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Preface

The European Conference on Numerical Mathematics and Advanced Applications
(ENUMATH) is a series of conferences held every two years to provide a forum for
discussion on recent aspects of numerical mathematics and their applications. The
first ENUMATH conference was held in Paris (1995), and the series continued by
the one in Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), and
Santiago de Compostela (2005).

This volume contains a selection of invited plenary lectures, papers presented in
minisymposia, and contributed papers of ENUMATH 2007, held in Graz, Austria,
September 10–14, 2007.

We are happy that so many people have shown their interest in this conference.
In addition to the ten invited presentations and the public lecture, we had more
than 240 talks in nine minisymposia and fifty four sessions of contributed talks, and
about 316 participants from all over the world, specially from Europe. A total of 98
contributions appear in these proceedings.

Topics include theoretical aspects of new numerical techniques and algorithms,
as well as to applications in engineering and science. The book will be useful for
a wide range of readers, giving them an excellent overview of the most modern
methods, techniques, algorithms and results in numerical mathematics, scientific
computing and their applications.

We would like to thank all the participants for the attendance and for their valu-
able contributions and discussions during the conference. Special thanks go the min-
isymposium organizers, who made a large contribution to the conference, the chair
persons, and all speakers.

We would like to address our thanks to the invited speakers: A. Arnold (Austria),
J. Barrett (United Kingdom), J. Chleboun (Czech Republic), M. Griebel (Germany),
P. Joly (France), U. Langer (Austria), D. Marini (Italy), G. Papanicolaou (USA),
G. Wanner (Switzerland), J. Xu (USA), and to P. Deuflhard (Germany) who gave
the public lecture during ENUMATH 2007.

A big share of the success of this conference series should be given to the mem-
bers of the Programme Committee: F. Brezzi, M. Feistauer, R. Glowinski, R. Jeltsch,
Y. Kuznetsov, J. Periaux, R. Rannacher.
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vi Preface

We are greatly indebted to the Scientific Committee (C. Bernardi, H. G. Bock,
A. Borzi, C. Canuto, A. Bermudes, G. Haase, R. Hoppe, A. Iserles, F. Kappel,
G. Kobelkov, M. Krizek, O. Pironneau, A. Quarteroni, S. Repin, S. Sauter, J. Sanz–
Serna, C. Schwab, E. Süli), and to the local Organizing Committee (A. Borzi,
B. Carpentieri, G. Haase, M. Hintermüller, F. Kappel, S. Keeling, V. Kovtunenko,
G. Peichl, G. Propst, W. Ring, S. Volkwein). Special thanks go to S. Fürtinger,
E. Hötzl, A. Kimeswenger, O. Lass, A. Laurain M. Leykauf, B. Pöltl, E. Rath,
J. Rubesa, M. Taus, C. Thenius, F. Tschiatschek, G. von Winckel for their help
in the administration, computer support, and during the conference.

We gratefully acknowledge the financial support by the Austrian Ministry for
Science and Research, the State of Styria, the Association for Applied Mathematics
and Mechanics (GAMM), the Start Prize project Interfaces and Free Boundaries,
the Karl Franzens University Graz, and Graz University of Technology.

We would like to thank all authors for their contributions to this volume. More-
over, we also like to thank all anonymous referees for their work, their criticism, and
their proposals. These hints were very helpful to improve the contributions. Finally,
we would like to thank Springer Heidelberg for the continuous support and patience
while preparing this volume.

Graz, Karl Kunisch
July 2008 Günther Of

Olaf Steinbach
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D. Černá and V. Finěk
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Contents xv

A Second Order Scheme for Solving Optimization-Constrained
Differential Equations with Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . 761
A. Caboussat and C. Landry

Optimal Load Changes for a Molten Carbonate Fuel Cell Model . . . . . . . . 769
K. Chudej, K. Sternberg, and H.J. Pesch

Differential DAE Index for Reactive Euler Equations . . . . . . . . . . . . . . . . . 777
A. Hmaidi and P. Rentrop

Application of a First Order Asymptotic Method for Modeling
Singularly Perturbed BVPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
N. Parumasur, P. Singh, and V. Singh

Solid Mechanics

Newton-Like Solver for Elastoplastic Problems with Hardening and its
Local Super-Linear Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
P.G. Gruber and J. Valdman

On a Fictitious Domain Method for Unilateral Problems . . . . . . . . . . . . . . . 803
J. Haslinger, T. Kozubek, and R. Kučera
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The Worst Scenario Method: A Red Thread
Running Through Various Approaches to
Problems with Uncertain Input Data

J. Chleboun

Abstract Three ingredients constitute mathematical models dependent on param-
eters whose value is uncertain: a compact set Uad of admissible parameters a, a
state problem A(a)u = f (a) with an a-dependent state u ≡ u(a), and a continuous
quantity of interest Ψ (a) = Φ(a,u(a)). In the worst scenario method (WSM), the
maximum of Ψ over Uad is identified. By mastering the WSM and if an adequate
characterization of input uncertainty is available, the analyst can easily step forward
to a more complex uncertainty analysis, namely that based on the Dempster-Shafer
theory or fuzzy set theory. Elements of the above non-stochastic approaches to un-
certainty modeling are presented with the emphasis on uncertain functions appear-
ing in problems driven by differential equations.

1 Introduction

Since uncertainty in input parameters accompanies most, if not all, mathematical
and computational models, its impact on model outputs deserves attention. We will
focus on the worst scenario method (WSM) that can be applied as a stand-alone
method (Subsection 2.1) or used as a fundamental part of other approaches such as
the Dempster-Shafer theory (Subsection 2.2) and fuzzy set theory (Subsection 2.3).
That is, by mastering the WSM, the analyst can easily step forward to a more
complex uncertainty analysis if an adequate characterization of input uncertainty
is available. Attention is paid to uncertain functions appearing in problems driven
by differential equations (Section 3). The goal of this paper is two-fold: (A) to pro-
vide the reader with an insight into non-stochastic uncertainty modeling, and (B) to
show the reader how non-stochastic uncertainty in input functions can be treated.

Jan Chleboun
Institute of Mathematics, Academy of Sciences, Žitná 25, 115 67 Praha 1,
and Faculty of Engineering, Czech Technical University, Karlovo nám. 13, 121 35 Praha 2,
Czech Republic, e-mail: chleb@math.cas.cz
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Although other sources aiming at (A) can be found in the literature, (B) seems to be
a rather uncommon subject.

The assessment of uncertainty in data is, essentially, equivalent to the weighting
of data. Consequently, as uncertainty propagates through a model, the model outputs
are also weighted and the determination of these weights counts among the analyst’s
ultimate goals. Different weighting approaches result in different methods or even
theories.

Stochastic methods stem from weighting the values of input parameters by the
probability of their occurrence. Stochastic methods can yield strong results but the
analyst should be aware of the fact that they also assume rather strong input informa-
tion such as the probability distribution of uncertain input parameters and a possible
correlation between them, for example. Such information is not always available or
it is itself highly uncertain. If this is the case, other methods of weighting input data
can be more appropriate, reliable, and realistic.

2 Non-Stochastic Methods

Three representatives of non-stochastic methods will be introduced. Let us start with
the basic mathematical framework that will be shared by all the presented methods:

(a) Let the state problem be represented by A(a)u = f (a), an a-dependent equa-
tion where a is an input parameter. The existence and uniqueness of the state solution
u≡ u(a) is assumed for any a considered.

(b) Let the a-dependent solution u(a) be evaluated by Φ(a,u(a)), a real-valued
criterion-functional often called the quantity of interest that can directly depend on
a. Owing to the uniqueness of u(a), the criterion-functional Φ gives rise to the
criterion-functional Ψ(a) = Φ(a,u(a)). It is assumed that both u and Ψ depend
continuously on a.

Both (a) and (b) deserve a few comments. State problems are not limited to equa-
tions; variational inequalities, for instance, are also possible; see [16]. The parameter
a can be a scalar, a vector, a tensor, a function, or an n-tuple of functions.

The criterion-functional can represent quantities such as local temperature, local
stress invariants, potential energy, or the distance between u and an a priori given
function.

To illustrate (a) and (b), let us consider a steady heat flow problem depending
on a thermal conductivity coefficient a; see also (11)-(13). The state equation (to-
gether with relevant boundary conditions) determines the temperature field u(a) in
the problem domain. Let Ψ(a), the a-dependent quantity of interest, be defined as
an average temperature in a small fixed subdomain; see (14). A change in a can
cause a change in u(a) andΨ(a).
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2.1 Worst Scenario Method

It happens quite often that the parameter a cannot be uniquely determined and that
we only know that a belongs to Uad, a set of admissible values. These can originate
from measurements or expert opinions, for instance. In other words, a is uncertain,
so are u(a) andΨ (a).

In the worst scenario method, the input values are not weighted. The significance
of a1 ∈ Uad is equal to the significance of a2 ∈ Uad. Given Uad, the goal of the
method is to find a0 ∈Uad such that

a0 = argmax
a∈Uad

Ψ (a). (1)

Since large values of quantities commonly used in engineering (such as mechanical
stress, displacement, temperature) are usually considered dangerous, the maximum
values correspond to the worst scenario that can happen among all Uad-driven sce-
narios. Problem (1) is also known as anti-optimization; see [8, 9].

A slight modification of (1) leads to the best scenario problem: find a0 ∈ Uad

such that
a0 = argmin

a∈Uad

Ψ(a). (2)

It is not generally guaranteed that such a0 and a0 exist. If Uad is a compact subset
of a Banach space andΨ is continuous, then a0 and a0 exist and, if Uad is connected,
determine IΨ , the range of Ψ |Uad

:

IΨ = [Ψ(a0),Ψ (a0)]. (3)

From the computational standpoint, convex Uad are preferred.
The above assumptions are fulfilled in many engineering problems; see [16] for

examples from heat transfer, elasticity and plasticity theory as well as other fields.
A short survey of mostly PDE-oriented applications of the method appeared in [14].

2.2 Dempster-Shafer Theory

Although the range (3) is useful to know when one analyzes the impact of uncer-
tainty in input parameters on the quantity of interest, the plain range is dissatisfac-
tory in many practical problems where some weights can be attributed to the input
values even if these weights are not probabilistic. Then the analyst should strive for
determining the weights of model outputs.

In the approach stemming from the works of Dempster and Shafer (see [6, 19]),
sets are weighted. Details and examples can also be found in [1, 3], for instance.

Let us confine ourselves to the most essential ideas relevant to our purpose. We
assume that Ui, where i = 1,2, . . . ,k, are given convex and compact subsets (called
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focal elements) of a Banach space. Moreover, let each Ui have an assigned weight
mU(Ui) > 0 such that ∑k

i=1 mU(Ui) = 1. These weights represent the information we
have about Ui. Some Ui, for instance, can originate from less reliable measurements
than the others. This would be indicated by the lower weights of these Ui.

By solving (1) and (2), where Uad =Ui, we obtain the respective scenarios ai
0 and

a0
i . Consequently, see (3), we arrive at intervals Ii

Ψ that will constitute a new family

of focal elements, now in R, the space of real numbers. If it happens that Ii
Ψ = I j

Ψ
for some i �= j, the interval is considered only once; thus a family of k̂ intervals Îl

Ψ
is established, where l = 1,2, . . . , k̂ and 1≤ k̂≤ k.

The extension principle allows for deriving mΨ (Îl
Ψ ), the weight of Îl

Ψ :

mΨ (Îl
Ψ ) = ∑

{ j∈{1,2,...,k}: I j
Ψ=Îl

Ψ }
mU(Uj), l = 1,2, . . . , k̂. (4)

The quantity mΨ (Îl
Ψ ) can be interpreted as a measure of the amount of “likeli-

hood” (the weight) that is assigned to Îl
Ψ ; see [17]. This assignment is determined

by the criterion-functionalΨ and by the “likelihood” assigned to the sets Ui.
Once mΨ (Îl

Ψ ) is determined for l ∈ K = {1,2, . . . , k̂} and mΨ ( /0) = 0 is defined,
two mappings from subsets of R to the interval [0,1] can be introduced. These are
Bel, belief, and Pl, plausibility:

Bel(S) = ∑
{l∈K: Îl

Ψ⊂S}
mΨ (Îl

Ψ ), Pl(S) = ∑
{l∈K| Îl

Ψ∩S �= /0}
mΨ (Îl

Ψ ), S⊂ R. (5)

Referring to [17] again, we can interpret Bel(S) as a lower bound on the like-
lihood of S and Pl(S) as an upper bound on the likelihood of S. According to [1],
Bel(S) (and similarly Pl(S)) can also be interpreted as a lower (upper) limit on the
strength of evidence at hand.

Example 1. Let us consider a loaded cantilever beam with one end fixed and the
other supported by a spring whose stiffness a is uncertain and represented by five
different intervals Ui with respective weights 0.1, 0.4, 0.1, 0.25, and 0.15. Let Ψ
be defined as the displacement of the supported tip of the cantilever. Let [72,82],
[68,74], [73,79], [71,83], and [76,84] be the respective displacement intervals Ii

Ψ
determined by the worst (best) scenario problems (1)–(2) solved for a ∈ Ui, i =
1,2 . . . ,5. Then

mΨ (I1
Ψ ) = mΨ ([72,82]) = 0.1, mΨ (I2

Ψ ) = mΨ ([68,74]) = 0.4, (6)

mΨ (I3
Ψ ) = mΨ ([73,79]) = 0.1, mΨ (I4

Ψ ) = mΨ ([71,83]) = 0.25, (7)

mΨ (I5
Ψ ) = mΨ ([76,84]) = 0.15. (8)

To analyze the uncertainty in Ψ , let us graph Bel([x,x + d]) and Pl([x,x + d]),
where d ∈ {1,2} is fixed and x ∈ [60,90]. In other words, the intervals [x,x + d]
chosen in the space of output data (that is, displacements) will be assessed through
the evidence that we have about the input datasets. Fig. 1 shows the results for
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Fig. 1 Example 1; the vertical axis shows Bel([x,x + d]) and Pl([x,x + d]), the horizontal axis
shows x.

x = 60,61, . . . ,90. Such graphs help the analyst to formulate a conclusion or make a
decision. Thinking of the uncertain displacement magnitude in the above example,
the analyst would hardly overlook the significance of values around 73, for instance.

Although the sets of scalar values were considered in this example, Ui could
be sets of functions as well. Take, for instance, a set of functions representing an
uncertain non-constant thickness of the beam.

2.3 Fuzzy Set Theory

In fuzzy set theory, points are weighted by a membership function with values in the
interval [0,1]; see [1, 3, 7, 20, 21, 22]. For our purposes, a zero membership value
will not indicate that the point does not belong to the (fuzzy) set. Indeed, we assume
that a compact and convex admissible set Uad is given together with a membership
function μUad

: Uad → [0,1]. A non-constant membership function indicates that
not all members of Uad are equally possible. The higher μUad

(a), the higher the
possibility of a. We allow for μUad

(a) to be equal to zero. Typically, μUad
(a) > 0 if

a belongs to the interior of Uad.
Special nested subsets of Uad, called α-cuts, are defined as follows:

U α
ad = {a ∈Uad : μUad

(a)≥ α}, α ∈ [0,1]. (9)

For any α ∈ [0,1], let us assume that the set U α
ad is a convex and compact subset

of Uad; the compactness is guaranteed if, for instance, μUad
is a continuous map.

By determining the best and the worst scenarios in U α
ad , we infer IαΨ , the α-

dependent intervals; cf. (3). These intervals are nothing else than the α-cuts of IΨ ,
the image of Uad under the mapΨ . To characterize the fuzziness of IΨ , the relevant
membership function μΨ is inferred (the extension principle):
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μΨ (y) = max{α : y ∈ IαΨ}, y ∈ IΨ . (10)

The degree of possibility of Ψ (a), the a-dependent quantity of interest, is given by
μΨ (Ψ (a)), a ∈Uad. A computational example will be presented later.

Remark 1. In information-gap decision theory [2], a non-fuzzy approach is intro-
duced (besides other concepts) that also leads to the calculation of α-dependent
worst scenarios. It is assumed there that α controls the amount of uncertainty present
in an admissible set U α

ad (α controls the “size” of the admissible set; the larger the
α , the larger the size of U α

ad). It is also assumed that a value α exists such thatΨ(a0)
determined by the worst scenario in U α

ad is less than q ∈ R, a given maximum ac-
ceptable value of the quantity of interest.

The goal is to find the maximum αmax ∈ R such that Ψ(a0) ≤ q, where a0 ∈
U αmax

ad maximizes Ψ over U αmax
ad , that is, the maximum acceptable amount of un-

certainty is to be identified.

3 Admissible Sets of Functions

In differential equations and the associated boundary conditions, parameters and
right-hand sides often take the form of functions and are burdened with uncertainty.
To introduce uncertain functions, we will present an approach stemming from the
definition of admissible functions used in shape optimization; see [11].

For illustration, let us consider the following quasilinear PDE defined in Ω , a
bounded domain in R2,

−div(a(u)gradu) = f (x,u), (11)

u|∂Ω = 0, (12)

where a does not directly depend on x ∈Ω but depends on the solution u; the right-
hand side f depends both on the spatial variable x and the solution u. This boundary
value problem can model a nonlinear thermal conductivity problem; we refer to [15]
for a more general setting applied to modeling the temperature field in a transformer.

An admissible set Uad, typical of many applications, can be defined as follows

Uad =
{

a ∈U 0
ad(CL) : amin(t)≤ a(t)≤ amax(t) ∀t ∈R

}
, (13)

U 0
ad(CL) =

{
a ∈C(0),1(R) (i.e., Lipschitz functions on R):

|da/dt| ≤CL a.e. in R, a(t) = const. for t /∈ [T0,T1]
}
,

where amin,amax ∈ Ûad =
{

a ∈U 0
ad(CL) : 0 < a1 ≤ a(t)≤ a2 < +∞ ∀ t ∈R

}
are

given functions and CL, a1, a2, T0, T1 are given constants such that CL > 0, a1 < a2,
and −∞ < T0 < T1 < +∞; see [16, 13, 4].

The criterion-functional
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Ψ(a) = (meas2 G)−1
∫

G
u(a)(x)dx (14)

represents the a-dependent temperature u averaged over a fixed set G⊂Ω .
It can be proved that the worst scenario problem (1) based on (11)–(14) (where

the boundary conditions can be more complex) has at least one solution; see [13, 16].
Two features of the problem are crucial for the proof: (i) Ψ(a) is continuous with
respect to a∈Uad and the standard norm in C(R), the space of functions continuous
on R; and (ii) Uad is compact in C(R) (by virtue of the Arzelà-Ascoli theorem).

Generally speaking, variants of both (i) and (ii) appear in the analysis of other
worst scenario problems with uncertain functions (13) or similar; see [16] for exam-
ples from continuum mechanics (e.g., elasticity or plasticity). In (i), the continuous
dependence of u(a) on a is the most substantial but usually also the most demanding
part of the proof. The solvability of (2) is also ensured by (i)–(ii).

Remark 2. To ensure the compactness of the admissible set Uad, rather strict as-
sumptions are employed in (13). These, however, can be too restrictive in problems
where other families of input functions have to be considered (discontinuous or os-
cillating functions, for instance). Consequently, such an admissible set might not
be compact in a standard space of functions, and its compactification in a special
space is necessary. Such relaxed problems appear and are analyzed in optimization-
oriented modeling (see [18] and the references therein) and could also be considered
in uncertainty modeling.

3.1 Approximation

To solve the state problem A(a)u = f (a) (imagine (11)–(12), for instance, and al-
low an a-dependent f ), one has to resort to a numerical method such as the finite
element method (FEM), the finite difference method, the boundary element method,
etc. These methods deliver an approximate state solution uh defined on a mesh char-
acterized by h > 0, the discretization parameter. Let us note that the uniqueness of
uh may be an open problem in certain situations even if u is unique; see [13, 15].
Non-unique state solutions uh can be handled under some assumptions; see [16,
Chapter II]. The uniqueness of uh is assumed henceforth.

The functions from the admissible set Uad can be approximated by continuous,
piece-wise linear functions controlled by the vertical position of M nodes bound by
possible constraints; see CL, amin, and amax in (13). These functions constitute the
approximate admissible set U M

ad , which is identifiable with a compact subset of RM .
The approximate best and worst scenario problems

aM
0h = argmin

a∈U M
ad

Φ(a,uh(a)) and a0M
h = argmax

a∈U M
ad

Φ(a,uh(a)) (15)

are, in fact, finite dimensional constrained optimization problems.
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The typical relationship between a0M
h and a0 (or aM

0h and a0) is as follows: If
{a0M

h } is a sequence of the solutions to (15) controlled by h→ 0+ and M→∞, then

a subsequence {a0Mk
hk
} exists such that, for k→ ∞,

a0Mk
hk
→ a0, uhk(a

0Mk
hk

)→ u(a0), and Φ(a0Mk
hk

,uhk(a
0Mk
hk

)→Φ(a0,u(a0)),

where the first and second sequences converge in proper spaces and topologies; see
[10]. Similar convergence results for various worst scenario problems can be found
in [16].

If it happens that more than one admissible set are available for the analyzed
problem, say (11)-(12), and that the analyst can assess each U i

ad by m(U i
ad), the

“likelihood” of U i
ad, then the transition from the WSM to the Dempster-Shafer

approach is straightforward.
Indeed, by finding the worst and the best scenarios, one determines the ranges (3)

for each U i
ad. By identifying Ui with U i

ad and obtaining mΨ (see (4)), the analyst is
ready for the assessment of various sets S⊂R through (5), that is, for the assessment
of the bounds of the likelihood that S is related to the uncertain values ofΨ .

Let us pay more attention to the fuzzy set approach.

3.2 Fuzzification of Uad

Different concepts of fuzziness can be merged with functions see [1, Section 2.4.9].
We will simply retain Uad as a set of crisp functions but we will add a membership
function to Uad. In other words, we will weight a ∈ Uad. Two forms of weighting
will be introduced; see also [5].

The first approach is rather straightforward. It is based on the distance between
a ∈Uad and a given function amid; the details follow.

For illustration, let us recall (13) and define amid(t) = (amin(t)+ amax(t))/2 and
adif(t) = (amax(t)−amin(t))/2, where t ∈R. It is assumed that adif is positive on the
real axis. For α ∈ [0,1], we then define

U α
ad =

{
a ∈U 0

ad(CL) : |a(t)−amid(t)| ≤ (1−α)adif(t) ∀t ∈ R
}
, (16)

that is, we define the α-cuts of Uad. This concept is close to fuzzy functions [1] or to
controlling the amount of uncertainty through α; see [2]. Nevertheless, in (16), we
still consider crisp functions. If α = 1, then U α

ad = {amid}. If α = 0, then U α
ad = Uad.

The membership function value (the weight) of a ∈Uad is defined as

μ(a) = max{α ∈ [0,1] : a ∈U α
ad}. (17)

With this μ , definition (9) leads to U α
ad defined in (16).

If Uad is fuzzy, so is U M
ad . The approximate problems (15) result in optimization

problems with simple bounds (determined by amin and amax) and linear constraints
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(determined by CL). The approximate best and worst scenarios in U M,α
ad , an α-

cut of U M
ad , are again obtained through solving optimization problems with simple

bounds (determined by amin, amax, and α) and linear constraints (determined by CL).
Common optimization software coupled with FEM software can often be applied to
solve such problems.

The other approach to weighting Uad is motivated by the observation described
below. Let a1,a2 ∈ U α

ad and let the inequality in (16) becomes the equality on the
entire set R if a1 is considered, and at a single point t0 ∈ R if a2 is considered.
Moreover, let a2 coincide with amid except for an interval containing t0. These a1

and a2 share the same α-cuts of Uad. In many applications, however, the weight of
a2 would be expected greater than the weight of a1 because a2 is “closer” to amid,
which has the highest degree of possibility.

We will design a membership function able to separate a1 from a2. We first de-
fine an auxiliary continuous function ρ : Q→ [0,1], where Q = {[t,y] ∈ R2 : t ∈
[T0,T1], y ∈ [amin(t),amax(t)]}. It is assumed that ρ(t, ·) is a concave function for
each t ∈ [T0,T1]. The functions ρ(t, ·) can be viewed as auxiliary membership func-
tions (weights) assessing the degree of possibility of a(t) if a ∈Uad. The graph of
ρ(t, ·) is shaped accordingly; it is triangular or trapezoidal, which is common in
fuzzy set theory. The function ρ can be derived from measurements, estimates, or
expert opinions.

We are ready to define μρ : Uad → [0,1], the membership function associated
with Uad:

μρ(a) = (T1−T0)−1
∫ T1

T0

ρ(t,a(t))dt. (18)

It is evident that we can obtain μρ(a1) < μρ(a2) if ρ is properly shaped.
Unlike (16), the identification of all the functions a that comprise a particular

α-cut is not straightforward. This difficulty also appears in the search for the ap-
proximate best and worst scenarios, where, moreover, (18) gives rise to a nonlinear
constraint in the definition of U α

ad . If ρ is nonsmooth, μρ is not differentiable at
some a. This partial lack of differentiability is also observed in μρM , a U M

ad -related
approximation of μρ based on a piece-wise linear auxiliary function ρM that ap-
proximates ρ .

Since the use of nonsmooth (triangular, trapezoidal) ρ(t, ·) is common and the
piece-wise linearity of ρ(t, ·) is advantageous in many respects, nonsmooth op-
timization seems to be unavoidable in solving (15)-like problems on the α-cuts
determined by μρM .

A closer inspection reveals, however, that the approximate (15)-like problems
defined on U M,α

ad , the μρM -based α-cuts of U M
ad , can be decomposed into a finite

sequence of smooth optimization subproblems.
Indeed, aM ∈U M

ad is uniquely determined by the values ai ≡ a(ti) at fixed points
ti, where i = 1,2, . . . ,M. Let us assume that ρM is piece-wise linear and determined
by the continuous functions ρ(ti, ·) that are linear on intervals θi j = [yi, j,yi, j], where
i = 1,2, . . . ,M, j = 1,2, . . . ,N, and yi, j = yi, j+1 if j = 1,2, . . . ,N−1. It is [yi,1,yi,N ] =
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[amin(ti),amax(ti)]. Typically, N = 2 (N = 3) if ρ(t, ·) is triangularly (trapezoidally)
shaped.

As long as ai ∈ θi j for i = 1,2, . . . ,M and for a fixed set J of indices j, μρM

is differentiable (left- and right-differentiable at the ends of θi j) and the related
optimization subproblem is smooth. The differentiability is lost at one point when ai

passes from the current interval θi j to its neighbor θik, k �= j, but it is again restored
if ai ∈ θik and J is updated. The updated set of indices determines a new smooth
optimization subproblem.

The partial derivative of μρM with respect to ai, where i = 1,2, . . . ,M, can be
obtained in a closed form in each of the subproblems. Consequently, the analytic
gradient of μρM exists except for some points and can be employed in the calculation
of ∂Ψ/∂ai, which is important in a gradient-based search for the best and worst
scenarios in U M,α

ad .

Example 2. Let u, the a-dependent solution to the boundary value problem

−(a(x)u′(x))′ = f on Ω = (0,1), u(0) = 0 = u(1),

be evaluated through the criterion-functional (quantity of interest)

Ψ(a) =
∫
Ω

(u(x)− sin(2πx))2 dx.

In the state problem, f is chosen in such a way that if a(x) = 1 + x, then u(x) =
sin(2πx) and, consequently,Ψ (a) = 0.

The parameter a belongs to the admissible set Uad determined by the quadratic
function g(x) = 1.5 + x2 and two constants. In detail,

Uad =
{

a ∈C(0),1([0,1]) : |a(x)− g(x)| ≤ 0.5 and |a′(x)−g′(x)| ≤ 0.8
}

.

The auxiliary function ρ is “triangular”, that is, ρ(x, ·) is determined by the linear
interpolation of the points [x,g(x)− 0.5,0], [x,g(x),1], and [x,g(x)+ 0.5,0], where
x ∈ [0,1]. The membership function μρ is given by (18), where T0 = 0 and T1 = 1.

The goal is to infer μΨ , the membership function of the quantity of interest; see
Subsection 2.3 and (10).

To achieve the goal at least approximately, see Fig. 2, the state equation was
solved by the finite element method with piece-wise linear basis functions, and
Uad was approximated by continuous piece-wise linear functions constituting U M

ad ,
where M = 15. The optimization problems, see (15), were solved on the α-cuts of
U M

ad for α = 0,0.05,0.1, . . . ,1.
The gradient of Ψ was calculated via the adjoint equation technique [12]; an

explicit formula was obtained for the gradient of μρM at the points of differentiabil-
ity. The search for the best and the worst scenarios in the α-cuts was based on the
NAG� Foundation (MATLAB�) Toolbox E04UCF routine for constrained sequen-
tial quadratic programming.
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Fig. 2 Example 2. The
approximation of μΨ in-
ferred from (10), where
α = 0,0.05,0.1, . . .,1. The
horizontal axis shows the
Ψ values, the vertical axis
shows the α values. We
observe that a(x) = 1 + x
belongs to the α-cuts if
α = 0,0.05,0.1, . . .,0.35.
Indeed, for these α , the best
scenario implies the zero
value of Ψ . If α = 1, then
the α-cut comprises only the
function g. 0 0.02 0.07
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4 Conclusions

The worst scenario method is appropriate if we know only the set of admissible
inputs but we do not have information that would enable us to weight the impor-
tance (possibility or likelihood) of input data. Since searching for the best scenario
is mathematically equivalent to the worst scenario search, the WSM eventually de-
livers the range of the quantity of interestΨ induced by the uncertainty in inputs.

If more extensive information on inputs is available (inputs can be weighted in
some sense) and if it complies with the Dempster-Shafer or fuzzy set theory as-
sumptions (which are less demanding than the probability theory assumptions), the
uncertainty in an output quantity of interest can be weighted too. To achieve this,
the WSM has to be repeatedly applied to obtain (3)-like ranges that are pivotal in
the other two approaches for obtaining mΨ and μΨ ; see Subsection 2.2 and (4) as
well as Section 2.3 and (10).

From the computational standpoint, solving (15)-like problems is crucial in all
the above-mentioned methods. In the case of smooth problems, the gradients of both
Ψ and the constraints are available, which can speed up the search for the minimum
(maximum) ofΨ .

If (15) leads to a nonsmooth optimization problem, we can (a) try to decompose
it to smooth subproblems, (b) use a subgradient-based technique, or (c) apply an
evolution strategy that partly or completely avoids the need for the (sub)gradient.

However, it is fair to say that the worst scenario method is computationally chal-
lenging because it asks for solving a global optimization problem. Nevertheless, we
can benefit from theoretical and software tools that have proved themselves well in
optimal design, control theory, parameter identification, and sensitivity analysis.

Acknowledgements The research was supported by the Academy of Sciences of the Czech Re-
public through Institutional Research Plan No. AV0Z10190503 and grant No. IAA100190803 from
the Grant Agency of AS CR.



14 J. Chleboun

References

1. Ayyub, B.M., Klir, G.J.: Uncertainty Modeling and Analysis in Engineering and the Sciences.
Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton (2006)

2. Ben-Haim, Y.: Information-gap Decision Theory. Academic Press, San Diego (2001)
3. Bernardini, A.: What are the random and fuzzy sets and how to use them for uncertainty

modelling in engineering systems? In: I. Elishakoff (ed.) Whys and Hows in Uncertainty
Modelling, Probability, Fuzziness and Anti-Optimization, CISM Courses and Lectures No.
388. Springer–Verlag, Wien, New York (1999)

4. Chleboun, J.: On a reliable solution of a quasilinear elliptic equation with uncertain coeffi-
cients: sensitivity analysis and numerical examples. Nonlinear Anal. Theory Methods Appl.
44, 375–388 (2001)

5. Chleboun, J.: On fuzzy input data and the worst scenario method. Appl. Math. (Prague) 48,
487–496 (2003)

6. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math.
Stat. 38, 325–339 (1967)

7. Dubois, D., Prade, H. (eds.): Fundamentals of Fuzzy Sets. Foreword by Lotfi Zadeh, The
Handbooks of Fuzzy Sets Series, vol. 7. Kluwer Academic Publishers, Dordrecht (2000)

8. Elishakoff, I.: An idea of the uncertainty triangle. Shock Vib. Dig. 22, 1 (1990)
9. Elishakoff, I.E., Haftka, R.T., Fang, J.: Structural design under bounded uncertainty – opti-

mization with anti-optimization. Comput. Struct. 53, 1401–1405 (1994)
10. Harasim, P.: On the worst scenario method: A modified convergence theorem and its applica-

tion to an uncertain differential equation. Appl. Math. (2008). To appear
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Boundary and Finite Element Domain
Decomposition Methods

U. Langer

Abstract Since Boundary Element (BE) Methods and Finite Element (FE) Meth-
ods exhibit certain complementary properties, it is sometimes very useful to couple
these discretization techniques within a Domain Decomposition (DD) framework.
We give a short review of the symmetric coupling technique and of primal, dual
and dual-primal iterative substructuring solvers for coupled FE-BE equations. The
boundary and interface concentrated FE methods have some features in common
with data-sparse BE methods, but their applicability is far wider. We present primal
and dual iterative substructuring solvers which exhibit the same complexity as the
corresponding data-sparse BE solvers. Finally, we use the BE DD technology in
order to construct FE approximations on polygonal and polyhedral meshes.

1 Introduction

Boundary Element Methods (BEM) and Finite Element Methods (FEM) have cer-
tain complementary properties. The BEM only requires a triangulation of the bound-
ary of the computational domain, whereas the FEM needs a volume mesh. The
handling of unbounded domains is straightforward in the BEM, whereas the FEM
needs special modifications like absorbing boundary conditions, perfectly matched
layers, or infinite elements. The approximation of singularities is easier in BEM
than in FEM. In electromagnetics, the BEM can easily handle large air subdomains
and moving parts. However, the application of the BEM requires the knowledge of
the fundamental solution of the underlying differential operator. On the other hand,
the FEM is more general. It can treat variable coefficients in the Partial Differen-
tial Equations (PDE), source terms and non-linearities with the same technology.
Thus, it is quite natural to couple both discretization techniques within a Domain

Ulrich Langer
Institute for Computational Mathematics, Johannes Kepler University Linz, Altenberger Str. 69,
A-4040 Linz, Austria, e-mail: ulanger@numa.uni-linz.ac.at
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Decomposition (DD) framework and to benefit from the advantages of these dis-
cretization methods in different subdomains depending on the local properties of
the problem which we are going to solve. O. C. Zienkiewicz, D. M. Kelly and
P. Bettes are among the first authors who successfully started coupling BEM and
FEM in engineering applications [27]. In [28], they refer to the BEM-FEM cou-
pling as the “Marriage a la mode - the best of both worlds”. At that time the
standard BEM was based on the collocation technique, which does not really fit
to the Galerkin technique that has been used in FEM from the very beginning. Un-
symmetric Galerkin BEM-FEM couplings were first studied by mathematicians at
the end of the 1970s and at the beginning of the 1980s [5, 15]. In [8], M. Costa-
bel introduced and analyzed the symmetric Galerkin BEM-FEM coupling, which
perfectly fits to the Galerkin FEM. Since then, the symmetric coupling has been
used in many applications. G.C. Hsiao and W.L. Wendland first used the symmet-
ric coupling to construct a pure boundary element substructuring method [14]. The
first fast solver for symmetrically coupled BE-FE DD equations was proposed and
analyzed in [18]. Further contributions to efficient parallel DD solvers for symmet-
rically coupled BE-FE DD equations have been made in [10, 6]. We also refer to the
recent survey articles [25] by E. Stephan and [20] by U. Langer and O. Steinbach
where the reader can find an excellent overview on BE-FE coupling and BE-FE DD
solvers. A comprehensive presentation of DD (FE) methods can be found in [26].

The standard collocation as well as Galerkin boundary element discretizations
lead to dense matrices. This was the major drawback of the BEM in large-scale
applications, especially in 3D. In practice, dense matrices represent a complexity
barrier that restricts the application of the BEM to small-scale problems. Indeed,
the memory demand for dense BE matrices and the cost for the matrix-vector multi-
plication, which is the basic operation in iterative solvers, grow like O(h−2(d−1))
whereas the sparse FE matrices require O(h−d) storage units and O(h−d) arith-
metical operations for the matrix-vector multiplication. Here h denotes the usual
discretization parameter such that the number of unknowns (degrees of freedom =
DOF) behaves like O(h−(d−1)) and O(h−d) in BEM and FEM, respectively, where
d is the dimension of the domain Ω where the boundary value problem is given.
The development of data-sparse representations of the dense BE matrices was very
crucial for breaking down this complexity barrier. Data-sparse techniques like the
Fast Multipole Method (FMM) [24, 7], the panel clustering method [13], the H -
matrix technology [12] and the Adaptive Cross Approximation (ACA) [1, 2], see
also the book [23], allow us to reduce the BE complexity from O(h−2(d−1)) to
O(h−(d−1)(logh−1)l) with some l ∈N0 (e.g. l = 2 for the FMM).

If we now use data-sparse approximation of the BE matrices in the BE subdo-
mains, then the FE parts in a coupled BE-FE solver suddenly dominates the com-
plexity, at least asymptotically. B.N. Khoromskij and J.M. Melenk proposed the
boundary-concentratedFEM that allow us to reduce the FE complexity from O(h−d)
to O(h−(d−1)) [16]. The use of the boundary-concentrated FEM in a DD framework,
which is called Interface-Concentrated (IC) FEM, and the corresponding primal and
dual DD solvers were investigated in [3]. Tearing and interconnecting solvers for
coupled data-sparse BE and IC FE DD equations were studied in [19].
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The remainder of this paper is organized as follows. Section 2 gives a short re-
view of the symmetric BE-FE-coupling in a DD framework. Section 3 is devoted
to DD solvers for interface-concentrated finite element equations. In Section 4, we
symmetrically couple these IC FE equations with data-sparse BE equations and look
at fast and robust DD solvers. Section 5 deals with a local Trefftz FEM that origi-
nates from the symmetric BE DD coupling.

2 A Review of the Symmetric BE-FE-Coupling in a Domain
Decomposition Framework

A good starting point for non-overlapping DD methods is the skeleton variational
formulation of the Boundary Value Problem (BVP) which we are going to solve.
For our model Dirichlet BVP,

−div(a∇u) = f in Ω and u = g on Γ = ∂Ω , (1)

the skeleton variational problem reads as follows [20]: Given g ∈ H1/2(Γ ), find

u ∈ H1/2
g (ΓS) such that

p

∑
i=1

∫
Γi

(Siu)(x)v(x)dsx =
p

∑
i=1

∫
Γi

(Ni f )(x)v(x)dsx ∀v ∈ H1/2
0 (ΓS), (2)

where Ω is shape-regularly decomposed into p non-overlapping subdomains Ωi

with the local boundaries Γi = ∂Ωi, i = 1, . . . , p. The skeleton ΓS is nothing but the
union of all subdomain boundariesΓi including the Dirichlet boundaryΓD = Γ . The
pseudo-differential operators Si and Ni denote the Steklov-Poincaré and the Newton

potential operators, respectively. H1/2
g (ΓS) and H1/2

0 (ΓS) are given by all functions
from skeleton trace space H1/2(ΓS) := {v|ΓS : v ∈ H1(Ω)} with the trace g and 0 on
Γ , respectively. For simplicity of the description of the discretization, we assume
that the domain Ω and subdomains Ωi are polygons or polyhedra in 2D or 3D,
respectively. Furthermore, we assume that a = ai = const > 0 and f = 0 in Ωi for
i = 1, . . . ,q, and 0 < const = ai ≤ a(·) ≤ ai = const in Ωi with a small ratio ai/ai
and f ∈ L2(Ωi) for i = q + 1, . . . , p.

Now it is clear from the properties of the data that we will use the BEM in
the first q and the FEM in the remaining subdomains for discretizing (2). The dis-
cretization of (2) starts with a quasi-regular surface triangulation of the skeleton ΓS

followed by a conforming regular volume triangulation of the FE subdomains Ω i,
i = q + 1, . . . , p. Using, for simplicity, piecewise linear boundary respectively finite
elements shape functions for approximating the potential u and piecewise constant
BE shape functions for approximating the normal derivatives (tractions) t = ∂u/∂ni

on the boundaries Γi of the BE subdomains, we arrive at the following BE / FE
approximations
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SBE
C,i = αiDC,i +αi

(1
2

M�C,i + K�C,i

)(
VC,i

)−1(1
2

MC,i + KC,i
)
, i = 1, . . . ,q, (3)

SFE
C,i = K(i)

CC−K(i)
CI

(
K(i)

II

)−1(K(i)
CI)
�, i = q + 1, . . . , p, (4)

and
NFE

C,i =
[
IC

∣∣∣−K(i)
CI

(
K(i)

II

)−1
]
, i = q + 1, . . . , p, (5)

to the Steklov-Poincaré operators Si and to the Newton potential Ni, respectively.
The block matrices VC,i, KC,i, DC,i and MC,i building the BE Schur complement
SBE

C,i arise from the BE Galerkin approximation to the single layer potential opera-
tor Vi, double layer potential operator Ki, hypersingular integral operator Di and the
identity operator Ii living on Γi, respectively, see, e.g., [20] for the precise definition.

The block matrices K(i)
CC, K(i)

CI = (K(i)
IC)� and K(i)

II building the FE Schur comple-
ment SFE

C,i and the FE Newton potential matrix NFE
C,i coincide with the blocks in the

subdomain stiffness matrix

Ki =

(
K(i)

II (K(i)
CI)
�

K(i)
CI K(i)

CC

)
, (6)

which is nothing else than the FE approximation to the Neumann problem in Ωi

whereas K(i)
II approximates the Dirichlet problem. Thus, for our potential equa-

tion (1), Ki is singular whereas K(i)
II is regular. We mention that the indices “C ”

and “I ” are associated with nodes located on the (coupling) boundary Γi and in the
interior of the subdomain Ωi, respectively.

Now this BE / FE Galerkin approximation to the skeleton variational formula-
tion (2) immediately leads to the BE-FE Schur-complement system

q

∑
i=1

R�i,0SBE
C,i RiuC +

p

∑
i=q+1

R�i,0SFE
C,i RiuC =

p

∑
i=q+1

R�i,0NFE
i (f�C,i, f

�
I,i)
� (7)

subject to the Dirichlet boundary condition RDuC = gD, where the vector uC con-
tains all nodal parameters living on the skeleton ΓS including the Dirichlet boundary
Γ . The restriction operators Ri, R�i,0 and RD are defined as usual (see, e.g., [19]).
Homogenizing the Dirichlet condition RDuC = gD in (7), we arrive at the symmetric
and positive definite (SPD) coupled BE-FE Schur-complement system that can be
solved by the Schur-complement PCG method with a suitable preconditioner for the
assembled BE-FE Schur-complement. Such preconditioners are available, see, e.g.,
[26] for the pure FE case and [20] for the pure BE and the coupled BE-FE cases.
However, Schur-complement PCG solvers require the solution of systems with the

matrices VC,i and K(i)
II in every step of the PCG iteration. Usually, in a pre-iteration

step, the LU-factorization of these matrices is performed. Thus, in every iteration
step, the multiplication with the Schur-complements only requires the foreward and
backward substitutions, which are far less costly than the LU-factorization. To avoid
Schur-complements, we can unfold the Schur-complements resulting in a larger
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system of algebraic equations that is still SPD in the pure FE case and that is a
saddle-point system (symmetric, but indefinite) if BE subdomains are present. In
this case we speak about inexact iterative substructuring methods. Solvers and pre-
conditioners for the inexact substructuring DD equations have been investigated in
[11] for the FE case and in [18, 10, 6] for the pure BE- and the coupled FE-BE-
cases. On the other hand, tearing and interconnecting methods have been developed
for solving pure FE-, pure BE- and coupled FE-BE DD equations now called FETI,
BETI and FETI-BETI methods (see [26] and [20] for an overview and relevant ref-
erences). In the next section we present such primal and dual iterative substructuring
solvers for IC-FE DD equations.

3 Interface-Concentrated FEM in Domain Decomposition

Let us consider the pure FE case where q = 0 and let us consider the 2D case (d = 2)
for simplicity. Further, let us assume that every subdomain Ωi is triangulated by a
geometric triangular mesh resulting in a conforming triangulation of the whole com-
putational domain Ω as illustrated in Figure 1 (left). It is clear that the geometric
mesh only produces O(Hi/hi) triangles and nodal points in contrast to a uniformly
refined FE mesh that has O((Hi/hi)2) triangles and nodal points. Now we use piece-
wise linear finite element shape functions only on the triangles which are close to
the subdomain boundaries, and hierarchically increase the polynomial degree of the
basis functions from the finer to the coarser levels in the geometric mesh (the larger
the distance of an element from the subdomain boundary the higher the degree) as
is shown in Figure 1. We refer the reader to [17] for the technical details of the BC
FE discretization and the derivation of the corresponding discretization error esti-
mates. We only mention that under appropriate smoothness assumptions the same
discretization error estimates are obtained as in the case of a uniformly refined FE

p=1

p=2

p=3

p=4

Fig. 1 Geometric (interface-concentrated) mesh with polynomial degree distribution (left) and
boundary element and interface-concentrated finite element mesh (right).
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mesh whereas the number of unknowns (DOF) per subdomain still behaves like the
number of unknowns on the subdomain boundary Γi, namely like O(Hi/hi).

The IC-FE-discretization leads to the SPD FE system

Khuh = fh, (8)

where the stiffness matrix has the following structure

Kh =
(

KII KIC

KCI KCC

)
(9)

after a corresponding reordering of the unknowns uh =
(
u�I ,u�C

)�
, where the in-

dex I refers to all interior unknowns and the index C to all coupling nodes. The

interior unknowns are arranged subdomain by subdomain. Hence, KII = diag(K(i)
II ).

The load vector fh has the same structure as the solution vector uh. Eliminating the
interior unknowns uI from (8)–(9), we arrive at the Schur-complement system (7)
that is equivalent to (8).

From the factorization

Kh =
(

III 0
KCIK−1

II ICC

)(
KII 0
0 SCC

)(
III K−1

II KIC

0 ICC

)
(10)

of the global stiffness matrix Kh, we can derive the factorized SPD preconditioner

Ch =
(

III 0
−E�IC ICC

)(
CII 0
0 CCC

)(
III −EIC

0 ICC

)
, (11)

where CII = diag(C(i)
II ) is a preconditioner for KII = diag(K(i)

II ) and CCC is a pre-
conditioner for the Schur-complement SCC = KCC−KCIK−1

II KIC. The block EIC is
nothing else than the matrix representation of a bounded extension operator from
the coupling boundary ΓC to the interior of the subdomains.

In [3], we proposed block preconditioners CII and CCC as well as an extension
operator EIC such that the preconditioner Ch is spectrally equivalent to the stiffness
matrix Kh with constants which are independent of h and H. The complexity of
the preconditioning operation C−1

h rh in the PCG iteration is the same as the matrix-
vector multiplication Khvh, namely O(H/h) in a parallel regime. Therefore, the
total complexity of the PCG iteration is proportional to O((H/h) log(ε−1)), where
ε ∈ (0,1) is the relative accuracy of the usual PCG iteration error.

The FETI methods avoid the preconditioning of the assembled Schur-comple-
ment SCC by tearing the global skeleton potential vector uC on all subdomain bound-
aries Γi including the Dirichlet boundaryΓD. Thus, we introduce the local unknowns
uC,i = RiuC in every subdomain Ω i separately, and enforce the global continuity
across the interfaces and Dirichlet conditions by the constraints

p

∑
i=1

BC,iuC,i = g (12)
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where the definition of the matrices BC,i and the vector g is straightforward (see
[26] and [19]). The incorporation of the Dirichlet conditions into the constraints
(12) is called All-Floating (AF) FETI [21] or total FETI [9]. Introducing Lagrange
multipliers λ , we can obviously transform the SPD Schur-complement system (7)
to the following equivalent saddle point problem⎛⎜⎜⎜⎝

SC,1 B�C,1
. . .

...
SC,p B�C,p

BC,1 . . . BC,p 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

uC,1
...

uC,p

λ

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
bC,1

...
bC,p

g

⎞⎟⎟⎟⎠ , (13)

with the singular Schur complements SC,i = SFE
C,i = SIC−FE

C,i (ker(SC,i) = span{1C,i})
and the right-hand sides bC,i = fC,i−KCI,iK−1

II,ifI,i, i = 1, . . . , p. System (13) is called
AF-FETI-2 system.

Now we can again unfold the Schur complements SC,i arriving at the larger saddle
point problem ⎛⎜⎜⎜⎝

K1 B�1
. . .

...
Kp B�p

B1 . . . Bp 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u1
...

up

λ

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
f1
...

fp

g

⎞⎟⎟⎟⎠ , (14)

with the Neumann matrices Ki on the main diagonal. System (14) or, more precisely,
its regularized version (see [3] for details) is called AF-FETI-3 system.

On the other hand, we can eliminate the primal variables uC,i from the AF-FETI-
2 system (13) and arrive at the AF-FETI-1 system

P�FPλ = P�b (15)

for determining the Lagrange multipliers λ , with the FETI operator F, the FETI
projector P, and the corresponding right-hand side b (see, e.g., [26] and [3] for a
detailed description).

The FETI-1 system (15) can be solved by means of a subspace PCG method
with the exact Dirichlet FETI preconditioner C−1

F = Adiag(SC,i)A�, where A is an
appropriately chosen scaling matrix. It can be shown that the number I(ε) of PCG
iterations only slowly grows like O((1+ log(H/h)) log(ε−1)) and is robust with re-
spect to coefficient jumps [3]. However, in every PCG iteration step, the solution
of local Neumann and Dirichlet problems are hidden. In order to avoid the solu-
tion of local Neumann and Dirichlet problems, inexact FETI methods can be used.
Inexact FETI methods are nothing else but a Krylov subspace solver (e.g., Bramble-
Pasciak’s PCG for saddle-point problems [4]) for the FETI-3 system (14). In order
to construct an appropriate preconditioner, we need block preconditioners Ci for Ki

and a FETI preconditioner CF . In [3], we have proved the following theorem.

Theorem 1. Let us assume that the AF-FETI-3 system (14) is solved by means of
the Bramble-Pasciak PCG method with the appropriately scaled local Neumann
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preconditioners Ci constructed in the same way as the factorized preconditioner
Ch for Kh (see formulas (11) and (10)) and with the scaled inexact Dirichlet FETI

preconditioner C−1
F = Adiag(K(i)

CC +E�IC,iK
(i)
II EIC,i−K(i)

CIEIC,i−E�IC,iK
(i)
IC)A�. Then

not more than I(ε) = O((1+ log(H/h)) log(ε−1)) iterations and ops(ε) = O((H/h)
(1+ log(H/h)) logε−1) arithmetical operations are required in order to reduce the
initial error by the factor ε ∈ (0,1) in a parallel regime, where H/h = maxHi/hi.
The number of iterations I(ε) is robust with respect to the jumps in the coefficients.

Let us discuss some results of our numerical experiments with the IC-FEM. We
consider the potential equation (1) modelling a magnetic valve in 2D, where the co-
efficient a(.) now denotes the reluctivity (which typically has large coefficient jumps
across the interfaces !), the current density f (.) is concentrated in the coil, and g = 0.
The geometry of the computational domainΩ and the IC mesh is shown in Figure 2.
Table 1 provides a comparison of the IC-FEM with the standard FEM obtained by
uniform mesh refinement. Both FE versions produce approximate solutions of the
same accuracy. However, the DOF grow with the factor 2 for the IC-FEM, whereas
the DOF quadruplicates for the standard FEM if the discretization parameter h is
halved. In both cases we use the one-level FETI-1 solver, where the local Neumann
problems in the matrix-vector multiplication and the local Dirichlet problems in the
FETI preconditioning step are solved by a direct solver which is of course not opti-
mal with respect to the complexity (see the CPU time in the last two columns). The
numbers of PCG iterations are almost the same for both cases (see column 7 and 8)
and grow like O(1 + log(H/h)) as predicted by the theory. Moreover, the iteration
numbers will not change significantly if the jumps of a(.) will artificially be varied
across the interfaces.

The numerical features (CPU time in seconds) of a parallel implementation of the
IC-FETI-1 algorithm on a 4× Dualcore Intel Xeon CPU 3.40 GHz (8 processors in
total) with 16 MB processor cache are presented in Table 2.

Fig. 2 The magnetic valve (left) and the IC mesh for the valve (right).
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Table 1 FETI1: PCG = I(ε = 10−8), CPU = [sec]

FETI IC-FETI FETI IC-FETI Lagr. H/h FETI IC-F FETI IC-FETI
global dof global dof local dof local dof dof PCG PCG CPU CPU

289 289 9 9 406 2 11 11 3.2 3.3
1089 833 25 21 630 4 13 14 6.9 7.4
4225 2945 81 61 1078 8 16 16 8.3 8.1

16641 10241 289 189 1974 16 18 18 9.6 9.3
66049 30977 1089 541 3766 32 19 20 12.5 11.7

263169 82689 4225 1405 7350 64 21 21 26.7 16.6
1050625 201473 16641 3373 14518 128 23 23 95.3 29.5
4198401 460545 66049 7645 28854 256 25 25 489.7 61.9

16785409 1007361 263169 16637 57526 512 26 26 2478.7 136.8
67125249 2137857 1050625 35179 114870 1024 – 28 – 327.2

268468225 4444929 4198401 73073 229558 2048 – 30 – 823.6
1073807361 9115393 16785401 149597 458934 4096 – 30 – 2043.3

Table 2 IC-FETI on a parallel computer [CPU-time in seconds]

global DOF 460545 1007361 2137867 4444929 9115393
local DOF 7645 16637 35197 73037 149597

1 processor 60.0 132.6 317.1 956.8 2043.3
2 processors 31.3 69.0 168.1 566.3 1184.4
4 processors 16.2 34.8 82.5 265.5 541.6
8 processors 9.6 19.2 56.8 160.7 342.5

4 Coupling of Data-Sparse BEM with Interface-Concentrated
FEM

The construction of coupled data-sparse BE and interface-concentrated FE equa-
tions in a non-overlapping DD framework is based on the representation (7), where
the BE matrices VC,i, KC,i and DC,i occuring in the BE Schur-complement (3)
are replaced by data-sparse approximations ṼC,i, K̃C,i and D̃C,i without perturbing
the spectral properties and discretization error estimates. However, the complexity
of the matrix-vector multiplications and the storage demand can be reduced from
O((H/h)2(d−1)) to O((H/h)(d−1)) up to a polylogarithmic factor. In the FE subdo-
mains Ωi, i = q + 1, . . . , p, we use the IC-FEM described in the preceding section,
i.e. SC,i = SFE

C,i = SIC−FE
C,i . The coupling is illustrated in Figure 1 (right).

As in the IC-FE case, we can construct primal and dual iterative substructuring
solvers. In [19], we study all-floating coupled data-sparse boundary and interface-
concentrated finite element tearing and interconnecting methods. In particular, for
BETI-FETI-3 solvers, we can show the same results as formulated in Theorem 1
with the only difference that we have to add a polylogarithmic factor to the com-
plexity estimates, e.g. (1 + log(H/h))2 for the Fast Multipole Method (see [19] for
details). In the same paper, we present also some numerical results for the valve
problem in R2, where the the exterior domain is included in the domain decompo-
sition as an additional subdomain Ω0 = R2 \Ω .
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5 A Boundary-Element-Based FEM

The pure BE case (q = p) was first considered by G.C. Hsiao and W.L. Wendland
in [14]. They already mentioned that there are two typical situations in DD, namely,
hi tends to 0 for fixed Hi and Hi tends to 0 for fixed Hi/hi. The former is typical
for DD with a fixed number p of subdomains (processors). The latter one means
a growing number p of subdomains with a fixed number of DOF per subdomain
which is typical in massively parallel computing.

Let us now consider the special case Hi = hi of the latter case, where q = p is
now the number Ne of polygonal (2D) or polyhedral (3D) elements. Similar to (7),
we obtain a linear system of the form (8) that can be considered as a sparse system
of FE equations, where the global stiffness matrix Kh and the global load vector fh

are assembled from the boundary element stiffness matrices SBE
C,i and the boundary

element load vectors fBE
C,i . The incorporation of the boundary conditions, in particu-

lar, of the Dirichlet condition can be done in the same way as in the usual FEM. The
element load vectors fBE

C,i are defined by the relation fBE
C,i = M�C,i

(
VC,i

)−1fN
C,i, where

the vector fN
C,i is given by the Newton potential identity

(fN
C,i, tC,i) =

∫
Γi

∫
Ωi

U∗(x,y) f (y)dyth,i(x)dsx (16)

for all vectors tC,i corresponding to the piecewise constant functions th,i on the trian-
gulation of Γi, where U∗ denotes the fundamental solution of the Laplace operator.

In our first numerical experiments we apply this BE-based FEM to the Laplace
equation with prescribed Dirichlet conditions g(x) = log‖x− x∗‖ on the boundary
Γ = ∂Ω , where the singularity x∗ = (1.1,1.1)� is located outside the computational
domain Ω = (0,1)× (0,1). It is easy to see that in the case of Courant’s triangular
element the BE-based FE stiffness matrix coincides with the standard FE stiffness
matrix. In the case of the Laplace equation the right-hand sides are also identi-
cal. Therefore, the same discretization error estimates are valid. In this case, the
generation time for the BE-based FE stiffness matrix is approximately three times
higher than for the Courant stiffness matrix (e.g. 13.3 seconds vs. 4.7 seconds for
263169 unknowns). However, the BE-based FEM can obviously be used for general
polygonal (2D) and polyhedral (3D) elements Ωi. We performed two series of ex-
periments. In the first series, we generated random quadrangular meshes where the
nodes of a uniform quadrangular mesh were randomly shifted within some neigh-
borhood of the nodes (see left picture of Figure 3), whereas in the second series
we generated hexagonal meshes (see right picture of Figure 3). Table 3 shows the
numerical results for 4 different grids, where the Algebraic Multigrid (AMG) PCG,
implemented in the AMG code PEBBLES [22], was used for solving the system
of algebraic equations. L denotes the number of levels which were generated by
the AMG code. The generation time for the stiffness matrix and the setup time for
the AMG in seconds are given in the columns with the headers Kh and Setup, re-
spectively. The CPU times reflect the linear complexity of the generation procedure
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and the AMG set up. The number I(ε) of PCG iterations for reducing the initial
error by the factor ε = 10−12 and the CPU time per iteration cycle are presented in
the columns with the headers Cycle and I(ε), respectively. Finally, we present the
discretization error in the L2(Ω) - norm that behaves like expected.

Table 3 Numerical features for the random quadrangular (left) and the hexagonal (right) meshes

AMG PCG AMG PCG
Nh L Kh Setup Cycle I(ε) ‖u−uh‖0,Ω Nh L Kh Setup Cycle I(ε) ‖u−uh‖0,Ω

16641 4 0.9 0.6 0.06 16 3.3 E-6 25440 4 1.6 2.1 0.14 12 2.0 E-5
66049 5 3.7 2.8 0.26 17 8.4 E-7 102080 5 6.5 10.7 0.57 10 1.9 E-6

263169 6 15.0 15.8 1.07 19 2.1 E-7 408960 6 26.0 58.4 2.34 10 1.9 E-7

Acknowledgements The author would like to thank his colleagues S. Beuchler, D. Copeland,
C. Pechstein and D. Pusch for their contributions to this paper. Last but not least, the support by
the Austrian Science Fund (FWF) under the grant P19255 is gratefully acknowledged.

References

1. Bebendorf, M.: Approximation of boundary element matrices. Numerische Mathematik 86,
565–589 (2000)

2. Bebendorf, M., Rjasanow, S.: Adaptive low–rank approximation of collocation matrices.
Computing 70, 1–24 (2003)

3. Beuchler, S., Eibner, T., Langer, U.: Primal and dual interface concentrated iterative substruc-
turing methods. SIAM J. Numer. Anal. (2008). To appear

4. Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems resulting from
mixed approximations of elliptic problems. Math. Comp. 50(181), 1–17 (1988)

5. Brezzi, F., Johnson, C.: On the coupling of boundary integral and finite element methods.
Calcolo 16, 189–201 (1979)

6. Carstensen, C., Kuhn, M., Langer, U.: Fast parallel solvers for symmetric boundary element
domain decomposition equations. Numerische Mathematik 79, 321–347 (1998)

7. Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimen-
sions. J. Comput. Phys. 155(2), 468–498 (1999)

Fig. 3 Random quadrangular mesh (left) and hexagonal mesh (right).



26 U. Langer

8. Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements.
In: C. Brebbia, W. Wendland, G. Kuhn (eds.) Boundary Elements IX, pp. 411–420. Springer,
Berlin, Heidelberg, New York (1987)

9. Dostál, Z., Horák, D., Kuc̆era, R.: Total FETI - an easier implementable variant of the FETI
method for numerical solution of elliptic PDE. Comm. Numer. Methods Engrg. 22(12), 1155–
1162 (2006)

10. Haase, G., Heise, B., Kuhn, M., Langer, U.: Adaptive domain decomposition methods for
finite and boundary element equations. In: W. Wendland (ed.) Boundary Element Topics, pp.
121 –147. Springer, Berlin, Heidelberg, New York (1997)

11. Haase, G., Langer, U., Meyer, A.: The approximate Dirichlet decomposition method. Part I:
An algebraic approach, Part II: Applications to 2nd-order elliptic BVPs. Computing 47, 137–
167 (1991)

12. Hackbusch, W.: A sparse matrix arithmetic based on H -matrices. Part I: Introduction to H -
matrices. Computing 62(2), 89–108 (1999)

13. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element
method by panel clustering. Numer. Math. 54(4), 463–491 (1989)

14. Hsiao, G.C., Wendland, W.L.: Domain decomposition in boundary element methods. In: Pro-
ceedings of the Fourth Intern. Symposium on Domain Decomposition Methods for Partial Dif-
ferential Equations (ed. by R. Glowinski and Y.A. Kuznetsov and G. Meurant and J. Périaux
and O. B. Widlund), Moscow, May 21–25, 1990, pp. 41–49. SIAM, Philadelphia (1991)
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Discontinuous Galerkin Elements for
Reissner-Mindlin Plates

L.D. Marini

Abstract We present an overview of some families of locking-free elements for
Reissner-Mindlin plates recently introduced and analyzed in [2] and [1]. They are
all based on the ideas of discontinuous Galerkin approach, and they vary in the
amount of interelement continuity required.

1 Introduction

The Reissner–Mindlin model for moderately thick clamped plates consists in loock-
ing for the rotation vector θθθ and the transverse displacement w which minimize over
HHH1

0(Ω)×H1
0 (Ω) the (scaled) plate energy

J(θθθ ,w) =
1
2

∫
Ω

Cε(θθθ ) : ε(θθθ )dx+
1
2
λ t−2

∫
Ω
|∇∇∇w−θθθ |2 dx−

∫
Ω

gwdx, (1)

where the coefficients C and λ depend on the material properties of the plate, g
is the scaled load, and t is the plate thickness. If one minimizes the energy over
subspaces consisting of low order finite elements, then the resulting approximation
suffers from the problem of locking, which can be described as follows. As t tends
to 0, the solution of (1) tends to (θθθ 0,w0), where θθθ 0 = ∇∇∇w0 which, in general, will
not be zero (actually, w0 will be the solution of the Kirchhoff model). If we dis-
cretize the problem directly by seeking θθθ h ∈ΘΘΘ h and wh ∈Wh minimizing J(θθθ ,w)
overΘΘΘ h×Wh, then as t vanishes, (θθθh,wh) will converge to some (θθθ 0,h,w0,h) where,
again, θθθ 0,h = ∇∇∇w0,h. For low order finite element spaces, this last condition is too
restrictive. In particular, if continuous piecewise linear functions are used to ap-
proximate both variables, then θθθ 0,h ≡ ∇∇∇w0,h would be continuous and piecewise
constant, with zero boundary conditions. Only the choice θθθ 0,h = 0 can satisfy all

L. Donatella Marini
Università di Pavia and IMATI-CNR, Via Ferrata 1, 27100 Pavia(Italy), e-mail: marini@imati.cnr.it
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these conditions. For t very small, the quantity θθθ h−∇∇∇wh, although not necessarily
zero, must be very small, and hence θθθ h will be very close to zero, instead of being
close to θθθ which, in turn, will be close to θθθ0. Another way of looking at this problem
is from the point of view of approximation: for small t, one cannot find suitable in-
terpolants θθθ I and wI that are close to θθθ and w, respectively, if one requires θθθ I−∇∇∇wI

to be of the order of t2.
A number of approaches have been developed to avoid the locking problem. One

successful idea has been to introduce an additional finite element space ΓΓΓ h and a re-
duction operator PPPh :ΘΘΘ h→ΓΓΓ h, and then look for θθθ h ∈ΘΘΘ h and wh ∈Wh minimizing
a modified energy functional

Jh(θθθ ,w) =
1
2

∫
Ω

Cε(θθθ ) : ε(θθθ )dx +
1
2
λ t−2

∫
Ω
|∇∇∇w−PPPhθθθ |2 dx−

∫
Ω

gwdx. (2)

A crucial assumption is that ∇∇∇Wh is a subset of ΓΓΓ h, and in particular of the image of
PPPh. As t tends to 0, the limiting condition will now be the much less demanding

PPPhθθθ 0,h = ∇∇∇w0,h. (3)

Various locking-free finite elements have been obtained in this way (see, e.g., [3],
[5], [8], [11], [12], [9], [13], [10]).

In [2], the techniques of Discontinuous Galerkin (DG) methods were used to
develop two families of odd-degree locking-free elements. Since DG solutions are
not required to satisfy the standard interelement continuity conditions of conforming
finite element methods (that is, continuous elements in the case of the Reissner–
Mindlin plate problem), the method allows a greater flexibility.

Starting from the approach of [2], other elements were introduced ([9], [13], [10])
for the functional (2), while in [1] a collection of families of locking-free elements
which do not need the reduction operator PPPh were developed. The common feature
in all the methods considered in [1] is to choose Wh to be piecewise polynomials
of degree ≤ k (with k ≥ 2), and ΘΘΘh = ΓΓΓ h to be piecewise polynomials of degree
≤ k−1. The methods vary in the amount of interelement continuity required.

In the present paper we shall give an overview of some DG elements, and we
shall report the convergence results, referring for the proofs to the corresponding
papers.

2 Discontinuous Galerkin Discretization

Introducing the shear stress γγγ = λ t−2(∇∇∇w−θθθ ) as an auxiliary variable, and writing
the Euler equations for the energy functional (1) we may write the Reissner–Mindlin
equations as:



Discontinuous Galerkin Elements for Reissner-Mindlin Plates 29

−divCε(θθθ )− γγγ = 0 in Ω , (4)

−divγγγ = g in Ω , (5)

∇∇∇w−θθθ − t2γγγ = 0 in Ω , (6)

θθθ = 0, w = 0 on ∂Ω . (7)

Equation (6) should actually be ∇∇∇w−θθθ −λ−1t2γγγ = 0, where λ is the shear correc-
tion factor, but we set λ = 1 to simplify the presentation. By setting

a(θθθ ,ηηη) = (Cε(θθθ ),ε(ηηη)) for θθθ , ηηη ∈ HHH1(Ω)

the variational formulation of equations (4)–(7) is:
Given g ∈ L2(Ω), find θθθ ∈ HHH1

0(Ω), w ∈ H1
0 (Ω) and γγγ ∈ LLL2(Ω) such that

a(θθθ ,ηηη)+ (γγγ,∇∇∇v−ηηη) = (g,v) ∀(ηηη ,v) ∈HHH1
0(Ω)×H1

0 (Ω), (8)

(∇∇∇w−θθθ ,τττ)− t2(γγγ,τττ) = 0 ∀τττ ∈ LLL2(Ω). (9)

Before proceeding we need to introduce some notations. We shall use the usual
Sobolev spaces such as Hs(Ω), with the corresponding seminorm and norm denoted
by | · |s and ‖ · ‖s, respectively. By convention, we use boldface type for the vector-
valued analogues (HHHs(Ω) = [Hs(Ω)]2), and calligraphic type for symmetric-tensor-
valued analogues (H s(Ω) = [Hs(Ω)]2sym); we use parentheses ( · , ·) to denote the

inner product in any of the spaces L2(Ω), LLL2(Ω), or L 2(Ω).
We recall the following result (see [3], [4] for a more general case). If Ω is

a convex polygonal domain, and C is smooth, then problem (8)–(9) has a unique
solution that verifies

‖θθθ‖2 +‖w‖2 +‖γγγ‖0 + t‖γγγ‖1 ≤C(‖g‖−1 + t‖g‖0), (10)

where C is a constant depending only on Ω and on the coefficients in C.
Let now Th be a family of shape-regular decompositions of Ω into triangles T

and let Eh denote the set of all the edges in Th. For piecewise polynomial spaces,
we use the notation

L s
k (Th) = {v ∈ Hs(Ω) : v|T ∈Pk(T ), T ∈Th }, (11)

where, as usual, Pk(T ) is the set of polynomials of degree at most k on T . Since
we will work with discontinuous finite elements not belonging to H1(Ω), we define
the space

H1(Th) := {v ∈ L2(Ω) : v|T ∈ H1(T ), T ∈Th }. (12)

Differential operators can be applied to this space only piecewise. We indicate this
by a subscript h on the operator. Hence, the space H1(Th) will be equipped with the
seminorm |v|1,h = ‖∇∇∇hv‖0 and the corresponding norm ‖v‖2

1,h = |v|21,h +‖v‖2
0.

Finally, before deriving a DG discretization of (8)–(9) we need to introduce typ-
ical tools as averages and jumps on the edges of Th. Let e be an internal edge of
Th, shared by two elements T + and T−, and let nnn+ and nnn− denote the unit normals
to e, pointing outward from T+ and T−, respectively. If ϕ belongs to H1(Th) (or
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possibly the vector- or tensor-valued analogue), we define the average {ϕ} on e as
usual:

{ϕ}=
ϕ+ +ϕ−

2
.

For a scalar function ϕ ∈ H1(Th) we define its jump on e as

[|ϕ |] = ϕ+nnn+ +ϕ−nnn−,

which is a vector normal to e. The jump of a vector ϕϕϕ ∈ HHH1(Th) is the symmetric
matrix-valued function given on e by:

[|ϕϕϕ |] = ϕϕϕ+�nnn+ +ϕϕϕ−�nnn−,

where ϕϕϕ�nnn = (ϕϕϕ⊗nnn+ nnn⊗ϕϕϕ)/2 is the symmetric part of the tensor product of ϕϕϕ
and nnn.

On a boundary edge, the average {ϕ} is defined simply as the trace of ϕ , while
for a scalar-valued function we define [|ϕ |] to be ϕnnn (with nnn the outward unit nor-
mal), and for a vector-valued function we define [|ϕϕϕ |] = ϕϕϕ�nnn.

It is easy to check that, (using the symbol 〈 · , · 〉 to denote L2-inner product of
functions or vectors on Eh)

∑
T∈Th

∫
∂T

ϕϕϕ ·nnnT vds = 〈{ϕϕϕ}, [|v|]〉, ϕϕϕ ∈ HHH1(Ω), v ∈H1(Th). (13)

Similarly,

∑
T∈Th

∫
∂T

S nnnT ·ηηη ds = 〈{S }, [|ηηη |]〉, S ∈H 1(Ω), ηηη ∈ HHH1(Th). (14)

To derive a finite element method for the Reissner–Mindlin system based on
discontinuous elements, we test (4) against a test function ηηη ∈ HHH2(Th) and (5)
against a test function v ∈ H1(Th), integrate by parts, and add. Since ηηη and v may
be discontinuous across element boundaries, we obtain terms at the interelement
boundaries that we manipulate using (13)-(14). We obtain:

(Cεh(θθθ ),εh(ηηη))−〈{Cεh(θθθ )}, [|ηηη|]〉+(γγγ,∇∇∇hv−ηηη)−〈{γγγ}, [|v|]〉= (g,v), (15)

(ηηη ,v) ∈ HHH2(Th)×H1(Th),
(∇∇∇hw−θθθ ,τττ)− t2(γγγ,τττ) = 0, τττ ∈HHH1(Th). (16)

The second and fourth terms in (15) involve integrals over the edges and would not
be present in conforming methods. They arise from the integration by parts and are
necessary to maintain consistency.

We now proceed as is common for DG methods. (For a different point of view on
this type of derivation see [6]). First, we add terms to symmetrize this formulation so
that it is adjoint-consistent as well. Second, to stabilize the method, we add interior
penalty terms pΘ (θθθ ,ηηη) and pW (w,v) in which the functions pΘ and pW will depend
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only on the jumps of their arguments. Following [2] we set

pΘ (θθθ ,ηηη) = ∑
e∈Eh

κΘ

|e|
∫

e
[|θθθ |] : [|ηηη |]ds, pW (w,v) = ∑

e∈Eh

κW

|e|
∫

e
[|w|] · [|v|]ds, (17)

so that pΘ (ηηη ,ηηη), (pW (v,v), respectively) can be viewed as a measure of the devi-
ation of ηηη (v, respectively) from being continuous. The parameters κΘ and κW are
positive constants to be chosen; they must be sufficiently large to ensure stability.
Since [|θθθ |] = 0 and [|w|] = 0, equations (15)–(16) can then be written as

(Cεh(θθθ ),εh(ηηη))−〈{Cεh(θθθ)}, [|ηηη |]〉− 〈[|θθθ |],{Cεh(ηηη)})〉+(γγγ,∇∇∇hv−ηηη)

−〈{γγγ}, [|v|]〉+ pΘ(θθθ ,ηηη)+ pW (w,v) = (g,v), (ηηη ,v) ∈ HHH2(Th)×H1(Th),(18)

(∇∇∇hw−θθθ ,τττ)−〈[|w|],{τττ}〉− t2(γγγ,τττ) = 0, τττ ∈HHH1(Th). (19)

To obtain a DG discretization, we have to choose finite dimensional subspacesΘΘΘ h⊂
HHH2(Th), Wh ⊂ H1(Th), and ΓΓΓ h ⊂ HHH1(Th), and then write the discrete problem:

Find (θθθh,wh) ∈ΘΘΘ h×Wh and γγγh ∈ ΓΓΓ h such that

(Cεh(θθθ h),εh(ηηη))−〈{Cεh(θθθ h)}, [|ηηη|]〉− 〈[|θθθh|],{Cεh(ηηη)})〉
+(γγγh,∇∇∇hv−ηηη)−〈{γγγh}, [|v|]〉 (20)

+pΘ (θθθh,ηηη)+ pW (wh,v) = (g,v), (ηηη ,v) ∈ΘΘΘ h×Wh,

(∇∇∇hwh−θθθ h,τττ)−〈[|wh|],{τττ}〉− t2(γγγh,τττ) = 0, τττ ∈ ΓΓΓ h. (21)

For any choice of the finite element spacesΘΘΘh, Wh, and ΓΓΓ h, and any interior penalty
functions pΘ and pW depending only on the jumps of their arguments, this gives a
consistent finite element method since no reduction operator PPPh is used. If instead
PPPh is needed, there will be a consistency error to be estimated, and equations (20)-
(21) will be modified into:

(Cεh(θθθ h),εh(ηηη))−〈{Cεh(θθθ h)}, [|ηηη|]〉− 〈[|θθθh|],{Cεh(ηηη)})〉
+(γγγh,∇∇∇hv−PPPhηηη)−〈{γγγh}, [|v|]〉 (22)

+pΘ (θθθh,ηηη)+ pW (wh,v) = (g,v), (ηηη ,v) ∈ΘΘΘ h×Wh,

(∇∇∇hwh−PPPhθθθ h,τττ)−〈[|wh|],{τττ}〉− t2(γγγh,τττ) = 0, τττ ∈ ΓΓΓ h. (23)

In the next section we shall recall different choices of the finite element spaces.
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3 The Finite Elements

We recall in this section some DG-elements/families developed so far. We refer to
the original papers for detailed proofs, and we will just recall the resulting error
estimates obtained in the DG-norms defined as

|||ηηη |||2Θ := ‖ηηη‖2
1,h + ∑

e∈Eh

(
1
|e|‖[|ηηη |]‖

2
0,e + |e|‖{Cεh(ηηη)}‖2

0,e

)
, ηηη ∈ HHH2(Th),

|||v|||2W := |v|21,h + ∑
e∈Eh

1
|e|‖[|v|]‖

2
0,e, v ∈ H1(Th), (24)

|||τττ|||2Γ := ‖τττ‖2
0 + ∑

e∈Eh

|e|‖{τττ}‖2
0,e, τττ ∈ HHH1(Th).

3.1 DG-Elements Based on the Use of the Reduction Operator PPPh

Example 3.1.1 The following family of elements of odd degree k ≥ 1 was intro-
duced in [2]:

ΘΘΘ h = L 0
k (Th), Wh = L 0

k (Th), ΓΓΓ h = L 0
k−1(Th), (25)

where L 0
k (Th) denotes the space of discontinuous piecewise polynomials of degree

≤ k (see (11)). The penalty term pΘ (θθθ ,ηηη) is taken as in (17), while pW (w,v) is
somewhat weaker:

pW (w,v) = ∑
e∈Eh

κW

|e|
∫

e
QQQe[|w|] ·QQQe[|v|]ds, (26)

and QQQe is the projection onto polynomials of degree k−1. The error estimates in the
norms (24) are:

|||θθθ −θθθh|||Θ + |||w−wh|||W + t|||γγγ− γγγh|||Γ (27)

≤C hk
(‖θθθ‖k+1,Ω +‖w‖k+1,Ω + t‖γγγ‖k,Ω +‖γγγ‖k−1,Ω

)
,

which are optimal in terms of order of convergence, and for the case k = 1 also in
terms of regularity (see (10)). The definition of PPPh is quite complicated and will not
be detailed here. We note however that, for the lowest order case k = 1, the reduction
operator PPPh is simply the L2 projection onto the piecewise constant space L 0

0 (Th).
The degrees of freedom are shown in Fig. 1.

Example 3.1.2 In the spirit of [2], a linear nonconforming element plus a
quadratic nonconforming bubble was first obtained and analyzed in [9]. Then Lo-
vadina in [13] showed that the bubble is actually not needed, and also proved op-
timal L2−estimates (see also [10]). Denoting by Pnc

1 the space of piecewise linear
polynomials continuous at the midpoint of each edge of Th, the choice of spaces is
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wθ γ

Fig. 1 Totally discontinuous elements: d.o.f. for the lowest order case

ΘΘΘ h = Pnc
1 , Wh = Pnc

1 , ΓΓΓ h = L 0
k−1(Th), (28)

and the degrees of freedom are shown in Fig. 2. For this element, optimal estimates

θ w γ

Fig. 2 D.o.f. for the nonconforming element

were proved in [13]

||θθθ −θθθh||1,h + ||w−wh||1,h + ||γγγ− γγγh||Γ + t||γγγ− γγγh||0 ≤Ch ||g||0, (29)

and in [10] for the L2 error:

||θθθ −θθθ h||0 + ||w−wh||0 ≤Ch2||g||0. (30)

3.2 DG-Elements without Reduction Operator PPPh

Two families of elements for the formulation (20)–(21) were developed in [1]. In all
the cases the transverse displacement w is approximated with piecewise polynomials
of degree at most k, with k ≥ 2, while the rotations θθθ and the shear stresses γγγ with
piecewise polynomials of degree ≤ k− 1, and the methods differ in the amount of
continuity required at the interelement boundaries. In all the cases the spaces satisfy

∇∇∇Wh ⊆ΘΘΘh = ΓΓΓ h. (31)

Example 3.2.1 In the first family of elements w is approximated by continuous finite
elements, so that equations (20)–(21) simplify into:
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ah(θθθh,ηηη)+ (γγγh,∇∇∇v−ηηη) = (g,v), (ηηη ,v) ∈ΘΘΘ h×Wh, (32)

(∇∇∇wh−θθθh,τττ)− t2(γγγh,τττ) = 0, τττ ∈ ΓΓΓ h. (33)

Inclusion (31) forbids the use of a space ΘΘΘ h consisting of continuous functions.
However, since wh is continuous, it allows choices where the tangential component
is continuous (as well as totally discontinuous choices). We recall here the choice
that minimizes the number of degrees of freedom. For other possible choices see
[1]. We take

Wh = L 1
k , ΘΘΘ h = ΓΓΓ h = BDMR

k−1 k ≥ 2, (34)

where BDMR
k−1 denotes the rotated Brezzi-Douglas-Marini space of degree k− 1,

i.e., the space of all piecewise polynomial vector fields of degree at most k−1 with
tangential components continuous at the interelements [7]. With this choice, the
inclusion (31) is clearly satisfied. The following estimates were proved in the norms
(24):

|||θθθ −θθθ h|||Θ + t‖γγγ− γγγh‖0 ≤Chk−1(‖θθθ‖k + t‖γγγ‖k−1), (35)

‖∇∇∇(w−wh)‖0 ≤C(hk + thk−1)(‖θθθ‖k + t‖γγγ‖k−1), (36)

and in L2:
‖w−wh‖0 +‖θθθ −θθθ h‖0 ≤Chk(‖θθθ‖k + t‖γγγ‖k−1). (37)

Estimates (35)–(36) are optimal with respect to order of convergence (and also with
respect to regularity for the case k = 2, according to (10)) while (37) is optimal for
θθθ and suboptimal of one order for w.

