated Definition 4.3.
Many papers use some form of this definition, but often with some addi-
tional restrictions such as simple connectedness. The idea of a shellable
triangulation seems to have been introduced first in topology, where there
are many papers on shellability of polytopes, see e.g. [Rud58] and the books
[Rus73, Zie95]. We have not seen the concept used in the spline literature
in connection with planar triangulations. Our definition of regular triangu-
lation is also nonstandard, cf. Remark 4.1, but we believe it captures the
properties we need in working with splines on triangulations.



4.18. Historical Notes 125

Formulae connecting the numbers of edges and vertices in a triangula-
tion have been known at least since Euler. The formulae in Theorem 4.11
were stated in [EwiFG70] without any restrictions on the triangulation.
The “proof” was based on an inductive argument, see Remark 4.6, which
is clearly not valid for arbitrary triangulations. By restricting ourselves to
regular triangulations, we have given the first rigorous proof.

The problem of constructing and storing triangulations also has a long
history, and is now a well established part of computational geometry, see
e.g. the books [PreS85, Ede87, Ede01]. There are two rather different situ-
ations. In the first, one is given a set of points which are to serve as the
vertices of the triangulation. In some cases one also stipulates the boundary,
or that certain other edges should be present. Most of the algorithms for
solving this problem deliver an associated Delaunay triangulation. The sec-
ond situation arises frequently in applications of the finite-element method
to solving partial differential equations. In this case we are usually given
a domain Ω (which may have holes) with a polygonal boundary, and we
would like to construct a triangulation whose boundary agrees with the
boundary of Ω. In the FEM literature this is usually called grid generation,
and the aim is to make sure that the triangles in △ have good shape. Fre-
quently, it is important to have smaller triangles in certain parts of Ω than
in others. For details, references, and access to state-of-the-art C-code for
solving both problems, see [She02]. The results on clusters of triangles in
Section 4.7 are taken from our paper [LaiS98].

The Clough–Tocher refinement discussed in Section 4.8.1 was intro-
duced in [CloT65] in connection with the definition of a macro-element.
Sometimes it is referred to as the Hsieh–Clough–Tocher split [Cia78b], and
is well known in the finite-element literature, see [Cia78a, BreS94, Bra97].
Having lower bounds on the smallest angles in the subtriangles is important
for proving error bounds for an associated Hermite interpolation method
and for certain finite-element applications. We could not find explicit
bounds in the literature. Our Lemma 4.17 seems to be new.

The Powell–Sabin refinement discussed in Section 4.8.2 was introduced
in [PowS77] for the purpose of constructing a C1 macro-element. This
element has been used both in approximation theory and in the numerical
solution of partial differential equations. It was observed in the literature
that if the refinement is constructed using incenters, then the refinement is
at least well defined in the sense that the lines connecting the incenters of
two adjoining macro-triangles cross the common edge at an interior point.
However, we could not find explicit bounds on the ratio of the lengths of the
subedges introduced by the split, or on the smallest angles in the resulting
subtriangles. Our Lemma 4.20 is new. The Powell–Sabin-12 refinement
discussed in Section 4.8.3 was also introduced in [PowS77], but nothing
was said about the shape of the subtriangles. Lemma 4.22 seems to be
new.
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The idea of swapping edges in a triangulation to improve it was dis-
cussed already in [Law72], but is probably much older. Lawson introduced
vector measures on the quality of a triangulation, and distinguished be-
tween locally optimized and optimal triangulations. He studied maxmin-
angle triangulations and their connections to Delaunay triangulations, see
also [Law86]. Our treatment of maxmin-angle triangulations basically fol-
lows this early work, although we give a different proof of Theorem 4.32,
and make use of the concept of internally connected.

Thiessen tesselations are almost 100 years old, and Delaunay’s orig-
inal work was published in 1934, see the books [PreS85, Ede87, Ede01].
Many authors have given algorithms for constructing Delaunay triangula-
tions (for some references, see [Sch87, Sch93b] and the above books. Many
of these authors claimed that their algorithms had a worst-case complexity
of O(n log(n)), but as shown in [Sch87], the claims were often incorrect.
Correct O(n log(n) algorithms have been devised based on a divide-and-
conquer strategy, see [PreS85, Ede87, Ede01]. For an efficient modern C
implementation, see [She02]. Swapping edges is a useful technique for
adjusting triangulations with other criteria (such as goodness of fit), see
[DynGR93, Sch93b] and [Sch93a] where it is combined with simulated an-
nealing methods.

Triangulated quadrangulations were used by Fraeijs de Veubeke [Fra68]
and Sander [San64] to construct certain macro-elements to be used in solv-
ing plate bending problems, see also [CiavN74]. The idea of using tri-
angulated quadrangulations was not taken up by spline researchers un-
til more recently, see [Lai96a, LaiS97, LaiS99]. As with triangulations, we
have tried to be careful with our definitions of quadrangulations and trian-
gulated quadrangulations. The algorithms for converting triangulations to
quadrangulations described in Section 4.14 come from our paper [LaiS99],
although Method 4.43 as presented here is a reformulation of the original
method. The key fact in the proof of Theorem 4.51 that the angles in
a sequence of triangulated quadrangulations that have been subjected to
uniform refinement do not change after the first stage of refinement was
observed in [DahOS94].



Bernstein–Bézier Methods
for Spline Spaces

In this chapter we introduce a key tool for both the practical and theoretical
treatment of spline spaces: the Bernstein–Bézier representation. In addi-
tion, we show how it can be used to study various aspects of spline spaces
such as dimension, construction of stable local bases, and approximation
power.

5.1. The B-form Representation of Splines

As shown in Chapter 2, it is very convenient to represent bivariate poly-
nomials in Bernstein–Bézier (B-) form. In this section we show how this
idea can be extended to represent splines. Let △ = {Ti}

N
i=1

be a regular
triangulation of a polygonal set Ω ⊆ R

2. Then given a positive integer d,
we define the corresponding set of domain points to be the set

Dd,△ :=
⋃

T∈△

Dd,T , (5.1)

where Dd,T is the set of domain points (2.14) associated with T . Domain
points of Dd,T on edges shared by two triangles are included just once in
Dd,△. Figure 5.1 shows the set D2,△ for a typical triangulation △.

We now show how to use the domain points to parametrize the linear
space of C0 splines of degree d, defined as

S0

d (△) := {s ∈ C0(Ω) : s|Ti
∈ Pd, i = 1, . . . , N}. (5.2)

Given s ∈ S0

d (△), for each triangle T ∈ △, we know by Theorem 2.4 that
there exists a unique set of coefficients {cξ}ξ∈Dd,T

such that

s|T =
∑

ξ∈Dd,T

cξB
T,d
ξ , (5.3)

where BT,d
ξ are the Bernstein basis polynomials of degree d associated with

the triangle T . Since s is continuous, if ξ lies on an edge between two
different triangles T and T̃ , then the coefficients cξ for s|T and s|

T̃
are

the same. This shows that for each spline s ∈ S0

d (△), there is a unique
associated set of coefficients {cξ}ξ∈Dd,△

. We call these the B-coefficients of

s. Since the converse also holds, i.e., given any {cξ}ξ∈Dd,△
there is a unique

spline s ∈ S0

d(△) defined by (5.3), we have the following result.
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Fig. 5.1. The set D2,△ of domain points associated with a triangulation △.

Theorem 5.1. Every spline s ∈ S0

d (△) is uniquely defined by its set of
B-coefficients {cξ}ξ∈Dd,△

.

Often it will be more convenient to work with a vector of coefficients

rather than a set of coefficients. This requires that the coefficients be
assigned some order. One convenient way to do this is to assume that the
triangles and edges of △ are oriented, i.e., for each triangle T := 〈v1, v2, v3〉

we designate a first vertex v1 and number the remaining vertices in counter-
clockwise order. For each edge e := 〈u1, u2〉, we associate a pair of vertices,
where we think of the edge as pointing from u1 to u2. If we adopt these
conventions, then one simple way to order the domain points and associated
B-coefficients of a spline in S0

d(△) is to list the points at the vertices first,
then all points on the oriented edges, and finally the points in the interior
of each triangle in the lexicographical order described in Section 2.3. This
is the order we assume whenever we talk about a vector of B-coefficients.

5.2. Storing, Evaluating and Rendering Splines

In view of the discussion in the previous section, to store a spline s ∈ S0

d(△)
in a digital computer, it suffices to store its associated coefficient vector c,
assuming we have already stored information describing the triangulation
△. To evaluate s at a given point v, we may apply the following algorithm.

Algorithm 5.2. (Compute s(v))

1) Find a triangle T which contains v.

2) Extract the B-coefficients of s|T from c.

3) Compute the barycentric coordinates b := (b1, b2, b3) of v relative to
T .

4) Use the de Casteljau algorithm to compute s(v).

Discussion: Step 1) requires searching through the triangles of △. For
some suggestions on how to make this process efficient, see Remark 5.2.
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Note that if v falls at a vertex, then s(v) is just the value of the coeffi-
cient associated with v, and steps 3) and 4) can be skipped. If v falls in
the interior of an edge, it will be in two different triangles. However, be-
cause of continuity, it doesn’t matter which of the two triangles we use to
evaluate s(v). In this case we could also find s(v) by evaluating a univari-
ate polynomial using a simplified version of the de Casteljau algorithm, see
Remark 2.5.

We have the analogous algorithm for evaluating an m-th order direc-
tional derivative defined by a set of directions u1, . . . , um with directional
coordinates a1, . . ., am.

Algorithm 5.3. (Compute Dum,...,u1
s(v))

1) Find a triangle T which contains v.

2) Find the B-coefficients of the polynomial s|T .

3) Compute the barycentric coordinates b := (b1, b2, b3) of v.

4) Compute the coefficients of Dum,...,u1
s(v) by applying m steps of the

de Casteljau algorithm using the triples a1, . . . , am successively.

5) Compute Dum,...,u1
s(v) by applying d − m steps of the de Casteljau

algorithm using the triple b.

This algorithm is based on the expansion (2.30) of Dum,...,u1
s(v) in

terms of Bernstein basis polynomials of degree d−m. The combination of
steps 4) and 5) amounts to carrying out a total of d steps of the de Casteljau
algorithm, and thus the operation count for computing a derivative is the
same as for computing the value of the spline itself, namely, (d3+3d2+2d)/2.

Since a spline is a piecewise polynomial, the evaluation of integrals
and inner products of splines over a triangle or collection of triangles is
straightforward using the formulae in Section 2.13. Similarly, to render a
spline we simply apply the methods of Section 3.8 to each polynomial piece.

5.3. Control Surfaces and the Shape of Spline Surfaces

Given a spline s ∈ S0

d (△), we define the associated spline surface to be the
graph of s as a bivariate function, i.e., the set

Gs := {(x, y, s(x, y)) : (x, y) ∈ Ω}.

We define the control surface Cs as

Cs :=
⋃

T∈△

Cs|T ,

where Cs|T are the control surfaces associated with the polynomials s|T .
Each Cs|T is a continuous surface made up of triangular facets, and is the
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Fig. 5.2. A spline surface and its associated control surface.

graph of a C0 linear spline over the triangulation △d,T obtained from T

by connecting neighboring domain points as described in Section 3.1. We
refer to the points {(ξ, cξ)}ξ∈Dd,△

as the control points for s.

It is clear that Cs is also a continuous surface made up of triangular
facets, and in fact we can think of Cs as being the graph of a spline in
S0

1
(△d), where △d is the triangulation obtained from △ by splitting each

triangle T in △ into d2 =
(
d+1

2

)
+

(
d
2

)
triangles as in (3.3). If we work only

with the edges of the triangular facets making up Cs, we get a wireframe
object which we define to be the control net associated with s. Figure 5.2
shows a typical spline surface and its associated control surface.

The results of Chapter 3 immediately imply a close connection between
the shape of the control surface Cs of a spline s and the shape of the
corresponding spline surface Gs. In particular, by the results of Chapter 3:

1) Gs lies in the convex hull of the control surface Cs.

2) If the control surface Cs is nonnegative (positive) on Ω, then so is Gs.

3) If Cs is monotone in some direction u, then so is Gs.

For B-patches, the convexity of the control surface in some direction
implies the convexity of the polynomial in that direction. This property
does not extend to surface patches associated with splines in S0

d (△), since
such splines are only continuous. As in the B-patch case, the shape of a
spline s ∈ S0

d (△) can also be specified directly in terms of its coefficients
using the results of Chapter 3.

5.4. Dimension and a Local Basis for S0
d(△)

Since the linear space S0

d(△) is in one-to-one correspondence with the set
{cξ}ξ∈Dd,△

, it is clear that the dimension of S0

d (△) is equal to the cardinality
of Dd,△. A simple count gives us the following theorem.
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Theorem 5.4. For any triangulation △,

dim S0

d(△) = #Dd,△ = V + (d− 1)E +

(
d− 1

2

)
N, (5.4)

where V,E, and N are the number of vertices, edges, and triangles in △.

We now construct locally supported basis functions in S0

d (△) which
are analogs of the classical B-splines. For each ξ ∈ Dd,△, let ψξ be the
spline in S0

d(△) that satisfies

γηψξ = δξ,η, all η ∈ Dd,△,

where γη is a linear functional that picks off the coefficient associated with
the domain point η. It is possible to give an explicit construction of γη

based on the results of Section 2.16, but here we do not need it in explicit
form. Note that ψξ has all zero coefficients except for cξ = 1.

Since for each triangle the associated Bernstein basis polynomials are
nonnegative, it follows immediately that

ψξ(v) ≥ 0, all v ∈ Ω.

Since ψξ is identically zero on all triangles which do not contain ξ, we see
that the support of ψξ is as follows:

1) A single triangle T , if ξ is in the interior of T.

2) T ∪ T̃ , if ξ is on the edge between the triangles T and T̃ .

3) The union of all triangles sharing the vertex v, if ξ = v.

Theorem 5.5. The set of splines B := {ψξ}ξ∈Dd,△
forms a basis for S0

d (△)
which provides a partition of unity on Ω, i.e.,

∑

ξ∈Dd,△

ψξ(v) ≡ 1, all v ∈ Ω.

Proof: Since dim S0

d (△) = #Dd,△, to show B is a basis it suffices to show
that the ψξ are linearly independent. Suppose that

s :=
∑

ξ∈Dd,△

cξ ψξ ≡ 0, on Ω.

Then for every triangle T ∈ △, the restriction s|T is a polynomial of degree
d which is identically 0, and so all the coefficients in its B-form must vanish.
This means that cη = 0 for all η ∈ Dd,T . Since this holds for all T ∈ △, we
have shown that all coefficients must be 0. The partition of unity assertion
follows immediately from the corresponding property (2.9) of Bernstein
basis polynomials.
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Fig. 5.3. A typical basis function ψξ ∈ S0

3 (△).

For linear splines (the case d = 1), each basis function is a hat function

with support on the star of a vertex v. For d = 2, we also get some splines
with supports on two neighboring triangles, and for d ≥ 3, some splines
with supports on a single triangle. Figure 5.3 shows a typical basis spline
ψξ in the cubic spline space S0

3
(△) with support on the star of a vertex.

5.5. Spaces of Smooth Splines

In practice we usually need to work with spaces of splines that have some
additional smoothness beyond C0 continuity. In this section we introduce
some notation for dealing with spaces of smooth splines.

5.5.1 Supersplines

Given 0 ≤ r ≤ d and a triangulation △, we write

Sr
d (△) := S0

d(△) ∩ Cr(Ω)

for the space of Cr continuous splines of degree d. For many applications
it is useful to work with splines that have enhanced smoothness at certain
vertices. We say that a spline s ∈ S0

d (△) is Cρ smooth at v provided that
all of the polynomials s|T such that T is a triangle with vertex at v have
common derivatives up to order ρ at the point v. In this case we write
s ∈ Cρ(v).

Definition 5.6. Let V := {v1, . . . , vV
} be the set of vertices of △, and let

0 ≤ r ≤ ρ ≤ d. Then we define the associated space of supersplines to be

S
r,ρ
d (△) := {s ∈ Sr

d(△) : s ∈ Cρ(v) for all v ∈ V}. (5.5)

The splines in the space (5.5) have the same supersmoothness ρ at each
vertex of △. To get a more general space, let ρ := {ρv}v∈V with r ≤ ρv ≤ d

for each v ∈ V , and define the associated space of supersplines to be

S
r,ρ
d (△) := {s ∈ Sr

d(△) : s ∈ Cρv (v) for all v ∈ V}. (5.6)

In the next section we define even more general superspline spaces with
variable smoothness across the edges as well as at the vertices.
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5.5.2 Smoothness Conditions Across Edges

In Theorem 2.28 we gave conditions for two polynomials defined on adjoin-
ing triangles to join together with Cr smoothness. Those conditions were
defined in terms of B-coefficients. For convenience, we now define certain
associated linear functionals.

Suppose T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 are two triangles sharing
an interior edge e := 〈v2, v3〉 of △. Fix 0 ≤ n ≤ j ≤ d. Then for any spline
s ∈ S0

d(△), let

τn
j,es := cn,d−j,j−n −

∑

ν+µ+κ=n

c̃ν,j−n+µ,d−j+κB̃
n
νµκ(v1), (5.7)

where {cijk}i+j+k=d and {c̃ijk}i+j+k=d are the B-coefficients of s|T and

s|
T̃
, respectively, and B̃n

νµκ are the Bernstein basis polynomials of degree n

associated with the triangle T̃ . We call τn
j,e a smoothness functional of order

n, and refer to ξT
n,d−j,j−n as the tip of τn

j,e.

Definition 5.7. Given a set T of linear functionals of the form (5.7) as-
sociated with oriented edges of △, we define the corresponding space of

smooth splines as

ST
d (△) := {s ∈ S0

d (△) : τs = 0 for all τ ∈ T }. (5.8)

In describing spaces of splines via sets T of smoothness functionals
across edges, it is important to keep in mind that since smoothness con-
ditions across different edges of a triangulation may link together, what
appear to be independent smoothness conditions may in fact be redun-
dant. This typically happens when △ contains an interior vertex v, as
shown in the following example.

Example 5.8. Let △ consist of three triangles T1 := 〈v, v1, v2〉, T2 :=
〈v, v2, v3〉, and T3 := 〈v, v3, v1〉 sharing a common vertex v. Then if s ∈

S0

1
(△) satisfies the C1 smoothness condition across one of the edges ei :=

〈v, vi〉, i = 1, 2, 3, then it automatically satisfies the C1 smoothness condi-
tions across the other two.

Discussion: Let cv be the coefficient of s corresponding to the domain
point v, and for each i = 1, 2, 3, let ci be the coefficient of s corresponding
to the domain point vi. Suppose v1 = r1v + s1v2 + t1v3. Then the C1

condition across e3 can be written as c1 = r1cv + s1c2 + t1c3. But these
two equations imply

v2 =
−r1

s1
v −

t1

s1
v3 +

1

s1
v1,

c2 =
−r1

s1
cv −

t1

s1
c3 +

1

s1
c1,
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and

v3 =
−r1

t1
v +

1

t1
v1 −

s1

t1
v2,

c3 =
−r1

t1
cv +

1

t1
c1 −

s1

t1
c2,

which says that the C1 smoothness conditions across e1 and e2 are also
satisfied.

Example 5.8 can also be explained geometrically. By the geometric
interpretation of C1 smoothness conditions across edges, a spline s will
satisfy all three C1 smoothness conditions if and only if all of the control
points of s associated with domain points in the disk D1(v) are coplanar.
But this will happen as soon as we enforce the C1 condition across just one
edge.

5.5.3 Smoothness at a Vertex

By Theorem 2.28, a spline in ST
d (△) will be Cr smooth across e whenever

T includes all of the linear functionals {τn
j,e}

d
j=n, for n = 1, . . . , r. The

following lemma shows that the functionals defined in (5.7) can also be
used to describe smoothness at a vertex. Thus, the superspline spaces
introduced in Section 5.5.1 can be written in the form ST

d (△) with an
appropriate choice of T .

Lemma 5.9. Let s ∈ S0

d (△). Suppose v is a vertex of △, and that
e1, . . . , em are the interior edges of △ attached to v. Suppose in addition
that for i = 1, . . . ,m,

τn
j,ei

s = 0, n ≤ j ≤ ρ and 1 ≤ n ≤ ρ. (5.9)

Then s ∈ Cρ(v).

Proof: Given s ∈ S0

d(△), we can regard its B-coefficients associated with
domain points lying in the disk Dρ(v) as the coefficients of a spline g in
S0

ρ(△). Now s ∈ Cρ(v) if and only if g reduces to a single polynomial. But
g reduces to a polynomial if and only if (5.9) holds.

Example 5.8 shows that in general we can force a spline in S0

d(△) to
belong to Cρ(v) by enforcing only a part of the smoothness conditions (5.9),
since some of them are redundant.

Lemma 5.10. Suppose s ∈ S0

d(△) ∩ Cρ(v) for some vertex v, and let
T1, . . . , Tm be the triangles of △ sharing the vertex v. Then we can set the
coefficients of s corresponding to domain points in Dρ(v) ∩ T1 to arbitrary
values, and the coefficients corresponding to all other domain points in
Dρ(v) will be consistently determined by smoothness conditions.

Proof: As observed in the proof of Lemma 5.9, we can regard the coef-
ficients of s corresponding to domain points in the disk Dρ(v) as being
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coefficients of a polynomial g of degree d. By the results of Section 2.2,
we can set the coefficients corresponding to domain points in Dρ(v) ∩ T1

to arbitrary values. But then by the results of Section 2.7, this determines
the derivatives {Dα

xD
β
y s(v)}0≤α+β≤ρ, which in turn uniquely determines

the coefficients of g restricted to each of the other triangles T2, . . . , Tm.

5.5.4 The Matrix Form of Smoothness Conditions

Since smoothness conditions on a spline s ∈ S0

d(△) are just linear conditions
on the vector c of B-coefficients of s, it is clear that for any given set T of
smoothness conditions, there is a matrix A := AT such that

ST
d (△) = {s ∈ S0

d(△) : Ac = 0}. (5.10)

Clearly, the matrix A is of size m×n, where m is the number of smoothness
conditions in T , and n is the dimension of S0

d (△). It is also clear that A is
quite sparse since a typical Cr smoothness condition across an edge involves
only

(
r+2

2

)
+1 coefficients. Thus, for example, a C1 condition involves only

four coefficients, so the corresponding row in the matrix A has only four
entries that can be nonzero.

Theorem 5.11. Let ST
d (△) be the space of smooth splines defined in

(5.10) corresponding to a matrix A. Then the dimension of ST
d (△) is equal

to n− k, where k is the rank of A.

Proof: If c is a vector satisfying Ac = 0, then the corresponding spline
in S0

d(△) with B-coefficient vector c clearly belongs to S0

d(△). But the
number of linear independent solutions of Ac = 0 is exactly n− k.

Given a specific triangulation △ and smoothness set T , this theorem
can be used to compute the dimension of the corresponding spline space
numerically. However, it is not of much use in finding general formulae for
dimensions of spline spaces because of the difficulty in identifying the rank
of the matrix A, due to the redundancies mentioned above.

5.6. Minimal Determining Sets

Theorem 5.1 shows that every spline s ∈ S0

d (△) is uniquely determined
by its set of B-coefficients {cξ}ξ∈Dd,△

. Suppose now that S := ST
d (△) is a

linear subspace of S0

d(△) that is defined by enforcing some set of smoothness
conditions T across the edges of a triangulation △ as described in the
previous section. Then for a spline s ∈ S0

d(△) to be in S, its set of B-
coefficients must satisfy the linear side conditions in (5.10). This means
that we cannot assign arbitrary values to every coefficient of s. Instead, we
can only assign values to certain coefficients, and all remaining coefficients
will be determined by the smoothness conditions. We now pursue this idea
in more detail.
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Definition 5.12. Suppose Γ ⊆ Dd,△ is such that if s ∈ S and cξ = 0
for all ξ ∈ Γ, then s ≡ 0. Then we say that Γ is a determining set for S.
If M is a determining set for a spline space S and M has the smallest
cardinality among all possible determining sets for S, then we call M a
minimal determining set (MDS) for S.

Clearly, for any spline space S ⊆ S0

d(△), the set of domain points Dd,△

is always a determining set for S. But for any spline space S satisfying at
least one smoothness condition, there will be determining sets with fewer
points than the number of points in Dd,△. In general, there will be more
than one minimal determining set corresponding to a given spline space S.

Theorem 5.13. Suppose S is an m-dimensional linear subspace of S0

d (△),
and suppose that Γ is a determining set for S. Then m ≤ #Γ. Moreover,
if M is a determining set for S with #M = m, then M is minimal.

Proof: For each ξ ∈ Dd,△, let γξ be a linear functional defined on S0

d (△)
such that γξs is the B-coefficient of s associated with the domain point ξ.
Let B1, . . . , Bm be a basis for S. Now suppose Γ is a determining set for S
with #Γ < m. This implies that there exists at least one nontrivial solution
of the homogeneous system

m∑

j=1

ajγξBj = 0, ξ ∈ Γ.

But this contradicts the linear independence of the B1, . . . , Bm, and so
m ≤ #Γ for any determining set. It follows that if M is a determining set
of cardinality m, it must be minimal.

In general, it is a nontrivial task to construct minimal determining sets
for spline spaces. Indeed, in practice we often don’t know the dimension of
S, and so don’t even know how many domain points to put in a minimal
determining set.

Definition 5.14. If M is a determining set for a spline space S ⊆ S0

d (△),
we say that it is consistent provided that if we fix the coefficients {cξ}ξ∈M

of s ∈ S, then all of the coefficients of s are determined, and all smoothness
conditions defining S are satisfied with these coefficients.

The following theorem provides an important tool for constructing
minimal determining sets.

Theorem 5.15. Suppose M is a consistent determining set for a spline
space S ⊆ S0

d (△). Then M is minimal.

Proof: Since M is consistent, for each ξ ∈ M we can construct a spline
sξ ∈ S with cξ = 1 and cη = 0 for all η ∈ M. The spline sξ may have other
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nonzero coefficients, but all smoothness conditions are satisfied. Now let
{γξ}ξ∈M be linear functionals such that γξ applied to s gives the coefficient
cξ. Using these functionals, it is easy to see that the splines {sξ}ξ∈M are
linearly independent, and thus m := dim S ≥ #M. Now since M is a
determining set, Theorem 5.13 implies m ≤ #M, and we conclude that
m = #M. But then the second part of Theorem 5.13 gives us that M is a
minimal determining set.

The proof of Theorem 5.15 shows how to construct a basis for S when-
ever we have a consistent determining set M for S. We explore this obser-
vation in more detail in Section 5.8.

Given a minimal determining set M for S, suppose we assign values
to the coefficients {cξ}ξ∈M. Then for every η ∈ Dd,△ \M, the coefficient
cη can be computed from the known coefficients by using the smoothness
conditions. We say that cη depends on cξ, ξ ∈ M, if changing the value of
cξ also causes the value of cη to change. We write

Γη := {ξ ∈ M : cη depends on cξ}. (5.11)

Definition 5.16. Suppose M is a minimal determining set for a linear
space of splines S ⊆ S0

d (△). We say that M is local provided there exists
an integer ℓ not depending on △ such that

Γη ⊆ starℓ(Tη), all η ∈ Dd,△ \M, (5.12)

where Tη is a triangle containing η. We say that M is stable provided there
exists a constant K depending only on ℓ and the smallest angle θ△ in the
triangulation △ such that

|cη| ≤ K max
ξ∈Γη

|cξ|, all η ∈ Dd,△ \M. (5.13)

We shall show in Chapters 6–8 that a wide variety of macro-element
spaces (see Section 5.10 for a precise definition) have stable local minimal
determining sets. In addition, in Chapter 11 we show that for all d ≥ 3r+2,
the spline space Sr

d(△) as well as the superspline spaces Sr,ρ
d (△) defined in

(5.5) also have stable local minimal determining sets. On the other hand,
there are many examples of spline spaces which do not admit stable local
minimal determining sets. These include the space S1

3
(△), even if △ is a

uniform type-I partition, see Remark 5.3.

5.7. Approximation Power of Spline Spaces

Suppose S ⊆ S0

d(△) is a spline space associated with a triangulation △ of
a domain Ω, and suppose M is a stable local minimal determining set for
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S. In this section we show how to construct an explicit linear operator Q,
called a quasi-interpolation operator, mapping L1(Ω) into S which provides
optimal order (see Remark 5.4) approximations of smooth functions on Ω.

For each domain point ξ in Dd,△, let Tξ be a triangle containing ξ. In
addition, let γξ be a linear functional that for any spline s ∈ S0

d(△), picks
off the B-coefficient cξ corresponding to ξ. An explicit construction of such
γξ can be found in Section 2.16, but here we do not need them in explicit
form. Given f ∈ L1(Ω), let

cξ = γξ(Fξf), ξ ∈ M, (5.14)

where Fξf is the averaged Taylor polynomial of degree d associated with f
based on the largest disk contained in Tξ, see (1.11). Then we define Qf to
be the spline in S whose coefficients are cξ for ξ ∈ M, and whose remaining
coefficients are determined from smoothness conditions.

For each f ∈ L1(Ω), the spline Qf is well defined since M is a min-
imal determining set, and thus all of its coefficients {cη}η∈Dd,△\M can be
computed as linear combinations of those listed in (5.14). In particular,
suppose η ∈ Dd,△ \M lies in a triangle T := Tη. Then since M is a sta-
ble local MDS, this linear combination involves only coefficients associated
with domain points in a set Γη ⊆ M lying in ΩT := starℓ(T ), where ℓ is
the integer constant in (5.12). The stability of M guarantees

|cη | ≤ K0 max
ξ∈Γη

|cξ|, (5.15)

where K0 depends only on ℓ and the smallest angle in ΩT .

Theorem 5.17. The operator Q is a linear projector mapping L1(Ω) onto
S. Moreover, there exists a constant K such that for all 1 ≤ q ≤ ∞, all
triangles T ∈ △, and all f ∈ Lq(ΩT ),

‖Qf‖q,T ≤ K ‖f‖q,ΩT
, (5.16)

where K depends only on d, ℓ, and the smallest angle in ΩT .

Proof: It is clear from the definition that Q is a linear operator. The claim
that Qs = s for all splines s ∈ S follows from the fact that Fξp = p for all
p ∈ Pd. We now establish (5.16) in the case 1 ≤ q <∞. The case q = ∞ is
similar and simpler. Given ξ ∈ M, let Tξ be the triangle containing ξ used
to define Fξ. Then by Theorem 2.7 and Lemma 1.6,

|cξ| = |γξ(Fξf)| ≤
K1

A
1/q

Tξ

‖Fξf‖q,Tξ
≤
K1K2

A
1/q

Tξ

‖f‖q,Tξ
,

where K1 is the constant appearing in (2.19), and K2 is the constant ap-
pearing in (1.15). It depends only on d and the shape parameter of Tξ,
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which in turn depends only on the smallest angle in Tξ by Lemma 4.2.
Now fix a triangle T . Then by (5.15), for all η ∈ T ,

|cη| ≤
K0K1K2

A
1/q

min

‖f‖q,ΩT
,

where Amin is the area of the smallest triangle in ΩT . Using the nonneg-
ativity of the Bernstein basis polynomials and the fact that they form a
partition of unity, this immediately implies

‖Qf‖q,T =

[ ∫

T

∣∣∣
∑

ξ∈Dd,T

cξB
T
ξ

∣∣∣
q
]1/q

≤ K0K1K2

A
1/q

T

A
1/q

min

‖f‖q,ΩT
.

Finally applying (4.10), which says that all triangles in ΩT have comparable
areas with a constant depending only on the smallest angle in ΩT , we get
(5.16).

We can now give a local approximation result for Q.

Theorem 5.18. Given a triangle T in △, let ΩT be as in Theorem 5.17.
Then for every f ∈ Wm+1

q (ΩT ) with 0 ≤ m ≤ d and 1 ≤ q ≤ ∞,

‖Dα
xD

β
y (f −Qf)‖

q,T
≤ K |T |m+1−α−β |f |m+1,q,ΩT

, (5.17)

for all 0 ≤ α + β ≤ m. If ΩT is convex, then K depends only on d, ℓ, and
the smallest angle in ΩT . If ΩT is not convex, then K also depends on the
Lipschitz constant of the boundary of ΩT .

Proof: Fix T and 0 ≤ α + β ≤ m. By Theorem 1.9, there exists a
polynomial p ∈ Pm depending on f so that

‖Di
xD

j
y(f − p)‖

q,ΩT
≤ K1 |ΩT |

m+1−i−j |f |m+1,q,ΩT
, (5.18)

for all 0 ≤ i + j ≤ m. If ΩT is convex, then K1 is a constant depending
on m and the shape parameter κ

ΩT
:= |ΩT |/ρΩT

of ΩT , where |ΩT | is
the diameter of ΩT and ρ

ΩT
is the radius of the largest disk contained in

ΩT . If ΩT is nonconvex, then K1 also depends on the Lipschitz constant
of the boundary of ΩT . Now by (4.11) and Lemma 4.14, |ΩT | ≤ K2|T |,
where K2 is a constant depending on ℓ and the smallest angle in ΩT . It
follows that |ΩT |/ρΩT

≤ K2|T |/ρT
, where ρ

T
is the radius of the largest

disk contained in T . Thus, the shape parameter κ
ΩT

of ΩT is bounded
by K2 times the shape parameter κ

T
of T , which in view of Lemma 4.2 is

bounded by a constant depending on the smallest angle in ΩT . Since Q
reproduces polynomials of degree d, we have

‖Dα
xD

β
y (f −Qf)‖q,T ≤ ‖Dα

xD
β
y (f − p)‖q,T + ‖Dα

xD
β
yQ(f − p)‖q,T .
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In view of (5.18), it suffices to estimate the second term. For any
function g, the restriction of Qg to T is a polynomial of degree d. Thus,
using the Markov inequality (1.5) along with (5.16) and (5.18) for i = j = 0,
it follows that

‖Dα
xD

β
yQ(f − p)‖q,T ≤

K3

ρ
α+β
T

‖Q(f − p)‖q,T

≤
K4

ρ
α+β
T

‖f − p‖q,ΩT

≤ K5

|ΩT |
m+1

ρ
α+β
T

|f − p|m+1,q,ΩT

≤ K5K
m+1

2
κα+β

T
|T |m+1−α−β |f |m+1,q,ΩT

.

Combining the above inequalities, we get (5.18).

We can now give a global version of this approximation result. For any
triangulation △, we define its mesh size |△| to be the length of the longest
edge in the triangulation.

Theorem 5.19. For every f ∈ Wm+1

q (Ω) with 0 ≤ m ≤ d and 1 ≤ q ≤ ∞,

‖Dα
xD

β
y (f −Qf)‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω, (5.19)

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on d, ℓ, and the smallest angle in the triangulation △. If Ω is nonconvex,
it also depends on the Lipschitz constant of the boundary of Ω.

Proof: For q = ∞, (5.19) follows immediately from (5.17) by taking the
maximum over all triangles T in △. To get the result for q < ∞, we take
the q-th power of both sides of (5.17) and sum over all triangles in △. Since
ΩT contains other triangles besides T , some triangles will appear more than
once in the sum on the right. However, a triangle T̃ appears in the sum on
the right only if it lies in starℓ(T ) for some triangle T ∈ △. Lemma 4.13
asserts that for each T , the number of triangles in starℓ(T ) is bounded by a
constant K1 depending only on the smallest angle in △, and (5.19) follows.

In Theorem 5.19 we have made no assumption about the connection
between the order of the derivative being taken on the left-hand side of
(5.19) and the smoothness of the spline Qf . In particular, for points u on
the edges of the triangles of the underlying triangulation △, Dα

xD
β
yQf(u)

may not even exist for some values of α, β. However, since the q-norm of a
function only depends on values of the function almost everywhere, we can
ignore such points.
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Theorem 5.19 shows that spaces of splines with stable local minimal
determining sets provide optimal order approximation of smooth functions,
see Remark 5.4. All of the macro-element spaces in Chapters 6–8 have
this property. In Section 10.3 we show that for all d ≥ 3r + 2, the space
Sr

d(△) has a stable local minimal determining set and thus has optimal
approximation power. We also show in Section 10.4 that when d < 3r + 2,
Sr

d(△) does not have optimal approximation power, and thus cannot have
a stable local minimal determining set.

The problem of determining the approximation power for spline spaces
without a stable local MDS is nontrivial. For some results on splines on
type-I partitions, see Section 10.4.

5.8. Stable Local Bases

In this section we show how minimal determining sets can be used to con-
struct bases for spline spaces. This construction is mostly for theoretical
completeness. In computations with splines, it is almost always more con-
venient to work directly with the B-representation rather than with any
basis. In fact, even the approximation results of the previous section were
established without reference to any basis for the spline spaces.

Theorem 5.20. Suppose M is a minimal determining set for a spline
space S ⊆ S0

d(△). Then for each ξ ∈ M, there is a unique spline ψξ ∈ S

such that
γηψξ = δη,ξ, all η ∈ M. (5.20)

Moreover, {ψξ}ξ∈M is a basis for S, which we refer to as the M-basis of S.

Proof: By Theorem 5.13, the cardinality of M is equal to the dimension
of S, and so it suffices to show that the splines ψξ are linearly independent.
But this follows immediately from (5.20).

If M is a stable local minimal determining set for S, then the corre-
sponding M-basis has an important stability property.

Theorem 5.21. Suppose M is a stable local minimal determining set for
the linear space of splines S ⊆ S0

d (△), and let Ψ := {ψξ}ξ∈M be the set of
basis functions described in Theorem 5.20. Then Ψ is a stable local basis

for S in the sense that for all ξ ∈ M:

1) ‖ψξ‖Ω ≤ K,

2) σ(ψξ) := suppψξ ⊆ starℓ(Tξ), where Tξ is a triangle containing ξ.

Here ℓ is the integer constant in (5.12), and the constant K depends only
on ℓ and the smallest angle in △.

Proof: Let ℓ and K be the constants appearing in Definition 5.16 of the
stability of M. Fix ξ ∈ M. Then all of the B-coefficients of ψξ correspond-
ing to η ∈ M are zero except for cξ = 1. All remaining B-coefficients of
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ψξ can be computed from those in M. Since M is local, we see that all
computed coefficients cη with η outside of starℓ(Tξ) must be zero, where Tξ

is a triangle containing ξ. This establishes 2). Now by the stability of M,
all computed coefficients satisfy |cη| ≤ K. Finally, using the nonnegativity
of the Bernstein basis polynomials and the fact that they form a partition
of unity, we get ‖ψξ‖Ω ≤ K.

We conclude this section by showing that for any 1 ≤ q < ∞, the
M-basis for S can be renormed to form a basis for S that is stable in the
q-norm.

Theorem 5.22. Let {ψξ}ξ∈M be the M-basis for S associated with a
stable local minimal determining set M. Given 1 ≤ q ≤ ∞, let Ψq :=
{ψξ,q := (ATξ

)−1/qψξ}ξ∈M, where for each ξ, Tξ is a triangle containing ξ
and ATξ

is its area. Then Ψq forms a q-stable basis for S in the sense that
there exist constants C1 and C2 depending only on d, ℓ, and the smallest
angle θ△ in △ such that

C1‖a‖q ≤
∥∥ ∑

ξ∈M

aξψξ,q

∥∥
q,Ω

≤ C2‖a‖q, (5.21)

for all choices of the coefficient vector a = (aξ)ξ∈M.

Proof: We consider the case 1 ≤ q < ∞ as the case q = ∞ is similar
(and simpler). We begin by establishing the first inequality in (5.21). Sup-
pose s =

∑
ξ∈M aξψξ,q. Fix a triangle T , and let ξ ∈ T ∩ M. Then the

corresponding B-coefficient of s|T is aξ(AT )−1/q, and by Theorem 2.7,
∑

ξ∈T ∩M

|aξ|
q ≤ K

q
5
‖s|T‖

q
q,T ,

where K5 is the constant in that theorem. Summing over all T , we get
∑

ξ∈M

|aξ|
q ≤ K

q
5
‖s‖

q
q,Ω.

To prove the second inequality, we need more notation. Given a triangle
T , let

ΣT := {ξ : T ⊆ σ(ψξ)}, (5.22)

where σ(ψξ) denotes the support of ψξ. By the localness of the ψξ, σ(ψξ) ⊆
starℓ(Tξ). Let UT :=

⋃
ξ∈ΣT

σ(ψξ). For ξ ∈ ΣT , let Tξ be a triangle that
contains ξ. Then Tξ and T both lie in the cluster UT , and Lemma 4.14
implies that K1 := maxT∈△ maxξ∈ΣT

AT/ATξ
is finite and depends only on

ℓ and θ△. Now
∫

T

|s|q =

∫

T

∣∣ ∑

ξ∈ΣT

aξ(ATξ
)−1/qψξ

∣∣q ≤ max
ξ∈ΣT

‖ψξ‖
q
T max

ξ∈ΣT

AT

ATξ

( ∑

ξ∈ΣT

|aξ|

)q

≤ K1K
q
2
K

q−1

3

∑

ξ∈ΣT

|aξ|
q ,
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where K2 is the constant in Theorem 5.21 and K3 := #ΣT . We now
sum over all triangles T in △. A given aξ can appear more than once on
the right-hand side. In fact, the number of times it appears is equal to
the number of triangles in σ(ψξ), which by Lemma 4.13 is bounded by a
constant K4 depending only on ℓ and θ△. It follows that

‖s‖q
q =

∑

T∈△

∫

T

|s|q ≤ K1K
q
2
K

q−1

3
K4 ‖a‖q

q,

and the proof of the second inequality in (5.21) is complete.

5.9. Nodal Minimal Determining Sets

So far, the emphasis in this chapter has been on parametrizing spline spaces
S ⊆ S0

d(△) using the Bernstein–Bézier form, i.e., in terms of B-coefficients.
However, in the finite-element literature it is common to parametrize spline
spaces in terms of so-called nodal parameters, also called degrees of freedom.
To define them, we consider linear functionals of the form

λ := εt

∑

α+β=m

aα,βD
α
xD

β
y , (5.23)

where εt denotes point evaluation at the point t. We refer to the point t as
the carrier of λ.

Definition 5.23. Suppose N = {λi}
n
i=1

is a set of linear functionals of the
form (5.23). We call N a nodal determining set (NDS) for S provided that
λs = 0 for all λ ∈ N implies s ≡ 0. We call N a nodal minimal determining

set (NMDS) for S if there is no nodal determining set with fewer elements.

Following the proof of Theorem 5.13, it is easy to see that a nodal
determining set N for S is minimal if and only if #N = dim S. In this
case we can assign arbitrary values to {λs}λ∈N , and all coefficients of s
will be uniquely and consistently determined. We give a simple example to
illustrate this concept.

Example 5.24. Given a triangulation △, let V be the set of vertices of
△, and let E be the set of edges of △. For each edge e ∈ E , let ue be
the midpoint of e. Then N := {εv}v∈V ∪ {εue

}e∈E , is a nodal minimal
determining set for S0

2
(△).

Discussion: Suppose s ∈ S0

2
(△) and that we are given the values {s(v)}v∈V

and {s(ue)}e∈E . For each v ∈ V , the value s(v) uniquely determines the B-
coefficient associated with the domain point at v. Moreover, for each edge
e := 〈v1, v2〉, the B-coefficient associated with the domain point ξ = ue is
easily seen to be cξ = 4s(ue) − s(v1) − s(v2).
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If N := {λi}
n
i=1

is a nodal minimal determining set for a spline space
S, then for each 1 ≤ i ≤ n, there is a unique spline φi ∈ S such that

λjφi = δij , j = 1, . . . , n. (5.24)

Since the splines Φ := {φi}
n
i=1

are clearly linearly independent, it follows
that Φ is a basis for S. We refer to it as the N -basis for S.

We now show how the basis Φ can be used to give a formal solution to
a certain Hermite interpolation problem. Suppose f is sufficiently differen-
tiable so that all of the values λif can be computed, and set

Hf :=

n∑

i=1

(λif)φi. (5.25)

Then it follows immediately from (5.24) that s := Hf satisfies

λjs = λjf, j = 1, . . . , n. (5.26)

It follows that the Hermite interpolation operator H reproduces all splines
in S, i.e.,

Hs = s, all s ∈ S.

We emphasize that in practice, we can usually solve the Hermite interpo-
lation problem (5.26) without actually constructing any basis. This will be
illustrated in Chapters 6–8.

Definition 5.25. Suppose N is a nodal minimal determining set for a
linear space of splines S ⊆ S0

d(△), and suppose the order of the highest
derivative involved in the linear functionals in N is m̄. We say that N

is local provided that there exists an integer ℓ not depending on △ such
that for every s ∈ S, T ∈ △, and ξ ∈ DT , the coefficient cξ of s can be
computed from nodal data at points in ΩT := starℓ(T ). We say that N is
stable provided that there exists a constant K depending only on ℓ and the
smallest angle in △ such that for every s ∈ S, T ∈ △, and ξ ∈ Dd,T ,

|cξ| ≤ K

m̄∑

ν=0

|T |ν |s|ν,ΩT
. (5.27)

We shall show in Chapters 6–8 that a wide variety of macro-element
spaces have stable local nodal minimal determining sets. We now give an
error bound for Hermite interpolation with a spline space S possessing a
stable local NMDS.

Theorem 5.26. Suppose N is a stable local nodal minimal determining
set for a spline space S, and let ℓ and m̄ be the constants in Definition 5.25.
Let H be the associated Hermite interpolation operatorH defined in (5.25).
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Given a triangle T in △, let ΩT := starℓ(T ). Then for every f ∈ Cm+1(ΩT )
with m̄ ≤ m ≤ d,

‖Dα
xD

β
y (f −Hf)‖

T
≤ K |T |m+1−α−β |f |m+1,ΩT

, (5.28)

for all 0 ≤ α + β ≤ m. If ΩT is convex, K depends only on d, ℓ, and the
smallest angle in the triangles of ΩT . If ΩT is not convex, then K also
depends on the Lipschitz constant of the boundary of ΩT .

Proof: Fix T . By Theorem 1.9, there exists a polynomial p := pf ∈ Pm

so that

‖Di
xD

j
y(f − p)‖

ΩT
≤ K1 |ΩT |

m+1−i−j |f |m+1,ΩT
, (5.29)

for all 0 ≤ i+ j ≤ m. If ΩT is convex, then K1 is a constant depending on
m and the shape parameter κ

ΩT
of ΩT . If ΩT is nonconvex, then K1 also

depends on the Lipschitz constant of the boundary of ΩT . As shown in the
proof of Theorem 5.18, κ

ΩT
is bounded by a constant depending only on ℓ

and the smallest angle in the triangles of ΩT . By (4.11) and Lemma 4.14,
|ΩT | ≤ K2|T |, where K2 is also a constant depending on ℓ and the smallest
angle in ΩT .

Now fix 0 ≤ α+ β ≤ m. Then by the linearity of H , and the fact that
it reproduces polynomials of degree d,

‖Dα
xD

β
y (f −Hf)‖T ≤ ‖Dα

xD
β
y (f − p)‖T + ‖Dα

xD
β
yH(f − p)‖T .

In view of (5.29), it suffices to estimate the second term. Since the Bernstein
basis polynomials are nonnegative and form a partition of unity, (5.27)
implies

‖H(f − p)‖T ≤ K3

m̄∑

ν=0

|T |ν |f − p|ν,ΩT
.

Using the Markov inequality (1.5) and (5.29), it follows that

‖Dα
xD

β
yH(f − p)‖T ≤

K4

ρ
α+β
T

‖H(f − p)‖T ≤
K3K4

ρ
α+β
T

m̄∑

ν=0

|T |ν |f − p|ν,ΩT

≤
K5

ρ
α+β
T

|ΩT |
m+1|f |m+1,ΩT

≤ K5K
m+1

2
κα+β

T
|T |m+1−α−β |f |m+1,ΩT

.

Combining the above inequalities, we get (5.28).

The global version of (5.28) also holds with T and ΩT replaced by Ω,
as is easily seen by taking the maximum over all triangles T in △.
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5.10. Macro-element Spaces

In the sequel we shall often work with spaces of splines that are defined
on triangulations △R which are obtained from a given triangulation △ by
applying some refinement process to each of the triangles T in △. For
example, we will be especially interested in the case where △R is obtained
by applying Powell–Sabin or Clough–Tocher splits to each of the triangles
in △.

Let N be a nodal minimal determining set for a space of splines S ⊆

S0

d(△R). For each triangle T ∈ △, we define

NT := {λ ∈ N : the carrier of λ is contained in T}. (5.30)

Definition 5.27. We call S a macro-element space provided that there is
a nodal minimal determining set N for S such that for all triangles T ∈ △,
s|T is uniquely determined from the values {λs}λ∈NT

.

This definition asserts that if S is a macro-element space with nodal
determining set N , then the Hermite-interpolating spline s defined in the
previous section can be computed one triangle at a time, and in particular,
s|T can be computed from data at points in T . We give several examples
of macro-element spaces in Chapters 6–8.

Constructing macro-element spaces is nontrivial, and depending on the
nature of the type of split used, usually requires working with supersplines.
The following result shows why.

Theorem 5.28. Suppose that T := 〈v1, v2, v3〉 is a triangle, and that TR

is a refinement such that there are n ≥ 0 interior edges connected to the
vertex v1. Let s be a spline of degree d and smoothness r defined on TR.
Then the cross derivatives of s up to order r on the edges e := 〈v1, v2〉 and
ẽ := 〈v1, v3〉 can be specified independently only if we require s ∈ Cρ(v1),
with

ρ ≥

⌈(n+ 2)r − n

n+ 1

⌉
. (5.31)

Proof: Consider the coefficients of s corresponding to domain points on a
typical ring Rρ+1(v1). There are (n+1)(ρ+ 1)+ 1 such coefficients. As we
cross each interior edge attached to v1 they are subject to r conditions. Now
specifying cross derivatives up to order r across the edge e determines the
r + 1 coefficients of s corresponding to domain points on Rρ+1(v1) within
distance r of e. Similarly, specifying cross derivatives up to order r across
the edge ẽ determines the r + 1 coefficients of s corresponding to domain
points on Rρ+1(v1) within distance r of ẽ. It follows that a necessary
condition for the number of undetermined coefficients on Rρ+1(v1) to be at
least equal to the number of conditions is (n+1)(ρ+1)+1−2(r+1) ≥ nr,
which leads immediately to (5.31).
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5.11. Remarks

Remark 5.1. Throughout this chapter (and the book), we are using the B-
form described in Section 5.1 as the key tool for dealing with bivariate spline
spaces. As described, this works only for spline spaces that are at least in
C0(Ω). Of course, it is also possible to parametrize the space PPd(△) of all
piecewise polynomials of degree d defined on a given triangulation △ using
B-coefficients. Indeed, we simply associate each function in PP(△) with
the union of the sets of B-coefficients of the individual pieces of s. For each
interior edge e of △, there will be two different coefficients associated with
each domain point in the interior of e. If v is a boundary vertex of △ of
degree m, then there will be m−1 different coefficients associated with the
domain point at v, while if v is an interior vertex of degree m, then there
will be m different coefficients associated with v.

Remark 5.2. In order to evaluate a spline defined on a triangulation
containing N triangles, we first have to find the triangle that contains the
point v of interest. One way to test whether v lies in a given triangle T is
to compute its barycentric coordinates relative to that triangle and check
whether they are all nonnegative. In the worst case this requires O(N)
computations, which can be very expensive if N is large. In practice we
often have to evaluate at many points. If these points are numbered so
that two successive points are near each other, we can greatly reduce the
amount of calculation required to locate the triangle containing vi if we
take account of which triangle contained vi−1. The neighboring triangle
list discussed in Section 4.5 can be very helpful for this purpose.

Remark 5.3. It is not hard to give examples of spaces that do not have
stable local minimal determining sets. For example, the space S1

3
(△) does

not have one, even if △ is a uniform type-I triangulation. Indeed, if it did,
then by Theorem 5.19 it would approximate functions in W 4

∞(Ω) to order
O(|△|4). But it is shown in Theorem 10.25 that S1

3 (△) has approximation
power at most O(|△|3).

Remark 5.4. Given any linear subspace X of Lq(Ω), we write d(f,X)q :=
infg∈X ‖f − g‖q for the usual distance of f to X . Suppose S ⊆ S0

d(△) is
a spline space associated with a triangulation △ of a domain Ω. Then we
say that S has optimal order approximation power with respect to the q-norm

provided that there exists a constant K depending only on the smallest
angle in △ such that for every sufficiently smooth function f ,

d(f,S)q ≤ K d(f,PPd(△))q,

where PPd(△) is the space of piecewise polynomials on △. Another way to
say this is that there exists a spline s ∈ S such that on each triangle T , the
order of approximation of f by s is the same as the order of approximation
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of f by a polynomial of degree d. As shown in Remarks 1.4 and 1.5, unless
f ∈ Pd, no matter how smooth f may be, d(f,Pd)q = O(|T |d+1+ǫ) does
not hold with ǫ > 0.

Remark 5.5. In Theorem 5.5 we have constructed a basis for the space
of splines S0

d(△). However, in practice there is no need to actually work
with these basis functions (which would involve finding and storing the
coefficients of each basis function), since as shown in Section 5.2, we can
store and manipulate a spline in S0

d(△) by working directly with its set of
B-coefficients. This same observation holds for smoother spline spaces and
spaces of supersplines. Even when we have explicit bases for such spaces, it
is generally more efficient to store and work with B-coefficients rather than
the coefficients of an expansion in terms of basis functions.

Remark 5.6. Peter Alfeld has written a Java program that is capable
of numerically computing the dimension of bivariate spline spaces. It is
also useful for finding minimal determining sets M, and even outputs the
formulae for computing all coefficients associated with domain points not in
M. The program uses residual arithmetic, and is described in some detail
in [Alf00]. It can be downloaded from Alfeld’s website at the University of
Utah.

Remark 5.7. The classical univariate natural cubic spline is a piecewise
cubic polynomial that is C2 globally. It was recognized in 1957 by Holliday
that it also has the remarkable property that among all smooth functions
that interpolate a given set of values {yi}

n
i=1

at points x1 < x2 < · · · < xn,
the natural spline interpolant minimizes the expression E :=

∫ xn

x1
[f ′′(t)]2 dt.

This suggests two ways to extend splines to the bivariate setting: 1) look
at piecewise polynomials with some smoothness between pieces, or 2) look
for functions that minimize an appropriate bivariate analog of E. It turns
out that with natural choices for E, bivariate splines defined as solutions of
minimization problems are not piecewise polynomials. For a detailed treat-
ment of multivariate splines from this perspective, see the books [Wah90,
BezV01, ArcCT04]. The variational approach to splines can also be carried
out on the sphere, see [FreeGS98].

Remark 5.8. Suppose △0,△1,△2, . . . , is a sequence of triangulations such
that △n is a refinement of △n−1 for each n. Suppose S0,S1,S2, . . . , is a
sequence of spline spaces defined on these triangulations. If Sn−1 ⊂ Sn for
each n, then we say that the sequence of spline spaces is nested. Nested
sequences of splines play an important role in the numerical solution of
partial differential equations, see [Osw88, DahOS94, LaiW96]. They have
also been used for surface compression in [HonS04]. The spaces Sr

d(△n) are
nested for any choice of 0 ≤ r < d. However, many other sequences of spline
spaces are not nested. For example, the superspline spaces of Definition 5.6
are not nested since a given spline s ∈ S

r,ρ
d (△n−1) will not have the needed
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supersmoothness to belong to S
r,ρ
d (△n). Most of the finite-element spaces

to be discussed in Chapters 6–8 are superspline spaces, and thus are also
not nested, see Remarks 6.4, 7.6, and 8.7. For a construction of nested
sequences of special superspline spaces, see [Dav02a].

Remark 5.9. Suppose S(△) is a spline space defined on a triangulation
△ of a domain Ω. Let △R be a refinement of △, and suppose S(△R) is
an associated spline space with S(△) ⊂ S(△R). Let Φ := {φi}

n
i=1

be a
basis for S(△), and let Ψ := {ψ}m

i=1
be a linearly independent set of splines

in S(△R) such that W (△R) := span Ψ is the orthogonal complement of
S(△) in S(△R) with respect to the usual L2 inner product on Ω. We
can write this as S(△R) = S(△) ⊕ W(△R). The space W is called a
wavelet space, and the functions ψi are called prewavelets. Then Φ ∪ Ψ
is a basis for S(△R), and every function in the finer space S(△R) can
be written as a unique combination of the functions in Φ ∪ Ψ. Those
in Φ belong to the coarse spline space, while those in Ψ belong to the
fine spline space. We can consider such an expansion as a multiresolution

expansion, where terms involving the basis functions in Φ provide an initial
approximation, while those involving basis functions in Ψ provide detail.
There is an extensive theory of univariate spline wavelets. In the bivariate
case most of the results deal with box spline wavelets, see Remark 12.11.
For arbitrary triangulations, construction of wavelet spaces is much more
difficult. Results for the spline space S0

1
(△) using uniform refinement to

get △R can be found in [KotO95, FloQ98, FloQ99]. In this case there is one
prewavelet associated with the midpoint of each edge e := 〈u, v〉 of △. It
has support on star(u) ∪ star(v) with respect to the triangulation △R.

5.12. Historical Notes

Farin was the first to propose using the B-form to study bivariate splines
on triangulations in his dissertation [Far79]. It was next used in [BarnF81],
where explicit formulae for the B-coefficients of a C1 quintic spline inter-
polating certain Hermite data were given, see the macro-element in Sec-
tion 6.1. Its use seems to have been well established by the time of the
survey [BoeFK84]. In [Sabl85a] it was used to construct locally supported
splines. The B-form is also the key tool in the work of Alfeld, Piper,
and Schumaker [AlfS87, AlfPS87a –AlfP87c] on the dimension of bivariate
spline spaces. The concept of minimal determining sets was first introduced
in [AlfS87] as a means to compute the dimension of Sr

d (△) for d ≥ 4r + 1,
and was later used in [AlfPS87b] to construct minimally supported bases
for the same spaces. Although used previously in the finite-element com-
munity, the idea of nodal determining sets was first formalized in [DavS00a]
in the study of the approximation power of certain C1 spline spaces.

The concept of stable local minimal determining sets appears for the
first time in [DavS02]. There it was defined to mean that the associated dual
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basis is stable and local as described in Theorem 5.21. Our Definition 5.16
does not refer to a basis at all. The idea of bypassing bases altogether in
discussing stability is due to [AlfS02a, AlfS02b]. This definition of stable
MDS has the advantage that we can establish approximation results without
having to construct basis functions. The proof that a stable local basis in
the max norm can be renormed to create a stable local basis in the q-norm as
in Theorem 5.22 comes from our paper [LaiS98]. The construction of stable
local minimal determining sets, stable local nodal minimal determining sets,
and stable local bases for specific spline spaces will be discussed in detail
in Chapters 6– 8, 10.

Superspline spaces first entered the literature in [ChuL90b], where the
space (5.5) was studied for the special choice ρ := r+⌊(r+1)/2⌋. The spaces
(5.5) with arbitrary r ≤ ρ ≤ d were introduced in [Sch89], where their
connection to classical finite-element spaces was explored. The superspline
spaces in (5.6) with varying smoothness at the vertices were defined and
studied in [IbrS91]. The general superspline spaces (5.8) were introduced
in [AlfS03], where the smoothness functionals (5.7) were also defined.

In Section 5.7 we give an explicit bound for how well a space of splines
with a stable local MDS approximates smooth functions and their deriva-
tives. The key ingredients needed to establish Theorems 5.18 and 5.19 are
the stability of the B-form, the partition of unity property of Bernstein
basis polynomials, the Markov inequality, and a Whitney approximation
theorem for polynomial approximation. These ingredients are also used to
prove Theorem 5.26 for Hermite interpolation with spline spaces with a
local stable NMDS. This approach to error bounds for spline interpolation
and approximation was introduced in [NurRSZ04], and later exploited in
[SchS04, SchS05, AlfS05a–AlfS05c]. Earlier, such theorems were proved in
the spline literature by constructing quasi-interpolants based on stable lo-
cal bases, see e.g. [LaiS98]. The approach here does not make use of bases
at all. For more on the history of approximation results, see Section 10.6.

The fact that supersmoothness is needed at the vertices of a triangle T
in order to construct a macro-element space based on a split of T was recog-
nized in several early papers, but the formula for the minimal smoothness
needed given in Theorem 5.28 seems to appear first in [Sch84a].



C1 Macro-element Spaces

In this chapter we discuss several of the most useful C1 macro-element
spaces. For each of the spaces, we give both a stable local minimal de-
termining set and a stable local nodal determining set, and show that the
space has full approximation power.

6.1. A C
1 Polynomial Macro-element Space

Let △ be a triangulation of a domain Ω, and let V be its set of vertices. In
this section we discuss the superspline space

S
1,2
5

(△) := {s ∈ S1

5
(△) : s ∈ C2(v) for all v ∈ V}.

To state our first theorem we need some additional notation. For each
v ∈ V , let Tv be some triangle with vertex at v, and let Mv := D2(v)∩ Tv,
where D2(v) is the set of domain points in the disk of radius 2 around v.
For each edge e := 〈v2, v3〉 of △, let Te := 〈v1, v2, v3〉 be some triangle
containing e, and let Me := {ξ

Te

122
}. Let E be the set of edges of △, and

suppose that N , E, and V are the number of triangles, edges, and vertices
of △, respectively.

Theorem 6.1. dim S
1,2
5

(△) = 6V + E, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set.

Proof: To show that M is a minimal determining set, we make use of The-
orem 5.15. Thus, we need to show that the coefficients {cξ}ξ∈M of a spline

s ∈ S
1,2
5

(△) can be set to arbitrary values, and that all other coefficients
of s are then consistently determined. First, for each v ∈ V , we set the co-
efficients of s ∈ S

1,2
5

(△) corresponding to the domain points in Mv. Then
in view of the C2 supersmoothness at v, all coefficients corresponding to
domain points in D2(v) are consistently determined by Lemma 5.10. So far
we have determined all of the coefficients {cξ}ξ∈D, whereD :=

⋃
v∈V D2(v).

Since the disks D2(v) do not overlap, it follows that all smoothness condi-
tions that involve only these coefficients are satisfied.

For each edge e of △, we now choose cTe

122
. If e := 〈v2, v3〉 is an interior

edge of △ which is shared by two triangles Te := 〈v1, v2, v3〉 and T̃e :=
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〈v4, v3, v2〉, then we can use the C1 smoothness across e to determine cT̃e

122
.

We claim that no inconsistencies can arise in this way. To see this, for each
edge e := 〈u, v〉, let E1(e) := {η : dist(η, e) ≤ 1, η 6∈ D1(u)∪D1(v)}. Then
coefficients associated with E1(e) do not enter any smoothness conditions
involving coefficients associated with sets E1(ẽ) for other edges ẽ. We have
shown that M is a consistent determining set, and thus by Theorem 5.15
is a minimal determining set. By Theorem 5.13, the dimension of S1,2

5
(△)

is equal to the cardinality of M, which is clearly 6V + E.

We now check that M is local in the sense of Definition 5.16. Suppose
η 6∈ M lies in Tη. If η ∈ D2(v) for some vertex v, then cη depends on
the coefficients {cξ}ξ∈Mv

. Thus, the set Γη in Definition 5.16 is just Mv,
which is contained in star(v) ⊂ star(Tη). Now suppose η ∈ E1(e) for some
edge e := 〈u, v〉. Then cη depends on the coefficients {cξ}ξ∈Me∪Mu∪Mv

,
and thus Γη ⊂ star(Tη).

We claim that M is also stable as defined in Definition 5.16. Indeed,
all coefficients corresponding to η 6∈ M can be computed directly from
smoothness conditions, which by Lemma 2.29 is a stable process.
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Fig. 6.1. A minimal determining set for S
1,2
5

(△).

The freedom in choosing the triangles Tv and Te in the definition of
M implies that there are many different minimal determining sets similar
to the one described in the theorem. Figure 6.1 shows one example of a
minimal determining set of this type for a triangulation with V = 9 and
E = 17. By Theorem 6.1, dim S

1,2
5

(△) = 6× 9 + 17 = 71. In the figure we
have marked the domain points in the sets Mv with black dots, and those
in the sets Me with triangles.

Since it has a stable local MDS, we can now apply Theorem 5.19 to
show that S

1,2
5

(△) has full approximation power.
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Theorem 6.2. For every f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 5,

there exists a spline sf ∈ S
1,2
5

(△) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now construct a nodal minimal determining set N for S
1,2
5

(△),
and then use it to construct a Hermite interpolating spline. To describe N ,
we need some additional notation. We assign an orientation to each edge
e := 〈u, v〉 of △, and let ue be the unit vector corresponding to rotating e
ninety degrees in a counterclockwise direction. We write ηe := (u+v)/2 for
the midpoint of e, and Due

for the directional derivative associated with
ue. Finally, let εt be the point evaluation functional defined by εtf = f(t).

Theorem 6.3. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne

is a stable local nodal minimal determining set for S
1,2
5

(△), where

1) Nv := {εvD
α
xD

β
y }0≤α+β≤2,

2) Ne := {εηe
Due

}.

Proof: The cardinality of N is 6V + E. Since we already know from
Theorem 6.1 that the dimension of S1,2

5
(△) is 6V +E, to show that N is a

nodal minimal determining set, it suffices to show that if s ∈ S
1,2
5

(△), then
all of its coefficients are determined by the values {λs}λ∈N . First, for every
vertex v of △, we can compute the coefficients {cξ}ξ∈D2(v) directly from
the derivative information at v. For a typical triangle T := 〈v1, v2, v3〉,

cT
500

= s(v1),

cT
410

= [h2sx(v1) + h̃2sy(v1)]/5 + s(v1),

cT
401

= [h3sx(v1) + h̃3sy(v1)]/5 + s(v1),

cT
320

= [h2

2
sxx(v1) + 2h2h̃2sxy(v1) + h̃2

2
syy(v1)]/20 + 2cT

410
− s(v1),

cT
311

= [h2h3sxx(v1) + (h2h̃3 + h3h̃2)sxy(v1) + h̃2h̃3syy(v1)]/20

+ cT
401 + cT410 − s(v1),

cT
302

= [h2

3
sxx(v1) + 2h3h̃3sxy(v1) + h̃2

3
syy(v1)]/20 + 2cT

401
− s(v1),

where hi := xi − x1 and h̃i := yi − y1 for i = 2, 3. Similar formulae
hold at v2 and v3. We now use Lemma 2.21 to derive a formula for cT

122
.
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For e = 〈v2, v3〉, suppose (a1, a2, a3) are the directional coordinates of ue

relative to T . Then

cT
122

=
16

30a1

Due
s(ηe) −

1

6
[cT

140
+ 4cT

131
+ 4cT

113
+ cT

104
]

−
a2

6a1

[
cT050 + 4cT041 + 6cT032 + 4cT023 + cT014

]

−
a3

6a1

[
cT
041

+ 4cT
032

+ 6cT
023

+ 4cT
014

+ cT
005

]
,

where ηe = (v2 + v3)/2. Analogous formulae hold for cT
212

and cT
221

. Since
we have now shown how to compute every coefficient of s from the nodal
data, the proof that N is a NMDS is complete. The above formulae show
that for every T in △ and every ξ ∈ D5,T ,

|cTξ | ≤ K1

2∑

ν=0

|T |ν |f |ν,T ,

where K1 is a constant depending only on the smallest angle in △. This
establishes that N is local and stable.

The proof of Theorem 6.3 shows that for each triangle T in △, the
coefficients of s|T can be computed from values of s and its derivatives at
points in T . Thus, S1,2

5
(△) is a macro-element space as defined in Defini-

tion 5.27. Theorem 6.3 also shows that for every function f ∈ C2(Ω), there
is a unique spline s ∈ S

1,2
5

(△) solving the Hermite interpolation problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all v ∈ V and 0 ≤ α+ β ≤ 2,

Due
s(ηe) = Due

f(ηe), all e ∈ E .

This defines a linear projector I1

P mapping C2(Ω) onto the superspline

space S
1,2
5

(△), and in particular, I1

P reproduces polynomials of degree five.
We can now apply Theorem 5.26 to get an error bound for this interpolation
operator.

Theorem 6.4. For every f ∈ Cm+1(Ω) with 1 ≤ m ≤ 5,

‖Dα
xD

β
y (f − I1

P f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Proof: Theorem 5.26 implies

‖Dα
xD

β
y (f − I1

P f)‖T ≤ K1 |△|m+1−α−β |f |m+1,T .
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Taking the maximum over all triangles in △ immediately implies the global
result.

Suppose M is the stable local minimal determining set for S
1,2
5

(△)
described in Theorem 6.1. Then by Theorem 5.21, the corresponding M-
basis {ψξ}ξ∈M is a stable local basis for S

1,2
5

(△). In particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the triangles containing e.

The N -basis defined in (5.24) associated with the nodal MDS of Theo-
rem 6.3 provides a different stable local basis for S

1,2
5

(△).

6.2. A C
1 Clough–Tocher Macro-element Space

Given a triangulation △ of a domain Ω, let △CT be the corresponding
Clough–Tocher refinement of △ where for each triangle T , the split point
v

T
is chosen to be the barycenter of T , see Definition 4.16. We refer to

the triangles of △ as macro-triangles, and to the triangles of △CT as micro-

triangles. Let V and E be the sets of vertices and edges of △. Let V and E
be the number of vertices and edges of △, respectively.

For each v ∈ V , let Tv be some triangle of △CT with vertex at v, and
let Mv := D1(v) ∩ Tv. For each edge e of △, let Te be some triangle of
△CT containing that edge, and let Me := {ξ

Te

111
}.

Theorem 6.5. dim S1

3
(△CT ) = 3V + E, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set.

Proof: We use Theorem 5.15 to show that M is a minimal determining
set for S1

3
(△CT ). We need to show that the coefficients {cξ}ξ∈M of a spline

s ∈ S1

3
(△CT ) can be set to arbitrary values, and that all other coefficients

of s are then consistently determined. First, for each v ∈ V , we set the
coefficients of s corresponding to the domain points in Mv. Then in view
of the C1 smoothness at v, all coefficients corresponding to domain points
in D1(v) are consistently determined by Lemma 5.10. So far we have de-
termined all of the coefficients {cξ}ξ∈D, where D :=

⋃
v∈V D1(v). Since the

disks D1(v) do not overlap, it follows that all smoothness conditions that
involve only these coefficients are satisfied.

For each edge e of △, we now choose cTe

111
. If e := 〈v2, v3〉 is an

interior edge of △ which is shared by two triangles Te := 〈v1, v2, v3〉 and
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c1 c2

c3

c4

c5

c6 c7

c8

c9

c10 c11 c12

c13

c14

c15

c16 c17

c18

c19

Fig. 6.2. B-coefficients of s|T .

T̃e := 〈v4, v3, v2〉, then we can use the C1 smoothness across e to determine

the corresponding coefficient cT̃e

111
.

Given a macro-triangle T := 〈v1, v2, v3〉 in △, suppose the coeffi-
cients of s|T are numbered as in Figure 6.2. Suppose we already know
the coefficients c1, . . . , c15. Then using the C1 smoothness across the edges
ei := 〈v

T
, vi〉, we get

c16 = (c15 + c5 + c13)/3,

c17 = (c13 + c8 + c14)/3,

c18 = (c14 + c11 + c15)/3,

c19 = (c18 + c16 + c17)/3.

(6.1)

It is easy to check that the remaining C1 smoothness conditions across the
interior edges ei of the Clough–Tocher split of T are satisfied.

We now see that no inconsistencies can arise in setting the coefficients
in the sets Me, even though coefficients in two different such sets may be
connected by smoothness conditions across the interior edges of the splits.
We have shown that if we fix the coefficients of a spline s corresponding to
domain points in the set M, then all of the coefficients of s are consistently
determined. It follows from Theorem 5.15 that M is a minimal determin-
ing set, and by Theorem 5.13, the dimension of S1

3
(△CT ) is equal to the

cardinality of M, which is clearly 3V + E.
We now claim that the MDS M is local. Suppose η 6∈ M lies in

Tη. If η ∈ D1(v) for some vertex v, then the corresponding set Γη of
Definition 5.16 is just Mv which is contained in star(v) ⊂ star(Tη). For
each edge e := 〈u, v〉 of △, let E1(e) := {η : dist(η, e) ≤ 1, η 6∈ D1(u) ∪
D1(v)}. Now if η ∈ E1(e), then as in the proof of Theorem 6.1, Γη =
Mu ∪ Mv ∪ Me ⊂ star(Tη). Finally, if η lies inside a macro-triangle
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Tη := 〈v1, v2, v3〉 with edges e1, e2, e3, but not in any of the above sets,
then Γη = Mv1

∪Mv2
∪Mv3

∪Me1
∪Me2

∪Me3
⊂ star(Tη).

Since all coefficients associated with domain points η 6∈ M are com-
puted directly from smoothness conditions, Lemma 2.29 ensures that these
computations are stable as defined in Definition 5.16, with a constant de-
pending only on the smallest angle in △CT .

The constant in the stability of M in Theorem 6.5 depends on the
smallest angle in the triangulation △CT . By Lemma 4.17 this angle is
bounded below by a constant times the smallest angle in △.
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Fig. 6.3. A minimal determining set for S1

3(△CT ).

Figure 6.3 shows a minimal determining set for S1

3
(△CT ) of the type

described in Theorem 6.5 for a triangulation with V = 9 and E = 17. By
Theorem 6.5, dim S1

3 (△CT ) = 3 × 9 + 17 = 44. In the figure, the points in
the sets Mv are marked with black dots, while those in the sets Me are
marked with triangles.

Since S1

3
(△CT ) has a stable local minimal determining set, we can now

apply Theorem 5.19 to conclude that it has full approximation power.

Theorem 6.6. For every f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 3,
there exists a spline sf ∈ S1

3 (△CT ) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for S1

3
(△CT ). As

in Theorem 6.3, for each edge e := 〈u, v〉 of △, let ηe := (u + v)/2 be
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the midpoint of e, and let Due
be the directional derivative associated

with the unit vector ue corresponding to rotating e ninety degrees in a
counterclockwise direction. Let εt denote point evaluation at t.

Theorem 6.7. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne

is a stable local nodal minimal determining set for S1

3
(△CT ), where

1) Nv := {εvD
ν
xD

µ
y )}0≤ν+µ≤1,

2) Ne := {εηe
Due

}.

Proof: The cardinality of N is 3V + E, which by Theorem 6.5 is the di-
mension of S1

3
(△CT ). Thus, to show that N is a nodal minimal determining

set, it suffices to show if s ∈ S1

3
(△CT ), then the data {λs}λ∈N determine all

coefficients of s. Let T be a triangle of △, and let (xc, yc) be its barycenter.
Referring to Figure 6.2 and using the formulae of Section 2.7, we have

c1 = s(v1),

c2 = s(v2),

c3 = s(v3),

c4 = [(x2 − x1)sx(v1) + (y2 − y1)sy(v1)]/3 + s(v1),

c5 = [(xc − x1)sx(v1) + (yc − y1)sy(v1)]/3 + s(v1),

c6 = [(x3 − x1)sx(v1) + (y3 − y1)sy(v1)]/3 + s(v1),

c7 = [(x3 − x2)sx(v2) + (y3 − y2)sy(v2)]/3 + s(v2),

c8 = [(xc − x2)sx(v2) + (yc − y2)sy(v2)]/3 + s(v2),

c9 = [(x1 − x2)sx(v2) + (y1 − y2)sy(v2)]/3 + s(v2),

c10 = [(x1 − x3)sx(v3) + (y1 − y3)sy(v3)]/3 + s(v3),

c11 = [(xc − x3)sx(v3) + (yc − y3)sy(v3)]/3 + s(v3),

c12 = [(x2 − x3)sx(v3) + (y2 − y3)sy(v3)]/3 + s(v3).

(6.2)

We now use Lemma 2.21 to find a formula for c13. For e := 〈v1, v2〉, suppose
(a1, a2, a3) are the directional coordinates of ue. Then

c13 =
4

6a3

Due
s(ηe)−

1

2
(c5 + c8)−

a1

2a3

(c1 + 2c4 + c9)−
a2

2a3

(c4 + 2c9 + c2).

Similar formulae hold for c14 and c15. Finally, c16, . . . , c19 can be computed
from (6.1). Concerning stability, it is easy to check that (5.27) holds with
m̄ = 1.

For each triangle T in △, s|T is determined by the data involving
evaluation at points in T . Thus, the coefficients of s can be computed
locally, one triangle at a time, and so S1

3
(△CT ) is a macro-element space.
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Theorem 6.7 shows that for every function f ∈ C1(Ω), there is a unique
spline s ∈ S1

3
(△CT ) solving the Hermite interpolation problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all v ∈ V and 0 ≤ α+ β ≤ 1,

Due
s(ηe) = Due

f(ηe), all e ∈ E .

This defines a linear projector I1

CT
mapping C1(Ω) onto the spline space

S1

3
(△CT ), and in particular, I1

CT
reproduces polynomials of degree three.

We can now apply Theorem 5.26 to get an error bound for this interpolation
operator.

Theorem 6.8. For every f ∈ Cm+1(Ω) with 0 ≤ m ≤ 3,

‖Dα
xD

β
y (f − I1

CT
f)‖Ω ≤ K |△|m+1−α−β|f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Suppose M is the stable local minimal determining set for S1

3 (△CT )
described in Theorem 6.5. By Theorem 5.21, the corresponding M-basis
{ψξ}ξ∈M is a stable local basis for S1

3
(△CT ). In particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge of △, then the support of ψξ is contained in
the union of the triangles containing e.

The N -basis in (5.24) associated with the nodal MDS N of Theorem 6.7
provides a different stable local basis for S1

3
(△CT ).

6.3. A C
1 Powell–Sabin Macro-element Space

Given a triangulation △ of the domain Ω, let △P S be the corresponding
Powell–Sabin refinement as described in Definition 4.18 based on the incen-
ters of the triangles of △. Let V be the set of vertices of △, and let V be
its cardinality. For each v ∈ V , let Tv be some triangle of △PS with vertex
at v, and let Mv := D1(v) ∩ Tv.

Theorem 6.9. dim S1

2
(△P S) = 3V , and the set M :=

⋃
v∈V Mv is a

stable local minimal determining set.

Proof: To show that M is a minimal determining set for S1

2
(△PS) we

make use of Theorem 5.15. We need to show that the coefficients {cξ}ξ∈M

of a spline s ∈ S1

2
(△PS) can be set to arbitrary values, and that all other

coefficients of s are then consistently determined. First, for each v ∈ V , we
fix the coefficients of s corresponding to the domain points in Mv. Then
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Fig. 6.4. Coefficients of s|T .

in view of the C1 smoothness at v, all coefficients corresponding to domain
points in D1(v) are consistently determined by Lemma 5.10. So far we have
determined all of the coefficients {cξ}ξ∈D, where D :=

⋃
v∈V D1(v). Since

the disks D1(v) do not overlap, it follows that all smoothness conditions
that involve only these coefficients are satisfied.

Now consider a macro-triangle T , and suppose the coefficients of s|T
are numbered as c1, . . . , c19 as in Figure 6.4. Suppose we know the values of
c1, . . . , c12. Let v

T
be the incenter of of T , and let w1, w2, w3 be the vertices

located on the edges of T . More specifically, suppose wi := rivi+sivi+1, for
i = 1, 2, 3, where we identify v4 ≡ v1. Then using C1 smoothness conditions
across the edges ei := 〈v

T
, wi〉, we get

c13 = r1c4 + s1c9,

c14 = r2c7 + s2c12,

c15 = r3c10 + s3c6,

c16 = r1c5 + s1c8,

c17 = r2c8 + s2c11,

c18 = r3c11 + s3c5.

(6.3)

The C1 smoothness at v
T

implies that the control points of s associated
with domain points in the disk D1(vT

) must lie on a plane, and thus

c19 = a1c5 + a2c8 + a3c11, (6.4)

where (a1, a2, a3) are the barycentric coordinates of the point v
T
. We have

now determined all coefficients of s in such a way that there are no inconsist-
encies in smoothness conditions across interior edges of the macro-triangles.

However, it remains to check for consistency across the boundary edges
of the macro-triangles. Suppose T := 〈v1, v2, v3〉 is a macro-triangle, and
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Fig. 6.5. A minimal determining set for S1

2 (△PS).

that T̃ is a triangle which shares the edge e := 〈v1, v2〉 with T . Recall that
the Powell–Sabin refinement is constructed so that the the point w1 lies on
the line from v

T
to v

T̃
. Let c̃5, c̃16, c̃8 be the coefficients of s|

T̃
located across

the edge e from c5, c16, c8. Then by construction, the C1 conditions con-
necting c5, c4, c̃5 and c8, c9, c̃8 are automatically satisfied since these coeffi-
cients lie in the disks D1(v1) and D1(v2), respectively. Let (α, β, γ) be the
barycentric coordinates of v

T̃
relative to 〈v

T
, v1, w1〉. Thus, v

T̃
= αv

T
+γw1.

Now we know that c̃5 = αc5 + γc4 and c̃8 = αc8 + γc9. But then

c̃16 = r1c̃5 + s1c̃8 = r1(αc5 + γc4) + s1(αc8 + γc9) = αc16 + γc13,

which shows that the middle C1 condition across e is also satisfied. It
now follows from Theorem 5.15 that M is a minimal determining set for
S1

2
(△P S), and by Theorem 5.13, the dimension of S1

2
(△P S) is equal to the

cardinality of M, which is clearly 3V .
We now check that M is local. Suppose η 6∈ M lies in Tη. If η ∈ D1(v)

for some vertex of △, then clearly the set Γη of Definition 5.16 is Γη = Mv ⊂

star(v) ⊂ star(Tη). If η lies in a macro-triangle Tη := 〈v1, v2, v3〉 but not
in any of the disks D1(vi), then Γη = Mv1

∪Mv2
∪Mv3

⊂ star(Tη). The
computation of each coefficient associated with a domain point not in M is
stable since it is based on smoothness conditions, as can be seen from the
above formulae.

The constant in the stability of the MDS in Theorem 6.9 depends on
the smallest angle in the triangulation △P S . By Lemma 4.20, this angle is
bounded below by a constant times the smallest angle in △ itself.

Figure 6.5 shows an example of a minimal determining set for S1

2
(△PS)

of the type described in Theorem 6.9 for a triangulation with V = 9 and
E = 17. By Theorem 6.9, dim S1

2
(△PS) = 3 × 9 = 27. The points in M

are marked with black dots in the figure.
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Since S1

2
(△P S) has a stable local minimal determining set, we can now

apply Theorem 5.19 to conclude that it has full approximation power.

Theorem 6.10. For every f ∈Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 2,
there exists a spline sf ∈ S1

2
(△P S) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now construct a nodal minimal determining set for S1

2
(△PS) and

use it to solve a Hermite interpolation problem. We write εt for point
evaluation at t.

Theorem 6.11. The set

N :=
⋃

v∈V

{εvD
α
xD

β
y }0≤α+β≤1

is a stable local nodal minimal determining set for S1

2
(△P S).

Proof: It is obvious that the cardinality of N is 3V , and thus it suffices to
show if s ∈ S1

2
(△PS), then the data {λs}λ∈N determines all coefficients of

s. Let TPS be the Powell–Sabin split of a macro triangle T := 〈v1, v2, v3〉

in △, and let (xc, yc) be the incenter of T . Then referring to Figure 6.4 and
using the formulae of Section 2.7, we have

c1 = s(v1),

c2 = s(v2),

c3 = s(v3),

c4 = [(x̂1 − x1)sx(v1) + (ŷ1 − y1)sy(v1)]/2 + s(v1),

c5 = [(xc − x1)sx(v1) + (yc − y1)sy(v1)]/2 + s(v1),

c6 = [(x̂3 − x1)sx(v1) + (ŷ3 − y1)sy(v1)]/2 + s(v1),

c7 = [(x̂2 − x2)sx(v2) + (ŷ2 − y2)sy(v2)]/2 + s(v2),

c8 = [(xc − x2)sx(v2) + (yc − y2)sy(v2)]/2 + s(v2),

c9 = [(x̂1 − x2)sx(v2) + (ŷ1 − y2)sy(v2)]/2 + s(v2),

c10 = [(x̂3 − x3)sx(v3) + (ŷ3 − y3)sy(v3)]/2 + s(v3),

c11 = [(xc − x3)sx(v3) + (yc − y3)sy(v3)]/2 + s(v3),

c12 = [(x̂2 − x3)sx(v3) + (ŷ2 − y3)sy(v3)]/2 + s(v3).

(6.5)

where wi := (x̂i, ŷi) are the points on the edges of T as in the proof
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of Theorem 6.9. The coefficients c13, . . . , c19 can now be computed from
(6.3) and (6.4). Concerning stability, it is easy to check that (5.27) holds
with m̄ = 1.

For each triangle T in △, the set of data involving evaluation at points
in T determines s|T , i.e., the coefficients of s can be computed locally, one
triangle at a time. This shows that S1

2
(△PS) is a macro-element space.

Theorem 6.11 shows that for every function f ∈ C1(Ω), there is a
unique spline s ∈ S1

2
(△P S) solving the Hermite interpolation problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all v ∈ V and 0 ≤ α+ β ≤ 1.

This defines a linear projector I1

PS
mapping C1(Ω) onto the spline space

S1

2
(△P S), and in particular I1

P S
reproduces polynomials of degree two. We

can now apply Theorem 5.26 to get an error bound for this interpolation
operator.

Theorem 6.12. For every f ∈ Cm+1(Ω) with 0 ≤ m ≤ 2,

‖Dα
xD

β
y (f − I1

P S
f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Suppose M is the stable local minimal determining set for S1

2
(△PS)

described in Theorem 6.9. Then by Theorem 5.21, the corresponding M-
basis {ψξ}ξ∈M is a stable local basis for S1

2 (△PS). In particular, if ξ ∈ Mv

for some vertex v of △, then the support of ψξ lies in star(v).

The N -basis in (5.24) associated with the nodal MDS N of Theo-
rem 6.11 provides a different stable local basis for S1

2
(△P S).

6.4. A C
1 Powell–Sabin-12 Macro-element Space

Given a triangulation △ of a domain Ω, let △PS12 be the corresponding
Powell–Sabin-12 refinement as described in Definition 4.21 based on the
barycenters v

T
of the triangles of △. Let V be the set of vertices of △, and

let V be its cardinality. Similarly, let E be the set of edges of △, and let E
be its cardinality.

For each v ∈ V , let Tv be some triangle of △PS12 with vertex at v, and
let Mv := D1(v) ∩ Tv. For each edge e of △, let we be the midpoint of
e, and let ξe := (v

T
+ we)/2, where v

T
is the barycenter of some triangle

T ∈ △ containing e. Let Me := {ξe}.
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Theorem 6.13. dim S1

2
(△PS12) = 3V + E and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set.

Proof: The proof is very similar to the proof of Theorem 6.9, and thus we
can be brief. First, for each v ∈ V , we fix the coefficients of s ∈ S1

2
(△P S12)

corresponding to the domain points in Mv. Then in view of the C1 smooth-
ness at v, by Lemma 5.10, coefficients corresponding to all domain points
in D1(v) are consistently determined. So far we have determined all of
the coefficients {cξ}ξ∈D, where D :=

⋃
v∈V D1(v). Since the disks D1(v)

do not overlap, it follows that all smoothness conditions that involve only
these coefficients are satisfied.

For each edge e of △, we now set the B-coefficient of s corresponding
to the domain point in Me. At this point we know the coefficients corre-
sponding to three domain points on R1(we). Since C1 smoothness at we

is equivalent to all of the control points associated with domain points in
D1(we) being collinear, this consistently determines all of these coefficients.
Note that all smoothness conditions across edges of △ are satisfied by the
coefficients we have chosen so far.

Now fix a triangle T ∈ △, and consider the triangle T̂ := 〈w1, w2, w3〉,
where wi are the midpoints of the edges of T . The Powell–Sabin-12 split of
T creates a Powell–Sabin-6 split of T̂ , see Figure 6.6. Now we can appeal
to the proof of Theorem 6.9 to see that all coefficients corresponding to
domain points lying in T̂ are consistently determined. It now follows from
Theorem 5.15 that M is a minimal determining set for S1

2
(△PS12), and by

Theorem 5.13, the dimension of S1

2
(△PS12) is equal to the cardinality of M,

which is clearly 3V + E.
We now verify that M is local. Suppose η 6∈ M lies in a triangle

Tη. If η ∈ D1(v) for some vertex v, then the corresponding set Γη of
Definition 5.16 is just Mv ⊂ star(Tη). If η ∈ D1(we) for some edge 〈u, v〉,
then Γη = Mu ∪Mv ∪Me ⊂ star(Tη). Finally, if η lies in a macro-triangle
Tη := 〈v1, v2, v3〉 with edges e1, e2, e3, but not in any of the disks D1(vi) or
D1(wei

), then Γη = Mv1
∪ Mv2

∪ Mv3
∪Me1

∪ Me2
∪ Me3

⊂ star(Tη).
The computation of each coefficient associated with a domain point not in
M is stable since it is based on smoothness conditions.

The constant in the stability of the MDS in Theorem 6.13 depends on
the smallest angle in the triangulation △PS12. By Lemma 4.22, this angle
is bounded below by a constant times the smallest angle in △ itself.

Figure 6.6 shows an example of a minimal determining set for the space
S1

2
(△P S12) of the type described in Theorem 6.9 for a triangulation with

V = 9 and E = 17. By Theorem 6.9, dim S1

2
(△P S12) = 3 × 9 + 17 = 44.
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Fig. 6.6. A minimal determining set for S1

2 (△PS12).

Points in the sets Mv are marked with black dots in the figure, while those
in the sets Me are marked with triangles.

Since S1

2
(△P S12) has a stable local minimal determining set, we can now

apply Theorem 5.19 to see that S1

2
(△P S12) has full approximation power.

Theorem 6.14. For every f ∈Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 2,
there exists a spline sf ∈ S1

2
(△P S12) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now construct a nodal minimal determining set for S1

2
(△P S12) and

use it to solve a Hermite interpolation problem. For each edge e of △, let we

be the split point on e, and let Due
be the unit derivative in the direction ue

corresponding to rotating e ninety degrees in the counterclockwise direction.
Let εt denote point evaluation at t.

Theorem 6.15. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne,

is a stable local nodal minimal determining set for S1

2
(△P S12), where

1) Nv := {εvD
α
xD

β
y }0≤α+β≤1,

2) Ne := {εwe
Due

}.

Proof: It is obvious that the cardinality of N is 3V +E, and thus it suffices
to show if s ∈ S1

2
(△P S12), then the data {λs}λ∈N determine all coefficients
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of s. As in the proof of Theorem 6.11, for each vertex v of △, the data cor-
responding to Nv determines all coefficients of s corresponding to the disk
D1(v). By the proof of Theorem 6.13, the coefficients of s corresponding to
the points we on the edges of △ are determined. For each point we, using
the value of Due

s(we), we can compute all coefficients of s corresponding
to domain points in the disk D1(we). The remaining coefficients of s can
be computed as in the proof of Theorem 6.13. Concerning stability, it is
easy to check that (5.27) holds with m̄ = 1.

Theorem 6.15 shows that for every function f ∈ C1(Ω), there is a
unique spline s ∈ S1

2
(△P S12) that solves the Hermite interpolation problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all v ∈ V and 0 ≤ α+ β ≤ 1,

Due
s(we) = Due

f(we), all e ∈ E .

This defines a linear projector I1

P S12
mapping C1(Ω) onto the spline space

S1

2
(△P S12), and in particular, I1

P S12
reproduces polynomials of degree two.

We can now apply Theorem 5.26 to get an error bound for this interpolation
operator.

Theorem 6.16. For every f ∈ Cm+1(Ω) with 0 ≤ m ≤ 2,

‖Dα
xD

β
y (f − I1

PS12
f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Suppose M is the stable local minimal determining set for S1

2
(△P S12)

described in Theorem 6.13. Then by Theorem 5.21, the corresponding M-
basis {ψξ}ξ∈M is a stable local basis for S1

2
(△P S12). In particular, if ξ ∈ Mv

for some vertex v of △PS12, then the support of ψξ lies in star(v). If ξ ∈ Me

for some edge e, then the support of ψξ lies in the union of the triangles
containing e. The N -basis of (5.24) associated with the nodal MDS N of
Theorem 6.15 provides an alternative stable local basis for S1

2
(△P S12).

6.5. A C
1 Quadrilateral Macro-element Space

Let ♦ be a strictly convex quadrangulation, and let ♦+ be the triangulation
obtained from ♦ by drawing in the diagonals of each quadrilateral. In this
section we discuss the cubic spline space S1

3
(♦+). Let V and E be the sets of

vertices and edges of ♦, and let V and E be the cardinalities of V and E ,
respectively.

For each v ∈ V , let Tv be the triangle in ♦+ with vertex at v which has
the largest shape parameter (see Definition 4.1) among all triangles sharing
the vertex v. Let Mv := D1(v) ∩ Tv. For each edge e of ♦, let Te be some
triangle in ♦+ containing that edge, and let Me := {ξTe

111
}.



6.5. A C1 Quadrilateral Macro-element Space 167

Theorem 6.17. dim S1

3
(♦+) = 3V + E, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set.

Proof: We use Theorem 5.15 to show that M is a minimal determining
set for S1

3
(♦+). We need to show that the coefficients {cξ}ξ∈M of a spline

s ∈ S1

3 (♦+) can be set to arbitrary values, and that all other coefficients
of s are then consistently determined. First, for each v ∈ V , we fix the
coefficients of s corresponding to the domain points in Mv. Then in view
of the C1 smoothness at v, by Lemma 5.10 all coefficients corresponding
to domain points in D1(v) are consistently determined. So far we have
determined all of the coefficients {cξ}ξ∈D, where D :=

⋃
v∈V D1(v). Since

the disks D1(v) do not overlap, it follows that all smoothness conditions
that involve only these coefficients are satisfied.

For each edge e of ♦, we now fix cTe

111
. If e := 〈v2, v3〉 is an interior

edge of ♦+ which is shared by two triangles Te := 〈v1, v2, v3〉 and T̃e :=
〈v4, v3, v2〉 of ♦+, then we can use the C1 smoothness across e to determine

the corresponding coefficient cT̃e

111
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Fig. 6.7. Coefficients of s|Q.

We now show that for each macro-quadrilateral Q := 〈v1, v2, v3, v4〉,
the coefficients corresponding to the remaining domain points in Q are con-
sistently determined. Suppose we number the coefficients of s|Q as shown
in Figure 6.7, and suppose the intersection vQ of the two diagonals of Q is
given by vQ = r1v1 +s1v3 = r2v4 +s2v2. Then applying the C1 smoothness
conditions, we get

c21 = r2c20 + s2c17,

c22 = r1c17 + s1c18,

c23 = r2c19 + s2c18,

c24 = r1c20 + s1c19.

(6.6)
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Fig. 6.8. A minimal determining set for S1

3 (♦+).

Finally, the coefficient c25 can be computed from the C1 smoothness
condition at vQ on either diagonal. Since using either condition leads to

c25 = r1r2c20 + s1r2c19 + r1s2c17 + s1s2c18, (6.7)

we see that c25 is also consistently determined. We have shown that all of
the coefficients of s ∈ S1

3
(♦+) are consistently determined once we fix the

coefficients corresponding to M, and Theorem 5.15 implies that M is a
minimal determining set. Moreover, by Theorem 5.13, the dimension of
S1

3
(△CT ) is equal to the cardinality of M, which is clearly 3V + E.

We now check that M is local. Suppose η 6∈ M is a domain point
in a quadrilateral Q of ♦+. Then cη is determined from the coefficients
associated with points in Q or in triangles neighboring Q, i.e., the set Γη in
Definition 5.16 is a subset of star(Q). Concerning stability, we note that by
Theorem 2.19, the computation of coefficients in D1(v) from Mv is stable
due to our choice of the triangle Tv defining Mv. All other coefficients
are obtained directly from smoothness conditions via the above formulae,
which by Theorem 2.29 is stable. Concerning stability, it is easy to check
that (5.27) holds with m̄ = 1.

The choice of the triangles Tv used to define the Mv in the MDS of
Theorem 6.17 ensures that the constant of stability of M does not depend
on the smallest angle in ♦+ but only on the smallest angle in ♦. This is
important since as we saw in Example 4.48, angles in ♦+ can be small even
when the angles in ♦ are not.

Figure 6.8 shows an example of a minimal determining set for S1

3
(♦+) of

the type given in Theorem 6.17 for a triangulation with V = 7 and E = 9.
Domain points in the sets Mv are marked with black dots, while those in
the sets Me are marked with triangles.
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Since S1

3
(♦+) has a stable local minimal determining set, we can now

apply Theorem 5.19 to show that it has full approximation power.

Theorem 6.18. For every f ∈Wm+1

p (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 3,
there exists a spline sf ∈ S1

3
(♦+) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |♦+|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in ♦+. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for S1

3
(♦+), and then

use it to solve a Hermite interpolation problem. For each edge e := 〈u, v〉

of ♦, let we := (u + v)/2 be the midpoint of e, and let Due
be the cross-

boundary derivative associated with the unit vector ue corresponding to
rotating e ninety degrees in a counterclockwise direction.

Theorem 6.19. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne

is a stable local nodal determining set for S1

3
(♦+), where

1) Nv := {εvD
ν
xD

µ
y )}0≤ν+µ≤1

2) Ne := {εwe
Due

}.

Proof: It is easy to check that the cardinality of N is 3V + E. Since we
already know from Theorem 6.17 that the dimension of S1

3
(♦+) is 3V + E,

to show that N is a nodal minimal determining set, it suffices to show if
s ∈ S1

3
(♦+), then the data {λs}λ∈N determines all coefficients of s. Let Q be

a quadrilateral of ♦. Then referring to Figure 6.7 and using the formulae
in Section 2.7, it is easy to see that

c1 = s(v1),

c2 = s(v2),

c3 = s(v3),

c4 = s(v4),

c5 = [(x2 − x1)sx(v1) + (y2 − y1)sy(v1)]/3 + s(v1),

c6 = [(xQ − x1)sx(v1) + (yQ − y1)sy(v1)]/3 + s(v1),

c7 = [(x4 − x1)sx(v1) + (y4 − y1)sy(v1)]/3 + s(v1),

c8 = [(x3 − x2)sx(v2) + (y3 − y2)sy(v2)]/3 + s(v2),

c9 = [(xQ − x2)sx(v2) + (yQ − y2)sy(v2)]/3 + s(v2),

c10 = [(x1 − x2)sx(v2) + (y1 − y2)sy(v2)]/3 + s(v2),
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and
c11 = [(x4 − x3)sx(v3) + (y4 − y3)sy(v3)]/3 + s(v3),

c12 = [(xQ − x3)sx(v3) + (yQ − y3)sy(v3)]/3 + s(v3),

c13 = [(x2 − x3)sx(v3) + (y2 − y3)sy(v3)]/3 + s(v3),

c14 = [(x1 − x4)sx(v4) + (y1 − y4)sy(v4)]/3 + s(v4),

c15 = [(xQ − x4)sx(v4) + (yQ − y4)sy(v4)]/3 + s(v4),

c16 = [(x3 − x4)sx(v4) + (y3 − y4)sy(v4)]/3 + s(v4),

where (xQ, yQ) := vQ. The coefficients c17, c18, c19, c20 can now be com-
puted from cross-boundary information, see the proof of Theorem 6.7 for
analogous computations for the Clough–Tocher macro-elements. We com-
pute the coefficients c21, . . . , c24 from (6.6). Finally, we compute the coef-
ficient c25 from (6.7). Concerning stability, it is easy to check that (5.27)
holds with m̄ = 1.

For each quadrilateral Q in ♦, the linear functionals involving evalu-
ation at points in Q determine s|Q, i.e., the coefficients of s can be computed
locally, one quadrilateral at a time. Theorem 6.19 shows that for every
function f ∈ C1(Ω), there is a unique spline s ∈ S1

3
(♦+) that solves the

Hermite interpolation problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all v ∈ V and 0 ≤ α+ β ≤ 1,

Due
s(we) = Due

f(we), all e ∈ E .

This defines a linear projector I1

Q
mapping C1(Ω) onto the spline space

S1

3
(♦+), and in particular I1

Q
reproduces polynomials of degree three. We

can now apply Theorem 5.26 to get an error bound for this interpolation
operator.

Theorem 6.20. For every f ∈ Cm+1(Ω) with 0 ≤ m ≤ 3,

‖Dα
xD

β
y (f − I1

Q
f)‖Ω ≤ K |♦+|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in ♦+. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Suppose M is the stable local minimal determining set for S1

3
(♦+) de-

scribed in Theorem 6.17. Then by Theorem 5.21, the corresponding M-
basis {ψξ}ξ∈M is a stable local basis for S1

3
(♦+), and

1) if ξ ∈ Mv for some vertex v of ♦, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of ♦, then the support of ψξ is contained in
the union of the triangles containing e.



6.6. Comparison of C1 Macro-element Spaces 171

The N -basis defined in (5.24) associated with the nodal MDS N of Theo-
rem 6.19 provides an alternative stable local basis for S1

3
(♦+).

6.6. Comparison of C
1 Macro-element Spaces

As a guide to comparing the various C1 macro-element spaces discussed in
this chapter, in Table 6.1 we list the following information:

• d := the degree of the spline,

• ntri := the number of subtriangles in each macro-element,

• nder := the maximum derivative needed to compute the interpolant,

• ndim := the dimension of the spline space,

• ncoef := the dimension of the space of continuous splines on the same
triangulation.

These quantities are of interest for a variety of reasons:

1) In general we would like to work with low degree splines. They involve
fewer coefficients, and have less tendency to oscillate.

2) For the purposes of evaluation, it is more efficient to work with macro-
elements with fewer subtriangles as less effort is required to locate the
triangle which contains a given point v of interest.

3) In practice we often have to estimate derivatives. Thus, methods which
require fewer derivatives may have some advantages. In addition, the
error bounds are valid for less smooth functions.

4) The dimension of the spline space measures its complexity.

5) The quantity ncoef measures the complexity of storing and working
with a spline as a C0 spline.

Space d ntri nder ndim ncoef

S
1,2
5

(△) 5 1 2 6V + E 25VI + 15VB − 24
S1

3
(△CT ) 3 3 1 3V + E 27VI + 15VB − 26

S1

2
(△PS) 2 6 1 3V 24VI + 14VB − 23

S1

2
(△PS12) 2 12 1 3V + E 48VI + 26VB − 47

S1

3
(♦+) 3 4 1 3V Q + EQ 18V Q

I + 21V Q
B /2 − 17

Tab. 6.1. A comparison of C
1 macro-elements.

For the triangle-based elements, V = VI + VB and E = EI + EB denote
the number of vertices and edges in the original triangulation △, before
any splitting. For the quadrangulation-based element, V Q = V

Q
I +V

Q
B and

EQ = E
Q
I + E

Q
B denote the number of vertices and edges in the quadran-

gulation. The table suggests that the most efficient space may be S
1,2
5

(△)
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since its complexity is not much higher than the other spaces, but it has
the highest approximation power. The space S1

3
(♦+) is also a good choice

when it is convenient to work with quadrangulations.

6.7. Remarks

Remark 6.1. We have called the space discussed in Section 6.1 the C1

polynomial macro-element space, even though it is constructed on a trian-
gulation △ that has not been refined. On each triangle of △, a spline in
the space reduces to a polynomial of degree five. The space still fits into
the framework of Definition 5.27.

Remark 6.2. It often happens that macro-element spline spaces have
unexpected supersmoothness at interior vertices. For example, for the C1

Clough–Tocher macro-element space discussed in Section 6.2, it is easy to
see that any s ∈ S1

3
(△CT ) is automatically C2 at the split point vT for all

T ∈ △. Fix T := 〈v1, v2, v3〉, and suppose the coefficients of s|T are as in
Figure 6.2. Note that the barycentric coordinates of v2 with respect to the
triangle 〈v

T
, v3, v1〉 are (3,−1, 1). Combining the equations in (6.1) leads

to

c8 = 9c19 − 6c16 − 6c18 + c11 + 2c15 + c5,

which is just the C2 smoothness conditions across the edge 〈v
T
, v2〉 needed

for s ∈ C2(v
T
). A similar argument show that the C2 smoothness condi-

tions across the other edges needed for s ∈ C2(v
T
) are also satisfied.

Remark 6.3. A C1 cubic macro-element space was constructed in [Gao92]
based on the so-called Morgan-Scott split, which splits a triangle into seven
subtriangles, see Figure 9.3. The dimension of this macro-element space is
3V +E+4N , where V,E,N are the numbers of vertices, edges, and triangles
in the original triangulation. We do not give a detailed description of this
macro-element space here since it has several disadvantages compared to
the macro-element space S1

3
(△CT ) based on the Clough–Tocher split. In

particular, as shown in Section 6.2, the dimension of S1

3
(△CT ) is smaller,

namely 3V +E, and the Clough–Tocher split uses only three subtriangles.

Remark 6.4. As pointed out in Remark 5.8, nested sequences of spline
spaces are important for applications. Except for the polynomial macro-
element space S

1,2
5

(△) discussed in Section 6.1, all of the macro-element
spaces in this chapter can be used to build nested sequences of spline spaces.
However, to be of real use in applications, it is important that the underly-
ing sequence of triangulations △1,△2, . . . be such that △n → 0 as n → ∞

while the smallest angle in △n is bounded below by a constant times the
smallest angle in △1. In Section 4.16 we discussed which standard refine-
ment methods produce sequences of triangulations with these properties.
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Taking account of this requirement, only two of the macro-element spaces
of this chapter lead to useful nested sequences:

1) the sequence S1

2
(△n), where △1,△2, . . . is the sequence of nested

Powell–Sabin-12 triangulations in Method 4.55.

2) the sequence S1

3 (♦+n), where ♦+1,♦+2, . . . is the sequence of nested in-
duced triangulations associated with quadrangulations described in
Method 4.56.

6.8. Historical Notes

The superspline space S1,2
5

(△) discussed in Section 6.1 is the macro-element
space which arises if one tries to find nodal data to describe a quintic
polynomial on a single triangle. It was introduced in the finite-element
literature (without using Bernstein–Bézier techniques) in [Zla68, Zen70],
and is probably the most-cited C1 macro-element in modern finite-element
books. It is sometimes called the Argyris element, see [Cia78b]. An explicit
construction of a nodal basis for this space was given in [MorS75], see
also the construction of vertex splines in [ChuL85]. The description of
the minimal determining set M given in Theorem 6.1 appeared later in
[Sch89] which was written to identify classical finite-element spaces used by
engineers as certain superspline spaces.

The C1 Clough–Tocher macro-element was introduced in nodal form
in [CloT65]. A condensed version of this element was later described in
B-form in [BarnF81].

The macro-element space S1

2
(△P S) discussed in Section 6.3 was stud-

ied first by Powell–Sabin [PowS77] in nodal form. The space has been
heavily used in applications, and it was generally believed that they had
full approximation power, but we could not find a rigorous proof of this in
the literature since the question of how small the sides and angles in the
split triangles can become does not seem to have been addressed. We have
corrected this by providing the needed bounds in Lemma 4.20, allowing us
to give a rigorous proof of the approximation power in Theorem 6.10.

The macro-element space S1

2
(△PS12) in Section 6.4 was also introduced

in [PowS77] in nodal form. The space was later treated in [ChuH90a], where
explicit formulae for the B-coefficients in terms of the nodal data can be
found. The authors go on to construct a basis using generalized vertex
splines and then use it to show that the space has full approximation power.

The macro-element space S1

3
(♦+) described in Section 6.5 was studied

independently by Fraeijs de Veubeke [Fra68] and Sander [San64], see also
[CiavN74]. It is often called the FVS element. The approximation power
of the FVS spaces in the L2 norm was determined in [CiavN74]. For these
spaces, locally supported bases and the approximation power in the L∞

norm were investigated in [Lai95] and [Lai96a].



C2 Macro-element Spaces

In this chapter we discuss several of the most useful C2 macro-element
spaces. For each of the spaces, we give both a stable local minimal de-
termining set and a stable local nodal determining set, and show that the
space has full approximation power.

7.1. A C
2 Polynomial Macro-element Space

Let △ be a triangulation of a domain Ω with vertices V . In this section we
consider the superspline space

S
2,4
9

(△) := {s ∈ S2

9
(△) : s ∈ C4(v) for all v ∈ V}.

Let E be the set of edges of △, and suppose N , E, and V are the numbers
of triangles, edges, and vertices of △, respectively.

For each v ∈ V , let Tv be a triangle with vertex at v, and let Mv :=
D4(v) ∩ Tv. For each edge e := 〈v2, v3〉 of △, let Te := 〈v1, v2, v3〉 be a
triangle containing e, and let Me := {ξ

Te

144
, ξ

Te

234
, ξ

Te

243
}. For each triangle T

of △, let MT := {ξT
333

}.

Theorem 7.1. dim S
2,4
9

(△) = 15V + 3E +N , and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

T∈△

MT

is a stable local minimal determining set.

Proof: We use Theorem 5.15 to show that M is a minimal determining
set for S

2,4
9

(△). We need to show that the coefficients {cξ}ξ∈M of a spline

s ∈ S
2,4
9

(△) can be set to arbitrary values, and that all other coefficients
of s are then consistently determined. First, for each v ∈ V , we set the
coefficients of s corresponding to the domain points in Mv. Then in view of
the C4 supersmoothness at v, by Lemma 5.10, all coefficients corresponding
to domain points in D4(v) are consistently determined. So far we have
determined all of the coefficients {cξ}ξ∈D, where D :=

⋃
v∈V D4(v). Since

the disks D4(v) do not overlap, it follows that all smoothness conditions
that involve only these coefficients are satisfied.

For each edge e of △, we now fix {cξ}ξ∈Me
. If e := 〈u, v〉 is a

boundary edge of △, this determines all coefficients in the set E2(e) :=
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{η : dist(η, e) ≤ 2, η 6∈ D4(u) ∪D4(v)}. If e is an interior edge of △, then
the unset coefficients in E2(e) can be computed from the C2 smoothness
across e. No inconsistencies can arise in this way since the coefficients
associated with E2(e) do not enter any smoothness conditions involving
coefficients associated with sets E2(ẽ) for other edges ẽ. Finally, for each
triangle T , we fix the coefficient cT

333
. It does not enter any smoothness

conditions. We have shown that M is a consistent determining set, and
thus by Theorem 5.15 is a minimal determining set. By Theorem 5.13,
the dimension of S2,4

9
(△) is equal to the cardinality of M, which is clearly

15V + 3E +N .
We now check that M is local in the sense of Definition 5.16. Suppose

η 6∈ M lies in Tη. If η ∈ D4(v) for some vertex v, then cη depends on
the coefficients {cξ}ξ∈Mv

. Thus, the set Γη in Definition 5.16 is just Mv ⊂

star(v) ⊂ star(Tη). Now suppose η ∈ E2(e) for some edge e := 〈u, v〉. Then
Γη = Mu ∪Mv ∪Me ⊂ star(Tη).

We claim that M is also stable as defined in Definition 5.16. Indeed, all
coefficients corresponding to η 6∈ M are computed directly from smoothness
conditions, which by Lemma 2.29 is a stable process.
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Fig. 7.1. A minimal determining set for S
2,4
9

(△).

Figure 7.1 shows an example of a minimal determining set for S2,4
9

(△)
of the type given in Theorem 7.1 for a triangulation with V = 9, E = 17,
and N = 9. By the theorem, dim S

2,4
9

(△) = 15 · 9 + 3 · 17 + 9 = 195.
Domain points in the sets Mv are marked with black dots. Those in the
sets Me are marked with triangles, while those in the sets MT are marked
with squares.

Since S
2,4
9

(△) has a stable local MDS, we can apply Theorem 5.19 to
show that it has full approximation power.
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Theorem 7.2. For every f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 9,

there exists a spline sf ∈ S
2,4
9

(△) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for S
2,4
9

(△). We
follow the notation introduced in Section 6.1. In particular, we assign
an orientation to each edge e := 〈u, v〉 of △, and let ue be the unit vector
corresponding to rotating e ninety degrees in the counterclockwise direction.
We write ηe := (u + v)/2 for the midpoint of e, and Due

for the cross-
boundary derivative associated with ue. In addition, let η1,e := (2u+ v)/3,
η2,e := (u + 2v)/3. Given a triangle T , let v

T
be its barycenter. We write

εt for the point evaluation functional at t.

Theorem 7.3. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

T∈△

NT

is a stable local nodal minimal determining set for S
2,4
9

(△), where

1) Nv := {εvD
α
xD

β
y }0≤α+β≤4 for each v ∈ V ,

2) Ne := {εηe
Due

, εη1,e
D2

ue
, εη2,e

D2

ue
} for each edge e ∈ E ,

3) NT := εv
T

for each triangle T in △.

Proof: It is easy to check that the cardinality of N is 15V + 3E + N .
Since we already know from Theorem 7.1 that the dimension of S2,4

9
(△) is

15V +3E+N , to show that N is a nodal minimal determining set, it suffices
to show that if s ∈ S

2,4
9

(△), then all of its coefficients are determined by the
values {λs}λ∈N . First, for every vertex v of △, we use the formulae (2.37)
to uniquely determine all of the coefficients cη of s corresponding to domain
points η ∈ D4(v). Using Lemma 2.21, we can then compute the coefficients
of the form cT

144
, cT

234
, cT

243
from the cross-boundary information associated

with the sets Ne. Finally, for each triangle T , the coefficient cT
333

can
be computed from s(v

T
) by Lemma 2.25. Examining these computations

shows that there exists a constant K1 depending only on the smallest angle
in △ such that for any T ∈ △ and ξ ∈ D9,T ,

|cTξ | ≤ K1

4∑

ν=0

|T |ν |f |ν,T .

This proves that N is local and stable.



7.1. A C2 Polynomial Macro-element Space 177

For each triangle T in △, the set of data involving evaluation at points
in T uniquely determines s|T , i.e., the coefficients of s ∈ S

2,4
9

(△) can be
computed locally, one triangle at a time. Thus, S2,4

9
(△) is a macro-element

space in the sense of Definition 5.27. Theorem 7.3 shows that for any func-
tion f ∈ C4(Ω), there is a unique spline s ∈ S

2,4
9

(△) solving the Hermite
interpolation problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v),

Due
s(ηe) = Due

f(ηe),

D2

ue
s(ην,e) = D2

ue
f(ην,e),

s(v
T
) = f(v

T
),

all v ∈ V and 0 ≤ α+ β ≤ 4,

all e ∈ E ,

all e ∈ E and ν = 1, 2,

all triangles T in △.

This defines a linear projector I2

P mapping C4(Ω) onto the superspline

space S
2,4
9

(△), and in particular I2

P reproduces polynomials of degree nine.
We now apply Theorem 5.26 to get the following error bound for this in-
terpolation operator.

Theorem 7.4. For every f ∈ Cm+1(Ω) with 3 ≤ m ≤ 9,

‖Dα
xD

β
y (f − I2

P f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Proof: Since the set N in Theorem 7.3 is a stable local NMDS, it follow
from Theorem 5.26 that

‖Dα
xD

β
y (f − I2

P f)‖T ≤ K2 |△|m+1−α−β |f |m+1,T .

Taking the maximum over all triangles immediately gives the global result.

Suppose M is the stable local minimal determining set for S
2,4
9

(△)
described in Theorem 7.1. Then by Theorem 5.21, the corresponding M-
basis {ψξ}ξ∈M is a stable local basis for S

2,4
9

(△). In particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the triangles sharing e,

3) if ξ ∈ MT for some triangle T , then the support of ψξ is contained in
T .

The N -basis in (5.24) associated with the nodal MDS N of Theorem 7.3
provides a different stable local basis for S

2,4
9

(△).
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7.2. A C
2 Clough–Tocher Macro-element Space

Suppose △ is a triangulation of the domain Ω, and let △CT be the corre-
sponding Clough–Tocher refinement of △ as described in Definition 4.16.
Let V be the set of vertices of △, and let Vc := {v

T
} be the set of barycen-

ters which are introduced to form the Clough–Tocher splits. Let E be the
set of edges of △.

For each T := 〈v1, v2, v3〉 in △, let e
T

:= 〈v1, vT
〉, and let τ5

5,e
T

be

the C5 smoothness condition across e
T

defined in (5.7). In this section we
discuss the superspline space

S2(△CT ) := {s ∈ S2

7
(△CT ) : s ∈ C3(v), all v ∈ V ,

s ∈ C6(v), all v ∈ Vc,

τ5

5,e
T
s = 0, all T ∈ △}.

Let V and E denote the numbers of vertices and edges of △, respec-
tively. For each v ∈ V , let Tv be some triangle with vertex at v, and let
Mv := D3(v) ∩ Tv. For each edge e := 〈v2, v3〉 of △, let Te := 〈v1, v2, v3〉

be a triangle containing e, and let Me := {ξTe

133
, ξTe

223
, ξTe

232
}.

Theorem 7.5. dim S2(△CT ) = 10V + 3E, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set.

Proof: The proof of this result is different from the proof of Theorem 7.1
and of similar results in Chapter 6. Here we have to be careful, since with
the extra smoothness defining S2(△CT ), it is not easy to see whether a
determining set is consistent and thus minimal.

We deal first with the case where △ is just a single triangle T to which
the Clough–Tocher split has been applied, see Figure 7.2. Let TCT be the
Clough–Tocher refinement of T . We first show that in this case M is a de-
termining set. For each vertex v of T , we fix the coefficients of s ∈ S2(TCT )
corresponding to the domain points in Mv. Then in view of the C3 super-
smoothness at v, Lemma 5.10 shows that all coefficients corresponding to
domain points in D3(v) are determined. Next for each edge e of T , we fix
the coefficients corresponding to the set Me. We claim that the remain-
ing unset coefficients are determined by smoothness conditions. First, for
each i = 1, 2, 3, we use Lemma 2.30 to compute the three unset coefficients
corresponding to domain points on each of the rings R4(vi). We can use
the lemma since the C6 smoothness at v

T
gives us three smoothness condi-

tions on each such ring. We now use the lemma to determine the five unset
coefficients corresponding to domain points on the ring R5(v1). The C6
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v3

v1 v2

Fig. 7.2. Computing the coefficients for a Clough–Tocher macro-triangle.

smoothness at v
T

provides four smoothness conditions on this ring, while
the special smoothness condition τ5

5,e
T
s = 0 gives us a fifth condition, see

Figure 7.2. Applying the lemma again, we get the four remaining unde-
termined coefficients corresponding to domain points on the ring R5(v2)
and the three coefficients on R5(v3). The remaining coefficients can then
be determined by additional applications of the lemma. Since we have
now shown that all coefficients of s are determined, it follows that M is a
determining set for S2(TCT ).

To prove that M is minimal, we now show that #M = dim S2(TCT ).
By Theorem 9.7, the dimension of S2

7
(TCT ) ∩ C6(v

T
) is 43. Now S2(TCT ) is

the subspace that satisfies four additional smoothness conditions, namely
the condition τ5

5,e
T
s = 0 along with three additional conditions to get C3

smoothness at the vertices of T . Thus,

39 = dim S1

7
(TCT ) ∩ C6(v

T
) − 4 ≤ dim S2(TCT ) ≤ #M = 39,

where we have used Theorem 5.13 to get the last inequality. This implies
that dim S2(TCT ) = #M = 39. By that theorem, M is an MDS for
S2(TCT ).

We now return to the case where △ is arbitrary. We claim that M is a
consistent determining set for S2(△CT ). First, for each vertex v we fix the
coefficients of a spline s ∈ S2(△CT ) for all domain points in Mv. Then in
view of the C3 smoothness at v, by Lemma 5.10 all coefficients of s corre-
sponding to domain points in D3(v) are consistently determined. So far we
have determined all of the coefficients {cξ}ξ∈D, where D :=

⋃
v∈V D3(v).

Since the disks D3(v) do not overlap, it follows that all smoothness condi-
tions that involve only these coefficients are satisfied.

Now for each edge e := 〈u, v〉 of △ we fix the coefficients correspond-
ing to Me. If e is a boundary edge of △, this determines all coefficients
corresponding to E2(e) := {η : dist(η, e) ≤ 2, η 6∈ D3(u) ∪ D3(v)}. If e
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is an interior edge of △, then we can use the C2 smoothness across e to
determine the remaining unset coefficients of s corresponding to domain
points in E2(e). Next, for each macro-triangle T , we see that the coeffi-
cients corresponding to the remaining domain points in T are consistently
determined by our previous arguments for a single macro-triangle. This
shows that no inconsistencies can arise in setting the coefficients in the sets
Me, even though coefficients in two different such sets may be connected
by smoothness conditions across the interior edges of T

CT
.