Fig. 3 shows the degrees of freedom for the lowest order element of the family:

w θθθ γγγ

Fig. 3 Continuous w: lowest-order elements without reduction operator

Example 3.2.2 The second family consists of totally discontinuous elements. Thus,
the spaces are

Wh = L 0
k , ΘΘΘ h = ΓΓΓ h = L 0

k−1 k ≥ 2, (38)

and the inclusion (31) is obviously verified. For this family the following error esti-
mates were proved in the norms (24):

|||θθθ −θθθh|||Θ + t‖γγγ− γγγh‖0 +[pW (w−wh,w−wh)]1/2 ≤Chk−1(‖θθθ‖k +‖γγγ‖k−1),
(39)

|||w−wh|||W ≤Chk−1(‖θθθ‖k +‖γγγ‖k−1 +‖w‖k), (40)
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and in L2:
‖θθθ −θθθ h‖0 +‖w−wh‖0 ≤ C hk(‖θθθ‖k +‖γγγ‖k−1). (41)

The bad feature of these estimates is the lack of the factor t in the norm ‖γγγ‖k−1

on the right hand side. Since this norm behaves like t−(k−3/2) as t → 0, the extra
factor of t helps to control the size of this term, and for k = 2 guarantees that it
remains bounded. A better estimate in this respect can be obtained by assuming that
the Helmholtz decomposition for γγγ holds. In this case we have:

|||θθθ −θθθ h|||Θ + t‖γγγ− γγγh‖0 +[pW (w−wh,w−wh)]1/2

≤C hk−1(‖θθθ‖k + t‖γγγ‖k−1 +‖γγγ‖HHHk−2(div)), (42)

|||w−wh|||W ≤C hk−1(‖θθθ‖k + t‖γγγ‖k−1 +‖γγγ‖HHHk−2(div) +‖w‖k),

and in L2:

‖θθθ −θθθ h‖0 +‖w−wh‖0 ≤ C hk(‖θθθ‖k + t‖γγγ‖k−1 +‖γγγ‖HHHk−2(div)). (43)

We point out that the regularity of γγγ is such that, for the lowest-order case k = 2, the
Helmholtz decomposition holds, and estimates (42)–(43) are optimal with respect
to regularity. Indeed, ‖γγγ‖HHHk−2(div) ≡ ‖divγγγ‖0 ≡ ‖g‖0 which does not explode when
t → 0. In terms of order of convergence they are optimal for θθθ , and suboptimal of
one order for w. The lowest-order elements are depicted in Fig. 4.

w θθθ γγγ

Fig. 4 Totally discontinuous elements without reduction operator: lowest-order elements

4 Conclusions

We presented a quick overview of some locking-free finite elements for Reissner-
Mindlin plates, obtained through the use of Discontinuous Galerkin techniques.
Since DG solutions are not required to satisfy the interelement continuity conditions
of conforming finite elements, DG methods result more flexible and offer possibili-
ties, in terms of degree of the finite elements, which are forbidden with conforming
elements. For instance, the simple linear element of Example 3.1.1 would be un-
thinkable for conforming approximations. Similarly, the nonconforming linear ele-
ment of Example 3.1.2 would have been hard to derive without the DG techniques.
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The counterpart is that discontinuity implies an increasing of the number of un-
knowns, and efficient techniques to handle the final linear systems might be needed.
The low order elements of Subsection 3.1 are very appealing, but their behavior
might depend on the choice of the parameters in the penalty terms. By increasing
these parameters one increases continuity, and the elements get closer to conforming
elements, with the risk of locking. This dependence should be checked in practice,
and sound numerical tests should be performed to compare the new elements with
existing conforming elements, but this goes beyond the scope of this paper. We refer
to [10] for numerical results on various linear nonconforming elements.
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Functional Type A Posteriori Error Estimates
for Maxwell’s Equations

A. Hannukainen

Abstract In this note, we consider functional type a posteriori error estimation
for eddy current and time-harmonic approximations of the Maxwell’s equations.
Derivation of an upper bound is presented in both cases. The derived bound for the
eddy current case is illustrated in numerical examples.

1 Introduction

Estimating the reliability of numerical solutions is crucial in all computational sim-
ulations. Two main approaches applied in this context are a priori and a posteriori
error estimates. A priori error estimates give information on the behavior of the er-
ror, i.e. the difference between exact and approximate solutions, in the asymptotic
range. Since the asymptotic range might be impossible to reach with reasonable
computational resources, a prior estimates mostly play a theoretical role by guar-
anteeing convergence of the numerical method. A posteriori error estimates, on the
other-hand, can deliver information on the numerical solution at hand, thus having
more value in practical computations.

A posteriori error estimates in the context of the finite element method have been
studied extensively during the past three decades. However, a posterior error esti-
mation of finite element solutions to different models based on Maxwell’s equations
is quite recent field of study. The focus is mainly on problems with elliptic structure
(e.g., the eddy current problem), which have been studied by several authors [2, 10].
Some work on the time-harmonic problem has been done in [6].

Majority of the existing research has focused on developing residual type error
estimates. Such estimates contain mesh dependent constants from Clémént interpo-
lation. Upper bounds for these Clémént interpolation constants are computationally

Antti Hannukainen
Institute of Mathematics, Helsinki University of Technology, P. O. Box 1100, FIN–02015 TKK,
Finland, antti.hannukainen@hut.fi
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expensive and suffer from large overestimation (see [3]). Hence, the existing resid-
ual based a posterior error estimates cannot deliver sharp upper bound for the error
and serve mainly as error indicators.

A recent approach for obtaining computable a posterior upper bounds is the func-
tional type error estimation. In the context of Maxwell’s equations, an error bound
for the eddy current problem can be obtained based on abstract bounds presented in
[8]. A different derivation, presented also in this note, can be found from [9]. To the
authors knowledge, a functional type bound has not been applied to time-harmonic
problems, neither has the eddy-current bound been tested in practice.

In this note, we will derive a functional type error bound for the time-harmonic
problem and present numerical examples from the functional type error estimate in
the case of the eddy current problem. We will also propose a simple computational
technique for choosing the required parameter. The obtained results clearly indicate
the potential of functional type a posteriori error estimates for this type of problems.

2 Preliminaries

The model problem is

∇×∇×u+βu = f in Ω
n×u = 0 on ∂Ω ,

(1)

in which Ω ⊂R3 is a simply connected polyhedral domain with Lipschitz continuos
boundary (for details, see [7]) and f ∈ L2(Ω). We will study the model problem in
two different cases, β ∈ R,β > 0 and β ∈ C,ℑβ ≥ 0. The positive parameter value
corresponds to the eddy current problem posed in a cavity with positive conductivity
(σ > 0) with PEC (perfect electric conductor) boundaries. The complex-valued pa-
rameter corresponds to the time-harmonic approximation of the Maxwell’s equation
in a cavity with PEC boundaries.

The weak form of the classical problem (1) is : find u ∈ H0 (Ω ,curl) such that

a(u,v) = (f,v) ∀ v ∈ H0 (Ω ,curl) , (2)

in which (·, ·) is the standard L2 (Ω) innerproduct and

a(u,v) = (∇×u,∇×v)+β (u,v) . (3)

The space H0 (Ω ,curl) is defined as

H0 (Ω ,curl) = { u ∈ L2 (Ω) | ∇×u ∈ L2 (Ω) and n×u = 0 on ∂Ω },

where the boundary condition is to be understood in the sense of boundary traces.
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For positive parameter values, β > 0, the bilinear form a(·, ·) is continuous and
elliptic in H0 (Ω ;curl), i.e. there exists positive constants α and C such that for every
v,u ∈ H0 (Ω ,curl)

|a(u,v)| ≤C‖u‖curl‖v‖curl and |a(u,u)|> α‖u‖2
curl ,

where the norm ‖ · ‖curl is the defined as ‖ · ‖curl := ‖ · ‖+ ‖∇× ·‖ and ‖ · ‖ is the
standard L2(Ω)-norm. Under these conditions, a unique solution to problem (2) can
be guaranteed by applying the Lax-Millgramm Lemma.

For complex-valued parameters, the sesquilinear form (3) is not elliptic. In this
case, the existence of a unique solution to (2) is guaranteed by a proof presented in
[7, Section 4].

3 Error Estimate

In this section, we present functional type a posteriori error estimates for the model
problem (2) in the case of positive and complex-valued parameters. Estimates will
be derived for any admissible approximate solution ũ ∈ H0 (Ω ,curl). The exact so-
lution is denoted by u and error by e = u− ũ .

The error is a solution to the problem : find a function e ∈H0 (Ω ,curl) such that

a(e,v) = r (v) ∀ v ∈H0 (Ω ,curl) , (4)

where r (·) is the residual defined as r (v) = (f,v)−a(ũ,v).
For both cases, the error estimation will reduce to estimation of the residual r(e).

This is similar to other error estimation techniques. For example, in the case of
residual based error estimates, a priori information out of the approximation prop-
erties of the finite dimensional solution space are introduced into the residual in the
form of Clémént interpolant. This approach requires an approximate solution, which
posesses the Galergin orthogonality property.

In the functional type a posteriori error estimation approach an arbitrary param-
eter y∗ is introduced in to the estimate. This approach does not require the Galergin
orthogonality and it can be applied to any approximate solution. However, fixing the
parameter y∗ poses an additional computational load.

3.1 Real Case β > 0

In this subsection, an upper bound for the error is derived in the energy norm

|||v||| :=
√

a(v,v),
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which is well defined for real positive parameter values. The error in the energy
norm satisfies |||e|||2 = r (e), thus the main task in deriving an upper bound for the
error in the energy norm is to estimate the residual.

Theorem 1. Let u ∈ H0 (Ω ,curl) be the solution to (2) with β > 0. For any ũ,y∗ ∈
H0 (Ω ,curl) there applies

|||e|||2 ≤ ‖β−1/2 (f−β ũ−∇× y∗)‖2 +‖(∇× ũ−y∗)‖2. (5)

Proof. We begin by introducing parameter y∗ ∈ H0 (Ω ,curl) to the residual

r(e) = (f−β ũ,e)− (∇× ũ− y∗,∇× e)− (y∗,∇× e)

Using integration by parts formula, (y∗,∇× e) = (∇×y∗,e), gives

r(e) = (f−β ũ−∇×y∗,e)− (∇× ũ−y∗,∇× e).

The above formula can be written as

r(e) = (β−1/2 (f−β ũ−∇×y∗) ,β 1/2e)+ (∇× ũ−y∗,∇× e).

The proof is completed by applying the Cauchy-Schwarz inequality, the property
|||e|||2 = r (e) and by reorganizing terms. ��

Note, that Estimate (5) is sharp in the sense that y∗ = ∇× u leads to equality.
In addition, (5) does not contain any unknown constants. One appropriate and a
posteriori computable choice of the parameter y∗ is discussed in Section 4.1 below.

3.2 Complex Case β ∈ C with ℑβ ≥ 0

For complex-valued parameter β , the sesquilinear form (3) is not elliptic, hence
it does not induce a natural energy norm. In this case, we will follow [6] and use
the L2 (Ω)-norm to measure the error. Establishing a connection between the error
measured in the L2 (Ω)-norm and the residual requires the application of the dual
problem: find v ∈ H0 (Ω ,curl) such that

a(w,v) = (e,w) ∀w ∈ H0 (Ω ,curl) .

Similar dual problems are widely used in a posteriori error estimation in terms of
linear functionals for the Poisson equation (see, e.g., [1]). If the original weak prob-
lem (2) has a unique solution, so does the dual problem. In [7, Section 13.4.1], an a
priori error bound for the solution to the adjoint problem is stated as

‖v‖curl ≤C‖e‖, (6)

in which the constant C > 0 is independent of e and depends only on the parameter
β and the domain.
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A connection between the L2 (Ω)-norm and the sesquilinear form (3) is estab-
lished by setting w = e in the dual problem. This gives

‖e‖2 = a(e,v) = r(v).

Using this identity, error estimation in the time-harmonic case reduces to the esti-
mation of the residual.

Theorem 2. Let u ∈H0 (Ω ,curl) be the solution to (2) with β ∈C,ℑβ ≥ 0. For any
ũ,y∗ ∈ H0 (Ω ,curl) there applies

‖e‖ ≤C (‖f−β ũ−∇×y∗‖+‖y∗−∇× ũ‖) (7)

in which the constant C > 0 is dependent only on the parameter β and the domain.

Proof. The upper bound is established by integration by parts, using Cauchy-
Schwarz inequality and the stability estimate (6) as

‖e‖2 = r(v)
= (f,v)− (∇× ũ,∇×v)−β (ũ,v)
= (f−β ũ−∇× y∗,v)+ (y∗ −∇× ũ,∇×v)
≤ ‖f−β ũ−∇×y∗‖‖v‖+ ‖y∗−∇× ũ‖‖∇×v‖
≤C‖e‖(‖f−β ũ−∇×y∗‖+‖y∗−∇× ũ‖) .

Dividing by ‖e‖ gives the desired estimate. ��
Unfortunately, we cannot show that the above bound is sharp. Choosing y∗ =

∇×u, as in the previous case, does not yield equality. In addition, the guaranteed
upper bound contains an unknown constant C arising from the stability estimate (6).
However, the constant does not depend in any way on the computed approximation
ũ, which is a clear improvement over residual based error estimate for the same
problem (see [6, Section 13.4.1]).

4 Numerical Examples for β > 0

In this section, we will present two computational examples out of the bound derived
in Theorem 1. All computations are performed using the finite element method with
lowest-order Nedelec elements (see e.g. [7]) on a tetrahedral mesh (all meshing is
done using the TetGen mesh generator, available from http://tetgen.berlios.de/). The
resulting finite element space will be denoted as Xh.

The first test demonstrates that the upper bound behaves well when the computa-
tional mesh is uniformly refined. In the second test, we will illustrate that the upper
bound can be used to drive adaptive solution processes.
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4.1 Computation of y∗ and Adaptive Mesh-Refinement

In order to compute a value for the presented upper-bound (5), we need to fix the
parameter y∗ ∈ H0 (Ω ,curl). Our approach is to choose the parameter y∗ from a
finite element space Xh ⊂ H0 (Ω ,curl) (i.e. from the same lowest-order Nedelec
space as the approximate solution ũ), so that it minimizes the value of the upper
bound.

The minimizer can be chosen by solving an auxiliary problem: find y∗ ∈ Xh such
that

(
β−1∇×y∗,∇×v

)
+(y∗,v) =

(
β−1/2 (f−β ũ) ,∇×v

)
+(∇× ũ,v) ∀ v∈ Xh (8)

The auxiliary problem is an eddy current problem with different parameters com-
pared to the original one (2), hence it can be solved by applying the same solver
which was used to solve the original problem.

If the bound obtained in this way is not sufficiently sharp, a natural way to obtain
a sharper bound is to hierarcially refine the computational mesh and compute new
y∗. This strategy, and computationally cheaper constructions of y∗ in the context of
the Poisson problem, are studied e.g. in [5]. However, we will not study this option
in this note.

The adaptive solution process applied in the second numerical example is based
on using elementwise contribution of the upper bound as local error indicator. Based
on this local error indicator, we mark elements with local error over θ times the
maximal local error for refinement. The mesh refinement is done by re-meshing
with volume constraints placed on the marked elements.

4.2 Numerical Experiment with Known Smooth Solution

In this test, the computational domain is a unit cube, Ω = (0,1)3. The coefficients
are chosen such that the solution is a smooth function

u = [0, 0, sinπxsinπy]T (9)

which clearly satisfies the boundary condition, n× u = 0, on all boundaries. The
problem data corresponding to the above solution is β = 1 and

f =
[
0, 0,

(
1 + 2π2)sinπxsinπy

]T
. (10)

The problem was solved on a series of uniformly refined meshes and the upper
bound was computed for each obtained solution. In this case, an optimal conver-
gence rate, O(h), for the finite element approximation was observed. Exactly the
same convergence rate was also observed for the upper bound, which shows that the
presented a posteriori error estimate performs in a reasonable manner for uniformly
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refined meshes. The behavior of the upper bound and the exact error is visualized in
the Figure 1 alongside with the optimal finite-element convergence rate.
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Fig. 1 Behavior of the error for a series of uniformly refined meshes in the test with known smooth
solution as a function of degrees of freedom. Diamonds denote the estimated error and circles the
exact error. The dotted line is the optimal convergence rate O(h).

4.3 Numerical Experiment with Unknown Solution

In this test, we consider a domain (−1,1)3\ [0,1]3, which contains a reentrant corner
at the origin (0,0,0). The parameter β = 1 and the right hand side vector is

f = [1, 1, 1]T . (11)

The problem was solved using a simple adaptive strategy, presented in Section
4.1. The aim was to study, wether the a posteriori error estimator can detect the
singular component of the solution which can be expected near the re-entrant corner
(see [4]) and improve the convergence rate.

Absolute error decay in the adaptive solution process is plotted in Figure 2 as
a function of the mesh size h. The reference error presented in this figure is com-
puted using an overkill mesh with approximately one million degrees of freedom.
From the results, one can clearly observe, that the error decay is faster compared to
uniformly refined mesh. So, as expected, the singular component is approximated
better in adaptive refinement as in uniform refinement.
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Fig. 2 Behavior of the error in adaptive refinement for the test with unknown solution as a function
of degrees of freedom. Diamonds denote the estimated error, stars the reference error and circles
error in a solution from uniformly refined mesh. The dotted line is the optimal convergence rate
O(h).
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Space–Time Adaption for
Advection-Diffusion-Reaction Problems on
Anisotropic Meshes

S. Micheletti and S. Perotto

Abstract We deal with the approximation of an unsteady advection-diffusion-
reaction problem by means of space-time finite elements, continuous affine in space
and piecewise constant in time. In particular, we are interested in the advection-
dominated framework. To face the trade-off between computational cost and accu-
racy, we devise a space-time adaptive procedure where both the time step and the
spatial grid are adapted throughout the simulation. Two are the key points involved:
the derivation of an a posteriori error estimator where the contributions of the spa-
tial and of the temporal discretization are split; a balance of these two contributions
via a proper adaptive scheme. The main novelty of the paper is the interest for an
anisotropic mesh adaption framework.

1 Introduction

Time dependent advection-dominated problems represent an interesting benchmark
for an adaption procedure, due to the (possible) presence of steep internal and/or
boundary layers, moving in time. We tackle this issue starting from a theoretically
sound space-time adaptive procedure which: i) extends to the time dependent case
the anisotropic interpolation error estimates in [7, 8]; ii) generalizes the a posteri-
ori analysis in [13] for a pure diffusive problem to an advective-diffusive-reactive
regime. Concerning the pertinent literature, an effective space-time adaptive proce-
dure is proposed in [11] in an optimization framework. In this last case the authors
focus on an isotropic goal-oriented analysis for the heat equation. Instead we pursue
an anisotropic management of the space adaption procedure. Moreover we control
a suitable energy norm of the discretization error as, e.g., in [1, 5]. As far as we
know, the only paper dealing with a parabolic problem in an anisotropic framework

Stefano Micheletti and Simona Perotto
MOX, Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, via Bonardi 9, I-20133
Milano, Italy, e-mail: stefano.micheletti, simona.perotto@polimi.it
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is [17]. Here the heat equation is considered in an optimal control framework: the
time discretization is carried out via the standard backward Euler scheme and no
sound time adaption procedure is addressed, in favor of a heuristic approach.

Let us focus on the model parabolic problem for u = u(x,t)⎧⎪⎪⎨⎪⎪⎩
Lu = ∂t u−∇ · (D∇u)+ b·∇u +σ u = f in Ω × J,
u = 0 on ΓD× J,
D∇u ·n = g on ΓN× J,
u = u0 on Ω ×{0},

(1)

where J = (0,T ], with T > 0, is the considered time span, Ω is a bounded polygonal
domain in IR2 with boundary ∂Ω , ΓD and ΓN are nonoverlapping subsets of ∂Ω ,
each comprising a whole number of sides of ∂Ω and such that ∂Ω = ΓD ∪ΓN,
and n is the unit outward normal vector to ∂Ω . Moreover we make the following
assumptions on the data: the source f ∈ L2(0,T ;L2(Ω)); the Neumann datum g ∈
L2(0,T ;H1/2

00 (ΓN)′); the diffusion tensor D ∈ [L∞(Ω)]2×2 and satisfies the standard
ellipticity condition; the advective field b∈ [L∞(Ω)]2 with ∇ ·b∈ L∞(Ω) and b ·n≥
0 a.e. on ΓN; the reaction term σ ∈ L∞(Ω) with γ = σ − 1

2∇ ·b≥ 0 a.e. in Ω , while
the initial condition u0 ∈ L2(Ω). Notice that the notation adopted for the function
spaces is standard (cf. e.g., [10]). The weak solution to (1) belongs to the space
U = L2(0,T ;H1

ΓD
(Ω))∩H1(0,T ;H1

ΓD
(Ω)′). It is well known that the space U is

continuously embedded in C0([0,T ];L2(Ω)) ([4]).

1.1 Managing the Space-Time

The adopted discrete formulation can be seen as a spatial approximation of a discon-
tinuous in time, dG(0), formulation [18]. Let us first manage the time discretization.
We partition the interval J by the time levels 0 = t0 < t1 < .. . < tN−1 < tN = T ,
and set Jn = (tn−1,tn], kn = tn− tn−1. We define the space-time slab Sn = Ω × Jn,
with n = 1, . . . ,N. Due to the possible time discontinuity characterizing the dG(0)
approximation, for suitable smooth functions v(·,t), we also define the values
v±m = limε→0+ v(·,tm±ε) and the corresponding temporal jump [v]m = v+

m−v−m , with
m = 1, . . . ,N−1. Then we introduce the function space Sk = {v : (0,T ]→H1

ΓD
(Ω) :

v(·,t)∣∣Jn
= ψ(·),ψ ∈ H1

ΓD
(Ω)}, whose elements coincide with polynomials of de-

gree zero in t on each interval Jn, with coefficients in H1
ΓD

(Ω). The functions in Sk

can be discontinuous at each time level, with continuity from the left. Moreover,
since 0 �∈ J1, the value v(·,0) has to be specified separately, ∀v ∈Sk.

To discretize the space we resort to a family of conformal decompositions of Ω
into triangles, such that there is always a vertex of the triangulation at the inter-
face between ΓD and ΓN (see, e.g., [3]). The temporal discontinuity allows for the
employment of a family {Thn}hn of meshes, possibly different on each space-time
slab Sn, for n = 1, . . . ,N. In particular we define Thn = {Kn}, with Kn triangle of
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diameter hKn and hn = maxKn hKn , the prism SKn = Kn× Jn and its lateral surface
LKn = ∂Kn×Jn. We are now in a position to define the so-called cG(1)-dG(0) space,
Shk = {vhk ∈Sk : vhk(·,t)

∣∣
Jn

= ψh(·),ψh ∈ X1
hn
∩H1

ΓD
(Ω)}, X1

hn
being the space of

the finite elements of degree one associated with the mesh Thn (see, e.g., [6]). The
continuity of the functions vhk ∈Shk is guaranteed with respect to the space, while
the discontinuity in time characterizing the space Sk is maintained.

In view of the cG(1)-dG(0) formulation of (1), we introduce the bilinear and
linear forms BDG−GLS(·, ·) and FDG−GLS(·), given by

BDG−GLS(v,w) =
N

∑
n=1

∫
Sn

{
∂t vw+ D∇v ·∇w+(b ·∇v +σv)w

}
dxdt

+
∫
Ω

v+
0 w+

0 dx+
N−1

∑
m=1

∫
Ω

[v]mw+
m dx+

N

∑
n=1

∑
Kn∈Thn

∫
SKn

τKn LvLwdxdt,

FDG−GLS(w) =
N

∑
n=1

{∫
Sn

f wdxdt +
∫

Jn

∫
ΓN

gwdsdt + ∑
Kn∈Thn

∫
SKn

τKn f Lwdxdt
}

+
∫
Ω

v0w+
0 dx, (2)

respectively, v0 = v−0 ∈ L2(Ω) being known. These forms already incorporate a
Galerkin Least-Squares (GLS) stabilization [9] to deal with possible numerical in-
stabilities; the τ ′Kn

s are suitable anisotropic piecewise constant stabilization coeffi-
cients ([16]).

Notice that [u]m = 0, m = 1, . . . ,N−1, while u+
0 = u−0 = u0(·), as u ∈U .

The GLS cG(1)-dG(0) discrete formulation of problem (1) is: find uhk ∈Shk such
that

BDG−GLS(uhk,vhk) = FDG−GLS(vhk) ∀vhk ∈Shk, (3)

where v0 in (2) is replaced by u0
h ∈ X1

h1
∩H1

ΓD
(Ω), i.e., by a proper finite element

approximation of the initial data u0.
It can be proved that the space-time error ehk = u− uhk associated with the ap-

proximation uhk satisfies a slabwise Galerkin orthogonality condition with respect
to the discrete space Shk.

The bilinear form BDG−GLS induces the norm

|||w|||2DG−GLS = BDG−GLS(w,w) =
N

∑
n=1

{
‖D1/2∇w‖2

[L2(Sn)]2 +‖γ1/2w‖2
L2(Sn)

+
1
2
‖(b ·n)1/2w‖2

L2(Jn×ΓN) + ∑
Kn∈Thn

‖τ1/2
Kn

Lw‖2
L2(SKn )

}
+

1
2

N−1

∑
m=1
‖w+

m−w−m‖2
L2(Ω)

+
1
2
‖w+

0 ‖2
L2(Ω) +

1
2
‖w−N‖2

L2(Ω) (4)

on the space U ∪Sk (see, e.g. [9, 14] for further details). This is the energy norm on
which we base the a posteriori analysis below.
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2 The Anisotropic Framework

With a view to the a posteriori analysis, we recall the basic ideas of the anisotropic
setting introduced in [7]. Moreover, we generalize some of the anisotropic interpo-
lation error estimates in [7, 8] to the unsteady case.

Given any slab Sn, Thn = {Kn} being the associated mesh, we extract the
anisotropic information from the invertible affine map TKn : K̂ → Kn from the
reference triangle K̂ to the general element Kn ∈ Thn , such that Kn = TKn(K̂) =
MKn K̂ + tKn , where MKn ∈ IR2×2 and tKn ∈ IR2 denote the Jacobian and the off-
set associated with TKn , respectively. Then we introduce the polar decomposition
MKn = BKnZKn of MKn into a symmetric positive definite matrix BKn ∈ IR2×2 and an
orthogonal matrix ZKn ∈ IR2×2, and we further factorize the matrix BKn in terms of
its eigenvectors ri,Kn and eigenvalues λi,Kn , for i = 1,2, as BKn = RT

Kn
ΛKnRKn , with

ΛKn = diag(λ1,Kn ,λ2,Kn) and RT
Kn

= [r1,Kn ,r2,Kn ]. Notice that ZKn and tKn do not play
any role in providing anisotropic information as associated with a rigid rotation and
a shift, respectively. We choose K̂ as the equilateral triangle inscribed in the unit
circle, with centroid placed at the origin. For this choice, it is possible to completely
describe the shape and the orientation of each element Kn through the quantities
ri,Kn and λi,Kn . The unit circle circumscribed to K̂ is mapped into an ellipse cir-
cumscribing Kn: the eigenvectors ri,Kn and the eigenvalues λi,Kn provide us with the
directions and the length of the semi-axes of such an ellipse, respectively. In par-
ticular, we measure the deformation of each element Kn by the so-called stretching
factor sKn = λ1,Kn/λ2,Kn , assuming, without loosing generality, λ1,Kn ≥ λ2,Kn , so that
sKn ≥ 1, the equality holding if and only if Kn is equilateral.

We now state the anisotropic interpolation error estimates used in the a posteri-
ori analysis. We focus on the Lagrange interpolant Π 1

hn
: C0(Ω )→ X1

hn
. The local

interpolant Π 1
Kn

: Π 1
Kn

(
v
∣∣
Kn

)
= (Π 1

hn
v)
∣∣
Kn, for any v ∈C0(Ω), satisfies the following

Lemma 1. Let v
∣∣
SKn
∈ L2(Jn;H2(Kn))∩U; then it holds

‖v−Π 1
Kn

v‖L2(SKn) ≤ C1LKn(v), |v−Π 1
Kn

v|H1(SKn ) ≤ C2LKn(v),

|v−Π 1
Kn

v|H2(SKn ) ≤ C3LKn(v), ‖v−Π 1
Kn

v‖L2(LKn ) ≤ C4LKn(v), (5)

where C1 = C1, C2 = C2λ−1
2,Kn

, C3 = C3

(
λ 2

1,Kn
+λ 2

2,Kn
λ 2

1,Kn
λ 2

2,Kn

)1/2

, C4 = C4

(
λ 2

1,Kn
+λ 2

2,Kn
λ 3

2,Kn

)1/2

,

LKn(v) =
[
∑2

i, j=1λ 2
i,Kn

λ 2
j,Kn

Li j
Kn

(v)
]1/2

, the constants Ci, for i = 1, · · · ,4 depending

on K̂ only. Moreover, Li j
Kn

(v) =
∫

SKn

(rT
i,Kn

HKn(v)r j,Kn)
2 dxdt, with i, j = 1,2, while

HKn(v) denotes the Hessian matrix associated with v.

Estimates (5) generalize the standard (isotropic) results, recovered when λ1,Kn �
λ2,Kn � hKn .
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3 The A Posteriori Error Estimate

We provide an a posteriori error estimator, ηDG−GLS, for the DG-GLS norm (4) of
the discretization error ehk. It is essentially a residual-based estimator, weighted by
suitable recovered derivatives of the error itself, in the spirit of a Zienkiewicz-Zhu
recovery procedure [19, 12]. We define the local residuals, distinguishing between
spatial and temporal. For any Kn ∈Thn , with n = 1, · · · ,N, let

ρKn =
[

f −Luhk
]∣∣∣

SKn

and jKn =

⎧⎪⎨⎪⎩
0 on (∂Kn∩ΓD)× Jn,

2(g−D∇uhk ·n) on (∂Kn∩ΓN)× Jn,

−[D∇uhk ·n] on (∂Kn∩E n
h )× Jn,

be the interior and boundary residual associated with the cG(1)-dG(0) approxi-
mation uhk, respectively, with E n

h the skeleton of Thn and [D∇uhk · n] = D∇uhk ·
nKn +D∇uhk ·nK′n the jump of the diffusive flux across the internal interfaces of Kn,
for (K′n ∩Kn)∩E n

h �= /0. Then we introduce the temporal and the initial residuals,
Jn = [−uhk]n and e−0 = u0− u0

h, respectively. The residual Jn merges the infor-
mation coming from the different meshes Thn and Thn+1 . This inevitably entails a
careful computation of this term. As a consequence of the dG(0) approximation,
it is useful to introduce the time averaged residuals, ρKn

= k−1
n

∫
Jn
ρKn(·,t)dt and

jKn
= k−1

n
∫

Jn
jKn(·,t)dt, which play an important role in the forthcoming analysis.

We can state the main result of our a posteriori analysis.

Proposition 1. Let u ∈U be the weak solution to (1) and let uhk ∈Shk be the cor-
responding GLS cG(1)-dG(0) approximation, solution to (3). Then there exists a
constant C = C(K̂) such that

|||ehk|||2DG−GLS � η2
DG−GLS = C

N

∑
n=1

∑
Kn∈Thn

(
αS

Kn
RS

Kn
ωS

Kn︸ ︷︷ ︸
ηS

Kn

+
4

∑
i=1

αTi
Kn

RTi
Kn
ωTi

Kn︸ ︷︷ ︸
ηT

Kn

)
, (6)

where αS
Kn

= |K̂|λ 2
1,Kn

λ 2
2,Kn

, αTi
Kn

= k2
n, i = 1, · · · ,4,

RS
Kn

= |Kn|−1/2
{
‖ρKn
‖L2(SKn ) + (λ 2

1,Kn
+λ 2

2,Kn
)1/2 λ−3/2

2,Kn
‖ jKn
‖L2(LKn )

+k−1/2
n (‖Jn−1‖L2(Kn) + δ1n‖e−0 ‖L2(Kn))+ τKn

(
λ−1

2,Kn
‖b−∇ ·D‖[L∞(Kn)]2

+‖σ‖L∞(Kn) + (λ 2
1,Kn

+λ 2
2,Kn

)1/2(λ1,Knλ2,Kn)
−1‖D‖[L∞(Kn)]2×2

)
‖ρKn

‖L2(SKn )

}
,

ωS
Kn

= |Kn|−1/2
[
s2

Kn
L11

Kn
(e∗hk)+ 2L12

Kn
(e∗hk)+ s−2

Kn
L22

Kn
(e∗hk)

]1/2
,



54 S. Micheletti and S. Perotto

RT1
Kn

= k−1/2
n

[
‖ρKn−ρKn

‖L2(SKn ) + k−1/2
n

(
‖Jn−1‖L2(Kn) + δ1n‖e−0 ‖L2(Kn)

)]
+τKn

(
‖σ‖L∞(Kn)‖ρKn−ρKn

‖L2(SKn ) + k−1
n ‖ρKn‖L2(SKn )

)]
,

RT2
Kn

= (4kn)−1/2‖ jKn − jKn
‖L2(LKn ), RT4

Kn
= τKn k−1/2

n ‖ρKn −ρKn
‖L2(SKn ),

RT3
Kn

= RT4
Kn
‖b‖[L∞(Kn)]2 , ω

T1
Kn

= k−1/2
n ‖∂te

∗
hk‖L2(SKn ), ω

T2
Kn

= k−1/2
n ‖∂te

∗
hk‖L2(LKn ),

ωT3
Kn

= k−1/2
n ‖∂t∇e∗hk‖[L2(SKn )]2 , ωT4

Kn
= k−1/2

n ‖∂t∇ · (D∇e∗hk)‖L2(SKn ),

where δ1n is the Kronecker symbol, and all the terms depending on e∗hk designate
suitable space-time recovery quantities that provide computable spatial and tempo-
ral derivatives of the discretization error ehk.

Further details concerning the space and time recovery procedures can be found,
for instance, in [19, 11, 15], as well as in [14], where the complete proof of (6)
is furnished too. We just remark that the quantities RS

Kn
, RTi

Kn
, with i = 1, · · · ,4, are

scaled (with respect to the size |Kn| of the element and kn of the time interval, re-
spectively), so that all the spatial and temporal dimensional information is collected
into the coefficients αS

Kn
, αTi

Kn
, respectively. The weights ωS

Kn
are associated with the

anisotropic source, whereas the ωTi
Kn

’s drive the time adaption procedure. Finally,
ηS

Kn
(ηT

Kn
) in (6) represent the local estimators for a pure space-dependent (time-

dependent) problem.

3.1 The Adaptive Algorithm

The adaptive algorithm is the same as that introduced in [13]. An equidistribution
in space-time of the total error is enforced by splitting a given tolerance τ , equal
for each slab, into a space (τS) and a time (τT) contribution. The time step and
the spatial mesh are successively adapted until both the estimators of the space and
time error are within their respective tolerances, i.e., until ηS

n = ∑Kn∈Thn
ηS

Kn
� τS,

and ηT
n = ∑Kn∈Thn

ηT
Kn
� τT. After processing a slab, if the time tolerance is largely

satisfied, a new (larger) time step is guessed for the next slab. This algorithm is
similar to that in [2] though in our case both space and time adaptivity are carried
out via an optimization strategy rather than through a compute-estimate-mark-refine
procedure.

3.2 The Rotating Donut

We approximate problem (1) on the cylinder Ω × J = (−1,1)2× (0,10), with D =
10−3I (with I the identity tensor), b = [−x2,x1]T , σ = 0, ΓN = /0, and f ,u0 chosen
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Fig. 1 Details of the adapted meshes at t � T/4 (top-left) and at t � T/2 (top-right); time evolution
of the time step kn (solid) and of the number of mesh elements (dashed), scaled to their maximum
value (bottom)

such that u = exp
(− ((r− rc)/δ )2

)
, where r =

√
(x1− x1,R)2 +(x2− x2,R)2, x1,R =

Rcos(ω t),x2,R = Rsin(ω t), with rc = 0.2,δ = 0.01,ω = 2π/10,R = 0.5. The exact
solution is localized in an annular region of thickness O(δ ) rotating counterclock-
wise at a constant angular velocity ω . The tolerances for the adaptive algorithm are
τS = τT = 0.01. Figure 1 shows a detail of the adapted meshes at t � T/4 (top-left)
and t � T/2 (top-right). The mesh is correctly detecting the anisotropic features of
the solution. In particular we can appreciate a sort of “wake” that is a clear effect of
the donut velocity: this detail would not be spotted in the case of the corresponding
stationary problem. The bottom graph in Figure 1 displays the time evolution of the
time step kn (solid) and of the number of mesh elements (dashed), scaled to their
maximum value. These time histories show that, after a transient phase, both the
time step and the number of triangles level out, as a consequence of the constant
angular velocity and of the absence of distortion of the donut. At the final time we
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obtain the value 1.257 for the effectivity index EI = ηDG−GLS/|||ehk|||DG−GLS, after
assuming C = 1 in (6).

Concerning the future developments, we are currently extending the above anal-
ysis to an optimal control framework.
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A Posteriori Error Analysis for
Kirchhoff Plate Elements

J. Niiranen, L. Beirão da Veiga, and R. Stenberg

Abstract We present a posteriori error analysis for two finite element methods for
the Kirchhoff plate bending model. The first method is a recently introduced C0-
continuous family, while the second one is the classical nonconforming Morley
element.

1 Introduction

In this contribution, we present and compare the main results of a posteriori error
analysis for two finite element methods for the Kirchhoff plate model, a stabilized
C0-family of [2, 4], and the classical nonconforming Morley element analyzed in
[6, 3, 1].

In the next two sections, we first recall the Kirchhoff plate bending model and
then give the finite element formulations of the methods together with a priori error
estimates. In Sect. 4, we present a posteriori error indicators for the methods as well
as the corresponding reliability and efficiency results. In Sect. 5, we illustrate the
robustness of the a posteriori error estimators by benchmark computations.
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2 Kirchhoff Plate Bending Problem

We consider the bending problem of an isotropic linearly elastic plate under the
transverse loading g. The midsurface of the undeformed plate is described by a
polygonal domain Ω ⊂ R2. The plate is considered to be clamped on the part ΓC of
its boundary ∂Ω , simply supported on the part ΓS ⊂ ∂Ω and free on ΓF ⊂ ∂Ω . With
V we indicate the collection of all the corner points in ΓF corresponding to an angle
of the free boundary.

The material constants for the model, the bending stiffness and the shear modu-
lus, respectively, are denoted by

D =
Et3

12(1−ν2)
and G =

E

2(1 +ν)
, (1)

with the Young modulus E and the Poisson ratio ν . The thickness of the plate is
denoted by t. The physical stress quantities for the problem, the bending moment
and shear force, respectively, are defined as

M(∇w) = D
(
(1−ν)ε(∇w)+ν div∇wI

)
, (2)

Q(∇w) =−divM , (3)

where w denotes the deflection and the strain tensor ε is defined as the symmetric
tensor gradient. The equilibrium equation −divQ = g is now satisfied.

With the notation above, and assuming that the load is sufficiently regular, the
Kirchhoff plate bending problem can be written as the well known biharmonic prob-
lem:

DΔ2w = g in Ω , (4)

with the boundary conditions

w = 0 ,∇w ·nnn = 0 on ΓC , (5)

w = 0 , Mn ·n = 0 on ΓS , (6)

Mn ·n = 0 ,
∂
∂ s

(Mn · s)+ (divM) ·n = 0 on ΓF , (7)

(Mn1 · s1)(c) = (Mn2 · s2)(c) ∀c ∈ V , (8)

where n and s, respectively, denote the unit outward normal and the unit counter-
clockwise tangent to the boundary. By the indices 1 and 2 we denote the sides of the
boundary angle at a corner point c.

In order to interpret the Kirchhoff model as the limit of the Reissner–Mindlin
formulation, it is assumed, as usual, that the loading is scaled as g = Gt3 f with f
fixed. Then the problem (4) becomes independent of the plate thickness:

1
6(1−ν)

Δ2w = f in Ω . (9)
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In the corresponding mixed formulation, the rotation and the scaled shear force,
respectively, are taken as new unknowns:

β = ∇w and q =−divm =−Lβ , (10)

where we have introduced a partial differential operator L by the scaled moment m.
Now the scaled mixed problem reads:

−divq = f , Lβ + q = 0 , ∇w−β = 0 in Ω , (11)

with the boundary conditions w = 0, β = 0 on the clamped boundary ΓC, w = 0,
β · s = 0, m(β )n ·n = 0 on the simply supported boundary ΓS, and (∇w−β) · s = 0,
m(β )n ·n = 0, ∂

∂ s (m(β )n ·s)−q ·n = 0 on the free boundaryΓF, (m(β )n1 ·s1)(c) =
(m(β )n2 · s2)(c) for all vertices c ∈ V .

3 Finite Element Formulations

In what follows, let a a regular family of triangulations Th on Ω be given. We will
indicate with hK the diameter of each element K ∈ Th, while h will indicate the
maximum size of all of the elements in the mesh. Furthermore, E denotes a general
edge of the triangulation and hE is the length of E .

Let the discrete space Wh for the Morley element consist of functions v which
are second order piecewise polynomials on Th satisfying the following conditions:
v is continuous at all the internal vertices and zero at all the vertices on the bound-
ary; the normal derivative ∇v ·nE is continuous at all the midpoints of the internal
edges and zero at all the midpoints of the boundary edges. Then the finite element
approximation of the Kirchhoff problem with the Morley element reads:

Method 1 Find wh ∈Wh such that

ah(wh,v) = ( f ,v) ∀v ∈Wh , (12)

where the bilinear form ah is defined as

ah(u,v) = ∑
K∈Th

(Eε(∇u),ε(∇v))K ∀u,v ∈Wh . (13)

Let Eh represent the collection of all the edges of the triangulation, and let �·�
denote the jump operator which is assumed to be equal to the function value on
boundary edges. Introducing now the discrete norm

|||v|||2h := ∑
K∈Th

|v|22,K + ∑
E∈Eh

h−3
E ‖�v�‖2

0,E + ∑
E∈Eh

h−1
E ‖�

∂v
∂nE

�‖2
0,E , (14)

the following a priori error estimate holds for the method [6]:
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Proposition 1. Let w∈H3(Ω) and f ∈ L2(Ω). Then there exists a positive constant
C such that

|||w−wh|||h ≤Ch(|w|3 + h‖ f‖0) . (15)

With integer values k ≥ 1, we next define the discrete spaces for the stabilized
C0-element as

Wh = {v ∈ H1(Ω) | v|ΓC∪ΓS
= 0,v|K ∈ Pk+1(K) ∀K ∈Th} , (16)

Vh = {η ∈ [H1(Ω)]2 | η |ΓC
= 0,η · s|ΓS

= 0,η |K ∈ [Pk(K)]2 ∀K ∈Th} , (17)

for the approximations of the deflection and the rotation, respectively. Here Pk(K)
denotes the space of polynomials of degree k on K. In addition, let the positive
stability constants α and γ be assigned. Now the stabilized C0-continuous finite
element method for the Kirchhoff problem reads:

Method 2 Find (wh,β h) ∈Wh×Vh such that

Ah(wh,β h;v,η) = ( f ,v) ∀(v,η) ∈Wh×Vh , (18)

where the bilinear form Ah is defined with a(φ ,η) = (m(φ ),ε(η)) as

Ah(z,φ ;v,η) = Bh(z,φ ;v,η)+Dh(z,φ ;v,η) , (19)

Bh(z,φ ;v,η) = a(φ ,η)− ∑
K∈Th

αh2
K(Lφ ,Lη)K (20)

+ ∑
K∈Th

1

αh2
K

(∇z−φ −αh2
KLφ ,∇v−η−αh2

KLη)K ,

Dh(z,φ ;v,η) = ∑
E∈Fh

(
(mns(φ),(∇v−η) · s)E (21)

+((∇z−φ) · s,mns(η))E +
γ

hE
((∇z−φ) · s,(∇v−η) · s)E

)
for all (z,φ ), (v,η) ∈Wh×Vh, where Fh represents the collection of all the bound-
ary edges in ΓF and mns = mn · s.

We next introduce the discrete norm for the deflection and the rotation as

|||(v,η)|||2h := ∑
K∈Th

|v|22,K +‖v‖2
1 + ∑

E∈Ih

h−1
E ‖�

∂v
∂nE

�‖2
0,E (22)

+ ∑
K∈Th

h−2
K ‖∇v−η‖2

0,K +‖η‖2
1 ,

where Ih represents the collection of all the internal edges of the triangulation. In
addition, for the shear force, we introduce the following notation:
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V∗ = {η ∈ [H1(Ω)]2 |η = 0 on ΓC, η · s = 0 on ΓF∪ΓS} , (23)

‖r‖−1,∗ = sup
η∈V∗

〈r,η〉
‖η‖1

, (24)

qh|K =
1

αh2
K

(∇wh−β h−αh2
KLβ h)|K . (25)

Then the following a priori error estimate holds, cf. Sect. 5 and [2] for more details
on the constants CI and C′I .

Proposition 2. Let 0 <α <CI/4, γ > 2/C′I , and w∈Hs+2(Ω), with 1≤ s≤ k. Then
there exists a positive constant C such that

|||(w−wh,β −β h)|||h +‖q−qh‖−1,∗ ≤Chs‖w‖s+2 . (26)

4 A Posteriori Error Estimates

For a posteriori error indicators and estimates below, we indicate the Morley element
by (M ) and the stabilized C0-method by (S ). The interior error indicators are
defined for each element as

(M ) η̃2
K = h4

K‖ f‖2
0,K , (27)

(S ) η̃2
K = h4

K‖ f + divqh‖2
0,K + h−2

K ‖∇wh−β h‖2
0,K , (28)

and for inter-element edges as

(M ) η2
E = h−3

E ‖�wh�‖2
0,E + h−1

E ‖�
∂wh

∂nE
�‖2

0,E , (29)

(S ) η2
E = h3

E‖�qh ·n�‖2
0,E + hE‖�m(β h)n�‖2

0,E . (30)

Next, for the Morley element, we assume that ∂Ω = ΓC; see [3] and cf. [1] for
general boundary conditions. Then for the edges on the clamped boundary ΓC the
boundary indicator is defined as

(M ) η2
E,C = h−3

E ‖�wh�‖2
0,E + h−1

E ‖�
∂wh

∂nE
�‖2

0,E . (31)

For the stabilized C0-element, also the simply supported and free boundaries are
allowed. Hence, for the edges on ΓS and ΓF, respectively, with mnn = mn · n, the
boundary indicators are defined as

(S ) η2
E,S = hE‖mnn(β h)‖2

0,E , (32)

(S ) η2
E,F = hE‖mnn(β h)‖2

0,E + h3
E‖

∂
∂ s

mns(β h)−qh ·n‖2
0,E . (33)
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Finally, let Ch, Sh and Fh represent the collections of all the boundary edges in ΓC,
ΓS and ΓF, respectively. Then the local and global error indicators are defined as

ηK =
(
η̃2

K +
1
2 ∑

E∈Ih
E⊂∂K

η2
E + ∑

E∈Ch
E⊂∂K

η2
E,C + ∑

E∈Sh
E⊂∂K

η2
E,S + ∑

E∈Fh
E⊂∂K

η2
E,F

)1/2
, (34)

η =
(
∑

K∈Th

η2
K

)1/2
. (35)

We then have the following reliability and efficiency results [3, 2]:

Theorem 1. There exist positive constants C such that

(M ) |||w−wh|||h ≤Cη , (36)

(S ) |||(w−wh,β −β h)|||h +‖q−qh‖−1,∗ ≤Cη . (37)

Theorem 2. There exist positive constants C such that

(M ) ηK ≤C
(|||w−wh|||h,K + h2

K‖ f − fh‖0,K
)
, (38)

(S ) ηK ≤C
(|||(w−wh,β −βh)|||h,ωK + h2

K‖ f − fh‖0,ωK (39)

+‖q−qh‖−1,∗,ωK

)
,

for each element K ∈Th, with some approximation fh of the load f . Here the domain
ωK denotes the set of all the triangles sharing an edge with K.

5 Numerical Results

In this final section, we present some results on benchmark computations in order to
compare the numerical and theoretical results of the two methods proposed. Regard-
ing the stabilized C0-element, we restrict ourselves to the lowest order element with
k = 1. Hence, the rotation has linear components and the deflection is quadratic, as
for the Morley element.

In all of the test cases, the values E = 1, ν = 0.3, α = 0.1 and γ = 100 have
been used for the material and stability constants. We have implemented the meth-
ods in the open-source finite element software Elmer [5] which utilizes local error
indicators, and provides complete remeshing with Delaunay triangulations and error
balancing strategy for adaptive refinements [4, 5].

The ratio between the estimated and true error is shown as the effectivity index in
Fig. 1. With the stabilized C0-element, we have solved three problems with convex
rectangular domains, different types of boundary conditions and known exact so-
lutions. With the Morley element, only a clamped square with uniform loading has
been solved. In these test problems, the effectivity index remains on a certain almost
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constant level uniformly in the mesh size. This indicates that the error estimators can
be used as reliable and efficient error measures.
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Fig. 1 Effectivity index; Left: the Morley element (with C-boundaries); Right: the stabilized C0-
element (with C/S/F-boundaries).

In order to compare adaptive and uniform refinements, we consider the stabilized
C0-element and a uniformly loaded L-shaped domain with simply supported bound-
aries. The convergence graphs for the uniformly (circles) and adaptively (triangles)
refined meshes are shown in Fig. 2. The two upper graphs (solid lines) represent
the global error estimator, while the lower ones (dashed lines) indicate the maxi-
mum local estimator. Moreover, we show in the same figure the convergence rates
O(h1/3) and O(h) (dashed lines) corresponding to the rates with and without the
corner singularity of the solution. Now, due to the singular L-corner, w ∈ H7/3(Ω).

In Fig. 2, with the uniform refinements (circles), the convergence rate of the error
estimator clearly follows the value O(h1/3). Differently, after the first adaptive steps,
the method shows its robustness in finding the corner singularity of the solution and
refining locally near the L-corner (triangles).
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Fig. 2 Simply supported L-domain: Convergence of the global estimator (solid lines) and the max-
imum local estimator (dashed lines); Circles for the uniform refinements, triangles for the adaptive
refinements.
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As a conclusion, the Morley element with 6 degrees of freedom is a very simple
discontinuous method, while the stabilized C0-element, with 12 degrees of freedom
for k = 1, provides additional rotation degrees of freedom and hence exact boundary
conditions. In particular, the Morley element possesses nonzero error indicators for
clamped edges; however, the corresponding effectivity index seems very uniform.
Finally, in Fig. 3, the refinements produced by both of the methods can be compared
for an L-shaped clamped domain with uniform loading.

Fig. 3 Distribution of the error estimator after adaptive refinements: Left: the Morley element;
Right: the stabilized C0-element.
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Adaptive Finite Element Simulation of Relaxed
Models for Liquid-Solid Phase Transition

M. Stiemer

Abstract The purpose of this work is to develop time-space adaptive techniques
for phase field models for liquid-solid phase transition. These models are based on
coupled systems of the Cahn-Hilliard and the Allen-Cahn equation. The adaptive
techniques under consideration allow for mesh adaptation with respect to a func-
tional of interest. They are based on a discontinuous Galerkin approach for time
stepping and the exploitation of a parabolic duality argument. For the Bi-Laplace
operator arising in linearization of the Cahn-Hilliard equation, a non-conforming
Galerkin method is employed.

1 Introduction

If a liquid is carefully cooled under its solidification temperature it may remain in
a metastable liquid state. Solidification usually starts from nucleation germs inside
the liquid or – more often – from the walls of the basin containing the liquid. The
now arising system of two coinciding phases exhibits complicated dynamical phe-
nomena. While on a microscopic level the interface between the phases is subject to
molecular dynamic processes of permanent aggregation and disaggregation, it can
be modeled as a sharp moving frontier on a phenomenological level. Its evolution is
determined by a thermodynamic driving force depending on temperature, concen-
tration gradients and the curvature of the interface. However, sharp interface mod-
els are numerically difficult to handle. More convenient is a phase field approach,
where a real valued function Φ : Ω → [0,1], the so called phase-field variable or
order parameter, is introduced in the domain Ω ⊂Rn (n = 2,3) of interest, attaining
the value 0 in most part of the liquid phase and 1 in most part of the solid phase.
Only in a small region about the phase interface, values between 0 and 1 arise such
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that Φ is smooth (see Fig. 1). If the liquid consists of more than one substance, their
concentration-gradients have a significant influence on the thermodynamic driving
force acting on the interface. Under certain conditions, a solidification process can
even take place at approximately constant temperature. In this case it is driven by
concentration gradients and the latent heat production during solidification may be
neglected. For a binary alloy, a scalar field c : Ω → R representing the concentra-
tion of one species suffices to model the influence of concentration gradients. The
energy of the isothermal two phase system is represented by the functional1

F =
∫
Ω

[
ε2
Φ
2

(∇Φ)2 +
ε2

c

2
(∇c)2 + f (Φ,c,T )

]
. (1)

Here, f denotes a thermodynamic potential to be specified below. The parameter
εΦ represents the thickness of the interface, i.e. it quantifies the size of the area
in which Φ attains values significantly different from 0 or 1. From the point of
view of a sharp interface model, εΦ takes the role of a regularization parameter. In
fact, it has been shown, that under certain assumptions the solutions of phase field
models converge to the solution of the corresponding Stefan-problem for εΦ → 0
(see [10] and the references given therein). Finally, εc measures the size of the area,
in which mixing of different materials is relevant. Based on the energy-functional
(1), equations for the evolution of the fields Φ and c have to be formulated obeying
the laws of thermodynamics. In the isothermal situation, the following evolution
equations are relevant (see e.g. [2]):

Φ̇ = −MΦ
[

fΦ − ε2
Φ∇

2Φ
]

(2)

ċ = ∇
[
Mcc(1− c)∇

(
fc− ε2

c ∇2c
)]

, (3)

where MΦ ,Mc are the mobilities of the phase field and of the concentration field
respectively. We assume that MΦ and Mc are constant. Dots indicate partial deriva-
tives with respect to time, and fΦ = ∂ f/∂Φ and fc = ∂ f/∂c denote derivatives
with respect to Φ and c respectively. The evolution equation (2) for the phase field
is known as Cahn-Allen equation, while the equation for the concentrations (3) is
a generalized Cahn-Hilliard equation. Next, boundary conditions for each of these
equations are required as well as initial conditions. If a region far away from walls
is considered, natural boundary conditions are a good choice. The model is com-
pleted by specification of the thermodynamic potential f . It typically possesses a
double-well shape with respect to Φ , representing the coexistence of a stable and a
metastable state (see Fig. 1). Following [2], we assume

fA(Φ) = f S
A +WAg(Φ)+ p(Φ)

[
f L
A − f S

A

]
(4)

for a single material with g(Φ) = Φ2(1−Φ)2 and p(Φ) = Φ3(6Φ2− 15Φ + 10).
Further, WA represents the height of the energy hump between the solid and the
liquid state, and f S

A and f L
A denote the ordinary free energy of the material A as

1 Throughout this presentation, we will suspend volume-elements, area-elements, etc in integrals.
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liquid (L) and solid (S) respectively. For a binary alloy, the potentials for the single
materials have to be combined and the mixing potential has to be added:

f (Φ,c) = (1− c) fA(Φ)+ c fB(Φ) + R′T [(1− c) log(1− c)+ c logc]
+ {ωS[1− p(Φ)]+ωLp(Φ)} , (5)

where ωS and ωL are regular solution parameters of the liquid and the solid, T de-
notes the temperature, and R′ is the universal gas constant divided by the molar
volume of the alloy which is assumed to be constant (cf. [2]). In (5) a typical prob-
lem connected to the numerical treatment of the Cahn-Hilliard equation becomes
obvious: The thermodynamic potential f is not differentiable with respect to c in
c = 0 and in c = 1. To cope with such problems, a non smooth Newton method has
been presented for the numerical solution of the Cahn-Hilliard equation in [11]. In
many situations, the logarithmic terms in (5) can sufficiently well be approximated
by a polynomial such that f is replaced by a smooth approximating potential h (cf.
[4, 13]). In the sequel, we will work with this approximation. However, the here pre-
sented adaptive methods can also be combined with a non smooth Newton method
to deal with the more realistic case of a non smooth potential. To obtain realistic
patterns of solidification, crystalline anisotropy has additionally to be modeled. On
a phenomenological level this can be achieved by either making εΦ = εΦ (∇Φ) de-
pend on the direction of the interface between solid and liquid phase or by letting
the potential h be depending on ∇Φ . It is known that εΦ can be made depending on
∇Φ in such a way that the correct sharp interface relations result if εΦ tends to zero.
Yet, this is not the case for the second approach (see [10]). Finally, thermal noise
has to be added to trigger side branching of the solidification front.

Phase field models are extensively studied by physicists to understand phenom-
ena related to phase transitions such as e.g. nucleation [2, 3, 9]. To be able to extend
such models to more complex situations, efficient numerical techniques for systems
of the above type are required. A main issue is an adaptive numerical treatment,
giving consideration to the localized transition zone between different phases. First

Fig. 1 Left: The sharp interface between liquid- and solid phase is approximated by a phase-field
(order parameter). Right: Double well potential: Here, the solid phase (Φ = 1) is stable and the
liquid phase Φ = 0 is metastable.
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attempts at adaptive methods have been presented in [5, 12]. The schemes presented
are however based on estimators for the energy error or on physically motivated
heuristics rather than on a rigorous estimation of the error in more relevant quan-
tities. The purpose of this work is to develop time-space adaptive techniques that
allow for mesh adaptation with respect to a functional of interest. These are based
on a discontinuous Galerkin approach for time stepping and the exploitation of a
parabolic duality argument. For the Bi-Laplace operator arising in linearizations of
the Cahn-Hilliard equation, a non-conforming Galerkin method is employed.

2 Discretization

Let u = (Φ,c). Starting point for the discretization is the weak formulation

A (u,v) =
∫
Ω
Φ̇ Φ̃ +

∫
Ω

MΦε2
Φ∇Φ∇Φ̃ +

∫
Ω

MΦhΦ Φ̃ (6)

+
∫
Ω

ċ c̃+
∫
Ω

Mcε2
c ∇

2c∇[c(1− c)∇c̃]+
∫
Ω

Mchc∇[c(1− c)∇c̃] = 0

for all v = (Φ̃ , c̃) ∈ L2(H2
0 (Ω)2). A solution of the system (6) is sought after in

the space L2(H2(Ω)2) of all functions defined on a time interval I of interest with
vectors of length 2 as values, each component of which is contained in the Sobolev
space H2(Ω). See [6] for details on the functional analytic background. All equa-
tions have to be understood in the sense of distributions on I.

In the following numerical considerations, we do not incorporate anisotropy or
thermal noise. In order to solve (6) numerically, the system needs to be linearized.
Fréchet linearization of the operator A : L2(H2(Ω)2)→ L2(H2(Ω)2), introduced by
the bilinear form A via A (u,v) = (Au,v)L2(H2(Ω)2) with the standard scalar product

(·, ·)L2(H2(Ω)2) on L2(H2(Ω))2 yields∫
Ω

˙δΦ
n Φ̃ +

∫
Ω

MΦε2
Φ∇δ

Φ
n ∇Φ̃ +

∫
Ω

MΦ
(
hΦΦδΦ

n + hΦcδ c
n

)
Φ̃ (7)

+
∫
Ω
δ̇ c

n c̃ +
∫
Ω

Mcε2
c

{
∇2δ c

n ∇[cn(1− cn)∇c̃]+∇2cn∇[(1−2cn)δ c
n∇c̃]

}
+
∫
Ω

Mc
{(

hcΦδΦ
n + hccδ c

n

)
∇[cn(1− cn)∇c̃]+ hc∇[(1−2cn)δ c

n∇c̃]
}

=−A (un,v)

for the Newton update δn = (δΦ
n ,δ c

n ) = (Φn+1−Φn,cn+1− cn) ∈ L2(H2(Ω)2). The
equation is required to hold for all v = (Φ̃, c̃) ∈ L2(H2(Ω)2). The partial derivatives
of h have to be evaluated in un = (Φn,cn). The iteration can be broken down into a
separate iteration for each of a finite number of time steps. The result of the Newton
iteration for an individual time step is then taken as initial data for the next one. This
is convenient in the context of an explicit time stepping scheme.

In the linearized equation, the finite element discretization of the weak Bi-
Laplace operator (∇2u,∇2v)Ω with (·, ·)Ω being the L2 standard scalar product on
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Ω needs particular care. Aiming at an efficient numerical scheme, we wish to avoid
a high order approach such as a H2-conforming finite element discretization. Al-
though replacing Δ2c = j by the system ∇2c = λ , ∇2λ = j leads to a mixed for-
mulation that is inf-sup-stable in H1×H1

0 , a convergence result is only known on
regular meshes based on superconvergence. It is more adequate to approximate λ
in a subspace of L2(Ω), while c is approximated in an enlarged space, containing
H2(Ω). This can be done such that convergence of the Hessian in L2 is guaranteed
[1]. On a triangle-mesh, the resulting scheme is algebraically equivalent to employ-
ing the non-conforming Morley-element (with a modified integration of the right
hand side) [1]. The corresponding part of the numerical methods destined to solve
(7) will now be demonstrated for the simplified version∫

Ω
ε2

c ∇
2c∇2v +

∫
Ω

ċ v =
∫
Ω

f v , v ∈ L2 (H2(Ω)
)

, (8)

of equation (7). Although this is a strong simplification, it still allows for discussion
of relevant numerical effects. Writing

a(c,v) =
∫
Ω
ε2

c ∇
2c∇2v , (9)

we obtain
a(c,v)+ (ċ,v)Ω = ( f ,v)Ω , v ∈ L2 (H2(Ω)

)
, (10)

which we analyze as a model problem. Equation (10) is the weak form of a classical
Cahn-Hilliard equation and hence of interest in itself. A discrete spatial test and trial
space is defined based on the non-conforming Morley-element. Let (Th) be a family
of quasi-uniform triangulations with vertices Vh and edges Eh. Consider

Sh =
{

v ∈ L2(Ω) : v|T (x,y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2 ,T ∈Th ,

v continuous in P ∈ Vh , ∇v ·nE continuous on E ∈ Eh} ,

with nE denoting a unit vector normal to the edge E ⊂ ∂T . Note that Sh is not a
subset of H2(Ω). Hence, the bilinear form a can not be evaluated for arbitrary test
and trial functions. Computing a element-wise and summing up leads to a bilinear
form ah that may attain negative values on Sh. Hence, the stabilized bilinear form

aσ ,h(u,v) = σε2
c ∑

T∈Th

(∇2u , ∇2v)T

+ (1−σ)ε2
c

∫
T

2
∂ 2u
∂x∂y

∂ 2v
∂x∂y

+
∂ 2u
∂x2

∂ 2v
∂y2 +

∂ 2u
∂y2

∂ 2v
∂x2 , (11)

with a 0 < σ < 1 is considered, which is positive definite on Sh. For functions u,v∈
H2(Ω), aσ ,h coincides with the bilinear form a (cf. (9)) (see [8]). Consequently, the
solution of (10) is not altered when a(·, ·) is replaced by aσ ,h(·, ·) for σ ,h > 0. Now
let t0 < t1 < .. . < tN be a partition of the time interval I = [t0,tN ] under consideration
into small intervals In = (tn−1,tn), n = 1, . . . ,N. Combining the Morley approach
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with a discontinuous Galerkin method DG(q), q ∈ N0, for time stepping yields the
space-time test- and trial space Vq =

{
v ∈ L2

(
H1(Ω)) : v|In ∈Vq,n

)}
with Vq,n ={

v : v = ∑q
j=0 t j u j ,u j ∈Sn

}
, where Sn is the spatial test- and trial-space used in

the n-th time interval. An approximation ch ∈ Vq is computed via the fully discrete
scheme∫

In

[
aσ ,h(ch,v)+ (ċh,v)Ω

]
+
(⌊

ch
⌋

n−1
,v(·,tn−1+)

)
Ω

=
∫

In
( f ,v)Ω ,

for all v ∈ Vq, n = 1, . . . ,N, with �ch�n = ch(·,tn+)− ch(·,tn−). It is equivalent to

∫
I

[
aσ ,h(ch,v)+ (ċh,v)Ω

]
+

N

∑
n=1

(⌊
ch
⌋

n−1
,v(·,tn−1+)

)
Ω

=
∫

I
( f ,v)Ω , (12)

for all v ∈ Vq. In the following, the left hand side of (12) will be abbreviated by
B(ch,v) and the right hand side L(v). Note that with a replaced by ah,σ , the discrete
equation B(ch,v) = L(v), v∈Vq, is formally identical to the equation B(c,v) = L(v),
v ∈ L2(H2

0 (Ω)), characterizing the solution of the continuous problem (10), except
for the different test- and trial-spaces.

3 Adaptivity Based on Time Space Error Control

For non-time depending problems, techniques for a posteriori error control for the
Morley-element have been presented in [14]. In the context of time and space adap-
tivity, we address error control for a given linear functional J : W → R, where W
is a linear space containing both the continuous time-space test and trial space
L2(H2(Ω)) and its discrete counterpart Vq. To control J(c)− J(ch) = J(e) with
e = c− ch, we consider the primal residual

Rp(v) := B(e,v) = L(v)−B(ch,v) , v ∈ L2 (H2
0 (Ω)

)
+Vq . (13)

It possesses the explicit representation

Rp(v) =
∫

I

[
( f ,v)Ω −aσ ,h(ch,v)− (ċh,v)Ω

]
−

N

∑
n=1

(
�ch�n−1 ,v(·,tn−1+)

)
Ω

. (14)

The Riesz representation theorem implies the existence of a solution ζ ∈ L2

(H2(Ω))+Vq of the dual problem

B(v,ζ ) = J(v) , v ∈ L2(H2
0 (Ω)) . (15)

Equation (15) corresponds to an evolution equation with interchanged initial and
final state, which is not yet an inverse problem. Now, let ζ h be an approximation to
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the dual problem (15) computed via (12) based on the same discretization as was
used to determine ch. Galerkin orthogonality yields

J(e) = B(e,ζ ) = B(e,ζ − ζ h) = Rp(ζ − ζ h) . (16)

Considering (14), we notice that the error representation given in (16) does not de-
pend on the continuous primal solution c, but only on ch, ζ h and on ζ . The first
two quantities are known after a finite element computation. If mesh adaptation is
the major issue, an approximation of ζ is sufficiently accurately determined from
ζ h by a recovery technique such as e.g. utilized by the ZZ-error estimator [15]. The
following local representation of the error can now be derived:

Theorem 1. With the above notations, we have for q = 0

J(e) = ∑
1≤n≤N
T∈T

[∫
In×T

f (ζ − ζ h)+
∫

T
�ch�n−1

(
ζ − ζ h

)
(·,tn−1+)

]

+(1−σ)ε2
c ∑

1≤n≤N
E∈E

∫
In×E

[
n�E �Hch�E ∇ζ −n�E �Hch∇ζ h�E

]
. (17)

Here, �Hch�E is the matrix consisting of the jumps of the elements of the Hessian of
ch when passing over the edge E.

Proof. We split (14) with v = ζ − ζ h into a sum of integrals over each single time-
space element In×T with T ∈T , and In = (tn−1,tn). Spatially integrating by parts
based on the divergence theorem leads to

J(e) = ∑
1≤n≤N
T∈T

{ ∫
In

[∫
T

f (ζ − ζ h)+ (1−σ)ε2
c

∫
∂T

n�E Hch ∇(ζ − ζ h)
]

+
∫

T
�ch�n−1

(
ζ − ζ h

)
(·,tn−1+)

}
. (18)

Here Hch denotes the Hessian of ch, and nE a unit outer normal vector. Note that Hch

is element-wise constant but in general not continuous over element edges. All other
terms cancel out, since integration by parts results in application of a differential
operator of order > 2 on the polynomial ch

∣∣
In×T which is of second order in space.

After summarizing all contributions that belong to a certain edge and eliminating
terms due to continuity properties, the statement of the theorem follows. ��
Remark 1. Theorem 1 implies also a representation of the error in the stationary
situation, represented by (10) without the contribution of ċ:

J(e) = ∑
T∈T

∫
T

[
f (ζ − ζ h)

]
+(1−σ)ε2

c ∑
E∈E

∫
E

[
n�E �Hch�E ∇ζ −n�E �Hch∇ζ h�E

]
.

The representation (17) can – after taking absolute values and employing the
Cauchy-Schwarz inequality – be used to indicate the local error contribution of a
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particular time-space element In× T or In×E . The analytical and numerical vali-
dation of the resulting error estimator represents work in progress. In a numerical
implementation of space- and time-adaptivity, the problem arises that no explicit
time stepping is possible anymore, since different cells of the triangulation may
have different time steps. However, with an efficient multigrid solver at hand, the
complexity of a fully implicit method is principally not larger than that of a problem
with explicit time stepping. In a time-space adaptive context for the isothermal so-
lidification problem (6), we would refrain from breaking down the Newton iteration
(7) to single time steps, but rather solve the linearized problem on the whole time in-
terval I. For problems which are too small for an efficient solution procedure based
on a multigrid solver, ensembles of several time steps could be gathered and solved
in a coupled fashion. Further, hanging nodes in time are much less worse than in
hyperbolic problems due to energy dissipation. Finally, the non-linear problem can
entirely be treated in an adaptive framework, as follows from the results of [7].
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Biomedical Applications



A Numerical Study of the Interaction of Blood
Flow and Drug Release from Cardiovascular
Stents

C. D’Angelo and P. Zunino

Abstract In this study, we focus on a specific application, the modeling and sim-
ulation of drug release from cardiovascular drug eluting stents. In particular, we
analyze the interaction between the drug release process and the blood flow, in or-
der to evaluate whether part of the drug released into the blood stream affects the
drug deposition into the arterial walls.

1 Introduction

Drug eluting stents (DES) are apparently simple medical implanted devices used
to restore blood flow perfusion into stenotic arteries. However, the design of such
devices is a very complex task because their performance in widening the arterial
lumen and preventing further restenosis is influenced by many factors such as the
geometrical design of the stent, the mechanical properties of the materials and the
chemical properties of the drug that is released. These properties mutually interact
to determine the drug penetration and deposition into the arterial walls.

Since the role of the drug is to prevent restenosis of the artery, most of the compu-
tational studies on the efficacy of DES have focused their attention on the transport
of the drug into the arterial walls, we refer to [3] and references therein for some
examples. In most cases, the blood flow is assumed to have a minor influence on the
distribution of the drug into the walls. In particular, it is common to consider that
the blood flow acts as a perfect sink with respect to the drug concentration, which is
rapidly transported away from the location of the stent. Recently, the analysis pur-
sued in [1] suggested that this assumption is not really justified. Indeed, the drug
that is apparently lost in the blood stream significantly affects the drug deposition in
the portion of the arterial walls downstream to the stent. However, the computations
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proposed in [1] are affected by some simplifications of the stent geometry and of
the governing equations for the blood flow. In this work we aim to extend the study
proposed in [1] to a realistic stent design and arterial geometry in order to accurately
evaluate the interaction of the blood flow with the drug release from a stent.

2 Mathematical Model and Numerical Method

To study the interaction between a drug eluting stent and blood flow we consider the
Navier-Stokes equations for the fluid dynamics and we describe the drug released in
the blood stream as a passive scalar governed by an advection-diffusion equation. In
this preliminary study, we neglect the presence of the arterial wall surrounding the
lumen but we quantify the drug deposition into the artery by means of the diffusive
flux at the interface between the lumen and the wall.

We denote with Ω a portion of a coronary artery where we set up our analysis.
This is a cylindric channel deformed by the introduction and the expansion of a stent
and truncated from the remaining coronary arterial tree proximally and distally with
respect to the stent position. We denote with Γin and Γout the proximal and distal
sections since they coincide with the inflow and outflow sections of the domain Ω .
The remaining part of the boundary of Ω can be subdivided in two regions, the
arterial wall and the stent. The former is denoted with Γw and the latter with Γ . In
conclusion we obtain ∂Ω = Γin∪Γout ∪Γw∪Γ .

To analyze the drug release process on a significant time scale we need to con-
sider a time period containing hundreds or thousands of heartbeats. To override this
difficulty, we start by considering a stationary flow model and we assume that the
blood flow into the arterial lumen is governed by the stationary Navier-Stokes equa-
tions,

−νΔu+(u ·∇)u+∇p = 0 and ∇ ·u = 0 in Ω , (1)

where ν = 3×10−2 cm2/s. This equation must be complemented by suitable bound-
ary conditions, specifying in our case a parabolic inflow profile u = uin with a peak
of 30 cm/s on Γin, perfect contact between the blood, the arterial walls and the stent,
u = 0 on Γ ∪Γw and zero traction force at the outflow.

The equation governing the interaction of the drug concentration c(t,x) with the
blood stream is obtained from the mass conservation principle, taking into account
both diffusive and transport fluxes. Contrarily to the assumptions adopted for the
fluid dynamics, we consider the time dependent case, because the drug release pro-
cess in intrinsically transient. By consequence, it is governed by the following equa-
tion,

∂t c +∇ · (−D∇c + uc) = 0 in Ω , (2)

where D = 10−6 cm2/s is relative to heparin, a common anticoagulant drug. Equa-
tion (2) should be supplemented by the initial state of the concentration in the blood
stream, c(t = 0) = 0 in Ω and suitable boundary conditions. On the inflow bound-
ary, Γin, we prescribe c = 0 since the blood does not contain drug proximally to the
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stent. Assuming that the outflow boundary is far enough to the stent, we neglect the
diffusive effects across this section and say ∇c ·n = 0 on Γout . Furthermore, accord-
ing to the assumption to neglect the presence of the arterial walls, we prescribe c = 0
on Γw.

Finally, particular attention should be dedicated to the condition on the interface
between the stent and the lumen, because it is primarily responsible to determine
the drug release rate. We remind that DES are miniaturized metal structures that are
coated with a micro-film containing the drug that will be locally released into the
arterial walls for healing purposes. The thickness of this film generally lays within
the range of microns. Owing to the fact that the stent coating is extremely thin, we
consider the model proposed in [4] where we derived the following formula for the
release rate,

J(t,x) = ϕ(t)
(
cs− c(t,x)

)
on Γ , (3)

cs being the initial concentration charge of the stent. Given the thickness of the stent
coating, Δ l = 7 μm, and its diffusion parameter, Ds = 5×10−12 cm2/s, the scaling
function ϕ(t) is defined as follows,

ϕ(t) =
2Ds

Δ l

∞

∑
n=0

e−(n+1/2)2kt with k = π2Ds/Δ l2.

The total drug initially stored into the stent can be expressed as M0 = cs|Γ |Δ l. Char-
acteristic values of M0 and cs are highly variable among different stent models. For
this reason, we deal with a normalized concentration with respect to cs, which is
equivalent to set cs = 1 (non-dimensional units). The derivation of (3) is similar to
the procedure that leads to the well known Higuchi formula [2], but the former has
the advantage to avoid some restrictions that are unnecessary in this context. Owing
to (3), the boundary condition on Γ for equation (2) turns out to be the following
Robin type condition,

−D∇c ·n+ϕ(t)(cs− c) = 0 on Γ .

The initial/boundary value problems relative to equations (1) and (2) are now ready
to be approximated by means of suitable numerical methods.

2.1 The Numerical Method

We consider the geometrical model of a coronary artery having length of 9.7 mm
and internal diameter of 3.4 mm. The expansion of a realistic model of a Cordis-BX
Velocity stent (Johnson & Johnson Interventional Systems, Warren, NY, USA) has
been simulated in order to identify the final configuration of the stent and the arterial
walls, as described in [3]. Then, the lumen of the artery is subdivided with Gambit
(Fluent Inc., Lebanon, NH, USA) into 3.301.271 computational cells, for the ap-
proximation of equations (1) and (2) by means of suitable numerical methods. In



78 C. D’Angelo and P. Zunino

order to obtain an accurate resolution at reasonable computational cost and memory
storage, we applied a nonuniform spacing for the mesh generation. In particular,
the central part of the domain has been subdivided by means of variable size tetra-
hedrons, particularly refined around the stent. Conversely, for the inflow and the
outflow part of the artery, where a fine resolution is not needed, we considered a
prismatic Cooper mesh, where the height of the prisms increases when approaching
the inflow and the outflow boundaries, see figure 1. To solve equations (1) and (2)
we applied the commercial solver Fluent (Fluent Inc., Lebanon, NH, USA), which
is based on finite volume schemes. We observe that equation (1) is independent of
the concentration c, by consequence we computed at first the approximation of the
stationary advective field u and then we solved the problem for the concentration.

Fig. 1 The geometry of the stent after the expansion (left) with a detail of the computational mesh
highlighting the refinement around the stent (bottom-right) and the Cooper mesh approaching the
inflow section (top-right).

3 Numerical Results

As already mentioned, we aim to study the interaction of the blood flow with the
drug released from the stent. This task is particularly challenging because the com-
plex geometry of the stent highly perturbs the local flow and its pattern significantly
influences the drug release into the lumen. We split this analysis in two parts. First
of all we focus on the fluid dynamics, trying to put into evidence the main features
of the flow around the stent. Secondly, we study how the flow influences the drug
release.
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3.1 Analysis of the Fluid Dynamics Around the Stent

Looking at the Cordis BX-Velocity stent in figure 1, it is possible to identify two
kinds of structures, the struts and the links. The first structure consists of twisted
rings that provide the circumferential strength of the stent, whereas the second one
is made by tiny connections along the longitudinal axis between subsequent struts.
For a preliminary analysis we only focus on the interaction between the struts and
the blood flow.

An important feature of the struts is to be twisted in the circumferential direction.
For this reason, the blood flow hits the struts with different angles. This suggests
that the flow pattern downstream the struts may be substantially different from the
well-known flow after a backward facing step that corresponds to the ideal case of
a perfectly circular ring that is orthogonal to the flow. This conjecture is confirmed
by the fluid dynamics simulations. Indeed, in figure 2 we show the presence of
several vortexes downstream the stent. In particular, on the right we highlighted a
segment of the strut that is orthogonal to the flow. We observe that in the central part
of this segment the vortex is quite stable, but approaching the extrema it is strongly
influenced by the change of direction of the strut. The streamlines seem to be guided
by the stent and consequently the vortex is stretched and it is absorbed into the main
stream. This suggests that the vortex is not only characterized by a planar rotating
flow on the plane orthogonal to the axis of the strut, but an out of plane motion is
present. This secondary motion is generated by the displacement of the fluid form
the center of the vortex to the extrema. Following the streamlines, the fluid is then
cast out the vortex into the main stream.

In conclusion, there is evidence that the interaction between the struts and the
blood stream generates very complex flow patterns where the recirculation zones
downstream the obstacles interact with the main stream. By this way, the fluid that
was at some time trapped into a recirculation may join the high speed flow. We will
see in the next section that this behavior has important consequences on the drug
release process.

3.2 Analysis of the Drug Release in the Blood Stream

The analysis presented in [1] shows that in an idealized geometrical setting, a signif-
icant fraction of the drug that is released by the stent into the blood flow resides into
the recirculation downstream the struts. This drug can be slowly absorbed into the
surrounding arterial walls, with great benefit to the drug deposition into the wall.
This interpretation is correct if the recirculation is a planar and stationary vortex,
which is the case of 2-dimensional or axial-symmetric flows. However, we showed
in the previous section that this is hardly the case for a realistic model of a stent.

The numerical simulation based on equation (2) shows that there is a complex
3-dimensional interaction between the distribution of the drug released into the lu-
men and the vortexes that appear downstream the struts. The evidence is provided in
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Fig. 2 The interaction between the stent and the blood flow visualized by means of streamlines.
The proximal section is located on the top while the distal section in on the bottom.

Fig. 3 The interaction between the vortexes downstream the stent and the drug released into the
lumen, whose pattern is visualized by means of an isosurface of the drug concentration at 30
minutes after the stent implantation.
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figure 3, where we show the streamlines into the recirculations together with an iso-
surface of the drug concentration in the neighborhood of the stent. The presence of
an extended isosurface downstream of the struts shows that part of the drug released
into the lumen is trapped into the recirculations. However, the concentration in this
region is about 0.01% of the reference concentration cs, which is much lower than
the values provided in [1], where it is estimated that the drug concentration in the
blood flow surrounding the stent is up to 40% of cs. This difference can be explained
observing that the drug can easily leave the recirculation regions through the sides
of the vortex. This is also confirmed by some details of figure 3 highlighting that the
isosurface of the concentration forms a cuff around the streamlines of the vortexes,
where the drug leaves the regions of recirculation and it is transported downstream.
Furthermore, we observe that the struts located downstream are surrounded by more
drug than the ones closer to the proximal section.

In conclusion, the amount of drug trapped into the recirculations is determined
as the equilibrium level between the incoming flux released by the stent and the
outgoing flux whose major contribution seems to be represented by the transport
phenomena at the extrema of the vortex. As a result of this, the concentration at
equilibrium and the amount of drug that can be absorbed into the arterial walls from
the blood flow are rather low. This interpretation is confirmed by more quantita-
tive results. Starting from the numerical simulation of equation (2), we compute
the diffusive flux outgoing the lumen from its interface with the arterial walls and
we integrate it over time to compute the corresponding amount of drug, denoted
with Mw(t). Then, we compare this quantity with M(t), that is the total amount of
drug released into the lumen. Furthermore, instead of analyzing absolute values, it
would be easier to study the relative fraction with respect to the total amount of drug
initially charged into the stent, M0. More precisely, we define

M(t) =
1

M0

∫ t

0

∫
Γ

J(s,x) dsdΓ , Mw(t) =
1

M0

∫ t

0

∫
Γw

−D∇c(s,x) ·n dsdΓ ,

where J(t,x) is given in equation (3). In figure 4 we show for a time interval of
8 hours the functions M(t) and Mw(t) together with their ratio Mw(t)/M(t) that
represents the fraction of the drug that is absorbed into the arterial walls from the
blood flow. We observe that once the equilibrium state is reached, only the 5% of
the drug released into the lumen joins the arterial walls while the remaining 95% is
transported downstream, outside the computational domain. We finally notice that,
although an absorption rate of 5% might be rather small, it is not negligible if com-
pared to the fraction of drug released from the surface of the stent directly in contact
with the arterial walls. Indeed, the fraction of drug that is re-absorbed by the artery
after being released into the blood corresponds to the 15% of the quantity released
by the stent in contact with the arterial walls.
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Fig. 4 The fraction of drug released into the lumen and the quantity absorbed into the walls, M(t)
and Mw(t) respectively, are plotted together with their ratio Mw(t)/M(t).

4 Conclusions

We analyzed the interactions between the blood flow and the drug release from
a stent, showing that a 3-dimensional analysis of the problem accounting for the
complex geometry of the stent is mandatory to capture the phenomena into play. In
this setting, we studied the contribution of the drug released into the blood flow with
respect to the efficacy of drug deposition and penetration into the arterial walls. Even
though this effect is not dominant, it seems to give a non negligible contribution to
the overall amount of drug released into the artery. In this perspective, further studies
addressing the simultaneous drug release in the blood flow and the arterial walls are
in order to accurately quantify the drug deposition into the artery.
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Numerical Modelling of Epidermal Wound
Healing

E. Javierre, F.J. Vermolen, C. Vuik, and S. van der Zwaag

Abstract A coupling between wound closure by cell migration and angiogenesis is
presented here to model healing of epidermal wounds. The closure of the wound is
modelled as a moving interface around which a local grid refinement is applied. The
numerical solution combines finite element and finite difference methods to solve
the coupled diffusion-reaction equations governing the physiological problem and
the hyperbolic equations governing the motion of the interface.