We have shown that if we fix the coefficients of a spline s correspond-
ing to domain points in the set M, then all of the coefficients of s are
consistently determined. It follows from Theorem 5.15 that M is a min-
imal determining set, and by Theorem 5.13, the dimension of S2(△CT ) is
equal to the cardinality of M, which is clearly 10V + 3E.

We now check that M is local in the sense of Definition 5.16. Suppose
that η 6∈ M lies in Tη. If η ∈ D3(v) for some vertex v, then the set Γη in
the definition is just Mv ⊂ star(v) ⊂ star(Tη). Now suppose η ∈ E2(e)
for some edge e := 〈u, v〉. In this case Γη = Mu ∪Mv ∪Me ⊂ star(Tη).
Finally, if η is one of the remaining domain points in a macro-triangle
Tη := 〈v1, v2, v3〉 with edges e1, e2, e3, then Γη = Mv1

∪ Mv2
∪ Mv3

∪

Me1
∪Me2

∪Me3
⊂ star(Tη).

The stability of M follows from the fact that all computed coeffi-
cients were obtained from smoothness conditions using either Lemma 2.29
or Lemma 2.30.
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Fig. 7.3. A minimal determining set for S2(△CT ).

The constant in the stability of M in Theorem 7.5 depends on the
smallest angle in the triangulation △CT . By Lemma 4.17 this angle is
bounded below by a constant times the smallest angle in △. Figure 7.3
shows the minimal determining set M for a triangulation with V = 4 and
E = 5. This gives dim S2(△CT ) = 10 · 4 + 3 · 5 = 55. Points in the sets Mv

are marked with black dots, while those in the sets Me are marked with
triangles.
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Since S2(△CT ) has a stable local MDS, we can now apply Theorem 5.19
to show that it has full approximation power.

Theorem 7.6. For every f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 7,
there exists a spline sf ∈ S2(△CT ) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for S2(△CT ). For
each edge e := 〈u, v〉 of △, let ηe := (u + v)/2 be the midpoint of e, and
let Due

be the cross-boundary derivative associated with a unit vector ue

corresponding to rotating e ninety degrees in a counterclockwise direction.
In addition, let η1,e := (2u + v)/3 and η2,e := (u + 2v)/3. We write εt for
the point evaluation functional at t.

Theorem 7.7. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne

is a stable local nodal minimal determining set for S2(△CT ), where

1) Nv := {εvD
α
xD

β
y }0≤α+β≤3 for each vertex v ∈ V ,

2) Ne := {εηe
Due

, εη1,e
D2

ue
, εη2,e

D2

ue
} for each edge e ∈ E .

Proof: It is easy to check that the cardinality of N is 10V + 3E, which
by Theorem 7.5 is also the dimension of S2(△CT ). Let M be the MDS in
Theorem 7.5. Then to show that N is a nodal minimal determining set,
it suffices to show that if s ∈ S2(△CT ), then all of its coefficients {cξ}ξ∈M

are determined by the values {λs}λ∈N . First, for every vertex v of △, we
use the formulae (2.37) to uniquely determine all of the coefficients cξ of s
corresponding to domain points in Mv. Using Lemma 2.21, we can then
compute the coefficients corresponding to domain points in Me from the
cross-boundary information associated with Ne. Concerning stability, it is
easy to check that (5.27) holds with m̄ = 3.

Since for each triangle T in △, s|T can be computed locally, one triangle
at a time, it follows that S2(△CT ) is a macro-element space in the sense of
Definition 5.27. Theorem 7.7 shows that for any function f ∈ C3(Ω), there
is a unique spline s ∈ S2(△CT ) solving the Hermite interpolation problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all v ∈ V and 0 ≤ α+ β ≤ 3,

Due
s(ηe) = Due

f(ηe), all e ∈ E ,

D2

ue
s(ην,e) = D2

ue
f(ην,e), all e ∈ E and ν = 1, 2.
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This defines a linear projector I2

CT
mapping C3(Ω) onto the superspline

space S2(△CT ), and in particular, I2

CT
reproduces polynomials of degree

seven. We now apply Theorem 5.26 to get the following error bound for
this interpolation operator.

Theorem 7.8. For every f ∈ Cm+1(Ω) with 2 ≤ m ≤ 7,

‖Dα
xD

β
y (f − I2

CT
f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Suppose M is the stable local minimal determining set for S2(△CT )
described in Theorem 7.5. Then by Theorem 5.21, the corresponding M-
basis {ψξ}ξ∈M is a stable local basis for S2(△CT ), and

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the triangles containing e.

The N -basis in (5.24) associated with the nodal MDS N of Theorem 7.7
provides a different stable local basis for S2(△CT ).

7.3. A C
2 Powell–Sabin Macro-element Space

Given a triangulation △ of the domain Ω, let △P S be the corresponding
Powell–Sabin refinement of △ as described in Definition 4.18. Let V be the
set of vertices of △, and let Vc be the set of incenters v

T
introduced in the

refinement process.
For each triangle T := 〈v1, v2, v3〉 in △, let e

T
:= 〈v1, vT

〉 be one of
the edges forming the Powell–Sabin split of T . Note that e

T
is oriented

so that it points toward v
T
. Let τ3

4,e
T

be the special smoothness condition

associated with e
T

defined in (5.7). For each triangle T , there are six edges
that are introduced to form the Powell–Sabin split of T , and three of them
are not connected to the vertices of T . Let ET be the set of all such edges.
In this section we work with the spline space

S2(△PS) := {s ∈ S2

5
(△P S) : s ∈ C3(v), all v ∈ V ∪ Vc,

s ∈ C3(e), all e ∈ ET ,

τ3

4,e
T
s = 0, all T ∈ △}.

Let V be the number of vertices of △. For each v ∈ V , let Tv be some
triangle with vertex at v, and let Mv := D3(v) ∩ Tv.
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v1

v2 v3

Fig. 7.4. Computing the coefficients of a C
2 Powell–Sabin macro-element.

Theorem 7.9. dim S2(△PS) = 10V , and

M :=
⋃

v∈V

Mv

is a stable local minimal determining set.

Proof: As in the proof of Theorem 7.5, we begin by dealing with the
case where △ consists of a single triangle T = 〈v1, v2, v3〉. Let T

PS
be the

Powell–Sabin split of T , see Figure 7.4, where we have marked points in M

with black dots. For each edge e of T , let we be the vertex of T
PS

lying in
the interior of e. Suppose now that we fix the coefficients of s ∈ S2(TPS)
corresponding to domain points in M. Then by the C3 supersmoothness
at the vertices, all coefficients corresponding to domain points in the disks
D3(vi) are determined by Lemma 5.10.

We now show that the coefficients of s corresponding to the remaining
domain points in T are determined from smoothness conditions. For each
edge e := 〈u, v〉 of T , we use the C3 smoothness across the edge 〈v

T
, we〉 to

determine the unset coefficients corresponding to domain points in the set
E2(e) := {ξ : dist(ξ, e) ≤ 2, ξ 6∈ D3(u) ∪ D3(v)}. Now taking account of
the smoothness condition τ3

4,e
T
s = 0, we can use Lemma 2.30 to compute

the unset coefficients corresponding to domain points on the ring R4(v1).
Using the lemma again, we can compute the remaining undetermined co-
efficients corresponding to domain points at a distance three from 〈v1, v2〉

and from 〈v2, v3〉, followed by the remaining undetermined coefficients cor-
responding to domain points on the rings R4(v2) and R4(v3). At this point
we have determined the coefficients of s at three domain points on the ring
R1(vT

), which in turn determines all coefficients corresponding to D1(vT
).

We have shown that M is a determining set for S2(TP S).
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To prove that M is an MDS for S2(TPS), we show that #M =
dim S2(TPS). First, we observe that by Theorem 9.7, the dimension of the
superspline space S2

5
(T

PS
) ∩ C3(v

T
) is 40. To force a spline in S2

5
(T

PS
) ∩

C3(v
T
) to be in S2(TPS) we must enforce nine C3 smoothness conditions

across the edges in ET , along with the special smoothness condition τ3

4,e
T
s =

0. It follows that

30 = dim S2

5
(T

P S
) ∩ C3(v

T
) − 10 ≤ dim S2(TP S) ≤ #M = 30.

This implies that dim S2(TP S) = #M = 30, and thus M is an MDS for
S2(TPS).

We return now to the case where △PS is the Powell–Sabin refinement
of an arbitrary triangulation △. Suppose we set the coefficients of a spline
s ∈ S2(△P S) corresponding to all domain points in M. This consistently
determines the coefficients of s for all domain points in the disks D3(v)
for v ∈ V . Now by the above argument, for each macro-triangle T the
remaining coefficients associated with domain points in T are determined
in such a way that all smoothness conditions across interior edges of T

PS

are satisfied. To verify the consistency of M, we now have to check that the
smoothness conditions across edges e of each macro-triangle are satisfied.
These conditions involve the coefficients corresponding to domain points in
the sets E2(e). Suppose T and T̃ are neighboring triangles sharing an edge
e, and let v

T
and v

T̃
be their incenters. Then using the fact that the edges

〈v
T
, we〉 and 〈v

T̃
, we〉 lie on the line from v

T
to v

T̃
, it is easy to check that

all C1 and C2 smoothness conditions across e are satisfied, see the proof of
Theorem 6.9.

We have shown that M is a consistent determining set for S2(△PS),
and it follows from Theorem 5.15 that M is an MDS for S2(△P S). In
addition, we conclude from Theorem 5.13 that the dimension of S2(△PS)
is equal to the cardinality of M, which is 10V .

To see that M is local, suppose η 6∈ M lies in the triangle Tη. If
η ∈ D3(v) for some vertex v, then the set Γη in Definition 5.16 is just Mv ⊂

star(v) ⊂ star(Tη). Now suppose η lies in a triangle Tη := 〈v1, v2, v3〉, but
not in any of the disks D3(vi), i = 1, 2, 3. In this case Γη = Mv1

∪

Mv2
∪Mv3

⊂ star(Tη). The stability of M follows from the fact that all
coefficients corresponding to domain points not in M are computed from
smoothness conditions using Lemmas 2.29 and 2.30.

The constant in the stability of M in Theorem 7.9 depends on the
smallest angle in the triangulation △PS. By Lemma 4.20 this angle is
bounded below by a constant times the smallest angle in △.

Figure 7.5 shows the minimal determining set for S2(△PS) for a trian-
gulation consisting of two macro-triangles. The points in M are marked
with black dots. Since S2(△P S) has a stable local MDS, we can apply
Theorem 5.19 to show that it has full approximation power.
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Fig. 7.5. A minimal determining set for S2(△PS).

Theorem 7.10. For every f ∈Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 5,
there exists a spline sf ∈ S2(△P S) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for S2(△P S). Let εt

denote point evaluation at t.

Theorem 7.11. The set

N :=
⋃

v∈V

{εvD
α
xD

β
y }0≤α+β≤3

is a stable local nodal minimal determining set for S2(△P S).

Proof: It is easy to check that the cardinality of N is 10V . Since we
already know from Theorem 7.9 that the dimension of S2(△P S) is 10V , to
show that N is a nodal minimal determining set, it suffices to show that if
s ∈ S2(△PS), then all of its coefficients corresponding to domain points in
the MDS M of Theorem 7.9 are determined by the values {λs}λ∈N . This
is clear, since for every vertex v of △, we can use the formulae (2.37) to
uniquely determine all of the coefficients cξ of s corresponding to domain
points ξ ∈ Mv.

For each triangle T in △, the set of data involving evaluation at points
in T uniquely determines s|T , i.e., the coefficients of s ∈ S2(△P S) can be
computed locally, one triangle at a time. Thus, S2(△P S) is a macro-element
space in the sense of Definition 5.27.
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Theorem 7.11 shows that for any function f ∈ C3(Ω), there is a unique
spline s ∈ S2(△P S) solving the Hermite interpolation problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all v ∈ V and 0 ≤ α+ β ≤ 3.

This defines a linear projector I2

P S
mapping C3(Ω) onto the superspline

space S2(△PS), and in particular, I2

P S
reproduces polynomials of degree

five. We now apply Theorem 5.26 to get the following error bound for this
interpolation operator.

Theorem 7.12. For every f ∈ Cm+1(Ω) with 2 ≤ m ≤ 5,

‖Dα
xD

β
y (f − I2

P S
f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Suppose M is the stable local minimal determining set for S2(△PS).
described in Theorem 7.9. Then by Theorem 5.21, the corresponding M-
basis {ψξ}ξ∈M is a stable local basis for S2(△P S), where for each v ∈ V

and each ξ ∈ Mv, the support of ψξ is contained in star(v). The N -basis
in (5.24) associated with the nodal MDS N of Theorem 7.11 provides a
different stable local basis for S2(△P S).

7.4. A C
2 Wang Macro-element Space

Given a triangulation △, suppose △W is the triangulation obtained by
splitting each triangle T := 〈v1, v2, v3〉 into seven subtriangles as shown in
Figure 7.6 (left) based on the interior vertices

wT
1

:=
4v1 + 2v2 + v3

7
, wT

2
:=

v1 + 4v2 + 2v3
7

, wT
3

:=
2v1 + v2 + 4v3

7
.

For each triangle T in △, let T ∗ := 〈wT
1
, wT

2
, wT

3
〉 be the the center triangle

in the split of T . In this section we consider the space

S2(△W ) := {s ∈ S2

5
(△W ) : s is C3 across the edges of T ∗, all T ∈ △}.

Let V and E denote the numbers of vertices and edges of △, respec-
tively. For each vertex v of △, let Tv be a triangle of △W attached to v
which has the largest shape parameter (see Definition 4.1) among all tri-
angles sharing the vertex v, and let Mv := D2(v) ∩ Tv. For each edge
e := 〈v2, v3〉 of △, let Te := 〈v1, v2, v3〉 be a triangle of △W containing e,
and let Me := {ξTe

122
, ξTe

221
, ξTe

212
}.
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Fig. 7.6. A minimal determining set for S2(△W ).

Theorem 7.13. dim S2(△W ) = 6V + 3E, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set.

Proof: Suppose we fix the coefficients of a spline s ∈ S2(△W ) correspond-
ing to Mv for each vertex v of △. Then by Lemma 5.10, the coefficients
of s are determined in the disks D2(v). Now if we fix the coefficients of s
corresponding to Me for each edge e := 〈u, v〉 of △, then using the smooth-
ness across the edges, we see that all coefficients corresponding to domain
points in E2(e) := {ξ : dist(ξ, e) ≤ 2, ξ 6∈ D2(u) ∪D2(v)} are determined.
It is not clear a priori that these coefficients can be set consistently, but
using the Java program described in Remark 5.6, it can be checked that for
each macro-triangle T := 〈v1, v2, v3〉, all unset coefficients corresponding to
domain points lying in T are consistently determined. In particular, for
each such domain point η, the program gives an explicit formula for cη as a
linear combination of the coefficients associated with domain points in the
sets Mvi

and Mei
, where e1, e2, e3 are the edges of T . The weights in these

linear combinations are all fixed numbers, independent of the size and shape
of T . It follows from Theorem 5.15 that M is a minimal determining set
for S2(△W ). By Theorem 5.13, its dimension is equal to #M = 6V + 3E.

To see that M is local, suppose η 6∈ M lies in a triangle Tη. If η ∈

D2(v), then the set Γη of Definition 5.16 is just Mv ⊂ star(v) ⊂ star(Tη). If
η ∈ E2(e) for some edge e := 〈u, v〉, then Γη = Mu ∪Mv ∪Me ⊂ star(Tη).
For any other η lying in a macro-triangle Tη := 〈v1, v2, v3〉, Γη is the union
of the sets Mvi

and Mei
for i = 1, 2, 3, which is contained in star(Tη). The

stability of the computation of coefficients in the disks D2(v) follows from
our choice of Tv. The stability of the computation of other coefficients
associated with domain points in a triangle T follows from the fact that
they involve fixed formulae which do not vary with the size or shape of the
triangle.
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Figure 7.6 (right) shows the minimal determining set for the space
S2

5
(TW ) corresponding to the split TW of a single macro-triangle. Points

in the sets Mv are marked with black dots, while those in the sets Me are
marked with triangles.

Since S2(△W ) has a stable local MDS, we can apply Theorem 5.19 to
show that it has full approximation power.

Theorem 7.14. For every f ∈Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 5,
there exists a spline sf ∈ S2(△W ) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for S2(△W ). For
each edge e := 〈u, v〉 of △, let Due

be the cross-boundary derivative asso-
ciated with the unit vector ue corresponding to rotating e ninety degrees
in the counterclockwise direction. Let ηe := (u + v)/2 be the midpoint of
e, and let η1,e := (2u + v)/3 and η2,e := (u + 2v)/3. Let εt be the point
evaluation functional at t.

Theorem 7.15. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne

is a stable local nodal minimal determining set for S2(△W ), where

1) Nv := {εvD
ν
xD

µ
y }0≤ν+µ≤2, for all vertices v ∈ V ,

2) Ne := {εηe
Due

, εη1,e
D2

ue
, εη2,e

D2

ue
}, for all edges e of △.

Proof: It is easy to check that the cardinality of N is 6V + 3E, and
that setting the nodal data in N for a spline s ∈ S2(△W ) determines the
coefficients of s corresponding to the MDS M of Theorem 7.13. Concerning
stability, it is easy to check that (5.27) holds with m̄ = 2.

Since for each triangle T in △, s|T can be computed locally, one triangle
at a time, it follows that S2(△W ) is a macro-element space in the sense of
Definition 5.27. By Theorem 7.7, for any function f ∈ C2(Ω), there is a
unique spline s ∈ S2(△W ) solving the Hermite interpolation problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all v ∈ V and 0 ≤ α+ β ≤ 2,

Due
s(ηe) = Due

f(ηe), all e ∈ E ,

D2

ue
s(ην,e) = D2

ue
f(ην,e), all e ∈ E and ν = 1, 2.
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This defines a linear projector I2

W
mapping C2(Ω) onto S2(△W ), and

in particular I2

W
reproduces polynomials of degree five. Applying Theo-

rem 5.26, we get the following error bound for this interpolation operator.

Theorem 7.16. For every f ∈ Cm+1(Ω) with 1 ≤ m ≤ 5,

‖Dα
xD

β
y (f − I2

W
f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Suppose M is the stable local minimal determining set for S2(△W )
described in Theorem 7.13. By Theorem 5.21, the corresponding M-basis
{ψξ}ξ∈M is a stable local basis for S2(△W ), and

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the triangles sharing e.

The N -basis in (5.24) associated with the nodal MDS N of Theorem 7.15
provides a different stable local basis for S2(△W ).

7.5. A C
2 Double Clough–Tocher Macro-element

Given a triangulation △ with vertices V and edges E , let △DCT be the tri-
angulation that is obtained by applying the Clough–Tocher split to each
triangle of △ and then applying the same split again to each resulting tri-
angle. We call △DCT the double Clough–Tocher refinement of △. Figure 7.7
shows the double Clough–Tocher split of a single triangle.

Given a triangle T := 〈v1, v2, v3〉 of △, let v
T

be its barycenter, and for
each i = 1, 2, 3, let vT

i be the barycenter of the triangle Ti := 〈v
T
, vi, vi+1〉,

where v4 is identified with v1. Let eT
i := 〈vi, vT

〉 for i = 1, 2, 3. In this
section we discuss the superspline space

S2(△DCT ) := {s ∈ S2

5
(△DCT ) : for all T ∈ △, s ∈ C3(v

T
) and

s ∈ C4(vT
i ) ∩ C3(eT

i ) for i = 1, 2, 3}.

Let V and E be the numbers of vertices and edges in △, respectively.
For each vertex v of △, let Tv be some triangle attached to v, and let
Mv := D2(v) ∩ Tv. For each edge e of △, let Te be some triangle in △DCT

containing the edge e, and let Me := {ξTe

122
, ξTe

212
, ξTe

221
}.

Theorem 7.17. dim S2(△DCT ) = 6V + 3E, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set.
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Fig. 7.7. A minimal determining set for S2(TDCT ).

Proof: Let s ∈ S2(△DCT ), and suppose we have fixed its coefficients cor-
responding to the sets Mv for all vertices v ∈ V . Then by Lemma 5.10
all coefficients associated with domain points in the disks D2(v) are con-
sistently determined. Next, for each edge e := 〈u, v〉 of △, we set the co-
efficients of s corresponding to Me. Then using the C2 smoothness across
interior edges, we see that all coefficients of s are determined for domain
points in the sets E2(e) := {ξ : dist(ξ, e) ≤ 2, ξ 6∈ D2(u)∪D2(v)}. Now let
T be a macro-triangle, and let TDCT be its corresponding double Clough–
Tocher split. Then using the Java program described in Remark 5.6, it
can be checked that the remaining coefficients of s corresponding to do-
main points lying in T are consistently determined. The program gives
explicit formulae for computing such coefficients as linear combinations of
the coefficients {cξ}ξ∈M. The weights in these linear combinations are fixed
numbers, independent of the size and shape of T . It follows from Theo-
rem 5.15 that M is an MDS, and from Theorem 5.13 that the dimension
of S2(△DCT ) is 6V + 3E.

To see that M is local, suppose η 6∈ M lies in the triangle Tη. If η ∈

D2(v), then the set Γη of Definition 5.16 is just Mv ⊂ star(v) ⊂ star(Tη). If
η ∈ E2(e) for some edge e := 〈u, v〉, then Γη = Mu ∪Mv ∪Me ⊂ star(Tη).
For any other η lying in a macro-triangle Tη := 〈v1, v2, v3〉, Γη is the union
of the sets Mvi

and Mei
for i = 1, 2, 3, which is contained in star(Tη).

The stability of the computation of coefficients in the disks D2(v) follows
from Lemma 5.10. The stability of the computation of other coefficients
associated with domain points in a triangle T follows from the fact that
they involve fixed formulae which do not vary with the size or shape of the
triangle.

The constant in the stability of M in Theorem 7.17 depends on the
smallest angle in the triangulation △DCT . By Lemma 4.17 this angle is
bounded below by a constant times the smallest angle in △. Figure 7.7
shows a minimal determining set for the space S(TDCT ) corresponding to
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the split TDCT of a single macro-triangle. Points in the sets Mv are marked
with black dots, while those in the sets Me are marked with triangles. Since
S2(△DCT ) has a stable local MDS, we can apply Theorem 5.19 to show that
it has full approximation power.

Theorem 7.18. For every f ∈Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 5,
there exists a spline sf ∈ S2(△DCT ) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for S2(△DCT ). For
each edge e of △, we let Due

be the cross-boundary derivative associated
with the unit vector ue corresponding to rotating e ninety degrees in a
clockwise direction. In addition, if e := 〈u, v〉, we write ηe := (u + v)/2,
ηe,1 := (2u + v)/3, and ηe,2 := (u + 2v)/3. Let εt be the point evaluation
functional at t.

Theorem 7.19. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne

is a stable local nodal minimal determining set for S2(△DCT ), where

1) Nv := {εvD
ν
xD

µ
y }0≤ν+µ≤2, for all vertices v ∈ V ,

2) Ne := {εηe
Due

, εη1,e
D2

ue
, εη2,e

D2

ue
}, for all edges e ∈ E .

Proof: It is easy to check that all of the coefficients of s corresponding
to domain points in the MDS M of Theorem 7.17 can be computed from
the values {λs}λ∈N . Since the cardinality of N is equal to the dimension
of S2(△DCT ), it follows that N is a nodal MDS. Concerning stability, it is
easy to check that (5.27) holds with m̄ = 2.

Since for each triangle T in △, s|T can be computed locally, one triangle
at a time, it follows that S2(△DCT ) is a macro-element space in the sense
of Definition 5.27. Theorem 7.19 shows that for any function f ∈ C2(Ω),
there is a unique spline s ∈ S2(△DCT ) solving the Hermite interpolation
problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all v ∈ V and 0 ≤ α+ β ≤ 2,

Due
s(ηe) = Due

f(ηe), all e ∈ E ,

D2

ue
s(ην,e) = D2

ue
f(ην,e), all e ∈ E and ν = 1, 2.

This defines a linear projector I2

DCT
mapping C2(Ω) onto S2(△DCT ). Since

this interpolation operator reproduces polynomials of degree five, applying
Theorem 5.26, we get the following error bound.
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Theorem 7.20. For every f ∈ Cm+1(Ω) with 1 ≤ m ≤ 5,

‖Dα
xD

β
y (f − I2

DCT
f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in △. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Suppose M is the MDS described in Theorem 7.17. Then by Theo-
rem 5.21, the M-basis {ψξ}ξ∈M is a stable local basis for S2(△DCT ). In
particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the triangles sharing e.

The N -basis in (5.24) associated with the nodal MDS N of Theorem 7.19
provides a different stable local basis for S2(△DCT ).

7.6. A C
2 Quadrilateral Macro-element Space

Let ♦ be a strictly convex quadrangulation of a domain Ω, and let ♦+ be the
triangulation obtained from ♦ be drawing in the diagonals of each quadri-
lateral. Let V and E be the sets of vertices and edges of ♦, respectively.
Let Vc be the set of points where the inserted diagonals intersect, and for
each quadrilateral, let EQ be the set of four edges inserted in Q. Finally,
for each Q, let e

Q
be one of the edges in EQ, and let τ4

5,e
Q

and τ5

5,e
Q

be the

special smoothness conditions defined in (5.7). In this section we discuss
the superspline space

S2(♦+) := {s ∈ S2

7
(♦+) : s ∈ C3(v), all v ∈ V ,

s ∈ C4(v), all v ∈ Vc,

s ∈ C3(e), all e ∈ EQ,

τ4

5,e
Q
s = τ5

5,e
Q
s = 0, all Q ∈ ♦}.

Note that although we are defining a C2 macro-element space, we are re-
quiring splines in S2(♦+) to be C3 on each quadrilateral.

Let V and E be the number of vertices and edges of ♦, respectively.
For each v ∈ V , let Tv be the triangle in ♦+ with vertex at v which has the
largest shape parameter (see Definition 4.1) among all triangles sharing the
vertex v. Let Mv := D3(v) ∩ Tv. For each edge e of △, let Te be some
triangle in ♦+ containing that edge, and let Me := {ξTe

133
, ξTe

223
, ξTe

232
}.



7.6. A C2 Quadrilateral Macro-element Space 193

Theorem 7.21. dim S2(♦+) = 10V + 3E, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set.

Proof: We first consider the case where ♦ consists of a single quadrilateral
Q := 〈v1, v2, v3, v4〉. Let △Q be the triangulation of Q obtained by inserting
the diagonals, and let v

Q
be the center point, see Figure 7.8. We may sup-

pose e
Q

= 〈v1, vQ
〉. We first show that M is a determining set for S2(△Q).

For each vertex v ∈ V , setting the coefficients of s ∈ S2(△Q) corresponding
to the domain points in Mv determines all coefficients corresponding to
D3(v), see Lemma 5.10. We now show how to use the smoothness condi-
tions to compute the remaining coefficients. First we use Lemma 2.30 to
compute the unset coefficients corresponding to domain points on the rings
R4(vi) for i = 1, 2, 3, 4. Then making use of the two special smoothness
conditions across e

Q
, we use Lemma 2.30 to compute the remaining five

unset coefficients of s corresponding to domain points on R5(v1). Next
we use the C4 smoothness at v

Q
and Lemma 2.30 to compute the four re-

maining unset coefficients on R7(v2), followed by the four remaining unset
coefficients on R7(v1). The rest of the coefficients can then be computed
using the lemma four more times.

We have shown that M is a determining set for S2(△Q). To see that
it is minimal, we first observe that the space S2(△Q) is the subspace of
S3

7
(△Q) ∩ C4(v

Q
) that satisfies the two additional smoothness conditions

described by the τ ’s. By Theorem 9.7, dim S3

7
(△Q) ∩ C4(v

Q
) = 54, and it

follows that

52 = dim S3

7
(△Q) ∩ C4(v

Q
) − 2 ≤ dim S2(△Q) ≤ #M = 52.

But then dim S2(△Q) = #M = 52, and Theorem 5.13 implies that M is
an MDS for S2(△Q).

To get the result for arbitrary triangulations, we show that M is a
consistent determining set for S2(♦+). For each vertex v ∈ V , we can fix
the coefficients corresponding to Mv, and by Lemma 5.10 it follows that
the coefficients corresponding to domain points in D3(v) are consistently
determined. For each edge e of ♦, we now choose the coefficients corre-
sponding to Me. If e := 〈u, v〉 is an interior edge of a quadrilateral in
♦, using the C2 smoothness across e, it is easy to see that choosing the
coefficients corresponding to Me consistently determines all coefficients in
E2(e) := {ξ : dist(ξ, e) ≤ 2, ξ 6∈ D3(u) ∪ D3(v)}. Coefficients in two dif-
ferent sets E2(e) and E2(ẽ) may be connected by smoothness conditions in
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the interior of a quadrilateralQ := 〈v1, v2, v3, v4〉. But we have shown above
that coefficients corresponding to domain points inside Q are consistently
determined from those corresponding to D3(vi) and E2(ei) for i = 1, 2, 3, 4,
where ei are the edges of Q. We have shown that M is a consistent deter-
mining set for S2(♦+), and by Theorem 5.15 it follows that M is minimal.
Theorem 5.13 shows that the dimension of S2(♦+) is equal to the cardinality
of M, which is 10V + 3E.

We now check that M is local. Suppose η 6∈ M lies in the triangle Tη.
If η ∈ D3(v) for some vertex of ♦, then clearly the set Γv of Definition 5.16
is just Mv ⊂ star(v) ⊂ star(Tη). If η ∈ E2(e) for some edge e := 〈u, v〉

of ♦, then Γη = Mu ∪ Mv ∪ Me ⊂ star(Tη). If η is a remaining point
in some quadrilateral Q, then Γη is the union of the sets Mvi

and Mei

for i = 1, 2, 3, 4, which is a subset of star(Q). To check the stability of
M, we first note that for each vertex v ∈ V , the computation of the coef-
ficients associated with domain points in D3(v) is stable due to our choice
of the triangle Tv in which to choose the points of Mv. The stability of
the remaining computations follows from the fact that they are based on
Lemma 2.30.

The choice of the sets Mv in the MDS of Theorem 7.21 ensures that
the constant of stability for M does not depend on the smallest angle in ♦+

but only on the smallest angle in ♦. This is important since as we saw in
Example 4.48, angles in ♦+ can be small even when the angles in ♦ are not.
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Fig. 7.8. A minimal determining set for S2(△Q).

Figure 7.8 shows the MDS for the space S2(△Q). Points in the sets
Mv are marked with black dots, while those in the sets Me are marked
with triangles. Since S2(♦+) has a stable local MDS, we can now apply
Theorem 5.19 to show that it has full approximation power.



7.6. A C2 Quadrilateral Macro-element Space 195

Theorem 7.22. For every f ∈Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 7,
there exists a spline sf ∈ S2(♦+) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |♦+|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in ♦. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for S2(♦+). For each
edge e := 〈u, v〉 of △, let ηe := (u + v)/2, η1,e := (2u + v)/2, η2,e := (u +
2v)/2 and let Due

be the cross-boundary derivative associated with a unit
vector ue corresponding to rotating e ninety degrees in the counterclockwise
direction. Let εt denote point evaluation at t.

Theorem 7.23. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne

is a stable local nodal minimal determining set for S2(♦+), where

1) Nv := {εvD
ν
xD

µ
y )}0≤ν+µ≤3 for all vertices v ∈ V ,

2) Ne := {εηe
Due

, εη1,e
D2

ue
, εη2,e

D2

ue
} for all edges e of ♦.

Proof: It is easy to check that the cardinality of N is 10V +3E. Since we
already know from Theorem 7.21 that the dimension of S2(♦+) is 10V +3E,
to show that N is a nodal minimal determining set, it suffices to show that if
s ∈ S2(♦+), then the data in N determine all coefficients of s corresponding
to domain points in the MDS M of Theorem 7.21. This follows by the
same arguments as in the proof of Theorem 7.11. Concerning stability, it
is easy to check that (5.27) holds with m̄ = 3.

Note that for each quadrilateralQ in ♦, the linear functionals involving
evaluation at points in Q uniquely determine s|Q, i.e., the coefficients of
s can be computed locally, one quadrilateral at a time. Thus, S2(♦+) is a
macro-element space. Theorem 7.21 shows that for any function f ∈ C3(Ω),
there is a unique spline s ∈ S2(♦+) that solves the Hermite interpolation
problem

Dα
xD

β
y s(v) = Dα

xD
β
y f(v),

Due
s(ηe) = Due

f(ηe),

D2

ue
s(ην,e) = D2

ue
f(ην,e),

all v ∈ V and 0 ≤ α+ β ≤ 3,

all e ∈ E ,

all e ∈ E and ν = 1, 2.

This defines a linear projector I2

Q
mapping C3(Ω) onto the spline space

S2(♦+), and in particular I2

Q
reproduces polynomials of degree seven. We

now apply Theorem 5.26 to get the following error bound for this interpo-
lation operator.
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Theorem 7.24. For every f ∈ Cm+1(Ω) with 2 ≤ m ≤ 7,

‖Dα
xD

β
y (f − I2

Q
f)‖Ω ≤ K |♦+|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on the smallest angle in ♦. If Ω is not convex, then K also depends on the
Lipschitz constant of the boundary of Ω.

Suppose M is the stable local minimal determining set for S2(♦+) de-
scribed in Theorem 7.21. By Theorem 5.21, the corresponding M-basis
{ψξ}ξ∈M is a stable local basis for S2(♦+). In particular,

1) if ξ ∈ Mv for some vertex v of ♦, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of ♦, then the support of ψξ is contained in
the union of the triangles sharing the edge e.

The N -basis in (5.24) associated with the nodal MDS N of Theorem 7.23
provides a different stable local basis for S2(♦+).

7.7. Comparison of C
2 Macro-element Spaces

As a guide to comparing the various C2 macro-element spaces discussed
above, in Table 7.1 we list the following information:

• d := the degree of the spline,

• ntri := the number of subtriangles involved in the split of a single
macro-triangle,

• nder := the maximum derivative needed to compute the interpolant,

• ndim := the dimension of the spline space,

• ncoef := the dimension of the space of continuous splines on the same
triangulation.

Space d ntri nder ndim ncoef

S
2,4
9

(△) 9 1 4 15V + 3E +N 81VI + 45VB − 80
S2(△CT ) 7 3 3 10V + 3E 147VI + 77VB − 146
S2(△P S) 5 6 3 10V 150VI + 80VB − 149
S2(△DCT ) 5 9 2 6V + 3E 225VI + 115VB − 224
S2(△W ) 5 7 2 6V + 3E 175VI + 90VB − 174

S2(♦+) 7 4 3 10V Q + 3EQ 98V Q
I + 105V Q

B /2 − 97

Tab. 7.1. A comparison of C
2 macro-elements.
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These quantities are of interest for a variety of reasons:

1) In general we would like to work with low degree splines. They involve
fewer coefficients, and have less tendency to oscillate.

2) For the purposes of evaluation, it is more efficient to work with macro-
elements with fewer subtriangles as less effort is required to locate the
triangle which contains a given point v of interest.

3) Since in practice we often have to estimate derivatives, methods which
require fewer derivatives may have some advantages. In addition, the
error bounds are valid for less smooth functions.

4) The dimension of the spline space measures its complexity.

5) The quantity ncoef measures the complexity of storing and working
with a spline considering it as a C0 spline.

For the triangle-based elements, V = VI + VB and E = EI + EB denote
the number of vertices and edges in the original triangulation △, before
any splitting. For the quadrangulation-based element, V Q = V

Q
I +V

Q
B and

EQ = E
Q
I + E

Q
B denote the number of vertices and edges in the quadran-

gulation. The table shows that the spaces S2(△W ) and S2(△DCT ) have the
advantage that their nodal minimal determining sets include derivatives up
to order 2 at the vertices rather than the derivatives up to order 3 or 4
needed for the other spaces. The space S2(△W ) involves fewer subtriangles
and fewer coefficients than S2(△DCT ).

Comparing the complexity of the triangle-based methods with the
quadrilateral-based method is complicated by the fact that if we have a
triangulation and quadrangulation based on the same set of vertices, then
V = V Q but EQ is generally smaller than E. For example, if we start
with n2 vertices on a rectangular grid, then for the associated type-I trian-
gulation we have E = (3n − 1)(n − 1) while EQ = 2n(n − 1). This gives
dim S2(♦+) = 16n2 − 6n while dim S2(△W ) = 15n2 − 12n+ 3.

7.8. Remarks

Remark 7.1. It follows from Theorem 5.28 that it is impossible to con-
struct C2 macro-elements based the Clough–Tocher split using splines of
degree lower than seven, cf. [LaiS01]. Similarly, it is impossible to con-
struct C2 macro-elements based the Powell–Sabin split using splines of
degree lower than five, c.f. [LaiS03]. Thus, the elements presented in Sec-
tions 7.2 and 7.3 are optimal in this sense. We have not described the
macro-elements in [LaiS01, LaiS03] in this chapter, but they are contained
in the general Cr families of elements discussed in Sections 8.2 and 8.4.

Remark 7.2. The C2 macro-elements of Sections 7.2 and 7.3 based on the
Clough–Tocher and Powell–Sabin splits were introduced in [AlfS02a] and
[AlfS02b], where it was shown that these elements are optimal in the sense



198 7. C2 Macro-element Spaces

that they have the least number of degrees of freedom among all possible
C2 macro-elements based on these splits.

Remark 7.3. For a C2 macro-element based on the Powell–Sabin-12 split
and using splines of degree seven, see [SchS06]. Since the C2 macro-element
of Section 7.3 defined on the usual Powell–Sabin-6 split is also of degree
seven, the two elements can be used together. For a recent wavelet appli-
cation where this is done, see [JiaLiu06].

Remark 7.4. While it is impossible to create a C2 macro-element space
of degree six based on triangulated quadrilaterals, it is possible to use C2

sixth degree splines for interpolation and approximation purposes as shown
in [LaiS97], see also [Gao93].

Remark 7.5. It is possible to give a rigorous mathematical proof of Theo-
rem 7.13 using standard Bernstein–Bézier arguments, i.e., without depend-
ing on Alfeld’s Java program, see [Wang92]. However, we have not seen
such a proof for Theorem 7.17.

Remark 7.6. As pointed out in Remark 5.8, nested sequences of spline
spaces are important for applications. All of the macro-element spaces
discussed in this chapter are superspline spaces, and thus none of them is
suitable for building nested sequences of spline spaces.

7.9. Historical Notes

The C2 polynomial element discussed in Section 7.1 was introduced in
[Zen74] in nodal form. The method was later treated in B-form in [Whe86],
where explicit formulae for the B-coefficients in terms of the nodal data can
be found.

The first C2 element to be based on a split triangle uses the double
Clough–Tocher split, see [Alf84a]. This element is based on splines of de-
gree five, and is a condensed version of the macro-element presented in
Section 7.5. The noncondensed version was introduced by Alfeld in [Alf00]
as a result of experimentation with his Java program (see Remark 5.6).
Our mathematical treatment of this element and its approximation power
are new.

Macro-elements based on the Clough–Tocher and Powell–Sabin splits
of a triangle were developed by several authors [Sabl85b, Sabl87, LagS89a,
LagS89b, LagS93, LagS94, Lai96b, LaiS01, AlfS02a, AlfS02b, LaiS03]. The
discussion in Section 7.2 of the C2 Clough–Tocher macro-element follows
[AlfS02a]. Our treatment of the C2 Powell–Sabin macro-element in Sec-
tion 7.3 is based on [AlfS02b]. The macro-element space described in Sec-
tion 7.4 was introduced in [Wang92].

The C2 macro-element space in Section 7.6 based on a triangulated
quadrangulation is taken from [LaiS02]. For earlier work on macro-elements
based on triangulated quadrangulations, see [LagS89a, LagS95].



C r Macro-element Spaces

In this chapter we discuss families of Cr macro-element spaces for all
r ≥ 1. The spaces in Chapters 6 and 7 are included as special cases for
r = 1, 2. For each space, we give a stable local minimal determining set
and a stable local nodal minimal determining set, and show that the space
has full approximation power.

8.1. Polynomial Macro-element Spaces

Suppose △ is a triangulation of a domain Ω, and let V be its set of vertices.
In this section we discuss properties of the superspline space

S
r,2r
4r+1

(△) := {s ∈ Sr
4r+1

(△) : s ∈ C2r(v), all v ∈ V}.

Let E be the set of edges of △, and suppose V , E, and N are the numbers
of vertices, edges, and triangles of △, respectively.

For each v ∈ V , let Tv be some triangle with vertex at v, and let
Mv := D2r(v) ∩ Tv. For each edge e := 〈v2, v3〉 of △, let Te := 〈v1, v2, v3〉

be some triangle containing e, and let Me := {ξ
Te

ijk : 1 ≤ i ≤ r and j, k ≤

2r}. Finally, for each triangle T ∈ △, let MT := {ξT
ijk : i, j, k > r}.

Theorem 8.1. For all r ≥ 1,

dim S
r,2r
4r+1

(△) =

(
2r + 2

2

)
V +

(
r + 1

2

)
E +

(
r

2

)
N,

and
M :=

⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

T∈△

MT

is a stable local minimal determining set.

Proof: We use Theorem 5.15 to show that M is an MDS for S
r,2r
4r+1

(△).
We need to show that M is a consistent determining set. First, for each
v ∈ V , suppose we fix the coefficients of s corresponding to the domain
points in Mv. Then in view of the C2r supersmoothness at v, all domain
points in D2r(v) are consistently determined by Lemma 5.10. Since the
disks D2r(v) do not overlap and none of the other coefficients have yet
been assigned, so far we have not violated any smoothness condition. Now
for each edge e := 〈u, v〉 in E , we fix the coefficients of s corresponding to



200 8. Cr Macro-element Spaces

domain points in Me. This determines all coefficients of s corresponding to
domain points in the set Er(e) := {ξ : dist(ξ, e) ≤ r, ξ 6∈ D2r(u)∪D2r(v)},
where we use the Cr smoothness across e if e is an interior edge. Since
coefficients corresponding to two different sets Er(e) and Er(ẽ) are not
connected by smoothness conditions, no inconsistencies can be introduced
in this step. Finally, for each triangle T , we can set the coefficients of s
corresponding to MT to arbitrary values since these coefficients do not enter
into any smoothness conditions. We have shown that M is a consistent
determining set, and thus by Theorem 5.15, it is a minimal determining set.
By Theorem 5.13, the dimension of Sr,2r

4r+1
(△) is equal to the cardinality of

M. This is easily seen to be given by the formula in the statement of the
theorem.

We now show that M is local in the sense of Definition 5.16. Suppose
η 6∈ M lies in the triangle Tη. If η ∈ D2r(v) for some vertex v, then clearly
the set Γη in the definition is just Mv ⊂ star(v) ⊂ star(Tη). If η ∈ Er(e)
for some edge e := 〈u, v〉, then Γη = Mu ∪ Mv ∪ Me ⊂ star(Tη). The
stability of M follows from the fact that all unset coefficients of s can be
computed directly from smoothness conditions, see Lemma 2.29.





Fig. 8.1. A minimal determining set for S
3,6
13

(T ).

The family of spaces Sr,2r
4r+1

(△) includes the spaces S1,2
5

(△) and S
2,4
9

(△)

discussed in Sections 6.1 and 7.1. Figure 8.1 shows M for the space S3,6
13

(T )
defined on a single triangle T . Points in the sets Mv,Me,MT are shown
with dots, triangles, and squares, respectively. Table 8.1 lists the dimen-
sions of Sr,2r

4r+1
(T ) for r = 1, . . . , 6.

Since the set M in Theorem 8.1 is a stable local MDS, Theorem 5.19
implies the following result which shows that Sr,2r

4r+1
(△) has full approxima-

tion power.
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r 2r 4r + 1 dim
1 2 5 21
2 4 9 55
3 6 13 105
4 8 17 171
5 10 21 253
6 12 25 351

Tab. 8.1. Dimensions of the spaces S
r,2r
4r+1

(T ).

Theorem 8.2. For every f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤

4r + 1, there exists a spline sf ∈ S
r,2r
4r+1

(△) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for S
r,2r
4r+1

(△). We
follow the notation introduced in Section 6.1. In particular, we assign
an orientation to each edge e := 〈u, v〉 of △, and let ue be the unit vector
corresponding to rotating e ninety degrees in the counterclockwise direction.
We write Due

for the cross-boundary derivative associated with ue. In
addition, for each 1 ≤ i ≤ r, let

ηi
j,e :=

(i+ 1 − j)u+ jv

i+ 1
, j = 1, . . . , i. (8.1)

Finally, let εt be the point evaluation functional at the point t.

Theorem 8.3. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

T∈△

NT

is a stable local nodal minimal determining set for S
r,2r
4r+1

(△), where

1) Nv := {εvD
α
xD

β
y }0≤α+β≤2r,

2) Ne :=
⋃r

i=1
{εηi

j,e
Di

ue
}i

j=1
,

3) NT := {εξT
ijk

}i,j,k>r.

Proof: It is easy to check that the cardinality of N is equal to the dimen-
sion of Sr,2r

4r+1
(△) as given in Theorem 8.1. Thus, it suffices to show that the
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values {λs}λ∈N determine the coefficients {cξ}ξ∈M of s ∈ S
r,2r
4r+1

(△), where
M is the MDS in Theorem 8.1. For each vertex v, we can use the formulae
(2.37) to determine the coefficients cξ corresponding to ξ ∈ Mv from the
data {λs}λ∈Nv

. For each edge e, we can use Lemma 2.21 to determine the
coefficients cξ corresponding to ξ ∈ Me from the data {λs}λ∈Ne

. Finally,
for each triangle T ∈ △, we can use Lemma 2.25 to compute the coefficients
corresponding to ξ ∈ MT from the data {λs}λ∈NT

. To establish that N is
local and stable, we note that there exists a constant K1 depending only
on the smallest angle in △ such that for all ξ ∈ T ,

|cξ| ≤ K1

2r∑

ν=0

|T |ν |f |ν,T .

Theorem 8.3 shows that S
r,2r
4r+1

(△) is a macro-element space in the
sense of Definition 5.27. In particular, for each macro-triangle T ∈ △, all
coefficients of s|T can be computed from the values of s and its derivatives
at points in T . The theorem also shows that for any function f ∈ C2r(Ω),
there is a unique spline s ∈ S

r,2r
4r+1

(△) solving the Hermite interpolation
problem

λs = λf, all λ ∈ N ,

or equivalently,

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all 0 ≤ α+ β ≤ 2r and v ∈ V ,

Di
ue
s(ηi

j,e) = Di
ue
f(ηi

j,e), all j = 1, . . . , i, 1 ≤ i ≤ r, and e ∈ E ,

s(ξT
ijk) = f(ξT

ijk), all i, j, k > r and T ∈ △.

This defines a linear projector Ir
P mapping C2r(Ω) onto S

r,2r
4r+1

(△), and in
particular, Ir

P reproduces polynomials of degree 4r+ 1. We can now apply
Theorem 5.26 to establish the following error bound.

Theorem 8.4. For every f ∈ Cm+1(Ω) with 2r − 1 ≤ m ≤ 4r + 1,

‖Dα
xD

β
y (f − Ir

P f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

Proof: Fix T ∈ △. Since N is a stable local NMDS, it follows from
Theorem 5.26 that

‖Dα
xD

β
y (f − Irf)‖T ≤ K2 |T |

m+1−α−β |f |m+1,T ,

and taking the maximum over T ∈ △ immediately gives the global result.
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Suppose M is the MDS of Theorem 8.1. Then by Theorem 5.21, the
corresponding M-basis {ψξ}ξ∈M is a stable local basis for Sr,2r

4r+1
(△), where

supp(ψξ) ⊆






star(v), if ξ ∈ Mv for some vertex v,

Te ∪ T̃e, if ξ ∈ Me for some edge e,

T, if ξ ∈ MT for some triangle T .

Here Te is the triangle associated with the edge e, and T̃e is the second
triangle containing e if e is an interior edge.

The N -basis (5.24) associated with the nodal MDS N of Theorem 8.3
provides a different stable local basis for S

r,2r
4r+1

(△).

8.2. Clough–Tocher Macro-element Spaces

Given a triangulation △ of a domain Ω, let △CT be the corresponding
Clough–Tocher refinement of △ as described in Definition 4.16. Let V and
E be the sets of vertices and edges of △, respectively, and let Vc := {v

T
}T∈△

be the set of barycenters used to form △CT . In this section we shall work
with the following Cr Clough–Tocher macro-element space:

Sr(△CT ) := {s ∈ Sr
d(△CT ) : s ∈ Cρ(v), all v ∈ V ,

s ∈ Cµ(v), all v ∈ Vc},

where

(ρ, µ, d) :=

{
(3ℓ, 5ℓ+ 1, 6ℓ+ 1), if r = 2ℓ,

(3ℓ+ 1, 5ℓ+ 2, 6ℓ+ 3), if r = 2ℓ+ 1.
(8.2)

Let V , E, and N be the numbers of vertices, edges, and triangles
of △, respectively. For each v ∈ V , let Tv be some triangle with vertex
at v, and let Mv := Dρ(v) ∩ Tv. For each edge e := 〈v2, v3〉 of △, let
Te := 〈v1, v2, v3〉 be some triangle containing that edge, and let Me :=
{ξTe

ijk : 1 ≤ i ≤ r, and j, k ≤ d− ρ− 1}. Finally, for each macro-triangle T ,

let T̂ be one of the subtriangles of T , and let MT := DT̂
r−2

(v
T
).

Theorem 8.5. For all r ≥ 1,

dim Sr(△CT ) =

(
ρ+ 2

2

)
V +

(
r + 1

2

)
E +

(
r

2

)
N,

and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

T∈△

MT

is a stable local minimal determining set.
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Proof: We begin by considering the case where △ consists of the Clough–
Tocher split T

CT
of a single triangle T . We first show that in this case M

is a determining set for Sr(TCT
). Let s ∈ Sr(TCT

) and suppose we fix its
coefficients corresponding to M. Then for each vertex v of T , using the Cρ

supersmoothness at v, we can use Lemma 5.10 to compute all coefficients of
s corresponding to domain points in the disk Dρ(v). Now for each edge e :=
〈u, v〉 of T , by the definition of Me, we have fixed all remaining coefficients
of s corresponding to domain points in the set Er(e) := {ξ : dist(ξ, e) ≤

r and ξ 6∈ Dρ(u) ∪ Dρ(v)}.

We now claim that all remaining coefficients of s are determined, i.e.,
those corresponding to domain points in the disk Dµ(v

T
). We can re-

gard these coefficients as the coefficients of a spline defined on the triangle
T̃ := 〈u1, u2, u3〉, where ui := (µvi + (d − µ)v

T
)/d, i = 1, 2, 3. By the Cµ

supersmoothness at v
T
, this spline can also be viewed as a polynomial p

of degree µ which has been subjected to subdivision using the split point
v

T
. It suffices to show that p ≡ 0 under the assumption that all coefficients

corresponding to M have been set to zero. In this case, the coefficients of p
corresponding to domain points that lie within a distance ℓ of the edges of T̃
are zero, and so p and its cross derivatives up to order ℓ vanish on each of the
three edges of T̃ . By Bezout’s theorem, it follows that p = aℓ+1

1
aℓ+1

2
aℓ+1

3
q,

where ai is a linear polynomial that vanishes on the i-th edge of T̃ , and q is
a polynomial of degree µ−3(ℓ+1) = r−2. Now setting the coefficients of s
corresponding to MT to zero implies that Dα

xD
β
y s(vT

) = Dα
xD

β
y p(vT

) = 0
for 0 ≤ α+ β ≤ r − 2. It follows that q ≡ 0, and thus also p ≡ 0.

We have shown that M is a determining set for Sr(TCT
). We now show

that this determining set is minimal. We distinguish the cases where r is
even and odd. Suppose r = 2ℓ. To show that M is minimal, we show that
its cardinality is equal to the dimension of S2ℓ(TCT

). It is easy to check
that in this case

#M =
43ℓ2 + 31ℓ+ 6

2
.

Now consider the superspline space S2ℓ
6ℓ+1

(T
CT

) ∩ C5ℓ+1(v
T
). By Theo-

rem 9.7, the dimension of this space is (46ℓ2 + 34ℓ + 6)/2. Our space
S2ℓ(TCT

) is the subspace which belongs to C3ℓ(vi) for i = 1, 2, 3. Enforcing
this supersmoothness requires an additional 3(ℓ2+ℓ)/2 conditions, and thus

46ℓ2 + 34ℓ+ 6

2
−

3(ℓ2 + ℓ)

2
≤ dim S2ℓ(TCT

) ≤
43ℓ2 + 31ℓ+ 6

2
.

Since the expression on the left equals the one on the right, we conclude
that it is equal to the dimension of S2ℓ(TCT

). It follows from Theorem 5.13
that M is an MDS for S2ℓ(TCT

). The proof that M is an MDS for Sr(TCT
)
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in the case r = 2ℓ+ 1 is very similar. In this case,

#M =
43ℓ2 + 65ℓ+ 24

2
,

and S2ℓ+1(TCT
) is the subspace of S2ℓ+1

6ℓ+3
(T

CT
) ∩ C5ℓ+2(v

T
) which belongs

to C3ℓ+1(vi) for i = 1, 2, 3. Enforcing this supersmoothness requires an
additional 3(ℓ2 + ℓ)/2 conditions, and thus

46ℓ2 + 68ℓ+ 24

2
−

3(ℓ2 + ℓ)

2
≤ dim S2ℓ+1(TCT

) ≤
43ℓ2 + 65ℓ+ 24

2
.

Since the expression on the left equals the one on the right, we conclude
that it is equal to the dimension of S2ℓ+1(TCT

). This proves M is an MDS
for S2ℓ+1(TCT

).
We now return to the case where △CT is the Clough–Tocher refinement

of an arbitrary triangulation △. Suppose we have assigned values to the
coefficients {cξ}ξ∈M of s ∈ Sr(△CT ). Then for each v ∈ V , in view of
the Cρ supersmoothness at v, the coefficients of s corresponding to domain
points in Dρ(v) are consistently determined by Lemma 5.10. Moreover, for
each edge e, all of the coefficients associated with domain points in Er(e) :=
{ξ : dist(ξ, e) ≤ r, ξ 6∈ Dρ(u) ∪Dρ(v)} are also determined. Coefficients in
two different such sets Er(e) and Er(ẽ) may be connected by smoothness
conditions through the interior of a macro-triangle, and so it is not obvious
a priori that all smoothness conditions are satisfied. But as shown above,
for any triangle T := 〈v1, v2, v3〉 with edges e1, e2, e3, we can choose the
coefficients in the sets Dρ(vi), Er(ei), and MT arbitrarily, and still satisfy
all smoothness conditions inside T .

We have shown that M is a consistent determining set for Sr(△CT ),
and it follows from Theorem 5.15 that it is an MDS. Theorem 5.13 then
implies that the dimension of Sr(△CT ) is equal to the cardinality of M,
which is easily seen to be given by the formula in the statement of the
theorem.

We now show that M is local in the sense of Definition 5.16. Suppose
η 6∈ M lies in the triangle Tη. If η ∈ Dρ(v) for some vertex, then the set Γη

in the definition is just Mv ⊂ star(v) ⊂ star(Tη). Now suppose η ∈ Er(e)
for some edge e := 〈u, v〉. In this case Γη = Mu ∪Mv ∪Me ⊂ star(Tη).
Finally, if η is one of the remaining domain points in a macro-triangle
Tη := 〈v1, v2, v3〉 with edges e1, e2, e3, then Γη = Mv1

∪ Mv2
∪ Mv3

∪

Me1
∪Me2

∪Me3
∪MT ⊂ star(Tη). All of the computations mentioned

above are stable with a constant depending on the smallest angle in △CT ,
which by Lemma 4.17 is bounded below by a constant times the smallest
angle in △.

The space S1(△CT ) is exactly the same as the space S1

3
(△CT ) discussed

in Section 6.2. However, the space S2(△CT ) is not the same as the C2
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macro-element space discussed in Section 7.2. That space is an example of
a different family of macro-element spaces to be discussed in Section 8.3.

For the Clough–Tocher split T
CT

of a single triangle, Table 8.2 shows
the values of r, ρ, µ, d and dim Sr(TCT

) for r ≤ 8. Figure 8.2 shows the
minimal determining sets for r = 3, . . . , 6, where the points in Mv, Me,
and MT are marked with dots, triangles, and diamonds, respectively. To
show the supersmoothness, we have shaded the disks Dρ(vi) and Dµ(v

T
).

Since Sr(△CT ) has a stable local MDS, we can use Theorem 5.19 to
prove that it has full approximation power.

Theorem 8.6. Given r ≥ 0, let d be as in (8.2). Then for every f ∈

Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ d, there exists a spline sf ∈

Sr(△CT ) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for Sr(△CT ). For
each edge e := 〈v, u〉 of △, let Due

be the cross-boundary derivative asso-
ciated with the unit vector ue obtained by rotating e ninety degrees in the
counterclockwise direction. Let ηi

j,e be points on e defined as in (8.1) for
i = 1, . . . , r. For each triangle T , let v

T
be its barycenter, and for any point

t, let εt be point evaluation at t.

Theorem 8.7. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

T∈△

NT (8.3)

is a stable local nodal minimal determining set for Sr(△CT ), where

1) Nv := {εvD
α
xD

β
y }0≤α+β≤ρ,

2) Ne :=
⋃r

i=1
{εηi

j,e
Di

ue
}i

j=1
,

3) NT := {εv
T
Dα

xD
β
y }0≤α+β≤r−2.

Proof: It is easy to check that the cardinality of N is equal to the dimen-
sion of Sr(△CT ) as given in Theorem 8.5. Thus, it suffices to show that
the values {λs}λ∈N determine the coefficients {cξ}ξ∈M for s ∈ Sr(△CT ),
where M is the MDS in Theorem 8.5. First, for every vertex v of △, we
can use the formulae (2.37) to determine the coefficients of s correspond-
ing to domain points in Mv from the data {λs}λ∈Nv

. Similarly, for all
e ∈ E , Lemma 2.21 can be used to compute all coefficients associated with
Me from the data {λ}λ∈Ne

. Finally, for each triangle T ∈ △, we combine
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Fig. 8.2. Minimal determining sets for Sr(TCT
) for r = 3, 4, 5, 6.

r ρ µ d dim

1 1 2 3 12

2 3 6 7 40

3 4 7 9 66

4 6 11 13 120

5 7 12 15 163

6 9 16 19 243

7 10 17 21 303

8 12 21 25 409

Tab. 8.2. Dimensions of the spaces Sr(TCT
).
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Lemma 2.27 with Lemma 2.25 to compute the coefficients corresponding
to MT from the data {λs}λ∈NT

. By construction, it is easy to see that if
ξ ∈ M∩ T , then

|cξ| ≤ K1

ρ∑

ν=0

|T |ν |f |ν,T .

This shows that N is local and stable.

Theorem 8.7 shows that Sr(△CT ) is a macro-element space in the sense
of Definition 5.27. In particular, for each macro-triangle T ∈ △, all coef-
ficients of s|T can be computed from the values of s and its derivatives at
points in T . The theorem also shows that for any function f ∈ C2m(Ω),
there is a unique spline s ∈ Sr(△CT ) solving the Hermite interpolation
problem

λs = λf, all λ ∈ N ,

or equivalently,

Dα
xD

β
y s(v) = Dα

xD
β
yf(v), all 0 ≤ α+ β ≤ ρ and v ∈ V ,

Di
ue
s(ηi

j,e) = Di
ue
f(ηi

j,e), all j = 1, . . . , i, 1 ≤ i ≤ r, and e ∈ E ,

Dα
xD

β
y s(vT

) = Dα
xD

β
y f(v

T
), all 0 ≤ α+ β ≤ r − 2 and T ∈ △.

This defines a linear projector I r
CT

mapping Cρ(Ω) onto Sr(△CT ). In par-
ticular, I r

CT
reproduces polynomials of degree d, where d is as in (8.2). We

can now apply Theorem 5.26 to establish the following result whose proof
is similar to the proof of Theorem 8.4.

Theorem 8.8. For every f ∈ Cm+1(Ω) with ρ− 1 ≤ m ≤ d,

‖Dα
xD

β
y (f − I r

CT
f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

Suppose M is the MDS of Theorem 8.5. Then by Theorem 5.21 the
corresponding M-basis {ψξ}ξ∈M is a stable local basis for Sr(△CT ), where

supp(ψξ) ⊆





star(v), if ξ ∈ Mv for some vertex v,

Te ∪ T̃e, if ξ ∈ Me for some edge e,

T, if ξ ∈ MT for some triangle T .

Here Te is the triangle associated with the edge e, and T̃e is the second
triangle containing e if e is an interior edge. The N -basis in (5.24) asso-
ciated with the nodal MDS N of Theorem 8.7 provides a different stable
local basis for Sr(△CT ).
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8.3. CT Spaces with Natural Degrees of Freedom

In this section we define a family of subspaces S̃r(△CT ) of the spaces
Sr(△CT ) of the previous section which have fewer degrees of freedom, but
the same approximation power. In addition, these new spaces have the
advantage that they are parametrized by natural degrees of freedom, i.e.,
they have a nodal minimal determining set which involves evaluation only
at points on the edges of △.

For each r ≥ 1, let ℓ, d, ρ, µ be as in the previous section. To define the
spaces of interest in this section, we make use of the smoothness functionals
introduced in Section 5.5.2. For each triangle T := 〈v1, v2, v3〉 in △, let
êi := 〈vi, vT

〉 for i = 1, 2, 3, be the interior edges forming the Clough–
Tocher split of T . Let

T
T,1

:=
r−ℓ−1⋃

i=1

{
τ

ρ−r+ℓ+i+j+1

ρ+i+1,ê1

}i

j=1
∪

ℓ⋃

i=1

{
τ

ρ+i+j
d−2ℓ+i−1,ê1

}ℓ−i+1

j=1
,

T
T,2

:=

r−ℓ−1⋃

i=1

{
τ

ρ−r+ℓ+i+j+1

ρ+i+1,ê2

}i

j=1
∪

ℓ−1⋃

i=1

{
τ

ρ+i+j
d−2ℓ+i−1,ê2

}ℓ−i

j=1
,

and let

S̃r(△CT ) := {s ∈ Sr(△CT ) : τs = 0, all τ ∈ T
T

and all T ∈ △ }

with T
T

:= T
T,1

∪ T
T,2

. Let V and E be the sets of vertices and edges of △,
and let V and E be their cardinalities, respectively.

Theorem 8.9. For all r ≥ 1,

dim S̃r(△CT ) =

(
ρ+ 2

2

)
V +

(
r + 1

2

)
E,

and
M :=

⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set, where Mv and Me are as in
Theorem 8.5.

Proof: We begin by considering the case where △ consists of the Clough–
Tocher split T

CT
of a single triangle T := 〈v1, v2, v3〉 into three subtriangles

T [i] := 〈v
T
, vi, vi+1〉, i = 1, 2, 3. We first deal with the case where r = 2ℓ,

and begin by showing that M is a determining set for S̃2ℓ(TCT
). We will

show later that M is minimal.
Suppose that we set the coefficients cξ of s ∈ S̃2ℓ(TCT

) for all ξ ∈ M.
Then by the Cρ supersmoothness at the vertices of T , we can compute
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all coefficients of s corresponding to domain points in the disks Dρ(vi),
i = 1, 2, 3.

Next, we use Lemma 2.30 to solve for the undetermined coefficients
corresponding to domain points on the rings R3ℓ+i(v1) and R3ℓ+i(v2) for
i = 1, . . . , ℓ. On each ring this involves solving a nonsingular system of 2(ℓ+
i) − 1 linear equations. Note that the spline satisfies all of the smoothness
conditions required for the lemma, since either they are already implicit in
the supersmoothness of the space, or have been explicitly enforced in the
definition of S̃2ℓ(TCT

).

Continuing, we now compute undetermined coefficients on the ring
R4ℓ+1(v1). This involves solving a (4ℓ+ 1) × (4ℓ+ 1) system. Then we do
the ring R4ℓ+1(v2) which involves solving a 4ℓ× 4ℓ system since R4ℓ+1(v1)
and R4ℓ+1(v2) overlap in one point. We continue alternating between rings
around v1 and v2. In particular, for each i = 2, . . . , ℓ we do the ring
R4ℓ+i(v1) followed by the ring R4ℓ+i(v2). The first of these involves solving
a (4ℓ+1)×(4ℓ+1) system, and the second involves solving a 4ℓ×4ℓ system.

Next we successively compute undetermined coefficients on each of
the rings R3ℓ+i(v3) for i = 1, . . . , 3ℓ + 1. Each of these involves solving a
(2ℓ+1)× (2ℓ+1) system. Finally, the remaining coefficients in T [1] can be
computed from the smoothness conditions across the edge ê1. We have now
computed all coefficients of s, and so M is a determining set for S̃r(TCT

).

To show that M is a minimal determining set for S̃2ℓ(TCT
), we show that

its cardinality is equal to the dimension of S̃2ℓ(TCT
). It is easy to check

that

#M =
39ℓ2 + 33ℓ+ 6

2
.

Now consider the superspline space S2ℓ
6ℓ+1

(T
CT

) ∩ C5ℓ+1(v
T
). By Theo-

rem 9.7, the dimension of this space is (46ℓ2 + 34ℓ + 6)/2. Our space

S̃2ℓ(TCT
) is the subspace which satisfies the 2ℓ2 − ℓ special conditions and

the supersmoothness C3ℓ(vi) for i = 1, 2, 3. Enforcing this supersmoothness
at v1, v2, v3 requires an additional 3(ℓ2 + ℓ)/2 conditions, and thus

46ℓ2 + 34ℓ+ 6

2
−

4ℓ2 − 2ℓ

2
−

3(ℓ2 + ℓ)

2
≤ dim S̃2ℓ(TCT

) ≤
39ℓ2 + 33ℓ+ 6

2
.

Since the expression on the left equals the one on the right, we conclude
that it is equal to the dimension of S̃2ℓ(TCT

). This proves M is an MDS

for S̃2ℓ(TCT
).

The proof that M is an MDS for S̃r(TCT
) in the case r = 2ℓ+1 is very

similar. In this case,

#M =
39ℓ2 + 63ℓ+ 24

2
,
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and S̃2ℓ+1(TCT
) is the subspace of S2ℓ+1

6ℓ+3
(T

CT
) ∩ C5ℓ+2(v

T
) which satisfies

2ℓ2 + ℓ special conditions along with the supersmoothness C3ℓ+1(vi) for
i = 1, 2, 3. Enforcing this supersmoothness requires an additional 3(ℓ2+ℓ)/2
conditions, and thus

46ℓ2 + 68ℓ+ 24

2
−

4ℓ2 + 2ℓ

2
−

3(ℓ2 + ℓ)

2
≤ dim S̃2ℓ+1(TCT

)

≤
39ℓ2 + 63ℓ+ 24

2
.

Since the expression on the left equals the one on the right, we conclude
that it is equal to the dimension of S̃2ℓ+1(TCT

). This proves M is an MDS

for S̃2ℓ+1(TCT
).

We now return to the case where △CT is the Clough–Tocher refinement
of an arbitrary triangulation △. Suppose we have assigned values to the
coefficients {cξ}ξ∈M of s ∈ S̃r(△CT ). Then for each v ∈ V , in view of
the Cρ supersmoothness at v, the coefficients of s corresponding to domain
points in Dρ(v) are consistently determined by Lemma 5.10. Moreover, for
each edge e := 〈u, v〉, all of the coefficients associated with domain points in
Er(e) := {ξ : dist(ξ, e) ≤ r and ξ 6∈ Dρ(u) ∪ Dρ(v)} are also determined.
Coefficients in two different such sets Er(e) and Er(ẽ) may be connected
by smoothness conditions through the interior of a macro-triangle, and so
it is not obvious a priori that all smoothness conditions are satisfied. But
as shown above, for any triangle T := 〈v1, v2, v3〉 with edges e1, e2, e3, we
can choose the coefficients in the sets Dρ(vi) and Er(ei) arbitrarily, and
still satisfy all smoothness conditions inside T .

We have shown that M is a consistent determining set for S̃r(△CT ),
and it follows from Theorem 5.15 that it is an MDS. Theorem 5.13 then
implies that the dimension of S̃r(△CT ) is equal to the cardinality of M,
which is easily seen to be given by the formula stated in the theorem.

The proof that M is local and stable follows along the same lines as
the proof of Theorem 8.5, except that here we also have to take account of
the stability of the computations involving Theorem 2.30.

Figure 8.3 illustrates the proof of Theorem 8.9 for a single macro-
triangle in the cases r = 3, 4. Points in the sets Mv are marked with
black dots, while those in the sets Me are marked with triangles. The tips
of the extra smoothness conditions are marked with brackets. The steps of
the computation of coefficients associated with interior domain points are
indicated by straight lines drawn through the points. Table 8.3 lists the
dimensions of the spaces S̃r(TCT

) for 1 ≤ r ≤ 8.

Since S̃r(△CT ) has a stable local MDS, we can apply Theorem 5.19 to

conclude that S̃r(△CT ) has full approximation power.
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Fig. 8.3. Minimal determining sets for S̃r(TCT
) for r = 3, 4.

r ρ µ d dim

1 1 2 3 12

2 3 6 7 39

3 4 7 9 63

4 6 11 13 114

5 7 12 15 153

6 9 16 19 228

7 10 17 21 283

8 12 21 25 381

Tab. 8.3. Dimensions of the spaces S̃r(TCT
).
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Theorem 8.10. For every f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ d,

there exists a spline sf ∈ S̃r(△CT ) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

The following theorem can be proved in the same way as Theorem 8.7.

Theorem 8.11. Let

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne,

where Nv and Ne are as in Theorem 8.7. Then N is a stable local nodal
minimal determining set for S̃r(△CT ).

Theorem 8.11 shows that S̃r(△CT ) is a macro-element space in the
sense of Definition 5.27. In particular, for each macro-triangle T ∈ △, all
coefficients of s|T can be computed from the values of s and its derivatives
at points in T . The theorem also shows that for any function f ∈ Cρ(Ω),

there is a unique spline s ∈ S̃r(△CT ) solving the Hermite interpolation
problem

λs = λf, all λ ∈ N ,

or equivalently,

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all 0 ≤ α+ β ≤ ρ and v ∈ V ,

Di
ue
s(ηi

j,e) = Di
ue
f(ηi

j,e), all j = 1, . . . , i, 1 ≤ i ≤ r, and e ∈ E .

This defines a linear projector Ĩ r
CT

mapping Cρ(Ω) onto S̃r(△CT ). In par-

ticular, Ĩ r
CT

reproduces polynomials of degree d, where d is as in (8.2). We
can now apply Theorem 5.26 to establish the following error bound.

Theorem 8.12. For every function f ∈ Cm+1(Ω) with ρ− 1 ≤ m ≤ d,

‖Dα
xD

β
y (f − Ĩ r

CT
f)‖Ω ≤ K |△|m+1−α−β|f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.



214 8. Cr Macro-element Spaces

Suppose M is the MDS of Theorem 8.9. Then by Theorem 5.21, the
corresponding M-basis {ψξ}ξ∈M is a stable local basis for S̃r(△CT ), where

supp(ψξ) ⊆

{
star(v), if ξ ∈ Mv for some vertex v,

Te ∪ T̃e, if ξ ∈ Me for some edge e.

Here Te is the triangle associated with the edge e, and T̃e is the second tri-
angle containing e if e is an interior edge. The N -basis in (5.24) associated
with the nodal MDS N of Theorem 8.11 provides a different stable local
basis for S̃r(△CT ).

8.4. Powell–Sabin Macro-element Spaces

In this section we discuss a family of Cr splines which is based on Powell–
Sabin refinements of triangulations. Let △ be a triangulation of a domain
Ω, and let △PS be the corresponding Powell–Sabin refinement of △ as
described in Definition 4.18. Let V and E be the sets of vertices and edges
of △. Let Vc := {v

T
}T∈△ be the set of incenters which are used to form

the Powell–Sabin splits, and let W be the set of vertices introduced in the
interiors of edges of △. Let Ẽ be the set of edges e of △PS of the form
e := 〈w, v

T
〉, where w ∈ W . Given r > 0, let d, ρ, µ be as in Table 8.4.

Then we define the Cr Powell–Sabin macro-element space to be

Sr(△P S) := {s ∈ Sr
d(△PS) : s ∈ Cρ(v) all v ∈ V ,

s ∈ Cµ(v), all v ∈ Vc,

s ∈ Cµ(e), all e ∈ Ẽ}.

(8.4)

r d ρ µ m n δ

4ℓ+ 1 9ℓ+ 2 6ℓ+ 1 6ℓ+ 1 2ℓ ℓ 0
4ℓ+ 2 9ℓ+ 5 6ℓ+ 3 6ℓ+ 3 2ℓ+ 1 ℓ 3ℓ+ 1
4ℓ+ 3 9ℓ+ 7 6ℓ+ 4 6ℓ+ 5 2ℓ+ 1 ℓ+ 1 0
4ℓ+ 4 9ℓ+ 10 6ℓ+ 6 6ℓ+ 7 2ℓ+ 2 ℓ+ 1 3ℓ+ 3

Tab. 8.4. Parameters for the C
r Powell–Sabin macro-element space.

Let V , E, and N be the numbers of vertices, edges, and triangles of
△, respectively. For each v ∈ V , let Tv be some triangle with vertex at v.
For each edge e of △, let Te := 〈v

T
, u, we〉, where u is a vertex and v

T
is

the incenter of some triangle T ∈ △ containing e. For each triangle T ∈ △,
let ET be the set of edges of T . Let r, d, ρ, µ,m, n, δ be as in Table 8.4.
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Theorem 8.13. For all r ≥ 1,

dim Sr(△P S) =

(
ρ+ 2

2

)
V +

(
n+ 1

2

)
E +

[
3

(
n

2

)
+ δ

]
N.

Moreover, the set

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

T∈△

(
M

1

T ∪M2

T ∪M3

T

)

is a stable local minimal determining set for Sr(△P S), where

1) Mv := Dρ(v) ∩ Tv,

2) Me :=
r⋃

j=d−µ+1

{ξTe

j,k,d−j−k}
j+µ−d−1

k=0
,

3) M1

T :=
⋃

e∈ET

d−2m−2⋃

j=r+1

{ξ
Te

j,k,d−j−k}
d−2m−2−j
k=0

,

4) M2

T :=

3⋃

i=1

{jv
T

+ (d− j)vi

d

}d−m−1

j=ρ+1

, if r is even,

5) M3

T := {v
T
}, if r = 2 (mod 4).

Proof: We begin by considering the case where △ consists of the Powell–
Sabin split T

PS
of a single triangle T := 〈v1, v2, v3〉. We first show that M

is a determining set for Sr(TPS
). We prove later that it is minimal. Let

s ∈ Sr(TP S
), and suppose we fix its coefficients corresponding to M. For

each vertex v of △, by the Cρ supersmoothness at v, we can use Lemma 5.10
to compute all coefficients of s corresponding to domain points in the disk
Dρ(v).

The analysis now divides into four cases depending on r. We begin with
the proof for r = 4ℓ+1. For each edge e := 〈u, v〉 of T , we compute the co-
efficients associated with domain points in the set Er(e) := {ξ : dist(ξ, e) ≤
r, ξ 6∈ Dρ(u) ∪ Dρ(v)} using Lemma 2.30 and the Cµ smoothness across
the edge 〈we, vT

〉, where we is the vertex in the interior of e. At this point
we can use the Cr smoothness across the edges 〈vi, vT

〉 to compute the
coefficients on the rings Rρ+1(vi) for i = 1, 2, 3. Then for each edge e of
T , we use Lemma 2.30 to compute the remaining coefficients corresponding
to domain points in the row of points with distance r + 1 to e. For each
j = 2, . . . , d−m− 1, we repeat this process, first doing the rings Rρ+j(vi),
then the rows of domain points at distance r + j from the edges of T .

We have now shown that M is a determining set for S4ℓ+1(TPS
). To

show that it is a minimal determining set for S4ℓ+1(TP S
), we show that its

cardinality is equal to the dimension of S4ℓ+1(TPS
). It is easy to check that

#M = 57ℓ2 + 45ℓ+ 9.
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By Theorem 9.7,

dim Sr
d(T

PS
) ∩ Cµ(v

T
) =

(
µ+ 2

2

)
+ 6

[(
d− r + 1

2

)
−

(
µ− r + 1

2

)]
,

which in this case reduces to 81ℓ2+54ℓ+9. Enforcing the Cρ supersmooth-
ness at the vertices requires 3

(
2ℓ+1

2

)
special conditions, and enforcing Cµ

supersmoothness across the edges 〈v
T
, wi〉 requires 3(µ− r)(d − µ) special

conditions. Thus,

81ℓ2 +54ℓ+9−3(2ℓ2 + ℓ)−3(6ℓ2 +2ℓ) ≤ dim S4ℓ+1(TPS
) ≤ 57ℓ2 +45ℓ+9.

Since the expression on the left equals the one on the right, we conclude
that it is equal to the dimension of S4ℓ+1(TPS

). This proves M is an MDS
for Sr(TPS

) in the case r = 4ℓ+ 1.
A similar proof shows that M is an MDS for Sr(TPS

) in the other
three cases, where

dim Sr(TPS
) =






57ℓ2 + 84ℓ+ 31, r = 4ℓ+ 2,

57ℓ2 + 105ℓ+ 48, r = 4ℓ+ 3,

57ℓ2 + 144ℓ+ 90, r = 4ℓ+ 4.

We now return to the general case where △P S is the Powell–Sabin
split of an arbitrary triangulation △. Suppose we have assigned values
to the coefficients {cξ}ξ∈M of a spline s ∈ Sr(△P S). As before, we use
the Cρ supersmoothness at each vertex v coupled with Lemma 5.10 to
compute the coefficients of s corresponding to the disk Dρ(v). For each
interior edge e, we have already set the coefficients corresponding to Me.
Then using the Cr smoothness conditions across e, we can compute the
coefficients corresponding to domain points in the analogous set M̃e in the
other triangle sharing the edge e.

For each triangle T , we now appeal to the above argument to show
that all coefficients of s|T are determined while satisfying all smoothness
conditions across the interior edges of T . It remains to check that if T
and T̃ are neighboring triangles sharing an edge e, then all Cr smooth-
ness conditions across e are satisfied. This follows from the fact that the
Powell–Sabin refinement is formed by connecting the incenters of T and T̃
with a straight line, cf. the proof of Theorem 6.9. We conclude that M

is a consistent MDS for Sr(△P S), and thus by Theorem 5.15 is a minimal
determining set. Theorem 5.13 then implies that the dimension of Sr(△PS)
is equal to the cardinality of M, which is easily seen to be given by the
formula in the statement of the theorem.

The fact that M is local follows from the observation that if η 6∈ M

is a domain point in a triangle Tη, then cη can be determined from coef-
ficients associated with domain points ξ ∈ M lying in triangles touching
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Tη. It follows that the set Γη in Definition 5.16 is contained in star(Tη).
The stability of M follows from the fact that all coefficients {cη}η 6∈M are
computed from smoothness conditions using Lemmas 2.29 and 2.30. The
constant of stability depends on the smallest angle in △PS. As shown in
Lemma 4.20, this is bounded below by the smallest angle in △.

The family Sr(△PS) includes the space S1(△PS) discussed in Sec-
tion 6.3. However, it does not include the space S2(△P S) discussed in
Section 7.3, as that space involves an extra smoothness condition. It be-
longs to a family of Powell–Sabin macro-element spaces with natural degrees
of freedom to be discussed in the following section. For the Powell–Sabin
split T

PS
of a single triangle, Table 8.5 shows the values of r, ρ, µ, d and

dim Sr(TPS
) for 1 ≤ r ≤ 10. Figure 8.4 shows the minimal determining

sets for r = 3, 4, 5, 6, where the points in Mv, Me, and MT are marked
with black dots, triangles, and squares, respectively. To help understand
the supersmoothness, we have shaded the disks Dρ(vi) and Dµ(v

T
).

Since Sr(△P S) has a stable local MDS, we can apply Theorem 5.19 to
show that it has full approximation power.

Theorem 8.14. For every f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ d,
there exists a spline sf ∈ Sr(△P S) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

We now describe a nodal minimal determining set for Sr(△P S). Let
r, d, ρ, µ,m, n be as in Table 8.4. For each edge e of △, let Due

be the
cross-boundary derivative associated with a unit vector ue corresponding
to rotating e by ninety degrees in a counterclockwise direction, and let we

be the vertex of △P S on e. For each triangle T ∈ △, let v
T

be its incenter,
and let ET be its set of edges. Let εt be the point evaluation functional
which produces the value of a function at t.

Theorem 8.15. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

T∈△

(
N 1

T ∪ N 2

T ∪ N 3

T

)

is a stable local nodal minimal determining set for Sr(△PS), where

1) Nv := {εvD
α
xD

β
y }0≤α+β≤ρ,

2) Ne :=
r⋃

j=d−µ+1

{
εwe

D
j

〈we,v
T
〉D

k
e

}j+µ−d−1

k=0
,

3) N 1

T :=
⋃

e∈ET

d−2m−2⋃

j=r+1

{
εwe

D
j

〈we,v
T
〉D

k
ue

}d−2m−2−j

k=0
,
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Fig. 8.4. Minimal determining sets for Sr(TPS
) for r = 3, 4, 5, 6.

r ρ µ d dim

1 1 2 2 9

2 3 3 5 31

3 4 5 7 48

4 6 7 10 90

5 7 7 11 111

6 9 9 14 172

7 10 11 16 210

8 12 13 19 291

9 13 13 20 327

10 15 15 23 427

Tab. 8.5. Dimensions of the spaces Sr(T
PS

).
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4) N 2

T :=

3⋃

i=1

{
εvi
D

j

〈vi,vT
〉

}d−m−1

j=ρ+1
, if r is even,

5) N 3

T := {εv
T
}, if r = 2 (mod 4).

Proof: It is easy to check that the cardinality of N is equal to the dimen-
sion of Sr(△PS) as given in Theorem 8.13. Thus, it suffices to show that
the values of {λs}λ∈N determine the coefficients {cξ}ξ∈M of s ∈ Sr(△PS),
where M is the MDS in that theorem. For each vertex v of △, we can use
the formulae (2.37) to determine all of the coefficients cξ of s corresponding
to domain points ξ ∈ Mv from the derivatives of s corresponding to Nv.
The formulae can also be used to compute all coefficients corresponding to
Me,M

1

T ,M
2

T ,M
3

T from the data associated with Ne,N
1

T ,N
2

T ,N
3

T . Con-
cerning stability, it is easy to check that (5.27) holds with m̄ := ρ if r is
odd, and m̄ := d−m− 1 if r is even.

Theorem 8.15 shows that Sr(△P S) is a macro-element space in the
sense of Definition 5.27. In particular, for each macro-triangle T ∈ △, all
coefficients of s|T can be computed from the values of s and its derivatives
at points in T . Then for any function f ∈ Cm̄(Ω), there is a unique spline
s ∈ Sr(△PS) solving the Hermite interpolation problem

λs = λf, all λ ∈ N .

This defines a linear projector I r
P S

mapping Cm̄(Ω) onto Sr(△P S). In par-
ticular, I r

P S
reproduces polynomials of degree d, where d is as in Table 8.4.

We can now apply Theorem 5.26 as in the proof of Theorem 8.8 to establish
the following error bound for this interpolation operator.

Theorem 8.16. For every function f ∈ Cm+1(Ω) with m̄− 1 ≤ m ≤ d,

‖Dα
xD

β
y (f − I r

P S
f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

Suppose M is the MDS of Theorem 8.13. Then by Theorem 5.21, the
corresponding M-basis {ψξ}ξ∈M is a stable local basis for Sr(△P S), where

supp(ψξ) ⊆





star(v), if ξ ∈ Mv for some vertex v of △,

Te ∪ T̃e, if ξ ∈ Me for some edge e of △,

T, if ξ ∈ M1

T ∪M2

T ∪M3

T for some triangle T ∈ △.

Here Te is the triangle associated with the edge e, and T̃e is the second tri-
angle containing e if e is an interior edge. The N -basis in (5.24) associated



220 8. Cr Macro-element Spaces

with the nodal MDS N of Theorem 8.15 provides an alternative local basis
for Sr(△PS).

8.5. PS Spaces with Natural Degrees of Freedom

In this section we discuss a family of Cr macro-element spaces defined on
Powell–Sabin triangulations which have fewer degrees of freedom than the
spaces described in Section 8.4, but have the same approximation power.
More importantly, the spaces here have nodal bases which involve only
natural degrees of freedom.

To define the spaces of interest, we need to distinguish eight cases
based on the value of r mod 8. For each ℓ ≥ 0, we define parameters as in
the following table.

r ρ µ d n1 n2 n3

8ℓ 12ℓ 12ℓ+ 1 18ℓ+ 1 ℓ 2ℓ 4ℓ+ 3
8ℓ+ 1 12ℓ+ 1 12ℓ+ 1 18ℓ+ 2 ℓ 2ℓ 4ℓ+ 2
8ℓ+ 2 12ℓ+ 3 12ℓ+ 3 18ℓ+ 5 ℓ 2ℓ+ 1 4ℓ+ 3
8ℓ+ 3 12ℓ+ 4 12ℓ+ 5 18ℓ+ 7 ℓ+ 1 2ℓ+ 1 4ℓ+ 4
8ℓ+ 4 12ℓ+ 6 12ℓ+ 7 18ℓ+ 10 ℓ+ 1 2ℓ+ 1 4ℓ+ 5
8ℓ+ 5 12ℓ+ 7 12ℓ+ 7 18ℓ+ 11 ℓ+ 1 2ℓ+ 1 4ℓ+ 4
8ℓ+ 6 12ℓ+ 9 12ℓ+ 9 18ℓ+ 14 ℓ+ 1 2ℓ+ 2 4ℓ+ 5
8ℓ+ 7 12ℓ+ 10 12ℓ+ 11 18ℓ+ 16 ℓ+ 1 2ℓ+ 2 4ℓ+ 6

Tab. 8.6. Parameters for the C
r Powell–Sabin macro-element space (8.5).

As in the previous section, we write V and E for the sets of vertices
and edges of △, Vc := {v

T
}T∈△ for the set of incenters used to form the

Powell–Sabin refinement, and W := {we}e∈E for the set of vertices inserted
in the interior of edges of △. For each triangle T := 〈v1, v2, v3〉 in △, let
ek := 〈vk, vT

〉 for k = 1, 2, 3, and let

T
T,1

:=

n1⋃

j=1

{τr+i
ρ+j,e1

, τr+i
ρ+j,e2

, τr+i
ρ+j,e3

}
mj

i=1
,

where

mj =

{
2j − 1, if r is even,

2j − 2, if r is odd.

In addition, let

T
T,2

:=

n2⋃

j=n1+1

(
{τr+i

ρ+j,e1
}

n3−2j
i=1

∪ {τr+i
ρ+j,e2

}
n3−2j−1

i=1
∪ {τr+i

ρ+j,e3
}

n3−2j−2

i=1

)
.
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and set T := T
T,1

∪ T
T,2

. The space of interest in this section is

S̃r(△P S) := {s ∈ Sr(△P S) : τs = 0, all τ ∈ T
T

and T ∈ △}, (8.5)

where Sr(△PS) is the Powell–Sabin space in Section 8.4. Let V and E be
the number of vertices and edges of △.

Theorem 8.17. For all r ≥ 1,

dim S̃r(△P S) =

(
ρ+ 2

2

)
V +

(
r + µ− d+ 1

2

)
E.

Moreover, the set

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a minimal determining set, where Mv and Me are as in Theorem 8.13.

Proof: The proof is similar to the proof of Theorem 8.13. We begin by
considering the case where △ consists of the Powell–Sabin split T

PS
of a

single triangle T := 〈v1, v2, v3〉. We first show that M is a determining

set for S̃r(TPS
), and show that it is minimal later. Let s ∈ S̃r(TPS

), and
suppose we fix its coefficients corresponding to M. For each vertex v ∈ V ,
coupling the Cρ supersmoothness at v with Lemma 5.10, we can compute
all coefficients of s corresponding to domain points in the disk Dρ(v).

Let ei := 〈vi, vi+1〉, i = 1, 2, 3, be the three edges of T , and write Ej,i

for the set of domain points ξ of s with dist(ξ, ei) = j. Then by the Cµ

smoothness across the edges 〈w, v
T
〉 with w ∈ W , we can use Lemma 2.30

to compute the µ undetermined coefficients corresponding to the domain
points in Ej,i for j = 0, . . . , r and i = 1, 2, 3. Next we compute the 2(ρ −
r+ j−1)+1 undetermined coefficients corresponding to the rings Rρ+j(vi)
for 1 ≤ j ≤ ρ and i = 1, 2, 3. The computation of the remaining unknown
coefficients of s divides into six cases.

Case 1: r = 8ℓ, 8ℓ + 1. We perform a cycle of computations. For each
j = n1 + 1, . . . , n2:

a) compute the 2(ρ− r + j − 1) + 1 remaining coefficients corresponding
to domain points on the ring Rρ+j(v1),

b) compute the d− r+ 2n1 − 2j + 1 remaining coefficients corresponding
to domain points in the rows Er+2(j−n1)−1,1 and Er+2(j−n1)−1,3,

c) compute the 2(ρ − r + j − 1) remaining coefficients corresponding to
domain points on the ring Rρ+j(v2),

d) compute the d− r+ 2n1 − 2j + 1 remaining coefficients corresponding
to domain points in the row Er+2(j−n1)−1,2,

e) compute the 2(ρ− r + j − 1) − 1 remaining coefficients corresponding
to domain points on the ring Rρ+j(v3),
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f) if j < n2, compute the d − r + 2n1 − 2j remaining coefficients corre-
sponding to domain points in the rows Er+2(j−n1),i for i = 1, 2, 3.

At this point the only remaining unknown coefficients correspond to domain
points inside the disk Dµ(v

T
). In view of the Cµ supersmoothness at v

T
,

we can consider these coefficients to be those of a polynomial p of degree
µ = 12ℓ+ 1 on a triangle T̃ := 〈u1, u2, u3〉 which has been subjected to a
Powell–Sabin split, where uk := (µvk + (d − µ)v

T
)/d, k = 1, 2, 3. Since we

have already computed all coefficients of s corresponding to domain points
in the disks Dρ+n2

(vi), this gives us all coefficients of p corresponding to
domain points in the disks D8ℓ(ui) for i = 1, 2, 3. These determine all
coefficients of p, and thus all remaining coefficients of s.

Case 2: r = 8ℓ+2. In this case we do the cycle of computations of Case 1
for j = n1 +1, . . . , n2 − 1. Next we compute the r+1 unknown coefficients
corresponding to domain points on the ring Rρ+n2

(v1). This gives us all
of the coefficients of a polynomial p of degree µ = 12ℓ + 3 in the disks
D8ℓ+2(u1) and D8ℓ+1(ui) for i = 2, 3. These determine all coefficients of p,
and hence all remaining coefficients of s.

Case 3: r = 8ℓ + 3. If ℓ > 0, we first compute the d − r − 1 unknown
coefficients corresponding to domain points in each of the rows Er+1,i for
i = 1, 2, 3. We then do the following cycle of computations. For each
j = n1 + 1, . . . , n2 − 1:

a) compute the 2(ρ− r + j − 1) + 1 remaining coefficients corresponding
to domain points on the ring Rρ+j(v1),

b) compute the d− r+ 2n1 − 2j + 1 remaining coefficients corresponding
to domain points in the rows Er+2(j−n1),1 and Er+2(j−n1),3,

c) compute the 2(ρ − r + j − 1) remaining coefficients corresponding to
domain points on the ring Rρ+j(v2),

d) compute the d− r+ 2n1 − 2j + 1 remaining coefficients corresponding
to domain points in the row Er+2(j−n1),2,

e) compute the 2(ρ− r + j − 1) − 1 remaining coefficients corresponding
to domain points on the ring Rρ+j(v3),

f) if j < n2, compute the d − r + 2n1 − 2j remaining coefficients corre-
sponding to domain points in the rows Er+2(j−p)+1,i, i = 1, 2, 3.

To complete the computation, we find the unknown coefficients correspond-
ing to domain points on the ring Rρ+n2

(v1), on the edge Er+2(n2−n1)−1,1

if n2 > n1, and on Rρ+n2
(v2). This gives us all coefficients of the degree

µ = 12ℓ+ 5 polynomial p in the disks D8ℓ+3(ui), i = 1, 2, and D8ℓ+2(u3).
These determine all coefficients of p, and thus all remaining coefficients of
s.

Case 4: r = 8ℓ+ 4, r = 8ℓ+ 5. We proceed as in Case 3, except now we
do the cycles for all j = n1 + 1, . . . , n2. This gives us all coefficients of the
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degree µ = 12ℓ+ 7 polynomial p in the disks D8ℓ+4(ui), i = 1, 2, 3. These
determine all coefficients of p, and hence all remaining coefficients of s.

Case 5: r = 8ℓ+6. We first compute the unknown coefficients correspond-
ing to domain points in the rows Er+1,i for i = 1, 2, 3, and then perform
the cycles as in Case 3 for j = n1 +1, . . . , n2−1. To complete the computa-
tion, we then compute the remaining coefficients corresponding to domain
points on the ring Rρ+n2

(v1). This gives us all coefficients of the degree
µ = 12ℓ + 9 polynomial p in the disks D8ℓ+6(v1) and D8ℓ+5(ui), i = 2, 3.
These determine all coefficients of p, and thus all remaining coefficients of
s.

Case 6: r = 8ℓ + 7. We begin by doing the cycles of Case 1 for j =
n1 + 1, . . . , n2 − 1. Then we compute the unknown coefficients correspond-
ing to domain points on Rρ+n2

(v1), on the edge Er+2(n2−n1)−1,1, and the
ring Rρ+n2

(v2). This gives us all coefficients of the degree µ = 12ℓ+11 poly-
nomial p in the disks D8ℓ+7(vi), i = 1, 2, and D8ℓ+6(u3). These determine
all coefficients of p, and hence all remaining coefficients of s.

This completes the proof that M is a determining set for S̃r(TPS
). We

now show that it is minimal. It is easy to check that

#M = 3

(
ρ+ 2

2

)
+ 3

(
r + µ− d+ 1

2

)
,

which reduces to the numbers in the last column of Table 8.7. Now for
each r, the spline space S̃r(TP S

) is the subspace of the spline space Sr(TPS
)

satisfying the smoothness conditions corresponding to the smoothness func-
tionals in the set T

T
, whose cardinality is equal to the number κ given in

Table 8.7. Now
dim S̃r(TP S

) ≥ dim Sr(TPS
) − κ,

which reduces to #M for all r, and we conclude that M is an MDS for
S̃r(TP S

) and dim S̃r(TP S
) = #M.

r dim Sr(TPS
) κ dim S̃r(TPS

)

8ℓ 228ℓ2 + 60ℓ+ 3 6ℓ2 + 3ℓ 222ℓ2 + 57ℓ+ 3
8ℓ+ 1 228ℓ2 + 90ℓ+ 9 6ℓ2 − 3ℓ 222ℓ2 + 93ℓ+ 9
8ℓ+ 2 228ℓ2 + 168ℓ+ 31 6ℓ2 + 3ℓ+ 1 222ℓ2 + 165ℓ+ 30
8ℓ+ 3 228ℓ2 + 210ℓ+ 48 6ℓ2 + 3ℓ 222ℓ2 + 207ℓ+ 48
8ℓ+ 4 228ℓ2 + 288ℓ+ 90 6ℓ2 + 9ℓ+ 3 222ℓ2 + 279ℓ+ 87
8ℓ+ 5 228ℓ2 + 318ℓ+ 111 6ℓ2 + 3ℓ 222ℓ2 + 315ℓ+ 111
8ℓ+ 6 228ℓ2 + 396ℓ+ 172 6ℓ2 + 9ℓ+ 4 222ℓ2 + 387ℓ+ 168
8ℓ+ 7 228ℓ2 + 438ℓ+ 210 6ℓ2 + 9ℓ+ 3 222ℓ2 + 429ℓ+ 207

Tab. 8.7. Dimension of S̃r(T
PS

).
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Now suppose △PS is the Powell–Sabin refinement of an arbitrary tri-
angulation △. Then we can use our results above for a single triangle to
show that M is an MDS for S̃r(△P S) in the same way as in Theorem 8.13.

By Theorem 5.13, the dimension of S̃r(△PS) is equal to the cardinality of
M, which is easily seen to be equal to the formula in the statement of
the theorem. The proof that M is local and stable is also the same as in
Theorem 8.13.

For the Powell–Sabin split T
P S

of a single triangle, Figure 8.5 shows the
minimal determining sets for r = 3, 4, 5, 6, where the points in Mv and Me

are marked with black dots and triangles, respectively. To help understand
the supersmoothness, we have shaded the disks Dρ(vi) and Dµ(v

T
). The

tips of the special smoothness conditions are indicated with brackets, and
the lines drawn through domain points show some of the computations
using Lemma 2.30. Table 8.8 shows the values of r, ρ, µ, d and dim S̃r(TPS

)

for 1 ≤ r ≤ 10. Since S̃r(△PS) has a stable local MDS, we can apply
Theorem 5.19 to show that it has full approximation power.

Theorem 8.18. For every f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ d,

there exists a spline sf ∈ S̃r(△P S) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |△|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

The following theorem can be proved in the same way as Theorem 8.15.

Theorem 8.19. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne

is a stable local nodal minimal determining set for S̃r(△PS), where Nv and
Ne are as in Theorem 8.15.

Theorem 8.19 shows that S̃r(△P S) is a macro-element space in the
sense of Definition 5.27. In particular, for each macro-triangle T ∈ △, all
coefficients of s|T can be computed from the values of s and its derivatives
at points in T . The theorem also shows that for any function f ∈ Cρ(Ω),

there is a unique spline s ∈ S̃r(△P S) solving the Hermite interpolation
problem

λs = λf, all λ ∈ N .

This defines a linear projector Ĩ r
P S

mapping Cρ(Ω) onto S̃r(△P S). In par-

ticular, Ĩ r
P S

reproduces polynomials of degree d, where d is as in Table 8.6.
We can now apply Theorem 5.26 as in the proof of Theorem 8.8 to establish
the following error bound for this interpolation operator.
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Fig. 8.5. Minimal determining sets for S̃r(TPS
) for r = 3, 4, 5, 6.

r ρ µ d dim

1 1 2 2 9

2 3 3 5 30

3 4 5 7 48

4 6 7 10 87

5 7 7 11 111

6 9 9 14 168

7 10 11 16 207

8 12 13 19 282

9 13 13 20 324

10 15 15 23 417

Tab. 8.8. The dimension of S̃r(TPS
).
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Theorem 8.20. For every function f ∈ Cm+1(Ω) with ρ− 1 ≤ m ≤ d,

‖Dα
xD

β
y (f − Ĩ r

P S
f)‖Ω ≤ K |△|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

Suppose M is the MDS of Theorem 8.17. Then by Theorem 5.21, the
corresponding M-basis {ψξ}ξ∈M is a stable local basis for S̃r(△P S), where

supp(ψξ) ⊆

{
star(v), if ξ ∈ Mv for some vertex v,

Te ∪ T̃e, if ξ ∈ Me for some edge e of △.

Here Te is the triangle associated with the edge e, and T̃e is the second tri-
angle containing e if e is an interior edge. The N -basis in (5.24) associated
with the nodal MDS N of Theorem 8.19 provides a different stable local
basis for S̃r(△P S).

8.6. Quadrilateral Macro-element Spaces

Suppose ♦ is a quadrangulation of a domain Ω, and let ♦+ be the induced
triangulation obtained by inserting both diagonals in each quadrilateral Q
in ♦, see Section 4.15. We denote the sets of vertices and edges of ♦ by
V and E , and let Vc := {v

Q
}Q∈♦ be the set of vertices of ♦+ which are

introduced to form the splits. To define the spline spaces of interest in this
section, we first introduce some parameters which depend on whether r is
even or odd, see Table 8.9.

r r̃ ρ µ d

2ℓ 2ℓ+ 1 3ℓ 4ℓ 6ℓ+ 1
2ℓ+ 1 2ℓ+ 1 3ℓ+ 1 4ℓ+ 1 6ℓ+ 3

Tab. 8.9. Parameters for the C
r quadrilateral macro-element space (8.6).

We also need some special smoothness conditions. For each quadrilateral
Q := 〈v1, v2, v3, v4〉 in ♦, let EQ := {ek := 〈vk, vT

〉}4

k=1
be the set of interior

edges forming the split of Q. Let

TQ :=





4⋃

k=1

ℓ−1⋃

i=1

{τ
r+j+1

ρ+i+1,ek
}2i

j=1
∪ {τ

r+j+1

µ+1,e1
}2ℓ

j=1
, if r = 2ℓ,

4⋃

k=1

ℓ−1⋃

i=1

{τ
r+j
ρ+i,ek

}2i
j=1

∪

3⋃

k=1

{τ
r+j
µ+1,ek

}2ℓ
j=1

, if r = 2ℓ+ 1.
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We now define the Cr quadrilateral macro-element spaces by

Sr(♦+) := {s ∈ Sr
d(♦+) : s ∈ Cρ(v), all v ∈ V ,

s ∈ Cµ(v), all v ∈ Vc,

s ∈ C r̃(e), all e ∈ EQ and Q ∈ ♦,

τs = 0, all τ ∈ T
Q

and Q ∈ ♦}.

(8.6)

For each vertex v ∈ V , let Tv be the triangle in ♦+ with vertex at
v which has the largest shape parameter (see Definition 4.1) among all
triangles sharing the vertex v. Let Mv := Dρ(v) ∩ Tv. For each edge
e := 〈u, v〉 of △, let Te be some triangle in ♦+ containing the edge e, and let
Me := {ξ ∈ DTe,d : dist(ξ, e) ≤ r, ξ 6∈ Dρ(u) ∪Dρ(v)}. Let V and E be
the number of vertices and edges of ♦.

Theorem 8.21. For all r ≥ 1,

dim Sr(♦+) =

(
ρ+ 2

2

)
V +

(
r + 1

2

)
E,

and
M :=

⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set.

Proof: We begin by considering the case where △Q is the triangulation
associated with a single quadrilateral Q := 〈v1, v2, v3, v4〉 divided into four
subtriangles T [i] := 〈v

Q
, vi, vi+1〉, i = 1, 2, 3, 4. We first show that M is a

determining set for Sr(△Q). We show that it is minimal later. Suppose we
fix the coefficients {cξ}ξ∈M of a spline s ∈ Sr(△Q). Then for each vertex
vi of Q, in view of the Cρ supersmoothness at vi, by Lemma 5.10 we can
compute all coefficients of s corresponding to domain points in the disk
Dρ(vi). The analysis now divides into two cases.

Suppose that r = 2ℓ. Using Lemma 2.30, we now compute the un-
determined coefficients of s corresponding to domain points on the rings
Rρ+i(vν) for i = 1, . . . , ℓ and ν = 1, 2, 3, 4. Note that the spline satisfies all
of the smoothness conditions required for the lemma, since either they are
already implicit in the supersmoothness of the space, or have been explicitly
enforced in the definition of Sr(△Q). Using the lemma again, we compute
the remaining coefficients corresponding to domain points on Rµ+1(v1).

We now carry out a sequence of calculations. First we compute the
4ℓ remaining coefficients corresponding to points in the set E0, where in
general, Ei is the set of domain points in T [1]∪T [2] at a distance i from the
edge 〈v1, v3〉. Then we compute the 4ℓ remaining coefficients corresponding

to points in the set Ẽ0, where Ẽi is the set of domain points in T [2] ∪ T [3]

at a distance i from the edge 〈v2, v4〉. The remaining coefficients in T [1] ∪
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T [2] ∪ T [3] are computed by alternately working on the sets Ei and Ẽi for
i = 1, . . . , r. Finally, we compute the remaining coefficients in T [4] from
the Cr smoothness conditions.

We have shown that all coefficients of s are determined by those cor-
responding to the domain points in the set M. This shows that M is a
determining set for Sr(△Q). We now show that it is minimal. By The-
orem 9.7, the dimension of the superspline space S2ℓ+1

6ℓ+1
(△Q) ∩ C4ℓ(vQ)

is 32ℓ2 + 18ℓ + 4. Our space S2ℓ(△Q) is the subspace which satisfies the
4ℓ2−2ℓ special conditions and the supersmoothness C3ℓ(vi) for i = 1, 2, 3, 4.
Enforcing the supersmoothness requires an additional 2ℓ2 − 2ℓ conditions.
Thus,

(32ℓ2+18ℓ+ 4) − (4ℓ2 − 2ℓ) − (2ℓ2 − 2ℓ)

≤ dim S2ℓ(△Q) ≤ #M = 26ℓ2 + 22ℓ+ 4.

Since the expression on the left equals the one on the right, we conclude
that it is equal to the dimension of Sr(△Q), and thus M is an MDS.

The proof that M is an MDS for Sr(△Q) in the case r = 2ℓ + 1
is very similar. By Theorem 9.7, the dimension of the superspline space
S

2ℓ+1

6ℓ+3
(△Q) ∩ C4ℓ+1(vQ) is 32ℓ2 +46ℓ+16. Now S2ℓ+1(△Q) is the subspace

that satisfies the 4ℓ2+2ℓ special conditions along with the supersmoothness
C3ℓ+1(vi) for i = 1, 2, 3, 4. Enforcing this supersmoothness requires an
additional 2ℓ2 + 2ℓ conditions. It follows that

(32ℓ2+46ℓ+ 16) − (4ℓ2 + 2ℓ) − (2ℓ2 + 2ℓ)

≤ dim S2ℓ+1(△Q) ≤ #M = 26ℓ2 + 42ℓ+ 16.

Since the expression on the left equals the one on the right, we conclude
that it is equal to the dimension of S2ℓ+1(△Q). This proves M is an MDS
for Sr(△Q) in the case r = 2ℓ+ 1.

Now suppose ♦+ is the triangulation associated with a general quadri-
lateral partition ♦. Suppose we have assigned values to the coefficients
{cξ}ξ∈M of a spline s ∈ Sr(♦+). Then for each vertex v of ♦, by the Cρ

supersmoothness at v, Lemma 5.10 shows that the coefficients of s corre-
sponding to the disk Dρ(v) are consistently determined. For each interior
edge e of ♦, we have chosen the coefficients corresponding to domain points
in Me. Then using the Cr smoothness across that edge, we can compute
the coefficients of s corresponding to the domain points in the analogous
set M̃e in the other triangle T̃e in ♦+ sharing the edge e. Then by the above
arguments, for each quadrilateral Q in ♦, s|Q is determined on Q in such a
way that all smoothness conditions across interior edges of Q are satisfied.
It follows that M is a consistent determining set for Sr(♦+). Theorem 5.15

then implies that M is an MDS for S̃r(♦+). By Theorem 5.13, the dimension
of Sr(♦+) is equal to the cardinality of M, which is easily seen to be given
by the formula in the statement of the theorem.
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The proof that M is local and stable is similar to the proof of Theo-
rem 8.9. For stability, the choice of the triangle Tv used to define Mv is
critical to assuring the stability of the computation of coefficients associated
with domain points in Dρ(v).

The choice of Mv for the MDS of Theorem 8.21 ensures that the
constant of stability for M does not depend on the smallest angle in ♦+

but only on the smallest angle in ♦. This is important since as we saw in
Example 4.48, angles in ♦+ can be small even when the angles in ♦ are not.

The family Sr(△Q) contains the spaces S1(△Q) and S2(△Q) discussed
in Sections 6.5 and 7.6. Figure 8.6 illustrates Theorem 8.21 for a single
macro-quadrilateral in the cases r = 3, 4. Points in the sets Mv are marked
with black dots, while those in the sets Me are marked with triangles.
Table 8.10 lists the dimensions of the spaces Sr(△Q) for 1 ≤ r ≤ 8.

Since Sr(♦+) has a stable local MDS, we can apply Theorem 5.19 to
conclude that Sr(♦+) has full approximation power.

Theorem 8.22. For every f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ d,
there exists a spline sf ∈ Sr(♦+) such that

‖Dα
xD

β
y (f − sf )‖

q,Ω
≤ K |♦+|m+1−α−β |f |m+1,q,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in ♦. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

For each edge e := 〈u, v〉 of ♦, let ηi
j,e be the points defined in (8.1),

and let ue be the unit vector corresponding to rotating e ninety degrees
in the counterclockwise direction. We write Due

for the cross-boundary
derivative associated with ue. Let εt denote point evaluation at t. The
following theorem can be proved in the same way as Theorem 8.7.

Theorem 8.23. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne

is a stable local nodal minimal determining set for Sr(♦+), where

1) Nv := {εvD
α
xD

β
y }0≤α+β≤ρ,

2) Ne :=
⋃r

i=1
{εηi

j,e
Di

ue
}i

j=1
.

The space Sr(♦+) can be regarded as a macro-element space since for
each quadrilateral Q in ♦, we can compute the B-coefficients of s|Q from
values of s and its derivatives at points in Q. Theorem 8.23 shows that
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Fig. 8.6. Minimal determining sets for S3(△Q) and S4(△Q) .

r ρ µ d dim

1 1 2 3 16

2 3 4 7 52

3 4 5 9 84

4 6 8 13 152

5 7 9 15 204

6 9 12 19 304

7 10 13 21 376

8 12 16 25 508

Tab. 8.10. Dimensions of the spaces Sr(△Q).
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for any function f ∈ Cρ(Ω), there is a unique spline s ∈ Sr(♦+) solving the
Hermite interpolation problem

λs = λf, all λ ∈ N ,

or equivalently,

Dα
xD

β
y s(v) = Dα

xD
β
y f(v), all 0 ≤ α+ β ≤ ρ and v ∈ V ,

Di
ue
s(ηi

j,e) = Di
ue
f(ηi

j,e), all j = 1, . . . , i, 1 ≤ i ≤ r, and e ∈ E .

This defines a linear projector I r
Q mapping Cρ(Ω) onto Sr(♦+). In particular,

I r
Q reproduces polynomials of degree d, where d is given in Table 8.9. We

can now apply Theorem 5.26 to establish the following error bound for this
interpolation operator.

Theorem 8.24. For every function f ∈ Cm+1(Ω) with ρ− 1 ≤ m ≤ d,

‖Dα
xD

β
y (f − I r

Qf)‖Ω ≤ K |♦+|m+1−α−β |f |m+1,Ω,

for all 0 ≤ α + β ≤ m. If Ω is convex, then the constant K depends only
on r and the smallest angle in ♦. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

Suppose M is the MDS of Theorem 8.21. Then by Theorem 5.21, the
corresponding M-basis {ψξ}ξ∈M is a stable local basis for Sr(♦+), where

supp(ψξ) ⊆

{
star(v), if ξ ∈ Mv for some vertex v,

Te ∪ T̃e, if ξ ∈ Me for some edge e.

Here Te is the triangle associated with the edge e, and T̃e is the second tri-
angle containing e if e is an interior edge. The N -basis in (5.24) associated
with the nodal MDS N of Theorem 8.23 provides a different stable local
basis for Sr(♦+).

8.7. Remarks

Remark 8.1. It is easy to see that it is impossible to construct Cr poly-
nomial macro-elements using splines of degree less than 4r + 1. Indeed,
by Theorem 5.28, if T is a triangle, then in order to avoid incompatibili-
ties, we have to work with splines with supersmoothness at least C2r(v) at
the vertices v of T . This means that in order to construct a polynomial
macro-element on T , we have to include the disks D2r(v) in the minimal
determining set. In order to ensure that the corresponding coefficients can
be set independently, we have to be sure that the disks do not overlap, and
it follows that we must work with splines of degree at least 4r + 1.
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Remark 8.2. In Theorem 8.3 it is possible to replace the set NT defined
there by a set of derivatives at single point in T , say the barycenter v

T
.

In particular, we can take NT := {ǫv
T
Dν

xD
µ
y }ν+µ≤r−2. This is the more

traditional choice, although from the standpoint of Hermite interpolation,
it is generally easier to get data on function values than on derivatives.

Remark 8.3. It was shown in [LaiS01] that it is impossible to construct
Cr macro-elements based the Clough–Tocher split using splines of lower
degree than 6ℓ+ 1 if r = 2ℓ, or 6ℓ+ 3 if r = 2ℓ+ 1. To see this, suppose
T

CT
is the Clough–Tocher split of a triangle T . Then there is exactly one

interior edge connected to each vertex of T . Thus, by Theorem 5.28, to
build a Cr macro-element based on the Clough–Tocher split, we need to
enforce at least Cρ supersmoothness at each vertex of T , where

ρ ≥

⌈
3r − 1

2

⌉
=

{
3ℓ, if r = 2ℓ,

3ℓ+ 1, if r = 2ℓ+ 1.
(8.7)

This means that in order to construct a macro-element on the Clough–
Tocher split, we have to include the disks Dρ(v) in the minimal determining
set. Since these disks are not allowed to overlap, the claim follows.

Remark 8.4. It was shown in [LaiS03] that it is impossible to construct
Cr macro-elements based the Powell–Sabin split using splines of lower de-
gree than used in Sections 8.4 and 8.5. To see this, we first observe that
as for the Clough–Tocher split discussed in Remark 8.3, we need to enforce
Cρ supersmoothness at each of the vertices of the macro-triangle. As be-
fore, this means that we have to include the disks Dρ(v) in the minimal
determining set. Any two such disks are in two different micro-triangles,
i.e., they are separated by an edge of T

PS
. This leads to the degrees used

in Sections 8.4 and 8.5.

Remark 8.5. It was shown in [AlfS02a] and [AlfS02b] that the macro-
elements constructed in Sections 8.3 and 8.5 on the Clough–Tocher and
Powell–Sabin splits, respectively, have the minimal number of degrees of
freedom possible for such macro-elements. The reason is that these ele-
ments are based only on natural degrees of freedom (i.e., nodal data which
involve evaluation at points on the boundary), and none of this data can
be eliminated.

Remark 8.6. Classical macro-elements are superspline spaces defined on
a macro-triangle T that has been subdivided into micro-triangles. A spline
in the space is then typically determined by nodal data at the vertices of
T , at certain points along the edges of T , and in some cases at additional
points in the interior of T . Recently it has been shown [RayS05] that it is
possible to define Cr macro-elements based on Clough–Tocher splits that
require data on only two of the sides of the macro-triangle. Such elements
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are useful for finite-element computations, and also for solving interpolation
and fitting problems. An interesting application is to the problem of filling
an n-sided hole in a surface.

Remark 8.7. As pointed out in Remark 5.8, nested sequences of spline
spaces are important for applications. In Remark 6.4 we noted that two of
the C1 macro-element spaces in that chapter can be used to create nested
sequences of spline spaces. On the other hand, in Remark 7.6 we observed
that none of the C2 macro-element spaces in that chapter is suitable for
creating nested sequences of spline spaces. The same is true for all of the
macro-element spaces in this chapter with r ≥ 2.

8.8. Historical Notes

We have already discussed the development of C1 and C2 macro-elements
in Sections 6.8 and 7.9. Cr polynomial macro-elements were investigated
in [Zen74], albeit without the use of Bernstein–Bézier methods. See also
[SablL93].

Families of Cr macro-elements based on the Clough–Tocher and
Powell–Sabin splits were studied in a number of papers, see [Sabl85b,
Sabl87, LagS89a, LagS89b, LagS93, LagS94, Lag98]. Improved elements us-
ing lower degree polynomials were later constructed in [LaiS01, LaiS03],
which we have followed here in Sections 8.2 and 8.4. The idea of natural
degrees of freedom was introduced in [AlfS02a, AlfS02b], which we have
followed here in Sections 8.3 and 8.5.

Families of Cr macro-elements based on triangulated quadrangulations
were first studied in [LagS89a, LagS95]. Improved elements using lower
degree splines were later constructed in [LaiS99, LaiS02]. The results in
Section 8.6 are based on [LaiS02].



Dimension of Spline Spaces

In this chapter we discuss the problem of computing the dimension of spline
spaces. This turns out to be a rather difficult problem, which in fact has
only been partially solved. While we have very good lower bounds and
relatively good upper bounds on the dimension of spline spaces of arbitrary
degree and smoothness on general regular triangulations, there are many
spaces for which we do not have an exact formula. This includes the space
S1

3
(△) for which we can establish a formula only for generic triangulations.

9.1. Dimension of Spline Spaces on Cells

In this section we give dimension formulae for the spline spaces

Sr
d (△) := {s ∈ Cr(Ω) : s|T ∈ Pd for all T ∈ △} (9.1)

in the special case when △ is a cell.

Definition 9.1. Suppose △v is a triangulation consisting of a set of tri-
angles which all share one common vertex v. Suppose every triangle in △v

has at least one neighbor with which it shares a common edge. Then we
call △v a cell. If v is an interior vertex of △v, then we call △v an interior

cell. Otherwise, we call it a boundary cell.

Note that in the terminology of Chapter 4, a cell is a shellable trian-
gulation which is the star of a vertex. Our first result deals with boundary
cells.

Theorem 9.2. Let △v be a boundary cell with n interior edges attached
to the vertex v, see Figure 9.1 (left). Then for any 0 ≤ r ≤ d,

dim Sr
d (△v) =

(
d + 2

2

)
+ n

(
d − r + 1

2

)
. (9.2)

Proof: Since the space Sr
d (△v) contains the space of polynomials Pd, it

follows that the dimension of Sr
d(△v) is equal to dim Pd =

(
d+2

2

)
plus

the dimension of the space S0 := {s ∈ Sr
d(△v) : s ≡ 0 on T [0]}, where

T [i] := 〈v, vi, vi+1〉 for i = 0, . . . , n. Without loss of generality, we may
assume that the cell is centered at v = (0, 0) and is rotated so that all of
the coordinates (xi, yi) of the points vi are nonzero. Let y + αix = 0 be
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v

v0

v1

v2

vn+1

v

vn

v1

v2

v3

Fig. 9.1. Boundary and interior cells.

the equation of the i-th edge attached to v, where αi := −yi/xi. Suppose
s ∈ S0. Then on the triangle T [1], s must have the form

s =

d−r∑

j=1

j∑

k=1

a
[1]

jk(y + α1x)r+kxj−k.

Since the polynomials in this sum are clearly linearly independent, we con-
clude that the dimension of Sr

d(△v) restricted to T [0] ∪ T [1] is
(
d+2

2

)
+(

d−r+1

2

)
. Repeating this argument for each of the other interior edges leads

immediately to (9.2).

We turn now to the case where △ is an interior cell. This is a more
complicated situation because as we go around the vertex, the smoothness
conditions are connected. It turns out that for interior cells, the dimension
of the spline space Sr

d(△) depends on the slopes of the edges meeting at
the vertex v. For any real number x, we write

(x)+ =

{
x, if x > 0,

0, otherwise.
(9.3)

Theorem 9.3. Suppose △v is an interior cell associated with a vertex v

where n edges meet with mv different slopes, see Figure 9.1 (right). Then
for any 0 ≤ r ≤ d,

dim Sr
d(△v) =

(
r + 2

2

)
+ n

(
d − r + 1

2

)
+ σv, (9.4)

where

σv :=

d−r∑

j=1

(r + j + 1 − jmv)
+

. (9.5)
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Proof: The dimension of Sr
d(△v) is equal to dim Pd =

(
d+2

2

)
plus the

dimension of S0 := {s ∈ Sr
d (△v) : s ≡ 0 on T [n]}, where T [i] := 〈v, vi, vi+1〉

for i = 1, . . . , n, and we identify vn+1 := v1. Without loss of generality, we
may assume that the cell is centered at v = (0, 0) and is rotated so that all
of the coordinates (xi, yi) of the points vi are nonzero. Let y + αix = 0 be
the equation of the i-th edge attached to v, where αi := −yi/xi. Suppose
s ∈ S0. Then on the triangle T [1], s must have the form

s =

d−r∑

j=1

j∑

k=1

a
[1]

jk(y + α1x)r+kxj−k.

Adding similar terms as we cross each edge, we find that when we get back
to T [n], s must have the form

s =
n∑

i=1

d−r∑

j=1

j∑

k=1

a
[i]

jk(y + αix)r+kxj−k. (9.6)

But on T [n] this expression must be identically zero. In particular, for each
j = 1, . . . , d− r, the coefficients of the powers yr+j, xyr+j−1, . . . , xr+j must
be zero. This translates into the system Ajaj = 0, where

aj := (a
[1]

jj , . . . , a
[1]

j1 , . . . , a
[n]

jj , . . . , a
[n]

j1 )T

and
Aj := [A

[1]

j , . . . , A
[n]

j ],

with

A
[ℓ]

j :=




1 0 · · · 0(
r+j

1

)
αℓ 1 · · · 0

...
. . .(

r+j
j−2

)
α

j−2

ℓ · · · · · · 0
(

r+j
j−1

)
α

j−1

ℓ · · · · · · 1
(
r+j

j

)
α

j
ℓ · · · · · ·

(
r+1

1

)
αℓ

...
...(

r+j
r+j

)
α

r+j
ℓ

(
r+j−1

r+j−1

)
α

r+j−1

ℓ · · ·
(
r+1

r+1

)
αr+1

ℓ




.

It follows that the dimension of S0 is equal to the number of linearly inde-
pendent solutions of the system Aa = 0, where a := (a1, . . . , ad−r) and

A :=




A1

. . .

Ad−r



 . (9.7)
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This system consists of ne equations in nu unknowns, where

ne :=
d−r∑

j=1

(r + j + 1) =

(
d + 2

2

)
−

(
r + 2

2

)

and

nu := n

d−r∑

j=1

j = n

(
d − r + 1

2

)
.

The number of linear independent solutions is given by nu − nr, where nr

is the rank of A. By the block structure, it suffices to compute the rank of
each Aj . We now show that

rank (Aj) = (r + j + 1) − (r + j + 1 − jmv)+. (9.8)

Clearly, the rank of Aj equals the rank of Bj := [A
[i1]

j , . . . , A
[imv ]

j ],
where i1, . . . , imv

is a set of indices such that the associated edges have
different slopes. Examining the structure of Bj , we see that its transpose is
a constant multiple of the matrix corresponding to Hermite interpolation
up to the (j − 1)-st derivative at each of the points αi1 , . . . , αimv

using the
polynomials

1,

(
r + j

1

)
t,

(
r + j

2

)
t2, . . . ,

(
r + j

r + j

)
tr+j .

We now consider two cases.

Case 1: r+j+1 ≥ jmv. In this case the transpose of the jmv×jmv matrix
obtained by taking the first jmv rows of Bj corresponds to the interpolation
problem of finding a polynomial p of degree jmv − 1 satisfying

Dνp(αiµ
) = 0, ν = 0, . . . , j − 1, µ = 1, . . . , mv.

Since this problem has a unique solution, we conclude that Bj and thus
also Aj has rank jmv, and thus (9.8) holds.

Case 2: r+j+1 < jmv. Let q := ⌊(r+j+1)/j⌋, and let u := r+j+1−qj.
Then the transpose of the (r + j + 1)× (r + j + 1) matrix formed from the
first r + j + 1 columns of Bj corresponds to the interpolation problem of
finding a polynomial p of degree r + j satisfying

Dνp(αiµ
) = 0, ν = 0, . . . , j − 1, µ = 1, . . . , q,

Dνp(αiq+1
) = 0, ν = 0, . . . , u − 1.

Since this problem is uniquely solvable, we again conclude that Bj and thus
Aj has rank r + j + 1 as asserted in (9.8).
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To complete the proof of the theorem, we note that by the block nature
of A,

nr = rank (A) =
d−r∑

j=1

(r + j + 1) −
d−r∑

j=1

(r + j + 1 − jmv)+,

and the result follows.

Definition 9.4. Suppose v is an interior vertex of a triangulation. Then
we say that v is a singular vertex provided there are four edges attached to
v where the edges lie on two lines that cross at v.

Example 9.5. Let △v be an interior cell with four interior edges. Then
dim S1

2 (△v) = 8 if v is a singular vertex, and dim S1

2 (△v) = 7 if v is
nonsingular.

Discussion: It is easy to see that for r = 1, the factor σv in (9.5) equals
one whenever v is singular, and is zero otherwise. In Figure 9.2 we show
the two cases and some associated minimal determining sets, where points
in the determining sets are marked with black dots.

Fig. 9.2. A singular and a nonsingular vertex.

While it is possible to analyze the dimension of spline spaces on bound-
ary cells directly in terms of minimal determining sets, it is not clear how to
do this for interior cells. This is why we have used an algebraic approach in
this section. We return to the problem of constructing minimal determining
sets for spline spaces defined on cells in Chapter 11.

9.2. Dimension of Superspline Spaces on Cells

We now present dimension results for certain superspline spaces defined on
cells. First we treat the case of a boundary cell.
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Theorem 9.6. Suppose △v is a boundary cell as in Theorem 9.2, and let
0 ≤ r ≤ ρ ≤ d. Then

dim Sr
d(△v) ∩ Cρ(v) =

(
d + 2

2

)
+n

[(
d − r + 1

2

)
−

(
ρ − r + 1

2

)]
. (9.9)

Proof: The proof is very similar to the proof of Theorem 9.2. Following the
notation introduced there, let S0 := {s ∈ Sr

d(△v) ∩ Cρ(v) : s ≡ 0 on T [0]}.
Let s ∈ S0. Then the fact that s ∈ Cρ(v) implies that on T [1], s must have
the form

s =
d−r∑

j=ρ−r+1

j∑

k=1

a
[1]

jk (y + α1x)r+kxj−k.

Since the polynomials in this sum are clearly linearly independent, we con-
clude that the dimension of S0 restricted to T [0] ∪ T [1] is

(
d−r+1

2

)
−

(
ρ−r+1

2

)
.

Repeating this argument for each of the other edges leads immediately to
(9.9).

We have the following result for interior cells.

Theorem 9.7. Suppose △v is an interior cell associated with a vertex v

where n edges meet with mv different slopes. Then for all 0 ≤ r ≤ ρ ≤ d,

dim Sr
d(△v) ∩ Cρ(v) =

(
ρ + 2

2

)
+ n

[(
d − r + 1

2

)
−

(
ρ − r + 1

2

)]
+ σv,

where

σv := σv(r, ρ, d) :=

d−r∑

j=ρ−r+1

(r + j + 1 − jmv)+ .

Proof: The proof is similar to the proof of Theorem 9.3. Let S0 := {s ∈

Sr
d(△v) ∩ Cρ(v) : s ≡ 0 on T [n]}. Let s ∈ S0. Then after passing over each

of the n edges attached to v, when we get back to T [n], s must have the
form (9.6). But the condition that s ∈ Cρ(v) implies that the terms with
1 ≤ j ≤ ρ − r must be zero. Thus, the dimension of S0 is equal to the
number of nontrivial solutions of

n∑

i=1

d−r∑

j=ρ−r+1

j∑

k=1

a
[i]

jk(y + αix)r+kxj−k ≡ 0.

Setting powers of x and y to zero, we get the system of equations Aa = 0,
where a := (aρ−r+1, . . . , ad−r), and

A :=




Aρ−r+1

. . .

Ad−r


 .
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Here aj and Aj are as in the proof of Theorem 9.3. This system consists of
ne equations in nu unknowns, where

ne :=

d−r∑

j=ρ−r+1

(r + j + 1) =

(
d + 2

2

)
−

(
ρ + 2

2

)
,

and

nu := n

d−r∑

j=ρ−r+1

j = n

[(
d − r + 1

2

)
−

(
ρ − r + 1

2

)]
.

The number of linear independent solutions is given by nu − nr, where nr

is the rank of A. Using (9.8), we see that

nr = rank (A) =
d−r∑

j=ρ−r+1

(r + j + 1) −
d−r∑

j=ρ−r+1

(r + j + 1 − jmv)+,

and the result follows.

9.3. Bounds on the Dimension of Sr
d(△)

Throughout this section we assume that △ is a shellable triangulation of
a set Ω, see Definition 4.6. Our aim is to establish some fairly tight upper
and lower bounds on the dimension of the spline spaces Sr

d(△) for general
r and d.

Definition 9.8. A triangle T in a triangulation △ of a domain Ω is called
a flap provided two of its edges lie on the boundary of Ω. The triangle T is
called a fill provided exactly one of its edges lies on the boundary of Ω.

Let VI be the set of interior vertices of △. For each v ∈ VI , let mv be
the number of edges attached to v with different slopes. Suppose VI and
EI are the numbers of interior vertices and edges of △, respectively.

Theorem 9.9. For all 0 ≤ r ≤ d,

D + σ ≤ dim Sr
d(△), (9.10)

where

D :=

(
d + 2

2

)
+

(
d − r + 1

2

)
EI −

[(
d + 2

2

)
−

(
r + 2

2

)]
VI , (9.11)

and
σ :=

∑

v∈VI

σv, (9.12)

where σv is defined in (9.5).
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Proof: The proof proceeds by induction on the number of triangles in △.
The result is trivial for a single triangle. Now suppose △ is a triangulation
of Ω with N triangles, and that the bound holds for all triangulations with
N−1 triangles. Suppose some triangle T of △ is a flap, and let △̃ = △\{T }.

Adding a flap T to △̃ increases the dimension by β :=
(

d−r+1

2

)
, cf. the proof

of Theorem 9.2. The desired bound follows for △.
We now consider the case where △ does not contain a flap. Then it

must contain at least one fill T . Let v be the vertex of T which lies in
the interior of △. Let Ω2 := star(v) be the union of the triangles in △

surrounding v, and let Ω1 := Ω \ {T } and Ω3 := Ω1 ∩ Ω2. For i = 1, 2, 3,
set Si := Sr

d(△)|Ωi
. Let SE

1
be the linear subspace of splines in S3 that can

be extended to S1 but not to S2. Similarly, let SE
2

be the linear subspace
of splines in S3 that can be extended to S2 but not to S1. Let SE

12
be the

linear subspace of splines in S3 that can be extended to both S1 and S2.
Then the space of splines in S3 that can be extended to S1 is SE

12
⊕ SE

1
.

Similarly, the space of splines in S3 that can be extended to S2 is SE
12
⊕SE

2
.

This implies

S3 = SE
12

⊕ SE
1
⊕ SE

2
⊕ SNE

12
, (9.13)

where SNE
12

is the space of all splines in S3 that cannot be extended to
either S1 or S2. Clearly, for i = 1, 2,

dim Si = dim S0

i + dim SE
12

+ dim SE
i , (9.14)

where
S0

i := {s ∈ Si : s vanishes on Ω3}.

Solving (9.14) for dim S0

i and inserting in

dim Sr
d(△) = dim S0

1
+ dim S0

2
+ dim SE

12
,

it follows from (9.13) that

dim Sr
d(△) = dim S1 + dim S2 − dim SE

1
− dim SE

2
− dim SE

12

= dim S1 + dim S2 − dim S3 + dim SNE
12

≥ dim S1 + dim S2 − dim S3.

Now using the induction hypothesis, we have

dim Sr
d(△) ≥

(
d + 2

2

)
+ β(EI − 2) − γ(VI − 1) + σ(1) + 2β − γ + σ(2),

where β :=
(
d−r+1

2

)
, γ :=

(
d+2

2

)
−

(
r+2

2

)
, and σ(i) is the number (9.12)

associated with the triangulation △i underlying Si. Combining terms leads
to the lower bound (9.10).

Our aim now is to provide an upper bound on the dimension of Sr
d(△)

to complement the lower bound in Theorem 9.9. We first need a definition.
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Definition 9.10. Suppose △ is a regular triangulation of a domain Ω
without holes. Let T1, . . ., Tn be a grouping of the triangles of △ into disjoint
subsets, and for each i = 1, . . . , n, let Ωi be the union of the triangles in⋃i

j=1
Tj . Let Ω0 = ∅. Suppose there exist vertices v1, . . . , vn such that:

1) For each 1 ≤ i ≤ n, Ti is the union of all triangles in △ \ Ωi−1 that
share the vertex vi.

2) For each 2 ≤ i ≤ n, vi is on the boundary of Ωi−1.

Then we say that T1, . . . , Tn is an admissible decomposition of △ with centers

v1, . . . , vn.

We can construct an admissible decomposition of any regular triangu-
lation △ without holes by starting with T1 := star(v1) for some arbitrary
vertex of △. Then we repeatedly choose a vertex on the boundary of Ωi−1

and take Ti to be all unchosen triangles attached to vi. Since the starting
vertex can be arbitrary, it is clear that any given △ has several different
admissible decompositions.

Example 9.11. Let △MS be the triangulation shown in Figure 9.3.

Discussion: △MS is called the Morgan–Scott triangulation. The sets T1 :=
{T1, . . . , T4}, T2 := {T5, T6}, and T3 := {T7} provide an admissible decom-
position with centers v1, v2, v3. An alternative admissible decomposition is

provided by T1 := {T1, T4, T7}, T2 := {T2, T3}, and T3 := {T5, T6}.

v1

v2v3

T1

T2

T3

T4

T5
T6T7

Fig. 9.3. The Morgan–Scott triangulation.

In the first decomposition given in Example 9.11, the three centers
v1, v2, v3 are all interior vertices. However, for the second decomposition,
the first center is a boundary vertex. Figure 9.4 gives an example of a
triangulation which is impossible to decompose without using at least one
boundary vertex.
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Fig. 9.4. A triangulation △ such that every admissible decomposition
must include one center which is a boundary vertex of △.

We are now ready to establish an upper bound to go with the lower
bound of Theorem 9.9.

Theorem 9.12. Let 0 ≤ r ≤ d, and suppose T1, . . . , Tn is an admissible
decomposition of △ with centers v1, . . . , vn. For each vi, let ni be the
number of interior edges of △ attached to vi but not attached to any vj

with j < i. Let m̃i be the number of such edges, where we count only edges
with different slopes. Finally, let

σ̃i :=






d−r∑

j=1

(r + j + 1 − jm̃i)+ , if vi ∈ VI ,

0, otherwise.

Then

dim Sr
d(△) ≤ D +

n∑

i=1

σ̃i, (9.15)

where D is as in (9.11).

Proof: Let Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn = Ω be the sets associated with an
admissible decomposition of △ as in Definition 9.10. If v1 is a boundary
vertex, then by Theorem 9.2 the dimension of Sr

d (△)|Ω1
is equal to

(
d+2

2

)
+

n1β, where β :=
(
d−r+1

2

)
. If v1 is an interior vertex, then by Theorem 9.3,

the dimension of Sr
d(△)|Ω1

is equal to
(
d+2

2

)
+ n1β − γ + σ̃1 where γ :=(

d+2

2

)
−

(
r+2

2

)
. We now give a bound on how many ways a spline in Sr

d(△)|Ω1

can be extended to be a spline in Sr
d(△)|Ω2

. If v2 is a boundary vertex of
△, then by the proof of Theorem 9.2, it is clear that the number of linearly
independent splines in Sr

d(△)|Ω2\Ω1
that vanish on Ω1 is at most n2β. If v2

is an interior vertex of △, then as in the proof of Theorem 9.3, the number
of linearly independent splines in Sr

d(△)|Ω2\Ω1
that vanish on Ω1 is equal to

the number of linearly independent solutions of the system Aa = 0, where
A is a matrix as in (9.7). This matrix has n2β columns and rank γ − σ̃2,
and so there are at most n2β − γ + σ̃2 ≥ 0 linearly independent splines
in Sr

d(△)|Ω2\Ω1
that vanish on Ω1. Repeating this argument for v3, . . . , vn

gives (9.15).



244 9. Dimension of Spline Spaces

Different admissible decompositions of a given triangulation △ can lead
to different upper bounds on the dimension of Sr

d (△). Moreover, the lower
and upper bounds of Theorems 9.9 and 9.12 will not agree in general, even
if we find the best decomposition. Here is an explicit example.

Example 9.13. Let △MS be the Morgan–Scott triangulation shown in
Figure 9.3. Then 6 ≤ dim S1

2
(△MS) ≤ 7.

Discussion: For this triangulation, VI = 3 and EI = 9. Now with β = 1
and γ = 3, Theorem 9.9 gives the lower bound D = 6 for the dimen-
sion of S1

2
(△MS). Using the first decomposition of Example 9.11, we have

n1 = m̃1 = 4, n2 = m̃2 = 3, and n3 = m̃3 = 2. Since σ̃3 = 1, this gives an
upper bound of seven for the dimension of S1

2
(△MS). The second decom-

position in Example 9.11 also gives an upper bound of seven. It is easy to
check that these upper bounds cannot be improved by choosing any other
decomposition.

This example has been intensively studied in the literature to deter-
mine exactly when the dimension is six and when it is seven, see Remark 9.1.
It turns out that the dimension of S1

2
(△) is only seven for very special

choices of the interior vertices, including the symmetric configuration shown
in Figure 9.3.

9.4. Dimension of Sr
d(△) for d ≥ 3r + 2

In this section we construct a minimal determining set for Sr
d(△) for all

d ≥ 3r + 2, and use it to give a formula for the dimension of Sr
d(△). First

we need some further notation.

Definition 9.14. Suppose that v is an interior vertex of a triangulation
△, and that w1, w2, w3 are such that 〈v, wi〉 are three consecutive edges
connected to v in counterclockwise order. We say that the edge e := 〈v, w2〉

is degenerate at the vertex v provided the two edges 〈v, w1〉 and 〈v, w3〉 are
collinear. Otherwise we call e nondegenerate.

Note that a vertex is singular provided there are exactly four edges
attached to v, and they are all degenerate. It is impossible for an edge
of a triangulation to be degenerate at both ends. Thus, a singular vertex
cannot be a neighbor of another singular vertex. To state our next theorem
we need some notation for various subsets of the domain points Dd,T lying
in a triangle T := 〈u, v, w〉. Let

µ := r +
⌊r + 1

2

⌋
. (9.16)
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Given a vertex u and an edge e := 〈u, v〉, we define the following sets:

AT (u) :=

⌊ r
2
⌋⋃

i=1

i−1⋃

j=0

{ξT
d−2r+i−1,r−j,r−i+j+1

},

CT := {ξT
ijk : i > r, j > r, k > r},

DT
µ (u) :=

{
ξT
ijk : i ≥ d − µ

}
,

ET (e) := F T (e) \
[
DT

µ (u) ∪ DT
µ (v) ∪ AT (u) ∪ AT (v) ∪ GT

L(e) ∪ GT
R(e)

]
,

FT (e) :=
{
ξT
ijk : k ≤ r

}
,

GT
L(e) :=

⌊ r
2
⌋⋃

i=1

i−1⋃

j=0

{ξT
d−2r+i−1,r+1+j,r−i−j},

GT
R(e) :=

⌊ r
2
⌋⋃

i=1

i−1⋃

j=0

{ξT
r+1+j,d−2r+i−1,r−i−j}. (9.17)

The set DT
µ (u) contains the points in a disk of radius µ around u.

AT (u) is the set of points not in DT
µ (u) but whose corresponding coeffi-

cients are involved in smoothness conditions of order up to r across both of
the edges 〈u, v〉 and 〈u, w〉. The sets ET (e), GT

L(e) and GT
R(e) include only

domain points whose corresponding coefficients are involved in Cr smooth-
ness conditions across the edge e. Finally, CT corresponds to coefficients
in T which do not enter any Cr smoothness conditions across edges.

In Figure 9.5 we have marked the domain points for the case d = 15,
r = 4, and µ = 6 with different symbols to indicate which of the above sets
they belong to. Points in the sets AT (u), CT , DT

µ (u), and ET (e) are marked

with ⊗, squares, dots, and triangles, respectively. Points in GT
L(e)∪GT

R(e)
are marked with ⊕. It is easy to check that

#AT (u) = #GT
L(e) = #GT

R(e) =

(
2r − µ + 1

2

)
,

#CT =

(
d − 3r − 1

2

)
, #DT

µ (u) =

(
µ + 2

2

)
.

Moreover, the cardinality of ET (e) is given by

(
d + 2

2

)
−

(
d − r + 1

2

)
− 2

(
µ + 2

2

)
+ 2

(
µ − r + 1

2

)
− 4

(
2r − µ + 1

2

)

= dr + d + 6µr −
9

2
r − 1 −

15

2
r2 − 2µ2.
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Fig. 9.5. The set Dd,T for d = 15, r = 4, µ = 6.

Theorem 9.15. Let d ≥ 3r +2 and let µ be as (9.16). Then the following
set M of domain points is a minimal determining set for Sr

d (△):

1) For each boundary vertex v of △, choose a minimal determining set
for Sr

µ(△v), where △v = star(v).

2) For each interior vertex v of △, choose a minimal determining set for
Sr

µ(△v), where △v = star(v).

3) For each triangle T in △, choose the domain points in CT .

4) For each edge e of △, include the domain points in the set ET (e) for
some triangle T with edge e. If e is a boundary edge, there is only one
such triangle, while if it is an interior edge, T can be either of the two
triangles sharing e. If e is a boundary edge, also include the domain
points in the two sets GT

L(e) and GT
R(e).

5) For each triangle T := 〈u, v, w〉, include the sets AT (u), AT (v), and
AT (w).

6) If T1 := 〈v, v1, v2〉 and T2 := 〈v, v2, v3〉 are two triangles sharing an
edge e := 〈v, v2〉 that is degenerate at v, then replace the set AT2(v)
by GT1

L (e).

7) If v is a singular vertex, reinsert the set AT (v) for one triangle T

attached to v.

Proof: Let s ∈ Sr
d(△) and suppose we fix its coefficients corresponding

to points in M. We now show that all remaining coefficients are uniquely
and consistently determined by the smoothness conditions. First, by the
choice of M, all coefficients of s corresponding to domain points in the disks
Dµ(v) around vertices v of △ are uniquely determined. We now compute
coefficients corresponding to domain points in the rings Rµ+1(v) for all v.
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We do this by successively processing arcs of the form

ar
µ+1,e(v) := {ξ ∈ Rµ+1(v) : dist(ξ, e) ≤ r},

where e is an edge attached to v, and where dist(ξ, e) ≤ r describes the
domain points that are either on the edge e, or in the first r rows parallel
to e. Suppose v1, . . . , vn are the vertices attached to v in counterclockwise
order. To get this process started, we note that M contains the set AT1(v)
for at least one of the triangles attached to v, which we may assume is
T1 := 〈v, v1, v2〉. Now if the edge e2 := 〈v, v2〉 is nondegenerate at v, M also
contains the set AT2(v) for a neighboring triangle T2 := 〈v, v2, v3〉. Then we
can apply Lemma 2.30 to compute the coefficients associated with domain
points on the arc ar

µ+1,e2
(v). If the edge e2 is degenerate at v, M contains

the set GT2

L (e2). In this case, we simply use the Cr smoothness conditions
across e2 to compute coefficients on the arc. Now we continue this process in
a counterclockwise direction around v to compute all coefficients associated
with domain points on the ring Rµ+1(v). After computing all coefficients
for the rings of radius µ + 1, we then do rings of radii µ + 2, etc., until we
have computed all coefficients corresponding to domain points in the disks
D2r(v).

Next using the Cr smoothness conditions across the edges, we can
compute the coefficients corresponding to the remaining domain points in
the sets FT (e) for all edges e. A careful examination of the way in which
coefficients are computed shows that at this point we have uniquely deter-
mined all coefficients in a way that ensures that s satisfies all smoothness
conditions for Sr

d(△). It follows from Theorem 5.15 that M is a minimal
determining set.

We now present the main result of this section. Since we are going
to use Euler relations in the proof, we now have to restrict ourselves to
regular triangulations, see Definition 4.7. To simplify matters even more,
we treat only the case where △ has no holes. For the more general case, see
Remark 9.5. Let VI , VB be the numbers of interior and boundary vertices
of △, respectively. Similarly, let EI , EB be the numbers of interior and
boundary edges, and let N be the number of triangles in △.

Theorem 9.16. Suppose △ is a shellable triangulation, i.e., a regular
triangulation with no holes. Then for all d ≥ 3r + 2,

dim Sr
d (△) =

d2 + r2 − r + d − 2rd

2
VB + (d − r)(d − 2r)VI

+
−2d2 + 6rd − 3r2 + 3r + 2

2
+ σ,

(9.18)

where σ is as in (9.12).
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Proof: By Theorem 5.13, the dimension of Sr
d (△) is equal to the cardinality

of the minimal determining set M constructed in Theorem 9.15. We now
count the number of domain points in M. Let VB and VI be the sets of
boundary and interior vertices of △, and let EB be the set of boundary
edges. Using Theorems 9.2 and 9.3 to count the number of points listed in
1) and 2), we get the following formula for the cardinality of M:

#M =
∑

v∈VB

[(
µ + 2

2

)
+ nv

(
µ − r + 1

2

)]

+
∑

v∈VI

[(
r + 2

2

)
+ nv

(
µ − r + 1

2

)
+ σµ

v

]

+ 2
∑

e∈EB

(
2r − µ + 1

2

)

+ N

[(
d − 3r − 1

2

)
+ 3

(
2r − µ + 1

2

)]

+ (EI + EB)
[
dr + d + 6µr −

9

2
r − 1 −

15

2
r2 − 2µ2

]

+ σsing

(
2r − µ + 1

2

)
,

(9.19)

where nv is the number of interior edges meeting at the vertex v, and mv is
the number of those edges with different slopes. Here σsing is the number
of singular vertices, and

σµ
v :=

µ−r∑

j=1

(r + j + 1 − jmv)+ .

If v is not a singular vertex, then σµ
v is equal to

σv :=
d−r∑

j=1

(r + j + 1 − jmv)
+

.

If v is a singular vertex, then σµ
v and the factor multiplying σsing combine

to produce σv. Now using the Euler relations (4.5), we have
∑

v∈V

nv = 2EI = 2(VB + 3VI − 3). (9.20)

Substituting this in (9.19), and collecting terms, we get (9.18).

Using the Euler relations (4.5), it is easy to see that the formula (9.18)
can be rewritten as

dim Sr
d(△) =

(
d + 2

2

)
+

(
d − r + 1

2

)
EI −

d2 + 3d − r2 − 3r

2
VI + σ.
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Comparing with (9.10), we see that this is exactly the lower bound given
in Theorem 9.9.

The proof of Theorem 9.16 relies on being able to compute the car-
dinality of the minimal determining set M constructed in Theorem 9.15.
This was possible, even though we did not give explicit choices for the
minimal determining sets for splines on cells appearing in items 1) and 2)
of that theorem. For explicit constructions of such determining sets, see
Remark 9.3 and Chapter 11.

9.5. Dimension of Superspline Spaces

Given a regular triangulation △, let VI and VB be the sets of interior and
boundary vertices, respectively, and let V := VI ∪ VB . Let EI and EB be
the sets of interior and boundary edges, respectively, and let E := EI ∪ EB.
Given 0 ≤ r ≤ d, for each v ∈ V , let ρv be an integer with r ≤ ρv ≤ d.
We write ρ := {ρv}v∈V . In this section we compute the dimension of the
superspline space

S
r,ρ
d (△) := {s ∈ Sr

d (△) : s ∈ Cρv (v), v ∈ V},

for d ≥ 3r + 2. To analyze these spaces, we need to assume that certain
disks surrounding the vertices do not overlap. Let

kv := max{ρv, µ}, v ∈ V , (9.21)

where µ is defined in (9.16). Throughout the remainder of this section we
suppose that

ku + kv < d, (9.22)

for all neighboring vertices u and v.
As in the previous section, to determine the dimension of S

r,ρ
d (△)

we shall construct a minimal determining set. To this end we need some
additional notation. Given a vertex u and an edge e := 〈u, v〉 of a triangle
T := 〈u, v, w〉, we define

ÃT (u) := AT (u) \ DT
ku

(u),

C̃T := CT \
(
DT

ku
(u) ∪ DT

kv
(v) ∪ DT

kw
(w)

)
,

ẼT (e) := ET (e) \
(
DT

ku
(u) ∪ DT

kv
(v)

)
,

G̃T
L(e) := GT

L(e) \ DT
ku

(u),

G̃T
R(e) := GT

R(e) \ DT
kv

(v).

(9.23)

We define similar sets for the other vertices and edges.
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Theorem 9.17. Let d ≥ 3r + 2. Then the following set M is a minimal
determining set for S

r,ρ
d (△):

1) For each boundary vertex v of △, choose a minimal determining set
for S

r,ρv

kv
(△v), where △v = star(v).

2) For each interior vertex v of △, choose a minimal determining set for
S

r,ρv

kv
(△v).

3) For each triangle T in △, choose the domain points in C̃T .

4) For each edge e of △, include the domain points in the set ẼT (e) for
some triangle T with edge e. If e is a boundary edge, there is only one
such triangle, while if it is an interior edge, T can be either of the two
triangles sharing e. If e is a boundary edge, also include the domain
points in the two sets G̃T

L(e) and G̃T
R(e).

5) For each triangle T := 〈u, v, w〉, include the sets ÃT (u), ÃT (v), and
ÃT (w).

6) If T1 := 〈v, v1, v2〉 and T2 := 〈v, v2, v3〉 are two triangles sharing an
edge e := 〈v, v2〉 that is degenerate at v, then replace the set ÃT2(v)
by G̃

T1

L (e).

7) If v is a singular vertex, include the set ÃT (v) for one triangle T at-
tached to v.

Proof: The proof is very similar to the proof of Theorem 9.15. First we
use 1) and 2) to determine all coefficients in the disks Dkv

(v) for all v ∈ V .
Then for each edge e := 〈u, v〉, we compute any undetermined coefficients
on arcs across e until all coefficients in Dℓv

(v) and Dℓu
(u) whose distance

to e is at most r have been determined, where ℓv := max(ρv, 2r) for all
v ∈ V . Finally, any remaining undetermined coefficients corresponding to
points in the sets F T (e) are determined for all edges e.

While Theorem 9.17 holds for arbitrary regular triangulations, for the
following result we have to assume that △ is a regular triangulation without
holes.

Theorem 9.18. Let △ be a shellable triangulation, i.e., a regular triangu-
lation with no holes, and suppose d ≥ 3r + 2. Let ρ := (ρv)v∈V be a vector
satisfying (9.22). For each interior vertex of △, let

σkv
v := σv(r, ρv, kv) :=

kv−r∑

j=ρv−r+1

(r + j + 1 − jmv)
+

.

Let Vsing be the set of singular vertices of △. Then the dimension of Sr,ρ
d (△)
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is given by

∑

v∈VB

[(
kv + 2

2

)
+ nv

(
kv − r + 1

2

)
− nv

(
ρv − r + 1

2

)]

+
∑

v∈VI

[(
ρv + 2

2

)
+ nv

(
kv − r + 1

2

)
− nv

(
ρv − r + 1

2

)
+ σkv

v

]

+
∑

〈u,v〉∈E

[(
d + 2

2

)
−

(
d − r + 1

2

)
−

(
ku + 2

2

)
+

(
ku − r + 1

2

)

−

(
kv + 2

2

)
+

(
kv − r + 1

2

)
− 2

(
2r − ku + 1

2

)
− 2

(
2r − kv + 1

2

)]

+
∑

〈u,v〉∈EB

[(
2r − ku + 1

2

)
+

(
2r − kv + 1

2

)]

+
∑

〈u,v,w〉∈△

[(
d − 3r − 1

2

)
−

(
ku − 2r

2

)
−

(
kv − 2r

2

)
−

(
kw − 2r

2

)

+

(
2r − ku + 1

2

)
+

(
2r − kv + 1

2

)
+

(
2r − kw + 1

2

)]

+
∑

v∈Vsing

(
2r − kv + 1

2

)
.

Proof: By Theorem 5.13, it suffices to compute the cardinality of the MDS
M of Theorem 9.17. For each boundary vertex v, the set in item 1) of that
theorem has cardinality

(
kv + 2

2

)
+ nv

(
kv − r + 1

2

)
− nv

(
ρv − r + 1

2

)

by Theorem 9.6. Similarly, by Theorem 9.7, for each interior vertex v, the
set in 2) has cardinality

(
ρv + 2

2

)
+ nv

(
kv − r + 1

2

)
− nv

(
ρv − r + 1

2

)
+ σkv

v .

For each triangle T := 〈u, v, w〉 the set in 3) has cardinality

#C̃T =

(
d − 3r − 1

2

)
−

(
ku − 2r

2

)
−

(
kv − 2r

2

)
−

(
kw − 2r

2

)
.
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For each edge e = 〈u, v〉,

#Ẽ(e) =

(
d + 2

2

)
−

(
d − r + 1

2

)
−

(
ku + 2

2

)
+

(
ku − r + 1

2

)

−

(
kv + 2

2

)
+

(
kv − r + 1

2

)
− 2

(
2r − ku + 1

2

)
− 2

(
2r − kv + 1

2

)
.

Moreover,

#ÃT (u) = #G̃T
L(e) =

(
2r − ku + 1

2

)

and

#ÃT (v) = #G̃T
R(e) =

(
2r − kv + 1

2

)
.

Summing these quantities leads to the stated dimension formula.

................................................................................................................................................................................................................................................

......................
......................

......................
.......................

......................
......................

......................
......................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

⋆ ⋆

.........
.........
........
.........
.........
.........
........
.........
.........
.........
.........
........
.........
.........
.........
........
.........
.........
.........
........
.........
.........
.........
........
.........
.........
....

.......

......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...........................
............................

...........................
...........................

............................
...........................

..........

⋆⋆

................................................................................................................................................................................................................
.........
........
.........
.........
.........
........
.........
.........
.........
.........
........
.........
.........
.........
........
.........
.........
.........
........
.........
.........
.........
........
.........
.........
....

.......
.......
......
.......
.......
.......
......
.......
.......
.......
......
.......
.......
......
.......
.......
.......
......
.......
.......
.......
......
.......
.......
.......
.....

⋆

⋆

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.......

.......
.......
......
.......
.......
.......
......
.......
.......
.......
......
.......
.......
......
.......
.......
.......
......
.......
.......
.......
......
.......
.......
.......
.....

.........................................................................................................................................................................................................

⋆

⋆⋆

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
....................................................................................................................................................................................................................

⋆

⋆

⋆

......................
.......................

.......................
.......................

......................
.......................

.........

.............................................................................................................................................................................................................

.............................................................................................................................................................................................................................................

⋆⋆

⋆

...........................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................

..............................................................................................................................................................................

⋆

⋆ ⋆

..................................................................................................................................................................................................................................................................................................................................................

⋆⋆

⋆

..........................................................................................................................................................................................................................................................

.................................................................................................................................................................................

......................
......................

......................
.......................

......................
......................

......................
......................

⋆

⋆ ⋆

v1 v2

v3

v4

v5
v6

v7

Fig. 9.6. A minimal determining set for Example 9.19.

Theorem 9.18 can be simplified in the case where all ρv are equal.

Example 9.19. Let △ be the triangulation shown in Figure 9.6, and let
d = 8, r = 2, and ρ = (4, 2, 2, 3, 3, 2, 2, 3, 3).

Discussion: In this case µ = 3, and by Theorem 9.18 the dimension of
S

r,ρ
d (△) is 165. In Figure 9.6 we mark the points in the minimal determining

set of Theorem 9.17. For each vertex v, points in the minimal determin-
ing sets for S

r,ρv

kv
(△v) are marked with black dots, while points in the sets

ÃT (v) are marked with stars. We identify points in the sets ẼT (e) with
triangles, and points in the sets G̃T

L(e) and G̃T
R(e) with ⊗. In this example

the sets C̃T are empty.



9.6. Splines on Type-I and Type-II Triangulations 253

Corollary 9.20. Suppose d ≥ 3r + 2 and ρ := (k, . . . , k) with r ≤ k and
2k < d. Then

dim S
r,ρ
d (△) =

d2 − 2rd − r2 + d + r − 2k2 + 4kr − 2k

2
VB

+
2d2 − 6rd − 3r2 + 3r − 5k2 + 12kr − 3k

2
VI

+
−2d2 + 6rd + 3r2 − 3r + 6k2 − 12rk + 6k + 2

2

+
∑

v∈VI

kv−r∑

j=k−r+1

(
r + j + 1 − jmv

)

+

. (9.24)

Proof: We substitute ρv = k for all v in the formula of Theorem 9.18 and
use (9.20) to combine terms involving nv. Then combining the σkv

v with
the factor

(
2r−kv+1

2

)
leads to (9.24).

It is not hard to show that the MDS of Theorem 9.17 is local in the
sense of Definition 5.16 with ℓ = 1, but is not in general stable. The problem
of constructing a stable local minimal determining set for S

r,ρ
d (△) will be

discussed in Chapter 11.

9.6. Splines on Type-I and Type-II Triangulations

In this section we present formulae for the dimensions of spline spaces
Sr

d(△) on uniform type-I and type-II triangulations. Given a rectangle

H := [a, b] × [ã, b̃], let

a = x0 < x1 < · · · < xk < xk+1 = b,

ã = y0 < y1 < · · · < yk̃ < yk̃+1
= b̃,

where we suppose that xi+1 − xi = hx and yj+1 − yj = hy for all i and
j. The corresponding grid lines define a grid partition of H . Recall that
a type-I partition is the triangulation that is obtained from this grid par-
tition by drawing the diagonal connecting (xi, yj) to (xi+1, yj+1) in each
rectangle, while the type-II partition is the triangulation that is obtained
from this grid partition by drawing in both diagonals in each rectangle, see
Section 4.13 and Figure 4.18.

Theorem 9.21. Let △ be a uniform type-I triangulation of a rectangle.
Then for all 0 ≤ r ≤ d,

dim Sr
d(△) = kk̃(d2 − 3rd + 2r2 + σg)

+ (k + k̃)(d2 − 2rd + d − r + r2)

+
2d2 + 4d − 2rd − r + r2 + 2

2
,

(9.25)
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where

σg :=





r2/4, if r is even and 3r + 1 ≤ 2d,

(r2 − 1)/4, if r is odd and 3r + 1 ≤ 2d,

(d − r)(2r − d), otherwise.

Proof: We make use of the upper and lower bounds given in Theorems 9.9
and 9.12. Following the notation of those theorems, it is easy to check that
VI = kk̃ and EI = 3kk̃ + 2(k + k̃) + 1. Now mv = 3 for each interior vertex
v, and thus

σv =

d−r∑

j=1

(r + 1 − 2j)+ = σg

in the lower bound (9.10). This shows that the dimension of Sr
d(△) is

bounded below by the formula in (9.25). To get an upper bound, we first
need to construct an admissible decomposition of △ (see Definition 9.10).
Let vij := (xi, yj), for all 0 ≤ i ≤ k + 1 and 0 ≤ j ≤ k̃ + 1. Then we can

choose the centers in the order v0j , v1j , . . . , vkj for j = 0, . . . , k̃. For each
interior vertex, m̃v = 3, and we get σ̃v = σg in the upper bound. Since the
upper and lower bounds coincide, we have established the stated dimension
formula.

Theorem 9.22. Let △ be a uniform type-II triangulation of a rectangle.
Then for all 0 ≤ r ≤ d,

dim Sr
d(△) = kk̃(2d2 − 6rd + 4r2 + σg + σc)

+ (k + k̃)(2d2 − 5rd + d − r + 3r2 + σc)

+ (4d2 + 4d − 8rd − r + 5r2 + 2 + 2σc)/2,

(9.26)

where

σg :=

d−r∑

j=1

(r + 1 − 3j)+, σc :=

d−r∑

j=1

(r + 1 − j)+.

Proof: We again make use of Theorems 9.9 and 9.12. The number of
interior edges is EI = 6kk̃ + 5(k + k̃) + 4. We call an interior vertex a
grid vertex if it lies on the original rectangular grid. Otherwise, we call it a
cross vertex. There are kk̃ grid vertices and kk̃ + (k + k̃) + 1 cross vertices.
Clearly, mv = 4 for each grid vertex, and mv = 2 for each cross vertex. It
follows that

σv =

{
σg, at grid vertices,

σc, at cross vertices,

in the lower bound (9.10). This shows that the formula in (9.26) is a lower
bound for dim Sr

d(△). To get an upper bound, we need to construct an
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admissible decomposition of △. Let vij be as in the proof of Theorem 9.21,
and let wij be the cross vertex in the rectangle [xi, xi+1] × [yj, yj+1] for
all i, j. Then we can select the centers for the decomposition in the order
v0j , v1j , . . . , vkj followed by w0j , w1j , . . . , wkj for j = 0, . . . , k̃. This leads to
an admissible decomposition with m̃v = 4 for each grid vertex and m̃v = 2
for each cross vertex. Thus, σ̃v = σv for every interior vertex, and the
upper bound is the same as the lower bound.

9.7. Bounds on the Dimension of Superspline Spaces

Throughout this section we suppose that △ is a regular triangulation. Our
aim is to give upper and lower bounds on the dimension of the general
superspline spaces ST

d (△) introduced in Definition 5.7. Recall that

ST
d (△) := {s ∈ S0

d (△) : τs = 0, all τ ∈ T }, (9.27)

where T is a set of smoothness functionals of the form (5.7) associated
with oriented edges of △. To get useful results, we will have to restrict the
nature of T somewhat.

Definition 9.23. We say that the set T of smoothness functionals defined
on a set E of oriented edges of △ is supported provided that for every e ∈ E ,

τn
j,e ∈ T implies τm

j,e ∈ T , for 0 ≤ m ≤ n.

We say that T is strongly supported provided that for every e ∈ E ,

τn
j,e ∈ T implies τm

j−i,e ∈ T , 0 ≤ i ≤ n − m and 0 ≤ m ≤ n.

Figure 9.7 illustrates these concepts in the case where d = 6. The
figure on the left shows the supports of the three smoothness functionals
{τn

4,e}
2

n=0
, where the tip of each functional is indicated by a square showing

the location of the first B-coefficient appearing in the definition (5.7) of
τn
j,e. This set of three functionals is supported but not strongly supported.

The figure on the right shows a set of six smoothness functionals that is
strongly supported. All of the classes of supersplines considered in previous
sections correspond to strongly supported sets T .

The following lemma shows that for strongly supported sets, we do not
need to worry about the orientation of the underlying edges.

Lemma 9.24. Let T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 be neighboring
triangles sharing the oriented edge e := 〈v2, v3〉, and suppose s is a piecewise

polynomial defined on T ∪ T̃ . Let {cijk} and {c̃ijk} be the B-coefficients
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Fig. 9.7. Supported and strongly supported sets of smoothness conditions.

of s|T and s|
T̃
, respectively. Fix 0 ≤ n ≤ d and d − n ≤ j ≤ d, and let

ẽ := 〈v3, v2〉. Then s satisfies the smoothness conditions

τm
j−i,e s = 0, 0 ≤ i ≤ n − m, 0 ≤ m ≤ n, (9.28)

if and only if it satisfies the smoothness conditions

τ̃m
d+j−n−i,ẽ s = 0, 0 ≤ i ≤ n − m, 0 ≤ m ≤ n, (9.29)

where

τ̃n
j,ẽ s := c̃n,d−j,j−n −

∑

ν+µ+κ=n

cν,j−n+µ,d−j+κBn
νµκ(v4).

Proof: We may regard the coefficients appearing in the conditions (9.28)
and (9.29) to be the coefficients of polynomials q and q̃ of degree n. Then
since both sets of smoothness conditions are equivalent to requiring that q

and q̃ join with Cn smoothness across e, it follows that the sets of smooth-
ness conditions are equivalent.

We now establish a generalization of Theorem 9.7. Let △v be an
interior cell surrounding a vertex v. Without loss of generality, we may
assume that v is located at the origin, and that the cell is rotated so that
none of its interior edges is vertical. Let v1, . . . , vn be the boundary vertices
of △v in counterclockwise order, where for convenience we write vn+1 :=
v1. Let ei := 〈v, vi〉 be the i-th interior edge with slope −αi, and let
Ti := 〈v, vi, vi+1〉 be the i-th triangle, for i = 1, . . . , n.

Given a set T of smoothness conditions associated with this cell, in
view of Lemma 9.24, we may assume that all of the smoothness conditions
are associated with edges oriented so that the first endpoint is at v. Given
1 ≤ i ≤ n and 0 ≤ j ≤ d, let

rv,i,j := max{k : τk
j,ei

∈ T }. (9.30)
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Let

εv,j :=

n∑

i=1

mv,i,j ,

where

mv,i,j :=





0, if there exists ℓ with αi = αℓ and rv,ℓ,j < rv,i,j ,

0, if there exists ℓ > i with αi = αℓ and rv,ℓ,j = rv,i,j ,

j − rv,i,j , otherwise.
(9.31)

Theorem 9.25. Suppose T is a strongly supported set of smoothness con-
ditions. Then

dim ST
d (△v) =

n∑

i=1

d∑

j=0

(j − rv,i,j) +
d∑

j=0

(j + 1 − εv,j)+. (9.32)

Proof: The proof is similar to the proof of Theorems 9.3 and 9.7. Clearly,

ST
d (△v) = Pd ⊕ S0 ⊕ S1 ⊕ · · · ⊕ Sd,

where Sj is the subspace of splines in ST
d (△v) which vanish on the triangle

Tn, and whose restrictions to each triangle of △v belong to the (j + 1)-
dimensional space Hj of bivariate homogeneous polynomials of degree j.
Then

dim ST
d (△v) = dim Pd +

d∑

j=0

dim Sj . (9.33)

For ease of notation, in the remainder of the proof we write ri,j in place
of rv,i,j . First note that (cf. the proof of Theorem 9.3), if s ∈ Sj , then

s|Tℓ
(x, y) =

ℓ∑

i=1

j∑

k=ri,j+1

a
[i]

j,k xj−k(y + αix)k,

for ℓ = 1, . . . , n, where the coefficients satisfy

n∑

i=1

j∑

k=ri,j+1

a
[i]

j,k xj−k(y + αix)k ≡ 0. (9.34)

Thus, the dimension of Sj is equal to the number of linearly independent
coefficient vectors a satisfying (9.34). Clearly, (9.34) is satisfied if and only
if the coefficient of each monomial is zero, and thus (9.34) is equivalent to
the system of equations

Aja = 0, (9.35)
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where a := (a
[1]

j,j , . . . , a
[1]

j,ri,j+1
, . . . , a

[n]

j,j , . . . , a
[n]

j,ri,j+1
)T , Aj := (A

[1]

j , . . . , A
[n]

j ),
and

A
[i]

j :=




1 0(
j
1

)
αi 1

(
j
2

)
α2

i

(
j−1

1

)
αi

...
...

. . .

· · · 1

· · ·
(
ri,j+1

1

)
αi

...
...

...
...(

j

j

)
α

j
i

(
j−1

j−1

)
α

j−1

i · · ·
(
ri,j+1

ri,j+1

)
α

ri,j+1

i




, i = 1, . . . , n.

The number of linearly independent solutions of (9.35) is equal to the num-
ber of columns of Aj minus the rank of Aj . Clearly,

# columns (Aj) =

n∑

i=1

(j − ri,j), # rows (Aj) = j + 1.

In computing the rank of Aj , if αi = αℓ for some i 6= ℓ, we can drop

the smallest of the blocks A
[i]

j and A
[ℓ]

j , which accounts for the cases in
(9.31) where mv,i,j = 0. After dropping all such blocks arising from pairs
of collinear edges, the number of remaining columns in Aj is εv,j. Using
the same Hermite interpolation argument as in the proof of Theorem 9.3,
we see that the rank of Aj is the smaller of j + 1 and εv,j, i.e.,

rank (Aj) = j + 1 − (j + 1 − εv,j)+.

We conclude that

dim Sj = nj −

n∑

i=1

ri,j − (j + 1) + (j + 1 − εv,j)+,

for each j = 1, . . . , d. Since dim Pd =
(
d+2

2

)
=

∑d

j=0
(j + 1), (9.32) follows

immediately from (9.33).

Examining the proof of this theorem, we see that the first rv,i,j co-
efficients on the ring Rj(v) are determined by the smoothness conditions
across the edge ei := 〈v, wi〉, where rv,i,j is the integer defined in (9.30).
Thus, the total number of Bernstein–Bézier coefficients in the triangle Ti

which are not determined by smoothness conditions across the edge ei is

βei
:=

d∑

j=0

(j − rv,i,j). (9.36)
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With this notation, the formula (9.32) can be rewritten as

dim ST
d (△v) =

(
d + 2

2

)
+

n∑

i=1

βei
− γ + θv, (9.37)

where γ :=
(
d+2

2

)
and

θv :=
d∑

j=0

(j + 1 − εv,j)+.

Formula (9.37) states that the dimension of ST
d (△v) is equal to the

dimension
(
d+2

2

)
of the space of polynomials Pd, plus a term which counts

the number of free B-coefficients as we pass over each interior edge of △v,
minus a term γ arising from the compatibility conditions at the vertex v,
plus a correction factor θv relating to how the edges meet at v. This should
be compared with the formulae in Theorems 9.3 and 9.7.

We are now ready to give a lower bound on the dimension of ST
d (△)

for an arbitrary triangulation △. Let EI and VI be the sets of interior edges
and vertices of △, respectively. For each edge e ∈ EI , let βe be defined as
in (9.36), and let

D :=

(
d + 2

2

)
+

∑

e∈EI

βe −

(
d + 2

2

)
VI , (9.38)

where VI := #VI . For each v ∈ VI , let Ev := {ei := 〈v, wv,i〉}
nv

i=1
be the

set of edges attached to v. For each 1 ≤ i ≤ nv, let mv,i,j be defined as in
(9.31), and let

εv,j :=

nv∑

i=1

mv,i,j .

Set

θv :=

d∑

j=0

(j + 1 − εv,j)+, θ :=
∑

v∈VI

θv. (9.39)

Theorem 9.26. Suppose T is a strongly supported set of smoothness con-
ditions associated with the edges of a regular triangulation △. Then

D + θ ≤ dim ST
d (△). (9.40)

Proof: The proof proceeds by induction along the same lines as the proof
of Theorem 9.9. The result is trivial for a single triangle. Now suppose
△ is a triangulation of Ω with N triangles, and that the bound holds for
all triangulations with N − 1 triangles. Suppose some triangle T of △ is
a flap, and let △̃ = △ \ {T }. Clearly, adding a flap T to △̃ increases the

dimension by βe, where e is the edge where the flap joins △̃.
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We now consider the case where △ does not contain a flap. Then it
must contain at least one fill T . Let v be the vertex of T which lies in the
interior of △. We denote the edges of T which are interior to Ω by e1 and
e2. Let Ω2 := star(v) be the union of the triangles surrounding v, and let
Ω1 := Ω \ {T } and Ω3 := Ω1 ∩ Ω2. Set Si := ST

d (△)|Ωi
for i = 1, 2, 3. Let

SE
1

be the linear subspace of splines in S3 that can be extended to S1 but
not to S2. Similarly, let SE

2
be the linear subspace of splines in S3 that can

be extended to S2 but not to S1. Let SE
12

be the linear subspace of splines
in S3 that can be extended to both S1 and S2. Then the space of splines in
S3 that can be extended to S1 is SE

12
⊕ SE

1
. Similarly, the space of splines

in S3 that can be extended to S2 is SE
12

⊕ SE
2

. This implies

S3 = SE
12

⊕ SE
1
⊕ SE

2
⊕ SNE

12
, (9.41)

where SNE
12

is the space of all splines in S3 that cannot be extended to
either S1 or S2. Clearly, for i = 1, 2,

dim Si = dim S0

i + dim SE
12

+ dim SE
i , (9.42)

where S0

i := {s ∈ Si : s vanishes on Ω3}. Solving (9.42) for dim S0

i and
inserting in

dim S = dim S0

1
+ dim S0

2
+ dim SE

12
,

it follows from (9.41) that

dim S = dim S1 + dim S2 − dim SE
1 − dim SE

2 − dim SE
12

= dim S1 + dim S2 − dim S3 + dim SNE
12

≥ dim S1 + dim S2 − dim S3.

Let γ :=
(
d+2

2

)
. Then using the induction hypothesis, we have

dim S ≥

(
d + 2

2

)
+

∑

e∈E1

βe −
∑

u∈V1

γ + θ1 + βe1
+ βe2

− γ + θ2,

where E1 and V1 denote the number of interior edges and vertices of the
triangulation △ restricted to Ω1, and where θi is the correction factor in
the lower bound on the dimension of Si. Combining terms leads to the
bound (9.40) for ST

d (△).

It is clear from the proof of this theorem that strict inequality will hold
in (9.40) whenever dim SNE

12
6= 0 for every step of the induction process.

We turn now to the problem of constructing an upper bound. To this
end, we suppose that △ has been decomposed as in Definition 9.10. Let
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v1, . . . , vn be the corresponding centers. They have the property that for
each i > 1, the vertex vi is connected by an edge to some vj with j < i.

For each k, let Ẽvk
be the set of interior edges of △ attached to vk but

not to any vertex vj with j < k, and let ñk := #Ẽvk
. Let mvk,i,j be defined

as in (9.31), and let

ε̃vk,j :=

ñk∑

i=1

mvk,i,j .

Let

θ̃ :=
n∑

k=1

θ̃vk
, (9.43)

where

θ̃vk
:=






d∑

j=0

(j + 1 − ε̃vk,j)+, if vk ∈ VI ,

0, otherwise.

Theorem 9.27. Suppose T is a strongly supported set of smoothness con-
ditions associated with the edges of a regular triangulation △. Then

dim ST
d (△) ≤ D + θ̃. (9.44)

Proof: Suppose v1 is an interior vertex. Then by (9.37), the dimension of
Sr

d(△)|star(v1) is equal to
(

d + 2

2

)
+

∑

e∈Ẽv1

βe − γ + θ̃v1
,

where γ :=
(
d+2

2

)
. Similarly, if v1 is a boundary vertex, then the dimension

of Sr
d(△)|star(v1)

is equal to
(

d + 2

2

)
+

∑

e∈Ẽv1

βe.

We now we examine s restricted to star(v2) ∩ Ω1, where the Ωi are the
sets arising in the decomposition of △. If v2 is a boundary vertex of △,
then it is easy to see that the number of linearly independent splines in
Sr

d(△)|star(v1)∪ star(v2)
that vanish on star(v1) is at most

∑
e∈Ẽv2

βe. Sim-

ilarly, if v2 is an interior vertex of △, then by the proof of Theorem 9.25,
the number of linearly independent splines in Sr

d(△)|star(v1)∪ star(v2)
that

vanish on star(v1) is at most
∑

e∈Ẽv2

βe−γ + θ̃v2
. Repeating this argument

for v3, . . . , vn gives (9.44).

It is clear that the bound (9.44) may depend on the decomposition of
△, as was the case for the spline spaces Sr

d(△) treated in in Section 9.3. To
get the best possible upper bound, we would have to examine all possible
admissible decompositions.
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Combining Theorems 9.26 and 9.27, we have shown that if T is a
strongly supported set of smoothness conditions associated with the edges
of a triangulation △, then

D + θ ≤ dim ST
d (△) ≤ D + θ̃, (9.45)

where D is given in (9.38) and θ and θ̃ are given in (9.39) and (9.43),
respectively. Note that θ and θ̃ are in general different with θ ≤ θ̃. This
follows since for all v ∈ VI and all 0 ≤ j ≤ d, we have ε̃v,j ≤ εv,j, since in
computing εv,j , we sum over a subset of the vertices connected to v rather
than over all of them.

The upper and lower bounds in (9.45) differ only by θ − θ̃, which
depends on the exact geometry of the triangulation. Clearly, whenever
θ̃ = θ, (9.45) provides the actual dimension of ST

d (△) rather than just
a bound. For some examples where this happens, see Section 9.6 where
splines on type-I and type-II partitions are discussed.

To illustrate how the upper and lower bounds compare with true di-
mensions, in Tables 9.1 and 9.2 we give bounds and dimensions for several
superspline spaces of S1

d(△MS) and S2

d (△MS) defined on the symmetric
Morgan–Scott triangulation △MS shown in Figure 9.3. Each space in the
table has ρv supersmoothness at the three interior vertices of △MS , and also
has Cµe smoothness across each of the three interior edges of the central
triangle. The Java program described in Remark 5.6 was used to compute
the true dimensions. The tables show that the actual dimension can be
equal to the upper bound rather than the lower bound, and that in some
cases, the lower bound turns out to be smaller than

(
d+2

2

)
, which of course

is always a lower bound for the dimension since every spline space contains
Pd. Further experiments on a variety of spline spaces suggest that the lower
bound is usually closer to the true dimension in general.

9.8. Generic Dimension

As we have seen above, the problem of finding the dimension of spline
spaces is nontrivial since, in general, the dimension depends not only on
the degree and smoothness of the space, but also on the precise geometry
of the triangulation. In this section we show that for a given degree and
set of smoothness conditions defining a spline space S, the dimension of S
is the same for almost all triangulations with the same connectivity.

Definition 9.28. Let L be a list describing how to connect vertices in R
2

to produce a triangulation. We define Tri (L) to be the set of all regular
triangulations that can be constructed with this connectivity.

If △ is a triangulation in Tri (L), then L is a list of its edges. For
given L, Tri (L) contains infinitely many triangulations. In particular, if
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d µe ρv LB dim UB
2 1 1 6 7 7
3 1 1 16 16 17
3 2 1 13 13 13
3 1 2 13 13 13
4 1 1 33 33 33
4 2 1 27 27 27
4 1 2 30 30 30

Tab. 9.1. Dimensions of some spline spaces on the Morgan–Scott split for r = 1.

d µe ρv LB dim UB
3 2 2 7 10 10
4 2 2 15 16 19
4 3 2 15 16 16
4 2 3 15 16 16
4 4 2 15 15 15
4 3 3 15 16 16
4 2 4 15 15 15
5 2 2 30 30 34
5 3 2 27 27 28
5 2 3 30 30 31

Tab. 9.2. Dimensions of some spline spaces on the Morgan–Scott split for r = 2.

△ ∈ Tri (L), then any triangulation obtained from △ by perturbing its
vertices by a sufficiently small amount will also belong to Tri (L). Now fix
d > 0, and suppose T is an arbitrary set of smoothness conditions of the
type (5.7) associated with the edges of any triangulation in Tri (L). For
each △ ∈ Tri (L), let ST

d (△) be the spline space defined in (9.27).

Definition 9.29. Fix d, T and L. Then a triangulation △∗ ∈ Tri (L) is
said to be generic with respect to d, T and L provided that

dim ST
d (△∗) = min

△∈Tri (L)
dim ST

d (△) =: n.

We call n the generic dimension of {ST
d (△)}

△∈Tri (L).

We illustrate this idea with two examples.

Example 9.30. Let L describe the set of triangulations with connectivity
as shown in Figure 9.2. Let d = 2, and suppose T defines the spline space
S1

2
(△) for any triangulation △ ∈ Tri (L).
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Discussion: As discussed in Example 9.5, if △ ∈ Tri (L), then the di-
mension of S1

2
(△) is equal to 7 + σ, where σ = 1 if the interior vertex v is

singular, and σ = 0 otherwise. It follows that all triangulations △ ∈ Tri (L)
are generic relative to this d, T and L, except those where the interior vertex
v is singular.

The following example shows that for fixed L, the subset of triangu-
lations in Tri (L) that are generic can be different if we change the degree
and smoothness conditions.

Example 9.31. Let L describe the same set of triangulations as in Ex-
ample 9.30. Let d = 4, and suppose T defines the superspline space
S1

4
(△) ∩ C3(v) for any triangulation △ ∈ Tri (L), where v is the interior

vertex of △.

Discussion: By Theorem 9.7, if △ ∈ Tri (L), then dim S1

4
(△) ∩ C3(v) =

22, regardless of whether v is singular or not. Thus, in this example all
triangulations in Tri (L) are generic relative to this choice of d, T and L.

We have the following interesting result concerning generic triangula-
tions.

Theorem 9.32. Suppose △∗ is a generic triangulation relative to d, T ,
and L. Then all triangulations △ ∈ Tri (L) whose vertices are sufficiently
small perturbations of the vertices of △ are also generic relative to d, T ,
and L.

Proof: As observed in Section 5.5.4, for each △ ∈ Tri (L), there is a unique
matrix A△ depending on △ such that

ST
d (△) = {s ∈ S0

d(△) : A
△

c = 0}.

Recall that the dimension of ST
d (△) is given by n − r

△
, where n is the

dimension of S0

d(△) and r
△

is the rank of A
△

. Since △∗ is generic, we have

r
△∗ := max

△∈Tri (L)
r
△

.

Let D be the determinant of some square submatrix of A
△∗ whose rank

is equal to r
△∗ , and for any other triangulation △ ∈ Tri (L), let D(△)

be the determinant of the same submatrix of the corresponding matrix
A

△
. It is clear that D(△) is a continuous function of the 2m variables

(x1, y1, . . . , xm, ym), where the (xi, yi) are the vertices of △. Thus, if D(△)
is nonzero at a given point in R

m, then it must be nonzero for all points in
an open neighborhood, and the claim follows.
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9.9. The Generic Dimension of S1
3 (△)

In this section we prove that if △ is a generic triangulation, then dim S1

3
(△)

= 3VB + 2VI + 1, where VB and VI are the number of boundary and inte-
rior vertices of △, respectively. The proof will involve so-called smoothing
cofactors.

Given a triangulation △, let v1, . . . , vVI
be its interior vertices and

e1, . . . , eEI
its interior edges, where each edge ei has been assigned a specific

orientation. Assuming that the triangulation △ has been rotated so that no
edge is vertical, we can find αi, βi such that ei lies on the line y+αix+βi = 0.
Now suppose T1 and T2 are two triangles sharing the edge ei, where T2 is the
triangle on the left side of ei. Then for any s ∈ S1

3
(△), the C1 smoothness

across the edge ei implies

s|T2
− s|T1

= (y + αix + βi)
2fi,

where
fi := ai + biy + cix,

for some constants ai, bi, ci. The linear polynomial fi is called a smoothing

cofactor of s associated with the oriented edge ei. It is clear that given any
spline s ∈ S1

3
(△), there is a unique set

C := {fi : i = 1, . . . , EI}

of smoothing cofactors associated with s. However, not every set C of linear
polynomials can serve as the smoothing cofactors of a spline s in S1

3
(△). For

that to happen, the cofactors must be consistent. To describe this concept,
we need to examine closed paths that start and end in one triangle of △,
and pass over a sequence of interior edges ei1 , . . . , eik

, but not through any
vertex of △.

Definition 9.33. Let C := (f1, . . . , fEI
) be a vector of linear polynomials.

Then we say that C is consistent provided for any closed path that crosses
over a sequence of edges ei1 , . . . , eik

,

k∑

j=1

(y + αij
x + βij

)2(−1)µij fij
≡ 0, (9.46)

where

µij
=

{
0, if the path crosses eij

from right to left,
1, otherwise,

(9.47)

for j = 1, . . . , k. We say that C is locally consistent provided (9.46) holds
for any closed path that encloses just one interior vertex and crosses over
each edge attached to that vertex exactly one time.
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Lemma 9.34. A set C of cofactors is consistent if and only if it is locally
consistent.

Proof: Clearly, if C is consistent, then it must be locally consistent. We
now show the converse. We first consider a closed path that encloses exactly
two interior vertices v and w of △. Suppose that C satisfies the local
consistency conditions for both v and w, i.e.,

nv∑

j=1

(y + αij(v)x + βij(v))
2(−1)µij(v)fij(v) ≡ 0,

nw∑

j=1

(y + αij(w)x + βij(w))
2(−1)

µij(w)fij(w) ≡ 0,

(9.48)

where i1(v), . . . , inv
(v) and i1(w), . . . , inw

(w) are the indices of the edges
attached to v and w, respectively. Now there are two cases. If v and w are
connected by an interior edge e := 〈v, w〉, then adding the two expressions
in (9.48) together and taking account of the fact that if we cross a given
edge once in each direction, then the corresponding terms in (9.48) cancel,
we see that the sum (9.46) vanishes for the closed path going around the
pair v and w. On the other hand, if v and w are not connected by an
interior edge, there must be some interior edge e of △ that separate v and
w, i.e., v and w lie on opposite sides of e. But then any closed path around
both v and w must pass over e once in each direction, and we can again add
the two expressions in (9.48) to see that (9.46) vanishes for the closed path
going around the pair v and w. This argument can be repeated to show
that (9.46) holds for closed paths around arbitrarily many interior vertices.

In view of this lemma, each spline s ∈ S1

3
(△) is uniquely determined

up to a polynomial by a set of coefficients {ai, bi, ci}
EI

i=1
such that for each

v ∈ VI ,

pv(x, y) :=

nv∑

j=1

(y + αij (v)x + βij(v))
2(−1)κij (aij (v) + bij(v)y + cij (v)x) ≡ 0,

(9.49)
where i1(v), . . . , inv

(v) are the indices of the edges attached to v in coun-
terclockwise order, and

κij :=

{
0, if eij

is oriented outwards from vi,
1, otherwise.

Since each of the polynomials pv satisfies

pv(v) = Dxpv(v) = Dypv(v) = 0,
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it follows that a set of coefficients g := (a1, b1, c1, . . . , aEI
, b

EI
, c

EI
)T satisfies

(9.49) if and only if each of the pv reduces to a linear polynomial. Clearly,
the cubic polynomial pv reduces to a linear polynomial if and only if the
factors in (9.49) multiplying y2, xy, x2, y3, xy2, x2y, x3 are zero. Writing
these seven conditions for each v ∈ VI leads to the linear system

Mg = 0, (9.50)

where M consists of VI × EI blocks Mij of size 7 × 3, where

Mij := Mvi,ej
:= (−1)κij




1 2βj 0
2αj 2αjβj 2βj

α2

j 0 2αjβj

0 1 0
0 2αj 1
0 α2

j 2αj

0 0 α2

j




(9.51)

if the j-th edge is attached to the i-th vertex, and Mij is 0 otherwise.
Note that the matrix M in (9.50) is not the same as the matrices A

△
of

smoothness conditions in Theorem 9.32.

Lemma 9.35. For any triangulation △,

dim S1

3 (△) = 3VB + 9VI − rank (M) + 1, (9.52)

where M is the matrix in (9.50).

Proof: The number of linearly independent splines in S1

3
(△) that do not

lie in P3 is equal to the number of linearly independent solutions of (9.50).
M has 3EI columns and 7VI rows. By (4.5), 3EI = 3VB + 9VI − 9 ≥ 9VI ,
so the number of columns exceeds the number of rows. Thus, the number
of linearly independent solutions of (9.50) is 3EI − rank (M). Using EI =
3VI + VB − 3, and the fact that P3 has dimension 10, we immediately get
(9.52).

We shall show below that for any generic triangulation, M has full rank,
i.e., rank (M) = 7VI . The proof will be based on an induction argument.

Definition 9.36. An oriented interior edge e = 〈v, w〉 of a shellable trian-
gulation △ is said to be contractible provided that if we remove e and the
two triangles containing e, and replace v by w in both the edge and triangle
lists, we get a new shellable triangulation △̃ with one less interior vertex.

In Figure 9.8 we show a triangulation that has both contractible and
noncontractible edges. For example, the edges 〈u, v〉 and 〈u, w〉 are both
contractible, but the edge 〈v, w〉 (marked with a dotted line) is not con-
tractible.
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v w
u

Fig. 9.8. A triangulation with a noncontractible edge.

If v is a vertex of a triangulation △, then we say that v is of degree k

provided there are k edges attached to v.

Lemma 9.37. Let △ be a shellable triangulation that contains an interior
vertex v of degree 3, 4, or 5. Then there is at least one contractible edge
attached to v.

Proof: Let Ωv := star(v). If Ωv is convex, then clearly any edge attached
to v is contractible. This is the case when v is of degree 3. Now suppose v

is of degree 4, and let v1, . . . , v4 be the boundary vertices of Ωv. If Ωv is not
convex, then the external angle at one of the vertices (say v1) is less than π.
But then we can contract the edge 〈v, v1〉. It remains to consider the case
when v is of degree 5. Suppose v1, . . . , v5 are the boundary vertices of Ωv.
If Ωv has just one vertex (say v1) whose exterior angle is less than π, then
we can contract the edge 〈v, v1〉. Suppose now Ωv has two vertices whose
exterior angles are less than π. There are two cases. If these two vertices
are v1 and v2, then the edge 〈v, v4〉 is contractible. If the two vertices are v1

and v3, then depending on the geometry, one of the edges 〈v, v1〉 or 〈v, v3〉

is contractible.

Theorem 9.38. For any generic triangulation △,

dim S1

3
(△) = 3VB + 2VI + 1, (9.53)

where VB and VI are the number of boundary and interior vertices of △,
respectively.

Proof: By Theorem 9.9 and the Euler relations, we know that the formula
in (9.53) is a lower bound for the dimension of S1

3
(△). We now show that

for any generic triangulation △, the dimension is actually equal to this
number. We proceed by induction on the number N of triangles in △.
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Since the result is trivial if N = 1, we may suppose N > 1 and that (9.53)
holds for generic triangulations with N−1 triangles. In view of Lemma 9.35,
it suffices to show that the matrix M in (9.50) has full rank 7VI . There are
three cases.

Case 1: There exists a boundary vertex v of △ of degree 2. In this case
we can write △ = △̃ ∪ T , where T is a flap (see Definition 9.8) attached

to △ along an edge e. Note that VI = ṼI and VB = ṼB + 1. Let M̃ be
the matrix in (9.50) associated with △̃. M can be obtained from M̃ by
adding three columns corresponding to the coefficients of the smoothing
cofactor associated with the new interior edge e. Thus, using the inductive
hypothesis, we have rank (M) = rank (M̃) = 7ṼI = 7VI .

Case 2: There exists a boundary vertex v of △ of degree 3. In this case
there exists a triangulation △̃ such that △ can be obtained from △̃ by
adding two neighboring triangles T1 := 〈v, v1, v2〉 and T2 := 〈v, v2, v3〉 with

vertex at v. Note that VI = ṼI + 1 and VB = ṼB . In this case

M =

[
M̃ 0
M1 M2

]
,

where M2 = [M〈v2,v3〉, M〈v2,v〉, M〈v2,v1〉]. This is a 7×9 matrix with full rank
7 since it can be thought of as the matrix corresponding to a triangulation
with one interior vertex v2 and three interior edges. Thus, rank (M) =

rank (M̃) + 7 = 7ṼI + 7 = 7VI .

Case 3: All boundary vertices of △ are of degree at least 4. In this case we
claim that there is at least one interior vertex of △ of degree 5 or less. To
see this, suppose all interior vertices have degree 6 or more. Then counting
edges, we have E ≥ (6VI + 4VB)/2 = 3VI + 2VB, where VI and VB are
the number of interior and boundary edges of △, respectively. But this
contradicts the Euler relation (4.5), which asserts that E = 3VI + 2VB − 3.
Now let v be an interior vertex of △ of degree at most 5. By Lemma 9.37,
one of the edges attached to v can be contracted to get a triangulation △̃

with two fewer triangles, three fewer interior edges, and one less interior
vertex. We now show that the rank of the matrix M of (9.50) associated

with △ is 7VI . After perturbing v slightly if necessary, we may assume △̃

is generic, see the proof of Theorem 9.32.
Suppose e := 〈v, w〉 is a contractible edge of △. Let u and z be the

other vertices of the two triangles sharing the edge e. In addition, let
z1, . . . , zp be the neighbors of v other than u, w, z, and let w1, . . . , wq be
the neighbors of w other than u, v, z. By the inductive hypothesis, the
matrix M̃ associated with △̃ has rank ṼI = 7(VI − 1).

We now analyze the rank of M . Let M〈w,u〉 be the matrix in (9.51)
associated with the vertex w and edge 〈w, u〉, with similar definitions for
M〈w,v〉 and M〈w,z〉. Consider the auxiliary matrix (M〈w,u〉 M〈w,v〉 M〈w,z〉).
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This is a 7 × 9 matrix of full rank 7, since it can be thought of as the
matrix corresponding to a triangulation with one interior vertex w and
three interior edges. Let

M (1) =

[
M̃ 0 0 0
0 M〈w,u〉 M〈w,v〉 M〈w,z〉

]
.

Clearly, this is a full rank matrix whose rank is equal to the number of its
rows, which is 7VI . Now, for each i = 1, . . . , p, we add a linear combination
of the last three block columns of M (1) to the block column of M (1) corre-
sponding to the edge 〈w, zi〉 to obtain the matrix M〈w,zi〉 in the last block

row. We denote the modified matrix M (1) by M (2).
Next, we subtract the last block row of M (2) from the block row cor-

responding to the vertex w, and denote the result by M (3). This step
introduces zero blocks in the row corresponding to w and the columns
corresponding to 〈w, zi〉, i = 1, . . . , p. Now, we add the block column cor-
responding to 〈w, u〉 in the first part (all but the last three columns) of
M (3) to the block column corresponding to 〈w, u〉 in the second part (the
last three columns). Similarly, we add the block column corresponding to
〈w, z〉 in the first part of M (3) to the block column corresponding to 〈w, z〉

in the second part. This results in a matrix M (4) with zero blocks in the
row corresponding to w and the columns corresponding to 〈w, u〉 and 〈w, z〉

in the second part of the matrix. Clearly, the preceding three steps do not
change the rank, and it follows that M (4) is a full rank matrix whose rank
is equal to the number of its rows, which is 7VI .

The last step is more subtle. Given any point ξ ∈ R
2, let M (5)(ξ) be the

matrix obtained from M (4) by 1) replacing w by ξ in the last block column,
and 2) replacing w by ξ in all block columns having a nonzero matrix in
the last block row, except for the next to last block column (which contains
M〈w,v〉), and 3) reversing the sign of the next to last block column. Note

that M (5)(w) = M (4), and up to a rearrangement of its columns, M (5)(v)
is the matrix corresponding to the triangulation △.

Since M (4) is of full rank, there exists a 7VI×7VI submatrix of it whose
determinant is nonzero. Let D(ξ) be the determinant of the corresponding
submatrix of M (5)(ξ). Clearly, D(ξ) is a continuous rational function of ξ.
It is nontrivial since D(w) 6= 0. Let Z be the zero set of D(ξ) as ξ runs
over R

2. Since D(ξ) is rational, Z is a set of measure zero.
Now, since M (5)(v) corresponds to the generic triangulation △, we

conclude that v is not in Z, for if it were, we could move v to a nearby
point ξ to obtain a perturbed triangulation △ξ whose corresponding matrix
M (5)(ξ) would be of full rank. This would imply that the spline space on
△ξ would have smaller dimension than the spline space on △, contradicting
our assumption that △ is generic. It follows that D(v) 6= 0 and M (5)(v) is
of full rank.
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Fig. 9.9. The triangulations △ and △̃ of Example 9.39.

To illustrate how edge contraction works in this proof, we consider the
following example. For convenience, we abbreviate M〈vi,vj〉 to Mij .

Example 9.39. Let △ be the Morgan–Scott triangulation shown in
Figure 9.9 (left), and let △̃ be the triangulation shown in Figure 9.9 (right)
obtained from △ by contracting the edge 〈v6, v5〉.

Discussion: In the notation of the proof of Theorem 9.38, u = v1 and
z = v4, and we are contracting the edge 〈v6, v5〉. In this case, carrying
out the matrix manipulations described in the proof, we get the following
sequence of matrices:

M̃ =

[
M42 M43 M45 0 0 0
0 0 M54 M53 M51 M52

]
,

M (1) =




M42 M43 M45 0 0 0 0 0 0
0 0 M54 M53 M51 M52 0 0 0
0 0 0 0 0 0 M51 M56 M54



 ,

M (2) =




M42 M43 M45 0 0 0 0 0 0
0 0 M54 M53 M51 M52 0 0 0
0 0 0 0 0 M52 M51 M56 M54



 ,

M (3) =




M42 M43 M45 0 0 0 0 0 0
0 0 M54 M53 M51 0 −M51 −M56 −M54

0 0 0 0 0 M52 M51 M56 M54


 ,

M (4) =




M42 M43 M45 0 0 0 0 0 M45

0 0 M54 M53 M51 0 0 −M56 0
0 0 0 0 0 M52 M51 M56 M54


 ,
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M (5)(ξ) =




M42 M43 M45 0 0 0 0 0 M4ξ

0 0 M54 M53 M51 0 0 M56 0
0 0 0 0 0 Mξ2 Mξ1 M65 Mξ4


 .

M (5)(v) =




M42 M43 M45 0 0 0 0 0 M46

0 0 M54 M53 M51 0 0 M56 0
0 0 0 0 0 M62 M61 M65 M64



 .

After exchanging columns, this is the matrix corresponding to the Morgan–
Scott triangulation △.

9.10. Remarks

Remark 9.1. The first indication that it might be very difficult to give
closed formulae for dimensions of spline spaces was the discovery of Ex-
ample 9.13 which appeared in an unpublished manuscript of Morgan and
Scott. The dimension problem associated with this particular triangulation
has been studied in several papers, see [Die90, Shi91, FenKZ96, DenFK00].
The following result is established in [Die90]. We denote the boundary
vertices of △MS by v1, v2, v3 and the interior vertices by ṽ1, ṽ2, ṽ3, where
ṽi is opposite to vi. For each i = 1, 2, 3, let (αi, βi, γi) be the barycentric
coordinates of vi relative to the triangle 〈ṽ1, ṽ2, ṽ3〉.

Theorem 9.40. Let △ be the triangulation in Figure 9.9 (left). Then

(
2r + 2

2

)
+ σ ≤ dim Sr

2r(△) ≤

(
2r + 2

2

)
+ σ + 1, (9.54)

where

σ := 3

r∑

j=1

(r + 1 − 3j)+. (9.55)

Moreover, the dimension is equal to the lower bound unless

β1β2β3 =

{
γ1γ2γ3, if r is odd,

±γ1γ2γ3, if r is even.
(9.56)

The condition β1β2β3 = γ1γ2γ3 holds if and only if the three lines
〈v1, ṽ1〉, 〈v2, ṽ2〉, and 〈v2, ṽ2〉 have a common intersection. For each i =
1, 2, 3, let ui be the intersection of the two lines 〈vi, ṽi〉 and 〈ṽi+1, ṽi+2〉.
Then the condition β1β2β3 = −γ1γ2γ3 holds if and only if the three points
u1, u2, u3 are collinear.
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Remark 9.2. The following dimension result for S1

4
(△) was established in

[AlfPS87c] using graph-theoretic methods.

Theorem 9.41. Let V be the number of vertices in a triangulation △,
and let σsing be the number of singular vertices. Then

dim S1

4
(△) = 6V − 3 + σsing .

This is exactly the lower bound of Theorem 9.9. This result is quite
easy to prove for a nondegenerate triangulation, i.e., a regular triangulation
which does not contain any degenerate edges, see [AlfPS87c]. In this case
it is also easy to explicitly construct a basis of locally supported splines for
S1

4
(△). The question of whether or not such a basis exists for arbitrary

regular triangulations remains open.

Remark 9.3. Theorem 9.15 describes a minimal determining set for Sr
d(△)

in the case d ≥ 3r+2. However, this MDS is not prescribed in complete de-
tail. In particular, the minimal determining sets for splines on cells needed
in steps 1) and 2) have not been explicitly given. A construction of these
sets was first given in [Sch88b], without regard for stability. In Section 11.5
we describe stable minimal determining sets for splines on cells based on
[DavS02].

Remark 9.4. The problem of computing dimensions of spline spaces for
d < 3r + 2 on general triangulations seems to be very difficult. Besides the
results for type-I and type-II partitions of Section 9.6, there are some results
for other special triangulations. The following theorem was established in
[AlfS90]. Given △, let VI is the set of interior vertices of △, and for each
v ∈ VI , let mv be the number of edges with different slopes attached to v.

Theorem 9.42. Suppose △ is a nondegenerate triangulation. Then

dim Sr
3r+1

(△) =

(
2r + 2

2

)
V − 3

(
r + 1

2

)
+ σ,

where

σ :=
∑

v∈VI

r∑

j=1

(r + j + 1 − jmv)+.

Remark 9.5. Some of the results in this chapter for shellable triangula-
tions, i.e., regular triangulations without holes, can be extended to the case
where △ includes holes, see e.g. [AlfPS87b, Jia90].

Remark 9.6. It was proved in [Sch84b] that (9.25) also holds for nonuni-
form type-I partitions in the case r = 1, but not for r > 1. It was also
shown in [Sch84b] that (9.26) holds for nonuniform type-I partitions in the
case r = 0, 1, 2. For more on dimension of spline spaces on type-I and
type-II partitions, see [ChuH89, ChuH90b].
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Remark 9.7. The explicit formula for spline and superspline spaces given
in this chapter all have terms that depend on the geometry of the underlying
triangulation △. In all cases these are nonnegative expressions which vanish
for generic triangulations.

Remark 9.8. Splines on cross-cut partitions (see Remark 4.15) were in-
troduced and studied in a series of papers by Chui and Wang [ChuW82a–
ChuW84c] and the books [Chu88, Wan01]. The theory includes results on
dimension, see [ChuH89, ChuH90b, Man92a, SablJ94]. For dimension re-
sults on general rectilinear partitions, see [Ibr89, Man91, Die97].

9.11. Historical Notes

The earliest paper we could find where the problem of finding the dimension
of bivariate spline spaces is explictly formulated is due to Strang [Str73],
where he made a conjecture about the dimension of the space Sr

d(△) for
type-I triangulations. In [Str74] it was conjectured that for general trian-
gulations, the dimension of the spline space Sr

d(△) should be equal to the
quantity D appearing in the lower bound of Theorem 9.9. But as shown in
that theorem, the actual lower bound is usually larger, depending on the
geometry of the triangulation. In another early paper [MorS75], Morgan
and Scott computed the dimension of S1

d(△) for d ≥ 5 by constructing a
nodal basis. Their result takes account of singular vertices, thus showing
that Strang’s conjecture is not valid for general triangulations.

The lower bounds presented in Theorem 9.9 were established in [Sch79].
This was the first paper to give formulae explaining in detail how the di-
mension depends on the geometry of the triangulations, and in particular
on the slopes of the edges surrounding each interior vertex.

The upper bound results presented in Section 9.3 are taken from
[Sch84b]. We have introduced the idea of admissible decompositions here
to make the arguments in that paper more rigorous. For more on bounds,
see [Wan85, Jia90, Man90, Man91, Man92a, Man92b, Rip95].

Example 9.13 was included in [Sch79] to show that taking account of
slopes of edges as in Theorem 9.9 and 9.12 is not enough to describe the
dimension of spline spaces in general. The example first appeared in un-
published work of Morgan and Scott. Diener [Die90] found a way to explain
the dimension of this space (and more generally of the spaces Sr

2r(△MS) in
terms of the geometry, see Remark 9.1. Other authors who worked on this
problem include [Shi91, FenKZ96, DenFK00].

It was observed in [Sch84b, ChuH89] that the upper and lower bounds
of Section 9.3 can sometimes be combined to get exact dimension formu-
lae. In particular, the results for type-I and type-II partitions given in
Section 9.6 come from [Sch84b]. The upper and lower bounds also agree
for cross-cut partitions, see [ChuH89].
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The first paper to use Bernstein–Bézier methods to study the dimen-
sion of spline spaces is [AlfS87], where a formula for the dimension of Sr

d(△)
for d ≥ 4r + 1 was obtained by constructing a minimal determining set, a
concept which was also introduced in that paper. Bases for these spaces
were constructed in [AlfPS87a], and the result was extended to triangula-
tions with holes in [AlfPS87b].

The results on the dimension of Sr
d(△) for d ≥ 4r + 1 were extended

to d ≥ 3r + 2 by Hong in his master’s thesis, which was later published as
[Hon91]. His techniques were adapted in [IbrS91] to compute the dimension
of the superspline spaces S

r,ρ
d (△) for d ≥ 3r + 2. We have followed this

paper in Section 9.5.
There has not been much success in understanding the dimension of

spline spaces Sr
d(△) or superspline spaces Sr,ρ

d (△) for degrees d < 3r+2 for
general triangulations. The spaces Sr

3r+1
(△) are treated in [AlfS90] under

the assumption that △ is nondegenerate, see Theorem 9.42. For general
regular triangulations, the only case where the dimension of Sr

3r+1
(△) is

known is r = 1, see Remark 9.2. To get dimension results which hold for
all 0 ≤ r ≤ d requires severe restrictions on the partition. Here we can
point to the results in Section 9.6 on type-I and type-II partitions, and the
results on cross-cut partitions, see Remark 9.8.

The upper and lower bounds on the dimension of the very general
superspline spaces ST

d (△) presented in Section 9.7 are due to Alfeld and
Schumaker [AlfS03].

Of the spaces which are not yet understood, the space S1

3
(△) has

certainly received the most attention. It has long been conjectured that the
lower bound of Theorem 9.9 is the correct dimension, i.e., the dimension
of S1

3
(△) is 3VB + 2VI + 1 + σ, where σ is the number of singular vertices.

As shown in Section 9.9, this formula (without the σ term) is correct for
generic triangulations.

The dimension question has attracted the attention of algebraists, who
have tried to bring the power of homological algebra to bear on this prob-
lem, see [Bil88, Bil89, BilR89, BilR91, Whi91a–Whi91c, CoxLO98]. In fact,
the book [CoxLO98] contains a chapter on splines. The first proof of the
generic dimension of S1

3
(△) was obtained by a combination of results in

homological algebra by Billera [Bil88], and work of Whiteley [Whi91a–
Whi91c] on so-called spline matrices. We have not followed this approach
here – our results on S1

3
(△) in Section 9.9 use only ordinary linear algebra.



Approximation Power

of Spline Spaces

In this chapter we discuss how well smooth functions can be approximated
by bivariate splines. The results are useful in deriving error bounds for
various practical interpolation and approximation methods.

10.1. Approximation Power

Throughout this chapter we suppose Ω is a polygonal domain in R
2 and that

‖ · ‖q,Ω is the q-norm on Ω, for 1 ≤ q ≤ ∞. Given m ≥ 1, let Wm
q (Ω) be the

Sobolev space with associated seminorm | · |m,q,Ω introduced in Section 1.6.

Definition 10.1. Fix 0 ≤ r < d and 0 < θ ≤ π/3. Let m be the largest
integer such that for every polygonal domain Ω and every regular triangu-
lation △ of Ω with smallest angle θ, for every f ∈ Wm

q (Ω), there exists a
spline s ∈ Sr

d(△) with

‖f − s‖q,Ω ≤ K |△|m |f |m,q,Ω, (10.1)

where the constant K depends only on r, d, θ, and the Lipschitz constant of
the boundary of Ω. Then we say that Sr

d has approximation power m in the

q-norm. If this holds for m = d + 1, we say that Sr
d has full approximation

power in the q-norm.

Our aim in this chapter is to explore the approximation power of Sr
d for

various values of r and d. Our main results are as follows:

• If d ≥ 3r+ 2, then the space Sr
d has full approximation power in all of

the q-norms.

• If (3r + 2)/2 ≤ d ≤ 3r + 1 and r > 0, then in any q-norm, the space
Sr

d has approximation power at most d.

• If d < (3r + 2)/2 and r > 0, then in any q-norm, the space Sr
d has

approximation power zero.

We prove the first statement in Section 10.3. The other two results will be
established in Section 10.4.
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10.2. C
0 Splines and Piecewise Polynomials

In this section we show that for any d > 0, S0

d has full approximation
power in all of the q-norms. For d ≥ 2, this result is contained in more
general results to be established in Section 10.3, but here we can give a
much simpler proof.

Theorem 10.2. Suppose △ is a regular triangulation of a polygonal do-
main Ω, and let 1 ≤ q ≤ ∞. Then for every f ∈ W d+1

q (Ω), there exists a
spline s ∈ S0

d(△) such that

‖Dα
xD

β
y (f − s)‖

q,Ω
≤ K |△|d+1−α−β |f |d+1,q,Ω,

for all 0 ≤ α + β ≤ d. The constant K depends only on d, the smallest
angle in △, and the Lipschitz constant of the boundary of Ω.

Proof: The set M := Dd,△ of all domain points associated with △ is
a stable local minimal determining set for S0

d(△), and the result follows
immediately from Theorem 5.19.

Since for any triangulation △, the space PPd(△) of piecewise polyno-
mials of degree d defined on △ contains the space S0

d (△), it follows that
PPd also has full approximation power in all of the q-norms.

10.3. Approximation Power of Srd(△) for d ≥ 3r + 2

In this section we show that for d ≥ 3r + 2 the space Sr
d has full approxi-

mation power in all of the q-norms, see Theorem 10.10 below. To prove it,
we need to develop some additional machinery.

10.3.1 Near-degenerate Edges and Near-Singular Vertices

Recall that an edge e = 〈v2, v3〉 shared by two triangles T := 〈v1, v2, v3〉

and T̃ := 〈v4, v3, v2〉 is said to be degenerate at v2 provided that the points
v1, v2, v4 lie on a straight line. We call an edge which is nearly degenerate a
near-degenerate edge. To make this concept more precise, we now introduce
the following quantitative form.

Definition 10.3. Suppose T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 are two
triangles which share the edge e = 〈v2, v3〉. Let 0 < δ < θ, where θ is the
smallest angle in the two triangles. We say that e is δ-near-degenerate at

v2 provided that the angle between the edges 〈v2, v1〉 and 〈v2, v4〉 is greater
than π − δ.

Lemma 10.4. Suppose △ is a triangulation with smallest angle θ, and let
δ < θ. Then no edge of △ can be δ-near-degenerate at both ends.
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Proof: Suppose T and T̃ are as in Definition 10.3 and that the edge
e := 〈v2, v3〉 is δ-near-degenerate at both v2 and v3. Then the sum of the
angles in the quadrilateral 〈v1, v2, v3, v4〉 is at least 2π−2δ+2θ > 2π. This
is impossible, and the lemma follows.

Lemma 10.5. Suppose θ is the smallest angle in triangles T := 〈v1, v2, v3〉

and T̃ := 〈v4, v3, v2〉, and that e2 := 〈v2, v3〉 is not δ-near-degenerate at v2
with δ < θ. Let (α1, α2, α3) be the barycentric coordinates of v4 in terms
of the triangle T , i.e., v4 = α1v1 + α2v2 + α3v3. Then |α3| ≥ sin θ sin δ.

Proof: Let e1 := 〈v2, v1〉 and e3 := 〈v2, v4〉. Then since |α3| is the ratio of
the area of the triangle 〈v1, v2, v4〉 to the area of the triangle T , we have

|α3| =
|e1||e3| sina

|e1||e2| sin b
,

where a is the angle between e1 and e3, and b is the angle between the
edges e1 and e2. By (4.3), |e3|/|e2| ≥ sin θ, and the result follows from the
fact that | sin a| ≥ sin δ.

This lemma is important for establishing the stabilty of the computa-
tion of B-coefficients using Lemma 2.30. Indeed, that computation involves
solving a linear system of equations with a matrix whose determinant de-
pends on the size of α3. Cramer’s rule then shows that the computation is
stable as long as the edge appearing in the lemma is not near-degenerate.

We recall from Definition 9.4 that an interior vertex of a triangulation
is called singular provided there are four edges attached to v, and the edges
lie on two lines that cross at v.

Definition 10.6. Suppose v is an interior vertex of a triangulation where
four edges meet. If all four edges are δ-near-degenerate at v, then v is called
a δ-near-singular vertex.

10.3.2 Three Lemmas

In this section we present three lemmas that are useful in constructing a
superspline subspace of Sr

d(△) with a stable local basis. Throughout the
remainder of this section we fix 0 < θ ≤ π/4 and assume that △ is a
triangulation with smallest angle θ. Given δ < θ, we write Vδ

NS for the
set of all δ-near-singular vertices. Since no edge of a triangulation can be
δ-near-degenerate at both ends, it impossible for two neighboring vertices
of △ to both belong to Vδ

NS . Given a vertex v ∈ △, we write Eδ
ND(v) for

the collection of all δ-near-degenerate edges attached to v. The cardinality
of Eδ

ND(v) can only be one, two, or four. Fix r > 0, and set

µ := r + r̄, r̄ := ⌊(r + 1)/2⌋. (10.2)
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UT1

V T1

Ṽ T1

ŨT1

v1

v2

v3

v4

Fig. 10.1. Domain points in Lemma 10.7 with r = 8, r̄ = 4,
µ = 12, and d = 26.

For each triangle T ∈ △, let

UT :=
r̄−1⋃

k=0

{ξT
i,d−i−k,k}

µ−k
i=r+1

, V T :=
r̄−1⋃

k=0

{ξT
i,d−i−k,k}

µ+r̄−2k
i=µ−k+1

,

ŨT :=

r̄−1⋃

j=0

{ξT
i,j,d−i−j}

µ−j
i=r+1

, Ṽ T :=

r̄−1⋃

j=0

{ξT
i,j,d−i−j}

µ+r̄−2j
i=µ−j+1

.

These sets are illustrated in Figure 10.1. Our next lemma deals with splines
defined on a cell consisting of four triangles surrounding an interior vertex.

Lemma 10.7. Suppose v ∈ Vδ
NS . Let v1, . . . , v4 be the vertices attached

to v (in counterclockwise order), and let △v be the triangulation consisting
of the four triangles Ti := 〈v, vi, vi+1〉, i = 1, . . . , 4, where v5 is identified
with v1. Let

Λv := {ξ ∈ Dd−r−1(v) ∩ T1 : ξ 6∈ UT1 ∪ ŨT1 ∪ V T1 ∪ Ṽ T1},

and let s ∈ Sr
d (△v) ∩ C

d−r−1(v). Then if δ is sufficiently small, the coeffi-
cients of s associated with domain points in the disk Dd−r−1(v) are uniquely
determined by the coefficients associated with domain points in the set

Mv := Λv ∪ UT1 ∪ ŨT1 ∪ ŨT2 ∪ UT4 .
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Moreover, there exists a positive constant δ0 depending only on d and the
smallest angle θ in △v such that if δ ≤ δ0, then |cξ| ≤ Kmaxη∈Mv

|cη| for
all ξ ∈ Dd−r−1(v), where K is a constant depending only on d and θ.

Proof: Let {cijk}i+j+k=d be the coefficients of s|T1
, and let

v3 =α1v + α2v1 + α3v2,

v4 =β1v + β2v1 + β3v2.

Suppose that all of the coefficients of s corresponding to domain points in
Mv have been fixed. Since s is in Cd−r−1(v), it suffices to show that the un-
specified coefficients in T1 ∩Dd−r−1(v) (namely those with subscripts lying

in V T1 and in Ṽ T1) are uniquely determined by the smoothness conditions.
We put these coefficients into a vector c in the order

cr+2,d̃,r̄−1
, c

r+3,d̃,r̄−2
, c

r+4,d̃−1,r̄−2
, . . . , c

µ+1,d̃,0
, . . . , c

µ+r̄,d̃−r̄+1,0
, (10.3)

followed by

c
r+2,r̄−1,d̃

, c
r+3,r̄−2,d̃

, c
r+4,r̄−2,d̃−1

, . . . , c
µ+1,0,d̃

, . . . , c
µ+r̄,0,d̃−r̄+1

, (10.4)

where d̃ = d−µ−1. The vector c has length 2m with m := 1+2+ · · ·+ r̄ =(
r̄+1

2

)
. Note that the coefficients in both (10.3) and (10.4) fall naturally

into subsets of size 1, 2, . . . , r̄.
Now we write down all smoothness conditions across the edge e2 :=

〈v, v2〉 which involve the coefficients in both UT1 and ŨT2 . In addition, we
write the conditions across e1 := 〈v, v1〉 which involve the coefficients in

both ŨT1 and UT4 . We need to exercise some care in the order in which we
write down these conditions. We start with those associated with edge e2.
As the first equation, we write the Cd−µ condition which involves only the
coefficient cr+2,d̃,r̄−1

from V T1 . Next we write two conditions, namely the

Cd−µ and Cd−µ+1 conditions which involve only the three coefficients from
V T1 with third subscript k ≥ r̄ − 2. Continuing, we conclude by writing
the r̄ conditions for Cd−µ up to Cd−r−1 which involve all the coefficients in
V T1 . So far this is a total of m conditions. We now repeat the process for
the conditions across the edge e1, and end up with a system of the form

[
A B

B̃ Ã

]
c = R, (10.5)

where all four blocks in the matrix are of size m×m.
We now examine these blocks in detail. The matrix A is a lower tri-

angular block matrix of the form

A =




A1

× A2

× ×
. . .

× × . . . Ar̄


 ,
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where

Ai = gi α
i2

1
ακi−i2

2

[ 1

(m+ n+ 1)!

]i−1

m,n=0

,

is an i× i matrix with κi :=
∑i−1

j=0
(d−µ+ j). Here gi is a nonzero product

of factorials. The matrix Ã has a similar structure with

Ãi = gi β
i2

1
βκi−i2

3

[ 1

(m+ n+ 1)!

]i−1

m,n=0

.

Now observe that every entry of B involves some positive power of α3,
while every entry of B̃ involves some positive power of β2. Both α3 and β2

go to zero as δ → 0. The remaining αi and βi are bounded away from 0
by a constant depending on θ. Let D(δ) be the determinant of the matrix
in (10.5). Then D(0) = det (A) det (Ã) is bounded below by a positive
constant D0 which depends only on d and θ. But then by continuity, there
exists a δ0 depending only on d and θ such that D(δ) ≥ D0/2 for all δ ≤ δ0.
This shows that the computed coefficients satisfy the stated bound.

The following lemma shows how to use smoothness conditions to com-
pute certain coefficients of a spline in Sr

d(△). For an explanation of the
notation, see (9.17), (10.2), and Figure 9.5.

Lemma 10.8. Suppose T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 are two ad-
joining triangles sharing the edge e := 〈v2, v3〉, and that e 6∈ Eδ

ND(v2) ∪
Eδ

ND(v3). Suppose s is a spline in Sr
d(△) whose coefficients are known for

all domain points in DT
µ (v2), D

T
µ (v3), and ET (e). Suppose the coefficients

are also known for domain points in any two of AT (v2), A
T̃ (v2), G

T
L(e),

and all points in any two of the sets AT (v3), A
T̃ (v3), G

T̃
R(e). Then all

unspecified coefficients of s in {ξ ∈ D2r(v2) ∪ D2r(v3) : d(ξ, e) ≤ r} are
uniquely determined by the smoothness conditions.

Proof: We alternately compute the coefficients in the arcs ar
m,e(v2) := {ξ ∈

Rm(v2) : dist(ξ, e) ≤ r}, and ar
m,e(v3) for each m = µ + 1, . . . , 2r, using

Lemma 2.29 or Lemma 2.30, depending on which coefficients are given.

Since the computation of coefficients in this lemma is based in part
on Lemma 2.30, to ensure that the computation is stable, we should not
use this lemma in situations where the edge e is near-degenerate at v2 or
at v3. A careful examination of the computations involved in this lemma
shows that if s has nonzero coefficients for some points in D2r(v2), then
the computed coefficients can be nonzero for some points in D2r(v3). We
refer to this as propagation. We are particularly concerned about getting

nonzero coefficients in one of the sets AT (v3) or AT̃ (v3), since these can
then propagate further. The following lemma shows how such propagation
can be stopped.
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Lemma 10.9. Let T and T̃ be as in Lemma 10.8 where v3 6∈ Vδ
NS . Sup-

pose s ∈ Sr
d(△) is a spline whose coefficients are zero for all domain points in

a set M0 which contains the sets DT
µ (v2), D

T
µ (v3), A

T̃ (v3), G
T̃
R(e), and

GT
L(e), where e is the edge 〈v2, v3〉. Suppose M0 also contains one of the

sets ET (e) or ET̃ (e). Then the coefficients of s associated with points in
AT (v3) must be zero.

Proof: Suppose M0 contains ET (e). The other case is similar. Apply-
ing Lemma 2.29, it can be checked that the coefficients of s associated with

domain points in ET̃ (e), GT̃
L(e), and GT

R(e) must be zero. Then using the
smoothness conditions of Lemma 2.29 to compute coefficients in AT (v3)
gives only zero values.

10.3.3 Approximation with a Superspline Subspace of Sr
d
(△)

Let Ω be a polygonal domain in R
2, and suppose d ≥ 3r+2 and 1 ≤ q ≤ ∞.

The following theorem implies that the space Sr
d has full approximation

power in the q-norm.

Theorem 10.10. Let d ≥ 3r+2, and suppose △ is a regular triangulation
of Ω. Then for every f ∈ W d+1

q (Ω), there exists a spline s ∈ Sr
d (△) such

that
‖Dα

xD
β
y (f − s)‖

q,Ω
≤ K |△|d+1−α−β |f |d+1,q,Ω, (10.6)

for all 0 ≤ α+ β ≤ d. If Ω is convex, then the constant K depends only on
r, d, and the smallest angle in △. If Ω is not convex, then K also depends
on the Lipschitz constant of the boundary of Ω.

Proof: We show below that there exists a superspline subspace S of Sr
d(△)

with a stable local minimal determining set. Then the result follows by
applying Theorem 5.19 to S.

We now define the superspline space S needed for the proof of Theo-
rem 10.10. Let δ0 be the minimum of δ0(v) over all interior vertices v ∈ △,
where δ0(v) is the constant defined in Lemma 10.7. Suppose v1, . . . , vn are
the interior vertices of △. Let ρ := (ρ1, . . . , ρn) with

ρi =

{
d− r − 1, vi ∈ V

δ0

NS,

µ, otherwise,

where µ is defined in (10.2). Let

S := {s ∈ Sr
d(△) : s ∈ Cρi(vi), i = 1, . . . , n}. (10.7)

In the sequel we hold δ0 fixed, and so for ease of notation we drop it
from the notation, and write VNS := V

δ0

NS(△) and END := E
δ0

ND(△) for the
corresponding sets of near-singular vertices and near-degenerate edges in
△, respectively.



10.3. Approximation Power of Sr
d(△) for d ≥ 3r + 2 283

Theorem 10.11. Let M be the following set:

1) For each vertex v 6∈ VNS, pick a triangle T with vertex at v and choose
all points in the set DT

µ (v).

2) For each vertex v ∈ VNS, pick a triangle T with first vertex at v and
choose all points in the set

Mv := {ξ ∈ DT
d−r−1

(v) : ξ 6∈ UT ∪ ŨT ∪ V T ∪ Ṽ T}. (10.8)

3) For each edge e := 〈v, u〉 with v, u 6∈ VNS, include the set ET (e), where
T is a triangle containing the edge e. If e is a boundary edge, there
is only one such triangle, while if it is an interior edge, we can choose
either of the two triangles containing e. If e is a boundary edge, also
include the two sets GT

L(e) and GT
R(e).

4) Suppose v 6∈ VNS is connected to v1, . . . , vn in clockwise order. Let
Ti := 〈v, vi, vi+1〉 for i = 1, . . . , n − 1, and set T0 := Tn := 〈v, vn, v1〉

if v is an interior vertex. Suppose 1 ≤ i1 < · · · < ik < n are such
that eij

∈ END(vij
) ∪ END(v), where ei := 〈v, vi〉 for i = 1, . . . , n. Let

Jv := {i1, . . . , ik}.

a) Include the sets G
Tij−1

L (eij
) for all 1 ≤ j ≤ k such that vij

6∈ VNS.

b) Include the sets ATi(v) for all 1 ≤ i ≤ n− 1 such that i 6∈ Jv.

c) Include ATn(v) if v is an interior vertex.

5) For all triangles T = 〈v, u, w〉 with u, v, w 6∈ VNS, include the set CT .

Then M is a stable local minimal determining set for S.

Proof: We claim that M is well-defined. In particular, a simple geometric
argument shows that for any interior vertex v /∈ VNS, there is always at
least one edge attached to v which is not near-degenerate at either end.
In the numbering of the edges in item 4) above, we can choose this edge
to be 〈v, vn〉. The construction in 4) ensures that for each interior vertex
v 6∈ VNS and edge ei := 〈v, vi〉 attached to it, if vi 6∈ VNS , then M includes

exactly one of the two sets ATi(v) or G
Ti−1

L (ei).
We now show that M is a determining set, i.e., if we prescribe the

coefficients of a spline s ∈ S corresponding to all the points in M, then
all other coefficients of s can be uniquely computed. This can be done as
follows:

Step 1: Compute coefficients for all domain points lying in disks of the
form Dµ(v) for v 6∈ VNS. Note that for such vertices v, s ∈ Cµ(v) while
M includes all points in one subtriangle intersected with Dµ(v). Then all
coefficients in the disk Dµ(v) can be uniquely computed using Lemma 2.29.

Step 2: Use Lemma 10.7 to compute coefficients for points in the disks
Dd−r−1(v) for each near-singular vertex v ∈ VNS .
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Step 3: Use Lemma 10.8 to compute coefficients corresponding to points
in the disks D2r(v) for v 6∈ VNS . We proceed by first doing all rings of
size µ + 1 around all such vertices, then all rings of size µ + 2, etc., until
we have completed the rings of size 2r. In computing coefficients in a ring
Rm(v), we process one arc ar

m,e(v) after another, always proceeding in a
clockwise direction. To show that this process works, we have to show how
to start it, and that once started we can continue all the way around the
vertex. Consider the arc ar

m,ei
(v) associated with the edge ei := 〈v, vi〉, and

suppose we already know the coefficients associated with ATi−1(v). Then
Lemma 10.8 can be applied to compute all coefficients on the arc. The set
M includes the sets needed to apply the lemma since

a) if vi ∈ VNS, then G
Ti−1

L (ei) ⊂ Dd−r−1(vi) ⊂ M,

b) if ei ∈ END(vi) but vi 6∈ VNS , then G
Ti−1

L (ei) ⊂ M,

c) if ei ∈ END(v), then G
Ti−1

L (ei) ⊂ M,

d) otherwise ei 6∈ END(v) ∪ END(vi), and ATi(v) ⊂ M.

It remains to show how to start the process. If v is a boundary vertex, we
can start with the arc ar

m,e2
(v) since AT1(v) is contained in M. If v is an

interior vertex, we can start with the arc ar
m,e1

(v) since ATn (v) is contained
in M.

Step 4: Compute coefficients corresponding to domain points in sets of the

form ET̃ (e) \ [D2r(v) ∪D2r(u)] which are not already known. In this case

the points in ET (e) are in M, where T and T̃ are the two triangles sharing
the edge e = 〈v, u〉 with v, u 6∈ VNS, and Lemma 2.29 can be applied.

We have shown that M is a minimal determining set. To complete
the proof, it remains to show that it is stable and local in the sense of
Definition 5.16. Suppose η ∈ Dd,△ \M is a domain point of S that does
not lie in M, and suppose η lies in the triangle Tη. We shall show that
there exists a set Γη ⊆ M with Γη ⊆ star3(Tη) such that cη depends only
on the values of {cξ}ξ∈Γη

and

|cη| ≤ Kmax
ξ∈Γη

|cξ|. (10.9)

Once we show the existence of the set Γη, (10.9) follows from the fact that
all computed coefficients are obtained using Lemmas 2.29 and 2.30, where
the latter is used only for edges that are not near-degenerate.

To find Γη explicitly, we would need to figure out which of the coeffi-
cients {cξ}ξ∈M the coefficient cη depends on. But we don’t need an exact
description of Γη. It is enough to show that Γη ⊆ star3(Tη). To show
this, we fix ξ ∈ M and let Tξ be a triangle containing ξ. We now examine
which coefficients depend on the value of cξ. Set cξ = 1 and cζ = 0 for
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all ζ ∈ Zξ := M \ {ξ}, and suppose we use smoothness to compute the
remaining coefficients of a spline sξ ∈ Sr

d(△). We claim that the computed
coefficients of sξ can be nonzero only if they correspond to a domain point
in star3(Tξ). The analysis divides into several cases depending on where ξ
lies.

Case 1: Suppose ξ ∈ CT for some triangle T . Since the coefficients corre-
sponding to points in CT do not enter any smoothness conditions, the only
nonzero coefficient of sξ is the one corresponding to ξ.

Case 2: Suppose ξ ∈ ET (e) where e := 〈v, u〉 is a boundary edge of a tri-
angle T , and that ξ 6∈ D2r(v) ∪ D2r(u). Then the coefficient corresponding
to ξ does not enter any smoothness conditions, and thus is the only nonzero
coefficient of sξ.

Case 3: Suppose ξ ∈ ET (e) \
(
DT

2r(v2) ∪D
T
2r(v3)

)
, where T = 〈v1, v2, v3〉

and T̃ = 〈v4, v2, v3〉 are two triangles sharing an interior edge e = 〈v2, v3〉

with v2, v3 6∈ VNS . Then the coefficients of sξ corresponding to points in
DT

2r(v2)∪D
T
2r(v3) will be zero, and carrying out Step 4), we can get nonzero

coefficients for points in the set ET̃ (e). Since all other coefficients are zero,
we conclude that the only nonzero coefficients of sξ correspond to domain
points in star3(Tξ).

Case 4: Suppose u 6∈ VNS and that ξ lies in some set of the form Dµ(u),
AT (u), GT

L(e), or ET (e) ∩D2r(u), where T is a triangle attached to u and
e is an edge attached to u. We assume u is an interior vertex (the case
where it is a boundary vertex is similar). Let u1, . . . , un and w1, . . . , wm

be the vertices in clockwise order which lie on the boundaries of star(u)
and of star2(u), respectively. Note that Zξ includes the disks Dµ(v) for all
v 6= u. It also includes the set Mui

for all ui ∈ VNS. We now show that
the nonzero coefficient cξ can propagate to points in the disks D2r(ui), and
even to some points in the disks D2r(wj), but not to any points beyond
star3(u). There are two subcases:

a) Suppose ui 6∈ VNS. We show that propagation beyond star(ui) along
the edge eij := 〈ui, wj〉 is blocked. This is clear if wj ∈ VNS since
Dµ(ui) ⊂ Zξ. Now suppose wj 6∈ VNS. Since we process the arcs
around wj in clockwise order, it suffices to show that the coefficients
associated with points in ATij (wj) are zero, where Tij is the trian-
gle with vertices ui, wj , v in counterclockwise order for some v. This is
automatic if eij is not near-degenerate at either end, since then Zξ con-
tains ATij (wj) itself by the choice of M, see item 4) in the statement
of the theorem. Now suppose eij is near-degenerate at either ui or wj .

Then by the choice of M, Zξ contains both GTij (eij) and GT̃ij (eij),

where T̃ij is the other triangle sharing the edge eij . Lemma 10.9 then
implies that the coefficients associated with points in ATij (wj) are zero.
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b) Suppose ui ∈ VNS . Then applying Lemma 10.7, the nonzero coefficient
cξ can propagate to the diskD2r(wj) around the vertexwj which lies on
the opposite side from the near-singular vertex ui. Note that wj 6∈ VNS

and Dµ(wj) ⊂ Zξ. Now arguing as in case 4a) with ui replaced by wj ,
we see that there is no propagation beyond star(wj), and thus not
beyond star2(ui).

We conclude that the only nonzero coefficients of sξ lie in

star(u) ∪
⋃

ui 6∈VNS

star(ui) ∪
⋃

ui∈VNS

star2(ui) ⊂ star3(u).

Case 5: Suppose ξ ∈ Mu where u ∈ VNS. All coefficients associated with
points in the disks of the form DT

µ (v) with v 6∈ VNS are zero. Let v1, . . . , v4
be the vertices attached to v. Since it is impossible for two near-singular
vertices to be neighbors, vi 6∈ VNS for i = 1, . . . , 4. Now nonzero coefficients
associated with points in Mu may propagate to points in the disks of radius
2r around the vertices v1, . . . , v4. However, since Dµ(vi) ⊂ Zξ, arguing as
in Case 4a), we see that they cannot propagate any further, and thus all
nonzero coefficients of sξ are contained in star2(u).

We have now shown that in all cases a nonzero coefficient associated
with ξ in a triangle Tξ can propagate to at most star3(Tξ), and the proof
is complete.

10.4. Approximation Power of Srd(△) for d < 3r + 2

Let H = [0, 1] × [0, 1] be the unit square, and let 0 < r < d < 3r + 2. In
this section we show that for these values of r and d, the space Sr

d does
not have full approximation power in any of the q-norms on H . We begin
by showing that when d < (3r + 2)/2, Sr

d has approximation power zero.
Given a positive integer n, let

0 = x0 < x1 < · · · < xn < xn+1 = 1,

0 = y0 < y1 < · · · < yn < yn+1 = 1,

with xi = yi = ih for i = 0, . . . , n+ 1, where h := 1/(n+ 1). We write △n

for the associated uniform type-I triangulation of H obtained by drawing
in the northeast diagonals.

10.4.1 The Case d < (3r + 2)/2

By Theorem 9.21,

dim Sr
d(△n) = 2n(d2 − 2rd+ d− r + r2)

+
2d2 + 4d− 2rd− r + r2 + 2

2
.

(10.10)
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For any real x, let (x)+ be defined in (9.3).

Theorem 10.12. Suppose d < (3r + 2)/2. Then the set

Φr,d,n :=
d⋃

ν=0

d−ν⋃

µ=0

{xνyµ} ∪

d⋃

ν=r+1

d−ν⋃

µ=0

{(x− y)ν
+
(x+ y)µ}

∪

n⋃

i=1

d⋃

ν=r+1

d−ν⋃

µ=0

{(x− xi)
ν
+
yµ, (x− y − xi)

ν
+
(x+ y)µ}

∪

n⋃

i=1

d⋃

ν=r+1

d−ν⋃

µ=0

{(y − yi)
ν
+
xµ, (y − x− yi)

ν
+

(x+ y)µ}

is a basis for Sr
d(△n).

Proof: Each of the functions in Φr,d,n clearly belongs to Sr
d(△n). A sim-

ple count shows that the cardinality of Φr,d,n is equal to the dimension
of Sr

d(△n) as given in (10.10). Thus, to show that Φr,d,n is a basis, it
suffices to show that the functions in Φr,d,n are linearly independent. Let
Hij := [ih, (i + 1)h] × [jh, (j + 1)h] for all 0 ≤ i, j ≤ n. Let T+

ij and T−
ij

be the triangles above and below the diagonal of Hij , respectively. Now
suppose some linear combination g of the basis functions in Φr,d,n is iden-
tically zero on H . Then on T+

00
, g reduces to a linear combination of the

functions {xνyµ}0≤ν+µ≤d. These functions are clearly linearly indepen-
dent, and thus, the corresponding coefficients of g must be zero. Let g1
be the remaining sum. It must still vanish on the rest of H , and in par-
ticular on T−

00
. On this triangle the only functions in g1 that are nonzero

are {(x − y)ν
+
(x + y)µ}

d,d−ν
ν=r+1,µ=0

. Since these functions are linearly in-
dependent on this triangle, the corresponding coefficients of g1 must be
zero. The remainder g2 of the original sum g must still vanish on the
triangle T+

10
. On this triangle the only nonzero functions left in g2 are

{(x − x1)
ν
+
yµ}

d,d−ν
ν=r+1,µ=0

. These are linearly independent, and the corre-
sponding coefficients must vanish. Continuing through the triangles in the
bottom row of the triangulation, we see that all coefficients of g must be
zero except for those corresponding to the last collection in Φr,d,n. We now
repeat this argument moving upward from T+

00
through the first column of

triangles in △ to show that all of these coefficients must also vanish.

Theorem 10.13. Suppose d < (3r + 2)/2 and 1 ≤ q ≤ ∞. Then the
approximation power of Sr

d in the q-norm is zero.

Proof: We first deal with the case q = ∞. Let F (x, y) := xd+1yd+1(x +
y)d+1. We now show that assuming that for every n > 0 there exists a
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spline sn ∈ Sr
d(△n) such that

‖F − sn‖H ≤ K
( 1

n+ 1

)m

|F |m,H (10.11)

for some positive integer m leads to a contradiction.
Let δ = 1/(4(d + 1)), and let ∆1 be the forward difference operator

defined by ∆1f(x, y) = f(x + δ, y) − f(x, y). Similarly, let ∆2f(x, y) =
f(x, y + δ) − f(x, y) and ∆3f(x, y) = f(x + δ, y + δ) − f(x, y). Let λf :=

∆d+1

1
∆d+1

2
∆d+1

3
f(0, 0). We claim that λB = 0 for every B in the basis

Φr,d,n for Sr
d(△n) of Theorem 10.12. For example, if B(x, y) = (x−xi)

ν
+
yµ

then for all 0 ≤ x ≤ 1, ∆d+1

2
B = 0 and thus λB = 0. Similarly, for

B(x, y) = (x − y − xi)
ν
+
(x + y)µ, on every line where x − y is constant,

we have ∆d+1

3
B = 0, and thus λB = 0 throughout H . Note that for any

f ∈ C(H), λf is just a combination of values of f at points in H , and
|λf | ≤ 23(d+1)‖f‖H. It is easy to check that λF = c δ3(d+1), with

c :=

d+1∑

i=0

(
d+ 1

i

)2

(d+ i+ 1) ! (2d− i+ 2) ! .

Now if (10.11) holds, then |λF | ≤ 23(d+1)‖F − sn‖H → 0 as n → ∞. This
implies λF = 0 which is a contradiction. This completes the proof for
q = ∞.

The proof for the q-norm is similar. Now we suppose that for every
n > 0 there exists a spline sn ∈ Sr

d (△n) such that

‖F − sn‖q,H ≤ K
( 1

n+ 1

)m

|F |m,q,H (10.12)

for some positive integer m, and show that this leads to a contradiction.
Let H̃ = [0, 1/2]× [0, 1/2], and let

λ̃f :=

∫

H̃

∆d+1

1
∆d+1

2
∆d+1

3
f(x, y) dx dy.

Then λ̃s = 0 for all s ∈ Sr
d(△n). Using the fact that the area of H̃ is 1/4,

we have

|λ̃F | = |λ̃(F − sn)|

≤ (1/4)1/q′

(∫

H̃

|∆d+1

1
∆d+1

2
∆d+1

3
(F − sn)(x, y)|qdxdy

)1/q

≤ (1/4)1/q′

23(d+1)

(∫

H

|(F − sn)(x, y)|qdxdy

)1/q

= (1/4)1/q′

23(d+1)‖F − sn‖q,H ,
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where 1/q′ + 1/q = 1. Inserting (10.12) and letting n → ∞, we see that
λ̃F = 0, which is a contradiction since

λ̃F =

∫

H̃

∆d+1

1
∆d+1

2
∆d+1

3
F (x, y) dx dy =

c δ3(d+1)

4
,

with c and δ as above.

10.4.2 The Case 2r + 2 ≤ d ≤ 3r + 1

Throughout this subsection we suppose that 2r + 2 ≤ d ≤ 3r + 1. By
Theorem 9.21,

dim Sr
d(△n) = n2(d2 − 3rd+ 2r2 + σg) + 2n(d2 − 2rd+ d− r + r2)

+
2d2 + 4d− 2rd− r + r2 + 2

2
,

(10.13)where

σg :=

{
r2/4, if r is even,

(r2 − 1)/4, if r is odd.

We now construct a basis for Sr
d(△n). As part of the basis we take the set

Φr,d,n of polynomials and one-sided splines defined in Theorem 10.12. To
complete the basis, we make use of certain type-I box splines introduced in
Section 12.1 below.

Type-I box splines are associated with the direction vectors e1 := (1, 0),
e2 := (0, 1), and e3 := (1, 1). Each such box spline Bi1,i2,i3 is defined by
a triple of integers i1, i2, i3 describing a direction set, where the direction
ej appears ij times for j = 1, 2, 3. Type-I box splines are defined on the
uniform type-I partition △I corresponding to a rectangular mesh with mesh
size 1. Here we are interested in the sets of box splines

Bk := {Bk−r−i+1,r+i+1,0}
k−2r−1

i=1
∪ {Bk−r−i+1,k−r,i+2r−k+1}

k−r
i=k−2r

∪ {B0,2k−2r−i+1,2r+i−k+1}
2k−3r−1

i=k−r+1
,

(10.14)
for (3r + 2)/2 ≤ k ≤ d.

Lemma 10.14. For each (3r + 2)/2 ≤ k ≤ d, the box splines in the set
Bk belong to Sr

k(△I). Moreover, the restriction of these box splines to
H := [0, 1]× [0, 1] are linearly independent.

Proof: Let m := ⌈(3r + 1)/2⌉, and fix m ≤ k ≤ d. Theorem 12.4 shows
that each box spline in Bk is a Cr spline of degree k on △I . We now establish
their linear independence. Suppose we split H into an upper triangle T+
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and a lower triangle T− by drawing in the northeast diagonal. We can
write Bk = B1

k ∪ B2

k ∪ B3

k, where

B1

k := {Bk−r,r+2,0, Bk−r−1,r+3,0, . . . , Br+2,k−r,0},

B2

k := {Br+1,k−r,1, Br,k−r,2, . . . , B1,k−r,r+1},

B3

k := {B0,k−r,r+2, B0,k−r−1,r+3, . . . , B0,r+2,k−r}.

Here we define Bijk to be identically zero whenever one of its subscripts is
negative, or when two of its subscripts are zero.

Suppose g is a linear combination of box splines in Bk and that g ≡ 0
on H . We need to show that the coefficients of g must be zero. The proof
divides into two cases.

Case 1: m ≤ k ≤ 2r + 1. In this case we can write g := g2 + g3, where
g ∈ B2

k and g3 ∈ B3

k. By the support properties of box splines, g3 vanishes
on T−. We are left with g2|T− = g|T− ≡ 0. We claim the splines in B2

k are
linearly independent on T−. Indeed, for each i = 1, . . . , r + 1, Br−i+1,k−r,i

can be obtained from Br−i+1,0,i by integrating k− r times, see (12.4). The
Br+1,0,1, Br,0,2, . . . , B1,0,r+1 can be considered as tensor-product splines in
the variables x and x + y, and are easily seen to be linearly independent.
We conclude that the coefficients of g2 must be zero. We are left with
g3 ≡ 0 on T+. But the splines in B3

k are also tensor-product splines, each
of a different degree in the y-variable, and thus are linearly independent.
We conclude that the coefficients of g3 must also be zero.