We discuss the accuracy and workload of our numerical model. Furthermore, we
illustrate that, under certain circumstances, the healing process may be stopped after
initiation.

1 Introduction

Wound healing proceeds by a succession of chemical and mechanical processes: re-
moval of infectious matter by phagocytes, cell mitosis and cell migration to close
the wound, extracellular matrix synthesis, reparation of the vascular network (an-
giogenesis) and, in deeper wounds, reduction of the wound size due to stresses on
the tissue (wound contraction). Most of these processes are triggered by the pres-
ence or lack of certain growth factors, and are terminated due to a negative feedback
mechanism.
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Mathematical models for wound healing normally consider only one isolated
process. For example, wound closure is studied in [2, 4, 13, 14], angiogenesis
in [1, 5, 8] and wound contraction in [9, 10]. However, it is well known that these
processes overlap and affect one another. In the present work, we couple wound
closure due to cell migration with angiogenesis. In contrast to the discrete mod-
els related to cell population dynamics [1, 3], wound closure is modelled here as a
closed curve (the wound edge) moving into the wound in the course of time. Hence,
the model presented here consists of a number of coupled diffusion-reactions with
a moving interface.

The remainder of this paper is organized as follows. The mathematical model is
given in Section 2. Subsequently, the computational approach is described in Section
3. Section 4 gives some numerical results that show the potential of the model, and
the conclusions are given in Section 5.

2 The Mathematical Model

We combine the models of wound closure due to Arnold and Adam [2] and the
model of angiogenesis due to Maggelakis [8] to obtain a new model that couples
both processes. In the first model, the closure of the wound is triggered by the pro-
duction of an epidermic growth factor (EGF) that determines the cell mitosis and
motility. Furthermore, the wound edge is identified as the advancing front of cells
closing the wound, and the closure rate depends on the curvature of the wound ac-
cording to a phenomenological relation. In the latter model, the capillaries supply
the wound with the necessary oxygen and nutrients needed in the healing process.
The lack of oxygen at the wound site stimulates the appearance of macrophages
at the wound surface which produce macrophage-derived growth factors (MDGFs)
that trigger the regeneration of the vascular system.

Our coupling of both models is based on the following hypotheses [6]: (H1) the
production of EGFs only takes place if there is enough oxygen to support it, (H2)
the excess of oxygen enhances the production of EGFs, and (H3) the equilibrium
capillary density is larger under the wound than anywhere else. Consequently, (H1)
delays the actual healing and (H2)-(H3) intend to speed up the healing process after
the incubation period.

We consider the distribution of the oxygen concentration u1, the MDGF concen-
tration u2, the capillary density u3 and the EGF concentration u4 over the compu-
tational domain Ω , which is two-dimensional (since the thickness of the epidermis
is very small compared to the wound dimensions) and Lipschitz. Moreover, Ω con-
sists of the wounded tissue Ωw, the active layer Ωal surrounding the wound where
the EGFs are being produced, and the outer tissue Ωot . The wound edge is denoted
by Γ . From a mass balance argument we obtain the governing equations describing
the transport, production and decay of these quantities:
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∂u1

∂ t
= D1Δu1 +λ3,1u3−λ1,1u1, (1)

∂u2

∂ t
= D2Δu2 +λ1,2Q(u1)−λ2,2u2, (2)

∂u3

∂ t
= D3Δu3 +λ3,2u2u3

(
1− u3

ueq
3 (1 + qH(φ))

)
, (3)

∂u4

∂ t
= D4Δu4−λ4,4u4 + P f (x,t,u1, p), (4)

where Di denote the diffusion coefficients, λi, j the production/decay rates, ueq
i the

values of the undamaged state (which is an equilibrium state), P the production rate
of EGFs and H the heaviside function. Moreover, Q denotes the function describing
the production of MDGF when the levels of oxygen are low and f stands for the
production of EGF inside the active layer, which, respectively, are defined as

Q(u1) =

⎧⎨⎩1− u1

u
θ2
1

, if u1 < uθ2
1 ,

0, otherwise,
(5)

and

f (x,t,u1, p) =

⎧⎨⎩1 + p u1

u
θ4
1

, if u1 ≥ uθ4
1 and x ∈Ωal(t),

0, otherwise.
(6)

Equations (1)-(4) are supplemented with homogeneous Neumann boundary condi-
tions and the following initial conditions:

ui(·,0) =

{
0, in Ωw(0),
uund

i , otherwise,
and u j(·,0) = 0 in Ω , (7)

where i = 1,3, j = 2,4 and uund
i denote the (equilibrium) undamaged levels. The

parameters p and q are used to describe the influence of oxygen in the production
of EGFs and to enhance the capillary regeneration inside the wound respectively,
whereas uθ2

1 and uθ4
1 denote the oxygen concentration below which MDGFs are pro-

duced and EGFs are not produced. Finally, the wound will move towards closure
only if the concentration of EGF exceeds a certain threshold value uθ4

4 . Hence, nor-
mal velocity vn of the wound edge is given by

vn(x,t) =
(
α +βκ(x,t)

)
H
(
u4(x,t)−uθ

4

4

)
for x ∈ Γ (t), (8)

where the normal vector n points into the wound, α , β are non-negative and κ
denotes the local curvature.

Note that each time step we need to find the wound edge in order to properly
compute the concentrations ui, i =1, ..., 4. Hence, we are dealing with a moving
boundary problem.
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3 The Computational Approach

The solution of equations (1)–(4) is computed using a finite element method with
piecewise linear basis functions. The time integration of the governing equations is
carried out with an Implicit-Explicit Euler method, where only the nonlinear reac-
tion terms are treated explicitly, and Newton-Cotes integration rules are applied in
the calculation of the element matrices and vectors. Further, we have to deal with
a moving interface and with a sharp (discontinuous) change of the production of
the EGF across the wound edge. In order to track the front position in a fashion
that allows us handling changes in the wound geometry easily and to obtain a quick
identification of the subparts of the computational domain we use the Level Set
Method [11]. Furthermore, we apply an adaptive mesh technique in the vicinity of
the wound edge. In this way we recover some of the accuracy lost due to the dis-
continuous production of EGF and have a higher resolution in the region where the
motion of the interface is computed. We refer the interested reader to [7] to find the
technical details of the algorithm.

3.1 The Level Set Method for Tracking the Wound Edge

In the level set method, the wound edge is defined as the zero level set of a continu-
ous scalar function φ :

x ∈ Γ (t) ⇐⇒ φ(x,t) = 0, ∀t ≥ 0. (9)

Furthermore, the so-called level set function φ is initialized and subsequently main-
tained as a signed distance function (||∇φ || = 1), being positive inside the wound
and negative outside. To achieve this, we apply the Fast Marching Method [12] to
solve the Eikonal equation ||∇φ ||= 1 each time step. Hence, if φ is a distance func-
tion, the domain of computation Ω is parameterized as follows:

Ωw(t) = {x ∈Ω | 0 < φ(x,t)}, (10)

Ωal(t) = {x ∈Ω | − δ (x,t) < φ(x,t) < 0}, (11)

Ωot(t) = {x ∈Ω | φ(x,t) <−δ (x,t)}, (12)

where δ denotes the thickness of the active layer. The motion of the wound edge is
then followed by the advection of the level set function:

∂φ
∂ t

+ v ·∇φ = 0, (13)

where the advection field v denotes any continuous extension of the front velocity
(8). In this work we advect vn from the interface position in the normal direction [7].
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3.2 The Adaptive Mesh Strategy

We choose as a fixed basis mesh a structured triangulation like the one presented
in Fig. 1 (left). At each time step, we refine the elements within a certain distance
dist from the interface, and the elements adjacent to them in order to preserve mesh
consistency. Each edge marked to be refined will be subdivided into equally sized
sub-edges that will define the new elements, as depicted in Fig. 1 (center). In order
to prevent ill-shaped elements, we will limit ourselves to refinement ratios equal to
2 or 3 (i.e. each marked edge will be divided into 2 or 3 sub-edges respectively).
The refined mesh inherits the structure of the basis mesh, presenting a refined Carte-
sian band within the refined region and a coarse Cartesian grid outside, see Fig. 1
(right). We take benefit of this structure as finite difference schemes are applied to
the hyperbolic equations (such that the velocity extension and the advection and the
reinitialization of the level set function) inherited from the level set formulation,
and hence avoid the implementation of stabilization techniques in the finite element
approximations.

Fig. 1 Left: fixed base FE mesh with the interface position φ = 0 (solid curve) and the contours
φ = ±dist (dashed curves). The elements within these contours are to be refined. Center: refined
FE mesh. Right: the nested Cartesian grids.

4 Numerical Results

4.1 Accuracy and Workload of the Computational Method

The accuracy of the adaptive grid strategy is evaluated here by measuring the rel-
ative error of the epidermic growth factor concentration, for the fully uncoupled
model, after an incubation period of 45 minutes. The L2 norm of the relative error
in the EGF concentration is presented in the third column of Table 1. The closure
of the wound has not been included in this test, and the analytical solution has been
obtained for a circular wound after applying separation of variables and expressing
the production function f as a series expansion of the eigenfunctions of the homoge-
neous problem. The numerical results show that, despite the fact that we use linear
elements (P1) in our finite element approximation, the numerical solution is only
first order accurate because of the discontinuous production of EGFs. However, it
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is worth noting that we recover the accuracy for the fixed basis mesh with double
number of gridnodes in each dimension if the refinement ratio is set equal to 2 in
the coarse grid, and a bit more when it is set equal to 3.

The following columns of Table 1 present the number of elements and the ar-
rangement of the nodal points inside and outside the refined band for several re-
finement ratios, as well as for the unrefined mesh. The CPU-times employed in the
reinitialization of the level set function inside and outside the refined Cartesian band
are given in the seventh and eighth columns. The number of elements gives us an
estimate of the workload needed to build the system of equations of the discretized
problem (i.e. updating the right hand side vectors). Since we use the Fast March-
ing Method, the workload of the reinitialization step is O(n logn), where n denotes
the number of nodes in the reinitialization region. The numerical results show that
the workload sharply increases inside the refined band when the number of nodes
increases. Furthermore, the reinitialization of φ outside the band cannot be avoided
because it is necessary to accurately identify the active layer each time step. Use
of a fine fixed basis mesh has been proven to increase the CPU-time per time step.
Instead, we suggest to use coarser fixed base grids with higher levels of refine-
ment, since then the workload of the reinitialization steps (inside and outside the
refined band) are well balanced and the accuracy is preserved, as can be observed
by comparison of the results for N=161 without local refinement and for N=81 with
refinement ratio equal to 3.

Table 1 Performance of the computational method. N denotes the number of nodes per Cartesian
direction and − indicates that the fixed basis mesh is not refined. The refinement distance dist is
kept proportional to the mesh width.

N Ref.
ratio

L2 error #elements #nodes
inside band

#nodes
outside band

Reinitialization
inside band

Reinitialization
outside band

- 3.03·10−1 800 80 361 0.05s 0.27s
21 2 1.51·10−1 1186 277 361 0.19s 0.26s

3 1.31·10−1 1808 592 361 0.45s 0.26s

- 1.61·10−1 3200 156 1525 0.11s 1.21s
41 2 7.55·10−2 3978 549 1525 0.45s 1.19s

3 6.09·10−2 5232 1180 1525 1.03s 1.20s

- 8.07·10−2 12800 308 6353 0.27s 6.30s
81 2 3.75·10−2 14362 1093 6253 1.10s 6.28s

3 2.87·10−2 16880 2356 6253 2.55s 6.25s

- 4.11·10−2 51200 598 25323 0.69s 46.52s
161 2 2.15·10−2 54294 2157 25323 2.89s 45.75s

3 1.52·10−2 59296 4663 25323 6.87s 45.60s
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4.2 Healing of an Elliptical Wound

The healing of an elliptical wound is simulated in this section. The solutions ui (i =
1, . . . ,4) after 5% of the wound has healed are plotted in Fig. 2. These plots clearly
illustrate the lack of oxygen at the wound site and the resulting high concentration
of macrophage-derived growth factors. The plot of the capillary density distinctly
shows the role of wound geometry on the healing process. The influence of wound
geometry has already been studied in detail for the closure model in [7], and it will
be analysed in depth for the coupled model in a future study. Finally, the epidermic
growth factor concentration profile shows the location of the active layer. The small
wiggles observed in the EGF concentration are believed to be a numerical artifact
related to the threshold oxygen level imposed on the production of the EGF.

Fig. 2 Oxygen concentration (top left), MDGF concentration (top right), EGF concentration (bot-
tom left) and capillary density (bottom right) for elliptical wound after 5% of it has healed.

4.3 The Revised Critical Size Defect

Arnold and Adam [2] use the EGF model to predict the Critical Size Defect (CSD)
of a wound, which is defined as the smallest wound that does not heal during the
life time of the animal. Since they do not include the time evolution of the wound,
their prediction only allows to elucidate the minimal size of the (circular) wound for
which some healing must be expected. However, starting the healing is no guarantee
of completing it successfully. Our simulations revealed that there are cases in which
the healing process halts prematurely after healing has started. This was observed
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when the closure rate was excessively slow or the active layer was unable to produce
the necessary EGFs.

5 Conclusions

A coupling between wound closure and angiogenesis is presented in this work. The
closure of the wound is modelled as a moving interface problem, where the interface
is identified with the advancing front of epidermal cells and the Level Set Method
is applied to track its position in time. A finite element method is used to solve
the governing equations and an adaptive mesh algorithm is implemented because
of the discontinuous production of EGFs across the edges of the active layer. The
numerical results show that the refinement around the wound edge allows us to
recover some of the accuracy lost due aforementioned discontinuity. Furthermore,
the width of the fixed basis mesh and the refinement ratio must be chosen in a proper
way to bring the workload per time step and the accuracy of the results into balance.
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Model of Multiple Lexicographical
Programming Applied in Cervical Cancer
Screening

L. Neamţiu, I. Chiorean, and L. Lupşa

Abstract An important problem for the management of the screening program for
cervical cancer is collecting the smears for women who live in remote areas. The
issue is to plan the days in which the mobile unit will be used, and its route, such that
the total cost and the testing time for all the eligible women are minimal. This paper
presents a mathematical model for the Health-Economic problem and a Bellman
type theorem for solving this model.

1 The Health-Economics Problem and a Mathematical Model

Screening, in Medicine, is a strategy used to identify diseases in an unsuspecting
population. An important problem of the management of the screening program
for cervical cancer is to take the smears for women from remote areas. For these
women, a mobile unit equipped as a gynecological office is used. The unit goes
in every village and the doctor takes the smears from eligible women who have
been informed and invited. The unit also transports the smears to the cytological
laboratory. The smears are processed and the laboratory provides the results within
a maximum of given days (laboratory response time, usually equal to 21 days). From
the Health Economics point of view, the problem is to plan the days in which the
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mobile unit will be used and its route such as the total cost and the testing time for
all the eligible women to be, both of them, minimum.

Let m be the number of the villages. For every village i ∈ {1, ...m}, we denote by
ni, the eligible number of women from the village i which will be tested. We know:
the mean time interval for taking a smear, tr; the maximum time that the mobile unit
works every day, tz; the total number of slides which can be read by laboratory in
a day, zl; the total number of resting slides that should be read by the laboratory
besides the smears obtained by the mobile unit, z0

l ; the cost/day for the driver of the
mobile unit, cs; the cost/day for the medical doctor which is on the mobile unit, cm;
overhead/day for mobile unit, cu; cost of fuel/ km, cb; mean speed for the mobile
unit, v; the laboratory response time, lr; and the maximum number of the days when
all the tests should be done, nz.

The laboratory receives the slides in the evening of every day and, consequently
has to give the answer in lr−1 days.

We assume that all routes to reach the villages and return to the base O are known.
Let p be the number of these routes. For every route j, j ∈ {1, ..., p}, the length, d j,
of the way and the villages for the mobile unit to pass through are known. In order
to identify the affiliation of one village to one route, we introduce the following p
vectors λ j = (λ j

1 , ...,λ j
m) ∈ Rm, j ∈ {1, ..., p}, where λ j

k = 1, if the route j passes

through the village k, and λ j
k = 0, if the route j does not pass through the village k.

The problem is to plan the days in which the mobile unit will be used and its route
such as the total cost are minimal and, if we have several possibilities, to choose one
for which the testing time for all the eligible women is also minimum.

We notice that in the literature, there is not such an approach for this problem.
That’s why we consider this problem as a dynamic system with finite horizon and
vectorial total utility function. The mathematical model permits to obtain an algo-
rithm which solves our problem. The number of steps of the dynamic system is cho-
sen nz (the maximum days when all the tests should be done). A step corresponds
to a day. In each step h ∈ {1, ...,nz}, the stage of the system will be described by
the vector of state variable sh ∈ Nm+1: the first component, sh

1, gives the number
of slides existing in the laboratory at the end of day h (this number is equal to the
number of slides existing in the evening of the day h− 1 minus the number of the
slides which have been read in day h, plus the number of slides which have been
taken in the day h); the following m components, sh

i , i ∈ {2, ...,m+ 1}, contain the
number of untested women at the end of day h in the village i, respectively.

Considering that the numbers zl , z0
l , ni, i ∈ {1, ...,m}, nz are known, the initial

state of the system is described by the vector

s0 = (z0
l , n1, ..., nm). (1)

Because sh
1 is the number of existing slides at the end of the day h, the maximum

number of the slides which may be taken by laboratory at the end of the day h + 1
is equal to max{0, (lr−1) · zl − sh

1}. Therefore, in the first day it may be taken only
max{0,(lr − 1) · zl − z0

l } slides. In each step h ∈ {1, ...,nz}, the decision will be
described by the decision vector xh ∈ Nm+1: the first component, xh

1, indicates the
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number of the route done in step h (if this number is 0, in that step no movement
exists); the following m components, xh

i , i ∈ {2, ...,m + 1}, contain the number of
women tested in the day h, in village i, respectively. d j/v is the time necessary to
go through the route j. Therefore the decisions set in the stage h ∈ {1, ...,nz}, if the
system is in the state sh−1, is the set Xh(sh−1),

Xh(sh−1) = {0,1, ..., p}× X̃h, (2)

where X̃h is the set of the solutions of the discrete system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
∑

k=2
xh

k ≤ max{0, (lr−1) · zl − sh−1
1 }

tr ·
m+1
∑

k=2
λ xh

1
k−1 · xh

k ≤ tz −
d

xh
1

v

xh
k ≤ λ xh

1
k−1 · sh−1

k · sgn(sh−1
1 ), ∀k ∈ {2, ...,m+ 1}

xh
k ∈ N,∀k ∈ {1, ...,m+ 1}.

(3)

The first inequality indicates that the number of slides taken in day h can
not be greater than the number of slides which can be given to the laboratory
in the evening. In the second inequality, the l.h.s. term gives the time necessary
to take the slides and the r.h.s term gives the available time in a day minus the
time spent on the route. In the third inequality, the l.h.s term gives the number
of slides planed to be taken from village k in day h, which can not be greater
then max{0, the number of slides remained to be taken in village k}. The relation
four indicates that the number of slides has to be a natural number.

The function fC : {1, ...,nz} → R describes the cost for each day. Thus the cost
of day h is

fC(xh) = sgnxh
1 · (cu + cs + cm + cb ·dxh

1
), (4)

where sgn denotes the function given by sgnx = 0, if x = 0, sgnx = 1, if x > 0 and
sgnx = −1, if x < 0.
We remark that the cost is 0, if no movement is done; else it is equal with the sum
of the costs.

The function fT : {1, ...,nz} → R indicates if in the day h, smears have been
taken. Thus

fT (h) = sgnxh
1. (5)

For all h ∈ {1, ...,nz}, the dynamic equations are

sh
1 = max{0, sh−1

1 − zl} +
m+1

∑
i=2

xh
i , sh

i = sh−1
i − xh

i , ∀ i ∈ {2, ...,m+ 1}. (6)

For all h ∈ {1, ...,nz}, the stationary equations are
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sh ∈ Sh = {0,1, ...,(lr−1) · zl}×{0, 1, ...,n1}× ...×{0,1, ...,nm}, (7)

and
xh ∈ {0, 1, ..., p}× X̃h. (8)

The total utility function is additive, having the value equal to the sum of the
values of partial utility effect functions. By denoting this function with F ,
F = (F1,F2) : {0,1, ...,nz} → R2, we have F(0) = (0,0) and F(h) = F(h− 1) +
( fC(h), fT (h))T , ∀ h ∈ {1,2, ...,nz}.

From practical point of view, our purpose is to obtain a plan of taking the smears
such that the function F1 to be minimum and, if we have possibilities to choose
which one assures the minimum for F2, too. Therefore we obtain the following type
of dynamic programming problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
∑nz

h=1 fT (xh), ∑nz
h=1 fC(xh)

) → lex−min

sh
1 = max{0, sh−1

1 − zl} +
m+1
∑

i=2
xh

i , ∀h ∈ {1, ...,nz},
sh

i = sh−1
i − xh

i , ∀ i ∈ {2, ...,m+ 1}, ∀h ∈ {1, ...,nz},
s0 given, sh ∈ Sh, and xh ∈ Xh(sh−1), ∀h ∈ {1, ...,nz},

(9)

where Sh is given by by (7) and Xh(sh−1) by (2) and (3).
By analogy with the definition of lexicographic optimality used in the general

context of vectorial programming problem (see [2]) we call this type of problem as
lexicographic dynamic programming problem.

Remark 1. The subject of dynamic programming problem, when the total utility
function is a vectorial function, is discussed in [4]. In [5] fundamental dynamic
programming recursive equations are extended to the multi-criteria framework. In
that paper, a more detailed procedure for a general recursive solution scheme for the
multi-criteria discrete mathematical programming problem is developed. A short
note about multi-criteria dynamic programming problem is given in [6]. Recently,
multi-criteria dynamic programming is extended for solving variously practical
problem. This implies some sort of generalization of Belman’s theorem . In [3], an
application in Pharmacoeconomics is given. In our paper, we show how the prob-
lem (9) can be solved using dynamic programming. But firstly we have to give a
generalization of Belman’s theorem.

2 Belman’s Theorem for Lexicographical Dynamic
Programming

Let be a discrete finite stages decision problem, with n stages, with the static equa-
tions
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s0 given,
sh ∈ Sh, h ∈ {1, ...,n},
xh ∈ Xh(sh−1), h ∈H = {1, ...,n},

(10)

and the dynamic equations

sh = gh(sh−1,xh), h ∈ H, (11)

with s0 the initial state of the system. Sh denotes the set of the states of system in
the stage h and Xh(sh−1) denotes the set of the decisions which may be taken in the
stage h, if the system is in the state sh−1.

A sequence (x1, ...,xn), where xh ∈ Xj(sh−1), for every h ∈ {1, ...,n}, is called a
policy of the system. The set of all the policies of the system will be denoted by Pol.
In each stage h ∈ H, if we take the decision xh ∈ Xh(sh−1), the obtained utility is
denoted by fh(sh−1,xh). It is a vector in Rp, where p ∈ N, p≥ 1. The total utility is
given by the function F = (F1, ...,Fp) : Pol → Rp.

Analogously to the classical dynamic programming, for the discrete finite dy-
namic system with n stages, having the static equation (10) and dynamic equation
(11), we build the sets

Ŝn := Sn, Ŝh−1 = {s ∈ Sh−1 |∃x ∈ Xh(s) such that gh(s,x) ∈ Ŝh}, (12)

for h = n, h = n− 1,...,h = 1. Again, for h = n, h = n− 1,...,h = 1 and for each
s ∈ Ŝh−1 we build the set

X̂h(s) = {x ∈ Xh(s) |gh(s,x) ∈ Ŝh}. (13)

Using the new notations, the lex-min dynamic problem can be rewritten as:

(DLP)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F(x1, ...,xn) → lex−min
sk = gk(sk−1,xk), k ∈ {1, ...,n},
s0 given,

sk ∈ Ŝk, k ∈ {1, ...,n},
xk ∈ X̂k(sk−1), k ∈ {1, ...,n}.

(14)

If p = 1, a policy x∈ Pol is called optimal, if there is no other policy y∈ Pol such
that F(y) < F(x). For p = 1, an optimal policy can be find using classical Bellman’s
theorem. For every h ∈ {1, ...,n}, let’s consider the problem

(DLPMh)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Fh(sh−1,xh,xh+1, ...,xn) → min
sk = gk(sk−1,xk), k ∈ {h, ...,n},
sh−1 given,

sk ∈ Ŝk, k ∈ {h, ...,n},
xk ∈ X̂k(sk−1), k ∈ {h, ...,n},

(15)
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where Fh denotes the total utility function if the process begins only at the stage
h, the system being in the state sh−1. For all h ∈ {1, ...,n− 1}, let us denote by
Polh(sh−1) the set of the policies of the above problems.

Theorem 1. (Bellman’s theorem [1]). A policy x = (xh−1,xh, ...,xn) ∈ Polh−1 is an
optimal policy of the problem (DLPMh−1) only if (xh, ...,xn) is an optimal policy of
the problem (DLPMh).

For our problem the classical Bellman’s theorem does not work because our
function is a vectorial one and not a scalar function. Therefore we have to give a
generalization of it.

We say that a policy x ∈ Pol is lexicographically minimal if there is no y ∈ Pol
such that F(y) <lex F(x), where <lex denotes the lexicographical ordering.

We remember that if u = (u1, ...,up) and v = (v1, ...,vp) are two points in Rp,
then we set:

u <lex v, if there is i ∈ {1, ..., p} such that ui < vi and,
if i > 1, then u j = v j, ∀ j ∈ {1, ..., i−1}. (16)

We call lex-min dynamic problem, the problem of determining a lexicographi-
cally minimal policy.

Definition 1. The total utility function is said to be lexicographic prospective in-
creasing separable if there are n− 1 vectorial functions αi : Rp × Rp → Rp,
i ∈ {1, ...,n−1}, such that

F(x1, ...,xn)
= α1( f1(s0,x1),α2( f2(s1,x2),α3(...αn−2( fn−2(

sn−1,xn−2),αn−1( fn−1(sn−2,xn−1), fn(sn−1,xn)))...))),
(17)

for all (x1, ...,xn) ∈ Pol, and if for all i ∈ {1, ...,n−1}, the function αi is lexico-
graphic increasing in the second argument:

αi(u,v) <lex αi(u,v′), for all (u,v), (u,v′) ∈ Rp×Rp with v≤ v′. (18)

It is easy to see that if

F(x) =
n

∑
j=1

fh(sh−1,xh), for all x ∈ Pol, (19)

then F is lexicographic prospective increasing separable.
For every h∈{1, ...,n}, by ϕh : (Rm×Rq)n+1−h → Rp we denote a continuously

function which satisfied the condition:
i) if h ∈ {1, ...,n− 1}, then

ϕh(sh−1,xh, ...,sn−1,xn)
= αh( fh(sh−1,xh), αh+1( fh+1,(...(αn−1( fn−1(sn−2,xn−1), fn(sn−1,xn)))...))),

(20)
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for all (sh−1,xh, ...,sn−1,xn) ∈ Ŝh−1× X̂h(sh−1)× ...× Ŝn−1× X̂n(sn−1);
ii) if h = n, then

ϕn(sn−1,xn) = fn(sn−1,xn), for all (sn−1,xn) ∈ Ŝn−1× X̂n(sn−1). (21)

We remark that

ϕh(sh−1,xh, ...,sn−1,xn) = αh( fh(sh−1,xh), ϕh+1(sh,xh+1, ...,sn−1,xn)), (22)

for all (sh−1,xh, ...,sn−1,xn) ∈ Ŝh−1× X̂h(sh−1)× ...× Ŝn−1× X̂n(sn−1). Also, for
every h ∈ {1, ...,n}, we consider the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕh(sh−1,xh,sh,xh+1, ...,sn−1,xn) → lex−min
sk = gk(sk−1,xk), k ∈ {h, ...,n},
sh−1 given,

sk ∈ Ŝk, k ∈ {h, ...,n},
xk ∈ X̂h(sk−1), k ∈ {h, ...,n}.

(23)

This problem could be rewritten as

(DLPMh)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αh( fh(sh−1,xh), ϕh+1(sh,xh+1, ...,sn−1,xn)) → lex−min
sk = gk(sk−1,xk), k ∈ {h, ...,n},
sh−1 given,

sk ∈ Ŝk, k ∈ {h, ...,n},
xk ∈ X̂h(sk−1), k ∈ {h, ...,n}.

(24)

For all h ∈ {1, ...,n− 1}, let us denote by Polh(sh−1) the set of the policies of
(24).

Theorem 2. If the total utility function F is lexicographic prospective increasing
separable, then the policy (xh−1,xh, ...,xn) ∈ Polh−1 is a lexicographically minimal
policy of the problem (DLPMh−1) only if (xh, ...,xn) is a lexicographically minimal
policy of the problem (DLPMh).

Proof. Let (xh−1,xh, ...,xn) ∈ Polh−1 be a lexicographically minimal policy of the
problem (DLPMh−1). If we suppose that (xh, ...,xn) is not a lexicographically mini-
mal policy of the problem (DLPMh), then there is (yh, ...,yn) ∈ Polh such that

ϕh(sh−1,yh, ...,sn−1yn) <lex ϕh(sh−1,xh, ...,sn−1xn). (25)

As (yh, ...,yn) ∈ Polh and (xh−1,xh, ...,xn) ∈ Polh−1, obviously we have

(xh−1,yh, ...,yn) ∈ Polh−1.

The monotony of the function αh−1 implies

αh−1( fh−1(sh−2,xh−1), ϕh(sh−1,yh, ...,sn−1,yn) <lex

αh−1( fh−1(sh−2,xh−1, ϕh(sh−1,xh, ...,sn−1,xn).
(26)
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This contradicts the hypotheses that (xh−1,xh, ...,xn) ∈ Polh−1 is a lexicographically
minimal policy of the problem (DLPMh−1). ��

3 Practical Approach and Conclusions

Let si be the number of the routes which connect the base O with a village i ∈
{1, ...,m}, and di

j, j ∈ {1, ...,m}, their lengths. If min{di
j/v | j ∈ {1, ...,si}} + tr ≤

tz, then the medical problem has no solution because the time tz is not enough for
the mobile unit to go to village i, to take at least one smears and to come back. In
the following we consider that min{di

j/v | j ∈ {1, ...,si}} + tr > tz, is true for all
i ∈ {1, ...,m}.

In the same way that a classical dynamic programming problem can be solved
using Bellman’s theorem, it is possible to solve the problem (9) using Theorem
2. First we take Gnz+1 equal to the null function and Ŝn = {(snz

1 ,0, ...,0) |snz
1 ∈

{0,1, ...,(lr − 1) · zl − z0
l }}. Then, setting k = nz, k = nz− 1,...,k = 1, we solve,

for each sk−1 ∈ Ŝk−1, the problem

(Pk) {Fk(sk−1,xk)+ Gk+1(gk(sk−1,xk))|xk ∈ X̂k(sk−1)} → lex-min, (27)

where Fk(sk−1,xk) = (∑nz
h=k fT (xh), ∑nz

h=k fC(xh)),

gk(sk−1,xk) = (max{0, sh−1
1 − zl} +

m+1
∑

i=2
xh

i , sh−1
2 − xh

2, ...,s
h−1
m+1 − xh

m+1), and

Gk(sk−1) = lex-min{Fk(sk−1,xk) + Gk+1(gk(sk−1,xk))|xk ∈ X̂k(sk−1)}. An optimal
policy of the problem (9) is (û1(x0), ..., ûnz(xnz−1)), where ûk(xk−1) denotes a lex-
min solution of (Pk), k ∈ {1, ...,knz}.
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A Finite Element Model for Bone Ingrowth into
a Prosthesis

F.J. Vermolen, E.M. van Aken, J.C. van der Linden, and A. Andreykiv

Abstract We consider a finite element method for a model of bone ingrowth into
a prosthesis. Such a model can be used as a tool for a surgeon to investigate the
bone ingrowth kinetics when positioning a prosthesis. The overall model consists
of two coupled models: the biological part that consists of non-linear diffusion-
reaction equations for the various cell densities and the mechanical part that contains
the equations for poro-elasticity. The two models are coupled and in this paper the
model is presented with some preliminary academic results. The model is used to
carry out a parameter sensitivity analysis of ingrowth kinetics with respect to the
parameters involved.

1 Introduction

In osteoporosis, fracture risk is high, after a hip fracture a joint that replaces the
prosthesis is often the only remedy. In the case of osteoarthritis and rheumatoid
arthritis, the cartilage degrades and moving the joints becomes painfull. Ultimately,
most patients will receive a prosthesis to restore the function of a diseased joint.
Prostheses, which are fixed in the bone by bone ingrowth in a porous layer are
usually put in the bone using a screw, to obtain sufficient initial stability. Bone will
grow into a porous tantalum layer in the course of time, and hence more stability of
the prosthesis is obtained. To investigate the quality and life time of such an artificial
joint, one needs to study the effects of the placement of the prosthesis and of the
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materials that are involved in the joint. At present, these effects are often studied
using large amounts of data of patients. To predict the life span and performance
of artificial joints, numerical simulations are necessary since these simulations give
many qualitative insights by means of parameter sensitivity analysis. These insights
are hard to obtain by experiments.

Several studies have been done to simulate bone-ingrowth or fracture healing
of bones. To list a few of them, we mention the model due to Adam [1], Ament
and Hofer [3], Bailon-Plaza et al. [5], Huiskes et al. [9] and recently by Andreykiv
[4]. The model due to Huiskes et al. and LaCroix et al. [9, 11] will be treated in
more detail, since we expect that this model contains most of the biologically rel-
evant processes, such as cell division and differentiation, tissue regeneration, and
cell mobilility. Many ideas from modeling fracture healing of bones are used in
these models, since bone-ingrowth into a prosthesis resembles the fracture healing
process. In the model due to Huiskes, the influence of the mechanical properties on
the biological processes are incorporated. Further, we note that Huiskes’ model has
been compared to animal experiments.

In this paper, we will see a calibrated existing bone ingrowth model (and its nu-
merical solution) in terms of a system of nonlinearly coupled equations from diffu-
sion, reactions and poro-elasticity. This paper concerns a compilation of preliminary
results, with some data for a shoulder prosthesis.

2 The Model

Huiskes [9] considers the behavior of mesenchymal cells, that originate from the
bone marrow and differentiate into fibroblasts, chondrocytes and osteoblasts. These
newly created cell types respectively generate fibrous tissue, cartilage and bone. In
Huiskes’ model, it is assumed that fibroblasts may differentiate into chondrocytes,
chondrocytes may differentiate into osteoblasts. The differentiation processes are
assumed to be nonreversible. The differentiation pattern has been sketched in Fig-
ure 1. The accumulation at a certain location of all the cell types is determined by

Mesenchymal 
cells

Fibroblasts

Chondrocytes

Fibrous tissue

Cartilage

Bone

Osteoblasts

Fig. 1 The scheme of cell differentiation of mesenchymal cells, fibroblasts, chondrocytes and os-
teoblasts.
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cell mobility, cell division and cell differentiation. Let cm, cc, c f and cb respectively
denote the cell density of the mesenchymal cells, chondrocytes, fibroblasts and os-
teoblasts, in the poro-elastic tantalum of the prosthesis in which bone ingrowth takes
place, then, the dynamics of the cell densities are described by

∂cm

∂ t
= div Dm grad cm + Pm(1− ctot)cm+

−Ff (1− c f )cm−Fc(1− cc)cm−Fb(1− cb)cm,

∂c f

∂ t
= div Df grad c f + Pf (1− ctot)c f +

−Ff (1− c f )cm−Fc(1− cc)c f −Fb(1− cb)c f ,

(1)

where the diffusivities, Dm and D f , of the mobile cells are determined by the volume
fractions of tissues, being denoted by mc and mb for cartilage and bone respectively,
by

Di = D0
i (1−mc−mb),

Pi = P0
i (1−mc−mb),

i ∈ {m, f}. (2)

The chondrocytes and osteoblasts, respectively producing cartilage and bone, are
assumed to be immobile. Their reaction processes are modeled by

∂cc

∂ t
= Pc(1− ctot)cc + Fc(1− cc)(cm + c f )−Fb(1− cb)cc,

∂cb

∂ t
= Pb(1− ctot)cb + Fb(1− cb)(cm + c f + cc).

(3)

The tissues, fibrous tissue, cartilage and bone are immobile. Let the volume fraction
of fibrous tissue be denoted by m f , then the accumulation of these tissues is modeled
by

∂m f

∂ t
= Q f (1−mtot)c f − (Dbcb + Dccc)m f mtot,

∂mc

∂ t
= Qc(1−mb−mc)cc−Dbcbmcmtot,

∂mb

∂ t
= Qb(1−mb)cb.

(4)

The initial concentrations of all tissues and cell types are zero. As boundary condi-
tions, a Dirichlet condition for the mesemchymal cell density at the bone implant
and homogeneous Neumann conditions at all other boundaries are applied. In the
present paper, the influence of the micromotions is neglected. For the fibroblasts ho-
mogeneous Neumann boundary conditions are imposed for all boundary segments.
The proliferation, differentiation and diffusion parameters depend on the mechani-
cal stimulus. The mechanical stimulus is given by a linear combination of the max-
imum shear strain and the fluid velocity relative to the rate of displacement of the
solid, that is

S =
γ
a

+
ν
β

, (5)
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where γ represents the maximum shear strain and ν denotes the relative fluid/solid
velocity. Here γ := 1

2 (λ1−λ2), where λ1,2 represent the eigenvalues of the strain
tensor. The rates of tissue regeneration and differentiation qualitatively depends on
the mechanical parameters such that:

- Low strain has a stimulatory effect (in relation to no strain) on the fibroblast
proliferation and bone regeneration (if 0 < S < 1);

- For intermediate values of the strain, cartilage formation is more favorable (if
1 < S < 3);

- High strains favor the proliferation of fibrous tissue (if S > 3).

This gives a coupling of the poro-elasticity model to this biological model. The
above set of partial differential equations poses a nonlinearly coupled set of equa-
tions. Standard Galerkin Finite Element methods provide a straightforward method
to obtain solutions. To get the local strains and stresses in the porous tantalum
that are required for the differentiation and mobility characteristics, the equations
for poro-elasticity are solved. The model was derived by Biot originally. We will
give an explanation for two-dimensional domains. In the poro-elastic domain where
u = [u v]T denote the displacement in the x- and y− direction, we have:

−div (μ grad u)− ∂
∂x

((λ + μ) div u)+
∂ p
∂x

= 0,

−div (μ grad v)− ∂
∂y

((λ + μ) div u)+
∂ p
∂y

= 0,

∂
∂ t

(n fβ f p + div u)− div

(
κ
η

grad p

)
= 0.

(6)

Here κ denotes the permeability, η the viscosity, n f the porosity and finally β f

represents the compressibility. Furthermore, μ and λ are the Lamé parameters that
originate from the stiffness and Poisson’s ratio of the material. These parameters
have to be updated as bone grows into the prosthesis. The Rule of Mixtures is ap-
plied to update the mechanical properties (see Lacroix & Prendergast [11]). For
more information on the derivation of the above equations, we refer to Bear [6].

Next, we consider a scaled version of equations (6), in which we draw our atten-
tion to the third equation. In this scaling argument, we assume that the coefficients
in the equations (6) are constant in time and space. Division of this equation by
n fβ f (under the assumption that n f and β f are constant), and using the dimension-
less variables X ,Y := x,y

L , τ := κ
ηβ f n f

t
L2 , and U,V := u,v

L , where L is a characteristic

length. Then equations (6) change into

−∇ · (μ ∇U)− ∂
∂X

((λ + μ) ∇ ·U)+
∂ p
∂X

= 0,

−∇ · (μ ∇ V )− ∂
∂Y

((λ + μ) ∇ ·U)+
∂ p
∂Y

= 0,

∂
∂τ

(∇ · U) = n fβ f

(
Δ p− ∂ p

∂τ

)
.

(7)
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where ∇(.) := 1
L∇(.), Δ (.) := 1

L2 Δ(.) and U := 1
L u. We see that as n fβ f → 0, then,

we reach the incompressible limit, which gives a saddle-point problem where one
has to consider LBB condition satisfying elements or a stabilization. The situation
becomes analogous to the Stokes’ equations.

3 The Method

For a rather recent comprehensive overview of Finite Element methods applied
to solid state mechanics, we refer to the book due to Bræss [7]. The above poro-
elasticity equations are often solved using non-conforming Finite element methods,
such as the Taylor-Hood family: if the pressure is approximated with elements of
polynomials of Pn, then, the displacements are approximated using polynomials of
Pn+1. In the Taylor-Hood elements, one usually uses linear and quadratic basis func-
tions for the pressure and displacements respectively. On the other hand, Crouzeix-
Raviart elements, which are often used for Stokes flow problems, are based on a
discontuity of the pressure. Since p ∈ H1(Ω) ⊂ C(Ω), the Crouzeix-Raviart ele-
ments are not suitable here. As long as the compressibility is sufficiently large, one
can also make use of linear-linear elements for the pressure and displacement. This
was done successfully in the study due to Andreykiv [4]. If β f = 0, which is the
incompressible case, then the issue of oscillations and the use of appropriate ele-
ments or a stabilization becomes more important. For β f = 0, the third equation in
equation (6) reduces to the version that is solved by Aguilar et al. [2].

A Galerkin formulation of the above equation with

p =
m

∑
j=1

p jψ j(x,y) and u =
n

∑
j=1

u jφ j(x,y),

is applied to equations (6). For consistency, we require m ≤ 2n as n fβ f → 0. This
case resembles the classical Stokes’ equations. For the classical Taylor-Hood ele-
ments, we use ψi ∈ P1(Ω) and φi ∈ P2(Ω). Aguilar et al. [2] demonstrate for the
one-dimensional Terzaghi problem by numerical experiments and the argument that
the discretization matrix no longer remains an M-matrix if the time step satisfies
Δ t < h

6 that the numerical solution becomes mildly oscillatory. Aguilar et al. [2] use

a stabilizator term of γ ∂
∂ tΔ p (with γ = σh2

4(λ+2μ) = O(h2), where σ = 1) to suppress
the spurious oscillations. In our application, the stabilization coefficient is given by
γ ≈ 1.2 · 10−18. We, however, think that the incompressible limit is mimiced by
equation (7), and here the boundary conditions for the pressure in the problem of
Aguilar et al. should be removed. Then, the equations can be tackled well with the
LBB condition satisfying [8] Taylor-Hood elements.

In this study, we use linear-linear elements to solve equations (6). We verified
numerically that these elements gave the same results as the Taylor-Hood elements.
A possible reason for this is that for our settings the compressibility term is given
by n fβ f ≈ 2.5 · 10−16, which is larger than the stabilization coefficient γ that was
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introduced by Aguilar et al. [2]. Since this term, and in particular the ∂ p
∂τ -term

(also as Δτ → 0), gives an additional contribution to the diagonal entries of the
discretization matrix, the M-matrix property of the discretization matrix is prob-
ably preserved. Hence, the right hand side of equation (7) stabilizes the solution.
Note that linear-linear elements are always allowable if the stabilization term due to
Aguilar is used. Our approach, which is motivated physically, stabilizes in a similar
way as Aguilar’s term does. We admit that this issue needs more investigation in
mathematical rigor. For the concentrations and densities, linear elements are used
too. The diffusion part of the equations for the mesenchymal cells and fibroblasts
were solved using an IMEX method, where the diffusivities of the mesenchymal
cells and fibroblasts were taken from the previous time step. The reaction parts in
all the equations were treated using an IMEX time integration method too. The
coupling was treated by the use of information from the previous time step. Until
now, no iterative treatment of the coupling has been done in the current preliminary
simulations. A state-of-the-art book on several numerical time integrators for stiff
problems is the work due to Hundsdorfer & Verwer [10].

To determine the stimulus in equation (5), the strain is computed from the spatial
derivatives of the displacements. To determine the strains at the mesh points, we pro-
ceed as follows: consider the equation for εxx, then multiplication by a test-function
gives ∫

Ω
εxxφdΩ =

∫
Ω

∂u
∂x

φdΩ , for φ ∈ H1(Ω), (8)

where εxx ∈H1(Ω). Using the set of basis functions as in our finite element solution,
gives

n

∑
j=1

ε j
xx

∫
Ω
φiφ jdΩ =

n

∑
j=1

u j

∫
Ω

∂φ
∂x

φidΩ , for i ∈ {1, . . . ,n}. (9)

This gives a system of n equations with n unknowns. This is applicable for any
type of element. For piecewise linear basis functions, the mass matrix is diagonal
(lumped) after applying Newton-Cotes’ integration rule. Then, the strains and fluid
velocities are used for the mechanical stimulus at the mesh points for the ordinary
differential equations, which are solved using a time IMEX integrator only.

4 Numerical Experiments

In Figure 4 the distribution of the stimulus, osteoblast density, mesenchymal stem
cell density and the bone fraction in the porous tantalum layer after 100 days have
been plotted. The prosthesis is assumed to consist of two parts: the top part being
the functional part on which an external force is exerted from the outer motion.
The botton part is the porous tantalum, in which bone is allowed to grow in from
the botton layer. The size of the prosthesis is given by 40 × 10 mm, in which the
prosthesis is divided into the top and botton layer of the same size. The upper force
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is given by 165.84 N, corresponding to an arm abduction of 30 degrees. In the top
part of the prosthesis, the elasticity equations are solved. The prosthesis has been
approximated by a two-dimensional geometry, which can be done with the use of
cylindrical co-ordinates. The latter has not been done yet.

It can be seen that the osteoblast density is maximal where the stimulus is max-
imal. This implies that bone develops at the positions where the osteoblast density
and stimulus is maximal. This can be seen clearly from the figures. Furthermore,
the mesenchymal cell density shows a decrease where the cells differentiate into
osteoblasts. The conditions are such that the model only allows the differentiation
into osteoblasts and the development of other cell types and tissues is prohibited.
To have bone ingrowth in the other parts of the tantalum, it is necessary that the up-
per arm moves allowing for the stimulus to increase at various positions within the
tantalum. This has been observed to take place in preliminary simulations that are
not shown in this paper. For arm abductions of 90 degrees, cartilage is also allowed
to develop in the tantalum due to a higher outer force that is exerted on the top of
the prosthesis. It can be seen that bone develops in the high stimulus domain. Bone
remains can only remain at locations where it has been generated. Bone resorption
has been disregarded in the model since its effect seems to be of second order only.

Fig. 2 Some distributions in the porous tantalum after 100 days: Left: The stimulus. Right: The
osteoblasts (bone cells). Bottom-Left: The mesenchymal stemcells. Bottom-Right: The bone den-
sity.
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Some preliminary results reveal that the model is rather insensitive to the diffu-
sion parameters near the current values. There is a high sensitivity with respect to
Fb, and Qb in the present loading regime.

5 Conclusions

A model has been developed for bone-ingrowth into a prosthesis. Parameters that
were used were obtained from literature and animal experiments. For small forces
exerted, bone develops mainly near the interface and close to the applied force. For
large forces, bone develops far away from the interface. For a complete ingrowth,
oscillatory forces are to be applied. Linear-linear (displacement-pressure) elements
are applicable for this two-dimensional problem.
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Space and Time Adaptive Calculation of
Transient 3D Magnetic Fields

M. Clemens, J. Lang, D. Teleaga, and G. Wimmer

Abstract Transient quasistatic magnetic fields are described by a degenerate para-
bolic initial-boundary value problems which can be considered as dynamical sys-
tems of nonlinear differential-algebraic equations (DAE) of index 1. This DAE
structure is retained after the spatial discretization with geometric discretization
schemes like the finite element method based on Whitney form functions (WFEM).
External transient electric current excitations yield commonly thin layers of eddy
currents in electric conductors. Furthermore nonlinear saturation effects have to be
taken into account in ferromagnetic materials. A common approach in established
simulation tools for solving this problem is the Method of Lines where the space is
adaptively discretized at the beginning of the simulation and then kept fixed within
the adaptive time integration of the time dependent equation. This approach, how-
ever, fails to take into account changes of the solution in the regions of material
related to strong local field variation depending on the excitation wave form. This
problem is solved by Rothe’s method coupling adaptive strategies in space and time.
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1 Introduction

In the past, magnetic field simulation schemes only feature either error control with
spatial mesh refinement (e.g. [2], [3], [20]) or with adaptive time step selection with
the required implicit time integration schemes (e.g. [5], [8]). The combination of
adaptivity in time and space was investigated for nonlinear parabolic equations in
[11], [14], [15]. Recently, a combination of adaptive spatial discretizations and vari-
able step-size time discretizations has been considered for transient magnetic field
problems. Such an approach allows to detect automatically and discretize appear-
ing and vanishing zones of ferromagnetic saturation and/or regions of eddy currents
with sufficient accuracy depending on the variation of the field excitation and a user
prescribed error tolerance. In [23] a scheme combining lowest order WFEM and
time integration schemes was presented for a linear problem. For the same problem
a different technique was presented in [17] using hierarchical bases for the spatial
error control combined to a higher order linearly implicit embedded Rosenbrock
method. In [7] this approach was extended to nonlinear magnetodynamic problems.
In this paper, a different approach is adopted, extending a space and time adap-
tive solution for 2D planar magnetodynamic problems studied in [21] to linear and
nonlinear 3D magnetic field problems. This approach involves the combination of
a lowest order WFEM formulation [6] using a suitable Zienkiewicz-Zhu-type gra-
dient recovery method for spatial adaptivity combined with an established higher
order embedded SDIRK scheme [5], [8].

2 Magnetic Field Formulation

Magneto-quasistatic (MQS) fields are described by Ampère’s law under the MQS
assumption of neglecting displacement currents. This is reasonable for low-frequen-
cy and high-conductivity applications. The equation can be stated in terms of the
magnetic vector potential A in the form

σ∂tA+ curl(ν(|curlA|)curlA) = Js in Ω × (0,T ]
A×n = 0 on ∂Ω × (0,T ] (1)

A(.,0) = A0 in Ω ,

where Js is the source current density, σ is the electric conductivity and ν is the
magnetic reluctivity. The relevant physical quantities which can be derived from A
are the magnetic flux density B = curlA and the eddy current density Je =−σ∂tA.
KARDOS [17] uses a small conductivity in non-concucting regions in order to ob-
tain a consistent linear system after spatial discretization. This non-physical conduc-
tivity is avoided in the research code MEQSICO [7] by introducing a current vector
potential Ts for Js such that Js = curlTs according to [19].
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3 Time Discretization

For the discretization of (1) a Rothe approach (”first time, then space”) is adopted
where the spatial discretization is considered as a perturbation of the implicit time
stepping process. Since the resulting equation becomes highly nonlinear and stiff,
implicit integrators which avoid time step restrictions forced by stabiltiy require-
ments are used. The vector potential A is discretized by values An ≈ A(·,tn) on a
certain time grid

0 = t0 < t1 < · · ·< tM = T. (2)

Time step methods that need values from several previous time steps are not favor-
able because the spatial mesh is permanently changing. Hence, one step methods are
chosen because only two different meshes are needed in every time step. One mesh
on which the starting value is given and a second mesh on which the solution for
the new time step is computed. One step time integrators of s stages are considered
with the stage variables Ani, i = 1, . . . ,s. The solution at the new time step tn+1 has
the form

An+1 = An +
s

∑
i=1

miAni (3)

with coefficients mi ∈ R,1 ≤ i ≤ s. In sections 3.1 and 3.2 two time integration
schemes are introduced: an implicit Runge-Kutta method and a newly designed
Rosenbrock method ROS3PL.

3.1 Runge-Kutta Methods

In the i-th stage a nonlinear boundary value problem

σ
Δ taii

Āni + curl
(
ν(|curlĀni|)curlĀni

)
= Fni in Ω , Āni×n = 0 on ∂Ω (4)

for Āni is solved. The right hand side Fni is given by

Fni = Js(·,tn + ciΔ t)+
σ

Δ taii

(
An + Ãni

)
, Ãni =

i−1

∑
j=1

ai jAn j. (5)

Finally, we obtain

Ani =
(
Āni−An− Ãni

)
/aii. (6)

The step length is given by Δ t = tn+1− tn. The coefficients ai j, ci, mi and details on
the error estimation and step size control can be found in [4] (page 51, Pair 2b).
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3.2 Rosenbrock Methods

A linear boundary value problem for Ani is solved in the i-th stage

σ
Δ tγ

Ani + curl(TncurlAni) = Rni in Ω , Ani×n = 0 on ∂Ω . (7)

The right hand side is given by

Rni =−curl(ν(|curlAi|)curlAi)+ Js(·,ti)−σ
i−1

∑
j=1

ci j

Δ t
An j +Δ tnγi∂tJs(·,tn), (8)

where Ai = An +∑i−1
j=1 bi jAn j. The operator Tn is derived from a linearization of the

nonlinear operator curl(ν(|curlA|)curlA) with respect to A at time tn

Tn = ν(|curlAn|)I+ ∂|curlA|ν(|curlA|)|A=An(curlAn)(curlAn)T /|curlAn|. (9)

Here, the identity matrix is denoted by I and the step length by Δ t = tn+1− tn. The
coefficients γ , γi, bi j, ci j, mi and details on the error estimation and step size control
can be found in [7], [18].

4 Space Discretization

The linearization of problem (4) in the context of a Newton method as well as the
linear problem (7) can be stated in the form

βu+ curl(αcurlu) = f in Ω , u×n = 0 on ∂Ω . (10)

This problem is replaced by the variational formulation in the Hilbert space

H0(curl,Ω) = {u ∈ L2(Ω)|curlu ∈ L2(Ω),u×n = 0}. (11)

Find u ∈ H0(curl,Ω) such that for all v ∈ H0(curl,Ω)

〈αcurlu,curlv〉L2(Ω) + 〈βu,v〉L2(Ω) = 〈f,u〉L2(Ω). (12)

If β ∈ L∞(Ω) and 0 < β < β < β for some β ,β > 0, the Lax-Milgram lemma guar-
antees existence and uniqueness of the solution. Since the conductivity σ and also β
may be zero on sets of positive measure a unique solution can only be found in some
quotient space. For the finite element discretization the H0(curl,Ω)-conforming
Whitney finite element space on tetrahedra with lowest order polynomials is used.
These functions enforce tangential continuity across interelement boundaries. For
the spatial adaptivity, local error estimators based on hierarchical finite elements
[1], [7], and also suitable Zienkiewicz-Zhu-type gradient recovery error indicators
for edge elements [22] are used.
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5 Space-Time Adaptivity

The combination of space and time adaptivity implemented in the code MEQSICO
is depicted in Fig. 1. Starting on a coarse grid for each new time step, the spatial dis-
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Fig. 1 Flow chart for the space-time adaptive solver MEQSICO.

cretization is adaptively refined using a gradient recovery scheme of Zienkiewicz-
Zhu-type for local error detection [8]. For the refinement of the tetrahedral grid a 3D
red-green closure strategy is used. The time stepping tolerance tolt is tested after ev-
ery spatial refinement for which the error indicator threshold tolx is used. Provided
that the new time step solution is accepted, the next step starts again with a coarse
grid. The software package KARDOS [10] uses a slightly different strategy where
the time step is controlled after a sequence of mesh refinements [16].
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Fig. 2 Flow chart for the space-time adaptive solver KARDOS.
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6 Numerical Results

6.1 TEAM 7 Benchmark

The TEAM 7 benchmark problem consists of an aluminium plate with an eccentric
hole. A source coil is placed above the plate. Numerical results and experimental
data for a time harmonic excitation with a frequency of 50 Hz and a maximum
value of 2742 A are given in [13]. In order to test the space-time adaptive algorithm
the coil is excited by a ramped sinusoidal current over two periods which reaches the
maximum value after 15 ms and the problem is considered as a pure transient eddy
current problem. Different combinations of adaptive/fixed time and spatial grids are
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Fig. 3 TEAM 7: Simulations with different combinations of fixed/adaptive time and spatial grid
in MEQSICO with the Runge-Kutta method.

shown in Fig. 3. The evolution of the estimated spatial error in Fig. 3(b) shows that
adaptive and fixed time steps produce the same spatial error. Hence time adaptivity
alone will not solve the problem sufficiently. Spatial adaptivity decreases the spa-
tial error for account of increasing degrees of freedom (dofs) (see Fig. 3(a)) and in
connection with time adaptivity the number of time steps is nearly optimal. Numer-
ical results for KARDOS in [17] show a similar performance. The dofs vary from
0.7 · 105 and 2.1 · 105 and the spatial error is mainly reduced in time intervals with
large current excitation.

6.2 Magnetic Write Head Benchmark

This benchmark problem was proposed by the Storage Research Consortium (SRC)
in order to test various 3D FEM codes [12]. The model consists of the head which
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is placed on a rectangular plate with high conductivity and nonlinear material be-
haviour. The applied magnetomotive force (mmf) in the two coils has a trapezoidal
waveform with a frequency of 25 MHz. The z−component of the magnetic flux
density Bz was measured in front of the small air gap between head and plate. Fig.

Fig. 4 Bz component of magnetic flux density simulated with KARDOS.

4 shows the calculated results of the head field Bz at the pole tip with KARDOS.
Since eddy currents are induced in the conductive material, head and plate, the field
is delayed a few nanoseconds with respect to the applied mmf. At the beginning the
initial mesh with 109 495 dofs is refined to 357 173 dofs. After successive coarsen-
ing approximately 250 000 dofs are sufficient. More details can be found in [7]. The
performance of MEQSICO for this benchmark problem is described in [9].

7 Conclusion

A combination of simultaneous use of adaptive space and time discretizations for
transient magnetic fields has been presented. This approach features a time evolving
mesh where adaptive refinement and coarsening of the spatial resolution take into
account appearing and disappearing local transient saturation effects. The numerical
results show that accuracy is lost if the mesh or the time steps are kept fixed during
the simulation. Different time integration schemes and spatial error indicators have
been implemented in the research codes MEQSICO and KARDOS and have been
investigated for two benchmark problems.
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A Boundary Integral Formulation for Nonlocal
Electrostatics

C. Fasel, S. Rjasanow, and O. Steinbach

Abstract In the field of protein binding, it is important to gain some knowledge
about the electric field surrounding the concerning biomolecules. Most of the inte-
resting action takes place inside cells where the medium is similar to water, which
is a nonlocal medium. To handle this nonlocal behavior caused by a network of
hydrogen bonds, we formulate an interface problem in terms of a system of cou-
pled partial differential equations involving the Laplace and the Yukawa operator.
Furthermore, we deduce for the system a fundamental solution and an associated
representation formula. We finally derive a boundary integral formulation to deter-
mine the complete Dirichlet and Neumann data.

1 Modelling Nonlocal Electrostatics for Biomolecules in Water

The model given below is a modification of the model as presented in [1, 2]. Before
going into detail, we first introduce some notations. Let Ω i ⊂ IR3 be a bounded

domain where the molecule is located. Let Ω e = IR3 \Ω i
denote the unbounded

domain exterior to Ω i which is filled with water. Γ = IR3 \(Ω i∪Ω e) is the interface
between the molecule and water. For x ∈ Γ we define the normal vector n(x) as the
unit vector pointing from Ω i into Ω e. The interior and exterior trace operators are
denoted by γ int

0 and γext
0 , respectively.
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The starting point for our considerations are the Maxwell equations of electro-
statics which describe the behavior of the electric field E and of the displacement
field D by

curl E(x) = 0, x ∈Ω i∪Ω e, (1)

div D(x) = ρ(x), x ∈Ω i∪Ω e. (2)

The charge distribution is modelled as a sum of partial charges located inside Ω i,

ρ(x) =
Nc

∑
j=1

q jδ (x− x j), (3)

where δ denotes the Dirac Delta distribution. Furthermore, it is known that – in
absence of surface charges – the tangential component of the electric field and the
normal component of the displacement field are continuous through the interface,

(γ int
0 E(x)− γext

0 E(x))×n(x) = 0 , x ∈ Γ , (4)

(γ int
0 D(x)− γext

0 D(x),n(x)) = 0 , x ∈ Γ . (5)

One of the main steps in the modelling is the description of the relation between E
and D. Inside the molecule we assume a local relationship, and therefore,

D(x) = ε0εΩ i E(x) , x ∈Ω i, (6)

where ε0 is the permittivity of vacuum, and εΩ i is constant inside the molecule. The
description in Ω e is more complicated due to the nonlocal effects of water. There
are two different facts that influence the relation between the two fields in Ω e. Each
water molecule can be seen as a dipole and thus would normally align itself with
the field and all together would cause a relatively strong shielding effect. On the
other side, water molecules build a network of hydrogen bonds. This network has
energetic advantages and is strongly dependent on the angle of the water molecules
towards each other. The strength of the electric field determines if the water keeps
the bonds or aligns with the field. That is the reason why the electric field in the
neighbourhood of a point x is important for the displacement field in the point in
contrast to the local relationship where only the electric field in the point has to be
taken into account. The nonlocal relationship is taken as

D(x) = ε0

⎛⎝ε∞E(x)+η2
∫
Ω e

e−κ |x−y|

4π |x− y|E(y) dy

⎞⎠ , x ∈Ω e, (7)

where

η2 = (εΩ e − ε∞)κ2 , κ =
1
λ

,
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λ is the correlation length, and ε∞ and εΩ e are constants describing the dielectricity
of the material. The scaling of the system is done with respect to the typical length
of an hydrogen bond.

To transfer this system of partial-integro-differential equations into a system of
partial differential equations, we make use of a scalar potential for E,

E(x) =−∇ϕ(x), x ∈Ω i∪Ω e. (8)

Then, the electric field E is curl-free and with respect to ϕ , the material relations
can be written as

D(x) = −εΩ i∇ϕ(x) , x ∈Ω i, (9)

D(x) = −ε∞∇ϕ(x)−η2
∫
Ω e

e−κ |x−y|

4π |x− y|∇ϕ(y) dy , x ∈Ω e. (10)

Note that the constant ε0 has been eliminated during the process of scaling. Apply-
ing the divergence to (9) and to (10), it follows by the use of (2) and (8) that

−εΩ iΔϕ(x) = ρ(x) , x ∈Ω i, (11)

−ε∞Δϕ(x)−η2div
∫
Ω e

e−κ |x−y|

4π |x− y|∇ϕ(y) dy = 0 , x ∈Ω e. (12)

In addition, the transmission condition (4) for the electric field takes the form

γ int
0 ϕ(x) = γext

0 ϕ(x) , x ∈ Γ . (13)

In order to eliminate the volume integral in (12) we introduce an additional unknown
function which we denote by P. It is defined as

P(x) =−η
∫
Ω e

e−κ |x−y|

4π |x− y|∇ϕ(y) dy , x ∈Ω i∪Ω e. (14)

P describes the polarisation in Ω e, but has no physical meaning in Ω i. With this,
equation (12) reads

−ε∞Δϕ(x)+ηdivP(x) = 0 , x ∈Ω e, (15)

and the transmission condition (5) for the displacement field becomes

εΩ iγ int
1 ϕ(x) = ε∞γext

1 ϕ(x)−η(γext
0 P(x),n(x)) , x ∈ Γ , (16)

where γ int/ext
1 denotes the interior and exterior conormal derivative, respectively. To

find a second relation between ϕ and P, we use the Yukawa operator Lκ = Δ −κ2,
and the fact that the convolution kernel under the integral is its fundamental solution.
Thus, we obtain
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−LκP(x)+η∇ϕ(x) = 0 , x ∈Ω e, (17)

−LκP(x) = 0 , x ∈Ω i. (18)

Transmission conditions for the field P can be deduced from (14) as

γext
0 P(x) = γ int

0 P(x) , γext
1 P(x) = γ int

1 P(x) , x ∈ Γ . (19)

To complete the system, we include radiation conditions for ϕ and P, where the one
for P can be deduced from the one for ϕ ,

ϕ(x)∼ 1
|x| , |P(x)| ∼ 1

|x|2 as |x| → ∞. (20)

The resulting system composed by (11), (13), (15), (16), (17), (18), (19), and (20),
is a system of purely partial differential equations that is equivalent to the mixed
partial-integro-differential system we started from.

2 Analytical and Fundamental Solution

For the special case of only one charge with strength q, located in the origin of a
sphere with radius a, we can transfer all differential operators into spherical coordi-
nates. Then we are able to find an analytical solution, namely

ϕ int(x) =
q

4πεΩi |x|
+

q
4πa

(
1
εΩe

− 1
εΩi

+ B
e−κ ′a

4πa

)
,

ϕext (x) =
q

4πεΩe

(
1
|x| + B

e−κ ′|x|

|x|

)
,

Pint(x) = C
q

4πεΩ e

(eκ |x|(κ |x|−1)+ e−κ |x|(κ |x|−1)
|x|3 x,

Pext (x) =
q

4πεΩe |x|3
(

1
κ2 + B

e−κ ′|x|(1 +κ ′|x|)
κ2−κ ′2

)
x,

where

κ ′2 = κ2 +
η2

ε∞
,

and the constants B and C are given by

B =
η(κ ′2−κ2)(eκa− e−κa)eκ

′a

eκa(κ2(κ ′a + 1)+κ ′2(κa−1))+ e−κa(κ ′2(κa + 1)−κ2(κ ′a + 1))
,

C =
ηκ ′2

κ2

1
eκa(κ2(κ ′a + 1)+κ ′2(κa−1))+ e−κa(κ ′2(κa + 1)−κ2(κ ′a + 1))

.
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This example also shows that the model contains the local case. In the local case we
have λ → 0 which induces κ → ∞, and also κ ′ → ∞ . For κ ′ → 0 the exponential
term in ϕext disappears, and we end up with the solution of the local system, namely,

ϕext(x) =
q

4πεΩe |x|
, λ → 0 .

Furthermore, the analytical solution can be used to control future numerical results
with respect to their reliability.

In general, the system derived cannot be solved analytically, instead we have to
use some numerical approach. Since the domain Ω i may have a very complicated
boundary Γ which is usually given already in a discretized form (see Fig. 1 for the
Solvent Excluded Surface of the neurotransmitter Acetylcholinesterase) the use of a
boundary integral equation approach seems to be favourable. Moreover, the exterior
domain Ω e is unbound, therefore a boundary element method seems to be more
advantageous than a finite element method.

Fig. 1 Solvent excluded surface of Acetylcholinesterase, Source: BALLView [4]

To obtain a boundary integral formulation we first have to consider the interior
and the exterior problem separately.

In the interior domain Ω i we have to deal with the Laplace and with the Yukawa
operator, both are well known, for their representation formulae and potentials see
e.g., [3, 5, 6]. Thus we will skip this part here and make use of their results later.

To handle the partial differential equation in the exterior domain Ω e we define
the operator

A ext =
(−εΩ eΔ η∇T

η∇ −LκI3

)
(21)

which turns out to be elliptic. Because of the first order derivatives involved, the
operator A ext is not self-adjoint and, thus, we need to compute the fundamental
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solution of the adjoint operator to obtain a representation formula for the exterior
problem. Since the coefficients of A ext are constant, we are able to find the funda-
mental solution by using the Fourier transform and obtain

U ∗
ext (x,y) =

(
f1 (x− y)T f2

(x− y) f2 f3I3 +(x− y)(x− y)T f4

)
, (22)

where

f1 =
(κ ′2−κ2)e−κ ′|x−y|+κ2

4πε∞κ ′2|x− y| ,

f2 = − η
4πε∞κ ′2

e−κ ′|x−y|(κ ′|x− y|+ 1)− 1
|x− y|3 ,

f3 =
e−κ |x−y|

4π |x− y|+
e−κ |x−y|(κ |x− y|+ 1)− 1

4πκ2|x− y|3 − e−κ ′|x−y|(κ ′|x− y|+ 1)−1
4πκ ′2|x− y|3 ,

f4 =
e−κ ′|x−y|(κ ′2|x− y|2 + 3κ ′|x− y|+ 3)− 3

4πκ ′2|x− y|5 −

−e−κ |x−y|(κ2|x− y|2 + 3κ |x− y|+ 3)−3
4πκ2|x− y|5 .

A closer look at the fundamental solution clearly indicates that the only singularities
are included in f1 and in the first part of f3. Both are first order singularities.

3 Representation Formula and Boundary Integral Formulation

The representation formula is obtained in the usual way by multiplying the partial
differential equation with an appropriate test function and integrating over the exte-
rior domain. Afterwards we apply the adjoint operator to the test function, multiply
with the solution of the original problem and once again integrate by parts. We end
up with the following representation formula for x ∈Ω e(
ϕ
P

)
(x)=−

∫
Γ

γext
0 U ∗

ext(x,y)
(
ε∞γext

1 ϕ−η(γext
0 P,n)

γext
1 P

)
dsy +

∫
Γ

W (x,y)
(
γext

0 ϕ
γext

0 P

)
dsy,

where W is given as

W11 = ε∞γext
1,y f1 +η(γext

0 (x− y) f2,n(y)),

W12 = γext
1,y((x− y)1 f2),

W13 = γext
1,y((x− y)2 f2),

W14 = γext
1,y((x− y)3 f2),

W21 = ε∞γext
1,y(x− y)1 f2 +ηγext

0 ( f3e1 +(x− y)1(x− y) f4),n(y)),
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W22 = γext
1,y( f3 +(x− y)2

1 f4),

W23 = γext
1,y((x− y)1(x− y)2 f4) = W32,

W24 = γext
1,y((x− y)1(x− y)3 f4) = W42,

W31 = ε∞γext
1,y(x− y)2 f2 +ηγext

0 ( f3e2 +(x− y)2(x− y) f4),n(y)),

W33 = γext
1,y( f3 +(x− y)2

2 f4),

W34 = γext
1,y((x− y)2(x− y)3 f4) = W43,

W41 = ε∞γext
1,y(x− y)3 f2 +ηγext

0 ( f3e3 +(x− y)3(x− y) f4),n(y)),

W44 = γext
1,y( f3 +(x− y)2

3 f4).

To come up with a boundary integral equation, we follow the direct BEM approach
and apply the exterior trace operator γext

0 to the above representation formula. For the
calculation of the matrix entries in the BEM method, we can separate the integrals
in parts that are those of the Laplace operator and some additional parts that can
be calculated by numerical integration. Mapping properties can be transferred from
the ones for the Laplace operator. We end up with the following boundary integral
equation

Vnl

(
γext

1 ϕ−η(γext
0 P,n)

γext
1 P

)
=−1

2
γext

0

(
ϕ
P

)
+ Knlγext

0

(
ϕ
P

)
, (23)

where

(Vnlu)(x) = γext
0,x

∫
Γ

U ∗
ext (x,y)u(y) dsy, (24)

(Knlw)(x) = lim
ε→0

∫
y∈Γ :|x−y|≥ε

W (x,y)w(y) dsy (25)

are the associated single and double layer potential, respectively. In the interior do-
main Ω i we obtain by using the particular solution

up(x) =

(
Nc

∑
j=1

q j

4π |x− x j| ,0,0,0

)�
the boundary integral equation

Vlocγ int
1

(
ϕ
P

)
=

1
2
γ int

0

(
ϕ
P

)
+ Klocγ int

0

(
ϕ
P

)
− γ int

0 up (26)

where

Vloc =

⎛⎜⎜⎝
V0 0 0 0
0 Vκ 0 0
0 0 Vκ 0
0 0 0 Vκ

⎞⎟⎟⎠ and Kloc =

⎛⎜⎜⎝
K0 0 0 0
0 Kκ 0 0
0 0 Kκ 0
0 0 0 Kκ

⎞⎟⎟⎠ .



124 C. Fasel et al.

V0 and Vκ denote the single layer potentials of the Laplace and of the Yukawa oper-
ator, while K0 and Kκ denote their double layer potentials. Using the interface con-
ditions (13), (16), and (19), we finally obtain the desired boundary integral equation((

εΩ i

I3

)
V−1

loc

(
1
2

I+Kloc

)
−V−1

nl

(
−1

2
I + Knl

))
γ0u=

(
εΩ i

I3

)
V−1

loc γ0up , (27)

where

γ0u =

(
γ int

0 ϕ ,γ int
0 P

)�
=

(
γext

0 ϕ ,γext
0 P

)�
.

Note that the Laplace and Yukawa single layer potentials are elliptic and therefore
invertible, and the same holds true for the nonlocal exterior operator. Solving the
boundary integral equation (27) leads to the knowledge of the Dirichlet data γ0u on
Γ . When knowing this function, we can calculate the interior Neumann data by solv-
ing an associated Dirichlet boundary value problem. The complete Cauchy data of
the interior problem then provides the possibility to calculate the exterior Neumann
data by using the corresponding transmission condition. In this way, we receive the
complete set of Cauchy data for both problems. By the use of the representation
formulae in Ω i and Ω e, we can evaluate the solution everywhere in IR3.

4 Outlook

Based on the boundary integral equation (27) we are going to solve the problem by
using modern boundary element techniques. A good approximation strategy for the
matrices based on fast BEM (cf. [5]) has to be chosen to obtain reasonable results
in a realistic time. Another major task for future work is the numerical analysis of
the approximation scheme.
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Efficient Solution of Algebraic Bernoulli
Equations Using H -Matrix Arithmetic

U. Baur and P. Benner

Abstract The algebraic Bernoulli equation (ABE) has several applications in con-
trol and system theory, e.g., the stabilization of linear dynamical systems and model
reduction of unstable systems arising from the discretization and linearization of
parabolic partial differential equations (PDEs). As standard methods for the solu-
tion of ABEs are of limited use for large-scale systems, we investigate approaches
based on the matrix sign function method. This includes the solution of a linear
least-squares (LLS) problem. Due to the large-scale setting we propose to solve this
LLS problem via normal equations. To make the whole approach applicable in the
large-scale setting, we incorporate structural information from the underlying PDE
model into the approach. By using data-sparse matrix approximations, hierarchical
matrix formats, and the corresponding formatted arithmetic we obtain an efficient
solver having linear-polylogarithmic complexity. The proposed solver computes a
low-rank representation of the ABE solution.

1 Introduction

We consider the algebraic Bernoulli equation (ABE)

AT X + XA−XBBTX = 0, (1)

where A ∈ Rn×n, B ∈ Rn×m, and X ∈ Rn×n is the matrix of unknowns. Recent
methods for model order reduction of unstable dynamical systems [17] give the
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motivation for an efficient numerical solution of large-scale ABEs. Thereby, the
general assumption

Λ(A)∩C− �= /0, Λ(A)∩C+ �= /0, Λ(A)∩ iR = /0 (2)

is given, using the notation Λ(A) for the spectrum of A, i =
√−1 and C− (C+)

for the open left (right) half complex plane. The major part of the computational
complexity of the balancing-related methods for model order reduction stems from
the solution of large-scale ABEs and Lyapunov equations. In general, numerical
methods for matrix equations have a complexity of O(n3) (see, e.g., [7, 16]) and
therefore, all these approaches are restricted to problems of moderate size. To over-
come this limitation for a special class of practically relevant large-scale systems,
recent approaches for the solution of Lyapunov equations [2, 3] combine iterative
solvers based on the sign function method [15] with the hierarchical matrix format
and the corresponding arithmetic. This idea is extended to the numerical solution of
large-scale ABEs in the following.

This paper is organized as follows. In Section 2, we describe the sign function
iteration for the solution of matrix equations and provide some basic facts of the
H -matrix format and the corresponding formatted arithmetic. The H -matrix based
sign function method is introduced in Section 3. In Section 3.1 we explain how the
ABE solution is computed in low-rank factorized form by solving an LLS problem
via normal equations. Symmetrizing this solution is explained in Section 3.2 and the
derived method is tested on a numerical example in Section 4.

2 Theoretical Background

Necessary basics of the sign function iteration and of the data-sparse hierarchical
matrix format are provided in this section.

2.1 The Matrix Sign Function

It is well known that a solution X of an ABE (which is a homogeneous algebraic Ric-
cati equation) can be derived from the invariant subspace of the associated Hamil-
tonian matrix Z as (

A BBT

0 −AT

)
︸ ︷︷ ︸

=:Z

(
In

−X

)
=
(

In

−X

)
(A−BBT X),

see for instance [14]. Thus, if (A,B) is stabilizable and (2) holds, the unique stabi-
lizing solution X of (1) can be computed by the Z-invariant subspace correspond-
ing to the stable eigenvalues, i.e. Λ(A− BBT X) ⊂ (Λ(Z) ∩C−). Using spectral
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projection, the kernel of the projector onto the anti-stable Z-invariant subspace
P+ := (I2n + sign(Z))/2 describes the stable Z-invariant subspace. Thus, the sta-
bilizing solution X can be derived from the LLS problem

1
2
(I2n + sign(Z))

(
In

−X

)
= 0. (3)

One of the numerical methods to compute the sign of Z is based on the Newton
iteration for Z2 = I [15]. To describe this method, consider a matrix Z ∈ Rn×n with
no eigenvalues on the imaginary axis. The matrix sign function for Z is defined by
the real version of the Jordan canonical form

sign(Z) := S−1
[

I� 0
0 −In−�

]
S, with Z = S−1

[
J+
� 0
0 J−n−�

]
S,

and S ∈ Rn×n, Λ(J+
� )⊂ C+, Λ(J−n−�)⊂ C−.

To compute the matrix sign function, we use the Newton iteration applied to
(sign(Z))2 = In:

Z0← Z, Zj+1← 1
2
(Zj + Z−1

j ).

This so called sign function iteration converges globally quadratically to the sign of
Z and is well-behaved in finite-precision arithmetic. In order to solve the ABE (1)
satisfying (2), the sign function is applied to the Hamiltonian Z associated with (1).
By the block structure of Z, the iteration splits into two parts

A0 ← A, A j+1 ← 1
2 (A j + A−1

j ),

B0 ← B, B j+1 ← 1√
2

[
B j, A−1

j B j

]
, j = 0,1,2, . . . ,

(4)

with quadratic convergence rate and

sign(Z) =
(

A∞ B∞BT
∞

0 −AT
∞.

)
, (5)

using the notations
A∞ := lim

j→∞
A j, B∞ := lim

j→∞
B j.

In [5, 6], this iteration scheme is used for solving Lyapunov equations and modified
for the direct computation of the Cholesky (or full-rank) factors. We review the iter-
ation scheme in Section 3 and propose further improvements using the hierarchical
matrix format as briefly introduced in the next section.
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2.2 H -Matrix Arithmetic Introduction

In [11], the sign function method for solving algebraic Riccati equations is com-
bined with a data-sparse matrix representation and a corresponding approximate
arithmetic. This initiated the idea to use the H -matrix format for computing low-
rank solutions of ABEs. As our approach also makes use of this H -matrix format,
we will introduce some of its basic facts in the following.

The H -matrix format is a data-sparse representation for a special class of ma-
trices, which often arise in applications. Matrices that belong to this class result, for
instance, from the discretization of partial differential or integral equations. Exploit-
ing the special structure of these matrices in computational methods yields reduced
computing time and memory requirements. A detailed description of the H -matrix
format can be found, e.g., in [9, 10, 12, 13].

The basic idea of the H -matrix format is to partition a given matrix recursively
into submatrices M|r×s that admit low-rank approximations, rank(M|r×s)≤ k, where
k denotes the block-wise rank. The corresponding submatrix is stored in factorized
form as

M|r×s = ABT , A ∈Rr×k, B ∈ Rs×k,

all remaining blocks correspond to submatrices which are stored in the usual dense
matrix format.

The set of H -matrices of block-wise rank k is denoted by MH ,k. The storage
requirements for a matrix M ∈MH ,k are

NMH ,kSt = O(n log(n)k)

instead of O(n2) for the original (full) matrix. We denote by MH the hierarchical
approximation of a matrix M. The formatted arithmetic ⊕ ("), �, (·)−1

H is a means
to close the set of H -matrices under addition, multiplication and inversion. These
operations in formatted arithmetic are performed block-wise with exact addition or
multiplication followed by truncating the resulting block back to rank k using a best
Frobenius norm approximation. The truncation operator, denoted by Tk, is realized
by a truncated singular value decomposition, see, e.g., [10] for more details. For
two matrices A,B∈MH ,k and a vector v∈Rn we consider the formatted arithmetic
operations, which all have linear-polylogarithmic complexity:

v #→ Av : O(n log(n)k),
A⊕B = TH ,k(A + B) : O(n log(n)k2),
A�B = TH ,k(AB) : O(n log2(n)k2).

(6)

In this work the H -inverse A−1
H of a matrix A is computed using an approximate

H -LU factorization A ≈ LH UH followed by an H - forward and H - backward
substitution. The complexity of the H -inversion is O(n log2(n)k2).

Note that in practice, the blockwise rank is chosen adaptively for each ma-
trix block instead of using a fixed rank k. Thus, the rank in each block M|r×s is
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determined so that the formatted operation yields an error less than or equal to a
prescribed accuracy ε . We will use the H -matrix structure to compute solution fac-
tors of ABEs, which reduces the complexity and the storage requirements of the
underlying iteration scheme.

3 Efficient Solution of Large-Scale ABEs by Use of the
H -Matrix Arithmetic

It is observed that in usual applications which stem from the discretization of some
elliptic partial differential operator the B-iterates in (4) and thus the solution X of
the ABE (1) have a small (numerical) rank. Thus, memory requirements are reduced
by computing low-rank approximations to the factors directly. Furthermore, the hi-
erarchical matrix format is incorporated in the sign function iteration (7) to reduce
the cubic complexity and the quadratic storage requirements:

A j+1 ← 1
2
(A j⊕A−1

H , j), (7)

B j+1 ← 1√
2

[
B j, A−1

H , jB j

]
, j = 0,1,2, . . . . (8)

for details see [1, 3, 6]. Since the number of columns of B j in (8) is doubled in
each iteration step, it is proposed in [6] to apply a rank-revealing LQ factorization
(RRLQ) [8] in order to reveal the expected low numerical rank. We denote the nu-
merical rank determined by a threshold τ by t. Thus, after convergence, B∞ ∈ Rn×t .
Since the spectral norm of an H -matrix can be computed without much effort, it is
advised to choose

‖A j+1−A j‖2 ≤ tol‖A j+1‖2

as stopping criterion for the iteration.