Case 2: 2r + 2 ≤ 2k − 3r − 1. In this case g := g1 + g2 + g3, where
gi ∈ Bi

k, for i = 1, 2, 3. Suppose g ≡ 0 on H . Then Dk−r
y g also vanishes

on H . Since Dk−r
y g1 ≡ 0 while g3 has no support on T−, we conclude that

Dk−r
y g2 ≡ 0 on T−. Now by Lemma 12.3, Dk−r

y g2 is a linear combination

of {∇k−r
2

Br+1,0,1, . . . , ∇
k−r
2

B1,0,r+1}, where ∇2 is the backward difference
operator with respect to the variable y. This implies that the coefficients of
g2 must be zero. We are left with g1 ≡ 0 on T−. But as noted above g1 is
a linear combination of linearly independent tensor-product splines, and so
the coefficients of g1 must also be zero. We now have g3 ≡ 0 on T+. Since
g3 is a linear combination of linearly independent tensor-product splines,
we find that its coefficients are also zero.

Let

Ψk,n :=
{
ψ(x, y) := B

(x
h
− i,

y

h
− j
)

: B ∈ Bk

}n

i,j=1
,

where h = 1/(n+ 1).
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Theorem 10.15. Fix 2r + 2 ≤ d ≤ 3r + 1. Then the set

Φr,d,n ∪

d⋃

k=m

Ψk,n (10.15)

is a basis for Sr
d(△n), where m := ⌈(3r + 1)/2⌉.

Proof: By Lemma 10.14, the box splines in Ψk,n belong to Sr
k(△n) ⊆

Sr
d(△n) for each (3r+ 2)/2 ≤ k ≤ d. By construction, the lower left corner

of the support of each box spline in Ψk,n is at lattice point (ih, jh) with
1 ≤ i, j ≤ n. We now count the number of basis functions in (10.15).
We have already seen in the proof of Theorem 10.12 that the number of
functions in Φr,d,n is given by the formula in (10.10) which corresponds to
the last two terms in (10.13). There are n2(2k − 3r − 1) splines in Ψk,n.
Since

d∑

k=m

(2k − 3r − 1) =

{
d2 − 3rd+ 9r2/4, if r is even,

d2 − 3rd+ (9r2 − 1)/4, if r is odd,

it follows that the cardinality of the set in (10.15) is equal to the dimension
of Sr

d(△n). To complete the proof it suffices to show that the functions in
(10.15) are linearly independent. Suppose g is a linear combination of these
functions that vanishes identically on H . As noted above, none of the box
splines have support in the L-shaped subset [0, h]× [0, 1] ∪ [0, 1]× [0, h] of
H . But then the proof of Theorem 10.12 shows that all of the coefficients of
g corresponding to functions in Φr,d,n must be zero. Let g̃ be the remaining
sum, which involves only box splines.

We examine g̃ on the square H11, where Hij := [ih, (i+1)h]× [jh, (j+
1)h]. The only box splines that have values in this square are those whose
lower left support corner is at the point (h, h). These are just scaled and
translated versions of the box splines in the sets Bk of (10.14). Suppose
g̃ := gm + · · ·+ gd ≡ 0, where gk ∈ Bk. Since the gk are of different degrees,
we conclude that gk ≡ 0 for k = m, . . . , d. But then Lemma 10.14 asserts
that for each m ≤ k ≤ d, all of the coefficients of gk must be zero. It
follows that all coefficients of g̃ corresponding to box splines with corner
at (h, h) must be zero. We can now repeat this argument for the squares
H2,1, . . . , Hn,1, and then for the squares H1,2, . . . , H1,n. We then repeat for
Hi,i and the corresponding row and column for i = 2, . . . , n to show that
all coefficients of g̃ (and thus of g) must vanish.

Fix d ≥ 2r+2. We now introduce some bivariate polynomials of exact
degree d which play a key role in the remainder of this section. Let

qm(x, y) :=

{
xm−1yr−m+1(x+ y)d−r, m = 1, . . . , r + 1,

xm−r−2yd−r(x+ y)2r+2−m, m = r + 2, . . . , 2r + 2.
(10.16)
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Lemma 10.16. The set of polynomials yq1, . . . , yqr+1, (x + y)qr+2, . . . ,

(x + y)q2r+2 are linearly independent.

Proof: Suppose there exist real numbers {αi}
2r+2

i=1
such that Q1 +Q2 ≡ 0,

where

Q1(x, y) :=
r+1∑

i=1

αiyqi(x, y), Q2(x, y) :=
2r+2∑

i=r+2

αi(x+ y)qi(x, y).

Now setting z := x+ y, we can write

Q1(x, y) =
r+1∑

i=1

αiy(z − y)i−1yr−i+1zd−r =:
d∑

j=d−r

βjy
d+1−jzj,

for some real numbers βj . Similarly for Q2(x, y) we have

Q2(x, y) =
2r+2∑

i=r+2

αiz(z − y)i−r−2yd−rz2r+2−i =:
r+1∑

j=1

γjy
d+1−jzj ,

for some real numbers γj . Since d − r > r + 1, Q1 + Q2 ≡ 0 implies that
γj = 0 for j = 1, . . . , r + 1 and βj = 0 for j = d− r, . . . , d. That is, Q1 ≡ 0
and Q2 ≡ 0. It follows that αj = 0 for j = 1, . . . , 2r + 2.

To state our next lemma we introduce the (d+ 2)-dimensional space

Hd+1 := span {xiyd−i+1}
d+1

i=0

of bivariate homogeneous polynomials of degree d + 1. We define an inner
product on Hd+1 by 〈q, p〉 := q(Dx, Dy)p for all p, q ∈ Hd+1. It is clear

that if p(x, y) :=
∑

i+j=d+1

pijx
iyj and q(x, y) :=

∑

i+j=d+1

qijx
iyj , then

〈q, p〉 =
∑

i+j=d+1

i ! j ! qij pij .

Now for each q ∈ Hd+1, there exists a constant C dependent on q and d

such that

|〈q, p〉| ≤ C ‖p‖H , for all p ∈ Hd+1,

where H = [0, 1] × [0, 1]. Let Dz = Dx+y denote the directional deriva-
tive associated with the vector x + y, and let qm be the polynomials in
Lemma 10.16.
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Lemma 10.17. Given any nontrivial set of numbers β1, . . . , βr+1, there
exists a polynomial p∗ ∈ Hd+1 such that

Dzqm(Dx, Dy)p
∗ = 0, m = r + 2, . . . , 2r + 2,

while r+1∑

i=1

βiDyqi(Dx, Dy)p∗ = 1.

Proof: Let Q be the space of homogeneous polynomials spanned by zqr+2,
. . . , zq2r+2, where z = x+ y. Consider the nontrivial polynomial

p :=
r+1∑

i=1

βiyqi(x, y).

By Lemma 10.16, p does not lie in Q, and thus must lie in the orthogonal
complement Q⊥. We can now take p∗ to be the normalization of p such
that 〈p∗, p∗〉 = 1.

Our next lemma deals with derivatives of type-I box splines. Let
∇1,∇2,∇3 be the backward difference operators defined by ∇1f(x, y) :=
f(x, y) − f(x − 1, y), ∇2f(x, y) := f(x, y) − f(x, y − 1), and ∇3f(x, y) :=
f(x, y) − f(x− 1, y − 1).

Lemma 10.18. Suppose we number the box splines in the set Bd of (10.14)
as φ1, . . . , φ2d−3r+1. Then for m = 1, . . . , r + 1,

qm(Dx, Dy)φℓ

=





(
d−r

ℓ+m−1

)
∇

d−r−ℓ
1

∇
r+ℓ
2

B110, 1 ≤ ℓ ≤ d− 2r − 1,
(
2d−3r−1−ℓ
d−2r−2−m

)
∇d−r−ℓ

1
∇d−r−1

2
∇ℓ+2r+1−d

3
B110, d− 2r ≤ ℓ ≤ d− r,

and qm(Dx, Dy)φℓ = 0 for d− r + 1 ≤ ℓ ≤ 2d− 3r + 1.

Proof: Lemma 12.3 asserts that for i and j with i+ j = k + l − 2,

Di
xD

j
yBk,ℓ,0(x, y) =

{
∇i

1
∇

j
2
B110(x, y), for i = k − 1 and j = ℓ− 1,

0, otherwise.

Now suppose 1 ≤ ℓ ≤ d− 2r − 1. Then

Dm+i−1

x Dd−m−i+1

y φℓ

=

{
∇

d−r−ℓ
1

∇
r+ℓ
2

B110(x, y), for i+m = d− r − ℓ+ 1,

0, otherwise.
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Since (
d− r

i

)
=

(
d− r

m+ ℓ− 1

)

when i+m = d− r − ℓ+ 1, this proves the result for ℓ = 1, . . . , d− 2r− 1.
The proof of the other cases is similar.

The proof of the following lemma is similar to that of Lemma 10.18.

Lemma 10.19. Let φ1, . . . , φ2d−3r+1 be as in Lemma 10.18. Then for all
m = r + 2, . . . , 2r + 2,

qm(Dx, Dy)φℓ =

{
∇d−r−ℓ

1
∇d−r

2
∇ℓ−d+2r

3
B101, ℓ = d−m+ 2,

0, otherwise.

Theorem 10.20. Suppose 2r + 2 ≤ d ≤ 3r + 1 and let 1 ≤ q ≤ ∞. Then
the approximation power of the space Sr

d in the q-norm is at most d.

Proof: We first deal with the case q = ∞. Choose nontrivial β1, . . . , βr+1

such that

r+1∑

m=1

βm

(
d− r

ℓ+m− 1

)
= 0, ℓ = 1, · · · , d− 2r − 1,

and let p∗ be the corresponding homogeneous polynomial of degree d + 1
of Lemma 10.17. Let f be the polynomial in H4d+4 such that

(∇1∇2∇3)
d+1f |

Ĥ
= p∗|

Ĥ
,

where Ĥ = [0, L] × [0, L] with L ≥ 2(d + 1) + 1. Let △ be the uniform

type-I triangulation of Ĥ with vertices (i, j) for i, j = 0, . . . , L. Given an
integer n > 0, let h = 1/(n+ 1). We abuse notation a little bit by letting
△n = h△, where h△ is a now a triangulation with vertices at the points
(ih, jh) for integer pairs (i, j), and each edge is an h multiple of an edge of
△. Note that restricted to the unit square H , △n is just the triangulation
defined at the beginning of Section 10.4.

Now suppose that for any n > 0, we can find sn ∈ Sr
d(△n|Ĥ

) with

‖f − sn‖Ĥ
≤ ǫ(n)hd, (10.17)

where ǫ(n) → 0 as n→ ∞. Then

‖(∇1∇2∇3)
d+1(f − sn)‖H ≤ Cǫ(n)hd,

for a constant C > 0 and the subdomain H = [0, 1] × [0, 1] ⊂ Ĥ . By
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Theorem 10.15,

un := (∇1∇2∇3)
d+1sn ∈ span

(
d⋃

k=⌈(3r+1)/2⌉

Ψk,n

)

since (∇1∇2∇3)
d+1g = 0 for any g ∈ Φr,d,n. Indeed, for each g ∈ Φr,d,n,

one of (∇i)
d+1, i = 1, 2, 3, will annihilate g. Thus, there exist coefficients

a(n, ℓ, ν) such that

un =
2d−3r−1∑

ℓ=1

∑

ν

a(n, ℓ, ν)φℓ(·/h− ν) + wn,

where the sum on ν runs over an appropriate finite subset of Z
2, and wn is

a sum of scaled box splines of degree strictly less than d. Thus, we have

|p∗(hx, hy) −

2d−3r−1∑

ℓ=1

∑

ν

a(n, ℓ, ν)φℓ((x, y) − ν) − wn(hx, hy)| ≤ Cǫ(n)hd,

(10.18)
for all (x, y) ∈ [0, 1/h]× [0, 1/h].

Now for m = r + 2, . . . , 2r + 2, qm(Dx, Dy)wn(hx, hy) = 0, where qm
are the polynomials defined in (10.16). By Lemma 10.19,

qm(Dx, Dy)
2d−3r−1∑

ℓ=1

∑

ν

a(n, ℓ, ν)φℓ((x, y) − ν)

=
∑

ν

a(n, ℓ, ν)∇d−ℓ−r
1

∇
d−r
2

∇
ℓ−d+2r
3

B101(· − ν)

=
∑

ν

∇d−ℓ−r
1

[
∇d−r

2
∇ℓ−d+2r

3
a(n, ℓ, ν)

]
B101(· − ν),

where ℓ = d − m + 2 and the expression in the square brackets involves
applying the backward difference operators to a(n, ℓ, ν) as a function of ν.
Since (hx, hy) ∈ H ,

qm(Dx, Dy)p∗(hx, hy) = hd(qm(Dx, Dy)p∗)(hx, hy).

For T = {(x, y) : 0 ≤ y ≤ x ≤ 1}, B101(x, y) ≡ 1. By the Markov inequality
over the triangle T + ν and (10.18),

|hdqm(Dx, Dy)p
∗(h((x, y) + ν))

−∇d−ℓ−r
1

∇d−r
2

∇ℓ−d+2r
3

a(n, ℓ, ν)| ≤ Cǫ(n)hd,
(10.19)

for another constant C > 0. In particular, for (x, y) = (0, 0) and all ν, we
have

|hdqm(Dx, Dy)p
∗(νh) −∇d−ℓ−r

1
∇d−r

2
∇ℓ−d+2r

3
a(n, ℓ, ν)| ≤ Cǫ(n)hd,



296 10. Approximation Power of Spline Spaces

and

|hd∇3qm(Dx, Dy)p
∗(νh) −∇

d−ℓ−r
1

∇
d−r
2

∇
ℓ−d+2r+1

3
a(n, ℓ, ν)| ≤ Cǫ(n)hd.

By Lemma 10.17, the first term above is zero since ∇3qm(Dx, Dy)p∗ =
Dzqm(Dx, Dy)p∗ and hence we have

|∇
d−ℓ−r
1

∇
d−r
2

∇
ℓ−d+2r+1

3
a(n, ℓ, ν)| ≤ Cǫ(n)hd. (10.20)

By Lemma 10.18, for m = 1, . . . , r + 1,

qm(Dx, Dy)un( · h)

=
2d−3r−1∑

ℓ=1

qm(Dx, Dy)
∑

ν

a(n, ℓ, ν)φℓ( · − ν)

=
d−2r−1∑

ℓ=1

(
d− r

ℓ+m− 1

)∑

ν

[
∇d−r−ℓ

1
∇r+ℓ

2
a(n, ℓ, ν)

]
B110( · − ν)

+

d−r∑

ℓ=d−2r

(
2d− 3r − 1 − ℓ

d− 2r − 2 +m

)∑

ν

b(n, ℓ, ν)B110( · − ν),

where b(n, ℓ, ν) := ∇d−r−ℓ
1

∇d−r−1

2
∇ℓ−d+2r+1

3
a(n, ℓ, ν). By (10.20),

∣∣∣∣∇2

(
2d− 3r − 1 − ℓ

d− 2r − 2 +m

)
b(n, ℓ, ν)

∣∣∣∣

=

(
2d− 3r − 1 − ℓ

d− 2r − 2 +m

)
|∇

d−ℓ−r
1

∇
d−r
2

∇
ℓ−d+2r+1

3
a(n, ℓ, ν)| ≤ Cǫ(n)hd.

It follows that for m = 1, . . . , r + 1,
∣∣hd∇2qm(Dx, Dy)p∗(νh) −∇2qm(Dx, Dy)un(νh)

∣∣

≤

∣∣∣hd∇2qm(Dx, Dy)p∗(νh)

−

d−2r−1∑

ℓ=1

(
d− r

ℓ+m− 1

)
∇d−r−ℓ

1
∇r+ℓ+1

2
a(n, ℓ, ν)

∣∣∣ ≤ Cǫ(n)hd,

for another constant C > 0. Then
∣∣∣∣

r+1∑

m=1

βmh
d∇2qm(Dx, Dy)p∗(νh)

−

d−2r−1∑

ℓ=1

r+1∑

m=1

βm

(
d− r

ℓ+m− 1

)
∇d−r−ℓ

1
∇r+ℓ+1

2
a(n, ℓ, ν)

∣∣∣∣

≤ C

r+1∑

m=1

|βm|ǫ(n)hd ≤ Cǫ(n)hd.
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Hence, we have

∣∣∣hd∇2

r+1∑

m=1

βmqm(Dx, Dy)p
∗( · h)

∣∣∣ ≤ Cǫ(n)hd.

Since p∗ is a homogeneous polynomial of degree d+ 1, by Lemma 10.17,

∇2

r+1∑

m=1

βmqm(Dx, Dy)p
∗( · h) = Dy

r+1∑

m=1

βmqm(Dx, Dy)p∗( · h) = 1.

But this gives
|hd| ≤ Cǫ(n)hd,

and we conclude that (10.17) cannot hold.
Now suppose 1 ≤ q <∞. Instead of (10.17), we now assume that

‖f − sn‖q,Ĥ
≤ ǫ(n)hd.

Arguing as above, we have

h2

∫ n+1

0

∫ n+1

0

∣∣∣p∗(hx, hy) −
2d−3r−1∑

ℓ=1

∑

ν

a(n, ℓ, ν)φℓ((x, y) − ν)

− wn(hx, hy)
∣∣∣
q

dxdy ≤ (Cǫ(n)hd)q .

For at least one (i, j), we have

∫ i+1

i

∫ j+1

j

∣∣p∗(hx, hy) −
2d−3r−1∑

ℓ=1

∑

ν

a(n, ℓ, ν)φℓ((x, y) − ν)

− wn(hx, hy)
∣∣q dxdy ≤ (Cǫ(n)hd)q.

Splitting the square [i, i+1]× [j, j+1] into two triangles and using the fact
that for polynomials on triangles all norms are equivalent (see Theorem 1.1),
we get

∣∣∣p∗(hx, hy) −
2d−3r−1∑

ℓ=1

∑

ν

a(n, ℓ, ν)φℓ((x, y) − ν) − wn(hx, hy)
∣∣∣ ≤ Cǫ(n)hd,

for (x, y) ∈ (i, j)+ [0, 1]× [0, 1]. Using the Markov inequality (1.5) for each
triangle, we get

|hdqm(Dx, Dy)p∗(((x, y)+ν)h)−∇d−ℓ−r
1

∇d−r
2

∇ℓ−d+2r
3

a(n, ℓ, ν)| ≤ Cǫ(n)hd,

for (x, y) ∈ [0, 1]× [0, 1] and ν = (i, j). The rest of the proof is the same as
before with ν = (i+ 1, j + 1).
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10.4.3 The Case (3r + 2)/2 ≤ d ≤ 2r + 1

Theorem 10.21. Suppose (3r + 2)/2 ≤ d ≤ 2r+ 1 and 1 ≤ q ≤ ∞. Then
the approximation power of Sr

d in the q-norm is at most d.

Proof: We first consider the case r ≥ 3. Then for each (3r + 2)/2 ≤ d ≤

2r+1, it is easy to see that there exists 1 ≤ r̃ ≤ r with 2r̃+2 ≤ d ≤ 3r̃+1.
Theorem 10.20 asserts that the approximation power of S r̃

d in any q-norm
is at most d. But for any triangulation △, we have Sr

d (△) ⊆ S r̃
d(△), and

so the approximation power of Sr
d is also at most d.

It remains to consider the cases r = 1 and r = 2. For r = 1, we have
5/2 ≤ d ≤ 3, and so it suffices to consider S1

3
. We show that this space has

approximation power at most three in any q-norm in Section 10.4.4.
For r = 2 we have to consider 4 ≤ d ≤ 5. For any triangulation △,

we have S2

4
(△) ⊆ S1

4
(△). We already know by Theorem 10.20 that S1

4

has approximation power at most four in any q-norm, and we conclude
that S2

4
also has approximation power at most four. The fact that S2

5
has

approximation power at most five follows from our next lemma. Let △n

be the uniform type-I triangulation of the unit square H defined at the
beginning of Section 10.4.

Lemma 10.22. Fix 0 ≤ r < d, m > 0, and 1 ≤ q ≤ ∞. Suppose that for
all F ∈ C∞(H), there exists a constant K depending only on d and F such
that

d(F, Sr+1

d+1
(△n))q ≤ K |△n|

m+1, all n > 0. (10.21)

Then for all f ∈ C∞(H), there exists another constant K̃ depending only
on d and f such that

d(f, Sr
d(△n))q ≤ K̃ |△n|

m, all n > 0. (10.22)

Proof: We give the proof for 1 ≤ q <∞. The proof of q = ∞ is similar and

simpler. Given f ∈ C∞(H), let F (x, y) :=

∫ x

0

f(u, y)du. Let s ∈ Sr+1

d+1
(△n)

be such that

‖F − s‖q,H ≤ K1 |△n|
m+1. (10.23)

By Theorem 1.7, for each triangle T in △n, there exists a polynomial p :=
pF,T ∈ Pm+1 such that

‖Dα
xD

β
y (F − p)‖q,T ≤ K2 |T |

m+1−α−β|F |m+1,q,T ,

for all 0 ≤ α+ β ≤ m. Now

‖Dx(F − s)‖q,T ≤ ‖Dx(F − p)‖q,T + ‖Dx(p− s)‖q,T ,
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while by the Markov inequality (1.5),

‖Dx(p− s)‖q,T ≤ K3 |T |
−1‖p− s‖q,T ≤ K3 |T |

−1(‖p−F‖q,T + ‖F − s‖q,T ).

Combining the above and using the fact that |T | = |△n|, we have

‖Dx(F − s)‖q,T ≤ K2

(
1 +K3

)
|△n|

m|F |m+1,q,T +K3 |△n|
−1‖F − s‖q,T .

Taking the q-th power, using the discrete Hölder inequality, summing over
all triangles T , and inserting (10.23), we get

‖Dx(F − s)‖q
q,H ≤ K

q
4
|△n|

mq|F |
q
m+1,q,H +K5 |△n|

−q‖F − s‖
q
q,H

≤ K
q
6
|△n|

qm.

Taking the q-th root, we have

‖Dx(F − s)‖q,H ≤ K6 |△n|
m.

Since DxF = f , we conclude that

‖f − g‖q,H ≤ K6 |△n|
m,

where g = Dxs ∈ Sr
d(△n), and we have proved (10.22).

This lemma shows that if the space Sr
d does not have full approximation

power in a q-norm, then neither does the space Sr+1

d+1
.

10.4.4 The Space S1
3

In this section we show that in any q-norm, 1 < q ≤ ∞, the approximation
power of the space S1

3
is at most three. Our proof is based on the following

lemma.

Lemma 10.23. Suppose X is a normed linear space and that Y is a linear
subspace of X . Let λ be a linear functional defined on X that annihilates
Y , i.e., λg = 0 for all g ∈ Y . Then for all f ∈ X ,

d(f, Y ) := inf
g∈Y

‖f − g‖X ≥
|λf |

‖λ‖X

, (10.24)

where

‖λ‖X := sup
f∈X, f 6=0

|λf |

‖f‖X

. (10.25)

Proof: It immediately follows from (10.25) that for any g ∈ Y ,

|λf | = |λ(f − g)| ≤ ‖λ‖X ‖f − g‖X .

Since this holds for all g ∈ Y , (10.24) must hold.
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We will apply this lemma with X := C(H) or X := Lq(H), where H is
the unit square, and △n is the uniform type-I triangulation onH introduced
at the beginning of Section 10.4. We take Y := S1

3
(△n) ∩ Lq(H). We now

need to construct a linear functional λ defined on X that anihilates Y . We
first define λ for splines s in the space S0

3
(△n) in terms of the B-coefficients

of s. To this end, it is convenient to label the domain points of △n which fall
in the square Hij := [ih, (i+ 1)h]× [jh, (j + 1)h] with fractional subscripts
as follows:

ξ
i+ k−1

3
,j+ l−1

3

:=
(
i+

k − 1

3
h, j +

l− 1

3
h
)
,

for k, l = 1, 2, 3, 4.
Given s ∈ S0

3
(△n), we label its B-coefficients as c

i+ k−1

3
,j+ l−1

3

. Then

for all 1 ≤ i ≤ n and 0 ≤ j ≤ n, let

λ
ij
11
s := ci+ 1

3
,j+ 1

3

+ ci− 1

3
,j − ci,j+ 1

3

− ci,j ,

λ
ij
21
s := ci+ 1

3
,j+ 2

3

+ ci− 1

3
,j+ 1

3

− ci,j+ 2

3

− ci,j+ 1

3

,

λ
ij
31
s := ci+ 1

3
,j+1

+ ci− 1

3
,j+ 2

3

− ci,j+1 − ci,j+ 2

3

.

Similarly, for all 0 ≤ i ≤ n and 1 ≤ j ≤ n, let

λ
ij
12
s := ci+ 1

3
,j+ 1

3

+ ci,j− 1

3

− ci,j − ci+ 1

3
,j ,

λ
ij
22
s := ci+ 2

3
,j+ 1

3

+ ci+ 1

3
,j− 1

3

− ci+ 1

3
,j − ci+ 2

3
,j ,

λ
ij
32
s := ci+1,j+ 1

3

+ ci+ 2

3
,j− 1

3

− ci+ 2

3
,j − ci+1,j .

Finally, for all 0 ≤ i ≤ n and 0 ≤ j ≤ n, let

λ
ij
13
s := ci,j+ 1

3

+ ci+ 1

3
,j − ci,j − ci+ 1

3
,j+ 1

3

,

λ
ij
23
s := ci+ 1

3
,j+ 2

3

+ ci+ 2

3
,j+ 1

3

− ci+ 1

3
,j+ 1

3

− ci+ 2

3
,j+ 2

3

,

λ
ij
33
s := ci+ 2

3
,j+1

+ ci+1,j+ 2

3

− ci+ 2

3
,j+ 2

3

− ci+1,j+1.

Let I be the set of all (i, j, k, l) such that λij
kl is one of the linear functionals

described above. Then s ∈ S0

3
(△n) belongs to S1

3
(△n) if and only if

λ
ij
kl s = 0, all (i, j, k, l) ∈ I. (10.26)

For every f ∈ C(H) we now define

λf :=
∑

(i,j,k,l)∈I

akl λ
ij
kl Lf, (10.27)
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where Lf is the spline in S0

3
(△n) which interpolates f at the domain points,

and

A := [akl] :=



−1 −1 2
2 2 −4

−1 −1 2


 .

Since Ls = s for all s ∈ S1

3
(△n), it follows from (10.26) that λs = 0 for all

s ∈ S1

3
(△n). We now bound the norm of λ.

Lemma 10.24. For any f ∈ C(H),

|λf | ≤ 10240n‖f‖∞. (10.28)

Proof: By the definition of λ, there exist coefficients αijkl such that for
any f ∈ C(H),

λf =

n∑

i=0

n∑

j=0

4∑

k=1

4∑

l=1

αijkl ci+ k−1

3
,j+ l−1

3

, (10.29)

where the c’s are the B-coefficients of the C0 cubic spline Lf . Note that
each αijkl is a sum of ±akl, and thus

|αijkl| ≤ 16 all i, j, k, l. (10.30)

We now show that αijkl = 0 for all 1 ≤ k, l ≤ 4 whenever 1 ≤ i, j ≤ n− 1.
Consider for example k = l = 1. Then collecting all terms in (10.27)
involving the coefficient cij , we have

(
−λ

ij
11
−λ

ij
12

+2λij
13
−λ

i,j−1

31
−λ

i−1,j−1

32
+2λi−1,j−1

33

)
Lf = (1+1−2+1+1−2)cij,

which shows that αij11 = 0. Consider k = 2 and l = 1. Collecting the
terms in (10.27) involving the coefficient ci+1/3,j , we get

(
− λ

ij
12

+ 2λij
22

+ 2λij
13

− λ
i,j−1

31

)
Lf = (1 − 2 + 2 − 1)ci+ 1

3
j ,

which shows that αij21 = 0. The other cases are similar.
It follows from the above that the only nonzero terms in (10.29) are

those corresponding to coefficients that lie in one of the squares Hij :=
[ih, (i + 1)h] × [jh, (j + 1)h] with i, j ∈ {0, n}. We write IB for the index
set of this set of 4n squares.

It remains to estimate the size of the coefficients of Lf appearing in
(10.29) in terms of the size of f . For each triangle T of △n, Lf is the
cubic polynomial that interpolates at the domain points of T . It follows
that the coefficients of Lf are combinations of the values of fi+ k−1

3
,j+ l−1

3

:=
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f(ξ
i+

k−1

3
,j+

l−1

3

). For example, in the lower triangle of the square Hij , we

have
cij = fij ,

ci+ 1

3
,j = 3fi+ 1

3
,j −

3

2
fi+ 2

3
,j −

5

6
fij +

1

3
fi+1,j ,

ci+ 1

3
,j+ 1

3

= 3fi+ 1

3
,j+ 1

3

−
3

2
fi+ 2

3
,j+ 2

3

−
5

6
fij +

1

3
fi+1,j+1,

ci+ 2

3
,j = 3fi+ 2

3
,j −

3

2
fi+ 1

3
,j −

5

6
fi+1,j +

1

3
fi,j ,

ci+ 2

3
,j+ 2

3

= 3fi+ 2

3
,j+ 2

3

−
3

2
fi+ 1

3
,j+ 1

3

−
5

6
fi+1,j+1 +

1

3
fi,j ,

ci+1,j = fi+1,j ,

ci+1,j+ 1

3

= 3fi+1,j+ 1

3

−
3

2
fi+1,j+ 2

3

−
5

6
fi+1,j +

1

3
fi+1,j+1,

ci+1,j+ 2

3

= 3fi+1,j+ 2

3

−
3

2
fi+1,j+ 1

3

−
5

6
fi+1,j+1 +

1

3
fi+1,j ,

ci+1,j+1 = fi+1,j+1,

ci+ 2

3
,j+ 1

3

=
9

2
fi+ 2

3
,j+ 1

3

+
1

3
(fij + fi+1,j + fi+1,j+1)

−
3

4
(fi+ 2

3
,j + fi+ 1

3
,j + fi+ 2

3
,j+ 2

3

+ fi+ 1

3
,j+ 1

3

+ fi+1,j+ 2

3

+ fi+1,j+ 1

3

).

This immediately implies that

∣∣ci+ k−1

3
,j+ l−1

3

∣∣ ≤ 10 ‖f‖∞,Hij
, all i, j = 0, . . . , n and k, l = 1, . . . , 4.

Combining this with (10.29), (10.30), and the fact that the cardinality of
IB is 4n, we get

|λf | ≤ 2560
∑

i,j∈IB

‖f‖∞,Hij
≤ 10240n ‖f‖∞.

We are ready to deal with the case q = ∞.

Theorem 10.25. The approximation power of S1

3
in the ∞-norm is at

most three.

Proof: Let △1,△2, . . . be the sequence of uniform type-I triangulations
defined at the beginning of Section 10.4. Fix n > 0, and set h = 1/(n+ 1).
First we deal with the case q = ∞. To show that S1

3
(△n) does not satisfy

d(f,S1

3
(△n) ≤ Kh4 for every function f ∈ W 4

∞(H), we apply Lemma 10.23
with the linear functional λ defined in (10.27). Let F (x, y) = x2y2. First
we need to compute a lower bound for the value of |λF |. Note that

(x− ih)2(y − jh)2 = x2y2 + qij ,
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where qij is a cubic polynomial. Now since λij
kl qij = 0, we conclude that

for each 1 ≤ k, l ≤ 4, λij
kl LF has a common value c for all 0 ≤ i, j ≤ n. A

simple computation shows that for all such i, j,



λ

ij
11
LF λ

ij
12
LF λ

ij
13
LF

λ
ij
21
LF λ

ij
22
LF λ

ij
23
LF

λ
ij
31
LF λ

ij
32
LF λ

ij
33
LF


 =

h4

81




6 6 −6

−3 −3 12

6 6 −6


 .

It follows that for 1 ≤ i, j ≤ n− 1,

3∑

k=1

3∑

l=1

akl λ
ij
kl LF = −

4

3
h4,

while for all other i, j,

∣∣ ∑

k,l∈Iij

akl λ
ij
kl LF

∣∣ ≤ 4

3
h4,

where Iij is the set of (k, l) such that (i, j, k, l) ∈ I. Thus,

|λF | ≥
4h4

3
[(n− 1)2 − 4n] =

4h4

3
[n2 − 6n+ 1]. (10.31)

Combining this with the bound on the norm of λ given in Lemma 10.24,
we conclude from Lemma 10.23 that for n ≥ 13,

d(f,S1

3
(△n)) ≥

4h4(n2 − 6n+ 1)

3 × 10240n
≥
h3(n2 − 6n+ 1)

7680n(n+ 1)
≥

h3

15360
,

where in the last step we have used the fact that (n2−6n+1)/(n2+n) ≥ 1/2
whenever n ≥ 13.

To establish an analogous result for the q-norms, we need to extend
the linear function λ defined above to Lq. First, we consider λ on S1

4 (△n)∩
Lq(H). As shown in the proof of Lemma 10.24, for any f in this space,

|λf | ≤ 2560
∑

(i,j)∈IB

||f ||∞,Hij
.

Theorem 1.1 implies that ‖f‖∞,Hij
≤ K‖f‖q,Hij

/h2/q, where K is a fixed
constant. Now by Hölder’s inequality with 1/q + 1/q̃ = 1,

|λf | ≤
2560K

h2/q

( ∑

(i,j)∈IB

)1/q̃

‖f‖q,H ≤
2560K(4n)1/q̃

h2/q
‖f‖q,H

≤ 10240K(n+ 1)1+1/q‖f‖q,H.
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Using the Hahn–Banach theorem, we can define an extension of λ from
S1

4
(△n) ∩ Lq(H) to Lq(H) such that

|λ(f)| ≤ 10240K (n+ 1)1+1/q ‖f‖q,H , (10.32)

for all f ∈ Lq(H).

Theorem 10.26. Let 1 < q ≤ ∞. Then the approximation power of S1

3

in the q-norm is at most three.

Proof: The proof is very similar to the proof of Theorem 10.25. Since λ
was extended to Lq(H) from S1

4
(△n), it follows that (10.31) still holds for

F := x2y2. But then by Lemma 10.23 and (10.32),

d(f,S1

3 (△n))q,H ≥
4h4(n2 − 6n+ 1)

30720K(n+ 1)1+1/q
≥

1

15360K
h3+1/q,

for n ≥ 14. Thus, the Lq approximation power of S1

3
(△n) cannot be four

when q > 1.

10.5. Remarks

Remark 10.1. In many of the papers in the literature, approximation
power is defined in terms of a scale of spline spaces Sh which are obtained
from a fixed space S defined over a triangulation △ of the whole plane
by replacing each function s(x) in S by s(x/h) for h > 0. Suppose Ω is a
(finite) domain. Let hn be an infinite sequence of real numbers with hn → 0
as n → ∞ such that if we scale the triangulation △ by 1/hn, it provides
a triangulation △n of Ω. Then the approximation power of the space S

can be defined to be the largest integer k such that d(f,Sn)Ω = O(hk
n) as

n → ∞, where Sn := {s( ·/hn) : s ∈ S}. As an example, suppose Ω is
the unit square, and let △ be the (infinite) uniform type-I triangulation of
R

2 with vertices on the unit spaced lattice. Then the sequence hn = 1/n
satisfies the above conditions. However, the sequence hn = 1/

√
n does not.

Moreover, if Ω = [0, 1] × [0, π], there is no such sequence hn.

Remark 10.2. In Section 10.2 we have shown that the piecewise polyno-
mials PPd have approximation power d+1 in all of the q-norms. In view of
Remarks 1.4 and 1.5, this is the highest power possible for PPd, and thus
also for any smooth spline space S of degree d. This is why we say that
a spline space has full approximation power if it has approximation power
d+ 1.

Remark 10.3. Theorem 10.21 asserts that for (3r+2)/2 ≤ d ≤ 3r+1, the
approximation power of Sr

d in any q-norm is at most d, i.e., is suboptimal.
However, this result does not tell us the exact approximation power. It
could be anything from zero to d. Finding the exact approximation power
for this range of d remains an open question. For example, for r = 1, the
exact approximation powers of S1

3
and S1

4
are not known.
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Remark 10.4. The question of how well the spline spaces Sr
d(△n) defined

on uniform type-I triangulations of the unit square approximate smooth
functions has been studied by several authors. The problem has been solved
for all values of r ≤ 6, but for higher values of r there are gaps in the theory.
For example, it was shown in [Jia88] that these spaces have approximation
power d for all choices of 2r+ 2 ≤ d ≤ 3r+ 1. For (3r+ 2)/2 ≤ d < 2r+ 2,
the situation is more complicated, and the exact approximation power has
been determined only for some special values of r and d, see [Bam85].

Remark 10.5. The fact that for d < 3r + 2 the space Sr
d does not have

full approximation power in any of the q-norms on the unit square does not
preclude the possibility that for special sequences of triangulations △n with
|△n| → 0, the spaces Sr

d(△n) might have optimal approximation power in
the sense of Remark 5.4, i.e., the bound (10.1) holds with m = d + 1
for each △n. For example, consider the sequence ♦+1,♦+2, . . . of induced
triangulations obtained by applying uniform refinement to a given strictly
convex quadrangulation of a polygonal domain Ω, see Method 4.56. Then
for any 1 ≤ q ≤ ∞, it follows from Theorem 6.18 that the spaces S1

3
(♦+n)

satisfy (10.1) with m = 4, despite the fact that S1

3
does not have full

approximation power as shown in Section 10.4.4.

Remark 10.6. The macro-element spaces discussed in Chapters 6–8 are
superspline spaces defined on special refinements of arbitrary regular tri-
angulations. As shown there, these spaces have optimal approximation
power in the sense of Remark 5.4. Since (except for the polynomial macro-
elements) they are defined on special refined triangulations, they do not fit
into the framework of Definition 10.1. However, we can extend the defi-
nition by allowing the spaces to be defined on refinements of an arbitrary
triangulation △ with smallest angle θ. Then in this extended sense, all the
macro-element spaces of Chapters 6–8 have full approximation power in all
q-norms.

Remark 10.7. In this chapter we have focused on a study of the approx-
imation power of the spaces Sr

d . However, our definition of approximation
power can also be applied to any other spline space S such that S(△) is
well defined for every regular triangulation △. For example, the results of
Section 10.3.3 show that for d ≥ 3r + 2, the special superspline space S

defined in (10.7) has full approximation power in any q-norm.

Remark 10.8. The results of Section 11.6 below show that for d ≥ 3r+2,
the general superspline spaces Sr,ρ

d defined in (5.6) and (11.2) also have full
approximation power in any q-norm.

Remark 10.9. We have shown that for d < 3r + 2, the space Sr
d does

not have full approximation power in any of the q-norms. This means that
every superspline space S

r,ρ
d of Sr

d will also fail to have full approximation
power.
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Remark 10.10. It was conjectured by the first author that if the approx-
imation power of Sr

d is d + 1, then the approximation power of Sr
k will be

k + 1 for all k ≥ d. This is referred to as Lai’s conjecture in the survey
[Boo93a], and remains open.

Remark 10.11. In Definition 10.1, we have defined the approximation
power of Sr

d to be m provided that (10.1) holds for all polygonal domains Ω
and all triangulations △ of Ω with smallest angle θ, and for all f ∈ Wm

q (Ω).
We could instead require that for all such f ,

‖Dα
xD

β
y (f − s)‖

q,Ω
≤ K |△|m−α−β |f |m,q,Ω,

for all 0 ≤ α+β ≤ m−1, where the constant K depends only on r, d, θ and
the Lipschitz constant of the boundary of Ω. In this case we say that Sr

d

has simultaneous approximation power m in the q-norm on Ω. Theorem 10.10
shows that for d ≥ 3r+2, Sr

d has full approximation power in this stronger
sense.

Remark 10.12. Suppose △II is a uniform type-II partition of the unit
square. It was shown in [DahM84a] that the space S1

3
(△II) has approxima-

tion power four in the maximum norm, see also [Lai94] and Remark 12.7.

Remark 10.13. Theorem 10.26 shows that for all 1 < q ≤ ∞, the space
S1

3
does not have full approximation power. The case q = 1 is not covered

by the theorem, but it was shown in [BooJ93] by a different argument that
the result also holds in this case.

10.6. Historical Notes

The approximation power of univariate and tensor-product splines is well
understood, see e.g. [Sch81]. Thus, it is somewhat surprising that even
after many years of work by many spline researchers, the approximation
properties of splines defined on triangulations are still far from being fully
understood. The earliest results appear in the finite-element literature,
where various special macro-element spaces were investigated. For a sum-
mary of what was known in the 1970’s, see [Cia78a].

The strongest currently known positive result is Theorem 10.10, which
asserts that Sr

d has full approximation power provided d ≥ 3r+2. The first
attempt to prove this theorem can be found in [BooH88]. Unfortunately,
as pointed out in [Sch88b] and acknowledged in [Boo89, Boo90], there is a
gap in the proof, since it does not deal with the possibility that, even if
the smallest angle in a triangulation △ is controlled, the constants in the
error bound for approximating a smooth function with a spline in Sr

d(△)
can become arbitrarily large if the triangulation △ contains near-singular
vertices as defined in Section 10.3.1. A different proof based on super
vertex splines can be found in [ChuL90b], but again the constants were not
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shown to be bounded in terms of the smallest angle in the triangulation.
This deficiency was later removed in [ChuHoJ95], thus providing the first
rigorous proof. The proof of Theorem 10.10 given here is based on a special
superspline subspace, and follows [LaiS98]. The result can also be proved
by combining Theorem 5.19 with the construction of stable local bases
for Sr

d(△) in Chapter 11. For the L∞-norm, still another proof based on
Lagrange interpolation can be found in [DavNZ01].

Much of the literature on approximation power of splines on trian-
gulations deals with the case of type-I triangulations. The earliest result
in this case seems to be the surprising Theorem 10.25, which shows that
S1

3
does not have full approximation power on the unit square. Here we

have followed the original proof in [BooH83a]. About the same time, it
was shown in [BooD83] that with respect to the uniform norm, Sr

d has zero
approximation power on the unit square when d < (3r + 2)/2. Our proof
of Theorem 10.13 is based on that paper. The proof for the q-norm is new.

The approximation power of spaces of splines defined on type-I parti-
tions were studied in a series of papers which made use of the emerging the-
ory of box splines, see [BooDH83, BooH88, BooJ93, DahM84a, DahM84b,
DahM85a, Jia83, Jia86, Jia88]. A proof that for d ≥ 3r + 2, Sr

d (△) has full
approximation power on uniform type-I partitions (in the uniform norm)
was given in [DavNZ98] by directly constructing an appropriate Hermite
interpolation operator.

Our treatment of the case 2r + 2 ≤ d ≤ 3r + 1, culminating in the
proof of Theorem 10.20, is based on several sources, with heavy dependence
on an unpublished manuscript of Jia, see also [BooJ93]. The basis result
of Theorem 10.15 follows [BooH83b], while the lemmas in Section 10.4.2
are modifications of results in the unpublished manuscript. We have also
followed Jia for the proof of Theorem 10.20.

Theorem 10.21 which deals with the case (3r + 2)/2 ≤ d ≤ 2r + 1 is
due to [BooJ93], although here we give a different proof. It seems that
Lemma 10.22 is new. The results of Section 10.4.4 on the approximation
power of C1 cubic splines are based on [BooH83a].



Stable Local Minimal
Determining Sets

For practical applications, it is highly desirable that a spline space have
an explicit stable local minimal determining set. In Chapters 6–8 we have
shown that a variety of macro-element spaces have such determining sets.
In this chapter we show how to construct stable local minimal determin-
ing sets for more general spline and superspline spaces defined on regular
triangulations.

11.1. Introduction

Recall from Definition 5.16 that a minimal determining set (MDS) M for
a spline space is said to be local provided that there exists an integer ℓ
depending on the smallest angle in the triangulation △ such that for every
domain point η 6∈ M,

Γη := {ξ ∈ M : cη depends on cξ} ⊆ starℓ(Tη),

where Tη is a triangle containing η. Moreover, M is said to be stable

provided there is a constant K depending only on ℓ and the smallest angle
in △ such that

|cη| ≤ Kmax
ξ∈Γη

|cξ|, all η 6∈ M.

Let △ be a regular triangulation of a polygonal domain Ω and suppose
throughout the remainder of this chapter that d ≥ 3r+2. In Theorem 9.15
we described a minimal determining set for the spline space

Sr
d(△) := S0

d (△) ∩ Cr(Ω). (11.1)

while in Theorem 9.17 we gave an MDS for the superspline space

S
r,ρ
d (△) := {s ∈ Sr

d (△) : s ∈ Cρv (v), v ∈ V}, (11.2)

where V is the set of vertices of △, and ρ := {ρv}v∈V with r ≤ ρv ≤ d.
Neither of these minimal determining sets was completely specified in that
we did not explicitly describe how to choose the needed domain points in
disks around the vertices of △. In this chapter we fill in this gap in the
theory.
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In addition, the minimal determining sets M constructed in Chapter 9
are local, but in general are not stable. In this chapter we give a construc-
tion of stable local minimal determining sets for Sr

d(△) and the superspline
subspace S

r,ρ
d (△).

11.2. Supersplines on Four-cells

Suppose △v is a triangulation consisting of exactly four triangles surround-
ing an interior vertex v. We call such a triangulation a four-cell. Let
Ti := 〈v, vi, vi+1〉, i = 1, . . . , 4, be the four triangles in △v, where v5 = v1
and v1, . . . , v4 appear in counterclockwise order.

For our purposes, we need a slight generalization of the idea of a min-
imal determining set. Suppose S ⊆ S0

d(△v). Given 1 ≤ k ≤ 2r, let Dk(v)
be the disk of radius k around v. Then we say that M ⊆ Dk(v) is a min-

imal determining set for S on Dk(v) provided that for any spline s ∈ S,
setting the coefficients {cξ}ξ∈M to arbitrary real numbers consistently de-
termines all of the coefficients corresponding to domain points in Dk(v).
For µ + 1 ≤ ℓ ≤ 2r, we now introduce some special notation for certain
domain points on the ring Rℓ(v). Let

ai
ℓ,j := ξTi

d−ℓ,ℓ−r+j−1,r−j+1
, 1 ≤ j ≤ nℓ,

gi
ℓ,j := ξTi

d−ℓ,ℓ−r+nℓ+j−1,r−nℓ−j+1
, 1 ≤ j ≤ nℓ,

di
ℓ,j := ξ

Ti

d−ℓ,ℓ−r+2nℓ+j−1,r−2nℓ−j+1
, 1 ≤ j ≤ r − 2nℓ + 1,

(11.3)

where

nℓ := 2r + 1 − ℓ. (11.4)

Note that nℓ ≥ 1 and r−2nℓ +1 ≥ 1. We illustrate this notation for r = 4,
µ = 6, and d = 14 in Figure 11.1. Let

µ := r +

⌊
r + 1

2

⌋
. (11.5)

We want to describe stable minimal determining sets on disks for the su-
perspline space in (11.2) in the special case where ρv = µ for all v ∈ V . We
abuse notation slightly by writing S

r,µ
d (△v) for this space. There are two

cases depending on whether v is singular or not.

11.2.1 The Vertex is Singular

Recall that an interior vertex v of a triangulation is called singular provided
there are four edges attached to v, but they lie on only two different lines.



310 11. Stable Local Minimal Determining Sets

•

••

•••

••••

•••••

••••••

••••••

d3

7,1g3

7,2g3

7,1a3

7,2a3

7,1••

d3

8,3d3

8,2d3

8,1g3

8,1a3

8,1•••

••••••••••

•••••••••••

••••••••••••

•••••••••••••

••••••••••••••

•••••••••••••••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

d4

7,1

g4

7,2

g4

7,1

a4

7,2

a4

7,1

•

•

d4

8,3

d4

8,2

d4

8,1

g4

8,1

a4

8,1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

• • •

• • • •

• • • • •

• • • • • •

• • • • • •

d1

7,1 g1

7,2 g1

7,1 a1

7,2 a1

7,1 • •

d1

8,3 d1

8,2 d1

8,1 g1

8,1 a1

8,1 • • •

• • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

d2

7,1

g2

7,2

g2

7,1

a2

7,2

a2

7,1

•

•

d2

8,3

d2

8,2

d2

8,1

g2

8,1

a2

8,1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

v
1

v
2

v
3

v
4

v

Fig. 11.1. The points in (11.3) for r = 4, µ = 6, d = 14.

Theorem 11.1. Suppose △v is a four-cell associated with a singular vertex
v. For each ℓ = µ+ 1, . . . , 2r, let

Mv,ℓ := {a1

ℓ,1, . . . , a
1

ℓ,nℓ
} ∪

4⋃

i=1

{gi
ℓ,1, . . . , g

i
ℓ,nℓ

},

Ov,ℓ :=

4⋃

i=1

{di
ℓ,1, . . . , d

i
ℓ,r−2nℓ+1

}.

(11.6)

Then for each k = µ, . . . , 2r,

M[k] := DT1

µ (v) ∪

k⋃

ℓ=µ+1

[
Mv,ℓ ∪ Ov,ℓ

]

is a stable MDS for the space S
r,µ
d (△v) on Dk(v).

Proof: Clearly, M[µ] = DT1

µ (v) is a stable MDS for S
r,µ
d (△v) on Dµ(v).

We now proceed by induction on k. Fix µ < k ≤ 2r. Suppose we set
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the coefficients cξ of s ∈ S
r,µ
d (△v) for ξ ∈ M[k]. Then by the inductive

hypothesis, all coefficients cξ with ξ ∈ Dk−1(v) are uniquely determined by
those with ξ ∈ M[k−1] ⊆ M[k]. Now by Theorem 9.7,

dim S
r,µ
k (△v) − dim S

r,µ
k−1

(△v) = 4(k − r) + nk,

which is just the number of points in M[k] \ M[k−1] = Mv,k ∪ Ov,k.
Thus, to complete the proof, we simply need to show that all of the co-
efficients associated with domain points on the ring Rk are determined
from those corresponding to M[k]. But all of these coefficients can be com-
puted from the standard smoothness conditions using Lemma 2.29. For
each i = 1, 2, 3, 4, we first use the coefficients corresponding to the domain
points gi+1

k,1 , . . . , g
i+1

k,nk
, di+1

k,1 , . . . , d
i+1

k,r−2nk+1
along with those in Dk−1(v) to

compute the coefficients corresponding to {ξTi

d−k,0,k, . . . , ξ
Ti

d−k,r−nk,k−r+nk
}.

Then for domain points on Rk, the only undetermined coefficients are those
associated with ai

k,1, . . . , a
i
k,nk

, i = 2, 3, 4. We now use the coefficients corre-

sponding to RT1

k (v) to compute the coefficients cξ with ξ ∈ {a2

k,1, . . . , a
2

k,nk
},

and, proceeding counterclockwise around v, successively compute the co-
efficients with ξ ∈ {a3

k,1, . . . , a
3

k,nk
} and ξ ∈ {a4

k,1, . . . , a
4

k,nk
}. Note that

although we have not used some of the smoothness conditions across the
edge e1 := 〈v, v1〉 which involve the coefficients cξ for ξ ∈ {a1

k,1, . . . , a
1

k,nk
},

these conditions will be automatically satisfied. Lemma 2.29 also asserts
that the maximum of the computed coefficients with ξ ∈ Rk(v) is bounded
by a constantK times the maximum of |cξ| over ξ ∈ M[k], whereK depends
only on d and the smallest angle in △v, and we have stability.

For later use in building stable local minimal determining sets for gen-
eral spline spaces, it is critical that the stable MDS in Theorem 11.1 contains
the sets Ov,ℓ. In Section 11.5 we construct stable minimal determining sets
for supersplines on cells with n edges. The construction there is simpler,
but does not guarantee that the resulting MDS contains the needed sets
Ov,ℓ.

11.2.2 The Vertex is Nonsingular

In this section we prove a version of Theorem 11.1 for the case when v is
not singular. Using the notation of the previous section, let ei := 〈v, vi〉

for i = 1, . . . , 4, where for convenience we identify vi+4 with vi for all i.
Suppose the barycentric coordinates of vi−1 with respect to the triangle Ti

are given by
vi−1 = rivi+1 + siv + tivi,

for i = 1, . . . , 4. Note that ti = 0 if and only if the edge ei is degenerate
at v. Since v is assumed not to be a singular vertex, at least one ti is
nonzero. Moreover, the number of edges attached to v with different slopes
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is at least three. To describe minimal determining sets for S
r,µ
d (△v) on

Dk(v) for µ ≤ k ≤ 2r, we will proceed as in Theorem 11.1, but will replace
the sets Mv,ℓ in (11.6) by sets with 4nℓ points insead of 5nℓ points. Fix
µ ≤ k ≤ 2r. Theorem 9.7 implies

mk,r := dim S
r,µ
k (△v) − dim S

r,µ
k−1

(△v) = 4(k − r). (11.7)

Thus, if we have a minimal determining set for Sr,µ
d (△v) on Dk−1(v), to get

a minimal determining set for S
r,µ
d (△v) on Dk(v), we need to add exactly

mk,r points on the ring Rk(v). Let s ∈ S
r,µ
d (△v), and suppose we know

the coefficients of s corresponding to all domain points in Dk−1(v). Let
z := (z1, . . . , z4r+4) be the vector of B-coefficients of s corresponding to the
domain points

4⋃

i=1

{ai
k,1, . . . , a

i
k,n, g

i
k,1, . . . , g

i
k,n, d

i
k,1, . . . , d

i
k,r−2n+1

},

where for ease of notation we write n := nk = 2r + 1 − k. Then we can
write the set of smoothness conditions across interior edges of △v which
connect the components of z to each other in matrix form as

Hz = h, (11.8)

where h is a vector containing linear combinations of known coefficients,
and

H :=




Ha
1

H
g
1

Hd
1

−I

−I Ha
2

H
g
2

Hd
2

−I Ha
3

H
g
3

Hd
3

−I Ha
4

H
g
4

Hd
4


 ,

Ha
i :=




rr−n+1

i

rr−n+2

i

(
r−n+2

r−n+1

)
rr−n+1

i ti

. .
. ...

rr−1

i · · ·
(

r−1

r−n+1

)
rr−n+1

i tn−2

i

rr
i

(
r

r−1

)
rr−1

i ti · · ·
(

r
r−n+1

)
rr−n+1

i tn−1

i




,

H
g
i :=




(
r−n+1

r−n

)
rr−n
i ti · · ·

(
r−n+1

r−2n+1

)
rr−2n+1

i tni
...

...(
r

r−n

)
rr−n
i tni · · ·

(
r

r−2n+1

)
rr−2n+1

i t2n−1

i


,
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Hd
i :=




(
r−n+1

r−2n

)
rr−2n
i tn+1

i · · ·
(
r−n+1

1

)
rit

r−n
i tr−n+1

i
...

...
...(

r
r−2n

)
rr−2n
i t2n

i · · ·
(
r
1

)
rit

r−1

i tri


,

and I is the n×n identity matrix. The matrix H has 4n rows and 4(r+ 1)
columns where n < r + 1. We call a column of H a d-column when it
passes through one of the matrices Hd

i . We define a-columns and g-columns

similarly.

Lemma 11.2. There is a choice of 4n indices 1 ≤ i1 < · · · < i4n ≤ 4r + 4
such that the the submatrix H(i1, . . . , i4n) obtained from H by selecting
columns i1, . . . , i4n is nonsingular. The i1, . . . , i4n can be chosen so that no
column of H(i1, . . . , i4n) is a d-column.

Proof: We claim the matrix H has full rank 4n. To see this, we observe
that the number of independent solutions of Hz = 0 is 4(r+1)− rank (H).
This must equal the number mk,r in (11.7), and it follows that rank (H) =
4n. This means there is a choice of indices 1 ≤ i1 < · · · < i4n ≤ 4r + 4
such that the the corresponding square submatrix H(i1, . . . , i4n) of H is
nonsingular.

We show now that H(i1, . . . , i4n) can be chosen so that it does not
contain a d-column. Suppose that H(i1, . . . , i4n) contains a nontrivial d-
column. Then we claim that there exists another submatrix H(j1, . . . , j4n)
with one less d-column such that

|detH(i1, . . . , i4n)| ≤ C |detH(j1, . . . , j4n)|, (11.9)

where C depends only on d and the smallest angle θ△v
of △v. Suppose the

nontrivial d-column ofH(i1, . . . , i4n) corresponds to ip = (r+1)(i−1)+2n+
j with 1 ≤ i ≤ 4 and 1 ≤ j ≤ r − 2n+ 1. Note that a column is nontrivial
if and only if the corresponding ti is nonzero. For any 1 ≤ j ≤ r − 2n+ 1,
it is not difficult to see that

Hd
i (j) =

n∑

κ=1

x[j]
κ

(
ti

ri

)j+n−κ

H
g
i (κ),

where the numbers x
[j]
κ are determined from the nonsingular linear system




(
r−n+1

r−n

)
· · ·

(
r−n+1

r−2n+1

)

...
. . .

...(
r

r−n

)
· · ·

(
r

r−2n+1

)






x

[j]
1

...

x
[j]
n


 =




(
r−n+1

r−2n+1−j

)

...(
r

r−2n+1−j

)


. (11.10)
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A simple computation shows that the determinant of the matrix in (11.10)
is equal to

C det




1

1 !
· · · 1

n !

... · · ·
...

1

n !
· · · 1

(2n−1) !


,

where C is a positive constant depending only on r and n. It is well known
that this determinant is nonzero for all choices of n.

Since the κ-th column of Hg
i corresponds to the (r+1)(i−1)+n+κ-th

column of H , we have

detH(i1, . . . , i4n) =
n∑

κ=1

x[j]
κ

(
ti

ri

)j+n−κ

detHκ,

where

Hκ := H(i1, . . . , ip−1, (r + 1)(i− 1) + n+ κ, ip+1, . . . , i4n).

Since |ri| is the quotient of the areas of two neighboring triangles Ti−1 and
Ti, by Lemma 4.14,

0 < K1 ≤ |ri| ≤ K2, (11.11)

where K1,K2 depend only on θ△. Therefore,

|detH(i1, . . . , i4n)| ≤ K3|ti|
j max

κ
|detHκ|,

where K3 depends only on d and θ△. Now (11.9) follows since |ti| ≤ K4,
where K4 is a constant depending only on θ△v

. In fact, |ti| is quite small
if v is near-singular.

Let Σ be the set of indices of all a- and g-columns of H , and let
{i∗

1
, . . . , i∗

4n} ⊆ Σ be such that

|detH(i∗
1
, . . . , i∗

4n)| = max
i1,...,i4n∈Σ

|detH(i1, . . . , i4n)|. (11.12)

Let Mv,k be the set of domain points in Av,k which correspond to the
columns with indices in the set Σ \ {i∗

1
, . . . , i∗

4n}. Then Mv,k ∪ Ov,k is the
set of domain points on Rk(v) which correspond to the columns of H with
indices in the set J∗ := {1, . . . , 4r + 4} \ {i∗

1
, . . . , i∗

4n}.

Theorem 11.3. Suppose △v is a four-cell associated with a nonsingular
vertex v. For each µ + 1 ≤ ℓ ≤ 2r, let Ov,ℓ be the sets in (11.6), and let
nℓ be the integer defined in (11.4). Then there exists a set of 4nℓ domain
points

Mv,ℓ ⊆ Av,ℓ :=

4⋃

i=1

[
{ai

ℓ,j}
nℓ

j=1
∪ {gi

ℓ,j}
nℓ

j=1

]
(11.13)
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such that for each k = µ, . . . , 2r,

M[k] := DT1

µ (v) ∪

k⋃

ℓ=µ+1

[
Mv,ℓ ∪Ov,ℓ

]

is a stable MDS for the space S
r,µ
d (△v) on Dk(v).

Proof: We again proceed by induction on k as in the proof of Theorem 11.1.
Clearly, the set M[µ] = DT1

µ (v) is a stable MDS for Sr,µ
d (△v) onDµ(v). Now

fix µ+ 1 ≤ k ≤ 2r, and suppose that M[k−1] is a stable MDS for S
r,µ
d (△v)

on Dk−1(v). To construct M[k] which is a stable MDS for S
r,µ
d (△v) on

Dk(v), we need to supplement M[k−1] with an appropriate subset of the
domain points on the ring Rk(v).

To simplify the discussion of how to choose these m points, we first
reduce the problem to one of considering splines whose coefficients are zero
for all points in the disk Dk−1(v). Given s ∈ S

r,µ
d (△v), let Ik−1s be the

spline in Sr
d (△v) constructed in Lemma 11.4 below such that for each tri-

angle attached to v, gT := Ik−1s|T interpolates the derivatives up to order
k − 1 of s|T at v. Note that since s ∈ Cµ(v), Ik−1s is also in Cµ(v). Then
the spline ŝ := s − Ik−1s ∈ S

r,µ
d (△v) has all zero coefficients in Dk−1(v).

Computing the coefficients of ŝ associated with domain points on the ring
Rk(v) will stably and uniquely determine the corresponding coefficients of
s, since by Lemma 11.4 the size of the coefficients of Ik−1s associated with
domain points on this ring is bounded by the size of the coefficients of s
associated with domain points in Dk−1(v).

Now assuming that the coefficients {zj}j∈J∗ of ŝ corresponding to
points in Mv,k ∪ Ov,k have been fixed, we may compute the remaining
coefficients corresponding to points in Av,k ∪ Ov,k from the nonsingular
system

H(i∗
1
, . . . , i∗

4n)



zi∗

1

...
zi∗

4n


 = −

∑

j∈J∗

zjH(j), (11.14)

where H(j) is the j-th column of H . Using Cramer’s rule and taking
account of (11.12) and Lemma 11.2, we conclude that

|zi∗ν
| ≤

∑
j∈J∗ |zj||detH(i∗

1
, . . . , i∗ν−1

, j, i∗ν+1
, . . . , i∗

4n)|

|detH(i∗
1
, . . . , i∗

4n)|
≤ K max

j∈J∗
|zj |,

for ν = 1, . . . , 4n, where K is a constant depending only on d and the
smallest angle in △v. This shows that the computation of zi∗

1
, . . . , zi∗

4n
is

stable.

The following lemma was used in the proof of Theorem 11.3, and will
also be useful in Section 11.7 below.
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Lemma 11.4. Let △v be a cell, and let 0 ≤ r < k ≤ d be integers. Given
a spline s ∈ Sr

d(△v), let Ik−1s be such that for each triangle T attached
to v, Ik−1s|T is the unique polynomial of degree k − 1 which matches the
derivatives of s|T at v up to order k−1. Then Ik−1s ∈ Sr

k−1
(△v) ⊆ Sr

d(△v).
Moreover, if

s|T :=
∑

cTξ B
T
ξ , Ik−1s|T :=

∑
ĉTξ B

T
ξ ,

where BT
ξ are the Bernstein polynomials of degree d associated with a

triangle T , then ĉTξ = cTξ for all ξ ∈ DT
k−1

(v), and

max
ξ∈RT

k
(v)

|ĉTξ | ≤ K max
ξ∈DT

k−1
(v)

|cTξ |, (11.15)

where K is a constant depending only on d.

Proof: Comparing cross derivatives of neighboring pieces of Ik−1s, it is
easy to see that it satisfies Cr smoothness conditions across the interior
edges of △v, and thus is a spline in Sr

k−1
(△v) ⊆ Sr

d(△). Now fix a trian-
gle T := 〈v, vi, vi+1〉 in △v. Then by the connection between derivatives
and coefficients of a polynomial written in Bernstein–Bézier form, see Sec-
tion 2.7, it follows that ĉTξ = cTξ for all ξ ∈ DT

k−1
(v). Finally, to establish

(11.15), we observe that since Ik−1s is a polynomial of degree k − 1, its
k-th derivatives are identically zero, and thus for all ν = 0, . . . , k,

0 = Dν
vi−vD

k−ν
vi+1−vIk−1s|T (v)

=
d !

(d− k) !

ν∑

j1=0

k−ν∑

j2=0

(
ν

j1

)(
k − ν

j2

)
(−1)k−j1−j2 ĉTd−j1−j2,j1,j2

.

It follows that

ĉTd−k,ν,k−ν

= −
d !

(d− k) !

∑

0≤j1≤ν, 0≤j2≤k−ν

j1+j2≤k−1

(
ν

j1

)(
k − ν

j2

)
(−1)k−j1−j2 ĉTd−j1−j2,j1,j2

,

which immediately implies (11.15).

Example 11.5. Let r = 5, µ = 8, d = 17 in Theorem 11.3.

Discussion: Figure 11.2 shows the set of domain points in this case, where
some of the points are marked with symbols rather than dots. We have
shaded the D2r disks light gray and the Dµ disks dark gray. Consider
the ring R9(v), where n9 = 2. The points in Ov,9 are marked with the
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Fig. 11.2. The points in M∩ R9(v) for r = 5, µ = 8, d = 17.

symbol · (except for the point d3

9,2 which we have marked with a ⊕ for
a later discussion). In this case the set Mv,9 must contain eight of the
sixteen points in the set Av,9 described in (11.13). These eight points are
chosen by the method of maximization of the determinant in (11.12), and
therefore depend on the exact geometry of the cell. In Figure 11.2 we show
a possible constellation where we mark the eight points in Mv,9∩Av,9 with
the symbol · . This leaves eight points which are computed by the linear
system (11.8). They are marked with boxed numbers 1 through 8.

11.3. A Lemma on Near-Degenerate Edges

The concepts of δ-near-degenerate edges and δ-near-singular vertices were
introduced and studied in Section 10.3.1. In this section we establish the
following useful lemma.

Lemma 11.6. Give a triangulation △, let δ := 2θ2/π, where θ is the small-
est angle in △. Then for any interior vertex v which is not δ-near-singular,
there is at least one edge attached to v which is not δ-near-degenerate at
either end.



318 11. Stable Local Minimal Determining Sets

Proof: Let v1, . . . , vn be the vertices attached to v in counter-clockwise
order. For i = 1, . . . , n, we set Ti := 〈v, vi, vi+1〉 and denote by θi, φi, ωi

the angles of Ti at v, vi, vi+1, respectively. We distinguish three cases.

Case 1: n = 3. Consider the edge e1 := 〈v, v1〉, and let α := φ1 + ω3 and
β := θ1 + θ3. Then it is clear that β ≥ π + 2θ. Now α+ β + ω1 + φ3 = 2π.
This implies α ≤ π − 4θ since ω1, φ3 ≥ θ. This shows that the edge 〈v, v1〉

is not δ-near-degenerate at either end.

Case 2: n = 4. Since v is not δ-near-singular, there is at least one edge
attached to v which is not δ-near-degenerate at v. Without loss of generality
we can assume it is the edge e1 := 〈v, v1〉, and that the angle β := θ1 +θ4 is
at least π + 2θ2/π. Then arguing as in Case 1, we see that α := φ1 + ω4 ≤

π − 2θ − 2θ2/π ≤ π − 2θ.

Case 3: n ≥ 5. Consider the edge e1 := 〈v, v1〉. Let αi := φi + ωi−1 and
βi := θi + θi−1, for i = 1, . . . , n, where we identify θn+i = θi, ωn+i = ωi.
We claim that at least three of the αi satisfy αi ≤ π − 4θ/(n− 2). Indeed,
if this were not the case, then

(n− 2)π =
n∑

i=1

αi > (n− 2)
(
π −

4θ

n− 2

)
+ 4θ = (n− 2)π.

On the other hand, we claim that at most two of the βi satisfy βi ≥ π−θ/2.
Suppose to the contrary that there are three, say βk, βl, βm. Then at least
two of these do not overlap, say βk, βl. But then there are n−4 of the angles
θi which are not covered by βk or βl, which would lead to the contradiction

2π ≥ βk + βl + (n− 4)θ > 2π − θ + (n− 4)θ ≥ 2π.

Now nθ ≤ 2π implies 4/(n− 2) ≥ 4/n ≥ 2θ/π. We conclude that for one of
the edges, αi ≤ π− 4θ/(n− 2) ≤ π− 2θ2/π and βi ≤ π− θ/2 ≤ π− 2θ2/π.
It follows that this edge is not δ-near-degenerate at either end.

11.4. A Stable Local MDS for S
r,µ
d (△)

Suppose △ is a regular triangulation, and let V be its set of vertices. Let
θ△ be the smallest angle in △, and let δ := 2θ 2

△/π. Let VS and VNS be the
sets of vertices of △ which are singular and δ-near-singular, respectively.
Given r and d with d ≥ 3r + 2, let µ = r + ⌊(r + 1)/2⌋. In this section we
construct a stable local MDS for the superspline space

S
r,µ
d (△) := {s ∈ Sr

d (△) : s ∈ Cµ(v), v ∈ V}.

This is a special case of the space in (11.2) with ρ := (µ, . . . , µ). Given
a triangle T in △, let AT , CT , ET , FT , GT

L , G
T
R be the subsets of domain

points in T defined in (9.17), see also Figure 9.5.
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Theorem 11.7. Let M be the following set of domain points:

1) For each triangle T , include CT .

2) For each edge e, include ET (e), where T is some triangle sharing e.

3) For each edge of a triangle T such that e lies on the boundary of Ω,
include GT

L(e) and GT
R(e).

4) For each v ∈ V , include DT
µ (v) for some triangle T with vertex v.

5) Suppose the vertex v 6∈ VNS is connected to v1, . . . , vn in counterclock-
wise order. Let Ti := 〈v, vi, vi+1〉 and set T0 := Tn = 〈v, vn, v1〉 if v
is an interior vertex. Let 1 ≤ i1 < · · · < ik < n be such that eij

is
δ-near-degenerate at either end, where ei := 〈v, vi〉 for i = 1, . . . , n.
Let Jv := {i1, . . . , ik}. Then

a) include GTi

L (ei) for all i ∈ Jv,

b) include ATi(v) for all 1 ≤ i ≤ n− 1 such that i 6∈ Jv,

c) include ATn(v) if v is an interior vertex.

6) For each vertex v ∈ VS, include the sets Mv,µ+1, . . . ,Mv,2r con-
structed in Theorem 11.1.

7) For each v ∈ VNS \VS include the sets Mv,µ+1, . . . ,Mv,2r constructed
in Theorem 11.3.

Then M is a stable local minimal determining set for S
r,µ
d (△).

Proof: We claim that M is well defined. In particular, if v /∈ VNS, then
by Lemma 11.6 there exists at least one edge attached to v which is not
δ-near-degenerate at either end. In the numbering of the edges in item 5)
above, we can choose this edge to be 〈v, vn〉, and the construction ensures
that for each interior vertex v 6∈ VNS and edge ei := 〈v, vi〉 attached to it,
if vi 6∈ VNS, then M includes exactly one of the two sets ATi(v) or GTi

L (ei).
The construction also guarantees that for all vertices v 6∈ VNS , there is at
least one triangle T with vertex at v such that M contains the set AT (v).

To see that M is a determining set for S
r,µ
d (△), we show that setting

cξ = 0 for all ξ ∈ M implies s is identically zero. Since for every vertex
v of △ the set M contains DT

µ (v) for some triangle attached to v, by
Lemma 5.10 all coefficients of s associated with domain points in the disks
Dµ(v) vanish.

Next we compute coefficients on the rings Rµ+1(v) for all v. First we do
the vertices v which are not in VNS. We process arcs in a counterclockwise

direction around v, starting with an edge e such that the preceding triangle
T contains the set AT (v). These computations are based on Lemma 2.29,
or (only if the corresponding edge is not δ-near-degenerate) Lemma 2.30.
Next we use Theorem 11.1 for each vertex v ∈ VS, and Theorem 11.3 for
each vertex in VNS \VS. To do this, we need the coefficients corresponding
to the sets Ov,µ+1, but these will all have been set to zero or computed to
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be zero at this point. We now repeat this entire process one ring at a time
until we have completed all of the rings up to R2r(v) for all v.

At this point we have shown that all coefficients of s corresponding to
domain points in the disks D2r(v) are zero. Since M contains the sets CT ,
the only remaining coefficients correspond to points in sets of the form

ET (e) \
[
D2r(u) ∪D2r(v)

]
,

where e = 〈u, v〉 is an interior edge. These coefficients can be computed
from the associated coefficients in the neighboring triangle (which will have
been set to zero) using Lemma 2.29.

We have shown that M is a determining set for S
r,µ
d (△). To see that

it is minimal, we simply check that its cardinality is equal to the dimension
of Sr,µ

d (△) as given in Corollary 9.20. Let

na := #AT (v) = #GT
L(e) = #GT

R(e) =

(
2r − µ+ 1

2

)
,

nc := #CT =

(
d− 3r − 1

2

)
,

nd := #DT
µ (v) =

(
µ+ 2

2

)
,

ne := #ET (e) = nf − 4na,

nf :=
(r + 1)(2d− 4µ+ r − 2)

2
.

It is easy to check that the number of points chosen in item 6) of Theo-
rem 11.7 is 5na, and in item 7) is 4na. This is na points for each edge
attached to v, and an additional na points when v is singular. Thus,

#M = ndV + na(2E + S + EB) + neE + ncN, (11.16)

where
E := number of edges of △,

EB := number of boundary edges of △,

N := number of triangles of △,

S := number of singular vertices of △,

V := number of vertices of △.

Using the fact that 3N = 2EI + EB, (11.16) reduces to

#M = ndV + na(S − 3N) + nfE + ncN.
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A simple computation shows that this is equal to formula (9.24) for the
dimension of Sr,µ

d (△).
This completes the proof that M is an MDS for Sr

d(△). We now claim
that M is local in the sense of Definition 5.16. In particular, for every
triangle T and every domain point η in T , we claim that the set Γη in the
definition is a subset of star3(T ). To see this, we examine the supports of
the basis splines in the M-basis associated with the MDS M. Recall that
for each ξ ∈ M, the basis function ψξ is the spline whose coefficients satisfy

cη = δξ,η, all η ∈ M.

Our task is to determine which coefficients of ψξ are nonzero, or in other
words, how far does the coefficient cξ = 1 propagate?

Case 1: Suppose ξ ∈ CT for some triangle T . Then since no smoothness
conditions involve cξ, all other coefficients of ψξ must be zero, i.e., the
support of ψξ is contained in T .

Case 2: Suppose η ∈ ET (e1) \
[
D2r(v1)∪D2r(v2)

]
, where T := 〈v1, v2, v3〉

and e1 := 〈v1, v2〉 is a boundary edge of △. In this case ψξ has zero
coefficients on the disks D2r(vi) and on ET (ej) \ [D2r(vj) ∪D2r(vj+1)] for
the other two edges ej := 〈vj , vj+1〉 of T . It follows that the support of ψξ

is just the triangle T .

Case 3: Suppose ξ ∈ ET (e) \
[
D2r(v) ∪ D2r(u)

]
, where e = 〈v, u〉 is an

interior edge shared by T and a neighboring triangle T̃ . Then arguing as
in Case 2, we see that the support of ψξ is T ∪ T̃ .

The situation is more complicated when ξ lies in some disk D2r(v).
This is due to the fact that when d < 4r + 1, the 2r-disks overlap, and
nonzero coefficients in one such disk can propagate to a neighboring disk.

Case 4: Suppose ξ ∈ M∩D2r(v). Suppose z1, . . . , zn are the points on the
boundary of star3(v) in counterclockwise order. Then Lemma 11.8 below
shows that the coefficients of ψξ are zero on the disks D2r(zi). Now for
each ei := 〈zi, zi+1〉, E

Ti(ei) \ [D2r(zi) ∪ D2r(zi+1)] ⊆ M0 := M \ {ξ}

for some triangle Ti sharing the edge ei. It follows that the corresponding
coefficients are also zero, and we conclude that the support of ψξ is a subset
of star3(v).

Finally, we claim that M is stable. First, we note that the computa-
tions of coefficients corresponding to domain points in the rings Rµ+1(v),
. . . , R2r(v) for a singular or δ-near-singular vertex v are stable by Theo-
rems 11.1 and 11.3. Now it is easy to see that the computation of all
remaining coefficients is also stable. Indeed, each B-coefficient in Dd,△ \M

is computed directly from smoothness conditions as in Lemma 2.29, or are
computed indirectly from smoothness conditions as in Lemma 2.30. Since
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this latter lemma is only applied to edges which are not δ-near-degenerate,
those computations are also stable.

Since we have shown that S
r,µ
d (△) has a stable local MDS, it now

follows from Theorem 5.19 that this space has full order approximation
power. Since S

r,µ
d (△) is a subspace of Sr

d(△), it follows that Sr
d(△) also has

full order approximation power. By Theorem 5.21 the M-basis {ψξ}ξ∈M

provides a stable local basis for S
r,µ
d (△). This is also clear from the proof

of Theorem 11.7, which makes use of the following lemma.

Lemma 11.8. Let M be the MDS in Theorem 11.7, and let {ψξ}ξ∈M

be the corresponding M-basis. Then for each ξ ∈ M, ψξ can have a
nonzero coefficient associated with a domain point in a disk D2r(w) only
if ξ ∈ D2r(v) for some v, and either v = w, or w is connected directly
to v with an edge 〈w, v〉 or by a pair of edges 〈w, u〉, 〈u, v〉, where u is a
δ-near-singular vertex.

Proof: It is clear from the first part of the proof of Theorem 11.7 that
the coefficients in a disk D2r(w) are computed from smoothness conditions
which involve only coefficients in such disks. Hence, if ξ is not in any disk
D2r(v), then ψξ has zero coefficients on all disks D2r(w).

Suppose now that ξ ∈ D2r(v), and let M0 := M\{ξ}. Suppose w 6= v

is not connected directly to v with an edge 〈w, v〉 or by a pair of edges
〈w, u〉, 〈u, v〉, where u is a δ-near-singular vertex. Let w1, . . . , wn be the
vertices attached to w and let ei := 〈w,wi〉 and Ti := 〈w,wi, wi+1〉. Clearly,
Dµ(w) ⊆ M0 and E(ei) ⊆ M0 for each 1 ≤ i ≤ n, where E(ei) is one of
the sets ETi(ei) and ETi−1(ei). There are two cases.

Case 1: w ∈ VNS. In this case the four vertices w1, . . . , w4 are all different
from v, which ensures Dµ(wi) ⊆ M0 for i = 1, . . . , 4. Moreover, none of the
wi is δ-near-singular since two δ-near-singular vertices cannot be neighbors.
Since the edges 〈w,wi〉 are all δ-near-degenerate at w, we conclude that

M0 also contains the sets G
Ti−1

R (ei), 1 ≤ i ≤ 4. This implies that all
coefficients of ψξ corresponding to domain points in D2r(w) must be zero.
To see this, we first calculate the coefficients associated with domain points
on the ring Rµ+1(w) from the nonsingular system (11.14) in the proof
of Theorem 11.3. We will get zero coefficients if the right-hand side is
zero, which happens as soon as the coefficients associated with domain
points in DT1

µ (w) and the sets Mw,µ+1 and Ow,µ+1 in the theorem are

zero. Since DT1

µ (w) ∪Mw,µ+1 ⊆ M0, we only have to check Ow,µ+1. It is

easy to see that Ow,µ+1 ⊆
⋃

4

i=1
E(ei), and it follows that the coefficients

corresponding to domain points in the disk Dµ+1(w) are zero. Repeating
this process for each of the rings Rµ+2(w), . . . , R2r(w), we note that for
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each k = µ+ 2, . . . , 2r,

Ow,k ⊆

4⋃

i=1

[
Dµ(wi) ∪G

Ti−1

R (ei) ∪G
Ti

R (ei) ∪ E
Ti−1(ei) ∪ E

Ti(ei)
]
.

Since the coefficients corresponding to M0 are zero, and the coefficients
corresponding to the disk Dk−1(w) are also zero by the induction hypoth-
esis, it is easy to see that the coefficients associated with points in Ow,k

must be zero, and so we have only zero coefficients associated with Rk(w).

Case 2: w 6∈ VNS . By Lemma 11.6, there is at least one edge attached to
w which is not δ-near-degenerate at either end. Without loss of generality
we may assume it is en. Then ATn(w) ⊆ M0, and the corresponding
coefficients of ψξ must be zero. We now compute coefficients associated
with domain points on the ring Rµ+1(w) proceeding in counterclockwise
order around w. For i = 1, . . . , n, we show that coefficients corresponding
to points on the arc ar

µ+1,ei
(w) are all zero. Assuming this holds for for all

i ≤ k − 1, we now show it for i = k.

a) If ek is not δ-near-degenerate at either end, then M0 contains ATk(w)
and either ETk (ek) or ETk−1(ek). Hence the coefficients for points

in ar
µ+1,ek

(w) \ (G
Tk−1

L (ek) ∪ G
Tk

L (ek)) are zero, and we get all zero
coefficients for points on the arc ar

µ+1,ek
(w) by Lemma 2.30.

b) If ek is δ-near-degenerate at one end and wk 6∈ VNS , then M0 contains

all of the sets Dµ(w), Dµ(wk), G
Tk−1

R (ek), GTk

L (ek) and either ETk(ei)
or ETk−1(ei). Moreover, by the induction hypothesis, the coefficients
for points in ar

µ+1,ek
(w) ∩ ar

µ+1,ek−1
(w) are also zero. Then using the

smoothness conditions, it follows that all coefficients associated with
points on the arc ar

µ+1,ek
(w) must be zero.

c) If wk ∈ VNS , then wk is not connected directly to v with an edge
〈wk, v〉 or by a pair of edges 〈wk , u〉, 〈u, v〉 with u a δ-near-singular
vertex. Then, by Case 1, all coefficients of ψξ associated with points in
D2r(wk) must be zero, and the same argument as in b) shows that all
coefficients associated with points on the arc ar

µ+1,ek
(w) must be zero.

To complete the proof, we now repeat this process for each of the rings
Rµ+2(w), . . . , R2r(w).

Figure 11.3 illustrates Case 2b of Lemma 11.8 for r = 4, µ = 6, and
d = 14. Suppose e2 is δ-near-degenerate at either w2 or w. Then the
coefficients corresponding to points in the sets GT2

L (e2) and GT1

R (e2) are
zero. We have marked those points with the symbol ⊗. The coefficients
associated with the points in ET (e2) and AT1(w) are also zero. They are
marked with · and · , respectively. Then using smoothness conditions, we
see that all of the coefficients corresponding to points marked with · along
with those in AT2(w) (marked with the number 4) must be zero.
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Fig. 11.3. Blocking propagation.
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Fig. 11.4. Propagation to star3(v).

We conclude this section with an example to illustrate that propagation
to star3(v) can actually happen.

Example 11.9. Let △ be the triangulation shown in Figure 11.4, and let
r = 5, µ = 8, d = 17.

Discussion: For ease of understanding, we shade the disks Dµ and D2r

in dark and light gray, respectively. Suppose M contains the set DT
µ (v)

where T is the top triangle in the figure, and suppose ξ is the point at
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the vertex v. Then ψξ has support on all of the triangles surrounding v,
and in particular, it has a nonzero coefficient corresponding to the point
Rµ(v)∩〈v, u〉. This point is numbered 1 in the figure, and can be identified
with the point marked with a ⊕ in Figure 11.2. As seen from that figure, the
nonzero coefficient at point number 1 can propagate to a nonzero coefficient
corresponding to the point in the set AT1(w) which is marked with a ⊗ in
Figure 11.2 and with the number 2 in Figure 11.4. We take w1 = u and
w4 = z. Assuming both 〈w,w2〉 and 〈w,w3〉 are δ-near-degenerate, we get
further propagation to a point in the set AT3(w) marked with the number
4. This set lies in star3(v) but outside of star2(v).

11.5. A Stable MDS for Splines on a Cell

In Section 11.2 we constructed a stable MDS for superspline spaces defined
on four-cells. In this section we do the same for interior cells

△v := {Ti := 〈v, vi, vi+1〉, i = 1, . . . , n}

with an arbitrary number of edges. Fix r ≤ ρv < µ. Our aim is to construct
a stable MDS for the superspline space Sr,ρv

µ (△v).
Suppose the vertices v1, . . . , vn are in counterclockwise order, and let

vn+1 = v1. Let e be the number of edges attached to v with different slopes.
Then by Theorem 9.7,

m := dim Sr,ρv

µ (△v) =

(
ρv + 2

2

)
+ n

[(
µ− r + 1

2

)
−

(
ρv − r + 1

2

)]
+ σ,

where

σ :=

µ−r∑

j=ρv−r+1

(r + j + 1 − je)+.

Suppose {ξi}
nc

i=1
are the domain points associated with the cell △v,

where

nc = n

[(
µ− 1

2

)
+ 2µ− 1

]
+ 1 = n

[
µ2 + µ

2

]
+ 1.

Given s ∈ Sr,ρv
µ (△v), we denote the B-coefficient associated with ξi by

ci for i = 1, . . . , nc. Associated with each interior edge of △v, there are
µ− j + 1 smoothness conditions to ensure Cj continuity across that edge,
j = 1, . . . , r, and ρv − r − k + 1 smoothness conditions to ensure Cρv

continuity at v, k = 1, . . . , ρv − r. This gives a total of

ns := n

[(
µ+ 1

2

)
−

(
µ− r + 1

2

)
+

(
ρv − r + 1

2

)]

= nr
[2µ− r + 1

2

]
+ n

(
ρv − r + 1

2

)



326 11. Stable Local Minimal Determining Sets

smoothness conditions to ensure that s lies in Sr,ρv
µ (△v). Note that ns < nc.

These conditions can be written in matrix form

Ac = 0, (11.17)

where c = (c1, . . . , cnc
)T , and A is an appropriate ns × nc matrix.

In general, the system (11.17) includes some redundant smoothness
conditions, and so nr := rank (A) < ns. Indeed, since dim Sr,ρv

µ (△v) =
nc − nr, it follows that

nr = n
[µ2 + µ

2

]
+ 1 −

(
ρv + 2

2

)
− n

[(
µ− r + 1

2

)
−

(
ρv − r + 1

2

)]
− σ

= nr
[2µ− r + 1

2

]
+ 1 −

(
ρv + 2

2

)
+ n

(
ρv − r + 1

2

)
− σ.

This implies that the number of redundant equations in (11.17) is

nred :=

(
ρv + 2

2

)
− 1 + σ.

Without loss of generality, we may assume that redundant equations
have been dropped, and that (11.17) is written in the equivalent form

[A1A2] c = 0,

where A1 is an nr × m matrix and A2 is an nr × nr matrix. We may
also assume that the columns of A (and the corresponding components of
c) have been numbered so that the determinant of A2 has the maximal
absolute value over all nr × nr subdeterminants of A.

Algorithm 11.10. For each i = 1, . . . ,m, let si be the spline in Sr,ρv
µ (△v)

with B-coefficients c := (c1, . . . , cnc
)T chosen so that ci = 1, cj = 0 for

j = 1, . . . ,m with j 6= i, and cm+1, . . . , cnc
are determined from the linear

system

A2



cm+1

...
cnc


 = −A1(i),

where A1(i) is the i-th column of the matrix A1.

The splines {si}
m
i=1

are clearly linearly independent since

λjsi = δi,j , j = 1, . . . ,m,

where λj is a linear functional which picks off the j-th B-coefficient. It
follows that they form a basis for Sr,ρv

µ (△v). We now show that their
construction is a stable process, i.e., for each i, all of the coefficients of si

are uniformly bounded.
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Theorem 11.11. Suppose si is a spline constructed by Algorithm 11.10.
Then its B-coefficients satisfy

|cj | ≤ 1, j = 1, . . . , nc. (11.18)

Proof: Fix 1 ≤ i ≤ m, and let c := (c1, . . . , cnc
) be the vector of coefficients

of si as computed from Algorithm 11.10. Then (11.18) clearly holds for
j = 1, . . . ,m. Let m+ 1 ≤ j ≤ nc. Then by Cramer’s rule,

cj =
det (Ã2)

det (A2)
,

where Ã2 is the matrix obtained from A2 by replacing the j-th column by
−A1(i). But then |cj | ≤ 1 follows by the choice of A2.

A completely analogous algorithm can be used to create a stable MDS
for Sr,ρv

µ (△v) in the case where △v is a boundary cell.

11.6. A Stable Local MDS for S
r,ρ
d (△)

In this section we combine the constructions of the two previous sections
to create a stable local MDS for the space of supersplines S

r,ρ
d (△) defined

in (11.2) for all d ≥ 3r + 2. As in Section 9.5, we assume that kv + ku < d

for each pair of neighboring vertices v, u ∈ V , where kv := max{ρv, µ}

for all v ∈ V with µ as in (11.5). Given a triangle T = 〈u, v, w〉, let

ÃT , C̃T , ẼT , G̃T
L , G̃

T
R be as in (9.23).

Theorem 11.12. Let M be the following set of domain points:

1) For each triangle T , include the set C̃T .

2) For each edge e, include the set ẼT (e), where T is some triangle sharing
e.

3) For each edge of a triangle T with e on the boundary of Ω, include the
sets G̃T

L(e) and G̃T
R(e).

4) For each vertex v ∈ V ,

a) include the set DT
ρv

(v) for some triangle attached to v if ρv ≥ µ,

b) include the points in Dµ(v) corresponding to the stable minimal
determining set Mv of Section 11.4 for Sr,ρv

µ (△v) if ρv < µ.

5) Suppose the vertex v 6∈ VNS is connected to v1, . . . , vn, numbered in
counterclockwise order. Let Ti := 〈v, vi, vi+1〉 and set T0 := Tn =
〈v, vn, v1〉 if v is an interior vertex. Let 1 ≤ i1 < · · · < ik < n be
such that eij

is δ-near-degenerate at either end, where ei := 〈v, vi〉 for
i = 1, . . . , n. Set Jv := {i1, . . . , ik}, and



328 11. Stable Local Minimal Determining Sets

a) include G̃Ti

L (ei) for all i ∈ Jv,

b) include ÃTi(v) for all 1 ≤ i ≤ n− 1 such that i 6∈ Jv,

c) include ÃTn(v) if v is an interior vertex.

6) For each vertex v ∈ VS , include the sets Mv,kv+1, . . . ,Mv,2r con-
structed in Theorem 11.1.

7) For each v ∈ VNS\VS, include the sets Mv,kv+1, . . . ,Mv,2r constructed
in Theorem 11.3.

Then M is a stable local minimal determining set for S
r,ρ
d (△).

Proof: It is straightforward to check that M is a determining set for
S

r,ρ
d (△). To see that it is minimal, we check that its cardinality is equal

to the dimension of Sr,ρ
d (△) as given in Theorem 9.18. The localness and

stability follow as in the proof of Theorem 11.7.

Since we now know that S
r,ρ
d (△) has a stable local MDS, it follows

from Theorem 5.19 that it has full approximation power. Moreover, by
Theorem 5.21, the M basis {ψξ}ξ∈M associated with the stable local MDS
of Theorem 11.12 provides a stable local basis for S

r,ρ
d (△).

11.7. Stability and Local Linear Independence

A basis B = {ψν}
n
ν=1

for a spline space S is called locally linearly inde-

pendent provided that for every T ∈ △, the splines {ψν}ν∈ΣT
are linearly

independent on T , where

ΣT := {ν : T ⊆ suppψν}.

Since the classical univariate B-splines are both stable and locally linearly
independent (see Theorems 4.18 and 4.41 in [Sch81]), it seems natural to
expect that there also exist bases for bivariate spline spaces which pos-
sess both of these properties simultaneously. In this chapter we have con-
structed stable local bases for the spline spaces Sr

d (△) and their superspline
subspaces, while star-supported locally linearly independent bases for the
same spaces were recently constructed in [DavS00a]. But these bases are
different, and in fact we have the following surprising result.

Theorem 11.13. Given r ≥ 1 and d ≥ 3r + 2, there are triangulations
such that no basis for Sr

d(△) is simultaneously stable and locally linearly
independent.

Proof: Suppose B := {ψν}
n
ν=1

is a stable locally linearly independent basis
for Sr

d(△) on a triangulation which contains an interior near-singular vertex
v. Following the notation introduced at the beginning of Section 11.2, sup-
pose v is connected to v1, v2, v3, v4 in counterclockwise order. For each
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1 ≤ i ≤ 4, let ei := 〈v, vi〉, and Ti := 〈v, vi, vi+1〉. Suppose vi−1 =
rivi+1 + siv + tivi, and suppose that none of the ei is degenerate at v,
i.e., ti 6= 0. For convenience, we define αi, βi, γi, µi to be the linear func-
tionals that pick off the B-coefficients corresponding to the domain points
ξ

Ti

d−2r,r,r, ξ
Ti

d−2r,r−1,r+1
, ξTi

d−2r,r+1,r−1
, ξ

Ti

d−2r−1,r,r+1
, respectively.

For each 1 ≤ j ≤ 4, we claim that there is a unique spline gj ∈ Sr
d(△)

whose only nonzero coefficients are

αjgj = 1, γjgj = −rj/(rtj), γj+1gj = r1−r
j+1

/(rtj+1),

βj−1gj = rr−1

j γjgj, βjgj = rr−1

j+1
γj+1gj ,

µj−1gj = rrr−1

j sjγjgj , µjgj = rrr−1

j+1
sj+1γj+1gj .

It can be verified directly that gj satisfies all Cr smoothness conditions,
and thus belongs to Sr

d(△). It is also easy to see that

supp gj = Tj−1 ∪ Tj ∪ Tj+1,

and by a property of locally linearly independent bases, see [CarP94] and
[DavSoS99],

gj =
∑

ν∈Ij

c[j]ν ψν , (11.19)

where Ij := {ν : suppψν ⊆ Tj−1 ∪ Tj ∪ Tj+1} for j = 1, 2, 3, 4. We now
define

g := rr
2
g1 + g2 + r−r

3
g3 + (r3r4)

−rg4.

The definition of barycentric coordinates implies that r1 r2 r3 r4 = 1. Using
this fact, it is easy to check that all of the coefficients of g are zero except
for

α1g = rr
2
, α2g = 1, α3g = r−r

3
, α4g = (r3r4)

−r.

For example, γ1g = rr
2
γ1g1+(r3r4)

−rγ1g4 = r1(−r
r
2
+(r1r3r4)

−r)/(rt1) = 0.
By (11.11) and Theorem 2.6, this immediately implies

‖g‖∞ ≤ K3,

where K3 depends only on d and the smallest angle θ△ in △. In view of
(11.19), we can write

g =
∑

ν∈I1∪I2∪I3∪I4

aνψν .

By the assumption that the basis B is stable, we have

‖a‖∞ ≤ K−1

1
‖g‖∞ ≤ K3/K1.
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For each ν, let B̃ν = ψν − I2r−1ψν , where I2r−1ψν ∈ Sr
2r−1

(△v) ⊆

Sr
d(△v) is the spline constructed in Lemma 11.4 which interpolates the

derivatives of ψν at v up to order 2r − 1. Then the B-coefficients of B̃ν

corresponding to domain points in the disk D2r−1(v) are zero. Moreover,
since the basis B is stable, it follows from Lemma 11.4 that the B-coefficients
of B̃ν corresponding to domain points on the ring R2r(v) are bounded in
absolute value by a constant K4 depending only on d and θ△.

Since all of the derivatives of g up to order 2r−1 at v are zero, I2r−1g =
0, and on △v we have

g =
∑

ν∈I1∪I2∪I3∪I4

aνB̃ν .

Since the support of B̃ν is a subset of the support of ψν on △v, it follows
that α2B̃ν 6= 0 only if ν lies in the set

Ĩ2 := {ν : suppψν = T1 ∪ T2 ∪ T3}.

This implies

1 = α2g =
∑

ν∈Ĩ2

aν α2B̃ν ≤ #Ĩ2 ‖a‖∞ max
ν∈Ĩ2

|α2B̃ν |.

Clearly, #Ĩ2 ≤ 3
(
d+2

2

)
, and hence there exists ν0 ∈ Ĩ2 such that

|α2B̃ν0
| ≥ K5 > 0,

where K5 depends only on d and θ△.
Now consider the following Cr smoothness condition across the edge

e2:

α1B̃ν0
= rr

2
α2B̃ν0

+ rrr−1

2
t2γ2B̃ν0

+

r−1∑

k=1

(
r

r − k − 1

)
rr−k−1

2
tk+1

2
η2,kB̃ν0

,

where η2,k is a linear functional which picks off the B-coefficient corre-

sponding to ξTi

d−2r,r+k+1,r−k−1
for k = 1, . . . , r − 1. Since α1B̃ν0

= 0, this
implies

|γ2B̃ν0
| +

1

r

r−1∑

k=1

(
r

r − k − 1

) ∣∣∣∣
t2

r2

∣∣∣∣
k

|η2,kB̃ν0
| ≥

∣∣∣∣
r2

t2

∣∣∣∣
K5

r
,

which is unbounded as t2 → 0. On the other hand, since the B-coefficients
γ2B̃ν0

, η2,kB̃ν0
, k = 1, . . . , r − 1, correspond to domain points on the ring
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R2r(v), they cannot exceed K4 in absolute value, which leads to a contra-
diction and completes the proof.

The above proof also applies to the superspline spaces Sr,ρ
d (△) in (11.2)

whenever there exists a near-singular vertex v with ρv < 2r. On the other
hand, if d ≥ 4r+1 and ρv ≥ 2r for all vertices, then the basis corresponding
to the MDS constructed in Section 11.5 is both stable and locally linearly
independent.

11.8. Remarks

Remark 11.1. A collection {φi}
n
i=1

of splines forming a basis for a spline
space S on a triangulation △ is said to be a star-supported basis for S

provided that for each 1 ≤ i ≤ n, there is a vertex vi of △ such that the
support of φi is contained in star(vi). We showed in Chapters 6–8 that
for each of the macro-element spaces discussed there, the corresponding
M-basis and N -basis are both stable star-supported bases.

Remark 11.2. For d ≥ 3r + 2, the space Sr
d(△) and the superspline

subspaces S
r,ρ
d (△) have star-supported bases. This follows from the fact

that the minimal determining sets for these spaces constructed in Theo-
rems 9.15 and 9.17 are local in the sense of Definition 5.16 with a constant
ℓ = 1. However, these bases are not stable in general when d < 4r + 1.

Remark 11.3. We constructed stable local bases for Sr
d(△) and the su-

perspline subspaces S
r,ρ
d (△) in Theorem 11.12. However, these bases are

not star-supported in general. In the worst case they are star3-supported.
It can shown that for r ≤ 2, the basis is only star-supported, see [Dav02a].
In fact, the same holds for general r > 2 if d ≥ 3r + ⌊(r + 1)/2⌋ + 1.
Moreover, for d = 3r+ ⌊(r+ 1)/2⌋ the basis is also star2-supported. Thus,
star3-supported bases appear in the theorem only for r ≥ 5.

Remark 11.4. It was shown in [AlfS00] that whenever d < 3r + 2, the
spaces Sr

d(△) cannot have a star-supported basis. In particular, the space
S1

4
(△) does not have a star-supported basis. It is an open question whether

it has a starℓ-supported basis for some larger value of ℓ.

Remark 11.5. We know by the results of Section 5.7 that if spline space
defined on a triangulation △ has a stable local basis, then it approximates
smooth functions to order O(|△|d+1), where |△| is the mesh size of △.
However, by the results of Chapter 10, we know that for d ≤ 3r + 1 the
spaces Sr

d(△) have approximation power at most d. It follows that these
spaces cannot have a stable local basis. This includes both of the spaces
S1

3
(△) and S1

4
(△).
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Remark 11.6. Star-supported basis functions are also called vertex splines.
This terminology was introduced in [ChuL85]. Vertex splines were studied
further in [ChuH90a, ChuL90a, ChuL90b]. The idea is to construct enough
vertex splines to build a basis and an associated quasi-interpolant. It was
shown in [Boo89] that for arbitrary partitions and d ≥ 3r + 2, the space
Sr

d(△) has a basis of vertex splines.

Remark 11.7. A collection {φi}
n
i=1

of splines forming a basis for a spline
space S on a triangulation △ is said to be a minimally supported provided
that for each 1 ≤ i ≤ n, there is no spline in S with support on a proper sub-
set of the support of φi. Minimally supported bases were studied on type-I
and type-II partitions in [ChuH88, ChuH90c]. It was shown in [CarP94]
that any locally linearly independent basis is minimally supported.

Remark 11.8. The dimension of spline spaces on cells was determined
in [Sch79] without explicitly constructing a minimal determining set. The
first construction of minimal determining sets for such spline spaces was
carried out in [Sch88a], but without regard for stability. The stable minimal
determining sets for splines defined on cells described in Section 11.5 comes
from [DavS02].

Remark 11.9. In this chapter we have focused on the construction of
stable local bases for spline spaces defined on general triangulations. For
some results on type-I, type-II, and certain cross-cut triangulations, see
[ChuSW83a, ChuSW83b] and [ChuW82a–ChuW84c], respectively. Stabil-
ity, linear independence, local linear independence, and the question of
finding bases for spline spaces are also topics in the theory of box splines.

Remark 11.10. In this chapter we have discussed only bases for spline
spaces that are constructed from minimal determining sets. As shown in
Section 5.9, it is also possible to construct explicit stable local bases as-
sociated with nodal minimal determining sets. The basis constructed in
[MorS75] for the spline spaces S1

d (△) with d ≥ 5 are based on nodal func-
tionals, but are not stable. For a construction of stable bases based on
nodal functionals, see [DavS00b].

Remark 11.11. In Theorem 11.13 we showed that for d ≥ 3r+2, there are
triangulations such that no basis for Sr

d (△) is simultaneously stable and lo-
cally linearly independent. For a construction of special superspline spaces
with d ≥ 4r + 1 that have bases that are simultaneously stable and lo-
cally linearly independent, see [Dav02a]. There is an interesting connection
between spaces with locally linearly independent bases and certain almost

interpolation problems, see [DavSoS97a, DavSoS97b, DavSoS99].

Remark 11.12. In Theorem 10.10 we showed that the space Sr
d(△) has

full approximation power in all q-norms by showing that an especially con-
structed superspline subspace of Sr

d(△) has a stable local minimal deter-
mining set. For an alternative proof, we can apply Theorem 5.19 to the
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subspace S
r,µ
d (△) of Section 11.4, since as shown in Theorem 11.7 it also

has a stable local minimal determining set.

11.9. Historical Notes

Explicit local bases were constructed for the spaces S1

d (△) for all d ≥ 5
in [MorS75]. Local bases for Sr

d(△) with d ≥ 4r + 1 were described in
[AlfPS87a, AlfPS87b]. The bases given there are essentially the M-basis of
Theorem 5.20, where M is the minimal determining set M described in
[AlfS87]. These results were extended to Sr

d(△) for d ≥ 3r + 2 in [Hon91],
Local bases for the special superspline spaces Sr,ρ

d (△) with common super-
smoothness at all of the vertices, and with 2r ≤ ρ and 2ρ + 1 ≤ d, were
constructed in [Sch89]. The more general superspline spaces S

r,ρ
d (△) of

(11.2) with variable smoothness at the vertices were treated in [IbrS91] for
d ≥ 3r + 2.

The question of stability was not discussed in any of these papers,
although for certain special cases, e.g. r = 0 and for certain superspline
spaces with d ≥ 4r + 1, the bases are both stable and locally linearly
independent.

The first attempts to construct stable local bases in more general
settings seems to have been motivated by a desire to use them as tools
for establishing approximation results. In [ChuHoJ95] stable local bases
were described for the superspline space S

r,µ
d (△) for d ≥ 3r + 2, where

µ = r+ ⌊(r+1)/2⌋. Stable local bases for the superspline space S ⊂ Sr
d(△)

of (10.7) were constructed in [LaiS98] for d ≥ 3r + 2.
The first construction of stable local bases for general superspline

spaces and the full spline space Sr
d (△) for d ≥ 3r+2 was given in [DavS02],

which we have closely followed here. The key idea is to base the construc-
tion on a stable local minimal determining set. This idea goes back to
[DavS00b]. For more on the computation of stable local bases, including
spline spaces on nested triangulations, see [Dav01, Dav02a, Dav02b].

The idea of local linear independence plays an important role in several
parts of spline theory, including the theory of box splines and the theory of
shift-invariant spaces, see [BooH83b, DahM85c, Jia85]. None of the bases in
[AlfPS87a–AlfPS87c, Hon91, IbrS91] are locally linearly independent. Even
the stable bases constructed in [ChuHoJ95] and [LaiS98] are not locally
linearly independent, see [DavS00a].

Locally linearly independent bases for the spaces S1

d (△) for d ≥ 5 were
given in [Dav98]. For d ≥ 3r + 2, locally linearly independent bases for
Sr

d(△) and various superspline subspaces were constructed in [DavS00a].
The surprising results in Section 11.7 showing that no basis for Sr

d(△) can
be simultaneously stable and locally linearly independent is taken from
[DavS00b].



Bivariate Box Splines

Our aim in this chapter is to show how to construct analogs of the classical
univariate and tensor-product B-splines on type-I and type-II partitions,
and to give a glimpse into the general theory of box splines. We also discuss
certain classes of box-spline-like functions and their associated finite shift-
invariant spaces.

12.1. Type-I Box Splines

Throughout this section we suppose that △I is the uniform type-I trian-
gulation associated with a bi-infinite grid with grid lines at the integers.
This triangulation has vertices at all lattice points (i, j) in Z

2. We denote
points in the plane either by v or (x, y). We use the symbol µ for a multi-
index, i.e., µ = (i, j). Our aim is to construct splines B in Sr

d(△I) with the
following properties:

1) B has small support (the union of a few triangles).

2) B is positive in the interior of its support.

3) S := span {B(v − µ)}µ∈Z
2 contains polynomials of degree d.

4)
∑

µ∈Z
2 B(v − µ) ≡ 1, all v ∈ R

2.

5) The space S is capable of approximating smooth functions on compact
subsets of R

2.

To get started, let B111 be the classical Courant hat function with
support on the star of the vertex (1, 1). More precisely, let B111 be the
spline in S := S0

1
(△I) satisfying B111(1, 1) = 1 and B111(i, j) = 0 for

all other vertices of △I , see Figure 12.1. It is easy to see that B111 has
properties 1)–5).

To define higher degree box splines on △I , we need the notion of a
direction set. Let

e1 := (1, 0), e2 := (0, 1), e3 := (1, 1).

Given n ≥ 3, we call Xn := {v1, · · · , vn} a type-I direction set provided
v1, v2, v3 ∈ {e1, e2, e3} and Xn contains each of e1, e2, e3 at least once.
Without loss of generality, we may assume that vi = ei for i = 1, 2, 3.
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0 0

1
00

0 0

Fig. 12.1. The B-coefficients of B111.

Definition 12.1. Let Xn := {v1, . . . , vn} be a type-I direction set with
n > 3, and let Xi := {v1, . . . , vi} for i = 3, . . . , n. Then for 4 ≤ i ≤ n, we
define the associated type-I box splines B(v|Xi) recursively as

B(v|Xi) :=

∫
1

0

B(v − tvi|Xi−1) dt, (12.1)

where B(v|X3) is the box spline B111 defined above.

It follows from Theorem 12.6 below that the splines B(v|Xi) in Defini-
tion 12.1 do not depend on the order in which the directions appear in Xn.
We use the simplified notation Bjkl(v) for the type-I box spline B(v|Xn)
associated with a direction set Xn containing e1 a total of j times, e2 a
total of k times, and e3 a total of l times. Throughout this chapter we use
the two notations interchangeably. The following result is an immediate
consequence of (12.1).

Theorem 12.2. Let Xn be type-I direction set. Then the associated box
spline B(v|Xn) has support on the closure of the set

[Xn] :=
{ n∑

j=1

tjvj : 0 ≤ tj < 1, j = 1, · · · , n
}
.

Moreover, B(v|Xn) > 0 for all v in the interior of [Xn].

The set [Xn] appearing in Theorem 12.2 is called the affine cube associ-
ated with Xn. The supports of Bjkl for several choices of j, k, l are shown in
Figure 12.2. As an aid to establishing additional properties of box splines,
we now prove an elementary lemma on derivatives of box splines. Given
a nontrivial vector u = (u1, u2) ∈ R

2, let Du be the corresponding direc-
tional derivative, and let ∆u,∇u be the forward and backward difference
operators defined by ∆uf(·) := f(·+u)−f(·) and ∇uf(·) = f(·)−f(·−u).
In general, if Y ⊂ R

2 is a finite set of nonzero vectors, we write

DY :=
∏

u∈Y

Du, ∆Y :=
∏

u∈Y

∆u, ∇Y :=
∏

u∈Y

∇u.
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Fig. 12.2. The supports of B211, B221, B222, and B322.

Lemma 12.3. Let Xn be a type-I direction set with n ≥ 4. Then for any
4 ≤ j ≤ n,

Dvj
B(·|Xn) = ∇vj

B(·|Xn\{vj}) .

Proof: Let Xn−1 := Xn\{vj}. Then by definition,

Dvj
B(v|Xn) = Dvj

∫
1

0

B(v − tvj |Xn−1)dt

= −

∫
1

0

∂

∂t
B(v − tvj |Xn−1)dt

= −B(v − tvj |Xn−1)
∣∣∣
1

0

= ∇vj
B(v|Xn−1).

We are ready to describe the structural and smoothness properties of
type-I box splines.

Theorem 12.4. Let Xn be a type-I direction set, where e1, e2, e3 appear
j, k, l times, respectively, with j + k + l = n. Then Bjkl := B(·|Xn) ∈

Sr
n−2

(△I), where r := r(Xn) := min{j + l, j + k, k + l} − 2.

Proof: By definition B111 ∈ S0

1
(△I ), which proves the assertion for n = 3.

Now let Y := {v4, · · · , vn}. Then by Lemma 12.3,

DY B(v|Xn) = ∇Y B(v|Xn\Y ) = ∇Y B111(v).

This is a piecewise linear function defined on the partition △I , and it follows
that B(v|Xn) is a piecewise polynomial function of degree n−2 on the same
partition.

To check the smoothness of Bjkl on △I , let r := min{j + l, j + k, k +
l}− 2, and note that Dx = De1 = De3 −De2 and Dy = De2 = De3−e1 . For
any α ≤ j − 1, by Lemma 12.3,

Dα
xBjkl(v) = (∇e1)αBj−α,k,l(v).
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For j ≤ α ≤ r, we have

Dα
xBjkl(v) = (De1)j−1(De3 −De2)α−j+1Bjkl(v) =

α−j+1∑

ν=0

(
α− j + 1

ν

)

× (∇e1 )j−1(−∇e2)ν(∇e3)α−j+1−νB1,k−ν,l−(α−j+1−ν)(v).

Now B1,k−ν,l−α+j−1+ν is a continuous function since k−ν ≥ k−α+j−1 ≥

k + j − r − 1 ≥ 1 and l − (α − j + 1 − ν) ≥ l + j − α − 1 ≥ 1, and hence
Dα

xBjkl ∈ C(R2) for 0 ≤ α ≤ r.

Similarly, Dβ
yBjkl ∈ C(R2) for 0 ≤ β ≤ r. For α + β ≤ r, the above

arguments lead to

Dα
xD

β
yBjkl(v) =

α−j+1∑

ν=0

(
α− j + 1

ν

)
(∇e1 )j−1(−∇e2)ν+β

× (∇e3)α−j+1−νB1,k−ν−β,l+j−α−1+ν(v).

Since k−ν−β ≥ k−(α−j+1)−β = k+j−α−β−1 ≥ 1, Dα
xD

β
yBjkl ∈ C(R2)

for α+ β ≤ r, and we conclude that Bjkl ∈ Cr(R2).

This result shows that B111 ∈ S0

1
(△I), B221 ∈ S1

3
(△I), B222 ∈ S2

4
(△I),

B322 ∈ S2

5
(△I), B332 ∈ S3

6
(△I), and B333 ∈ S4

7
(△I). We next establish a

simple integral identity which will be used below to derive some additional
properties of box splines.

Theorem 12.5. For all f ∈ C(R2),

∫

R
2

B(v|Xn)f(v) dv =

∫

[0,1]n
f
( n∑

i=1

tivi

)
dt1 · · · dtn. (12.2)

Proof: We proceed by induction. For n = 3, it is easy to see that the
B-coefficients of De3B(·|X3) as a piecewise constant function are as shown
in Figure 12.3. In fact, in terms of the characteristic function χ[0,1]2 of
[0, 1]2 := [0, 1] × [0, 1], we have De3B(v|X3) = χ[0,1]2(v) − χ[0,1]2(v − e3).

Thus, for any f ∈ C1(R2), integration by parts gives

∫

R
2

B(v|X3)De3f(v) dv = −

∫

R
2

De3B(v|X3)f(v)dv

= −

∫

[0,1]2
f(v)dv +

∫

[0,1]2
f(v + e3)dv

=

∫

[0,1]3
Dtf(v + te3)dtdv

=

∫

[0,1]3
De3f(t1e

1 + t2e
2 + t3e

3)dt1dt2dt3.
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0

−1

−1

1

1

0

Fig. 12.3. The B-coefficients of De3B111.

Thus, (12.2) follows for n = 3. Now let n ≥ 4. Then using the definition of
B(·|Xn) and the induction hypothesis consecutively, we obtain

∫

R
2

B(v|Xn)f(v)dv =

∫

R
2

∫
1

0

B(v − tvn|v1, . . . , vn−1)f(v)dtdv

=

∫
1

0

∫

R
2

B(v|v1, · · · , vn−1)f(v + tvn)dvdt

=

∫
1

0

∫

[0,1]n−1

f
( n−1∑

i=1

tivi + tvn

)
dt1 · · ·dtn−1dt

=

∫

[0,1]n
f
( n∑

i=1

tivi

)
dt1 · · · dtn .

This gives (12.2) for f ∈ C1(R2). It also holds for all f ∈ C(R2) by the
fact that C1(R2) is dense in C(R2).

Inserting f(v) = exp(−iv · ω) with ω = (ω1, ω2) and i :=
√
−1 in

Theorem 12.5 leads immediately to the following theorem.

Theorem 12.6. The Fourier transform of B(·|Xn) is

B̂(·|Xn)(ω) =
n∏

j=1

1 − e−iω·vj

iω · vj

.

This formula for the Fourier transform of a type-I box spline is the
direct analog of a similar formula for univariate B-splines. Theorem 12.6
immediately implies that B(·|Xn) is independent of the order of the vectors
v1, · · · , vn in the direction set Xn. We can now prove the following Green’s

formula for box splines.

Theorem 12.7. Suppose n ≥ 3. Then, for any f ∈ C1(R2),

∫

R
2

B(v|Xn)Dvi
f(v)dv = −

∫

R
2

Dvi
B(v|Xn)f(v)dv, i = 1, . . . , n.
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Proof: Since Dvi
f ∈ C(R2), Theorem 12.5 implies

∫

R
2

B(v|Xn)Dvi
f(v)dv =

∫

[0,1]n
Dvi

f
( n∑

j=1

tjvj

)
dt1 · · · dtn.

Observing that

Dvi
f
( n∑

j=1

tjvj

)
=

∂

∂ti
f
( n∑

j=1

tjvj

)
,

we obtain

∫

[0,1]n
Dvi

f
( n∑

j=1

tjvj

)
dt1 · · ·dtn

=

∫

[0,1]n

∂

∂ti
f
( n∑

j=1

tjvj

)
dt1 · · · dtn

=

∫

[0,1]n−1

f
( n∑

j=1

tjvj

)∣∣∣
ti=1

ti=0

dt1 · · · dti−1dti+1 · · · dtn

=

∫

R
2

B(v|Xn\{vi})∆vi
f(v)dv

= −

∫

R
2

∇vi
B(v|Xn\{vi})f(v)dv

= −

∫

R
2

Dvi
B(v|Xn)f(v)dv

by Theorems 12.5 and 12.3.

We can now establish a Peano formula for box splines.

Theorem 12.8. For any f ∈ Cn(R2),

∆Xn
f(0, 0) =

∫

R
2

B(v|Xn)DXn
f(v)dv.

Proof: By Theorem 12.5,

∫

R
2

B(v|Xn)DXn
f(v)dv =

∫

[0,1]n

n∏

i=1

Dvi
f
( n∑

j=1

tjvj

)
dt1 · · ·dtn

=

∫

[0,1]n

n∏

i=1

∂

∂ti
f
( n∑

j=1

tjvj

)
dt1 · · · dtn

=

n∏

i=1

∆vi
f(0, 0) = ∆Xn

f(0, 0).
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We now describe the so-called refinement equation for box splines.

Theorem 12.9. There exists a finite sequence {aν}ν∈Z
2 such that

B(v|Xn) =
∑

ν∈Z
2

aνB(2v − ν|Xn). (12.3)

Proof: Using the Fourier transform of B(·|Xn) given in Theorem 12.6, we
have

B̂(·|Xn)(ω) =
n∏

j=1

1 + eiω·vj/2

2

1 − eiω·vj/2

iω·vj/2

=

n∏

j=1

1 + eiω·vj/2

2
B̂(·|Xn)(ω/2),

which is equivalent to (12.3).

We now show how to find the B-coefficients of an arbitrary type-I box
spline. This will be useful as a means for evaluating box splines, since
once we have the B-coefficients, we can apply the de Casteljau algorithm
of Section 2.5. We already gave the B-coefficients of B111 in Figure 12.1.
To compute the B-coefficients of Bjkl for higher degree type-I box splines,
we note that any vn in the direction set of Bjkl is one of the vectors e1, e2,
and e3. Thus, Dvn

B(v|Xn) restricted to any triangle of △I is a directional
derivative along one side of the triangle. In this case, the derivative can be
computed easily. Let

pn−2(v) :=
∑

i+j+k=n−2

cijkB
n−2

ijk (v)

be the restriction of B(·|Xn) to the triangle T0 with vertices (0,0), (1,0),
and (1,1), where Bn−2

ijk are the Bernstein basis polynomials of degree n− 2
with respect to T0. Then

De1pn−2(v) = (n− 2)
∑

i+j+k=n−3

(ci,j+1,k − ci+1,j,k)Bn−3

ijk (v),

De2pn−2(v) = (n− 2)
∑

i+j+k=n−3

(ci,j,k+1 − ci,j+1,k)Bn−3

ijk (v),

De3pn−2(v) = (n− 2)
∑

i+j+k=n−3

(ci,j,k+1 − ci+1,j,k)Bn−3

ijk (v).

On the other hand, by Theorem 12.3, Dvn
B(v|Xn) = ∆vn

B(v|Xn\{vn}).
Suppose that all B-coefficients of B(·|Xn\{vn}) are known. Then all B-
coefficients of ∆vn

B(·|Xn\{vn}) are also known. Hence, the B-coefficients
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a0,2 a0,3 a0,4 a0,5 a0,6

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

a4,0 a4,1 a4,2 a4,3 a4,4
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Fig. 12.4. The B-coefficients of B211.
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Fig. 12.5. The B-coefficients of De1B211.

of B(·|Xn) can be obtained by solving the first order difference equations
with the initial condition that the B-coefficients of the box spline on the
boundary of its support are zero. Thus, starting with the B-coefficients of
B111, we obtain the B-coefficients of B211. It follows that for any j, k, l ≥ 1,
all of the B-coefficients of the box spline Bjkl can be computed recursively.
We illustrate this computational procedure with an example.

Example 12.10. Let X4 := {e1, e1, e2, e3} and X3 := {e1, e2, e3}.

Discussion: In this case B(·|X4) = B211. The B-coefficients of De1B211 =
B(·|X3) − B(· − e1|X3) can be easily found from the B-coefficients of
B111(·) = B(·|X3). Suppose we denote the B-coefficients of B211 by aij

as in Figure 12.4, and those of De1B211 by bij as in Figure 12.5. The latter
must be equal to the B-coefficients of B(·|X3) −B(· − e1|X3), i.e.,

b01 = a12 − a11 = a03 − a02,

b02 = a04 − a03 = a14 − a13,

b03 = a06 − a05 = a16 − a15,

b10 = a21 − a20,

b11 = a22 − a21 = a32 − a31 = a23 − a22 = a13 − a12,
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b12 = a24 − a23 = a15 − a14 = a25 − a24 = a34 − a33,

b13 = a26 − a25,

b20 = a31 − a30 = a41 − a40,

b21 = a42 − a41 = a33 − a32,

b22 = a44 − a43 = a35 − a34.

By equating these B-coefficients and recalling the fact that B211 has the
support shown in Figure 12.4, we see that a0i = 0 for i = 1, . . . , 6, ai0 = 0
for i = 2, 3, 4, a11 = a4i = 0, for i = 1, 2, 3, 4, and a16 = a26 = a35 = 0.
But then we can immediately compute all of the remaining coefficients aij

as shown in Figure 12.6.