3.1 Solving the LLS Problem (3)

When the sign function iteration has converged, including (5) for the sign of Z in
(3), the LLS problem is equivalently given by(

B∞BT
∞

In−AT
∞

)
︸ ︷︷ ︸

Ã

X =
(

In + A∞
0n

)
︸ ︷︷ ︸

b̃

. (9)

It admits a unique solution if rank(Ã) = n. Since rank(In−AT
∞) = n− �, where � is

the number of unstable eigenvalues of A, we must have rank(B∞BT
∞)≥ �.
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To proceed the computations in low complexity we solve the problem using the
normal equations

ÃT ÃX = ÃT b̃,

exploiting that B∞ is of low rank and A∞ is stored as H -matrix. The matrices in-
volved are computed in the following way:

ÃT Ã︸︷︷︸
H −matrix

= B∞BT
∞B∞BT

∞︸ ︷︷ ︸
low rank

+(In−A∞)︸ ︷︷ ︸
H −matrix

(In−A∞)T︸ ︷︷ ︸
H −matrix

ÃT b̃︸︷︷︸
low rank

= B∞ [BT
∞ + BT

∞A∞]︸ ︷︷ ︸
low rank

where the notation “low rank” indicates that the matrix is stored as product of two
rectangular matrices.

Using the H -Cholesky-decomposition of ÃT Ã = CCT and H -based forward
and backward substitutions, we compute the stabilizing solution X of (1) as low
rank matrix, i.e.

X = X1XT
2 , X1 = C−1B∞, X2 = C−1(AT

∞B∞ + B∞) = C−1AT
∞B∞ + X1. (10)

3.2 Symmetrizing the Low-Rank Presentation of ABE Solutions
Obtained by Normal Equations

The stabilizing solution X of an ABE is known to be symmetric [4]. This property
is not reflected in the representation (10) which is not a problem for certain applica-
tions as model order reduction of unstable systems. But in case that symmetry of X
is required we give a procedure that achieves this task.

Let B∞ ∈ Rn×t . From [4] we know that rank(X) = �, thus t ≥ �. As X = XT ≥ 0
we have X1XT

2 = X2XT
1 and X1XT

2 is the positive semidefinite square root of X2,

X2 = (X1XT
2 )2 = X1XT

2 X2XT
1 . (11)

Now let X1 = Q1R1 be a thin QR decomposition with Q1 ∈ Rn×t , R1 ∈ Rt×t upper
triangular and compute a singular value decomposition

X2RT
1 = UΣV T . (12)

We then get from (11)

X2 = Q1R1XT
2 X2RT

1 QT
1 = Q1(UΣV T )T (UΣV T )QT

1
= (Q1VΣT )(Q1VΣT )T = (Q1V Σ̂2V T QT

1 )2,

where Σ̂ = Σ(1 : t, :) ∈ Rt×t .
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Hence, Q1V Σ̂V T QT
1 is the positive semidefinite square root of X2 and Q1V Σ̂

1
2 V T QT

1
is the positive semidefinite square root of X . Due to uniqueness of semidefinite
square roots,

X = X1XT
2 = Q1V Σ̂V T QT

1 .

A rank-t factor of X is thus given by

Y = Q1V Σ̂
1
2

as X = YY T .

Remark 1. Note that the accumulation of U ∈ Rn×t in (12) is not necessary which
reduces the cost of the SVD computation from 14nt2 + 8t3 to 4nt2 + 8t3 flops.

4 Numerical Results

In this section we examine the accuracy and complexity of the data-sparse approach
for the numerical solution of ABEs. As exemplary system we consider the following
reaction-diffusion equation

∂x
∂ t

(t,ξ ) = Δx(t,ξ )+ cx(t,ξ )+ b(ξ )u(t), ξ ∈ (0,1)2, t ∈ (0,∞),

which is discretized in space by finite elements, leading to the LTI system

ẋ(t) = (Ã+ cIn)︸ ︷︷ ︸
:=A

x(t)+ Bu(t). (13)

For the problem sizes n = 4096 and n = 16,384, we choose the parameter c such
that one eigenvalue of the coefficient matrix A has positive real part: λ ≈ 0.25. We
compute the relative residual

‖AT X + XA−XBBTX‖F

2(‖A‖F‖X‖F)+‖X‖2
F‖BBT‖F

of the ABE (1) obtained by applying (7), (8) and (10) to the unstable system (13). We
vary the parameters τ for the numerical rank decision in the RRLQ factorization and
ε , the approximation error in the adaptive rank choice of the H -matrix arithmetic.
The numerical rank of B∞, the computational time and the accuracy are depicted
in Table 1. We observe in Table 1 high accuracy in the solution factors computed
with the algorithm in H -matrix arithmetic by low numerical ranks of B∞ and in low
execution time. The results of the parameter variation show the expected behavior,
we have increasing accuracy as ε gets smaller and the relative residual is observed
to remain bounded from above for increasing problem size.
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n ε τ # it. rank(B∞,τ) time [sec] rel. residual

4096 1.e-04 1.e-04 26 36 261 7.1e-06
1.e-06 1.e-04 22 14 391 1.8e-07
1.e-08 1.e-04 19 14 635 3.8e-08
1.e-06 1.e-06 22 31 395 1.8e-07
1.e-08 1.e-06 19 21 636 3.7e-08
1.e-08 1.e-08 19 39 639 3.7e-08

16,384 1.e-04 1.e-04 27 34 2376 2.3e-05
1.e-06 1.e-04 26 15 4235 5.2e-07
1.e-08 1.e-04 22 14 7136 6.1e-09
1.e-06 1.e-06 26 42 4273 5.2e-07
1.e-08 1.e-06 22 23 7150 6.0e-09
1.e-08 1.e-08 22 42 7183 5.9e-09

Table 1 Accuracy and rank rank(B∞,τ) of the computed ABE solution for different problem sizes
and parameter combinations.
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A Purely Algebraic Approach to Preconditioning
Based on Hierarchical LU Factorizations

M. Bebendorf and T. Fischer

Abstract The efficiency of hierarchical matrices depends on the quality of the block
partition. We describe a nested dissection partitioning of the matrix into blocks that
uses only the matrix graph and requires a logarithmic-linear number of operations.
This block partition allows to compute a hierarchical LU decomposition with small
fill-in. Furthermore, the algebraic approach admits, in contrast to the usual geomet-
ric partitioning, general grids for finite element discretization of elliptic boundary
value problems.

1 Introduction

We consider large-scale finite element matrices A ∈ RI×I , where I is an index set.
Such matrices are usually treated by iterative solvers, which may converge slowly
due to ill-conditioning. In order to accelerate the convergence, the FE system is
preconditioned. We propose a preconditioning technique which is based on an ap-
proximated LU decomposition.

In the last years the structure of hierarchical matrices (H -matrices) [5, 7, 2]
has proved to be able to handle approximations of discrete solution operators of
elliptic partial differential boundary value problems. Hierarchical matrices rely on
low-rank approximations on each block of a partition P of the set of matrix indices
I× I. In order to guarantee the existence of such low-rank approximations, each
block b = t× s ∈ P has to satisfy either the admissibility condition

min{diamXt ,diamXs} ≤ η dist(Xt ,Xs) (1)

Mario Bebendorf and Thomas Fischer
Mathematical Institute, Faculty of Mathematics and Computer Science, University Leipzig, Johan-
nisgasse 26, 04103 Leipzig, e-mail: fischer@math.uni-leipzig.de
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or min{|t|, |s|} ≤ nmin for given parameters η > 0 and nmin ∈ N. Here, Xt denotes
the support of a cluster t, which is the union of the supports of the basis functions
corresponding to the indices in t:

Xt :=
⋃
i∈t

Xi.

The partition is normally generated by recursive subdivision of I× I. The recursion
stops in blocks which satisfy (1) or which are small enough. For a given partition P
the set of H -matrices with blockwise rank k is defined by

H (P,k) := {M ∈ RI×I : rankMb ≤ k for all b ∈ P}.

In [1] it was proved that the LU decomposition of FE matrices of uniformly elliptic
operators can be approximated by H -matrices with logarithmic-linear complexity.
Up to now it was possible to guarantee logarithmic-linear complexity only for quasi-
uniform discretizations and for some special grids (see [6]), since the generated
cluster trees had to be balanced with respect to both, geometry and cardinality.

This article treats the set up of the approximated factors L and U in the hierarchi-
cal matrix format using only the matrix graph

GA := {(i, j) ∈ I× I : ai j �= 0} (2)

of A. The construction of the partition is described such that instead of the geometric
condition (1) the algebraic admissibility condition

min{diamt,diams} ≤ η dist(t,s). (3)

is satisfied on each large enough block, where

diamt := max
i, j∈t

di j and dist(t,s) := min
i∈t, j∈s

di j.

Here, di j is the shortest path between i and j in the matrix graph.
The power of condition (3) is that it does not involve the geometry of the dis-

cretization. Hence, clustering has to account only for the cardinality of the clusters.
This directly generalizes the theory of H -matrix approximations to arbitrary grids
including adaptively refined ones. Additionally, the algebraic approach allows to
minimize the interface in nested dissection reorderings. Since the size of the inter-
face determines the quality of the partition P, one can expect an acceleration of the
hierarchical LU factorization algorithm. Condition (3), however, involves the dis-
tance dist(t,s) of two clusters t and s in the matrix graph and their diameters diamt
and diams. The efficient (i.e., with complexity of order |t|+ |s|) computation of
these quantities is a challenge. One should, however, keep in mind that for matrix
partitioning it is not required to know their exact values. In this article we will there-
fore present efficient multilevel algorithms for the computation of approximations
of these quantities.
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The structure of this article is as follows. The algebraic construction of the cluster
tree is presented in the Section 2.1. In the Sections 2.2 and 2.3 we describe the ef-
ficient evaluation of (3). The last section contains numerical results which compare
H -matrix LU factorizations based on geometric and algebraic matrix partitioning
with the direct solver PARDISO [11].

2 Algebraic Matrix Partitioning

To construct a partition one usually generates a cluster tree TI = (VTI ,ETI ), which is
a graph satisfying the following conditions:

1. the index set I is the root of TI ,
2. t = ∪t′∈SI(t)t

′ for all t ∈VTI\L (TI) and t ′ are pairwise disjoint,
3. |SI(t)|> 1 for all t ∈VTI\L (TI),

where the elements of the set of sons SI(t) := {t ′ ∈ VTI : (t,t ′) ∈ ETI} are pairwise
disjoint and L (TI) := {t ∈VTI : |SI(t)|= 0} denotes the set of leafs.

Condition (3) does not contain any information about the geometry of the dis-
cretization. Hence, the assumption that the cluster tree TI is geometrically balanced
can be omitted, which allows to treat general grids including adaptively refined ones.
Therefore, we use a cardinality balanced cluster tree and assume that the diameter of
a generated cluster is equivalent to its cardinality in the sense that there are constants
c1,c2 > 0 such that

c1|t| ≤ (diamt)d ≤ c2|t| for all t ∈ TI . (4)

2.1 Algebraic Construction of the Cluster Tree

In order to reduce fill-in during LU factorization, I is decomposed using the nested
dissection method [4]. Nested dissection is based on the matrix graph GA = (V,E).
In each step it partitions the vertex set V into V1,V2,S such that V1,V2 are of approx-
imately equal size and S separates V1,V2 and additionally satisfies |S| $ |V1|. The
vertex sets V1 and V2, corresponding to t1,t2 ⊂ I, are recursively partitioned, and we
achieve a nested dissection cluster tree (see Fig. 1).

Each nested dissection step can be separated in two phases.
(1) The vertices are divided in two disjoint sets V ′1,V

′
2. The bipartition can be com-

puted using spectral bisection based on the Fiedler vector, which is the eigenvector
to the second smallest eigenvalue; see [3]. Since computing eigenvectors of large
matrices is computationally expensive, multilevel ideas have been introduced to ac-
celerate the process [9]. For this purpose the graph GA is coarsened into a sequence
G(1), . . . ,G(κ) such that |V | > |V (1)| > · · · > |V (κ)|. Spectral bisection can then be
applied to the smallest graph G(κ). The resulting partition Pκ is projected back to
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GA by going through the intermediate partitions Pκ−1, . . . ,P1. The partition Pi+1 can
be improved by refinement heuristics such as the Kernighan-Lin algorithm [10].

Subdividing V in this manner in some sense minimizes the edge cut C, i.e., a set
of edges C⊂ E such that G′ = (V,E\C) is no longer connected. The size of the edge
cut is in O(|V |1−1/d).

(2) The vertex set S, which separates V1 and V2, is computed. To this end we
consider the boundaries

∂V ′1 := {u ∈V ′1 : ∃v ∈V ′2 and (u,v) ∈ E},
∂V ′2 := {v ∈V ′2 : ∃u ∈V ′1 and (v,u) ∈ E}

of V ′1 and V ′2 and the edge set E12 = {(u,v) ∈ E,u ∈ ∂V ′1,v ∈ ∂V ′2} between ∂V ′1 and
∂V ′2. The bipartite graph

B := (∂V ′1∪∂V ′2,E12)

is constructed which takes O(|V |1−1/d) operations.
In order to get a small separator S, the minimal vertex cover algorithm [8] is

applied to B. A minimal vertex cover for bipartite graphs can be calculated with
complexity O(|V |3/2·(1−1/d)). Finally, the vertices belonging to the minimal vertex
cover are moved out of V ′1 and V ′2 to S to obtain a partition V1,V2,S of V .

Since the partitioning algorithm ensures that the cardinality of each cluster from

the same level in TI is of the same order of magnitude, i.e., |t| ∼ |I|2−� for t ∈ T (�)
I ,

we can guarantee logarithmic depth of TI .
Our algorithm extends the nested dissection cluster tree to ensure that every level

of the cluster tree stores a partition of the index set I. To this end the separator index
set s of the �-th level of TI is copied to the next level of the cluster tree as long as
the cardinality of s is smaller than |I|2−�′ , �′ > �. A sequence s(1),s(2), . . . ,s(�′−�) of
separators is obtained, each containing the same index set but in different levels.
We say s(1),s(2), . . . ,s(�′−�) have the same virtual depth �, the depth of s(1). If |s| ≥
|I|2−�′ , the separator s is recursively partitioned as described in phase one of the
nested dissection algorithm. In Fig. 2 separators s0 and s′0 contain the same index
sets and are in different levels but have the same virtual depth.

t

t1

t3 s1 t4

s0 t2

t5 s2 t6

Fig. 1 nested dissection
cluster tree

t

t1

t3 s1 t4

s0

s′0

t2

t5 s2 t6

Fig. 2 subtree of TI rooted at

t ∈ T (�)
I

Fig. 3 matrix structure after
two nested dissection steps
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2.2 The Algebraic Admissibility Condition

In this section we present the evaluation of the admissibility condition (3) based on
the cluster tree described in Section 2.1.

Let t ∈ T (�−1)
I be decomposed into t1,t2,s ∈ T (�)

I , where t1 and t2 are separated
by s, using the algorithm described in Section 2.1; see Fig. 2. This means that there
does not exist any edge between t1 and t2. As consequence, ai j = 0 and a ji = 0
for i ∈ t1, j ∈ t2; see Fig. 3. Most of the information of the matrix is contained
in the interface blocks t1× s, t2× s, s× t1, s× t2, and s× s. In order to guarantee
logarithmic-linear complexity, these blocks are decomposed into sub-blocks that
either can be approximated or are small. The systematical search for pairs of index
sets in TI that form a block which can be approximated by a low rank matrix creates
the so called block cluster tree TI×I , where the admissible blocks can be found in
the leafs L (TI×I) of TI×I .

In contrast to the usual definition of TI×I , we define the set of sons

SI×I(t× s) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
/0, if SI(t) = /0 or SI(s) = /0,

/0, if t �= s and neither t nor s are separators,

/0, if t or s are separators and satisfy (3),

SI(t)×SI(s), else.

The block cluster tree is generated by recursively applying SI×I to the root I× I.
The following definition helps to accelerate the admissibility test, i.e., the evaluation
of (3).

Definition 1. Two index sets t1,t2 ⊂ I are denoted as neighbored if there exists an
edge in GA connecting indices of t and t ′, i.e., ∃i ∈ t1,∃ j ∈ t2 such that (i, j) ∈ E .

As cluster t is called contiguous if there are two indices imin and imax such that

t1 = {i : imin ≤ i < imax}.

Note that checking whether two contiguous clusters t1 and t2 are neighbored can be
be done with O(min{|t1|, |t2|}) operations.

If t1,t2 ⊂ I are neighbored, it holds that t1 ∈Nη(t2) and t2 ∈Nη(t1), where

Nη(t) := {t ′ ∈ T (�)
I : diamt > η dist(t,t ′)}

denotes the near-field of t. A block is admissible if t2 /∈Nη (t1) or t1 /∈Nη(t2). If
they are not neighbored, it is necessary to compute the distance dist(t1,t2) between
them. The evaluation of dist(t1,t2) involves the computation of |t1| · |t2| shortest paths
in the matrix graph, each of which takes O(|I|) operations with breadth-first search.
Since our aim is to preserve the logarithmic-linear complexity, it is necessary to
approximate the distance between t1 and t2.
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2.3 Approximation of Distance and Diameter

Assume that the father of t1×t2 ∈ T (�)
I×I is not admissible and t1,t2 are not neighbored.

The first step to accelerate the computation of the distance is to calculate all
neighbors of the same level in the cluster tree. Assume that the neighbors in the

level � of the tree TI are known. Obviously, for each cluster t ∈ T (�)
I the pairs (t1,s0)

and (s0,t2) (so-called “a-priori neighbors”) are neighbored, where S(t) = {t1,s0,t2}.
Since two clusters can be neighbored only if their parents are neighbored, we can
restrict the search for neighbors to the set SI(t1)×SI(t2), where t1 and t2 are neigh-
bored clusters in the �-th level.

Example 1. In Fig. 4 a-priorily known neighbors are symbolized by dashed lines.
Computed neighbors are characterized by dotted lines.

In order to compute the approximate distance between t1,t2 ∈ T (�)
I , we construct

a graph GD. There are predecessors pre(t1) and pre(t2) of t1 and t2 such that pre(t1)
and pre(t2) are neighbored. The vertices of GD consist of the descendants of pre(t1)
and pre(t2) in the �-th level of TI . GD contains a weighted edge between two vertices
if and only if the clusters are neighbored. The weight is the difference between � and
the virtual depth of the neighbor node. Since pre(t) and pre(t ′) are neighbored, the
graph GD is connected and it is possible to calculate the approximate distance using
Dijkstra’s algorithm [12]. In a forthcoming article it is proved that the number of
nodes in GD is bounded from above by a constant.

Example 2. In Fig. 4 assume that t7 × s′′0 is not admissible. Therefore, the ad-
missibility of the pair (t15,s′′′0 ), for instance, is checked. Using pre(t15) = t3 and
pre(s′′′0 ) = s′0, we obtain the vertex set {t15,s7,t16,s′3,t17,s8,t18,s′′′0 } of GD, which is
depicted in Fig. 5. Dijkstra’s algorithm results in an approximate distance between
t15 and s′′′0 of seven.

This approach can be improved by the following iterative refinement procedure.
Dijkstra’s algorithm not only computes the distance between t1 and t2 but also the
nodes of the shortest path. We construct a new graph consisting of vertices from
level �+ m for some m rooted at the shortest path nodes. Its edges are defined as in
the previous graph GD. The computation of the shortest path between t1 and t2 in
this graph will lead to an improved approximation of dist(t1,t2).

Example 3. Assume in Example 2 that Dijkstra’s algorithm calculated the shortest
path t15,s′3,t18,s′′′0 . The subtrees rooted at the path nodes are depicted in Fig. 6. We
choose vertices of level �+2 and determine the edge set considering the neighbors;
see Fig. 7. Dijkstra’s algorithm is then applied to this refined graph.

It remains to compute an approximation to the diameter of a cluster t. This can be
done by a breadth-first search [12]. The result is bounded from below by the radius
r(t) := mini∈t max j∈t di j of t and bounded from above by diamt.

In a forthcoming article we prove that it is possible to generate the approximate
LU factorization in almost linear time using this matrix.
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3 Numerical Results

Fig. 8 Computational domain
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size algebraic PCG geometric PARDISO
partitioning H -Cholesky H -Cholesky Cholesky

t in s t in s MB #it t in s t in s MB t in s MB
32 429 0.72 0.86 25 18 0.37 1.85 29 0.50 38

101 296 3.06 3.42 77 23 1.62 8.68 105 4.17 198
658 609 25.35 31.38 726 35 19.38 91.61 805 147.81 2659

2 539 954 106.40 158.68 2920 61 142.27 471.54 3507 – –

Table 1 Algebraic H -Cholesky preconditioner, geometric H -Cholesky preconditioner, PAR-
DISO Cholesky factorization

The results shown in Table 1 were obtained for the Laplacian on the compu-
tational domain shown in Fig. 8. The computation were done on an Intel Xeon
3.0 GHz with 16 GB of core memory. The time required to compute the matrix
partition based on the algebraic admissibility condition (1) scales almost linearly
with the number of degrees of freedom. The accuracy of the approximate LU fac-
torization was chosen to δ = 0.5. Compared with the usual geometric approach to
matrix partitioning, the algebraic method leads to a significantly faster computation
of the preconditioner. Additionally, the memory consumption of the approximation
is reduced.
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Additive Schwarz Preconditioners for
Degenerate Problems with Isotropic Coefficients

S. Beuchler

Abstract This paper deals with the numerical solution of the degenerate elliptic
boundary value problem −∇ · xα∇u(x,y) = f (x,y), α ≥ 0 in Ω = (0,1)2. This
boundary value problem is discretized by piecewise linear finite elements on regu-
lar Cartesian grids. The corresponding linear system of algebraic equations is solved
by a preconditioned conjugate gradient method with the Bramble-Pasciak-Xu pre-
conditioner. A uniform bound of the condition number of the preconditioned sys-
tem matrix is proved for α �= 1. The proof makes use of another additive Schwarz
splitting arising from an overlapping domain decomposition of the computational
domain Ω . Some numerical experiments show the efficiency of the proposed algo-
rithm also for general polygonal domains.

1 Introduction

In this paper, we investigate a degenerate and isotropic boundary value problem
of second order. In the past, degenerate problems have been considered relatively
rarely. One reason is the unphysical behavior of the partial differential equation
(PDE), which is quite unusual in technical applications. One work focusing on this
type of partial differential equation is the book of Kufner and Sändig [5]. Nowa-
days, problems of this type are becoming more and more popular because there
are stochastic PDE’s of a similar structure. An example of an isotropic degenerate
stochastic PDE is the elliptic part of the Black-Scholes PDE [6]. The discretization
of such a boundary value problem using the h-version of the finite element method
(FEM) leads to a linear system of algebraic equations. It is well known from the lit-
erature that preconditioned conjugate gradient (PCG) methods are among the most
efficient iterative solvers for systems of this type.

Sven Beuchler
JKU Linz, Institute of Computational Mathematics, Altenberger Straße 69, 4040 Linz, Austria
e-mail: sven.beuchler@jku.at
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In this paper, we analyze the Bramble-Pasciak-Xu (BPX) preconditioner which
has been investigated and proposed for uniformly bounded elliptic problems in [4],
[7]. We prove the optimality of the BPX-preconditioner for a class of degenerate
elliptic problems. Other possible preconditioners are overlapping domain decompo-
sition preconditioners, see [2]. For some other classes of degenerate elliptic prob-
lems, multigrid preconditioners or overlapping domain decomposition precondition-
ers can be used [1], [3].

The outline of this paper is as follows. In section 2, the discretization of the
boundary value problem is described. Section 3 is devoted to the definition and
analysis of the BPX preconditioner. Section 4 presents some numerical experiments.
Section 5 concludes the paper.

Throughout this paper the notation a% b denotes a≤ cb with a constant c which
is independent of the discretization parameter. The notation a∼ b means a% b and
a& b.

2 Setting of the Problem

We investigate the following boundary value problem. Let Ω = (0,1)2 be the unit
square. Find u ∈ �ω,0 := {u ∈ L2(Ω) :

∫
Ω ω2(x)(∇u)�∇u d(x,y) < ∞,u |∂Ω= 0}

such that

a(u,v) :=
∫
Ω
ω2(x)(∇v)�∇u d(x,y) = ( f ,v) ∀v ∈�ω,0 (1)

with a weight function ω2(x) = xα , α > 0. Since ω2(0) = 0, the bilinear form is
not elliptic in H1(Ω). Nevertheless, the weight is positive in the open domain Ω . A
problem of the type (1) is called a degenerate elliptic problem.

We discretize problem (1) by piecewise linear finite elements on the regular
Cartesian grid consisting of congruent, isosceles, right triangles. For this purpose,
some notation is introduced. Let k be the level of approximation and n = 2k. Let xk

μ =( μ1
n , μ2

n

)
with the multi-index μ = (μ1,μ2) ∈ {0,1, . . . ,n}2. The domain Ω is di-

vided into congruent, isosceles, right triangles τs,k
μ , where μ ∈ {0,1, . . . ,n−1}2 and

s = 1,2, see Figure 1. The triangle τ1,k
μ has the three vertices

( μ1
n , μ2

n

)
,
(
μ1+1

n , μ2+1
n

)
and

(
μ1
n , μ2+1

n

)
, and τ2,k

μ has the three vertices
( μ1

n , μ2
n

)
,
(
μ1+1

n , μ2+1
n

)
and(

μ1+1
n , μ2

n

)
. Piecewise linear finite elements are used on the finite element mesh

{τs,k
μ }μ∈{0,1,...,n−1}2,s∈{1,2}. The subspace of piecewise linear functions φ k

μ with

φ k
μ ∈ H1

0 (Ω), φ k
μ |τs,k

ν
∈�1(τs,k

ν )

is denoted by�k where �1 is the space of polynomials of total degree ≤ 1. A basis
of�k is the system of the usual hat-functionsΦk = {φ k

μ}μ∈Ik with Ik = {(μ1,μ2)∈
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Fig. 1 FE-mesh for (1) and k = 3.

�
2,μ1,μ2 ≤ 2k−1} uniquely defined by

φ k
μ(xk

ν ) = δμν

and φ k
μ ∈ �k, where δμν is the Kronecker delta for multi-indices. Now, we can

formulate the discretized problem. Find uk ∈�k such that

a(uk,vk) = ( f ,vk) ∀vk ∈�k (2)

holds. Problem (2) is equivalent to solving the system of linear algebraic equations

Kkuk = f
k

(3)

where Kk =
[
a(φ k

μ ,φ k
ν )
]
μ,ν∈Ik

, uk =
[
uμ
]
μ∈Ik

and f
k
=
[
( f ,φ k

ν )
]
ν∈Ik

. The size of

the matrix Kk is N×N, with N = (n− 1)2.

3 Formulation of the Main Result

In this section, an additive Schwarz decomposition of the space �k is consid-
ered. For l = 0, . . . ,k, μ ∈ Il = {1, . . . ,2l − 1}2, �l

μ = span
{
φ l
μ
}

denotes a one-
dimensional subspace.

Theorem 1. Let a(·, ·) be defined by (1) with ω2(x) = xα , α ≥ 0, α �= 1. Then for

any uk ∈�k there exists a decomposition uk =
k

∑
l=0

∑
μ∈Il

ul
μ , with ul

μ ∈�l
μ , such that

k

∑
l=0

∑
μ∈Il

a(ul
μ ,ul

μ)% a(uk,uk).
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Moreover, for all decompositions uk =
k

∑
l=0

∑
μ∈Il

ul
μ with ul

μ ∈�l
μ , the estimate

a(uk,uk)%
k

∑
l=0

∑
μ∈Il

a(ul
μ ,ul

μ)

holds.

The proof is given in the end of this section. It requires another additive Schwarz
splitting of the bilinear form a(·, ·), see [2]. This is based on a decomposition of
the domain Ω into (2− j−2,2− j)× (0,1), j = 0, . . . ,k−3, and (0,2− j)× (0,1), j =
k−1,k−2, see Figure 2. With the index set

1/4 1/2 1/41/8 11/8

Fig. 2 Decomposition of Ω into stripes for k = 3.

I j = {(μ1,μ2) ∈�2 : 2k− j−2 < μ1 < 2k− j,μ2 < 2k} for j = 0, . . . ,k−1,

we introduce the finite element spaces

�
j,k = span

{
φ k
μ

}
μ∈Ij

.

Concerning the space decomposition �k = ⊕k−1
j=0�

j,k, the following result can be
shown.

Theorem 2. Let a(·, ·) be defined by (1) with ω2(x) = xα , α ≥ 0, α �= 1. Then for
any uk ∈�k, there exists a decomposition uk =∑k−1

j=0 u j,k, with u j,k ∈� j,k, such that

k−1

∑
j=0

a(u j,k,u j,k)% a(uk,uk). (4)

Moreover, for all decompositions uk = ∑k−1
j=0 u j,k, the estimate

a(uk,uk)%
k−1

∑
j=0

a(u j,k,u j,k)

holds.
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Proof. The result has been proved in [2].

Now, we are able to prove Theorem 1.

Proof (Theorem 1). Due to the definition of the space� j,k, a function u ∈� j,k has
a support which is contained in [2− j−2,2− j]× [0,1]. Therefore, the weight function
lies between ω2(2− j−2) and ω2(2− j). This implies the estimate

a(u j,k,u j,k)∼ ω2 (2− j)∫
Ω
∇u j,k ·∇u j,k dx dy, ∀u j,k ∈� j,k (5)

i.e. the bilinear form is spectrally equivalent to the Laplacian multiplied with some
factor, where the constants in (5) depend on α but not on j or k. As a consequence
of (5), the BPX-like decomposition

�
j,k =

k− j⊕
l=0

⊕
μ∈Ij

�
l
μ

is stable, i.e. there exists a decomposition u =∑k− j
l=0 ∑μ∈Ij

u j,k
μ , with u j,k

μ ∈� j,k
μ , such

that
k− j

∑
l=0

∑
μ∈Ij

a(u j,k
μ ,u j,k

μ )% a(u j,k,u j,k) ∀u j,k ∈� j,k (6)

(see [7]), where the constants are independent of j and n. Using (4) and (6), one
obtains

a(uk,uk)&
k−1

∑
j=0

k− j

∑
l=0

∑
μ∈Ij∩Jl

a(u j,l
μ ,u j,l

μ ) ∀uk ∈�k.

Note that u j,l
μ belongs to the one-dimensional space �l

μ . A reordering of the sum-
mation gives

a(uk,uk)&
k−1

∑
l=0

∑
μ∈Il

∑
j

a(u j,l
μ ,u j,l

μ ) (7)

where the last summation runs over all integers j with μ ∈ I j. Let

ũl
μ = ∑

j,μ∈Ij

u j,l
μ ∈�l

μ . (8)

The domain decomposition of Figure 1 implies that there exist not more than two
integers j with μ ∈ I j for fixed μ ∈Il , 0≤ l ≤ k−1. These integers are denoted by
j1 and j2. Using the Cauchy inequality and (8), one obtains

a(u j2,l
μ ,u j2,l

μ )+ a(u j1,l
μ ,u j1,l

μ )≥ 1
2

a(u j1,l
μ + u j2,l

μ ,u j1,l
μ + u j2,l

μ ) =
1
2

a(ũl
μ , ũl

μ). (9)

Combining (9) and (7), one easily concludes that
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a(uk,uk)&
k−1

∑
l=0

∑
μ∈Il

a(ũl
μ , ũl

μ) ∀uk =
k−1

∑
l=0

∑
μ∈Il

ũl
μ ∈�k.

This proves the first estimate, which is the stability of the BPX preconditioner.
The second estimate can be proved in the same way as presented in [7] for uni-

formly bounded elliptic problems. The techniques presented there depend only on
the refinement of the mesh and do not require the ellipticity of the bilinear form.

Remark 1. The results are not valid for the weight function ω2(x) = x. This is due
to the estimate (4). Instead of (4) only the weaker estimate

1
k2

k−1

∑
j=0

a(u j,k,u j,k)% a(uk,uk) ∀uk ∈�k

holds, see [2]. This gives a suboptimal condition number estimate for the BPX pre-
conditioner in the case ω2(x) = x.

4 Numerical Experiments

In this section, we investigate the quality of our preconditioner induced by the space
decomposition

�k =
k⊕

l=0

⊕
μ∈Il

�
l
μ .

We investigate three different domains, i.e. a hexagon with the vertices (1±1,±0.5)
and (1,±1), the unit square (0,1)2 and a triangle with the vertices (0,±1) and
(2,−0.5), and the corresponding singular weight function ω2(x) = xα . Note that
the boundary with singular diffusion is at x =−1.

The coarse finite element meshes are displayed in Figure 3. The finite element
mesh on level k is obtained by k refinements of the coarse finite element mesh. The

Fig. 3 Finite element coarse meshes: hexagon (left), triangle (middle), square (right).

linear system Kkuk = f
k

is solved by a PCG method with the BPX preconditioner

and a relative accuracy of 10−5. Table 1 shows the PCG-iteration numbers for the
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fixed weight functionω2(x) = x2 and all different meshes. In all experiments, a very
small increase of the iteration numbers is observed. In a second experiment, the in-

Level 3 4 5 6 7 8 9
triangle 11 14 17 20 22 24 26
square 14 17 21 23 25 27 29

hexagon 14 16 18 20 22 23 24

Table 1 PCG iteration numbers for (2) using the BPX preconditioner with weight ω2(x) = x2.

fluence of the weight function is investigated for the hexagonal domain. The PCG it-
eration numbers are displayed in Table 2. The largest iteration numbers are obtained
for ω(x)2 = x, where the assumptions of Theorem 1 are violated. For ω2(x) = xα ,
α = 0,3, the iteration numbers are clearly bounded.

Level 3 4 5 6 7 8 9
ω2(x) = 1 12 13 14 14 15 15 15
ω2(x) = x 13 16 18 21 23 26 29
ω2(x) = x2 14 16 18 20 22 23 24
ω2(x) = x3 14 16 18 18 19 19 19

Table 2 PCG iteration numbers for (2) using the BPX preconditioner (hexagon).

The paper [2] presented some numerical experiments for the domain decompo-
sition preconditioner induced by the space decomposition which is considered in
Theorem 2. The iteration numbers of the BPX preconditioner are lower than the
iteration numbers of this overlapping DD preconditioner.

5 Conclusions and the Three-Dimensional Case

In this paper, we have proved the independence of the condition number of the
BPX-preconditioned system arising from the discretization of a degenerate elliptic
boundary problem in two dimensions from the discretization parameter.

The presented analysis uses two results,

• the condition number estimates of BPX-preconditioned systems for uniformly
bounded problems and

• the results about the spectral equivalence of an overlapping DD preconditioner
for Kk.

Both results remain true for three-dimensional problems with the weight function
ω2(x,y,z) = xα , α �= 1. Therefore, PCG methods with BPX preconditioners are also
optimal solvers in three spatial dimensions.
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Performance Analysis of Parallel Algebraic
Preconditioners for Solving the RANS Equations
Using Fluctuation Splitting Schemes

A. Bonfiglioli, B. Carpentieri, and M. Sosonkina

Abstract We consider iterative solution strategies for solving the Reynolds-Favre
averaged Navier-Stokes (RANS) equations on 2D and 3D flow configurations. The
novelty of this study is the coupling of an hybrid class of methods for the space
discretization, called Fluctuation Splitting (or residual distribution) schemes, and a
fully coupled Newton algorithm for solving the RANS equations. This approach is
particularly attractive for parallel computations because it gives rise to discretization
matrices with a compact stencil resulting in a limited number of nonzero entries.
In this paper, we present the solution approach and report on results of numerical
experiments with particular emphasis on the design of preconditioners for the inner
linear system, which is a critical computational issue of the iterative solution.

1 Introduction

In this study, we consider the iterative solution of Euler and Navier-Stokes equa-
tions on unstructured grids. An accurate solution of this problem class is demanded
in fluid dynamic simulations, such as those arising in aerodynamic design, oceanog-
raphy, or turbomachinery. For solving these applications, Finite Element (FE), Fi-
nite Volume (FV) and Discontinuous-Galerkin methods are often the methods of
choice; the computational domain is decomposed into a finite set of nonoverlapping
control volumes and approximate time-dependent values of the conserved variables
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are computed into each control volume. Control volumes are drawn around each
gridpoint by joining, in two space dimensions, the centroids of gravity of the sur-
rounding cells with the midpoints of all the edges that connect that gridpoint with
its nearest neighbors. In Fig. 1, control volumes are delimited by green lines. The

Φ3

Φ2

Φ1

(a) The flux balance of cell T is
scattered among its vertices.

Φ
i

Φ
i

Φ
i

Φ
i

Φ
i

T1

T2

T3

T4

T5

(b) Gridpoint i gathers the frac-
tions of cell residuals from the
surrounding cells.

Fig. 1 Residual distribution concept.

space discretization results in a system of nonlinear equations that can be solved
using Newton’s algorithm. The novelty of this study is to use a hybrid class of
methods for the space discretization called Fluctuation Splitting (or residual distri-
bution) schemes in conjunction with a fully coupled Newton algorithm for solving
the RANS equations. Introduced in the early eighties by P.L. Roe, and successively
developed further by a number of groups worldwide (see e.g. [8, 2]), this class of
schemes shares common features with both FE and FV methods. Just as with iso-P1
FE, the dependent variables are stored in the vertices of the mesh, which is made of
triangles in two space dimensions (2D) and tetrahedra in three (3D), and assumed
to vary linearly in space. We illustrate the discretization approach for the case of a
simple advection equation

ut + aux + buy = 0

defined on a 2D domain tesselated into a set of triangles {T}. Fluctuations, i.e.
flux balances, are computed over each triangle as for standard linear finite element
methods,

ΦT =
∫

T
utdxdy =

∫
T
[−(aux + buy)]dxdy.

Assuming piecewise linear variation of the solution u over each triangle, we may
write the fluctuation ΦT as:

ΦT =
3

∑
i=1

kT
i ui =

3

∑
i=1

[
1
2
(a,b) ·nT

i

]
ui,
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where nT
i is a scaled inward normal vector of the edge opposite to node i in the

triangle T . The parameters kT
i are the so-called inflow parameters. Fluctuations are

distributed to the nodes of the triangles and then they are accumulated at every node
(see Fig. 1(a)). Gridpoint i will then collect fractions ΦT

i of the flux balances of its
surrounding elements, as schematically shown in Fig. 1(b). The method can achieve
at most second-order accuracy whatever scheme is used to distribute the fluctuation
because of the assumption of linear variation.

2 Governing Equations

Throughout this paper, we use standard notation for the kinematic and thermody-
namic variables: u is the flow velocity, ρ is the density, p is the pressure (divided
by the constant density in incompressible, homogeneous flows), T is the tempera-
ture, e and h are the specific total energy and enthalpy, respectively, ν is the laminar
kinematic viscosity and ν̃ is a scalar variable related to the turbulent eddy viscos-
ity via a damping function. For compressible flows the sound speed a is a function
of temperature while for incompressible flows it is taken constant and equal to the
free-stream velocity. Given a control volume Ci, fixed in space and bounded by the
control surface ∂Ci with inward normal n, we write the governing conservation laws
of mass, momentum, energy and turbulence transport equations as:∫

Ci

∂Ui

∂ t
dV =

∮
∂Ci

n ·FdS−
∮
∂Ci

n ·GdS +
∫

Ci

SdV, (1)

where we denote by U the vector of conserved variables. For compressible flows,
we have U = (ρ ,ρe,ρu, ν̃)T , and for incompressible, constant density flows, U =
(p,u, ν̃)T . In (1), the operators F and G represent the inviscid and viscous fluxes,
respectively. For compressible flows, we have

F =

⎛⎜⎜⎝
ρu
ρuh

ρuu+ pI
ν̃u

⎞⎟⎟⎠ , G =
1

Re∞

⎛⎜⎜⎝
0

u · τ+∇q
τ

1
σ [(ν + ν̃)∇ν̃ ]

⎞⎟⎟⎠ ,

and for incompressible, constant density flows,

F =

⎛⎝ a2u
uu+ pI
ν̃u

⎞⎠ , G =
1

Re∞

⎛⎝ 0
τ

1
σ [(ν + ν̃)∇ν̃ ]

⎞⎠ .

Finally, S is the source term, which has a non-zero entry only in the row corre-
sponding to the turbulence transport equation:
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S =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0

cb1 [1− ft2] S̃ν̃ + 1
σRe

[
cb2 (∇ν̃)2

]
+

− 1
Re

[
cw1 fw− cb1

κ2 ft2
][ ν̃

d

]2
+ Re ft1ΔU2

⎞⎟⎟⎟⎟⎟⎟⎠ . (2)

For a description of the various functions and constants involved in (2) the reader
is referred to [6]. In the case of high Reynolds number flows, we account for turbu-
lence effects by the RANS equations that are obtained from the Navier-Stokes (NS)
equations by means of a time averaging procedure. The RANS equations have the
same structure as the NS equations with an additional term, the Reynolds’ stress
tensor, that accounts for the effects of the turbulent scales on the mean field. Despite
the non-negligible degree of empiricism introduced by the turbulence model, it is
recognized that the solution of the RANS equations still remains the only feasible
approach to perform computationally affordable simulations of problems of engi-
neering interest on a routine basis. A closure problem arises since the Reynolds’
stresses require modeling. Using Boussinesq’s hypothesis as the constitutive law for
the Reynolds’ stresses amounts to link the Reynolds’ stress tensor to the mean veloc-
ity gradient through a scalar quantity which is called turbulent (or eddy) viscosity.
With Boussinesq’s approximation, the RANS equations become formally identical
to the NS equations, except for an “effective” viscosity (and thermal conductivity),
sum of the laminar and eddy viscosities (and similarly for the laminar and turbulent
termal conductivity), which appears in the viscous terms of the equations. In the
present study, the turbulent viscosity is modeled using the Spalart-Allmaras one-
equation model [6].

3 Solution Techniques

Using the fluctuation splitting approach described in Section 1, the integral form of
the governing equations (1) is discretized over each control volume Ci evaluating
the flux integral over each triangle (or tetrahedron) in the mesh, and then splitting it
among its vertices. This approach leads to a space-discretized form of Eq. (1) that
reads: ∫

Ci

∂Ui

∂ t
dV = ∑

T'i
ΦT

i

where
ΦT =

∮
∂T

n ·FdS−
∮
∂T

n ·GdS +
∫

T
SdV

is the flux balance evaluated over cell T and ΦT
i is the fraction of cell residual

scattered to vertex i. The properties of the scheme will depend upon the criteria used
to distribute the cell residual (see [2]). The discretization of the governing equations
in space leads to a system of ordinary differential equations:
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M
dU
dt

= R(U), (3)

where t denotes the physical time variable, M is the mass matrix and R(U) repre-
sents the nodal residual vector of spatial discretization operator, which vanishes at
steady state. The residual vector is a (block) array of dimension equal to the num-
ber of meshpoints times the number of dependent variables, m; for a one-equation
turbulence model, m = d +3 for compressible flows and m = d +2 for incompress-
ible flows, d being the spatial dimension. If the time derivative in equation (3) is
approximated using a two-point one-sided finite difference formula we obtain the
following implicit scheme:(

1
Δ tn V−J

)(
Un+1−Un)= R(Un), (4)

where we denote by J the Jacobian of the residual
∂R
∂U

. Eq. (4) represents a large

nonsymmetric sparse linear system of equations to be solved at each pseudo-time
step for the update of the vector of the conserved variables. The nonzero pattern
of the sparse coefficient matrix is symmetric, i.e. entry (i, j) is nonzero if and only
if entry ( j, i) is nonzero as well. Due to the compact stencil of the schemes, the
sparsity pattern of the Jacobian matrix coincides with the graph of the underlying
unstructured mesh, i.e. it involves only one-level neighbours; on average, the num-
ber of non-zero (block) entries per row equals 7 in 2D and 14 in 3D. The analytical
evaluation of the Jacobian matrix, though not impossible, is rather cumbersome [3].
Thus, we currently adopt two alternatives: one is based on an analytically calculated
but approximate Jacobian, the other on a numerical approximation of the “true”
Jacobian obtained using one-sided finite differences formulae. Calculating the Jaco-
bian matrix requires (d + 1)×m residual evaluations and pays off only close to the
steady state when the quadratic convergence of Newton’s method can be exploited.
In a practical implementation, a two-step approach is adopted. In the early stages of
the calculation, the turbulent transport equation is solved in tandem with the mean
flow equations: the mean flow solution is advanced over a single time step using
an approximate (Picard) Jacobian while keeping turbulent viscosity frozen, then the
turbulent variable is advanced over one or more pseudo-time steps using a FD Ja-
cobian with frozen mean flow variables. This procedure will eventually converge
to steady state, but never yields quadratic convergence. Therefore, a true Newton
strategy is adopted when the solution has come close to steady state: the mean flow
and turbulence transport equation are solved in fully coupled form and the Jacobian
is computed by FD.

Although the solution of the RANS equation may require much less computa-
tional effort than other simulation techniques such as LES (Large Eddy Simulation)
and DNS (Direct Numerical Simulation), severe numerical difficulties may arise
when the mean flow and turbulence transport equation are solved in fully coupled
form, the Jacobian is computed exactly by means of FD and the size of the time-
step is rapidly increased to recover Newton’s algorithm. Indeed, on 3D unstructured
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problems, successful experiments are not numerous in the literature (see [9] for a
similar study). The crucial computational issue is the design of robust parallel pre-
conditioners for the inner linear systems, which, in the case of turbulent problems
defined on anisotropic meshes, can be large unstructured and ill-conditioned. In this
study we focus on this component of the numerical solution.

4 Experiments

We initially consider the steady state solution of Euler’s equations for the simulation
of an incompressible flow around a 2D profile NACA0012 at an incidence angle of
2 degrees. The mesh is formed of 2355 nodes; the pertinent linear system has size
7065 as three unknowns are associated to each meshpoint. In Table 1, we report on
results with restarted GMRES [5] and different preconditioners that are ILU with
pattern selection strategy based on value and position, Jacobi, block Jacobi, and
additive Schwarz (see, e.g. [5]). We have tested different accelerators and have ob-
served that QMR-type methods are generally less effective compared to GMRES.
Thus we proceed with this solver. In the experiments with block Jacobi and additive
Schwarz preconditioners, ILU with zero level of fill-in is used on each block. For all
these algorithms, we used the implementations available in the PETSc library [1].
The runs are done on one processor DEC Alpha 2044/233. In the code, precondi-
tioning is implemented from the left and the stopping criterion is the reduction of the
original residual by 10−5. In practice, the relative criterion becomes more stringent
as the stationary solution is approached, since ||b||2 = ||R(U)||2 will approach ma-
chine zero. The maximum number of iterations allowed for the linear solver is 105.
The initial guess for the linear solution vector is the approximate solution computed
at the previous time step. This choice is reasonable since the solution vector is an
increment between successive time levels, and it will thus converge to zero as the
steady solution is approached. We see from the results reported in Table 1 that in-
complete factorization is very effective to reduce the number of iterations, provided
the nonzero pattern is computed from the graph of the matrix. On this problem class
dropping strategies based on levels of fill-in are much more robust than strategies
based on threshold, such as ILU(t) [5]. Experiments with sparse approximate in-
verse preconditioners using both static and dynamic pattern strategies, and standard
algebraic multigrid methods gave disappointing results.

The three-dimensional test case that we have examined deals with the steady
state solution of the RANS equations for the simulation of the internal compressible
flow through the so-called Stanitz elbow. The simulation reproduces experiments
[7] conducted in early 1950’s at the National Advisory Committee for Aeronautics
(NACA), presently NASA, to study secondary flows in an accelerating, rectangular
elbow with 90◦ of turning. The chosen flow conditions correspond to a Mach num-
ber in the outlet section of 0.68 and Reynolds’ number 4.3 ·105. Figure 2(b) shows
the geometry along with the computed static pressure contours. The computational
mesh consists of 156065 meshpoints and 884736 tetrahedral cells. The simulation
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Table 1 Test case NACA 0012: comparison of different solvers using Newton linearization.

Linear solver
Nonlinear
iterations

Linear
iterations (tot)

Execution
time (sec)

Memory
(Mbytes)

Accel. Precond.
GMRES(30) ILU(0) 11 441 24.781 6.840

” ILU(1) 11 230 22.368 7.217
” ILU(2) 11 164 21.433 7.258
” ILU(t), t=5e-3 10 443 38.744 29.172
” Jacobi 10 14222 120.369 5.439
” Block Jacobi, nb=10 11 1991 45.614 7.660
” ASM nb=10, ov=1 11 927 40.214 10.166
” ASM nb=10, ov=2 11 696 39.538 12.247

has been run on 16 processors of a Linux Beowulf cluster. Figures 2(a) show the
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Fig. 2 Experiments on the Stanitz elbow.

convergence history of the iterative solution; we use an additive Schwarz precondi-
tioner with overlap of 2 for GMRES; the diagonal blocks are approximately inverted
using ILU(1). We obtain convergence in only five Newton iterations down to ma-
chine precision. In Table 2, we report on comparative results with respect to the
number of iterations and solution time (in seconds) with parallel block Jacobi and
additive Schwarz methods, using the ILU(1) solver on each subdomain. We see that
additive Schwarz delivers the best convergence in terms of number of iterations; we
performed tests with different values of overlap observing very similar results.
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Table 2 Solution cost for solving the Stanitz problem using GMRES(30)

Newton iter
BJ+ILU(1) ASM(2)+ILU(1)

Iter CPU time Iter CPU time
1 72 10.1 49 8.8
2 121 16.7 76 12.3
3 147 20.0 98 15.8
4 175 23.5 112 17.8
5 200 26.9 127 20.1

5 Concluding Remarks

We have presented iterative solution strategies for the Reynolds-Favre averaged
Navier-Stokes equations based on fluctuation splitting schemes and Newton-Krylov
solvers. We have analyzed the performance of some algebraic preconditioners for
accelerating the solution of the inner linear system arising at each step of the New-
ton’s method. The code is still in a development stage but the numerical results are
encouraging. Incomplete factorization with pattern strategy based on level of fill is
very effective for solving 2D problems, while additive Schwarz preconditioner is
more efficient on 3D applications for its natural parallelism. Perspectives of future
research include enhancing the robustness of the code on difficult configurations
(e.g. highly anysotropic meshes), and in particular designing multilevel precondi-
tioners based on Schur complement-type incomplete factorization (see e.g. [4]) to
improve the scalability of the solver on large-scale problems.
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On Least-Squares Approximate Inverse-Based
Preconditioners

B. Carpentieri

Abstract We discuss approximate inverse preconditioners based on Frobenius-
norm minimization. We introduce a novel adaptive algorithm based on truncated
Neumann matrix expansions for selecting the sparsity pattern of the preconditioner.
The construction of the approximate inverse is based on a dual dropping strategy,
namely a threshold to drop small entries and a maximum number of nonzero entries
per column. We introduce a post-processing stabilization technique to deflate some
of the smallest eigenvalues in the spectrum of the preconditioned matrix which can
potentially disturb the convergence. Results of preliminary experiments are reported
on a set of linear systems arising from different application fields to illustrate the
potential of the proposed algorithm for preconditioning effectively iterative Krylov
solvers.

1 Introduction

Approximate inverse methods compute an explicit sparse approximation of a
nonsingular matrix A that can be used as preconditioner for solving general linear
systems of the form

Ax = b, A ∈ Cn×n, det(A) �= 0, x ∈ Cn, b ∈ Cn. (1)

This class of algorithms is computationally attractive for parallelism because
applying the preconditioner at each step of an iterative solver simply reduces to
carry out one or more sparse matrix-vector products, that are numerically stable
and are easy to parallelize. For many problem classes, A−1 or its triangular fac-
tors are sparse or can be well approximated by a sparse matrix; thus the resulting
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preconditioner can reduce the number of iterations significantly. Indeed this class of
methods has received much attention in the last years either as stand-alone precondi-
tioners [12, 4, 15], or as local components of multilevel solvers [8], or as smoothers
for multigrid algorithms [5, 18]. Library implementations [12] and public-domain
codes [1, 7] are available for both sequential and parallel computer architectures.
A critical computational issue is the selection of the sparsity pattern of the ap-
proximate inverse as, in general, the inverse of an irreducible matrix is structurally
dense [11]. The lack of robustness on indefinite problems and the high construc-
tion cost are two important drawbacks that can limit the use of approximate inverse
methods for solving general problems. In this work we introduce a cost effective
adaptive pattern selection strategy based on truncated Neumann matrix series ex-
pansions for Frobenius-norm approximate inverse preconditioners and we consider
stabilization techniques based on eigenvalue deflation to enhance their robustness
on indefinite problems. Comparative experiments with other standard precondition-
ers are reported on a set of matrix problems arising from various application fields
to illustrate the potential of the proposed algorithm.

2 Least-Squares Minimization Preconditioner

We concentrate our attention on Frobenius-norm minimization techniques that
compute the matrix M which minimizes the error matrix ‖I−MA‖F (or ‖I−AM‖F

for right preconditioning) subject to certain sparsity constraints. The Frobenius-
norm allows to decouple the constrained minimization problem into n independent
linear least-squares problems, one for each column of M (when preconditioning
from the right) or row of M (when preconditioning from the left). The independence
of these least-squares problems follows immediately from the identity:

‖I−MA‖2
F = ‖I−AMT‖2

F =
n

∑
j=1

‖e j−Am j‖2
2 (2)

where e j is the jth unit vector and m j is the column vector representing the jth row
of M. In the case of right preconditioning, the analogous relation

‖I−AM‖2
F =

n

∑
j=1

‖e j−Am j‖2
2 (3)

holds, where mj is the column vector representing the jth column of M. Clearly,
there is considerable scope for parallelism in this approach. Early references to this
class of methods can be found in [2, 3]. In the symmetric positive definite (SPD)
case, we may preserve symmetry in the preconditioner approximating the inverse
of the Cholesky factor L of A by minimizing ||I−GL||2F . The matrix G may be
computed without the knowledge of L by solving the normal equations
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{GLLT}i j = LT
i j, (i, j) ∈SL (4)

where SL is a lower triangular nonzero pattern for G (see e.g. [15]). Equation (4)
can be replaced by

{ḠA}i j = Ii j, (i, j) ∈SL (5)

where Ḡ = D−1G and D is the diagonal of L; each row of Ḡ can be computed
independently by solving a small linear system. The preconditioned linear system
has the form

GAGT = DḠAḠT D.

The matrix D is not known and is generally chosen so that the diagonal of GAGT is
all ones.

We construct the preconditioner from a scaled coefficient matrix Ã = D1/2
1 AD1/2

2 ,
where D1 and D2 are the following diagonal matrices:

D1(i, j) =

⎧⎪⎪⎨⎪⎪⎩
1

max|ai j|
i

, if i = j

0 , if i �= j

, D2(i, j) =

⎧⎪⎪⎨⎪⎪⎩
1

max|ai j|
j

, if i = j

0 , if i �= j

.

Throughout this paper, we denote by A the scaled coefficient matrix Ã. The spar-
sity structure of column mj of M, denoted as struct j(M), is taken as

struct j(M) =
k j⋃

i=1

struct j
(
Ai).

The rationale behind this strategy is that the inverse of any nonsingular matrix A
can be written in terms of powers of A as

A−1 =− 1
α0

m

∑
j=0

α j+1A j,

where m is the index sum of the distinct eigenvalues of A andα j’s are the coefficients
of the minimal polynomial expansion of A; we may expect that using a low degree
polynomial we are able to capture a suitable nonzero pattern of the large entries of
mj. The value of k j is allowed to vary for each column j, and it is tuned adaptively
depending on the user required accuracy. Thus this approach is completely different
from other pattern selection strategies for Frobenius-norm minimization methods
earlier proposed in the literature (see e.g. [13, 7]). We initially set the value of k j

equal to one, and then we increment it until∥∥Am j− e j
∥∥

2 < τ

where τ is a fixed tolerance, or until a maximum number of nonzero entries p is
computed in column m j. Note that both parameters τ and p are global, i.e. they
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apply to all columns of M. The actual entries of vector m j are calculated by solv-
ing a small size least-squares problem using dense QR factorization. We refer to
the resulting preconditioner as FROB(τ, p). In [13], Grote and Huckle provide the
following important estimates on the relative distance of the Frobenius-norm mini-
mization preconditioner with respect to the exact inverse matrix and on the norm of
the residual matrix:

Theorem 1. Let r j = Am j− e j be the residual associated with column m j for j =
1,2, . . . ,n, and q = max

1≤ j≤n

{
nnz(r j)

}$ n. Suppose that
∥∥r j

∥∥
2 < t for j = 1,2, . . . ,n,

then we have

‖AM− I‖F ≤
√

nt,
∥∥M−A−1

∥∥
F ≤

∥∥A−1
∥∥

2

√
nt,

‖AM− I‖2 ≤
√

nt,
∥∥M−A−1

∥∥
2 ≤

∥∥A−1
∥∥

2

√
nt,

‖AM− I‖1 ≤
√

qt,
∥∥M−A−1

∥∥
1 ≤

∥∥A−1
∥∥

1
√

qt.

Owing to this result, all the eigenvalues of AM lie in the disk centered in 1 and of
radius

√
qt; the value of q is not known a priori, though, so that one might enforce the

condition
√

nt < 1 to prevent singularity or near-singularity of the preconditioned
matrix. To run the algorithm with such a small t is too costly in practice. In fact,
for many problems we generally observe a lack of robustness of the approximate
inverse due to the presence of clusters of small eigenvalues in the spectrum of the
preconditioned matrix (see e.g. [6]). This scenario typically arises when solving
indefinite systems since some of the eigenvalues are likely to cluster near zero in
their natural trajectory towards point one of the complex plane under the action of
the preconditioner. This consideration motivates us to introduce a stabilization step
after computing M, which deflates a small group of eigenvalues close to zero in the
spectrum of the preconditioned matrix. Let

MAx = Mb. (6)

be the preconditioned system to solve and

MA = VΛV−1, (7)

the standard eigenvalue decomposition with Λ = diag(λi), where |λ1| ≤ . . . ≤ |λn|
are the eigenvalues and V = (vi) the associated right eigenvectors. We denote by Vε
the set of right eigenvectors associated with the set of eigenvalues λi with |λi| ≤ ε .
It is easy to show the following result:

Theorem 2. Let W be such that Ãc = W HAVε has full rank, M̃c = Vε Ã−1
c W H and

M̃ = M + M̃c. Then M̃A is similar to a matrix whose eigenvalues are{
ηi = λi if |λi|> ε,
ηi = 1 +λi if |λi| ≤ ε.

For right preconditioning, that is AMy = b, similar results hold (see also [6]). We
should point out that, if the symmetry of the preconditioner has to be preserved, an
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obvious choice exists. For left preconditioning, we can set W = Vε , but then Ãc may
not have full rank.

In the SPD case, these results extend as follows.

Theorem 3. If A and M1 are SPD, then M1A is diagonalizable, and Ãc = V T
ε AVε is

SPD. The preconditioner defined by M̃ = M1 + M̃c, with M̃c = Vε Ã−1
c V T

ε is SPD and
M̃A is similar to a matrix whose eigenvalues are{

ηi = λi if |λi|> ε,
ηi = 1 +λi if |λi| ≤ ε.

3 Numerical Experiments

We illustrate the numerical behavior of the proposed algorithms on a set of matrix
problems arising from various application fields [9, 10]. In Tables 1, for each matrix
problem we report on the number of iterations and the elapsed time required by
Krylov methods to reduce the initial residual of six orders of magnitude without
preconditioner (column ’Unprec’) and with FROB(τ, p) (column ’Iter’), the values
used for the parameters τ and p, the number of deflated eigenvalues in the post-
processing stabilization step, and the density of the approximate inverse, namely
the ratio nnz(M)/nnz(A). The linear system is preconditioned from the right. As
iterative solvers, we use restarted GMRES [17] for nonsymmetric problems and the
conjugate gradient (CG [14]) for symmetric positive definite problems. We set up
the right-hand side so that the exact solution is a vector with all ones, and we start
the iterative process from the zero vector. All experiments are run in Fortran on a
PC Pentium 4 CPU 3.00 GHz and 2.00 GB of RAM memory.

We observe that for low density values the preconditioner accelerates the con-
vergence of Krylov methods and can reduce significantly the number of iterations
required in the unpreconditioned case. The number of nonzeros of M is generally
very small for all test problems except for the two most difficult, that are gre 512
and epb0; this suggests that the pattern selection strategy based on Neumann ex-
pansions is effective to capture the large entries of the exact inverse, and the resulting
preconditioner is reasonably cheap to compute and to apply. The values of the pa-
rameters are not tuned for optimal performance as in this study we only intend to
illustrate the potential of the preconditioner on problems arising from various fields.

In Tables 3-4 we analyse the numerical and parallel scalability of the approxi-
mate inverse for solving large-scale boundary integral equations in electromagnetic
scattering applications. The runs are done on eight processors of a Compaq Alpha
server (a SMP cluster with four 1.3 GFlops DEC Alpha processors per node). In this
case we use τ = 1e−2 and p is the number of one-level neighbors associated with
each degree of freedom in the mesh, or equivalently the number of nonzeros per
column in the near-field part of the matrix. We see that both the construction and the
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Table 1 Numerical experiments with Krylov methods preconditioned by FROB on a set of sparse
matrix problems.

Problem Size
Setup FROB

Solver #None #FROB

τ p nnz(M)
nnz(A)

Time
(sec)

Stabil.

1138 bus 1138 1e-1 30 0.94 0.4 − cg 1138 56
bcsstk14 1806 1e-1 20 0.37 0.6 − cg 1806 63
bcsstk27 1224 1e-1 50 0.42 0.5 − cg 575 65
cavity05 1182 1e-1 20 0.47 1.1 6 gmres(40) 1219 33
cavity16 4562 1e-1 20 0.43 4.7 6 gmres(50) 4733 71
dw2048 2048 1e-1 80 1.12 2.6 6 ” 1386 495
e30r0100 9661 1e-1 30 0.45 8.3 6 ” 10037 157
epb0 1794 1e-1 40 2.63 1.0 6 ” 1821 52
fidap015 6867 1e-1 30 0.95 2.1 6 ” 327 107
fidap022 839 1e-1 20 0.52 0.6 6 gmres(30) 865 49
gre 512 512 1e-2 80 2.65 0.3 6 gmres(50) 521 81
orsirr 1 1030 1e-1 20 0.43 0.3 6 gmres(30) 318 78
rdb2048 2048 1e-1 30 0.83 0.5 6 gmres(50) 563 31
rdb3200L 3200 1e-1 30 1.35 1.0 6 ” 3329 100

application of the approximate inverse scale very well with respect to the number of
processors, and the iterations grows linearly with the problem size. On this applica-
tion, standard incomplete factorization suffers from ill-conditioning of the triangular
factors and exhibits poor performance. In Table 2 we report on results of compara-
tive experiments on a set of indefinite problems using FROB, ILUT P (the incom-
plete factorization enhanced with partial pivoting [16]) and SPAI (a Frobenius-norm
minimization approximate inverse implementing a different adaptive pattern selec-
tion strategy [13]), at roughly equal number of nonzeros in the preconditioner. For
many problems our method competes and is sometimes more effective than ILUT P
and SPAI mainly thanks to the stabilization step that makes the preconditioner more
robust. Finally, we observe that the use of variable powers for different columns
of M permits to have a flexible control on the memory storage of the approximate
inverse but has an impact also on performance. On the gre 512 problem we are
not able to achieve convergence in more than 1000 iterations using the pattern of
A5 for the approximate inverse, which is ≈ 13% dense, whereas GMRES(50) pre-
conditioned by FROB(80,1e− 2) converges in 81 iterations. We have observed the
same behavior on the epb0 problem.
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Table 2 Comparative results of the FROB preconditioner with the ILUT P and the SPAI precondi-
tioners. Notation: ∗ means nearly singular preconditioner, − means no convergence in 500 itera-
tions.

Problem #FROB
#ILUTP

#SPAI
no pivoting piv thresh=0.05 piv thresh=0.1

cavity05 33 ∗ 109 109 +500
cavity16 71 ∗ ∗ ∗ +500
dw2048 495 144 − − +500
e30r0100 157 ∗ ∗ ∗ +500
epb0 52 66 66 109 188
fidap015 107 ∗ ∗ ∗ 219
fidap022 49 ∗ 219 ∗ 116
gre 512 81 ∗ − − +500
orsirr 1 78 424 205 205 64
rdb2048 31 668 668 668 227
rdb3200L 100 − ∗ − +500

Table 3 Numerical scalability of the preconditioner for solving large-scale boundary integral equa-
tions. The symbol • means run on 32 processors. Notation: m means minutes, h hours.

do f / f req
FROB GMRES(∞) GMRES(120)

Density Time Iter Time Iter Time

104793 / 2.6 Ghz 0.19 6m 234 20m 253 17m
419172 / 5.2 ” 0.05 21m 413 2h 44m 571 2h 26m
943137 / 7.8 ” 0.02 49m 454 3h 35m• 589 5h 55m

Table 4 Parallel scalability of the approximate inverse for solving large-scale boundary integral
equations on a model problem.

n (procs)
Construction

time (sec)
Elapsed time
precond (sec)

112908 (8) 513 0.39
221952 (16) 497 0.43
451632 (32) 509 0.48
900912 (64) 514 0.60

4 Concluding Remarks

We have discussed approximate inverse preconditioners based on Frobenius-
norm minimization methods constructed using a dual dropping strategy. We have
introduced a novel adaptive algorithm based on truncated Neumann matrix expan-
sions for selecting the nonzero structure of the preconditioner and we have described
a stabilization technique that deflates some of the smallest eigenvalues which can
potentially disturb the convergence of Krylov methods. Finally, we have reported on
results of preliminary experiments on a set of matrix problems arising from different
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application fields to illustrate the potential effectiveness of the approximate inverse
as alternative to other standard methods of both implicit and explicit type. The nu-
merical experiments show that the proposed method is effective to capture the large
entries of the inverse at low computational effort and maintains good scalability. A
parallel implementation of the preconditioner for distributed memory computers us-
ing the Fortran/MPI standard is envisaged. Perspective of future work also include
the design of symmetrization strategies for solving symmetric indefinite systems,
blocking strategies for cost reduction and a detailed comparison with other existing
implementations.
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On the Construction of Stable B-Spline Wavelet
Bases

D. Černá and V. Finěk

Abstract The paper is concerned with the construction of wavelet bases on the inter-
val derived from B-splines. The resulting bases generate multiresolution analyses on
the unit interval with the desired number of vanishing wavelet moments for primal
and dual wavelets. Inner wavelets are translated and dilated versions of well-known
wavelets designed by Cohen, Daubechies, Feauveau [4] while boundary wavelets
are constructed by combination of methods from [3], [8] and [11]. By this approach,
we obtain bases with small Riesz condition numbers. The other important feature
of wavelet bases, the sparseness of refinement matrices, is preserved. Finally, Riesz
condition numbers of scaling and wavelet bases are computed for some of the con-
structed bases.

1 Introduction

Wavelets are by now a widely accepted tool in signal and image processing as well
as in numerical simulation. In the field of numerical analysis, methods based on
wavelets are successfully used especially for preconditioning of large systems aris-
ing from discretization of elliptic partial differential equations, sparse representa-
tions of some types of operators and adaptive solving of partial differential equa-
tions. There are two main approaches for solving partial differential equations by
adaptive wavelet methods. The first approach consists in multiresolution adaptive
postprocessing, i.e. start from a classical scheme on a uniform grid and use a dis-
crete multiresolution decomposition in order to compress computational time and
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memory size, while preserving the accuracy of the initial scheme. This approach
is mostly applied to hyperbolic systems such as conservation laws. The second ap-
proach is mostly applied to elliptic and parabolic equations and it insists in using
wavelets directly as basis and test functions in variational formulation. This leads
to methods which are efficient and asymptotically optimal.The quantitative prop-
erties of such methods depend on the choice of wavelet basis, in particular on its
condition.

Wavelet bases on a bounded domain, which are suitable for solving operator
equations, are usually constructed in the following way: Wavelets on the real line
are adapted to the interval and then by tensor product technique to n-dimensional
cube. Finally by splitting domain into subdomains which are images of (0,1)n under
appropriate parametric mappings one can obtain wavelet bases on a fairly general
domain. From the viewpoint of numerical stability, ideal wavelet bases are orthog-
onal wavelet bases. However, they are usually avoided in numerical treatment of
partial differential equations, because they are not accessible analytically, the com-
plementary boundary conditions can not be satisfied and it is not possible to increase
the number of vanishing wavelet moments independent from the order of accuracy.

Biorthogonal B-spline wavelet bases on the unit interval were constructed in [8].
Their advantage is that the primal basis is known explicitly. Bases constructed in
[3] are well-conditioned, but have globally supported dual basis functions. B-spline
bases from [8] have large Riesz condition numbers that cause problems in practical
applications. Some modifications which lead to better conditioned bases were pro-
posed in [1, 7, 9]. The recent construction in [11] seems to outperform the previous
constructions with respect to Riesz condition numbers, for some numerical experi-
ments see [12] and also [10]. In this paper, we combine approaches from [3, 8, 11]
to further improve stability properties of B-spline wavelet bases on the interval.

2 Wavelet Bases

This section provides a short introduction to the concept of wavelet bases. Let V be
a separable Hilbert space with inner product 〈·, ·〉V and induced norm ‖·‖V . Let J be
some index set and let each index λ ∈ J takes the form λ = ( j,k), where |λ |= j ∈Z
is scale or level. Assume that J can be decomposed as J = ∪ j≥ j0Jj, where j0 ∈ Z is
some coarsest level.

Definition 1. FamilyΨ := {ψλ ∈ J} ⊂V is called wavelet basis of V , if

i) Ψ is a Riesz basis for V , that meansΨ generates V , i.e.

V = clos‖.‖V spanΨ , (1)

and there exist constants c,C∈ (0,∞) such that for all b := {bλ}λ∈J ∈ l2 (J) holds
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c‖b‖l2(J) ≤
∥∥∥∥∥∑λ∈J

bλψλ

∥∥∥∥∥
V

≤C‖b‖l2(J) (2)

Constants c, C are called Riesz bounds and C/c is called Riesz condition number
or the condition ofΨ .

ii) Functions are local in the sense that diam(Ωλ )≤ C2−|λ | for all λ ∈ J, where Ωλ
is support of ψλ .

By the Riesz representation theorem, there exists a unique family of dual func-
tions Ψ̃ =

{
ψ̃λ ,λ ∈ J̃

}⊂V , which are biorthogonal toΨ , i.e. it holds〈
ψi,k, ψ̃ j,l

〉
V = δi, jδk,l , for all (i,k) ∈ J, ( j, l) ∈ J̃. (3)

This dual family is also a Riesz basis for V with Riesz bounds C−1, c−1. The pairΨ ,
Ψ̃ is often referred to as biorthogonal system,Ψ is called primal wavelet basis, Ψ̃ is
called dual wavelet basis. By the above argument, biorthogonality is a necessary for
the Riesz basis property (2) to hold. But unfortunately it is not sufficient, see [6].

In many cases, the wavelet system Ψ is constructed with the aid of a multireso-
lution analysis.

Definition 2. A sequence S =
{

S j
}

j∈N j0
of closed linear subspaces S j ⊂V is called

a multiresolution or multiscale analysis, if the subspaces are nested, i.e.,

S j0 ⊂ S j0+1 ⊂ . . .⊂ S j ⊂ S j+1 ⊂ . . .V (4)

and is dense in V , i.e.,

closV

(
∪ j∈N j0

S j

)
= V. (5)

The nestedness of the multiresolution analysis implies the existence of the com-
plement or wavelet spaces Wj such that

S j+1 = S j⊕Wj. (6)

We now assume that S j and Wj are spanned by sets of basis functions

Φ j :=
{
φ j,k,k ∈ I j

}
, Ψj :=

{
ψ j,k,k ∈ Jj

}
, (7)

where I j, Jj are finite or at most countable index sets. We refer to φ j,k as scaling func-

tions and ψ j,k as wavelets. The multiscale basis is given byΨj0,s =Φ j0 ∪
⋃ j0+s−1

j= j0
Ψj

and the overall wavelet Riesz basis of V is obtained by Ψ = Φ j0 ∪
⋃

j≥ j0Ψj. From
the nestedness of S and the Riesz basis property (2), we conclude the existence of

bounded linear operators M j,0 =
(

m j,0
l,k

)
l∈Ij+1,k∈Ij

and M j,1 =
(

m j,1
l,k

)
l∈Ij+1,k∈Jj

such

that
φ j,k = ∑

l∈Ij+1

m j,0
l,k φ j+1,l, ψ j,k = ∑

l∈Ij+1

m j,1
l,k φ j+1,l. (8)
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The desired property in applications is the uniform sparseness of M j,0 and M j,1,
it means that the number of nonzero entries per row and column remains uniformly
bounded in j. The single-scale and the multiscale bases are interrelated by T j,s :
l2 (I j+s)→ l2 (I j+s),

Ψj,s = T j,sΦ j+s. (9)

T j,s is called the multiscale or the wavelet transform.
The dual wavelet system Ψ̃ generates a dual multiresolution analysis S̃ with a

dual scaling basis Φ̃ and dual operators M̃ j,0, M̃ j,1.
Polynomial exactness of order N ∈N for primal scaling basis and of order Ñ ∈N

for dual scaling basis is another desired property of wavelet bases in V ⊂ L2 (Ω),
Ω ⊂Rn. It means that

PN−1 ⊂ S j, PÑ−1 ⊂ S̃ j, j ≥ j0, (10)

where Pm is the space of all algebraic polynomials on Ω of degree less or equal to
m.

3 Construction of Stable Wavelet Bases on the Interval

In this section, we assume V = L2 ([0,1]). The primal scaling bases will be the same
as bases designed by Chui and Quak in [3], because they are known to have good
condition numbers. A big advantage of this approach is that it readily adapts to the
bounded interval by introducing multiple knots at the endpoints. Let N be the desired

order of polynomial exactness of primal scaling basis and let t j =
(

t j
k

)2 j+N−1

k=−N+1
be a

sequence of knots defined by

tk = 0 for k =−N + 1, . . . ,0,

tk =
k
2 j for k = 1, . . .2 j−1,

tk = 1 for k = 2 j, . . . ,2 j + N−1.

The corresponding B-splines of order N are defined by

B j
k,N (x) :=

(
t j
k+N − t j

k

)[
t j
k , . . . ,t

j
k+N

]
t
(t− x)N−1

+ , x ∈ [0,1] , (11)

where (x)+ := max{0,x} and [t1, . . .tN ]t f is the N-th divided difference of f . The
set Φ j of primal scaling functions is then simply defined as

φ j,k = 2 j/2B j
k,N , for k =−N + 1, . . . ,2 j−1, j ≥ 0. (12)

Thus there are 2 j−N +1 inner scaling functions and N−1 functions on each bound-
ary. Inner functions are translations and dilations of a function φ which corresponds
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to primal scaling function constructed by Cohen, Daubechies, Feauveau in [4]. In
the following, we consider φ from [4] which is shifted so that its support is [0,N]
and we denote φR

j,k = 2 j/2φ
(
2 j ·−k

)
.

The desired property of dual scaling basis Φ̃ is biorthogonality to Φ and poly-
nomial exactness of order Ñ. Let φ̃ be dual scaling function which was designed
in [4] and which is shifted so that its support is

[−Ñ + 1,N + Ñ−1
]
. In this case

Ñ ≥ N and Ñ + N must be an even number. We define basis functions to preserve
polynomial exactness in the following way:

θ j,k = 2 j
Ñ−N

∑
l=−N−Ñ+2

〈
pÑ−1

k+N−1

(
2 j·) ,φR

j,l

〉
φ̃
(
2 j ·−l

) |[0,1], k = 1−N, . . . , Ñ−N,

θ j,k = 2 j/2φ̃
(
2 j ·−k

) |[0,1], k = Ñ−N + 1, . . . ,2 j− Ñ−1,

θ j,k = θ j,2 j−N+1−k (1−·) , k = 2 j− Ñ, . . . ,2 j−1.

Here pÑ−1
0 , . . . , pÑ−1

Ñ−1
is a basis of the space of all algebraic polynomials on [0,1] of

degree less or equal to Ñ−1. In our case, pÑ−1
k are Bernstein polynomials defined

by

pÑ−1
k (x) := b−Ñ+1

(
Ñ−1

k

)
xk (b− x)Ñ−1−k , k = 0, . . . , Ñ−1, (13)

because they are known to be well-conditioned on [0,b] relative to the supremum
norm. We choose b = 1, because b does not affect the condition of dual bases after
biorthogonalization. Note that there are two types of boundary functions: Ñ func-
tions reproducing Bernstein polynomials and N− 2 restrictions of 2 j/2φ̃

(
2 j ·−k

)
.

Our next goal is to determine the corresponding wavelet bases. Since the set
Θ j :=

{
θ j,k : k =−N + 1, . . . ,2 j−1

}
is not biorthogonal to Φ j, we derive a new

set Φ̃ j from Θ j by biorthogonalization. Let A j =
(〈
φ j,k,θ j,l

〉)2 j−1
j,l=−N+1, then view-

ing Φ̃ j andΘ j as column vectors we define

Φ̃ j := A−T
j Θ j. (14)

For the proof of invertibility of the matrix A j for all admissible choices of N, Ñ see
[13]. This task is directly connected to the task of determining an appropriate matri-
ces M j,1, M̃ j,1. Thus, the problem has been transferred from functional analysis to
linear algebra. We follow a general principle which was proposed in [2].

Definition 3. Any M j,1 : l2 (Jj)→ l2
(
I j+1

)
is called a stable completion of M j,0, if∥∥M j

∥∥ ,
∥∥∥M−1

j

∥∥∥= O(1) , j→ ∞, (15)

where M j :=
(
M j,0,M j,1

)
.
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The idea is to determine first an initial stable completion and then to project it to
the desired complement space Wj determined by

{
Ṽj
}

j≥ j0
. This is summarized in

the following theorem.

Theorem 1. Let Φ j , Φ̃ j be primal and dual scaling basis, respectively. Let M j,0,
M̃ j,0 be refinement matrices corresponding to these bases. Suppose that M̌ j,1 is
some stable completion of M j,0 and Ǧ j = M̌−1

j . Then

M j,1 :=
(
I−M j,0M̃T

j,0

)
M̌ j,1 (16)

is also a stable completion and G j = M−1
j has the form

G j =
[

M̌T
j,0

Ǧ j,1

]
. (17)

Moreover, the collections

Ψj := MT
j,1Φ j+1, Ψ̃j := ǦT

j,1Φ̃ j+1 (18)

form biorthogonal systems〈
Ψj,Ψ̃j

〉
= I,

〈
Φ j,Ψ̃j

〉
=
〈
Ψj,Φ̃ j

〉
= 0. (19)

We found the initial stable completion by the method from [8] with some small
changes. Since this construction is quite subtle we don’t go into details here.

4 Quantitative Properties of Constructed Bases

In this section, quantitative properties of constructed bases are presented. To further
improve the condition of constructed bases we provide a diagonal rescaling in the
following way:

φN
j,k =

φ j,k√〈
φ j,k,φ j,k

〉 , φ̃N
j,k = φ̃ j,k ∗

√〈
φ j,k,φ j,k

〉
, k ∈ Jj, j ≥ j0,

ψN
j,k =

ψ j,k√〈
ψ j,k,ψ j,k

〉 , ψ̃N
j,k = ψ̃ j,k ∗

√〈
ψ j,k,ψ j,k

〉
, k ∈ I j, j ≥ j0.

Then the new primal scaling and wavelet bases are normalized with respect to L2-
norm. This can be useful property in adaptive wavelet methods, because it allows
to use the same thresholding strategy for all coefficients. The condition of single-
scale bases are listed in Table1, for larger scales it does not change significantly.
The condition of multiscale bases and wavelet transforms are listed in Table2. The
resulting bases for N = 2 are the same as those designed in [11], where the primal
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scaling functions are the same, Ñ dual boundary functions are constructed as in [5]
and N− 2 boundary functions are constructed by finding suitable refinement coef-
ficients. Our bases have comparable or better condition numbers for N ≥ 3. Due to
the compact support of basis functions the sparseness of refinement matrices is pre-
served. The proof of existence for all admissible choices of N and Ñ, the condition
of bases adaptated to boundary conditions and other quantitative properties of these
bases such as the condition number of stiffness matrices are studied in preparing
paper and in [13].

Table 1 The condition of single-scale scaling and wavelet bases

N Ñ j Φ j Φ̃ j ΦN
j Φ̃N

j Ψj Ψ̃j ΨN
j Ψ̃N

j

2 2 5 2.00 2.30 1.73 1.97 1.91 2.01 1.91 1.99
2 4 5 2.00 2.09 1.73 1.80 1.99 2.04 1.99 1.99
2 6 5 2.00 2.26 1.73 2.03 1.99 2.29 1.99 2.25
2 8 5 2.00 2.89 1.73 2.78 2.33 3.13 2.22 3.80
3 3 5 3.24 7.36 2.76 5.43 3.98 6.14 3.98 3.95
3 5 5 3.24 4.35 2.76 3.57 4.43 5.93 3.97 3.96
3 7 5 3.24 3.68 2.76 3.16 4.60 5.29 3.97 3.96
3 9 5 3.24 3.75 2.76 3.29 4.40 5.46 3.99 4.06
4 6 6 5.18 19.72 4.42 14.60 13.66 46.66 7.98 10.60
4 8 6 5.18 11.33 4.42 9.25 13.94 29.69 7.97 8.55
4 10 6 5.18 7.80 4.42 6.83 13.80 20.03 7.97 8.04

Table 2 The condition of multi-scale wavelet bases and wavelet transform

N Ñ j ΨN
j,3 ΨN

j,4 Ψ̃N
j,3 Ψ̃N

j,4 T j,1 T j,2 T j,3 T j,4

2 2 3 2.50 2.63 2.65 2.73 1.88 2.44 2.83 3.11
2 4 4 2.31 2.33 2.32 2.33 1.58 2.10 2.48 2.72
2 6 4 2.83 2.91 2.87 2.93 1.75 2.19 2.64 2.99
2 8 5 5.34 5.66 5.49 5.73 2.86 3.59 4.46 5.24
3 3 4 6.22 6.82 8.72 8.99 2.79 5.66 8.41 10.62
3 5 4 5.22 5.30 5.33 5.35 2.65 5.22 7.54 8.87
3 7 5 4.60 4.61 4.61 4.61 2.37 4.75 6.53 7.48
3 9 5 4.74 4.75 4.76 4.78 2.29 4.62 6.30 7.17
4 6 5 18.88 19.82 21.41 21.43 5.74 20.89 46.99 64.67
4 8 5 13.93 14.05 14.09 14.09 4.39 16.08 32.15 41.43
4 10 5 11.01 11.03 11.03 11.03 4.22 12.65 22.26 27.60
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Fig. 1 Plots of dual boundary scaling functions φ̃N
5,k, k =−2, . . .3 for N = 3, Ñ = 5
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The Performance of a Multigrid Algorithm for
the Acoustic Single Layer Equation

S. Gemmrich, J. Gopalakrishnan, and N. Nigam

Abstract We study the performance of a multigrid algorithm for an integral equation
of the first kind arising in acoustics. The algorithm is adpated from previous works
on the single layer potential, and as in the previous works, a key ingredient is the
use of a weaker inner product. We report the implementation details and the results
of numerical experiments demonstrating the effectiveness of the method.

1 Introduction

Boundary integral equations and their numerical approximations are a popular
means to study the scattering of time-harmonic waves from bounded obstacles. A
model for these scattering phenomena is given by the Helmholtz equation in the
exterior of the scatterer, with appropriate growth conditions on the scattered field.
Various reformulations in terms of integral equations on the surface of the scattering
object exist. Our focus in this paper lies on integral equations of the first kind, which
arise for example in the direct boundary integral method for the Dirichlet problem.
The main integral operator involved, i.e. the single layer operator, may be viewed
as a pseudo-differential operator of order minus one. Several authors have observed
advantages of using integral equations of the first kind (see e.g. [7]), for example
when the scattering object is very thin, or indeed reduces to an arc (e.g. [8]).

Due to the non-local behavior of the boundary integral operators, they typically
lead to dense linear systems upon discretization. Though one only needs to mesh on
a surface of co-dimension one, the fill-in in the matrices corresponding to the inte-
gral operators is significant. Without some form of preconditioning or acceleration,
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these methods then become prohibitive.
Since the spectra of negative-order pseudodifferential operators link highly os-

cillatory eigenfunctions to the small magnitude eigenvalues, the use of standard
smoothing methods in a multigrid scheme is not appropriate. The key for multigrid
methods to work in this context is the use of weaker Sobolev norms in order to mod-
ify this spectral behavior, which has first been described in [3] for positive-definite
operators. A BPX preconditioner for this problem was analyzed in [4], and the use
of Haar basis functions and compression type multilevel algorithms for such equa-
tions has been studied in [11]. A slightly different approach has been taken in [10]
in order to analyze a multigrid method for large-scale data-sparse approximations to
the single layer operator from potential theory. Algebraic multigrid preconditioners
for the same problem - based on the smoother in [3] - have been developed in [9].

Discretizations of integral equations for acoustics suffer from a lack of definite-
ness similar to the discretizations of the associated partial differential equation. A
natural tool in the analysis of multigrid methods for such indefinite problems are
perturbation type arguments such as in [2] and [6]. The application of such pertur-
bation arguments to the acoustic single layer potential will be carried out in [5].

The purpose of this note is to report the performance of a multigrid algorithm
applied to the indefinite acoustic single layer discretization and to clarify a few
implementation details. The design of the algorithm heavily relies on the above ref-
erences. Our aim is to convey the potential of multigrid for this integral equation
discretization. Our current codes assemble and multiply matrices in O(n2) complex-
ity, so the iterative solution by multigrid also costs the same. However, our results
show that we can approach optimality in complexity through multigrid once assem-
bly and matrix multiplications are done optimally. The latter is an issue of current
research in multipole and hierarchical matrix theories.

2 A Model Problem and a Multigrid Algorithm

2.1 A Model Problem

Let Γ be a simple, polygonal closed curve in the plane with sides Γi and let Ω+

denote its exterior domain. We consider the exterior Helmholtz problem with pre-
scribed Dirichlet data g ∈ H1/2(Γ ) and wave-number κ ∈R:

−Δu−κ2u = 0 in Ω+, u = g on Γ , lim
r→∞

r
1
2 (
∂u
∂ r
− iκu) = 0. (1)

Here, r is the usual radial component in polar coordinates, and H1/2(Γ ) represents
the trace space of functions which are locally H1 in the exterior, i.e. the trace space
of H1

loc(Ω
+).

In order to guarantee unique solvability we assume that κ2 is not an interior
eigenvalue of −Δ . Then there are various ways to solve (1) in terms of boundary
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integral operators. We use the direct approach. The solution u(x),x ∈ Ω+ is given
in terms of the integral representation formula [12]:

u(x) =
i
4

∫
Γ

H1
0 (κ |x− y|) ∂ u(y)

∂ny
dsy − i

4

∫
Γ

∂
∂ny

H1
0 (κ |x− y|)u(y)dsy. (2)

Taking into account the logarithmic singularity of the Hankel function H1
0 (z) at zero,

as x→ Γ , the behaviour of (2) is given in terms of the (weakly singular) single layer
operator V , and the (Cauchy singular) integral operator K, defined as

V : H−1/2(Γ )−→ H1/2(Γ ), Vσ(x) :=
i
4

∫
Γ

H1
0 (κ |x− y|)σ(y)dsy x ∈ Γ ,

K : H1/2(Γ )−→ H1/2(Γ ), Kμ(x) :=
i
4

∫
Γ

∂
∂ny

H1
0 (κ |x− y|)μ(y)dsy, x ∈ Γ .

The Dirichlet scattering problem (1) then becomes the acoustic single layer equation
for the unknown Neumann data σ := ∂u/∂n ∈ H−1/2(Γ ) :

V σ = f ∈ H1/2(Γ ), (3)

where the right hand side f = (− 1
2 Id + K)g depends on the Dirichlet trace g and

requires the evaluation of the double layer operator K. The weak form of equation
(3) is thus: Given f ∈ H1/2(Γ ), find σ ∈ H−1/2(Γ ) such that

V (σ ,μ) = 〈 f ,μ〉 for all μ ∈ H−1/2(Γ ), (4)

where the continuous sesquilinear form V : H−1/2(Γ )×H−1/2(Γ )→ C is defined

by V (σ ,μ) = 〈Vσ ,μ〉, and 〈·, ·〉 denotes the duality pairing between H
1
2 (Γ ) and

H−
1
2 (Γ ). When κ = 0, we denote V (·, ·) as Λ(·, ·), the positive definite (on suitably

scaled regions, [12]), continuous sesquilinear form corresponding to the Laplacian.

2.2 A Multigrid Algorithm

We now adapt the multigrid algorithm from [3], which has been devised for the
positive definite operator Λ , for the indefinite equation (4). The main idea is the
use of the weaker base inner product. However, this comes at the cost of some
computability issues, which we will have to work around later.

Suppose we are given a sequence of finite dimensional approximation spaces
M1 ⊂ . . .⊂MJ ⊂H−1/2(Γ ), where Mi is spanned by piecewise constant test func-
tions on meshes which are uniform on every side (patch) Γi of Γ . In the following,
(·, ·)−1,D and ‖ ·‖−1,D denote the the H−1(D)-inner product and norm, respectively,
on a domain D. When the domain is absent from the notation, we understand it to
be Γ . We define discrete operators Vk : Mk→Mk via the relation
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(Vkσ ,μ)−1 = V (σ ,μ) for all σ ,μ ∈Mk. (5)

Analogously, we choose fk ∈Mk to satisfy ( fk,μ)−1 = 〈 f ,μ〉 for all μ ∈Mk. Then,
on every level k, the equation of interest can be written in operator form as

Vkσk = fk. (6)

We define the projections Qk : H−1(Γ )→Mk defined by (Qkσ ,μ)−1 := (σ ,μ)−1

for all μ ∈Mk. Since the presence of (·, ·)−1 introduces computational difficulties,
we need additional computable inner products [· , ·]k on Mk that are equivalent to
the (·, ·)−1 inner product. We will give an example of such an inner product later.

Once such inner products are available, a simple Richardson smoother suitable
for multigrid algorithms (see for example [1]) is given by

[Rkσ ,θ ]k =
1

λ̃k
(σ ,θ )−1, (7)

where λ̃k is chosen to be an upper bound for the Ritz quotient involving the definite
sesquilinear form Λ(· , ·), ie,

λ̃k ≥ λk = sup
θ∈Mk

Λ(θ ,θ )
[θ ,θ ]k

. (8)

Define the operator Λk as in (5) but with the sesquilinear form V (·, ·) replaced
by Λ(·, ·). It is then immediate that the smoothers are properly scaled to work for
the definite problem, since by the definition of λ̃k we have Λ(RkΛkθ ,θ )≤Λ(θ ,θ ).

Now, given an initial guess σ0 ∈MJ , the multigrid iteration computes a sequence
of approximate solutions to (4) using an iteration of the form σi+1 = MgJ(σi, fJ),
where MgJ(·, ·) as a mapping of MJ ×MJ into MJ is defined recursively by the
following algorithm:

Algorithm 1 Set Mg1(σ , f ) = V1
−1 f . If k > 1 we define Mgk(σ , f ) recursively as

follows:

σ1 = σ + Rk( f −Vkσ), (9)

Mgk(σ , f ) = σ1 + Mgk−1(0,Qk−1( f −Vkσ1)). (10)

This is a simple variant of a V-cycle multigrid scheme, which only uses pre-
smoothing. Equivalently, we can write the iterative scheme as a linear iteration
method

σi+1 = σi + BJ ( fJ −VJ σi),

with an “approximate inverse” BJ : MJ #→MJ defined by

Bk fk = Mgk(0, fk) for all fk ∈Mk and k = 2, . . . ,J.

This operator is useful as a preconditioner in preconditioned iterative methods.
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3 Numerical Implementation

In this section we give a matrix version of Algorithm 1 in the case of piecewise
constant test functions. On every discretization level k assume that τk = {τ i

k} is a

partition of the closed boundary curve Γ , which per side Γj consists of n( j)
k uniform

elements of length hk. The considerations here continue to apply even if each Γj

is discretized by elements of length h( j)
k , and we shall present this generalization

in [5]. Let φ i
k denote the indicator function of τ i

k and let Nk = ∑ j n( j)
k . Then Mk =

span{φ i
k | i = 1, . . . ,Nk}. The actual implementation of Algorithm 1 hinges on the

definition and computability of the discrete inner products [· , ·]k. To begin with,
we would like to evaluate the H−1-inner product of two elements in Mk. This is
equivalent to solving a second order boundary value problem on the boundary curve,
Γ = ∪N

j=1Γj: namely

−u′′+ u = v (11)

with periodic boundary conditions, for given v ∈ H−1(Γ ), where the primes de-
note differentiation with respect to arc-length. Let T be the corresponding solu-
tion operator T : H−1(Γ ) −→ H1(Γ ). This problem is uniquely solvable. Thus,
for v,w ∈ H−1(Γ ) it is easily verified that (T v,w)Γ = (v,Tw)Γ = (v,w)−1,Γ , where
(·, ·)Γ denotes the complex L2(Γ )-inner product. Unfortunately, the use of the exact
solution operator T is infeasible. Instead, we discretize (11) using a second-order fi-
nite difference method with the discretization stencil h−2

k

[−1 (2 + h2
k) 1

]
. This

finite difference method results in an Nk×Nk linear system Akuh = vh, where Ak is
a tridiagonal, Toeplitz matrix with diagonal entries ( 2

h2
k
+ 1), and super- and sub-

diagonal entries− 1
h2

k
. To enforce periodicity, the (1,Nk) and (Nk,1) entries are both

set to − 1
h2

k
. The stencil would need to be modified in case different mesh-sizes are

used on each Γi. The finite difference approximation to u is uh. The inverse matrix
A−1k serves as an approximation for the solution operator T . We can now define a
computable, discrete inner product on Mk by

[φ ,ψ ]k :=
(
(Ak)−1φ ,ψ

)
Γ for all φ ,ψ ∈Mk. (12)

Then, we show in [5] that ‖ · ‖−1,Γ and [·, ·]k are equivalent norms, with the equiva-
lence constants independent of the refinement levels k = 1,2, ...,J.

The discrete norm [·, ·]k can now be used to define the Richardson smoother.
To present the matrix version of the multigrid algorithm suitable for direct im-

plementation, we first introduce some notation to represent Euclidean vectors of
inner products and coefficients in the basis expansion of the discrete functions via
the following maps:
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ek : Mk −→CNk , [ek(g)]l =
1

meas(τ l
k)

(g,φ l
k)Γ , (13)

fk : Mk −→CNk , [fk(g)]i = (g , φ i
k)−1, (14)

Since the basis functions φ l
k are the (orthogonal) indicator functions of the seg-

ments τ l
k, the basis expansion for any g ∈Mk is g = ∑Nk

l=1 [ek(g)]l φ l
k, so the map

in (13) gives the vector of coefficients. The other map, namely fk, gives the vector
of H−1(Γ )-inner products with the basis functions. The Nk ×Nk stiffness matrix
of (6) is defined by [Vk]i, j = 〈Vφ j

k , φ i
k〉. Since Mk ⊆Mk+1 we can find numbers ci,l

such that φ i
k = ∑Nk+1

l=1 ci,l φ l
k+1. These entries define the Nk×Nk+1 restriction matrix

Ck connecting levels k and k + 1 by [Ck]i,l = ci,l . We denote by Hk a diagonal matrix
whose ith diagonal entry is meas(τ i

k), to store mesh size information. With these
definitions, it is straightforward to prove the following identities:

fk (Vk g) = Vk ek(g) for all g ∈Mk, (15)

fk−1(Qk−1 g) = Ck−1 fk(g) for all g ∈Mk, (16)

ek(g) = Ct
k−1ek−1(g) for all g ∈Mk−1, (17)

ek(Rk g) = λ̃−1
k H−1

k Ak fk(g) for all g ∈Mk, (18)

e1(V−1
1 g) = V−1

1 f1(g) for all g ∈M1. (19)

For example, to prove (18), we use (7) and (13) to get

1

λ̃k
[fk(g)]i ≡ 1

λ̃k
(g,φ i

k)−1 = [Rkg,φ i
k]k = [A−1

k Hk ek(Rkg)]i,

and multiply both sides by H−1
k Ak. Proofs of the other identities are similar.

These identities enable us to state a matrix version of Algorithm 1. For example,
applying ek to the step (9) of Algorithm 1 and using (18) and (15), we have

ek(σ1) = ek(σ)+ek(Rk( f −Vkσ)) = ek(σ)+ λ̃−1
k H−1

k Ak fk( f −Vkσ)

= ek(σ)+ λ̃−1
k H−1

k Ak (fk( f )−Vkek(σ)).

Thus, the matrix version of this step is s1 = s+ λ̃−1
k H−1

k Ak (b− Vks) with s1 =
ek(σ1), s = ek(σ), and b = fk( f ). Using also the other identities in (15)–(19), we
can similarly translate the entire Algorithm 1 and obtain the following matrix ver-
sion of the algorithm. It defines a procedure MgJ(s,b) that outputs an approximation
for the solution of the matrix equation VJu = b, given an input iterate s.

Algorithm 2 Let s and b be any given vectors in CNk . Define Mgk(s,b) recursively
as follows. Set Mg1(s,b) = V−1

1 b. If k > 1, define Mgk(u,b) as the vector in CNk

obtained recursively by:

s1 = s+ λ̃−1
k H−1

k Ak (b−Vks),
Mgk(s,b) = s1 +Ct

k−1Mgk−1(0,Ck−1(b−Vks1)).
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It is important to note that the inverse of Ak is not needed in the implementation,
as we only need to multiply by Ak. Note that a matrix preconditioner Bk for Vk is
implicit in Algorithm 2 and is defined by Bkb := Mgk(0,b). A theoretical study of
the convergence rate of the algorithm is presented in [5].

4 Numerical Experiments

We now present numerical results on the convergence of the presented algorithm
as a linear solver as well as its performance as a preconditioner for GMRES. First,
we solve a point-source acoustic scattering problem whose exact solution is known,
where the source lies in the interior of Γ , a triangular boundary curve. Second, we
investigate the scattering of plane waves from a rectangular obstacle.

Figure 1 refers to three sets of experiments for the point-source problem for trian-
gular Γ . In the left plot in Figure 1, we show the iteration numbers using the method
of Algorithm 2 as a linear solver by itself, and as a preconditioner for GMRES. We
include iteration counts for unpreconditioned GMRES for comparison. This plot
corresponds to low wave-number κ = 2.1. The middle plot of Figure 1 demonstrates
the effect of smoothing on the iteration counts for GMRES with multigrid precondi-
tioning. Again, κ = 2.1. In one case, we applied a pre-smoothing step alone, and in
the other case, used both pre- and post-smoothing. The latter reduced the number of
GMRES iterations taken. Finally, in the right plot of Figure 1, we demonstrate the
effect of changing wave numbers, with wavenumbers of κ = 2.1 and κ = 10.2. It
can be seen that the number of iterations taken for the larger wave-number increases,
but remains controlled. In all of these experiments, GMRES was run without restart,
with a stopping criteria of 10−9 relative residual. In all these cases, GMRES with
multigrid as preconditioner works well to control iteration numbers.
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Fig. 1 L-R: MG as solver and preconditioner; effect of smoothing; effect of wave-number κ . x-axis
= refinement levels, mesh-size varying from h = 1/2 to h = 1/512

In Table 1 we present iteration data for scattering of a plane-wave from a rect-
angle of sides 2

9 × 8
9 . We show the effect of the coarse-grid, and the effect of the
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wave-numbers, on the iteration numbers for a preconditioned GMRES method.
Again, the multigrid method presented clearly controls the iteration numbers.

Table 1 Preconditioned GMRES iteration counts for plane-wave scattering from a rectangle for
two different wave-numbers κ , mesh sizes h and H on the finest and coarsest grids

Plane-wave scattering, κ = 2.1 Plane-wave scattering, κ = 6
H GMRES without H GMRES without

1/18 10 - - - 22 1/18 14 - - - 24
1/36 10 10 - - 29 1/36 14 14 - - 30

h 1/72 11 10 10 - 36 h 1/72 15 14 14 - 38
1/144 11 11 11 10 44 1/144 15 15 14 14 47
1/288 12 11 11 11 55 1/288 15 15 15 15 57
1/576 12 12 12 11 67 1/576 16 16 15 15 70

1/1158 12 12 12 12 81 1/1158 16 16 16 16 85
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Constraints Coefficients in hp-FEM

A. Schröder

Abstract Continuity requirements on irregular meshes enforce a proper constraint
of the degrees of freedom that correspond to hanging nodes, edges or faces. This
is achieved by using so-called constraints coefficients which are obtained from the
appropriate coupling of shape functions.

In this note, a general framework for determining the constraints coefficients of
tensor product shape functions is presented and its application to shape functions us-
ing integrated Legendre or Gauss-Lobatto polynomials. The constraints coefficients
in the one-dimensional case are determined via recurrence relations. The constraints
coefficients in the multi-dimensional case are obtained as products of these coeffi-
cients. The coefficients are available for arbitrary patterns of subdivisions.

1 Introduction

Local refinement processes arising from grid adaption are typically realized either
by remeshing or by local refinements of grid elements. In the latter case so-called
hanging nodes, edges or faces are unavoidable which result from refining a grid
element without the refinement of neighboring elements. Applying conform finite
element schemes, one has to ensure the finite element solution to be continuous. If
no further local refinements (with possibly complex refinement patterns) are per-
formed to eleminate grid irregularities, one has to constraint the degrees of freedom
associated to hanging nodes, edges or faces. This can be done, e.g., by using La-
grange multipliers or static condensation or by incorporating the constraints in the
iterative scheme that is used to determine the approximative solution. In all cases, a
representation of shape functions in terms of transformed shape functions is needed.
Such a representation is given by the so-called constraints coefficients.

Andreas Schröder
Department of Mathematics, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin,
Germany, e-mail: andreas.schroeder@mathematik.hu-berlin.de
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In a very general manner, constraints coefficients are defined as follows: Let Pq be
a space of polynomials of degree q ∈ N on Rk, k ∈N, andϒ : Rk→ Rk be an affine
linear and bijective mapping. Furthermore, let ξ = {ξi}0≤i<n ⊂ Pq be a linear in-
dependent set of polynomials. The numbers αi j ∈ R with ξi ◦ϒ = ∑n−1

j=0 αi jξ j are
called constraints coefficients of ξ for the mappingϒ .

In [3] constraints coefficients of the shape functions

ξ0(x) :=
1
2
(1− x), ξ1(x) :=

1
2
(1+ x), ξi(x) :=

{
xi−1, i = 2,4,6, . . . ,q

xi− x, i = 3,5,7, . . . ,q
(1)

are determined. Since the functionals ϕ0(v) := v(−1), ϕ1(v) := v(1), ϕ j(v) :=
1/ j!d jv/dx j(0), j = 2, . . . ,q fulfill the duality relation ϕ j(ξi) = δi j (where δi j is
the Kronecker delta), one simply obtains αi j = ϕ j(ξi ◦ϒ ).
In [2] constraints coefficients of the Lagrange shape functions

ξ0(x) := 1− x, ξ1(x) := x, ξi :=
x(1− x)

xi(1− xi)

n−1

∏
�=2;� �=i

x− x�

xi− x�
, i = 2, . . . ,q

are specified with x� ∈ (0,1), � = 2, . . .n−1. The functionalsϕ0(v) := v(0), ϕ1(v) :=
v(1), ϕ j(v) := v(x j), j = 2, . . . ,n−1, fulfill the duality relation ϕ j(ξi) = δi j only for
i = 2, . . . ,n−1. We get αi0 = (ξi◦ϒ )(0) and αi1 = (ξi◦ϒ )(1) for i = 0, . . . ,n−1 and
α0 j = α1 j = 0 for j = 2, . . . ,n−1. Since ϕ j(ξi ◦ϒ ) = αi0ϕ j(ξ0)+αi1ϕ j(ξ1)+αi j,
the remaining coefficients are determined by αi j = (ξi ◦ϒ )(x j)−αi0(1−x j)−αi1x j.
A widely used family of shape functions are shape functions using integrated Leg-
endre or Gauss-Lobatto polynomials ([7], [8], [9]). These polynomials belong to the
family of so-called Gegenbauer polynomials {Gρ

i }i∈N0 which are defined by

(i+ 1)Gρ
i+1(x) = 2(i+ρ)xGρ

i (x)− (i+ 2ρ−1)Gρ
i−1(x) (2)

with ρ ∈ R, Gρ
0 (x) := 1 and Gρ

1 (x) := 2ρx. Theoretical results about equivalent
definitions of Gegenbauer polynomials and their special properties can be found,
e.g., in [10]. With ρ := −1/2, we obtain integrated Legendre (βi := 1) and Gauss-
Lobatto (βi :=

√
(2i−1)/2) shape functions

ξ0(x) :=
1
2
(1− x), ξ1(x) :=

1
2
(1 + x), ξi(x) := βiG

−1/2
i (x), i = 2, . . . ,q. (3)

Because of the orthogonality relation of the Gegenbauer polynomials (cf. [10]), the
functionals ϕ0(v) := v(−1), ϕ1(v) := v(1), ϕ j(v) := μ j

∫ 1
−1(1− x2)−1ξ j(x)v(x)dx

with μ j := j( j − 1)(2 j − 1)/(2β 2
j ), j = 2, . . . ,n− 1 fullfill the duality relation

ϕ j(ξi) = δi j for i = 2, . . . ,n−1 and j = 0, . . . ,n−1. Similar to the Lagrange shape
functions, we obtain αi0 = (ξi ◦ϒ )(−1) and αi1 = (ξi ◦ϒ )(1) for i = 0, . . . ,n− 1
and α0 j = α1 j = 0 for j = 2, . . . ,n − 1. Since ϕ j(ξ0) = (−1) j(2 j − 1)/(2β 2

j )
and ϕ j(ξ1) = (2 j− 1)/(2β 2

j ), the remaining coefficients are determined by αi j =
ϕ j(ξi ◦ϒ )− (2 j−1)/(2β 2

j )(αi0(−1) j +αi1).
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In this note, we present a general framework for constraints coefficients of tensor
product polynomials. Furthermore, we present an explicit formula of the constraints
coefficients of integrated Legendre and Gauss-Lobatto shape functions without the
integral representation given by ϕ j. The formula is derived by the use of the recur-
rence relation (2). At the end of this note, the application of constraints coefficients
to irregular grids is briefly discussed. Other areas of applications are hp-multigrid
schemes (cf. [4], [5]) or grid transfer operations in timedependent problems.

2 Tensor Product Shape Functions

The space of polynomials in one variable of degree q is defined as Sq := {v : R→R |
v(x) = ∑0≤i≤q cixi, ci ∈ R}, the corresponding tensor product space is denoted by

Sq
k :=⊗k−1

i=0 Sq :=

{
v : Rk→ R | v(x0, . . . ,xk−1) =

k−1

∏
i=0

vi(xi), v0, . . . ,vk−1 ∈ Sq

}
.

Let ξ̂ := {ξ̂i}0≤i<m be a subset of Sq and L be an n times k matrix with entries in

{0, . . . ,m−1}. Then, we define Π(ξ̂ ,L) :=
{
∏k−1

r=0 ξ̂Lir(xr)
}

0≤i<n
⊂ Sq

k .

For ϒ (x) := diag(a)x + b with a,b ∈ Rk, it is easy to determine the constraints
coefficients of Π(ξ̂ ,L): Let α̂i j(ar,br) ∈ R be the constraints coefficients of ξ̂ for
ϒr(xr) := arxr + br. Furthermore, let L := {(Li,0, . . . ,Li,k−1) | 0≤ i < n}.
Theorem 1. Assume that Π(ξ̂ ,L) is linear independent and there holds

l ∈ {0, . . . ,m−1}k\L ⇒∀0≤ i < n : ∃0≤ r < k : α̂Lir ,lr = 0. (4)

Then, the constraints coefficients of Π(ξ̂ ,L) forϒ are αi j = ∏k−1
r=0 α̂Lir ,Ljr(ar,br).

Proof: Let x ∈ Rk. Because of (4), we obtain

Π(ξ̂ ,L)i(ϒ (x)) =
k−1

∏
r=0

ξ̂Lir(arxr + br) =
k−1

∏
r=0

m−1

∑
l=0

α̂Lir ,l(ar,br)ξ̂l(xr)

=
m−1

∑
l0=0

· · ·
m−1

∑
lk−1=0

(
k−1

∏
r=0

α̂Lir ,lr(ar,br)

)(
k−1

∏
r=0

ξ̂lr(xr)

)

= ∑
l∈L

(
k−1

∏
r=0

α̂Lir ,lr(ar,br)

)(
k−1

∏
r=0

ξ̂lr(xr)

)
=

n−1

∑
j=0

(
k−1

∏
r=0

α̂Lir ,Ljr(ar,br)

)
Π(ξ̂ ,L) j(x).

Since Π(ξ̂ ,L) is assumed to be linear independent, the proof is completed. �

Finite element shape functions are basis polynomials that are defined on a reference
element (unit square, cube or simplex). They constitute the global basis functions
on the grid elements. In conform approaches shape functions are usually partitioned
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into nodal modes, edge modes, face modes and inner modes. Nodal modes have
the value 1 in exactly one vertex and vanish on the remaining vertices. Edge modes
are different from zero on exactly one edge and vanish on the remaining edges
and on all non-adjacent faces and all nodes. Face modes are different from zero
on exactly one face and vanish on the remaining faces and on all edges and nodes.
Inner modes vanish on all nodes, edges and faces, they are only different from zero
in the interior. Using the notation Π(ξ̂ ,L), the separation is established by splitting
the matrix L into submatrices L� := (L0 L1 · · · Lk)�. The submatrix L0 generates
the nodal modes, L1 generates the edges modes and so on.

Let ξ̂ = ξ̂ q be shape functions in Sq which are partitioned into the nodal modes
ξ̂0, ξ̂1 and inner modes ξ̂i, 2≤ i≤ q. With α(i, j) := i(i+ 1)/2 + j, a proper defini-
tion of L in the two-dimensional case is, e.g.,

(L0)� :=
(

0 1 1 0
0 0 1 1

)�
, L1

i,1 := L1
3(q−1)+i,0 := 0, L1

q−1+i,0 := L1
2(q−1)+i,1 := 1,

L1
i,0 := L1

q−1+i,1 := L1
2(q−1)+i,0 := L1

3(q−1)+i,1 := i+ 2, i = 0, . . . ,q−2, (5)

L2
α(i, j),0 := j + 2, L2

α(i, j),1 := i− j + 2, i = 0, . . . ,q−4 + τ, j = 0, . . . , i.

This definition leads to the set of shape functions ξ = Π(ξ̂ ,L) :

ξ0(x0,x1) := ξ̂0(x0)ξ̂0(x1), ξ1(x0,x1) := ξ̂1(x0)ξ̂0(x1),

ξ2(x0,x1) := ξ̂1(x0)ξ̂1(x1), ξ3(x0,x1) := ξ̂0(x0)ξ̂1(x1),

ξ4+i(x0,x1) := ξ̂i+2(x0)ξ̂0(x1), ξ4+q−1+i(x0,x1) := ξ̂1(x0)ξ̂i+2(x1),

ξ4+2(q−1)+i(x0,x1) := ξ̂i+2(x0)ξ̂1(x1), ξ q
4+3(q−1)+i(x0,x1) := ξ̂0(x0)ξ̂i+2(x1),

ξ4q+α(i, j)(x0,x1) := ξ̂ j+2(x0)ξ̂i− j+2(x1).

For τ = 2 the set Π(ξ̂ ,L) is a basis of Sq
2. Assuming that ξ̂ is hierarchical (which

means that ξ̂ q̃
i = ξ̂ q

i for 0 ≤ i ≤ q̃ and q̃ ≤ q), the set Π(ξ̂ ,L) has some important
properties: For τ = 0, we obtain a reduced set of shape functions (also known as
Serendipity shape functions) with the same order of approximation (cf., e.g., p. 175
in [1], [7]). Furthermore, the special definition of L implies that the edge modes
(edge by edge) and the inner modes are hierarchical as well. This property can be
exploited, e.g., for the efficient management of different polynomial degree distri-
butions of neigboring grid elements. One simply omits the edge modes with polyno-
mial degree p0 > p1, where p1 is the polynomial degree in the neighboring element.
The shape functions Π(ξ̂ ,L) with integrated Legendre or Gauss-Lobatto shape
functions ξ̂ corresponds to the shape functions as proposed in [7] and [9] for hp-
finite element methods. The use of the recurrence relation (2) admits a stable and
fast evaluation of the shape functions and their derivatives. Derivatives of arbitrary
order can be easily derived by the relation ∂νGρ

i = 2ν(ρ)νGρ+ν
i−ν with i,ν ∈ N0 and

(ρ)ν := ∏ν−1
j=0 (ρ + j).
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3 Constraints Coefficients of Integrated Legendre and
Gauss-Lobatto Shape Functions

As a result of Theorem 1, it is sufficient to consider the one-dimensional case to
determine the constraints coefficients in the multi-dimensional case.

Theorem 2. Let ξ̂ be a set of hierarchical shape functions and L be defined as in
(5). Then, the assumption (4) is fulfilled for τ ∈ {0,2}.
Proof. The assumption (4) is obviously fulfilled for τ = 2. Let q ≥ 2, τ = 0 and
l ∈ {0, . . . ,q}2\L , then l = ( j + 2, i− j + 2) with i ∈ {max{q− 3,0},q− 2} and
0 ≤ j ≤ i. For the nodal mode (κ = 0) with index 0 ≤ s < 4 or for the edge mode
(κ = 1) with index 0 ≤ s < 4(q− 1), we obtain deg(ξ̂Lκsr

) = 1 for at least one r ∈
{0,1}. Since min{deg(ξ̂ j+2),deg(ξ̂i− j+2)} ≥ 2, we have α̂Lκsr ,lr = 0. For q ≥ 4, the
polynomial degree of the inner mode with index 0≤ s < (q−3)(q−2)/2 is bounded
by q−2 < max{ j + 2, i− j + 2}= max{deg(ξ̂ j+2),deg(ξ̂i− j+2)}. Therefore, there
exists r ∈ {0,1} such that α̂L2

sr ,lr
= 0. �

Theorem 3. Let ϒ (x) = ax + b with a,b ∈ R and i ≥ 2. For integrated Legendre
shape functions (3), there holds:

α00 =
1 + a−b

2
, α10 =

1−a + b
2

, α20 =
1− (a−b)2

2
,

αi+1,0 = (b−a)
2i− 1
i+ 1

αi,0− i−2
i+ 1

αi−1,0,

α01 =
1−a−b

2
, α11 =

1 + a + b
2

, α21 =
1− (a + b)2

2
,

αi+1,1 = (a + b)
2i− 1
i+ 1

αi,1− i−2
i+ 1

αi−1,1,

α22 = a2, αi+1,2 =
2i−1
i+ 1

(a
5
αi,3 + bαi,2 + a(αi,0−αi,1)

)
− i−2

i+ 1
αi−1,2,

αi+1, j =
2i−1
i+ 1

(
a

j
2 j−3

αi, j−1 + a
j−1

2 j + 1
αi, j+1 + bαi, j

)
− i−2

i+ 1
αi−1, j,

j = 3, . . . , i−1,

αi+1,i =
2i−1
i+ 1

(
a

i
2i−3

αi,i−1 + bαii

)
, i > 2,

αi+1,i+1 = aαii, αi, j = 0, j > i.

Proof. By comparing the coefficients in ξi(ax+b) =αi0ξ0(x)+αi1ξ1(x), i = 0,1,2,
we obtain α00, α01, α10, α11, α20, α21 and α22. From equation (2) we have:

xξ j(x) = (2 j−1)−1(( j + 1)ξ j+1(x)+ ( j−2)ξ j−1(x)), j = 2,3, . . . .

Furthermore, we have
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xξ0(x) =
1
2

x− 1
2

x2 =−1
2
(1− x)+

1
2
(1− x2) =−ξ0(x)+ ξ2(x),

xξ1(x) =
1
2

x +
1
2

x2 =
1
2
(1 + x)− 1

2
(1− x2) = ξ1(x)− ξ2(x).

This yields

(i+ 1)ξi+1(ax + b)
= (2i−1)(ax + b)ξi(ax + b)− (i− 2)ξi−1(ax + b)

= b(2i−1)
i

∑
j=0

αi jξ j(x)+ a(2i− 1)x
i

∑
j=0

αi jξ j(x)− (i−2)
i−1

∑
j=0

αi−1, jξ j(x)

= b(2i−1)
i

∑
j=0

αi jξ j(x)+ a(2i− 1)
i

∑
j=2

αi j

(
j + 1

2 j−1
ξ j+1(x)+

j−2
2 j−1

ξ j−1(x)
)

+ a(2i−1)(αi,0(−ξ0(x)+ ξ2(x))+αi,1(ξ1(x)− ξ2(x)))

− (i−2)
i−1

∑
j=0

αi−1, jξ j(x)

= a(i+ 1)αiiξi+1(x)+
(

a(2i− 1)
i

2i−3
αi,i−1 + b(2i−1)αii

)
ξi(x)

+ a(2i−1)
i−1

∑
j=3

αi, j−1
j

2 j−3
ξ j(x)+ a(2i− 1)

i−1

∑
j=2

αi, j+1
j−1

2 j + 1
ξ j(x)

+ b(2i−1)
i−1

∑
j=0

αi jξ j(x)− (i−2)
i−1

∑
j=0

αi−1, jξ j(x)+ a(2i−1)(αi,0−αi,1)ξ2(x)

+ a(2i−1)αi,1ξ1(x)−a(2i−1)αi,0ξ0(x)

= a(i+ 1)αiiξi+1(x)+
(

a(2i− 1)
i

2i−3
αi.i−1 + b(2i−1)αii

)
ξi(x)

+
i−1

∑
j=3

(
a(2i−1)

j
2 j−3

αi, j−1 + a(2i−1)
j−1

2 j + 1
αi, j+1 + b(2i−1)αi j

− (i−2)αi−1, j

)
ξ j(x)

+
(

a(2i−1)
1
5
αi,3 + b(2i−1)αi,2− (i−2)αi−1,2 + a(2i−1)(αi,0−αi,1)

)
ξ2(x)

+ (b(2i−1)αi,1− (i−2)αi−1,1 + a(2i−1)αi,1)ξ1(x)
+ (b(2i−1)αi,0− (i−2)αi−1,0−a(2i−1)αi,0)ξ0(x)

Division by i+ 1 completes the proof. �

It is easy to see, that the constraints coefficients of Gauss-Lobatto shape functions
are

√
(2i−1)/(2 j− 1)αi j, i, j ≥ 2. Furthermore, Theorem 3 can be extended to the

case of Gegenbauer polynomials or general Jacobi polynomials.
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4 Application to Hanging Nodes

Let T be a subdivision of Ω ⊂ Rk consisting of quadrangles (k = 2) or hexahe-
drons (k = 3) and let ΨT : [−1,1]k→ T ∈ T be a bijective and sufficiently smooth
mapping. In conform finite element methods, the space of admissable functions is
defined as Sp(T ) := {v∈C0(Ω) | ∀T ∈T : v|T ◦ΨT ∈ SpT

k } with the degree distri-
bution p = {pT}T∈T , pT ≤ q. By using so-called connectivity matrices πT ∈R�×nk ,
a basis {φr}0≤r<� of Sp(T ) is constructed via

φr|T :=
nk−1

∑
s=0

πT,rsφ̂T,s

with φ̂T,s :=Π(ξ̂ ,L)s ◦Ψ−1
T , 0≤ s < nk, where nk is the number of shape functions.

In particular, the stiffness matrix K and the load vector b are assembled via K :=
∑T∈T πT KTπ�T and b := ∑T∈T πT bT with local stiffness matrices KT ∈Rnk×nk and
local load vectors bT ∈ Rnk .

In the presence of hanging nodes, the definition of πT is the crucial point. The
entries are ±1 (or 0), if the associated shape functions are related to a non-hanging
node, edge or face. Otherwise, the entries are given by the constraints coefficients
as introduced in the previous sections. Figure 1a shows a typical situation in 3D
which is obtained by refining the neighbored grid element of the left hexahedron
(denoted by TL), for example by dividing it into eight small hexahedrons. One of
them (denoted by TR) is examplarly depicted on the right hand side of TL. The entries
of the connectivity matrix of TL related to the nodes v0 and v1, to the edges e0, e1,
e2 and to the face f are defined as follows. The entries related to v0 and e0 are given
by the constraints coefficients αi j of the one-dimensional case: Let φr̂ be a basis
function of {φr}0≤r<�, that belongs to V0, V1 or E . Furthermore, let {φ̂TL,s}s∈SL be
the polynomials of {φ̂TL,s}0≤s<n3, that belong to V0, V1 and E , and let {φ̂TR,s}s∈SR

be the polynomials of {φ̂TR,s}0≤s<n3, that belong to V0, v0 and e0. Since V0, V1 and
E are non-hanging, it holds

±φ̂TL,ŝ|e0
= φr̂|e0

= ∑
s∈SR

πT,r̂sφ̂TR,s|e0

with ŝ ∈ SL. Provided that E is subdivided into two subedges with proportions
of division z and 1− z, z ∈ (0,1), and e0 is its first subedge, we define a map-
ping ϒ by ϒ (x) := zx + z− 1 which maps [−1,(2− z)/z] onto [−1,1]. If e0 is the
second subedge of E , we set ϒ (x) := (1− z)x + z which maps [(z + 1)/(z− 1),1]
onto [−1,1]. Due to the tensor structure of Π(ξ̂ ,L), there exist bijective mappings
ΔL : {0, . . . ,n1−1}→SL, ΔR : {0, . . . ,n1−1}→SR, andΨe0 : [−1,1]→ e0, such
that φ̂TL ,ŝ|e0

◦Ψe0 = ξ̂Δ−1
L (ŝ) ◦ϒ|[−1,1] and φ̂TR,ΔR( j)|e0

◦Ψe0 = ξ̂ j, 0≤ j < n1. Therefore,

we obtain

±ξ̂Δ−1
L (ŝ) ◦ϒ =

n1−1

∑
j=0

πTR,r̂,ΔR( j)ξ̂ j
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and, finally, πTR,r̂,ΔR( j) =±αΔ−1
L (ŝ), j.

By analogy, the entries related to v1, e1, e2 and f are the constraints coefficients
of the two-dimensional case. We consider the polynomials of {φ̂TL,s}0≤s<n3, that
belong to F and its nodes and edges, restricted to F and those of {φ̂TR,s}0≤s<n3, that
belong to v1, e1, e2 and f , restricted to f . For more details, see [6].

�
��

�
��

�
��

�
��

�

�

�

�
TR

TL

E
e0

e1 e2

F

f
v0

v1

V0

V1

a) b) c)

Fig. 1 a: Local refinement in 3D. b-c: hp-adaptive grids with unsymmetric divisions.
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A Boundary Element Algorithm for the Dirichlet
Eigenvalue Problem of the Laplace Operator

O. Steinbach and G. Unger

Abstract A novel boundary element method for the solution of the interior Dirichlet
eigenvalue problem for the Laplace operator is presented and analyzed. Hereby, the
linear eigenvalue problem for the partial differential operator is transformed into
a nonlinear eigenvalue problem for an associated boundary integral operator. This
nonlinear eigenvalue problem is solved by using a Newton scheme. We discuss the
convergence and the boundary element discretization of this algorithm, and give
some numerical results.

1 Introduction

We consider the interior Dirichlet eigenvalue problem of the Laplace operator,

−Δu(x) = λu(x) for x ∈Ω , u(x) = 0 for x ∈ Γ = ∂Ω , (1)

where Ω ⊂ R3 is a bounded Lipschitz domain. This eigenvalue problem can be
transformed into the equivalent nonlinear eigenvalue problem, see [11],

1
4π

∫
Γ

cos(κ |x− y|)
|x− y| t(y)dsy = 0 for x ∈ Γ (2)

where the unknowns κ =
√
λ and t(y) = ny ·∇u(y) for y ∈ Γ , the corresponding

normal derivative, have to be found. Associated eigenfunctions of (1) can then be
represented by

u(x) =
1

4π

∫
Γ

cos(κ |x− y|)
|x− y| t(y)dsy for x ∈Ω .

Olaf Steinbach and Gerhard Unger
Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30, 8010
Graz, Austria, e-mail: {o.steinbach, gerhard.unger}@tugraz.at
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In [3, 4] similar boundary element approaches for the eigenvalue problem (1) are
suggested. The boundary element approximations in those works lead to polynomial
approximations of the nonlinear eigenvalue problem (2).

In this work we consider an iterative solution approach for the nonlinear eigen-
value problem (2) which is an analogon of the inverse iteration for linear and for
nonlinear matrix eigenvalue problems, see, e.g., [6, 8, 12]. In fact, we will apply a
Newton scheme to solve the nonlinear equation (2) where in addition we introduce
an appropriate scaling condition. However, our theoretical approach is restricted to
simple eigenvalues only. Further a Galerkin boundary element method to solve the
nonlinear eigenvalue problem is formulated and the results of the numerical analy-
sis are presented. Numerical examples given in Section 3 confirm not only the the-
oretical results, the experiments indicate that our approach also works for multiple
eigenvalues. For a detailed numerical analysis we refer to [11].

2 Boundary Element Methods

The nonlinear eigenvalue problem (2) can be written as

(Vκ t)(x) =
1

4π

∫
Γ

cos(κ |x− y|)
|x− y| t(y)dsy = 0 for x ∈ Γ (3)

where for fixed κ the operator Vκ : H−1/2(Γ )→ H1/2(Γ ) is linear and bounded,
see, e.g., [5]. To normalize the eigensolutions t ∈ H−1/2(Γ ) of (3) we introduce a
scaling condition by using an equivalent norm in H−1/2(Γ ),

‖t‖2
V = 〈Vt,t〉Γ =

1
4π

∫
Γ

t(x)
∫
Γ

1
|x− y|t(y)dsydsx = 1, (4)

where V : H−1/2(Γ )→H1/2(Γ ) is the single layer potential of the Laplace operator.
Now we have to find solutions (t,κ) ∈ H−1/2(Γ )×R of the nonlinear eigenvalue
problem

F1(t,κ) = (Vκt)(x) = 0 for x ∈ Γ , F2(t,κ) = 〈Vt,t〉Γ −1 = 0. (5)

Hence we define the function F : H−1/2(Γ )×R→ H1/2(Γ )×R as

F(t,κ) =

(
F1(t,κ)

F2(t,κ)

)
=

⎛⎜⎝ 1
4π

∫
Γ

cos(κ |x− y|)
|x− y| t(y)dsy

〈Vt,t〉Γ −1

⎞⎟⎠ .

Then, to obtain eigensolutions of the scaled eigenvalue problem (5) we have to find
solutions (t,κ) ∈H−1/2(Γ )×R of the nonlinear equation

F(t,κ) = 0 (6)
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which is to be solved by applying Newton’s method. For the Fréchet derivative of
F(t,κ) we obtain

F ′(t,κ) =

(
Vκ −Aκt

2〈Vt, ·〉Γ 0

)
: H−1/2(Γ )×R→ H1/2(Γ )×R (7)

where

(Aκ t)(x) =
1

4π

∫
Γ

sin(κ |x− y|)t(y)dsy for x ∈ Γ .

When applying a Newton scheme to find solutions (t∗,κ∗) ∈ H−1/2(Γ )×R of the
nonlinear equation (6) the new iterates (tn+1,κn+1) ∈ H−1/2(Γ )×R can be deter-
mined by the linear operator equation

F ′(tn,κn)
(

tn+1− tn
κn+1−κn

)
+ F(tn,κn) = 0. (8)

In the following theorem we give sufficient conditions that equation (8) is unique
solvable and that Newton’s method locally converges to an eigensolution (t∗,κ∗).

Theorem 1. [11] Let (t∗,κ∗) be a solution of F(t,κ) = 0. Assume

(A1) κ∗ is a simple eigenvalue of Vκ t = 0,
(A2) Aκ∗t∗ /∈R(Vκ∗).

Then F ′(t∗,κ∗) is invertible and Newton’s method converges for all initial values in
a sufficient small neighborhood Uρ(t∗,κ∗) to (t∗,κ∗), where ρ > 0 with

‖t∗ − tn‖2
H−1/2(Γ ) + |κ∗−κn|2 ≤ ρ2. (9)

Remark 1. For multiple eigenvalues κ∗ the Fréchet derivative F ′(t∗,κ∗) is not in-
vertible, because F ′(t∗,κ∗) is not injective. Nevertheless Newton’s method may also
converge [1, 2]. The convergence rate may then be smaller and the convergence
domain is not a small neighborhood of the solution but rather a restricted region
which avoids the set on which F ′ is singular. In our case numerical examples show
that Newton’s method converges also for multiple eigenvalues, see the numerical
example in Section 3.

The linearized equation (8) is equivalent to a saddle point problem to find
(tn+1,κn+1) ∈ H−1/2(Γ )×R such that

〈Vκntn+1,w〉Γ −κn+1〈Aκntn,w〉Γ = −κn〈Aκntn,w〉Γ
2〈Vtn,tn+1〉Γ = 〈Vtn,tn〉Γ + 1

(10)

is satisfied for all w∈H−1/2(Γ ). For a Galerkin discretization of (10) we first define
trial spaces S0

h(Γ ) of piecewise constant basis functions ψk which are defined with
respect to a globally quasi–uniform boundary element mesh of mesh size h. Then
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the Galerkin discretization of (10) reads to find (tn+1,h,κn+1,h) ∈ S0
h(Γ )×R such

that
〈Vκntn+1,h,wh〉Γ −κn+1,h〈Aκntn,wh〉Γ = −κn〈Aκntn,wh〉Γ

2〈Vtn,tn+1,h〉Γ = 〈Vtn,tn〉Γ + 1.
(11)

is satisfied for all wh ∈ S0
h(Γ ). In the following theorem the solvability of the lin-

ear system (11) is discussed and an error estimate for the approximate solution
(tn+1,h,κn+1,h) is given.

Theorem 2. [11] Let (t∗,κ∗) be a solution of F(t,κ) = 0 and let the assump-
tions (A1) and (A2) be satisfied. Let (tn,κn) ∈ Uρ(t∗,κ∗) be satisfied where ρ
is appropriately chosen as discussed in Theorem 1. Then, for a sufficient small
mesh size h < h0, the Galerkin variational problem (11) has a unique solution
(tn+1,h,κn+1,h) ∈ S0

h(Γ )×R satisfying the error estimate

‖tn+1− tn+1,h‖2
H−1/2(Γ ) + |κn+1−κn+1,h|2 ≤ c inf

wh∈S0
h(Γ )
‖tn+1−wh‖2

H−1/2(Γ ). (12)

In practical computations we have to replace in (11) (tn,κn) ∈ H−1/2(Γ )×R by
previously computed approximations (t̂n,h, κ̂n,h) ∈ S0

h(Γ )×R. In particular we have
to find (t̂n+1,h, κ̂n+1,h) ∈ S0

h(Γ )×R such that

〈Vκ̂n,h
t̂n+1,h,wh〉Γ − κ̂n+1,h〈Aκ̂n,h

t̂n,h,wh〉Γ = −κ̂n,h〈Aκ̂n,h
t̂n,h,wh〉Γ

2〈Vt̂n,h, t̂n+1,h〉Γ = 〈Vt̂n,h, t̂n,h〉Γ + 1
(13)

is satisfied for all wh ∈ S0
h(Γ ). To analyze the perturbed variational problem (13)

we also need to consider the continuous variational problem to find (t̂n+1, κ̂n+1) ∈
H−1/2(Γ )×R such that

〈Vκ̂n,h
t̂n+1,w〉Γ − κ̂n+1〈Aκ̂n,h

t̂n,h,w〉Γ = −κ̂n,h〈Aκ̂n,h
t̂n,h,w〉Γ

2〈Vt̂n,h, t̂n+1〉Γ = 〈Vt̂n,h, t̂n,h〉Γ + 1
(14)

is satisfied for all w ∈ H−1/2(Γ ). Note that (13) is the Galerkin discretization of
(14). In the next theorem we discuss the solvability of the linear system (14) and
give an error estimate for the discrete Newton iterate (t̂n+1,h, κ̂n+1,h) with respect to
the continuous Newton iterate (tn+1,κn+1).

Theorem 3. [11] Let (t∗,κ∗) be a solution of F(t,κ) = 0 and let the assumptions
(A1) and (A2) be satisfied. Let (t̂n,h, κ̂n,h) ∈ S0

h(Γ )×R ∩Uρ(t∗,κ∗) be satisfied
where ρ is appropriately chosen as discussed in Theorem 1. Then, for a sufficient
small mesh size h < h0, the Galerkin variational problem (13) has a unique solution
(t̂n+1,h, κ̂n+1,h) ∈ S0

h(Γ )×R satisfying the error estimate
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‖tn+1− t̂n+1,h‖2
H−1/2(Γ ) + |κn+1− κ̂n+1,h|2

≤ c

[
‖tn− t̂n,h‖2

H−1/2(Γ ) + |κn− κ̂n,h|2 + inf
wh∈S0

h(Γ )
‖tn+1−wh‖2

H−1/2(Γ )

]
(15)

where the constant c depends on (t∗,κ∗), and on ρ .

Considering the approximation property of S0
h(Γ ) we get from (15) the following

error estimate, see [11],

‖tn+1− t̂n+1,h‖2
H−1/2(Γ ) + |κn+1− κ̂n+1,h|2 ≤ c

[
ρ4 + h3]

when assuming t∗ ∈ H1
pw(Γ ). The constant c depends on (t∗,κ∗), n, and on ρ .

When using the Aubin–Nitsche trick, see for example [10], it is possible to derive
error estimates in Sobolev spaces with lower Sobolev index. In particular we obtain
the error estimate

‖tn+1− t̂n+1,h‖2
H−2(Γ ) + |κn+1− κ̂n+1,h|2 ≤ c

[
ρ4 + h6

]
when assuming t∗ ∈H1

pw(Γ ). Hence we can expect a cubic convergence rate for the
eigenvalues,

|κn+1− κ̂n+1,h| ≤ c
[
ρ4 + h6

]1/2
= O(h3).

3 Numerical Results

In this section we present some numerical results to investigate the behavior of the
nonlinear boundary element approach as presented in this paper. As a model prob-
lem we consider the interior Dirichlet eigenvalue problem (1) where the domain
Ω = (0, 1

2 )3 is a cube. Hence the eigenvalues are given by

λk = 4π2 [k2
1 + k2

2 + k2
3

]
and the associated eigenfunctions are

uk(x) = (sin 2πk1x1)(sin2πk2x2)(sin2πk3x3).

It turns out that the first eigenvalue (k1 = k2 = k3 = 1)

λ1 = 12π2, κ1 = 2
√

3π

is simple, while the second eigenvalue (k1 = 2,k2 = k3 = 1)

λ2 = 24π2, κ2 = 2
√

6π
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is multiple.
For the boundary element discretization the boundaryΓ = ∂Ω was decomposed

into N uniform triangular boundary elements. The numerical results to approximate
the simple eigenvalue κ1 =

√
λ1 are given in Table 1.

Table 1 Approximation of κ1 = 2
√

3π ≈ 10.8828, simple eigenvalue

N κ1,N |κ1−κ1,N | rate

384 10.8768 6.0e-03 -
1536 10.8821 7.0e-04 8.6
6144 10.8827 8.6e-05 8.1

Note that the convergence rate of approximately 8 corresponds to the cubic con-
vergence as predicted in (2). Next we consider the case of a multiple eigenvalue, the
results to approximate κ2 =

√
λ2 are given in Table 2.

Table 2 Approximation of κ2 = 2
√

6π ≈ 15.3906, multiple eigenvalue

N κ21 ,N |κ2−κ21,N | rate κ22,N |κ2−κ22,N | κ23,N |κ2−κ23,N |
384 15.3739 1.7e-02 - 14.7057 0.68 15.8867 0.50
1536 15.3887 1.9e-03 8.9 14.6902 0.70 15.8579 0.47
6144 15.3904 2.3e-04 8.3 14.6839 0.71 15.8499 0.46

As in other boundary element approaches for eigenvalue problems [3, 4, 13] the
problem of the so–called spurious eigenvalues occurs close to multiple eigenval-
ues. In particular, several distinct discrete eigenvalues are obtained to approximate
a multiple eigenvalue. This phenomenon also occurs for algebraic eigenvalue prob-
lems when an approximation of the matrix is used, see e.g. [9].

The spurious eigenvalues can be filtered out with an a posteriori error control by
using the complex valued fundamental solution for an eigensolution (t,κ),

1
4π

∫
Γ

eiκ |x−y|

|x− y| t(y)dsy = (Vκt)(x)+ i
1

4π

∫
Γ

sinκ |x− y|
|x− y| t(y)dsy = 0. (16)

Then the norm of the residual

r(th,κh) =
1

4π

∫
Γ

eiκh|x−y|

|x− y| th(y)dsy

for actual approximations of eigensolutions (th,κh) is significant smaller than for
spurious eigensolutions, see Table 3.

When an analogous algorithm is used which is based on the complex valued fun-
damental solution (16) no spurious eigenvalues occur. But then complex arithmetics
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Table 3 Residual for true and spurious eigenvalues

N ‖r(t1,N ,κ1,N)‖ ‖r(t21 ,N ,κ21,N)‖ ‖r(t22 ,N ,κ22,N)‖ ‖r(t23 ,N ,κ23,N)‖
384 6.3e-05 1.9e-04 7.5e-03 2.3e-02
1536 7.7e-06 2.2e-05 3.8e-03 1.2e-02
6144 9.6e-07 2.5e-06 1.9e-03 6.1e-03

has to be used so that the computational complexity is twice expensive as for the
real valued version. In Table 4 and 5 the approximations for κ1 and κ2 are given.

Table 4 Approximation of κ1 = 2
√

3π ≈ 10.8828, simple eigenvalue

N κ1,N |κ1−κ1,N | rate

384 10.8768-1.0e-06i 6.0e-03 -
1536 10.8821-2.4e-07i 7.0e-04 8.6
6144 10.8827-6.0e-09i 8.6e-05 8.1

Table 5 Approximation of κ2 = 2
√

6π ≈ 15.3906, multiple eigenvalue

N κ2,N |κ2−κ2,N | rate

384 15.3739-5.1e-06i 1.7e-02 -
1536 15.3887-9.4e-07i 1.9e-03 8.9
6144 15.3904-2.1e-08i 2.3e-04 8.3

Note that the real part of the approximations of the complex valued algorithm are
the same as of the real valued version.

4 Conclusions

In this paper we have presented and analyzed a boundary element method for the so-
lution of the interior Dirichlet eigenvalue problem for the Laplace operator. Hereby,
the linear eigenvalue problem for the partial differential operator is transformed into
a nonlinear eigenvalue problem for an associated boundary integral operator which
is solved via a Newton iteration. The discretization by using a Galerkin boundary el-
ement method gives a cubic order of convergence of the approximated eigenvalues.
When using fast boundary element methods [7] an almost optimal computational
complexity can be obtained. For this, also efficient preconditioned iterative solution
methods to solve the Galerkin equations (13) are mandatory. As already mentioned
in Remark 1 a further analysis in the case of multiple eigenvalues is needed.
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Finally we mention that the proposed approach can be used to solve the interior
Neumann eigenvalue problem for the Laplace operator, and to solve related eigen-
value problems in linear elastostatics.
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On Efficient Solution of Linear Systems Arising
in hp-FEM

T. Vejchodský

Abstract This contribution studies the static condensation of internal degrees of
freedom which allows for efficient solution of linear algebraic systems arising in
higher-order finite element methods. On each element, the static condensation elim-
inates the degrees of freedom corresponding to the internal (or bubble) basis func-
tions. The elimination is local in elements and can be done in parallel. The resulting
Schur complement system is considerably smaller and, moreover, it has less nonzero
elements and better condition number in comparison with the original system. This
paper focuses on the numerical performace of the static condensation and shows its
CPU time efficiency.

1 Introduction and Higher-Order Finite Elements

In the standard finite element method (FEM) or more precisely in its h-version (h-
FEM), the decrease of the discretization error is achieved by successive refinement
of the mesh. The method converges if the size of the elements tends to zero, and
the rate of this convergence is proved to be algebraic. In an alternative approach
called the p-version (p-FEM), the geometry of the mesh is fixed and the polyno-
mial degrees of the elements vary. The convergence is achieved by increasing the
polynomial degrees and the convergence rate is exponential if the exact solution is
C∞-smooth. A combination of these two approaches is known as the hp-version (hp-
FEM), see, e.g., [2, 4, 5, 8]. To decrease the discretization error in the hp-FEM we
either refine the elements or we increase their polynomial degrees or we both refine
the elements and redistribute the polynomial degrees on the subelements in a suit-
able way. If this hp-refinement is done in a correct way, then the hp-FEM converges
exponentially fast even in the presence of singularities.

Tomáš Vejchodský
Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic
e-mail: vejchod@math.cas.cz

199



200 T. Vejchodský

The higher-order FEM leads to linear algebraic systems with a special structure.
This special structure can be utilized to design efficient algebraic solvers. In partic-
ular, a characteristic feature of the higher-order FEM is the presence of the so-called
bubble (or internal) basis functions that are supported in a single element only. The
static condensation of internal degrees of freedom (DOFs) eliminates these bubble
functions from the whole system by a local (element-by-element) procedure. Af-
ter this elimination, we obtain a reduced system of linear algebraic equations – the
Schur complement system. From this system, we compute the other (non-internal)
DOFs which correspond to vertices, edges, and faces of the elements. The number
of the internal DOFs grows with the polynomial degree p by an order of magni-
tude faster than the number of the non-internal DOFs. Thus, for higher values of p,
the number of the internal DOFs dominates and their static condensation leads to a
significant decrease of the size of the linear algebraic system.

The technique of the static condensation of the internal DOFs is described in
Section 2. The core of this paper lies in Section 3, where the performance of the
static condensation is tested by various numerical experiments. Brief conclusions
are given in Section 4.

2 Static Condensation of Internal Degrees of Freedom

To simplify the exposition, we only consider 2D elliptic problems discretized by
triangular finite elements of an arbitrary order. However, the static condensation of
the internal DOFs can be used in any dimension, for much wider class of problems,
and for various types of higher-order finite elements.

Let Ω ⊂R2 be a polygon. We consider a problem whose weak formulation reads:
find u ∈V such that

a(u,v) = F (v) ∀v ∈V, (1)

where V is a suitable Hilbert space, a : V×V →R is a continuous V -elliptic bilinear
form, and F is a continuous linear functional on V . Problem (1) possesses a unique
solution due to the Lax-Milgram lemma. For example, if

V = H1
0 (Ω), a(u,v) =

∫
Ω
∇u ·∇vdx, and F (v) =

∫
Ω

f vdx, (2)

then (1) corresponds to the Poisson problem with homogeneous Dirichlet boundary
conditions.

We discretize problem (1) by the hp-FEM. Let Thp be a triangulation of Ω , let
pK stand for the polynomial degree assigned to the element K ∈Thp, and let

Vhp = {vhp ∈V : vhp|K ∈ PpK (K), K ∈Thp}

be the finite element space, where PpK (K) denotes the space of polynomials of de-
gree at most pK on the triangle K. The hp-FEM solution uhp ∈Vhp is defined by
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a(uhp,vhp) = F (vhp) ∀vhp ∈Vhp. (3)

We consider a standard hp-FEM basis ϕ1,ϕ2, . . . ,ϕN of Vhp, where N = dim(Vhp),
see, e.g., [2, 4, 5, 8]. These basis functions are constructed element by element as

ϕi|K = ϕK
ι−1
K (i), i = 1,2, . . . ,N,

where ϕK
m , m = 1,2, . . . ,NK , denote the shape functions that only are supported in

the single element K and ιK : {1,2, . . . ,NK}→ {1,2, . . . ,N} is the standard connec-
tivity mapping, see [8, 7] for more details and Fig. 1 for an illustration. Notice that
if i �∈ Dom(ιK), i.e., if ι−1

K (i) is not defined, then ϕK
ι−1
K (i)

is considered to be zero.

(a) (b)

Fig. 1 (a) Two edge shape functions on two neighbouring elements form an edge basis function.
(b) The bubble shape function coincides with the bubble basis function.

Problem (3) is equivalent to the system of linear algebraic equations

AY = F, Ai j = a(ϕ j,ϕi), Fi = F (ϕi), i, j = 1,2, . . . ,N, (4)

where A ∈ RN×N and F ∈ RN are the (global) stiffness matrix and the (global) load
vector, respectively. The vector Y ∈ RN contains the expansion coefficients of uhp

in the finite element basis.
The global stiffness matrix and the global load vector are assembled from the

local stiffness matrices AK ∈ RNK×NK
and from the local load vectors FK ∈ RNK

,
K ∈Thp. These local matrices and vectors are defined by

AK
�m = aK(ϕιK (m),ϕιK (�)) and FK

� = FK(ϕιK(�)), �,m = 1,2, . . . ,NK ,

where the local bilinear form aK(·, ·) and the local linear functional FK satisfy

a(ϕ j,ϕi) = ∑
K∈Thp

aK(ϕ j,ϕi) and F (ϕi) = ∑
K∈Thp

FK(ϕi), i, j = 1,2, . . . ,N.

For example, if a(·, ·) and F are given by (2), then the local bilinear form aK(·, ·)
and the local linear functional FK are defined as

aK(ϕ j,ϕi) =
∫

K
∇ϕ j ·∇ϕi dx and FK(ϕi) =

∫
K

fϕi dx.
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With this notation, the standard finite element assembling procedure can be written
as

Ai j = ∑
K∈Thp

AK
ι−1
K (i),ι−1

K ( j)
and Fi = ∑

K∈Thp

FK
ι−1
K (i)

, i, j = 1,2, . . . ,N. (5)

From now on we will consider a special enumeration of the basis functions. We
enumerate the bubbles first, and then the other basis functions. Hence if M de-
notes the number of the bubble functions, then ϕ1, . . . ,ϕM stand for the bubbles
and ϕM+1, . . . ,ϕN stand for the other basis functions. Similarly, we enumerate the
shape functions in all elements. In each element K ∈Thp, the first MK shape func-
tions are the bubbles and the other NK −MK shape functions are the non-bubbles.
This enumeration splits the global and local stiffness matrices and the global and
local load vectors into natural blocks

A =
(

A BT

B C

)
, AK =

(
AK (BK)T

BK CK

)
, F =

(
F
G

)
, FK =

(
FK

GK

)
, (6)

where A ∈RM×M , B ∈ R(N−M)×M , AK ∈ RMK×MK
, BK ∈R(NK−MK)×MK

, etc.
Since the bubble functions are supported in a single element, the correspond-

ing matrix A is block diagonal with the diagonal blocks being AK , i.e., A =
blockdiag

{
AK ,K ∈ Thp

}
. Thus, the matrix A is easily invertible and this makes

the static condensation of the internal DOFs efficient.
The block structure (6) reshapes the global stiffness system (4) as follows(

A BT

B C

)(
x
y

)
=
(

F
G

)
, where

(
x
y

)
= Y. (7)

The idea of the static condensation is to express x ∈ RM as x = A−1(F −BT y) and
substitute this into the second block-row of (7) to obtain the Schur complement
system for y ∈RN−M

Sy = G̃, where S = C−BA−1BT and G̃ = G−BA−1F. (8)

It is shown in [6] that the Schur complement S and the right-hand side G̃ can be
obtained by the standard finite element assembling procedure, cf. (5),

Si j = ∑
K∈Thp

SK
ι−1
K (M+i),ι−1

K (M+ j)
and G̃i = ∑

K∈Thp

G̃K
ι−1
K (M+i)

, (9)

i, j = 1,2, . . . ,N−M, where SK =CK−BK(AK)−1(BK)T are the local Schur comple-
ments and G̃K = GK−BK(AK)−1FK are the corresponding local right-hand sides.

The static condensation of the internal DOFs can also be interpreted as an or-
thogonalization of the non-bubble basis functions with respect to the bubbles. It can
be shown that the static condensation and the partial orthogonalization of the basis
are just two interpretations of the same arithmetic procedure. Moreover, if the Schur
complement system (8) is solved by the ILU-PCG, then this arithmetic procedure is
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equivalent to the ILU-PCG applied to the original system (4). However, the usage of
ILU-PCG for (4) is less efficient than the static condensation because in ILU-PCG
we eliminate the internal DOFs superfluously in every iteration while it suffices to
do it once. Furthermore, it can be shown that the sparsity patterns of the Schur com-
plement S and of the original block C are identical. Hence, no fill-in appears during
the construction of S. Finally, notice that the Schur complement S only depends on
the space of the bubbles and not on the particular basis. All these facts are proven in
[7], where more technical details can be found.

Another interesting fact, see [3], is that the conditioning of S cannot be worse than
the conditioning of A. In practice, however, the condition number of S is observed
to be much smaller than the condition number of A.

3 Numerical Performance

This section presents several numerical experiments to compare the performance of
the ILU-PCG with and without the static condensation. More precisely, we com-
pare two approaches. First, we use the static condensation and construct the Schur
complement system (8), where we explicitely invert the local blocks AK . The Schur
complement system (8) is then solved by ILU-PCG. In the second approach we
directly apply the ILU-PCG to system (4). We show in [7] that these approaches
are two different implementations of the same arithmetic procedure and hence the
number of ILU-PCG iterations Niter is the same in both cases.

For the following tests, we consider the Possion problem

−Δu = f in Ω = (−1,1)2, u = 0 on ∂Ω .

The right-hand side f = uπ2/2 is chosen in agreement with the exact solution u =
cos(xπ/2)cos(yπ/2).

We stress that the static condensation can easily be implemented with the same
memory requirements as the standard approach. The memory columns in Tables 1–4
below show the total number of entries in the local stiffness matrices AK .

The first two experiments illustrate the standard h- and p-version. In the h-FEM,
the most efficient way is to use the same polynomial degrees in all elements. How-
ever, we use different polynomial degrees to study the performance of the static
condensation in the context of the hp-FEM. Therefore, the initial mesh for the h-
version consists of four elements with polynomial degrees 4,5,6,7, see Fig. 2(a).
In every refinement step, we split each triangular element into four similar sub-
triangles with the same polynomial degree as the parent element has. In Table 1 we
present: N, the total number of DOFs (the size of A); M−N, the number of DOFs
after the elimination of the internal DOFs (the size of S); the memory requirements
(specified above); the relative discretization error ‖u− uh‖/‖uh‖ measured in the
energy norm; the number of ILU-PCG iterations Niter; and the CPU times needed to
solve the stiffness system with and without the static condensation.
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Fig. 2 (a) The initial mesh
for the h-FEM. (b) The initial
mesh for the p-FEM consits
of linear elements (p = 1).
There are eight elements
along each edge of the square.

(a)

p1 = 4

p2 = 5

p3 = 6

p4 = 7

(b)

Similarly, Table 2 shows the same quantities for the p-FEM. Here we start with
the first order elements and increase this order by one in every step. The initial
mesh was uniform with 256 elements, see Fig. 2(b). We remark that the values of
the relative discretization error for p = 8 and p = 9 are already polluted by the
round-off errors and by the precission of the used numerical quadrature because the
discretization error is already close to the machine precission.

The results in Tables 1 and 2 show that for the presented range of polynomial
degrees the static condensation of the internal DOFs decreases the solver CPU time
up to ten times. We remark that the polynomial degrees higher than ten are rarely
used in practice.

Notice the exponential decrease of the error for the p-version in Table 2 and in
Fig. 3. This is due to the C∞-smoothness of the exact solution. However, the number
of DOFs grows very rapidly with increasing p. The question is whether the error
would decrease if we fix the number of DOFs and increase p only. The answer is
given in Table 3. Practically, for a given value of p we construct a uniform triangu-
lation of Ω such that the number of DOFs is more-less fixed. Clearly, the number of
elements decreases with growing p. In Table 3 we can observe the decrease of the
discretization error as well as the speed-up obtained by the static condensation.

Nevertheless, the memory requirements grow with p even if the number of DOFs
is fixed. This is due to the fact that the stiffness matrix A is more dense for higher
polynomial degrees. Hence, we can modify the previous experiment in order to keep
the memory requirements fixed. For a given p we construct a uniform triangulation
of Ω such that the resulting memory requirements are constant. Table 4 summarizes
the results. Interestingly, see also Fig. 3, the number of DOFs decreases quite rapidly
but the discretization error decreases as well. However, the rate of the error decrease
is not as fast as in the previous cases, which is not surprising.

Table 1 The standard h-FEM.
ref. N N−M memory rel. err. solver CPU time [s]
step (size A) (size S) [×103] [%] Niter stat. con. no conden.

0 50 16 2.7 1.2 3 0.004 0.005
1 225 89 11.0 5.4×10−2 5 0.012 0.017
2 953 409 43.9 3.4×10−3 7 0.049 0.130
3 3921 1745 175.7 2.1×10−4 11 0.389 1.665
4 15905 7201 703.0 1.3×10−5 21 4.697 26.10
5 64065 29249 2 811.9 8.2×10−7 40 71.10 415.5



On Efficient Solution of Linear Systems Arising in hp-FEM 205

Table 2 The standard p-FEM.

N N−M memory rel. err. solver CPU time [s]
p (size A) (size S) [×103] [%] Niter stat. con. no conden.

1 113 113 2.3 1.0×10+1 8 — 0.007
2 481 481 9.2 5.1×10−1 10 — 0.049
3 1105 849 25.6 1.7×10−2 12 0.102 0.105
4 1985 1217 57.6 4.1×10−4 13 0.171 0.350
5 3121 1585 112.9 7.7×10−6 14 0.302 0.987
6 4513 1953 200.7 1.3×10−7 14 0.504 2.333
7 6161 2321 331.8 1.7×10−9 15 0.808 4.933
8 8065 2689 518.4 2.3×10−11 16 1.218 9.582
9 10225 3057 774.4 1.1×10−11 16 1.773 17.407

Table 3 The p-FEM with fixed number of DOFs.

N N−M memory rel. err. solver CPU time [s]
p (size A) (size S) [×103] [%] Niter stat. con. no conden.

1 28561 28561 518 6.9×10−1 82 — 16.9
2 28561 28561 518 9.3×10−3 83 — 28.1
3 28561 22161 640 1.3×10−4 53 26.7 44.4
4 28561 17761 810 2.1×10−6 41 21.2 59.8
5 28561 14737 1 016 3.2×10−8 34 17.6 74.7
6 28561 12561 1 254 5.3×10−10 29 15.0 89.4
7 28085 11221 1 498 8.9×10−12 26 12.8 101.2
8 28561 9661 1 823 4.2×10−12 24 11.7 118.5
9 27145 9663 2 045 1.3×10−11 22 9.6 121.4

Table 4 The p-FEM with fixed memory requirements.

N N−M memory rel. err. solver CPU time [s]
p (size A) (size S) [×103] [%] Niter stat. con. no conden.

1 28561 28561 518 6.9×10−1 65 — 15.0
2 28561 28561 518 9.3×10−3 62 — 26.8
3 23113 17929 518 1.8×10−4 40 17.8 28.5
4 18241 11329 518 5.1×10−6 28 8.8 23.9
5 14281 7345 510 1.8×10−7 22 4.5 18.5
6 12013 5253 530 7.1×10−9 19 2.8 15.6
7 9661 3661 518 3.6×10−10 17 1.7 12.0
8 8065 2689 518 2.3×10−11 16 1.2 9.6
9 7813 2325 593 1.2×10−11 15 1.1 10.3

4 Conclusions

The presented experiments show that the static condensation of the internal DOFs
can lead to a considerable speed-up of the solver. Asymptotically, however, if the
polynomial degrees tend to the infinity and the number of elements stays fixed, then
the algorithm of the static condensation is close to the computation of the inverse of
the (almost) fully populated matrix, which is not efficient. On the other hand, high
polynomial degrees are rare in practical computations.
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Fig. 3 The error plot in the log-log scale. The numbers indicate the polynomial degrees.

Finally we mention that more elaborate preconditioners than ILU are available
for higher-order FEM, see, e.g., [1], where almost optimal preconditioners for the
p-FEM are derived. However, even these preconditioners can be implemented either
with or without the static condensation. For these preconditioners the static conden-
sation would lead to the same speed-up per iteration as for the ILU preconditioner.
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Coupling Two Scalar Conservation Laws via
Dafermos’ Self-Similar Regularization

A. Ambroso, B. Boutin, F. Coquel, E. Godlewski, and P.G. LeFloch

Abstract We are interested in the problem of coupling two scalar conservation laws
with distinct flux-functions. This problem arises, for instance, in modeling fluid
flows in media with discontinuous porosity and has important possible applica-
tions in the numerical computation of a singular pressure drop. This problem is
also well-known to exhibit several technical difficulties due to the presence of non-
conservative terms and to the resonant behavior of the system of equations. We
present here a global approach consisting of two scalar problems in a half-space
coupled through an algebraic jump relation. We view this problem as a 2× 2 sys-
tem of conservation laws, and introduce a viscous regularization à la Dafermos. We
establish that this approximation converges as the viscosity tends to zero and we
analyze the structure of the entropy solutions constructed in this way.

1 Introduction

We are interested in the coupling of two scalar conservation laws with distinct flux-
functions, each one being posed on a half-space:
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et Marie Curie-Paris6, UMR7598, 75252 Paris, France,
e-mail: coquel@ann.jussieu.fr, godlewski@ann.jussieu.fr, lefloch@ann.jussieu.fr

209



210 A. Ambroso et al.

∂t u + ∂x fL(u) = 0, x < 0, t > 0,
∂t u + ∂x fR(u) = 0, x > 0, t > 0,

(1)

were fL, fR are smooth functions. These equations are supplemented with the fol-
lowing coupling condition at the (fixed) interface x = 0:

ΦL
(
u(0−,t)

)
= ΦR

(
u(0+,t)

)
, t > 0 (2)

and the following initial Riemann data:

u(x,0) =
{

ul, x < 0,
ur, x > 0,

(3)

whereΦL,ΦR are given smooth functions, and uL,uR are constant states. These func-
tions allows to treat different coupling conditions, for example with ΦL = fL and
ΦR = fR one expects the continuity of the flux at the interface and a conservative
coupling, and with ΦL,R = Id one expects the continuity of the variable u at the in-
terface, then the coupling is not conservative. For convenience in this presentation,
we restrict attention to this case ΦL(u) = ΦR(u) = u for all u.

The main difficulty in tackling the problem (1–3) is that a resonance phenomenon
can occur near the interface, so that (2) cannot be realized in a strong sense. Follow-
ing Dubois and LeFloch [5] on the weak formulation of the boundary value prob-
lem for nonlinear hyperbolic equations and systems, one may consider the problem
obtained by sticking together two half-space boundary Riemann problems. This ap-
proach has been investigated by Godlewski and Raviart [6] and, more recently, Am-
broso et al. [1]. Our standpoint in the present paper is different and we construct the
entropy solutions directly in the whole space, using the self-similar viscosity method
proposed by Dafermos [3]. We follow here earlier work by Joseph and LeFloch [7]
on the boundary Riemann problem via self-similar approximation with vanishing
viscosity. In this short note, we only present the main ideas in the simpler case of
two scalar equations; for further details and a generalization to systems, we refer to
a follow-up paper of Boutin, Coquel, and LeFloch [2].

1.1 Global Model

We begin by introducing an (auxilliary) unknown function v, say the Heaviside step
function, which allows us to single out the half-space under consideration. A regu-
larization of v should be introduced in order to connect continuously the two equa-
tions in the problem, that is, a flux-function extending continuously the given flux-
functions fL and fR should be introduced. We rewrite the two partial differential
equations in the half space (1) into a single system of PDE’s on the real line Rx

∂t u +((1− v) f ′L(u)+ v f ′R(u))∂xu = 0,
∂t v = 0,

(4)
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with Riemann initial conditions

u(x,0) =
{

ul, x < 0,
ur, x > 0,

v(x,0) =
{

0, x < 0,
1, x > 0.

(5)

Note that this system contains nonconservative products which are defined rigor-
ously in the sense of Dal Maso, LeFloch, and Murat [4].

1.2 Dafermos’ Self-Similar Regularization

To handle the nonconservative products and the resonance phenomena in the regime
where system (4) is not strictly hyperbolic, we introduce the following viscous ap-
proximation

∂t uε +λ (uε ,vε)∂xuε = tε ∂xxuε ,
∂tvε = tε2∂xxvε ,

(6)

where we have set
λ (u,v) := (1− v) f ′L(u)+ v f ′R(u). (7)

The resonance happens precisely when the characteristic speed of the first equation
vanishes.

The choice of different viscosity scales for uε and vε in (6) allows some inter-
action between two features of the problem: the viscous approximation of solutions
and the regularization of the flux-functions. The factor tε factor proposed in [3] en-
ables us to look for self-similar solutions depending only on the ratio ξ = x/t. Such
solutions satisfy the following nonlinear system of ODE’s:(− ξ +λ (uε ,vε )

)
dξuε = ε dξξuε ,

−ξdξvε = ε2 dξξ vε .
(8)

Thanks to the property of finite speed of propagation (for hyperbolic equations), we
can restrict attention to a bounded domain [−L,L] and, therefore, we consider the
boundary conditions

uε(−L) = ul, vε(−L) = 0,
uε(+L) = ur, vε(+L) = 1.

(9)

Our investigation is now focused on finding the solution to (8)-(9) and analyzing its
structural properties, especially when the viscosity ε vanishes.

2 Theoretical Results

A standard fixed point argument allows us to obtain existence for all ε > 0. The
solution uε to the nonlinear problem (8)–(9) is given implicitly by the following
representation formula
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uε(ξ ) = uL +(uR−uL)

∫ ξ

−L
e−hε(ζ )/ε dζ∫ L

−L
e−hε(ζ )/ε dζ

, (10)

hε(ζ ) =
∫ ζ

α

(
ω−λ (uε(ω),vε (ω))

)
dω . (11)

Theorem 1. The solutions uε converge strongly in the L1 norm to a limit function u
(as ε tends to 0) which satisfies the following properties:

• u is an entropy solution in each half space for the Riemann problems (1).
• There exists a boundary layer profile U having the same monotonicity as u and

satisfying over R
Ü = λ (U,V )U̇ , (12)

such that at the interface

fL(u(0−)) = fL(U(−∞)), qL(u(0−))≥ qL(U(−∞)),
fR(U(+∞)) = fR(u(0+)), qR(U(+∞))≥ qR(u(0+)), (13)

where qL and qR are entropy fluxes associated with any convex entropy, and rel-
ative to fL and fR respectively.

In other words, the “macroscopic” stationary discontinuities (u(0−),u(0+)) at
the interface are associated with a stationary shock on the left-hand side for the (left)
Riemann problem beetween (u(0−) and U(−∞)), and a non-constant “microscopic”
boundary layer U connecting U(−∞) to U(+∞) and/or a stationary shock on the
right for the (right) Riemann problem beetween (U(+∞) and u(0+)). As expected,
this result does not provide uniqueness in the resonant cases, as the example in the
following section shows.

3 Example : Burgers-Burgers Coupling

As a model case, consider now the case of two quadratic flux functions with different
sonic points, say 0 and c, respectively:

fL(u) =
u2

2
, fR(u) =

(u− c)2

2
.

3.1 Theoretical Aspects

In Figure 1 and Figure 2, we plot the structure of all possible solutions for each data
(uL,uR), for c > 0 and for c < 0, respectively.
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Fig. 1 Diagram of solutions for c > 0

Fig. 2 Diagram of solutions for c < 0
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These diagrams are obtained by a complete study of all cases covered by The-
orem 1. Note that both sonic lines uL + uR = 0 (for fL) and uL + uR = 2c (for fR)
appear in reversed order according to the sign of c, which explains the complexity of
the case c < 0. In the resonant domains (when f ′L(u) f ′R(u) < 0 for some u beetween
uL and uR) we do not get uniqueness of the solution since we may obtain up to
four distinct solutions. However we observe that the (multivalued) set of solutions
is connected in the L1

loc tolopogy.

3.2 Numerical Experiments

We perform some numerics with a scheme based on the Engquist-Osher flux:

un+1
j = un

j −
Δ tn

Δx
(Fj(un

j ,u
n
j+1)−Fj(un

j−1,u
n
j)). (14)

The time step Δ tn is determined by a standard CFL condition. The numerical fluxes
Fj are chosen in a cell of “color” v j with the relation to the corresponding flux
f j(u) = (1− v j) fL(u) + v j fR(u) inside this cell (cf. Figure 3). In this way, each
interface involves two different fluxes Fj(un

j ,u
n
j+1) and Fj+1(un

j ,u
n
j+1) for example.

More precisely, we have

Fj(r,s) =
1
2

(
f j(r)+ f j(s)−

∫ s

r
| f ′j(w)|dw

)
. (15)

Fig. 3 Two fluxes scheme

The computations are performed with two color variables v: a Heaviside func-
tion, and then a regularized one corresponding to a thin and to a thick interface,
respectively. In Figure 4, Figure 5 and Figure 6 we plot, in the plane (uL,uR) of
initial data, the diagram of solutions computed in these two cases for c > 0 and for
c < 0, respectively.