The same procedure can be used to find the B-coefficients for the box
splines B221 and B222, see Figure 12.7.
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Fig. 12.6. The B-coefficients of 2B211.
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Fig. 12.7. Coefficients of the box splines 6B221 and 24B222.

We can now give a formula for the inner product of two box splines.
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Theorem 12.11. For any j, k, l ≥ 1 and µ, ν, κ ≥ 1,∫

R
2

Bjkl Bνµκ dv = Bj+ν,k+µ,l+κ (j + l, k + l).

Proof: By Parseval’s identity, and the inverse Fourier transform,

∫

R
2

Bjkl Bνµκdv =
1

(2π)2

∫

R
2

B̂jkl(ω)B̂νµκ(ω)dω

=
1

(2π)2

∫

R
2

B̂j+ν,k+µ,l+κ(ω)e−iω·(j+l,k+l) dω

= Bj+ν,k+µ,l+κ(j + l, k + l).

As an example of Theorem 12.11, we note that

∫

R
2

B111(x, y)B111(x, y)dxdy = B222(2, 2) =
1

2
.

12.2. Type-II Box Splines

Throughout this section we suppose that △II is the uniform type-II triangu-
lation associated with a bi-infinite grid with grid lines at the integers. This
triangulation has vertices at all lattice points of the form (i/2, j/2). On
this triangulation, our basic building block will be the C1 quadratic spline
B1111 with support and B-coefficients as shown in Figure 12.8, where the
vertex at the lower left corner is at (0,0). This spline belongs to S1

2
(△II).
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Fig. 12.8. Coefficients of 16B1111.
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Now suppose Xn := {v1, . . . , vn}, where vi ∈ {e1, e2, e3, e4} and e4 :=
(−1, 1) for n ≥ 4. Without loss of generality we may assume vi = ei for
i = 1, 2, 3, 4. We call Xn a type-II direction set. We have the following
analog of Definition 12.1, where B(v|X4) = B1111.

Definition 12.12. Let Xn := {v1, . . . , vn} be a type-II direction set with
n > 4, and let Xi := {v1, . . . , vi} for i = 4, . . . , n. Then we define the
associated type-II box splines B(v|Xi) recursively as

B(v|Xi) :=

∫
1

0

B(v − tvi|Xi−1) dt, i = 5, . . . , n. (12.4)

We write Bjklm for this spline, where j, k, l,m are the number of times that
Xn contains e1, e2, e3, e4, respectively.

We now show that the type-II box splines have similar properties to
the type-I box splines treated in the previous section. It follows directly
from the definition that type-II box splines have support on the affine cube
[Xn] defined in Theorem 12.2, and are positive on the interior of [Xn].
Moreover, if Xn is a type-II direction set with n ≥ 5, then the derivative
formula of Lemma 12.3 holds. This leads immediately to the following
analog of Theorem 12.4.

Theorem 12.13. Let Xn be a type-II direction set where e1, e2, e3, e4

appear j, k, l,m times, respectively, with j+k+ l+m = n. Then B(·|Xn) ∈
Sr

n−2
(△I), where r := r(Xn) := min{j+l+m, k+l+m, j+k+l, j+k+m}−2.

Proof: By definition, B(·|X4) ≡ B1111 ∈ S1

2
(△II). Let Y := {v5, . . . , vn}.

Then by Lemma 12.3,

DYB(v|Xn) = ∇Y B(v|Xn\Y ) = ∇Y B(v|v1, v2, v3, v4).

This is a piecewise linear function defined on the partition △II , and it
follows that B(v|Xn) is a piecewise polynomial function of degree n− 2 on
the same partition. The smoothness follows as in the proof of Theorem 12.4.

We now give the analog of Theorem 12.5 for type-II box splines.

Theorem 12.14. For all f ∈ C(R2),

∫

R
2

B(v|Xn)f(v)dv =

∫

[0,1]n
f
( n∑

i=1

tivi

)
dt1 · · · dtn. (12.5)

Proof: We can write

De4De3B(v|X4) = χ[0,1]2(v) − χ[0,1]2(v − e3) − χ[0,1]2(v − e4)

+ χ[0,1]2(v − e3 + e4).
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Fig. 12.9. The B-coefficients of 4De4B1111 and 4De3De4B1111.

This gives the B-coefficients of De4B(v|X4) and De3De4B(v|X4) shown in
Figure 12.9. Now for any f ∈ C2(R2),
∫

R
2

B(v|X4)De4De3f(v) dv

=

∫

R
2

De4De3B(v|X4)f(v) dv

=

∫

[0,1]2
f(v) dv −

∫

[0,1]2
f(v + e3) dv −

∫

[0,1]2
f(v + e4) dv

+

∫

[0,1]2
f(v + e3 + e4) dv

=

∫

[0,1]3
De3f(v + te3) dt dv −

∫

[0,1]3
De3f(v + te3 + e4)dtdv

=

∫

[0,1]4
De4De3f(v + te3 + se4)dsdtdv

=

∫

[0,1]4
De4De3f(t1e

1 + t2e
2 + t3e

3 + t4e
4) dt1dt2 dt3 dt4.

This establishes (12.5) for n = 4 for all f ∈ C2(R2). The result then follows
for all f ∈ C(R2) by denseness. The proof for n > 4 follows by induction.

Theorem 12.14 implies immediately that Theorem 12.6 on the Fourier
transform also holds for type-II box splines. It then follows that the splines
B(v|Xi) in Definition 12.12 do not depend on the order in which the direc-
tions appear in Xn. This justifies our use of the notation Bjklm for the box
spline corresponding to the direction set Xn containing e1, e2, e3, e4 a total
of j, k, l,m times, respectively.
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Fig. 12.10. The supports of B2111, B2211, B2221, and B2222.
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Fig. 12.11. Coefficients of the box spline 48B2111.

It follows from the above theorem that B1111 ∈ S1

2
(△II), B2111 ∈

S1

3
(△II), B2211 ∈ S2

4
(△II), B2221 ∈ S3

5
(△II), and B2222 ∈ S4

6
(△II). The

supports of some of these type-II box splines are shown in Figure 12.10.

It is straightforward to establish the analogs of Theorems 12.7, 12.8,
12.9, and 12.11 giving a Green’s formula, a Peano formula, a refinement
equation, and a formula for inner products of type-II box splines. We
conclude this section by pointing out that the B-coefficients of type-II box
splines can also be computed recursively along the same lines as was done
for type-I box splines. For an example, see Figure 12.11.



12.3. Box Splines Series 347

12.3. Box Spline Series

In this section we discuss box spline series, i.e., series of the form

s(·) :=
∑

j∈Z
2

cjB(· − j|Xn).

Let
S(Xn) :=

{ ∑

j∈Z
2

cjB(· − j|Xn) : cj ∈ R, all j ∈ Z
2
}
.

Clearly, S(Xn) is a linear space of splines, but is not finite dimensional.
In this and the following sections, we explore various questions related to
the space S(Xn), including whether {B(· − j|Xn)}j∈Z

2 is a basis, which
polynomials lie in S(Xn), and how well the scaled versions of S(Xn) can
approximate smooth functions.

Theorem 12.15. Suppose Xn is either a type-I or type-II direction set.
Then the corresponding box splines form a partition of unity on R

2, i.e.,∑
j∈Z

2 B(· − j|Xn) ≡ 1.

Proof: We first consider type-I box splines. For n = 3, the result follows
from the definition. We now proceed by induction. Assume the result is
true for n ≥ 3. Then by the definition of the box splines,

∑

j∈Z
2

B(· − j|Xn+1) =
∑

j∈Z
2

∫
1

0

B(· − tv(n+1) − j|Xn)dt

=

∫
1

0

∑

j∈Z
2

B(· − tv(n+1) − j|Xn)dt

=

∫
1

0

dt = 1,

where Xn := Xn+1 \ {vn+1}. The proof is similar for type-II box splines.

For type-II box splines, we have the following related result.

Theorem 12.16. Let Xn be a type-II direction set. Then

∑

(j1,j2)∈Z
2

B(· − j1e
3 − j2e

4|Xn) =
1

2
. (12.6)

Proof: Note that R
2 is the essentially disjoint union of the sets

{(t1 − j1)e
3 + (t2 − j2)e

4 : 0 < t1, t2 ≤ 1}, (j1, j2) ∈ Z
2.
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For any f ∈ C(R2) with compact support,

∫

R
2

∑

j∈Z
2

B(v − j1e
3 − j2e

4|Xn)f(v)dv

=
∑

j∈Z
2

∫

R
2

B(v − j1e
3 − j2e

4|Xn)f(v)dv

=
∑

j∈Z
2

∫

R
2

B(v|Xn)f(v + j1e
3 + j2e

4)dv

=
∑

j∈Z
2

∫

[0,1]n
f
( n∑

i=1

tivi + j1e
3 + j2e

4

)
dt1 · · · dtn

=

∫

[0,1]n−2

∫

R
2

f
( n∑

i=1

i6=3,i6=4

tivi + λ1e
3 + λ2e

4

)
dλ1 dλ2 d̂t,

where d̂t is obtained from dt1 · · · dtn by dropping dt3 and dt4. The change
of variables λ = (λ1, λ2) 7→ λ1e

3 + λ2e
4 leads to

∫

[0,1]n−2

∫

R
2

1

2
f
( n∑

i=1

i6=3,i6=4

tivi + v
)
dx dy d̂t

=
1

2

∫

[0,1]n−2

∫

R
2

f(v) dx dy d̂t

=
1

2

∫

R
2

f(v) dv,

which implies (12.6).

We say that the shifted box splines {B(· − ν|Xn)}ν∈Z
2 are linearly

independent if ∑

ν∈Z
2

aνB(v − ν|Xn) ≡ 0, all v ∈ R
2

implies that aν = 0 for all ν ∈ Z
2.

Theorem 12.17. If
∑

ν∈Z
2 aνB(· − ν|Xn) ≡ 0 with

∑
ν∈Z

2 |aν | < ∞,

then aν = 0, all ν ∈ Z
2.

Proof: Suppose

φ :=
∑

ν∈Z
2

aνB(· − ν|Xn) ≡ 0.
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Then clearly the Fourier transform of φ is also zero. By assumption,∑
ν∈Z

2 |aν | <∞, and so we can interchange the integration and summation
to get

0 =

∫

R
2

∑

ν∈Z
2

aνB(· − ν|Xn) exp(−iv · ω) dv

=
∑

ν∈Z
2

aν

∫

R
2

B(v − ν|Xn) exp(−iv · ω) dv

=
∑

ν∈Z
2

aν exp(−i(ν · ω))B̂(·|Xn)(ω).

Hence, ∑

ν∈Z
2

aν exp(−iν · ω)) = 0, all ω ∈ R
2,

which implies that aν = 0 for all ν ∈ Z
2.

Theorem 12.18. Suppose that
∑

ν∈Z
2 aνB(· − ν|Xn) ≡ 0, where aν =

p(ν) for some bivariate polynomial p. Then aν = 0, for all ν ∈ Z
2.

Proof: Given p, there exists an integer M such that p is of one sign, say
p(v) > 0, for all ‖v‖2 ≥M and (x, y) in the first quadrant. But then for v
large enough, say, ‖v‖ ≥M + n/2,

0 =
∑

ν∈Z
2

p(ν)B(v − ν|Xn) > 0,

since B(v − ν|Xn) ≥ 0 and at least one of the terms is positive. This
contradiction implies that p ≡ 0, and thus aν = 0 for all ν ∈ Z

2.

We now show that the integer translates of type-I box splines are lin-
early independent.

Theorem 12.19. Let Xn be a type-I direction set. Then the correspond-
ing box splines {B(· − ν|Xn)}ν∈Z

2 are linearly independent.

Proof: We use induction on the cardinality of Xn. If n = 3, it is clear that
the box splines B(·−ν|X3) are linearly independent. Thus, we now assume
that the result holds for all direction sets Xℓ with ℓ < n, and show that it
holds for Xn. To show that {B(· − ν|Xn)}ν∈Z

2 are linearly independent,
we need to show that

∑

ν∈Z
2

aνB(· − ν|Xn) ≡ 0

implies aν = 0 for all ν ∈ Z
2. Let j, k, l be the number of times e1, e2, e3

appear in Xn, respectively, where j + k + l = n. There are two cases.
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Case 1: At least two indices are bigger than 1, say j, k > 1. Then by
Lemma 12.3,

0 = Dei

∑

ν∈Z
2

aνB(· − ν|Xn)

=
∑

ν∈Z
2

aν∇eiB(· − ν|Xn\{e
i})

=
∑

ν∈Z
2

(aν+ei − aν)B(· − ν + ei|Xn\{e
i}), i = 1, 2.

But then the inductive hypothesis implies that aν+ei −aν = 0 for all ν ∈ Z
2

and i = 1, 2.

Case 2: Only one of the indices is bigger than 1, say k > 1. As above this
implies aν+e2 − aν = 0 for all ν ∈ Z

2. For any f in the space C1

0
(R2) of

compactly supported continuously differentiable functions,

0 =

∫

R
2

∂

∂x
f(v)

∑

ν∈Z
2

aνB(v − ν|Xn) dv

=

∫

R
2

∑

ν∈Z
2

aν

∂

∂x
f(v)B(v − ν|Xn) dv

=
∑

ν∈Z
2

aν

∫

[0,1]n

∂

∂x
f
( n∑

i=1

tivi − ν
)
dt1 · · ·dtn

=

∫

[0,1]n−1

∑

ν∈Z
2

aν

[
f
( n∑

i=2

tivi + e1 − ν
)
− f

( n∑

i=2

tivi − ν
)]
dt2 · · · dtn

=

∫

[0,1]n−1

∑

ν∈Z
2

(aν+e1 − aν)f
( n∑

i=2

tivi − ν
)
dt2 · · · dtn

=
∑

ν∈Z
2

(aν+e1 − aν)

∫

[0,1]n−1

f
( n∑

i=2

tivi − ν
)
dt2 · · · dtn.

It follows that ae1+ν − aν = 0, for all ν ∈ Z
2. We have shown that aei+ν −

aν = 0 for all ν ∈ Z
2 for i = 1, 2 in either case. This implies that aν are

equal to a constant c. But then

0 =
∑

ν∈Z
2

aνB(· − ν|Xn) = c
∑

ν∈Z
2

B(· − ν|Xn) = c,

by Theorem 12.15, and we conclude that c = 0.

The following theorem shows that the integer translates of a type-I box
spline B(·|Xn) form a stable basis for S(Xn).
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Theorem 12.20. Let a := {aν}ν∈Z
2 be a bounded sequence. Then

A‖a‖∞ ≤
∥∥ ∑

ν∈Z
2

aνB(·|Xn)
∥∥
∞

≤ ‖a‖∞,

where ‖a‖∞ = maxν∈Z
2 |aν |.

Proof: The second inequality follows immediately from Theorem 12.15.
To prove the first inequality, we assume the contrary. Let am := {am

ν }ν∈Z
2

be uniformly bounded sequences such that ‖am
ν ‖∞ = 1 and

∥∥ ∑

ν∈Z
2

am
ν B(·|Xn)

∥∥
∞

−→ 0,

as m → ∞. The boundedness of the sequence implies that there is a sub-
sequence that converges to some a0 = {a0

ν}ν∈Z
2 . It follows that ‖a0‖∞ = 1

and ∥∥ ∑

ν∈Z
2

a0

νB(·|Xn)
∥∥
∞

= 0.

This contradicts the linear independence of {B(· − ν|Xn)}ν∈Z
2 .

The situation is different for type-II box splines. Coupling Theo-
rems 12.15 and 12.16 with the definition of linear independence, we im-
mediately get the following negative result.

Theorem 12.21. Let Xn be a type-II direction set. Then the correspond-
ing box splines {B(· − ν|Xn)}ν∈Z

2 are linearly dependent.

Proof: Since
∑

ν∈Z
2

B(· − ν|Xn) ≡ 1 ≡
∑

ν∈Z
2

2B(· − j1e
3 − j2e

4|Xn),

it follows that there exist coefficients aν which are either 1 or −2 such that
∑

ν∈Z
2

aνB(v − ν|Xn) ≡ 0.

12.4. The Strang–Fix Conditions

Throughout this section we suppose that φ is a compactly supported con-
tinuous function defined on R

2. For instance, φ could be one of the box
splines discussed above, or it could be a finite linear combination of such
box splines. Here we are interested in the space

S(φ) :=
{
s(φ)(v) :=

∑

ν∈Z
2

aνφ(v − ν) : aν ∈ R

}
.

In the literature this is a called a principal shift-invariant space. To explore its
properties, we recall the following well-known Poisson summation formula.
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Theorem 12.22. Let φ be a compactly supported function in C(R2), and
suppose its Fourier transform φ̂ is in L1(R

2). Then

∑

ν∈Z
2

φ(ν) =
∑

ν∈Z
2

φ̂(2πν). (12.7)

Proof: Let
ψ(v) =

∑

ν∈Z
2

φ(v + ν).

Then ψ(v) is a well-defined continuous function which is 1-periodic in both
variables. The Fourier coefficients of ψ are

∫

[0,1]2
ψ(v) exp(−2iπv · ν)dv

=
∑

µ∈Z
2

∫

[0,1]2+µ

φ(v) exp(−2iπv · ν)dv

=

∫

R
2

φ(v) exp(−2iπv · ν)dv = φ̂(2πν), all ν ∈ Z
2.

Hence, by the hypothesis on φ, it belongs to L2[0, 1]2 and

ψ(v) =
∑

ν∈Z
2

φ̂(2πν) exp(−2iπv · ν).

Setting v = (0, 0) gives (12.7).

As an application, we now apply (12.7) to the functions uαφ(v − u)
and (v − u)αφ(u), where u, v ∈ R

2 and α = (α1, α2) ∈ Z
2

+.

Theorem 12.23. Let φ be a continuous function of compact support on
R

2 whose Fourier transform φ̂ belongs to L1(R
2). Then for any α ∈ Z

2

+,

∑

ν∈Z
2

ναφ(v − ν) =
∑

ν∈Z
2

(−iDu)α(exp(iv · u) φ̂(u))
∣∣
u=2πν

(12.8)

and
∑

ν∈Z
2

(v − ν)αφ(ν) =
∑

ν∈Z
2

exp(−iv · ν)(−iDu)α(exp(iv · u) φ̂(u))
∣∣
u=2πν

(12.9)
for all u ∈ R

2. Here Du is the directional derivative associated with u.

It is obvious that for all v ∈ Z
2, the equations (12.8) and (12.9) agree,

being simply the discrete convolution (or convolution over Z
2) of {φ(ν)}
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with {να}. However, it is also clear that they are usually different if v 6∈ Z
2.

This leads us to the following definition.

Definition 12.24. The commutator of a compactly supported continuous
function φ on R

2 is the operator on C(R2) defined by

[φ|f ](v) =
∑

ν∈Z
2

φ(v − ν)f(ν) −
∑

ν∈Z
2

f(v − ν)φ(ν), all f ∈ C(R2).

Throughout the following we write P for the space of all bivariate
polynomials, i.e., P :=

⋃∞
k=0

Pk. Suppose that f ∈ P . Then [φ|f ] ≡ 0 on
R

2 implies that

∑

ν∈Z
2

φ(v − ν)f(ν) =
∑

ν∈Z
2

f(v − ν)φ(ν),

where the right-hand side is a polynomial, and the left-hand side is a linear
combination of the translates of φ over Z

2. The notion of commutator helps
us understand which polynomials lie in S(φ). We say that φ is normalized

provided that
∑

ν∈Z
2

φ(ν) = 1.

Theorem 12.25. Let φ be a normalized continuous function of compact
support. Then

P ∩ S(φ) = {f ∈ P : [φ|f ] ≡ 0} =
{
f ∈ P :

∑

ν∈Z
2

f(ν)φ(u − ν) ∈ P
}
.

Proof: [φ|f ] ≡ 0 and f ∈ P imply that
∑

ν∈Z
2 f(ν)φ(u−ν) ∈ P . Moreover,∫

f ∈ P and
∑

ν∈Z
f(ν)φ(u−ν) ∈ P imply that [φ|f ] ≡ 0, since [φ|f ](ν) = 0

for all ν ∈ Z
2. Clearly, {f ∈ P : [φ|f ] ≡ 0} ⊂ P ∩S(φ). On the other hand,

for f(·) =
∑

ν∈Z
2 cνφ(· − ν) in S(φ),

∑

ν∈Z
2

φ(u − ν)f(ν) =
∑

ν∈Z
2

∑

µ∈Z
2

cµφ(ν − µ)φ(u − ν)

=
∑

ν∈Z
2

φ(u − ν)
∑

µ∈Z
2

cν−µφ(µ)

=
∑

µ∈Z
2

( ∑

ν∈Z
2

φ(u − ν − µ)cν
)
φ(µ)

=
∑

ν∈Z
2

f(u− ν)φ(ν).

It follows that [φ|f ] ≡ 0 for any f ∈ S(φ), and thus P ∩ S(φ) ⊂ {f ∈ P :
[φ|f ] ≡ 0}.
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We now explore some additional properties of the commutator of φ.
In the sequel we use the following notation for monomials:

mα(v) :=
1

α1 ! α2 !
xα1 yα2 , α = (α1, α2) ∈ Z

2

+
. (12.10)

Theorem 12.26. Let φ be a continuous function of compact support with
φ̂ ∈ L1(R

2). Suppose α ∈ Z
2

+. Then

[φ|mα](v) =
∑

ν∈Z
2

[ ∑

0≤β≤α

(−i)|β|mα−β(v)
Dβ

β !
φ̂(2πν)

]
(exp(i2πv · ν) − 1),

(12.11)
for any v ∈ R

2. Furthermore,

[φ|mγ ](v) = 0, all v ∈ R
2
, γ ≤ α, (12.12)

if and only if

Dγ φ̂(2πν) = 0 all ν ∈ Z
2
\{(0, 0)}, γ ≤ α. (12.13)

Proof: The identity (12.11) follows immediately from Theorem 12.23.
That (12.13) implies (12.12) is trivial. To show the converse, we use math-
ematical induction on α. Indeed, since

[φ|m0](v) = [φ|1](v) =
∑

µ∈Z
2\{(0,0)}

φ̂(2πµ)(exp(i2π(µ · v) − 1),

we conclude that [φ|m0] ≡ 0 implies φ̂(2πj) = 0 for all j ∈ Z
2
\{(0, 0)}.

Suppose that (12.12) holds. Then, by the induction hypothesis, we have

Dγφ̂(2πν) = 0, ν ∈ Z
2
\{(0, 0)},

for all γ ≤ α and γ 6= α. Thus, (12.11) gives

∑

ν∈Z
2\{(0,0)}

Dαφ̂(2πν)(exp(i2πν · u) − 1),

or Dαφ̂(2πν) = 0, for all ν ∈ Z
2
\{(0, 0)}.

Definition 12.27. A compactly supported function φ ∈ C(R2) with φ̂ in
L1(R

2) is said to satisfy the Strang–Fix conditions with SF index α ∈ Z
2

+
if

1) φ̂(0, 0) = 1,

2) Dγ φ̂(2πν) = 0, all ν ∈ Z
2
\{(0, 0)} and γ ≤ α.

The collection Λφ of all SF indices of φ is called the SF indicator set of φ.
The largest integer n for which α ∈ Λφ whenever |α| ≤ n is called the SF

degree of φ.
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Using Theorem 12.6, we can directly compute the SF index set for
type-I and type-II box splines.

Example 12.28. The SF indicator set of the box spline Bjkl contains the
indices

(j + l − i, i− 1), 1 ≤ i ≤ min{k, j + l},

(i− 1, k + l − i), 1 ≤ i ≤ min{j, k + l}.

In particular, for B221, the SF indicator set is {(2, 0), (1, 1), (0, 2)}. Thus,
the SF degree is two.

Example 12.29. The SF indicator set of the box spline Bjklm contains
the indices

(j + l +m− i, i− 1), 1 ≤ i ≤ min{k, j + l +m},

(i− 1, k + l +m− i), 1 ≤ i ≤ min{k, k + l +m},

(k + α− i, l+ i), 0 ≤ i ≤ k + α,

(k + i, l+ α− i), 0 ≤ i ≤ l + α,

where α := min{l,m, l+m− k, l+m− j} − 1.

Motivated by the above two examples, we now state the general result.

Theorem 12.30. Let Xn be either a type-I or a type-II direction set.
Then the SF degree of the corresponding box spline B(·|Xn) is r(Xn) + 1,
where r(Xn) is the smoothness of B(·|Xn) as in Theorems 12.4 and 12.13,
respectively.

We conclude this section by giving the SF indicator sets for some linear
combinations of type-I and type-II box splines.

Example 12.31. The SF indicator set of φ := (Bl,l,l+1+Bl,l+1,l+Bl+1,l,l−

Bl,l,l)/2 contains the indices {(i, j) : i+ j ≤ 2l}.

Example 12.32. The SF indicator set of φ := (Bl+1,l,l,l + Bl,l+1,l,l +
Bl,l,l+1,l +Bl,l,l,l+1 −Bl,l,l,l)/3 contains the indices {(i, j) : i+ j ≤ 3l}.

12.5. Polynomial Reproducing Formulae

Suppose that µ is a bounded linear functional on C(R2) with µ(m0) = 1,
where, in general, mα denotes the monomial of coordinate degree α ∈ Z

2

+

as defined in (12.10). Then we define a sequence {gα :=
∑

γ≤α aγmγ(v)}
of polynomials by

µ(Dβgα) = δα,β, (12.14)
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where δα,β denotes the Kronecker delta for all α, β ∈ Z
2

+
. A sequence

satisfying (12.14) is called an Appell sequence. We note that

µ(Dβgα) =
∑

γ≤α

aγµ(mγ−β), (12.15)

with mγ−β = 0 if γ − β 6∈ Z
2

+
. Thus, the matrix [µ(mγ−β)]γ≤α;β≤α in the

system (12.14) is upper triangular and has unit diagonal elements, so that
gα is uniquely determined by (12.14). The following identity can be easily
verified by induction.

Lemma 12.33. For α ∈ Z
2

+
,

gα(v) = mα(v) −
∑

β≤α

β 6=α

µ(mα−β)gβ(v)

is an Appell sequence satisfying (12.14). Since g0(v) = m0(v) = 1, equation
(12.15) provides an inductive scheme to compute gα(v).

Fix a compactly supported continuous function φ which is normalized,
e.g., a box spline B(·|Xn). Now we consider the bounded linear functional
µ defined on C(R2) by

µ(f) :=
∑

ν∈Z
2

f(−ν)φ(ν).

Theorem 12.34. Set L0(v) = 1, and define Lβ(v) inductively by

Lβ(v) := mβ(v) −
∑

j∈Z
2

φ(j)
∑

γ≤β

γ 6=β

(−j)β−γ

(β − γ) !
Lγ(v), (12.16)

for β ∈ Z
2

+
. Then

mα(v) =
∑

ν∈Z
2

Lα(ν)φ(v − ν), all v ∈ R
2 and α ∈ Λφ.

Proof: With L0(v) = 1 we may rewrite

Lβ(v) = mβ(v) −
∑

γ≤β

γ 6=β

µ(mβ−γ)Lγ(v)

in terms of the bounded linear functional µ defined above. Hence, {Lβ} is
an Appell sequence by Lemma 12.33. Note that for α ∈ Λφ,

∑

ν∈Z
2

Lα(ν)φ(v − ν) =
∑

ν∈Z
2

Lα(v − ν)φ(ν),
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and
Dβ

∑

ν∈Z
2

Lα(v − ν)φ(ν)
∣∣
v=0

=
∑

ν∈Z
2

DβLα(v − ν)
∣∣
v=0

φ(ν)

=
∑

ν∈Z
2

DβLα(−ν)φ(ν)

= µ(DβLα) = δα,β,

for β ∈ Z
2

+
. We conclude that

∑

ν∈Z
2

Lα(v − ν)φ(ν) = mα(v),

since the polynomial
∑

ν∈Z
2

Lα(v − ν)φ(ν) satisfies

Dβ
∑

ν∈Z
2

Lα(v − ν)φ(ν)
∣∣
v=0

= δα,β .

The function Lβ defined above has the following properties.

Theorem 12.35. Let β ∈ Z
2

+
. Then

DγLβ(v) = Lβ−γ(v), all γ ≤ β, (12.17)

and
Lβ(v) =

∑

γ≤β

Lβ−γ(0, 0)mγ(v), all v ∈ R
2. (12.18)

Proof: We first prove (12.17) by induction. For γ = 0 there is nothing to
prove. For γ ≥ 0, the induction hypothesis yields

DγLβ(v) = mβ−γ(v) −
∑

ν∈Z
2

φ(ν)
∑

α≤β

α 6=β

(−ν)β−α

(β − α) !
Lα−γ(v)

= mβ−γ(v) −
∑

ν∈Z
2

φ(ν)
∑

α≤β−γ
α 6=β−γ

(−ν)β−γ−α

(β − γ − α) !
Lα(v) = Lβ−γ(v)

by a change of indices. This proves the first formula. Using (12.17), we see
that the formula (12.18) is simply the Taylor expansion of Lβ at (0, 0).

Theorem 12.36. Lβ can be written as

Lβ(v) = mβ(v) −
∑

γ≤β

β 6=γ

(−iD)β−γ φ̂(0, 0)

(β − γ) !
Lγ(v), all β ∈ Λφ. (12.19)
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Proof: Using the Poisson summation formula, we have

∑

ν∈Z
2

φ(ν)(−ν)β−γ =
∑

ν∈Z
2

(−iD)β−γ(φ̂(u)
∣∣
2πν

.

By the definition of the SF indicator set Λφ, we conclude that

∑

ν∈Z
2

φ(ν)(−ν)β−γ = (−iD)β−γ φ̂(0, 0), all β ∈ Λφ.

Thus, Lβ can be written as in (12.19).

We are now ready to prove a bivariate analog of the univariate Marsden

identity, see [Sch81].

Theorem 12.37. Let φ be a normalized function of compact support in
C(R2) with φ̂ ∈ L1(R

2). Then for any α ∈ Λφ,

mα(v − u) =
∑

ν∈Z
2

Lα(ν − u)φ(v − ν), all v, u ∈ R
2. (12.20)

Proof: To prove this result, we appeal to Lemma 12.33 and consider the
derivative of order β with respect to u. This gives

Dβ
u

[
mα(v − u) −

∑

ν∈Z
2

Lα(ν − u)φ(v − ν)
]

= (−1)β
[
mα−β(v − u) −

∑

ν∈Z
2

Lα−β(ν − u)φ(v − ν)
]

by Theorem 12.35. Now the result follows by induction. Indeed, by the
induction hypothesis, the above expression is zero, and hence

mα(v − u) −
∑

j∈Z
2

Lα(j − u)φ(v − j)

is independent of u. Since it is zero at u = (0, 0), (12.20) follows from
Theorem 12.34.
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Example 12.38. Let B221 be a type-I box spline. Then

1 =
∑

(i,j)∈Z
2

B221(x − i, y − j),

x =
∑

(i,j)∈Z
2

(
i+

3

2

)
B221(x− i, y − j),

y =
∑

(i,j)∈Z
2

(
j +

3

2

)
B221(x − i, y − j),

x2 =
∑

(i,j)∈Z
2

(i+ 1)(i+ 2)B221(x− i, y − j),

xy =
∑

(i,j)∈Z
2

((
i+

3

2

)(
j +

3

2

)
−

1

12

)
B221(x− i, y − j),

y2 =
∑

(i,j)∈Z
2

(j + 1)(j + 2)B221(x− i, y − j).

Example 12.39. Let B1111 be a type-II box spline. Then

1 =
∑

(i,j)∈Z
2

B1111(x− i, y − j),

x =
∑

(i,j)∈Z
2

iB1111(x− i, y − j),

y =
∑

(i,j)∈Z
2

jB1111(x− i, y − j),

x2 =
∑

(i,j)∈Z
2

(
i−

1

2

)(
i+

1

2

)
B1111(x− i, y − j),

xy =
∑

(i,j)∈Z
2

ijB1111(x− i, y − j),

y2 =
∑

(i,j)∈Z
2

(
j −

1

2

)(
j +

1

2

)
B1111(x− i, y − j).

12.6. Box Spline Quasi-interpolants

Suppose S(φ) is as defined in a previous section. For any h > 0, the scaling

operator σh is defined by

(σhf)(v) := f
( v
h

)
, all f on R

2. (12.21)
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Set
Sh(φ) := {σhf : f ∈ S(φ)}.

Fix a domain Ω ⊂ R
2. We say that S(φ) has approximation power m if m

is the largest integer for which

d(f,S(φ)) := inf{‖f − s‖∞,Ω, s ∈ Sh(φ)} = O(hm)

for all sufficiently smooth functions f . In this section we prove that the
approximation power of S(φ) is determined by the Strang–Fix degree of φ.
In addition, we construct a spline quasi-interpolant to achieve this order.

We need some more notation and two lemmas. Let Γ be a finite lower
subset of Z

2

+
(see page 31), and let PΓ be the space of polynomials of the

form
p(v) =

∑

α∈Γ

bαv
α.

Lemma 12.40. The linear system

∑

ν∈Γ

aνν
β = β ! Lβ(0, 0), β ∈ Γ, (12.22)

has a unique solution {aν}ν∈Γ, where Lβ are the polynomials defined in
Theorem 12.34.

Proof: We first consider the case that the set Γ has a unique largest index,
say (m,n) in the lexicographical order on Γ. Then PΓ is a polynomial space
of coordinate degree less than or equal to (m,n). It is easy to see that in
this case (12.22) has a unique solution over the grid of interpolation sites
ν ∈ Γ.

Next we consider the case where PΓ is a polynomial space of total
degree d. Then the interpolation sites Γ satisfy the conditions of Theo-
rem 1.10, and it follows that the linear system (12.22) is invertible.

Finally we consider the general case. For simplicity, assume that Γ
contains two largest indices, say (m1, n1) and (m2, n2) with m1 ≥ n1 and
m2 < n2. Suppose Γ = Γ1∪Γ2, where Γ1 = {(i, j), 0 ≤ i ≤ m1, 0 ≤ j ≤ n1}

and Γ2 = {(i, j), 0 ≤ i ≤ m2, 0 ≤ j ≤ n2}. Let Γ3 = Γ1 ∩ Γ2. Then
Γ3 = {(i, j), 0 ≤ i ≤ m2, 0 ≤ j ≤ n1}. We divide the given interpolation
values {β ! Lβ(0, 0)}β∈Γ into three subsets Fi = {β ! Lβ(0, 0) : β ∈ Γi}, for
i = 1, 2, 3. Let p3 ∈ PΓ3

be such that p3(β) = β ! Lβ(0, 0) for β ∈ Γ3. Let
p1 ∈ PΓ1

, p2 ∈ PΓ2
be such that

p1(β) =

{
β ! Lβ(0, 0) − p3(β), if β ∈ Γ1\Γ3,

0, if β ∈ Γ3,

and

p2(β) =

{
β ! Lβ(0, 0) − p3(β), if β ∈ Γ2\Γ3,

0, if β ∈ Γ3.
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By the above discussion, there exist unique such p1, p2, p3. It is clear that
p = p1 + p2 + p3 ∈ PΓ. Then noting that p1(β) = 0 for all β ∈ Γ2 and
p2(β) = 0 for all β ∈ Γ1, it is easy to check that p satisfies the interpolation
conditions p(β) = β ! Lβ(0, 0) for all β ∈ Γ. That is, for any given inter-
polation values, we can find an interpolation polynomial p in this way. It
follows that such a p is unique.

Lemma 12.41. Let {aν}ν∈Γ be the solution of (12.22). Then for any
µ ∈ Z

2, ∑

ν∈Γ

aν(µ+ ν)β = β ! Lβ(µ), β ∈ Γ. (12.23)

Proof: For any µ ∈ Z
2

+,

∑

ν∈Γ

aν(µ+ν)β =
∑

γ≤β

(
β

γ

)
µγ

∑

ν∈Γ

aνν
β−γ =

∑

γ≤β

β !

γ !
µγLβ−γ(0, 0) = β !Lβ(µ),

by Theorem 12.35.

We now use Lemma 12.41 to establish the following result.

Theorem 12.42. Let φ be a compactly supported continuous function on
R

2 satisfying φ̂ ∈ L1(R
2) and φ̂(0, 0) = 1. Let Γ := Λφ be its Strang–Fix

indicator set. Then there exists a compactly supported function ψ ∈ S(φ)
such that

mα(v) =
∑

ν∈Z
2

mα(ν)ψ(v − ν), all α ∈ Γ.

Proof: With {aν} defined as in (12.22), let

ψ(v) :=
∑

µ∈Γ

aµφ(v + µ).

Then by Theorem 12.34 and (12.23), we have

mα(v) =
∑

ν∈Z
2

Lα(ν)φ(v − ν)

=
∑

ν∈Z
2

∑

µ∈Γ

aµmα(µ+ ν)φ(v − ν)

=
∑

µ∈Γ

aµ

∑

ν∈Z
2

mα(µ+ ν)φ(v − ν)

=
∑

ν∈Z
2

mα(ν)
∑

µ∈Γ

aµφ(v − ν + µ)

=
∑

ν∈Z
2

mα(ν)ψ(v − ν).
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With {aν} as in (12.22), for g ∈ C(R2) we now define

λµ(g) :=
∑

ν∈Γ

aνg(µ+ ν),

for any integer µ ∈ Z
2. This defines a sequence of linear functionals on

C(R2). If g = σh−1(f), then

λµ(σh−1f) =
∑

ν∈Γ

aνf(h(µ+ ν)).

We now define the following quasi-interpolation operator:

Qh
Γ
f(v) :=

∑

ν∈Z
2

λν(σh−1f) φ(v/h− ν).

Theorem 12.43. Let φ be a compactly supported continuous function on
R

2 satisfying φ̂ ∈ L1(R
2) and φ̂(0, 0) = 1. Let Γ := Λφ be its Strang–Fix

indicator set. Then Qh
Γ
p = p for all p ∈ PΓ.

Proof: Fix β ∈ Γ. Applying Theorem 12.34 and Lemma 12.41, we get

Qh
Γ
mβ(v) =

∑

µ∈Z
2

1

β !

∑

ν∈Γ

aν(µ+ ν)βh|β| φ(v/h− µ)

= h|β|
∑

µ∈Z
2

Lβ(µ)φ(v/h− µ)

= h|β|mβ(v/h) = mβ(v).

Now let
Γ̂ =

⋃

α∈Γ

{β : β ≤ α+ e1} ∪ {β : β ≤ α+ e2},

where e1 and e2 are the unit vectors defining the x and y-axes in R
2.

Theorem 12.44. Let Γ be the SF indicator set of φ. Then there exists a
constant K such that for all sufficiently smooth f ,

‖Qh
Γ
f − f‖∞,Ω ≤ K h|β|

∑

β∈Γ̂\Γ

‖Dβf‖∞,Ω. (12.24)

In particular, ‖Qh
Γ
f−f‖∞,Ω = O(hm+1), where m is the Strang–Fix degree

of φ.

Proof: Fix v ∈ Ω. The Taylor expansion of f at v is

f(u) =
∑

β∈Γ

Dβf(v)mβ(u− v) +
∑

β∈Γ̂\Γ

Dβf(v∗β)mβ(u − v),
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where v∗β are points between v and u. Then by Theorem 12.43,

Qh
Γ
f(v) = f(v) +

∑

β∈Γ̂\Γ

Qh
Γ

[
Dβf(v∗β)mβ(· − v)

]

= f(v) +
∑

β∈Γ̂\Γ

∑

µ∈Z
2

λµ

[
σh−1Dβf(v∗β)mβ(· − v)

]
φ(v/h− µ).

From the definition of λµ, we know that these linear functionals are bounded
by a constant independent of µ. Since φ is compactly supported, we con-
clude that there exists a positive constant K such that (12.24) holds.

12.7. Half Box Splines

In this section we study a different class of box splines defined on type-II
triangulations. Let L2200 and L̃0022 be the splines in S0

1
(△II) whose B-

coefficients are given in Figure 12.12. These splines are normalized so that
L2200(0.5, 0.5) = 1 and L̃0022(0, 0) = 1. It is easy to see that

∑

ν∈Z
2

[
L2200(v − ν) + L̃0022(v − ν)

]
≡ 1,

∑

(i,j)∈Z
2

[(
i+

1

2

)
L2200(v − (i, j)) + iL̃0022(v − (i, j))

]
≡ x,

∑

(i,j)∈Z
2

[(
j +

1

2

)
L2200(v − (i, j)) + jL̃0022(v − (i, j))

]
≡ y.

Thus, taken together, the shifts of L2200 and L̃0022 form a partition of unity.
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Fig. 12.12. The B-coefficients of L2200 and L̃0022.
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We identify the spline L2200 with the direction set {e1, e1, e2, e2}. Sim-
ilarly, we identify L̃0022 with the direction set {e3, e3, e4, e4}. Now given
a type-II direction set Xn with n > 4 containing {e1, e1, e2, e2}, we define
higher-degree half box splines recursively as

L(v|Xi) =

∫
1

0

L(v − tvi|Xi−1) dt.

Given a type-II direction set Xn with n > 4 containing {e3, e3, e4, e4}, we
define

L̃(v|Xi) :=

∫
1

0

L̃(v − tvi|Xi−1) dt.

Suppose Xn contains the directions e1, e2, e3, e4 a total of j, k, l,m times
with j, k ≥ 2. Then we write Ljklm(v) := L(v|Xn). Similarly, if l,m ≥ 2, we

write L̃jklm(v) := L̃(v|Xn). It follows from the definitions that Ljklm > 0
for v in the interior of [Xn∪{e

1, e2}], and vanishes outside of [Xn∪{e
1, e2}].

Similarly, L̃jklm > 0 for v in the interior of [Xn ∪ {e3, e4}], and vanishes
outside.

The following result is proved in the same way as Lemma 12.3. A
similar result holds for L̃(·|Xn).

Lemma 12.45. For any 1 ≤ j ≤ n, Dvj
L(·|Xn) = ∇vj

L(·|Xn\{vj}).

We now identify the structure of half box splines.

Theorem 12.46. The splines Ljklm and L̃jklm are in Sr
n−3

(△II ), where
n = j + k+ l+m and r := r(Xn) = min{j+ l+m, j + k+ l, j+ k+m, k+
l +m} − 2.

Proof: Let Yn := Xn \ {e1, e1, e2, e2}. Then Lemma 12.45 implies that

DYn
L(v|Xn) = ∇Y L(v|Xn\Yn) = ∇Yn

L2200,

which is a piecewise linear function. It follows that L(v|Xn) is a piecewise
polynomial function of degree n−3. The proof of smoothness follows along
the same lines as the proof of Theorem 12.4. The proofs for L̃(v|Xn) are
similar.

The following result is the analog of Theorem 12.14.

Theorem 12.47. For all f ∈ C(R2),

∫

R
2

L(v|Xn)f(v)dv =

∫

[0,1]n
F

( n∑

i=1

tivi

)
dt1 · · ·dtn, (12.25)
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where F (u) :=

∫

R
2

L2200(v + u)f(v) dv. Similarly,

∫

R
2

L̃(v|Xn)f(v) dv =

∫

[0,1]n
G

( n∑

i=1

tivi

)
dt1 · · ·dtn,

where G(u) :=

∫

R
2

L̃0022(v + u)f(v) dv.

Proof: We proceed by induction. First consider L(·|Xn). Using the defi-
nition of L(·|Xn) and the induction hypothesis, we have

∫

R
2

L(v|Xn)f(v)dv =

∫

R
2

∫
1

0

L(v − tvn|v1, . . . , vn−1)f(v) dt dv

=

∫ 1

0

∫

[0,1]n−1

F
( n−1∑

i=1

tivi + tvn

)
dt1 · · · dtn−1dt

=

∫

[0,1]n
F

( n∑

i=1

tivi

)
dt1 · · ·dtn .

The proof for L̃(·|Xn) is similar.

Inserting f(v) = exp(−iv · ω) with ω = (ω1, ω2) in Theorem 12.47, we
get the following formulae for the Fourier transform.

Theorem 12.48. The Fourier transform of L(·|Xn) is

L̂(·|Xn)(ω) =
n∏

j=1

1 − e−iω·vj

iω · vj

L̂2200(ω),

where L̂2200(ω) denotes the Fourier transform of L2200. A similar formula
holds for the Fourier transform of L̃(v|Xn).

We now give a refinement equation for half box splines.

Theorem 12.49. There exists a finite sequence of 2× 2 matrices Aν with
[
L(v|Xn)

L̃(v|Xn)

]
=

∑

ν∈Z
2

Aν

[
L(2v − ν|Xn)

L̃(2v − ν|Xn)

]
. (12.26)

Proof: Using the Fourier transform of L(·|Xn) given in Theorem 12.48,
we have

L̂(·|Xn)(ω) =

n∏

j=1

1 + eiω·vj/2

2

1 − eiω·vj/2

ivj/2
L̂2200(ω)

=

n∏

j=1

1 + eiω·vj/2

2
L̂(·|Xn)(ω/2)

L̂2200(ω)

L̂2200(ω/2)
,
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with a similar formula for the Fourier transform of L̃. It is easy to see that

[
L2200(v)

L̃0022(v)

]
=

∑

ν∈Z
2

Cν

[
L2200(2v − ν)

L̃0022(2v − ν)

]

for some 2 × 2 coefficient matrices Cν . Indeed,

L2200(v) =
1

2
L2200(2v) +

1

2
L2200(2v − e1) +

1

2
L2200(2v − e2)

+
1

2
L2200(2v − e1 − e2) + L̃0022(2v − e1 − e2),

L̃0022(v) =
1

2
L̃0022(2v − e1) +

1

2
L̃0022(2v − e2) +

1

2
L̃0022(2v + e1)

+
1

2
L̃0022(2v + e2) +

1

2
L2200(2v) +

1

2
L0022(2v + e1)

+
1

2
L0022(2v + e2) +

1

2
L0022(2v + e1 + e2).

Taking the Fourier transform of the above relations, we see that

L̂2200(ω)

L̂2200(ω/2)
,

̂̃
L0022(ω)

̂̃
L0022(ω/2)

are Laurent trigonometric polynomials, and (12.26) follows.

The B-coefficients of Ljklm and L̃jklm can be computed in the same way
as was done for the type-I and type-II box splines discussed in Sections 12.1
and 12.2. We have shown above that the integer translates of both L2200

and L̃0022 taken together can generate constants and linear polynomials.
This suggests that we should study finite shift-invariant spaces.

12.8. Finite Shift-invarant Spaces

Let Φ := {φ1, . . . , φm} be a finite set of functions in C(R2). Suppose that
φ1, . . . , φm are normalized so that

m∑

i=1

∑

ν∈Z
2

φi(v + ν) ≡ 1, all v ∈ R
2.

Let
S(Φ) := span

L2(R
2
)
{φ1(· − ν), . . . , φm(· − ν)}ν∈Z

2

be the linear span of integer translates of the functions in Φ. Then S(Φ) is
called the finite shift-invariant space associated with Φ. We say that the set
Φ is linearly independent if the periodic functions

{∑
ν∈Z

2 φi(·+ ν)
}m

i=1
are

linearly independent.
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Theorem 12.50. Suppose that Φ := {φ1, . . . , φm} is a collection of com-
pactly supported functions. Then Φ is linearly independent if and only if
the sequences {φ̂ i(2πν)}ν∈Z

2 , for i = 1, . . . ,m, are linearly independent,

where φ̂ i denotes the Fourier transform of φi.

Proof: Suppose there are real numbers c1, . . . , cm such that

F (·) :=
m∑

i=1

ci
∑

ν∈Z
2

φi(· + ν) ≡ 0.

Note that F (·) is 1-periodic in both variables. Thus, the Fourier coefficients
of F are all zero, i.e.,

m∑

i=1

ciφ̂ i(2πν) = 0, all ν ∈ Z
2.

It follows that the linear dependence of Φ implies the linear dependence of
the sequences {φ̂ i(2πν)}ν∈Z

2 . The converse is also true.

Theorem 12.51. Let Φ = {φ1, . . . , φm} be a collection of compactly sup-
ported functions in L1(R

2). Then the following two statements are equiv-
alent:

1) Φ is linearly independent,

2)
∑

ν∈Z
2

∑m

k=1
φk(v−ν) qk(ν) ≡ 0 for the polynomials q1, . . . , qm ∈ S(Φ)

implies that q1 = · · · = qm = 0.

Proof: Statement 2) implies 1) by the definition of the linear independence
of Φ. To prove 1) implies 2), we use induction on the degree of the poly-
nomials. Suppose that S(Φ) contains all polynomials of degree ≤ d. When
qk are constants, the linear independence of Φ implies 2) immediately. As-
sume that 1) implies 2) when qk are polynomials of degree n < d. For qk
of degree n+ 1, we have

∑

ν∈Z
2

m∑

k=1

φk(v − ν)qk(ν) ≡
∑

ν∈Z
2

m∑

k=1

φk(v − ν + e1)qk(ν) ≡ 0.

It follows that
∑

ν∈Z
2

m∑

k=1

φk(v − ν)∇e1qk(ν) = 0.

Since ∇e1qk are of degree n, we use the induction hypothesis to get ∇e1qk =
0 for all k = 1, · · · ,m. Similarly, ∇e2qk = 0 for all k = 1, . . . ,m, and it
follows that qk are constants. But then the linear independence of Φ implies
that qk must be zero, and we have 2).
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Example 12.52. The set {L2200, L̃0022} is linearly independent. However,
for any j ≥ 1 and k ≥ 1, {Ljklm, L̃jklm} is linearly dependent. Indeed, by

Theorem 12.48, L̂jklm(2πν) = 0 and ̂̃
Ljkl,m(2πν) = 0 for all ν ∈ Z

2\{0}.

Clearly, the two sequences {L̂j,klm(2πν)}ν∈Z
2 and {

̂̃
Ljkl,m(2πν)}ν∈Z

2 are

linearly dependent. By Theorem 12.50, {Ljklm, L̃jklm} is linearly depen-

dent. Similarly, {B221, B212, B122} is linearly dependent.

Next we discuss the characterization of polynomials lying in S(Φ).

Theorem 12.53. Suppose that Φ := {φ1, . . . , φm} where φi are compactly
supported functions. If there exist a finite linear combination ψ of integer
translates of φ1, . . . , φm such that

Dνψ̂(2βπ) = δ0,ν δ0,β , β ∈ Z
2 and |ν| ≤ d, (12.27)

then S(Φ) contains the monomials mα(v) for all |α| ≤ d. On the other
hand, if S(Φ) contains all monomials mα(v) for |α| ≤ d and Φ is linearly
independent, then there exists a ψ which is a finite linear combination of
integer translates of φ1, · · · , φm satisfying (12.27).

Proof: Suppose that there exists ψ ∈ S(Φ) satisfying (12.27). Then ψ̂(ξ) =
B(ξ)Φ̂(ξ) for a 1 ×m vector B(ξ) of trigonometric functions. Let

ψν :=
1

ν !
(−iD)νB(0)Φ,

for |ν| ≤ d. Then by the Leibniz formula,

δ0,ν δ0,β =
1

ν !
Dν(B Φ̂)(2πβ)

=
∑

µ≤ν

(−iD)ν−µB(0)

(ν − µ) !

(−iD)µ Φ̂(2πβ)

µ !

=
∑

µ≤ν

(−iD)µ ψ̂ν−µ(2πβ)

µ !

=
∑

µ≤ν

∫

R
2

1

µ !
(−v)µ ψν−µ(v) e−i2πβ·vdv

=

∫

[0,1]2

∑

µ≤ν

∑

α∈Z
2

1

µ !
(α− v)µ ψν−µ(v − α) e−i2πβ·vdv .

It follows that

∑

µ≤ν

∑

α∈Z
2

1

µ !
(α− v)µψν−µ(v − α) = δ0,ν ,
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which is equivalent to

vν

ν !
=

∑

µ≤ν

∑

α∈Z
2

αµ

µ !
ψν−µ(v − α).

Thus, the span of Φ contains the monomials mν(v) for all |ν| ≤ d.
Suppose that S(Φ) contains polynomials Pd of degree d. For a mono-

mial mα, there exist polynomial coefficients ck,α such that

mα(v) =
∑

ν∈Z
2

m∑

k=1

φk(v − ν) ck,α(ν), (12.28)

for |α| ≤ d. For v ∈ Z
2, we have

mα(v) =
∑

ν∈Z
2

m∑

k=1

φk(ν) ck,α(v − ν).

Since both sides are polynomials and agree on all integers, the above equa-
tion is true for all v ∈ R

2. For any β ≤ α, there exist coefficients, which we
denote by Dβck,α(v − ν), such that

mα−β(v) = Dβmα(v) =
∑

ν∈Z
2

m∑

k=1

φk(ν)Dβck,α(v − ν).

By Theorem 12.51, the linear independence of Φ implies that Dβck,α =
ck,α−β . As in Section 12.6, we solve the linear systems

∑

|β|≤d

ak,ββ
α = β ! ck,α(0, 0), all |α| ≤ d.

As in the proof of Lemma 12.41, we have

ck,α(ν) =
∑

|β|≤d

ak,β

1

α !
(ν + β)α,

and hence by (12.28),

mα(v) =
m∑

k=1

∑

ν∈Z
2

φk(v − ν)
∑

|β|≤d

ak,β

1

α !
(ν + β)α

=
∑

ν∈Z
2

1

α
(ν)α

m∑

k=1

∑

|β|≤d

ak,β φk(v − ν + β). (12.29)
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Letting

ψ(v) :=

m∑

k=1

∑

|β|≤d

ak,βφk(v + β)

and noting that mα(v) = vα/α ! , (12.29) becomes

mα(v) =
∑

ν∈Z
2

mα(ν)ψ(v − ν), (12.30)

for all |α| ≤ d. This leads to the desired conclusion

Dβψ̂(2πν) = δ0,β δ0,ν , all ν ∈ Z
2 and |β| ≤ d.

Indeed, multiplying both sides of (12.30) by γ ! mγ−α(u) and summing over
α ≤ γ, we have

mγ(v + u) =
∑

ν∈Z
2

mγ(ν + u)ψ(v − ν),

for |γ| ≤ d. Letting u = −v, we have

δ0,γ =
∑

ν∈Z
2

mγ(ν − v)ψ(v − ν).

Multiplying both sides by e−2iπv·β , and integrating over [0, 1]2, we get

δ0,γ δ0,β =

∫

R
2

mγ(−v)ψ(v)e−2iπv·βdv = (−iD)γψ̂(2πβ).

Equation (12.30) leads to the following result.

Corollary 12.54. Suppose that there exists a ψ ∈ S(Φ) satisfying (12.27).
If Φ is linearly independent, then

p(v) =
∑

ν∈Z
2

p(ν)ψ(v − ν),

for any polynomial p ∈ Pd.

We now study the approximation power of S(Φ). Let G be a closed
domain in R

2, and let

d(f,S(Φ))q := inf
g∈S(Φ)

||f − g||q,G.

For h > 0, let σh be the scaling operator defined in (12.21), and let Sh(Φ) :=
{σh(f), f ∈ S(Φ)}. We say that S(Φ) has approximation power k with
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respect to the q-norm provided that for any sufficiently smooth function
f ∈ Lq(R

2),
d(f, Sh(Φ))q ≤ Khk, all h > 0,

where K is a constant independent of h.
For simplicity, suppose supp(ψ) ⊂ [0, 1]2 and ψ ≥ 0. Without loss of

generality, we may assume that ψ is normalized so that
∫

R
2

ψ(v)dv = 1.

For h > 0, let ψh(v) := ψ(v/h)/h2. Recall that ∇u denotes the backward
difference operator defined by

∇uf(v) = f(v) − f(v − u).

We define ∇k
u = ∇u∇

k−1

u for all positive integers k. For a given function
f ∈ Lp(R

2), let

fh(v) :=

∫

R
2

(f −∇k
uf)(v)ψh(u)du.

It is easy to see that if ψ ∈ Ck(R2), so is fh. Indeed,

∇k
uf(v) =

k∑

i=0

(−1)i

(
k

i

)
f(v − i u),

implies
∫

R
2

f(v − i u)ψh(u)du =
1

i2

∫

R
2

f(u)ψh(v − u/i)du.

It follows that fh ∈ Ck(R2).

Lemma 12.55. Fix 1 ≤ q ≤ ∞. Then for any domain Ω,

‖fh‖∞,Ω ≤ K h−2/q‖f‖q,Bkh(Ω).

where Bkh(Ω) := {x ∈ R
2 : d(x,Ω) ≤ kh}, andK is a constant independent

of f .

Proof: Let q̃ be such that 1/q + 1/q̃ = 1. Then by Hölder’s inequality,
∣∣∣
∫

R
2

f(v − i u)ψh(u)du
∣∣∣

≤

( ∫

[0,1]2h

|f(v − i u)|qdu
)1/q( ∫

[0,1]2h

|ψh(u)|q̃du
)1/q̃

≤ ‖f‖q,Bkh(v)h
−2/q

(∫

[0,1]2
ψ(u)q̃du

)1/q̃

≤ ‖f‖q,Bkh(Ω)Ch
−2/q,
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where K1 :=
( ∫

[0,1]2
ψ(u)q̃du

)1/q̃
. It follows that

‖fh‖∞,Ω ≤ K1

k∑

i=1

(
k

i

)
‖f‖q,Bkh(Ω)h

−2/q ≤ Kh−2/q‖f‖q,Bkh(Ω).

Lemma 12.56. Let Ω be any domain in R
2, and suppose k ≥ 1. Then

there exists a constantK depending only on k such that for any f ∈W k
q (Ω),

|f − fh|j,q,Ω ≤ K hk−j |f |k,q,Bkh(Ω), (12.31)

for all 0 ≤ j ≤ k.

Proof: First we assume that f ∈ Ck
0 (R2), and estimate ‖Dα(f − fh)‖q,Ω

for α ∈ Z
2

+
and |α| ≤ k. Since

f(v) − fh(v) =

∫

R
2

∇k
uf(v)ψh(u)du,

we have

Dα(f − fh)(v) =

∫

R
2

∇k
uD

αf(v)ψh(u)du.

For all j ≥ 1, Peano’s theorem for the backward different operator ∇ gives

∇jg(v) =

∫ j

0

Djg(v − t)Bj(t)dt, all g ∈ Ck(R),

where Bj(t) is the j-th order univariate B-spline, see [Boo78, Sch81]. Thus,

∇k
uD

αf(v) = ∇j
u∇

k−j
u Dαf(v) =

∫ k−j

0

∇j
uD

k−j
t Dαf(v − tu)Bk−j(t)dt.

Hence, for j = |α|,

Dα(f − fh)(v) =

∫

R
2

∫ k−j

0

∇j
uD

k−j
t Dαf(v − tu)Bk−j(t)du.

By the generalized Minkowski inequality,

‖Dα(f − fh)‖Lq(Ω)

≤

∫

R
2

∫ k−j

0

‖∇j
uD

k−j
t Dαf(· − tu)‖q,ΩB

k−j(t)ψh(u)dtdu

≤ K1

∫

R
2

∫ k−j

0

|u|k−j |f |k,q,Bkh(Ω)B
k−j(t)ψh(u)dtdu

≤ K2h
k−j |f |k,q,Bkh(Ω),
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where we have used the facts that Bk−j(t) ≥ 0 and
∫ k−j

0

Bk−j(t)dt = 1.

Here K1 and K2 are two positive constants. Since Ck
0
(R2)∩W k

q (Ω) is dense

in W k
q (R2) for all 1 ≤ q < ∞, we have established (12.31) for this range

of q. For q = ∞, we note that with g = Dα(f − fh), ‖g‖q,Ω converges to
‖g‖∞,Ω as q → ∞.

We are now ready to prove the main result in this section.

Theorem 12.57. Suppose that Φ is linearly independent, and that Φ con-
tains a finite linear combination ψ of integer translates of φ1, · · · , φm satis-
fying (12.27) for some integer d. Then for any f ∈W d+1

q (R2),

‖f − Sh‖q,R2 ≤ K hd+1 |f |d+1,q,R2,

where Sh(v) :=
∑

ν∈Z
2 fh(hν)ψ(v/h− ν).

Proof: By Lemma 12.56, we it suffices to prove that

‖fh − Sh‖q,R2 ≤ K1 h
d+1|f |d+1,q,R2 .

For each integer ν ∈ Z
2, let Gν,h := (ν + [0, 1]2)h. For v ∈ Gν,h, let Tf

be the Taylor expansion of fh of degree d at v. Since S(Φ) reproduces
polynomials of degree d by Corollary 12.54, we have

Tf(u) =
∑

α∈Z
2

Tf(hα)ψ(u/h− α), all u ∈ Z
2
,

and hence

fh(v) − Sh(v) = Tf (v) − Sh(v)

=
∑

α∈Z
2

(Tf (hα) − fh(hα))ψ(v/h − α)

=
∑

α∈Z
2

(Tf (hν + hα) − fh(hν + hα))ψ(v/h− ν − α).

Since v/h− ν ∈ [0, 1]2 and ψ is of compact support,

|ψ(v/h− ν − α)| ≤ C(1 + |α|)−d−6, α ∈ Z
2
.

By the formula for the remainder of the Taylor expansion,

Tf (hν + hα) − fh(hν + hα) = −
1

d !

∫
1

0

Dd+1

hν+hα−vfh(ξα,t),

where ξα,t := (1 − t)v + t(hν + hα). It is easy to see that

|Dk+1

hν+hα−vfh(ξα,t)| ≤ hd+1(1 + |α|)d+1

∫
1

0

Fh(ξα,t)dt,
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where Fh(ξα,t) :=
∑

|β|=k+1

|Dβfh(ξα,t)|. Thus, for v ∈ Gν,h,

|fh(v) − Sh(v)| ≤ K1 h
d+1

∑

α∈Z
2

(1 + |α|)−5

∫
1

0

Fh(ξα,t)dt.

Let q̃ be such that 1/q + 1/q̃ = 1. By Hölder’s inequality, the right-hand
side of this inequality gives

( ∑

α∈Z
2

(1 + |α|)−5

)1/q̃( ∑

α∈Z
2

(1 + |α|)−5

∫
1

0

(Fh(ξα,t))
qdt

)1/q

.

It follows that

‖fh − Sh‖
q
q =

∑

ν∈Z
2

∫

Gν,h

|fh(v) − Sh(v)|qdx

≤ K
q
2
h(d+1)q

∑

α∈Z
2

(1 + |α|)−5
∑

ν∈Z
2

∫

Gν,h

∫
1

0

(
Fh(ξα,t)

)q
dt dv.

To estimate these integrals, we divide [0, 1] into 1+ |α| subintervals of equal
length. Let

Ij :=
[ j

1 + |α|
,
j + 1

1 + |α|

]
, j = 0, . . . , 1 + |α|.

Note that for v ∈ Gν,h and t ∈ Ij ,

ξα,t = ((1 − t)v + thν) + thα ∈ Gν,h + αhIj ,

and ∫

Ij

|Fh(ξα,t)|
qdt ≤

1

1 + |α|
‖Fh‖

q
∞,Gν,h+αhIj

.

The arguments in the proof of Lemma 12.55 can be applied to the right-
hand side of the above inequality to give

‖Fh‖
q
∞,Gν,h+αhIj

≤ Kq h−2‖F‖
q

Bkh(Gν,h+αhIj )
.

It follows that

∑

ν∈Z
2

∫

Gν,h

∫
1

0

|Fh(ξα,t)|
q dt dx ≤

Kq

1 + |α|

1+|α|∑

j=0

∑

ν∈Z
2

‖F‖
q

q,Bkh(Gν,h+hαIj)

≤
Kq

1 + |α|

1+|α|∑

j=0

(2j + 5)2‖F‖q

q,R2 .

Then ‖fh − Sh‖q,R2 ≤ K1K2K hd+1|f |d+1,q,R2 follows from

‖F‖
q

q,R2 =

∫

R
2

∑

|β|=d+1

|Dβf(v)|qdv = |f |2
d+1,q,R2 .
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Example 12.58. The integer translates of L2200 and L̃0022 reproduce
linear polynomials and are linearly independent. By Theorem 12.57, the
approximation power of the finite shift-invariant space generated by L2200

and L̃0022 is two.

Example 12.59. The integer translates of B221, B122, B212 contain all
cubic polynomials, but are not linearly independent. The approximation
power of S(B221, B212, B122) is three. Thus, the condition of linear inde-
pendence is necessary in Theorem 12.57.

12.9. Remarks

Remark 12.1. For additional examples where the B-coefficients of box
splines have been worked out, see [Lai92b].

Remark 12.2. Since box splines are bivariate splines on triangulations,
we can associate a surface with any box spline series. Such surfaces have a
nice convex preserving property: if the given data {cj, j ∈ Z

2
} is convex in

the sense that the piecewise linear surface
∑

j∈Z
2 cjB111(v − j) is convex,

then
∑

j∈Z
2 cjB(v − j|Xn) is convex for any Xn which contains e1, e2, and

e3, see [DahM88].

Remark 12.3. In Theorem 12.19 we showed that shifted type-I box splines
are (globally) linearly independent. In fact, it can be shown that they are
also locally linearly independent in the following sense: for any open set A,
the shifted box splines

{B(· − ν|X) : supp(B(· − ν|X) ∩A 6= ∅}

are linearly independent. One proof of this fact uses arguments similar to
those in the proof of Theorem 12.19, see [Jia85] for details. Another proof
can be found in [DahM85c].

Remark 12.4. In this book we have focused on box splines associated with
either three or four directions since these lead to splines on type-I and type-
II partitions. Box splines can be constructed using an arbitrary number of
directions. If we add e5 := 2e1 +e2 and e6 := e1 +2e2 to the four directions
e1, e2, e3, e4 used in Section 12.2, we get splines defined on a six-direction
mesh. For example, if X6 := {ei}6

i=1
then B(·|X6) is a C3 spline of degree

four. Adding the directions e7 := −e1 + 2e2 and e8 := −2e1 + e2 leads to
box splines on an eight-direction mesh. For example, with X8 := {ei}8

i=1
,

the corresponding box spline B(·|X8) is a C5 spline of degree six.
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Remark 12.5. Our discussion of box splines can be generalized to the
multivariate setting. For example, we can replace the three direction vectors
e1 := (1, 0), e2 := (0, 1), e3 := (1, 1) in the plane by the four direction
vectors d1 := (1, 0, 0), d2 := (0, 1, 0), d3 := (0, 0, 1), d4 := (1, 1, 1) in R

3 to
define box splines in the trivariate setting. For more on multivariate box
splines, see the book [BooHR93].

Remark 12.6. We can also define a class of half-box splines for type-I
partitions by starting with the functions

H(v) :=

{
1, if v = (x, y) and 0 ≤ x ≤ y < 1,

0, otherwise,

and

H̃(v) :=

{
1, if v = (x, y) and 0 ≤ x < y < 1,

0, otherwise,

with an appropriate adjustment on the common boundary of the two tri-
angles 〈(0, 0), (1, 0), (1, 1)〉 and 〈(0, 0), (1, 1), (0, 1)〉 such that

1 ≡
∑

ν∈Z
2

[
H(v − ν) + H̃(v − ν)

]
.

Thus, the integer translates of H and H̃ taken together form a partition of
unity. Half box splines on type-I partitions first appeared in [Sab77], see
also [Pra84].

Remark 12.7. When l = 1, the function φ in Example 12.32 is a spline
in S1

3
(△II) with Strang–Fix degree three. Thus, we can use φ to construct

a quasi-interpolant Qh
Γ

as in Theorem 12.44 which approximates smooth
functions to order four. For another proof that this space has full approxi-
mation power, see [DahM84a].

Remark 12.8. As with univariate splines, it is possible to define a kind
of discrete box spline. They were introduced in [CohLR84] as a tool in
computer-aided geometric design, see also [DahM86, DahM87, BooHR93].

Remark 12.9. Box splines are a special case of a more general class of
piecewise polynomials called simplex splines. They were heavily studied in
the late 1970s and early 1980’s. For a detailed survey of the subject and an
extensive list of references, see [DahM83]. This class of splines also includes
the so-called cone splines introduced in [Dah79].

Remark 12.10. For another construction of locally supported piecewise
polynomials on triangulations that relates to both box splines and simplex
splines, see [DahMS92]. These splines have been called triangular B-splines

or DMS splines. There is also an analog defined on the sphere, see [PfeS95].
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Remark 12.11. In Remark 5.9 we pointed out that very little work has
been done on wavelet spaces associated with bivariate splines defined on
general triangulations. However, much more has been done for box spline
spaces. Some early papers are [RieS91, ChuStW92, BooDR93, DahlDL95,
DahlGL97, LorRO97, HeWL98, RonS98, HeWL99]. For more recent work
and further references, see [BuhDG01, BuhDG03, HeWL03, Lai06, LaiSt06].

12.10. Historical Notes

Box splines were first introduced by de Boor and DeVore in [BooD83], and
were studied by many researchers in the 1980’s, including de Boor, Dah-
men, Höllig, Jia, and Micchelli. For a full-length book treatment and more
detailed historical notes, see [BooHR93].

The computation of B-coefficients of box splines on type-I and type-II
triangulations was discussed in [ChuL87c]. Fortran programs for such com-
putations can be found in [Lai92b]. Graphs of various box spline surfaces
can be found in [ChuL92]. The so-called line average and subdivision algo-
rithms for (approximately) rendering box spline surfaces were described in
[DahM85c] and [DahM84c], respectively. Although there exists a recurrence

relation for box splines [BooHR93], it does not lead to a stable algorithm
for the evaluation of box splines, see [Boo93b]. For stability and efficiency
it is best to compute B-coefficients of the box splines.

Some of the material discussed in Section 12.3 can be found in [BooH82,
BooH83a, BooH83b]. Additional properties of box splines can be found
in [DahM83]. The proof of Theorem 12.19 follows ideas in [Jia84]. A
different proof can be found in [DahM85a]. Local linearly independence
of translates of a box spline is studied in [Jia85] and [DahM85b]. The
concepts of principal shift-invariant spaces and finite shift invariant spaces
were introduced in [BooDR94]. The Strang–Fix conditions were given in
[StrF73], and the commutator was introduced in [ChuJW87]. The material
for Sections 12.4, 12.5, and 12.6 is taken from [ChuL87b]. Examples 12.31
and 12.32 can be found in [DahM84b] and [DahM84a], respectively.

The definition of linear independence of finite shift-invariant spaces
can be found in [Jia98]. The Strang–Fix conditions in the setting of finite
shift-invariant spaces were studied by several researchers, see [CabHM98]
and [JiaL93]. The proof of Theorem 12.57 follows [JiaL93].

Type-I box splines have been used to investigate the approximation
order of the spline spaces Sr

d(△) for d ≤ 3r+ 1, see Chapter 10 and [Jia86]
and [Jia88] for more details. Cardinal splines based on type-I box spline
series, which are a generalization of Schoeberg’s cardinal splines based on
univariate B-splines with equally spaced knots, were studied by de Boor,
Höllig and Riemenschneider in the 1980’s, see [BooHR93].

The basic type-II box spline B1111 introduced in Section 12.2 can be
found in [Zwa73], before box splines were formally introduced in [BooD83].



Spherical Splines

In this chapter and the next we discuss spline spaces defined on triangu-
lations of the unit sphere S in R

3. The spaces are natural analogs of the
bivariate spline spaces discussed earlier in this book, and are made up of
pieces of trivariate homogeneous polynomials restricted to S. Thus, they
are piecewise spherical harmonics. As we shall see, virtually the entire
theory of bivariate polynomial splines on planar triangulations carries over,
although there are several significant differences. This chapter is devoted to
the basic theory of spherical splines. Approximation properties of spherical
splines are treated in the following chapter.

13.1. Spherical Polynomials

In this section we introduce the key building blocks for spherical splines.
Throughout the chapter we write v for a point on the unit sphere S in R

3.
When there is no chance of confusion, at times we will also write v for the
corresponding unit vector. Before introducing spherical polynomials, we
need to discuss spherical triangles and spherical barycentric coordinates.

13.1.1 Spherical Triangles

Suppose v1, v2 are two points on the sphere which are not antipodal, i.e.,
they do not lie on a line through the origin. Then the points v1, v2 divide the
great circle passing through v1, v2 into two circular arcs. We write 〈v1, v2〉

for the shorter of the arcs. Its length is just the geodesic distance between
v1 and v2.

Definition 13.1. Suppose v1, v2, v3 are three points on the unit sphere S
which lie strictly in one hemisphere. Then we define the associated spherical

triangle T := 〈v1, v2, v3〉 to be the set of points on S that lie in the region
bounded by the three circular arcs 〈vi, vi+1〉, i = 1, 2, 3, where we identify
v4 = v1. We say that T is nondegenerate provided that T has nonzero area.

We call the points v1, v2, v3 the vertices of T , and refer to the circular
arcs 〈vi, vi+1〉 as the edges of T . Unless otherwise stated, we shall assume
that the vertices of T are in clockwise order, viewed from the origin.
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13.1.2 Spherical Barycentric Coordinates

In this subsection we introduce spherical barycentric coordinates and de-
scribe their basic properties as well as two important differences as com-
pared to planar barycentric coordinates.

Definition 13.2. Let T := 〈v1, v2, v3〉 be a nondegenerate spherical trian-
gle. Given v ∈ S, let bi := bi(v) be such that

v = b1v1 + b2v2 + b3v3. (13.1)

Then we call b1, b2, b3 the spherical barycentric coordinates of v relative to T .

We claim that the spherical barycentric coordinates of a point v ∈ S

relative to a spherical triangle T := 〈v1, v2, v3〉 are unique. To see this,
suppose v = (x, y, z) ∈ R

3, and suppose vi := (xi, yi, zi), i = 1, 2, 3. Then



x1 x2 x3

y1 y2 y3
z1 z2 z3








b1
b2
b3



 =




x

y

z



 . (13.2)

The determinant of the matrix in (13.2) is equal to six times the volume of
the tetrahedron T := 〈0, v1, v2, v3〉. It follows that if T is nondegenerate,
then the spherical barycentric coordinates of any point v ∈ R

3 are uniquely
defined. By Cramer’s rule,

b1(x, y, z) =

∣∣∣∣∣∣

x x2 x3

y y2 y3
z z2 z3

∣∣∣∣∣∣
∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣

, (13.3)

with similar formulae for b2 and b3.

Theorem 13.3. Let T be a nondegenerate spherical triangle. Then

1) bi(vj) = δij , for all i, j = 1, 2, 3,

2) b1 is the ratio vol (t1)/vol (t) of the signed volumes of the tetrahedra
t1 := 〈0, v, v2, v3〉 and t := 〈0, v1, v2, v3〉, with a similar interpretation
for b2 and b3,

3) b1(v), b2(v), b3(v) ≥ 0 for all v ∈ T ,

4) bi vanishes on the edge of T opposite to vi, for all i = 1, 2, 3.

Proof: Properties 1), 2), and 4) are obvious from (13.3) and the connection
between determinants and volumes of tetrahedra. Property 3) follows from
the formula bi = vol (ti)/vol (t) and the observation that the volume of ti
is nonnegative whenever v ∈ T .
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Since the volumes of tetrahedra do not change under rotation, it follows
that the spherical barycentric coordinates of a point v relative to a spherical
triangle T are rotation invariant, i.e., they do not change if we rotate v and
the vertices of T by the same amount. This can also be seen directly. Recall
that rotation on the sphere is described by a 3 × 3 orthogonal matrix with
detM = 1 and MTM = I.

Theorem 13.4. Suppose T := 〈v1, v2, v3〉 is a spherical triangle, and let

T̃ := 〈Mv1,Mv2,Mv3〉, where M is an orthogonal matrix. Given v ∈ S,
suppose b1, b2, b3 and bM

1
, bM

2
, bM

3
are the spherical barycentric coordinates

of v relative to T and T̃ , respectively. Then

bMi (Mv) = bi(v), i = 1, 2, 3.

Proof: Multiplying (13.1) by M , we have Mv = b1Mv1 + b2Mv2 + b3Mv3.

Theorem 13.3 shows that spherical barycentric coordinates have most
of the properties of planar barycentric coordinates. There are some impor-
tant differences though. Perhaps most significantly, spherical barycentric
coordinates do not sum to 1, except at the vertices of T .

Lemma 13.5. For any nondegenerate spherical triangle T := 〈v1, v2, v3〉,

b1(v) + b2(v) + b3(v) > 1, all v ∈ T \ {v1, v2, v3}.

Proof: For each i = 1, 2, 3, bi = vol (ti)/vol (t), where t := 〈0, v1, v2, v3〉
and ti := 〈0, v, vi+1, vi+2〉. Here we identify v4 = v1 and v5 = v2. Now it is
clear from the geometry that vol (t1 ∪ t2 ∪ t3) > vol (t) except when v is at
one of the vertices of T .

There is another important difference between planar and spherical
barycentric coordinates. If v is a point in a planar triangle T , then its
planar barycentric coordinates relative to T are bounded by 1. However,
if v is a point in a spherical triangle T , then its spherical barycentric coor-
dinates relative to the spherical triangle T can be arbitrarily large unless
we restrict the size of T . This is due to the fact that if the vertices of the
spherical triangle T := 〈v1, v2, v3〉 are such that the planar triangle with
the same vertices passes near the origin, then the volume of the tetrahedron
〈0, v1, v2, v3〉 is very small. In this connection we have the following result.

Lemma 13.6. Suppose T := 〈v1, v2, v3〉 is a spherical triangle which is
small enough to be rotated into an octant of the unit sphere. Then for
every v ∈ T ,

0 ≤ bi(v) ≤ 1, i = 1, 2, 3.
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Proof: It suffices to establish the result for b1. Suppose we rotate T

so that it lies in the octant x, y, z ≥ 0, and so that the vertices v2 and
v3 lie in the x–y plane. Let (x1, y1, z1) be the Cartesian coordinates of
v1. Then the volume of the tetrahedron t := 〈0, v1, v2, v3〉 is given by
vol (t) = Az1/3, where A is the area of the planar triangle with vertices
0, v2, v3. Similarly, the volume of the tetrahedron t1 := 〈0, v, v2, v3〉 is given
by vol (t1) = Az/3, where (x, y, z) are the Cartesian coordinates of v. Now
the fact that v lies in the spherical triangle T implies that z ≤ z1, and thus
b1 = vol (t1)/vol (t) ≤ 1.

Combining property 1) of Theorem 13.3 with Lemma 13.5, it is easy
to see that it is impossible to write the constant function 1 as a linear
combination of b1, b2, b3. However, we have the following useful expansion.

Lemma 13.7. Let T := 〈v1, v2, v3〉, and for each i = 1, 2, 3, let ai be the
arc length of the edge of T opposite to vertex vi. Then

1 = b2
1

+ b2
2
+ b2

3
+ β011b2b3 + β101b1b3 + β110b1b2, (13.4)

where

β011 = 2 cos a1, β101 = 2 cosa2, β110 = 2 cos a3.

Proof: It follows from results in Section 13.1.8 on homogeneous polyno-
mials that for (x, y, z) on the sphere, the function 1 = x2 + y2 + z2 can be
written as a linear combination of the functions {b2

1
, b2

2
, b2

3
, b1b2, b1b3, b2b3}.

The associated coefficients can be found from the linear system correspond-
ing to interpolation at the vertices of T and midpoints of the edges of T .

13.1.3 Spherical Bernstein Basis Polynomials

We now define spherical Bernstein basis polynomials as products of the
barycentric coordinate functions b1, b2, b3 of Section 13.1.2.

Definition 13.8. Given a spherical triangle T and an integer d, let

Bd
ijk :=

d !

i ! j ! k !
bi
1b

j
2
bk3 , i+ j + k = d.

We call these spherical Bernstein basis polynomials of degree d.

Although they are direct analogs of the Bernstein basis polynomials
of Section 2.2, spherical Bernstein basis polynomials Bd

ijk are not algebraic
polynomials. As we shall see in Section 13.1.9, they are spherical harmonics.
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It is clear from the definition of the spherical Bernstein basis polyno-
mials Bd

ijk that they satisfy the same recurrence relation, see (2.20), as the
classical bivariate Bernstein polynomials, namely

Bd
ijk = b1B

d−1

i−1,j,k + b2B
d−1

i,j−1,k + b3B
d−1

i,j,k−1
, (13.5)

for all i+ j+k = d. Here we are using the convention that expressions with
negative subscripts are defined as zero. For later use, we need a bound on
the size of the spherical Bernstein basis polynomials Bd

ijk(v) for v ∈ T . In
the bivariate case, the Bernstein basis polynomials are bounded by 1.

Lemma 13.9. Let {Bd
ijk}i+j+k=d be the spherical Bernstein basis poly-

nomials associated with a spherical triangle T that can be rotated to lie in
an octant of the unit sphere. Then for all v ∈ T ,

0 ≤ Bd
ijk(v) ≤

d !

i ! j ! k !
, all i+ j + k = d,

and ∑

i+j+k=d

Bd
ijk(v) ≤ 3d. (13.6)

Proof: The first statement follows immediately from Lemma 13.6. The
second statement follows from the trinomial expansion

∑

i+j+k=d

Bd
ijk = (b1 + b2 + b3)

d.

13.1.4 The Spherical B-form

Let Bd := span {Bd
ijk}i+j+k=d. In Corollary 13.19 below we show that the

{Bd
ijk}i+j+k=d are linearly independent. Thus, every p ∈ Bd has a unique

expansion of the form

p =
∑

i+j+k=d

cijkB
d
ijk. (13.7)

Definition 13.10. We call Bd the space of spherical polynomials of degree

d. For every p ∈ Bd, we call (13.7) the spherical B-form of p, and refer to
the cijk as the spherical B-coefficients of p.

It is convenient to associate the coefficients cijk in (13.7) with the
points

vijk :=
iv1 + jv2 + kv3

‖iv1 + jv2 + kv3‖
, i+ j + k = d, (13.8)

in the spherical triangle T := 〈v1, v2, v3〉. These points are the radial pro-
jections upward onto the sphere S of the usual domain points associated
with the planar triangle with vertices v1, v2, v3.
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Definition 13.11. We call the set Dd,T := {vijk}i+j+k=d the set of spher-

ical domain points associated with T and d.

Following the proof of Theorem 2.8, and using the recurrence relation
(13.5), we can easily derive a deCasteljau algorithm for evaluating spherical
polynomials written in spherical B-form.

Theorem 13.12. Let p be a polynomial written in the spherical B-form
(13.7) with coefficients

c
(0)

ijk := cijk, i+ j + k = d,

and suppose the point v on the sphere S has spherical barycentric coordi-
nates b := (b1, b2, b3). For all ℓ = 1, . . . , d, let

c
(ℓ)

ijk := b1 c
(ℓ−1)

i+1,j,k + b2 c
(ℓ−1)

i,j+1,k + b3 c
(ℓ−1)

i,j,k+1
,

for i+ j + k = d− ℓ. Then

p(v) =
∑

i+j+k=d−ℓ

c
(ℓ)

ijkB
d−ℓ
ijk (v), (13.9)

for all 0 ≤ ℓ ≤ d. In particular p(v) = c
(d)

000
(b).

Theorem 13.12 immediately leads to an algorithm for evaluating a
spherical polynomial p in the B-form (13.7).

Algorithm 13.13. (de Casteljau)

For ℓ = 1, . . . , d
For all i+ j + k = d− ℓ

c
(ℓ)

ijk := b1c
(ℓ−1)

i+1,j,k + b2c
(ℓ−1)

i,j+1,k + b3c
(ℓ−1)

i,j,k+1

Following the proof of Theorem 2.10, it is easy to see that the coefficients
in the de Casteljau algorithm and in (13.9) are given by

c
(ℓ)

ijk =
∑

ν+µ+κ=ℓ

ci+ν,j+µ,k+κB
ℓ
νµκ(v), i+ j + k = d− ℓ.

13.1.5 Subdividing Spherical Polynomials

Suppose that p is a spherical polynomial written in the spherical B-form
(13.7) relative to a spherical triangle T := 〈v1, v2, v3〉. Let w be a point in
the interior of T , and suppose T is split into the three spherical subtriangles

T1 := 〈w, v2, v3〉, T2 := 〈w, v3, v1〉, T3 := 〈w, v1, v2〉,

see Figure 2.1 for the planar case. The following theorem shows how to
write p in spherical B-form on each of the subtriangles. Its proof is analo-
gous to that of Theorem 2.38.
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Theorem 13.14. Let a = (a1, a2, a3) be the spherical barycentric coordi-

nates of the point w in the interior of T . For each ℓ = 1, 2, 3, let BTℓ,d
ijk be

the spherical Bernstein basis polynomials associated with Tℓ. Then

p(v) =





∑

i+j+k=d

c
(i)

0jkB
T1,d
ijk (v), v ∈ T1,

∑

i+j+k=d

c
(j)

i0kB
T2,d
ijk (v), v ∈ T2,

∑

i+j+k=d

c
(k)

ij0B
T3,d
ijk (v), v ∈ T3,

where c
(ν)

ijk := c
(ν)

ijk(a) are the quantities obtained in the ν-th step of the

de Casteljau algorithm based on the triple a, starting with c
(0)

ijk = cijk.

13.1.6 Degree Raising Spherical Polynomials

Let Bd
ijk be a spherical Bernstein basis polynomial of degree d, and suppose

we multiply it by 1 = b2
1

+ b2
2

+ b2
3

+ β011b2b3 + β101b1b3 + β110b1b2, where
the β’s are as in Lemma 13.7. This shows that Bd

ijk can be written as a
linear combination of spherical Bernstein basis polynomials of degree d+2,
and it follows that

B0 ⊂ B2 ⊂ B4 ⊂ · · · and B1 ⊂ B3 ⊂ B5 ⊂ · · · .

Thus, we can rewrite any spherical polynomial of degree d as a spherical
polynomial of degree d+ 2. More explicitly, we have the following degree-
raising formula.

Theorem 13.15. Suppose p is a spherical polynomial written in the B-
form (13.7) relative to a spherical triangle T := 〈v1, v2, v3〉. Then

p =
∑

i+j+k=d+2

c̄ijkB
d+2

ijk ,

with

c̄ijk =
1

(d+ 1)(d+ 2)

[
i(i− 1)ci−2,j,k + ijβ110ci−1,j−1,k + j(j − 1)ci,j−2,k

+ ikβ101ci−1,j,k−1 + k(k − 1)ci,j,k−2 + jkβ011ci,j−1,k−1

]
.

where β011, β101, β110 are as in Lemma 13.7.

Proof: Suppose p is a linear combination of spherical Bernstein basis poly-
nomials of degree d as in (13.7). Then multiplying p by (13.4) and collecting
terms, we find that p is a linear combination of spherical Bernstein basis
polynomials of degree d+ 2 with the stated coefficients.
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13.1.7 Restrictions of Spherical Polynomials to Edges

Suppose p is a spherical polynomial written in the spherical B-form (13.7)
relative to a spherical triangle T := 〈v1, v2, v3〉. Let g := p|e be the restric-
tion of p to the edge e := 〈v1, v2〉. Then since the barycentric coordinate
function b3(v) vanishes at all points v on e, we have

g(v) =
∑

i+j=d

cij0
d !

i ! j !
bi
1
b
j
2

=

d∑

i=0

ci,d−i,0

d !

i ! (d− i) !
bi
1
bd−i
2

. (13.10)

Functions of the form (13.10) defined on circular arcs are called cir-

cular Bernstein–Bézier (CBB) polynomials. We now show that in terms of
the usual angular coordinate system of the unit circle C, they are not al-
gebraic polynomials, but instead are trigonometric polynomials. Let e be
the circular arc connecting the two points

v1 = (cos θ1, sin θ1)
T , v2 = (cos θ2, sin θ2)

T ,

on C. Then every point v = (cos θ, sin θ)T on C can be written uniquely as

v = b1v1 + b2v2,

where [
cos θ1 cos θ2
sin θ1 sin θ2

][
b1
b2

]
=

[
cos θ
sin θ

]
.

The numbers b1, b2 are called the circular barycentric coordinates of v. They
are given explicitly by

b1(θ) =
sin(θ2 − θ)

sin(θ2 − θ1)
, b2(θ) =

sin(θ − θ1)

sin(θ2 − θ1)
. (13.11)

The associated functions

Bd
i (θ) :=

(
d

i

)
b1(θ)

d−ib2(θ)
i, i = 0, . . . , d,

are called circular Bernstein basis polynomials.

Theorem 13.16. The circular Bernstein basis polynomials {Bd
i (θ)}d

i=0

form a basis for the space

Td := span {sind−i(θ) cosi(θ)}d
i=0

of trigonometric polynomials of degree d.
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Proof: By (13.11), b1(θ) and b2(θ) are both linear combinations of sin θ
and cos θ. Thus, the products b1(θ)

d−ib2(θ)
i lie in Td for all i = 0, 1, . . . , d,

and it follows that the circular Bernstein basis polynomials also lie in Td.
The linear independence of the Bd

i can be shown directly by induction on
the degree d.

It is easy to verify that

Td =

{
span {1, cos(2θ), sin(2θ), . . . , cos(dθ), sin(dθ)}, d even,

span {cos(θ), sin(θ), cos(3θ), sin(3θ), . . . , cos(dθ), sin(dθ)}, d odd.

For more on circular Bernstein–Bézier polynomials, including evalu-
ation with a de Casteljau algorithm, subdivision, and degree raising, see
[AlfNS95].

13.1.8 Homogeneous Trivariate Polynomials

In this section we show that spherical polynomials are the restriction to S
of certain homogeneous trivariate polynomials. We begin with a definition.

Definition 13.17. Given an arbitrary integer k, we say that a function
f defined on R

3 is homogeneous of degree k provided that f(rx, ry, rz) =
rkf(x, y, z) for all (x, y, z) ∈ R

3 and every real number r. Let

Hd := {p ∈ Pd : p is homogeneous of degree d},

where Pd is the space of trivariate polynomials of degree d. Then we refer
to Hd as the space of homogeneous trivariate polynomials of degree d.

By definition, a trivariate polynomial p of degree d is homogeneous if
and only if it can be written in the form

p =
∑

i+j+k=d

cijkx
iyjzk.

Since the monomials are clearly linearly independent, it follows that the
dimension of Hd is

(
d+2

2

)
. We now construct an alternate basis for Hd.

Suppose T is a spherical triangle with vertices vi := (xi, yi, zi), i =
1, 2, 3, and let v = (x, y, z) ∈ R

3. Let h1(v), h2(v), h3(v) be the unique
solution of the system



x1 x2 x3

y1 y2 y3
z1 z2 z3





h1(v)
h2(v)
h3(v)


 =



x

y

z


 . (13.12)



13.1. Spherical Polynomials 387

If v is on the unit sphere S, then (h1, h2, h3) are just the spherical barycen-
tric coordinates (b1, b2, b3) discussed in Section 13.1.2. Using Cramer’s rule,
we have

h1(x, y, z) =

∣∣∣∣∣∣

x x2 x3

y y2 y3
z z2 z3

∣∣∣∣∣∣
∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣

, (13.13)

with similar formulae for h2 and h3. It follows that the functions hi(v) are
homogeneous polynomials of degree 1.

Theorem 13.18. The functions

Hd
ijk :=

d !

i ! j ! k !
hi

1
h

j
2
hk

3
, i+ j + k = d, (13.14)

form a basis for Hd.

Proof: The fact that the hi are homogeneous polynomials of degree 1
implies that Hd

ijk belong to Hd. To show that the Hd
ijk form a basis for

Hd, it suffices to show that they span Hd, i.e., every monomial of the form
xνyµzκ with ν + µ + κ = d can be written as a linear combination of the
{Hd

ijk}i+j+k=d. This is obvious for d = 0. For d = 1 it follows from the fact
that x = h1x1 + h2x2 + h3x3 and the analgous formulae for y and z. The
general case can be established by the same kind of inductive argument as
used in the proof of Theorem 2.4.

The space Bd of spherical polynomials introduced in Section 13.1.4 is
closely related to the space Hd. Indeed, Bd = Hd|S . Using this connec-
tion and Theorem 13.18, we can now prove the linear independence of the
spherical Bernstein basis polynomials.

Corollary 13.19. The space Bd has dimension
(
d+2

2

)
, and the spherical

Bernstein basis polynomials {Bd
ijk}i+j+k=d form a basis for it.

Proof: It suffices to show that the Bd
ijk are linearly independent. For each

i+ j + k = d, Bd
ijk is just the restriction to the sphere S of the homogeneous

polynomial Hd
ijk . Now suppose

∑
i+j+k=d cijkB

d
ijk(v) = 0 for all v ∈ S.

This implies
∑

i+j+k=d cijkH
d
ijk(v) = 0 for all v ∈ R

3. Theorem 13.18
implies that the cijk must be zero, and the proof is complete.

13.1.9 Spherical Harmonics

In this section we show that the space Bd has a basis consisting of classical
spherical harmonics defined on the sphere. The casual reader can skip this
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section if desired, since we will not make further use of spherical harmonics
in this book. Given a point v = (x, y, z) lying on S, we can write




x

y

z



 =




sin θ cosφ
sin θ sinφ
cos(π − θ)



, (13.15)

with (θ, φ) ∈ [0, π]× [0, 2π). The θ and φ are called the spherical coordinates

of v.

Definition 13.20. A trivariate polynomial p is called harmonic provided
∆p ≡ 0, where ∆ is the Laplace operator defined by ∆f := fxx + fyy + fzz.
The linear space Yd := {p|S : p ∈ Pd and p is harmonic and homogeneous
of degree d} is called the space of spherical harmonics of exact degree d.

Given d and ℓ, let

P ℓ
d(x) = (1 − x2)ℓ/2Dℓ

xPd(x), −1 ≤ x ≤ 1,

be the Legendre function of degree d and order ℓ, where Pd are Legendre

polynomials satisfying the recurrence formula

Pd(x) = −
d− 1

d
Pd−2(x) +

2d− 1

d
xPd−1(x)

with P0(x) = 1 and P1(x) = x. The following result is well known, see
e.g. [CouH53], page 314.

Theorem 13.21. Yd is a linear space of dimension 2d+1, and the functions

Yd,2ℓ+1(θ, φ) := cos(ℓφ) P ℓ
d(cos θ), ℓ = 0, . . . , d,

Yd,2ℓ(θ, φ) := sin(ℓφ) P ℓ
d(cos θ), ℓ = 1, . . . , d,

form an orthogonal basis for Yd with respect to the standard L2 inner
product on S. Moreover, the spaces Y0, . . . ,Yd are mutually orthogonal,
and Pd|S = Yd ⊕ Yd−1 ⊕ · · · ⊕ Y0.

Each of the Yd,ℓ can be expanded in terms of sine and cosine functions.
The formulae are simple for d = 0, 1. Indeed,

Y0,1(θ, φ) = 1,

Y1,1(θ, φ) = cos θ,

Y1,2(θ, φ) = sinφ sin θ,

Y1,3(θ, φ) = cosφ sin θ.

The formulae become increasingly complicated for larger values of d. We
now explore the connection between spherical polynomials and spherical
harmonics.
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Theorem 13.22. For d ≥ 1, dim Pd|S = (d+ 1)2, and Pd|S = Bd ⊕ Bd−1.
Moreover,

Bd =

{
Y0 ⊕ Y2 ⊕ · · · ⊕ Y2k, d = 2k,

Y1 ⊕ Y3 ⊕ · · · ⊕ Y2k+1, d = 2k + 1.
(13.16)

Proof: Suppose d = 2k. We claim that for each i = 1, . . . , k, each of the
spaces Y2i is a subspace of Bd. Indeed, suppose p is a polynomial in the
2i + 1 dimensional space Y2i. Then p is a polynomial of degree 2i which
is homogeneous of degree 2i. But on S, p is equivalent to the d-th degree
polynomial q = (x2 + y2 + z2)d−2ip, which is homogeneous of degree d,
and thus p ∈ Bd. The orthogonality of the spherical harmonics stated in
Theorem 13.21 implies the linear independence of the set of basis functions
associated with

⋃k

i=0
Y2i. For d = 2k, (13.16) follows from the fact that

the dimension of Bd is
(
d+2

2

)
=

∑k

i=0
(4i + 1). The proof of (13.16) for d

odd is similar. Now the fact that Pd|S = Bd ⊕ Bd−1 follows from the fact
(see Theorem 13.21) that Pd|S = Yd ⊕ Yd−1 ⊕ · · · ⊕ Y0.

To illustrate these results, we consider the case d = 2. It is easy to
check that

Y0 = span{1},

Y1 = span{x, y, z},

Y2 = span{xy, xz, yz, x2 − y2, x2 − z2}.

Thus, B2 = Y0 ⊕ Y2 has dimension six, while B1 = Y1 has dimension
three. This gives dim P2|S = 9. In contrast, the dimension of the space of
trivariate polynomials P2 is ten, i.e., the dimension of P2 goes down by one
when we restrict to S. Table 13.1 gives the dimensionality of the various
spaces for 0 ≤ d ≤ 5.

d Yd Bd Pd|S Pd

0 1 1 1 1
1 3 3 4 4
2 5 6 9 10
3 7 10 16 20
4 9 15 25 35
5 11 21 36 56

Tab. 13.1. Dimensionality of various “polynomial” spaces.

13.1.10 Spherical Patches

Given any spherical polynomial p as in (13.7) defined on a spherical triangle
T := 〈v1, v2, v3〉, we define the associated spherical patch to be the surface
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P := {p(v)v : v ∈ T } lying in R
3. It can be shown [AlfNS96a] that the

spherical patch associated with p ∈ span{b1, b2, b3} lies on a sphere passing
through the origin.

To help understand the shape of general spherical patches, we can in-
troduce a control structure similar to the one for bivariate Bernstein–Bézier
polynomials discussed in Chapter 3. If P is a spherical patch associated
with a spherical polynomial p as in (13.7), then we define the associated
spherical control points to be

c̄ijk := cijkvijk, i+ j + k = d,

where vijk are the domain points (13.8) associated with d and the spherical
triangle T .

The points {iv1 + jv2 + kv3}i+j+k=d are the vertices of a natural par-
tition of the planar triangle T̄ with vertices v1, v2, v3 into d2 congruent
triangles. The associated points {vijk}i+j+k=d on the spherical triangle
T := 〈v1, v2, v3〉 form the vertices of a corresponding collection of subtri-
angles of T , but these triangles are not congruent. In fact for d > 1, it is
impossible to find any partition of T into d2 congruent spherical triangles.

The function p ≡ 1 is contained in Bd for all even d. Thus, for even d
and any constant a, we can construct a spherical patch that is at a constant
height a above T . This patch is itself a spherical triangle, but lies on the
sphere with radius 1 + a instead of on S. The following result shows that
it is not possible to create such spherical patches when d is odd.

Theorem 13.23. Let T be a spherical triangle, and suppose that d is odd.
Then there is no spherical polynomial p of degree d defined on T with

p(v) = 1, all v ∈ T . (13.17)

Proof: Suppose there is a spherical polynomial p of degree d = 2k+1 which
satisfies (13.17). Then the restriction of p to an edge e of T can be written
in terms of circular Bernstein basis polynomials, which by Theorem 13.16
can be written as

p(θ) =
k∑

j=0

[aj sin((2j + 1)θ)) + bj cos((2j + 1)θ)],

where p(θ) ≡ 1 for some nontrivial interval [a, b]. Taking the derivative of
p with respect to θ gives

0 =

k∑

j=0

[aj(2j + 1) cos((2j + 1)θ) − bj(2j + 1) sin((2j + 1)θ)]

on (a, b). The linear independence of the sin’s and cos’s implies that aj =
bj = 0 for j = 0 . . . , k, and thus p(θ) ≡ 0 which is a contradiction.



13.2. Derivatives of Spherical Polynomials 391

It was observed earlier that when d is odd, Bd does not contain the
function that is identically one on all of S. Theorem 13.23 is a stronger
assertion since it says that Bd|T does not contain the function that is iden-
tically one on T .

13.2. Derivatives of Spherical Polynomials

In this section we give formulae for derivatives of homogeneous and spherical
polynomials, and describe conditions for smooth joins of spherical polyno-
mials on neighboring spherical triangles.

13.2.1 Directional Derivatives of Functions on the Sphere

Suppose f is a function defined on the unit sphere S. Given a point v on S,
we also write v for the vector with tip at the point v and tail at the origin.
Let g be a unit vector that is perpendicular to the vector v at the point v,
and let Π be the plane containing the vectors v and g. This plane defines
a great circle arc a passing through the point v. Suppose we parametrize
a by arc length so that a(0) = v. Note that g gives the direction of the
tangent vector to the arc a at v.

Definition 13.24. If f is a sufficiently smooth function on S, we define
the derivative of f at v in the direction g by

Dgf(v) :=
df(a(θ))

dθ

∣∣∣∣
θ=0

.

The m-th order directional derivative is defined in a similar way for any
m > 0.

We now show how to compute the directional derivative of f at the
point v in terms of the usual directional derivative of an associated trivariate
function F .

Lemma 13.25. Given f , let F be any trivariate function such that f =
F |S . Then for any point v on S and any unit vector g perpendicular to the
vector defined by v,

Dgf(v) = DgF (v).

Proof: Let a(θ) = (x(θ), y(θ), z(θ))T . Then g = (x′(0), y′(0), z′(0))T . By
the chain rule,

df(a(θ))

dθ

∣∣∣∣
θ=0

=
dF (a(θ))

dθ

∣∣∣∣
θ=0

= gT∇F (v) = DgF (v).

Given f defined on S, we can construct the function F in Lemma 13.25
as any homogeneous extension of f to R

3
\ {0}. The proof of the lemma
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shows that we get the same value for the derivative no matter what degree
extension we take.

It is also possible to define higher order directional derivatives of func-
tions f defined on the sphere. Suppose for each v ∈ S that g(v) is a vector
field which is tangent to S at v, and that F is a trivariate function such that
f = F |S . Suppose also that g(v)T∇F (v) is continuously differentiable, and
let h(v) be a direction vector in the tangent plane of S at v. Then we can
apply the above differentiation procedure to g(v)T∇F (v) to define a second
order directional derivative. In particular, we first extend g(v)T∇F (v) ho-
mogeneously, take the directional derivative in the direction h, and restrict
to the sphere S. This gives

DhDgf(v) := h(v)T∇
[
G(v)T∇F (v)

]
, all v ∈ S,

where G is some homogeneous extension of g.

13.2.2 Directional Derivatives of Spherical B-polynomials

In view of the previous section, we can compute directional derivatives
of spherical polynomials from directional derivatives of their homogeneous
extensions. In particular, to compute derivatives of

p :=
∑

i+j+k=d

cijkB
d
ijk,

we can work with the associated trivariate homogeneous polynomial

p :=
∑

i+j+k=d

cijkH
d
ijk . (13.18)

We now give explicit formulae for directional derivatives of (13.18).

Lemma 13.26. Let h1, h2, h3 be the functions defined in (13.12), and let
g be a vector in R

3. Then

Dghi = hi(g), i = 1, 2, 3.

Proof: We establish the result for i = 1. Let v1, v2, v3 be the ver-
tices of T , and let v ∈ R

3. Considering v and vi as vectors and ap-
plying ∇ to the formula (13.13) for h1, it is easy to see that gT∇h1 =
det (g, v2, v3)/det (v1, v2, v3) = h1(g), which is the desired result.

Applying the chain rule and Lemma 13.26, we immediately get the
following formula for the directional derivative of an arbitrary homogeneous
polynomial.
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Lemma 13.27. Suppose p ∈ Hd is a homogeneous polynomial of degree
d. Then

Dgp(v) = (h1(g), h2(g), h3(g))∇hp, (13.19)

where

∇h :=

(
∂

∂h1

,
∂

∂h2

,
∂

∂h3

)T

.

Using (13.19), we can now give explicit formulae for directional deriva-
tives of arbitrary homogeneous polynomials in terms of their coefficients in

the expansion (13.18). Let c
(0)

ijk = cijk for i+ j + k = d. Suppose g1, . . . , gm

is a given set of unit vectors. For each ℓ = 1, . . . ,m, let

c
(ℓ)

ijk = h1(gℓ)c
(ℓ−1)

i+1,j,k + h2(gℓ)c
(ℓ−1)

i,j+1,k + h3(gℓ)c
(ℓ−1)

i,j,k+1
, i+ j + k = d− ℓ.

It can be shown directly from the recurrence relation that the c
(ℓ)

ijk

depend on the vectors g1, . . . , gℓ, but not on their ordering. This fact also
follows from the following theorem.

Theorem 13.28. For any 0 ≤ m ≤ d,

Dg1,...,gm
p(v) := Dg1

· · ·Dgm
p(v) :=

d !

(d−m) !

∑

i+j+k=d−m

c
(m)

ijk H
d−m
ijk (v).

(13.20)

Proof: By Lemma 13.26,

Dg1
Hd

ijk(v)

=
d!

i ! j ! k !

[
ihi−1

1
h

j
2
hk

3
Dg1

h1 + jhi
1
h

j−1

2
hk

3
Dg1

h2 + khi
1
h

j
2
hk−1

3
Dg1

h3

]

= d
[
Hd−1

i−1,j,k(v)h1(g1) +Hd−1

i,j−1,k(v)h2(g1) +Hd−1

i,j,k−1
(v)h3(g1)

]
,

for i+ j + k = d. Substituting this in

Dg1
p(v) =

∑

i+j+k=d

c
(0)

ijkDg1
Hd

ijk(v)

and rearranging terms yields (13.20) for m = 1. The general result follows
by induction.

It is clear from the properties of the coordinates h1, h2, h3, that if p is
a homogeneous polynomial written in the form (13.18), then p(v1) = cd00,
p(v2) = c0d0, and p(v3) = c00d. The derivatives of p at the vertices of T also
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have a simple form. For example, if we evaluate the derivative in (13.20)
at v = v1 we get

Dg1,...,gm
p(v1) =

d !

(d−m) !
c
(m)

d−m,0,0. (13.21)

We can also give convenient formulae for derivatives of a homogeneous
polynomial at the vertices of the spherical triangle T := 〈v1, v2, v3〉. Sup-
pose that g is a unit vector lying in the plane passing through the origin
and the two points v1 and v2. Then h3(g) = 0, and (13.21) only involves the
coefficients cd,0,0, . . . , cd−m,m,0. For convenience, we write out the formulae
for the first and second derivatives at v1:

Dgp(v1) = d[h1(g)cd,0,0 + h2(g)cd−1,1,0],

while

D2

gp(v1) = d(d − 1)[h2

1
(g)cd,0,0 + 2h1(g)h2(g)cd−1,1,0 + h2

2
(g)cd−2,2,0].

For the second order mixed derivatives, let g1 be as above, and let g2
be a vector in the plane passing through the origin and the two points v1
and v3. In this case h2(g2) = 0, and the formula (13.21) simplifies to

Dg1,g2
p(v1) = d(d− 1)[h1(g1)h1(g2)cd,0,0 + h2(g1)h1(g2)cd−1,1,0

+ h1(g1)h3(g2)cd−1,0,1 + h2(g1)h3(g2)cd−2,1,1].

We conclude this section with a few remarks about cross derivatives

associated with an edge e := 〈v1, v2〉 of T . Consider the derivative Dg in
a direction g which does not lie in the plane passing through the origin
and the two points v1 and v2. Along e we have h3(v) ≡ 0, and so by
Theorem 13.28, for each 0 ≤ m ≤ d, the m-fold cross-boundary derivative
Dm

g p reduces to a homogeneous polynomial of degree d − m on e. For
example, if p is cubic (d = 3) and m = 1, then Dgp(v) is the quadratic
polynomial

Dgp(v) = 3
[
c
(1)

200
h1(v)

2 + 2c
(1)

110
h1(v)h2(v) + c

(1)

020
h2(v)

2
]
, v ∈ e.

13.2.3 Joining Two Spherical Polynomials Smoothly

In this section we establish necessary and sufficient conditions for two
spherical polynomials on neighboring spherical triangles to join together
smoothly across the common edge. First we discuss homogeneous polyno-
mials associated with a pair of neighboring spherical triangles.
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Theorem 13.29. Let T and T̃ be two spherical triangles with vertices
{v1, v2, v3} and {v4, v3, v2}. Let a1, a2, a3 be the spherical barycentric co-

ordinates of v4 relative to T , i.e., v4 =
∑

3

i=1
aivi. Suppose

p(v) :=
∑

i+j+k=d

cijkH
d
ijk(v),

p̃(v) :=
∑

i+j+k=d

c̃ijkH̃
d
ijk(v),

where {Hd
ijk} and {H̃d

ijk} are the homogeneous Bernstein basis functions

associated with the triangles T and T̃ . Then any derivative of p of order
at most m agrees with the corresponding derivative of p̃ at every point on
the plane passing through the origin and v2, v3 if and only if

c̃njk =
∑

ν+µ+κ=n

cν,k+µ,j+κH
n
νµκ(v4), (13.22)

for all j + k = d− n and n = 0, . . . ,m.

Proof: Consider the trivariate polynomials

P (v) :=
∑

i+j+k+l=d

CijklB
d
ijkl(v),

P̃ (v) :=
∑

i+j+k+l=d

C̃ijklB̃
d
ijkl(v),

where

Cijkl :=

{
cijk , if l = 0,

0, otherwise,
and C̃ijkl :=

{
c̃ijk, if l = 0,

0, otherwise,
(13.23)

and Bd
ijkl(v) are the trivariate B-polynomials of degree d associated with

the tetrahedron {v1, v2, v3, 0} and B̃d
ijkl(v) are those associated with the

tetrahedron {v4, v3, v2, 0}, see Section 15.3 below. By Theorem 15.31, these
trivariate polynomials join with Cm continuity if and only if

C̃ijkl =
∑

ν+µ+κ+λ=i

Cν,k+µ,j+κ,l+λB
i
νµκλ(v4), (13.24)

for i + j + k + l = d and i = 0, . . . ,m. In view of (13.23), we can choose
l = λ = 0. In this case, (13.24) holds if and only if (13.22) holds. But
P = p and P̃ = p̃, and the proof is complete.

We can now translate this to a result on spherical polynomials.
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Theorem 13.30. Let T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 be two spheri-
cal triangles sharing an edge e := 〈v2, v3〉. Suppose

p(v) :=
∑

i+j+k=d

cijkB
d
ijk(v),

p̃(v) :=
∑

i+j+k=d

c̃ijkB̃
d
ijk(v),

where {Bd
ijk} and {B̃d

ijk} are the spherical Bernstein basis polynomials asso-

ciated with T and T̃ , respectively. Then any derivative of order at most m
of p and the corresponding derivative of p̃ agree at all points on the edge e
if and only if

c̃njk =
∑

ν+µ+κ=n

cν,k+µ,j+κB
n
νµκ(v4)

for all j + k = d− n and n = 0, . . . ,m.

Proof: Each of the spherical Bernstein basis polynomials Bd
ijk can be

extended to a homogeneous Bernstein basis polynomial Hd
ijk , and the result

follows immediately from Theorem 13.29.

13.3. Spherical Triangulations

In this section we discuss some basic properties of spherical triangulations.

Definition 13.31. A set of spherical triangles △ := {Ti}
N
1

is called a
spherical triangulation provided that the intersection of any two triangles in
△ is empty, or is a common vertex or common edge. We write Ω :=

⋃N

i=1
Ti

for the associated domain. We are mostly interested in the case Ω = S, in
which case we say that △ covers S.

To state results on the relationship between the number V of vertices,
number E of edges, and number N of triangles in a spherical triangulation,
we have to distinguish between the cases when △ covers S and when it does
not. First we consider the case when △ does not cover S.

Definition 13.32. Let △ be a spherical triangulation of a domain Ω ⊂ S.
Then we say that △ is shellable provided it consists of a single triangle, or if
it can be obtained from a shellable triangulation △̃ by adding one triangle
T such that T intersects △̃ precisely along one or two edges. We say that
△ is regular provided △ is shellable, or it can be obtained from a shellable
triangulation △̃ by removing one or more shellable subtriangulations, all of
whose vertices are interior vertices of △̃.

It is easy to show that for regular spherical triangulation that do not
cover S, exactly the same Euler relations as in the planar case hold, see
Theorem 4.10. The following result shows that the situation is different for
the case where △ covers S.
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Theorem 13.33. Let △ be a spherical triangulation that covers S. Then

1) E = 3N/2,

2) N = 2V − 4,

3) E = 3V − 6.

Here V,E,N denote the number of vertices, edges, and triangles in △.

Proof: Equation 1) is obvious since every triangle has three edges, but
if we count them all, each edge will be counted twice. To get 2), we look
at the tetrahedral partition which is induced by △, i.e., we replace each
spherical triangle by a flat triangle which forms a face of a tetrahedron
with its fourth vertex at the origin. By Theorem 16.13, FB = 2VB − 4,
where FB and VB are the number of boundary faces and boundary vertices
of this tetrahedral partition. Now 2) follows since N = FB and V = VB.
Finally, 3) follows by combining 1) and 2).

Spherical triangulation can be stored with the same kinds of data
structures as discussed in Section 4.5 for planar triangulations. As for
the planar case, there are a number of available algorithms for constructing
spherical triangulations, including spherical Delaunay triangulations, see
Remark 13.8. They can also be created as induced triangulations associ-
ated with quadrangulations as in Section 4.15. Spherical triangulations and
quadrangulations can be refined in the same ways as in the planar case. In
particular, we can apply any of the Clough–Tocher, Powell–Sabin, Powell–
Sabin-12, Wang, Double-Clough–Tocher, or uniform refinement schemes
described in Section 4.8.

Suppose T := 〈v1, v2, v3〉 is a spherical triangle. Then for each i =
1, 2, 3, the angle of T at the vertex vi is defined to be the angle between
the plane containing the vectors vi and vi+1 and the plane containing the
vectors vi and vi+2. It is well known that the sum of the angles of a spherical
triangulation is larger than π. Given a spherical triangulation, we write θ△
for the minimum angle among the triangles of △.

13.4. Spaces of Spherical Splines

In this section we present a theory of spherical splines which is the direct
analog of the theory of bivariate splines given in previous chapters. We
begin with the space of continuous spherical splines.

13.4.1 C
0 Spherical Splines

Given a nonnegative integer d, let Bd be the space of spherical polynomi-
als of degree d introduced in Definition 13.10. Then given any spherical
triangulation △ := {Ti}

N
i=1

of a domain Ω ⊆ S, we define

S0

d(△) := {s ∈ C0(Ω) : s|Ti
∈ Bd, i = 1, . . . , N}.
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We now compute the dimension of this spline space. Given s ∈ S0

d (△),
for each triangle T ∈ △, we know by Corollary 13.19 that there exists a
unique set of coefficients {cξ}ξ∈Dd,T

such that

s|T =
∑

ξ∈DT,d

cξB
T,d
ξ , (13.25)

where BT,d
ξ are the spherical Bernstein basis polynomials of degree d associ-

ated with the spherical triangle T , and Dd,T is the associated set of domain
points in T , see Definition 13.11. Since s is continuous, if ξ is contained in
two different triangles T and T̃ , then the coefficients cξ for s|T and s|

T̃
are

the same. Thus, for each s ∈ S0

d (△), there is a unique associated set of co-
efficients {cξ}ξ∈Dd,△

, where Dd,△ :=
⋃

T∈△ Dd,T is the set of domain points

for S0

d(△). Note that domain points on edges of △ belong to two or more
of the sets Dd,T , but are included in Dd,△ just once. We call {cξ}ξ∈Dd,△

the set of spherical B-coefficients of s. The converse also holds, i.e., given
any {cξ}ξ∈Dd,△

there is a unique spline s ∈ S0

d(△) defined by (13.25).

We have shown that the linear space S0

d (△) is in one-to-one correspon-
dence with the set {cξ}ξ∈Dd,△

. It follows that the dimension of S0

d (△) is
equal to the cardinality of Dd,△. A simple count leads to the following
result.

Theorem 13.34. Every spline s ∈ S0

d (△) is uniquely defined by its set of
B-coefficients {cξ}ξ∈Dd,△

. Moreover,

dim S0

d(△) = #Dd,△ = V + (d− 1)E +

(
d− 1

2

)
N,

where V,E, and N are the number of vertices, edges, and triangles in △.

This result shows that to store, evaluate, and render spherical splines,
we can work with the B-form just as we did in the bivariate case discussed
in Chapter 5. In particular, to store a spline, we can simply store the vector
c of its B-coefficients. Moreover, it is clear that Algorithms 5.2 and 5.3 can
be applied without change to evaluate a spherical spline or its mixed partial
derivatives of any order.

We now construct locally supported basis functions in S0

d(△) which
are analogs of the basis functions constructed in Section 5.4 for ordinary
bivariate splines. For each ξ ∈ Dd,△, let ψξ be the spline in S0

d(△) that
satisfies

γηψξ = δξ,η, all η ∈ Dd,△,

where γη is a linear functional which picks off the coefficient associated
with the domain point η. Such functionals can be constructed explicitly in
various ways, see Remark 13.7. By construction, ψξ has all zero coefficients
except for cξ = 1.
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Since for each triangle T the associated Bernstein basis polynomials
are nonnegative on T , it follows immediately that

ψξ(v) ≥ 0, all v ∈ Ω.

Since ψξ is identically zero on all triangles which do not contain ξ, it follows
that the support of ψξ is

1) a single triangle T , if ξ is in the interior of T ,

2) the union of triangles T and T̃ , if ξ is in the interior of the edge between

T and T̃ ,

3) the union of all triangles sharing the vertex v, if ξ = v.

Theorem 13.35. The set of splines B := {ψξ}ξ∈Dd,△
forms a basis for

S0

d(△).

Proof: Since dim S0

d(△) = #Dd,△, to show B is a basis, it suffices to show
that the ψξ are linearly independent. Suppose that

s :=
∑

ξ∈Dd,△

cξψξ ≡ 0, on Ω.

Then on any spherical triangle T ∈ △, the restriction s|T is a spherical
polynomial of degree d which is identically 0, and so all the coefficients in
its B-form must vanish. Corollary 13.19 implies that cη = 0 for all η ∈ Dd,T .
Since this holds for every T ∈ △, we have shown that all coefficients must
be zero.

13.4.2 Spaces of Smooth Spherical Splines

As in the bivariate case, we are also interested in spaces of spherical splines
that have some additional smoothness beyond C0 continuity. For example,
we might want splines that have continuous derivatives up to order r ev-
erywhere on Ω, or we might want splines with supersmoothness at certain
vertices or across certain edges.

Following our earlier treatment of bivariate splines, we now introduce
some notation for describing smoothness of spherical splines. Suppose
T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 are two spherical triangles sharing
an interior edge e := 〈v2, v3〉 of △. Fix 0 ≤ n ≤ j ≤ d. Then for any
spherical spline s ∈ S0

d(△), let

τn
j,es := cn,d−j,j−n −

∑

ν+µ+κ=n

c̃ν,j−n+µ,d−j+κB̃
n
νµκ(v1). (13.26)

We call τn
j,e a smoothness functional of order m. Given a set T of linear

functionals of the form (13.26) associated with oriented edges of △, we
define the corresponding space of smooth splines as

ST
d (△) := {s ∈ S0

d (△) : τs = 0, all τ ∈ T }. (13.27)
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If e is an interior edge of the triangulation △, then we say that s ∈

S0

d(△) is Cr smooth across the edge e provided that if T and T̃ are the
triangles sharing the edge, then the spherical polynomials s|T and s|

T̃
join

with Cr smoothness across e. Theorem 13.30 shows that all splines in
ST

d (△) will be Cr smooth across an edge e if and only if T includes all of
the linear functionals {τn

j,e}
d
j=n, for n = 1, . . . , r. Following the notation in

the bivariate case, we write

Sr
d (△) := S0

d(△) ∩ Cr(Ω) (13.28)

for the space of splines of degree d which are Cr smooth across all interior
edges of △.

We can also define analogs of the superspline spaces described in Def-
inition 5.6. In particular, we say that a spline s ∈ S0

d (△) is Cρ smooth at v

provided that all of the spherical polynomials s|T such that T is a triangle
with vertex at v have common derivatives up to order ρ at the point v. In
this case we write s ∈ Cρ(v). The following lemma shows that forcing a
spline to belong to Cρ(v) can be achieved by enforcing an appropriate set
of smoothness conditions across the interior edges attached to v. It can be
proved in exactly the same way as Lemma 5.9.

Lemma 13.36. Let s ∈ S0

d (△) and suppose v is a vertex of △. Then
s ∈ Cρ(v) if and only if for i = 1, . . . ,m,

τn
j,ei

s = 0, n ≤ j ≤ ρ and 1 ≤ n ≤ ρ,

where e1, . . . , em are the interior edges of △ attached to v.