We observe a good agreement with the theoretical results in the non-resonant
cases. In the case c > 0 the numerical scheme turns out to select the solution that
ensures the L1

loc continuity of the solution in terms of (uL,uR); this suggests that
certain solutions in the non-uniqueness regions may be unstable. However, in the
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Fig. 4 Numerical solutions, c > 0, thin or thick interface

Fig. 5 Numerical solutions, c < 0, thin interface

Fig. 6 Numerical solutions, c < 0, thick interface
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case c < 0 it is more difficult to conclude. We observe, as pointed out in [6], that
the numerical scheme (due to its own viscosity) has selected some of the expected
solutions.

4 Conclusion

We have presented here a new theoretical approach to understand the coupling of
conservation laws with distinct flux-functions; this approach is based on the self-
similar approximation originally introduced by Dafermos. We have shown that the
solutions are standard entropy solutions of some initial problem in each half-space,
but are connected by a discontinuity selected by the “microscopic” features taking
place in the boundary layer. The numerical experiments allow us to observe, for the
considered scheme at least, a selection of certain particular solutions in the resonant
situation, due to the viscosity effect of this scheme. The stability of solutions will be
addressed in a forthcoming work and could provide an additional argument to select
the physically relevant solutions.
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A Sharp Interface and Fully Conservative
Scheme for Computing Nonclassical Shocks

B. Boutin, C. Chalons, F. Lagoutière, and P.G. LeFloch

Abstract We present a sharp interface and fully conservative numerical strategy for
computing nonclassical solutions of scalar conservation laws. The difficult point is
to impose at the discrete level a prescribed kinetic relation along each nonclassical
discontinuity. Our method is based on a relevant reconstruction technique operating
on each cell which is expected to contain a nonclassical shock. To prove the validity
of our approach, we state some important stability properties and numerical tests
are proposed. The convergence is also illustrated numerically.

1 Introduction

We are interested in the numerical approximation of nonclassical solutions. Our
model consists of a scalar conservation law given by{

∂t u + ∂x f (u) = 0, u(x,t) ∈R, (x,t) ∈ R×R+ \ {0},
u(x,0) = u0(x),

(1)
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Laboratoire J.L. Lions & Université Paris Diderot (Paris 7), Boı̂te courrier 187, 75252 Paris Cedex
05, France, e-mail: lagoutie@math.jussieu.fr

P.G. LeFloch
Laboratoire J.L. Lions, Centre National de la Recherche Scientifique, Université Pierre et Marie
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and supplemented with the validity of an entropy inequality of the following form

∂tU(u)+ ∂xF(u)≤ 0. (2)

Here t is the time variable, x is the one dimensional space variable, f : R→ R is
the flux function and (U,F) is a mathematical entropy pair with U : R→ R and F :
R→R. In other words, U is strictly convex and F is such that F ′ = U ′ f ′. Equations
(1) and (2) are expected to be valid in the weak sense. Importantly, f is taken to be
nonconvex in this study.

When f is convex, it is well-known that the entropy condition (2) is sufficient to
select a unique classical solution of (1). When f fails to be convex, it is necessary
to supplement (1)-(2) with an additional selection criterion called kinetic relation
from [5]. More precisely, in this case the Riemann problem associated with (1)-(2)
still admits a one-parameter family of solutions, which may contain shock waves
violating Lax shock inequalities: the so-called nonclassical shocks. In order to en-
sure the uniqueness, a kinetic relation needs to be added along each nonclassical
discontinuity connecting a left state u− to a right state u+. It takes the form

u+ = ϕ�(u−) or u− = ϕ−�(u+) for each nonclassical shock, (3)

where ϕ� is the so-called kinetic function and ϕ−� its inverse, which means that the
right (respectively left) state is no longer free but depends on the left (respectively
right) state. The speed of propagation σ(u−,u+) of such a discontinuity is given by
the Rankine-Hugoniot relation:

σ(u−,u+) =
f (u+)− f (u−)

u+−u−
.

For further details on the theory of nonclassical solutions selected by a kinetic re-
lation, we refer the reader to the monograph by LeFloch [5] and to the references
cited therein.

The numerical approximation of nonclassical solutions is known to be challeng-
ing, see [2]. The main difficulty is the respect of the kinetic relation at the discrete
level. In this paper, our objective is to design the first sharp interface and fully con-
servative scheme for approximating nonclassical solutions of scalar conservation
laws. Our strategy is based on the so-called discontinuous reconstruction schemes
proposed by the third author [4], [3]. Aim of these algorithms is to get numeri-
cal (classical) shock profiles that are not or little bit diffused. Since a major dif-
ficulty when dealing with nonclassical solutions is related to the the small scales
and the numerical diffusion (see [5], [1]), these strategies are clearly interesting for
our purpose. Our algorithm then follows this approach and is based on a suitable
reconstruction strategy involving the kinetic function ϕ�. To prove the validity of
the method, we show that it enjoys important stability properties like consistency
and exact capture of isolated nonclassical discontinuities. Numerical illustrations
are also proposed.
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2 Numerical Approximation of the Nonclassical Solutions

We put ourselves in the well-known context of finite volume methods. Introduc-
ing two constant steps Δx and Δ t (for space and time discretizations) and setting
x j+1/2 = jΔx, j ∈ Z, and tn = nΔ t, n ∈ N, it consists in computing at each time
tn a piecewise constant approximate solution x→ uΔx,Δ t(x,tn) of the exact solution
u(x,tn) on the cell C j = [x j−1/2;x j+1/2):

uΔx,Δ t(x,tn) = un
j for all x ∈Cj, j ∈ Z, n ∈ N.

At time t = 0, the exact solution is given by u0 and we thus define the sequence
(u0

j) j∈Z:

u0
j =

1
Δx

∫ x j+1/2

x j−1/2

u0(x)dx, for all j ∈ Z.

Assuming a given sequence (un
j) j∈Z at time tn, it is thus a question of defining its

evolution towards the next time level tn+1. In the following notations, ν refers to the
ratio Δ t/Δx. Since we seek for a conservative finite volume scheme, we start from
the following usual update formula:

un+1
j = un

j −ν( f n
j+1/2− f n

j−1/2), for all j ∈ Z, (4)

where f n
j+1/2 has to be defined. The latter represents an approximate value of the

flux that passes through the interface x j+1/2 between times tn and tn+1. We assume
for simplicity that

either f ′(u)≥ 0, ∀u or f ′(u)≤ 0, ∀u, (5)

so that propagation takes place in one direction only.
The main idea is as follows. Usually, un

j is seen as an approximate value of the
average on the cell C j of the exact solution at time tn. We propose here to understand
un

j as the projection on constant values of a nonclassical discontinuity which is possi-
bly located in the cell C j. The left and right states of this discontinuity are noted un

j,l
and un

j,r (we will assume un
j,l �= un

j,r), and dn
j ∈ [0,1] is such that dn

jΔx represents the
distance between x j−1/2 and the reconstructed discontinuity. See Fig. 1 for an illus-
tration. Let us discuss the definition of these quantities. We set x j = x j−1/2 + dn

jΔx.
First of all, one requires the reconstructed discontinuity to satisfy the following con-
servation property:

(x j− x j−1/2)u
n
j,l +(x j+1/2− x j)un

j,r = (x j+1/2− x j−1/2)u
n
j .

It equivalently recasts as

x j = x j−1/2 +
un

j,r−un
j

un
j,r−un

j,l
Δx,
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un
j,l

un
j,r

j−1 j j +1

(1−dn
j )Δxdn

j Δx

Fig. 1 An example of discontinuous reconstruction

which means that

dn
j =

un
j,r−un

j

un
j,r−un

j,l
.

Then, we propose to set

un
j,l = ϕ−�(un

j+1), un
j,r = ϕ�(un

j−1). (6)

This choice is motivated by the particular situation where un
j−1 and un

j+1 can be

joined by an admissible nonclassical discontinuity, that is if un
j+1 = ϕ�(un

j−1). It is
expected in this case that the reconstructed discontinuity coincides with the nonclas-
sical shock. Formulas (6) achieve this goal.

At last, we introduce Δ t j+1/2 (respectively Δ t j−1/2) to be the time needed by the
reconstructed discontinuity to reach the interface x j+1/2 (resp. x j−1/2) if f ′(u) ≥
0 ∀u (resp. f ′(u) ≤ 0 ∀u). Assume for a moment that f ′(u) ≥ 0 ∀u. Then, the flux
that passes through x j+1/2 between times tn and tn+1 = tn + Δ t naturally equals
f (un

j,r) until tn +Δ t j+1/2, and f (un
j,l) after (if Δ t j+1/2 < Δ t). Therefore, we naturally

set for all j ∈ Z:
(i) if f ′(u)≥ 0 ∀u:

Δ t f n
j+1/2 ={

min(Δ t j+1/2,Δ t) f (un
j,r)+ max(Δ t−Δ t j+1/2,0) f (un

j,l) if 0≤ dn
j ≤ 1,

Δ t f (un
j) otherwise,

(7)
with

Δ t j+1/2 =
1−dn

j

σ(un
j,l,u

n
j,r)

Δx. (8)

Similarly, we set
(ii) if f ′(u)≤ 0 ∀u:

Δ t f n
j−1/2 ={

min(Δ t j−1/2,Δ t) f (un
j,l)+ max(Δ t−Δ t j−1/2,0) f (un

j,r) if 0≤ dn
j ≤ 1,

Δ t f (un
j) otherwise,

(9)
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with

Δ t j−1/2 =
dn

j

σ(un
j,l,u

n
j,r)

Δx. (10)

Remark 1. The above argumentation does not make sense if dn
j does not belong to

[0,1]. In this case, the proposed numerical flux is the usual upwind conservative
scheme.

Remark 2. Note that the local time step Δ t j+1/2 (respectively Δ t j−1/2) given by (8)
(respectively (10)) is only a prediction of the time needed by the reconstructed dis-
continuity to reach the interface x j+1/2 (respectively x j−1/2). This prediction is how-
ever exact in the case of an isolated nonclassical discontinuity, that is as soon as un

j−1

and un
j+1 verify un

j+1 = ϕ�(un
j−1).

We now state some important properties enjoyed by our algorithm. The proof is
given in [1].

Theorem 1. Assume that f is a smooth function satisfying (5). Then, under the CFL
restriction

Δ t
Δx

max
u
| f ′(u)| ≤ 1,

where the maximum is taken over all the u under consideration, the conservative
scheme (4) with f n

j+1/2 defined for all j ∈ Z by (6)-(7)-(8)–(9)-(10) is consistent
with (1)-(2)-(3) in the following sense:

(i) Flux consistency : Assume that u := un
j−1 = un

j = un
j+1, then f n

j+1/2 = f (u) if

f ′ ≥ 0 and f n
j−1/2 = f (u) if f ′ ≤ 0.

(ii) Classical solution (remaining in the region of convexity - or concavity - of f ):
Let us assume that the sequence (un

j) j belongs to the same region of convexity - or

concavity - of f . Then the definition un+1
j given by the conservative scheme (4)-

(7)-(9) coincides with the one given by the usual upwind conservative scheme.

(iii) Isolated nonclassical shock: Let ul and ur be two initial states such that ur =
ϕ�(ul). Assume that u0

j = ul if j ≤ 0 and u0
j = ur if j ≥ 1. Then the conservative

scheme (4)-(6)-(7)-(8)–(9)-(10)provides an exact numerical solution on each cell
C j in the sense that

un
j =

1
Δx

∫ x j+1/2

x j−1/2

u(x,tn)dx, ∀ j ∈ Z, ∀n ∈ N,

where u denotes the exact Riemann solution given by u(x,t) = ul if x < σ(ul ,ur)t
and u(x,t) = ur otherwise, and is convergent towards u. In particular, the numer-
ical discontinuity is diffused on one cell at most.

Let us briefly comment this result. Property (i) shows that the proposed numerical
flux function is consistent in the classical sense of finite volume methods. Properties
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(ii) and (iii) are more note-worthy and can be seen as stability/accuracy properties.
Indeed, they state that the method is actually convergent if the solution either re-
mains in the same region of convexity of f ((ii)), or more importantly consists in an
isolated nonclassical discontinuity satisfying the prescribed kinetic relation ((iii)).
Up to our knowledge, none of the conservative schemes already existing in the lit-
erature verifies the latter property. To the authors’mind, this explains the very good
numerical results obtained in the next section.

3 Numerical Experiments

This section presents a couple of numerical illustrations. Additional simulations and
evaluations of the method can be found in [1].

We consider f (u) = u3 + u thus f is concave-convex. Concerning the entropy-
entropy flux pair (U,F) used in (2), we set

U(u) = u2, F(u) =
3
2

u4 + u2.

The kinetic function ϕ� is taken to be

ϕ�(u) =−βu, β =
3
4
.

The first test corresponds to the Riemann problem

u0(x) =
{

4, x < 0,
−5, x > 0,

for which the solution is a nonclassical shock followed by a rarefaction wave (see
[1]). The computations presented on the left part of Fig. 2 are performed succes-
sively with Δx = 0.01 and Δx = 0.002. We observe a very good agreement between
the exact and numerical solutions. Moreover, we note that the nonclassical shock is
sharp, more precisely localised in only one cell. The right part of the figure repre-
sents the logarithm of the L1-norm between the exact and the numerical solution
versus the logarithm of Δx. The numerical order of convergence is here of about
0.8374. In the second test (Fig. 3), we choose another Riemann initial condition that
develops a nonclassical shock followed by a classical shock:

u0(x) =
{

4, x < 0,
−2, x > 0.

We have the same observation as previously concerning the nonclassical shock com-
putation that is well captured and arises in a tenuous spatial domain. However note
that the classical shock diffuses: in fact our scheme is exactly the Godunov scheme
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Fig. 2 Test 1 - Nonclassical shock and rarefaction – L1 convergence (log(EL1 ) versus log(Δx)).
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Fig. 3 Test 2 - Nonclassical and classical shocks – L1 convergence (log(EL1 ) versus log(Δx)).

in domains of same convexity of the flux f . Once again, the L1-error figure ensures
numerical convergence with numerical order of about 0.9999.

4 Conclusion

We have presented a new numerical strategy for computing nonclassical solutions
of scalar conservation laws. The method is based on a relevant reconstruction tech-
nique operating on each cell which is expected to contain a nonclassical shock.
Importantly, the whole algorithm remains conservative and exactly propagates any
isolated admissible nonclassical discontinuity. The convergence of the method is
obtained numerically for several test cases (see also [1]).

To our feeling, the proposed method brings a new idea for the hard task of deal-
ing with nonclassical shocks and kinetic functions. We think its efficiency makes
it relevant and it could serve in particular as the basis for future developments and
prospects in the field. We may quote among several interesting and open questions:
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existence of a total variation bound for the scheme, extension to systems of conser-
vation laws and real applications like phase transitions, and extension to high-order
schemes. These points are currently under investigation.

Acknowledgements This work fits into a joint research program on multiphase flows between
CEA-Saclay and Laboratoire J.L. Lions.
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A Numerical Descent Method for an Inverse
Problem of a Scalar Conservation Law
Modelling Sedimentation

R. Bürger, A. Coronel, and M. Sepúlveda

Abstract This contribution presents a numerical descent method for the identifica-
tion of parameters in the flux function of a scalar nonlinear conservation law when
the solution at a fixed time is known. This problem occurs in a model of batch
sedimentation of an ideal suspension. We formulate the identification problem as
a minimization problem of a suitable cost function and derive its formal gradient
by means of a first-order perturbation of the solution of the direct problem, which
yields a linear transport equation with source term and discontinuous coefficients.
For the numerical approach, we assume that the direct problem is discretized by the
Engquist-Osher scheme and obtain a discrete first order perturbation associated to
this scheme. The discrete gradient is used in combination with the conjugate gradi-
ent and coordinate descent methods to find numerically the flux parameters.

1 Introduction

There is a large list of authors who have proposed analytical and numerical methods
for inverse problems in nonlinear hyperbolic PDEs; see for instance [11, 12, 15]
and the references cited in these works. The inverse problem consists in recovering
such data from experimental observations that allow to improve the validation of the
model by identifying the constitutive laws of the flux. We focus in this paper on the
problem of identifying the flux of a scalar conservation law motivated by a model
of sedimentation [8, 13].
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From an applicative point of view, batch sedimentation is a classical procedure
to separate a suspension of small particles dispersed in a viscous fluid into a con-
centrated sediment and a clear fluid. This process is used, for example, in mineral
processing, food industry, and wastewater treatment. The experimental setup is a
vertical column in which the mixture is allowed to settle. For continuous operation,
a surface feed at the top and a surface discharge at the bottom may be provided.
Under the influence of gravity, the solid particles settle and form a sediment, which
is collected at the bottom of the column either batchwise or continuously. We re-
fer to [8, 13] for more complete descriptions and details. Under several constitutive
and simplifying assumptions, it turns out that this mixture of two continuous media
(fluid and solid flocs) can be described by a single nonlinear hyperbolic equation.

This model is a special case of a more general strongly degenerate parabolic
equation. Numerical methods for identification of parameters for the strongly de-
generate parabolic equation modelling sedimentation processes can be found in
[2, 3, 9], where the authors consider a Lagrangian formulation which provides an
associated discrete adjoint state. In the limit and for the continuous case, the well-
posedness of the adjoint state is not well known. In the case of a hyperbolic equation,
there exists a unique reversible solution of the adjoint state under the assumption of
a W 1,∞-regularity of the final condition in order to guarantee a one-sided Lipschitz
continuity (OSLC) condition and the well-posedness of the solution [4, 5, 12].

Here, we consider a different approach consisting in computing a first-order per-
turbation associated to the scheme and the hyperbolic equation in order to calculate
the gradient of a suitable cost function. The perturbation of the equation gives a
linear transport equation with source term and discontinuous coefficients. The dis-
crete gradient is used in combination with the conjugate gradient and coordinate
descent methods to numerically find the flux parameters.

The remainder of this paper is organized as follows. In Section 2 we describe
the conservation law arising in the sedimentation model, and formulate the inverse
problem. Section 3 is devoted to the computation of the gradient for the formal
and numerical point of view. Next, in Section 4 we describe the descent algorithm
and we give some remarks on the convergence of the method. Finally, a numerical
example is computed in Section 5.

2 Description of the Model and the Inverse Problem

We start by describing the direct problem, that is, the underlying model. Batch and
continuous sedimentation of ideal suspensions of monosized spheres under the in-
fluence of gravity are quite well modeled by Kynch’s sedimentation theory. In this
framework, the conservation of mass yields the following one-dimensional initial-
value boundary-flux problem [8]:

∂t u + ∂x f (u,t) = 0, u(x,0) = u0(x), f (u,t)
∣∣
x=x�

= Γ�(t), (1)
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where (x,t) ∈ QT := I×T = (0,1)× (0,T ), t is the time, x is the spatial coordi-
nate, T is the final time, u is the unknown function (i.e., the solids concentration),
f (u,t) = q(t)u + b(u) is the total flux with a control function q and a material-
dependent flux function b, Γ0 and Γ1 are two functions describing the discharge and
feed rate.

The basic assumptions of the kinematic sedimentation model by Kynch [8, 13] on
the coefficients of the model and on the initial and boundary data are the following.
The function q(t)≤ 0 is the volume average velocity of the suspension, while b(u)
is a continuous, piecewise smooth function satisfying:

b(u) < 0 for u ∈ (0,umax) and b(u) = 0 for u ∈ R− (0,umax)

where umax ∈ (0,1] is the maximum concentration value. The function b(u) mod-
els the concentration-dependent hindrance of the settling of solid particle due to
the presence of other particles. The initial condition u0(x) is piecewise continu-
ous function such that 0 ≤ u0(x) ≤ umax. Finally, Γ� are the boundary fluxes with
Γ0 = q(t)u(0) and Γ1 = q1u(1), q1 ≥ 0. In particular, we have Γ0 = Γ1 = 0 for batch
sedimentation. The left hand of Figure 1 displays some typical features of the sedi-
mentation model.

Let us now turn to the description of the inverse problem. In modelling practice,
the principal assumption made by Kynch [13], namely that the local settling velocity
or solid phase velocity is a function of solids concentration u only, implies that the
flux function f (u,t) or the material specific function b(u) should be estimated from
constitutive relations and experimental data. We consider as observation the concen-
tration profile with respect to the height of the vessel at fixed time, for instance the
end time T , denoted by uobs(x). The flux determination implies the solution of the
following inverse problem: given the functions u0, q, Γ0, Γ1 and the observation data
uobs(x) at the end time T , find f such that u f (x,T ) is as close as to uobs(x), where
u f (x,T ) is the solution profile of (1) for some f . A quite natural formulation of this
problem is the following optimization problem:

minimize J
(
u f (·,T )

)
with respect to f ,

where J(u) :=
1
2

∫
I

∣∣u(x,T )− uobs(x)
∣∣2 dx.

⎫⎬⎭ (2)

In cases of practical interest, this general situation is reduced to a parameter identi-
fication problem, that is, we do not attempt to identify the functions f or b “freely”.
Rather, assuming that the constitutive relations depends on a finite vector of parame-
ters k ∈RM , the flux function b(u) = b(u;k) reflects the specific material properties
of the suspension, and the functions u0,q,Γ0,Γ1 are control functions which do not
depends on the set of parameters as long as no automatic control is prescribed. Thus,
the inverse problem (2), in the case of parameter identification, can be rewritten as
the following minimization problem in RM :

minimize J̃(k) with respect to k ∈ RM ,
where J̃(k) = J(u f ) and f (u,t) = q(t)u + b(u;k).

}
(3)
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3 Gradient of Cost Function

3.1 Formal Continuous Gradient of Cost Function

Let f ε a family of first-order perturbation of flux, i.e. admits an expansion of the
form f ε = f + εδ f . We denote by uε(x,t) the solution of (1) with flux f ε . We
assume a suitable regularity conditions such that uε(x,t) = u(x,t)+ εw(x,t)+o(ε),
where limε→0 ε−1‖o(ε)‖L1 = 0 and w = δu denotes the first-order perturbation of u
and solves the following linear initial-value boundary-flux problem

∂tw+ ∂x
(

fu(u,t)w
)

=−∂xδ f (u,t), δu(x,0) = 0, fuw+ δ f
∣∣
x=x�

= 0. (4)

Therefore, the derivation of cost function (2) can be (formally) computed as

J′(u) :=
dJ(u)

du
=

∫
I

(
u(x,T )− uobs(x)

)
w(x,T )dx.

In the case of the identification problem (3), the gradient is formally given by

∇J(u) =
∫

I

(
u(x,T )− uobs(x)

)
v(x,T )dx,

where v =∇ku and vi is a solution of an IBVP like (4) with δ f = ∂ki f . This gradient
can be either used as a first-order necessary condition for a minimum: ∇J(u) = 0, or
to employ a gradient scheme. However, the analytic solution for the direct problem
it is not available. Consequently, there is not an obvious way to directly discretize
the perturbation equation. Thus, the subsequent strategy is to first discretize and then
optimize.

3.2 Discretization of the Direct Problem

For the direct problem a homogeneous discretization of space and time is intro-
duced. Let J,N ∈ N. We recall the standard notation of finite difference schemes.
We denote by Δx := L/J and Δ t := T/N, the size of space and time steps and de-
note by λ := Δ t/Δx and μ := Δ t/(Δx)2 the ratios of these quantities. We define the
grid points as (x j,tn) := ( jΔx,nΔx) and denote by un

j the numerical solution on the
finite volume cell Qn

j :=]x j−1/2,x j+1/2[×]tn,tt+1[, where x j+1/2 = (x j + x j+1)/2 for
j = 0, . . . ,J−1 with x−1/2 = x0 and xJ+1/2 = xJ . Thus, by the standard arguments of
finite volume methods, the following scheme (interior and boundary) can be stated:

un+1
j = un

j −λ
(
gn

j+1/2−gn
j−1/2

)
, (5)

where the numerical flux is gn
j+1/2 = q(tn)un

j+1 + g
(
un

j ,u
n
j+1

)
for j = 1, . . . ,J −

1, gn
−1/2 = q(tn)un

0 + Γ0(tn) and gn
J+1/2 = Γ1(tn). In this work we employ the
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well-known Engquist-Osher generalized upwind flux [10]:

g(u,v) = f EO
b (u,v) := b(0)+

∫ u

0
max

{
b′(s),0

}
ds+

∫ v

0
min

{
b′(s),0

}
ds. (6)

3.3 Discrete Gradient and First-Order Perturbation Scheme

We define the discrete cost function by discretizing (2) on the interval I:

JΔ (uΔ ) =
Δx
2

J

∑
j=0
|uN

j −uobs
j |2, (7)

where uN
j , for j = 0, . . . ,J, is the solution of the direct problem obtained with the

scheme (5). Introducing the notation vn
j = ∂kun

j and J̃Δ (k) = JΔ (uΔ (k)), and follo-
wing the lines of discrete gradient computation given in [11], we deduce that:

∇J̃Δ (k) = Δx
J

∑
j=0

(
uN

j −uobs
j

)
vN

j ,

where vN
0 , . . . ,vN

J is the solution at time step N of the following first-order perturba-
tion scheme, which is analogous to the continuous perturbation equations (4):

vn+1
j = vn

j −λ
(
δkgn

j+1/2− δkgn
j−1/2

)
, δkgn

−1/2 = q(tn), δkgn
J+1/2 = 0. (8)

The initial condition is v0
j = 0, for j = 0, . . . ,J, and the derivative operators δk are

computed by the relations

δkgn
j+1/2 = q(tn)vn+1

j+1 + ∂1g
(
un

j ,u
n
j+1

)
vn

j + ∂2g
(
un

j ,u
n
j+1

)
vn

j+1 + ∂kg
(
un

j ,u
n
j+1

)
.

The Engquist-Osher numerical flux is differentiated as ∂1g(u,v) = max{b′(u),0}
and ∂2g(u,v) = min{b′(v),0}.

4 The Descent Algorithm

The most efficient methods for solve numerically minimization problems are the
gradient methods although they have the disadvantage of local convergence. For
instance, the conjugate gradient algorithm is given in the following lines:

Step 0. Choose k0 and set i = 0 and g0 = h0 =−∇J̃Δ (k0). If ∇J̃Δ (k0) = 0, stop.

Step 1. Find λi such that J̃Δ (ki +λihi) = inf
λ>0

J̃Δ (ki +λhi).
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Step 2. Set ki+1 = ki +λihi. If ∇J̃Δ (ki+1) = 0, then stop.

Step 3. Define gi+1 =−∇J̃Δ (ki+1), hi+1 = gi+1 + γihi, γi :=
(gi+1−gi) ·gi+1

gi ·gi .

Step 4. Set i = i+ 1 and return to step 1.

The purpose of any gradient algorithm is to build a sequence of vectors {ki}i∈N

which tends to some minimization point kΔ of J̃Δ .
The solution of the direct problem is more sensitive to some parameters. Thus,

the gradient of J̃Δ is far greater in some directions than in others. This behavior
implies that λi = 0 for some ki far from the minimum kΔ . In this paper we consider
the following modification of linear minimization:

Step 1’. Find λi such that

J̃Δ (ki +λihi) = min
λ∈R

{
J̃Δ (ki +λdi) | di = hi

kek for k = 1, . . . ,M and dM+1 = hi
}
,

where ek for k = 1, . . . ,M are the vectors of the canonical basis of RM.

This kind of relaxed determination of the step comes from the coordinate descent
method (see [14]).

Remark. The existing analytical results on the convergence of the method are valid
only in the case that t f (·,t) is strictly convex (see [12, 15]). The gradient conver-
gence analysis can be split into four essential questions: the well-posedness of the
perturbed scheme, the differentiability of the continuous cost function, the conver-
gence of the numerical scheme for the direct problem and the convergence of the
perturbed scheme.

The perturbed equation (4) is a transport equation with source term and with
discontinuous coefficients. Thus, there is no general well-posedness theory. The
main ingredient of the theory of reversible-dual solutions introduced by Bouchut
and James, according with references [4] and [5], is the OSLC condition, which
can be violated in the case of a non-convex flux function when shocks interact and
form a rarefaction wave. However, in the interesting cases of batch sedimentation,
when the initial condition is constant or monotonic, we know that this kind of be-
havior does not appear since the numerical and exact solutions are monotonically
decreasing [6, 7].

The low regularity of the cost function is, in some sense, independent of the
convexity condition of the flux and is a consequence of the presence of discontinu-
ities in the solution of the direct problem u f . Thus, we can apply the ideas given in
[12], where the authors leave the rigorous definition of the continuous gradient and
consider the subgradient characterization.

Concerning to the convergence of the numerical scheme of the direct problem
we can apply the recent results given in [6, 7], where, in the setting of strongly
degenerate parabolic equations, the convergence to the unique BV entropy solution
of the problem, up to satisfaction of one of the boundary conditions, is done.
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The convergence of the perturbed scheme needs a monotonicity property of the
coefficients and the continuous OSLC condition. The monotonical behavior of the
coefficients are guaranteed by construction, but the OSLC condition is not satisfied
in the general non-convex case.

To conclude, we can apply, with some careful analysis, the ideas developed in
the case of convex flux function to the inverse problem in the sedimentation case,
when the initial solution is constant and monotonic and when the rarefaction waves
are not originated from shock interaction.

5 A Numerical Example

We consider the analytic (parametric dependent) form of the flux density function
proposed by Barton et al. [1]:

b(u) = v0u(1−u/um)C + v1u2(um−u), u ∈ (0,umax), um = umax = 0.9.

The set of parameters to be identified is k = (C,v0,v1).
The observation profile at T = 12273 is generated by a numerical simulation with

kobs = (5,−1.18× 10−4,−1.0× 10−5) and J = 1000 and with the initial condition
u0(x) = 0.6 for x ∈ [0.8,1] and u0(x) = 0 for x ∈ [0,0.8[.

The vector of parameters for the initial guess is k0 = (10,−1.0× 10−4,−1.0×
10−6). The identified set of parameters are shown in Table 1 and the profiles on the
right hand of Figure 1.

Table 1 Identified parameters

J C v0 v1 Cost value

100 4.54347155 −1.089×10−4 −0.9901×10−5 0.000381
1000 4.48301583 −1.075×10−4 −0.0276×10−5 0.000375

Acknowledgements We acknowledge support by Conicyt through Fondap in Applied Mathemat-
ics, Fondecyt 1070694, Fondecyt 1050728 and Fondecyt 11060400.
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PSI Solution of Convection-Diffusion Equations
with Data in L1

J. Casado-Dı́az, T. Chacón Rebollo, V. Girault, M. Gómez Mármol, and F. Murat

Abstract This paper is devoted to the analysis of finite element approximations of
convection-diffusion equations with data in L1. We discretize the convection oper-
ator by the PSI (Positive Streamwise Implicit) scheme, and the diffusion operator
by the standard Galerkin method, using conforming P1 finite elements. We give the
main idea in the proof of convergence of the approximations to the unique renor-
malized solution in W 1,q(Ω), 1≤ q < d

d−1 .

1 Introduction

This paper is devoted to the analysis of finite element approximations of convection-
diffusion equations with data in L1. This kind of problem models several phenomena
arising in applied sciences. For instance, it is satisfied by the turbulent kinetic energy
in turbulence modeling, and by the heat equation in thermoelectric modeling.

We shall study the following problem:⎧⎨⎩
a ·∇u−div(A∇u) = f in Ω ,

u = 0 on ∂Ω ,
(1)

where Ω is a bounded domain of Rd , where the integer d ≥ 1 is the dimension,
a ∈ L∞(Ω)d is a given divergence-free velocity field,
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∇ ·a = 0, (2)

A ∈ L∞(Ω)d×d is a uniformly positive definite and bounded matrix field.

M|ξ |2 ≥ A(x)ξξ ≥ α|ξ |2, for a.e. x ∈Ω , ∀ξ ∈Rd , (3)

for some M≥ α > 0, and f is the source term in L1(Ω). In reference [9], it is proved
that this problem has a unique renormalized solution in W 1,q(Ω), 1≤ q < d

d−1 . We
recall the concept of renormalized solution in Section 2.

In the case of pure diffusion (a = 0), the analysis of finite element approximations
of problem (1) has been recently carried on in [3] (see also [7]). It is proved that
the standard Galerkin piecewise affine finite element approximation converges in
W 1,q(Ω), 1 ≤ q < d

d−1 to the renormalized solution for suitable constructions of
the triangulations. A discrete version of the Boccardo-Gallouet estimates, cf. [2], is
developed. This is essentially based upon the fact that the discrete diffusion matrix
is an M-matrix for such triangulations.

Here we treat the case of convection-diffusion equations. This presents new tech-
nical difficulties, because we need to find a discretization of the convection term
such that the discrete convection-diffusion matrix is an M-matrix. In [4], it is proved
that non-linear residual distribution schemes, such as the PSI (Positive Streamwise
Implicit) have this property in the standard case f ∈ H−1(Ω).

Here, we report the extension of the result of [3] to convection-diffusion equa-
tions. We discretize the convection operator by the PSI scheme. We use as technical
tools the analysis developed in [3] and [4], and a new comparison result in W 1,q(Ω)
for approximate solutions of (1), which is the main technical innovation of this work.

The paper is structured as follows: In Section 2 we recall the definition of renor-
malized solution of problem (1), and some basic results about its theoretical anal-
ysis. In Section 3 we introduce our discretization of problem (1): The convection
term is discretized by the PSI scheme, and the diffusion term by the standard
Galerkin scheme. We also recall the main result obtained in [3]. We analyze the
well-possedness of our discretization in W 1,q(Ω), 1≤ q < d

d−1 in Section 4. Finally,
in Section 5 we report our main convergence result.

2 Renormalized Solution

Let us start by recalling the definition of the renormalized solution for problem (1):

Definition 1. A function u is a renormalized solution of (1) if it satisfies

• u ∈ L1(Ω)

• ∀k > 0 , Tk(u) ∈ H1
0 (Ω), where Tk(u) =

{
u |u| ≤ k,
k u
|u| |u|> k.

• lim
k→∞

1
k

∫
|u|≤k
|∇u|2 dx = 0
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• ∀S ∈ C 1
c (R) = {v ∈ C 1(R) with compact support }, the equation

(a ·∇u)S− (div(A∇u))S = f S

is satisfied in the distributions sense.

The above definition of renormalized solutions was introduced by P.L. Lions &
F. Murat [9] (see also [5], [10]). Two other definitions of solutions, the entropy
solution and the solution obtained as limit of approximations, were introduced at
the same time respectively by Bénilan et al. in [1] and by Dall’Aglio in [6]. In the
linear case considered in the present work, the three definitions are also equivalent
to the solution by transposition introduced in 1969 by Stampacchia.

The main interest of the definition of renormalized solution is the following ex-
istence, uniqueness and continuity theorem.

Theorem 1. Assume that a and A respectively satisfy (2) and (3). Then there exists
a unique renormalized solution of (1). Moreover,

u ∈W 1,q
0 (Ω) for every q with 1≤ q <

d
d−1

.

Finally, this unique solution depends continuously on the right-hand side f in the
following sense: if f ε is a sequence which satisfies

f ε → f strongly in L1(Ω), as ε → 0,

then the sequence uε of the renormalized solutions of (1) for the right-hand sides f ε

satisfies for every q with 1≤ q < d
d−1 ,

lim
ε→0
‖uε −u‖

W1,q
0

= 0,

where u is the renormalized solution of (1) for the right-hand side f .

The proof of this Theorem can be found in [10].

3 Discrete Problem

To approximate problem (1), let us assume that Ω ⊂ Rd (d = 2 or 3) is a polytopic
domain. Consider a conforming triangulation Th of Ω by triangles if d = 2 and
tetrahedra if d = 3. As usual we assume that h denotes the largest diameter of the
elements of Th. We consider the finite-dimensional space of piecewise affine finite
elements built on Th:

Vh = {vh ∈ C 0(Ω)/ vh|T ∈ P1 ∀T ∈Th, vh = 0 on ∂Ω}. (4)

Denote by {b j}N
j=1 the nodes of the mesh located on Ω \∂Ω , i.e. the interior nodes.

We consider the nodal basis of Vh, {ϕ j}N
j=1 defined by
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ϕi(b j) = δi j, 1≤ i, j ≤ N.

We also associate with Th and an arbitrary function sh of Vh a discrete space of
piecewise constant functions, denoted by Wh(sh). This space is defined through its
nodal basis functions λ1,λ2, · · · ,λN (also depending on sh), that we assume known
for the time being:

Wh(sh) = span {λ1(sh),λ2(sh), . . . ,λN(sh)}. (5)

The functions λ j have supports that look for “upwind” information with respect to
the velocity field a (See Fig. 1).

Fig. 1 Typical supports of the basis functions λ j(sh)

The dependence upon sh is due to the non-linear nature of the PSI method;
indeed, the constant values taken by λi in each element T ∈ Th depend on sh:
λi|T = λi|T (sh).

We construct an associated interpolation operator taking values in Wh, denoted
by Πsh , as follows:

Πsh : C 0(Ω)∩H1
0 (Ω) −→ Wh

z −→ Πshz =
N

∑
i=1

z(bi)λi. (6)

In particular applying Πsh to ϕ j, j = 1, . . .N, formula (6) gives λ j = Πshϕ j. Thus,
Πsh is a bijection from Vh onto Wh.

We shall refer to Πsh as the Distributed Interpolation Operator generated by sh.
We may characterize each actual Fluctuation Splitting method by its associated Dis-
tributed Interpolation Operator, through the definition of the basis functions λ j. For
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PSI and in general for conservative Residual Distribution Schemes, these basis func-
tions satisfy the following property:

For any element T ∈Th,

λiT |T ≥ 0, i = 1, . . . ,d + 1,
d+1

∑
i=1

λiT |T = 1, (7)

where iT is the global index corresponding to the local index i, i = 1, . . . ,d + 1 on
element T , and λiT |T is the restriction of λi to element T .

Next, we define the bilinear form ah : Vh×Vh #→ R as

ah(uh,vh) =
∫
Ω

(a ·∇uh)Πuhvh dx +
∫
Ω

A∇uh ·∇vh dx. (8)

We may now formulate our discrete variational approximation of the convection-
diffusion problem (1), as follows:{

Find uh ∈Vh such that
ah(uh,vh) =

〈
f , Πuhvh

〉 ∀vh ∈Vh.
(9)

The term
〈

f , Πuhvh
〉

is well defined for f ∈ L1(Ω).
Note that problem (9) is a non-linear problem, due to the non-linear nature of the

Distributed Interpolation operator.
Consider the convection C(uh) and diffusion D matrices of the discrete problem

(8), with entries

Ci j(uh) =
∫
Ω

(a ·∇ϕi)Πuhϕ j dx =
∫
Ω

(a ·∇ϕi)λ j(uh)dx (10)

and
Di j =

∫
Ω

A∇ϕi∇ϕ j dx. (11)

Also, denote by Q(uh) the convection-diffusion matrix C(uh)+ D.
For the PSI method, C(sh) is a quasi-M matrix for any sh ∈Vh, in the sense that

Cii(uh)≥ 0, Ci j(uh)≤ 0 if i �= j.

Then, Q(uh) is an M-matrix whenever D is an M-matrix, which is the case studied in
[3]. For general matrices A we do not know conditions that ensure this property. But
in the particular case where A = Id (i. e., the diffusion operator is the Laplacian),
the next lemma follows from a result proved in [3]:

Lemma 1. Assume that all angles between sides (when d =2) or that all dihedral
angles between faces (when d =3) of all elements of the grid are bounded by π/2
degrees. Then

Q(uh) is an M-matrix, for any uh ∈Vh. (12)

It is proved in [4] that the PSI scheme is well-balanced up to the second order for
the pure convection equation. Hence we use a second-order scheme such as PSI to
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obtain an M-matrix for Q(uh). In fact, this property is very close to the maximum
principle for discretizing (8). And it is a classical result that no linear scheme which
is well-balanced up to the second order accuracy for the pure convection equation
can satisfy the maximum principle.

4 Existence of Solutions of the Discrete Problem

In this section we study the existence of solutions of the discrete problem (9). The
proof of Theorem 2 is given in [8] and it uses a particular form of Brouwer’s Fixed
Point Theorem.

Theorem 2. If f ∈ Lp(Ω) with p ≥ 1 if d = 2 and p = 1 or p > 6/5 if d = 3, then
problem (9) has at least one solution uh ∈Vh that satisfies the estimate:

• For p > 6/5 if d = 3 and p > 1 if d = 2

‖uh‖H1
0
≤C1‖ f‖Lp , (13)

• For p = 1
‖uh‖H1

0
≤C2(h)‖ f‖L1 , (14)

where C1 > 0 is a constant that only depend on d, p and Ω and C2 > 0 is a constant
that tends to infinity as h goes to 0.

Note that the estimate (14) is not uniform in h, because the unique renormalized
solution of the continuous problem does not belong to H1

0 (Ω): it belongs to W 1,q
0 .

The next result gives a sharper a priori estimate for uh in W 1,q
0 .

Theorem 3. Assume that a and A respectively satisfy (2) and (3), the triangulation
is regular in the sense of Ciarlet and satisfies the hypothesis of Lemma 1. For every
h > 0, let uh be one solution of problem (9), then {uh}h>0 is bounded in W 1,q

0 and
there exists a constant C > 0 independent of h, such that

‖uh‖W1,q
0
≤C‖ f‖L1 .

This result was proved in [3, Theorem 2.1]. The proof is essentially based upon
two facts. On one hand, the property that Q(uh) is an M-matrix (condition (12)) and
on the other hand, a piecewise P1 variant of Boccardo-Gallouet estimates [2].

5 Convergence

We next prove the convergence in W 1,q
0 -norm of each solution of the discrete scheme

(9) to the unique renormalized solution of the continuous problem (1).
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First, we present a convergence result when the right-hand side g∈ Lp with p > 1
if d = 2 and p > 6/5 if d = 3.

Theorem 4. We retain the assumptions of Theorem 3. Let the data g belong to
Lp(Ω) with p > 1 if d = 2 and p > 6/5 if d = 3 and let vh be a solution of:∫

Ω
(a ·∇vh)Πvhwh dx +

∫
Ω

A∇vh ·∇wh dx =
∫
Ω

gΠvhwh dx, ∀wh ∈Vh,

and let v be the unique solution of:∫
Ω

(a ·∇v)wdx +
∫
Ω

A∇v ·∇wdx =
∫
Ω

gwdx, ∀w ∈ H1
0 .

Then
lim
h→0
‖vh− v‖H1

0
= 0.

The proof of this result can be found in [4].
Now, we present the original contribution of this work. The following result,

comparing two solutions of the discrete problem, allows us to derive convergence in
our case.

Theorem 5. Let f ε = T1
ε

f and let uh be a solution of

∫
Ω

(a ·∇uh)Πuhwh dx +
∫
Ω

A∇uh ·∇wh dx =
∫
Ω

fΠuhwh dx, ∀wh ∈Vh,

and let uεh be a solution of∫
Ω

(a ·∇uεh)Πuεh
wh dx +

∫
Ω

A∇uεh ·∇wh dx =
∫
Ω

f εΠuεh
wh dx, ∀wh ∈Vh.

If the assumptions of Theorem 3 hold, {uεh−uh} is bounded in W 1,q
0 and satisfies

‖uεh−uh‖W1,q
0
≤C

(
‖ f ε − f‖L1 +

h2

ε2 + h2(1+d(1/2−1/q))
)

, (15)

where the constant C is independent of ε and h.

This comparison estimate allows to prove our main result,

Theorem 6. We retain the assumptions of Theorem 3. For every h > 0, let uh be a
solution of (9). Then for every q with 1≤ q < d

d−1 ,

lim
h→0
‖uh−u‖

W1,q
0

= 0,

where u is the unique renormalized solution of (1).
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Proof. We retain the notation of Theorem 5. Let uε be the unique solution of prob-
lem (1) with data f ε . The dicretization error can be split as follows:

‖u−uh‖W1,q
0
≤ ‖u−uε‖

W1,q
0

+‖uε−uεh‖W1,q
0

+‖uεh−uh‖W1,q
0

= I + II + III.

Each term (I), (II), (III) converges to 0 when h and ε go to 0. Indeed, the conti-
nuity of Theorem 1 implies that (I) tends to zero. Next, by applying Theorem 4 with
data f ε , we see that ‖uε − uεh‖H1

0
converges to 0, when h goes to 0, for any ε > 0.

Therefore (II) also tends to zero.
Finally, by choosing ε = ε0 small enough in (15), we can make the first term

in (15) small and next we can adjust h0 = h0(ε0) such that for all h ≤ h0 the two
remaining terms in (15) are also small. Therefore the term (III) converges to 0 with h.

��
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ments approximation of second order linear elliptic equations in divergence form with right-
hand side in L1. Numer. Math. 105(3), 337–374 (2007)
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High Order Two Dimensional Numerical
Schemes for the Coupling of Transport
Equations and Shallow Water Equations

M.J. Castro, E.D. Fernández Nieto, A.M. Ferreiro Ferreiro, J.A. Garcı́a Rodrı́guez,
and C. Parés

Abstract In this article we apply a second order 2d scheme for non-conservative
hyperbolic systems based on state reconstructions, for the modelization of the trans-
port of a pollutant in a fluid. The mathematical model consists in the coupling of a
system of shallow water system and a transport equation. That coupling gives rise to
a new linearly degenerated field in the system. Therefore, to approximate the evolu-
tion of the pollutant, it is necessary to consider numerical methods that can capture
accurately those contact discontinuities.

1 Shallow Water Equations with Pollutant Transport

The mathematical model for the pollutant transport problem is obtained coupling
a one layer shallow water system with a transport equation. The unknowns are the
thickness of the layer of fluid h(xxx,t), the flux q(xxx,t) = (qx(xxx,t),qy(xxx,t)) and the
pollutant concentration C(xxx,t). H is the bottom bathimetry measured from a fixed
reference level, σ(xxx,t) are the emitting sources (measured in m2/s) and Cσ is the
concentration of the substance at these sources. The obtained system is given by:
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∂h
∂ t

+
∂qx

∂x
+
∂qy

∂y
= 0,

∂qx

∂ t
+

∂
∂x

(
q2

x

h
+

1
2

gh2
)

+
∂
∂y

(qxqy

h

)
= gh

∂H
∂x

,

∂qy

∂ t
+

∂
∂x

(qxqy

h

)
+

∂
∂y

(
q2

y

h
+

1
2

gh2

)
= gh

∂H
∂y

,

∂hC
∂ t

+
∂qxC
∂x

+
∂qyC
∂y

= σCσ .

(1)

The system (1) can be written as a two dimensional non-conservative system (see
[5] and [1]),

∂W
∂ t

+A1(W )
∂W
∂x

+A2(W )
∂W
∂y

= 0, (2)

where W (x,t) : O× (0,T )→Ω ⊂RN , O is a bounded domain of R2, Ω is a convex
subset of RN , Ai : Ω →MN×N are regular and locally bounded functions.

Given an unitary vector ηηη = (ηx,ηy) ∈ R2 we define the matrix: A (W,ηηη) =
A1(W )ηx +A2(W )ηy. We suppose that the system (2) is hyperbolic, that is, for all
W ∈Ω ⊂RN and ∀ηηη ∈R2, the matrix A (W,ηηη) has N real eigenvalues: λ1(W,ηηη)≤
. . . ≤ λN(W,ηηη), being R j(W,ηηη), j = 1, . . . ,N the associated eigenvectors; and
the matrix A (W,ηηη) is diagonalizable: A (W,ηηη) = K (W,ηηη)L (W,ηηη)K −1(W,ηηη),
where L (W,ηηη) is the diagonal matrix which coefficients are the eigenvalues of
A (W,ηηη) and K (W,ηηη) is the matrix whose columns are the eigenvectors R j(W,ηηη),
j = 1, . . . ,N. In this case the eigenvalues of the system are λ1 = uuu ·ηηη −√gh‖ηηη‖,
λ2 = uuu ·ηηη , λ3 = uuu ·ηηη , λ4 = uuu ·ηηη +

√
gh‖ηηη‖. Therefore, the coupled system (1) has

two linearly degenerated fields. Note that if initially the substance only occupies a
portion of the fluid, the boundaries of this portion will propagate following a contact
discontinuity (see [6]). Therefore, to approximate with precision the spill evolution
it is necessary to use numerical schemes that are able to accurately capture these
contact discontinuities (see [5]).

2 High Order Finite Volume Methods Based on State
Reconstructions

To discretize the system (2), the computational domain is split into subsets of simple
geometry called cells or control volumes, Vi⊂R2, that will be supposed to be closed
polygons. We use the following notation: given such a finite volume Vi, Ni represents
its center, Ni is the set of all the indexes j such that Vj is a neighbor of Vi, Ei j

is the common edge between two neighbor cells Vi and Vj, being |Ei j| its length,
ηηη i j = (ηi j,x,ηi j,y) is the unitary outward normal vector to the edge Ei j pointing
towards cell Vj (see Figure 1). Vi j is the triangle defined by the center of the cell, Ni,
and the edge Ei j. |Vj| and |Vi j| represent the areas of Vi and Vi j, respectively.
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Fig. 1 General finite volume.

The discretization of the system (2) is made using a finite volume scheme. If
W (xxx,t) is the exact solution we denote by W

n
i the average of the solution at time

step tn,

W
n
i =

1
|Vi|

∫
Vi

W (xxx,tn)dxxx,

W n
i denotes the approximation of W

n
i in tn, that is, W n

i �W
n
i .

Given a volume Vi we denote by Pi the reconstruction operator over the volume.
More precisely, Pi depends of a family of values {Wj} j∈Bi , where Bi is a set of
indexes of neighbors or control volumes close to Vi (see [1]). When the values of
this succession depend on time, we denote the state reconstruction operator by Pt

i .
For a given vector ηηη i j pointing towards cell Vj, we denote by W−i j (t,sss) and

W+
i j (t,sss) ∀sss ∈ Ei j, the limit of Pt

i (Pt
j respectively) when xxx tends to sss, xxx inside Vi

(inside Vj respectively):

lim
xxx→ sss

xxx ·ηηη i j < ki j

Pt
i (xxx) = W−i j (t,sss), lim

xxx→ sss
xxx ·ηηη i j > ki j

Pt
j(xxx) = W+

i j (t,sss).
(3)

We propose the following high order numerical scheme for non-conservative sys-
tems which is the natural extension to 2D domains of the high order numerical
introduced in [2]. For more details about its derivation see [1]:

W
′
i (t) = − 1

|Vi| ∑j∈Ni

∫
Ei j

A −
i j (t,sss)(W+

i j (t,sss)−W−i j (t,sss))d sss

−
∫

Vi

(
A1(Pt

i (xxx))
∂Pt

i

∂x
(xxx)+A2(Pt

i (xxx))
∂Pt

i

∂y
(xxx)

)
dxxx,

(4)

where Ai j(t,sss) = Ai j(W+
i j (t,sss),W−i j (t,sss),ηηη i j), A −

i j (t,sss) = 1
2 (Ai j(t,sss)−|Ai j(t,sss)|),

being Ai j(W+
i j (t,sss),W−i j (t,sss),ηηη i j) the Roe matrix associated to the 1D non-con-

servative problem over the edge Ei j and the states W+
i j (t,sss) and W−i j (t,sss). The non-

conservative products makes difficult the definition of weak solution for this kind
of systems. Following the theory developed in [3] it is possible to define a non-
conservative product as a Borel measure, depending on the selection of a family of
paths in the phase space. For this case, we must also chose a family of paths to define
the Roe matrix (see [5]). In this work the family of segments has been chosen.
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Finally, the integral terms in (4) should be approximated by quadrature formulae.
They are chosen in terms of the reconstruction operator used.

In [1] the order of accuracy of the previous numerical scheme has been studied as
well as its well-balance properties. In particular, when it is applied to shallow-water
systems it exactly preserves the solutions corresponding to water at rest.

2.1 Second Order Reconstruction Operator over 2D Unstructured
Meshes

In this section, we propose a MUSCL-type second order reconstruction operator
for edge-based finite volume unstructured meshes. The edge type volume can be
written as Vi = Vi1∪Vi2∪Vi3∪Vi4, where Vik, k = 1,2,3,4, are triangles (see Figure
2) defined by Ci (middle point of the edge over which the finite volume of edge type
is built) and the four edges of the control volume. By bi,k, k = 1,2,3,4, we denote
the barycenter of this triangles, respectively.

CiVi3
iV i3b

bi4

Vi4

bi1
Vi1Vi2

i2b

Fig. 2 Triangles that compose a finite volume of edge type, Vi .

We consider the following MUSCL-type state reconstruction operator Pi(xxx) of
order two (see [4] for details), defined by

Pi(xxx) = W i + p(xxx), with p(xxx) = ∇Wi(xxx−Ni). (5)

where ∇Wi is an approximation, at least of order one, of the gradient of the solution
W (xxx), and Ni is the point defined by:

Ni =
4

∑
k=1

|Vik|
|Vi| bi,k. (6)

With the purpose of simplicity, lets us suppose that Vi is a interior finite volume
and let us denote by Vi,1, . . . ,Vi,4 its four neighbors. Let us consider the points Ni, j ,
j = 1, . . . ,4, associated to Vi, j, j = 1, . . .4, respectively, given by (6). Let us also
consider four triangles T1, . . . ,T4 defined by the union of the points Ni,1, . . . ,Ni,4 and
the point Ni (see Figure 3). Over each triangle Ti, i = 1, . . . ,4, we consider a linear
approximation of the solution, by the values Wi, Wi,1, . . ., Wi,4 which are second
order approximation of W (Ni),W (Ni,1), . . . ,W (Ni,4), respectively.

At each triangle Tj, j = 1, . . . ,4, with vertices {Ni,Ni, j,Ni,ip( j)}, where ip( j), j =
1, . . . ,4 take the values in the ordered set {2,3,4,1}, we consider an approximation
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Fig. 3 Triangles T1, T2, T3, T4, used to approximate the gradient of W (xxx) in Vi .

of the gradient ∇W|Tj
using the linear approximation previously constructed (see

[4] for details). Finally, to give an approximation of ∇W (xxx) in Vi, we consider a
weighted averaged of ∇W|Tj

, j = 1, . . . ,4:

∇W (xxx)≈ ∇Wi =
4

∑
j=1

|Tj|∇W|Tj

/ 4

∑
j=1

|Tj|. (7)

Frequently, the solution of hyperbolic systems presents discontinuities. To obtain a
state reconstruction operator that approximates with order two the solution in regu-
lar areas and at same time that captures the regions where W (xxx) is discontinuous, it
is necessary to modify the reconstruction operator (5), using a slope limiter function.

In [4] we prove that the reconstruction operator previously described achieves
second order accuracy. Finally, numerous numerical experiments have been per-
formed in the framework of the one-layer and two-layer shallow-water systems
achieving very good results as well as good well-balancing properties (see [1]).
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Fig. 4 Evolution of the pollutant concentration at different time steps. Longitudinal central section
of the channel.
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3 Numerical Experiments

3.1 Pollutant Transport in a Rectangular Channel with Planar Bed

In this bidimensional test we study the evolution of a pollutant that initially occu-
pies a circle and that is transported at constant velocity in a rectangular channel of
dimensions 75 m×30 m. We are going to suppose that do not exist emitting sources
and we take like initial condition a circular region with a pollutant concentration
equal to 0.5. So the initial conditions are:

h(x,y,0) = 2, qx(x,y,0) = 10, qy(x,y,0) = 0;

and the initial pollutant concentration is given by the following equation:

C(x,y,0) =
{

0.5 if (x−15)2 +(y−15)2≤ 36,
0 in other case.

The CFL condition is equal to 0.8. We use an unstructured mesh of 9000 finite
volumes. We impose the flux qqq = (10,0) in the boundary corresponding to x = 0
and x = 75. In the lateral walls we impose a sliding condition qqq ·ηηη = 0. With this
data the experiment runs until t = 10 seconds.

The exact solution is given by a circle that is translated with constant velocity in

the direction of the axis X , vx =
qx

h
= 5 m/s. In the Figure 4 we present a compa-

rison in the longitudinal section, y = 15, between the exact solution, the numerical
solution using a method of order 1 (Roe) and the approximated solution obtained
using the numerical scheme of the section 2.1. It can be observed that the high order
scheme preserves the initial concentration 0.5 and preserves better the boundary of
the pollutant. In Figure 5 is shown a comparison using iso-levels between the Roe
scheme and the scheme (4) using the second order reconstruction operator defined
in section 2.1. Note the artificial diffusion introduced by the Roe scheme and how it
is reduced by considering the second order scheme.

Roe

Scheme of order 2

(a) Time 5 s.

Roe

Scheme of order 2

(b) Time 10s.

Fig. 5 Pollutant evolution (from up to down, Roe vs. Second order reconstruction): iso-levels.
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3.2 Pollutant Transport in a Rectangular Channel with Variable Bed

This test is done in a rectangular channel of dimensions 75m×30m. The bed of the
channel presents a bump given by the following function:

B(x,y) = e−0,075·(x−37,5)2
. (8)

Initially we suppose the pollutant occupies a circle of center (15,15) and radius
6 m. Initially, we suppose a constant flux equal to qqq = (1,0) and a constant free
surface equal to 3 m. of height in its deepest point. As boundary conditions we
impose a sliding condition qqq ·nnn = 0 along the boundaries y = 0 and y = 30, and free
conditions in x = 0 and x = 75. We consider CFL = 0.8 and the simulation runs
until the time t = 120 s.

(a) Roe 65 s. (b) Roe 120 s.

(c) 2order scheme, t=65 s. (d) 2order scheme, t=120 s.

Fig. 6 Pollulant concentration evolution at different instants.

Rec. Order 2

Roe

(a) Time 65 s.

Roe
Rec. Order 2

(b) Time 120s.

Fig. 7 Pollutant concentration evolution: central longitudinal section (Roe vs. Second order
scheme).
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In Figure 6 we present the obtained results using Roe scheme (Figures 6-(a) and
6-(b)) and the scheme of order two (4) (Figures 6-(c) and 6-(d)).

In Figure 7 we show a comparison between Roe scheme and the scheme (4) along
a central longitudinal section. The solution obtained with Roe scheme is represented
in dotted line, and the continuous line corresponds with the solution obtained with
the second order reconstructions scheme.

4 Conclusions

In this work we have solved, in a coupled way, a one layer shallow water system
together with a transport equation. To better capture the evolution and concentration
of the spill, we consider a second order scheme for non-conservative problems based
on a MUSCL-type state reconstruction. Moreover, one of the main advantage of the
presented numerical scheme is its well-balance character. In fact, in the framework
of shallow-water systems it can be easily proved that it is exactly well-balanced for
the solutions corresponding to water at rest. Finally, the accuracy of the second order
scheme has been assessed with two numerical experiments.

Acknowledgements This work has been partially supported by the research projects MTM2006-
08075 and MTM2006-01275, funded by the Spanish Government.
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Well-Balanced High-Order MUSTA Schemes for
Non-Conservative Hyperbolic Systems

M.J. Castro, C. Parés, A. Pardo, and E.F. Toro

Abstract We introduce a Multi-Stage (MUSTA) approach for constructing up-
wind numerical schemes for nonconservative hyperbolic systems. MUSTA schemes
for hyperbolic conservation laws were introduced in [8] as an approximate Rie-
mann solver based on a GFORCE scheme and a predictor-corrector procedure. In
[2] a path-conservative GFORCE numerical scheme (in the sense introduced in [6])
for nonconservative hyperbolic systems is proposed. Here, we propose a predictor-
corrector procedure based on this extension of GFORCE to obtain a generalization
of MUSTA schemes. These schemes can be applied to systems of conservation laws
with source terms and nonconservative products. In particular, some applications to
two-layer shallow-water flows are presented.

1 Introduction

MUSTA schemes for hyperbolic conservation laws were introduced by Toro and
Titarev in [8] as a predictor-corrector procedure based on the use of the so-called
GFORCE method, whose numerical flux is a convex linear combination of the
Lax-Frieridchs and the Lax-Wendroff fluxes. In [2] we present a generalization of
GFORCE to nonconservative hyperbolic system:

∂W
∂ t

+A (W )
∂W
∂x

= 0, x ∈ lR, t > 0, (1)

which is path-conservative in the sense introduced in [6]. A particular case of (1)
is the class of systems of conservation laws with source terms and nonconservative

M.J. Castro, C. Parés, A. Pardo
Depto. de Análisis mátematico, U. de Málaga, Spain, e-mail: castro@anamat.cie.uma.es

E.F. Toro
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di Povo, Trento, Italy
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products of the form:

wt + F(w)x +B(w) ·wx = S(w)σx, (2)

where σ(x) is a known function. Following an idea introduced in [4], System (2)
can be considered as the particular case of (1) corresponding to the choice:

W =
[

w
σ

]
, A (W ) =

[
J (w)+B(w) −S(w)

0 0

]
,

where

J (w) =
∂F
∂w

(w).

The equations governing the flow of a stratified fluid composed by two superposed
shallow layers of immiscible liquids can be formulated under the form (2) (see [1]).

In this work, we first present the expression of the generalized GFORCE method.
Then, we extend the MUSTA procedure to nonconservative system on the basis of
GFORCE and a prediction-correction procedure which is interpreted as a recon-
struction of states. These MUSTA schemes are first order accurate but they can be
extended to higher order methods by using a reconstruction operator, following the
general methodology introduced in [6]. Finally, some applications to the two-latyer
shallow-water systems are presented.

2 Some Numerical Schemes for Nonconservative Hyperbolic
Systems

In this section we present some numerical schemes for solving Cauchy problems
related to the nonconservative hyperbolic system (1), where the unknown W (x,t)
takes values on an open convex set Ω . The system is supposed to be strictly hyper-
bolic and every characteristic field is supposed to be either genuinely nonlinear or
linearly degenerate.

For discontinuous solutions W , the nonconservative product A (W )Wx in (1) may
not make sense as a distribution. Nevertheless, after the theory developed by Dal
Maso, LeFloch and Murat in [3], it is possible to give a rigorous definition of weak
solutions associated to the choice of a family of paths in Ω :

Definition 1. A family of paths in Ω ⊂ RN is a locally Lipschitz map

Φ : [0,1]×Ω×Ω #→Ω ,

such that:

• Φ(0;WL,WR) = WL and Φ(1;WL,WR) = WR, for any WL,WR ∈Ω ;
• for every arbitrary bounded set O ⊂Ω , there exists a constant k such that
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(s;WL,WR)

∣∣∣∣≤ k|WR−WL|,

for any WL,WR ∈ O and almost every s ∈ [0,1];
• for every bounded set O ⊂Ω , there exists a constant K such that∣∣∣∣∂Φ∂ s

(s;W 1
L ,W 1

R )− ∂Φ
∂ s

(s;W 2
L ,W 2

R )
∣∣∣∣≤ K(|W 1

L −W 2
L |+ |W1

R −W2
R |),

for any W 1
L ,W 1

R ,W 2
L ,W 2

R ∈ O and almost every s ∈ [0,1].

The numerical schemes to be introduced here are path-conservative in the sense
of the following definition introduced in [6], which is a generalization of that of
conservative scheme for systems of conservation laws:

Definition 2. Given a family of paths Ψ , a numerical scheme is said to be a Ψ -
conservative numerical scheme if it can be written under the form:

W n+1
i = W n

i −
Δ t
Δx

(
D+

i−1/2 + D−i+1/2

)
, (3)

where
D±i+1/2 = D±

(
W n

i−q, . . . ,W
n
i+p

)
, (4)

D− and D+ being two continuous functions from Ω p+q+1 to Ω satisfying

D±(W, . . . ,W ) = 0, ∀W ∈Ω , (5)

and

D−(W−q, . . . ,Wp)+ D+(W−q, . . . ,Wp) =
∫ 1

0
A
(
Ψ(s;W0,W1)

)∂Ψ
∂ s

(s;W0,W1)ds,

(6)
for every set {W−q, . . . ,Wp} ⊂Ω .

2.1 Nonconservative Roe Scheme

Roe methods can be generalized to nonconservative systems. First, a Roe lineariza-
tion A (WL,WR) in the sense defined in [9] has to be chosen:

Definition 3. Given a family of paths Ψ , a function AΨ : Ω ×Ω #→MN×N(lR) is
called a Roe linearization if it verifies the following properties:

• for each WL,WR ∈Ω , AΨ (WL,WR) has N distinct real eigenvalues,
• AΨ (W,W ) = A (W ), for every W ∈Ω ,
• for any WL,WR ∈Ω ,
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AΨ (WL,WR)(WR−WL) =
∫ 1

0
A (Ψ (s;WL,WR))

∂Ψ
∂ s

(s;WL,WR)ds. (7)

Once a Roe linearization AΨ has been chosen, some straightforward calculations
(see [6]) allow to show that a nonconservative Roe scheme can be written under the
form:

W n+1
i = W n

i −
Δ t
Δx

(
D+

i−1/2 + D−i+1/2

)
, (8)

D−i+1/2 = A −
i+1/2(W

n
i+1−Wn

i );D+
i+1/2 = A +

i+1/2(W
n
i+1−Wn

i ); (9)

where Ai+1/2 = AΨ (W n
i ,W n

i+1), Li+1/2 is the diagonal matrix composed of the

eigenvalues of Ai+1/2 ( λ i+1/2
1 < λ i+1/2

2 < · · ·< λ i+1/2
N ), L ±

i+1/2 the positive and the
negative part of Li+1/2 and Ki+1/2 is a N×N matrix whose columns are associated

eigenvectors. Finally, A ±
i+1/2 = Ki+1/2L

±
i+1/2K

−1
i+1/2.

Roe methods have been applied successfully for nonconservative systems: in
general, they are robust and have good well-balance properties (see [7, 6]). Nev-
ertheless, these methods also present some drawbacks. In particular, their imple-
mentation requires the explicit knowledge of the eigenvalues and eigenvectors of
the intermediate matrices. When their analytic expression is not available, as it is
the case for the two-layer shallow water system, the eigenvalues and eigenvectors
of the matrix have to be numerically calculated at every interface and at every time
step, which is computationally expensive. We look here for numerical schemes that
overcome this drawback.

2.2 Nonconservative GFORCE Scheme

Given a Roe linearization AΨ we consider the following family of numerical
schemes:

W n+1
i = W n

i −
Δ t
Δx

(
D+

i−1/2 + D−i+1/2

)
, (10)

with:

D+
i+1/2 = (1−ω)

(
1
2
Ai+1/2(W

n
i+1−Wn

i )+
1
2
Δx
Δ t

I(W n
i+1−Wn

i )
)

+ω
(

1
2
Ai+1/2(W

n
i+1−Wn

i )+
1
2
Δ t
Δx

A 2
i+1/2(W

n
i+1−W n

i )
)

,

D−i+1/2 = (1−ω)
(

1
2
Ai+1/2(W

n
i+1−Wn

i )− 1
2
Δx
Δ t

I(W n
i+1−Wn

i )
)

+ω
(

1
2
Ai+1/2(W

n
i+1−Wn

i )− 1
2
Δ t
Δx

A 2
i+1/2(W

n
i+1−W n

i )
)

.

Here, Ai+1/2 = AΨ (W n
i ,W n

i+1) and I is the identity matrix.
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The choices ω = 0,1,1/2 generalize the usual Lax-Friedrichs, Lax-Wendroff,
and the FORCE methods for conservative problems. GFORCE scheme corresponds

to the choice ω =
1

1 +CFL
, being CFL the usual CFL number. It can be eas-

ily shown that, if the problem is conservative, i.e. if A (W ) is the Jacobian of a
flux function F(W ) then the numerical schemes can be rewritten as a conservative
method whose numerical flux is a convex linear combination of the Lax-Friedrichs
and Lax-Wendroff fluxes.

This family of numerical schemes do not preserve the well-balanced properties of
the Roe scheme corresponding to the chosen linearization. Nevertheless, these prop-
erties can be recovered if the identity matrix appearing in the definition of D±i+1/2 is
changed by:

Îi+1/2 = Ki+1/2 · Î ·K−1
i+1/2, (11)

being Î the diagonal matrix whose j-th coefficient is 1 if λ i+1/2
j �= 0, or 0 if λ i+1/2

j =
0.

The generalization of the Lax-Wendroff scheme corresponding to the choice
ω = 1 is not a second order scheme for general nonconservative problem, but for
conservative ones. A second order extension of this method can be found in [2].

The particular expression of the numerical scheme (10)-(11) to system (2) can be
found in [2].

2.3 Nonconservative MUSTA Scheme and High-Order Schemes

In this paragraph we extend to nonconservative systems the MUSTA procedure,
introduced in [8] for systems of conservation laws. The idea is as follows: let us
suppose that the approximations W n

i at the n-th time level have been obtained. As
usual in approximate Riemann solvers, a Riemann problem is associated at every
inter-cell xi+1/2: ⎧⎪⎨⎪⎩

∂U
∂ t

+A (U)
∂U
∂x

= 0, x ∈ lR, t > 0,

U(x,0) =
{

W n
i i f x < 0,

W n
i+1 i f x > 1,

(12)

The idea now is to use a first order path-conservative numerical scheme to solve
numerically these Riemann problems. To do this, first a local mesh is considered,
with space step h and time step k. These steps are chosen so that Δx = Mh and
Δ t = Nk for some positive integers M, N (in particular these integers may be equal
to one). Let us denote by x̃ j+1/2 the inter-cells of the local mesh. We suppose for
simplicity that x̃1/2 = 0. We perform now N time iterations of a first order path-
conservative numerical scheme:
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Un+1
j = Un

j −
k
h

(
D+

1, j−1/2 + D−1, j+1/2

)
, n = 1, . . . ,N. (13)

In practice, these iterations are performed in a truncated domain, i.e. j takes values
between two integers l < 0 and r > 0 (possibly−l = r = M). Therefore, some trans-
missive conditions have to be chosen at the boundary cells. In this work, we use the
standard technique based on the use of two ghost and the duplication of the states.

At the end of this first stage, two approximations

W−i+1/2 = UN
0 , W+

i+1/2 = UN
1 . (14)

of the limits to the left and to the right of x = 0 of the solution of the Riemann prob-
lem (12) at time Δ t are available. Now, these approximations are applied to calculate
W n+1

i by using a new first order path-conservative numerical scheme (3) (possibly
the same) and a reconstruction procedure. More precisely, the approximations at
time n + 1 are calculated as follows:

W n+1
i = W n

i −
Δ t
Δx

(
E+

i−1/2 + E−i+1/2

)
, ∀i, (15)

where

E+
i+1/2 = D+(W−i+1/2,W

+
i+1/2)+

∫ 1

0
A (ϕ(s;W +

i+1/2,W
n
i+1)

∂ϕ
∂ s

(s;W +
i+1/2,W

n
i+1)ds;

E−i+1/2 = D−(W−i+1/2,W
+
i+1/2)+

∫ 1

0
A (ϕ(s;W n

i ,W−i+1/2)
∂ϕ
∂ s

(s;W n
i ,W−i+1/2)ds.

Here, ϕ represents the family of segments, i.e.

ϕ(s;WL,WR) = (1− s)WL + sWR.

It can be easily shown that this numerical scheme is path-conservative and thus
consistent for smooth solutions (see [6]).

Here, we consider a MUSTA procedure in which the two first-order path-
conservative numerical schemes are GFORCE, and N = M = 1 or 2.

2.4 High Order Extensions

In [6] the construction of high-order discrete numerical scheme for (1) based on a
first order path-conservative numerical scheme and a reconstruction operator was
presented. We follow here that methodology. In particular, we consider the third
order PHM monotone reconstruction operator (piecewise hyperbolic method) intro-
duced in [5].
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3 Application to Bilayer Shallow Water Equations with Depth
Variations

We consider in this paragraph the system of partial differential equations governing
the one-dimensional flow of two superposed immiscible layers of shallow water
fluids studied in [1]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h1

∂ t
+
∂q1

∂x
= 0,

∂q1

∂x
+

∂
∂x

[
q2

1

h1
+

g
2

h2
1

]
=−gh1

∂h2

∂x
+ gh1

∂H
∂x

,

∂h2

∂ t
+
∂q2

∂x
= 0,

∂q2

∂x
+

∂
∂x

[
q2

2

h2
+

g
2

h2
2

]
=−rgh2

∂h1

∂x
+ gh2

∂H
∂x

(16)

In these equations, index 1 makes reference to the upper layer and index 2 to the
lower one. The fluid is assumed to occupy a straight channel with constant rectan-
gular cross-section and constant width. The coordinate x refers to the axis of the
channel, t is the time, and g is gravity. H(x) represents the depth function measured
from a fixed level of reference. Each layer is assumed to have a constant density,
ρi, i = 1,2 (ρ1 < ρ2). The unknowns qi(x,t) and hi(x,t) represent respectively the
mass-flow and the thickness of the i-th layer at the section of coordinate x at time t.

We have constructed a GFORCE scheme for this system based on the family of
segments (see [2] for details).

We consider a numerical test which is designed to assess the long time behavior
and the convergence to a steady state including a regular transition and a shock.
The axis of the channel is the interval [0,10]. The bottom topography is given by the
function H(x) = 1.0−0.47e−(x−5.0)2

. The initial conditions are q1(x,0) = q2(x,0) =
0, and

h1(x,0) =
{

0.5 if x < 5,
0.03 otherwise,

h2(x,0) =

{
0.5−0.47e−(x−5)2

if x < 5,

0.97−0.47e−(x−5)2
otherwise.

As boundary conditions, the following relations are imposed at both ends q1(·,t) =
−q2(·,t), and the free surface is fixed to z = 0 at x = 10, that is h1(10,t)+h2(10,t)−
H(x) = 0. The CFL parameter is set to 0.8. The final time is t = 300.

A reference solution is computed by using a mesh of 3200 points.
Figure 1 (left) shows the comparison of the numerical solutions computed with

the numerical schemes: ROE, GFORCE and MUSTA, with the reference solution
at time t = 300. Note that, the numerical solution computed with MUSTA scheme
is better than the one computed with GFORCE scheme. Figure 1 (right) shows the
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comparison of the numerical solutions computed with the third order extension of
MUSTA and the reference solution at time t = 300.
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Fig. 1 Test 1. Interface of the two fluids: comparison with the reference solution.

References

1. Castro, M., Macı́as, J., Parés, C.: A q-scheme for a class of systems of coupled con-
servation laws with source term. application to a two-layer 1-d shallow water system.
Math. Mod. Num. Anal. (2001). DOI 35(1):107–127

2. Castro, M., Pardo, A., Parés, C., Toro, E.: Coefficent-splitting numerical schemes for noncon-
servative hyperbolic systems and high order order extensions. (to appear)

3. Dal Maso, G., LeFloch, P., Murat, F.: Definition and weak stability of nonconservative products.
J. Math. Pures Appl. (1995). DOI 74:483–548

4. LeFloch, P.: Shock waves for nonlinear hyperbolic systems in nonconservative form. Appl.,
Minneapolis, Preprint 593 (1989)

5. Marquina, A.: Local piecewise hyperbolic reconstructions for nonlinear scalar conservation
laws. SIAM J. Sci. Comp (1994)

6. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework.
SIAM J. Num. Anal. (2006). DOI 44(1):300–321

7. Parés, C., CastroM.J.: On the well-balance property of roes method for nonconservative hyper-
bolic systems. applications to shallow-water systems. Math. Mod. Num. Anal. (2004). DOI
38(5):821–852

8. Toro, E., Titarev, V.: Musta fluxes for systems of conservation laws. J. Comput. Phys. (2006).
DOI 216(2):403–429

9. Toumi, I.: A weak formulation of roe approximate riemann solver. J. Comp. Phys. (1992).
DOI 360–373



Local Time Stepping for Implicit-Explicit
Methods on Time Varying Grids

F. Coquel, Q.-L. Nguyen, M. Postel, and Q.-H. Tran

Abstract In the context of nonlinear conservation laws a model for multiphase flows
where slow kinematic waves co-exist with fast acoustic waves is discretized with an
implicit-explicit time scheme. Space adaptivity of the grid is implemented using
multiresolution techniques and local time stepping further enhances the computing
time performances. A parametric study is presented to illustrate the robustness of
the method.

1 Introduction

In the context of offshore oil production, we are interested in accurate and fast com-
putation of two-phase flows in pipelines. A one dimensional model of nonlinear hy-
perbolic equations shows that two sets of waves interplay in the phenomenon: a slow
transport wave which actually models the propagation of the gas and oil phases and
fast acoustic waves which are not interesting for the engineers but require special nu-
merical treatment. The initial system of equations is split into a Lagrange-projection
method. The Lagrange step, which handles the fast acoustic wave is treated with
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an implicit numerical scheme, therefore relaxing the stability constraint on the time
step. The projection step which deals with the transport phenomenon must be solved
as accurately as possible, with an explicit numerical scheme. This method is detailed
in [3] along with a derivation of an explicit stability condition for the time step, en-
suring positivity of physical quantities such as the density or the gas mass fraction.
Since the ratio between the acoustic and kinetic waves speeds is typically more than
10, it is very interesting to be able to treat the acoustic wave implicitly. The time
step is monitored by the explicit step requirement and therefore gains a factor of 10.
Still the numerical scheme calls for performance improvement, specially since the
closure laws entering the equations are in practice very costly to compute. The mul-
tiresolution method initially designed for an explicit scheme in the context of scalar
conservation laws [2] has been successfully extended to implicit-explicit schemes in
[5, 1] and for our specific Lagrange-projection method in [4]. Also in [4], we have
extended the local time stepping method designed by Müller and Stiriba in [6] for a
scalar hyperbolic equation, to our PDE system in the explicit-explicit and implicit-
explicit versions of the Lagrange projection method. We present here a paramet-
ric study of the standard multiresolution and local time stepping algorithms in the
implicit-explicit case.

2 Modeling of the Physical Problem

The density of the mixture ρ , velocity u and the gas mass fraction Y are solution of
the following problem ⎧⎨⎩

∂t(ρ) + ∂x(ρu) = 0,
∂t(ρY ) + ∂x(ρYu) = 0,
∂t(ρu) + ∂x(ρu2 + P) = 0,

(1)

whose space of states is
ΩV =

{
V = (ρ ,ρY,ρu) ∈ IR3,ρ > 0,Y ∈ [0,1],u ∈ IR

}
.

The thermodynamical closure law P(ρ ,Y ) entering in (1) can be in real applications
very costly to evaluate. Under the assumption c2(V) = ∂ρP(ρ ,Y )|Y > 0, the system
(1) is hyperbolic with three distinct eigenvalues u− c < u < u+ c. The intermediate
eigenvalue corresponds to the slow transport wave and is linearly degenerate, the
remaining ones are much larger and correspond to nonlinear acoustic waves. The
main idea consists in decomposing the flux in an acoustic part, associated with the
nonlinear waves, and a transport part, associated with the linearly degenerate waves.
The Lagrange step where we deal with the acoustic part of the flux is treated im-
plicitly, which enables us to use a larger time step, basically driven by the transport
phenomenon, which is treated explicitly for better accuracy.

We denote by Vn
j = ρn

j (1,Y n
j ,un

j), for j = 0, . . .J− 1, the numerical solution on

cell Ω j at time nΔ t and by Vn�
j = ρn�

j (1,Y n�
j ,un�

j ) the numerical solution at the end of
the Lagrange step. The cell length is Δx = L/J, where L is the length of the domain.
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The implicit Lagrange step consists in⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρn
j

τn�
j − τn

j

Δ t
−

ũn�
j+1/2− ũn�

j−1/2

Δx
= 0,

ρn
j

Y n�
j −Y n

j

Δ t
= 0,

ρn
j

un�
j −un

j

Δ t
+

P̃n�
j+1/2− P̃n�

j−1/2

Δx
= 0,

(2)

where τ denotes the specific volume 1/ρ . The intermediate states ũn�
j+1/2 and P̃n�

j+1/2
are given by ⎧⎪⎪⎨⎪⎪⎩

ũn�
j+1/2 =

1
2
(un�

j + un�
j+1)−

1
2an

(Pn�
j+1−Pn�

j ),

P̃n�
j+1/2 =

1
2
(Pn�

j + Pn�
j+1)−

an

2
(un�

j+1−un�
j ),

(3)

where we have set

Pn�
j = Pn

j −a2
n(τ

n�
j − τn

j ). (4)

In (3) and (4), an is a stabilizing coefficient coming from the relaxation formulation
of problem (1) as described in [3]. It is set globally for all cells at each time step by
the Whitham condition

a2
n > max

j=0,...,J−1
−∂τP(τn

j ,Y
n
j ).

The projection step computes the conservative state at time (n+1)Δ t according
to

Vn+1
j = Vn

j −
Δ t
Δx

(
Fn,�

j+1/2−Fn,�
j−1/2

)
,

where

Fn,�
j−1/2 =

(
0,0, P̃n�

j−1/2

)T
+(ũn�

j−1/2)
+Vn�

j−1 +(ũn�
j−1/2)

−Vn�
j .

We refer to [3] for a comprehensive study of the boundary conditions and we im-
plement here nonreflecting ones. The stability of the resulting scheme has also been
thoroughly studied in [3] and is ensured by a CFL–like condition. This condition is
enforced on the time step along with another bound ensuring that the implicit step
does not smooth too much the acoustic waves. We sum up these two requirements
by

Δ t < CFLexp(V)Δx, and Δ t < CFLimp(V)Δx, (5)
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where CFLimp is set so that acoustic waves can travel at most Na cells within one
time step. Na is set to 10 in the numerical simulations presented here.

3 Multiresolution

It is well known that since the fast acoustic waves are treated implicitly, they are
smoothed out very early in the computation (see [5]). The wave of interest which
moves with the slow speed and is computed explicitly, may present on the other hand
singularities that we want to compute as precisely as possible. It is of course natural
to discretize the solution finely in the region of these singularities and more coarsely
elsewhere where it is smooth. In answer to this observation, we have adapted to
the semi-implicit scheme the multiresolution techniques established for explicit
schemes in [2] (see [4] and references herein). A further enhancement involving
adapting the time step to the local grid size is also presented in [4].

Basics of Multiresolution Analysis

We consider a uniform reference mesh with step size Δx, and a hierarchy of K + 1
discretization levels of step size 2K−kΔx for k = 0, . . . ,K. The finite volume repre-
sentation of the solution at a level k can be encoded at a coarser level k− 1 by av-
eraging. Inversely, the solution at a coarse level k can be decoded to reconstruct the
solution at the finer level k + 1, using a local polynomial operator. The differences
-or details- between the predicted values and the actual values at level k+1 measure
the local smoothness of the solution. The solution is represented on an adaptive grid
designed by locally selecting the level above which the details are negligible up to
a given tolerance ε .

This non-uniform grid evolves with time, with a strategy based on the prediction
of the displacement and formation of the singularities in the solution. The wavelet
basis used to perform the multiscale analysis enables to reconstruct the solution at
any time back to the finest level of discretization, within an error tolerance controlled
by the threshold parameter ε .

Local Time Stepping

In the first works [5, 2], the time step is dictated by the size of the smallest cell in
the adaptive grid. In [4], the local time stepping approach developed by Müller and
Stiriba in [6] is adapted to the explicit and semi-implicit case: since the stability
of the scheme is controlled by a CFL condition we can design an elementary time
step Δ t which can be used to update the solution in the small cells of size Δx –
corresponding to stiff variation areas– while larger time steps 2kΔ t are used in larger
cells of size 2kΔx belonging to coarser levels k, for k = 0, . . .K−1. While the largest
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cells of the grid, of size 2KΔx, are updated in a single step, the smaller cells on finer
levels k require 2k intermediate updates to be synchronized in time. The evolution
algorithm consists of a time loop on the macro time step of length 2KΔ t. Within
each macro time step a second loop on 2K intermediate time steps is performed,
summarized in the following flow chart

• Loop on intermediate time steps i = 1, . . . ,2K

– Loop on levels k = K↘ ki (synch. level at time step i)
Update fluxes where needed
Update solution on level k using time step 2kΔ t

– If i even, partial regriding on levels ki to K.

At a given intermediate time step, only cells finer or in the current synchronization
level are updated using the adequate local time step. This is a somewhat technical
but very powerful notion which is illustrated in Figure 1. The conservativity of the
resulting scheme is ensured by the design of transition zones between cells of size
2kΔx and 2k−1Δx: some cells on the coarse level k− 1 are still updated with the
small time step 2kΔ t. The same ratio λ = Δ t/Δx is valid at all levels, except in
the transition zones where half this value is used. At each intermediate time step
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λ λ
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Fig. 1 A three-level adaptive grid with transition zones of width 1 represented with dotted lines.
The intermediate step number is denoted by i = 1, . . . ,4, and ki denotes the synchronization level.
The arrows indicate the fluxes that are computed at the corresponding time step

i, the implicit system (2) providing the solution of the Lagrange step is designed.
Recall that the Lagrange step deals with fast waves, traveling at a speed much larger
than the transport speed. The linear system must therefore include the cells in levels
k = ki, . . . ,K, plus all cells in coarser levels within a distance Na2kiΔx (see (5)).

4 Numerical Validation

The adaptive algorithms has been extensively tested in [4] in the fully explicit, and
the implicit-explicit version. The robustness in terms of precision and computing
time performance have been illustrated on Riemann problems. We present here
another comparison of the Multiresolution and the Local Time Stepping schemes
for an initial value problem with a moving discontinuity separating two smoothly
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varying regions. This is closer to typical operating conditions and allows a more
realistic study of performances. Figure 2 displays the density profile computed on
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Fig. 2 Density profile at t = 37s computed using standard multiresolution (MR) and local time
stepping (LTS) schemes. The + denote the level of discretization used locally, to be read on the
right vertical axis. The top curves represent the error with the density computed using the reference
scheme on the finest uniform grid (UNI).

a grid with cells of 1m at time t = 36.864s, with the multiresolution (MR) and the
local time stepping (LTS) schemes. Both uniform and MR schemes use the same
time step Δ t = 0.018s. After 2048 time steps, the slow wave has moved 750 me-
ters to the left at a speed approximately equal to −20m/s. One acoustic wave has
propagated to the right at a speed roughly given by 250m/s while another one has
propagated to the left at a mean speed of −255m/s. The curves at the top of the
figures display the difference between the density field computed by the finest grid
uniform scheme and the two adaptive schemes. The two acoustic waves are slightly
distorted by the multiresolution schemes. The transport wave discontinuity, on the
other hand, is almost identically resolved by both adaptive schemes. The adaptive
grid has 7 levels of discretization numbered from 0 to 6 on the right vertical axis and
symbols + indicate which level is used locally. The coarsest level of discretization,
with cells of length 64m is used in areas where the solution is very smooth, while
near the transport discontinuity and also the left-going acoustic wave, the finest cells
are needed.

We have performed a parametric study on this test case, using several threshold
values ε between 10−6 and 10−1 and several numbers of levels in the multiscale
hierarchy, between 1 and 12. For each set of parameters we compute the relative L1

error on the gas mass fraction obtained either with the multiresolution or the local
time stepping schemes with respect to the solution computed on the fine uniform
grid. In Figure 3 the error is displayed versus the computing time gain. This is
the ratio between the computed time needed by the uniform scheme and by either
the multiresolution or the local time stepping scheme. Three multiscale grids are
tested for each adaptive scheme with 1, 6 or 11 levels of coarsening starting from
the fine grid. On each curve, the different points correspond to different thresholding
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Fig. 3 Relative error on the gas mass fraction versus computing time gain for the standard mul-
tiresolution (MR) scheme on the left and the local time stepping (LTS) scheme on the right. Results
for grids with 1, 6 and 11 coarsening levels are represented and on each curve the points correspond
to simulations with different thresholds ε , varying between 10−6 and 10−1.

values. Small values of ε mean that almost all details must be kept therefore ensuring
small error, and little coarsening of the grid will be performed, therefore allowing
only poor computing time gain. Using only one level of coarsening gives very good
results in terms of precision but hardly any benefit in terms of computing time, due
to the book-keeping and coding/decoding operations. For large number of levels,
the computing time gain is as high as 10 for the multiresolution scheme and three
times better using the local time stepping for the same error level.

Since we plan to use this scheme in an engineering context using realistic and
very costly state laws in (1), it is also very informative to know the gain in terms
of calls to the state laws, which is more or less the same as the gain in grid size.
We display in Figure 4 the relative error on the gas mass fraction as a function of
the ratio between the number of calls to the state laws in the uniform and adaptive
grid simulation. Results for all possible depths of resolution –1 to 12– levels of
coarsening and all threshold values from 10−6 to 10−1 are represented. The best gain
is 42 for the standard multiresolution and 650 for the local time stepping scheme,
both achieving a relative error of 0.0013 on the gas mass fraction.
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A ‘TVD-like’ Scheme for Conservation Laws
with Source Terms

R. Donat Beneito and A. Martı́nez Gavara

Abstract The theoretical foundations of high-resolution TVD schemes for homoge-
neous scalar conservation laws and linear systems of conservation laws have been
firmly established through the work of Harten [5], Sweby [11], and Roe [9]. These
TVD schemes seek to prevent an increase in the total variation of the numerical solu-
tion, and are successfully implemented in the form of flux-limiters or slope limiters
for scalar conservation laws and systems. However, their application to conserva-
tion laws with source terms is still not fully developed. In this work we analyze the
properties of a second order, flux-limited version of the Lax-Wendroff scheme pre-
serving steady states [3]. Our technique is based on a flux limiting procedure applied
only to those terms related to the physical flow derivative.

1 Introduction

The theory of numerical schemes for homogeneous scalar conservation laws is well
established. Total Variation Diminishing (TVD) schemes have proved to be particu-
larly successful at capturing shock waves and discontinuous solutions. A problem of
increasing importance in Computational Fluids Dynamics is the application of nu-
merical methods to inhomogeneous problems such as shallow water equations. In
such cases the TVD property is no longer valid. Although certain source terms may
preserve the TVD property of the homogeneous part, others will actively increase
the variation in the solution. An adapted one-step second-order scheme gives a very
good accuracy of the solution in smooth regions although the inevitable presence of
spurious overshoots in the proximity of the shock, typical of second order schemes,
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has been observed. As in the homogeneous case, the oscillations are not reduced
if we use a fine mesh (see Fig. 1). This motivates the use of TVD-like schemes for
inhomogeneous problems, however, although care needs to be taken in the inclusion
of the source terms.
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Fig. 1 Second order scheme applied to ut +ux =−u.

2 Operator-Splitting

A popular method of treating inhomogeneous hyperbolic equations of the form

ut + f (u)x = s(x,u), (1)

is to split the problem, over a time step*t, into a homogeneous conservation part

ut + f (u)x = 0 (2)

and an ODE part
ut = s(x,u) (3)

and to alternate between the two solutions. The numerical solution for a general
scalar problem of the type (1) would be to find the numerical solution, ūn+1, of (2)
with initial data u(x,tn) = un, a high order TVD scheme would be suitable, then use
a numerical ODE solver , like various Runge-Kutta type methods, to obtain un+1

from (3) with initial data u = ūn+1.
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The advantages of such an approach are clear since numerical schemes for both
(2) and (3) are well developed and can be chosen to optimal effect. This is partic-
ularly true for stiff problems where much work has been undertaken using implicit
ODE solvers [7]. Despite their advantages in problems with stiff source terms, the
situation is by no means ideal, however. The solution of the homogeneous PDE part
may cause a large departure from the true solution which will need to be recovered
by the ODE solver. If the recovery is not exact, numerical errors will be introduced.

There are some other potential pitfalls in using a fractional-step method to han-
dle source terms. This approach performs very poorly in those situations where ut is
small relative to the other two terms, in particular when steady or quasi-steady so-
lutions are being sought. For such solutions, highly accurate numerical simulations
can only be obtained from numerical methods that respect the balance that occurs
between the flux gradient and the source term when ut is small, and it is known ([6])
that this balance is not likely to be respected when using a fractional step approach.

3 An Adapted Second-Order Method

Many numerical methods, like fractional step methods, have difficulties preserving
steady states and cannot accurately calculate small perturbations of such states, as
we have observed in the previous section.

The source term has to be incorporated into the algorithm, avoiding fractional
steps. In general, the source term can be approximated in two ways: A pointwise
approach, where the source term approximation is calculated at the nodal points, and
an upwind characteristic based approach, where the source term is approximated in
a more physical way. Roe [10] put forward the idea of upwinding the source terms
in inhomogeneous conservation laws, in a manner similar to that for constructing
numerical fluxes for solving homogeneous conservation laws. Further work in this
direction was carried out by Bermúdez and Vázquez-Cendón [1], who started by
considering the problem

ut + aux = s(x,u). (4)

The solution of this inhomogeneous linear equation with nonlinear source, con-
sidering a constant (a > 0), at time t = (n + 1)*t can be calculated by integrating
along the characteristic through (xi,tn+1) between tn and tn+1 to give

u(xi,tn+1) = u(xi−a*t,tn)−
∫ tn+1

tn
b(xi−a(tn+1− ξ ),u(xi−a(tn+1− ξ ),ξ )dξ .

(5)
In the above integral b is clearly dependent on data in the upwind domain, indicating
a need for an upwind treatment of source term.

In this sense, Gascón and Corberán in [3] presented an extension of the one-step
Lax-Wendroff scheme for inhomogeneous conservation laws by rewriting (1) as
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ut + g(x,u)x = 0 where g(x,u) = f (u)−
∫ x

0
s(ξ ,u(ξ ,t))dξ . (6)

A second order method is obtained by the scheme

Un+1
i = Un

i −
*t
*x

(gn+ 1
2

i+ 1
2
−g

n+ 1
2

i− 1
2
), (7)

where the estimation of the new flux, g, at the point mid-way between grid points is
obtained by an expression based on Taylor’s expansion

g
n+ 1

2

i+ 1
2

= gn
i+ 1

2
+
*t
2

∂g
∂ t

∣∣∣∣n
i+ 1

2

. (8)

By introducing the following notation:

αn
i+ 1

2
=
*t
*x

∂ f
∂u

∣∣∣∣n
i+ 1

2

, β n
i+ 1

2
=
*t
2

∂ s
∂u

∣∣∣∣n
i+ 1

2

, bn
ik ≈

∫ xk

xi

−s(ξ ,u(ξ ,tn))dξ 1,

and using simple algebraic manipulations, the scheme admits the expression

Un+1
i = Un

i −
*t
*x

( f LW
i+ 1

2
− f LW

i− 1
2
)− *t
*x

(bn
i− 1

2 i
+ bn

ii+ 1
2
)

− *t
2*x

(β n
i+ 1

2
( f n

i+1− f n
i + bn

ii+1)+β n
i− 1

2
( f n

i − f n
i−1 + bn

i−1i)) (9)

with

f LW
i+ 1

2
=

1
2
( f n

i+1 + f n
i −bn

ii+ 1
2
+ bn

i+ 1
2 i+1
−αn

i+ 1
2
( f n

i+1− f n
i + bn

ii+1)). (10)

4 A Flux Limiter Scheme

The motivation for this work is to analyze the properties of a second order, flux-
limited version of the Lax-Wendroff scheme which preserves the TVD property, in
the sense that it avoids oscillations around discontinuities, while preserving steady
states ([3]).

We consider the Lax-Wendroff method (9) adapted to a balance law (1), this is
a second order method that generates spurious oscillations near discontinuities (see
Fig. 1). In order to construct a ”flux-limiting” method, we consider the numerical
flux in (9) of the form

Fn
i+ 1

2
= FLO

i+ 1
2
+φn

i+ 1
2
(FHI

i+ 1
2
−FLO

i+ 1
2
), (11)

1 We make sure that bn
ik approximation guarantee that the scheme satisfy the exact C-property, i.e.,

it is exact when applied to the stationary case.
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using (10) as a high order numerical flux(FHI
i+ 1

2
). As a low order numerical flux(FLO

i+ 1
2
),

our choice is

FLO
i+ 1

2
=

1
2
( f n

i+1 + f n
i −bn

ii+ 1
2
+ bn

i+ 1
2 i+1
− sign(αn

i+ 1
2
)( f n

i+1− f n
i + bn

ii+1)). (12)

We called this method the TVDB scheme, and we can notice that the numerical
flux incorporates information on the source term in its definition, for this reason, we
define the variable rn

i+ 1
2
, that is always the ratio of the upwind change to the local

change, as:

rn
i+ 1

2
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f n
i − f n

i−1 + bn
i−1i

f n
i+1− f n

i + bn
ii+1

, sign(αn
i+ 1

2
) > 0;

f n
i+2− f n

i+1 + bn
i+1i+2

f n
i+1− f n

i + bn
ii+1

, sign(αn
i+ 1

2
) < 0.

(13)

As a flux limiter function φn
i+ 1

2
= φ(rn

i+ 1
2
) we use the minmod limiter,

φn
i+ 1

2
= max(0,min(rn

i+ 1
2
,1)) (14)

In Fig 2 left, we display the numerical results obtained after applying this scheme to
ut +ux =−u. A slight oscillation can be observed, whose amplitude decreases with
the mesh width, as shown in Fig. 2 right. The oscillatory behavior can be completely
avoided by using an implicit scheme (see [8]).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

numerical solution
analytical solution

10
−5

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

Δ x

||error||
1

Δ x 0.69

Fig. 2 ut +ux =−u. Left: TVB method. Right: Error for the TVDB method.
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5 Burgers’ Equation with Source Terms

In a variety of physical problems one encounters source terms that are balanced by
internal forces and this balance supports multiple steady state solutions that are sta-
ble. Typical of these are gravity-driven flows such as those described by the shallow
water equations over a nonuniform ocean bottom. In this section we show a scalar
1-D approximation of balance laws of this kind.

5.1 The Embid Problem

This problem was presented in [2] as a simple scalar approximation to the 1-D
equations that model the flow of a gas through a duct of variable cross-section.{

ut +( u2

2 )x = (6x−3)u, 0 < x < 1
u(0,t) = 1,u(1,t) =−0.1.

(15)

There are two entropy satisfying steady solutions for the Embid problem. One
is stable in time with a standing shock at x1 = 0.18 and the other with an unstable
standing shock at x2 = 0.82. The steady solutions for the Embid problem are

u(x) =
{

1 + 3x2−3x, x < xi;
−0.1 + 3x2−3x, x > xi.

(16)

for i = 1,2. We computed the steady profiles by taking initial data with a jump at
the stable location, using a CFL number equal to 0.8 and by marching in time until
convergence criterion

∑
i
|un+1

i −un
i | ≤ 10−10

was satisfied (Fig. 3 left).
The TVDB numerical solution reproduces the exact steady solution except for

one internal shock point. The scheme requires 383 iterations to reach the stationary
solution with a residual less than 10−10 and using the minmod limiter. Fig. 3 right
shows the logarithm of the residual errors with respect to the number of iterations
for both schemes.

5.2 Greenberg et al. Tests

In order to test the methods described above, we show the numerical result following
the tests in [4]. Let us consider the equation

ut +(
u2

2
)x + ax(x)u = 0. (17)
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Fig. 3 Embid problem. Left: TVB scheme. Right: Convergence history

where

a(x) = 0.9

⎧⎨⎩
0, x < 0;
(cos(π x−1

2 ))30, 0≤ x≤ 2;
0, 2 < x.

(18)

Fig. 4 left is the numerical solution of (17) with the initial data u + a = 1 at time
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Fig. 4 Left: Experiment 1. Right: Experiment 2.

1 (Experiment 1). The l1−error is 6.9044 · 10−17 for the TVDB scheme, thus the
C-property is ensured.
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On the other hand, the initial condition used to generate Fig. 4 right at time 1.5
(Experiment 2) is

u + a =
{

1.3, x < 0.2;
1, 0 < x.

(19)

In this case, we cannot observe any spurious oscillations in the numerical solution.

Acknowledgements The authors acknowledge support from Spanish MTM2005-07214.

References
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Application of the WAF Method to Shallow
Water Equations with Pollutant and
Non-Constant Bottom

E.D. Fernández-Nieto and G. Narbona-Reina

Abstract In this work we perform the extension of the WAF method [3] to discretize
non-homogeneous Shallow Water Equations with pollutant.

We propose a well-balanced extension: the numerical scheme preserves all sta-
tionary solutions up to second order, and exactly preserves water at rest. The dif-
ficulty lies in the treatment of the pollutant component that includes an extra term
related with the approximation of the intermediate wave.

Finally, we perform several numerical tests, by comparing it with the HLLC
solver, analytical solutions and reference solutions.

1 The WAF Method

In this section we summarize the WAF method for the homogeneous SWE with
pollutant. As a general reference for this section, see [4].

We begin by considering the homogeneous SWE given by the system{
∂tW + ∂xF(W ) = 0, x ∈ [0,L], t ∈ [0,T ],
W (x,0) = W0 x ∈ [0,L]; (1)

where W = (h,q,r), and F(W ) =
(

q,
q2

h
+

1
2

gh2,
qr
h

)
.
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The unknowns are h, the height of the water column, q, the discharge; if we
denote by ψ the pollutant concentration, then r = hψ . W0 is the initial data, L is the
length of the domain, T the final time and g is the constant gravity.

We consider a partition of the domain {xi}i = {iΔx}i where, by simplicity, we
take Δx a constant space step, and we denote by tn = tn−1 + Δ t the time values,
with Δ t the time step. If we use a finite volume method in conservative form to
approximate the solution of this problem, we have

W n+1
i = W n

i −
Δ t
Δx

(φn
i+1/2−φn

i−1/2), (2)

where we denote by W n
i an approximation of the mean value of the solution on

the control volume (xi−1/2,xi+1/2) at time t = tn, and by φn
i+1/2 = φ(W n

i ,W n
i+1) the

numerical flux function that characterize each method.
To obtain the numerical flux of the WAF method we integrate in the computa-

tional grid [−Δx/2,Δx/2]× [0,Δ t] (see Fig. 1), getting:

φWAF
i+1/2 =

1
2
(Fi + Fi+1)− 1

2

N

∑
k=1

MkΔF (k)
i+1/2, (3)

where Mk = sign(Sk)Ak, Ak is a flux limiter function and Sk the approximation of

characteristic velocities. We have denoted by ΔF (k)
i+1/2 = F (k+1)

i+1/2 −F(k)
i+1/2, with F (k)

i+1/2
the value of the flux function in the interval k (see Fig. 1).

If we denote by [·] j the j-th component, the usual choice for F (k) definition is the
HLLC flux, given by:

[φHLLC
i+1/2 ] j = [φHLL

i+1/2] j j = 1,2;

[φHLLC
i+1/2 ]3 = [φHLL

i+1/2]1ψ∗ where ψ∗ =
{
ψi if S2 ≥ 0
ψi+1 if S2 < 0.

(4)

Where the HLL flux φHLL
i+1/2 is defined as: Fi if S1 ≥ 0, Fi+1 if 0≥ S3 and

FHLL = S3Fi−S1Fi+1+S3S1(Wi+1−Wi)
S3−S1

when S1 ≤ 0 ≤ S3. For Si, 1 ≤ i ≤ 3, for example
we can set:

x /2 0

t

x

SS

Δ t

Δ t / 2

S

(4)

3

21

F

F F

−Δ

(1) F

(3)(2)

Δx /2 

Fig. 1 Computational grid and intermediate waves to compute WAF method.
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S1 = ui−
√

ghi S2 =
S1qi+1−S3qi−S1S3(hi+1−hi)

qi+1−qi−hi+1S3 + hiS1
S3 = ui+1 +

√
ghi+1. (5)

Finally we can write the WAF flux as follows:

[φWAF ] j =
[

Fi + Fi+1

2
− 1

2
1

S3−S1

(
(M3S3−M1S1)(Fi+1−Fi)−

− S3S1(M3−M1)(Wi+1−Wi)
)]

j ; for j = 1,2. (6)

[φWAF ]3 =
[

Fi + Fi+1

2

]
3
− 1

2
1

S3−S1

[
(S3M3ψi+1−S1M1ψi)(Fi+1−Fi)+

+ S1S3(M1ψi−M3ψi+1)(Wi+1−Wi)+
+ M2(ψi+1−ψi)

(
S3Fi−S1Fi+1 + S1S3(Wi+1−Wi)

)]
1. (7)

2 Extension to Non-Homogeneous System

We consider now the non-homogeneous shallow-water equations with pollutant:{
∂tW + ∂xF(W ) = G(x,W ), x ∈ [0,L], t ∈ [0,T ],
W (x,0) = W0 x ∈ [0,L]. (8)

If we take the topography source term and we denote by zb(x) the height of the
topography at point x, we have: G(x,W ) =

(
0,−ghz′b(x),0

)
.

In order to obtain the structure of the numerical scheme in conservative form, we
must integrate equation (8) on the control volume (xi−1/2,xi+1/2). Thus, we obtain

W n
i+1−Wn

i

Δ t
+

Fi+1/2−Fi−1/2

Δx
=

1
Δx

∫ xi+1/2

xi−1/2

G(x,W (x))dx.

Where, Fi+1/2 denotes an approximation of F(W̃ (xi+1/2)) with W̃ the solution of
the Riemann problem associated to the non-homogeneous system. The key point is
that the Riemann problem depends on the original system, then Fi+1/2 must depend
on the source term. So we use the following structure for the scheme to approximate
(8):

W n
i+1−Wn

i

Δ t
+
φn

G,i+1/2−φn
G,i−1/2

Δx
= Gn

C i. (9)

We have denoted by φG the numerical flux depending on the source term G and by
GC i a centered approximation of G at point xi.

So, the objective of this section is to define φG, as a generalization of the WAF
method depending on G. To do it, we focus on the well-balanced properties.
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2.1 Studying the Numerical Viscosity of the Method

The technique introduced in [1] is to study the numerical viscosity of the method to
extend it to non-homogeneous system. The objective is that the numerical viscosity
term must vanishes for all stationary solutions.

If we can write the numerical flux function in the following form

φi+1/2 =
Fi + Fi+1

2
+ν1(W )(Wi+1−Wi)+ν2(W )(Fi+1−Fi), (10)

with ν1 and ν2 the viscosity coefficients, the numerical scheme defined by (2)-(10)
can be viewed as a centered discretization of the equivalent system:

∂tW + ∂xF(W )+Δx [∂x (ν1∂xW )+ ∂x (ν2∂xF(W ))] = G(x,W ). (11)

If W is a stationary solution of (8), and if we assume that the jacobian matrix of F ,
A, is not singular, then it satisfies: ∂xF(W ) = G(x,W ) and ∂xW = A−1(W )G(x,W ).
So, W is a stationary solution of the equivalent system

∂tW + ∂xF(W )+Δx
[
∂x
(
ν1(∂xW −A−1(W )G(x,W ))

)
+

+∂x (ν2(∂xF(W )−G(x,W)))
]
= G(x,W ). (12)

Finally, we propose the following definition of φG,

φG,i+1/2 =
Fi + Fi+1

2
+Δx

[
ν1(Wi,Wi+1)

(
Wi+1−Wi

Δx
− Ã−1

i+1/2Gi+1/2

)
+

+ ν2(Wi,Wi+1)
(

Fi+1−Fi

Δx
−Gi+1/2

)]
, (13)

where Ã−1
i+1/2 is an approximation of A−1(Wi+1/2).

2.2 Extension to Non-Homogeneous System

In this section we shall see that we can rewrite the WAF flux under the structure
(10) for first and second components. The third component includes another term
that can be written in terms of S2. Finally, following Subsect. 2.1 we propose the
extension of WAF method to non-homogeneous system.

Firstly we focus on the first two components, given by (6). It can be written under
the form (10) by setting the following values for the viscosity coefficients, :

ν1(W ) =−1
2

S3S1

S3−S1
(M1−M3) ν2(W ) =−1

2
M3S3−M1S1

S3−S1
.

So as for the third one, defined by equation (7), we could take:
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ν1(W ) =−1
2

S3S1

S3−S1
(M1ψi−M3ψi+1) ν2(W ) =−1

2
M3S3ψi+1−M1S1ψi

S3−S1
,

but the last term in the definition cannot be put in this form. We noted it by rhs3:

rhs3 = M2(ψi+1−ψi)
[(

S3Fi−S1Fi+1 + S1S3(Wi+1−Wi)
)︸ ︷︷ ︸

(∗)

]
1. (14)

On the other hand the definition of S2, given by (5), can also be rewritten in

function of (∗): S2 = − [S3Fi−S1Fi+1+S1S3(Wi+1−Wi)
]

1
qi+1−qi−hi+1S3+hiS1

. Moreover in [2] the following
extension of S2 to non-homogeneous systems is proposed:

S2G =
S1qi+1−S3qi−S1S3(hi+1−hi−Δx[Ã−1

i+1/2Gi+1/2]1)

qi+1−qi−hi+1S3 + hiS1
. (15)

This definition verifies for example that S2G is equal to zero for water at rest, whereas
S2 is non zero for water at rest when topography is not flat. We also consider the
corresponding M2G associated to S2G (see (3)). For term (∗) in equation (14) we
consider an analogous extension to the non-homogeneous case as for S2. Finally,
we propose the following extension of the WAF method:

For the first and second components, j = 1,2:

[φWAF
G ] j =

[
Fi + Fi+1

2
− 1

2
1

S3−S1

(
(M3S3−M1S1)(Fi+1−Fi−ΔxGi+1/2)−

− S3S1(M3−M1)(Wi+1−Wi−Δx(A−1G)i+1/2)
)]

j
.(16)

and for the third component:

[φWAF
G ]3 =

[
Fi + Fi+1

2

]
3
− 1

2
1

S3−S1

[
(S3M3ψi+1−S1M1ψi)(Fi+1−Fi−ΔxGi+1/2)

+ S1S3(M1ψi−M3ψi+1)(Wi+1−Wi−Δx(A−1G)i+1/2)

+ M2G(ψi+1−ψi)
(
S3Fi−S1Fi+1 + S1S3(Wi+1−Wi−Δx(A−1G)i+1/2)

)]
1
.

(17)

2.3 Well-Balance Property

In this section we state the main result of well-balanced property obtained for the
proposed extension of WAF method.

We consider the asymptotically well-balance property introduced in [1]:

Definition 1. We say that the scheme (9) is asymptotically well-balanced if there is
an increasing sequence of compact sets {Kn}n such that:
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1. μ([0,L]−∪nKn) = 0, being μ the Lebesgue measure in R.
2. For all n there exists a δn > 0 such that if 0 < Δx < δn, then the scheme balances

system (8) up to second order in Kn.

Theorem 1. We consider the scheme (9), then:

i) The scheme is asymptotically well-balance for all stationary solutions of the
SWE.

ii) The scheme preserves exactly the stationary solution of water at rest.

3 Numerical Tests

In this section we present several numerical tests by comparing the WAF method
with HLLC and with exact or reference solutions.

Test 1: A transport of pollutant test with not flat bottom. With this test we show
that the WAF scheme can produce very different results, for both approximations
of the intermediate wave speed, S2 given by (5) or S2G given by (15) (see [2]). To
consider S2G is essential for the good behavior of the pollutant concentration, as we
will see below.

We set a domain of 4 meters, we take a constant space step Δx = 0.08. We state
the CFL condition as 0.9. The final time is T = 1, and the initial conditions:

h0 = 18− zb; q0 = h0; r0 =
{

h0 x < 2
0 x≥ 2

; with zb(x) =
{

4.5 x < 2
0 x≥ 2

.

In Fig. 2 we present the solution obtained using S2G. In a) the bottom function,
water surface and pollutant concentration are drawn. In Fig. 2b) we compare the
pollutant concentration provided by the WAF solver and HLLC. We observe a less
numerical diffusion of the WAF method.

If we use S2, we obtain a peak of the pollutant concentration near the bump
as we observe in Fig. 3b). This is not an unstability, this is the effect of a wrong
approximation of the intermediate wave speed. In this problem S2 must be always
positive, nevertheless the definition of S2 produces a negative value just in x = 2, as
it is shown in Fig. 3a).

Test 2: Stationary transcritical flux with a shock and a periodic time-varying
pollutant concentration. We consider a classical test for a stationary solution for
h and q but including a source of periodic time pollutant as a boundary condition.

The domain length is 20 meters, the space step Δx = 0.1 and CFL = 0.9.
The initial conditions are: h0 = 0.33−zb;q0 = 0;r0 = 0, and the boundary condi-

tions: q = 0.18 and r = rp(t) at x=0; h = 0.33 at x = 20. Being the bottom function:

zb(x) =
{

0.2− 0.05(x− 10)2 8 < x < 12
0 otherwise

.
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Fig. 2 Test 1: a) Bottom, water surface and pollutant concentration for the HLLC and the WAF
method using S2G. b) Pollutant concentrations.
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Fig. 3 Test 1: a) Velocity approximations, S2 and S2G. b) Pollutant concentration for the WAF
method taking S2 or S2G.

The function rp is a periodical function in time that represents a contribution of
pollutant of three seconds, every ten seconds; and it is given by:

rp(t) =
{

h t ∈ [10i,10i+ 3]
0 otherwise

, for i ∈N.

In Fig. 4, we compare the exact solution for h and q with the proposed WAF
method solution, in both cases we notice an accurate approximation.

In Fig. 5 a) we compare the pollutant concentration for the WAF and HLLC
solver at time t =189 seconds. We observe the great numerical diffusion introduced
by HLLC solver in comparison with the WAF method. In Fig. 5b) we compare
the WAF method with the approximated solution solving the characteristic curves
problem at the same time.
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Fig. 4 Test 2: a) Water surface and topography b) Velocity.

a) 0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 189s

HLLC
WAF
Bottom

b) 0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 189s

Exact sol.
WAF
Bottom

Fig. 5 Test 2: a) Concentration for WAF and HLLC methods. b) WAF and reference solution.

References

1. Chacón Rebollo, T., Domı́nguez Delgado, A., Fernández Nieto, E.D.: Asymptotically balanced
schemes for non-homogeneous hyperbolic systems—application to the shallow water equa-
tions. C. R. Math. Acad. Sci. Paris 338(1), 85–90 (2004)

2. Fernández Nieto, E.D., Bresch, D., Monnier, J.: A consistent intermediate wave speed for a
well-balanced hllc solver. Submitted (2007)

3. Toro, E.F.: A weighted average flux method for hyperbolic conservation laws. Proc. Royal
Society of London A 423, 401–418 (1989)

4. Toro, E.F.: Shock-Capturing Methods for Free-Sufrace Shallow Flows. Wiley and Sons Ltd.,
Chichester (2001)



A Third Order Method for Convection-Diffusion
Equations with a Delay Term

J. Frochte

Abstract The numerical solution of a parabolic convection diffusion equation with
delay term is considered. This includes both variants, the initial value problem and
the prehistory problem. Equations with a delay or memory term, often called inte-
grodifferential problems, appear in different contexts of heat conduction in materials
with memory, viscoelasticity and population models. This work concentrates on the
linear convection diffusion case of the prehistory and the initial value problem. One
problem concerning delay or memory problems is the data storage. To deal with
this problem an adaptivity method of third order in time is developed to save stor-
age data at smooth parts of the solution. Numerical results for higher Péclet numbers
are presented.

1 Introduction

Let T > 0 and QT =Ω × (0,T ] where Ω is an open bounded region in �n. First let
us consider a parabolic partial integrodifferential equations of the kind

d
dt

u−Au = f +
∫ t

0
B(t,s)u ds in Ω , (1)

u = û on ∂Ω ,

u = u0 in Ω , for t = 0 ,

with a linear elliptic operator A and a problem depending operator B. Such equations
appear for example (see [12], [9], [3], [2] chapter 1) in different contexts of heat
conduction in materials with memory, viscoelasticity and population models. These
models tend to be nonlinear, but of course first the numerical behaviour of linear

Jörg Frochte
Fachhochschule Südwestfalen, Elektrische Energietechnik Soest, Lübecker Ring 2, 59494 Soest,
e-mail: joerg.frochte@uni-due.de

281



282 J. Frochte

problems has to be studied. Up to now the research in this area has been concentrated
on linear and semi-linear cases, see e.g. [11], [5] [7], [6]. We will study a special
case of (1).

d
dt

u− ε∇2u + k ·∇u = f +
∫ t

0
K(s− t)u ds in Ω , (2)

u = û on ∂Ω ,

u = u0 in Ω , for t = 0

We call this the initial value problem and we also consider the prehistory problem:

d
dt

u− ε∇2u + k ·∇u = f +
∫ t

t−d
K(s− t + d)u ds in Ω , (3)

u = û on ∂Ω ,

u = uhistory in Ω , for t ∈ [−d,0]

K is a C1(�→ �) function called kernel, ε > 0 is the diffusion coefficient and
k ∈ C0(�n → �n) the convection coefficient. In the prehistory case d is the fix
length of the delay.
So additionally to the common problems of partial integrodifferential equations like
e.g. memory storage we have to deal with the problems arising in the context of
convection diffusion equations. With a rising global Péclet number defined as

Pe =
hΩ‖k‖max

ε
(4)

hΩ is the characteristic length of the domain Ω . To solve this problem we will use
linear finite elements with streamline diffusion stabilisation, see e.g. [8] for details.
One of the first approached solver strategies for the initial value problem was pub-
lished in [10] and uses a left trapez rule to deal with the integral term and a backward
Euler scheme for the time discretisation. The result is a scheme of first order for the
initial value problem. If we apply this to our initial value problem (2) we achieve:

un+1−un

Δ t
− ε∇2un+1 + k ·∇un+1 = f +Δ t

n

∑
j=0

K( jΔ t)un− j (5)

To deal with the memory storage problem of the integral term e.g. Thomée advo-
cates integration techniques of higher order so that not every time step has to be
stored.

2 Higher Order Integration Scheme

In this paper we propose another approach. First we present a higher order scheme
for a fixed time step size using a third order discretisation in time, in our case the
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BDF schemes, which is suitable to deal with stiff problems. The higher order in
the integral term is performed using hermite interpolation. The resulting integration
scheme is independent of the discretisation τ = {t0, ...tn} in time so that we can
straightforward apply common mechanics for adaptive time step size control to the
scheme.

2.1 Integration Using Hermite Interpolation

Let us consider a function f̂ (t) : �→ � and let t j < t j+1 ∈ � f̂ . So, if we have

f (t j), d
dt f (t j), f (t j+1) and d

dt f (t j+1) we can interpolate f on [t j,t j+1] with a cubic
polynomial. Let now the functions in our integral term at a fixed point x̂ ∈ Ω be
denoted as

f̂ (t) := K(t− t1) ·u(x̄,t) .

We can now first interpolate f̂ (t) using the cubic hermite interpolation over [t j,t j+1]
with s = (t− t j)/(t j+1− t j) and

ut j = (1 + 2s)(1− s)2, ut j+1 = (3−2s)s2 (6)

vt j = s(1− s)2, vt j+1 =−s2(1− s) . (7)

Thus we get:

f̂ (t)≈ p(t)=ut j (t) f̂ (t j)+ut j+1(t) f̂ (t j+1)+(t j+1−t j)
(
vt j (t)

d f̂ (t j)
dt +vt j+1(t)

d f̂ (t j+1)
dt

)
This cubic polynomial can be integrated exactly by using simpsons rule.

∫ t j+1

t j

f̂ dt ≈
∫ t j+1

t j

p dt =
t j+1− t j

2

(
f̂ (t j)+ f̂ (t j+1)

)
+

(t j+1− t j)2

12

(
d f̂ (t j)

dt
− d f̂ (t j+1)

dt

)

If we now combine this approach with a time discretisation of third order we receive
a method of third order in time. Now there is the question left how to evaluate

f̂ (t)
dt

= u(x̄,t) · dK(t− t1)
dt

+ K(t− t1) · du(x̄,t)
dt

of the same order as the time discretisation. While we generally assume that dK(t−t1)
dt

is given as analytical expersion, if not we use the same technique as described for
u below, we will have to approximate du(x̄,t)

dt anyway. To do this we again choose a
BDF approach of the same order as the one used for the time discretisation. Gener-
ally it is supposed to compute du(x̄,t)

dt once and save it, so that the CPU costs are only
spent once. Of course, alternatively it is possible to trade CPU time vs. memory and
compute du(x̄,t)

dt in every time step.
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This approach can be applied in the inner part of the integral. It will not work with
the recently added part of the delay integral [tn,tn+1]. Because un+1 is unknown we
have to treat it different from the ones before. Many approaches are possible like an
extrapolation, a kind of predictor-corrector scheme etc.. In numerical test it turns out
that the influence of this part is generally small enough just to use the left trapezium
rule for the following exampels.

We also have to consider the beginning of the integral. In this case we have to
distinguish between the initial value and the prehistory problem. In both cases it
is not clear how to compute an approximation for du(x̄,0)

dt , respectively du(x̄,−d)
dt . For

in the prehistory case it is quite easy, we can approximate du(x̄,−d)
dt using forward

instead of backward differences. In the initial value case we can use the same ansatz,
but not right from the start. We have to wait a few time steps until enough data has
been accumulated. So in the case of the initial value problem until the third time step
we will only have an approximation of first or second order for the integral term.

2.1.1 Numerical Results

Let us now consider the following prehistory testproblem:

d
dt

u− ε∇2u + k ·∇u = f +
∫ t

t−4
K(s)u ds t ∈ [0,4] , (8)

with K = exp(s− t). f is chosen in a way that

u =
g(t)

2cosh(a(x−m))cosh(a(y−n))
(9)

is the solution. With g(t) = (sin(2πt)+ 1)/2 we call this testproblem I.

To verify the order in time we choose the parameters (a = 1, ε = 1 and k = (1,1)t )
for the testproblem which causes only minor difficulties in space. In Table 1 the
results for hermite approach with BDF(3) are displayed. Until the error in space
becomes dominant we can see reduction rates of third order. For higher Péclet num-
bers the stabilisation of the galerkin method is performed by streamline diffusion.

Table 1 Results for the hermite integration and a BDF(3) scheme on testproblem I.1 with a = 5.
The left table shows the order in time and the right one the behaviour for different Péclet numbers.

Δt Pe ‖u−uh‖L2 Quotient
1/8 1 1.322e-2 -
1/16 1 1.794e-3 7.369
1/32 1 2.274e-4 7.889
1/64 1 2.847e-5 7.987

1/128 1 4.112e-6 6.923

Δt Pe ‖u−uh‖L2

1/32 100 2.274e-4
1/32 101 9.301e-4
1/32 102 1.286e-3
1/32 103 1.329e-3
1/32 104 1.335e-3
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2.2 Adaptive Step Size Control

One major advantage of the presented hermite integration scheme is the fact that we
are able to choose the time step size in every step independent of the ones chosen
before. So we are only limited by the used time stepping technique. With a variable
step size the coefficients of the BDF scheme have to be recomputed in every time
step. For BDF(3) we achieve:

β3 =
(t j+1− t j)(t j+1− t j−1)(t j+1− t j)

(t j−2− t j−1)(t j−2− t j)(t j−2− t j+1)
; β2 =

(t j+1− t j)(t j+1− t j−2)(t j+1− t j)
(t j−1− t j−2)(t j−1− t j)(t j−1− t j+1)

β1 = (−1)
(t j+1− t j−2)(t j+1− t j−1)

(t j− t j−1)(t j− t j−2)
; β0 = 1−β3−β2−β1

To construct an adaptive scheme we need an approximation ūh(t j+1) to compare
the computed solution uh(t j) with. The computation of this approximation should
require low CPU costs, however it should not force the algorithm to unnecessary
changes in the time step size. To achieve this we use an extrapolation of third order
based on the polynomial of the BDF scheme:

γi =
k

∏
j=0, j �=i

tn+1− tn+1− j

tn+1−i− tn+1− j , γ0 = 1−
k

∑
i=1

γi ūn+1 =
k

∑
i=0

γiu
n−i

Now we set up the error function as followed:

η = ‖ūn+1−un+1
Δ tn ‖ ≤ Rtol ·max{‖ūn+1‖,‖un+1‖}+ Atol = E , (10)

with two parameters Rtol and Atol to be chosen and the solution un+1
Δ tn computed

with the time step size from the last time step. Based on this the next time step size
is chosen as followed:

hn+1 = αhn α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.75 , if

(
E
η

)1/4
< 0.75(

E
η

)1/4
, if 0.75≤

(
E
η

)1/4 ≤ 1.25

1.25 , if < 1.25
(

E
η

)1/4

For the used variable step size BDF scheme the choice of Δ tn+1 is restricted by the
conditions published by Grigorieff, see [4] and [1]. For the most practical problems
the boundaries published by Grigorieff are quite pessimistic so that for our solver
we choose 0.75≤ α ≤ 1.25 instead of 0.836≤ α ≤ 1.127 from [4].

For the initial value problem the adaptivity can be applied strait forward. We have
just to add the new value to the history. Considering the prehistory problem there
is some additonal work to do. We have to watch carefully that for any new time
step size Δ t the delay integral is of the given length d. To this we have to consider
three different cases illustrated by Fig. 1. Let Δ t0,Δ t1, ...,Δ tn−1 be the time stepsize
(=intervall length) of the last n time steps and u(t0),u(t1), ...,u(tn) the corresponding
values of the solution. If Δ tn = Δ t0, case a] in Fig. 1, we are in the same case as for
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� � � � � ��

� � � � � ��

� � � � � ��

a] new time step size is equal to last time step size

b] new time step size is smaller then the old time step size

c] new time step size is bigger then the old time step size

delay length

delay length

delay length

Fig. 1 An outline of the different cases concerning prehistory problems and adaptivity

the non-adaptive technique. We have just to delete Δ t0 and u(t0) from the history.
In the case that Δ tn < Δ t0 (b]) we interpolate u at the required position tn+1−d and
set Δ t0 := t1− (tn+1− d). Finally the case Δ tn > Δ t0 (c]) is left. Here like in case
a] we first delete the first value and afterwards continue as in case b].

2.2.1 Numerical Results

If we choose Atol = Rtol =5e-4 in the error indicator (10) we would expect the error
control to achieve an accuracy of 1e-3 on the unit square. If we now consider the
result for the testproblem I in Fig. 2, we can see that this accuarcy has been achieved.
We can see from our test that if we use the presented adaptive approach the error
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Fig. 2 For the adaptive approach with Atol = Rtol = 5e−4 we see the L2-Error on the left and on
the chosen dt the right.

indicators used for parabolic partial differential equations without delay can also be
used for problems with a delay. But one should keep in mind that problems with
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a delay are more sensible than problems without a delay and so smaller tolerance
parameters have to be chosen for a required accuracy compared to a problem without
delay.

Let us consider now the testproblem II:

d
dt

u− ε∇2u + k ·∇u = f +
∫ t

t−2
K(s)u ds t ∈ [0,4] , (11)

with K = sin(10s). f is chosen in a way that

u =
g(t)

2cosh(a(x−m))cosh(a(y−n))
(12)

with a = 1 and g(t) = exp(−|t−2|) is the solution.

Fig. 3 This figure shows the
behaviour of the solution
computed with a fixed time
step size and the one with an
apdaptive chosen time step
size in the region around the
non-differentiable point t = 2.
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The solution u is non-differentiable at t = 2 and so it contains a special chal-
lenge, especially for higher order multistep methods like BDF schemes, compared
to onestep methods. Beyond this, we assumed that u ∈ C1[0,4] when we used the
hermite interpolation. Table 2 displays the results for testproblem II for two fixed
time step sizes and the adaptive chosen one. Figure 3 and Table 2 show that this is
by nature a problem for this technique but it does not tend to diverge in the case the
assumptions are violated.

Table 2 Results for the hermite integration and a BDF(3) scheme on testproblem II

Δt choosen mean Δt ‖u−uh‖L2

fixed = 0.015625 9.794e-3
adaptive ≈ 0.047014 7.108e-3
fixed = 0.007812 5.764e-3

But comparing the result for dt = 1/64 and dt = 1/128 we see that the reduction
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rate is far away from the third order in such a case. If we compare the mean timestep
size we see that with the adaptive scheme we achieved a higher accuracy with less
time steps.

3 Conclusion

A third order algorithm for convection-diffusion problems with a delay was pre-
sented. The presented technique is robust for higher Péclet numbers and a violation
of the C1 assumption. The design of the algorithm leads straightforward to adaptiv-
ity in time with the potentiality to use techniques common from parabolic PDEs.
The adaptivity in time is also one aproach to deal with the memory storage prob-
lem. A future prospect will be to develop different storange strategies for kernels
with different properties. A mayor goal considering the last results is an adaptive
choice of the order of the BDF scheme to deal better with non-differentiable points.
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A Third Order WLSQR Scheme on
Unstructured Meshes with Curvilinear
Boundaries

J. Fürst

Abstract The work deals with the development of a high order finite volume
scheme for Euler and Navier–Stokes equations. The accuracy of the scheme is im-
proved by a piecewise quadratic interpolation of cell averaged data. The interpola-
tion procedure uses the weighted least square approach similar to the weighted ENO
scheme [2]. The resulting scheme posses extremely good convergence to steady
state thanks to single stencil reconstruction with smooth weights. The truncation
error for two variants of the simplified scheme for one-dimensional convection-
diffusion equation is derived here. The importance of good approximation of the
boundary is emphasized and an ENO-like procedure for the approximation of the
boundary is described.

1 Introduction

This work deals with the numerical solution of compressible flows described by the
system of Navier–Stokes equations

Ut + F(U)x + G(U)y + H(U)z = Fv(U)x + Gv(U)y + Hv(U)z + S(U), (1)

where U = [ρ ,ρu,ρv,ρw,e]T is the vector of conservative variables, F(U), G(U)
and H(U) are the inviscid fluxes, Fv(U), Gv(U)and Hv(U) are the viscous fluxes
is the source term, for more details see e.g. [1]. The numerical solution of an IBV
problem for this system of equations is obtained with the finite volume method. It
is well known, that the basic low-order schemes suffer from excessive numerical
diffusion. Therefore a high order method should be used especially for the case of
viscous flows.

Jiřı́ Fürst
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2 The High Order Finite Volume Scheme

As a base for the numerical method the standard finite volume method with data
located in centers of polygonal cells has been chosen. The basic low order semi-
discrete method can be written as [5]

dUi(t)
dt

=− 1
|Ci| ∑j∈Ni

F (Ui(t),Uj(t),Si j). (2)

Here Ui(t) is the averaged solution over a cell Ci, Ni denotes the set of indices of
neighborhoods of Ci (i.e. if j ∈Ni, then cells Ci and Cj share an edge in 2D or a face
in 3D), Si j is the scaled normal vector to the interface between Ci and Cj (oriented to
Cj) and F denotes the so called numerical flux approximating physical flux through
the interface between cells Ci and Cj. The AUSMPW+ [6] flux was chosen in this
work, nevertheless the other choice of the numerical flux (e.g. Roe’s flux etc.) is
possible.

A higher order method can be obtained by introducing a cell-wise interpolation
P(x;U) = Pi(x;U) for x∈Ci into the basic formula. The higher order method is then

dUi(t)
dt

=− 1
|Ci| ∑j∈Ni

∑
q
ωqF (Pi(xi j;U),Pj(xi j;U),Si j), (3)

where xq
i j are the quadrature points at the interface between Ci and Cj and ωq are the

quadrature weights.
The semi-discrete is then solved either by explicit Runge-Kutta method, either

by an implicit backward Euler method [5].

3 The Weighted Least Square Reconstruction

The very important part of the above mentioned method is the high order reconstruc-
tion (or interpolation). The reconstruction should satisfy following requirements
(see e.g. [3], [4]):

1. Conservativity, i.e. the mean value of the interpolant P(x;u) over any cell Ci

should be equal to cell average of u∫
Ci

P(x;U)dx = |Ci|Ui. (4)

2. Accuracy, i.e. for a given smooth function U(x) with cell averages Ui the inter-
polant P(x;U) should approximate U :

1
|Cj|

∫
Cj

Pi(x;U)dx = Uj +O(ho), ∀ j ∈Mi, (5)
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where h is a characteristical mesh size and o is the order of accuracy.
3. Non-oscillatory, i.e. the total variation of the interpolant should be bounded for

h→ 0.

As soon as the set Mi contains sufficient number of cell indices, the system be-
comes overdetermined and it is solved by the means of least square method. The
interpolant Pi(x;U) is therefore obtained by minimizing error in (5) for j ∈Mi re-
spect to constraint (4). In order to mimic weighted ENO method the data dependent
weights are introduced:

Pi(x;U) = argmin ∑
j∈Ni

[
wi j

(∫
Cj

P̃(x;U)dx−|Cj|Uj

)]2

, (6)

where minimum is take over all linear polynomials P̃ satisfying (4), in other words,
Pi is defined as a polynomial satisfying (4) and minimizing errors in (6) in L2 norm.
The data-dependent weights wi j are chosen as (see e.g. [3])

wi j =

√√√√ h−r∣∣∣ ui−u j
h

∣∣∣p
+ hq

, (7)

with p, q, and r being constants (e.g. p = 4, q =−2, r = 3).
The stencil Mi is chosen as

Mi := M 1
i =

{
j : Ci∩Cj �= /0

}
(8)

for the case of piecewise linear interpolations, and

Mi := M 2
i =

{
j : ∃k ∈M 1

i : Ci∩Ck �= /0
}

. (9)

Note, that for system of equation the polynomial reconstruction is made component-
wise.

3.1 The Analysis of Linearized Schemes for Convection-Diffusion
Problem

In order to analyze properties of the second and third order schemes we assume
scalar linear convection diffusion problem in one space dimension

ut + aux = μuxx, a = const. > 0. (10)

The semi-discrete second order finite volume scheme obtained by the least-square
interpolation described above taking the weights wi j = 1, the upwind flux, and the
second order central difference for viscous term is
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u̇i = a
−ui−2 + 5ui−1−3ui−ui+1

4h
+

μ
h2Δ

2
i u, (11)

where Δ2
i u = ui+1−2ui + ui−1. The approximation error can be directly computed

as

ut + aux− μuxx =
ah2

12
uxxx− μh2

12
uxxxx + O(h4). (12)

The scheme therefore contains both dissipation and dispersion in the leading term
of the approximation error.

If we replace the piecewise-linear interpolation by the piecewise quadratic one,
we get a mixed order scheme (i.e. third order for convection combined with second
order for diffusion term)

u̇i = a
−41ui−3 + 18ui−2 + 508ui−1−457ui + 33ui+1−61ui+2

510h
+

μ
h2Δ

2
i u. (13)

The approximation error is now

ut + aux− μuxx =−10μh2 + 19ah3

120
uxxxx + O(h4). (14)

One can see that the later scheme is is still second order one (due to second order
approximation of viscous term). Nevertheless, there is no spurious dispersion up to
O(h3).

4 Curvilinear Boundaries

Another important problem is a good approximation of the boundary. Unfortunately,
the high order representation of the boundary shape may be difficult. In order to
avoid interface to a CAD software we develop a simple procedure for high order in-
terpolation of 2D boundaries. We assume, that the 2D boundary is given by contin-
uous piecewise smooth curves. Each curve represents a logical part of the boundary
(i.e. inlet part, solid wall, etc.). Discretization of each curve gives us an ordered list
of points xi where i = 0..N. x, then the point is in the list. Moreover, we assume that
the list contains all endpoints of smooth segments. The interpolation of the boundary
is obtained in the following way:

1. compute the approximate arc-lengths ti = ti−1 + ||xi−xi−1||, with t0 = 0,
2. then for each segment xi-xi+1 do:

a. compute “left” parabola sL such that sL(ti−1)= xi−1, sL(ti) = xi, and sL(ti+1)=
xi+1,

b. compute “right” parabola sR
i+1/2 such that sR(ti) = xi, sR(ti+1) = xi+1, and

sR(ti+2) = xi+2,
c. if ||s”

L(ti+1/2)|| < ||s”
R(ti+1/2)||, then si+1/2 = sL otherwise si+1/2 = sR (here

ti+1/2 = (ti + ti+1)/2).
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The non-polygonal cells are assumed only in the vicinity of boundaries, therefore
it has only minor impact on the overall computational time. On the other hand,
the numerical experiments show great improvement in the accuracy of solution
of an inviscid flow problem compared to simple piecewise linear approximation
of the boundary.

5 Numerical Experiments

5.1 Ringleb’s Flow

In order to estimate the order of accuracy we solved the so-called Ringleb’s flow
with known analytical solution. We used the piecewise linear (I1) or quadratic (I2)
WLSQR interpolation for the scheme and piecewise linear (B1) or quadratic (B2)
representation of the boundary. Namely, we tested the I1B1 combination (formally
second order scheme), I2B1 combination (third order scheme with lower order
approximation of the shape), and finally I2B2 combination (formally third order
scheme). The results were obtained using a coarse unstructured mesh with 1004 tri-
angles, a middle mesh with 3936 triangles and a fine mesh with 15780 triangles.
The figure 1 shows the isolines of the Mach number and the distribution of entropy
along the left wall. One an see, that the I2B1 variant gives even worst results than
the I1B1 scheme.

Comparing numerical results with the exact solution we evaluated the order of
accuracy of all three variants. The L2 order was approximately 2.0 for I1B1 scheme,
2.17 for I2B1 scheme, and 2.97 for I2B2 scheme.

Fig. 1 Solution to Ringleb’s flow problem (the coarse mesh with the iso-Mach lines on the left,
the distribution of the entropy on the right).
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5.2 Inviscid Flow in a Turbine Cascade

Another example shows the solution of the steady inviscid transonic flow in the
2D turbine cascade SE1050. The flow regime is characterized by the inlet angle
α1 = 19.3◦ and the isentropic outlet Mach number M2i = 1.198. An unstructured
mesh with 5975 triangles was used in this case. The spatial derivatives were ap-
proximated with the above mentioned FV scheme with piecewise linear (I1B1) or
piecewise quadratic (I2B2) WLSQR interpolation. The backward Euler method with
approximate linearization was chosen for the discretization in time. The resulting
system of linear equations was solved with the GMRES method preconditioned by
ILU(0).

There is no doubt, that the I2B2 variant is more expensive than I1B1 in terms
of CPU time per iteration. On the other hand, our results (see fig. 2) show, that the
convergence to steady state can be faster for I2B2 can be faster than for the I1B1.

Fig. 2 Solution of inviscid transonic flow through 2D SE1050 cascade (isolines of the Mach num-
ber obtained with I2B2 variant on the left, convergence history with respect to number of iteration
and CPU time on the right).

5.3 Viscous Turbulent Flow in a Cascade

The last example shows the solution of transonic turbulent flow in the turbine cas-
cade NT24. The flow was modeled by the RANS equations equipped with the
two-equations TNT k−ω of Kok [7]. The flow regime is described by the inlet
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angle α1 = 0◦, outlet isentropic Mach number M2i = 1.039 and Reynolds number
Re = 3.6 ·105. The intensity of turbulence at the inlet was chosen 0.5%.

The problem was solved using a hybrid mesh with quadrilaterals near the profile
and triangles in the rest of the domain. The mesh with 24632 cells was created with
special care near the profile in order to avoid singularities caused by the curvilin-
ear approximation of boundary. The inviscid fluxes were approximated using I1B1,
I2B1, or I2B2 variant of WLSQR interpolation combined with the AUSMPW+ flux.
Viscous terms were computed with the second order finite volume approach using
dual cells. Therefore, the I2B2 and I2B1 schemes correspond to the “mixed order”
scheme analyzed in the previous chapter. The solution was compared to the refer-
ence solution obtained with the I1B1 scheme on finer mesh with 47452 cells. In
both cases, the near wall spacing is chosen in order to fulfill common requirement
of having y+

1 < 1.

Fig. 3 The mesh and the isolines of the Mach number obtained with I1B1 (center) I2B2 (right)
scheme for the flow through NT24 cascade.
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Fig. 4 The distribution of the pressure on the blade and the convergence history for I1B1/I2B2
scheme.
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The figures 3 and 4 show, that all I1B1, I2B1 and I2B2 schemes give very similar
results. There is no difference between I2B1 and I2B2 results (up to plotting accu-
racy) and there is only small difference at the suction (upper) side of the blade near
the outlet edge between I1B1 and I2B1/I2B2. Therefore, the advantage of better ac-
curacy, which was presented for the case of inviscid flows, is not evident here.1 On
the other hand, the convergence to steady state is again better for I2B2 than for I1B1
scheme.

6 Conclusion

Current progress in the development of the high order FV scheme with WLSQR
interpolation show, that it is necessary to take in account the high order representa-
tion of the boundary shape especially for the inviscid flows. On the other hand, the
necessity of curvilinear representation of the boundary is not evident here and the
convergence to steady state can be better for I2B2 and I2B1 variant of the scheme
than for the I1B1 one.
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On the Choice of Parameters in Stabilization
Methods for Convection–Diffusion Equations

V. John and P. Knobloch

Abstract A popular finite element approach for the numerical solution of convec-
tion–diffusion equations is the streamline upwind/Petrov–Galerkin (SUPG) method.
Unfortunately, in the convection–dominated regime, the SUPG solution often con-
tains spurious oscillations along sharp layers. A possible remedy is to introduce
an additional artificial diffusion term in the SUPG discretization. We call such ap-
proaches spurious oscillations at layers diminishing (SOLD) methods. The proper-
ties of the SOLD methods are significantly influenced by the choice of the respective
stabilization parameter which determines the amount of the artificial diffusion. The
aim of this paper is to discuss various definitions of these stabilization parameters.

1 Introduction

This paper is devoted to the numerical solution of the steady scalar convection–
diffusion equation

−ε Δu + b ·∇u = f in Ω , u = ub on ∂Ω . (1)

We assume that Ω is a bounded domain in R2 with a polygonal boundary ∂Ω ,
ε > 0 is the constant diffusivity, b = (b1,b2), f and ub are given functions and u is
an unknown scalar quantity, e.g., temperature or concentration.

It is well known that the standard Galerkin finite element discretization of (1)
loses its stability if convection strongly dominates diffusion. Therefore, various
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stabilized finite element methods have been developed for the numerical solution
of (1). A widely used approach is the streamline upwind/Petrov–Galerkin (SUPG)
method proposed in [1]. Denoting by Wh a finite element space approximating the
Sobolev space H1(Ω), by ubh ∈Wh a function whose trace approximates ub and
setting Vh = Wh∩H1

0 (Ω), the SUPG method reads:
Find uh ∈Wh such that uh−ubh ∈Vh and

ε (∇uh,∇vh)+ (b ·∇uh,vh)+ (Rh(uh),τ b ·∇vh) = ( f ,vh) ∀ vh ∈Vh . (2)

Here (·, ·) is the inner product in L2(Ω) or L2(Ω)2, Rh(u) = −ε Δ u + b ·∇u− f is
the residual (defined elementwise) and τ is a nonnegative stabilization parameter,
see Section 2.

Unfortunately, the SUPG method is not monotone and hence a discrete solution
satisfying (2) usually contains spurious oscillations along sharp layers. A possible
remedy is to add a suitable artificial diffusion term to the left–hand side of the SUPG
discretization (2). We call such approaches spurious oscillations at layers diminish-
ing (SOLD) methods, see the review paper [8]. There are three basic types of SOLD
terms and they add either isotropic artificial diffusion or crosswind artificial diffu-
sion to the SUPG method (2) or they are based on so–called edge stabilizations.
These three types of SOLD terms are respectively defined by

(ε̃ ∇uh,∇vh) , (3)

(ε̃ b⊥ ·∇uh,b
⊥ ·∇vh) with b⊥ =

(−b2,b1)
|b| , (4)

∑
K∈Th

∫
∂K

ε̃ |K sign

(
∂uh

∂ t∂K

)
∂vh

∂ t∂K
dσ , (5)

where Th = {K} is a triangulation of Ω satisfying the usual compatibility assump-
tions and t∂K is a tangent vector to the boundary ∂K of K. The parameter ε̃ , which
determines the amount of the artificial diffusion added to the SUPG method, is non-
negative and usually depends on uh. Thus, the resulting methods are nonlinear al-
though the original problem (1) is linear.

Comparative numerical studies of a large number of SOLD methods can be found
in, e.g., [6, 7, 8, 9]. It was observed that there are large differences between the
SOLD methods. In some cases, many SOLD methods were able to significantly im-
prove the SUPG solution and to provide a discrete solution with negligible spurious
oscillations and without an excessive smearing of layers. However, it was not pos-
sible to identify a method which could be preferred in all the test cases. The aim of
the present paper is to discuss the definitions of the parameters ε̃ for those SOLD
methods which achieved high rankings in the mentioned numerical studies.

The paper is organized in the following way. In the next section, we present the
definitions of the parameter ε̃ for several promising SOLD methods. The main part
of the paper is Section 3 where we discuss the optimality of these definitions of ε̃ for
three academic tests problems. We finish the paper by our conclusions in Section 4.
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2 Definitions of the Stabilization Parameters

In this section, we present various choices of the parameters in the stabilization
terms in (2)–(5). Generally, the parameters should depend on the approximation
properties of the finite element space Wh. For simplicity, throughout this paper, we
restrict ourselves to spaces

Wh = {v ∈ H1(Ω) ; v|K ∈ R(K) ∀ K ∈Th} ,

where R(K) = P1(K) if K is a triangle and R(K) = Q1(K) if K is a rectangle. We
assume that the triangulation Th consists either of triangles or of rectangles.

The choice of the SUPG parameter τ in (2) may dramatically influence the ac-
curacy of the discrete solution and therefore it has been a subject of an extensive
research over the last three decades, see, e.g., the review in [8]. Unfortunately, a
general optimal definition of τ is still not known. In our computations, we define τ ,
on any element K ∈Th, by the formula

τ|K =
hK

2 |b|
(

cothPeK− 1
PeK

)
with PeK =

|b|hK

2ε
, (6)

where hK is the element diameter in the direction of the convection vector b, |b|
is the Euclidean norm of b and PeK is the local Péclet number. We refer to [8] for
various justifications of this formula. Note that, generally, the parameters hK , PeK

and τ|K are functions of the points x ∈ K.
According to the criteria and tests in [6, 7, 8], one of the best choices of ε̃ in (3)

is to set

ε̃ = max

{
0,
τ |b| |Rh(uh)|
|∇uh| − τ

|Rh(uh)|2
|∇uh|2

}
, (7)

as proposed in [4]. Here and in the following, we always assume that ε̃ = 0 if the
denominator of a formula defining ε̃ vanishes. In case (4), we suggested in [8] to
set, on any K ∈Th,

ε̃|K = max

{
0,η

diam(K) |Rh(uh)|
2 |∇uh| − ε

}
, (8)

where diam(K) is the diameter of K and η is a suitable constant, for which the
value η ≈ 0.7 was recommended in [5]. The relation (8) is a slight modification of
a formula proposed in [5]. Another promising variant of (4) tested in [6, 7, 8, 9] is
defined by

ε̃ =
τ |b| |Rh(uh)|
|∇uh|

|b| |∇uh|
|b| |∇uh|+ |Rh(uh)| . (9)

This choice of ε̃ was proposed in [8] as a simplification of a formula from [2]. For
the edge stabilization term (5), acceptable results were computed with

ε̃|K = C |K| |(Rh(uh)|K)| ∀ K ∈Th , (10)
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where |K| is the area of K and C is a nonnegative constant. Let us mention that, to
achieve convergence of the nonlinear iterative process, the sign operator in (5) is
regularized by replacing it by the hyperbolic tangent as recommended in [3].

If convection strongly dominates diffusion in Ω and hence the local Péclet num-
bers PeK are very large, the parameter τ defined in (6) satisfies τ|K = hK/(2 |b|) for
any K ∈Th. Then we have in (7) and (9)

τ |b| |Rh(uh)|
|∇uh| ≈ hK |Rh(uh)|

2 |∇uh| .

Hence, in the definitions of ε̃ in (7)–(9), an important role is played by a term of the
type h |Rh(uh)|/|∇uh|. Moreover, in view of (10), the edge stabilization term (5) can
be written in the form

∑
K∈Th

|K|
∫
∂K

C

∣∣∣Rh(uh)|K
∣∣∣∣∣∣ ∂uh

∂ t∂K

∣∣∣ ∂uh

∂ t∂K

∂vh

∂ t∂K
dσ ,

which is an expression of a similar structure as the SOLD terms (3) and (4) with ε̃
defined by (7)–(9). Thus, we observe the interesting fact that all three types of SOLD
terms with the above described definitions of the parameter ε̃ are similar although
the formulas for ε̃ were derived using completely different arguments.

3 Optimal Choice of Stabilization Parameters for Model Problems

In this section, we shall discuss the optimality of the parameters ε̃ introduced in the
previous section for three model problems whose solutions possess characteristic
features of solutions of (1). We shall confine ourselves to the two types of triangula-
tions depicted in Fig. 1. To characterize these triangulations, we shall use the notion
‘N1×N2 mesh’ where N1 and N2 are the numbers of vertices in the horizontal and
vertical directions, respectively. The corresponding mesh widths will be denoted by
h1 and h2, i.e., h1 = 1/(N1−1) and h2 = 1/(N2−1).

︸ ︷︷ ︸

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭h

1

2

h

h

1

2

h

N1 points

N2 points

Fig. 1 Triangulations used in Section 3.
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Fig. 2 Example 1, P1 finite element: SUPG solution on a 21×21 mesh (left) and SOLD solution
defined using (4) and (9) on a 41×21 mesh (right).

The analysis below will include the consideration of moderately anisotropic
grids. Using such grids might not be reasonable for the considered examples since
these grids are not adapted to the layers of the solution. However, convection–
diffusion equations are often just a part of a coupled system of equations. For such
problems, an adaptation of the grid is performed rather with respect to other equa-
tions in the system, for instance with respect to the Navier–Stokes equations in fluid
flow applications. Nevertheless, the SOLD methods still should provide satisfactory
results.

Example 1 (Solution with parabolic and exponential boundary layers). We con-
sider the convection–diffusion equation (1) with Ω = (0,1)2, ε = 10−8, b = (1,0)T ,
f = 1, and ub = 0. The solution u(x,y) of this problem possesses an exponential
boundary layer at x = 1 and parabolic (characteristic) boundary layers at y = 0 and
y = 1. Outside the layers, the solution u(x,y) is very close to x.

For this special example, the stabilization parameter τ given in (6) leads to a
nodally exact SUPG solution outside the parabolic layers. However, there are strong
oscillations at the parabolic layers, see Fig. 2.

Let us consider a SOLD discretization of (1) with the isotropic SOLD term (3)
or the crosswind SOLD term (4) and with ε̃ defined by (8). In the triangular case, it
is easy to show that η equal to

ηopt =
2h2

3
√

h2
1 + h2

2

(11)

is optimal for ε → 0 with respect to the parabolic layers. Indeed, for η = ηopt the
discrete solution is nodally exact outside the exponential boundary layer whereas,
for η > ηopt , the parabolic boundary layers are smeared and, for η < ηopt , spurious
oscillations along the parabolic boundary layers appear. Moreover, for the nodally
exact solution with ε → 0, the SUPG term (Rh(uh),τ b ·∇vh) vanishes outside the
exponential boundary layer which shows that the optimal value of η does not depend
on the definition of the SUPG stabilization parameter τ . In the quadrilateral case, it
is not possible to derive a simple formula for ηopt but numerical results suggest that
the optimal values of η do not differ much from (11).
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Fig. 3 Example 2, Q1 finite element: SUPG solution on a 21×21 mesh (left) and SOLD solution
defined using (4) and (8) with η = 0.7 on a 21×41 mesh (right).

Since ηopt < 2/3, spurious oscillations should not appear for the value η ≈ 0.7
recommended in [5]. On the other hand, if we consider ε̃ defined by (7) or (9), a
comparison of these relations with the formula (8) reveals that spurious oscillations
in the discrete solution should be expected for hK = h1 < ηopt diam(K), i.e., for
h1/h2 < 2/3, as it is demonstrated in Fig. 2.

For the edge stabilization term (5) and both the P1 and Q1 finite elements, it is
easy to derive that the optimal value of C in (10) is 1/6. However, in practice, the
discrete solution slightly differs from the nodally exact solution at the parabolic
boundary layers due to the regularization of the sign operator. Moreover, in contrast
with the above SOLD methods, the discrete solution is significantly smeared along
the exponential boundary layer. A sharp approximation of this layer requires to set
C = 0 in this region.

The above considerations show that satisfactory numerical results can be ob-
tained generally only using the isotropic or crosswind SOLD term with ε̃ defined by
(8) or using the edge stabilization (5) with ε̃ defined by (10).

Example 2 (Solution with interior layer and exponential boundary layers). We
consider the convection–diffusion equation (1) with Ω = (0,1)2, ε = 10−8, b =
(cos(−π/3),sin(−π/3))T , f = 0, and

ub(x,y) =
{

0 for x = 1 or y≤ 0.7,
1 else.

The solution possesses an interior (characteristic) layer in the direction of the con-
vection starting at (0,0.7). On the boundary x = 1 and on the right part of the bound-
ary y = 0, exponential layers are developed.

We shall assume that h1b2 + h2b1 < 0. Then, for both the P1 and Q1 finite ele-
ments, the SUPG solution of Example 2 contains oscillations along the interior layer
and along the boundary layer at x = 1. However, there are no oscillations along the
boundary layer at y = 0 and this layer is not smeared, see Fig. 3.

For a SOLD discretization of (1) with the isotropic SOLD term (3) or the cross-
wind SOLD term (4) and with ε̃ defined by (8), it is easy to derive optimal values of
η such that, for ε → 0, the discrete solution is nodally exact away from the interior
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Fig. 4 Example 3, P1 finite element, 33× 33 mesh: SUPG solution (left) and SOLD solution de-
fined using (3) and (7) (right).

layer. First, it is clear that, along the boundary layer at y = 0, the optimal choice
of η is η = 0. For the boundary layer at x = 1, the optimal values are

η isotropic
opt =

h1b2 + h2b1√
h2

1 + h2
2 b2

, ηcrosswind
opt =

(h1b2 + h2b1)|b|2√
h2

1 + h2
2 b3

2

.

These formulas hold for both the P1 and the Q1 finite elements. One can see that
the optimal choice of η depends not only on the aspect ratio of the elements of the
triangulation but also on the direction of the convection vector b. For b of Example 2
and for h1 = 2h2, we obtain ηcrosswind

opt ≈ 0.85 and hence we have to expect spurious
oscillations for the recommended value η ≈ 0.7. This is really the case as Fig. 3
shows. For ε̃ defined by (7) and (9) the oscillations at x = 1 are even much larger
and, moreover, there are nonnegligible oscillations at the beginning of the interior
layer. For the edge stabilization term (5) and both the P1 and Q1 finite elements, the
optimal value of C in (10) is Copt = (h1b2 + h2b1)/(4h1b2) along x = 1.

The above discussion supports our conclusion to Example 1 and shows that it is
in general not sufficient to consider constant values of η and C.

Example 3 (Solution with two interior layers). We consider the convection–diffusion
equation (1) with Ω = (0,1)2, ε = 10−8, b = (1,0)T , ub = 0, and

f (x,y) =
{

16(1−2x) for (x,y) ∈ [0.25,0.75]2,
0 else.

The solution u(x,y) possesses two interior (characteristic) layers at (0.25,0.75)×
{0.25} and (0.25,0.75)×{0.75}. In (0.25,0.75)2, it is very close to the quadratic
function (4x−1)(3−4x).

As expected, the SUPG solution of Example 3 possesses spurious oscillations
along the interior layers, see Fig. 4. Applying any of the SOLD methods discussed
above, the spurious oscillations present in the SUPG solution are significantly sup-
pressed, however, the solution is wrong in the region (0.75,1)× (0,1), see Fig. 4.
This behaviour is the same for both the P1 and Q1 finite elements. Thus, Example 3
represents a problem for which all the SOLD methods described in Section 2 fail.
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4 Conclusions

This paper was devoted to the numerical solution of convection–diffusion equa-
tions using SOLD methods. It was demonstrated that SOLD methods without user–
chosen parameters are in general not able to remove the spurious oscillations of the
solution obtained with the SUPG discretization. For the two studied methods involv-
ing a parameter, values of the parameter could be given in two examples such that
the spurious oscillations were almost removed. The parameter has to be generally
non–constant and depends on the mesh and the data of the problem. Therefore, for
more complicated problems, it is not clear how suitable parameters can be found.
Moreover, an example was presented for which none of the investigated methods
provided a qualitatively correct discrete solution. Consequently, we have to con-
clude that it is in general completely open how to obtain oscillation–free solutions
using the considered classes of methods.
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On Path-Conservative Numerical Schemes for
Hyperbolic Systems of Balance Laws

M.L. Muñoz-Ruiz and C. Parés

Abstract This work is concerned with the numerical approximation of Cauchy
problems for one-dimensional hyperbolic systems of conservation laws with source
terms or balance laws. These systems can be studied as a particular case of noncon-
servative hyperbolic systems [3, 4, 5]. The theory developed by Dal Maso, LeFloch
and Murat [2] is used to define a concept of weak solutions of nonconservative
systems based on the choice of a family of paths in the phase space. The notion
of path-conservative numerical scheme introduced in [6], which generalizes that of
conservative scheme for conservative systems, is also related to the choice of a fam-
ily of paths. In this work we present an appropriate choice of paths in order to define
the concept of weak solution (see [1, 8]) in the particular case of balance laws, to-
gether with the notion of path-conservative numerical scheme for this particular case
and some properties. We also consider the well-balance property of these schemes
and the consistency with the definition of weak solutions, with a result pointing in
the direction of a Lax-Wendroff type convergence result.

1 Introduction

This work is concerned with the numerical approximation of Cauchy problems for
one-dimensional hyperbolic systems of conservation laws with source terms or bal-
ance laws

Wt + F(W )x = S(W )σx, x ∈ R, t > 0 , (1)
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306 M.L. Muñoz-Ruiz and C. Parés

where W (x,t) ∈ Ω , an open convex set of RN , σ(x) is a known function from R
to R, F is a regular function from Ω to RN and S is also a function from Ω to RN .

System (1) can be studied as a particular case of the nonconservative system

Wt +A (W )Wx = 0, x ∈R, t > 0 , (2)

where W (x,t) belongs to an open convex set Ω and A is a smooth locally bounded
matrix function. The main difficulty related with system (2) from both the mathe-
matical and the numerical point of view is the presence of nonconservative products,
which do not make sense as distributions when the solution is discontinuous.

In Sect. 2 we briefly recall some results concerning systems (2) and in Sect. 3 we
study the particular case of systems of balance laws (1).

2 Preliminaries on Hyperbolic Nonconservative Systems

In order to study system (2) we suppose that it is strictly hyperbolic and that the
characteristic fields are either genuinely nonlinear or linearly degenerate.

In this work we assume the definition of nonconservative products as Borel mea-
sures given by Dal Maso, LeFloch and Murat [2], which is associated to the choice
of a family of paths in the phase space Ω . A family of paths in Ω is a locally Lips-
chitz map Φ : [0,1]×Ω×Ω →Ω such that

Φ(0;WL,WR) = WL and Φ(1;WL,WR) = WR, for any WL,WR ∈Ω ,

together with certain smoothness hypotheses. Once a family of paths Φ has been
chosen, the nonconservative product A (W )Wx can be interpreted as a Borel mea-
sure for W ∈ (L∞(R×R+)∩BV (R×R+))N , denoted by [A (W )Wx]Φ . If such W is
piecewise C 1 it is said to be a weak solution of (2) if

Wt +[A (W )Wx]Φ = 0 .

When no confusion arises, the dependency on Φ will be dropped.
Across a discontinuity, a weak solution must satisfy the generalized Rankine-

Hugoniot condition:∫ 1

0

(
ξI −A (Φ(s;W−,W +))

)
Φs(s;W−,W +)ds = 0 , (3)

where ξ is the speed of propagation of the discontinuity, I is the identity matrix,
and W− and W+ are the left and right limits of the solution at the discontinuity.

In the particular case of a system of conservation laws, that is, when A (W ) is
the Jacobian matrix of some flux function F(W ), the definition of the nonconser-
vative product as a Borel measure does not depend on the choice of paths, and the
generalized Rankine-Hugoniot condition reduces to the usual one.
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As it occurs in the conservative case, we must assume a concept of entropy solu-
tion, as the one due to Lax or one related to an entropy pair.

Once a notion of entropy is chosen the theory of simple waves of hyperbolic
systems of conservation laws and the results concerning the solutions of Riemann
problems can be extended to systems (2).

The choice of the family of paths is important because it determines the speed of
propagation of discontinuities. Although it should be based on the physical aspects
of the problem, it is natural from the mathematical point of view to require this
family to satisfy some hypotheses concerning the relationship of the paths with the
integral curves of the characteristic fields and the solutions of Riemann problems
[1, 8]. This is done in Sect. 3 for the particular case of balance laws.

For the discretization of system (2) with initial conditionW (x,0) =W0(x), x∈R,
we use computing cells Ii = [xi−1/2,xi+1/2] with constant size Δx. Define xi+ 1

2
= iΔx

and xi = (i−1/2)Δx, the center of the cell Ii. Let Δ t be the constant time step and
define tn = nΔ t. We denote by W n

i the approximation of the cell averages of the
exact solution provided by the numerical scheme and we consider the notion of
path-conservative numerical scheme proposed in [6]:

Given a family of pathsΨ , aΨ -conservative numerical scheme is a scheme

W n+1
i = W n

i −
Δ t
Δx

(
Dn,+

i−1/2 + Dn,−
i+1/2

)
, (4)

where Dn,±
i+1/2 = D±

(
W n

i−q, . . . ,W
n
i+p

)
and D− and D+ are two continuous functions

from Ω p+q+1 to Ω satisfying

D±(W, . . . ,W ) = 0 ∀W ∈Ω , (5)

and

D−(W−q, . . . ,Wp)+ D+(W−q, . . . ,Wp) =
∫ 1

0
A
(
Ψ(s;W0,W1)

)
Ψs(s;W0,W1)ds ,

(6)
for every Wi ∈Ω , i =−q, . . . , p.

This definition generalizes that of conservative scheme for conservative prob-
lems: in the particular case of a system of conservation laws, a numerical scheme is
conservative if and only if it isΨ -conservative for any family of pathsΨ .

The two properties satisfied by a Ψ -conservative scheme imply a consistency
requirement for regular solutions.

The best choice of the family of pathsΨ is obviouslyΨ =Φ , being Φ the family
selected for the definition of weak solutions. Unfortunately, in practical applications
the construction of Φ-conservative schemes can be difficult or very costly and sim-
pler families of pathsΨ have to be chosen, as the family of segments. In that case,
discontinuities can be incorrectly treated.
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3 The Particular Case of Balance Laws

The goal of this work is the study of systems (1). Adding the trivially satisfied
equation σt = 0, the system can be rewritten under the quasilinear form

W̃t + Ã (W̃ )W̃x = 0 , (7)

where

W̃ =
[

W
σ

]
, Ã (W̃ ) =

[
A(W ) −S(W)

0 0

]
and A(W ) =

∂F
∂W

(W ) .

Notice that (1) reduces to a conservative system with flux function F if σ is constant.
If we suppose that A(W ) has N real distinct eigenvalues λ1(W ) < .. . < λN(W )

which do not vanish, and associated eigenvectors R1(W ), . . . ,RN(W ), then sys-
tem (7) is strictly hyperbolic, since Ã (W̃ ) has N + 1 real distinct eigenvalues

λ̃i(W̃ ) = λi(W ), i = 1, . . . ,N; λ̃N+1(W̃ ) = 0

and eigenvectors

R̃i(W̃ ) =
[

Ri(W )
0

]
, i = 1, . . . ,N; R̃N+1(W̃ ) =

[
A−1(W )S(W )

1

]
.

The (N + 1)-th characteristic field is linearly degenerate and we will suppose, for
the sake of simplicity, that it is the only one.

In order to define the weak solutions of (7) a family of paths Φ̃ in Ω ×R has to
be chosen. We will use the notation

W̃L =
[

WL

σL

]
, W̃R =

[
WR

σR

]
and Φ̃(s;W̃L,W̃R) =

[
Φ(s;W̃L,W̃R)

ΦN+1(s;W̃L,W̃R)

]
,

where Φ(s;W̃L,W̃R) takes values in Ω ⊂ RN .
The generalized Rankine-Hugoniot condition can be written as{

ξ (WR−WL) = F(WR)−F(WL)−SΦ̃(W̃L,W̃R) ,
ξ (σR−σL) = 0 ,

(8)

where

SΦ̃(W̃L,W̃R) =
∫ 1

0
S(Φ(s;W̃L,W̃R))(ΦN+1)s (s;W̃L,W̃R))ds . (9)

Therefore, discontinuities appearing in weak solutions have to be either stationary
(ξ = 0) or develop in regions where σ is continuous.

Following [1, 8], the family of paths has to be chosen in such a way that the
corresponding weak solutions satisfy some natural requirements:

1. If W̃L and W̃R are such that σL = σR = σ̄ , the path Φ̃(·;W̃L,W̃R) satisfies
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ΦN+1(s;W̃L,W̃R) = σ̄ ∀s ∈ [0,1] . (10)

2. Given W̃L and W̃R in the same integral curve γ of the linearly degenerate field, the
path Φ̃(·;W̃L,W̃R) is a parametrization of the arc of γ linking W̃L and W̃R.