As in the bivariate case, smoothness conditions on a spline s ∈ S0

d(△)
are just linear side conditions on the vector c of B-coefficients of s. Thus,
for any given set T of smoothness conditions, there is a matrix A depending
on T such that

ST
d (△) = {s ∈ S0

d(△) : Ac = 0}. (13.29)

Clearly, the matrixA is of size ns×nd, where ns is the number of smoothness
conditions in T , and nd is the dimension of S0

d (△). It is also clear that A is a
relatively sparse matrix, since a typical Cr smoothness condition across an
edge involves only

(
r+2

2

)
+1 coefficients. Thus, for example, a C1 condition

involves only four coefficients, so the corresponding row in the matrix A has
at most four nonzero entries. The proof of the following result is exactly
the same as the proof of Theorem 5.11.

Theorem 13.37. Let ST
d (△) be the space of smooth spherical splines

defined in (13.29) corresponding to a matrix A. Then the dimension of
ST

d (△) is equal to nd − nr, where nr is the rank of A.
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13.4.3 Minimal Determining Sets

Theorem 13.34 shows that every spherical spline s ∈ S0

d(△) is uniquely
determined by its set of B-coefficients {cξ}ξ∈Dd,△

. Suppose now that S :=
ST

d (△) is a linear subspace of S0

d (△) defined by enforcing some set of
smoothness conditions T across the interior edges of a spherical triangula-
tion △ as described in (13.27). Then for a spline s ∈ S0

d (△) to be in S,
its set of B-coefficients must satisfy the smoothness conditions in T . This
means that we cannot assign arbitrary values to every coefficient of s. In-
stead, we can only assign values to certain coefficients, and the values of
the remaining coefficients will be determined by the smoothness conditions.

Suppose Γ ⊆ Dd,△ is such that if s ∈ S and cξ = 0 for all ξ ∈ Γ,
then s ≡ 0. Then we say that Γ is a determining set for S. Clearly, for any
S ⊂ S0

d(△), the set of domain points Dd,△ is always a determining set for
S. But for any spline space S satisfying at least one smoothness condition,
there will be determining sets with fewer points than the number of points
in Dd,△. If M is a determining set for a spline space S and M has the
smallest cardinality among all possible determining sets for S, then we call
M a minimal determining set (MDS) for S. In general, there will be more
than one minimal determining set corresponding to a given spline space S.

Let S be a linear subspace of S0

d(△). Following the proof of Theo-
rem 5.13, it is easy to see that a determining set M is a minimal deter-
mining set for S if and only if #M = dim S. As in the bivariate case,
it is a nontrivial task to construct minimal determining sets. If we know
the dimension of S, then we at least know how many domain points to put
in a minimal determining set. On the other hand, it is not necessary to
know the dimension of S to construct a minimal determining set. As in
the bivariate case, we can try to determine which coefficients can be set
independently and consistently, i.e., in such a way that all coefficients are
uniquely determined and all smoothness conditions are satisfied.

We are especially interested in minimal determining sets M for spher-
ical spline spaces S that have the following additional properties:

1) for all ξ 6∈ M, cξ can be computed from a small set of coefficients cη
where η ∈ M is near ξ,

2) for all ξ 6∈ M, the size of cξ is comparable to the size of the coefficients
cη used to compute it.

To make these properties more precise, we need some additional notation.
Suppose M is a minimal determining set for S. Then if we fix the coeffi-
cients {cξ}ξ∈M for a spline s ∈ S, then all remaining B-coefficients of s can
be computed using smoothness conditions. Given η 6∈ M, we say that cη
depends on cξ, ξ ∈ M, if changing the value of cξ also causes the value of
cη to change. Let

Γη := {ξ ∈ M : cη depends on cξ}.
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If v is a vertex of a spherical triangulation △, then we define star(v) :=
star1(v) to be the set of all triangles sharing the vertex v, and define starj(v)
recursively to be the set of all triangles with vertices in common with the
triangles of starj−1(v). Similarly, we define star0(T ) := T , and starj(T ) :=⋃
{star(v) : v ∈ starj−1(T )}.

Definition 13.38. Suppose M is a minimal determining set for a linear
space of sherical splines S ⊆ S0

d (△). We say that M is local provided there
exists an integer ℓ not depending on △ such that

Γη ⊆ starℓ(Tη), all η ∈ Dd,△ \M, (13.30)

where Tη is a triangle containing η. We say that M is stable provided
there exists a constant K depending only on ℓ and the smallest angle in
the triangulation △ such that

|cη| ≤ K max
ξ∈Γη

|cξ|, all η ∈ Dd,△ \M.

13.4.4 Stable Local Bases

Suppose M is an MDS for a spherical spline space S ⊆ S0

d(△) defined on
a spherical triangulation △. Then for each ξ ∈ M, there is a unique spline
ψξ ∈ S such that

γηψξ = δηξ, all η ∈ M.

Clearly, {ψξ}ξ∈M is a basis for S. We refer to it as the spherical M-basis for

S. If M is a stable local minimal determining set, then the corresponding
M-basis is also stable and local. In particular, we have the following analog
of Theorem 5.21.

Theorem 13.39. Suppose M is a stable local minimal determining set for
the linear space of spherical splines S ⊆ S0

d(△), and let Ψ := {ψξ}ξ∈M be
the corresponding M-basis. Then Ψ is a stable local basis for S in the sense
that for all ξ ∈ M,

1) ‖ψξ‖Ω ≤ K,

2) suppψξ ⊆ starℓ(Tξ), where Tξ is a triangle containing ξ,

where ℓ is the integer constant in (13.30), and K is a constant depending
only on ℓ and the smallest angle in △.

13.4.5 Nodal Determining Sets

Suppose S is a space of spherical splines defined on a spherical triangulation
△. Let N = {λi}

n
i=1

be a set of linear functionals of the form

λi := εti

∑

α+β=mi

ai
α,βD

α
1,ti
D

β
2,ti

, i = 1, . . . , n,
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where εti
denotes point evaluation at the point ti, a

i
α,β are constants, and

D1,ti
and D2,ti

are directional derivatives associated with two orthogonal
vectors lying in the plane tangent to S at the point ti. If n = dim S, then
we call N a nodal minimal determining set for S provided that any s ∈ S is
uniquely determined by the values λ1s, . . . , λns.

Suppose N is a nodal minimal determining set for a spherical spline
space S, and that m̄ is the order of the highest derivative involved. Then
for any function f ∈ Cm̄(S), there exists a unique spline sf ∈ S satisfying

λsf = λf, all λ ∈ N .

This defines a linear projector IS mapping Cm̄(S) onto S.

13.4.6 Dimension of Spherical Spline Spaces

In this section we show how to extend results on the dimension of bivariate
spline spaces to spherical spline spaces. As in the bivariate case, we define
a cell △v to be a collection of spherical triangles sharing a common vertex
v such that eachy pair of triangles have at least one edge in common. As in
the bivariate case, we distinguish between boundary cells, which correspond
to the case where v is a boundary vertex of △v, and interior cells where
where v is an interior vertex of △v. Let |△v| be the maximum geodesic
distance between any two points in △v.

Theorem 13.40. Let △v be a boundary cell with n interior edges attached
to the vertex v, and suppose that |△v| < 1. Then for any 0 ≤ r ≤ d,

dim Sr
d (△v) =

(
d+ 2

2

)
+ n

(
d− r + 1

2

)
.

Proof: This result is the analog of Theorem 9.2. If we project △v radially
onto the tangent plane to S at v, we get a planar boundary cell △̃v attached
to the vertex v. Let S̃r

d(△̃v) be the space of bivariate splines obtained by
taking the homogeneous extension of degree d of each spline s ∈ Sr

d(△v)
to R

3 and then restricting it to the tangent plane. Since the extension is
unique, it follows that S̃r

d (△̃v) is isomorphic to Sr
d (△v). Now the number

of interior edges in △̃v is just n, and the result follows from Theorem 9.2.

Theorem 13.41. Let △v be an interior cell formed by n triangles sharing
a vertex v, and suppose |△v| < 1. Suppose v1, . . . , vn are the boundary
vertices of △v. For each i = 1, . . . , n, let πi be the plane spanned by
the vectors v and vi. Let mv be the number of distinct planes in the set
{π1, . . . , πn}. Then for any 0 ≤ r ≤ d,

dim Sr
d(△v) =

(
r + 2

2

)
+ n

(
d− r + 1

2

)
+ σv,
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where

σv :=
d−r∑

j=1

(r + j + 1 − jmv)
+
.

Proof: This result is the analog of Theorem 9.3, and follows from it by
the same mapping argument as used in the proof of Theorem 13.40.

We call the πi cutting planes associated with the edges 〈v, vi〉. We now
show how to use Theorem 13.41 to identify the dimension of the spherical
spline space Sr

d(△) defined in (13.28) for d ≥ 3r + 2, and to construct a
minimal determining set for it. First we need to examine the concepts of
degenerate and singular vertices, since they are slightly different on the
sphere.

Definition 13.42. Suppose that 〈v1, v2, v3〉, 〈v4, v3, v2〉 are two spherical
triangles sharing an edge e := 〈v2, v3〉. Then we say that e is degenerate at

v2 provided the cutting planes π2 and π3 associated with the edges 〈v2, v1〉
and 〈v2, v4〉 coincide. We say that a vertex v is singular provided that there
are exactly four edges attached to it, and they are all degenerate at v.

In contrast to the planar case where an edge can be degenerate at
only one endpoint, for spherical triangulations, it is possible for an edge
to be degenerate at both ends. This can happen, however, only if the
points v2 and v3 in Definition 13.42 are antipodal. Thus, this problem can
be avoided by working only with spherical triangulations with no pairs of
antipodal vertices. In order to apply Theorems 13.40 and 13.41, we assume
more: namely, that |star(v)| < 1 for every vertex v of △. The following
is an analog of Theorem 9.15, and can be proved in a similar way. Given
d ≥ 3r + 2, let

µ := r +
⌊r + 1

2

⌋
,

and let AT , CT , DT
µ , E

T , F T , GT
L , G

T
R be the subsets of the set of domain

points Dd,△ defined in (9.17).

Theorem 13.43. Suppose △ is a spherical triangulation with |star(v)| < 1
for every vertex v of △, and suppose d ≥ 3r + 2. Then the following set
M of domain points is a minimal determining set for the space Sr

d(△) of
spherical splines:

1) For each boundary vertex v of △, choose a minimal determining set
for Sr

µ(△v), where △v = star(v).

2) For each interior vertex v of △, choose a minimal determining set for
Sr

µ(△v).

3) For each triangle T in △, include CT .
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4) For each edge e of △, include ET (e) for some triangle T with edge e.
If e is a boundary edge, there is only one such triangle, while if it is
an interior edge, T can be either of the two triangles sharing e. If e is
a boundary edge, also include GT

L(e) and GT
R(e).

5) For each triangle T := 〈u, v, w〉, include AT (u), AT (v), and AT (w).

6) If T1 := 〈v, w1, w2〉 and T2 := 〈v, w2, w3〉 are two triangles sharing a
degenerate edge e := 〈v, w2〉, then replace AT2(v) by GT1

L (e).

7) If v is a singular vertex, reinsert AT (v) for one triangle T attached to
v.

If △ covers S, there are no boundary vertices or boundary edges in △,
and the definition of M in Theorem 13.43 is somewhat simplified. We can
now compute the dimension of the spherical spline space Sr

d(△) by simply
counting the number of points in M, cf. Theorem 9.16. The result depends
on whether △ covers S or not.

We begin with the case where △ does not cover S. Let VI denote the
set of interior vertices of △. In addition, let

σ :=
∑

v∈VI

σv, (13.31)

where for each v ∈ VI ,

σv :=
d−r∑

j=1

(r + j + 1 − jmv)
+
,

and mv is the number of distinct cutting planes passing through v.

Theorem 13.44. Let △ be a regular triangulation of a spherical domain
Ω with no holes. Suppose △ does not cover S, and that |star(v)| < 1 for
every vertex v of △. Let VB and VI be the number of boundary and interior
vertices of △, respectively. Then for all d ≥ 3r + 2,

dim Sr
d(△) =

d2 + r2 − r + d− 2rd

2
VB + (d− r)(d − 2r)VI

+
−2d2 + 6rd− 3r2 + 3r + 2

2
+ σ,

where σ is as in (13.31).

When △ covers S, we have the following somewhat simpler formula.

Theorem 13.45. Let △ be a spherical triangulation that covers S. Let V
be the number of vertices of △, and suppose |star(v)| < 1 for all vertices v
of △. Then

dim Sr
d(△) = (d− r)(d − 2r)V +

−2d2 + 6dr − 3r2 + 3r + 2

2
+ σ,

where σ is as in (13.31).
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To construct a basis for Sr
d (△), we can take the set of M-basis splines

associated with the minimal determining set M of Theorem 13.43. How-
ever, just as in the bivariate case, while this basis is local, it not guaranteed
to be stable as in Definition 13.38. To get a stable local basis for Sr

d(△), we
have to follow the more complicated construction described in Chapter 11
for bivariate splines.

Following Section 9.5, for d ≥ 3r + 2, we can also construct minimal
determining sets and compute the dimension of the spherical superspline
spaces

S
r,ρ
d (△) := {s ∈ Sr

d(△) : s ∈ Cρ(v), all vertices v}

for both of the cases where △ covers S and when it does not.
There are no analogs of the results of Section 9.6 on type-I and type-

II triangulations, since on the sphere, type-I and type-II triangulations
do not exist. Indeed, if △ were a type-I triangulation on S, then there
would be exactly six edges attached to each vertex, and it would follow that
E = 3V , which contradicts Theorem 13.33. Similarly, if △ were a type-
II triangulation on S, then there would be exactly eight edges attached
to each vertex, and it would follow that E = 4V , which also contradicts
Theorem 13.33.

The upper and lower bounds established in Section 9.7 for general
bivariate superspline spaces ST

d (△) associated with a set T of smoothness
functionals can be carried over to the analogous spherical spline spaces
ST

d (△) defined in (13.29).

13.5. Spherical Macro-element Spaces

We saw in Chapters 6–8 that one way to create spaces of bivariate splines
with convenient stable local minimal determining sets as well as convenient
stable local nodal minimal determining sets is to work with splines defined
on a refinement △R of a given general triangulation △. The following is
the analog of Definition 5.27.

Definition 13.46. Suppose N is a nodal determining set for a space of
spherical splines S ⊂ S0

d(△R). For each triangle T ∈ △, suppose that the
data {λs}λ∈NT

uniquely determine s|T , where NT := {λ ∈ N : the carrier
of λ is contained in T}. Then we say that S is a spherical macro-element

space.

Suppose S is a spherical macro-element space with nodal determining
set N . Then for any sufficiently smooth function f , there is a unique Her-
mite interpolating spline s ∈ S such that λs = λf for all λ ∈ N . The
fact that S is a macro-element space means that s can be computed one
triangle at a time. As in the bivariate case, we are interested in macro-
element spaces which have good approximation properties. Since spherical
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splines and bivariate splines share a common algebraic structure, it is clear
that every bivariate macro-element space has a direct spherical analog. In
particular, we have spherical analogs of all of the bivariate macro-element
spaces discussed in Chapters 6–8. These include all of the macro-elements
based on the Clough–Tocher, Powell–Sabin, Powell–Sabin-12, Wang, and
Double-Clough–Tocher splits, as well as those based on triangulated quad-
rangulations.

13.6. Remarks

Remark 13.1. There is no universal agreement in the literature on the
definition of spherical polynomials. Some authors refer to the (d + 1)2-
dimensional space Pd|S discussed in Section 13.1.9 as the space of spherical
polynomials of degree d.

Remark 13.2. Derivatives of a spherical polynomial p can also be com-
puted in terms of the spherical coordinates θ and φ using the chain rule.
Let

∇bp =

(
∂p

∂b1
,
∂p

∂b2
,
∂p

∂b3

)
,

where b1, b2, b3 are the barycentric coordinate functions relative to some
spherical triangle T . Then

∂p

∂θ
(v) = ∇bp ·

(
∇b1 ·

∂v

∂θ
,∇b2 ·

∂v

∂θ
,∇b3 ·

∂v

∂θ

)
.

A similar formula holds for the partial derivative with respect to φ. Higher
derivatives can also be computed this way, but become more complicated.

Remark 13.3. The word spherical spline has been used in the literature
for certain spaces of functions which do not have a piecewise structure, but
instead are radial basis functions. These kinds of spherical splines arise out
of certain natural variational problems, and have been intensively studied,
see [FasS98, FreeGS98] and references therein.

Remark 13.4. In contrast to the bivariate case, there does not seem to
be a simple explicit formula for integrals of spherical Bernstein basis poly-
nomials. In fact, this difficulty arises already in the case of the circular
Bernstein–Bézier polynomials discussed in Section 13.1.7. As shown there,
these functions are essentially trigonometric polynomials. Although recur-
rence relations exist for computing integrals of products of trigonometric
functions over an arbitrary interval, a convenient closed-form formula does
not seem to be available.
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Remark 13.5. It was shown in [BroW92] that it is impossible to con-
struct barycentric coordinates on spherical triangles which have the usual
properties of the barycentric coordinates associated with planar triangles,
including the property that they sum to one. This observation may have
held back the development of spherical splines, which began only after it
was realized by Alfeld, Neamtu, and Schumaker [AlfNS96a–AlfNS96c] that
the partition of unity property was not an essential property.

Remark 13.6. The definition of the functions h1, h2, h3 in (13.12) does
not require that the points v1, v2, v3 lie on the unit sphere. The more
general case was treated in [AlfNS96a] where the hi were called trihedral

coordinates and the associated functions Hd
ijk defined in (13.14) were called

homogeneous Bernstein basis polynomials. Most of the properties of the Hd
ijk

discussed here also hold in the more general case.

Remark 13.7. It is easy to construct explicit linear functionals {γξ}ξ∈Dd,△

that pick off the B-coefficients of a spherical spline in S0

d (△). For an explicit
construction, see Remark 14.3. For a different construction, see [BarL05].

Remark 13.8. For some Fortran code for constructing Delaunay triangu-
lations on the surface of the sphere, see [Ren97].

13.7. Historical Notes

The theory of spherical splines as presented in this chapter was initiated
by the work of Alfeld, Neamtu, and Schumaker in the series of papers
[AlfNS95, AlfNS96a–AlfNS96c]. The main breakthrough was the realiza-
tion that one could define appropriate spherical barycentric coordinates
by giving up the partition of unity property. It was pointed out later by
Helmut Pottmann that the spherical barycentric coordinates introduced in
[AlfNS96a] are precisely the same as those studied by Möbius over 120 years
earlier, see [Moe86].

Bernstein basis methods for homogeneous polynomials on trihedral
partitions were first studied in the paper [AlfNS96a], where the connec-
tion with spherical harmonics was also explained. They were later used
in [AlfNS96c] to establish results on the dimension and existence of local
bases for spherical spline spaces. Circular Bernstein–Bézier polynomials
were introduced in [AlfNS95].

The fact that there are spherical analogs for all of the usual bivariate
macro-element spaces was observed in [AlfNS96b], where several explicit
methods including the C1 polynomial, Clough–Tocher, and Powell–Sabin
elements were explicitly discussed along with numerical experiments.



Approximation Power

of Spherical Splines

Throughout this chapter we suppose that S is the unit sphere centered at
the origin. Our aim is to discuss how well smooth functions defined on S

can be approximated by spherical polynomials and spherical splines.

14.1. Radial Projection

In this section we introduce a natural radial projection operator which will
be useful for establishing approximation results for spherical polynomials
and splines. Given a point v

D
on S and a real number 0 < r < π/2, we

define the associated spherical cap D := Dv
D

,r of radius r to be the set of
all points v on S such that the geodesic distance from v to v

D
is at most r.

Definition 14.1. Suppose D is a spherical cap with center v
D

and radius
at most 1/2, and let π

D
be the plane that is tangent to S at v

D
. Then we

define the radial projection R
D

mapping D into π
D

by

R
D

v := v̄, v ∈ D,

where v̄ is the unique point on π
D

such that v = v̄/|v̄|.

The mapping R
D

takes the spherical cap D one-to-one onto a disk D̄

with center at v
D

and lying in π
D

. If r
D

is the radius of D, then the radius
of D̄ is tan r

D
. An arbitrary spherical cap B ⊆ D is mapped onto an ellipse

B̄ contained in D̄. B̄ is a disk if and only if the centers of B and D coincide.
Clearly, R

D
maps circular arcs in the cap D onto line segments in the disk

D̄. It thus maps spherical triangles into planar triangles, see Figure 14.1.

14.2. Projections of Triangulations

Throughout this section we suppose that D is a spherical cap of radius 1/2.
Suppose △ is a spherical triangulation contained in D. Then R

D
maps △

onto a planar triangulation △̄ contained in D̄. The connectivity of △ is
preserved under this mapping, so △̄ has the same number of vertices, edges,
and triangles as △. The shapes of the triangles are of course different, see
Figure 14.1. In this section we compare shape properties of triangles in △

and △̄. First we compare the lengths of edges.
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Fig. 14.1. Radial mapping of a spherical triangle to a planar triangle.

Fig. 14.2. Mapping of an arc.

Lemma 14.2. Suppose D is a spherical cap with radius 1/2. Let a be a cir-
cular arc in D of geodesic length |a|, and let ā := R

D
a be the corresponding

line segment in D̄. Then

K|ā| ≤ |a| ≤ |ā|, (14.1)

where K := cos2(1/2).

Proof: We may suppose that the center of the cap D is the north pole of
S, and that o is the origin of S. Let v1 and v2 be the endpoints of a, and
let v̄1 and v̄2 be the endpoints of the line segment ā in the tangent plane
π

D
. Let A := 〈o, w1, w2〉 be a planar isosceles triangle that contains the arc

a, and whose sides meeting at o have length K1 := 1/ cos(1/2). Then ā is
just the intersection of A with the tangent plane to S at the north pole.

To prove the first inequality, we now rotate A to make the length of ā

maximal, keeping the length of a constant. This happens when the arc a lies
in a plane through the z-axis and v2 is on the boundary of D. Figure 14.2
shows the arc and its image, both marked with thicker lines. With A in
this position, we have w2 = v̄2. Comparing A with a similar triangle with
side lengths 1, we see that the edge e := 〈w1, w2〉 has length at most K1|a|.
Now consider the triangle B := 〈w1, v̄1, v̄2〉. It is easy to see that the angle
of B at v̄2 is at most 1/2, while the angle at w1 is less than π/2. It follows
that

|ā| ≤ K1 |e| ≤ K2

1
|a|.
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To prove the second inequality, we observe that as we rotate A (which
corresponds to moving a around within the cap), the length of ā becomes
minimal when v1 and v2 are equidistant from the north pole. It follows
that

|ā| ≥ 2 tan(|a|/2) ≥ |a|.

Given a spherical triangle T , let r
T

be the radius of the smallest spher-
ical cap containing T . Let r

T̄
be the radius of the smallest disk containing

the planar triangle T̄ = R
D

T .

Lemma 14.3. Suppose △ is a spherical triangulation contained in a spher-
ical cap of radius 1/2. Then for any T ∈ △,

K r
T̄
≤ r

T
≤ 2 r

T̄
, (14.2)

where K := cos2(1/2).

Proof: The smallest spherical cap σ containing T is mapped onto an ellipse
containing T̄ . Let o be the center of σ, and let ō be its image in T̄ . Let ∂σ

be the boundary of σ. Then by Lemma 14.2,

r
T̄
≤ max

v∈∂σ
|ō − v̄| ≤

r
T

cos2(1/2)
,

which establishes the first inequality in (14.2). On the other hand, again
using Lemma 14.2,

r
T̄
≥

|T̄ |

2
≥

|T |

2
≥

r
T

2
,

where |T | and |T̄ | are the lengths of the longest edges in T and T̄ , respec-
tively.

We turn now to the shape of triangles in △ and △̄. Given a spheri-
cal triangle T , we define the inscribed cap to be the largest spherical cap
contained in T . We call the center v

T
of this inscribed cap the incenter of

T , and refer to its radius ρ
T

as the inradius of T . We now compare the
inradius of T to the inradius of its image T̄ = R

D
T .

Lemma 14.4. Suppose △ is a spherical triangulation lying in a spherical
cap D with radius 1/2. Then for any T ∈ △,

K ρ
T̄
≤ ρ

T
≤ ρ

T̄
, (14.3)

where K := 1

2
cos2(1/2).

Proof: By the geometry, the largest spherical cap σ contained in T is
mapped onto an ellipse ǫ contained in the triangle T̄ . Let o be the center
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of σ, and let ō be its image in T̄ . Let rǫ be the radius of the largest circle
with center at ō that is contained in ǫ. Then

rǫ := min
v∈∂σ

|ō − v̄|.

But then using Lemma 14.2, we have

ρ
T̄
≥ rǫ ≥ ρ

T
,

which is the second inequality in (14.3). Now by Lemma 14.2, ρ
T
≥ K1ρǫ,

where
ρǫ := max

v∈∂σ
|ō − v̄|

and K1 := cos2(1/2). Since ρ
T̄
≤ 2ρǫ, the first inequality in (14.3) follows.

We now compare the size of angles in the triangles of △ with those in
△̄. If T := 〈v1, v2, v3〉, is a spherical triangle, then we define the angle of T

at v1 to be the dihedral angle of T at v1, i.e., the angle between the plane π2

passing through the origin o and the points v1, v2 and the plane π3 passing
through o and the points v1, v3. Given a spherical triangle T ∈ △, let θT be
the smallest angle in T . Let θT̄ be the smallest angle in the planar triangle
T̄ = R

D
T .

Lemma 14.5. Suppose △ is a spherical triangulation lying in a spherical
cap D with radius 1/2. Then for any T ∈ △,

θT̄ ≤ θT ≤ K θT̄ , (14.4)

where K := 4/(
√

3 cos2(1/2)).

Proof: Let T := 〈v1, v2, v3〉, and let π2 be the plane passing through the
origin o and the two points v1, v2. Similarly, let π3 be the plane passing
through o and the two points v1, v3. For i = 2, 3, let Li be the line lying
in πi that is perpendicular to e := 〈o, v1〉 at v1. Then the angle of T at v1

is the angle between these two lines. Now the edge 〈v̄1, v̄2〉 of T̄ lies in the
plane π2, while 〈v̄1, v̄3〉 lies in π3. Since these edges are not perpedicular
to e, the angle between them must be smaller than the angle between the
planes, and we have established the first inequality in (14.4).

To establish the second inequality, let vc be the center of the largest
spherical cap contained in T . Without loss of generality, we may assume
that the length ℓ of the arc from v1 to vc is larger than the lengths of the
arcs from v2 to vc and from v3 to vc. By the spherical law of sines,

sin(θ1/2) =
sin ρ

T

sin ℓ
,
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where θ1 denotes the angle of T at v1. Using Lemmas 14.2 and 14.3, we
have

θT ≤
4 sin(θ1/2)

π
≤

2ρ
T

ℓ
≤

4ρ
T

|T |
≤

4

cos2(1

2
)

ρ
T̄

|T̄ |
.

Since the smallest angle in a planar triangulation is at most π/3, we have

ρ
T̄

|T̄ |
≤ tan(θT̄ /2) ≤

θT̄√
3
,

and the second inequality in (14.4) follows.

We conclude this section with a result on areas. Given T ∈ △, let AT

and AT̄ be the areas of T and T̄ = R
D

T , respectively.

Lemma 14.6. Suppose △ is a spherical triangulation lying in a spherical
cap D with radius 1/2. Then for any T ∈ △,

KAT̄ ≤ AT ≤ AT̄ , (14.5)

where the constant K is positive and depends only on the smallest angle in
T .

Proof: Since the area of a spherical cap of radius r is 2π(1 − cos r) =
4π sin2(r/2), it follows that

4

π
ρ2

T
≤ 4π sin2(ρ

T
/2) ≤ AT ≤ 4π sin2(r

T
/2) ≤ πr2

T
,

where ρ
T

is the inradius of T and r
T

is the radius of the smallest cap
containing T . Simple trigonometry shows that

r
T̄
≤ |T̄ | ≤

2ρ
T̄

tan(θT̄ /2)
.

We are ready to prove the first inequality in (14.5). Using Lemma 14.4,
we have

AT̄ ≤ πr2

T̄
≤

4π ρ2

T̄

tan2(θT̄ /2)
≤

16π ρ2

T

tan2(θT̄ /2) cos4( 1

2
)
≤

4π2

tan2(θT̄ /2) cos4(1

2
)

AT .

To prove the second inequality, we note that the volume of a tetrahedron
with height 1 and base of area AT̄ is AT̄ /3. The volume of the spherical
wedge associated with T is AT /3. Since the volume of the wedge is bounded
above by the volume of the tetrahedron, it follows that AT ≤ AT̄ .
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14.3. Norms on the Sphere

In this section we introduce some notation and establish three useful results
relating to norms of functions defined on the unit sphere S. Throughout
the section we assume that Ω is the closure of a simply connected open
subset of the unit sphere S. We call Ω a spherical domain. First we recall
that the standard q-norms defined on a spherical domain Ω are defined by

‖f‖q,Ω :=






ess supv∈Ω
|f(v)|, if q = ∞,

( ∫

Ω

|f(v)|qdσ

)1/q

, if 1 ≤ q < ∞,

where σ is Lebesgue measure on S.

14.3.1 Norms of Homogeneous Extensions

Given a function f defined on S and an integer n, we define the homogeneous

extension of f of degree n by

fn(v) := |v|nf(v/|v|), v ∈ R
3
\ {0}.

Our first result compares the norm of a function defined on S with the norm
of its homogeneous extension of degree n restricted to a tangent plane.

Lemma 14.7. Suppose Ω is a spherical domain that is contained in a
spherical cap D of radius 1/2, and let π

D
be the plane that is tangent to S

at the center of D. Let f ∈ Lq(Ω) for fixed 1 ≤ q ≤ ∞. Given an integer
n, let f̄n be the restriction to Ω̄ of the homogeneous extension fn of f of
degree n. Then

K1‖f‖q,Ω ≤ ‖f̄n‖q,Ω̄ ≤ K2‖f‖q,Ω, (14.6)

where

K1 :=





m

n+3/q

Ω
, n + 3

q
≥ 0,

M
n+3/q

Ω
, n + 3

q
< 0,

K2 :=





M

n+3/q

Ω
, n + 3

q
≥ 0,

m
n+3/q

Ω
, n + 3

q
< 0,

(14.7)

with

m
Ω

:= inf
{
|v̄|, v̄ ∈ Ω̄

}
≥ 1, M

Ω
:= sup

{
|v̄|, v̄ ∈ Ω̄

}
≤

1

cos(1/2)
.

Here the exponents in (14.7) are understood to be equal to n for q = ∞.

Proof: We prove (14.6) for q < ∞. The case q = ∞ is similar and simpler.
Let σ and σ̄ denote the Lebesgue measures on S and π

D
, respectively. Using

the substitution v 7→ v̄ := R
D

v ∈ Ω̄, it follows by a change of variable that
∫

Ω

|f(v)|qdσ =

∫

Ω̄

∣∣f(R−1

D v̄)
∣∣q |v̄|−3dσ̄.
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By the homogeneity of fn and the identity |R
−1

D v̄| = |v| = 1 for v̄ ∈ Ω̄, we
can write

f̄n(v̄) = fn(v̄) = fn

(
|v̄|R−1

D v̄
)

= |v̄|nfn(R−1

D v̄) = |v̄|nf(R−1

D v̄),

and therefore
∫

Ω

|f(v)|q dσ =

∫

Ω̄

|v̄|−(nq+3) |f̄n(v̄)|q dσ̄.

Now (14.6) follows immediately using m
Ω
≤ |v̄| ≤ M

Ω
. The bound m

Ω
≥ 1

is trivial, while M
Ω
≤ 1/ cos( 1

2
) follows from the fact that Ω is contained in

a cap of radius 1/2.

14.3.2 Norms of Spherical Polynomials on Spherical Triangles

In this section we explore the connection between the q-norm and the ∞-
norm of a spherical polynomial defined on a spherical triangle T .

Lemma 14.8. Let T be a spherical triangle that is contained in a spherical
cap of radius 1/2, and let 1 ≤ q ≤ ∞. Then there exists a constant K

depending only on d, q, and the smallest angle of T such that for every
spherical polynomial p of degree d,

A
−1/q

T ‖p‖q,T ≤ ‖p‖∞,T ≤ K A
−1/q

T ‖p‖q,T , (14.8)

where AT is the area of T .

Proof: The first inequality in (14.8) is elementary. To prove the second
inequality, let p̄d := pd|T̄ , where T̄ is the image of T under the mapping
R

D
associated with the spherical cap of radius 1/2 centered at the incenter

of T . Note that p̄d is an ordinary bivariate polynomial defined on T̄ . Now
using (1.4), we have

‖p̄d‖∞,T̄ ≤ K1A
−1/q

T̄
‖p̄d‖q,T̄ ,

where K1 depends only on d. Using this fact and Lemma 14.7 (with n = d),
we obtain

‖p‖∞,T ≤ K2 ‖p̄d‖∞,T̄ ≤ K3A
−1/q

T̄
‖p̄d‖q,T̄ ≤ K4A

−1/q

T ‖p‖q,T ,

where in the last step we used (14.5) and Lemma 14.7.

14.3.3 Stability of the Spherical B-form

In this section we establish the connection between the size of the B-
coefficients of a spherical polynomial and the size of the polynomial it-
self. This is the analog of Theorem 2.7 for bivariate polynomials. Let T

be a spherical triangle, and let {Bd
ijk}i+j+k=d be the associated spherical

Bernstein basis polynomials of degree d.
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Theorem 14.9. Let T be a spherical triangle that is contained in a spher-
ical cap of radius 1/2, and let 1 ≤ q ≤ ∞. Then

A
1/q

T

K
‖c‖q ≤ ‖p‖q,T ≤ 3dA

1/q

T ‖c‖q (14.9)

for every

p =
∑

i+j+k=d

cijkBd
ijk.

The constant K depends only on d.

Proof: Using (13.6), we have

|p(v)| ≤ ‖c‖∞
∑

i+j+k=d

Bd
ijk(v) ≤ 3d‖c‖∞ (14.10)

for all v ∈ T . This implies the second inequality in (14.9) for q = ∞. To
prove it for 1 ≤ q < ∞, we integrate the q-th power of (14.10) over T and
use the fact that ‖c‖∞ ≤ ‖c‖q.

We now prove the first inequality in (14.9). The homogeneous exten-
sion p̄ of p of degree d is given by p̄ :=

∑
i+j+k=d cijkB̄d

ijk, where B̄d
ijk are

the bivariate Bernstein basis polynomials associated with T̄ . Let AT̄ be
the area of T̄ := R

D
T . By (2.19), (14.6), and the fact that AT ≤ AT̄ (see

Lemma 14.6),

‖c‖q ≤ K1A
−1/q

T̄
‖p̄‖q,T̄ = K1A

−1/q

T

(
A

1/q

T

A
1/q

T̄

)
‖p̄‖q,T̄ ≤ KA

−1/q

T ‖p‖q,T .

14.4. Spherical Sobolev Spaces

Let 1 ≤ q ≤ ∞, and let Ω be a spherical domain. Our aim in this section
is to define spherical analogs of the classical Sobolev spaces W k

q (B), and to
construct corresponding seminorms which annihilate spherical polynomials.
To get started, suppose that {(Γj , φj)} is an atlas for Ω, i.e., a finite collec-
tion of charts (Γj , φj), where Γj are open subsets of Ω whose union covers
Ω, and where φj are infinitely differentiable mappings φj : Γj → Bj , Bj

an open subset of R
2, whose inverses φ−1

j are also infinitely differentiable.
Also, let {αj} be a partition of unity subordinated to the atlas {(Γj, φj)},
i.e., a set of infinitely differentiable functions αj on Ω vanishing outside the
sets Γj , such that

∑
j αj = 1 on Ω.

Definition 14.10. Let Ω ⊆ S. Then given 1 ≤ q ≤ ∞ and k > 0, we
define the associated spherical Sobolev space to be

W k
q (Ω) :=

{
f : (αjf) ◦ φ−1

j ∈ W k
q (Bj), for all j

}
(14.11)

with norm ‖f‖k,q,Ω :=
∑

j ‖(αjf) ◦ φ−1

j ‖W k
q (Bj)

.
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The Sobolev space W k
q (Ω) is just the space of all functions f defined

on Ω for which ‖f‖W k
q (Ω) is finite. It is well known [Aub82, LioM72] that

this definition does not depend on the choice of the atlas or the partition of
unity, in the sense that other choices will give rise to the same space with
a norm that is equivalent to the one introduced in Definition 14.10. We
now relate functions in a spherical Sobolev space to bivariate functions in
an ordinary Sobolev space.

Lemma 14.11. Let Ω be a spherical domain contained in a spherical cap
D of radius 1/2, and let Ω̄ be the image of Ω under the map R

D
into the

tangent plane π
D

as in Section 14.1. Let k and n be positive integers.
Suppose f is a function defined on Ω, and let f̄n be the restriction to Ω̄ of
the homogeneous extension fn of degree n of f . Then for any 1 ≤ q ≤ ∞,
f ∈ W k

q (Ω) if and only if f̄n ∈ W k
q (Ω̄).

Proof: Let f̂ : Ω̄ → R be defined as f̂(v̄) := f(R−1

D v̄), v̄ ∈ Ω̄. It is well

known that f ∈ W k
q (Ω) if and only if f̂ ∈ W k

q (Ω̄). This is because in the

definition of W k
q (Ω), we can choose an atlas consisting of a single chart

(Γ, φ), where Γ = Ω and φ : Γ → B := Ω̄, where φ(v) := R
D

v = v̄ ∈ Ω̄, for
v ∈ Ω. Since Ω is contained in a spherical cap of radius 1/2, the mapping φ

is a C∞-diffeomorphism of Ω onto Ω̄. Thus, in this case (14.11) expresses

the fact that f ∈ W k
q (Ω) if and only if f ◦ φ−1 = f̂ ∈ W k

q (Ω̄).

Now note that f̄n(v̄) = |v̄|nf̂(v̄), v̄ ∈ Ω̄. Since the functions |v̄|n and
|v̄|−n are bounded infinitely differentiable functions whose derivatives are
also bounded, using the Leibnitz rule we see that multiplying any function
in W k

q (Ω̄) by |v̄|n and |v̄|−n results in a new function in the same Sobolev
space. We conclude that f̂ ∈ W k

q (Ω̄) if and only if f̄n ∈ W k
q (Ω̄), which

combined with the above completes the proof.

The following lemma shows that the trivariate functions obtained as
homogeneous extensions of functions belonging to a spherical Sobolev space
are differentiable in some sense. Given a multi-index α := (α1, α2, α3), we
write Dα := Dα1

x Dα2

y Dα3

z and |α| := α1 + α2 + α3.

Lemma 14.12. Let Ω be as in the previous lemma, and let f ∈ W k
q (Ω)

for some k ≥ 1. Then (Dαfk−1) |Ω ∈ Lq(Ω) for all multi-indices α with
|α| = k.

Proof: Let g := (Dαfk−1) |Ω. Note that whenever a trivariate homoge-
neous function is differentiated, the derivative is also homogeneous, and in
particular, g−1 := Dαfk−1 is homogeneous of degree −1. It will be suf-
ficient to show that ḡ−1 := g−1|Ω̄ ∈ Lq(Ω̄), since then by Lemma 14.7,
g = g−1|Ω ∈ Lq(Ω). We may assume without loss of generality that the
center v

D
of the smallest spherical cap D containing Ω is the north pole

(i.e., π
D

is the plane z = 1), and that the coordinates in π
D

are the usual
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(x, y)-coordinates. Let Dr denote differentiation in the radial direction, i.e.,
for |r| = 1 and a trivariate function h, we have

Drh = xDxh + yDyh + zDzh.

Since with |β| = k − 1 the function Dβfk−1 is homogeneous of degree zero,
it follows that

DrD
βfk−1 = 0. (14.12)

Using Dz = z−1(Dr − xDx − yDy), z 6= 0, and (14.12), we obtain

DzD
βfk−1 = z−1(Dr − xDx − yDy)D

βfk−1

= −z−1(xDxDβfk−1 + yDyDβfk−1).

Iterating this identity, we obtain the more general formula

Dα3

z Dα1

x Dα2

y fk−1 = (−z)−α3

α3∑

ℓ=0

(
α3

ℓ

)
xℓyα3−ℓDα1+ℓ

x Dα2+α3−ℓ
y fk−1,

(14.13)
which holds whenever α1 + α2 + α3 = k.

Let (x, y, z) ∈ Ω̄. By our assumption on π
D

, we have z = 1. Moreover,

|x| ≤ MΩ, |y| ≤ MΩ,

where MΩ is the constant in Lemma 14.7. It follows that |
(
α3

ℓ

)
xℓyα3−ℓ| ≤

(|x| + |y|)α3 ≤ (2M
Ω
)α3 . We can now bound (14.13) as

‖ḡ−1‖q,Ω̄ = ‖Dα1

x Dα2

y Dα3

z fk−1‖q,Ω̄

=
∥∥∥

α3∑

ℓ=0

(
α3

ℓ

)
xℓyα3−ℓDα1+ℓ

x Dα2+α3−ℓ
y fk−1

∥∥∥
q,Ω̄

≤ (2M
Ω
)α3

∑

γ1+γ2=k

‖Dγ1

x Dγ2

y fk−1‖q,Ω̄

= (2M
Ω
)α3

∑

γ1+γ2=k

‖Dγ1

x Dγ2

y f̄k−1‖q,Ω̄

≤ (2M
Ω
)α3 ‖f̄k−1‖W k

q (Ω̄) < ∞,

(14.14)

where it is understood that the trivariate homogeneous functions involved
in the above inequalities are first restricted to Ω̄ before we take their Lq

norms. The last inequality follows from Lemma 14.11 with n = k − 1 since
f ∈ W k

q (Ω).

Our next result shows that the Sobolev norm of f̄n = fn|Ω̄ does not
depend in an essential way on the degree n of the homogeneous extension
of f that is used to define fn.
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Lemma 14.13. Let Ω ⊂ S be as in Lemma 14.11, and suppose f ∈ W k
q (Ω).

Let f̄m and f̄n be two homogeneous extensions of f restricted to Ω̄. Then

‖f̄m‖k,q,Ω̄ ≤ K ‖f̄n‖k,q,Ω̄,

for some constant K depending only on k, m, and n.

Proof: Note that f̄m = gf̄n, where g(u) := ‖u‖m−n, u ∈ π
D

, i.e., g is the
restriction of the trivariate function ‖ · ‖m−n to π

D
. It is not difficult to see

that g is infinitely differentiable, and hence all of its partial derivatives are
bounded on Ω̄, since Ω̄ is bounded. Let (ξ, η) be a Cartesian coordinate
system in π

D
, and let

K1 := sup{‖Dγg‖∞,Ω̄ : |γ| ≤ k} < ∞,

where Dγ = D
γ1

ξ Dγ2

η . Since Ω is contained in a cap of radius 1/2, Ω̄ is
contained in a disk of radius tan(1/2), and it follows that K1 is bounded
by

sup{‖Dγg‖∞,B : |γ| ≤ k} < ∞,

which depends only on m − n and k. Now by the Leibnitz rule,

‖f̄m‖k,q,Ω̄ =
∑

|α|≤k

‖Dα(gf̄n)‖q,Ω̄ ≤ K1

∑

|α|≤k

∑

β≤α

‖Dβf̄n‖q,Ω̄

= K1

∑

|β|≤k

#{α : |α| ≤ k, α ≥ β} ‖Dβf̄n‖q,Ω̄

≤ K1

(
k + 2

2

)
‖f̄n‖k,q,Ω̄.

14.5. Sobolev Seminorms

We now turn to the problem of defining seminorms for the spaces W k
q (Ω).

In analogy with the bivariate case, where the Sobolev seminorms annihi-
late ordinary polynomials, we want to construct seminorms that annihilate
spherical polynomials.

Definition 14.14. Let Ω ⊆ S, and let f ∈ W k
q (Ω) for some k ≥ 0 and

1 ≤ q ≤ ∞. Then we define the Sobolev-type seminorm of f to be

|f |k,q,Ω :=
∑

|α|=k

‖Dαfk−1‖q,Ω, (14.15)

where ‖Dαfk−1‖q,Ω should be understood as the Lq-norm of the restriction
of the trivariate function Dαfk−1 to Ω.
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For k = 0, the above seminorm reduces to the usual Lq-norm, i.e.,

|f |0,q,Ω = ‖f‖q,Ω.

One reason why the seminorms (14.15) make sense is that they are locally
equivalent to the usual Sobolev seminorms of functions defined in a plane.
The precise statement is as follows. Let Ω be a spherical domain contained
in a cap D of radius 1/2, i.e.,

|Ω| := sup{arccos(u · v) : u, v ∈ Ω} < 1.

Let (ξ, η) be a local Cartesian system in the tangent plane π
D

associated
with Ω, i.e., |ξ| = |η| = 1, ξ · η = 0, and ξ · v

D
= η · v

D
= 0. Let | · |k,q,Ω̄ be

the usual Sobolev seminorm on Ω̄, i.e.,

|g|k,q,Ω̄ :=
∑

γ1+γ2=k

‖D
γ1

ξ Dγ2

η g‖q,Ω̄, g ∈ W k
q (Ω̄).

Combining Lemmas 14.7 and 14.13 leads to the following result.

Lemma 14.15. Let Ω ⊆ S with |Ω| ≤ 1. Then the seminorms | · |k,q,Ω and
| · |k,q,Ω̄ are equivalent in the sense that for every f ∈ W k

q (Ω),

K3 |f |k,q,Ω ≤ |f̄k−1|k,q,Ω̄ ≤ K4 |f |k,q,Ω. (14.16)

Here K3 and K4 are positive constants depending only on k and p.

Proof: Suppose f ∈ W k
q (Ω). Then

|f |k,p,Ω =
∑

α1+α2+α3=k

‖Dα1

x Dα2

y Dα3

z fk−1‖Lp(Ω)

≤ K−1

1

∑

α1+α2+α3=k

‖Dα1

x Dα2

y Dα3

z fk−1‖Lp(Ω̄)

≤ K−1

1

∑

α1+α2+α3=k

(2MΩ)α3

∑

γ1+γ2=k

‖Dγ1

x Dγ2

y f̄k−1‖Lp(Ω̄)

≤ K−1

1
(2MΩ)k

(
k + 2

2

)
|f̄k−1|k,p,Ω̄,

where above, in the first inequality, we used Lemma 14.7 with n = −1, and
in the second inequality, we employed (14.14). This proves the left-hand

inequality in (14.16) with K3 = K1(2MΩ)−k
(
k+2

2

)−1

> 0. On the other
hand,

|f |k,p,Ω =
∑

α1+α2+α3=k

‖Dα1

x Dα2

y Dα3

z fk−1‖Lp(Ω)

≥ K−1

2

∑

α1+α2+α3=k

‖Dα1

x Dα2

y Dα3

z fk−1‖Lp(Ω̄)

≥ K−1

2

∑

γ1+γ2=k

‖Dγ1

x Dγ2

y fk−1‖Lp(Ω̄)

= K−1

2
|f̄k−1|k,p,Ω̄,
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where in the first inequality, we used (14.6). This gives the right-hand
inequality in (14.16) with K4 = K2.

The main motivation behind the definition (14.15) of Sobolev semi-
norms for spherical functions is the requirement that they annihilate ap-
propriate spaces of spherical polynomials.

Lemma 14.16. Suppose Ω is a spherical domain with |Ω| ≤ 1. For all
f ∈ W k

q (Ω) with k ≥ 1, |f |k,q,Ω = 0 if and only if f is a spherical polynomial
of degree k − 1.

Proof: Clearly, |f |k,p,Ω = 0 if and only if |f |k,p,Ω′ = 0, for all Ω′ ⊆ Ω
such that |Ω′| ≤ 1. By Lemma 14.15 applied to Ω′, |f |k,p,Ω′ = 0 if and
only if |f̄k−1|k,p,Ω̄′ = 0. Since Ω̄′ is a planar region, |f̄k−1|k,p,Ω̄′ = 0 if and

only if f̄k−1 is a bivariate polynomial of degree at most k − 1 on every
open subset of Ω̄. Since Ω̄ is connected, this is equivalent to fk−1 being a
trivariate homogeneous polynomial of degree k − 1 on Ω̄. This in turn is
equivalent to f being a spherical polynomial of degree k−1, since the space
of such polynomials is just the space of trivariate homogeneous polynomials
of degree k − 1 restricted to Ω, see Section 13.1.8.

In view of the results in Section 13.1.9, the space Bk−1 of spherical
polynomials contains the spaces Bj of spherical polynomials of degree j

with 0 ≤ j ≤ k − 1 only for j = k − 1 (mod 2). Thus, |p|k,q,Ω = 0 for all
spherical polynomials p in Bj with 0 ≤ j ≤ k − 1 and j = k − 1 (mod 2),
but not for any other spherical polynomials.

14.6. Clusters of Spherical Triangles

Suppose △ is a spherical triangulation of a spherical domain Ω lying in
a spherical cap D of radius 1/2. We say that a collection T of triangles
in △ is an ℓ-cluster of spherical triangles provided there is a vertex v in △

such that all of the triangles in T are contained in starℓ(v). In this section
we establish several useful properties of clusters. While the results of this
section could be proved directly, here we will instead make use of radial
projection coupled with the results of Section 4.7 for planar clusters. We
write T̄ for the planar triangulation corresponding to T under the mapping
R

D
associated with the spherical cap D.
Recall that if T := 〈v1, v2, v3〉 is a spherical triangle, then the angle

of T at the vertex v1 is defined to be the angle between the planes π1

and π2 passing through the origin and containing the edges 〈v1, v2〉 and
〈v1, v3〉, respectively. We write θT for the smallest angle appearing in the
triangulation T . Similarly, we write θT̄ for the smallest angle in T̄ . In view
of Lemma 14.5,

θT̄ ≤ θT ≤
4

√
3 cos2(1/2)

θT̄ . (14.17)
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Lemma 14.17. Suppose T is an ℓ-cluster of spherical triangles whose
union is a spherical domain Ω. Suppose Ω lies in a spherical cap of radius
1/2. Then the number of triangles in T is bounded by a constant depending
on ℓ and θT .

Proof: Since the planar triangulation T̄ = R
D
T has exactly the same

combinatorial structure as T , the result follows from Lemma 4.13 coupled
with Lemma 14.5 and (14.17).

If T is a spherical triangle, we write |T | for the (geodesic) length of the
longest edge of T . The following is the spherical analog of Lemma 4.14.

Lemma 14.18. Suppose T is an ℓ-cluster of spherical triangles as in the
previous lemma. Then for any two triangles T and T̃ in T ,

|T |

|T̃ |
≤ K1, (14.18)

and
AT

A
T̃

≤ K2, (14.19)

where K1 and K2 are constants depending only on ℓ and θ
T
.

Proof: The bound (14.18) follows immediately from (4.9) coupled with
(14.1) and (14.17). Similarly, the bound (14.19) follows from (4.10).

Suppose T is a spherical triangle and ρ
T

is the radius of the largest
spherical cap contained in T . Then combining Lemmas 14.2, 14.4, and 14.5,
it follows that the ratio

κ
T

:= |T |/ρ
T

is bounded by a constant depending only on the smallest angle in T . As
in the planar case, we can regard κ

T
as a shape parameter for the spherical

triangle T .

Given an ℓ-cluster T of spherical triangles, let ΩT be the union of the
triangles in T . Then

|ΩT | ≤ 2ℓ |T |, (14.20)

where |T | denotes the length of the longest edge in the triangles of T .
Moreover, if ρ

T
is the smallest inradius of the triangles in T , then

|ΩT |

ρ
T

≤ K, (14.21)

for some constant K depending only on ℓ and the smallest angle in T . This
is the spherical version of (4.12).
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14.7. Local Approximation by Spherical Polynomials

In this section we establish a spherical analog of Theorem 1.9 which will
describe how well functions in a Sobolev space on the sphere can be ap-
proximated locally by spherical polynomials. Suppose that Ω is the closure
of a spherical domain lying in a spherical cap D of radius 1/2. Then we
define the convex hull co(Ω) of Ω as the set of all points lying on great circle
arcs 〈u, v〉 where both u and v lie in Ω. We say that Ω is convex whenever
it equals its convex hull. Now let π

D
be the tangent plane associated with

D, i.e., the plane tangent to S at the center of D. Let R
D

be the associated
mapping described in Section 14.1, and let Ω̄ = R

D
Ω. Then it is easy to

see that Ω is convex if and only if Ω̄ is convex. If Ω is not convex, we define
the Lipschitz constant of the boundary of Ω to be equal to the Lipschitz
constant of the boundary of Ω̄.

Suppose that Ω is convex. Following Section 1.6, we now introduce a
linear mapping Fd,Ω which takes functions in L1(Ω) to spherical polynomials
of degree d. Given f ∈ L1(Ω), let f̄d be the bivariate function defined on
Ω̄ obtained by taking the homogeneous extension of f of degree d and then
restricting it to Ω̄. Let F̄d,Ω̄f̄d be the averaged Taylor polynomial defined
in Section 1.5. Then we define Fd,Ωf to be the unique spherical polynomial
of degree d whose homogeneous extension of degree d restricted to Ω̄ is
F̄d,Ω̄f̄d. Thus, (Fd,Ωf)d = F̄d,Ω̄f̄d. This defines the operator Fd,Ω. We now
give a bound on its norm.

Theorem 14.19. Suppose Ω is the closure of a convex domain lying in a
spherical cap of radius 1/2, and let d ≥ 0. Let B

Ω
be the largest spherical

cap contained in Ω. Then

||Fd,B
Ω
f ||q,Ω ≤ K||f ||q,B

Ω
,

for all f ∈ Lq(BΩ
) with 1 ≤ q ≤ ∞. The constant K depends only on d

and κ
Ω

:= |Ω|/ρ
Ω
, where ρ

Ω
is the radius of B

Ω
.

Proof: Using Lemma 1.6 and Lemma 14.7, it immediately follows that

‖Fd,B
Ω
f‖q,Ω ≤ K1‖F̄d,B

Ω̄

f̄d‖q,Ω̄ ≤ K2‖f̄d‖q,B
Ω̄

≤ K3‖f‖q,B
Ω
.

The following is the analog of Theorem 1.9.

Theorem 14.20. Let Ω be the the closure of a convex spherical domain
lying in a spherical cap of radius 1/2, and let d ≥ 0. Then for every
f ∈ W d+1

q (Ω) with 1 ≤ q ≤ ∞,

|f − Fd,B
Ω
f |k,q,Ω ≤ K |Ω|d+1−k |f |d+1,q,Ω,

for all 0 ≤ k ≤ d + 1. The constant K depends only on d and the shape
parameter κ

Ω
defined in Theorem 14.19.
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Proof: Let p = Fd,Ωf . Using Theorem 1.9 and Lemmas 14.13 and 14.15,
we have

|f − p|k,q,Ω ≤ K1 |f̄k−1 − p̄k−1|k,q,Ω̄ ≤ K1‖f̄k−1 − p̄k−1‖k,q,Ω̄

≤ K2 ‖f̄d − p̄d‖k,q,Ω̄ = K2

k∑

ℓ=0

|f̄d − p̄d|ℓ,q,Ω̄

≤ K3

k∑

ℓ=0

|Ω̄|d+1−ℓ|f̄d|d+1,q,Ω̄

≤ K4

( k∑

ℓ=0

|Ω|ℓ
)
|Ω|d+1−k|f |d+1,q,Ω

≤ K5 |Ω|d+1−k|f |d+1,q,Ω.

Here we have used the fact that |Ω| ≤ 1, which in turn implies
∑k

ℓ=0
|Ω|ℓ ≤

k + 1 ≤ d + 1.

Using Theorems 1.8 and 1.9, this result can be extended to nonconvex
Ω. In this case the constant K also depends on the Lipschitz constant
of ∂Ω. In Section 14.9 we use the approximation theorems of this section
to determine the approximation power of spherical spline spaces. There
Ω will be an ℓ-cluster of spherical triangles, and the shape parameter B

Ω

associated with Ω will be bounded by a constant depending on the smallest
angle in the triangles of the cluster.

14.8. The Markov Inequality for Spherical Polynomials

In this section we establish a bound on the norm of the derivatives of a
spherical polynomial in terms of the norm of the polynomial itself. Given
a spherical triangle T , let R

D
be the radial mapping associated with the

smallest cap containing T with center at the incenter of T . Let T̄ := R
D
T

be the corresponding planar triangle, and let ρ
T

and ρ
T̄

be the inradii of T

and T̄ , respectively. Recall from (14.3) that

ρ
T
≤ ρ

T̄
≤

2ρ
T

cos2(1/2)
. (14.22)

Theorem 14.21. Suppose T is a spherical triangle with |T | ≤ 1. Then
there exists a constant K depending only on d such that for any spherical
polynomial p of degree d and any 1 ≤ q ≤ ∞,

|p|k,q,T ≤ Kρ−k
T

‖p‖q,T , all 0 ≤ k ≤ d. (14.23)
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Proof: Let π
D

be the plane tangent to S at the incenter of T . Let p̄d be
the restriction to π

D
of the homogeneous extension pd of p. Then by the

Markov inequality for bivariate polynomials (1.5),

|p̄d|ℓ,q,T̄ ≤ K1 ρ−ℓ

T̄
‖p̄d‖q,T̄ , ℓ = 0, . . . , d,

for some constant K1 depending on d. Thus,

|p|k,q,T ≤ K2 |p̄k−1|k,q,T̄ ≤ K2 ‖p̄k−1‖k,q,T̄ ≤ K3 ‖p̄d‖k,q,T̄

≤ K4

k∑

ℓ=0

ρ−ℓ

T̄
‖p̄d‖q,T̄ = K4

( k∑

ℓ=0

ρℓ
T̄

)
ρ−k

T̄
‖p̄d‖q,T̄ .

Now (14.22) implies ρ
T̄

≤ K5ρT
≤ K5|T | ≤ K5 which in turn implies∑k

ℓ=0
ρℓ

T̄
≤ Kd

5
(d + 1). Since (14.22) also gives ρ

T
≤ ρ

T̄
, we get (14.23).

14.9. Spaces with Full Approximation Power

In this section we discuss three cases where spherical spline spaces have full
approximation power in the sense of Definition 10.1.

14.9.1 Spherical Spline Spaces with a Stable Local MDS

Let △ be a spherical triangulation of a set Ω ⊆ S, where △ covers all or
part of S. Suppose S ⊆ S0

d (△) is a spherical spline space associated with
△, and suppose M is a stable local minimal determining set for S. We now
show how to use M to construct an explicit quasi-interpolation operator

Q mapping L1(S) onto S which provides full approximation power. Let
f ∈ L1(S). We define a spline Qf in S by explicitly constructing its
coefficients. Given ξ ∈ M, let γξ be a linear functional that for any spline
s ∈ S0

d(△) picks off the B-coefficient cξ corresponding to ξ, see Remark 14.3.
Let Tξ be a triangle containing ξ, and let

cξ = γξ(Fd,Tξ
f), (14.24)

where Fd,Tξ
f is the averaged Taylor polynomial of degree d associated with

Tξ, see Theorem 14.19.

We have now defined coefficients cξ of a spline Qf for all ξ ∈ M. Since
M is a stable local minimal determining set for S, for each η ∈ Dd,△ \M we
can use smoothness conditions to compute the coefficient cη of Qf as a linear
combination of {cξ}ξ∈Mη

for some set of domain points Mη ⊆ starℓ(Tη).
Here Tη is a triangle containing η, and ℓ is the integer constant in (13.30).
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By stability, there is a constant K depending only on ℓ and the smallest
angle θ△ in △ such that

|cη| ≤ K max
ξ∈Mη

|cξ|. η ∈ Dd,△ \M. (14.25)

Theorem 14.22. Q is a linear projector mapping L1(S) onto S such that
for any triangle T ∈ △ and any 1 ≤ q ≤ ∞,

‖Qf‖q,T ≤ K‖f‖q,ΩT
, all f ∈ L1(ΩT ), (14.26)

where ΩT := starℓ(T ). The constant K depends only on d, ℓ, and the
smallest angle in ΩT .

Proof: By construction, Q is defined for all functions f ∈ L1(S), and is a
linear operator. For each ξ ∈ M, Fd,Tξ

p = p for any polynomial of degree
d. It follows that Qs = s for all splines s ∈ S. We now establish (14.26) in
the case 1 ≤ q < ∞. The case q = ∞ is similar and simpler.

We first bound the coefficients of Qf . Suppose ξ ∈ M, and let Tξ be
the triangle containing ξ. Then applying Theorem 14.9 to the polynomial

Fd,Tξ
f :=

∑
cηB

Tξ
η and using Theorem 14.19 on the triangle Tξ, we get

|cξ| = |γξ(Fd,Tξ
f)| ≤

K1

A
1/q

Tξ

‖Fd,Tξ
f‖q,T ≤

K2

A
1/q

Tξ

‖f‖q,Tξ
.

Here the constant K2 depends on the shape parameter κ
T

of Tξ, which as
shown in Section 14.6 depends only on the smallest angle in Tξ. Now fix a
triangle T ∈ △. Using (14.25), we see that for all η ∈ Dd,T ,

|cη| ≤
K3

A
1/q

min

‖f‖q,ΩT
,

where Amin is the minimum of the areas of the triangles in ΩT . Using
(14.19) (which says that all triangles in ΩT have comparable areas), and
(13.6), this immediately implies

‖Qf‖
q
q,T =

∫

T

∣∣∣
∑

η∈Dd,T

cηBT
η

∣∣∣
q

≤ K4‖f‖
q
q,ΩT

.

In working with spherical polynomials, it is important to keep in mind
the fact that the space Bd of spherical polynomials of degree d contains the
spaces Bj of spherical polynomials of degree j with 0 ≤ j ≤ d − 1 only
for j = d (mod 2), see (13.16). This means that Q reproduces spherical
polynomials of degree j with 0 ≤ j ≤ d− 1 only for j = d (mod 2). We can
now give a local approximation result for Q.



14.9. Spaces with Full Approximation Power 427

Theorem 14.23. Let 0 ≤ m ≤ d with m = d (mod 2). Given a triangle
T in △, suppose the set ΩT := starℓ(T ) of Theorem 14.22 is such that
|ΩT | ≤ 1. Then for all f ∈ W m+1

q (ΩT ) with 1 ≤ q ≤ ∞,

|f − Qf |k,q,T ≤ K |T |m+1−k |f |m+1,q,ΩT
, (14.27)

for all 0 ≤ k ≤ m. If ΩT is convex, the constant K depends only on d, ℓ,
and the smallest angle in the triangles of ΩT . If ΩT is not convex, K also
depends on the Lipschitz constant of the boundary of the convex hull of
ΩT .

Proof: Fix 0 ≤ m ≤ d with m = d (mod 2). By Theorem 14.20, there
exists a spherical polynomial p of degree m depending on f so that

|f − p|j,q,ΩT
≤ K1 |ΩT |

m+1−j |f |m+1,q,ΩT
, (14.28)

for all 0 ≤ j ≤ m, where K1 is a constant depending on m and the smallest
angle in △. If ΩT is convex, then K1 is a constant depending on m and
the shape parameter κ

ΩT
:= |ΩT |/ρ

ΩT
of ΩT , where |ΩT | is the diameter

of ΩT and ρ
ΩT

is the radius of the largest disk contained in ΩT . If ΩT is
nonconvex, then K1 also depends on the Lipschitz constant of the boundary
of the convex hull of ΩT . Now by (14.20) and Lemma 14.18, |ΩT | ≤ K2|T |,
where K2 is a constant depending on the smallest angle in ΩT . It follows
that |ΩT |/ρ

ΩT
≤ K2|T |/ρ

T
, where ρ

T
is the radius of the largest disk

contained in T . Thus, the shape parameter κ
ΩT

of ΩT is bounded by
K2 times the shape parameter κ

T
of T , which as observed on page 422 is

bounded by a constant depending on the smallest angle in ΩT .
Now fix 0 ≤ k ≤ m. Since Q reproduces spherical polynomials of degree

d, and thus also spherical polynomials of degree m with m = d (mod 2), we
have

|f − Qf |k,q,T ≤ |f − p|k,q,T + |Q(f − p)|k,q,T .

In view of (14.28), it suffices to estimate the second term. For any function
g, the restriction of Qg to T is a polynomial of degree d. Thus, using (14.26)
and the Markov inequality (14.23), it follows that

|Q(f − p)|k,q,T ≤ K2 ρ−k
T

‖Q(f − p)‖q,T ≤ K3 ρ−k
T

‖f − p‖q,ΩT
,

where ρ
T

is the radius of the largest spherical cap contained in T . Using
(14.18) and (14.28), we immediately get (14.27).

We now give a global version of the above approximation result. Let
△ be a spherical triangulation of a spherical domain Ω on S, and let |△|

be the mesh size of △, i.e., the length of the longest edge in △. We assume
that the mesh is sufficiently fine so that ℓ|△| ≤ 1, where ℓ is the constant
appearing in the stability of the MDS M for S, see (14.25).
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Theorem 14.24. Let 0 ≤ m ≤ d with m = d (mod 2). Then for all
f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞,

|f − Qf |k,q,Ω ≤ K |△|m+1−k |f |m+1,q,Ω, (14.29)

for all 0 ≤ k ≤ m. If Ω covers S, the constant K depends only on d, ℓ, and
the smallest angle θ

△
in the triangles of △. Otherwise, K may also depend

on the Lipschitz constant of ∂Ω.

Proof: For q = ∞, (14.29) follows immediately from (14.27) by taking the
maximum over all triangles T in △ and using the fact that |ΩT | ≤ 2ℓ|△|.
To get the result for 1 ≤ q < ∞, we take the q-th power of both sides of
(14.27) and sum over all triangles in △. Since ΩT contains other triangles
besides T , some triangles appear more than once in the sum on the right.
However, a given triangle TR appears on the right only if it is associated
with a triangle TL on the left which lies in starℓ(TR). But Lemma 14.17
implies that there is a constant K1 depending only on ℓ and θ△ such that
TR enters at most K1 times on the right, and (14.29) follows .

14.9.2 The Space Sr
d
(△) for d ≥ 3r + 2

In this section we describe the approximation power of the spherical spline
space Sr

d(△) for d ≥ 3r + 2. As in the bivariate case, it suffices to establish
the approximation power of any subspace of Sr

d(△), which for convenience
we take to be the space of spherical supersplines

S
r,µ
d (△) := {s ∈ Sr

d(△) : s ∈ Cµ(v), all v ∈ V},

where

µ := r +

⌊
r + 1

2

⌋
, (14.30)

and V is the set of vertices of △.
To get results on the approximation power of Sr,µ

d (△), we construct
a stable local minimal determining set and apply the results of the pre-
vious section. We can follow the treatment of the bivariate case in Sec-
tion 11.4. First, we note that the concepts of δ-near-degenerate edges and
δ-near-singular vertices introduced in Definitions 10.3 and 10.6 also make
sense for spherical triangulations provided we measure the angle between
two edges by the dihedral angle at the common vertex.

Suppose △ is a spherical triangulation of a domain Ω ⊆ S with |△| ≤

1/6. Let VS and VNS be the sets of vertices of △ which are singular and
θ△-near-singular, respectively, where θ△ is the smallest angle in △. Given
a spherical triangle T in △, let AT , CT , ET , FT , GT

L , GT
R be the subsets of

domain points in T defined in (9.17), see also Figure 9.5.
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The proof of the following theorem follows along the same lines as
the proof of Theorem 11.7, and rests on spherical analogs of the theorems
and lemmas of Sections 11.2–11.4. The proofs of the spherical versions of
these results are essentially the same as in the bivariate case, although in
some cases minor adjustments are needed. For example, Lemma 11.6 is not
true for arbitrary spherical triangulations, but does hold if we require that
|△| ≤ 1/6.

Theorem 14.25. Let M be the following set of domain points:

1) For each triangle T , include CT .

2) For each edge e of △, include ET (e), where T is a triangle sharing e.

3) For each edge of a triangle T such that e lies on the boundary of Ω,
include GT

L(e) and GT
R(e).

4) For each vertex v of △, include DT
µ (v) for some triangle T attached to

v.

5) Suppose the vertex v 6∈ VNS is connected to v1, . . . , vn in counterclock-
wise order. Let Ti := 〈v, vi, vi+1〉 and set T0 := Tn = 〈v, vn, v1〉. if v

is an interior vertex. Let 1 ≤ i1 < · · · < ik < n be such that eij
is

θ△-near-degenerate at either end, where ei := 〈v, vi〉 for i = 1, . . . , n.
Let Jv := {i1, . . . , ik} and

a) include GTi

L (ei) for all i ∈ Jv,

b) include ATi(v) for all 1 ≤ i ≤ n − 1 such that i 6∈ Jv,

c) include ATn (v), if v is an interior vertex,

6) For each vertex v ∈ VS , include the Mv,µ+1, . . . ,Mv,2r constructed in
Theorem 11.1.

7) For each v ∈ VNS \ VS, include the Mv,µ+1, . . . ,Mv,2r constructed in
Theorem 11.3.

Then M is a stable local minimal determining set for S
r,µ
d (△).

If △ covers all of S, then all vertices and edges are interior, and there is
no need to include the sets in item 3) of this theorem. We can now establish
the approximation power of Sr,µ

d (△), and thus also of Sr
d(△).

Theorem 14.26. Let 0 ≤ m ≤ d with m = d (mod 2). Suppose △ is a
spherical triangulation of a set Ω on S, and that |△| ≤ 1/6. Let d ≥ 3r+2,
and let µ be as in (14.30). Suppose f ∈ W m+1

q (Ω) with 1 ≤ q ≤ ∞. Then
there exists a spline s ∈ S

r,µ
d (△) such that

|f − s|k,q,Ω ≤ K |△|m+1−k |f |m+1,q,Ω, (14.31)

for all 0 ≤ k ≤ m. If Ω covers S, the constant K depends only on d and
the smallest angle in the triangles of △. Otherwise, K may also depend on
the Lipschitz constant of ∂Ω.
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Proof: We apply Theorems 14.24 and 14.25. Note that the construction
of the MDS in Theorem 14.25 ensures that the constant in the localness of
M is ℓ = 3. The assumption |△| ≤ 1/6 ensures that |ΩT | := |star3(T )| ≤ 1
for any T ∈ △.

14.9.3 Spaces with a Stable Local NMDS

Suppose △ is a spherical triangulation of a set Ω ⊆ S. As in the previous
subsection, △ can cover all of S or just a part of it. In this section we
investigate the approximation power of spaces of spherical splines S ⊆

S0

d(△) which have stable local nodal minimal determining sets.
We recall from Section 13.4.5 that a nodal minimal determining set

for S is a set of n := dim S linear functionals N = {λi}
n
i=1

based on point
evaluation of derivatives such that every s ∈ S is uniquely determined by
the values {λis}

n
i=1

. We focus on functionals of the form

λi := εvi

∑

α+β=mi

ai
α,βDα

1,vi
D

β
2,vi

,

where εvi
denotes point evaluation at a point vi on the sphere S, and where

D1,vi
and D2,vi

stand for differentiation in the directions of the axes of some
Cartesian coordinate system with origin at vi and lying in the tangent plane
to S at vi.

Definition 14.27. Suppose N is a nodal minimal determining set for a
spherical spline space S. Let m̄ be the order of the highest derivative
involved in the linear functionals defining N . We say that N is local pro-
vided there exists an integer constant ℓ > 0 such that for every s ∈ S and
ξ ∈ Dd,△, the B-coefficient cξ of s depends on λs only if λ involves point
evaluation at a point contained in Ωξ := starℓ(Tξ), where Tξ is a triangle
containing ξ, We say that N is stable provided there exists a constant K

depending only on ℓ and the smallest angle in △ such that for every s ∈ S,

|cξ| ≤ K

m̄∑

ν=0

|Ωξ|
ν |s|ν,Ωξ

. (14.32)

All of the spherical macro-elements spaces mentioned in Section 13.5
have stable local nodal minimal determining sets. Suppose S is a spherical
spline space with a stable local nodal minimal determining set N . Then
for any f ∈ Cm̄(S), there is a unique spline s ∈ S satisfying the Hermite
interpolation conditions

λs = λf, all λ ∈ N . (14.33)

This defines a linear operator I mapping Cm̄(S) onto S. We now give a
bound for how well If approximates f . We restrict our attention to the
uniform norm.
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Theorem 14.28. Let △ be a spherical triangulation of a set Ω on S. Let
S be a spherical spline space with a stable local nodal minimal determining
set, and suppose |△| ≤ 1/ℓ, where ℓ is the constant in Definition 14.27.
Let I be the Hermite interpolation operator defined by (14.33), and let
m̄ ≤ m ≤ d with m = d (mod 2). Then for all f ∈ W m+1

∞ (S),

|f − If |k,Ω ≤ K |△|m+1−k |f |m+1,Ω, (14.34)

for all 0 ≤ k ≤ m. If Ω covers S, the constant K depends only on d, ℓ, and
the smallest angle in the triangles of △. Otherwise, K may also depend on
the Lipschitz constant of ∂Ω.

Proof: Let m̄ ≤ m ≤ d with m = d (mod 2). Fix T ∈ △, and let
ΩT := starℓ(T ). It suffices to show that

|f − If |k,T ≤ K |△|m+1−k |f |m+1,ΩT
, 0 ≤ k ≤ m,

for all 0 ≤ k ≤ m, since then (14.34) follows by taking the maximum over
all triangles in △. By Theorem 14.20, there exists a spherical polynomial
p of degree m with

|f − p|j,ΩT
≤ K1 |ΩT |

m+1−j |f |m+1,ΩT
, (14.35)

for all 0 ≤ j ≤ m. Now fix 0 ≤ k ≤ m. Then by the linearity of I and the
fact that it reproduces spherical polynomials of degree d,

|f − If |k,T ≤ |f − p|k,T + |I(f − p)|k,T .

In view of (14.35), it suffices to estimate the second term. Combining (13.6)
with (14.32), we see that

‖I(f − p)‖T ≤ K2

m̄∑

ν=0

|ΩT |
ν |f − p|ν,ΩT

.

Since I(f − p) is a spherical polynomial, we can use the Markov inequality
(14.23), and it follows that

|I(f − p)|k,T ≤
K3

ρk
T

‖I(f − p)‖T ≤
K4

ρk
T

m̄∑

ν=0

|ΩT |
ν |f − p|ν,ΩT

, (14.36)

where ρ
T

is the inradius of T . By (14.21), |ΩT |/ρ
T
≤ K5 for some constant

K5 depending only on ℓ and the smallest angle in ΩT . Now in view of
(14.20), |ΩT | ≤ 2ℓ|△|, and inserting (14.35) into (14.36), we immediately
get (14.34).
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14.10. Remarks

Remark 14.1. For a different proof of the Markov inequality (14.23) with
an explicit constant, see [BarL05].

Remark 14.2. The projection techniques developed in this chapter can
be used to establish several interesting properties of the spherical Bernstein
basis polynomials introduced in Section 13.1.3. The following result con-
cerns interpolation. Given T := 〈v1, v2, v3〉, let D be the spherical cap D

with center vc whose boundary passes through the vertices v1, v2, v3. We
call vc the spherical circumcenter of T and D the spherical circumcap of T .

Theorem 14.29. Suppose T is a spherical triangle whose spherical circum-
cap has radius at most 1/2. Let {Bd

ijk}i+j+k=d be the associated spherical
Bernstein basis polynomials of degree d, and let Dd,T := {vijk}i+j+k=d be
the associated domain points defined in (13.8). Suppose Γ is the associated
index set in lexicographical order. Then the matrix

M :=
[
Bd

α(vβ)
]
α,β∈Γ

is nonsingular.

Proof: Let T̄ be the image of under the map R
D

associated with the
spherical cap whose center is at the circumcenter vc of T and whose radius
is 1/2. Then the vi are all equidistant from vc, and thus

‖v̄1‖ = ‖v̄2‖ = ‖v̄3‖.

It follows that

vijk =
iv1 + jv2 + kv3

‖iv1 + jv2 + kv3‖
=

d‖v̄1‖

‖iv1 + jv2 + kv3‖

(
i

d
v̄1 +

j

d
v̄2 +

k

d
v̄3

)

=
d‖v̄1‖

‖iv1 + jv2 + kv3‖
ξ̄ijk ,

where ξ̄ijk are the domain points on T̄ . Let B̄d
ijk be the Bernstein basis

polynomials associated with the planar triangle T̄ . Then for all ν+µ+κ = d

and all i + j + k = d,

Bd
νµκ(ξijk) =

(
d‖v̄1‖

‖νv1 + µv2 + κv3‖

)d

B̄d
νµκ(ξ̄ijk).

This implies

[Bα(vβ)]
α,β∈Γ

=
∏

ν+µ+κ=d

(
d‖v̄1‖

‖νv1 + µv2 + κv3‖

)d [
B̄d

α(ξβ)
]
α,β∈Γ

.

Theorem 1.11 ensures that the matrix on the right is nonsingular, and the
proof is complete.
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Remark 14.3. Using the theorem in the previous remark, we can now give
an explicit construction of dual linear functionals for the spherical Bernstein
basis polynomials {Bijk}i+j+k=d associated with a spherical triangle T .
Suppose that T is contained in a spherical cap of radius less than 1/2. Let
Γ and M be as in the proof of Theorem 14.29, and let n :=

(
d+2

2

)
. For each

α ∈ Γ, let wα := {wα
β }β∈Γ be the solution of the linear system Mwα = gα,

where gα is a vector with all zero entries except for the entry corresponding
to α, which we set to 1. Theorem 14.29 ensures that M is nonsingular.
For all α ∈ Γ and any function f ∈ C(T ), let γα :=

∑
β∈Γ

wα
β f(vβ). Then

γαBβ = δα,β, for all α, β ∈ Γ. Thus, given p :=
∑

β∈Γ
Bβ, then for each

α ∈ Γ, γαp picks off the B-coefficient cα.

14.11. Historical Notes

Much of the classical theory of approximation on the sphere deals with the
use of spherical harmonics as approximants, see [Mue66, FreeGS98]. For an
extensive list of results (including both direct and inverse theorems), see
the survey [FasS98]. The results concentrate on the global case, whereas for
our study of spherical splines we need local results. Local approximation on
manifolds using polynomials was investigated in [LevR00]. But these results
are not exactly what we need either since they are not formulated in terms
of an appropriate seminorm associated with spherical Sobolev spaces.

The key to the development of the results in this chapter was the use
in [NeaS04] of projection methods to define Sobolev spaces on the sphere
with associated seminorms. The results in this chapter are based largely
on [NeaS04], although we have changed some of the notation, and there are
a number of new and different results here. In some cases we have given
different proofs for some of the results drawn from that paper. In particular,
Neamtu and Schumaker construct a different quasi-interpolation operator
(based on the Hahn–Banach theorem) in order to derive the approximation
power of spherical spline spaces.



Trivariate Polynomials

In this chapter we discuss basic properties of trivariate polynomials. Our
treatment parallels the developments in Chapters 1 and 2 for bivariate poly-
nomials, with a special emphasis on the Bernstein–Bézier representation of
polynomials relative to a tetrahedron.

15.1. The space Pd

Throughout the remainder of the book we write Pd for the space of trivari-

ate polynomials of degree d, i.e., the finite dimensional linear space of all
functions of the form

p(x, y, z) :=
∑

0≤i+j+k≤d

aijkxiyjzk, (15.1)

where aijk are real numbers. Although we are using the same notation as
used in previous chapters for the space of bivariate polynomials, in the rest
of the book we will not use the symbol Pd for bivariate polynomials.

Lemma 15.1. The space Pd has dimension
(
d+3

3

)
. Moreover, the mono-

mials {xiyjzk}0≤i+j+k≤d form a basis.

Proof: The monomials {xiyjzk}0≤i+j+k≤d span Pd by definition. To show
that they are linearly independent, suppose the sum in (15.1) is identically
zero. Then Di

xDj
yDk

zp(0, 0, 0) = aijk = 0 for all 0 ≤ i+j+k ≤ d. Arranging
the monomials in lexicographical order, it is easy to see that the cardinality
of this set is

(
d+3

3

)
, which is therefore the dimension of Pd.

Most of the classical calculus of trivariate polynomials is based on the
monomial basis. Since we are going to introduce an alternative basis in
the following section which is far more useful for our purposes, we do not
go any further into properties of polynomials written in monomial form.
Instead, we now introduce some notation which will be useful throughout
the remainder of the book, and state an important result connecting the
size of the derivative of a polynomial to the size of the polynomial itself.

In dealing with derivatives of trivariate functions, we write Dx, Dy, Dz

for the usual partial derivatives with respect to x, y, z, respectively. We
shall also make use of the multi-index notation Dα := Dα1

x Dα2

y Dα3

z where
α := (α1, α2, α3) is a vector of nonnegative integers. The order of the
derivative Dα is then given by |α| := α1 + α2 + α3.
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To measure the size of functions defined on a domain Ω, we use the
standard Lq-norms defined by

‖f‖Lq(Ω) :=






[∫
Ω
|f(x, y, z)|qdx dy dz

]1/q

, if 1 ≤ q < ∞,

ess sup
(x,y,z)∈Ω

|f(x, y, z)|, if q = ∞.

For convenience, we usually write ‖f‖q,Ω instead of the more cumbersome
‖f‖Lq(Ω). For the case q = ∞, we usually write ‖f‖Ω in place of ‖f‖∞,Ω.

The following result compares the size of the various norms when f is a
polynomial and Ω is a nondegenerate tetrahedron.

Lemma 15.2. There exists a constant K depending only on d such that
for any p ∈ Pd and any 1 ≤ q ≤ ∞,

VT
−1/q

‖p‖q,T ≤ ‖p‖∞,T ≤ K VT
−1/q

‖p‖q,T , (15.2)

for every tetrahedron T with volume VT .

Proof: The first inequality is elementary. The second inequality follows by
mapping T to the standard tetrahedron T̃ with vertices at v1 := (0, 0, 0),
v2 := (1, 0, 0), v3 := (0, 1, 0), and v4 := (0, 0, 1), and then using the fact
that all norms on a finite dimensional space are equivalent.

In stating results involving the size of derivatives, we also make use
of the standard seminorms defined for arbitrary domains Ω and sufficiently
smooth functions f by

|f |k,q,Ω :=





[∑
|α|=k ‖D

αf‖
q
q,Ω

]1/q

, if 1 ≤ q < ∞,

max|α|=k ‖D
αf‖Ω, if q = ∞.

We usually write |f |k,Ω instead of |f |k,∞,Ω.
Given a tetrahedron T , let ρ

T
be the radius of the largest ball which

can be inscribed in T . The following result is the Markov inequality for
trivariate polynomials. We give a proof in Section 15.12 below.

Theorem 15.3. There exists a constant K depending only on d such that
for every polynomial p ∈ Pd,

|p|k,q,T ≤
K

ρk
T

‖p‖q,T , (15.3)

for all 0 ≤ k ≤ d and all 1 ≤ q ≤ ∞.

15.2. Barycentric Coordinates

Our aim in this section is to describe an extremely useful basis for Pd which
is based on the Bernstein-basis polynomials relative to a tetrahedron. First
we need to introduce barycentric coordinates with respect to a tetrahedron.
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Definition 15.4. We say that a tetrahedron T := 〈v1, v2, v3, v4〉 is non-

degenerate provided that it has nonzero volume. We say that the vertices
of T are in canonical order provided that if we rotate and translate T so
that the triangular face 〈v1, v2, v3〉 lies in the x–y-plane with v1, v2, v3 in
counterclockwise order, then z4 > 0.

Given a tetrahedron T := 〈v1, v2, v3, v4〉 with {vi := (xi, yi, zi)}
4

i=1
, let

M :=




1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4


 .

It is an elementary fact that

det (M) = 6VT , (15.4)

where VT is the volume of T . Throughout the remainder of the book,
whenever we deal with tetrahedra we suppose they have nonzero volume,
It is easy to see that the volume of a nondegenerate tetrahedron will be
positive whenever its vertices are in canonical order and do not all lie in
one plane.

Lemma 15.5. Let T := 〈v1, v2, v3, v4〉 be a nondegenerate tetrahedron.
Then every point v := (x, y, z) ∈ R

3 can be written uniquely in the form

v = b1v1 + b2v2 + b3v3 + b4v4, (15.5)

with
b1 + b2 + b3 + b4 = 1. (15.6)

The numbers b1, b2, b3, b4 are called the barycentric coordinates of v relative

to the tetrahedron T .

Proof: Equations (15.5) and (15.6) are equivalent to the nonsingular sys-
tem

M




b1

b2

b3

b4


 =




1
x

y

z


. (15.7)

By Cramer’s rule

b1 =
1

det (M)

∣∣∣∣∣∣∣∣

1 1 1 1
x x2 x3 x4

y y2 y3 y4

z z2 z3 z4

∣∣∣∣∣∣∣∣
, (15.8)
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v1

v2 v3

v4

v

Fig. 15.1. Barycentric coordinates as a ratio of volumes.

with similar expressions for b2, b3, and b4. Barycentric coordinates relative
to a tetrahedron have very similar properties to those of the barycentric
coordinates associated with triangles in the bivariate case. For example, it is
clear from (15.8) that b1 can be interpreted as the ratio of the volume of the
tetrahedron 〈v, v2, v3, v4〉 to the volume of T , with similar interpretations
for b2, b3, b4, see Figure 15.1.

Lemma 15.6. For each i = 1, 2, 3, 4, the function bi is a linear polynomial
in x, y, z which assumes the value 1 at the vertex vi and vanishes at all
points on the face of T opposite to vi. Moreover, 0 ≤ bi ≤ 1 whenever
(x, y, z) lies in T .

15.3. Bernstein Basis Polynomials

Following the bivariate case, see Section 2.2, we make the following defini-
tion.

Definition 15.7. Given a tetrahedron T , let b1, b2, b3, b4 be the associated
barycentric coordinate functions. Then we define the trivariate Bernstein

basis polynomials of degree d relative to T as

Bd
ijkl :=

d !

i ! j ! k ! l!
bi
1
b
j
2
bk
3
bl
4
, i + j + k + l = d.

As in the bivariate case, we define Bd
ijkl to be identically zero whenever

any of its subscripts is negative. Since each b1, b2, b3, b4 is a linear polyno-
mial, it is clear that each of the Bd

ijkl is a polynomial of degree d. These
basis polynomials have many other properties which are similar to those of
the bivariate Bernstein basis polynomials.

Theorem 15.8. The set Bd := {Bd
ijkl}i+j+k+l=d of Bernstein basis poly-

nomials is a basis for the space of trivariate polynomials Pd. Moreover,
∑

i+j+k+l=d

Bd
ijkl(v) = 1, all v ∈ R

3
, (15.9)

and
0 ≤ Bd

ijkl(v) ≤ 1, all v in the tetrahedron T . (15.10)
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Proof: The following is an analog of the trinomial expansion (2.8):

1 = (b1 + b2 + b3 + b4)
d

=
∑

i+j+k+l=d

d !

i ! j ! k ! l !
bi
1
b
j
2
bk
3
bl
4
. (15.11)

It immediately implies the partition of unity property (15.9) which shows
that 1 is in the span of Bd. Now multiplying x = b1x1 + b2x2 + b3x3 + b4x4

by 1 =
∑

i+j+k=d−1
Bd−1

ijk and collecting terms, we see that x is also in the

span of Bd. Using the analogous expansions of y and z, we get the following
analog of (2.12):

x =
∑

i+j+k+l=d

(ix1 + jx2 + kx3 + lx4)

d
Bd

ijkl(x, y, z),

y =
∑

i+j+k+l=d

(iy1 + jy2 + ky3 + ly4)

d
Bd

ijkl(x, y, z),

z =
∑

i+j+k+l=d

(iz1 + jz2 + kz3 + lz4)

d
Bd

ijkl(x, y, z).

(15.12)

An inductive proof (see the proof of Theorem 2.4 in the bivariate case)
shows that all of the monomials {xνyµzκ}0≤ν+µ+κ≤d are in the span of
Bd. Since the number of basis functions in Bd is equal to the dimension(
d+3

2

)
of Pd, it follows that Bd is a basis for Pd. The fact that the Bd

ijkl are
nonnegative for v ∈ T follows from the fact that the b1, b2, b3, b4 have this
property. The upper bound in (15.10) then follows from (15.9).

15.4. The B-form of a Trivariate Polynomial

Fix a tetrahedron T := 〈v1, v2, v3, v4〉. Then by Theorem 15.8 below, any
trivariate polynomial p of degree d can be written uniquely in the form

p :=
∑

i+j+k+l=d

cijklB
d
ijkl, (15.13)

where the Bd
ijkl are the Bernstein basis polynomials relative to T . We refer

to (15.13) as the B-form of p. We call the cijkl the B-coefficients of p, and
define the associated set of domain points to be

Dd,T :=
{
ξT
ijkl :=

iv1 + jv2 + kv3 + lv4

d

}

i+j+k+l=d
. (15.14)

Here again we have committed a slight abuse of notation by writing Dd,T ,
which is the same symbol as used in the bivariate case with triangles T .
But the meaning will be clear from the context.
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Fig. 15.2. Domain points for d = 2.

Figure 15.2 shows D2,T for a typical tetrahedron. To help identify
where domain points are located in a tetrahedron, we say that

ξT
ijkl is at a distance d − i from the vertex v1,

ξT
ijkl is at a distance i from the face 〈v2, v3, v4〉 opposite v1,

ξT
ijkl is at a distance i + j from the edge 〈v3, v4〉,

with similar definitions for the other vertices, edges, and faces of T . We
write dist(ξT

ijkl , v1) = d − i, with similar notation for the other cases. We

identify the B-coefficient cijkl of a polynomial p with the domain point ξT
ijkl

for each i + j + k + l = d. We can also index the B-coefficients of p directly
in terms of Dd,T as {cξ}ξ∈Dd,T

so that if ξ = ξT
ijkl , then cξ = cijkl. We also

make use of the following subsets of domain points, with similar definitions
for other vertices and edges:

The shell of radius m around the vertex v1: RT
m(v1) := {ξT

ijkl : i = d − m}.

The ball of radius m around the vertex v1: DT
m(v1) := {ξT

ijkl : i ≥ d − m}.

The tube of radius ρ around an edge e: tρ(e) := {ξ : d(ξ, e) ≤ ρ}.

We conclude this section by observing that the restriction of a trivariate
polynomial p of degree d to any plane in R

3 is a bivariate polynomial. Thus,
in particular, the restriction of p to a face of a tetrahedron T is a bivariate
polynomial. Assuming p is written in the form (15.13), and using the fact
that b1 vanishes on the face F1 := 〈v2, v3, v4〉 of T , it is clear that

p|F1
=

∑

j+k+l=d

c0jklB
d
0jkl =

∑

j+k+l=d

c
F1

jklB
F1,d
jkl ,

where cF1

jkl := c0jkl, and B
F1,d
jkl are the Bernstein basis polynomials of degree

d relative to the triangle F1. Similar formulae hold for the restrictions of p

to the other faces of T .
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15.5. Stability of the B-form

In this section we show that the B-form for trivariate polynomials is stable,
i.e., the size of a polynomial and the size of its B-coefficients are closely
connected. To state our result, we need to agree on an ordering for the B-
coefficients and their associated domain points. Suppose T is a tetrahedron
whose vertices are numbered in canonical order as in Definition 15.4. To
assign an ordering, let Ci be the set of coefficients whose first index is i.
We consider these sets in the order Cd, . . . , C0, and order the coefficients
in each Ci according to the lexicographical ordering defined in Section 2.3
associated with the triangle 〈v2, v3, v4〉. For example, for d = 2, this gives
the lexicographical order

c2000, c1100, c1010, c1001︸ ︷︷ ︸, c0200, c0110, c0101, c0020, c0011, c0002︸ ︷︷ ︸ .

Given a trivariate polynomial p ∈ Pd, we write c for the vector of its B-
coefficients in the above lexicographical order. We now have the following
result on the stability of the B-form, where we measure the size of c by

‖c‖q :=





( ∑

i+j+k+l=d

|cijkl|
q
)1/q

, 1 ≤ q < ∞,

max
i+j+k+l=d

|cijkl|, q = ∞.

Theorem 15.9. Suppose T is a tetrahedron whose volume is VT . Then
for any polynomial p written in the B-form (15.13),

V
1/q

T

K
‖c‖q ≤ ‖p‖q,T ≤ V

1/q

T ‖c‖q. (15.15)

The constant K depends only on d.

Proof: We deal first with the case q = ∞, and follow the proofs of Theo-
rems 2.6 and 2.7. The inequality on the right follows immediately from the
fact that the Bd

ijkl form a partition of unity. To prove the inequality on the
left, let {g1, . . . , gn} be the Bernstein basis polynomials in lexicographical
order with n :=

(
d+3

3

)
, and let {t1, . . . , tn} be the domain points Dd,T in

the same order. Then organizing the B-coefficients in the same order, we
have Mc = r, where r := (p(t1), . . . , p(tn))T and M = [gj(ti)]

n
i,j=1

. M is
nonsingular by Theorem 15.38 below, and thus

‖c‖∞ ≤ ‖M−1‖∞ ‖r‖∞ ≤ K ‖p‖∞,

where K := ‖M−1‖∞. This proves the inequality on the left in (15.15) for
q = ∞ since M depends only on d. To prove (15.15) for q < ∞, we use
Lemma 15.2.
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15.6. The de Casteljau Algorithm

It is clear from Theorem 15.8 that to store a polynomial p written in B-
form, we need only store its coefficient vector c. We now present an efficient
and stable algorithm for evaluating p at a given point v := (x, y, z). The
algorithm is based on the simple recurrence relation

Bd
ijkl = b1B

d−1

i−1,j,k,l + b2B
d−1

i,j−1,k,l + b3B
d−1

i,j,k−1,l + b4B
d−1

i,j,k,l−1
,

which is an immediate consequence of the definition of Bd
ijkl. Here we are

using the convention that expressions with negative subscripts are zero.
The proof of the following result is based on this recurrence relation, and
is very similar to the proof of Theorem 2.8.

Theorem 15.10. Suppose p is a trivariate polynomial written in the B-

form (15.13). Let c
(0)

ijkl := cijkl, i+ j +k+ l = d, be its coefficients. Suppose

v has barycentric coordinates b := (b1, b2, b3, b4). Then

p(v) =
∑

i+j+k+l=d−m

c
(m)

ijklB
d−m
ijkl (v), (15.16)

where for m = 1, . . . , d, c
(m)

ijkl := c
(m)

ijkl(b) are computed by the recursion

c
(m)

ijkl := b1c
(m−1)

i+1,j,k,l + b2c
(m−1)

i,j+1,k,l + b3c
(m−1)

i,j,k+1,l + b4c
(m−1)

i,j,k,l+1
,

for i + j + k + l = d − m.

It is easy to see by induction that

c
(m)

ijkl =
∑

α+β+γ+δ=m

ci+α,j+β,k+γ,l+δB
m
α,β,γ,δ(v), i + j + k + l = d − m.

Theorem 15.10 immediately leads to an algorithm for evaluating a poly-
nomial p in B-form.

Algorithm 15.11. (de Casteljau)
For m = 1, . . . , d

For all i + j + k + l = d − m

c
(m)

ijkl := b1c
(m−1)

i+1,j,k,l + b2c
(m−1)

i,j+1,k,l + b3c
(m−1)

i,j,k+1,l + b4c
(m−1)

i,j,k,l+1

Discussion: By Theorem 15.10, the value of p(v) is given by c
(d)

0000
. We

illustrate this algorithm for the case d = 2 in Figure 15.3.
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Fig. 15.3. Steps of the de Casteljau Algorithm.

15.7. Directional Derivatives

Given a nontrivial vector u := (ux, uy, uz) ∈ R
3, we define the associated

directional derivative of a trivariate function p by

Dup(x, y, z) :=
d

dt
p(x + tux, y + tuy, z + tuz)

∣∣∣
t=0

. (15.17)

It is well known from calculus that

Dup(x, y, z) = uxDxp(x, y, z) + uyDyp(x, y, z) + uzDzp(x, y, z). (15.18)

This shows that the directional derivative of a polynomial of degree d is a
polynomial of degree d − 1.

Suppose now that T is a tetrahedron. Then as in the bivariate case,
u is described by the directional coordinates a := (a1, a2, a3, a4) relative
to T , where ai := βi − αi and (β1, β2, β3, β4) and (α1, α2, α3, α4) are the
barycentric coordinates of u and 0 relative to T , respectively. The proof of
the following result is almost identical to the proof of Lemma 2.11.

Lemma 15.12. Suppose u is a vector whose associated directional coor-
dinates are (a1, a2, a3, a4). Then for any i + j + k + l = d,

DuBd
ijkl(v) = d

[
a1B

d−1

i−1,j,k,l(v) + a2B
d−1

i,j−1,k,l(v)

+ a3B
d−1

i,j,k−1,l(v) + a4B
d−1

i,j,k,l−1
(v)

]
.

(15.19)

We now give a formula for the directional derivative of an arbitrary
trivariate polynomial p in B-form. Lemma 15.12 immediately implies the
following result.

Theorem 15.13. Let p be a polynomial written in the B-form (15.13)
relative to a tetrahedron T , and let u have directional coordinates a :=
(a1, a2, a3, a4). Then the directional derivative at v of p in the direction u
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is given by

Dup(v) = d
∑

i+j+k+l=d−1

c
(1)

ijkl(a)Bd−1

ijkl (v), (15.20)

where c
(1)

ijkl(a) are the numbers arising in the first step of the de Casteljau
algorithm based on the 4-tuple a.

Repeatedly applying Theorem 15.13, we get the following formula for
an arbitrary higher-order directional derivative.

Theorem 15.14. Suppose we are given a set u1, . . . , um of m directions

with associated directional coordinates a(i) := (a
(i)

1
, a

(i)

2
, a

(i)

3
, a

(i)

4
), i =

1, . . . , m. Then

Dum
· · ·Du1

p(v) =
d !

(d − m) !

∑

i+j+k+l=d−m

c
(m)

ijkl(a
(1), . . . , a(m))Bd−m

ijkl (v),

(15.21)

where c
(m)

ijkl(a
(1), . . . , a(m)) are the numbers obtained after carrying out m

steps of the de Casteljau algorithm, using a(1), . . . , a(m) in order.

Formula (15.21) reaffirms that the m-th mixed directional derivative of
a polynomial p is a polynomial of degree d−m. To evaluate Dum

· · ·Du1
p(v)

at a point v with barycentric coordinates b := (b1, b2, b3, b4), we simply
apply the de Casteljau algorithm to the coefficient vector of p using the
4-tuples a(1), a(2), . . . , a(m) in order, and then follow these m steps with an
additional d − m steps of the algorithm using the 4-tuple b of barycentric
coordinates of v.

Since polynomials are infinitely differentiable functions, the order in
which the derivatives are taken in (15.21) does not matter. This also follows
directly from the fact that if we apply the deCasteljau algorithm with two
different 4-tuples, we get the same result no matter which one we use first.

15.8. B-coefficients and Derivatives at a Vertex

Suppose that p is a polynomial of degree d and that {cξ}ξ∈Dd,T
are its B-

coefficients with respect to a tetrahedron T := 〈v1, v2, v3, v4〉. In this section
we give explicit formulae for computing the coefficients of p corresponding
to domain points in a ball DT

m(v) around a vertex v of T from derivatives
up to order m at v, and vice versa. These formulae will be particularly
useful in Chapter 18 where we construct certain trivariate macro-element
spaces.

We begin with a technical lemma. A set L of triples of nonnegative
integers is called a lower set provided that for any (l, m, n) ∈ L, all triples
of the form (i, j, k) with 0 ≤ i ≤ l, 0 ≤ j ≤ m, and 0 ≤ k ≤ n also belong
to L. The following lemma is easily proved by induction.
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Lemma 15.15. Suppose that L is a lower set, and that

f(l, m, n) :=

l∑

i=0

m∑

j=0

n∑

k=0

(
l

i

)(
m

j

)(
n

k

)
(−1)i+j+kg(i, j, k), (l, m, n) ∈ L.

Then

g(i, j, k) =

i∑

l=0

j∑

m=0

k∑

n=0

(
i

l

)(
j

m

)(
k

n

)
(−1)l+m+nf(l, m, n), (i, j, k) ∈ L.

The following theorem is stated for the vertex v1 of T . Analogous
formulae hold for the other vertices of T .

Theorem 15.16. For all 0 ≤ l + m + n ≤ d,

Dl
v2−v1

Dm
v3−v1

Dn
v4−v1

p(v1) =
(−1)l+m+nd !

(d − l − m − n) !

l∑

i=0

m∑

j=0

n∑

k=0

(−1)i+j+k

×

(
l

i

)(
m

j

)(
n

k

)
cd−i−j−k,i,j,k. (15.22)

Conversely,

cd−i−j−k,i,j,k =
i∑

l=0

j∑

m=0

k∑

n=0

(
i

l

)(
j

m

)(
k

n

)
(d − l − m − n) !

d !

× Dl
v2−v1

Dm
v3−v1

Dn
v4−v1

p(v1), (15.23)

for all 0 ≤ i + j + k ≤ d.

Proof: To establish (15.22), we evaluate (15.21) at v1. The converse follows
from Lemma 15.15.

It follows easily from (15.22) that for all 0 ≤ l + m + n ≤ d,

∣∣Dl
v2−v1

Dm
v3−v1

Dn
v4−v1

p(v1)
∣∣ ≤ 2l+m+nd !

(d − l − m − n) !
max

ξ∈Dl+m+n(v1)

|cξ|.

(15.24)
Similarly, (15.23) implies that for all 0 ≤ ρ ≤ d and all ξ ∈ Dρ(v1),

|cξ| ≤ 2ρ max
l+m+n≤ρ

∣∣Dl
v2−v1

Dm
v3−v1

Dn
v4−v1

p(v1)
∣∣. (15.25)

Theorem 15.16 deals with directional derivatives. For many applica-
tions we would like an analogous result for the derivatives relative to the
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standard Cartesian coordinate system. Let ρ
T

be the radius of the largest
ball which can be inscribed in the tetrahedron T := 〈v1, v2, v3, v4〉.

Theorem 15.17. For each 0 ≤ i ≤ 4, Dαp(vi) can be computed from
the set of coefficients of p corresponding to domain points lying in the ball
DT

|α|(vi), and
∣∣Dαp(vi)

∣∣ ≤ d !

(d − |α|) !
ρ−|α|

T
max

ξ∈DT
|α|

(vi)

|cξ|. (15.26)

Conversely, for all 0 ≤ m ≤ d, the coefficients corresponding to ξ ∈ DT
m(vi)

can be computed from the derivatives of p up to order m at vi, and

|cξ | ≤ 2m

m∑

j=0

3j|T |j max
|α|=j

∣∣Dαp(vi)
∣∣. (15.27)

Proof: It suffices to consider the case of v1. Let vi = (xi, yi, zi) for
i = 1, . . . , 4, and let VT be the volume of T . Then the unit direction
vector pointing in the direction of the x-axis has directional coordinates
(a1, a2, a3, a4) where

a1 :=
−1

6VT

∣∣∣∣
y3 − y2 y4 − y2

z3 − z2 z4 − z2

∣∣∣∣ , a2 :=
1

6VT

∣∣∣∣
y3 − y1 y4 − y1

z3 − z1 z4 − z1

∣∣∣∣ ,

a3 :=
−1

6VT

∣∣∣∣
y2 − y1 y4 − y1

z2 − z1 z4 − z1

∣∣∣∣ , a4 :=
1

6VT

∣∣∣∣
y2 − y1 y3 − y1

z2 − z1 z3 − z1

∣∣∣∣ .

Note that the absolute value of the determinant in the formula for a1 is
twice the area of the triangle 〈v2, v3, v4〉 projected onto the (y, z)-plane.
The other determinants have similar interpretations as the areas of the
triangular faces of T projected onto the (y, z)-plane. Using the fact that
VT is equal to the surface area of T times ρ

T
/3, it follows that

|a1| + |a2| + |a3| + |a4| ≤
1

ρ
T

. (15.28)

The same bound holds for the direction coordinates associated with the
unit vectors in the direction of the y- and z–axes. Now by Theorem 15.14,

Dαp(v1) =
d !

(d − |α|) !
cα
d−|α|,0,0,0,

where cα
d−|α|,0,0,0

is obtained from the coefficients of p associated with do-

main points in DT
|α|(v1) by applying |α| steps of the deCasteljau algorithm

using the direction coordinates defining Dα. In each step of the algorithm
the coefficients can grow by a factor of at most 1/ρ

T
, and (15.26) follows.

The bound (15.27) follows directly from (15.25) using (15.18).
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15.9. B-coefficients and Derivatives on Edges

In this section we explore the connection between B-coefficients of a poly-
nomial p relative to a tetrahedron T := 〈v1, v2, v3, v4〉 and the values of
derivatives of p at points on the edges of T . As a first observation, we note
that by the formulae for derivatives in Section 15.7, it is clear that for any
direction vector u not parallel to an edge e and any point η on e, the value
of Dα

up(η) depends only on the B-coefficients of p lying in the tube tm(e)
around e, where m = |α|. We now show a kind of converse, namely, how to
compute the B-coefficients of p corresponding to domain points in the tube
tm(e) from values of derivatives of p at points on e.

We focus on the case e := 〈v3, v4〉. Given 0 ≤ m ≤ ρ and d > 2ρ,
suppose that we already know the coefficients of p corresponding to all
domain points in

Γm−1(e) := tm−1(e) ∪ DT
ρ (v3) ∪ DT

ρ (v4).

Our aim is to compute the coefficients of p corresponding to domain points
in tm(e) \ Γm−1(e). These domain points lie on m + 1 lines parallel to
e, where there are exactly n := d − 2ρ + m − 1 points on each line. In
particular, for each 0 ≤ i ≤ m, the associated line of domain points has the
form

Li
m(e) :=

d−ρ−1⋃

k=ρ+1−m

{ξT
i,m−i,k,d−m−k}.

For i = 0 these points lie in the face 〈v2, v3, v4〉 of T , while for i = m, they
lie in the face 〈v1, v3, v4〉. Let D1 and D2 be the directional derivatives
associated with the vectors v1 − v3 and v2 − v3.

Theorem 15.18. Fix 0 ≤ i ≤ m ≤ ρ with d > 2ρ. Suppose that we know
the coefficients of the polynomial p corresponding to all domain points
in Γm−1(e) for some edge e. Let n := d − 2ρ + m − 1, and let ηi :=
iv2 + (n− i + 1)(v3 − v2))/(n + 1) for i = 1, . . . , n. Then the coefficients of
p associated with the domain points in Li

m(e) can be computed from the
known coefficients together with the values {Di

1
Dm−i

2
p(ηj)}

n
j=1

.

Proof: By Theorem 15.14,

Di
1
Dm−i

2
p|e =

d !

(d − m) !

∑

k+l=d−m

a00klB
d−m
00kl ,

where a00kl are obtained from the coefficients of p by performing i steps of
the de Casteljau algorithm using the directional coordinates (1, 0,−1, 0) cor-
responding to the derivative D1, followed by m− i steps of the de Casteljau
algorithm using the directional coordinates (0, 1,−1, 0) corresponding to
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the derivative D2. In particular, each a00kl has the form

a0,0,k,l = ci,m−i,k,l + d0,0,k,l, (15.29)

where d0,0,k,l is a linear combination of known coefficients. Now evaluating
at the points η1, . . . , ηn leads to an n × n linear system of the form

Ma = r, (15.30)

where a is the vector of n unknown coefficients {a00kℓ}k+ℓ=d−m, and where

the j-th component of r is (d−m) !

d !
Di

1
Dm−i

2
p(ηj) plus a linear combination

of the known coefficients. The matrix of this system is M = [φj(ηi)]
n
i,j=1

,
where

{φ1, . . . , φn} := {Bd−m
0,0,ρ+1−m,d−ρ−1

, . . . , Bd−m
0,0,d−ρ−1,ρ+1−m}.

Since the matrix M reduces to a matrix which arises in interpolation with
univariate Bernstein basis polynomials, it is clearly nonsingular, and the
proof is complete.

It is clear from the proof of Theorem 15.18 that the matrix M entering
there does not depend on i, i.e., we have to solve the same linear system
for each line of domain points Li

m(e). Moreover, the inverse of this matrix
is bounded by a constant which is independent of the size and shape of the
tetrahedron T . We illustrate Theorem 15.18 with two examples.

Example 15.19. Let d = 9, ρ = 4, and m = 1.

Discussion: In this case there is exactly one domain point in each of the
sets L0

1
(e) and L1

1
(e). The coefficient corresponding to the domain point on

L0

1
(e) is c0144. It is computed from the equation

B8

0044
(η1)(c0144−c0054) =

1

9
D2p(η1)−

8∑

j=0

j 6=4

(c0,1,8−j,j−c0,0,9−j,j)B
8

0,0,8−j,j(η1).

The coefficient corresponding to the domain point on L1

1
(e) is c1044. It is

computed from the equation

B8

0044
(η1)(c1044−c0054) =

1

9
D1p(η1)−

8∑

j=0

j 6=4

(c1,0,8−j,j−c0,0,9−j,j)B
8

0,0,8−j,j(η1).

Example 15.20. Let d = 9 and ρ = 4, and let m = 2.

Discussion: In this case there are two domain points in each of the sets
Li

2
(e) for i = 0, 1, 2. The two in L0

2
(e) lie on the face 〈v2, v3, v4〉, and the

corresponding coefficients are computed from the following 2 × 2 system:
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[
B7

0034
(η1) B7

0043
(η1)

B7

0034
(η2) B7

0043
(η2)

][
c0234

c0243

]
=

[
1

72
D2

1
p(η1) + g1

1

72
D2

1
p(η2) + g2

]
,

where g1 and g2 are combinations of known coefficients. The two coefficients
corresponding to L2

2
(e) are computed similarly. The two domain points

corresponding to L1

2
(e) are inside T , and the associated coefficients are

computed from
[

B7

0034
(η1) B7

0043
(η1)

B7

0034
(η2) B7

0043
(η2)

][
c1134

c1143

]
=

[
1

72
D1D2p(η1) + h1

1

72
D1D2p(η2) + h2

]
,

where h1 and h2 are combinations of known coefficients.

We now show that the computation of the coefficients corresponding
to domain points in tm(e) \ Γm−1(e) described in Theorem 15.18 is stable.
Let |T | be the diameter of T , and let |p|ν,T be the usual Sobolev seminorm
defined in Section 15.1.

Theorem 15.21. For all ξ ∈ tm(e) \ Γm−1(e),

|cξ| ≤ K
[
|T |m |p|m,T + max

η∈Γm−1(e)
|cη|

]
, (15.31)

where K is a constant depending only d.

Proof: By the proof of Theorem 15.18, the computed coefficients asso-
ciated with domain points in the set Li

m(e) are given by (15.29) with
a = M−1r, where M and a are as in the proof of Theorem 15.18. This
matrix is independent of i, and corresponds to interpolation by univariate
Bernstein basis polynomials at equally spaced points η1, . . . , ηn. We con-
clude that ‖M−1‖∞ is bounded by a constant depending only on d, and it
follows that ‖a‖∞ ≤ ‖M−1‖∞ ‖r‖∞, where the right-hand side r is a linear
combination of known coefficients and derivatives of the form Di

1
Dm−i

2
p(ηj).

Using (15.18) to write these derivatives in terms of Dx, Dy, Dz, we get
(15.31).

When e is an edge shared by two or more tetrahedra, it is often more
convenient to replace the derivatives D1 and D2 appearing in Theorem 15.18
and 15.21 by derivatives which are independent of the shape of the attached
tetrahedra.

Definition 15.22. Given an edge e := 〈u, v〉 of a tetrahedron T , let Xe be
the plane perpendicular to e at u. We endow Xe with Cartesian coordinate
axes whose origin lies at the point u. Then for any multi-index β = (β1, β2),
we define Dβ

e to be the corresponding directional derivative of order |β| :=
β1 + β2 in a direction lying in Xe.
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Since the derivatives Dβ
e lie in a plane perpendicular to the edge e,

we can always compute the derivatives {Di
1
Dm−i

2
p}m

i=0
needed in Theo-

rem 15.18 from the derivatives {Dβ
e p}|β|=m.

Theorem 15.23. Suppose △ := {Ti}
k
i=1

is a set of tetrahedra which share
an edge e := 〈u, v〉, and suppose s is a piecewise polynomial function of

degree d with s ∈ Cm(Ω), where Ω :=
⋃k

i=1
Ti. Then we can set the

coefficients of s1 := s|T1
corresponding to the domain points in tm(e) ∩ T1

to arbitrary values, and all other coefficients of s corresponding to domain
points in the tube tm(e) are uniquely and stably determined.

Proof: By the above results, setting the coefficients of s correspond-
ing to the domain points in tm(e) ∩ T1 uniquely defines the derivatives
{Dβs(v)}|β|≤m for all points v on e, where Dβ are the derivatives in a
plane perpendicular to e. Now for each Ti, these derivatives uniquely de-
fine the B-coefficients of the polynomial s|Ti

corresponding to domain points
in tm(e) ∩ Ti.

Theorem 15.23 holds even if △ consists of a chain of tetrahedra for
which T1 and Tk share a common face, i.e., the edge e is an interior edge
of △. This configuration is called an orange in [AlfSS92].

15.10. B-coefficients and Derivatives on Faces

In this section we explore the connection between certain B-coefficients of
a polynomial p relative to a tetrahedron T := 〈v1, v2, v3, v4〉, and the values
of its derivatives at points on a face F of T . As a first observation, we
note that by the formulae for derivatives in Section 15.7, it is clear that for
any direction vector u not parallel to F and any point η on F , the value of
Dm

u p(η) depends only on the B-coefficients of p corresponding to domain
points lying in the set Gm(F ) := {ξ ∈ Dd,T : dist(ξ, F ) ≤ m} of domain
points which lie within a distance m of F . We now show a kind of converse,
namely, how to compute the B-coefficients of p corresponding to domain
points in Gm(F ) from values of derivatives at points on F .

We focus on the case F := 〈v2, v3, v4〉. The other faces can be dealt
with in a similar way. We write DF for the derivative corresponding to the
unit vector perpendicular to F and pointing into T . For any n, we write
ξ

F,n
jkl := (jv2 + kv3 + lv4)/n, for j + k + l = n. Note that when n = d,

these points coincide with some of the domain points associated with the
B-representation of p.

Given 0 ≤ m ≤ d, suppose that we already know the coefficients of p

corresponding to all domain points in Gm−1(F ). In addition, suppose we
know the coefficients of p for all domain points in the set

Λ := {ξT
mjkl : (j, k, l) ∈ J},
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where J is a subset of Im := {(j, k, l) : j + k + l = d − m}. Our aim is to
compute the coefficients corresponding to the set

Λ′ := {ξT
mjkl : (j, k, l) ∈ J ′},

where J ′ := Im \ J . Let

Γ := {ξ
F,d−m
jkl : (j, k, l) ∈ J ′}. (15.32)

Theorem 15.24. Suppose we know the coefficients of p corresponding to
all domain points in Gm−1(F ) ∪ Λ as described above, and suppose that
the set Γ in (15.32) is such that the matrix

M := [BF,d−m
ξ (η)]ξ,η∈Γ

is nonsingular. Then the coefficients of p corresponding to domain points
in the set Λ′ can be computed from the values {Dm

F p(η)}η∈Γ.

Proof: By Theorem 15.14,

Dm
F p|F =

d !

(d − m) !

∑

j+k+l=d−m

a0jklB
d−m
0jkl , (15.33)

where a0jkl are obtained from the coefficients of p by performing m steps of
the deCasteljau algorithm using the directional coordinates (α1, α2, α3, α4)
associated with the unit vector defining DF . Note that for each j + k + l =
d−m, a0jkl is equal to αm

1
cmjkl plus a sum of known coefficients. The fact

that α1 > 0, implies that we can solve for cmjkl once we have a0jkl. To get
these, we write the equations for {Dm

F p(η)}η∈Γ. This leads immediately to
a system of the form

Ma = r

for the vector a of coefficients in (15.33) with (j, k, l) ∈ J ′, where the
components of r are a combination of known coefficients and the values
{Dm

F p(η)}η∈Γ. The result follows since we have assumed that M is nonsin-
gular.

For a discussion of how to choose sets Γ such that the matrix M in this
theorem is nonsingular, see Section 2.9, and in particular Conjecture 2.22.
We apply this result in Chapter 18 to help analyze various trivariate macro-
element spaces. We have the following stability result.

Theorem 15.25. The coefficients computed in Theorem 15.24 satisfy

|cξ| ≤ K
[
|T |m |p|m,T + max

η∈Gm−1(F )∪Λ

|cη|
]
, all ξ ∈ Λ′.
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Here K is a constant depending only on d and the smallest solid and face
angles in T (see Definition 16.2).

Proof: The equation a = M−1r leads immediately to bounds on the a0jkl

which translate immediately into analogous bounds on the cmjkl in terms
of ‖M−1‖∞. This norm can be bounded by the smallest angles in T .

15.11. B-coefficients and Hermite Interpolation

In this section we show how to compute certain B-coefficients of a trivariate
polynomial from Hermite interpolation conditions at a point v inside of T ,
assuming that all other coefficients of p are already known. This result will
be useful later in our study of trivariate macro-elements.

Theorem 15.26. Let vc be an arbitrary point in a tetrahedron T , and let
d ≥ 4r + 4. Suppose that the B-coefficients of a polynomial p of degree d

are known except for those corresponding to the domain points

Γ := {ξT
ijkl : i, j, k, l > r}.

Then the coefficients {cξ}ξ∈Γ of p are uniquely determined from the values
{Dαp(vc)}|α|≤d−4r−4.

Proof: The known coefficients are associated with domain points that
lie on the outer faces of T and on the r layers next to those outer faces.
We are left with N :=

(
d−4r−1

3

)
coefficients which are to be determined

from the same number of Hermite interpolation conditions. Enforcing these
conditions leads to a N × N linear system of equations. We need to show
that the associated matrix M is nonsingular. It suffices to show that if the
coefficients corresponding to Dd,T \ Γ are all zero and we set Dαp(vc) = 0
for |α| ≤ d − 4r − 4, then p ≡ 0. Now by Bezout’s theorem, we can write
p = ℓr+1

1
ℓr+1

2
ℓr+1

3
ℓr+1

4
q, where ℓi is a linear polynomial which vanishes on

the i-th face of T , and q is a polynomial of degree d − 4r − 4. Since vc is
inside of T , setting Dαp(vc) = 0 for |α| ≤ d− 4r− 4 is equivalent to setting
Dαq(vc) = 0 for |α| ≤ d−4r−4. But this implies q ≡ 0, and it follows that
p ≡ 0. We conclude that M is nonsingular and the proof is complete.

In applications we would typically take vc to be the barycenter of T .
Using the formulae for derivatives of trivariate polynomials written in B-
form, it is easy to see that the matrix M of Theorem 15.26 depends only on
the barycentric coordinates of vc, and is independent of the size and shape
of the tetrahedron T . Thus, the computation of the unknown coefficients
in this theorem is a stable process.
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Theorem 15.27. There exists a constant K depending only on d such
that the computation of coefficients in Theorem 15.26 is stable in the sense
that for all ξ ∈ Dd,T \ Γ,

|cξ| ≤ K
[ d−4r−4∑

ν=0

|T |ν |p|ν,T + max
η∈Γ

|cη|

]
. (15.34)

15.12. The Markov Inequality on Tetrahedra

In this section we prove the Markov inequality (15.3) for trivariate polyno-
mials by establishing the following result which bounds the size of particular
derivatives rather than a seminorm.

Theorem 15.28. Let T := 〈v1, v2, v3, v4〉 be a tetrahedron, and fix 1 ≤

q ≤ ∞. Let ρT be the radius of the largest sphere that can be inscribed in
T . Then for any trivariate polynomial p ∈ Pd,

‖Dαp‖q,T ≤
K

ρ
|α|

T

‖p‖q,T , (15.35)

for all α with 0 ≤ |α| ≤ d. The constant K depends only on d.

Proof: By Theorem 15.14, for any v ∈ T ,

Dαp(v) =
d !

(d − |α|) !

∑

i+j+k+l=d−|α|

cα
ijklB

d−|α|
ijkl (v),

where cα
ijkl are obtained from the coefficients of p by applying |α| steps of the

de Casteljau algorithm using the direction coordinates defining Dα. Now
as shown in (15.28), the coefficients arising in the de Casteljau algorithm
can grow by a factor of at most 1/ρ

T
in each step, and it follows that

|cα
ijkl | ≤ ρ −|α|

T
‖c‖∞ for all i + j + k + l = d− |α|. Since the Bernstein basis

polynomials form a partition of unity, using (15.15), we get

‖Dαp‖T ≤
d !

(d − |α|) !

1

ρ
|α|

T

‖c‖∞ ≤
K

ρ
|α|

T

‖p‖T ,

which is (15.35) for q = ∞. We now use Lemma 15.2 to get the result for
arbitrary 1 ≤ q ≤ ∞.

15.13. Integrals and Inner Products

As in the bivariate case, there are simple formulae for integrals and inner
products of trivariate polynomials in B-form. The proof of the following
result is similar to the proof of Theorem 2.33.
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Lemma 15.29. For any tetrahedron T ,

∫

T

Bd
ijkl(x, y, z)dxdydz =

VT(
d+3

3

) , i + j + k + l = d. (15.36)

Moreover, for any trivariate polynomial p of degree d with B-coefficients
{cijkl}i+j+k+l=d relative to T ,

∫

T

p(x, y, z)dxdydz =
VT(
d+3

3

)
∑

i+j+k+l=d

cijkl. (15.37)

Using

Bd
ijkl Bd

νµκδ =

(
i+ν

i

)(
j+µ

j

)(
k+κ

k

)(
l+δ

l

)
(
2d
d

) B2d
i+ν,j+µ,k+κ,l+δ

leads immediately to the following formula for the inner product of two
polynomials in B-form.

Lemma 15.30. Let p and q be trivariate polynomials with B-coefficients
{cijkl}i+j+k+l=d and {aijkl}i+j+k+l=d, respectively. Then

〈p, q〉 :=

∫

T

p(x, y, z)q(x, y, z)dxdydz

=
VT(

2d

d

)(
2d+3

3

)
∑

i+j+k+l=d
ν+µ+κ+δ=d

cijkl aνµκδ

(
i + ν

i

)(
j + µ

j

)(
k + κ

k

)(
l + δ

l

)
.

(15.38)

The inner product formula (15.38) can also be written in the form

〈p, q〉 =
VT(

2d
d

)(
2d+3

3

)cT Ga,

where c and a are the vectors of B-coefficients of p and q respectively, and
where G is a symmetric matrix with binomial coefficients as in (15.38).

15.14. Conditions for Smooth Joins

As in the bivariate case, smoothness between two polynomials defined on
adjoining tetrahedra can be easily described in terms of B-coefficients. The
proof of the following result is similar to the proof of Theorem 2.28.
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Fig. 15.4. A typical C
1 smoothness condition.

Theorem 15.31. Suppose T := 〈v1, v2, v3, v4〉 and T̃ := 〈v5, v2, v4, v3〉 are
two tetrahedra sharing the face F := 〈v2, v3, v4〉 of △. Suppose p and p̃ are
two polynomials of degree d, and suppose the B-coefficients of p relative to
T are {cijkl} while the B-coefficients of p̃ relative to T̃ are {c̃ijkl}. Then p

and p̃ join together with Cr continuity across the face F if and only if for
m = 0, . . . , r,

c̃mijk =
∑

ν+µ+κ+δ=m

cν,i+µ,k+κ,j+δB
m
νµκδ(v5), all i + j + k = d − m.

Here Bm
νµκδ are the Bernstein basis polynomials of degree m associated with

the tetrahedron T .

Figure 15.4 illustrates a typical C1 smoothness condition between two
trivariate polynomials of degree two. The condition involves the five coef-
ficients corresponding to the domain points in the pair of small tetrahedra
with some dotted edges.

15.15. Approximation Power in the Maximum Norm

In this section we establish a bound on how well trivariate polynomials of
degree d can approximate functions in Cd+1(Ω), where Ω is the closure of
a convex domain in R

3. The bound in this section is implied by the more
general results for q-norms presented in the following section, but the proof
here is much simpler. We define the diameter of Ω to be

|Ω| := max
u,v∈Ω

‖v − u‖. (15.39)

Theorem 15.32. Fix d ≥ 0. Then there exists a constant K depending
only on d such that for every f ∈ Cd+1(Ω), there exists a polynomial
pf ∈ Pd with

‖Dα(f − pf )‖
Ω
≤ K |Ω|d+1−|α| |f |d+1,Ω, (15.40)

for all 0 ≤ |α| ≤ d.
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Proof: Let (u, v, w) be the center of the largest ball contained in Ω, and
let

Tdf(x, y, z) :=
∑

i+j+k≤d

Di
xDj

yD
k
zf(u, v, w)

i ! j ! k !
(x − u)i(y − v)j(z −w)k (15.41)

be the trivariate Taylor polynomial of degree d centered at (u, v, w). Then

f(x, y, z) − Tdf(x, y, z)

=
∑

i+j+k=d+1

(x − u)i(y − v)j(z − w)k

i ! j ! k !
Di

xDj
yDk

zf(x̃, ỹ, z̃),

where (x̃, ỹ, z̃) is some point on the line between (x, y, z) and (u, v, w). This
immediately gives (15.40) with pf := Tdf for the case α := (0, 0, 0). To get
(15.40) for general α, we note that DαTdf = Td−|α|D

αf .

15.16. Averaged Taylor Polynomials

Let B := B(x0, y0, z0, ρ) := {(x, y, z) ∈ R
3 : ((x − x0)

2 + (y − y0)
2 + (z −

z0)
2)1/2 ≤ ρ} be the largest ball contained in T . Let

gB(x, y, z) :=

{
ce−ρ2/(ρ2−(x−x0)

2−(y−y0)
2−(z−z0)

2
), (x, y, z) ∈ B,

0, otherwise,

where we choose c so that
∫
R

3 gB(x, y, z) dx dy dz = 1. We call g a mollifier.
We now define the averaged Taylor polynomial of degree d with respect to

B := B(x0, y0, z0, ρ) as

Fd,Bf(x, y, z) :=

∫

B

Td,(u,v,w)f(x, y, z) gB(u, v, w) du dv dw,

where Td,(u,v,w)f is the trivariate Taylor polynomial of degree d of f cen-
tered at (u, v, w), see (15.41). Integrating by parts, we have the equivalent
formula

Fd,Bf(x, y, z)

=
∑

i+j+k≤d

1

i ! j ! k !

∫

B

Di
uDj

vDk
wf(u, v, w)Gijk(x, y, z, u, v, w) du dv dw

=
∑

i+j+k≤d

(−1)i+j+k

i ! j ! k !

∫

B

f(u, v, w)Hijk(x, y, z, u, v, w)du dv dw,



456 15. Trivariate Polynomials

where

Gijk(x, y, z, u, v, w) := (x − u)i(y − v)j(z − w)kgB(u, v, w),

Hijk(x, y, z, u, v, w) := Di
uDj

vD
k
w

[
(x − u)i(y − v)j(z − w)kgB(u, v, w)

]
.

This shows that the averaged Taylor polynomial is well defined for any
integrable function f ∈ L1(B(x0, y0, z0, ρ)), and Fd,Bf is a trivariate poly-
nomial of degree at most d. The proof of the following lemma is similar to
the proof of Lemma 1.5. The statement involves trivariate Sobolev spaces
which are defined in the following section.

Lemma 15.33. Given a multi-index α with |α| ≤ d, suppose that f

belongs to the Sobolev space W
|α|
1

(B). Then DαFd,Bf = Fd−|α|,B(Dαf).

Moreover, f = Fd,Bf for any polynomial f ∈ Pd.

Now suppose Ω is the closure of a convex domain in R
3, and let B

Ω
be

the largest ball that can be inscribed in Ω. Then the associated averaged
Taylor expansion Fd,B

Ω
maps functions defined on B

Ω
into trivariate poly-

nomials of degree d. We now give a bound on the size of Fd,B
Ω
f in terms

of the size of f . The bound will depend on the shape of Ω, as measured by

κ
Ω

:=
|Ω|

ρ
Ω

, (15.42)

where ρ
Ω

is the radius of B
Ω

and |Ω| is the diameter of Ω, see (15.39).
The shape parameter κ

Ω
can be large if the set Ω is thin. The proof of the

following theorem is similar to the proof of Lemma 1.6 in the bivariate case.

Theorem 15.34. There exists a constant K depending only on d and κ
Ω

such that for any f ∈ Lq(Ω) with 1 ≤ q ≤ ∞,

||Fd,BΩ
f ||q,Ω ≤ K ||f ||q,Ω. (15.43)

15.17. Approximation Power in the q-Norms

In this section we examine the approximation of functions in the Sobolev

spaces

W d+1

q (Ω) := {f : ‖f‖d+1,q,Ω < ∞},

where

‖f‖d+1,q,Ω :=





( d+1∑

k=0

|f |
q
k,q,Ω

)1/q

, 1 ≤ q < ∞

d+1∑

k=0

|f |k,∞,Ω, q = ∞,
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and the corresponding Sobolev seminorms are

|f |k,q,Ω :=






( ∑

|α|=k

‖Dαf‖
q
q,Ω

)1/q

, if 1 ≤ q < ∞,

max|α|=k ‖D
αf‖Ω, if q = ∞.

Suppose Ω is the closure of an arbitrary (not necessarily convex) do-
main in R

3 with a Lipschitz smooth boundary. Let B
Ω

be the largest disk
that can be inscribed in Ω. Given a function f defined on Ω, let Fd,B

Ω
f

be its associated averaged Taylor polynomial. Then using the Stein exten-
sion theorem if necessary, and following the proof of Theorem 1.7, we can
establish the following result.

Theorem 15.35. For all f ∈ W d+1

q (Ω),

‖Dα(f − Fd,B
Ω
f)‖

q,Ω
≤ K |Ω|d+1−|α| |f |d+1,q,Ω,

for all |α| ≤ d. If Ω is convex, the constant K depends only on d and
the shape parameter κ

Ω
of Ω. If Ω is nonconvex, it also depends on the

Lipschitz constant of the boundary of Ω.

15.18. Subdivision

Suppose T := 〈v1, v2, v3, v4〉 is a given tetrahedron, and let w be a point
in the interior of T . Let Ti := 〈w, vi+1, vi+2, vi+3〉 for i = 1, 2, 3, 4, where
we identify v4+j = vj for all j. Then we have the following result which
can be proved along the same lines as Theorem 2.38 using the de Casteljau
algorithm.

Theorem 15.36. Suppose p is a trivariate polynomial whose B-coefficients

relative to T are {c
(0)

ijkl}i+j+k+l=d. Then for all v ∈ T ,

p(v) =





∑

i+j+k+l=d

c
(i)

0jklB
T1,d
ijkl (v), v ∈ T1,

∑

i+j+k+l=d

c
(j)

i0klB
T2,d
ijkl (v), v ∈ T2,

∑

i+j+k+l=d

c
(k)

ij0lB
T3,d
ijkl (v), v ∈ T3,

∑

i+j+k+l=d

c
(l)

ijk0
B

T4,d
ijkl (v), v ∈ T4,
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where B
Tν ,d
ijkl are the Bernstein basis polynomials of degree d relative to

Tν , and the coefficients c
(m)

ijkl are the intermediate quantities generated by
applying m steps of the de Casteljau Algorithm 15.11 based on the 4-tuple
a of barycentric coordinates of w relative to T .

15.19. Degree Raising

It is clear that a trivariate polynomial of degree d can also be regarded as
a polynomial of degree d̃ for any d̃ > d. In this section we show how to find
the B-coefficients of p after degree raising it.

Theorem 15.37. Let p be a polynomial of degree d defined on a tetrahe-

dron T written in the B-form (15.13). Let c
[d]

ijkl = cijkl be its coefficients.
Then

p =
∑

i+j+k+l=d+1

c
[d+1]

ijkl Bd+1

ijkl , (15.44)

where Bd+1

ijkl are the Bernstein basis polynomials of degree d + 1 associated
with T , and where

c
[d+1]

ijkl :=
ic

[d]

i−1,j,k,l + jc
[d]

i,j−1,k,l + kc
[d]

i,j,k−1,l + lc
[d]

i,j,k,l−1

d + 1
, (15.45)

for i+ j +k+ l = d+1. Here coefficients with negative subscripts are taken
to be zero.

Proof: Multiplying both sides of (15.13) by 1 = b1 + b2 + b3 + b4, we get

p =
∑

i+j+k+l=d

c
[d]

ijkl

d !

i ! j ! k ! l !
bi
1b

j
2
bk
3bl

4(b1 + b2 + b3 + b4).

Then multiplying out and collecting terms, we get (15.45).

We can repeat this process to raise the degree of a polynomial by more
than one.

15.20. Remarks

Remark 15.1. As in the bivariate case, it is a nontrivial task to find sets
of points A which are poised with respect to Pd, i.e., such that for every set
of real numbers {zν}

n
ν=1

with n :=
(
d+3

3

)
there exists a unique trivariate

polynomial p ∈ Pd such that p(tν) = zν , for ν = 1, . . . , n. The following
result is the analog of Theorem 1.10.
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Theorem 15.38. Fix 0 ≤ d, and let n :=
(
d+3

3

)
. Suppose

A := {tν}
n
ν=1

:=

d+1⋃

i=1

i⋃

j=1

{tijk}
j
k=1

is a set of distinct points in R
3 such that for some collection {Fi}

d+1

i=1
of

distinct planes,

1) for 1 ≤ i ≤ d + 1, the point set Ai :=
⋃i

j=1
{tijk}

j
k=1

lies on Fi but not
on Fi+1 ∪ · · · ∪ Fd+1,

2) for 1 ≤ i ≤ d + 1, Ai satisfies the conditions of Theorem 1.10.

Then A is poised with respect to Pd.

This theorem is a generalization of a similar result in [ChunY77]. It is
easy to see that for any tetrahedron T , the set A := Dd,T of domain points
associated with T satisfies the hypotheses of this theorem. For some error
bounds for this type of polynomial interpolation, see [Boo97].

Remark 15.2. Given a tetrahedron T and an integer d, let {ξi}
n
i=1

be
the set of domain points associated with T , arranged in lexicographical
order, where n :=

(
d+3

3

)
. Let {Bi}

n
i=1

be the corresponding Bernstein basis
polynomials, arranged in the same order. We can now use the previous
remark to construct linear functionals {λi}

n
i=1

with the property

λiBj = δi,j , all i, j = 1, . . . , n. (15.46)

Let
M := [Bi(ξj)]

n
i,j=1

.

Lemma 15.39. For each 1 ≤ i ≤ n, let ai := (ai1, . . . , ain)T be the solution
of the linear system

Mai = ri,

where ri is the n-vector with all zero entries except for the i-th, which is
one. Let λi be the linear functional defined on C(T ) by

λif :=
n∑

j=1

aijf(ξj).

Then {λi}
n
i=1

are dual functionals to {Bi}
n
i=1

, i.e., (15.46) holds.

Proof: We know from Remark 15.1 that M is nonsingular, and so the
λi are well-defined. The fact that they satisfy (15.46) follows immediately
from the choice of coefficients aij .
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Remark 15.3. Theorem 15.23 ensures that if we set the coefficients of
a piecewise polynomial s that belongs to Cm(Ω), where Ω is the union of
a set of tetrahedra forming an orange with respect to an edge e, then we
can set the B-coefficients of s for domain points in tm(e)∩ T1 and all other
B-coefficients will be consistently determined by the smoothness conditions
across common faces.

Remark 15.4. As shown in [SchV86], dropping the normalization factors
in the Bernstein basis polynomials of Definition 15.7 gives an alternative
basis for trivariate polynomials of degree d that can be evaluated with
fewer operations than are required for the de Casteljau algorithm applied
to a polynomial in B-form. As discussed in Remark 2.12, in the bivariate
case the analogous unnormalized basis does not seem to be quite as stable
as the Bernstein polynomial basis. However, a detailed round-off analysis
and extensive numerical experiments carried out in [MaiP06b] show that in
the trivariate case, this alternative basis is at least as stable as using the
Bernstein basis polynomials.

15.21. Historical Notes

Barycentric coordinates relative to a tetrahedron go back to at least Möbius,
see [Moe86]. Bernstein basis polynomials on tetrahedra probably were
treated somewhere in the approximation literature, but we have not found
a reference. Some early paper where the B-form of trivariate polynomials
was used in the CAGD/spline setting include [Gol82, Gol83, Alf84b, Pra84,
Far86, Las87]. The use of the B-form seems to have been well-established in
the CAGD community by the time the first CAGD books [Far88, HosL93]
were written.

The de Casteljau algorithm, degree raising, and subdivision were stud-
ied in [Gol82, Gol83], see also the thesis [Las87]. This thesis also contains
derivative formulae for polynomials in B-form, along with various other re-
sults on the trivariate B-form. The earliest source we could find for the for-
mulae for integrals and inner products given in Section 15.13 is [ChuL90a].

For the ∞-norm, the Markov inequality for trivariate polynomials was
established in [Wil74] by reducing the problem to a univariate problem
where the classical Markov inequality can be applied. Our proof for general
1 ≤ q ≤ ∞ in Section 15.12 is based on the B-form, and follows the proof
for the bivariate case given in Section 2.12, which in turn was based on
ideas from our paper [LaiS98].

Conditions for two trivariate polynomials in B-form to join with C1

smoothness were introduced in the construction of a macro-element in
[Alf84b]. It is not clear who first discovered the analogous Cr smoothness
conditions, but they are given explicitly in [Boo87, Las87, Far88].



Tetrahedral Partitions

In this chapter we explore various properties of tetrahedral partitions. The
discussion includes shape properties, regular and shellable partitions, Euler
relations, clusters, various refinement schemes, and Delaunay partitions.

16.1. Properties of a Tetrahedron

Before defining tetrahedral partitions in the next section, we present some
facts about a single tetrahedron. Suppose we are given four noncoplanar
points v1, v2, v3, v4 in R

3. Then the convex hull of these points form a
tetrahedron which we write as T := 〈v1, v2, v3, v4〉.

We call the points vi := (xi, yi, zi) the vertices of T . Throughout the
remainder of the book, whenever we deal with a tetrahedron we assume its
vertices are noncoplanar, and are arranged in canonical order as described
in Definition 15.4. This ensures that T has a positive volume

VT =
1

6
det (M),

where

M :=




1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4


 .

A tetrahedron has six edges and four triangular faces. We write 〈v1, v2〉

for the edge connecting vertices v1 and v2, with similar notation for the
other edges. We write 〈v1, v2, v3〉 for the triangular face with vertices
v1, v2, v3, with similar notation for the other faces. We now describe how
to measure the size and shape of a tetrahedron.

Definition 16.1. We define |T | to be the length of the longest edge of T .
We write ρ

T
for the radius of the largest ball which can be inscribed in T ,

and call it the inradius of T . We call the center of this ball the incenter of
T . The ratio κ

T
:= |T |/ρ

T
is called the shape parameter of T .

The shape parameter κ
T

describes the shape of T . If T is a tetrahedron
whose six edges are all of the same length, then κ

T
= 12/

√
6. Such a

tetrahedron is called a regular tetrahedron. For more on regular tetrahedra,
see Remark 16.1. For any other tetrahedron, κ

T
is larger, and the larger κ

T

becomes, the flatter the tetrahedron T becomes. Another way to describe
the shape of a tetrahedron is in terms of certain angles at the vertices of T .
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Fig. 16.1. A face angle and the solid angle at a vertex.

Definition 16.2. Let T := 〈v1, v2, v3, v4〉 be a tetrahedron. We call the
angles of the triangles forming the faces of T the face angles of T . If F1

and F2 are two faces of T , then the angle between these faces is called the
dihedral angle between F1 and F2. If v is one of the vertices of T , then we
define the solid angle of T at v to be the spherical area of the intersection
of the unit ball centered at v with the trihedron T̃ which is obtained by
extending the three faces of T that join at v. We write θT for the smallest
of the four solid angles of T , and φT for the smallest of the twelve face
angles of T .

Figure 16.1 illustrates one of the three face angles (shown as an arc) and
the solid angle (shown as a spherical surface) at one vertex of a tetrahedron.
For more on solid angles, see Remark 16.2.

Example 16.3. The angle θT can be arbitrarily small even when φT is
large.

Discussion: To see this, suppose T := 〈v1, v2, v3, v4〉 is a tetrahedron
where v1 lies on the line perpendicular to the face F := 〈v2, v3, v4〉 at the
barycenter v

T
of F . Suppose F is an equilateral triangle. Now gradually

adjust the shape of the tetrahedron by moving v1 towards v
T
. Then θT

goes to zero, but all face angles of T remain bounded below by 30 degrees.

It is clear that the size of the shape parameter κ
T

:= |T |/ρ
T

of a
tetrahedron is connected to the size of its angles. The following lemma
makes this connection more precise.

Lemma 16.4. For any tetrahedron,

33/4

2θ
1/2

T

≤ κ
T
≤

8
√

3π2

θ2

T

. (16.1)

Proof: We make use of Theorem 6.1 of [JoeL94], which states that

√
3

24

(
3ρ

T

r
T

)2

≤ sin

(
θT

2

)
≤

2
4
√

3

(
3ρ

T

r
T

)1/2

,
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where r
T

is the circumradius of T , i.e., the radius of the smallest ball that
encloses T . The result then follows from the inequalities r

T
≤ |T | ≤ 2r

T

and θT /π ≤ sin(θT /2) ≤ θT /2.

16.2. General Tetrahedral Partitions

Definition 16.5. A collection △ := {Ti}
N
i=1

of tetrahedra in R
3 is called a

tetrahedral partition of a polygonal set Ω :=
⋃N

i=1
Ti provided that any pair

of tetrahedra in △ intersect at most at a vertex, along a common edge, or
along a common triangular face.

This definition allows quite general tetrahedral partitions such as

– two tetrahedra which are completely separated,

– two tetrahedra which touch only at a vertex,

– two tetrahedra which share only an edge.

The definition also allows the possibility that

– Ω has holes cutting through it, e.g. when Ω has the shape of a torus,

– Ω has cavities.

Such partitions arise frequently in the finite-element method for solving
partial differential equations.

Definition 16.6. The vertices of the tetrahedra in △ are called the vertices
of the partition △. If a vertex v is a boundary point of Ω, we say that it
is a boundary vertex. Otherwise, we call it an interior vertex. Similarly, the
edges and faces of the tetrahedra of △ are called the edges and faces of the
partition △. If an edge or face lies on the boundary of Ω, we say that it
is a boundary edge or boundary face, respectively. All other edges and faces
are interior edges or interior faces.

Given a tetrahedral partition △, we shall often need to work with
certain subpartitions called stars.

Definition 16.7. If v is a vertex of a tetrahedral partition △, we de-
fine star(v) to be the set of all tetrahedra in △ which share the vertex
v. Setting star1(v) := star(v), we define stari(v) inductively for i > 1
to be the set of all tetrahedra in △ which have a nonempty intersection
with stari−1(v). Similarly, we define star0(T ) := T , and starj(T ) :=⋃
{star(v) : v ∈ starj−1(T )}.
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16.3. Regular Tetrahedral Partitions

We emphasize that most of the results in the remainder of this book hold
for general tetrahedral partitions as described in Definition 16.5. However,
there are a few results which require partitions with more structure.

Definition 16.8. A tetrahedral partition △ is called shellable provided
it consists of a single tetrahedron, or it can be obtained from a shellable
tetrahedral partition △̃ by adding one tetrahedron T that intersects △̃

precisely along one, two, or three triangular faces.

Not all tetrahedral partitions are shellable. For example, two tetra-
hedra touching only at a vertex, or two tetrahedra touching only along an
edge are not shellable. By definition, if △ is a shellable tetrahedral par-
tition of a set Ω, then Ω is homeomorphic to the unit ball. The converse
does not hold, i.e., there are nonshellable tetrahedral partitions of sets Ω
which are homeomorphic to a ball, see Remark 16.3.

For many applications, the class of shellable tetrahedral partitions is
too restrictive. In particular, we would like to allow partitions with holes
and cavities. Partitions with holes or cavities cannot be shellable since they
are not homeomorphic to the ball. We now show how to construct well-
behaved tetrahedral partitions by starting with a shellable partition and
successively removing shellable subpartitions.

Definition 16.9. We say that a tetrahedral partition △ has a regular cavity

provided that it can be obtained from a larger tetrahedral partition by re-
moving a shellable subpartition T , all of whose vertices are interior vertices
of △.

Definition 16.10. We say that a tetrahedral partition △ of a set Ω has
a regular hole provided that it can be obtained from a larger tetrahedral
partition by removing a shellable subpartition T with the property that if
F is a triangular face of a tetrahedron in T and F lies on the boundary of
Ω, then F lies in one of two triangulations F1 or F2 on the boundary of Ω,
where

1) F1 and F2 are nonempty shellable triangulations,

2) the triangles of F1 do not touch those in F2.

The idea behind this definition is as follows: to create a regular hole
in a tetrahedral partition △, we remove a tetrahedron with a face on the
boundary of △, and then continue removing tetrahedra until finally we have
removed one or more tetrahedra with faces somewhere else on the boundary
of △.
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Definition 16.11. We say that a tetrahedral partition △ is regular pro-
vided that one of the following holds:

1) △ is shellable, or

2) △ can be obtained from a regular tetrahedral partition by creating a
regular hole or a regular cavity.

This definition allows multiple cavities and multiple holes which may
have branches. It is general enough to include all of the tetrahedral parti-
tions typically used in practice. Many tetrahedral partitions are not regular.
A simple example is provided by a pair of tetrahedra that touch only at a
vertex.

16.4. Euler Relations

In this section we explore the relationship between the number of vertices,
edges, and faces of a tetrahedral partition △. Let VI , VB be the number of
interior and boundary vertices of △, respectively. Let EI and EB be the
number of interior and boundary edges, and let FI and FB be the number
of interior and boundary faces of △. Suppose N is the number of tetrahedra
in △. We begin with a result for shellable partitions.

Theorem 16.12. Suppose △ is a shellable tetrahedral partition. Suppose
we can build △ by starting with one tetrahedron and adding tetrahedra one
at a time so that the number of times a tetrahedron touches the preceding
partition on exactly i faces is αi for i = 1, 2, 3. Then

1) N = 1 + α1 + α2 + α3,

2) FI = α1 + 2α2 + 3α3,

3) FB = 2α1 − 2α3 + 4,

4) EI = α2 + 3α3,

5) EB = 3α1 − 3α3 + 6,

6) VB = α1 − α3 + 4,

7) VI = α3.

Proof: The proof is just a simple matter of counting. To get formula 1),
we start with one tetrahedron, and note that αi is the number of times that
we add a tetrahedron touching on exactly i faces, so the total number of
tetrahedra added is N = 1+α1 +α2 +α3. To establish formula 2), we note
that each time we add a tetrahedron to an existing shellable tetrahedral
partition that touches on exactly i faces, the number of interior faces is
increased by i. We conclude that the total number of interior faces is given
by FI = α1 + 2α2 + 3α3. The proofs of the other formulae are similar.
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The formulae in Theorem 16.12 can be combined in various ways to
yield relationships between the number of vertices, edges, and faces. We
give four typical such relationships in the following theorem.

Theorem 16.13. Suppose △ is a shellable tetrahedral partition. Then

1) N = EI + VB − VI − 3,

2) N = FI/2 + FB/4,

3) EB = 3VB − 6,

4) FB = 2EB/3.

Proof: The equations in Theorem 16.12 imply α1 = VB + VI − 4, α2 =
EI − 3VI , and α3 = VI . They also imply α1 = (FB + 2VI − 4)/2 and
α2 = FI/2 − FB/4 − 2VI + 1. The results follow after substituting these
expressions in the formulae in Theorem 16.12.

The formulae in the proof of Theorem 16.13 show that the shelling

parameters α1, α2, α3 are uniquely determined by the partition, i.e., they
don’t depend on the order in which the partition is decomposed. We now
extend Theorem 16.13 to the class of regular tetrahedral partitions.

Theorem 16.14. Suppose △ is a regular tetrahedral partition with H

holes and C cavities. Then

1) N = EI + VB − VI + 3(H − C − 1),

2) N = FI/2 + FB/4,

3) EB = 3VB + 6(H − C − 1),

4) FB = 2EB/3.

Proof: We proceed by induction on the number of holes and cavities. If
there are no holes or cavities, the formulae follow from Theorem 16.13. We
consider two cases.

Case 1: Suppose △ is a partition with C > 0 cavities. Then we can get
△ by removing a shellable cluster T of tetrahedra from a partition △̃ with
C − 1 cavities. By the induction hypothesis,

Ñ = ẼI + ṼB − ṼI + 3(H − C),

Ñ =
1

2
F̃I +

1

4
F̃B ,

ẼB = 3ṼB + 6(H − C),

F̃B =
2

3
ẼB ,

where Ṽ , Ẽ, F̃ , Ñ are the number of vertices, edges, faces, and tetrahedra in
△̃, respectively, and the subscripts B and I denote boundary and interior.
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For the cluster T , Theorem 16.13 implies

N̂ = ÊI + V̂B − V̂I − 3,

N̂ =
1

2
F̂I +

1

4
F̂B ,

ÊB = 3V̂B − 6,

F̂B =
2

3
ÊB ,

(16.2)

where V̂ , Ê, F̂ , N̂ are the number of vertices, edges, faces, and tetrahedra
in T , respectively. It is easy to check that

VB = ṼB + V̂B ,

VI = ṼI − V̂I − V̂B ,

EB = ẼB + ÊB ,

EI = ẼI − ÊI − ÊB ,

FB = F̃B + F̂B ,

FI = F̃I − F̂I − F̂B .

We are now ready to prove 1). Using ÊB = 3V̂B − 6, we have

N = Ñ − N̂

= (ẼI − ÊI − ÊB) + (ṼB + V̂B) − (ṼI − V̂I − V̂B) + 3(H − C − 1)

= EI + VB − VI + 3(H − C − 1).

Similarly, using the fact that the boundary faces of T are interior faces of
△, we get

Ñ − N̂ =
1

2
(F̃I − F̂I − F̂B) +

1

4
(F̃B − F̂B + 2F̂B),

which reduces to formula 2). To prove 3), we add the expressions for ẼB

and ÊB to get

EB = ẼB + ÊB = 3(ṼB + V̂B) + 6(H − C − 1) = 3VB + 6(H − C − 1).

To prove 4), we have

FB = F̃B + F̂B =
2

3
(ẼB + ÊB) =

2

3
EB .

Case 2: Suppose △ is a partition with H holes. Then △ can be obtained
from a partition △̃ with H − 1 holes by removing a shellable cluster T .
Suppose F1 and F2 are the triangulations on the boundary of Ω in Defi-
nition 16.10. For combinatorial purposes, we may think of Fi as a planar
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triangulation. For i = 1, 2, let V i
B , V i

I , Ei
I be the number of boundary

vertices, interior vertices, and interior edges of Fi. Using Euler’s relations
for triangulations (4.5), we have Ei

I = V i
B + 3V i

I − 3 and Ei
B = V i

B for
i = 1, 2. It is straightforward to see that

VB = ṼB + V̂B − V 1

B − 2V 1

I − V 2

B − 2V 2

I ,

VI = ṼI − V̂I − V̂B + V 1

B + V 1

I + V 2

B + V 2

I ,

EB = ẼB + ÊB − E1

B − 2E1

I − E2

B − 2E2

I ,

EI = ẼI − ÊI − ÊB + E1

B + E1

I + E2

B + E2

I ,

FB = F̃B + F̂B − 2F 1 − 2F 2,

FI = F̃I − F̂I − F̂B + F 1 + F 2,

(16.3)

where F 1, F 2 are the number of faces in F1,F2, respectively. By the induc-
tion hypothesis,

Ñ = ẼI + ṼB − ṼI + 3(H − C − 2),

Ñ =
1

2
F̃I +

1

4
F̃B,

ẼB = 3ṼB + 6(H − C − 2),

F̃B =
2

3
ẼB .

(16.4)

Combining the above formulae for Ñ and N̂ with the fact that ÊB =
3V̂B − 6, we have

N = Ñ − N̂ = (ẼI − ÊI) + (ṼB − V̂B) − (ṼI − V̂I ) + 3(H − C − 1)

= (ẼI − ÊI − ÊB) + (ṼB + V̂B) − (ṼI − V̂I − V̂B) + 3(H − C − 3).

Using Ei
I = V i

B + 3V i
I − 3 and Ei

B = V i
B for i = 1, 2, we get

N = (ẼI − ÊI − ÊB + E1

B + E1

I + E2

B + E2

I )

+ (ṼB + V̂B − V 1

B − 2V 1

I − V 2

B − 2V 2

I )

− (ṼI − V̂I − V̂B + V 1

B + V 1

I + V 2

B + V 2

I ) + 3(H − C − 1)

= EI + VB − VI + 3(H − C − 1),

which gives

N = Ñ − N̂ =
1

2
(F̃I − F̂I) +

1

4
(F̃B − F̂B)

=
1

2
(F̃I − F̂I − F̂B + F 1 + F 2) +

1

4
(F̃B + F̂B − 2F 1 − 2F 2)

=
1

2
FI +

1

4
FB .
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Fig. 16.2. A prism cut into three tetrahedra.

The proof of 3) follows by substituting (16.2) and (16.4) in the formula
for EB in (16.3). Similarly, 4) follows by substituting (16.2) and (16.4) in
the formula for FB in (16.3), and observing that F i = (2Ei

I + Ei
B)/3 for

i = 1, 2.

The formulae in Theorem 16.14 do not hold for general nonregular
tetrahedral partitions. For example, it is easy to check that they fail for
the simple case where △ consists of two tetrahedra which touch only at a
vertex. We now give a simple example to illustrate Theorem 16.14 for a
partition with a hole.

Example 16.15. Let △ be the tetrahedral partition obtained by connect-
ing m ≥ 3 copies of a prism-shaped complex T as shown in Figure 16.2 end
to end to create a torus-shaped object Ω.

Discussion: In order to create a torus-shaped object from prisms as in
Figure 16.2, we have to choose the end triangles (shaded in the figure) to
be nonparallel. Each copy of the complex T consists of three tetrahedra.
A simple count shows that VB = 3m, VI = 0, EB = 9m, EI = 0, FB = 6m,
FI = 3m, N = 3m, C = 0, and H = 1. Then it is easily checked that each
of the Euler relations of Theorem 16.14 holds for △.

16.5. Constructing and Storing Tetrahedral Partitions

Tetrahedral partitions can be stored in a computer using data structures
similar to those described in Section 4.5 for storing triangulations. Special
care must be exercised when Ω has either holes or cavities. It is a nontriv-
ial problem in computational geometry to design efficient algorithms for
constructing tetrahedral partitions with given vertices (and possibly given
edges and faces), especially if the desired set Ω is nonconvex and has holes
or cavities. The task is further complicated by the fact that usually we
want our tetrahedral partition to have good shape properties.

On the other hand, if we want to use splines on tetrahedral partitions
as a tool for solving partial differential equations, usually we do not require
the partition to have a specified set of vertices, and the locations of the
vertices can be used as free parameters to help get a good partition. This
is the subject of grid generation, see Remark 16.4.



470 16. Tetrahedral Partitions

16.6. Clusters of Tetrahedra

In dealing with spline spaces on tetrahedral partitions △, we often have
to work with small clusters of tetrahedra contained in a given tetrahedral
partition △.

Definition 16.16. Let v be a vertex of a tetrahedral partition △, and let
ℓ be a positive integer. Suppose T is a shellable subpartition of △ such
that all tetrahedra in T lie in starℓ(v) for some vertex v of △. Then we say
that T is an ℓ-cluster with center at v.

In this section we establish several useful properties of clusters. Our
first result gives a bound on how many tetrahedra there can be in an ℓ-
cluster.

Lemma 16.17. Suppose that T is an ℓ-cluster of tetrahedra. Then

N := #T ≤






a

k∑

ν=0

(a + 4)2ν , ℓ = 2k + 1,

a

k∑

ν=1

(a + 4)2ν−1, ℓ = 2k,

(16.5)

where a := 4π/θ, and θ is the smallest solid angle in the tetrahedra of T .

Proof: We first consider the case where T = star(v) with N tetrahedra
attached to v. Taking the sum of the solid angles at v over all N tetrahedra,
we see that Nθ ≤ 4π which implies N ≤ 4π/θ = a. This establishes
(16.5) for ℓ = 1. Formula 1) of Theorem 16.13 implies that the number of
boundary vertices of star(v) is at most N + 4 ≤ a + 4.

Now consider T = starℓ(v). We say that a vertex w is at level j with
respect to v if we have to follow at most j edges to get from w to v. T

has vertices at all levels from 0 to ℓ. Since there are at most a tetrahedra
surrounding any vertex, it follows that there are at most (a + 4)j vertices
at level j. To count the total number of tetrahedra, it suffices to consider
vertices at levels 0, 2, . . . , 2k if ℓ = 2k + 1, and at levels 1, 3, . . . , 2k − 1 if
ℓ = 2k.

Our next result gives a bound on the relative sizes of the edge lengths
and volumes of tetrahedra in a cluster.

Lemma 16.18. Suppose T is an ℓ-cluster of tetrahedra, and let θ and φ

be the smallest solid and face angles in T , respectively. Then for any two
tetrahedra T and T̃ in T ,

|T |

|T̃ |
≤ bn, (16.6)
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where b := 1

sin φ
and n := ⌈4(2ℓ − 1)π/θ + 2⌉. Moreover, the ratio of the

volumes of T and T̃ satisfies

VT

V
T̃

≤
b3nκ3

T

8π
, (16.7)

where κT := maxT∈T κ
T
.

Proof: Suppose e and ẽ are any two edges which lie in a common face of
a tetrahedron T in T . Then by (4.3),

|e|

|ẽ|
≤ b. (16.8)

Now any two vertices in T are connected by a path of edges which passes
through at most 2ℓ − 1 vertices. Since at most 4π/θ tetrahedra can touch
any given vertex, this means that we can get from any edge in T to any
other edge by making at most n comparisons, and (16.6) follows.

To prove (16.7), let T, T̃ ∈ T . Then VT ≤ 1

6
|e1||e2||e3|, where e1, e2, e3

are any three edges of T . On the other hand, the volume of T̃ is at least as
great as the volume of the inscribed sphere associated with T̃ . Its volume
is 4π

3
ρ3

T̃
. Since κ

T̃
= |T̃ |/ρ

T̃
, using (16.8), we get

VT

V
T̃

≤
b3nκ3

T̃

8π
.

Since κ
T̃
≤ κT , (16.7) follows.

Lemma 16.4 shows that the shape parameter κT in (16.7) is bounded
above in terms of the smallest solid angle in T . It follows that the ratio of
volumes in (16.7) is bounded by a constant depending only on the smallest
solid and face angles in T . We conclude this section with a useful bound
on the diameter of a cluster of tetrahedra, where in general for any subset
A of R

3, we define its diameter by

|A| := max
v,w∈A

‖v − w‖.

Lemma 16.19. Let T be an ℓ-cluster of tetrahedra in an arbitrary tetra-
hedral partition △, and let ΩT :=

⋃
T∈T T . Let |T | be the length of the

longest edge in T . Then
|ΩT | ≤ 2 ℓ |T |. (16.9)

Proof: Since T is an ℓ-cluster, there is some vertex v such that ΩT ⊆

starℓ(v). Since ΩT has a polygonal boundary, its diameter must be equal
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to ‖u−w‖ for some pair of boundary vertices. But for any pair of vertices
u, w of ΩT , we can find a polygonal path from u to w involving at most 2ℓ

edges of T .

16.7. Refinements of Tetrahedral Partitions

Suppose △ and △R are two tetrahedral partitions of Ω.

Definition 16.20. We say that △R is a refinement of △ provided

1) every vertex of △ is a vertex of △R,

2) every tetrahedron t ∈ △R is a subtetrahedron of some tetrahedron
T ∈ △.

When △R is a refinement of △, we call △ the coarser tetrahedral partition

and △R the finer tetrahedral partition. In this case we also say that the two
tetrahedral partitions are nested.

There are many ways to refine a given tetrahedral partition. In prac-
tice we are interested in systematic refinement algorithms which produce
refinements with good shape properties. We now describe several refine-
ment algorithms which will be especially useful for constructing trivariate
macro-element spaces in Chapter 18.

16.7.1 The Alfeld Refinement

Definition 16.21. Given a tetrahedron T := 〈v1, v2, v3, v4〉, let v
T

:=
(v1 + v2 + v3 + v4)/4 be the barycenter of T . Then we define the Alfeld split

TA of T to consist of the four subtetrahedra obtained by connecting v
T

to each of the vertices of T , see Figure 16.3. If △ is a general tetrahedral
partition, we write △A for the partition which results from applying the
Alfeld split to each tetrahedron in △.

Fig. 16.3. The Alfeld split of a tetrahedron.

We now investigate the shape properties of the subtetrahedra in the
Alfeld split.
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Theorem 16.22. Given a tetrahedron T , let TA be the associated Alfeld
refinement. Suppose θT and φT are the smallest solid angle and smallest
face angle in T , respectively. Let θA and φA be the corresponding angles
for TA. Then

θA ≥ π

(
sin(φT )

8
√

3π2

)3

θ6

T , φA ≥
2

3π
φT . (16.10)

Proof: Let T̃ be one of the subtetrahedra of TA. Suppose eA is a longest
edge of T̃ . Then since the volume of T̃ is one-quarter the volume of T ,
comparing with the volumes of spherical wedges, we have

θA |eA|
3

3
≥ V

T̃
=

1

4
VT ≥

π

3
ρ3

T
=

π|T |3

3κ3

T

,

where κ
T

is the shape parameter associated with T . Using (16.1) and
(16.8), this gives

θA ≥ π

(
|T |

|eA|κT

)3

≥ π

(
sin(φT )θ2

T

8
√

3π2

)3

,

which reduces to the first inequality in (16.10).
To prove the second inequality in (16.10), we first consider the face

angle φ1 formed by the vertices v1, vT
, v2. Let e be the line passing through

v
T

and v3, and let w be the point where e intersects the face opposite v3.
Now there exists a point v∗ on e such that the angle formed by v1, v

∗, v2 is
maximal. Moreover, for every point v on e, the angle formed by v1, v, v2 is
decreasing as v moves away from v∗ in either direction. We conclude that
φ1 is at least as large as the angle formed by v1, v3, v2 or the one formed
by v1, w, v2. The first of these angles is bounded below by φ, while by
Lemma 4.17, the second is bounded below by 2φ/3π. This establishes the
second inequality in (16.10) for all face angles at v

T
.

We now consider a typical face angle of a subtetrahedron at a vertex
of T . Let α be the angle at v1 of the triangle 〈v

T
, v1, v2〉, β be the angle

at v1 of 〈vm, v1, v2〉, and γ be the angle at v2 of 〈v1, v2, vm〉, where vm =
(v3 +v4)/2 is the midpoint of the line segment 〈v3, v4〉. It is easy to see that
the plane passing through v1, v2, vT

contains both vm and the barycenter
vF of the triangle F := 〈v2, v3, v4〉. Moreover vF = (2vm + v2)/3. This
implies that the area A1 of the triangle 〈v1, v2, vF 〉 is two-thirds of the
area A2 of the triangle 〈v1, v2, vm〉. Let d1 := |〈v1, vm〉|, d2 := |〈v2, vm〉|,
d := |〈v1, vF 〉|, and L := |〈v1, v2〉|. Suppose now that d1 > d2. Then using
A1 = dL sin(α)/2, A2 = d1L sin(β)/2, and A1 = 2A2/3, we get

α ≥ sin α =
2

3

d1

d
sinβ ≥

2

3

d1

d1 + d2/3
sin β =

1

π
β ≥

1

π
φ.
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Fig. 16.4. A partial Worsey–Farin split of a tetrahedron.

If d1 < d2, we apply the law of sines to get

α ≥ sin α =
2

3

d2

d
sin γ ≥

2

3

d2

d1 + d2/3
sinγ =

1

π
γ ≥

1

π
φ.

16.7.2 The Worsey–Farin Refinement

Definition 16.23. Suppose △ is tetrahedral partition. For each tetrahe-
dron T in △, let v

T
be the incenter of T , and let TA be the corresponding

Alfeld split of T . For each interior face F of △, let v
F

be the point where
the line segment joining the incenters of the two tetrahedra sharing F in-
tersect F . For each boundary face F , let v

F
be the barycenter of F . Now

for each face F , connect v
F

to the vertices of F and to the centers v
T

of
each tetrahedron sharing the face F . We call the resulting refined partition
△

W F
the Worsey–Farin refinement of △.

The following lemma ensures that the Worsey–Farin refinement is well
defined.

Lemma 16.24. Suppose T and T̃ are two tetrahedra sharing a face F .
Then the line joining the incenters v

T
and v

T̃
intersects F at a point v

F
in

the interior of F .

Proof: Let ℓ := 〈v
T
, w

T
〉 be a line segment perpendicular to F at the point

w
T
. Let ℓ̃ := 〈v

T̃
, w

T̃
〉 be an analogous line segment through v

T̃
. Note that

both w
T

and w
T̃

are in the interior of F . Since these two line segments
are parallel, there exists a plane π containing both of them. Then the line
from v

T
to v

T̃
lies in π, and the point v

F
where it intersects F must lie on

the line segment 〈w
T
, w

T̃
〉.

Figure 16.4 illustrates a partial Worsey–Farin split of a tetrahedron T ,
where only one of the four tetrahedra in the Alfeld split TA of T has been
further split into three subtetrahedra. Clearly, if we apply the Worsey–Farin
refinement to △, then each tetrahedron T in △ is split into twelve subtetra-
hedra. Moreover, each triangular face of △ is split into three subtriangles
similar to the bivariate Clough–Tocher split discussed in Section 4.8.1.
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16.7.3 The Worsey–Piper Refinement

Definition 16.25. Suppose △ is tetrahedral partition. For each tetrahe-
dron T in △, choose a point v

T
in the interior of T . For each edge of △,

choose a point ve in the interior of e, and for each face F of △, choose a
point vF in the interior of F . Split each tetrahedron T of △ into twenty-
four subtetrahedra as follows. First, connect v

T
to each of the vertices of

T , to each point ve on an edge of T , and to each point vF on a face of T .
Then for each face F of T , connect v

F
to each of the vertices of F as well as

to each of the points ve associated with edges e of F . We call the resulting
collection △

W P
of tetrahedra the Worsey–Piper refinement △.

The Worsey–Piper refinement splits each tetrahedron in △ into 24
subtetrahedra. Each face of △ is split into six subtriangles. For later use,
we define a special restricted class of Worsey–Piper refinements which plays
a role in building trivariate macro-element spaces, see Section 18.5.

Definition 16.26. We say that the Worsey–Piper refinement △
WP

of △
is proper provided that

1) for every pair of tetrahedra T and T̃ sharing a face F , the point v
F

lies on the line segment 〈v
T
, v

T̃
〉,

2) for every collection T1, . . . , Tm of tetrahedra sharing an edge e of △,
the points ve and v

T1
, . . . , v

Tm
are coplanar.

In general Worsey–Piper refinements will not be proper. The following
theorem gives some conditions on a given triangulation △ which ensure that
△

W P
is proper.

Theorem 16.27. Suppose △ is such that for every tetrahedron in △, the
center of the sphere passing through its four vertices lies in the interior of
T . In addition, suppose that

1) for each tetrahedron of △, v
T

is the center of the circumscribed sphere,

2) for each face F of △, vF is the center of the circumscribed circle,

3) for each edge e of △, ve is the midpoint of e.

Then the associated Worsey–Piper refinement is proper.

Proof: Fix a tetrahedron T . Then since v
T

is the circumcenter of T ,
for each face F of T , the line passing through v

T
and perpendicular to F

intersects F at the center vF of the circumcircle of F . If F is shared by T̃ ,
the same holds for T̃ . It follows that the line segment connecting v

T
and

v
T̃

intersects the face F at v
F
. For each edge e, the line segment 〈v

T
, ve〉 is

perpendicular to e for each tetrahedron T containing the edge e. Thus, for
all tetrahedra T sharing e, v

T
are in the same plane.
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The conditions of Theorem 16.27 are satisfied whenever △ contains
only acute tetrahedra, i.e., tetrahedra where the dihedral angle between any
two adjoining faces is at most π/2.

16.7.4 The Alfeld-16 Refinement

Definition 16.28. Given a tetrahedron T , let TA be the Alfeld split of T

into four subtetrahedra T1, . . . , T4 based on the barycenter v
T

of T . For
each i = 1, . . . , 4, let vi

T
be the barycenter of Ti. For each i = 1, . . . , 4,

connect vi
T

to the vertices of Ti to split Ti into four subtetrahedra. We
call the resulting partition of T into 16 subtetrahedra the Alfeld-16 split

of T and denote it by TA16. If this split is applied to every tetrahedron
in a partition △, we call the resulting refined partition △A16 the Alfeld-16

refinement of △.

We can get bounds on the size of the angles of the subtetrahedra ap-
pearing in an Alfeld-16 split of a tetrahedron T by applying Theorem 16.22
twice.

16.7.5 Quasi-uniform Refinement

The refinement methods discussed above produce partitions whose angles
are smaller than the angles of the original partition. Thus, if a given par-
tition is repeatedly refined by one of these methods, the smallest angle
of the resulting partitions will approach zero, and the shape parameters
will become unbounded. On the other hand, there are important applica-
tions, including, for example, the finite-element method and various multi-
resolution methods, where it is important to refine a number of times while
keeping the shape of the tetrahedra under control.

Ideally, we would like a uniform refinement method where the shape
parameter associated with a refined tetrahedral partition is the same as
the shape parameter associated with the original partition. There is a
uniform refinement algorithm for triangulations, see Algorithm 4.23, but it
is impossible to design such an algorithm for tetrahedral partitions. In this
section we discuss a so-called quasi-uniform refinement algorithm.

Let u1 := (−
√

2/3, 0, 0), u2 := (0,−
√

1/3, 0), u3 := (0,
√

1/3, 0), and

u4 := (0, 0,
√

2/3). Then T ∗ := 〈u1, u2, u3, u4〉 is the rhombic tetrahedron.

This tetrahedron has four edges of length 1, and two edges of length 2/
√

3.
Let uij := (ui + uj)/2 be the midpoints of the edges of T ∗. Then it is easy
to see that the eight tetrahedra

T1 := 〈u1, u12, u13, u14〉, T2 := 〈u2, u12, u23, u24〉,

T3 := 〈u3, u13, u23, u34〉, T4 := 〈u4, u14, u24, u34〉,

T5 := 〈u14, u23, u12, u13〉, T6 := 〈u14, u23, u12, u24〉,

T7 := 〈u14, u23, u13, u34〉, T8 := 〈u14, u23, u24, u34〉,

(16.11)
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form a uniform partition of T ∗, where each of these eight tetrahedra is just
a copy of T ∗ scaled by a factor of 1/2. The tetrahedra T1, T2, T3, T4 are
obtained by cutting off corners of T ∗. The other four tetrahedra share the
edge e := 〈u14, u23〉. Given a positive integer n, let t∗

1
, . . . , t∗N be the N :=

8n subtetrahedra of T obtained by applying the above uniform refinement
process n times to the rhombic tetrahedron T ∗.

We now describe an algorithm for refining an arbitrary tetrahedron T .
Let M(T ) be the 3 × 3 matrix that describes the affine map taking T into
T ∗. We may assume that M(T ) is chosen so that a longest edge of T is
mapped onto the edge 〈u2, u3〉 of the rhombic tetrahedron, or equivalently,
the midpoint of a longest edge of T is mapped to the origin.

Algorithm 16.29. (Rhombic Refinement of a tetrahedron T )

For j = 1, . . . , N , set tj := M(T )−1t∗j

We now show that for arbitrary T , the subtetrahedra in the rhombic
refinement of T have at most three different shapes.

Lemma 16.30. For any tetrahedron T := 〈v1, v2, v3, v4〉, there exist κ1, κ2,
κ3 such that for every positive integer n, the shape parameter of every sub-
tetrahedron in the n-th level refinement of T produced by Algorithm 16.29
is one of the three numbers κ1, κ2, or κ3.

Proof: Let κ1 be the shape parameter of T , and let t1, . . . , t8 be the eight
subtetrahedra of T . For a list of their vertices, simply replace the ui in
(16.11) with vi and the uij with vij = (vi + vj)/2. The four tetrahedra
t1, . . . , t4 are just scaled versions of T , and thus have the same shape pa-
rameter κ1. We claim that t5 and t8 have a common shape parameter which
we call κ2. To see this, we observe that

t8 = −t5 +
(v1 + v2 + v3 + v4)

2
,

i.e., t8 can be obtained from t5 by scaling it by −1 and translating by
(v1 + v2 + v3 + v4)/2. To check this, it suffices to examine vertices:

v23 = −
(v1 + v4)

2
+

(v1 + v2 + v3 + v4)

2
,

v14 = −
(v2 + v3)

2
+

(v1 + v2 + v3 + v4)

2
,

v12 = −
(v3 + v4)

2
+

(v1 + v2 + v3 + v4)

2
,

v13 = −
(v2 + v4)

2
+

(v1 + v2 + v3 + v4)

2
.



478 16. Tetrahedral Partitions

Similarly,

t7 = −t6 +
(v1 + v2 + v3 + v4)

2
,

and thus t6 and t7 have a common shape parameter which we call κ3.
The next cycle of the refinement process divides each of the ti into eight
subtetrahedra. A similar calculation shows that each of these is a scaled
and translated copy of one of the three types of tetrahedra {t1, t2, t3, t4},
{t5, t8}, and {t6, t7}.

Clearly, if we start with a rhombic tetrahedron T , then the algorithm
produces a uniform refinement of T , i.e., all subtetrahedra are similar to
T . Suppose now that △ is an arbitrary tetrahedral partition. To refine
△ we can apply Algorithm 16.29 to each tetrahedron in △. This process
is well defined since the refinement process of Algorithm 16.29 uses the
midpoints of the edges to split each face F of a tetrahedron T into four
subtriangles which are all similar to F . Thus, if T and T̃ share the face F ,
the refinements of T and T̃ will split F in the same way. Now it is clear
from the above discussion that this refinement process is quasi-uniform in
the sense that the maximum of the shape parameters of tetrahedra in the
n-th level refinement △n of △ is given by

κ△n
:= max

T∈△
max
1≤i≤3

κi(T ), (16.12)

where the κ1(T ), κ2(T ), κ3(T ) are the shape parameters in Lemma 16.30
associated with T . The quantity on the right in (16.12) is independent of
n, and in fact depends only on the original tetrahedral partition △.

For some applications it is useful to have local refinement algorithms
where some (but not all) of the tetrahedra in a partition △ are split. A full
treatment of such algorithms is beyond the scope of this book, but we list
here three simple strategies:

1) (Edge splitting). Suppose e := 〈v1, v2〉 is an edge of △, and let u be its
midpoint. Then for each tetrahedron T := 〈v1, v2, v3, v4〉 of △ sharing
the edge e, we connect u to the vertices v3 and v4 of T .

2) (Face splitting). Suppose F := 〈v1, v2, v3〉 is a triangular face of a
tetrahedron in △. Split F into four triangles using the midpoints of its
edges. For each tetrahedron T sharing F , connect these points to the
vertex of T not lying on F . Finally, for each remaining tetrahedron T

sharing an edge e of F , split T by connecting the midpoint of e to the
two vertices of T not lying on e.

3) (Tetrahedral splitting). Pick a tetrahedron T and split it into eight

subtetrahedra using Algorithm 16.29. For each tetrahedron T̃ sharing
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a face F with T , connect the vertex of T̃ not lying on F to each of the
midpoints of the edges of F . Finally, for each remaining tetrahedron T̃

sharing an edge e with T , connect the midpoint of e to the two vertices of
T̃ not on e.

16.8. Delaunay Tetrahedral Partitions

Given a set V of points in R
3, let Ω be the associated convex hull. Suppose

△ is a tetrahedral partition of Ω with vertices at the points of V , and let
θ△ be the minimal solid angle appearing in the tetrahedra in △. Then
we say that △ is a maxmin-angle partition provided that there is no other
tetrahedral partition △̃ of Ω with vertices V such that the minimal solid
angle of the tetrahedra in △̃ is larger than θ△. As in the bivariate case, it
turns out that a max-min angle partition need not be unique, and finding
one is equivalent to constructing a so-called Delaunay tetrahedral partition.

Definition 16.31. Suppose △ is a tetrahedral partition corresponding to
a set of vertices V . Then △ is said to be a Delaunay tetrahedral partition

provided that for every tetrahedron T in △, there is no vertex v ∈ V lying
in the interior of the ball passing through the vertices of T .

We do not have space here to go further into the theory and practice
of constructing Delaunay tetrahedral partitions, see e.g. [PreS85, Ede87,
Joe91] for more details and references.

16.9. Remarks

Remark 16.1. Suppose T is a regular tetrahedron with edges of length

a. Then the surface area of T is
√

3a2 while the volume is
√

2a3/12. All
dihedral angles of T are equal to arcos(1/3), while the face angles are equal
to π/3. The solid angles of T are 3 arccos(1/3) − π, and the inradius of T

is
√

6a/12.

Remark 16.2. Solid angles are measured in steradians. Note that the
sum of the solid angles in a tetrahedron depends on the shape of the
tetrahedron, but is bounded by 2π. For a regular tetrahedron, the sum
is 4(3 arcos(1/3)− π) which is somewhat smaller than 2π. There are tetra-
hedra where the sum is arbitrary close to 2π. Indeed, as v1 approaches the
face F in Example 16.3, the solid angle at v1 approaches 2π which is the
area of a hemisphere. The solid angle at a vertex of a tetrahedron is equal
to the sum of the dihedral angles at that vertex minus π.

Remark 16.3. There exist tetrahedral partitions which are homeomorphic
to a ball, but are not shellable. The first such example is due to Rudin
[Rud58], and involves 41 tetrahedra. The smallest known example contains
only five tetrahedra.
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Remark 16.4. Let Ω be a given domain, possibly with holes and cavities.
Then an important problem in using splines to solve partial differential
equations is how to construct a tetrahedral partition △ with good shape
properties. This is called the grid generation problem, and has been heavily
studied in the finite-element literature, see e.g. [Ede01].

Remark 16.5. It is not clear how small the angles in the Worsey–Farin
refinement △

WF
of a tetrahedral partition △ can be as compared to those

in △. We conjecture that there exist constants K1 and K2 depending on
θ
△

and φ
△

such that

θWF ≥ K1θ
△

, φWF ≥ K2φ
△

, (16.13)

where θ
△

and φ
△

are the smallest solid and face angles in △, respectively,
and θWF and φWF are the corresponding angles for △

WF
.

16.10. Historical Notes

As with triangulations, there are a number of different definitions of a
tetrahedral partition in the literature. The concept of shellable tetrahedral
partition arose in topology, see [Rud58] and references therein. The termi-
nology regular tetrahedral partition also seems to have different meanings to
different people. Here we have adopted a definition which is general enough
to include all of the partitions that one is likely to use in practice, including
those with holes and cavities.

The combinatorial formulae in Theorems 16.13 and 16.14 relating num-
bers of vertices, edges, faces, and tetrahedra in a tetrahedral partition are
well known in the finite-element community, but it is perhaps less well
known that they do not hold for arbitrary tetrahedral partitions. The
more general formulae in Theorem 16.14 for domains with holes and cav-
ities were claimed in [EwiFG70], but the inductive argument given there
does not work without shellability. We have tailored our definition of reg-
ularity to allow us to give a rigorous proof of this theorem.

The Alfeld, Worsey–Farin, Worsey–Piper, and Alfeld-16 refinements
described in Section 16.7 were introduced in [Alf84b], [WorF87], [WorP88],
and [AlfS05b], respectively, where they were used to construct certain tri-
variate macro-element spaces.

It is a nontrivial problem to construct quasi-uniform refinement algo-
rithms in the tetrahedral case. The algorithm described in Section 16.7.5
is based on [LiuJ96]. For further references, see [Ong94, LiuJ95, LiuJ96].



Trivariate Splines

In this chapter we develop the basic properties of trivariate splines, i.e.,
smooth piecewise polynomial functions defined over tetrahedral partitions
in R

3.

17.1. C
0 Trivariate Spline Spaces

Suppose △ is a tetrahedral partition of a bounded domain Ω ∈ R
3. Given

an integer d ≥ 0, let Pd be the space of trivariate polynomials of degree d.
Then we define the associated space of C0 polynomial splines of degree d
over △ as

S0

d (△) := {s ∈ C0(Ω), s|T ∈ Pd, for all T ∈ △}.

For each tetrahedron T := 〈v1, v2, v3, v4〉 in △, let

Dd,T :=
{
ξT
ijkl :=

iv1 + jv2 + kv3 + lv4

d

}

i+j+k+l=d

be the set of domain points associated with T as introduced in (15.14). We
define the set of domain points associated with △ as

Dd,△ :=
⋃

T∈△

Dd,T ,

where if a domain point lies in more than one tetrahedron, it is included
just once in Dd,△.

We now show how to use the set Dd,△ to parametrize the space S0

d (△).
For each tetrahedron T ∈ △ and each ξ := ξT

ijkl ∈ Dd,T , let Bd
ξ := Bd

ijkl

be the associated Bernstein basis polynomial, and let cξ be a real number.
Then

s|T :=
∑

ξ∈Dd,T

cξB
d
ξ

defines a unique polynomial in Pd. Moreover, if T and T̃ are two tetrahe-
dra sharing a face F , then s|T and s|

T̃
restricted to F are both bivariate

polynomials and have the same set of coefficients. It follows that s|T and
s|

T̃
join together with C0 smoothness across F . Thus, assigning values

to {cξ}ξ∈Dd,△
uniquely defines a spline s ∈ S0

d (△). Conversely, for each
spline in this space there is a unique set of coefficients. We call these the
B-coefficients of s. Counting the number of points in Dd,△, we immediately
get the following result.
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Theorem 17.1. Every spline s ∈ S0

d (△) is uniquely defined by its set of
B-coefficients {cξ}ξ∈Dd,△

, and the dimension of S0

d(△) is

n := n
V

+ (d− 1)n
E

+

(
d− 1

2

)
n

F
+

(
d− 1

3

)
n

T
,

where n
V
, n

E
, n

F
, n

T
are the number of vertices, edges, faces, and tetrahe-

dra in △, respectively.

To store a spline in S0

d (△), it suffices to store its set of B-coefficients.
To evaluate a spline s at a point v, it suffices to find the tetrahedron in which
v lies, and then apply the de Casteljau Algorithm 15.11 to the coefficients of
the polynomial s|T . As in the bivariate case, it is easy to construct locally
supported basis functions for S0

d(△).

Definition 17.2. For each ξ ∈ Dd,△, let ψξ be the spline in S0

d (△) that
satisfies

γηψξ = δξ,η, all η ∈ Dd,△,

where γη is a linear functional which picks off the coefficient associated with
the domain point η.

Here we have not explicitly constructed the linear functionals γη ap-
pearing in Definition 17.2, but it is a straightforward process based on dual
linear functionals for the Bernstein basis polynomials, see Remark 15.2.
Note that for each ξ ∈ Dd,△, the basis spline ψξ in Definition 17.2 has all
zero coefficients except for cξ which is 1. Since for each tetrahedron the
associated Bernstein basis polynomials are nonnegative, it follows immedi-
ately that

ψξ(v) ≥ 0, all v ∈ Ω.

We claim that the ψξ also have small support. In particular, since ψξ is
identically zero on all tetrahedra which do not contain ξ, it follows that the
support of ψξ is as follows:

1) a single tetrahedron T , if ξ is in the interior of T,

2) the union of the two tetrahedra sharing F , if ξ is in the interior of a
face F of △,

3) the union of all tetrahedra containing e, if ξ is in the interior of an
edge e of △,

4) the union of all tetrahedra sharing the vertex v, if ξ = v.

The following result can be proved in the same way as Theorem 5.5.
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Theorem 17.3. The set of splines {ψξ}ξ∈Dd,△
forms a basis for S0

d (△).
Moreover, these basis functions form a partition of unity on Ω, i.e.,

∑

ξ∈Dd,△

ψξ ≡ 1.

17.2. Spaces of Smooth Splines

Suppose △ is a tetrahedral partition of a bounded domain Ω ∈ R
3. Then

given 0 ≤ r ≤ d, we define the associated space of Cr polynomial splines of
degree d and smoothness r over △ as

Sr
d(△) := {s ∈ Cr(Ω), s|T ∈ Pd, for all T ∈ △}. (17.1)

For later use, we also introduce certain superspline subspaces of Sr
d(△).

Let V and E be the sets of vertices and edges of △, respectively. Fix
0 ≤ r ≤ µ ≤ ρ. Then we define

S
r,ρ,µ
d (△) := {s ∈ Sr

d(△) : s ∈ Cρ(v), all v ∈ V ,

s ∈ Cµ(e), all e ∈ E}.
(17.2)

Here s ∈ Cρ(v) means that all polynomial pieces s|T associated with tetra-
hedra T sharing the vertex v have common derivatives up to order ρ at v.
Similarly, s ∈ Cµ(e) means that all polynomial pieces s|T associated with
tetrahedra T sharing the edge e have common derivatives up to order µ at
all points along the edge e.

We now introduce a much larger class of splines which includes the
spaces Sr

d(△) and S
r,ρ,µ
d (△). First we need some additional notation. Sup-

pose T and T̃ are two tetrahedra in △ sharing a face F . In particular,
suppose the vertices of T are v1, v2, v3, v4 in canonical order, while those
of T̃ are v5, v2, v4, v3 in canonical order. Then the common face is F :=
〈v2, v3, v4〉. Fix 0 ≤ m ≤ d, and suppose s ∈ S0

d (△). Let cijkl and c̃ijkl

be the B-coefficients of s|T and s|
T̃
, respectively. Then for all i, j, k with

i+ j + k = d−m, we define

τ
F,m
ijk s := cmijk −

∑

ν+µ+κ+δ=m

c̃ν,i+µ,k+κ,j+δ B̃
m
νµκδ(v1), (17.3)

where the B̃m
νµκδ are the Bernstein basis polynomials of degree m associated

with the tetrahedron T̃ . We call τF,m
ijk a smoothness functional of order m,

and refer to ξT
mijk as the tip of the smoothness functional. It is important to

note that we are associating τF,m
ijk with the oriented face F of T , and not

with the oriented face F̃ := 〈v2, v4, v3〉 of T̃ , even though these two faces
represent a common triangular face of △.
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Definition 17.4. Given a set T of linear functionals of the form (17.3)
associated with oriented faces of △, we define the corresponding space of
smooth splines as

ST
d (△) := {s ∈ S0

d(△) : τs = 0, all τ ∈ T }.

Following the proof of Theorem 2.28, we get the following result giving
conditions for two pieces of a spline defined on adjoining tetrahedra to join
with Cr smoothness across the common face.

Theorem 17.5. Let T := 〈v1, v2, v3, v4〉 and T̃ := 〈v5, v2, v4, v3〉 be two
tetrahedra with common face F := 〈v2, v3, v4〉. Then for any s ∈ S0

d (△),
the two polynomial pieces s|T and s|

T̃
join with Cr smoothness across the

face F if and only if

τ
F,m
ijk s = 0, all i+ j + k = d−m and 0 ≤ m ≤ r.

Since smoothness conditions on a spline s ∈ S0

d (△) are just linear side
conditions on the vector c of B-coefficients of s, it is clear that for any given
set T of smoothness conditions, there is a matrix A := AT such that

ST
d (△) = {s ∈ S0

d(△) : Ac = 0}. (17.4)

Clearly, the matrix A is of size m×n, where m is the number of smoothness
conditions in T , and n is the dimension of S0

d(△). It is also clear that A is
a relatively sparse matrix, since a typical Cr smoothness condition across a
face involves only

(
r+3

3

)
+ 1 coefficients. Thus, for example, a C1 condition

involves at most five nonzero coefficients, so the corresponding row in the
matrix A has only five nonzero entries. The proof of the following analog
of Theorem 5.11 is straightforward.

Theorem 17.6. Let ST
d (△) be the space of smooth splines defined in

(17.4) corresponding to a matrix A, and let n = dim S0

d (△). Then the
dimension of ST

d (△) is equal to n− k, where k is the rank of A.

17.3. Minimal Determining Sets

Given a tetrahedral partition △, suppose S := ST
d (△) is a linear subspace

of S0

d(△) that is defined by enforcing some set of smoothness conditions
T across the faces of △ as described in the previous section. As an aid to
analyzing the dimension and structure of such spaces, we now introduce the
analog of the minimal determining sets used earlier in our study of bivariate
spline spaces.
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Definition 17.7. Suppose Γ ⊆ Dd,△ is such that if we set the coefficients
{cξ}ξ∈Γ of a spline s ∈ S to zero, then all other coefficients must also
be zero, i.e., s ≡ 0. Then we say that Γ is a determining set for S. If
M is a determining set for a spline space S, and if M has the smallest
cardinality among all possible determining sets for S, then we call M a
minimal determining set (MDS) for S.

Clearly, for any S ⊆ S0

d(△), the set of domain points Dd,△ is always
a determining set for S. But for any spline space S satisfying at least one
additional smoothness condition, there will be determining sets with fewer
points than the number of points in Dd,△. In general, there will be more
than one minimal determining set corresponding to a given spline space S.
The proof of the following result is very similar to the proof of Theorem 5.13
in the bivariate case.

Theorem 17.8. Suppose S is an m-dimensional linear subspace of S0

d (△),
and suppose that Γ is a determining set for S. Then #Γ ≥ m. Moreover,
if M is a determining set for S with #M = m, then M is minimal.

In general, it is a nontrivial task to construct minimal determining sets
for spline spaces. Indeed, in practice we often don’t know the dimension of
S, and so don’t even know how many domain points to put in a minimal
determining set.

Definition 17.9. If M is a determining set for a spline space S ⊆ S0

d (△),
we say that it is consistent provided that if we fix the coefficients {cξ}ξ∈M

of s ∈ S, then all of the coefficients of s are determined, and all smoothness
conditions defining S are satisfied with these coefficients.

The following theorem provides an important tool for constructing
minimal determining sets. It is a direct analog of Theorem 5.15, and can
be proved in the same way.

Theorem 17.10. Suppose M is a consistent determining set for a spline
space S ⊆ S0

d(△). Then M is minimal.

Given a minimal determining set M for S, suppose we assign values
to the coefficients {cξ}ξ∈M. Then for every η ∈ Dd,△ \M, the coefficient
cη can be computed from the known coefficients by using the smoothness
conditions. We say that cη depends on cξ, ξ ∈ M, if changing the value of
cξ also causes the value of cη to change. We write

Γη := {ξ ∈ M : cη depends on cξ}.
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Minimal determining sets M are especially useful if they are local and
stable in the sense that

1) for each η ∈ Dd,△ \M, cη can be computed from a small set of coeffi-
cients {cξ}ξ∈Γη

, where the domain points in Γη are near η,

2) for each η ∈ Dd,△ \M, the size of cη is comparable to the size of the
coefficients in the set Γη.

We now make these properties more precise. Let θ△ be the smallest solid
angle in the tetrahedra of △, and φ△ the smallest of the face angles in the
tetrahedra of △, see Definition 16.2.

Definition 17.11. Suppose M is a minimal determining set for a linear
space of trivariate splines S ⊆ S0

d (△). Then we say that M is local provided
that there exists an integer ℓ not depending on △ such that

Γη ⊆ starℓ(Tη), all η ∈ Dd,△ \M, (17.5)

where Tη is a tetrahedron containing η. We say that M is stable provided
that there exists a constant K depending only on ℓ, θ△, and φ△ such that

|cη| ≤ K max
ξ∈Γη

|cξ|, all η ∈ Dd,△ \M. (17.6)

For the meaning of starℓ(v), see Definition 16.7. We shall see in Chapter 18
that several trivariate macro-element spaces have stable local bases.

17.4. Approximation Power of Trivariate Spline Spaces

In this section we give a general result on the approximation power of
trivariate spline spaces which have stable local minimal determining sets.
For approximation results on some specific trivariate spline spaces with this
property, see Chapter 18.

Suppose S ⊆ S0

d (△) is a spline space associated with a tetrahedral
partition △ of a domain Ω, and suppose M is a stable local minimal de-
termining set for S as defined in the previous section. We now construct
an explicit linear operator Q mapping L1(Ω) into S which provides full
approximation power, see Remark 17.4.

Definition 17.12. Suppose f ∈ L1(Ω). For each domain point ξ in M,
let Tξ be a tetrahedron containing ξ, and let Fξf be the averaged Taylor
polynomial of degree d associated with the largest ball contained in Tξ.
Let γξ be a linear functional which for any spline s ∈ S0

d (△) picks off the
B-coefficient corresponding to ξ, and set cξ := γξ(Fξf). Let {cη}η∈Dd,△\M

be such that the piecewise polynomial Qf defined by

Qf |T :=
∑

η∈Dd,T

cηB
T
η , all T ∈ △,
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satisfies all smoothness conditions required to ensure Qf ∈ S. We call
Q the quasi-interpolation operator associated with the spline space S and
minimal determining set M.

The quasi-interpolation operatorQ is well defined since M is a minimal
determining set for S, which guarantees that once we set the coefficients
{cξ}ξ∈M, all remaining coefficients of Qf are uniquely determined from the
smoothness conditions. Moreover, by the assumption that M is local and
stable, we know that for each η ∈ Dd,△\M, there exists a set Γη ⊆ starℓ(Tη)
such that cη can be computed from the coefficients {cξ}ξ∈Γη

by smoothness
conditions. The stability of M guarantees that the size of |cη | is controlled
in the sense that (17.6) holds, where the constant K depends only on ℓ and
the smallest solid and face angles θ△ and φ△ associated with △.

Theorem 17.13. The above process defines a linear operator Q mapping
L1(Ω) onto S with Qs = s for all splines s ∈ S. Moreover, for every
tetrahedron T ∈ △ and any 1 ≤ q ≤ ∞,

‖Qf‖q,T ≤ K ‖f‖q,ΩT
, all f ∈ L1(ΩT ), (17.7)

where ΩT := starℓ(T ) and ℓ is the integer constant in (17.5). Here K

depends only on d, ℓ, and the angles θ△ and φ△.

Proof: The linearity of Q follows from its definition. By Lemma 15.33,
the averaged Taylor polynomial of degree d associated with a polynomial
p ∈ Pd is p itself, and it follows that Qs = s for all s ∈ S. We now establish
(17.7) in the case 1 ≤ q < ∞. The case q = ∞ is similar and simpler. Let
M be a stable local minimal determining set for S. Then for every ξ ∈ M,

|cξ| = |γξ(Fξf)| ≤ K1 ‖Fξf‖∞,Tξ

≤ K1K2 V
−1/q

Tξ
‖Fξf‖q,Tξ

≤ K1K2K3 V
−1/q

Tξ
‖f‖q,Tξ

,

where Tξ is a tetrahedron containing ξ and VTξ
is its volume. Here K1 is

the constant appearing in (15.15), K2 is the constant appearing in (15.2),
and K3 is the constant appearing in (15.43). Note that K1,K2 depend
only on d, while K3 depends on d and the shape parameter of Tξ, which
by Lemma 16.4 can be bounded in terms of θ△ and φ△. Now fix T ∈ △.
Then using (17.6), we conclude that

|cη | ≤ K4 V
−1/q

Tmin
‖f‖q,ΩT

, η ∈ Dd,T , (17.8)

where Tmin is a tetrahedron in ΩT with minimal volume. The fact that the
Bernstein basis polynomials form a partition of unity implies

‖Qf‖q,T =

[ ∫

T

∣∣∣
∑

η∈Dd,T

cηB
T
η

∣∣∣
q
]1/q

≤ VT
1/q max

η∈Dd,T

|cη|. (17.9)
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To complete the proof, we insert (17.8) in (17.9) and use Lemma 16.18 to
bound the ratio VT /VTmin

by a constant depending on the angles.

We now give a local approximation result for Q.

Theorem 17.14. Given a tetrahedron T ∈ △, let ΩT := starℓ(T ), where
ℓ is the integer constant in (17.5). Suppose f ∈ Wm+1

q (ΩT ) for some
0 ≤ m ≤ d and 1 ≤ q ≤ ∞. Then

‖Dα(f −Qf)‖q,T ≤ K |T |m+1−|α| |f |m+1,q,ΩT
, (17.10)

for all 0 ≤ |α| ≤ m. If ΩT is convex, the constant K depends only on d, ℓ,
and the smallest angles θΩ and φΩ associated with △. If ΩT is not convex,
K also depends on the Lipschitz constant of the boundary of ΩT .

Proof: By Theorem 15.35, there exists a polynomial p ∈ Pm depending
on f so that

‖Dβ(f − p)‖q,ΩT
≤ K1 |ΩT |

m+1−|β| |f |m+1,q,ΩT
, (17.11)

for all 0 ≤ |β| ≤ m. The constant K1 depends on d and the shape pa-
rameter κΩ of (15.42), and also on the Lipschitz constant of the boundary
of ΩT when ΩT is nonconvex. The results of Section 16.6 coupled with
Lemma 16.4 show that κΩ can be bounded in terms of the angles only.
Now since Q reproduces polynomials of degree d,

‖Dα(f −Qf)‖q,T ≤ ‖Dα(f − p)‖q,T + ‖DαQ(f − p)‖q,T .

By (17.11) with β = α and the fact that |ΩT | ≤ K2|T | by Lemmas 16.18
and 16.19, it suffices to consider the second term. Since the restriction of
Q(f−p) to T is a polynomial of degree d, we can use the Markov inequality
(15.3) to estimate its derivatives. Then by (17.7),

‖DαQ(f − p)‖q,T ≤
K3

ρ
|α|
T

‖Q(f − p)‖q,T ≤
K3K4

ρ
|α|
T

‖f − p‖q,ΩT
,

where ρ
T

is the radius of the largest ball contained in T . Now Lemma 16.4
implies |T | ≤ K5ρT

, and combining the above we immediately get (17.10).
When ΩT is not convex the dependence of the constant in (17.10) on the
Lipschitz constant of the boundary of ΩT enters in the use of the Stein
extension theorem, see Section 15.17.

We can now give a global version of this approximation result. Let
△ be a tetrahedral partition of a set Ω. Suppose M is a stable local
minimal determining set for a spline space S, and suppose Q is the quasi-
interpolation operator of Definition 17.12. Let θ△ and φ△ be the smallest
solid and face angles in the tetrahedra of △, respectively.
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Theorem 17.15. There exists a constant K such that if f ∈ Wm+1

q (Ω)
for some 0 ≤ m ≤ d and 1 ≤ q ≤ ∞, then

‖Dα(f −Qf)‖q,Ω ≤ K |△|m+1−|α| |f |m+1,q,Ω, (17.12)

for all 0 ≤ |α| ≤ m. If Ω is convex, the constant K depends only on d, ℓ,
θ△, and φ△. If Ω is not convex, K also depends on the Lipschitz constant
of the boundary of Ω.

Proof: For q = ∞, (17.12) follows immediately from (17.10) by taking the
maximum over all tetrahedra T in △. To get the result for q < ∞, we
take the q-th power of both sides of (17.10) and sum over all tetrahedra in
△. Since ΩT contains other tetrahedra besides T , some tetrahedra appear
more than once in the sum on the right. However, a given tetrahedron TR

appears on the right only if it is associated with a tetrahedron TL on the
left which lies in starℓ(TR), where ℓ is the constant in the localness of M.
But then Lemma 16.17 implies that there is a constant K depending only
on the angles such that TR enters at most K times on the right, and (17.12)
follows.

17.5. Stable Local Bases

In this section we show how minimal determining sets can be used to con-
struct bases for spline spaces. We emphasize that this construction is mostly
for theoretical completeness. We do not need these bases to establish results
on the approximation power of splines. Moreover, we do not advocate their
use in computation. It is almost always more convenient to work directly
with the B-representation.

Theorem 17.16. Suppose M is a minimal determining set for a spline
space S ⊆ S0

d (△). Then for each ξ ∈ M, there is a unique spline ψξ ∈ S

such that

γηψξ = δηξ, all η ∈ M, (17.13)

where γη is a functional that picks off the B-coefficient corresponding to η.
Moreover, {ψξ}ξ∈M is a basis for S which we call the M-basis of S.

Proof: By Theorem 17.8, the cardinality of M is equal to the dimension
of S, and so it suffices to show that the splines ψξ are linearly independent.
But this follows immediately from (17.13).

Following the proof of Theorem 5.21, it is relatively easy to show that
if the space S has a stable local minimal determining set M, then the
corresponding M-basis is local and stable. Let θ△ and φ△ be the smallest
angles associated with △ as in Theorem 17.15.
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Theorem 17.17. Suppose M is a stable local minimal determining set for
the space S ⊆ S0

d (△) of trivariate splines, and let Ψ := {ψξ}ξ∈M be the
M-basis for S described in Theorem 17.16. Then Ψ is a stable local basis

for S in the sense that for all ξ ∈ M,

1) ‖ψξ‖Ω ≤ K,

2) σ(ψξ) := suppψξ ⊆ starℓ(Tξ), where Tξ is a tetrahedron containing ξ.

Here ℓ is the integer constant in (17.5), and K is a constant depending only
on ℓ, θ△, and φ△.

As in the bivariate case (cf. Theorem 5.22), the M-basis {ψξ}ξ∈M for
S can always be renormed to form a stable basis for S in the q-norm for
any 1 ≤ q ≤ ∞.

Theorem 17.18. Let Ψq := {ψξ,q := V
−1/q

Tξ
ψξ}ξ∈M, where for each ξ, Tξ

is a tetrahedron containing ξ and VTξ
is its volume. Then

K1 ‖a‖q ≤

∥∥∥
∑

ξ∈M

aξψξ,q

∥∥∥
q

≤ K2 ‖a‖q, (17.14)

for all choices of the coefficient vector a = (aξ)ξ∈M. The constants K1 and
K2 depend only on d, ℓ, θ△, and φ△.

17.6. Nodal Minimal Determining Sets

So far we have concentrated on parametrizing trivariate spline spaces S ⊆

S0

d(△) using the Bernstein–Bézier form, i.e., in terms of B-coefficients.
However, at times it is more useful to parametrize spline spaces in terms of
so-called nodal parameters, also called degrees of freedom.

For any multi-index α := (α1, α2, α3), we write Dα := Dα1

x Dα2

y Dα3

z .
Suppose N = {λi}

n
i=1

is a set of linear functionals of the form

λi := εui

∑

|α|≤mi

aα
i D

α, i = 1, . . . , n,

where εui
is point evaluation at the point ui. We say that λi is a nodal

functional, and call ui its carrier.

Definition 17.19. Suppose N is a set of nodal functionals defined on a
trivariate spline space S, and suppose that if s ∈ S with λs = 0 for all
λ ∈ N , then s ≡ 0. Then we call N a nodal determining set (NDS) for S.
If there is no smaller nodal determining set for S, then we say that N is a
nodal minimal determining set (NMDS) for S.

The analog of Theorem 17.8 holds, i.e., a nodal determining set N

is minimal if and only if dim S = #N . To check that a set N is a nodal
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minimal determining set, it is enough to show that if we set {λs}λ∈N , then
all B-coefficients of s are determined in such a way that all smoothness
conditions associated with S are satisfied.

Example 17.20. Suppose △ is a tetrahedral partition, and let V and F

be the sets of vertices and faces of △, respectively. Let

S := {s ∈ S0

3
(△) : s ∈ C1(v) all v ∈ V}.

For each face F ∈ F , let uF be the barycenter of F . Then

N :=
⋃

v∈V

Nv ∪
⋃

F∈F

NF

is a nodal minimal determining set for S, where

1) Nv := {εvD
α}|α|≤1,

2) NF := {εuF
}.

Discussion: Let s ∈ S. For each v ∈ V , the values {λs}λ∈Nv
determine

all B-coefficients of s ∈ S0

3
(△) corresponding to domain points in the ball

D1(v) in such a way that s ∈ C1(v), see Theorem 15.17. Then for each
face F of △, all B-coefficients of s|F are already determined except for the
coefficient corresponding to the domain point ξF

111
. But this is given by the

equation

cF
111

=
1

BF
111

(uF )

[
s(uF ) −

∑

i+j+k=3

(i,j,k)6=(1,1,1)

cFijkB
F
ijk(uF )

]
,

see also Theorem 15.24. This automatically ensures that s is continu-
ous across the faces of △. At this point, all B-coefficients of s have
been determined, and s satisfies all smoothness conditions for s to be-
long to S, and thus N is a nodal minimal determining set. It follows that
dim S = 4n

V
+ n

F
, where n

V
is the number of vertices of △ and n

F
is the

number of faces.

If N := {λi}
n
i=1

is a nodal minimal determining set for a spline space
S, then for each 1 ≤ i ≤ n, there is a unique spline φi ∈ S such that

λjφi = δij , j = 1, . . . , n. (17.15)

Since the splines Φ := {φi}
n
i=1

are clearly linearly independent, it follows
that Φ is a basis for S. We refer to it as the N -basis. For approximation
purposes, we need nodal minimal determining sets which are local and
stable.
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Definition 17.21. Suppose N is a nodal minimal determining set for the
spline space S ⊆ S0

d (△).

1) We say that N is local provided that there exists an integer ℓ not
depending on △ such that for every s ∈ S, every tetrahedron T ∈ △,
and every ξ ∈ Dd,T , the coefficient cξ depends only on derivatives
of s at points lying in Mξ := starℓ(Tξ), where Tξ is a tetrahedron
containing ξ.

2) We say that N is stable provided that there exists a constant K de-
pending only on d, ℓ, θ△, and φ△, such that for every s ∈ S, every
tetrahedron T ∈ △, and every ξ ∈ Dd,T , the coefficient cξ satisfies

|cξ| ≤ K

mξ∑

ν=0

|Tξ|
ν |s|ν,Mξ

, (17.16)

for some integer mξ ≤ d.

Finding trivariate spline spaces with stable local nodal minimal determining
sets is nontrivial, but we shall give several important examples in the next
chapter.

17.7. Hermite Interpolation

Suppose that N is a nodal minimal determining set for a trivariate spline
space S defined on a tetrahedral partition △ of a set Ω. Let m̄ be the order
of the highest derivative involved in the nodal functionals in N . Then N

defines a natural Hermite interpolation operator IS mapping Cm̄(Ω) onto S.
Indeed, for each f ∈ Cm̄(Ω), there is a unique spline s ∈ S such that

λs = λf, all λ ∈ N . (17.17)

In terms of the N -basis Φ := {φi}
n
i=1

associated with N := {λi}
n
i=1

,
we can write

ISf =

n∑

i=1

(λif)φi.

It is clear that IS is a linear projector onto S, and thus reproduces poly-
nomials of degree d, i.e.,

IS p = p, all p ∈ Pd.

We emphasize that if N is chosen properly, we can solve the Hermite inter-
polation problem (17.17) without actually constructing any basis. Indeed,
we can compute certain of the coefficients of the interpolating spline directly
from the nodal data, and the rest using smoothing conditions.

We now give an error bound in the maximum norm for this Hermite
interpolation operator, under the assumption that the nodal minimal de-
termining set N for S is stable and local.
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Theorem 17.22. Suppose N is a stable local nodal minimal determining
set for a spline space S, and let ℓ be the constant in Definition 17.21. Let IS
be the associated Hermite interpolation operator. Given a tetrahedron T

in △, let ΩT := starℓ(T ). Then for every f ∈ Cm+1(ΩT ) with m̄ ≤ m ≤ d,

‖Dα(f − ISf)‖T ≤ K |T |m+1−|α| |f |m+1,ΩT
, |α| ≤ m. (17.18)

If ΩT is convex, the constant K depends only on ℓ, d, and the smallest
solid and face angles θΩ and φΩ associated with △. If ΩT is not convex,
K also depends on the Lipschitz constant of the boundary of ΩT .

Proof: The proof is very much like the proof of Theorem 5.26. Fix T , and
let ρ

T
be the radius of the largest ball contained in T . By Theorem 15.35,

there exists a polynomial p := pf ∈ Pm so that

‖Dβ(f − p)‖
ΩT

≤ K1 |ΩT |
m+1−|β| |f |m+1,ΩT

, (17.19)

for all 0 ≤ |β| ≤ m. The constantK1 depends on d and the shape parameter
κΩ of (15.42) associated with ΩT . It also depends on the Lipschitz constant
of the boundary of ΩT when ΩT is nonconvex. The results of Section 16.6
coupled with Lemma 16.4 show that κΩ can be bounded in terms of the
angles θΩ and φΩ.

Now fix a multi-index α with 0 ≤ |α| ≤ m. By the linearity of IS and
the fact that it reproduces polynomials of degree d,

‖Dα(f − ISf)‖T ≤ ‖Dα(f − p)‖T + ‖DαIS(f − p)‖T .

Using (17.19) with β = α and the fact that |ΩT | ≤ K2|T | by Lemmas 16.18
and 16.19, we see that it suffices to estimate the second term.

Since the Bernstein basis polynomials form a partition of unity, (17.16)
implies

‖IS(f − p)‖T ≤ K3

m̄∑

ν=0

|T |ν|f − p|ν,ΩT
.

Using the Markov inequality (15.3), it follows that

‖DαIS(f − p)‖T ≤
K4

ρ
|α|
T

‖IS(f − p)‖T ≤
K3K4

ρ
|α|
T

m̄∑

ν=0

|T |ν |f − p|ν,ΩT
.

Since |T | ≤ κ
T
ρ

T
, we can combine the above to get (17.18).

The global version of (17.18) also holds with T and ΩT replaced by Ω,
and with |T | replaced by |△|, as is easily seen by taking the maximum over
all tetrahedra T in △.
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17.8. Dimension of Trivariate Spline Spaces

In Chapter 9 we gave a detailed treatment of the dimension problem for bi-
variate spline spaces on triangulations. In this section we discuss dimension
of trivariate spline spaces on tetrahedral partitions. However, the problem
is much harder in the trivariate case, and we have much less to report than
in the bivariate case.

17.8.1 Connection with the Bivariate Problem

We first give an example to show that before we can hope to find minimal
determining sets for the spline spaces Sr

d(△) on general tetrahedral parti-
tions, we have to be able to find minimal determining sets for Cr bivariate
spline spaces of all degrees i with r ≤ i ≤ d.

Example 17.23. Suppose F := {Fj}
m
j=1

is a planar triangulation with

vertices {vi := (xi, yi, 0)}n
i=1

. Let vn+1 := (x1, y1, 1) ∈ R
3, and let △ be

the tetrahedral partition which is obtained by connecting each of the vi to
vn+1.

Discussion: Let {Tν}
m
ν=1 be the tetrahedra of △, where for each Tν we

choose its first vertex to be at vn+1. Let {ξTν

ijkl}i+j+k+l=d be the set of
domain points associated with Tν. Then for each 0 ≤ i ≤ d, all of the
domain points in Γi :=

⋃m

ν=1
{ξTν

ijkl}j+k+l=d−i lie on a plane πi parallel to the
(x, y)-plane. Thus, any smoothness condition which involves a coefficient
associated with a domain point on πi can involve only coefficients associated
with points on πi. In other words, all smoothness conditions reduce to
bivariate smoothness conditions. Now suppose that we have a minimal
determining set M for the trivariate spline space Sr

d(△). Then for each
i = r + 1, . . . , d, the set Mi := M ∩ Γi is a consistent determining set for
the bivariate spline space Sr

i (F ), and thus is a minimal determining set.

In analogy with the bivariate case, we say that a shellable tetrahedral
partition △ of a polyhedral set Ω is a cell provided there is a vertex v such
that all of the tetrahedra in △ share the vertex v. If v is on the boundary
of Ω, then we call △ a boundary cell. Example 17.23 shows that even for
boundary cells, the trivariate dimension problem cannot be solved until we
have a full understanding of the dimension of bivariate spline spaces.

17.8.2 Upper and Lower Bounds on Dimension

Fix 0 ≤ r < d. In this subsection we give upper and lower bounds on the
dimension of the trivariate spline space Sr

d(△) for a large class of tetrahedral
partitions which contains all shellable partitions as well as many partitions
with holes and cavities. Our results here are the analogs of the upper and
lower bounds of Section 9.7, but are not as precise since here we are not
able to take account of the geometry of cells.
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Our discussion is restricted to tetrahedral partitions △ that can be
built up by starting with a single tetrahedron and successively adding one
tetrahedron T at a time so that one of the following holds:

1) T touches the existing partition on exactly one, two, or three faces.

2) T touches the existing partition on exactly one face and at the opposite
vertex.

Every shellable tetrahedral partition can be built in this way using only the
first type of building block. The second type of building block is needed
to get partitions with holes and cavities. To get upper and lower bounds
on the dimension of spline spaces on these types of partitions, we establish
four lemmas which give bounds on

δT := dim Sr
d(△∪ T ) − dim Sr

d(△),

i.e., on the change in dimension when we add a new tetrahedron T to an
existing partition △.

Lemma 17.24. Suppose we add a tetrahedron T to an existing partition
such that T touches on exactly one face. Then ℓ1 ≤ δT ≤ u1, where

ℓ1 = u1 :=

(
d− r + 2

3

)
.

Proof: Let F be the face where T joins △. Then the coefficients of s
associated with domain points within a distance r of F are determined
from the Cr smoothness conditions across F . The coefficients associated
with the remaining

(
d−r+2

3

)
points do not enter any smoothness conditions,

and thus can be assigned arbitrary values.

Lemma 17.25. Suppose we add a tetrahedron T to an existing partition
such that T touches on exactly two faces. Then ℓ2 ≤ δT ≤ u2, where

ℓ2 := 2

(
d+ 2 − r

3

)
−

(
d+ 3

3

)
+

(
r + 3

3

)
+ (d− r)

(
r + 2

2

)
,

u2 :=

(
d− 2r + 1

3

)
.

Proof: The Cr smoothness conditions across the two faces where T touches
the existing partition determine all coefficients associated with domain
points of T within a distance r of these faces. The number of remain-
ing coefficients is

(
d−2r+1

3

)
, which gives the upper bound. To get the lower

bound, let ms be the number of points within a distance r of a face, and
let mt be the number of points in the tube of radius r around an edge. It
is easy to see that ms =

(
d+3

3

)
−

(
d+2−r

3

)
while mt =

(
r+3

3

)
+ (d− r)

(
r+2

2

)
.

Now ℓ2 =
(
d+3

3

)
− 2ms +mt, which reduces to the stated lower bound.
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Lemma 17.26. Suppose we add a tetrahedron T to an existing partition
such that T touches on exactly three faces. Then ℓ3 ≤ δT ≤ u3, where

ℓ3 := 3

(
d+ 2 − r

3

)
− 2

(
d+ 3

3

)
+ 2

(
r + 3

3

)

+ 3(d− r)

(
r + 2

2

)
−

d∑

k=r+1

(
3r + 2 − 2k

2

)
,

u3 :=

(
d− 3r

3

)
.

Proof: The upper bound is simply the number of domain points in T that
are at a distance at least r + 1 from the three faces where T touches the
existing partition. To get the lower bound, let ms and mt be as in the proof
of Lemma 17.25, and let m3 be the number of points in the intersection
of three tubes of radius r all sharing one vertex. It is easy to see that
m3 =

(
r+3

3

)
+

∑d

k=r+1

(
3r+2−2k

2

)
. Now ℓ2 =

(
d+3

3

)
−3ms +3mt−m3, which

reduces to the stated lower bound.

Lemma 17.27. Suppose we add a tetrahedron T to an existing partition
such that T touches on exactly one face and at the opposite vertex. Then
ℓo ≤ δT ≤ uo, where

ℓo :=

(
d− r + 2

3

)
−

(
r + 3

3

)
,

uo :=

{
ℓo, d > 2r + 1,

0, otherwise.

Proof: If d > 2r + 1, then the ball Dr(v) does not intersect the set of
points Gr(F ) that lie within a distance r of the face F . In this case both
the upper and lower bounds are equal to the number of points not in either
set. If d ≤ 2r + 1, the sets overlap, and the upper bound is zero. In this
case the dimension can go down by the number of points in the overlap,
which is just ℓo.

Theorem 17.28. Let △ be a tetrahedral partition that can be built start-
ing with one tetrahedron and adding tetrahedra that touch on exactly i

faces a total of ni times, 1 ≤ i ≤ 3, and by adding tetrahedra that touch
on one face and the opposite vertex a total of no times. Then for any
d ≥ r ≥ 0,

L(r, d) ≤ dim Sr
d (△) ≤ U(r, d),

where

L(r, d) :=

(
d+ 3

3

)
+ n1ℓ1 + n2ℓ2 + n3ℓ3 + noℓo,

U(r, d) :=

(
d+ 3

3

)
+ n1u1 + n2u2 + n3u3 + nouo.
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Proof: The spline space Sr
d(△) restricted to the single tetrahedron T1 has

dimension
(
d+3

3

)
. Now each time we add a new tetrahedron, the dimension

can change by an amount that is bounded above and below by the formulae
in Lemmas 17.24–17.27.

In general the upper and lower bounds in Theorem 17.28 are both
cubic polynomials in d and r. If △ is shellable, then the terms involving no

can be dropped.

17.8.3 The Case d ≥ 8r + 1

In this section we describe minimal determining sets M for the spline spaces
Sr

d(△) with d ≥ 8r+1 in enough detail to show that these spaces have star-
supported bases. The key idea is to localize the construction of M as was
done in Theorem 9.15 in the bivariate case. Fix d ≥ 8r + 1.

1) For each vertex v ∈ △, let Mv be a smallest subset of D4r(v) such
that if we fix the coefficients of s ∈ Sr

d(△) corresponding to the domain
points in Mv, then all coefficients of s corresponding to domain points
in D4r(v) are consistently determined.

2) For each edge e := 〈u, v〉 of △, let Me be a smallest subset of E2r(e) :=
{ξ ∈ Dd,△ : dist(ξ, e) ≤ 2r} \

(
D4r(u) ∪D4r(v)

)
such that if we now

set the coefficients of s corresponding to domain points in Me, then
all coefficients of s corresponding to domain points in the tube t2r(e)
are consistently determined.

3) For each face F of △ with edges e1, e2, e3, let MF be a smallest subset
of Gr(F ) := {ξ ∈ Dd,△ : dist(ξ, F ) ≤ r} \

(
t2r(e1) ∪ t2r(e2) ∪ t2r(e3)

)

such that if we now set the coefficients of s corresponding to domain
points in MF , then all coefficients of s corresponding to domain points
in the set Hr(F ) := {ξ ∈ Dd,△ : dist(ξ, F ) ≤ r} are consistently de-
termined.

4) For each tetrahedron T of △ with faces F1, F2, F3, F4, let MT be a
smallest subset of DT \

(
Hr(F1)∪Hr(F2)∪Hr(F3)∪Hr(F4)

)
such that

if we now set the coefficients of s corresponding to domain points in
MT , then all coefficients of s corresponding to domain points in DT

are consistently determined.

Theorem 17.29. Let V , E ,F be the sets of vertices, edges, and faces of
△, respectively. Then the set

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

F∈F

MF ∪
⋃

T∈△

MT

is a minimal determining set for Sr
d(△) and the corresponding M-basis of

Theorem 17.16 contains only star-supported splines.
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Proof: The construction of M ensures that it is a consistent determining
set of Sr

d(△). It follows from Theorem 17.10 that it is a minimal determin-
ing set for Sr

d(△). The support properties of the corresponding M-basis
are evident.

This process of localizing the construction of a minimal determining
set can also be used to show that various superspline spaces of Sr

d(△) with
d ≥ 8r + 1 also have star-supported bases. In Section 18.11 we give an
explicit construction for a special superspline subspace of Sr

8r+1
(△).

17.8.4 Oranges

In this section we discuss a special class of tetrahedral partitions △ for
which the dimension of Sr

d(△) can be identified for all d and r.

Definition 17.30. We say that a set △ of tetrahedra T1, . . . , Tn is an
orange provided

1) T1, . . . , Tn share a common edge e,

2) for i = 1, . . . , n, Ti and Ti+1 share a common face, where we identify
Tn+1 with T1.

Given an orange △, we may assume that the common edge e :=
〈v

T
, v

B
〉 lies on the z-axis. We number the remaining vertices of the tetra-

hedra in △ as v1, . . . , vn, so that Ti = 〈v
T
, v

B
, vi, vi+1〉, i = 1, . . . , n, where

vn+1 = v1. Let vi := 〈xi, yi, zi〉. We may assume that the orange is rotated
so that none of the points (xi, yi) lie on the y axis. Let αi := yi/xi for
i = 1, . . . , n, and let m be the number of distinct numbers in the sequence
α1, . . . , αn.

Theorem 17.31. For all 0 ≤ r < d,

dim Sr
d(△) =

(
d+ 3

3

)
+ n

(
d− r + 2

3

)
− (d+ 3)

(
d− r + 1

2

)

+ 2

(
d− r + 2

3

)
+ σ,

(17.20)

where

σ :=

d−r∑

j=1

(d− r − j + 1)(r + j + 1 − jm)+.

Proof: The proof is very similar to the proof of Theorem 9.3 for bivari-
ate splines on interior cells. For complete details, see [AlfSS92], where a
minimal determining set is also constructed.
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17.9. Remarks

Remark 17.1. Let H be the unit cube in R
3. Given a positive integer n,

let ♦ be the partition into n3 subboxes

Hijk := [(i− 1)h, ih] × [(j − 1)h, jh] × [(k − 1)h, kh], 1 ≤ i, j, k ≤ n.

where h = 1/n. We call ♦ a cube partition. We now partition each subcube
Hijk into 24 congruent tetrahedra by applying six cutting planes, where
each plane passes through two diagonally opposite edges of Hijk. Let △ be
the resulting tetrahedral partition. The total number of tetrahedra in △

is 24n3. The following dimension result was established in [HanNRSZ04].
Because of the special nature of △, bivariate arguments could be used.

Theorem 17.32. For any n > 1, dim S1

2
(△) = 3n2 + 9n + 4. Moreover,

dim S1

d(△) = (4d3 − 24d2 + 53d− 45)n3 + (2d2 − 7d+7)n2 + 9(d− 1)n+ 4,
for all d > 2.

Remark 17.2. Trivariate splines have also been studied on another special
tetrahedral partition that can be created from a cube partition by splitting
each subbox into five tetrahedra. In particular it is shown in [SchS04] that
the space S1

5
(△) on this partition has a stable local minimal determining

set and full approximation power.

Remark 17.3. In Section 9.8 we presented dimension results for bivariate
spline spaces defined on generic triangulations. There is an analogous con-
cept for tetrahedral partitions. Suppose L describes the connectivity of a
given tetrahedral partition. For example L could describe how the vertices
are connected together. Let Tri (L) be the set of all tetrahedral partitions
with this connectivity. We now fix r and d, and consider all spaces of the
form Sr

d(△), where △ ∈ Tri (L). Then a partition △∗ ∈ Tri (L) is called
generic with respect to r, d,L provided that

dim Sr
d(△∗) = min

△∈Tri (L)
dim Sr

d(△).

Following the proof of Theorem 9.32, it can be shown that all tetrahedral
partitions whose vertices are sufficiently close to a generic partition △∗

are also generic. The following result was established in [AlfSW93] with
a technique involving projecting a tetrahedral partition onto a so-called
generalized triangulation. Let N be the number of tetrahedra in △, and let
VI and VB be the number of interior and boundary vertices, respectively.

Theorem 17.33. Suppose △ is a generic tetrahedral partition and that
d ≥ 8. Then

dim S1

d(△) =
d(d− 1)(d− 5)

6
N + 3(d− 1)VI + d(d− 1)VB − 2d2 + 5d+ 1.
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Remark 17.4. In Definition 10.1 we defined the concepts of approxima-
tion power and full approximation power for bivariate spline spaces. It is
straightforward to extend these concepts to the trivariate case.

Definition 17.34. Fix 0 ≤ r < d and 0 < θ ≤ π/3. Let m be the
largest integer such that for every polyhedral domain Ω and every regular
tetrahedral partition △ of Ω with smallest solid and face angles θ△ and φ△,
for every f ∈ Wm

q (Ω), there exists a spline s ∈ Sr
d(△) with

‖f − s‖q,Ω ≤ K |△|m |f |m,q,Ω, (17.21)

where the constant K depends only on r, d, θ△, φ△, and the Lipschitz con-
stant of the boundary of Ω. Then we say that Sr

d has approximation power

m in the q-norm. If this holds for m = d + 1, we say that Sr
d has full

approximation power in the q-norm.

The results of Section 17.4 show that any spline space that has a stable
local minimal determining set will provide full approximation power. Thus,
in particular, the spaces S0

d(△) and PP(△) have full approximation power,
cf. Section 10.2 for the bivariate case.

Remark 17.5. The bounds in Theorem 17.28 depend on the order in which
the partition △ is built. Indeed, partitions can be built in many different
ways leading to different values of ni and no. To get the best bound, we
could try all possibilities, but except for very small partitions, this would
be computationally expensive. For examples, see [AlfS06].

Remark 17.6. Definition 16.5 allows very general tetrahedral partitions
which cannot be built using the building blocks of Section 17.8.2. For
example, the partition △ consisting of two tetrahedra touching only at one
vertex would require a different kind of building block. To get upper and
lower bounds on the dimension of Sr

d(△) for general partitions, one has
to consider 27 different building blocks and find bounds on the associated
change in dimension when they are added to an existing partition. For
details, see [AlfS06].

17.10. Historical Notes

Spaces of piecewise polynomials defined on tetrahedral partitions have been
used by engineers for quite some time to solve boundary value problems
by the finite-element method, see [Zla68, Zla70, Zen73a, Zen73b] and the
books [Cia78a, BreS94, Bra97]. Bernstein–Bézier methods are not used in
this literature. Bernstein–Bézier methods were first used for investigating
trivariate macro-element spaces in [Alf84a, Alf84c, WorF87, WorP88].
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The dimension problem for trivariate spline spaces Sr
d(△) on general

tetrahedral partitions was studied in [AlfSir89, AlfSir91, AlfSS92, AlfSW93]
using Bernstein–Bézier methods. The concept of minimal determining sets
played a key role. Example 17.23 showing that the dimension problem for
the trivariate case cannot be settled until we fully understand the dimension
problem for bivariate splines is taken from [AlfSW93].

The problem of finding upper and lower bounds on the dimension of
trivariate spline spaces was first studied in [Alf86, Alf87, Alf96]. The re-
sults in Section 17.8.2 follow [AlfS06], where bounds are established for
considerably more general tetrahedral partitions than considered here. The
approach described in Section 17.8.3 for localizing the study of trivariate
spline spaces comes from [AlfSS92], see also [AlfSir89, AlfSir91]. The con-
cept of oranges was introduced in [AlfSS92] where Theorem 17.31 was first
established. A variant of the dimension formula (17.20) was given in [Lau06]
where it was used to get a lower bound on the trivariate spline space Sr

d(△)
for simply connected tetrahedral partitions. These lower bounds still do
not take account of the geometry of cells. Finding a way to do so remains
a major open problem in trivariate dimension theory. In Section 17.5 we
showed how to construct stable local bases for spline spaces from stable
local minimal determining sets or nodal minimal determining sets. For an
algorithm for constructing such bases without knowing a determining set,
see [Dav02b].



Trivariate Macro-element
Spaces

Our aim in this chapter is to describe several useful C1 and C2 trivariate
macro-element spaces with the following properties:

1) their dimension can be given explicitly,

2) they have stable local bases,

3) they have optimal order approximation power,

4) they can be used to construct convenient local Hermite interpolation
operators which approximate smooth functions well,

5) they can be used in the finite-element method to solve boundary value
problems.

18.1. Introduction

Let △ be a tetrahedral partition of a polyhedral set Ω in R
3, and let △R be

a tetrahedral partition of Ω which is obtained from △ by applying a fixed
refinement process to each tetrahedron in △.

Definition 18.1. Let S ⊆ S0

d(△R) be a space of trivariate splines, and
let N := {λi}

n
i=1

be a corresponding nodal minimal determining set, see
Section 17.6. Suppose N is such that for each tetrahedron T ∈ △, the data
{λs}λ∈NT

uniquely determine s|T , where

NT := {λ ∈ N : the carrier of λ is contained in T}.

Then we say that S is a macro-element space. We refer to the linear func-
tionals in N as the nodal degrees of freedom of S.

According to this definition, if S is a macro-element space with nodal
determining set N , then the Hermite-interpolating spline s defined in
Section 17.7 can be computed one tetrahedron at a time, and in particular,
s|T can be computed from data at points in T . Trivariate macro-element
spaces are useful for a variety of approximation purposes, including Her-
mite interpolation of scattered data, and the numerical solution of partial
differential equations.

Our analysis of the trivariate macro-element spaces presented in this
chapter will be based on the Bernstein–Bézier theory described in Chap-
ter 17. For each of the macro-element spaces S discussed in this chapter,
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we first find a stable local minimal determining set M for S, see Defini-
tion 17.11. This approach gives us the dimension of S, and also shows
that it has full approximation power, cf. Theorem 17.15. For each macro-
element space presented here, we also give a stable local nodal minimal
determining set, and use it to construct a Hermite interpolation operator
with full approximation power.

As an aid to describing nodal minimal determining sets, we now intro-
duce some additional notation. Throughout this chapter, we will write T
for a tetrahedron in △, and t for a tetrahedron in the refined partition △R.
Given an edge e := 〈u, v〉 of a tetrahedron, let Xe be the plane perpendic-
ular to e at u. We endow Xe with Cartesian coordinate axes whose origin
lies at the point u. Then for any multi-index β = (β1, β2), we define Dβ

e to
be the corresponding directional derivative of order |β| := β1 + β2. Given
i > 0, we introduce the following notation for equally spaced points in the
interior of e:

ηi
e,j :=

(i− j + 1)u+ jv

i+ 1
, j = 1, . . . , i.

If F := 〈u, v, w〉 is an oriented triangular face of T , then we write D
F

for

a unit normal derivative associated with F and define ξF,m
ijk := (iu + jv +

kw)/m for all i + j + k = m. For any point u ∈ R
3, we write εu for the

point evaluation functional defined by εuf := f(u).
Throughout this chapter we shall give a number of approximation re-

sults. In most cases the constants in these results will depend on d and the
smallest solid and face angles of △R or △, see Definition 16.2. When Ω is
nonconvex, the constants will also depend on the Lipschitz constant of the
boundary of Ω, which in turn depends on the smallest external solid angles
of △.

18.2. A C
1 Polynomial Macro-element

Suppose △ is a tetrahedral partition of a polyhedral set Ω in R
3, and let

V , E , and F be the sets of vertices, edges, and faces of △, respectively. In
this section we discuss the C1 polynomial macro-element space

S1(△) := {s ∈ S1

9
(△) : s ∈ C2(e), all e ∈ E , and s ∈ C4(v), all v ∈ V}.

For each vertex v of △, let Tv be some tetrahedron with vertex at v.
For each edge e of △, let Te be some tetrahedron in △ containing e, and let
E2(e) be the set of domain points which lie in the tube of radius 2 around
e := 〈u, v〉, but which are not contained in the balls D4(u) or D4(v). For
each face F of △, let TF be a tetrahedron in △ containing F , and let G1(F )
be the set of domain points which lie within a distance 1 of F , but which
are not in any of the balls D4(v) or sets E2(e) associated with vertices and
edges of F . Let n

V
, n

E
, n

F
, n

T
be the number of vertices, edges, faces, and

tetrahedra in △.
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Theorem 18.2. dim S1(△) = 35n
V

+ 8n
E

+ 7n
F

+ 4n
T
, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

F∈F

MF ∪
⋃

T∈△

MT

is a stable local minimal determining set, where

1) Mv := D4(v) ∩ Tv,

2) Me := E2(e) ∩ Te,

3) MF := G1(F ) ∩ TF ,

4) MT := {ξT
ijkl : i, j, k, l ≥ 2}.

Proof: We make use of Theorem 17.10 to show that M is a minimal
determining set for S1(△). In particular, we show that the coefficients
{cξ}ξ∈M of a spline s ∈ S1(△) can be set to arbitrary values, and that
all other coefficients of s are then consistently determined in such a way
that all smoothness conditions are satisfied. First, for each vertex v, we set
the coefficients corresponding to domain points in the set Mv to arbitrary
values. By the results of Section 15.8, this determines {Dαs(v)}|α|≤4, which
in turn uniquely determine all coefficients corresponding to the remaining
domain points in the ball D4(v). By the formulae in Section 15.8, this is
a stable local process. In particular, for all η ∈ D4(v) \ Mv, cη can be
computed from coefficients in the set Γη := Mv ⊆ D4(v), and

|cη| ≤ Kmax
ξ∈Γη

|cξ|, (18.1)

whereK is a constant depending on the smallest solid angle θ△ and smallest
face angle φ△ in △. No smoothness conditions have been violated since the
balls D4(v) do not overlap.

For each edge e := 〈u, v〉, we now fix the coefficients corresponding to
Me. We then use the C2 supersmoothness around e to stably determine
all coefficients cη corresponding to the remaining domain points η in the
tube of radius 2 around e, see Theorem 15.23. For each such η, cη has
been computed from coefficients corresponding to domain points in the set
Γη := Me ∪Mu ∪Mv, and (18.1) holds for all η ∈ E2(e) with η 6∈ M. The
sets E2(e) are disjoint from each other and from all balls D4(v), and so we
can be sure that no smoothness conditions have been violated.

For each face F := 〈v2, v3, v4〉, let TF := 〈v1, v2, v3, v4〉 be the tetra-
hedron associated with F . Note that MF = M0

F ∩ M1

F , where M0

F :=

{ξ
TF ,9
0jkl : j, k, l ≥ 2} and M1

F := {ξ
TF ,9
1jkl : j, k, l ≥ 1}. We mark the points

in these sets with ⊕ in Figure 18.1. Coefficients of s corresponding to
points marked with circles or with triangles are already determined. We
now fix the coefficients of s corresponding to MF . There cannot be any
incompatibilities since the sets G1(F ) are disjoint from each other, and
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Fig. 18.1. Points ⊕ in the sets M0

F and M1

F in the proof of Theorem 18.2.

there are no smoothness conditions connecting coefficients associated with
domain points in two different such sets.

If F is a boundary face of △, this uniquely determines all coefficients
corresponding to domain points in G1(F ). If F is an interior face and

T̃F is the other tetrahedron containing the face F , then the coefficients
corresponding to domain points in G1(F ) ∩ T̃F , are uniquely determined
by the C1 smoothness conditions across F . This is a stable local process,
i.e., (18.1) holds where Γη is the union of the set MF with all sets of the
form Mv and Me, where v and e are vertices or edges of F . At this point,
we are left only with domain points in the sets MT . These sets are clearly
disjoint from each other, and there are no smoothness conditions connecting
coefficients associated with domain points in two different such sets. Thus,
the corresponding coefficients can be set to arbitrary values.

To complete the proof, we note that since M is a minimal determining
set, by Theorem 17.8, the dimension of S1(△) is just the cardinality of M,
which is easily seen to be equal to the stated formula.

Since S1(△) has a stable local MDS, Theorem 17.15 immediately im-
plies the following result showing that S1(△) has full approximation power.
Let θ△ and φ△ be the smallest solid angle and smallest face angle in △,
respectively.

Theorem 18.3. For all f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 9,
there exists a spline sf ∈ S1(△) such that

‖Dα(f − sf )‖
q,Ω

≤ K |△|m+1−|α| |f |m+1,q,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d, θ△ and φ△. If Ω is
nonconvex, then K also depends on the Lipschitz constant of the boundary
of Ω.
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We now construct a nodal minimal determining set for S1(△). For
each face F := 〈v1, v2, v3〉 of △, let v

F
be the barycenter of F , and let

A1

F := {ξ
F,8
ijk : i, j, k ≥ 2},

where ξF,8
ijk := (iv1 + jv2 + kv3)/8 for all i + j + k = 8. Note that the

six points in A1

F lie on F , but are not in the set D9,△ of domain points
of S1(△). Their locations are marked with ⊕ in Figure 18.1 (right) (which
was earlier used to depict domain points in D9,△ lying at a distance 1 from
a face). For each tetrahedron T ∈ △, let v

T
be the barycenter of T .

Theorem 18.4. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

F∈F

(
N 0

F ∪ N 1

F

)
∪

⋃

T∈△

NT

is a stable local nodal minimal determining set for S1(△), where

1) Nv := {εvD
α}|α|≤4,

2) Ne :=
⋃2

ℓ=1

⋃ℓ

m=1
{εηℓ

e,m
Dβ

e }|β|=ℓ,

3) N 0

F := {εv
F
},

4) N 1

F := {εξDF
}ξ∈A1

F
,

5) NT := {εv
T
Dα}|α|≤1.

Proof: It is easy to check that #N is equal to the dimension of S1(△)
as given in Theorem 18.2. Thus, to show that N is a stable local NMDS
for S1(△), it suffices to show that given the values {λs}λ∈N for a spline
s ∈ S1(△), all of its B-coefficients can be stably and locally computed.
First, we examine the coefficients in the balls D4(v). For each v ∈ V , we can
use the formulae in Theorem 15.16 to compute the coefficients {cξ}ξ∈D4(v)

from the values {λs}λ∈Nv
. By Theorem 15.17, this is a stable process.

Indeed, if Tξ is a tetrahedron containing ξ, then for all ξ ∈ D4(v),

|cξ | ≤ K

4∑

ν=0

|Tξ|
ν |s|ν,Tξ

, (18.2)

for some constant K depending only on the angles θ△ and φ△.
For each edge e ∈ E , we now use Theorem 15.18 to compute the coef-

ficients of s corresponding to ξ ∈ E2(e) directly from the values {λs}λ∈Ne
.

For each edge, this involves solving a system of equations with a nonsingu-
lar matrix that does not depend on the size and shape of T . Thus, (18.2)
also holds for all domain points ξ in E2(e), see Theorem 15.23.

For each face F of △, we now use Theorem 15.24 and Lemma 2.25
to compute the coefficient corresponding to the domain point ξF,9

333
from
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the value s(v
F
). Using the lemma again, we can compute the coefficients

corresponding to the six domain points in MF which are at a distance of
1 from F from the derivatives {DF s(ξ)}ξ∈A1

F
. These computations involve

solving nonsingular linear systems whose matrices do not depend on the
size or shape of T . It follows (see Theorem 15.25) that (18.2) holds for
all domain points ξ lying in G1(F ) ∩ TF . If F is an interior face, then

the coefficients associated with the points G1(F ) ∩ T̃F , where T̃F is the
other tetrahedron containing F can be computed using the C1 smoothness
conditions across F . This is a stable local process, so (18.2) holds for these
coefficients too.

For each tetrahedron T ∈ △, we have already uniquely determined the
coefficients of s|T corresponding to the 216 domain points which are either
on outer faces of T or within a distance of 1 of an outer face. This leaves
the four coefficients corresponding to the domain points in MT . By Theo-
rem 15.26 these can be stably computed from the values {Dαs(v

T
)}|α|≤1.

This involves solving a nonsingular 4× 4 system whose corresponding ma-
trix is the same for every tetrahedron. We conclude that (18.2) holds for
all ξ ∈ D9,△.

Theorem 18.4 shows that for any function f ∈ C4(Ω), there is a unique
spline s ∈ S1(△) solving the Hermite interpolation problem

λs = λf, all λ ∈ N ,

or equivalently:

1) Dαs(v) = Dαf(v), all |α| ≤ 4 and all v ∈ V ,

2) Dβ
e s(η

i
e,j) = Dβ

e f(ηi
e,j), all |β| = i with 1 ≤ j ≤ i and 1 ≤ i ≤ 2, and

for all edges e of △,

3) s(v
F
) = f(v

F
), all faces F of △,

4) D
F
s(ξ) = D

F
f(ξ), all ξ ∈ A1

F and all faces F of △,

5) Dαs(v
T
) = Dαf(v

T
), all |α| ≤ 1.

This defines a linear projector I1

P mapping C4(Ω) onto the macro-
element space S1(△). Thus, I1

P reproduces polynomials of degree nine.
Since the NMDS of Theorem 18.4 is local and stable, Theorem 17.22 implies
the following error bound.

Theorem 18.5. For every f ∈ Cm+1(Ω) with 3 ≤ m ≤ 9,

‖Dα(f − I1

P f)‖Ω ≤ K |△|m+1−|α| |f |m+1,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest
solid and face angles in △. If Ω is nonconvex, then K also depends on the
Lipschitz constant of the boundary of Ω.
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We conclude this section by noting that S1(△) has two natural stable
local bases. Starting with the stable local minimal determining set M of
Theorem 18.2, it follows from Theorem 17.17 that the M-basis {ψξ}ξ∈M

defined in Theorem 17.16 is a stable local basis. In particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the tetrahedra containing e,

3) if ξ ∈ MF for some face F of △, then the support of ψξ is contained
in the union of the tetrahedra containing F ,

4) if ξ ∈ MT for some tetrahedron T of △, then the support of ψξ is
contained in T .

Since the set N given in Theorem 18.4 is a stable local NMDS, the asso-
ciated N -basis {ϕλ}λ∈N is also a stable local basis for S1(△), where each
basis function is star-supported.

18.3. A C
1 Macro-element on the Alfeld Split

Let △ be an arbitrary tetrahedral partition of a polyhedral set Ω ∈ R
3,

and let V , E , and F be the sets of vertices, edges, and faces of △, respec-
tively. Let △A be be the Alfeld refinement of △ obtained by splitting each
tetrahedron T ∈ △ into four subtetrahedra using its barycenter v

T
, see

Definition 16.21. In this section we discuss the following C1 macro-element
space:

S1(△A) := {s ∈ S1

5 (△A) : s ∈ C2(v), all v ∈ V ,

s ∈ C4(v
T
), all T ∈ △}.

(18.3)

Before proceeding, we note that the splitting process used to create
the Alfeld refinement is stable in the sense that the smallest solid and face
angles associated with the the refined partition △A can be bounded below
in terms of the smallest solid and face angles θ△ and φ△ associated with
the initial partition △, see Theorem 16.22. This is critical for the stability
of the MDS and NMDS constructed in this section, which in turn control
the constants in our approximation results.

For each v ∈ V , let tv be some tetrahedron in △A with vertex at v. For
each edge e := 〈u, v〉 of △, let te be some tetrahedron in △A containing e,
and let E1(e) be the set of domain points which lie in the tube of radius 1
around e, but which are not contained in either D2(u) or D2(v). For each
face F of △, let tF be a tetrahedron in △A containing F , and let G1(F )
be the set of domain points which lie within a distance 1 of F , but which
are not in any of the balls D2(v) or sets E1(e). Finally, let n

V
, n

E
, n

F
, n

T

be the number of vertices, edges, faces, and tetrahedra in △.
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Theorem 18.6. dim S1(△A) = 10n
V

+ 2n
E

+ 3n
F

+ n
T
, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

F∈F

MF ∪
⋃

T∈△

MT

is a stable local minimal determining set, where

1) Mv := D2(v) ∩ tv,

2) Me := E1(e) ∩ te,

3) MF := G1(F ) ∩ tF ,

4) MT := {v
T
}.

Proof: We use Theorem 17.10 to show that M is a MDS for S1(△A). In
particular, we show that if s ∈ S1(△A), then we can set the coefficients
{cξ}ξ∈M to arbitrary values, and that the remaining coefficients are deter-
mined in such a way that all smoothness conditions are satisfied. The proof
is quite similar to that of Theorem 18.2. First we set all of the coefficients
corresponding to the sets Mv to arbitrary values. Then for each v ∈ V , by
the results of Section 15.8 this uniquely determines {Dαs(v)}|α|≤2, which
in turn uniquely determines all other coefficients corresponding to domain
points in the ball D2(v). By the formulae in Section 15.8, this is a stable
local process. In particular, for each η ∈ D2(v) \Mv,

|cη| ≤ Kmax
ξ∈Γη

|cξ|, (18.4)

with Γη = Mv, where K is a constant depending on the smallest solid
and face angles in △A. Since the balls D2(v) do not overlap, none of the
smoothness conditions is violated.

Next we fix all of the coefficients corresponding to the sets Me. Then
for each edge e := 〈u, v〉, all coefficients corresponding to domain points
in the set E1(e) can be uniquely computed from those in Me using the
C1 smoothness conditions, see Theorem 15.18. By Theorem 15.23 this is a
stable process, and (18.4) holds with Γη = Me∪Mu∪Mv. No smoothness
conditions have been violated since the sets E1(e) are disjoint from each
other and from all balls D2(v).

For each face F of △, we have already determined the B-coefficients of
s corresponding to all domain points on F . Now set the coefficients corre-
sponding to the domain points in MF := G1(F )∩tF = {ξ

tF

1211
, ξ

tF

1121
, ξ

tF

1112
}.

If F is an interior face of △ and t̃ is the other tetrahedron in △A which con-
tains the face F , then we can stably compute the coefficients corresponding
to G1(F ) ∩ t̃ by the C1 smoothness of s across the face F . It follows that
(18.4) holds for all η ∈ G1(F ) with Γη equal to the union of the sets Mv,
Me and MF , where v and e are vertices or edges of F .

For each tetrahedron T ∈ △, we have now determined all B-coefficients
of s on the shells R4(vT

) and R5(vT
). By the C4 smoothness at v

T
, we
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can regard the coefficients of s in the ball D4(vT
) as those of a trivariate

polynomial g of degree 4 on a tetrahedron T̂ which is congruent to T and
which has been subjected to the Alfeld split. By the above, we have already
uniquely determined the coefficients of g corresponding to the 34 domain
points on the outer faces of T̂ . Now fixing the coefficient of s corresponding
to MT is equivalent to setting g(v

T
), which in turn uniquely determines

all coefficients of g by Theorem 15.26. Once we have the coefficients of g,
the remaining coefficients of s corresponding to domain points in T can be
stably computed by subdivision using the deCasteljau algorithm.

To complete the proof, we note that by Theorem 17.8, the dimension
of S1(△A) is just the cardinality of M, which is easily seen to be equal to
the given formula.

The proof of this theorem shows that the constant of stability for the
minimal determining set M depends on the smallest solid and face angles
in △A. However, in view of Theorem 16.22, these are bounded below in
terms of the corresponding angles in △. We now illustrate Theorem 18.6
in the case where △ consists of a single tetrahedron.

Example 18.7. Let S1(TA) be the C1 macro-element space defined in
(18.3) associated with the Alfeld split TA of a single tetrahedron T . Then
dim S1(TA) = 65.

Discussion: The dimension statement follows immediately from Theo-
rem 18.6 since n

V
= 4, n

E
= 6, n

F
= 4, and n

T
= 1.

Since S1(△A) has a stable local MDS, Theorem 17.15 immediately
implies the following result which shows that S1(△A) has full approximation
power. Let θ△ and φ△ be the smallest solid and face angles in △.

Theorem 18.8. For all f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 5,
there exists a spline sf ∈ S1(△A) such that

‖Dα(f − sf )‖
q,Ω

≤ K |△|m+1−|α| |f |m+1,q,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d, θ△ and φ△. If Ω is
nonconvex, then K also depends on the Lipschitz constant of ∂Ω.

We now construct a nodal minimal determining set for S1(△A) and
then use it to construct a Hermite interpolating spline. For each face F :=
〈v1, v2, v3〉 ∈ F , let

A0

F := {ξ
F,4
211
, ξ

F,4
121
, ξ

F,4
112

}, (18.5)

where ξF
ijk = (iv1 + jv2 +kv3)/4 for all i+ j+k = 4. Note that these points

lie on F , but are not in the set of domain points D5,△A
corresponding to

S1(△A). They are marked with the symbol ⊕ in Figure 18.2.
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Fig. 18.2. Points ⊕ in the set A
0

F of (18.5).

Theorem 18.9. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

F∈F

NF ∪
⋃

T∈△

NT (18.6)

is a stable local nodal minimal determining set for S1(△A), where

1) Nv := {εvD
α}|α|≤2,

2) Ne := {εη1

e,1
Dα

e }|α|=1,

3) NF := {εξDF
}ξ∈A0

F
,

4) NT := {εv
T
}.

Proof: It is easy to check that #N is equal to the dimension of S1(△A)
as given in Theorem 18.6. Thus, to show that N is a nodal minimal de-
termining set for S1(△A), it suffices to show that setting {λs}λ∈N for a
spline s ∈ S1(△A) determines all B-coefficients of s corresponding to do-
main points in the set M of Theorem 18.6. For each v ∈ V , we use the
formulae in Theorem 15.16 to determine all B-coefficients of s correspond-
ing to domain points ξ in the ball D2(v) from the values {λs}λ∈Nv

. By
Theorem 15.17, this is a stable local process. In particular,

|cξ | ≤ K

2∑

ν=0

|Tξ|
ν |s|ν,Tξ

, (18.7)

where Tξ is a tetrahedron containing ξ, and K is a constant depending on
θ△ and φ△. For each edge e of △, we now use Theorem 15.18 to stably
compute the coefficients of s corresponding to the domain points in E1(e)
from {λs}λ∈Ne

.
Now for each face F , we can use Theorem 15.24 and Lemma 2.25 to

compute the three coefficients {cξ}ξ∈MF
= {ctF

1211
, ctF

1121
, ctF

1112
} from the

values {λs}λ∈NF
. This involves solving a nonsingular 3 × 3 system whose

matrix is independent of the size and shape of t
F
. Thus, (18.7) also holds

for these coefficients.
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For each T ∈ △, we note that the coefficient cξ corresponding to
the domain point ξ ∈ MT is equal to the value of s(v

T
). We have now

computed all coefficients of s corresponding to domain points in the MDS
M of Theorem 18.6, and by that theorem, all coefficients of s are stably
determined.

Theorem 18.9 shows that for any function f ∈ C2(Ω), there is a unique
spline s ∈ S1(△A) solving the Hermite interpolation problem

λs = λf, all λ ∈ N ,

or equivalently

1) Dαs(v) = Dαf(v), all |α| ≤ 2 and all v ∈ V ,

2) Dβ
e s(η

1

e,1) = Dβ
e f(η1

e,1), all |β| = 1,

3) D
F
s(ξ) = D

F
f(ξ), all ξ ∈ A0

F and all faces F of △,

4) s(v
T
) = f(v

T
), all tetrahedra T ∈ △.

This defines a linear projector I1

A mapping C2(Ω) onto the superspline
space S1(△A). In particular, I1

A reproduces polynomials of degree five. We
can now give an error bound for this interpolation operator. We note that
for any tetrahedron T in △ and any subtetrahedron t ∈ T ∩△A, |T |/|t| ≤ 4.
Since the NMDS of Theorem 18.9 is both local and stable, Theorem 17.22
implies the following error bound.

Theorem 18.10. For every f ∈ Cm+1(Ω) with 1 ≤ m ≤ 5,

‖Dα(f − I1

Af)‖Ω ≤ K |△|m+1−|α| |f |m+1,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the the smallest
solid and face angles in △. If Ω is nonconvex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We conclude this section by noting that S1(△A) has two natural stable
local bases. Starting with the stable local minimal determining set M of
Theorem 18.6, it follows from Theorem 17.17 that the M-basis {ψξ}ξ∈M

defined in Theorem 17.16 is a stable local basis. In particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the tetrahedra containing e,

3) if ξ ∈ MF for some face F of △, then the support of ψξ is contained
in the union of the tetrahedra containing F ,

4) if ξ ∈ MT for some tetrahedron T of △, then the support of ψξ is
contained in T .
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Since the set N given in Theorem 18.9 is a stable local NMDS for S1(△A),
the associated N -basis {ϕλ}λ∈N is also a stable local basis for S1(△A),
where each basis function is star–supported.

18.4. A C
1 Macro-element on the Worsey–Farin Split

Let △ be an arbitrary tetrahedral partition of a polyhedral set Ω ∈ R
3,

and let V and E be the sets of vertices and edges of △, respectively. Let
△

W F
be the Worsey–Farin refinement of △ based on the incenters v

T
of

the tetrahedra T of △, see Definition 16.23. In this section we discuss the
following C1 Worsey–Farin macro-element space:

S1(△WF
) := {s ∈ S1

3
(△

W F
) : s ∈ C2(v

T
), all T ∈ △}. (18.8)

To define an MDS for S1(△W F
), we need some more notation. For

each vertex v of △, let tv be one of the tetrahedra in △
WF

attached to
v. For each edge e := 〈u, v〉 of △, let te be one of the tetrahedra in △

WF

containing e, and let E1(e) denote the set of domain points in the tube of
radius 1 around e which do not lie in the balls D1(u) or D1(v). Finally, let
n

V
and n

E
be the number of vertices and edges in △.

Theorem 18.11. The space S1(△W F
) has dimension 4n

V
+ 2n

E
. More-

over, the set

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me

is a stable local minimal determining set, where

1) Mv := D1(v) ∩ tv,

2) Me := E1(e) ∩ te.

Proof: We use Theorem 17.10 to show that M is an MDS for S1(△WF
). It

then follows from Theorem 17.8 that the dimension of S1(△W F
) is just the

cardinality of M, which is easily seen to be equal to the given formula. We
need to show that if s ∈ S1(△W F

), then we can set the coefficients {cξ}ξ∈M

to arbitrary values, and all other coefficients will be determined such that
no smoothness conditions are violated.

First, we fix all of the coefficients corresponding to the sets Mv to ar-
bitrary values. Then by Theorem 15.17, all other coefficients corresponding
to domain points in the balls D1(v) are uniquely and stably determined.
In particular, for all η ∈ D1(v) \Mv, cη can be computed from coefficients
in the set Γη := Mv ⊆ D1(v), and

|cη| ≤ Kmax
ξ∈Γη

|cξ|, (18.9)

where K is a constant depending only on the smallest solid and face angles
in △

WF
. Since the balls D1(v) do not overlap, none of the smoothness

conditions are violated by the coefficients we have set so far.



514 18. Trivariate Macro-element Spaces

Next, for each e := 〈u, v〉 of △, we fix all of the coefficients correspond-
ing to the set Me. Then by the C1 smoothness around edges, all other co-
efficients corresponding to domain points in the set E1(e) will be uniquely
determined, see Theorem 15.18. By Theorem 15.23, this is a stable local
process, and (18.9) holds for these coefficients with Γη := Me ∪Mu ∪Mv.
None of the smoothness conditions are violated since the sets E1(e) do not
overlap each other or any of the balls D1(v).

For each face F of △, we now use the C1 smoothness conditions in
the face to compute the coefficients corresponding to the remaining domain
points on the face. This computation is exactly the same as for the bivariate
C1 cubic spline space on the Clough–Tocher split of F , see Figure 6.2, and
(18.9) holds for these coefficients with Γη equal to the union of the sets Mv

and Me over the vertices and edges of F .
Now let T be a tetrahedron in △. We have already determined the

coefficients of s corresponding to domain points on the shell R3(vT
). Using

the C1 smoothness conditions, we can compute all of the coefficients of s
corresponding to the ten domain points on the edges of the shell R2(vT

). By
the C2 smoothness at v

T
, we can consider the coefficients of s correspond-

ing to the domain points in D2(vT
) to be those of a quadratic polynomial g.

It is easy to see that the ten coefficients corresponding to domain points on
the faces of D2(vT

) determine all other coefficients, and since the dimension
of P2 is 10, we conclude that the coefficients of g corresponding to domain
points in D2(vT

) are uniquely determined. Then all coefficients of s corre-
sponding to domain points in D2(vT

) are uniquely and stably determined
by subdivision.

We are not quite done with the proof. We still have to check that the
coefficients satisfy the C1 smoothness conditions across faces of △. Suppose
t := 〈v

T
, v1, v2, v3〉 and t̃ := 〈v

T̃
, v1, v2, v3〉 are two tetrahedra in △

WF

sharing a face F := 〈v1, v2, v3〉. Note that the split point v
F

in the Clough–
Tocher split FCT of F lies on the line from v

T
to v

T̃
, and thus each of these

C1 conditions reduces to a univariate smoothness condition. Set g := s|t
and g̃ := s|t̃, and let f2 := R2(vT

) ∩ t and f̃2 := R2(v
T̃
) ∩ t̃. Let b1, . . . , b6

be the coefficients of g corresponding to the domain points ξ1, . . . , ξ6 which
lie on the edges of f2. These six domain points are marked with black dots
in Figure 18.3. Let b̃1, . . . , b̃6 be the coefficients of g̃ associated with the
corresponding domain points ξ̃1, . . . , ξ̃6 on the edges of f̃2. Let r, s be such
that v

T̃
= sv

F
+ rv

T
. Then each of the C1 smoothness conditions across F

with a tip at one of the points ξi is already satisfied. Explicitly,

bi = sci + rb̃i. (18.10)

Now let b be any other coefficient of g at a distance 1 from F . We have
seen that b can be written as a linear combination of the b1, . . . , b6, i.e, there
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Fig. 18.3. The set f2 in the proof of Theorem 18.11.

exist {αi}
6

i=1
such that b =

∑6

i=1
αibi. The same equation also holds with

b’s replaced by either c’s or b̃’s. But then using (18.10), we have

[1, −s, −r]



b

c

b̃


 = [1, −s, −r]



b1 · · · b6
c1 · · · c6

b̃1 · · · b̃6





α1

...
α6


 = 0,

which shows that the C1 smoothness condition involving b, c, b̃ is also sat-
isfied.

The constant in the stability of the MDS in Theorem 18.11 depends on
the smallest solid and face angles in △

WF
. Although we believe that these

angles are bounded below in terms of the smallest solid and face angles in
△, this remains an open conjecture. We now illustrate Theorem 18.11 for
a single tetrahedron.

Example 18.12. Let T
WF

be the Worsey–Farin split of a single tetrahe-
dron T , and let S1(TWF

) be the associated macro-element space as defined
in (18.8). Then dim S1(TWF

) = 28.

Since S1(△W F
) has a stable local MDS, Theorem 17.15 immediately

implies that it has full approximation power.

Theorem 18.13. For all f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 3,
there exists a spline sf ∈ S1(△WF

) such that

‖Dα(f − sf )‖
q,Ω

≤ K |△|m+1−|α| |f |m+1,q,Ω, (18.11)

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest solid
and face angles in △

WF
. If Ω is nonconvex, then K also depends on the

Lipschitz constant of the boundary of Ω.

We now construct a stable local nodal determining set for S1(△W F
),

using the notation introduced at the end of Section 18.1.



516 18. Trivariate Macro-element Spaces

Theorem 18.14. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne

is a stable local nodal minimal determining set for S1(△W F
), where

1) Nv := {εvD
α}|α|≤1,

2) Ne := {εη1

e,1
Dβ

e }|β|=1.

Proof: It is easy to see that the cardinality of the set N matches the
dimension of S1(△W F

) as given in Theorem 18.11. We already know that
the set M defined in that theorem is an MDS for S1(△W F

). Thus, to show
that N is an NMDS, it suffices to show that if s ∈ S1(△WF

), then fixing
the values {λs}λ∈N determines all coefficients in the set {cξ}ξ∈M.

For each v ∈ V , we can use the formulae in Theorem 15.16 to determine
all B-coefficients of s corresponding to domain points ξ in the ball D1(v)
from the values {λs}λ∈Nv

. By Theorem 15.17, this is a stable local process,
and in fact we have

|cξ| ≤ K

1∑

ν=0

|Tξ|
ν |s|ν,Tξ

,

where Tξ is a tetrahedron containing ξ, and K is a constant depending on
the smallest angle in △

WF
. Now for each edge of △, we can use Theo-

rem 15.18 to compute the coefficients of s corresponding to domain points
in E1(e), where E1(e) is as in Theorem 18.11. By Theorem 15.23 this is a
stable process.

At this point we have stably computed all of the coefficients of s cor-
responding to domain points in the MDS M of Theorem 18.11. But then
all other coefficients are also locally and stably determined.

Theorem 18.14 shows that for any function f ∈ C1(Ω), there is a
unique spline s ∈ S1(△WF

) solving the Hermite interpolation problem

λs = λf, all λ ∈ N ,

or equivalently:

1) Dαs(v) = Dαf(v), all |α| ≤ 1 and all v ∈ V ,

2) Dβ
e s(η

1

e,1) = Dβ
e f(η1

e,1), all |β| = 1 and all edges e of △.

The mapping which takes functions f ∈ C1(Ω) to this Hermite interpolating
spline defines a linear projector I1

W F
mapping C1(Ω) onto S1(△WF

). In
particular, I1

W F
p = p for all trivariate polynomials of degree three. Now

Theorem 17.22 implies the following error bound.
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Theorem 18.15. For every f ∈ Cm+1(Ω) with 0 ≤ m ≤ 3,

‖Dα(f − I1

W F
f)‖Ω ≤ K |△|m+1−|α| |f |m+1,Ω,

for all |α| ≤ m. If Ω is convex, K depends on d and the smallest solid
and face angles in △

WF
. If Ω is nonconvex, then K also depends on the

Lipschitz constant of the boundary of Ω.

As for the other macro-element spaces in this chapter, S1(△W F
) has

two natural stable local bases. Starting with the stable local minimal de-
termining set M of Theorem 18.11, it follows from Theorem 17.17 that
the M-basis {ψξ}ξ∈M defined in Theorem 17.16 is a stable local basis. In
particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the tetrahedra containing e.

Since the set N given in Theorem 18.14 is a stable local NMDS, the associ-
ated N -basis {ϕλ}λ∈N is also a stable local basis for S1(△WF

), where each
basis function is star-supported.

18.5. A C
1 Macro-element on the Worsey–Piper Split

Let △ be an arbitrary tetrahedral partition of a polyhedral set Ω ∈ R
3, and

let V be the set of vertices of △. In this section we discuss the following
C1 Worsey–Piper macro-element space:

S1(△W P
) := S1

2
(△

W P
),

where △
WP

is a proper Worsey–Piper refinement of △, see Definitions 16.25
and 16.26. For each v ∈ V , let tv be some tetrahedron in △

WP
with vertex

at v. Let n
V

be the number of vertices of △.

Theorem 18.16. dim S1(△WP
) = 4n

V
, and M :=

⋃
v∈V Mv is a stable

local minimal determining set, where Mv := D1(v) ∩ tv.

Proof: By the results of Section 15.8, fixing the coefficients of s corre-
sponding to the set M determines all the coefficients of s corresponding to
domain points in the balls D1(v) for v ∈ V . We now show that all other
coefficients of s are determined in a consistent way, i.e., in such a way that
all C1 smoothness conditions are satisfied. First, for each face F of △,
since F has been subjected to a Powell–Sabin split, by Theorem 6.9, the
coefficients corresponding to domain points in the disks D1(v) around the
vertices of F stably determine the coefficients associated with the remaining
domain points on F . Now let T ∈ △, and consider the ball D1(vT

). The C1
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smoothness at v
T

implies that the coefficients of s restricted to this ball can
be considered as the coefficients of a linear polynomial g on a tetrahedron T̂
which is congruent to T and which has been subjected to the Worsey–Piper
split. We already have the coefficients of g at the four vertices of T̃ . Since
the space P1 is of dimension four, this stably and uniquely determines all
coefficients of g in D1(vT

), see Theorem 15.38. The coefficients of s corre-
sponding to domain points in D1(vT

) can then be computed by subdivision
using the de Casteljau algorithm.

To complete the proof, we have to check that the coefficients of s satisfy
all C1 smoothness conditions which have not already been explicitly used.
First, for each edge e, we note that by the assumption that △

WP
is proper,

all domain points that lie within a distance of e := 〈u, v〉 and outside the
disks D1(u) and D1(v) lie in a plane passing through the point ve. Then
arguing as in the proof of Theorem 18.11, it follows that the C1 smoothness
conditions involving these coefficients are satisfied. We also have to check
the C1 smoothness conditions across interior faces of △. Let F be such a
face. Then by the assumption that △

W P
is proper, we know that v

F
lies

on the line connecting v
T

and v
T̃
, where T and T̃ are the two tetrahedra in

△ which share the face F . Then the fact that the C1 conditions involving
coefficients within a distance of F are satisfied can be established using the
same argument as was employed in Theorem 18.11.

The constant in the stability of the MDS in Theorem 18.16 depends on
the smallest solid and face angles in △

WP
. Although we believe that these

angles are bounded below in terms of the smallest solid and face angles in
△, this remains an open conjecture. We now illustrate Theorem 18.16 in
the case when △ consists of a single tetrahedron.

Example 18.17. Let T
WP

be the Worsey–Piper split of a single tetrahe-
dron T . Then dim S1(TWP

) = 16.

Since S1(△W P
) has a stable local MDS, Theorem 17.15 immediately

implies that it has full approximation power.

Theorem 18.18. For all f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 2,
there exists a spline sf ∈ S1(△WP

) such that

‖Dα(f − sf )‖
q,Ω

≤ K |△|m+1−|α| |f |m+1,q,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest solid
and face angles in △

WP
. If Ω is nonconvex, then K also depends on the

Lipschitz constant of the boundary of Ω.

We now construct a nodal minimal determining set for S1(△WP
) and

then use it to construct a Hermite interpolating spline.
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Theorem 18.19. The set

N :=
⋃

v∈V

{εvD
α}|α|≤1

is a stable local nodal minimal determining set for S1(△W P
).

Proof: Since #N is equal to the dimension of S1(△WP
), it suffices to show

that setting {λs}λ∈N for a spline s ∈ S1(△A) determines all B-coefficients
of s corresponding to the MDS M of Theorem 18.16. For each v ∈ V , we can
compute all coefficients of s in the ball D1(v) directly from {Dαs(v)}|α|≤1

using the results of Section 15.8. This gives all coefficients corresponding
to M. The computation of coefficients is local and stable, and in particular
if Tξ is a tetrahedron containing ξ, then

|cξ | ≤ K

1∑

ν=0

|Tξ|
ν |s|ν,Tξ

,

where K is a constant depending on the smallest angle in △
WP

.

Theorem 18.19 shows that for any function f ∈ C1(Ω), there is a
unique spline s ∈ S1(△WP

) solving the Hermite interpolation problem

λs = λf, all λ ∈ N ,

or equivalently

Dαs(v) = Dαf(v), all |α| ≤ 1 and all v ∈ V .

This defines a linear projector I1

WP
mapping C1(Ω) onto the superspline

space S1(△WP
). Theorem 17.22 implies the following error bound.

Theorem 18.20. For every f ∈ Cm+1(Ω) with 0 ≤ m ≤ 2,

‖Dα(f − I1

W P
f)‖Ω ≤ K |△|m+1−|α| |f |m+1,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest solid
and face angles in △

WP
. If Ω is nonconvex, then K also depends on the

Lipschitz constant of the boundary of Ω.

To get a stable local basis for S1(△W P
), we can use the M-basis of

Theorem 17.16 corresponding to the MDS M of Theorem 18.16. The N -
basis corresponding to the NMDS N of Theorem 18.19 provides another
stable local basis.



520 18. Trivariate Macro-element Spaces

18.6. A C
2 Polynomial Macro-element

In this section we discuss the C2 analog of the C1 element of Section 18.2.
Suppose △ is a tetrahedral partition of a polyhedral set Ω in R

3, and let
V , E , and F be the sets of vertices, edges, and faces of △, respectively. In
this section we discuss the following C2 polynomial macro-element space

S2(△) := {s ∈ S2

17(△) : s ∈ C4(e), all e ∈ E , and s ∈ C8(v), all v ∈ V}.

For each v ∈ V , let Tv be some tetrahedron with vertex at v. For each
edge e := 〈u, v〉 of △, let E4(e) be the set of domain points which lie in
the tube of radius 4 around e := 〈u, v〉, but which are not contained in the
balls D8(u) or D8(v), and let Te be some tetrahedron in △ containing the
edge e. Finally, for each face F of △, let G2(F ) be the set of domain points
which lie within a distance 2 of F , but which are not in any of the balls
D8(v) or sets E4(e). Let TF be some tetrahedron containing the face F .
Let n

V
, n

E
, n

F
, n

T
be the number of vertices, edges, faces, and tetrahedra

in △.

Theorem 18.21. dim S2(△) = 165n
V

+ 40n
E

+ 46n
F

+ 56n
T
, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

F∈F

MF ∪
⋃

T∈△

MT

is a stable local minimal determining set, where

1) Mv := D8(v) ∩ Tv,

2) Me := E4(e) ∩ Te,

3) MF := G2(F ) ∩ TF ,

4) MT := {ξT
ijkl : i, j, k, l ≥ 3}.

Proof: To show that M is a minimal determining set for S2(△) we make
use of Theorem 17.10. We need to show that the coefficients {cξ}ξ∈M of
a spline s ∈ S2(△) can be set to arbitrary values, and that the remaining
coefficients of s are determined in such a way that all smoothness condi-
tions are satisfied. For each vertex v, we begin by fixing the coefficients
corresponding to domain points in the set Mv. By the C8 smoothness
at v and the results of Section 15.8, all coefficients corresponding to do-
main points in the ball D8(v) are stably determined. In particular, for all
η ∈ D8(v) \Mv, cη depends only on coefficients corresponding to domain
points in Γη = Mv, and by Theorem 15.17,

|cη| ≤ Kmax
ξ∈Γη

|cξ|, (18.12)

where K is a constant depending on the smallest solid and face angles in
△. It is also local since each such cη depends only on other coefficients in
the same ball. None of the smoothness conditions is violated since the balls
D8(v) do not overlap.
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Next we fix the coefficients corresponding to Me. Then for each edge
e := 〈u, v〉, using the C4 smoothness around e, Theorem 15.23 can be
used to determine all coefficients cη corresponding to the remaining domain
points in the set E4(e). The computation of these coefficients is a stable
local process, and (18.12) holds for all η ∈ E4(e) with Γη := Me∪Mu∪Mv.
None of the smoothness conditions has been violated since the sets E4(e)
are disjoint from each other and from all balls D8(v).

For each face F of △, we now fix the coefficients {cξ}ξ∈MF
. This

determines all coefficients corresponding to domain points in G2(F ) ∩ TF .

If F is an interior face, then the coefficients corresponding to G2(F ) ∩ T̃F

are uniquely determined from the C2 smoothness across F , where T̃F is the
other tetrahedron in △ sharing the face F . This is a stable local process,
and for each of these ξ, (18.12) holds with Γη equal to the union of MF

with all Mv and Me, where v and e are vertices and edges of F .
We have now determined all coefficients of s except for those corre-

sponding to domain points in the sets MT , which can now be given ar-
bitrary values. These sets are disjoint from each other, and so there are
no smoothness conditions connecting coefficients associated with domain
points in two such sets. We have shown that M is a stable local MDS. To
finish the proof, we apply Theorem 17.8 which says that the dimension of
S2(△) is just the cardinality of M, which is easily seen to be equal to the
given formula.

Since S2(△) has a stable local MDS, Theorem 17.15 immediately im-
plies that it has full approximation power.

Theorem 18.22. For all f ∈Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 17,
there exists a spline sf ∈ S2(△) such that

‖Dα(f − sf )‖
q,Ω

≤ K |△|m+1−|α| |f |m+1,q,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest
solid and face angles in △. If Ω is nonconvex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now construct a nodal minimal determining set for S2(△). For
each face F := 〈v1, v2, v3〉 of △, let

A0

F := {ξ
F,17
ijk : i, j, k ≥ 5},

A1

F := {ξ
F,16
ijk : i, j, k ≥ 4},

A2

F := {ξ
F,15
ijk : i, j, k ≥ 3} \ {ξF,15

933
, ξ

F,15
393

, ξ
F,15
339

},

(18.13)

where ξF,n
ijk := (iv1 + jv2 + kv3)/n, for all i+ j+ k = n. Points in these sets

are marked with ⊕ in Figure 18.4. Note that the points in A1

F and A2

F are
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Fig. 18.4. Points ⊕ in the sets A
0

F , A
1

F , and A
2

F of (18.13).

not in the set of domain points D17,△ for S2(△). For each tetrahedron T ,
let v

T
be its barycenter.

Theorem 18.23. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

F∈F

(
N 0

F ∪ N 1

F ∪N 2

F

)
∪

⋃

T∈△

NT

is a stable local nodal minimal determining set for S2(△), where

1) Nv := {εvD
α}|α|≤8,

2) Ne :=
⋃

4

ℓ=1

⋃ℓ

m=1
{εηℓ

e,m
Dβ

e }|β|=ℓ,

3) N 0

F := {εξ}ξ∈A0

F
,

4) N 1

F := {εξDF
}ξ∈A1

F
,

5) N 2

F := {εξD
2

F
}ξ∈A2

F
,

6) NT := {εv
T
Dα}|α|≤5.

Proof: It is easy to check that #N is equal to the dimension of S2(△)
as given in Theorem 18.21. Thus, to show that N is a stable local NMDS
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for S2(△), it suffices to show that given the values {λs}λ∈N for a spline
s ∈ S2(△), all of its B-coefficients can be stably and locally computed. For
each v ∈ V , we can use the results of Section 15.8 to compute the coefficients
{cξ}ξ∈D8(v) from the values {λs}λ∈Nv

. By Theorem 15.17, this is a local
and stable process. Indeed, if Tξ is a tetrahedron containing ξ, then for all
ξ ∈ D4(v),

|cξ | ≤ K

8∑

ν=0

|Tξ|
ν |s|ν,Tξ

, (18.14)

for some constant K depending only on the smallest solid and face angles
in △.

Next, for each edge e ∈ E , we compute the coefficients corresponding to
ξ ∈ E4(e) from the values {λs}λ∈Ne

. By Theorem 15.23 these computations
are local and stable in the sense that (18.14) holds.

Now fix a face F of △. All coefficients of s corresponding to domain
points on F have been computed except for the six corresponding to the
points in A0

F . By Theorem 15.24 and Lemma 2.25 they can be computed
from the values {λs}λ∈N 0

F
by solving an appropriate 6 × 6 linear system.

Next we consider coefficients corresponding to the remaining domain points
in TF at a distance of 1 to F . Using Theorem 15.24 and Lemma 2.25 we
can compute these coefficients from the values {D

F
s(η)}η∈A1

F
by solving

a nonsingular 15 × 15 system whose matrix is the same for every face F .
By Theorem 15.25, this computation is also local and stable. If F is an
interior face, then the coefficients associated with the analogous points in
the other tetrahedron containing F can be computed using the C1 smooth-
ness conditions across F . Using Theorem 15.24 and Lemma 2.23 we can
now compute the coefficients of s that lie at a distance of 2 from a face by
solving a nonsingular 25×25 linear system which is the same for every face.

Finally, for each T in △, we compute the coefficients corresponding
to the remaining domain points in T from the data {Dαs(v

T
)}|α|≤5. This

involves solving a nonsingular 56 × 56 system which is the same for every
tetrahedron, see Theorem 15.26.

Theorem 18.23 shows that for any function f ∈ C8(Ω), there is a
unique spline s ∈ S2(△) solving the Hermite interpolation problem

λs = λf, all λ ∈ N ,

or equivalently:

1) Dαs(v) = Dαf(v), all |α| ≤ 8 and all v ∈ V ,

2) Dβ
e s(η

i
e,j) = Dβ

e f(ηi
e,j), all |β| = i with 1 ≤ j ≤ i and 1 ≤ i ≤ 4, and

all edges e of △,

3) s(ξ) = f(ξ), all ξ ∈ A0

F and all faces F of △,
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4) D
F
s(ξ) = D

F
f(ξ), all ξ ∈ A1

F and all faces F of △,

5) D2

F
s(ξ) = D2

F
f(ξ), all ξ ∈ A2

F and all faces F of △,

6) Dαs(v
T
) = Dαf(v

T
), all |α| ≤ 5.

This defines a linear projector I2

P mapping C8(Ω) onto the superspline
space S2(△). In particular, I2

P reproduces polynomials of degree 17. Since
the NMDS of Theorem 18.23 is local and stable, Theorem 17.22 implies the
following error bound.

Theorem 18.24. For every f ∈ Cm+1(Ω) with 7 ≤ m ≤ 17,

‖Dα(f − I2

P f)‖Ω ≤ K |△|m+1−|α| |f |m+1,Ω, (18.15)

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest
solid and face angles in △. If Ω is nonconvex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We conclude this section by noting that S2(△) has two natural stable
local bases. Starting with the stable local minimal determining set M in
Theorem 18.21, it follows from Theorem 17.17 that the M-basis {ψξ}ξ∈M

defined in Theorem 17.16 is a stable local basis. In particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the tetrahedra containing e,

3) if ξ ∈ MF for some face F of △, then the support of ψξ is contained
in the union of the tetrahedra containing F ,

4) if ξ ∈ MT for some tetrahedron T of △, then the support of ψξ is
contained in T .

Since the set N given in Theorem 18.23 is a stable local NMDS, the asso-
ciated N -basis {ϕλ}λ∈N is also a stable local basis for S2(△), where each
basis function is star-supported.

18.7. A C
2 Macro-element on the Alfeld Split

In this section we give a C2 analog of the C1 macro-element discussed in
Section 18.3. Given an arbitrary tetrahedral partition △ of a polyhedral
set Ω ∈ R

3, let V , E , and F be the sets of vertices, edges, and faces of
△, respectively. Let △A be the tetrahedral partition which is obtained
from △ by applying the Alfeld split to each tetrahedron T in △ using the
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barycenter v
T
, see Definition 16.21. In this section we discuss the following

C2 macro-element space:

S2(△A) := {s ∈ S2

13(△A) : s ∈ C3(e), all e ∈ E ,

s ∈ C6(v), all v ∈ V ,

s ∈ C12(v
T
), all T ∈ △}.

(18.16)

For each v ∈ V , let tv be some tetrahedron in △A with vertex at v.
For each edge e := 〈u, v〉 of △, let E3(e) be the set of domain points which
lie on the tube of radius 3 around e, but which are not contained in either
D6(u) or D6(v). Let te be some tetrahedron in △A containing e. For each
face F of △, let tF be some tetrahedron in △A containing the face F , and
let G2(F ) be the set of all domain points which lie within a distance 2 of
F , but which are not in any of the balls D6(v) or tubes E2(e). Finally, for
each tetrahedron T of △, let tT be some tetrahedron in △A containing v

T
.

Let n
V
, n

E
, n

F
, n

T
be the number of vertices, edges, faces, and tetrahedra

in △.

Theorem 18.25. dim S2(△A) = 84n
V

+ 20n
E

+ 31n
F

+ 35n
T
, and

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

F∈F

(
M0

F ∪M1

F ∪M2

F

)
∪

⋃

T∈△

MT (18.17)

is a stable local minimal determining set, where

1) Mv := D6(v) ∩ tv,

2) Me := E3(e) ∩ te,

3) M0

F := {ξtF

0ijk : i, j, k ≥ 4, i+ j + k = 13},

4) M1

F := {ξtF

1ijk : i, j, k ≥ 3, i+ j + k = 12},

5) M2

F := {ξtF

2ijk : i, j, k ≥ 2, i+ j + k = 11} \ {ξtF

2272
, ξtF

2227
, ξtF

2722
},

6) MT := D4(vT
) ∩ tT .

Proof: The proof is similar to the proof of Theorem 18.6. To show that M
is a stable local MDS for S2(△A), using Theorem 17.10, we need to show
that if s ∈ S2(△A), then we can set the coefficients {cξ}ξ∈M to arbitrary
values, and then all other coefficients are determined in a stable and local
way while not violating any smoothness conditions. First, we fix all of the
coefficients corresponding to domain points in the sets Mv. Then for each
v ∈ V , by the C6 smoothness at v, the results of Section 15.8 show that all
other coefficients corresponding to domain points in the ball D6(v) can be
stably computed. By Theorem 15.17, for all η ∈ D6(v) \Mv,

|cη| ≤ Kmax
ξ∈Γη

|cξ|, (18.18)
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Fig. 18.5. Points ⊕ in the sets M0

F , M1

F , and M2

F of Theorem 18.25.

where Γη := Mv and K is a constant depending on the smallest solid and
face angles in △A. None of the smoothness conditions defining S2(△A) has
been violated since the balls D6(v) do not overlap.

Next we fix all of the coefficients corresponding to the sets Me. Then
for each edge e := 〈u, v〉, using the C3 smoothness conditions, we can stably
compute all coefficients corresponding to the domain points in E3(e) from
those in Me. By Theorem 15.23, (18.18) holds for these coefficients with
Γη := Me ∪Mu ∪Mv. No smoothness conditions have been violated since
the sets Me do not overlap each other or any of the balls D6(v).

Given a face F := 〈v1, v2, v3〉 ∈ F , suppose t
F

:= 〈v1, v2, v3, vT
〉

is the corresponding tetrahedron used in defining M. We now focus on
points in the set G2(F ) ∩ t

F
= M0

F ∪ M1

F ∪ M2

F . The points in M0

F =
{ξ

tF

5440
, ξ

tF

4540
, ξ

tF

4450
} are marked with ⊕ in Figure 18.5 (left). Similarly, the

points in M1

F and M2

F are marked with ⊕ in Figure 18.5 (mid) and Fig-
ure 18.5 (right), respectively. Observe that on F , we have already deter-
mined all coefficients except those corresponding to M0

F which we now fix.
On the subface of t

F
immediately behind F , we have already determined

all coefficients except for those corresponding to M1

F , which we now fix.
Similarly, on the subface of t

F
at a distance 2 behind F we have already

determined all coefficients except for those corresponding to M2

F , which we
now fix. If F is a boundary face, this determines all coefficients correspond-
ing to domain points in the set G2(F ). If F is an interior face, then using
the C2 smoothness across F , we can now uniquely compute the coefficients
of s corresponding to the remaining points in G2(F ). Since only smooth-
ness conditions are used, this is a stable process, and (18.18) holds for all
ξ ∈ G2(F ). No inconsistencies in the smoothness conditions can arise since
the sets G2(F ) are disjoint from each other.

Now fix T in △. Then by the C12 smoothness at v
T
, we may consider

the B-coefficients of s corresponding to domain points in the ball D12(vT
)

to be those of a polynomial g of degree 12 on a tetrahedron T̂ which is
congruent to T , and which has been subjected to the Alfeld split. The
space P12 has dimension 455. We have already uniquely determined the
coefficients of g corresponding to domain points of g in balls of radius 5
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around each vertex of T̂ , in tubes of radius 2 around each edge, and on
the faces of the shells R12(vT

) and R11(vT
). Thus, a total of 4 × 56 + 6 ×

14+4× 10+4× 18 = 420 coefficients are already determined. Now setting
the coefficients of s corresponding to MT := D4(vT

) ∩ tv determines the
values {Dαg(v

T
)}|α|≤4. By Theorem 15.26 this stably determines all of the

remaining coefficients of g. Applying subdivision, we see that all remaining
coefficients of s are uniquely and stably determined.

To complete the proof, we note that the dimension of S2(△A) is just
the cardinality of M, which is easily seen to be equal to the given formula.

The proof of this theorem shows that the constant of stability for the
minimal determining set M depends on the smallest solid and face angles
in △A. However, in view of Theorem 16.22, these are bounded below in
terms of the corresponding angles in △. We now illustrate Theorem 18.25
in the case of a single tetrahedron.

Example 18.26. Let S2(TA) be the macro-element space (18.16) associ-
ated with the Alfeld split TA of a single tetrahedron T . Then dim S2(TA) =
615.

Since S2(△A) has a stable local MDS, Theorem 17.15 immediately
implies that it has full approximation power.

Theorem 18.27. For all f ∈Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 13,
there exists a spline sf ∈ S2(△A) such that

‖Dα(f − sf )‖
q,Ω

≤ K |△|m+1−|α| |f |m+1,q,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest
solid and face angles in △. If Ω is nonconvex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now construct a stable local nodal determining set for S2(△A). For
each face F := 〈v1, v2, v3〉 of △, let

A0

F := {ξ
F,13
ijk : i, j, k ≥ 4} = {ξ

F,13
544

, ξ
F,13
454

, ξ
F,13
445

},

A1

F := {ξ
F,12
ijk : i, j, k ≥ 3},

A2

F := {ξ
F,11
ijk : i, j, k ≥ 2} \ {ξF,11

272
, ξ

F,11
227

, ξ
F,11
722

},

where ξF,n
ijk := (iv1 + jv2 + kv3)/n for i+ j + k = n. We mark the position

of these points with ⊕ in Figure 18.5. These are the same figures used to
illustrate M0

F , M1

F , and M2

F earlier, but they are not the same points.
The points in A1

F and A2

F are not in the set of domain points of S2(△A).
The cardinalities of these three sets are 3, 10, and 18, respectively.
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Theorem 18.28. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

F∈F

(
N 0

F ∪ N 1

F ∪ N 2

F

)
∪

⋃

T∈△

NT

is a stable local nodal minimal determining set for S2(△A), where

1) Nv := {εvD
α}|α|≤6,

2) Ne :=
⋃

3

i=1

⋃i

j=1
{εηi

e,j
Dα

e }|α|=i,

3) N 0

F := {εξ}ξ∈A0

F
,

4) N 1

F := {εξDF
}ξ∈A1

F
,

5) N 2

F := {εξD
2

F
}ξ∈A2

F
,

6) NT := {εv
T
Dα}|α|≤4.

Proof: It is easy to check that #N is equal to the dimension of S2(△A)
as given in Theorem 18.25. Thus, to show that N is a stable local NMDS
for S2(△A), it suffices to show that given the values {λs}λ∈N for a spline
s ∈ S2(△), all of its B-coefficients can be stably and locally computed.
First, we examine the coefficients in the balls D6(v). For each v ∈ V , it
is clear that we can use the formulae in Theorem 15.16 to compute the
coefficients {cξ}ξ∈D6(v) from the values {λs}λ∈Nv

. This is a stable process,
and indeed if Tξ is a tetrahedron containing ξ, then for all ξ ∈ D6(v),

|cξ | ≤ K

6∑

ν=0

|Tξ|
ν |s|ν,Tξ

, (18.19)

where K depends only on the smallest solid and face angles in △A.
Now for each edge e ∈ E , we use the results of Section 15.9 to sta-

bly compute the coefficients corresponding to ξ ∈ E3(e) from the values
{λs}λ∈Ne

. Next, for each face F of △, we use Theorem 15.24 to compute
the coefficients corresponding to ξ ∈ G2(F ) ∩ tF , where G2(F ) and tF are
as in Theorem 18.25. This involves solving 3×3, 10×10, and 18×18 linear
systems corresponding to the sets A0

F , A1

F , and A2

F , respectively. The fact
that these systems are nonsingular follows from Lemmas 2.23 and 2.25.

If F is an interior face of △, we use C2 smoothness across F to compute
the coefficients in G2(F ) ∩ t̃F , where t̃F is the other tetrahedron sharing
the face F . These computations are also stable.

At this point, we have determined all the coefficients of s corresponding
to domain points in the MDS M of Theorem 18.25, except for those in the
sets MT . But these can be computed directly from the data {λs}λ∈NT

using Theorem 15.26. Since M is a stable local MDS, it follows that all
coefficients of s can be computed from the nodal data and (18.19) holds.
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Theorem 18.28 shows that for any function f ∈ C6(Ω), there is a
unique spline s ∈ S2(△A) solving the Hermite interpolation problem

λs = λf, all λ ∈ N ,

or equivalently:

1) Dαs(v) = Dαf(v), all |α| ≤ 6 and all v ∈ V ,

2) Dβ
e s(η

i
e,j) = Dβ

e f(ηi
e,j), all |β| = i with 1 ≤ j ≤ i and 1 ≤ i ≤ 3, for all

edges e of △,

3) s(ξ) = f(ξ), all ξ ∈ A0

F , all faces F of △,

4) D
F
s(ξ) = D

F
f(ξ), all ξ ∈ A1

F and all faces F of △,

5) D2

F
s(ξ) = D2

F
f(ξ), all ξ ∈ A2

F and all faces F of △,

6) Dαs(v
T
) = Dαf(v

T
), all |α| ≤ 4.

This defines a linear projector I2

A mapping C6(Ω) onto the superspline
space S2(△A). In particular, I2

A reproduces polynomials of degree thirteen.
Since the the NMDS of Theorem 18.28 is local and stable, Theorem 17.22
implies the following error bound.

Theorem 18.29. For every f ∈ Cm+1(Ω) with 5 ≤ m ≤ 13,

‖Dα(f − I2

Af)‖Ω ≤ K |△|m+1−|α| |f |m+1,Ω, (18.20)

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest
solid and face angles in △. If Ω is nonconvex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We conclude this section by noting that S2(△A) has two natural stable
local bases. Starting with the stable local minimal determining set M in
Theorem 18.25, it follows from Theorem 17.17 that the M-basis {ψξ}ξ∈M

defined in Theorem 17.16 is a stable local basis. In particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the tetrahedra containing e,

3) if ξ ∈ MF for some face F of △, then the support of ψξ is contained
in the union of the tetrahedra containing F ,

4) if ξ ∈ MT for some tetrahedron T of △, then the support of ψξ is
contained in T .

Since the set N given in Theorem 18.28 is a stable local NMDS, the asso-
ciated N -basis {ϕλ}λ∈N is also a stable local basis for S2(△A), where each
basis function is star-supported.
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18.8. A C
2 Macro-element on the Worsey–Farin Split

Given an arbitrary tetrahedral partition △ of a polyhedral set Ω ∈ R
3, let

V ,F and E be the sets of vertices, faces and edges of △, respectively. In
this section we discuss a C2 macro-element space which is defined over the
tetrahedral partition △

WF
defined in Definition 16.23. Let Ec be the set

all edges in △
WF

that connect the incenters v
T

to the face split points v
F
.

In this section we discuss the following C2 Worsey–Farin macro-element
space:

S2(△W F
) := {s ∈ S2

9
(△

WF
) : s ∈ C3(e), all e ∈ E ,

s ∈ C7(e), all e ∈ Ec,

s ∈ C4(v), all v ∈ V ,

s ∈ C7(v
T
), all T ∈ △}.

(18.21)

To define an MDS for S2(△WF
) we need some more notation. For each

vertex v of △, let tv be one of the tetrahedra in △
WF

attached to v. For
each edge e := 〈u, v〉 of △, let te be one of the tetrahedra in △

WF
containing

e, and let E3(e) denote the set of domain points in the tube of radius 3
around e which do not lie in the balls D4(u) or D4(v). Finally, for each
face F := 〈v1, v2, v3〉 of △, let v

T
be the barycenter of some tetrahedron T

containing F , and let t
F

:= 〈v
T
, v

F
, v2, v3〉, where v

F
is the split point in

the face F . Let n
V
, n

E
, n

F
, n

T
be the number of vertices, edges, faces, and

tetrahedra in △.

Theorem 18.30. The space S2(△WF
) has dimension 35n

V
+20n

E
+9n

F
+

20n
T
. Moreover, the set

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

F∈F

(
M

0

F ∪M1

F ∪M2

F

)
∪

⋃

T∈△

MT

is a stable local minimal determining set, where

1) Mv := D4(v) ∩ tv,

2) Me := E3(e) ∩ te,

3) M0

F := {ξ
t
F

0900
, ξ

t
F

0810
, ξ

t
F

0180
},

4) M1

F := {ξ
t
F

1800
, ξ

t
F

1710
, ξ

t
F

1170
},

5) M2

F := {ξ
t
F

2700
, ξ

t
F

2610
, ξ

t
F

2160
},

6) MT := D3(vT
) ∩ tv

T
.

Proof: We apply Theorem 17.10 to show that M is an MDS for S2(△W F
).

Theorem 17.8 shows that the dimension of S2(△WF
) is just the cardinal-

ity of M, which is easily seen to be equal to the given formula. To show
that M is a minimal determining set for S2(△W F

), we need to show that if
s ∈ S2(△W F

), then we can set the coefficients {cξ}ξ∈M to arbitrary values,
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and all remaining coefficients will be determined in such a way that all
smoothness conditions are satisfied.

First, we fix all coefficients corresponding to the sets Mv. Then by the
C4 smoothness at vertices and the results of Section 15.8, all coefficients
corresponding to domain points in D4(v)\Mv will be uniquely determined
by the formulae in Theorem 15.16. By Theorem 15.17 this is a stable local
process. In particular, for all η ∈ D4(v) \ Mv, cη can be computed from
coefficients in the set Γη := Mv ⊆ D4(v), and

|cη| ≤ Kmax
ξ∈Γη

|cξ|, (18.22)

where K is a constant depending only on the smallest solid and face angles
in △

WF
. Since the balls D4(v) do not overlap, none of the smoothness

conditions involving these coefficients can be violated.
Next we fix the coefficients corresponding to the sets Me. Then by the

C3 smoothness around edges, all other coefficients corresponding to domain
points in the sets E3(e) will be uniquely determined, see Theorem 15.18.
By Theorem 15.23, this is a stable local process, and (18.22) holds for these
coefficients with Γη := Me∪Mu∪Mv. None of the smoothness conditions
has been violated since the sets E3(e) do not overlap.

We now fix the coefficients of s for all remaining domain points in the
set M, and show that s is consistently determined by smoothness condi-
tions. Let T be a tetrahedron T in △. First we examine the shell R9(vT

).
Let F := 〈v1, v2, v3〉 be a typical face of this shell, and let v

F
be the as-

sociated barycenter. We may regard the coefficients of s corresponding to
domain points on this face as those of a bivariate spline g ∈ S2

9
(FCT ) de-

fined on the Clough–Tocher split FCT of F , see Figure 18.6 (left). The fact
that s ∈ C7(e) for the edge e connecting the barycenter v

T
of T with v

F

implies that g is also in C7(v
F
). We have already consistently determined

the coefficients of g corresponding to the domain points marked with black
dots and triangles in Figure 18.6 (left), and have set the three coefficients
corresponding to the domain points marked with ⊕. We now claim that
the coefficients corresponding to the remaining domain points on F are
consistently determined by smoothness conditions.

To prove this claim, it suffices to focus on the domain points in the disk
D7(vF

). Due to the C7 smoothness at v
F
, we can regard these coefficients

as those of a (subdivided) polynomial p of degree seven on a triangle F̃ :=
〈u1, u2, u3〉 as in Figure 18.7. The coefficients of p corresponding to domain
points marked with black dots, triangles, and ⊕ are all determined. We
claim that this determines all coefficients of p. Suppose that we assign the
value zero to all coefficients of p corresponding to these points. This implies
that p and its first cross derivatives at all points along the three edges of
the must be zero. For each i = 1, 2, 3, let ℓi be the linear polynomial that
vanishes on ei. Then by Bezout’s theorem, we can write p = ℓ2

1
ℓ2
2
ℓ2
3
q, where
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Fig. 18.6. Domain points of S2(△WF
) on R9(v

T
) and R8(v

T
), respectively.
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Fig. 18.7. Domain points of S2(△WF
) on R7(vT

).

q is a linear polynomial. Since the three coefficients of p corresponding to
the domain points marked with ⊕ are zero, we know that Dαp(v

F
) = 0

for |α| ≤ 1. This implies Dαq(v
F
) = 0 for |α| ≤ 1, and we conclude

that q ≡ 0 and thus p ≡ 0. Now exactly 36 of the marked points in
Figure 18.7 can be set independently, and since the dimension of the space
of bivariate polynomials of degree seven is 36 = #Γ, it follows that these
points consistently determine all coefficients of p.

Our next step is to show that all coefficients of s corresponding to
domain points on the shell R8(vT

) are consistently determined. Let F8 :=
R8(vT

) ∩ T . We can regard the domain points on F8 as those of a bi-
variate spline g ∈ S2

8
(FCT ) defined on the Clough–Tocher split of F8, see

Figure 18.6 (right). The fact that s ∈ C7(e) for the edge e connecting the
barycenter v

T
of T with v

F
implies that g is also in C7 at the split point

v
F
. The coefficients of g corresponding to the domain points marked with

black dots and triangles are already determined. If the tetrahedron tF
used in defining M1

F is a subtetrahedron of T , then we have already set
the coefficients of s corresponding to the three points marked with ⊕ in



18.8. A C2 Macro-element on the Worsey–Farin Split 533

Figure 18.6 (right). If not, using C1 smoothness across F , we can compute
these coefficients from the analogous ones in the tetrahedron on the other
side of F . Now the same argument as in the previous paragraph shows that
the coefficients of g and thus of s are consistently determined on F8.

Before proceeding, we have to make sure that the coefficients computed
so far satisfy all of the smoothness conditions across the faces of △. Suppose
T := 〈v

T
, v1, v2, v3〉 and T̃ := 〈v

T̃
, v1, v2, v3〉 are two tetrahedra of △ sharing

a face F := 〈v1, v2, v3〉. Note that the split point v
F

lies on the line from
v

T
to v

T̃
. Let g := s|T and g̃ := s|

T̃
. We now check that g and g̃ satisfy

all C1 smoothness conditions across F . By the geometry, there exist r, s
such that for each subtetrahedron t̃ := 〈v

T̃
, v

F
, v1, v2〉 of T , the barycentric

coordinates of v
T

with respect to t̃ are (r, s, 0, 0) Thus, each of the C1

smoothness conditions involving coefficients associated with domain points
on F reduces to a relationship of the form

b = sc+ rb̃.

Here b is a coefficient of g corresponding to a domain point ξb in T which
lies at a distance 1 from F , i.e., in F8. Similarly, b̃ is a coefficient of g̃
corresponding to a domain point ξb̃ in T̃ which lies at a distance 1 from

F , i.e., in F̃8 := R8(v
T̃
) ∩ T̃ . The coefficient c corresponds to the domain

point on F which lies on the straight line between ξb and ξb̃. Let Γ8 be
the set of n := 69 domain points on F8 marked with either a black dot,
a triangle, or ⊕ in Figure 18.6 (right). Let {bi}

n
i=1

be the corresponding
coefficients of g, and let {b̃i}

n
i=1

the analogous coefficients of g̃. Let {ci}
n
i=1

be the coefficients of g which are involved in the C1 smoothness conditions
with the bi and b̃i. Then by the smoothness of s at vertices and around
edges, it is clear that all C1 continuity conditions with tips at points in Γ8

are satisfied, i.e.,
bi = sci + rb̃i, i = 1, . . . , n. (18.23)

Now let ξ be any other domain point on F8, and let b, c, b̃ be the coefficients
entering into the C1 smoothness condition with tip at ξ. Then as we saw
above, b can be computed as a linear combination of the b1, . . . , bn, i.e.,
there exist {αi}

n
i=1

such that

b =

n∑

i=1

αibi. (18.24)

Since F8 and F̃8 are just scaled versions of F9 := F , it follows that (18.24)
also holds with b’s replaced by either c’s or b̃’s. But then using (18.23), we
have

[1, −s, −r]



b

c

b̃


 = [1, −s, −r]



b1 · · · bn
c1 · · · cn

b̃1 · · · b̃n





α1

...
αn


 = 0,
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which shows that the C1 smoothness condition with tip at ξ is also satisfied.
For each tetrahedron T , we now compute coefficients corresponding to

domain points on the shells R7(vT
). Let F7 := R7(vT

) ∩ T . Figure 18.7
shows the domain points on F7. Coefficients corresponding to the black dots
and triangles are already known. Coefficients corresponding to the domain
points marked with ⊕ in the figure have either been set, or can be computed
from the corresponding coefficients in a neighboring tetrahedron T̃ by C2

smoothness conditions across the common face F . As argued above, it
follows that the coefficients of s corresponding to all remaining domain
points on F are consistently determined. We must now check that these
computed coefficients satisfy all of the C2 smoothness conditions across
F . Each domain point in F7 is the tip of a C2 smoothness condition.
Assuming a, c, d, e are the coefficients corresponding to domain points on
F7, F9, F̃8, F̃7, the typical condition has the form

a = s2c+ 2rsd+ r2e,

where r, s are as before. By construction, these smoothness conditions
are satisfied for all points ξ marked with black dots, triangles, or ⊕ in
Figure 18.7. There are n := 45 such points. Writing {ai, ci, di, ei}

n
i=1

for
the associated coefficients, we have

ai = s2ci + 2rsdi + r2ei, i = 1, . . . , n.

Now if ξ is any other domain point on F7, then arguing as before, we see
that there exist αi such that

[1, −s2, −2rs, −r2]




a

c

d

e


 = [1, −s2, −2rs, −r2]




a1 · · · an

c1 · · · cn
d1 · · · dn

e1 · · · en







α1

...
αn



 = 0,

which shows that the C2 smoothness condition with tip at ξ is also satisfied.
To complete the proof, for each T in △, we now examine the ball

D7(vT
). By the C7 smoothness at v

T
, on this ball s can be considered to

be a (subdivided) polynomial g of degree seven on a tetrahedron T̃ similar

to T . We already know all B-coefficients of g on the faces of T̃ . This

leaves the 20 coefficients {ξT̃
ijkl : i, j, k, l ≥ 1}. Setting the coefficients of

s corresponding to the domain points in MT is equivalent to setting the
derivatives of s up to order 3 at v

T
. But then by Theorem 15.26, g is

uniquely and stably determined.

The constant in the stability of the MDS M in Theorem 18.30 depends
on the smallest solid and face angles in △

WF
. As mentioned on page 518,

we believe that these angles are bounded below in terms of the smallest
solid and face angles in △, but this remains an open conjecture. We now
illustrate the theorem for a single tetrahedron.
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Example 18.31. Let T
WF

be the Worsey–Farin split of a single tetrahe-
dron T , and let S2(TWF

) be the associated macro-element space as defined
in (18.21). Then dim S2(TWF

) = 316.

Since S2(△W F
) has a stable local MDS, Theorem 17.15 immediately

implies that S2(△WF
) has full approximation power.

Theorem 18.32. For all f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 9,
there exists a spline sf ∈ S2(△WF

) such that

‖Dα(f − sf )‖
q,Ω

≤ K |△|m+1−|α| |f |m+1,q,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest solid
and face angles in △

WF
. If Ω is nonconvex, then K also depends on the

Lipschitz constant of the boundary of Ω.

We now construct a stable local nodal determining set for S2(△W F
).

For each face F of a tetrahedron T in △, let DF be the derivative associated
with a unit vector perpendicular to F , and let DF,i be the directional
derivatives associated with the vectors 〈vi, vF

〉 for i = 1, 2, 3, where as
before v

F
is the split point in the face F .

Theorem 18.33. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

F∈F

(
N 0

F ∪ N 1

F ∪N 2

F

)
∪

⋃

T∈△

NT

is a stable nodal minimal determining set for S2(△W F
), where

1) Nv := {εvD
α}|α|≤4,

2) Ne :=
⋃

3

i=1

⋃i

j=1
{εηi

e,j
Dβ

e }|β|=i,

3) N 0

F := {εv
F
Di

F,1D
j
F,2}0≤i+j≤1,

4) N 1

F := {εv
F
DFD

i
F,1D

j
F,2}0≤i+j≤1,

5) N 2

F := {εv
F
D2

FD
i
F,1D

j
F,2}0≤i+j≤1,

6) NT := {εv
T
Dα}|α|≤3.

Proof: It is easy to see that the cardinality of the set N matches the
dimension of S2(△W F

) as given in Theorem 18.30. Thus, to show that N is
a stable NMDS, it suffices to show that all coefficients of s ∈ S2(△WF

) can
be stably computed from {λs}λ∈N . For each v ∈ V , we can use the formulae
in Theorem 15.16 to compute the coefficients in D4(v) from the values of
the derivatives Dαs(v) corresponding to Nv. This is a stable process, and
indeed if Tξ is a tetrahedron containing ξ, then for all ξ ∈ D6(v),

|cξ | ≤ K

4∑

ν=0

|Tξ|
ν |s|ν,Tξ

, (18.25)
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where K is a constant depending only on the smallest solid and face angles
in △A.

For each edge e ∈ E , we can use the results of Section 15.9 to compute
the coefficients corresponding to E3(e) from the data {λs}λ∈Ne

. Now for
each face F ∈ F , we can use the data corresponding to N 0

F to compute the
coefficients corresponding to the domain points M0

F . Then arguing as in the
proof of Theorem 18.30, we can compute all coefficients corresponding to
domain points on F . Next we use the data corresponding to N 1

F to compute
the coefficients corresponding to the domain points M1

F . Then arguing as in
the proof of Theorem 18.30, we can compute all coefficients corresponding
to domain points on the shells R8(vT

). Next we use the data correspond-
ing to N 2

F to compute the coefficients corresponding to the domain points
M2

F . Then arguing as in the proof of Theorem 18.30, we can compute all
coefficients corresponding to domain points on the shells R7(vT

). Finally,
for each tetrahedron T in △, we can use the values {λs}λ∈NT

to compute
the coefficients cξ of s for ξ ∈ MT , see the formulae in Theorem 15.16.

Theorem 18.33 shows that for any function f ∈ C4(Ω), there is a
unique spline s ∈ S2(△WF

) solving the Hermite interpolation problem

λs = λf, all λ ∈ N ,

or equivalently:

1) Dαs(v) = Dαf(v), all 0 ≤ |α| ≤ 4 and all v ∈ V ,

2) Dβ
e s(η

i
e,j) = Dβ

e f(ηi
e,j), all |β| = i with 1 ≤ j ≤ i and 1 ≤ i ≤ 3, and

for all edges e of △,

3) Di
F,1D

j
F,2s(vF

) = Di
F,1D

j
F,2f(v

F
), 0 ≤ i + j ≤ 1, for each face F :=

〈v1, v2, v3〉 of △,

4) DFD
i
F,1D

j
F,2s(vF

) = DFD
i
F,1D

j
F,2f(v

F
), 0 ≤ i + j ≤ 1, for each face

F := 〈v1, v2, v3〉 of △,

5) D2

FD
i
F,1D

j
F,2s(vF

) = D2

FD
i
F,1D

j
F,2f(v

F
), 0 ≤ i + j ≤ 1, for each face

F := 〈v1, v2, v3〉 of △,

6) Dαs(v
T
) = Dαf(v

T
), all 0 ≤ |α| ≤ 3 and all tetrahedra T ∈ △.

The nodal functionals described in Theorem 18.33 involve some deriva-
tives of order higher than two, even though s is only C2 globally. However,
s is in C4(v) at vertices and in C3(e) around edges, and so the third and
fourth derivatives appearing in Ne and Nv are well defined.

The mapping which takes functions f ∈ C4(Ω) to this Hermite interpo-
lating spline defines a linear projector I2

W F
mapping C4(Ω) onto S2(△W F

).
In particular, I2

WF
p = p for all trivariate polynomials of degree nine. Since

the nodal basis in Theorem 18.33 is stable and local, Theorem 17.22 implies
the following error bounds.
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Theorem 18.34. For every f ∈ Cm+1(Ω) with 3 ≤ m ≤ 9,

‖Dα(f − I2

W F
f)‖Ω ≤ K |△|m+1−|α| |f |m+1,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest solid
and face angles in △

WF
. If Ω is nonconvex, then K also depends on the

Lipschitz constant of the boundary of Ω.

As for the other macro-element spaces in this chapter, S2(△W F
) has

two natural stable local bases. Starting with the stable local minimal deter-
mining set M, it follows from Theorem 17.17 that the M-basis {ψξ}ξ∈M

defined in Theorem 17.16 is a stable local basis. In particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the tetrahedra containing e,

3) if ξ ∈ MF for some face F of △, then the support of ψξ is contained
in the union of the tetrahedra containing F ,

4) if ξ ∈ MT for some tetrahedron T of △, then the support of ψξ is
contained in T .

Since the set N given in Theorem 18.33 is a stable local NMDS, the associ-
ated N -basis {ϕλ}λ∈N is also a stable local basis for S2(△WF

), where each
basis function is star-supported.

18.9. Another C
2 Worsey–Farin Macro-element

In this section we show how to remove some unnecessary degrees of freedom
from the macro-element constructed in the previous section by working with
an appropriate subspace. Suppose △

WF
is the Worsey–Farin refinement of

an arbitrary tetrahedral partition △. Let V , F , E , and Ec be as in the
previous section. We write F0 for the set of all faces of △

WF
of the form

〈v
T
, v

F
, v〉, where v

T
is a split point in the interior of a tetrahedron T of

△, v
F

is a split point on a face of T , and v ∈ V .
Suppose t := 〈v

T
, v

F
, v1, v2〉 and t̃ := 〈v

T
, v

F
, v2, v3〉 are two tetrahedra

in △
WF

which share the face F := 〈v
T
, v

F
, v2〉 ∈ F0. Let cijkl and c̃ijkl be

the coefficients of the B-representations of s|t and s|t̃, respectively. Given
s ∈ S2(△W F

), we define the linear functionals ν
F

and µ
F

by

ν
F
s := c̃0,1,3,5 −

∑

i+j+k=5

c0,i+1,j,k+3B
f,5
ijk(v3),

µ
F
s := c̃1,0,3,5 −

∑

i+j+k=5

c1,i,j,k+3B
f,5
ijk(v3),

(18.26)

where Bf,5
ijk are the Bernstein polynomials of degree five with respect to the
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triangle f := 〈v
F
, v1, v2〉. Note that ν

F
s involves coefficients of s on the

shell R9(vT
), while µ

F
s involves coefficients of s on the shell R8(vT

). In
this section we discuss the subspace

S̃2(△W F
) := {s ∈ S2(△WF

) : ν
F
s = µ

F
s = 0, all F ∈ F0} (18.27)

of the C2 Worsey–Farin macro-element space S2(△WF
). To define an MDS

for S̃2(△WF
) we need some more notation. For each vertex v of △, let tv

be one of the tetrahedra in △
WF

attached to v. For each edge e := 〈u, v〉

of △, let te be one of the tetrahedra in △
WF

containing e, and let E3(e)
denote the set of domain points in the tube of radius 3 around e which do
not lie in the balls D4(u) or D4(v). Finally, for each face F := 〈v1, v2, v3〉

of △, let tF,i := 〈v
T
, v

F
, vi, vi+1〉, i = 1, 2, 3, where v

T
is the split point of

some tetrahedron in △ containing F (if F is a boundary face, there is just
one such tetrahedron – otherwise, there are two). Let n

V
, n

E
, n

F
, n

T
be the

number of vertices, edges, faces, and tetrahedra in △.

Theorem 18.35. The space S̃2(△WF
) has dimension 35n

V
+20n

E
+3n

F
+

20n
T
. Moreover, the set

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

F∈F

MF ∪
⋃

T∈△

MT

is a stable minimal determining set, where

1) Mv := D4(v) ∩ tv,

2) Me := E3(e) ∩ te,

3) MF := {ξ
tF,1

2430
, ξ

tF,2

2430
, ξ

tF,3

2430
},

4) MT := D3(vT
) ∩ tv

T
.

Proof: The proof is very similar to the proof of Theorem 18.30. The
key difference is that now we use Lemmas 18.37–18.39 below to compute
coefficients on faces of the shells R9(vT

), R8(vT
), and R7(vT

), respectively.
Figures 18.8 and 18.9 show domain points on the faces of these shells.

To give an example of Theorem 18.35, we consider a single tetrahedron.

Example 18.36. Let T
WF

be the Worsey–Farin split of a single tetrahe-

dron T , and let S̃2(TWF
) be the associated macro-element space as defined

in (18.27). Then dim S2(TWF
) = 292.

Given F := 〈v1, v2, v3〉 in R
2, let FCT be the split of F into three tri-

angles based on the split point v
F
. Let Fl := 〈v

F
, vl, vl+1〉, ei := 〈vi, vl+1〉,

and ẽl := 〈vl, vF
〉, l = 1, 2, 3, where v4 := v1. For each 1 ≤ l ≤ 3, sup-

pose {clijk} and {c̃l
ijk} are the coefficients of s ∈ S2

d(FCT ) relative to Fl−1
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Fig. 18.8. Domain points of S2(TWF
) on R9(v

T
) and R8(v

T
).

........................................................................................................................................................................................................................

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.

........................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................



Fig. 18.9. Domain points of S2(TWF
) on R7(v

T
).

and Fl, respectively, where we identify v4 = v1. Then we define the linear
functional τn

l,m,d by

τn
l,m,ds := c̃l

m−n,d−m,n −
∑

i+j+k=n

cli+m−n,j,k+d−mB
l−1,n
ijk (vl+1),

where Bl−1,n
ijk are the Bernstein polynomials of degree n relative to the trian-

gle Fl−1. Note that τn
l,m,d describes an individual Cn smoothness condition

involving the coefficients on ring Rm(vl).

Lemma 18.37. Let

S̃2

9
(FCT ) := {s ∈ S2

9
(FCT ) ∩ C7(v

F
) : s ∈ C4(v

l
)

and τ5

l,6,9s = 0, l = 1, 2, 3}.

Then dim S̃2

9
(FCT ) = 63, and the set

M9 :=
3⋃

i=1

(
Mvi

∪Mei

)

is a stable minimal determining set, where
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1) Mv := D4(v) ∩ tv, where tv is some triangle of FCT attached to v,

2) Me is the set of domain points whose distance to e := 〈u, v〉 is at most
three, and which do not lie in the disks D4(u) or D4(v).

Proof: Figure 18.8 (left) shows the domain points for this space. Points
in the sets Me are marked with small triangles. Theorem 9.7 implies that
dim S2

9
(FCT ) ∩ C7(v

F
) = 75. To get the subspace S̃2

9
(FCT ), for each

l = 1, 2, 3 we have to enforce three extra smoothness conditions at the vertex
vl to get C4(vl) as well as the special smoothness condition corresponding

to τ5

l,6,9. It follows that dim S̃2

9
(FCT ) ≥ 63. Since the cardinality of M9

is 63, to show that M9 is a minimal determining set for S̃2

9
(FCT ) and

dim S̃2

9
(FCT ) = 63, it suffices to show that if s is a spline in S̃2

9
(FCT )

whose coefficients satisfy cξ = 0 for all ξ ∈ M9, then s ≡ 0. By the
definition of M9, it is clear that all coefficients of s marked with circles
or triangles in Figure 18.8 (left) are zero. We now examine the coefficients
corresponding to the remaining domain points.

First consider the ring R5(v1). All coefficients corresponding to domain
points on this ring are already zero except for the three corresponding to
domain points within a distance 1 of the edge ẽ1. To compute these three
coefficients, we use Lemma 2.30. The C7 smoothness at v

F
implies that s

satisfies individual C1, C2, and C3 continuity conditions on ring R5(v1),
i.e., τn

1,5,9s = 0 for n = 1, 2, 3. This leads to a linear system of equations
with matrix

M3 :=




a2 a1 −1

2a2a1 a2

1
0

3a2a
2

1
a3

1
0


 , (18.28)

where (a1, a2, a3) are the barycentric coordinates of v3 relative to the tri-
angle F1. This matrix is nonsingular since its determinant is −a2a

4

1
and

a1, a2 are both nonzero. Coefficients on the rings R5(v2) and R5(v3) can
be computed in a similar way.

Now consider the ring R6(v1). So far, all coefficients corresponding
to domain points on the ring R6(v1) are determined to be zero except for
the five corresponding to domain points within a distance 2 of ẽ1. Now
the C7 smoothness at v

F
implies that s satisfies individual C1 through

C4 smoothness conditions on ring R6(v1). Coupling this with the special
smoothness condition τ5

1,6,9s = 0, we are led to the system of equations
τn
1,6,9s = 0 for n = 1, . . . , 5. The matrix of this system is

M5 :=




0 a2 a1 −1 0

a2

2
2a2a1 a2

1
0 −1

3a2

2
a1 3a2a

2

1
a3

1
0 0

6a2

2
a2

1
4a2a

3

1
a4

1
0 0

10a2

2
a3

1
5a2a

4

1
a5

1
0 0



.
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This is a nonsingular matrix since its determinant is equal to −a3

2
a9

1
. Co-

efficients on the rings R6(v2) and R6(v3) can be computed in a similar
way. Now all remaining coefficients of s can be computed from the smooth-
ness conditions. We conclude that all coefficients of s must be zero, which
completes the proof of the lemma.

Lemma 18.38. Let

S̃2

8
(FCT ) := {s ∈ S2

8
(FCT ) ∩ C7(v

F
) : s ∈ C3(v

l
)

and τ5

l,5,8s = 0, l = 1, 2, 3}.
(18.29)

Then dim S̃2

8
(FCT ) = 48, and the set

M8 :=
3⋃

i=1

(
Mvi

∪Mei

)

is a stable minimal determining set, where

1) Mv := D3(v) ∩ tv, where tv is some triangle of FCT attached to v,

2) Me is the set of domain points whose distance to e := 〈u, v〉 is at most
two, and which do not lie in the disks D3(u) or D3(v).

Proof: The proof is very similar to proof of Lemma 18.37, so we can be
brief. By Theorem 9.7, dim S2

8
(FCT ) ∩ C7(v

F
) = 54. To get the subspace

S̃2

8
(FCT ), for each l = 1, 2, 3, we have to enforce one extra smoothness

condition at the vertex vl to get C3(vl) along with the special smoothness

condition corresponding to τ5

l,5,8. It follows that dim S̃2

8
(FCT ) ≥ 48. Since

the cardinality of M8 is 48, to show that it is a minimal determining set for
S̃2

8
(FCT ) and dim S̃2

8
(FCT ) = 48, it suffices to show that if s ∈ S̃2

8
(FCT ) and

cξ = 0 for all ξ ∈ M8, then s ≡ 0. We already know that all coefficients
of s corresponding to domain points marked with circles or triangles in
Figure 18.8 (right) are zero. The remaining coefficients can be shown to be
zero in the same way as in Lemma 18.37.

Lemma 18.39. The set

M7 := MF ∩

3⋃

i=1

(
Mvi

∪Mei

)

is a stable minimal determining set for S2

7
(FCT ) ∩C7(v

F
), where

1) Mv := D2(v) ∩ tv, where tv is some triangle of FCT attached to v,

2) Me is the set of domain points whose distance to e := 〈u, v〉 is at most
one, and which do not lie in the disks D2(u) or D2(v),
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3) MF := {ξ
F1

430
, ξ

F2

430
, ξ

F3

430
}.

Proof: This space reduces to the space of bivariate polynomials of degree
seven. It has dimension 36 which is also the cardinality of M, and thus it
suffices to show that M is a determining set. Figure 18.9 shows the domain
points of S2

7
(T

WF
). Points in MF are marked with ⊕. Suppose s ∈ P2

7
,

and cξ = 0 for all ξ ∈ M. Then the B-coefficients of s corresponding to
all domain points marked with either ⊕ or black dots in Figure 18.9 are
zero. The coefficients corresponding to the three remaining domain points
on R3(v1) can be computed from a nonsingular 3 × 3 linear system with
the matrix M3 given in (18.28), and we conclude they must also be zero.
The same holds for the rings R3(v2) and R3(v3). Now consider R4(v1).
There are four unknown coefficients corresponding to the unmarked points
on this ring, and they can be computed from a system of four equations
with matrix

M4 :=




0 a2 −1 0

a2

2
2a2a1 0 −1

3a2

2
a1 3a2a

2

1
0 0

6a2

2
a2

1
4a2a

3

1
0 0


 .

The determinant of this matrix is −6a4

1
a3

2
6= 0. We can repeat this for the

other two vertices v2, v3. Then using smoothness conditions we see that the
remaining coefficients of s are zero.

Since S̃2(△W F
) has a stable local MDS, Theorem 17.15 immediately

implies that S̃2(△WF
) has full approximation power.

Theorem 18.40. For all f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 9,

there exists a spline sf ∈ S̃2(△WF
) such that

‖Dα(f − sf )‖
q,Ω

≤ K |△|m+1−|α| |f |m+1,q,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest solid
and face angles in △

WF
. If Ω is nonconvex, then K also depends on the

Lipschitz constant of the boundary of Ω.

We now construct a stable local nodal determining set for S̃2(△W F
).

For each face F of T , let DF be the directional derivative associated with a
vector perpendicular to F . For each i = 1, 2, 3, let DF,i be the directional
derivatives appearing in Theorem 18.33.

Theorem 18.41. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

F∈F

NF ∪
⋃

T∈△

NT
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is a stable nodal minimal determining set for S̃2(△W F
), where

1) Nv := {εvD
α}|α|≤4,

2) Ne :=
⋃

3

i=1

⋃i

j=1
{εηi

e,j
Dβ

e }|β|=i,

3) NF := {εvi
D2

FD
4

F,i}
3

i=1
,

4) NT := {εv
T
Dα}|α|≤3.

Proof: It is easy to see that the cardinality of the set N matches the
dimension of S2(△W F

) as given in Theorem 18.35. Thus, to show that N

is a stable NMDS, it suffices to show that all coefficients of s ∈ S2(△W F
)

can be stably computed from {λs}λ∈N . The proof is essentially the same
as the proof of Theorem 18.33.

Theorem 18.41 shows that for any function f ∈ C6(Ω), there is a

unique spline s ∈ S̃2(△WF
) solving the Hermite interpolation problem

λs = λf, for all λ ∈ N ,

or equivalently:

1) Dαs(v) = Dαf(v), all |α| ≤ 4 and all v ∈ V ,

2) Dβ
e s(η

i
e,j) = Dβ

e f(ηi
e,j), all |β| = i with 1 ≤ j ≤ i and 1 ≤ i ≤ 3, and

for all edges e of △,

3) D2

FD
4

F,is(vi) = D2

FD
4

F,if(vi), i = 1, 2, 3, for each face F := 〈v1, v2, v3〉

of △,

4) Dαs(v
T
) = Dαf(v

T
), all |α| ≤ 3 and all tetrahedra T ∈ △.

The nodal functionals described in Theorem 18.41 involve some deriva-
tives of order higher than two, even though s is only C2 globally. However,
s is in C4(v) at vertices and in C3(e) around edges, and so the third and
fourth derivatives appearing in Ne and Nv are well defined. But it is not
in C6(v) at a vertex v, and so if F is an interior face, then the derivatives
in NF are applied to just one of the polynomial pieces of s which share F .

The mapping which takes functions f ∈ C6(Ω) to this Hermite interpo-

lating spline defines a linear projector Ĩ2

W F
mapping C6(Ω) onto S̃2(△W F

).

In particular, Ĩ2

WF
p = p for all trivariate polynomials of degree nine. The-

orem 17.22 now gives the following error bound for this interpolation oper-
ator.

Theorem 18.42. For every f ∈ Cm+1(Ω) with 5 ≤ m ≤ 9,

‖Dα(f − Ĩ2

W F
f)‖Ω ≤ K |△|m+1−|α| |f |m+1,Ω,

for all |α| ≤ m. If Ω is convex, K depends on d and the smallest solid
and face angles in △

WF
. If Ω is nonconvex, then K also depends on the

Lipschitz constant of the boundary of Ω.
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We can construct two natural stable local bases for S̃2(△W F
) in the

same way as was done above for S2(△W F
).

18.10. A C
2 Macro-element on the Alfeld-16 Split

Let △ be an arbitrary tetrahedral partition of a polyhedral set Ω ∈ R
3, and

let V ,F and E be the sets of vertices, faces, and edges of △, respectively.
Suppose △A16 is the Alfeld-16 refinement of △, see Definition 16.28. As
usual we write v

T
for the barycenters of the tetrahedra of △. Let Vc be

the set of all subcenters vi
T

introduced to form the refined partition △A16.
We write F1 for the set of triangular faces of the form 〈v

T
, u, v〉, where v

T

is the center of a tetrahedron T and u, v are two vertices of T .

In this section we consider the following space of supersplines defined
on △A16:

S2(△A16) := {s ∈ S2

9
(△A16) : s ∈ C4(v), all v ∈ V ,

s ∈ C7(v
T
),

s ∈ C8(v), all v ∈ Vc,

s ∈ C3(F ), all F ∈ F1}.

(18.30)

We call this the C2 Alfeld-16 macro-element space.

For each vertex v of △A16, let tv be one of the tetrahedra in △A16

attached to v. For each edge e := 〈u, v〉 of △, let te be one of the four
tetrahedra in △A16 containing e, and let E2(e) denote the set of domain
points in the tube of radius 2 around e which do not lie in the disks D4(u) or
D4(v). Finally, for each face F := 〈v1, v2, v3〉 of △, let tF := 〈w, v1, v2, v3〉

with w ∈ Vc be the tetrahedron in △A16 containing F . Let n
V
, n

E
, n

F
, n

T

be the number of vertices, edges, faces, and tetrahedra in △.

Theorem 18.43. The space S2(△A16) has dimension 35n
V

+8n
E

+19n
F

+
16nT . Moreover, the set

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

F∈F

(
M0

F ∪M1

F ∪M2

F

)
∪

⋃

T∈△

MT

is a stable local minimal determining set, where

1) Mv := D4(v) ∩ tv,

2) Me := E2(e) ∩ te,

3) M0

F := {ξtF

0333
},

4) M1

F := {ξtF

1ijk : i, j, k ≥ 2},

5) M2

F := {ξtF

2ijk : i, j, k ≥ 1} \ {ξtF

2115
, ξtF

2151
, ξtF

2511
},
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6) MT :=
⋃

4

i=1

[
D1(v

i
T
) ∩ Tvi

T

]
.

Proof: We first consider the case where △ consists of a single tetrahedron
T . Let TA16 be the associated Alfeld-16 split. Then using the Java program
described in Remark 18.1, Alfeld and Schumaker [AlfS05c] have verified that
M is an MDS and that dim S2(TA16) = 280.

To establish the result for a general partition △, we appeal to Theo-
rem 17.10. Thus, we need to show that if s ∈ S2(△A16), then we can set
the coefficients {cξ}ξ∈M to arbitrary values, and all other coefficients will
be determined in such a way that all smoothness conditions are satisfied.
First, we set all of the coefficients corresponding to the sets Mv to arbi-
trary values. Then by the C4 smoothness at vertices, all other coefficients
corresponding to domain points in the balls D4(v) are stably determined.
In particular, for each η ∈ D4(v) \Mv,

|cη| ≤ Kmax
ξ∈Γη

|cξ|, (18.31)

where Γη := D4(v) and K is a constant depending only on the smallest solid
angle and smallest face angle in △A16. No smoothness conditions have been
violated since the balls D4(v) do not overlap.

Next for each edge e := 〈u, v〉 of △, we fix all of the coefficients cor-
responding to Me. By the C2 smoothness of s, all other coefficients cor-
responding to domain points in the set E2(e) are uniquely determined, see
Theorem 15.18. By Theorem 15.23, this is a stable process, and (18.31)
holds with with Γη := Me ∪ Mu ∪ Mv. No smoothness conditions have
been violated since the sets E2(e) do not overlap each other or any of the
balls D4(v).

Now let F be a face of a tetrahedron T ∈ △, and let t
F

∈ △A16 be
the tetrahedron associated with F in the definition of M0

F , M1

F , and M2

F .
Suppose we set the coefficients of s|TF

corresponding to M0

F ∪M1

F ∪M2

F .
If F is an interior face of △, we can use the C2 smoothness across F to
determine the coefficients of s corresponding to domain points that are
within a distance two of F and lie in the other tetrahedron in △A16 that
shares the face F .

For each tetrahedron t in △A16, we have now uniquely determined
all of the coefficients of s corresponding to domain points in the minimal
determining set for s|t. It follows that all coefficients of s are consistently
determined and so M is an MDS. The dimension statement follows from
Theorem 17.8.

The constant in the stability of the MDS in Theorem 18.43 depends
on the smallest solid and face angles in △A16. These angles are bounded
below in terms of the smallest solid and face angles in △, see Section 16.7.4.
We now illustrate Theorem 18.43 for a single tetrahedron.
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Example 18.44. Let TA16 be the Alfeld-16 split of a single tetrahedron
T , and let S2(TA16) be the associated macro-element space as defined in
(18.30). Then dim S2(TA16) = 280.

Discussion: The cardinalities of the sets Mv, Me, M
0

F , M1

F , M2

F , and
MT are 35, 8, 1, 6, 12, and 16, respectively. Since T has four vertices, six
edges, and four faces, we find that #M = 4×35+6×8+4×(1+6+12)+16 =
280.

Since S2(△A16) has a stable local MDS, Theorem 17.15 immediately
implies that it has full approximation power.

Theorem 18.45. For all f ∈ Wm+1

q (Ω) with 1 ≤ q ≤ ∞ and 0 ≤ m ≤ 9,
there exists a spline sf ∈ S2(△A16) such that

‖Dα(f − sf )‖
q,Ω

≤ K |△|m+1−|α| |f |m+1,q,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, K depends on d and the smallest
solid and face angles in △. If Ω is nonconvex, then K also depends on the
Lipschitz constant of the boundary of Ω.

We now give a nodal basis for S2(△A16). For each face F := 〈v1, v2, v3〉

of △, let

A1

F := {ξ
F,8
ijk : i, j, k ≥ 2},

A2

F := {ξ
F,7
ijk : i, j, k ≥ 1} \ {ξF,7

115
, ξ

F,7
151
, ξ

F,7
511

},

where ξF,d
ijk := (iv1 + jv2 + kv3)/d. We emphasize that all of these points

are on the face F , and are not inside any tetrahedron. Note that there are
six points in A1

F and twelve points in A2

F .

Theorem 18.46. The set

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

F∈F

(
N 0

F ∪ N 1

F ∪ N 2

F

)
∪

⋃

T∈△

NT

is a stable local nodal minimal determining set for S2(△A16), where

1) Nv := {εvD
α}|α|≤4,

2) Ne :=
⋃2

i=1

⋃i

j=1
{εηi

j
Dα

e }|α|=j,

3) N 0

F := {εηF
}, where ηF = ξ

F,9
333

is the barycenter of F ,

4) N 1

F := {εηDF
}η∈A1

F
,

5) N 2

F := {εηD
2

F}η∈A2

F
,

6) NT :=
⋃

4

i=1
{εvi

T
Dα}|α|≤1.

Proof: It is easy to see that the cardinality of the set N matches the
dimension of S2(△A16) as given in Theorem 18.43. We already know that
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the set M defined in that theorem is an MDS for S2(△A16). Thus, to show
that N is an MNDS, it suffices to show that if s ∈ S2(△A16), then setting
the values {λs}λ∈N determines all coefficients in the set {cξ}ξ∈M.

For each v ∈ V , using the the C4 smoothness at v and the results
of Section 15.8, we can stably compute the B-coefficients corresponding to
domain points in D4(v) from the values {λs}λ∈Nv

. For each edge e ∈ E ,
using the C2 smoothness around e and the results of Section 15.9, we can
stably compute the B-coefficients of s corresponding to all domain points
in the tube E2(e) from the data {λs}λ∈Ne

.
Now suppose F := 〈v1, v2, v3〉 is a face of △. Using Theorem 15.24, we

can compute all coefficients corresponding to domain points in G2(F )∩ tF .
If F is an interior face of △, then we can use the C2 smoothness conditions
across F to compute the coefficients corresponding to the domain points in
G2(F ) ∩ t̃F , where t̃F is the tetrahedron on the other side of F .

Finally, it is clear that for each tetrahedron T in △, setting {λs}λ∈NT

determines the B-coefficients {cξ}ξ∈MT
via the formulae in Theorem 15.16.

Theorem 18.46 shows that for any function f ∈ C4(Ω), there is a
unique spline s ∈ S2(△A16) solving the Hermite interpolation problem

λs = λf, all λ ∈ N ,

or equivalently:

1) Dαs(v) = Dαf(v), all |α| ≤ 4 and all v ∈ V ,

2) Dβ
e s(η

i
e,j) = Dβ

e f(ηi
e,j), all |β| = i with 1 ≤ j ≤ i and 1 ≤ i ≤ 2, and

for all edges e of △,

3) s(ξF,9
333

) = f(ξF,9
333

), for each face F of △,

4) D
F
s(ξ) = D

F
f(ξ), all ξ ∈ A1

F , for each face F of △,

5) D2

F s(ξ) = D2

F f(ξ), all ξ ∈ A2

F , for each face F of △,

6) Dαs(v) = Dαf(v), |α| ≤ 1, for all v ∈ Vc.

The mapping which takes functions f ∈ C4(Ω) to this Hermite interpo-
lating spline defines a linear projector I2

A16
mapping C4(Ω) onto S2(△A16).

In particular, I2

A16
p = p for all trivariate polynomials of degree nine. Since

the nodal determining set in Theorem 18.46 is stable and local, Theo-
rem 17.22 immediately implies the following error bound for this inter-
polation process.

Theorem 18.47. For every f ∈ Cm+1(Ω) with 3 ≤ m ≤ 9,

‖Dα(f − I2

A16
f)‖Ω ≤ K |△|m+1−|α| |f |m+1,Ω,

for all |α| ≤ m. If Ω is convex, K depends on d and the smallest solid and
face angles in △. If Ω is nonconvex, then K also depends on the Lipschitz
constant of the boundary of Ω.
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As for the other macro-element spaces in this chapter, S2(△A16) has
two natural stable local bases. Starting with the stable local minimal deter-
mining set M, it follows from Theorem 17.17 that the M-basis {ψξ}ξ∈M

defined in Theorem 17.16 is a stable local basis. In particular,

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the tetrahedra containing e,

3) if ξ ∈ MF for some face F of △, then the support of ψξ is contained
in the union of the tetrahedra containing F ,

4) if ξ ∈ MT for some tetrahedron T of △, then the support of ψξ is
contained in T .

Since the set N given in Theorem 18.46 is a stable local NMDS, the associ-
ated N -basis {ϕλ}λ∈N is also a stable local basis for S2(△A16), where each
basis function is star-supported.

18.11. A C
r Polynomial Macro-element

In this section we describe a family of Cr polynomial macro-elements that
includes the C1 and C2 elements discussed in Sections 18.2 and 18.6. Sup-
pose △ is a tetrahedral partition of a polyhedral set Ω in R

3, and let V , E ,
and F be the sets of vertices, edges, and faces of △, respectively. Let

Sr(△) := {s ∈ Sr
8r+1

(△) : s ∈ C4r(v), all v ∈ V ,

s ∈ C2r(e), all e ∈ E}.
(18.32)

For ease of notation, throughout this section we write d := 8r+ 1, ρ := 4r,
and µ := 2r. The space Sr(△) is an example of the general trivariate
superspline spaces described in Section 17.2.

Our first goal in this section is to describe a stable local minimal deter-
mining set for Sr(△). To this end, we introduce some notation for subsets
of the set of domain points Dd,△ associated with △:

1) For each vertex v of △, let Tv be some tetrahedron containing v, and
let Mv := Dρ(v) ∩ Tv. This set has cardinality

(
ρ+3

3

)
=

(
4r+3

3

)
=

(32r3 + 48r2 + 22r + 3)/3.

2) For each edge e := 〈u, v〉 of △, we write Eµ(e) for the set of all do-
main points which lie in the tube of radius µ around e, but which
do not lie in either of the balls Dρ(u) or Dρ(v). Since ρ ≥ 2µ, the
sets Eµ(e) are disjoint. For each edge e of △, let Te be some tetrahe-
dron containing e, and let Me := Eµ(e) ∩ Te. This set has cardinality
(r + 1)(2r + 1)(4r)/3 = (8r3 + 12r2 + 4r)/3.

3) For each face F := 〈v1, v2, v3〉 of △, let Gr(F ) be the set of domain
points which are at a distance at most r from F , but which do not lie
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in any of the sets Dρ(v) or Eµ(e). Suppose TF is a tetrahedron in △

which contains F , and let MF := Gr(F )∩ TF . The cardinality of this
set is (25r3 + 21r2 − 4r)/6.

4) For each tetrahedron T , let MT be the set of domain points in Dd,T

which do not lie in any of the previous sets. The cardinality of this set
is

(
4r
3

)
− 4

(
r
3

)
= 10r3 − 6r2.

Let n
V
, n

E
, n

F
, n

T
be the number of vertices, edges, faces, and tetrahedra

in △, respectively.

Theorem 18.48. The set

M :=
⋃

v∈V

Mv ∪
⋃

e∈E

Me ∪
⋃

F∈F

MF ∪
⋃

T∈△

MT

is a stable local minimal determining set for Sr(△), and

dim Sr(△) =
(32r3 + 48r2 + 22r + 3)

3
n

V
+

(8r3 + 12r2 + 4r)

3
n

E

+
(25r3 + 21r2 − 4r)

6
n

F
+ (10r3 − 6r2)n

T
.

(18.33)

Proof: We use Theorem 17.10 to show that M is a minimal determining
set for S. To apply it, we need to show that the coefficients {cξ}ξ∈M

of a spline s ∈ S0

d(△) can be set to arbitrary values, and that all other
coefficients of s are determined in such a way that s satisfies all smoothness
conditions that are required for s to belong to Sr(△).

First for each vertex v ∈ V , we set the coefficients of s corresponding
to domain points in the set Mv to arbitrary values. Then using the Cρ

smoothness at v and the results of Section 15.8, we can compute all re-
maining coefficients corresponding to domain points in the ball Dρ(v) from
smoothness conditions. This is a stable local process, and in particular for
each η ∈ Dρ(v) \Mv,

|cη| ≤ Kmax
ξ∈Γη

|cξ|, (18.34)

with Γη = Mv. None of the smoothness conditions has been violated so
far since the balls Dρ(v) do not overlap.

For each edge e := 〈u, v〉 of △, we now fix the coefficients of s corre-
sponding to domain points in Me. Then using the Cµ smoothness around
e, we can use the results of Section 15.9 to determine all of the coefficients
of s corresponding to the domain points in Eµ(e). By Theorem 15.23, the
computation of these coefficients is a stable local process, and (18.34) holds
with Γη := Me∪Mu∪Mv. The sets Eµ(e) are disjoint from each other and
from all balls Dρ(v), and thus we can be sure that none of the smoothness
conditions defining Sr(△) have been violated.
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For each face F of △, we now fix the coefficients {cξ}ξ∈MF
, where

MF := Gr(F ) ∩ TF . Since the sets Gr(F ) are disjoint from each other,
there are no smoothness conditions connecting coefficients associated with
domain points in two different such sets. If F is an interior face, then the
coefficients corresponding to Gr(F ) ∩ T̃F are uniquely determined from the

Cr smoothness across F , where T̃F is the other tetrahedron in △ sharing
the face F . This is a stable local process, and (18.34) holds with Γη equal
to the union of MF with all Mv and Me such that v and e are vertices
and edges of F .

We have now determined all coefficients of s except for those corre-
sponding to domain points in the sets MT . These sets are disjoint from
each other, and there are no smoothness conditions connecting coefficients
associated with domain points in two such sets. Thus, for each T , the coef-
ficients {cξ}ξ∈MT

can be set to arbitrary values. Since all coefficients of s
have been fixed or have been stably and locally computed using smoothness
conditions, we have shown that M is a stable local MDS.

To finish the proof, we appeal to Theorem 17.8 which says that the
dimension of Sr(△) is just the cardinality of M. It is easily seen to be
given by the formula (18.33).

Example 18.49. Let △ consist of a single tetrahedron.

Discussion: In this case n
V

= n
F

= 4, n
E

= 6, and n
T

= 1. Thus, (18.33)
reduces to dim Sr(△) = (256r3 + 288r2 + 104r + 12)/3. This is equal to
dim P8r+1 =

(
8r+4

3

)
.

Since Sr(△) has a stable local MDS M, we can apply Theorem 17.15
to conclude that Sr(△) provides optimal order approximation of smooth
functions.

Theorem 18.50. For any f ∈ Wm+1

q (Ω) with 0 ≤ m ≤ 8r + 1 and all
1 ≤ q ≤ ∞,

‖Dα(f −Qf)‖q,Ω ≤ K |△|m+1−|α| |f |m+1,q,Ω,

for all 0 ≤ |α| ≤ m. If Ω is convex, the constant K depends only on r and
the smallest solid and face angles in △. If Ω is not convex, K also depends
on the Lipschitz constant of the boundary of Ω.

For r = 1, 2, the space Sr(△) coincides with the classical trivariate
finite-element spaces treated in Sections 18.2 and 18.6. In the literature,
finite-element spaces have traditionally been parametrized in terms of nodal
functionals. We now construct a stable nodal minimal determining set for
Sr(△).
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Suppose T := 〈v1, v2, v3, v4〉 is a tetrahedron in △. Then correspond-
ing to the edge e := 〈v1, v2〉 we define DT,e,1 to be the directional deriva-
tive associated with a unit vector perpendicular to e and lying in the face
〈v1, v2, v3〉. Similarly, we define DT,e,2 to be the directional derivative asso-
ciated with a unit vector perpendicular to e and lying in the face 〈v1, v2, v4〉.
For each triangular face F of △, we write D

F
for the directional derivative

associated with a unit vector that is perpendicular to F . For each e of F ,
let DF,e be the directional derivative associated with a unit vector that lies
in F and is perpendicular to e.

We also need some notation for certain sets of points lying on faces
and edges of tetrahedra in △. Given any face F := 〈v1, v2, v3〉 and integer
m > 0, let

DF,m :=
{
ξ

F,m
ijk :=

iv1 + jv2 + kv3

m

}

i+j+k=m

be the set of domain points associated with bivariate polynomials of degree
m on F . For any ℓ ≥ 0, let

AF,ℓ := {ξ
F,8r+1−ℓ
ijk : i, j, k ≥ 2r + 1 − ℓ+ ⌊ℓ/2⌋}.

These sets depend on r, but for ease of notation we do not write this
dependence explicitly. For r = 3 and ℓ = 0, . . . , 4, we have marked the
points in the sets AF,ℓ with ⊙ in Figures 18.10–18.12. For any i > 0, we
define equally spaced points in the interior of e := 〈v1, v2〉 as follows:

ηi
e,j :=

(i− j + 1)v1 + jv2

i+ 1
, j = 1, . . . , i.

For each tetrahedron T of △, let v
T

be its barycenter, ET its set of
edges, and FT its set of faces. For each face F of △, let EF be its set of
edges. For each edge e of △, pick some tetrahedron Te containing e. For
any point t ∈ R

3, let εt be the point evaluation functional at t.

Theorem 18.51. Given r > 0, let n := ⌊r/3⌋. Then

N :=
⋃

v∈V

Nv ∪
⋃

e∈E

Ne ∪
⋃

F∈F

(
N 1

F ∪ N 2

F

)
∪

⋃

T∈△

(
N 1

T ∪ N 2

T ∪ N 3

T ∪N 4

T

)

is a stable nodal minimal determining set for Sr(△), where

1) Nv := {εvD
α}|α|≤4r,

2) Ne :=

2r⋃

ℓ=1

ℓ⋃

m=0

{εηℓ
e,k
Dm

Te,e,1D
ℓ−m
Te,e,2}

ℓ
k=1

,

3) N 1

F :=

r⋃

ℓ=0

{εξD
ℓ
F}ξ∈AF,ℓ

,
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4) N 2

F :=
⋃

e∈EF

r⋃

ℓ=2

⌊ℓ/2⌋⋃

m=1

{ǫ
η
2r+m

e,k

Dℓ
FD

2r−ℓ+m
F,e }2r+m

k=1
,

5) N 1

T :=
⋃

e∈ET

r+n⋃

ℓ=r+1

{ǫη2ℓ
e,k
Dℓ

T,e,1D
ℓ
T,e,2}

2ℓ
k=1

,

6) N 2

T :=
⋃

F∈FT

⋃

e∈EF

r+n⋃

ℓ=r+1

2r−2ℓ+⌊ℓ/2⌋⋃

m=1

{ǫ
η2ℓ+m

e,k

Dℓ
FD

ℓ+m
F,e }2ℓ+m

k=1
,

7) N 3

T :=
⋃

F∈FT

r+n⋃

ℓ=r+1

{εξD
ℓ
F }ξ∈AF,ℓ

,

8) N 4

T := {εv
T
Dα}|α|≤4r−4n−3.

Proof: First we show that N is a nodal determining set for Sr(△). We
show later that it is minimal and stable. Suppose s ∈ Sr(△) and that
we have assigned values for {λs}λ∈N . We show how to compute all B-
coefficients of s from this derivative data. For each v ∈ V , we can compute
all of the coefficients {cξ}ξ∈D4r(v) from {Dαs(v)}|α|≤4r, which corresponds
to Nv. Similarly, for each edge e of △, using the derivative information
associated with Ne, we can compute all coefficients cξ associated with points
ξ ∈ E2r(e).

Fix a tetrahedron T := 〈v1, v2, v3, v4〉 in △. We now show how to com-
pute the remaining coefficients of s associated with domain points in Dd,T .
We start with domain points on the outer faces of T and work our way in-
ward. Consider the face F := 〈v1, v2, v3〉. We already know the coefficients
of s|F corresponding to domain points in the disks D4r(vi) for i = 1, 2, 3.
We also know the coefficients of s|F corresponding to domain points within
a distance of 2r of any edge of F . This leaves only the coefficients associated
with domain points in the set {ξ

T,8r+1

ijk0
: i, j, k ≥ 2r + 1}. The coefficients

corresponding to these domain points can be computed from the values of
s at the points of AF,0, which is part of the data corresponding to N 1

F .
This leads to a linear system with matrix M0 := [BF,8r+1

η (ξ)]ξ,η∈AF,0
. This

matrix is independent of the size and shape of F since the entries depend
only on barycentric coordinates. It is nonsingular by Lemma 2.25. Fig-
ure 18.10 (left) shows the domain points of s on F for the case r = 3.
Points corresponding to coefficients that are determined from the sets Nv

(i.e., those in the disks D12(vi)) are marked with circles, while those cor-
responding to coefficients determined by the sets Ne (i.e. those within a
distance 6 of edges) are marked with triangles. Points corresponding to
coefficients determined by the set N 1

F are marked with ⊙.
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Fig. 18.10. Domain points on layers ℓ = 0 and ℓ = 1 for r = 3.
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Fig. 18.11. Domain points on layers ℓ = 2 and ℓ = 3 for r = 3.
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Fig. 18.12. Domain points on layer ℓ = 4 for r = 3.
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We now compute the coefficients associated with domain points on
the first layer F1 of domain points inward from an outer face F of T . We
have determined the coefficients of s corresponding to the balls of radius
4r around the vertices of T which correspond to disks of radius 4r − 1
around the vertices of F1. In addition, we know the coefficients of s cor-
responding to tubes of radius 2r around the edges of T which gives us the
points within a distance 2r − 1 of the edges of F1. It remains to com-
pute the coefficients corresponding to domain points on F1 with indices
i, j, k ≥ 2r. We use Theorem 15.24 to compute these coefficients from the
values {DF s(ξ)}ξ∈AF,1

, which are part of the data associated with N 1

F . This
involves solving a linear system with matrix M1 := [BF,8r

η (ξ)]ξ,η∈AF,1
. This

matrix is independent of the size and shape of F , and is nonsingular by
Lemma 2.25. Figure 18.10 (right) shows the domain points on this layer for
the case r = 3. Points corresponding to coefficients that are determined
from the sets Nv (i.e., those in the disks of radius 11 around the vertices of
F1) are marked with circles, while those corresponding to coefficients that
are determined from the sets Ne (i.e., those within a distance 5 of edges
of F1) are marked with triangles. Points corresponding to coefficients that
are determined from N 1

F are marked with ⊙.
We continue with layers that are a distance ℓ = 2, . . . , r from the faces

of T . The analysis of these layers is a little different from layers 0 and 1
since now we have to make use of the data associated with the functionals
in the sets N 2

F . Let Fℓ be a triangular face of layer ℓ. We have determined
the coefficients of s corresponding to the balls of radius 4r around the ver-
tices of T which correspond to disks of radius 4r − ℓ around the vertices
of Fℓ. In addition, we know the coefficients of s corresponding to tubes of
radius 2r around the edges of T which gives us the points within a distance
2r − ℓ of the edges of Fℓ. To compute the remaining coefficients on Fℓ,
we first use the data associated with the sets N 2

F to compute the remain-
ing unknown coefficients of s corresponding to domain points at a distance
2r−ℓ+m from the edges of Fℓ for m = 1, . . . , ⌊ℓ/2⌋. Then we use the values
{Dℓ

F s(ξ)}ξ∈AF,ℓ
(which come from N 1

F ) to solve for the coefficients of s cor-

responding to the domain points {ξT,8r+1

ijkℓ : i, j, k ≥ 2r+1−ℓ+⌊ℓ/2⌋}. This
involves solving a linear system with matrix Mℓ := [BF,8r−ℓ+1

η (ξ)]ξ,η∈AF,ℓ
.

This matrix is independent of the size and shape of F , and is nonsingular by
Lemma 2.25. Figure 18.11 shows the domain points on layers ℓ = 2, 3 for the
case r = 3. Points corresponding to coefficients that are determined from
the sets Nv and Ne (i.e., those that lie in the disks of radius 12− ℓ around
vertices of Fℓ or in tubes of radius 6 − ℓ around edges of Fℓ are marked
with circles and triangles, respectively. Points marked with ⊕ indicate
coefficients that are computed from the sets N 2

F . Points corresponding to
coefficients that are determined from N 1

F are marked with ⊙.
We now proceed to compute unknown coefficients on layers ℓ = r +

1, . . . , r + n. Let Fℓ be a triangular face on layer ℓ. We already know
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the coefficients corresponding to domain points in disks of radius 4r − ℓ

around the vertices of Fℓ. We also know the coefficient associated with all
domain points within a distance ℓ − 1 of the edges of F . We now use the
data associated with N 1

T to compute the remaining unknown coefficients
of s corresponding to domain points at a distance ℓ from the edges of Fℓ.
Similarly, we use the data associated with N 2

T to compute the coefficients
of s corresponding to domain points at a distance ℓ+ 1, . . . , 2r − ℓ+ ⌊ℓ/2⌋
from the edges of Fℓ. Finally, we use the values {Dℓ

F s(ξ)}ξ∈AF,ℓ
(which

come from N 3

T ) to solve for the coefficients of s corresponding to the do-

main points {ξ
T,8r+1

ijkℓ : i, j, k ≥ 2r + 1 − ℓ + ⌊ℓ/2⌋}. This involves solving

a linear system with matrix Mℓ := [BF,8r−ℓ+1

η (ξ)]ξ,η∈AF,ℓ
. This matrix is

independent of the size or shape of F , and is nonsingular by Lemma 2.25.
Figure 18.12 shows the domain points on layer ℓ = 4 for the case r = 3.
Points corresponding to coefficients that are determined from the sets Nv

or Ne (i.e., those that lie in the disks of radius 8 around the vertices of
F4 or within a distance 2 of the edges of F4) are marked with circles and
triangles, respectively. Points marked with ⊗ indicate coefficients that were
computed in previous steps, while those marked with black dots correspond
to coefficients that are determined from the data of N 1

T . N 2

T is empty for
this case. Points on F4 corresponding to coefficients that are determined
from N 3

T are marked with ⊙.
After completing the above steps for layers 0, . . . , r + n, it remains to

compute the coefficients of s corresponding to the domain points whose
distance to the boundary of T are greater than or equal to r + n+ 1, i.e.,
coefficients of the form cTijkl with i, j, k, l ≥ r+n+1. Theorem 15.26 shows

how to compute these coefficients from the data corresponding to N 4

T .
We have shown that N is a nodal determining set. We claim it is

stable in the sense of (17.16) with mξ = 4r. This follows from the fact that
all coefficients are computed directly from derivatives using the results of
Sections 15.8–15.10, or by solving linear systems of equations whose matri-
ces are nonsingular and whose determinants depend only on the smallest
angles in △. The highest derivative involved is of order 4r.

To show that N is minimal, we have to show that its cardinality is
equal to the dimension of Sr(△) as given in (18.33). It is clear that for
every v ∈ V ,

#Nv = #Mv =

(
4r + 3

3

)
=

32r3 + 48r2 + 22r + 3

3
,

and for every e ∈ E ,

#Ne = #Me =
(r + 1)(2r + 1)(4r)

3
=

8r3 + 12r2 + 4r

3
.

This gives the first two terms in (18.33). To get the term involving n
F
, we

note that there is a one-to-one correspondence between the functionals in
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the sets N 1

F ∪ N 2

F and the point in MF , and so the the two sets have the
same cardinality. To see this directly, note that the cardinality of AF,ℓ is(
2r+2ℓ−3⌊ℓ/2⌋

2

)
. Thus,

#
(
N 1

F ∪N 2

F

)
=

r∑

ℓ=0

(
2r + 2ℓ− 3⌊ℓ/2⌋

2

)
+ 3

r∑

ℓ=2

⌊ℓ/2⌋∑

m=1

(2r +m),

which reduces to (25r3 + 21r2 − 4r)/6 = #MF . Finally, we deal with the
term in (18.33) involving N . We have

#
[
N 1

T ∪ N 2

T ∪ N 3

T ∪ N 4

T

]

=
r+n∑

ℓ=r+1

[
12ℓ+

2r−2ℓ+⌊ℓ/2⌋∑

m=1

12(2ℓ+m) + 4

(
2r + 2ℓ− 3⌊ℓ/2⌋

2

)]
+

(
4r − 4n

3

)
,

which reduces to 10r3 − 6r2 = #MT .

Theorem 18.51 asserts that if we assign values to all of the derivatives
of s listed there, then s is uniquely determined. We emphasize that some
of this data applies to the polynomial pieces of s rather than s itself. For
example (cf. N 3

T ), for every interior face F of T , every r + 1 ≤ ℓ ≤ r + n,
and every point t ∈ AF,ℓ, we have to assign values to both Dℓ

F s|T (t) and

Dℓ
F s|T̃ (t), where T and T̃ are the tetrahedra sharing the face F . We are

allowed to assign different values to these derivatives since s is not not
required to be Cℓ across the face F . The situation is similar for the data
associated with N 1

T and N 2

T , since they also involve derivatives of order
greater than r.

Theorem 18.51 shows that for any function f ∈ C4r(Ω), there is a
unique spline s ∈ Sr(△) solving the Hermite interpolation problem

λs = λf, all λ ∈ N .

This defines a linear projector Ir
P mapping C4r(Ω) onto the superspline

space Sr(△). In particular, Ir
P reproduces all polynomials of degree d :=

8r+1. Since the NMDS of Theorem 18.51 is local and stable, Theorem 17.22
implies the following error bound.

Theorem 18.52. For every f ∈ Cm+1(Ω) with 4r − 1 ≤ m ≤ 8r + 1,

‖Dα(f − Ir
P f)‖Ω ≤ K |△|m+1−|α| |f |m+1,Ω,

for all 0 ≤ |α| ≤ m. Here K depends only on r and the smallest solid and
face angles of △.

As with the other macro-element spaces in this chapter, it is easy to
construct two different stable local bases for Sr(△). Clearly, the M-basis
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{ψξ}ξ∈M of Theorem 17.16 provides a stable local basis for Sr(△). These
basis functions have the following support sets:

1) if ξ ∈ Mv for some vertex v of △, then the support of ψξ lies in star(v),

2) if ξ ∈ Me for some edge e of △, then the support of ψξ is contained
in the union of the tetrahedra containing e,

3) if ξ ∈ MF for some face F of △, then the support of ψξ is contained
in the union of the tetrahedra containing F ,

4) if ξ ∈ MT for some tetrahedron T of △, then the support of ψξ is
contained in T .

The N -basis associated with the nodal determining set of Theorem 18.51
provides another stable local basis for Sr(△), where each basis function is
star-supported.

18.12. Remarks

Remark 18.1. Peter Alfeld has written a Java program which is an ex-
tremely useful tool for experimenting with trivariate spline spaces. Using
exact arithmetic, it can compute the dimension of trivariate spline spaces
and help find minimal determining sets. The code can be downloaded from
www.math.utah/∼pa.

Remark 18.2. For a given split and a given smoothness, there gener-
ally is more than one way to define a corresponding macro-element space,
especially when individual smoothness conditions are used to remove un-
necessary degrees of freedom.

Remark 18.3. As in the bivariate case, we say that a macro-element
space has natural degrees of freedom provided that it has a nodal mini-
mal determining set that involves data only at the vertices or at points
on the edges and faces of the initial tetrahedral partition △. Many of the
macro-elements discussed in this chapter include some nonnatural degrees
of freedom. Such extraneous degrees of freedom can always be removed by
working with subspaces defined by adding appropriate individual smooth-
ness conditions, although finding exactly which conditions to enforce is not
always easy.

Remark 18.4. Another way to remove degrees of freedom from macro-
element spaces is via the method of condensation. The idea is to require
the restrictions of the spline to edges or faces to be of lower degree than
the overall element. The disadvantage of using condensed elements is that
they do not have full approximation power.
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Remark 18.5. There is a trivariate analog of the quadrilateral macro-
elements discussed in Chapters 6–8. In the trivariate setting they are de-
fined on octahedra. For details, see [LaiL04] for the C1 case, and [LaiLS06]
for the C2 case.

Remark 18.6. In [SchS05] a trivariate macro-element was constructed
based on splitting a cube into twenty-four congruent subtetrahedra as in
Remark 17.1. C1 splines of degree six are used.

18.13. Historical Notes

Although C0 trivariate macro-elements were used by the finite-element com-
munity much earlier, the first C1 macro-element was introduced in 1973 in
[Zen73a]. This paper deals with the ninth-degree polynomial element dis-
cussed here in Section 18.2. Bernstein–Bézier methods were not used.

The first C1 trivariate macro-element based on a split tetrahedron is
contained in [Alf84b]. In this paper Alfeld discusses a condensed version of
the macro-element of Section 18.3. What we call the Alfeld split here was
called the Clough–Tocher split in that paper. A noncondensed version of
this element was suggested by Lai and Le Méhaute, see [AwaL02]. The C1

elements on the Worsey–Farin and Worsey–Piper splits were described first
in [WorF87] and [WorP88], respectively, again without using Bernstein–
Bézier methods. The approximation power of the macro-element spaces
was not addressed in these papers.

The C2 trivariate macro-element based on polynomials of degree 17 in
Section 18.6 was described in nodal form in [Zen73b]. It was also studied
in Le Méhauté’s dissertation [Lem84]. Neither reference uses Bernstein–
Bézier methods, and the approximation power of the macro-element space
was not addressed.

The C2 macro-element spaces of Sections 18.7–18.10 were developed
much more recently, see [AlfS05a–AlfS05c]. These papers make use of Bern-
stein-Bézier methods, and take special care to deal with the question of sta-
bility and its impact on approximation power. Although it was recognized
in [Zen73b, Lem84] that to get Cr polynomial macro-elements we need to
work with polynomials of degree 8r + 1, a description and analysis of such
elements appeared for the first time in our recent paper [LaiS06], which we
follow in Section 18.11.
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Arcangéli, R., M. Cruz López de Silanes, and J. J. Torrens

[ArcCT04] Multidimensional Minimizing Splines, Dordrecht, Kluwer,
2004.

Aubin, T.

[Aub82] Nonlinear Analysis on Manifolds. Monge-Ampére Equations,
Berlin, Springer, 1982.

Awanou, G. and M. J. Lai

[AwaL02] C1 quintic spline interpolation over tetrahedral partitions,
in Approximation Theory X: Wavelets, Splines, and Applications,
C. K. Chui, L. L. Schumaker, and J. Stöckler (eds.), Nashville,
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LeMéhauté, C. Rabut, and L. L. Schumaker (eds.), Nashville, Van-
derbilt University Press, 1997, 35–50.

Boor, C. de and R. DeVore

[BooD83] Approximation by smooth multivariate splines, Trans. Amer.

Math. Soc. 276 (1983), 775–788.



References 563

Boor, C. de, R. DeVore, and K. Höllig
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[PraBP02] Bézier and B-spline Techniques, Berlin, Springer, 2002.

Prautzsch, H. and L. Kobbelt

[PraK94] Convergence of subdivision and degree elevation, Adv. Com-

put. Math. 2 (1994), 143–154.

Preparata, F. P. and M. I. Shamos

[PreS85] Computational Geometry: An Introduction, New York, Spring-
er-Verlag, 1985.

Ramaswami, S., P. Ramos, and G. T. Toussain

[RamRT98] Converting triangulations to quadrangulations, Computat.

Geom. 9 (1998), 257–276.

Rayevskaya, V. and L. L. Schumaker

[RayS05] Multi-sided macro-element spaces based on Clough–Tocher
triangle splits, Comput. Aided Geom. Design 22 (2005), 57–79.

Reif, U.

[Rei00] Best bounds on the approximation of polynomials and splines
by their control structure, Comput. Aided Geom. Design 17 (2000),
579–589.

Renka, R. J.

[Ren84] Algorithm 624: Triangulation and interpolation of arbitrarily
distributed points in the plane, ACM Trans. Math. Software 10

(1984), 440–442.

[Ren97] Algorithm 772: STRIPACK: Delaunay triangulation and Voro-
noi diagram on the surface of a sphere, ACM Trans. Math. Software

23 (1997), 416–434.

Riemenschneider, S. and Z. W. Shen

[RieS91] Box splines, cardinal series, and wavelets, in Approximation

Theory and Functional Analysis, C.K. Chui (ed.), New York, Aca-
demic Press, 1991, 133–149.



582 References

Ripmeester, D. J.

[Rip95] Upper bounds on the dimension of bivariate spline spaces and
duality in the plane, in Mathematical Methods for Curves and Sur-

faces, M. Dæhlen, T. Lyche, and L. L. Schumaker (eds.), Nashville,
Vanderbilt University Press, 1995, 455–466.

Ron, A. and Z. Shen

[RonS98] Compactly supported tight affine spline frames in L2(IR
d),

Math. Comp. 67 (1998), 191–207.

Rudin, M. E.

[Rud58] An unshellable triangulation of a tetrahedron, Bull. Amer.

Math. Soc. 64 (1958), 90–91.

Rushing, B.

[Rus73] Topological Embeddings, New York, Academic Press, 1973.

Sabin, M. A.

[Sab77] The use of piecewise forms for the numerical representation of
shape, dissertation, MTA Budapest, 1977.

Sablonnière, P.
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[SablL93] Eléments finis polynomiaux composés de classe Cr, C. R.

Acad. Sci. Paris 316 (1993), 503–508.

Sander, G.

[San64] Bornes supérieures et inférieures dans l’analyse matricielle des
plaques en flexion-torsion, Bull. Soc. Royale Sciences Liège 33
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Vigo, M., P. Núria, and J. Cotria

[VigNC02] Regular triangulations of dynamic sets of points, Comput.

Aided Geom. Design 19 (2002), 127–149.

Wahba, G.

[Wah90] Spline Models for Observational Data, Philadelphia, CBMS
NSF Regional Conference Series in Applied Mathematics 59, SIAM,
1990.

Walz, G.
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