3. Let us denote by R̃P ⊂ (Ω ×R)× (Ω ×R) the set of pairs (W̃L,W̃R) such that
the Riemann problem ⎧⎨⎩

W̃t + Ã (W̃ )W̃x = 0 ,

W̃ (x,0) =
{

W̃L if x < 0 ,

W̃R if x > 0 ,

(11)

has a unique self-similar weak solution composed by at most N +1 simple waves
connecting N + 2 intermediate constant states W̃j, j = 0, . . . ,N + 1. Then, given

(W̃L,W̃R) ∈ R̃P, the curve described by the path Φ̃(·;W̃L,W̃R) is equal to the
union of those corresponding to the paths Φ̃(·;W̃j−1,W̃j), j = 1, . . . ,N + 1.

These conditions allow to prove the following proposition:

Proposition 1. If we assume that the concept of weak solutions of (7) is defined on
the basis of a family of paths satisfying the previous hypotheses, then:

1. If

W̃ =
[

W
σ

]
is a weak solution of (7) with σ constant, σ(x) = σ̄ , then W is a weak solution
of the conservative problem

Wt + F(W )x = 0 . (12)

2. Given two states W̃L and W̃R belonging to the same integral curve of the linearly
degenerate field, the contact discontinuity given by

W̃ (x,t) =
{

W̃L if x < ξ t ,

W̃R if x > ξ t ,

where ξ is the (constant) value of the corresponding eigenvalue through the in-
tegral curve, is an entropy weak solution of (7).

3. Let (W̃L,W̃R) be a pair belonging to R̃P and let W̃ be the solution of the Rie-
mann problem (11). The following equality holds for every t > 0:〈

Ã (W̃ (·,t))W̃x(·,t),1
〉

=
∫ 1

0
Ã (Φ̃(s;W̃L,W̃R))Φ̃s(s;W̃L,W̃R)ds .

Consequently, the total mass of the Borel measure
[
Ã (W̃ (·,t))W̃x(·,t)

]
Φ̃

does

not depend on t.
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4. Let (W̃L,W̃R) be a pair belonging to R̃P and W̃j any of the intermediate states
involved by the solution of the Riemann problem (11). Then:∫ 1

0
Ã (Φ̃(s;W̃L,W̃R))Φ̃s(s;W̃L,W̃R)ds

=
∫ 1

0
Ã (Φ̃(s;W̃L,W̃j))Φ̃s(s;W̃L,W̃j)ds

+
∫ 1

0
Ã (Φ̃(s;W̃j,W̃R))Φ̃s(s;W̃j,W̃R)ds .

The previous hypotheses on the family of paths completely determine the choice
of the path linking the states of a pair (W̃L,W̃R) in R̃P .

Let us study now path-conservative schemes in the particular case of balance
laws. We consider problem (1) with initial condition W (x,0) = W 0(x) or, equiva-
lently, problem (7) with initial condition W̃ (x,0) = W̃ 0(x), where

W̃ 0 =
[

W 0

σ

]
. (13)

We will use the notation

W̃ n
i =

[
W n

i
σi

]
, σi =

1
Δx

∫ xi+1/2

xi−1/2

σ(x)dx and Ψ̃ (s;W̃L,W̃R) =
[

Ψ(s;W̃L,W̃R)
ΨN+1(s;W̃L,W̃R)

]
,

whereΨ (s;W̃L,W̃R) takes values in Ω ⊂ RN , for any given family of paths.
A Ψ̃ -conservative numerical scheme for system (7) with initial condition (13)

can be written as

W n+1
i = W n

i −
Δ t
Δx

(
Dn,+

i−1/2 + Dn,−
i+1/2

)
, (14)

where Dn,±
i+1/2 = D±

(
W̃ n

i−q, . . . ,W̃
n
i+p

)
, being D− and D+ two continuous functions

such that
D±(W̃ , . . . ,W̃ ) = 0 ∀W̃ ∈Ω ×R (15)

and

D−(W̃−q, . . . ,W̃p)+ D+(W̃−q, . . . ,W̃p) = F(W1)−F(W0)−SΨ̃(W̃0,W̃1) , (16)

for W̃i ∈ Ω ×R, i = −q, . . . , p, where SΨ̃ (W̃0,W̃1) is defined as (9) substituting Φ̃
with Ψ̃ and W̃L, W̃R with W̃0, W̃1.

If we suppose that R̃P = (Ω ×R)× (Ω ×R), then Riemann problems always
have a unique solution and the following result can be proved:

Proposition 2. Let Φ̃ , the family of paths used to define the weak solutions of (7),
be such that it satisfies the previously established hypotheses. Then:

1. A path-conservative numerical scheme is Φ̃-conservative if and only if
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D−
(
W̃−q, . . . ,W̃p

)
+D+(W̃−q, . . . ,W̃p

)
= F(W1)−F(W +

1/2)+F(W−1/2)−F(W0) ,

(17)
where

W̃−1/2 =
[

W−1/2
σ0

]
and W̃ +

1/2 =
[

W+
1/2
σ1

]
are, respectively, the left and right limits at x = 0 of the solution of the Riemann
problem that has W̃0 and W̃1 as initial condition.

2. A Φ̃-conservative numerical scheme reduces to a conservative numerical scheme
in regions where σ is constant.

In what follows we will suppose that q = 0 and p = 1 and use the notation W for
values W̃ such that σ = σ̄ , being σ̄ a fixed value, that is

W =
[

W
σ̄

]
.

We can prove the following results:

Proposition 3. A Ψ̃ -conservative numerical scheme reduces to a conservative
scheme when σ is constant, σ(x) = σ̄ , if and only if

D±σ (W 0,W 1) = 0 (18)

and
SΨ̃ (W 0,W 1) = 0 , (19)

which occurs when

ΨN+1(s;W 0,W 1) = σ̄ ∀s ∈ [0,1] ,

(in particular, when Ψ̃ = Φ̃).

Proposition 4. A Ψ̃ -conservative numerical scheme which reduces to a conserva-
tive scheme when σ is constant, σ(x) = σ̄ , can be written in the form

W n+1
i = W n

i −
Δ t
Δx

(
Gn

i+1/2−Gn
i−1/2

)
+

Δ t
Δx

(
Hn,+

i−1/2 + Hn,−
i+1/2

)
, (20)

where
Gn

i+1/2 = G
(
W n

i ,W n
i+1

)
,

being G a continuous function such that

G(W,W ) = F(W ) (21)

and
Hn,±

i+1/2 = H±
(
W̃ n

i ,W̃ n
i+1

)
,

being H− and H+ continuous functions such that
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H±
(
W̃ ,W̃

)
= 0 , (22)

H−
(
W̃0,W̃1

)
+ H+(W̃0,W̃1

)
= SΨ̃

(
W̃0,W̃1

)
(23)

and
H±

(
W 0,W 1

)
= 0 . (24)

Concerning well-balancing, that is related to the numerical approximation of
equilibria, i.e., steady state solutions (see [7] for more details), it can be proved
that a necessary (but not sufficient) condition for a path-conservative scheme (14)
to be well-balanced is that condition (17) is satisfied for every pair of states W̃0 and
W̃1 in an integral curve of the linearly degenerate field.

The previous results allow us to prove a Lax-Wendroff convergence result for
schemes of type (20). In fact, we prove that, when the approximations provided by
such a scheme are bounded in L∞

loc(R× [0,∞))N and converge in L1
loc(R× [0,∞))N to

some W , then W is a weak solution of the Cauchy problem associated to the system
of balance laws.
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Discontinuous Galerkin Methods



An Augmented DG Scheme for Porous Media
Equations

T.P. Barrios and R. Bustinza

Abstract We present an augmented local discontinuous Galerkin scheme for Darcy
flow, that is obtained adding suitable Galerkin least squares terms arising from con-
stitutive and equilibrium equations. The well-posedness of the scheme is proved
applying Lax Milgram’s theorem. Finally, we present an a posteriori error estima-
tor, and include one numerical experiment showing that the estimator is reliable and
efficient.

1 Introduction

Discontinuous Galerkin (DG) methods have been applied to solve a large class of
second order elliptic equations in divergence form related to problems from physics
and engineering. We refer to [1] (and the references therein) for an overview of
DG methods for elliptic problems. Concerning the Darcy equation, in [7] a mixed
DG formulation is analysed, while a stabilized DG method is proposed in [11], by
adding a suitable Galerkin least squares term (related to the constitutive equation)
to the mixed DG formulation. This is intended to avoid the introduction of lifting
operators to prove the existence and uniqueness of the solution, which restringes
the choice of the spaces of approximation. As expected, the resulting method is
stable and convergent for any combination of velocity and pressure approximations
(since it is not required to introduce lifting operators), first-order and higher, taking
into account the L2−norm for velocity. In this direction, we are concerned on the
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validity of this good properties, measuring the error in velocity in the piecewise
H(div) norm.

On the other hand, if the solution of the boundary value problem is not smooth
enough, then the numerical method would need certain knowledge about the singu-
larities of the solution. In order to overcome this difficulty, an adaptive strategy that
automatically generates efficiently refined meshes would be most attractive.

These facts motivate us to propose in [3] an augmented DG formulation for the
Poisson equation, considering piecewise Raviart-Thomas elements to approximate
the vector (gradient) solution on a broken H(div) space, while in [4] we present a
generalization of the previous analysis, and develop an a posteriori error analysis for
such a problem. One of our aims is therefore to extend/apply the a posteriori error
technique for Darcy flow problems.

In this note we report on the main results derived in [2], which extends the appli-
cability of the approach described in [4] to Darcy flow. Further, we obtain optimal
rates of convergence (under suitable additional regularity of the exact solution), in
the h-version context. In addition, we introduce an a posteriori error estimator, which
is reliable and efficient. Finally, we present one numerical example confirming our
theoretical results.

2 The Model Problem

We begin by introducing Ω as a simply connected and bounded domain in R2 with
polygonal boundary Γ . Then, given the source terms f ∈ [L2(Ω)]2, ω ∈ L2(Ω) and
g ∈ L2(Γ ), we look for (u, p) such that

u + K ∇p = f in Ω , divu = ω in Ω , and u ·ν = g on Γ , (1)

where K ∈C(Ω) is a symmetric and uniformly positive definite tensor representing
the permeability of the porous media divided by the viscosity, and ν denotes the unit
outward normal to ∂Ω . The source term f is usually related to the gravity force, ω
is the volumetric flow rate, and g is the normal component of the velocity field u on
the boundary Γ . We assume that the data ω and g satisfy the compatibility relation∫
Ω ω− ∫

Γ g = 0, and for uniqueness purposes, we suppose that p ∈ L2
0(Ω) := {q ∈

L2(Ω) :
∫
Ω q = 0}.

Now, in order to apply DG methods, we reformulate the problem (1) to find (u, p)
in appropriate spaces such that, in the distributional sense,

K −1u + ∇p = f̃ in Ω , divu = ω in Ω , and u ·ν = g on Γ ,
(2)

where f̃ := K −1f. We remark that problem (1) (or (2)), has been already analysed
in [7] and [11] using the local discontinuous Galerkin (LDG) method.
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3 An Augmented Local DG Method

In this section, we present an augmented local discontinuous Galerkin method for
the problem (2) and prove its well-posedness, using the recent results in [3] (see
also [4]). We begin with the assumptions on meshes and some basic notations such
as average and jumps.

We let {Th}h>0 be a family of shape-regular triangulations of Ω̄ (with possible
hanging nodes) made up of straight-side triangles T with diameter hT and unit out-
ward normal to ∂T given by νT . As usual, the index h also denotes h := maxT∈ThhT .
Then, given Th, its edges are defined as follows. An interior edge of Th is the
(nonempty) interior of ∂T ∩∂T ′, where T and T ′ are two adjacent elements of Th,
not necessarily matching. Similarly, a boundary edge of Th is the (nonempty) inte-
rior of ∂T ∩∂Ω , where T is a boundary element of Th. We denote by EI the list of
all interior edges of (counted only once) on Ω , and by EΓ the lists of all boundary
edges, and put E := EI∪EΓ the interior grid generated by the triangulation Th. Fur-
ther, for each e ∈ E , he represents its length. Also, in what follows we assume that
Th is of bounded variation, which means that there exists a constant l > 1, indepen-
dent of the meshsize h, such that l−1 ≤ hT

hT ′
≤ l for each pair T, T ′ ∈ Th sharing

an interior edge.
Next, to define average and jump operators, we let T and T ′ be two adjacent

elements of Th and x be an arbitrary point on the interior edge e = ∂T ∩∂T ′ ∈ EI .
In addition, let q and v be scalar- and vector-valued functions, respectively, that
are smooth inside each element T ∈ Th. We denote by (qT,e,vT,e) the restriction of
(qT ,vT ) to e. Then, we define the averages at x ∈ e by:

{q} :=
1
2

(
qT,e + qT ′,e

)
, {v} :=

1
2

(
vT,e + vT ′,e

)
.

Similarly, the jumps at x ∈ e are given by

[[q]] := qT,eνT + qT ′,eνT ′ , [[v]] := vT,e ·νT + vT ′,e ·νT ′ .

On boundary edges e, we set {q} := q, {v} := v, as well as [[q]] := qν and [[v]] :=
v ·ν . Hereafter, as usual divh and ∇h denote the piecewise divergence and gradient
operators, respectively.

3.1 The Discrete Augmented LDG Formulation

Given a mesh Th, we proceed as in [3] (or [4]) and multiply each one of the equa-
tions of (2) by suitable test functions. We wish to approximate the exact solution
(u, p) of (2) by discrete functions (uh, ph) ∈ ΣΣΣ h×Vh, where

ΣΣΣ h :=
{

vh ∈ [L2(Ω)]2 : vh

∣∣
T ∈ RTr(T ) ∀T ∈Th

}
,
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Vh :=
{

qh ∈ L2(Ω) : qh
∣∣
T ∈ Pk(T ) ∀T ∈Th

}
, Vh := Vh∩L2

0(Ω) ,

with k ≥ 1 and r ≥ 0. Hereafter, given T ∈ Th and an integer κ ≥ 0 we denote by
Pκ(T ) the space of polynomials of degree at most κ on T , while RTκ(T ) denotes
the Raviart-Thomas space of order κ on T .

Next, defining the so-called numerical fluxes as in [3] (see also [4]), that is, û and
p̂ for each edge of any T ∈Th, are given by

ûT,e :=

{{uh}+β [[uh]]+α[[ph]] if e ∈ EI

gν if e ∈ EΓ
and p̂T,e :=

{{ph}−β · [[ph]] if e ∈ EI

ph if e ∈ EΓ
(3)

and after adding suitable Galerkin least squares terms arising from constitutive equa-
tion K −1u + ∇p = f̃ in Ω and equilibrium equation divu =ω in Ω , we derive the
global discrete augmented LDG formulation: Find (uh, ph) ∈ ΣΣΣ h×Vh such that

Astab
DG ((uh, ph),(v,q)) = Fstab

DG (v,q) ∀(v,q) ∈ ΣΣΣ h×Vh , (4)

where the related bilinear form Astab
DG :

((
H(div;Th)∩ [Hε(Th)]2

)×H1(Th)
)
×((

H(div ;Th)∩ [Hε(Th)]2
)×H1(Th)

)
→ R and the corresponding linear func-

tional Fstab
DG :

((
H(div;Th)∩ [Hε(Th)]2

)×H1(Th)
)
→ R, are defined by

Astab
DG ((u,r),(v,q)) :=

∫
Ω

K −1u ·v−
∫
Ω

r div hv+
∫
EI

[[v]]
({r}−β · [[r]])

+
∫

EΓ
rv ·ν +

∫
Ω

qdivhu−
∫
EI

[[u]]
({q}−β · [[q]]

)−∫
EΓ

qu ·ν

+
∫

EI

α[[r]] · [[q]]+
1
2

∫
Ω

(K −1u+∇hr) · (K ∇hq−v) +
∫
Ω

divhudivhv ,

and

Fstab
DG (v,q) :=

∫
Ω

f̃ ·v+
∫
Ω
ω(q + divhv)−

∫
Γ

gq +
1
2

∫
Ω

f̃ · (K ∇hq−v) ,

for all (u,r),(v,q) ∈ (H(div;Th)∩ [Hε(Th)]2
)×H1(Th), with ε > 1/2.

The stabilization parameters α and β , which are needed to define the numerical
fluxes, are chosen appropriately so that the solvability of the discrete augmented
LDG formulation is guaranteed, as well as the optimal rates of convergence. In our
case, we know that α ∈ O(1/h), while β = O(1) (cf. [4, 2]). Moreover, we remark
that the purpose of the term divhudivhv is to give a control on ||divhv||2

L2(Ω), while

the presence of the parameter β could help to prove superconvergence of the method
(cf. [10, 9]).
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3.2 Well-Posedness, A Priori and A Posteriori Error Estimates

In this subsection we prove the unique solvability of (4), by applying the well-
known Lax-Milgram’s theorem (as in [4] for Poisson’s equation). To this end, we
provide the space ΣΣΣ h with the usual norm of ΣΣΣ := H(div ;Th), which is denoted by
‖ · ‖ΣΣΣ , that is

‖v‖2
ΣΣΣ := ||v||2[L2(Ω)]2 + ||divhv||2L2(Ω) ∀v ∈ ΣΣΣ ,

while for Vh we introduce its seminorm ||| · |||h : H1(Th)→ R as

|||q|||2h := ||∇hq||2[L2(Ω)]2 + ||α1/2[[q]]||2[L2(EI)]2
∀q ∈ H1(Th) .

We remark that ||| · |||h is the so-called energy norm in Vh (see [6]). In addition, we
define ||(·, ·)||DG : ΣΣΣ ×H1(Th)→ R by

||(v,q)||2DG := ||v||2ΣΣΣ + |||q|||2h ∀(v,q) ∈ ΣΣΣ ×H1(Th) ,

which is a norm in the space ΣΣΣ × (H1(Th)∩L2
0(Ω)).

The following result establishes the well-posedness of problem (4), as well as
the optimal rate of convergence of the method.

Theorem 1. Problem (4) has a unique solution (uh, ph) ∈ ΣΣΣh×Vh. Moreover, as-
suming that (u, p) ∈ (

H(div;Ω) ∩ [Hε(Th)]2
)× (

H1+ε(Ω) ∩ L2
0(Ω)

)
, for some

ε > 1/2, there exists C > 0, independent of the meshsize, such that

||(u−uh, p− ph)||DG ≤ C inf
(vh,qh)∈ΣΣΣh×Vh

||(u−vh, p−qh)||DG . (5)

In addition, assuming that u|T ∈ [Ht(T )]2, divu|T ∈Ht(T ) and p|T ∈H1+t(T ) with
t > 1/2, for all T ∈Th, there exists Cerr > 0, independent of the meshsize, such that

||(u−uh, p− ph)||2DG

≤ Cerr ∑
T∈Th

h2min{t,k,r}
T

{
||u||2[Ht(T )]2 + ||p||2Ht+1(T ) + ||divu||2Ht(T )

}
.

(6)

Proof. It is not difficult to see that the bilinear form Astab
DG is bounded and strongly

coercive on Σh×Vh, while the linear functional Fstab
DG is bounded on Σh×Vh, too.

Then existence and uniqueness of the solution of problem (4) is a consequence
of Lax-Milgram’s theorem. Next, a Strang-type estimate is derived, and taking into
account that the exact solution is smooth enough, one can check that the consistency
term vanishes, yielding the Céa estimate (5). Finally, (6) is obtained from (5), by
introducing suitable approximation operators of the exact solution onto its respective
space of approximation, and applying then Lemmas 3.1 and 3.2 in [4]. ��
We point out that Theorem 1 is valid for any combination of velocity and pressure
approximations. However, we consider totally discontinuous Raviart-Thomas ele-
ments for the velocity because of its suitability to deal with divergence operator as
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well as the corresponding approximation theory (see [4] for a discussion for Pois-
son’s problem).

We end this section with the following result, which presents an a posteriori error
estimator that results to be reliable and efficient.

Theorem 2. Let (u, p) ∈H(div ,Ω)× (H1(Ω)∩L2
0(Ω)) be the exact solution of (2)

and let (uh, ph)∈ ΣΣΣh×Vh be the unique solution of (4). Then there exist C1, C2 > 0,
independent of meshsize, such that

C1η ≤ ||(u, p)− (uh, ph)||DG ≤C2η , (7)

where η2 := ∑T∈Th
η2

T with η2
T given, on each T ∈Th, by

η2
T := ‖f−uh−K ∇ph‖2

[L2(T )]2 + h2
T ‖ω−divuh‖2

L2(T )

+ ||α1/2[[ph]]||2L2(∂T∩EI)
+ hT ||uh ·νT − û ·νT ||2L2(∂T) ,

(8)

with û being the numerical flux associated to u (cf. (3)).

Proof. The proof follows the ideas given in [5] (see also [4] and [8]), and is based
on a suitable Helmholtz decomposition of the error in u (and p). The proof of the
efficiency is based on Verfürth’s ideas (see [12]), and needs the introduction of local
bubble functions, on any edge and on any element of the triangulation. We omit
further details. ��

4 Numerical Results

In this section we present one numerical result illustrating the performance of the
augmented mixed finite element scheme (4) and the a posteriori error estimator η ,
given in Theorem 2. To this end, we first note that for implementation purposes, the
null media condition required by the elements of Vh can be imposed as a Lagrange
multiplier. In other words, we consider the following modified discrete scheme: Find
(uh, ph,ϕh) ∈ ΣΣΣh×Vh×R such that

Astab
DG ((uh, ph),(v,q)) + ϕh

∫
Ω

qdx = Fstab
DG (v,q) ∀(v,q) ∈ ΣΣΣh×Vh ,

ψ
∫
Ω

ph dx = 0 ∀ψ ∈R .

(9)

Next, to illustrate the properties of the estimator η and the augmented scheme
(9), we take Ω as the square (0,1)2, and choose the data f, ω and g, as well as the
matrix K so that the exact solution for the velocity is u = ∇p in Ω with p(x,y) =
sin(2πx)sin(2πy) in Ω . The individual and total errors are denoted by e(u) :=
‖u−uh‖ΣΣΣ , e(p) := |||p− ph|||h, e0(p) := ‖p− ph‖L2(Ω), e :=

{
[e(u)]2 + [e(p)]2

}1/2
,

respectively, whereas the effectivity index with respect to η is defined by e/η . Now,
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given two consecutive triangulations with degrees of freedom N and N′ and corres-
ponding total errors e and e′, the experimental rate of convergence is defined by

r(e) := −2
log(e/e′)

log(N/N′)
.

The definition of r(p), r(u) and r0(p) is done in analogous way.

N e(p) r(p) e(u) r(u) e r(e) e0(p) r0(p) e/η
25 3.4703 —– 40.3240 —– 40.4731 —– 0.3624 —– 0.9799
97 2.6140 0.4180 32.2136 0.3312 32.3195 0.3318 0.1453 1.3483 0.9736
385 1.9425 0.4308 14.2623 1.1821 14.3940 1.1735 0.0590 1.3066 0.9526

1537 0.9965 0.9644 7.2996 0.9677 7.3673 0.9676 0.0148 1.9942 0.9327
6145 0.5012 0.9918 3.6716 0.9918 3.7057 0.9918 0.0036 2.0560 0.9016
24577 0.2515 0.9950 1.8386 0.9979 1.8557 0.9978 0.0009 2.0362 0.8019
98305 0.1260 0.9970 0.9197 0.9995 0.9283 0.9994 0.0002 2.0119 0.6916

Table 1 Example 1 with P1−RT0 approximation: uniform refinement.

N e(p) rh(p) e(u) r(u) e r(e) e0(p) r0(p) e/η
25 3.4703 —– 40.3240 —– 40.4731 —– 0.3624 —– 0.9799
97 2.6140 0.4180 32.2136 0.3312 32.3195 0.3318 0.1453 1.3483 0.9736
385 1.9425 0.4308 14.2623 1.1821 14.3940 1.1735 0.0590 1.3066 0.9526

1393 1.1641 0.7964 7.7819 0.9422 7.8685 0.9393 0.0282 1.1476 0.9353
2365 0.9719 0.6816 6.2210 0.8459 6.2965 0.8421 0.0140 2.6528 0.9361
6271 0.5654 1.1111 3.7052 1.0628 3.7481 1.0639 0.0060 1.7203 0.9215

11671 0.4746 0.5637 2.9603 0.7226 2.9981 0.7188 0.0033 1.9667 0.9305
26449 0.3051 1.0797 1.8760 1.1152 1.9006 1.1143 0.0018 1.5298 0.9168
48679 0.2476 0.6847 1.4985 0.7365 1.5188 0.7351 0.0010 1.7315 0.9302
109267 0.1592 1.0936 0.9500 1.1273 0.9633 1.1264 0.0005 1.8985 0.9151

Table 2 Example 1 with P1−RT0 approximation: Adaptive refinement with hanging nodes.

In Tables 1 and 2 we provide the individual and total errors, the experimental
rates of convergence, the a posteriori error estimator, and the effectivity index for
the uniform and adaptive refinements, respectively, as applied to this example. In
this case, uniform refinement means that, given a uniform initial triangulation, each
subsequent mesh is obtained from the previous one by dividing each triangle into
the four ones arising when connecting the midpoints of its sides. We apply red-
refinement technique (with hanging nodes) for the adaptive one (see [12]). The er-
rors are computed on each triangle using a 7-point Gaussian quadrature rule. We
observe in Table 1 and 2 that the effectivity index are bounded from above and be-
low, which confirms the reliability as well as the efficiency of the corresponding
a posteriori error estimator (cf. Theorem 2). In fact, we notice that the effectivity
index related to adaptive refinement, is close to one. We also remark that due to
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the smoothness of the exact solution, we obtain experimental rates of convergence
O(h) for the global error e, in agreement with theoretical results (cf. Theorem 1), for
both refinements. Moreover, we notice a quadratic convergence for the error e0(p),
whose theoretical proof should be deduced from usual duality arguments.

Finally, we point out that a more generalized analysis than the presented in this
note, as well as more numerical examples, will be reported in [2].
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A Remark to the DGFEM for Nonlinear
Convection-Diffusion Problems Applied on
Nonconforming Meshes

M. Feistauer

Abstract This paper is concerned with error estimates in L2(H1)- and L∞(L2)-norm
of the discontinuous Galerkin finite element method applied to the space semidis-
cretization of nonlinear nonstationary convection-diffusion problems. We discuss
the discontinuos Galerkin method on shape regular meshes, which can be either con-
forming or nonconforming with hanging nodes. The main goal is to show that the
results obtained under restrictive assumptions on the nonconformity of the meshes
can be improved by using computational grids with less limiting properties.

1 Continuous Problem

In a number of applications we meet the necessity to solve nonstationary nonlin-
ear convection-diffusion problems. A typical example is the Navier-Stokes system
describing compressible viscous flow. One of promising, efficient methods for the
solution of compressible flow is the discontinuous Galerkin finite element method
(DGFEM) using piecewise polynomial approximation of a sought solution without
any requirement on the continuity between neighbouring elements. In this paper we
shall be concerned with the analysis of the DGFEM for the solution of a nonlin-
ear nonstationary convection-diffusion equation, which is a simple prototype of the
compressible Navier-Stokes system.

Let us consider the problem to find u : QT = Ω × (0,T )→ IR such that

a)
∂u
∂ t

+
d

∑
s=1

∂ fs(u)
∂xs

= εΔu + g in QT , (1)

b) u
∣∣
ΓD×(0,T ) = uD, c) u(x,0) = u0(x), x ∈Ω .

Miloslav Feistauer
Charles University Prague, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8,
Czech Republic, e-mail: feist@karlin.mff.cuni.cz
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We assume that Ω ⊂ IRd , d = 2,3, is a bounded polygonal (if d = 2) or polyhedral
(if d = 3) domain with Lipschitz-continuous boundary ∂Ω and T > 0. The diffusion
coefficient ε > 0 is a given constant, g : QT → IR, uD : ∂Ω × (0,T )→ IR, and u0 :
Ω → IR are given functions, fs ∈C1(IR), s = 1, . . . ,d, are prescribed fluxes.

2 Discrete Problem

Let Th = {Ki}i∈I (h > 0, I ⊂ {0,1,2, . . .}) denote a partition of the closure Ω of the
domainΩ into a finite number of closed triangles (if d = 2) or tetrahedra (if d = 3) Ki

with mutually disjoint interiors. We do not require the usual conforming properties
from the finite element method (cf. [1]). We set hK = diam(K), h = maxK∈Th hK . By
ρK we denote the radius of the largest ball inscribed into K. If two elements Ki, Kj ∈
Th contain a nonempty open part of their faces, we call them neighbours. In this case
we putΓi j =Γji = ∂Ki∩∂Kj. For i∈ I we set s(i) = { j ∈ I;Kj is a neighbour of Ki}.
We shall also use the symbol Γi j for sides of Ki which are parts of ∂Ω and set γ(i) =
{ j; Γi j ⊂ ∂Ki ∩ ∂Ω}. (We assume that s(i)∩ γ(i) = /0 for all i ∈ I.) Now, writing
S(i) = s(i)∪ γ(i), we have ∂Ki =

⋃
j∈S(i)Γi j, ∂Ki ∩ ∂Ω =

⋃
j∈γ(i)Γi j. Furthermore,

we use the following notation: ni j = ((ni j)1, . . . ,(ni j)d) is the unit outer normal to
∂Ki on the face Γi j and d(Γi j) = diam(Γi j).

Over the triangulation Th we introduce the broken Sobolev space Hk(Ω ,Th) =
{v; v|K ∈ Hk(K) ∀K ∈Th} with seminorm

|v|Hk(Ω ,Th) =

(
∑

K∈Th

|v|2Hk(K)

)1/2

, v ∈Hk(Ω ,Th). (2)

For v ∈ H1(Ω ,Th), i ∈ I, j ∈ s(i) we use the notation v|Γi j = trace of v|Ki on Γi j,

v|Γji = trace of v|Kj on Γji, 〈v〉Γi j = 1
2

(
v|Γi j + v|Γji

)
, [v]Γi j

= v|Γi j − v|Γji .
The approximate solution is sought in the space of discontinuous piecewise poly-

nomial functions Sh = Sp,−1(Ω ,Th) = {v;v|K ∈ Pp(K) ∀K ∈Th}, where Pp(K) is
the space of all polynomials on K of degree≤ p.

In order to introduce the DG space semidiscretization of problem (1), for u,ϕ ∈
H2(Ω ,Th) we define the forms

ah(u,ϕ) =∑
i∈I

∫
Ki

ε ∇u ·∇ϕ dx (3)

−∑
i∈I
∑

j∈s(i)
j<i

∫
Γi j

ε〈∇u〉 ·ni j[ϕ ]dS−Θ∑
i∈I
∑

j∈s(i)
j<i

∫
Γi j

ε〈∇ϕ〉 ·ni j[u]dS

−∑
i∈I

∑
j∈γ(i)

∫
Γi j

ε ∇u ·ni j ϕ dS−Θ∑
i∈I

∑
j∈γ(i)

∫
Γi j

ε ∇ϕ ·ni j udS,
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lh(ϕ)(t) =
∫
Ω

g(t)ϕ dx (4)

−Θ∑
i∈I

∑
j∈γ(i)

∫
Γi j

ε∇ϕ ·ni juD(t)dS +∑
i∈I

∑
j∈γ(i)

∫
Γi j

σuD(t)ϕ dS,

Jh(u,ϕ) =∑
i∈I
∑

j∈s(i)
j<i

∫
Γi j

σ [u][ϕ ]dS +∑
i∈I

∑
j∈γ(i)

∫
Γi j

σuϕ dS (5)

bh(u,ϕ) =−∑
i∈I

∫
Ki

2

∑
s=1

fs(u)
∂ϕ
∂xs

dx (6)

+∑
i∈I

∑
j∈S(i)

∫
Γi j

H(u|Γi j ,u|Γji ,ni j)ϕ |Γi j dS. (7)

Taking Θ = 1, 0 and −1, we obtain the symmetric (SIPG), incomplete (IIPG) and
nonsymmetric (NIPG) variants of the approximation of the diffusion terms. The
weight σ and the numerical flux H will be specified later. If j ∈ γ(i), then in H we
set u|Γji := u|Γi j . By (·, ·) we denote the L2(Ω)-scalar product.

Now we can introduce the discrete problem (space semidiscretization with con-
tinuous time, also called the method of lines). We define an approximate solution of
problem (1) as a function uh ∈C1([0,T ];Sh) satisfying the conditions uh(0) = u0

h =
Sh-approximation of u0, and

d
dt

(uh(t),ϕh)+ bh(uh(t),ϕh)+ εJh(uh(t),ϕh)+ ah(uh(t),ϕh) (8)

= lh(ϕh)(t), ∀ϕh ∈ Sh, ∀t ∈ (0,T ).

3 Error Analysis

3.1 Assumptions

Assumptions (H):

1. H(u,v,n) is defined in IR2×B1, where B1 = {n ∈ IRd ; |n| = 1}, and Lipschitz-
continuous with respect to u, v:
|H(u,v,n)−H(u∗,v∗,n)| ≤CL(|u− u∗|+ |v− v∗|), u, v, u∗, v∗ ∈ IR, n ∈ B1.

2. H(u,v,n) is consistent: H(u,u,n) =∑d
s=1 fs(u)ns, u ∈ IR, n = (n1, . . . ,nd) ∈ B1.

3. H(u,v,n) is conservative: H(u,v,n) =−H(v,u,−n), u, v ∈ IR, n ∈ B1.

We shall assume that the weak solution u of problem (1) is regular, namely

∂u
∂ t
∈ L2(0,T ;H p+1(Ω)). (9)

It is possible to show that the regular solution satisfies the identity
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d
dt

(u(t),ϕh)+ bh(u(t),ϕh)+ εJh(u(t),ϕh)+ ah(u(t),ϕh) (10)

= lh(ϕh)(t), ∀ϕh ∈ Sh, for a.e. t ∈ (0,T ).

Let us consider a regular system {Th}h∈(0,h0), h0 > 0, of partitions of the domain
Ω . This means that there exists a constant CT > 0 such that

hK

ρK
≤CT ∀K ∈Th ∀h ∈ (0,h0). (11)

3.2 Some Auxiliary Results

In the analysis of the DGFEM we use the following important tools (see, e.g. [2]).
Multiplicative trace inequality: There exists a constant CM > 0 independent of v,

h and K such that

‖v‖2
L2(∂K) ≤CM

(
‖v‖L2(K) |v|H1(K) + h−1

K ‖v‖2
L2(K)

)
, (12)

K ∈Th, v ∈ H1(K), h ∈ (0,h0).

Inverse inequality: There exists a constant CI > 0 independent of v, h, and K such
that

|v|H1(K) ≤CIh
−1
K ‖v‖L2(K), v ∈ Pp(K), K ∈Th, h ∈ (0,h0). (13)

Now, for v ∈ L2(Ω) we denote by Πhv the L2(Ω)-projection of v on Sh. It is
possible to show (cf., e.g. [5, Lemma 4.1]) that the operator Πh has the following
properties: There exists a constant CA > 0 independent of h,K,v such that

‖Πhv− v‖L2(K) ≤CAhk+1
K |v|Hk+1(K), (14)

|Πhv− v|H1(K) ≤CAhk
K |v|Hk+1(K),

|Πhv− v|H2(K) ≤CAhk−1
K |v|Hk+1(K),

for all v ∈ Hk+1(K), K ∈Th and h ∈ (0,h0), where k ∈ [1, p] is an integer.

3.3 Coercivity and Important Estimates

An important step in the analysis of error estimates is the coercivity of the form
Ah(u,v) = ah(u,v)+ εJh(u,v), which reads

Ah(ϕh,ϕh)≥ ε
2

(
|ϕh|2H1(Ω ,Th) + Jh(ϕh,ϕh)

)
, ϕ ∈ Sh, h ∈ (0,h0). (15)

We shall discuss the validity of estimate (15) in various situations.
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(I) Conforming Mesh Th

We assume that the mesh Th has the standard properties from the finite element
method (cf., e. g. [1]): if Ki, Kj ∈Th, i �= j, then Ki∩Kj = /0 or Ki∩Kj is a common
vertex or Ki∩Kj is a common edge (or Ki∩Kj is a common face in the case d = 3)
of Ki and Kj. In this case we set

σ |Γi j =
CW

d(Γi j)
, i ∈ I, j ∈ S(i). (16)

Then (15) holds under the following choice of the constant CW :

CW > 0 (e. g. CW = 1) for NIPG version, (17)

CW ≥ 4CM(1 +CI) for SIPG version, (18)

CW ≥ 2CM(1 +CI) for IIPG version, (19)

where CM and CI are constants from (12) and (13), respectively.

(II) Nonconforming Mesh Th

In this case Th is formed by closed triangles with mutually disjoint interiors with
hanging nodes in general. Then the coercivity inequality (15) is guaranteed under
conditions (17) – (19). However, in this case it is necessary to assume that

hKi ≤CD d(Γi j), i ∈ I, j ∈ S(i), (20)

with a constant CD > 0, in order to prove the estimate

Jh(η ,η)≤Chp|u|H p+1(Ω). (21)

For the analysis of the cases (I) and (II) we can refer to [2].

(III) Nonconforming Mesh Th without Assumption (20)

Condition (20) is a subject of a criticism, because it is obviously rather restrictive in
some cases. In order to avoid it, we change the definition of the weight σ :

σ |Γi j =
2CW

hKi + hKj

, i ∈ I, j ∈ s(i), (22)

σ |Γi j =
CW

hKi

, i ∈ I, j ∈ γ(i).
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In theoretical analysis, this definition is used under the assumption

hKi ≤CN hKj , i ∈ I, j ∈ s(i). (23)

(Hence, CN ≥ 1.) Then (15) holds under the following choice of CW :

CW > 0 (e. g. CW = 1) for NIPG version, (24)

CW ≥ 2CM(1 +CI)(1 +CN) for SIPG version, (25)

CW ≥CM(1 +CI)(1 +CN) for IIPG version. (26)

Proof. Let us prove, for example, the coercivity inequality (15) in the case (III) for
SIPG version.

Using the definition of the forms ah and Jh and the Cauchy and Young’s inequal-
ities, we find that for any δ > 0 we have

ah(ϕh,ϕh)≥ ε|ϕh|2H1(Ω ,Th)− εω− ε
δ

CW
Jh(ϕh,ϕh),

where

ω =
1
δ ∑i∈I

⎛⎜⎝ ∑
j∈s(i)

j<i

∫
Γi j

hKi + hKj

2
|〈∇ϕh〉|2 ds+ ∑

j∈γ(i)

∫
Γi j

hKi |∇ϕh|2dS

⎞⎟⎠ .

In view of (23),

ω ≤ 1
δ

1 +CN

2 ∑
i∈I

hKi

∫
∂Ki

|∇ϕh|2dS.

Now, the application of (12) and (13) yields the estimate

ω ≤ 1
2δ

CM(1 +CI)(1 +CN) |ϕh|2H1(Ω ,Th).

If we set δ := CM(1+CI)(1+CN) and use assumption (25), we immediately arrive
at (15).

In the IIPG case we can proceed similarly.

Moreover, it is possible to show that estimates from [2], obtained in the cases
(I) and (II) can be proved also in the case (III). In particular, we mention the fol-
lowing estimate. If u and uh denote the exact and approximate solutions, we set
η(t) =Πhu(t)−u(t),ξ (t)= uh(t)−Πhu(t) for a.e. t ∈ (0,T ). Then, under the above
assumptions, we have the estimate

|bh(u,ξ )−bh(uh,ξ )| ≤C
(
|ξ |2H1(Ω ,Th) + Jh(ξ ,ξ )

)1/2(
hp+1|u|H p+1(Ω) +‖ξ‖L2(Ω)

)
.

(27)
As we see, this estimate contains the term hp+1, which is important particularly for
the derivation of an optimal L∞(L2)-error estimate treated in Section 4.
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3.4 Error Estimates

The detailed analysis representing the adaptation of the technique from [2] to the
case (III) allows us to summarize the obtained error estimate in the following way.

Theorem 1. Let assumptions (H) and (11) be satisfied and let σ , d(Γi j) and CW

satisfy assumptions from the cases (I) or (II) or (III). Let u be the exact solution
of problem (1) satisfying the regularity condition (9) and let uh be the approximate
solution defined by (8) with u0

h = Πhu0. Then the error eh = u− uh satisfies the
estimate

maxt∈[0,T ]‖eh(t)‖2
L2(Ω) +

ε
2

∫ t

0

(|eh(ϑ)|2H1(Ω ,Th) + Jh(eh(ϑ),eh(ϑ))
)

dϑ ≤C h2p,

(28)
with a constant C > 0 independent of h.

4 Optimal Error Estimates

The error estimate (28) is optimal in the L2(H1)-seminorm, but suboptimal in the
L∞(L2)-norm. In [3], we carried out the analysis of the L∞(L2)-optimal error esti-
mate under the following assumptions.

Assumptions (B):

• the discrete diffusion form ah is symmetric (i.e. we consider the SIPG version of
the discrete problem), σ is given by (16) and CW satisfies (18).

• the polygonal domain Ω is convex,
• the meshes Th, h ∈ (0,h0), are conforming with standard properties from the

finite element method (i.e. without hanging nodes),
• the exact solution u of problem (1) satisfies the regularity condition (9),
• conditions (H) and (11) are satisfied,
• u0

h = Πhu0.

The derivation of the L∞(L2)-optimal error estimate was carried out with the aid of
the Aubin-Nitsche technique based on the use of the elliptic dual problem consid-
ered for each z ∈ L2(Ω):

−Δψ = z in Ω , ψ |∂Ω = 0. (29)

Then the weak solution ψ ∈ H2(Ω) and there exists a constant C > 0, independent
of z, such that

‖ψ‖H2(Ω) ≤C‖z‖L2(Ω). (30)

For each h ∈ (0,h0) and t ∈ [0,T ] we define the function u∗(t) (= u∗h(t)) as the
“Ah-projection” of u(t) on Sh, i. e. a function satifying the conditions
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u∗(t) ∈ Sh, Ah(u∗(t),ϕh) = Ah(u(t),ϕh) ∀ϕh ∈ Sh, (31)

and set χ = u−u∗. Using the elliptic dual problem (29), we proved the existence of
a constant C > 0 such that

‖χ‖L2(Ω) ≤Chp+1|u|H p+1(Ω), ‖χt‖L2(Ω) ≤Chp+1|ut |H p+1(Ω), h ∈ (0,h0), (32)

which together with (27), multiple application of Young’s inequality and Gronwall’s
lemma represent important tools for obtaining the L∞(L2)-error estimate formulated
as follows.

Theorem 2. Let assumptions (B) be fulfilled. Then the error eh = u−uh satisfies the
estimate

‖eh‖L∞(0,T ;L2(Ω)) ≤Chp+1, (33)

with a constant C > 0 independent of h.

The assumption that the triangulations Th, h ∈ (0,h0), are conforming is limit-
ing. Using a more sophisticated technique, we have proved estimates (32) and thus,
(33) in the case of nonconforming meshes with hanging nodes. The detailed analysis
will appear in [4].
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BDF-DGFE Method for the Compressible
Navier-Stokes Equations

J. Hozman and V. Dolejšı́

Abstract We deal with a numerical solution of the compressible Navier-Stokes
equations. We employ a combination of the discontinuous Galerkin finite element
(DGFE) method for the space semi-discretization and the backward difference for-
mulae (BDF) for the time discretization. Moreover, using a linearization of inviscid
as well as viscous fluxes and applying a suitable explicit extrapolation to nonlinear
terms, we obtain a numerical scheme which is almost unconditionally stable, has a
higher degree of approximation with respect to the space and time coordinates and
at each time step requires a solution of a linear algebraic problem. We present this
approach and compare several variants of the DGFE techniques applied to a steady
flow around the NACA0012 profile.

1 Introduction

A specific wide class of problems of fluid mechanics is formed of viscous com-
pressible flow, which is described by the system of the compressible Navier–Stokes
equations. Our goal is to develop an efficient, robust and accurate numerical scheme
for a solution of the system of the Navier-Stokes equations. In last years the discon-
tinuous Galerkin method (DGM) was employed in many papers for the discretiza-
tion of compressible fluid flow problems, see, e.g., [2], [3], [6], [10], [12], [13]
and the references cited therein. DGM is based on a piecewise polynomial, but dis-
continuous approximation, for a survey see, e.g., [4]. There are several variants of
DGM for the solution of a viscous flow, see, e.g., [1]. Within this paper, we consider
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the so-called nonsymmetric interior penalty Galerkin (NIPG), symmetric interior
penalty Galerkin (SIPG) and incomplete interior penalty Galerkin (IIPG) variants
of the discontinuous Galerkin finite element (DGFE) method.

For the time discretization, the method of lines is used. In order to obtain a suffi-
ciently stable scheme with respect to the size of the time step and in order to avoid
a solution of nonlinear algebraic problems at each time step, we employ a semi-
implicit method, which is based on a linearization of the inviscid and viscous fluxes.
We especially focus on linearization of the viscous fluxes and the main aim of this
paper is study two different approaches called (S1) and (S2).

Technique (S2) represents a direct generalization of the explicit time discretiza-
tion presented in [6]. Although approach (S2) was presented in [8] for the solution of
the Blasius problem, numerical computations presented in the last section show that
this (S2) approach does not give satisfactory results for steady-state flow around
NACA. Therefore we deal with the approach (S1) which is motivated by papers
[12], [3]. However, we presented this approach in [7], a numerical comparison of
both approaches is still missing. This is a subject of this contribution where nu-
merical experiments show that technique (S2) does not achieve a satisfactory small
steady-state residuum.

2 Compressible Navier-Stokes Equations

We consider the compressible Navier-Stokes equations in an open domain QT =
Ω× (0,T), where T > 0 is the final time and Ω ⊂ R2 is the flow domain. We de-
note the boundary of Ω by ∂Ω, it consists of several disjoint parts — inlet ΓI , outlet
ΓO and impermeable walls ΓW . Using this notation, the compressible Navier-Stokes
equations can be written in conservative variables w = (ρ ,ρv1,ρv2,E)T in dimen-
sionless form

∂w
∂ t

+
2

∑
s=1

∂ fs(w)
∂xs

=
2

∑
s=1

∂Rs(w,∇w)
∂xs

in QT , (1)

where

fs(w) = (ρvs, ρvsv1 + δs1 p, ρvsv2 + δs2 p, (E + p)vs)T , s = 1,2 , (2)

are the so-called inviscid (Euler) fluxes and

Rs(w,∇w) =

(
0, τs1,τs2,

2

∑
k=1

τskvk +
γ

RePr
∂ϑ
∂xs

)T

, s = 1,2 , (3)

are the so-called viscous fluxes. We consider the Newtonian type of fluid, i. e., the
viscous part of the stress tensor has the form
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τsk =
1

Re

[(
∂vs

∂xk
+
∂vk

∂xs

)
− 2

3
div(v)δsk

]
, s,k = 1,2. (4)

The following notation is used: ρ – density, v = (v1,v2)T – velocity field, p –
pressure, E – total energy, ϑ – temperature, γ – Poisson adiabatic constant, Re –
Reynolds number and Pr – Prandtl number.

In order to close the system (1) – (4) we consider the state equation for perfect
gas and the relation for total energy

p = (γ−1)(E−ρ |v|2/2) , E = cVρϑ +ρ |v|2/2 , (5)

where cV is the specific heat at constant volume which is equal to one in the dimen-
sionless case.

The system (1) – (5) is is equipped with the initial condition

w(x,0) = w0(x), x ∈Ω, (6)

and the following set of boundary conditions on appropriate parts of boundary:

a) ρ = ρD, v = vD,
2

∑
k=1

(
2

∑
l=1

τlknl

)
vk +

γ
RePr

∂ϑ
∂n

= 0 on ΓI ,

b)
2

∑
k=1

τsknk = 0, s = 1,2,
∂ϑ
∂n

= 0 on ΓO, (7)

c) v = 0,
∂ϑ
∂n

= 0 on ΓW ,

where ρD and vD are given functions and n = (n1,n2)T is the unit outer normal to
∂Ω.

We mention some properties of the inviscid and viscous fluxes (2) and (3), re-
spectively, which are the base of their linearization and the consequent use of a
semi-implicit approach.

The Euler fluxes fs, s = 1,2 satisfy

fs(w) = As(w)w, s = 1,2 , (8)

where As(·), s = 1,2 are the Jacobi matrices of fs(·), see [11, Lemma 3.1].
In order to linearized the viscous terms, we define the forms Qs(·, ·, ·, ·) : R4×

R8×R4×R8 → R4, s = 1,2, which formally denote two possible choices of the
stabilization terms:

Qs(w,∇w,ϕ ,∇ϕ) =

{
∑2

k=1 Ks,k(w) ∂ϕ
∂xk

, (S1)

Ds,0(w,∇w)ϕ +∑2
k=1 Ds,k(w) ∂ϕ

∂xk
, (S2)

,s = 1,2, (9)

where w,ϕ ∈ R4, Ks,k ∈ R4×4, k = 1,2,s = 1,2 are matrices (see, e.g., [11, Section
4.3.1]) and the matrices Ds,k ∈ R4×4, k = 0,1,2,s = 1,2 were defined in [7].
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It is possible to show that the forms Qs (for approaches (S1) as well as (S2)) are
consistent with viscous fluxes Rs in the sense that

Qs(w,∇w,w,∇w) = Rs(w,∇w) ∀w, s = 1,2. (10)

Moreover, the forms Qs(w,∇w,ϕ ,∇ϕ), s = 1,2 are linear with respect ϕ and ∇ϕ
and they are independent of ∇ϕ1.

3 Discontinuous Finite Element Spaces

Let Th (h > 0) represents a triangulation of the closure Ω of the domain Ω ⊂ R2

into a finite number of closed elements (triangles or quadrilaterals) K with mutually
disjoint interiors. We set h = maxK∈Th diam(K).

By Fh we denote the smallest possible set of all open edges of all elements
K ∈ Th. Further, we denote by F I

h the set of all Γ ∈ Fh that are contained in Ω
(inner edges) and by Fw

h , F i
h and F o

h the set of all Γ ∈ Fh such that Γ ⊂ ΓW ,
Γ ⊂ ΓI and Γ ⊂ ΓO, respectively. Moreover, we use a following notation: FD

h the
set of all Γ ∈Fh where the Dirichlet type of boundary conditions is prescribed at
least for one component of w (i.e., FD

h = Fw
h ∪F i

h) and FN
h the set of all Γ ∈Fh

where the Neumann type of boundary conditions is prescribed for all components
of w (i.e., FN

h = F o
h ). For a shorter notation we put F ID

h = F I
h ∪FD

h .
Finally, for each Γ ∈Fh, we define a unit normal vector nΓ. We assume that nΓ,

Γ ⊂ ∂Ω has the same orientation as the outer normal of ∂Ω. For nΓ, Γ ∈FI the
orientation is arbitrary but fixed for each edge.

Over the triangulation Th we define the broken Sobolev space

Hk(Ω,Th) = {v;v|K ∈ Hk(K) ∀K ∈Th}, (11)

where Hk(K) = W k,2(K) means the (classical) Sobolev space on element K. Fur-
thermore, we define the space of discontinuous piecewise polynomial functions

Shp = {v;v|K ∈ Pp(K) ∀K ∈Th} (12)

where Pp(K) represents the space of all polynomials on K of degree ≤ p, K ∈ Th.
We seek the approximate solution (1) – (7) in the space of vector-valued functions
Shp =

[
Shp

]4
.

For each Γ ∈F I
h there exist two elements Kp, Kn ∈ Th such that Γ ⊂ Kp ∩Kn.

We use a convention that Kn lies in the direction of nΓ and for v ∈ H1(Ω,Th),
by v|(p)

Γ = trace of v|Kp on Γ, v|(n)
Γ = trace of v|Kn on Γ we denote the traces

of v on edge Γ, which are different in general. Moreover, [v]Γ = v|(p)
Γ − v|(n)

Γ and

〈v〉Γ =
(

v|(p)
Γ + v|(n)

Γ

)
/2 denotes the jump and mean value of function v over the

edge Γ, respectively.
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For Γ∈ ∂Ω there exists an element Kp ∈Th such that Γ⊂Kp∩∂Ω. Then for v∈
H1(Ω,Th), we introduce the following notation: v|(p)

Γ = trace of v|Kp on Γ, 〈v〉Γ =

[v]Γ = v|(p)
Γ . In case that nΓ, [·]Γ and 〈·〉Γ are arguments of

∫
Γ . . . dS, Γ ∈Fh, we

omit the subscript Γ and write simply n, [·] and 〈·〉, respectively.

4 BDF–DGFE Formulation

Let w̄,w,ϕ ∈ [H2(Ω,Th)
]4

. Then, following the approach from [7], we define the
diffusive form

ah(w̄,w,ϕ) = ∑
K∈Th

∫
K

2

∑
s=1

Qs(w̄,∇w̄,w,∇w) · ∂ϕ
∂xs

dx (13)

− ∑
Γ∈F ID

h

∫
Γ

〈
2

∑
s=1

Qs(w̄,∇w̄,w,∇w)

〉
ns · [ϕ ] dS

− η ∑
Γ∈F I

h

∫
Γ

〈
2

∑
s=1

Q∗s (w̄,∇w̄,ϕ ,∇ϕ)

〉
ns · [w] dS

− η ∑
Γ∈FD

h

∫
Γ

2

∑
s=1

Q∗s (w̄,∇w̄,ϕ ,∇ϕ)ns · (w−wB)dS,

where n = (n1,n2) and forms Q∗s are defined (based on the used discretization of
viscous fluxes (9)) by

Q∗s (w,∇w,ϕ ,∇ϕ) =

{
∑2

k=1 KT
s,k(w) ∂ϕ

∂xk
, for (S1)

Qs(w,∇w,ϕ ,∇ϕ), for (S2)
,s = 1,2 (14)

According to value of η we speak of NIPG (η =−1), IIPG (η = 0) or SIPG (η = 1)
variants of the DGFE method. The state vector wB is prescribed on ΓI ∪ΓW and
given by the boundary conditions (7), namely

wB = (ρ |ΓW ,0,0,ρ |ΓWϑ |ΓW ) on ΓW , (15)

wB = (ρD,ρD(vD)1,ρD(vD)2,ρ |ΓIϑ |ΓI +
1
2
ρD|vD|2) on ΓI ,

where ρD and vD are given functions from the boundary conditions (7) and ρ |Γ and
ϑ |Γ are the values of density and temperature extrapolated from the interior of Ω on
the appropriate boundary part Γ, respectively.

Moreover, we define the convective form
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bh(w̄h,wh,ϕh) = ∑
K∈Th

∫
K

2

∑
s=1

As(w̄h(x))wh(x) · ∂ϕh(x)
∂xs

dx + (16)

+ ∑
Γ∈Fh

∫
Γ

(
P+ (〈w̄h〉,n)wh|(p)

Γ +P− (〈wh〉,n)wh|(n)
Γ

)
· [ϕh]dS

where As(·) = 1,2 are the Jacobi matrices of the mappings fs, s = 1,2, P±(·, ·)
are the positive and negative parts of the matrix P(w,n) = ∑2

s=1 As(w)ns. A special

attention should be paid to the definition of wh|(n)
Γ for Γ ∈ FN

h ∪F ID
h where the

“inviscid boundary conditions” are taken into account, for details see [9].
Finally, we define the interior and boundary penalty form by

Jσh (w,ϕ) = ∑
Γ∈F I

h

∫
Γ
σ [w] · [ϕ ]dS + ∑

Γ∈FD
h

∫
Γ
σ(w−wB) ·ϕ dS , (17)

where the penalty parameter σ is defined by σ |Γ = CW (|Γ|Re)−1, where CW ≥ 0 is
a suitable constant depending on the used variant of the DGFE scheme and on the
degree of polynomial approximation.

In order to simplify a notation we put

Ah(w̄h,wh,ϕh) = ah(w̄h,wh,ϕh)+ bh(w̄h,wh,ϕh)+ Jσh (w,ϕ), (18)

for w̄,w,ϕ ∈ [Hk(Ω,Th)
]4

. It follows from (13) – (18), that form Ah(·, ·, ·) is linear
with respect to its second and third arguments.

We discretize the problem (1) – (7) by the semi–implicit technique, where the
linear parts of form Ah are treated implicitly and the nonlinear ones explicitly. In
order to obtain a sufficiently stable and accurate approximation with respect to the
time coordinate, we use a multistep backward difference formulae (BDF) for the
approximation of the time derivative. Moreover, a suitable explicit higher order ex-
trapolation is used in the nonlinear parts of Ah. Since Shp ⊂ H2(Ω,Th), the form
A(·, ·, ·) makes sense for arguments from Shp. Then we are ready to introduce the
discrete problem:

Let 0 = t0 < t1 < · · · < tr = T be a partition of (0,T ) and τk = tk+1− tk, k =
0,1, . . . ,r−1 then we seek functions wk

h ∈ Shp, k = 1, . . . ,r, satisfying

1
τk

(
n

∑
l=0

αlw
k+1−l
h ,ϕh

)
+ Ah

(
n

∑
l=1

βlw
k+1−l
h ,wk+1

h ,ϕh

)
= 0 (19)

for all ϕh ∈ Shp and k = n− 1, . . . ,r− 1, where n ≥ 1 is the degree of the BDF
scheme, the coefficients αl, l = 0, . . . ,n and βl , l = 1, . . . ,n. The function w0

h is
given by an initial condition and functions wk

h, k = 1, . . . ,n−1 should be given by
a suitable one-step method.

The problem (19) (called BDF–DGFE scheme) represents a system of linear al-
gebraic equations for each time step which should be solved by a suitable solver.
We employ the restarted GMRES method with a block-diagonal preconditioning.
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5 Numerical Example

We consider a subsonic laminar flow around the profile NACA0012 at the free
stream Mach number M = 0.5, with zero angle of attack and Reynolds number
Re = 5000. The walls of the profile are adiabatic. A characteristic feature of this
flow problem is the laminar separation of the flow at the trailing edge.

We carried out computations for all combinations of stabilizations (S1) and (S2)
with IPG techniques on a fixed relatively coarse triangular grid having 2600 ele-
ments, which was adaptive refined along the profile. We used a piecewise quadratic
approximation in space and set CW = 625 in the penalty parameter σ introduced in
(17). This value guarantees the stability of all interior penalty variants of the DGFE
method (NIPG, IIPG and SIPG) and both stabilization (S1) and (S2), see [7].

Table 1 shows achieved steady-state residua and the values of the drag (cD) coef-
ficients and their pressure (cD,p) and viscous (cD,v) parts computed by each combi-
nation of (S1) and (S2) with NIPG, IIPG and SIPG techniques and comparison with
reference values from [2] and [5].

We observe that the use of the stabilization (S2) does not allow to achieve a
satisfactory small steady-state residuum. Since the Reynolds number is near to the
upper limit for steady laminar flow, the non-convergence of the method (S2) may
be explained as a transition to the time-dependent flow regime which does not ap-
pear for method (S1) since this scheme contains too much of numerical viscosity
in comparison with (S2). However, methods (S1) and (S2) have the same behaviour
also for lower Reynolds number flow regimes where the steady state solution ex-
ists without any doubt. The values of the drag coefficient cD rather oscillates for
(S2) stabilization and on the other hand, the stabilization of type (S1) gives reason-
able similar values of the drag coefficients for the SIPG, NIPG and IIPG variants,
from this point of view the stabilization of type (S1) can be considered to be bet-
ter method. Furthermore, Figure 1 shows details of the isolines of the Mach number
around leading and trailing edges obtained by the (S1) stabilization (all IPG variants
give in fact identical isolines).

Table 1 Steady-state residua (res) and the computed values of drag (cD) coefficients and its pres-
sure (cD,p) and viscous (cD,v) parts for the stabilizations (S1) and (S2) and the SIPG, NIPG and
IIPG variants of the BDF-DGFE scheme in comparison with [2] and [5]

IPG stab (9) res cD cD,p cD,v

SIPG (S1) 7.7117E-08 0.05322 0.02093 0.03229
NIPG (S1) 6.0673E-08 0.05327 0.02099 0.03228
IIPG (S1) 9.5915E-08 0.05325 0.02097 0.03228
SIPG (S2) 4.0652E-05 0.05780 0.02223 0.03557
NIPG (S2) 4.3020E-05 0.04618 0.02254 0.02364
IIPG (S2) 4.3786E-05 0.04422 0.02275 0.02147

ref. value [2]− P2 0.05352 0.01991 0.03361
ref. value [5]− P0 0.05527 0.02281 0.03246
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Fig. 1 Mach number isolines with details around the leading (left) and trailing edges (right)
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Discontinuous Galerkin Method for the
Numerical Solution of Inviscid and Viscous
Compressible Flow

V. Kučera

Abstract In this work we are concerned with the numerical solution of a viscous
compressible gas flow (compressible Navier-Stokes equations) with the aid of the
discontinuous Galerkin finite element method (DGFEM). Our goal is to incorporate
viscous terms into existing semi-implicit DGFEM scheme for the Euler equations,
which is capable of solving flows with a wide range of Mach numbers [2, 4]. The
nonsymmetric (NIPG), symmetric (SIPG) and incomplete interior penalty Galerkin
method (IIPG) are generalized using the unified framework of [1] – derived for the
Poisson equation – to the Navier-Stokes viscous terms. The resulting nonlineari-
ties are linearized in a similar manner as nonlinear convective terms in the original
scheme, thus enabling semi-implicit time stepping. The resulting scheme has very
good stability properties and requires the solution of one sparse linear system per
time level.

1 Continuous Problem

We shall discretize the Navier-Stokes equations - the model of viscous compressible
two-dimensional flow. Let T > 0, Ω ⊂ IR2 be a domain with boundary ∂Ω = ΓI ∪
ΓO ∪ΓW , the inlet, outlet and wall boundaries. The model equations are treated in
the form of a conservation law for the state vector w(x,t):

∂w
∂ t

+
2

∑
s=1

∂ fs(w)
∂xs

=
2

∑
s=1

∂Rs(w,∇w)
∂xs

in Ω × (0,T ), (1)

where

Václav Kučera
Charles University in Prague, Faculty of Mathematics and Physics, Sokolovská 83, Praha 8, 186
75, Czech Republic, e-mail: vaclav.kucera@email.cz
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w = (ρ ,ρv1,ρv2,e)T ∈ IR4,

fi(w) = (ρvi,ρv1vi + δ1i p,ρv2vi + δ2i p,(e + p)vi)T.

Ri(w,∇w) = (0,τi1,τi2,τi1v1 + τi2v2 + k∂θ/∂xi)T,

τi j = λδi jdivv + 2μdi j(v), di j(v) =
1
2

(
∂vi

∂x j
+
∂v j

∂xi

)
.

(2)

Here we use the notation ρ-density, (ρv1,ρv2)-momentum and e-internal energy.
To system (1) we add thermodynamical relations for pressure p and temperature θ :

p = (γ−1)(e−ρ |vvv|2/2), θ =
(

e
ρ
− 1

2
|vvv|2

)
/cv. (3)

We use the following notation: θ – absolute temperature, cv – specific heat at con-
stant volume, μ ,λ – viscosity coefficients, k – heat conduction coefficient. We as-
sume μ ,k > 0, 2μ + 3λ ≥ 0. Usually we set λ = −2/(3μ). Finally γ > 1 is the
Poisson adiabatic constant. For example, for air γ = 1.4.

In the following, we will need the following relation for the fluxes fs:

fs(w) = As(w)w, where As(w) =
Dfs(w)

Dw
, s = 1,2. (4)

The viscous fluxes Ri(w,∇w) have a similar property to (4). The term Ri(w,∇w)
can be expressed in the form

Ri(w,∇w) =
2

∑
j=1

Ki j(w)
∂w
∂x j

, (5)

where Ki j are 4×4 matrices dependent on w and independent of ∇w. Explicit for-
mulae for As and Ki j can be found e.g. in [3].

2 Discretization

Let Th be a partition of Ω into a finite number of triangles, whose interiors
are mutually disjoint. Let I be a numbering of triangles in Th. If two elements
Ki,Kj ∈Th share a common face we set Γi j = ∂Ki∩∂Kj . For i ∈ I we define s(i) =
{ j ∈ I;Kj is a neighbour of Ki}. We denote all boundary faces by S j, where j ∈ Ib ⊂
Z− = {−1,−2, . . .} and set γ(i) = { j ∈ Ib;S j is a face of Ki}. Furthermore we de-
fine S(i) = s(i)∪ γ(i) and γD(i) = { j ∈ Ib; Dirichlet boundary condition prescribed
on Γi j}.

By ni j we denote the unit outer normal to ∂Ki on the face Γi j. We set vi j = v|Γi j =
trace of v|Ki on Γi j, 〈v〉Γi j = 1

2 (vi j + v ji), [v]Γi j = vi j− v ji the average and the jump
on an edge, respectively, and

Sh = Sp,−1(Ω ,Th) = {v;v|K ∈ Pp(K) ∀K ∈Th}, (6)
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where Pp(K) is the space of all polynomials on K of degree ≤ p. In the current im-
plementation, P0, P1 and P2 approximations are used along with 5th order Gaussian
quadrature rules on elements and edges.

In order to derive a discrete formulation of the Navier-Stokes equations, we
derive an appropriate weak formulation of (1) with respect to the discontinuous
Galerkin finite element space Sh. The discretization of convective terms is rather
straightforward and can be carried out as in [2]. The governing equation is multi-
plied by a test function ϕ ∈ [Sh]4 and integrated over Ki ∈ Th. We apply Green’s
theorem, sum over all i ∈ I and incorporate a numerical flux in boundary terms. The
treatment of second order elliptic terms is more delicate and in the case of viscous
terms in the Navier-Stokes equations, this is further complicated by the fact that
we treat a system and the viscous terms are nonlinear with respect to the unknown
variable w.

3 Discretization of Viscous Terms

In order to derive an appropriate formulation, we apply the methodology used in [1],
which gives a unified framework for the discretization of the Poisson equation. We
present a possible generalization of the nonsymmetric (NIPG), symmetric (SIPG)
and incomplete interior penalty (IIPG) schemes to nonlinear systems.

The methodology used in [1] is based on introducing an auxiliary variable, which
approximates the gradient of the sought solution in a weak sense. This equation is
coupled with the weak formulation for the Poisson equation, which results in a sys-
tem of the first order equations. After discretizing this system with the discontinuous
Galerkin method with a special choice of the numerical flux, one can eliminate the
auxiliary variable to obtain the so called primal formulation. For an appropriate
choice of the numerical flux for the auxiliary equation, one obtains e.g. the NIPG or
SIPG methods.

Since we are interested mainly in the discretization of viscous terms, we treat
a simplified equation consisting only of the viscous terms contained in the Navier-
Stokes equations equipped with a homogeneous Dirichlet boundary condition:

−
2

∑
s=1

∂Rs(w,∇w)
∂xs

= 0 in Ω ,

w = 0 on ∂Ω
(7)

In order to derive a discontinuous Galerkin formulation, we shall introduce an auxil-
iary variable σ ≈∇w, under the notation σ (k) ≈ ∂w

∂xk
, for k = 1,2. We assume that w

is a sufficiently regular classical solution of (7) and write an equivalent formulation
of (7) (for simplicity we omit the boundary condition) for unknowns w,σ1,σ2:
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−
2

∑
s=1

∂Rs(w,σ)
∂xs

= 0 in Ω ,

σ (k) =
∂w
∂xk

for k = 1,2.

(8)

To derive a suitable weak formulation, we multiply the first equation by a test func-
tion ϕ ∈ [Sh]4 and the second equation by the test function τ ∈ Σh, where Σh is an
appropriate function space – this need not be specified, since the auxiliary variable
σ will be eventually eliminated from the formulation. We integrate over an element
Ki ∈Th, apply Green’s theorem and sum over all elements:

∑
i∈I

∫
Ki

2

∑
s=1

Rs(w,σ) · ∂ϕ
∂xs

dx−∑
i∈I

∫
∂Ki

2

∑
s=1

Rs(w,σ)n(s)
Ki
·ϕ dS = 0, ∀ϕ ∈ [Sh]4,

∑
i∈I

∫
Ki

σ (k) · τ dx =−∑
i∈I

∫
Ki

w · ∂τ
∂xk

dx+∑
i∈I

∫
∂Ki

wn(k)
Ki
· τ dS, ∀τ ∈ Σh.

(9)

To derive a discontinuous Galerkin formulation of (9), we proceed as in the case
of convective terms. We introduce numerical fluxes Hw

i j and Hσ
i j into the boundary

integrals in each equation:

∫
Γi j

2

∑
s=1

Rs(w,σ)n(s)
i j ·ϕ dS≈

∫
Γi j

Hw
i j ·ϕ dS,∫

Γi j

wn(k)
i j · τ dS≈

∫
Γi j

Hσ
i j n

(k)
i j · τ dS.

(10)

The choice of different numerical fluxes Hw
i j and Hσ

i j leads to different numerical
schemes. For instance, according to [1], for the Poisson equation, the following
choices lead to the nonsymmetric interior penalty method:

Hw
i j :=

{
∑2

s=1 Rs(wi j,∇wi j)n
(s)
i j for Γi j ⊂ ∂Ω ,

∑2
s=1

〈
Rs(w,∇w)

〉
n(s)

i j otherwise.

Hσ
i j :=

{
2wi j for Γi j ⊂ ∂Ω ,

〈w〉+[w] otherwise.

(11)

To obtain the symmetric variant, we use a different numerical flux definition.
Namely, Hw

i j is the same as in (11) and Hσ
i j is defined as

Hσ
i j :=

{
0 for Γi j ⊂ ∂Ω ,

〈w〉 otherwise.
(12)

By replacing boundary terms in (10) by the numerical fluxes defined in (11), we
obtain after some manipulation the following discrete formulation of system (8),
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which leads to the NIPG scheme:

∑
i∈I

∫
Ki

2

∑
s=1

Rs(w,σ) · ∂ϕ
∂xs

dx−∑
i∈I

∑
j∈s(i)

j<i

∫
Γi j

2

∑
s=1

〈Rs(w,∇w)〉n(s)
i j · [ϕ ]dS

−∑
i∈I

∑
j∈γ(i)

∫
Γi j

2

∑
s=1

Rs(wi j,∇wi j)n
(s)
i j ·ϕi j dS = 0, ∀ϕ ∈ [Sh]4,

∑
i∈I

∫
Ki

σ (k) · τ dx =−∑
i∈I

∫
Ki

w · ∂τ
∂xk

dx +∑
i∈I
∑

j∈s(i)
j<i

∫
Γi j

(〈w〉+[w]
)
n(k)

i j · [τ]dS

+∑
i∈I
∑

j∈γ(i)

∫
Γi j

2wi jn
(k)
i j · τi j dS, k = 1,2, ∀τ ∈ Σh.

(13)

Similarly as in [1] for the Poisson equation, the choice of numerical fluxes (11)
and (12) enables the elimination of the auxiliary variable σ from system (9). For
lack of space we omit this technical procedure, which leads to the so-called primal
formulation. This will, in our case, give a generalization of the NIPG and SIPG
schemes from the Poisson equation.

We introduce the notation similar to (5):

R̃i(w,∇ϕ) :=
2

∑
j=1

KT
ji(w)

∂ϕ
∂x j

. (14)

Now we can write the discrete formulation of equation (1). Find wh(t) ∈ [Sh]4:

d
dt

(wh(t),ϕ)+bh(wh(t),ϕ)+ah(wh(t),ϕ)+Jh(wh(t),ϕ) = 0, ∀ϕ ∈ [Sh]4, (15)

where

ah(w,ϕ) =∑
i∈I

∫
Ki

2

∑
s=1

Rs(w,∇w) · ∂ϕ
∂xs

dx

−∑
i∈I

∑
j∈s(i)

j<i

∫
Γi j

2

∑
s=1
〈Rs(w,∇w)〉n(s)

i j · [ϕ ]dS−∑
i∈I

∑
j∈γD(i)

∫
Γi j

2

∑
s=1

Rs(w,∇w)n(s)
i j ·ϕ dS

+Θ∑
i∈I

∑
j∈s(i)

j<i

∫
Γi j

2

∑
s=1

〈R̃s(w,∇ϕ)〉n(s)
i j · [w]dS

+Θ∑
i∈I

∑
j∈γD(i)

∫
Γi j

2

∑
s=1

R̃s(w,∇ϕ)n(s)
i j ·wdS,
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bh(w,ϕ) =− ∑
Ki∈Th

∫
Ki

2

∑
s=1

fs(w) · ∂ϕ
∂xs

dx+∑
i∈I

∑
j∈S(i)

∫
Γi j

H(w|Γi j ,w|Γji ,ni j) ·ϕ dS,

Jh(w,ϕ) =∑
i∈I

∑
j∈s(i)

j<i

∫
Γi j

σ [w] · [ϕ ]dS +∑
i∈I

∑
j∈γD(i)

∫
Γi j

σw ·ϕ dS,

lh(w,ϕ) =∑
i∈I

∑
j∈γD(i)

∫
Γi j

2

∑
s=1

σwB ·ϕ dS +Θ∑
i∈I

∑
j∈γD(i)

∫
Γi j

2

∑
s=1

R̃s(w,∇ϕ)n(s)
i j ·wB dS.

These are the convective form, viscous form, interior and boundary penalty jump
terms and right-hand side form, respectively. In the second term of bh(w,ϕ), we
have incorporated an approximation using a numerical flux H, as known from the
finite volume method. The approximate solution is defined as wh ∈ [Sh]4 such that
(15) holds for all ϕh ∈ [Sh]4. Depending on the value ofΘ , we obtain the nonsymmet-
ric (NIPG, Θ = 1) symmetric (SIPG, Theta = −1) and incomplete interior penalty
(IIPG,Θ = 0) variants of the viscous terms.

4 Time Discretization

Scheme (15) represents a system of ordinary differential equations, which we must
discretize with respect to time. Explicit time discretization is however undesirable
due to a CFL-like condition, which limits the time step proportionally to the Mach
number. A fully implicit scheme presents us with the task of solving a large non-
linear system on each time level. We therefore use the method presented in [3]. A
forward Euler method is used and the nonlinear terms in the scheme are linearized.
The resulting systems are solved using block-Jacobi preconditioned GMRES or di-
rect algorithms (UMFPACK).

The time derivative is discretized as

d
dt

(wh(tk+1),ϕ)≈ wk+1
h −wk

h

τk
. (16)

The convective form in (15) is linearized using homogeneity of the Euler fluxes and
due to the choice of the Vijayasundaram numerical flux, which has appropriate form
for linearization:

bh(wk+1
h ,ϕ)≈ b̃h(wk

h,w
k+1,ϕ) =−∑

i∈I

∫
Ki

2

∑
s=1

Dfs(wk
h)

Dw
wk+1

h · ∂ϕh

∂xs
dx

+∑
i∈I

∑
j∈S(i)

∫
Γi j

P+
(
〈wk

h〉,ni j

)
wk+1

i j +P−
(
〈wk

h〉,ni j

)
wk+1

ji ·ϕ dS.

(17)
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The matrices P+(w,n) and P−(w,n) are defined as the positive and negative parts
of the matrix ∑2

s=1 As(w)ns, where As(w) is defined in (4).
The diffusive form is linearized in a similar fashion using the fact that the viscous

terms Ri(w,∇w) (and similarly R̃i) can be expressed in the form

Ri(w,∇w) =
2

∑
j=1

Ki j(w)
∂w
∂x j

, (18)

where Ki j are 4× 4 matrices. Explicit formulae for Ki j can be found e.g. in [1].
Thus we can linearize the nonlinearities in ah(wk+1

h ,ϕ) in the following fashion:

Rs(wk+1
h ,∇wk+1

h )≈
2

∑
j=1

Ki j(wk
h)
∂wk+1

h

∂x j
. (19)

In such a way we obtain a numerical scheme which requires the solution of only one
large sparse linear system per time level.

5 Numerical experiments

We treat the compressible flow around a NACA0012 profile with a large angle of
attack (25◦). The flow is nonstationary with vortex formation and shedding at the up-
per wall of the profile. The far-field flow has Mach number M = 0.5, angle of attack
α = 25◦ and Reynolds number Re = 5000. The computational mesh has 2898 ele-
ments and is adaptively refined near the profile. Due to the nonstationary character
of the flow, the following figures illustrate the flow situation at time t = 8.5. Figure
1 shows a detail of the Mach number isolines. The boundary layer and complicated
flow structure behind the airfoil are visible. In Figure 2 a detail of streamlines with
the vortex structure at t = 8.5 is shown. Finally in we plot the entropy, which should
be produced only in the boundary layer and convected by the flow field. In Figure 3
we see the entropy isolines are accumulated in the boundary layer and convected by
the vortex structures, while outside this region the entropy is constant (no isolines
are present).
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versity and the Nečas Center for Mathematical Modelling, project LC06052, financed by MSMT.

References

1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous galerkin
methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)



346 V. Kučera
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Numerical Integration in the Discontinuous
Galerkin Method for Nonlinear
Convection-Diffusion Problems in 3D

V. Sobotı́ková

Abstract In this paper the discontinuous Galerkin finite element method is used
for the space-semidiscretization of a nonlinear nonstationary convection-diffusion
problem in three dimensions. As in practical computations integrals appearing in
the forms defining the approximate solution are evaluated with the use of quadra-
ture formulae, the effect of numerical integration in the method is studied. An esti-
mate of the error caused by the numerical integration is presented and it is shown
which quadrature formulae guarantee preservation of the accuracy of the method
with exact integration.

1 Introduction

We are concerned with the following nonstationary nonlinear convection-diffusion
problem: Let Ω ⊂ R3 be a bounded polyhedral domain with Lipschitz-continuous
boundary ∂Ω =ΓD∪ΓN and T > 0. Find a function u : QT =Ω×(0,T )→R such
that

∂u
∂ t

+
3

∑
�=1

∂ f�(u)
∂x�

= ε Δu + g in QT , (1)

u
∣∣
ΓD×(0,T ) = uD, ε

∂u
∂n

∣∣∣
ΓN×(0,T)

= gN , u( . ,0) = u0.

The diffusion coefficient ε > 0 is a given constant, f� (� = 1,2,3) are prescribed
convective fluxes and g, uD, gN and u0 are given functions.

For the space-semidiscretization of the problem we employ the discontinuous
Galerkin finite element method (see e.g. [2] or [3]). We consider its symmetric
variant combined with an interior and boundary penalty and we approximate the
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Czech Technical University Prague, Faculty of Electrical Engineering, Technická 2,
166 27 Praha 6, Czech Republic, e-mail: veronika@math.feld.cvut.cz
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nonlinear convective fluxes with the aid of a numerical flux. We evaluate integrals
appearing in the forms defining the approximate solution with the use of quadrature
formulae.

In [6] an L2(H1)-optimal error estimate of the error of the method was proved.
However, this estimate was only suboptimal in the L∞(L2)-norm. The aim of this
paper is to derive a general estimate of the error caused by the use of numerical
integration and, applying this estimate, to obtain an L∞(L2)-optimal error estimate.

2 Discrete Problem

2.1 Space Semidiscretization

Let {Th}h∈(0,h0) be a system of partitions of Ω into a finite number of closed tetra-
hedra K with mutually disjoint interiors. We call Th triangulations of Ω , but do not
require the usual conforming properties from the FEM (cf. [1]).

We set hK = diam(K) and by |K| and ρK we denote the volume of K and the
radius of the largest ball inscribed into K, respectively. All elements of Th will be
numbered in such a way that Th = {Ki}i∈I , where I ⊂ Z+. If the two-dimensional
measure of the intersection of boundaries of two elements Ki, Kj ∈Th is nonzero, we
putΓi j =Γji = ∂Ki∩∂Kj. For i∈ I we set s(i) = { j ∈ I;Kj is a neighbour of Ki}. The
boundary ∂Ω is formed by a finite number of parts of faces of elements Ki adjacent
to ∂Ω . We denote all these “subfaces” by S j, where j ∈ Ib ⊂Z−. We set Γi j = S j for
Ki ∈ Th such that S j ⊂ ∂Ki, j ∈ Ib, and γ(i) = { j ∈ Ib;S j is a part of a face of Ki}.
Obviously, s(i) ∩ γ(i) = /0 for all i ∈ I and, writing S(i) = s(i) ∪ γ(i), we have
∂Ki =

⋃
j∈S(i)Γi j, ∂Ki ∩ ∂Ω =

⋃
j∈γ(i)Γi j. (In what follows, we shall often call Γi j

briefly a face.) For i ∈ I, by γD(i) and γN(i) we denote the subsets of γ(i) formed by
such indexes j that the faces Γi j form the parts ΓD and ΓN of ∂Ω , respectively. Thus,
we suppose that γ(i) = γD(i)∪ γN(i), γD(i)∩ γN(i) = /0. Furthermore, we denote by
ni j = ((ni j)1,(ni j)2,(ni j)3) the unit outer normal to ∂Ki on the face Γi j, by |Γi j| the
two-dimensional measure of Γi j, and we set sh = {Γi j; j ∈ S(i), i ∈ I}.

We suppose that the system {Th}h∈(0,h0) is regular, i.e.

hK/ρK ≤CR ∀K ∈Th, h ∈ (0,h0),
and that

hKi ≤CN hKj ∀i ∈ I, j ∈ s(i), h ∈ (0,h0),

where CR > 0 and CN > 0 are suitable constants.

Remark 1. Let us mention that in two dimensions all faces are always line segments.
In three dimensions, if the mesh is nonconforming, the geometry of faces is more
complicated. The inner faces, formed by intersections of two triangles, are convex
polygons with three up to six vertices. The boundary faces may even be nonconvex.
Moreover, regardless of the above assumptions, some faces may be very small and
narrow. Nevertheless, it was shown in [6] that if the system {Th}h∈(0,h0) satisfies the
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previous two inequalities, then there exists a constant CS such that card
(
S(i)

)≤CS

for all i ∈ I, h ∈ (0,h0).

Over the triangulations Th we define for k ∈N, k≥ 1, the broken Sobolev spaces

Hk(Ω ,Th) = {v;v|K ∈ Hk(K) ∀K ∈Th},
equipped with seminorms |v|Hk(Ω ,Th) =

(
∑K∈Th

|v|2
Hk(K)

)1/2
. For v ∈ H1(Ω ,Th),

i ∈ I, j ∈ s(i), we denote the traces, average and jump of the traces of v on Γi j = Γji

by v|Γi j = trace of v|Ki on Γi j, v|Γji = trace of v|Kj on Γji, 〈v〉Γi j = 1
2

(
v|Γi j + v|Γji

)
and [v]Γi j

= v|Γi j − v|Γji . For i ∈ I, j ∈ γ(i) we put v|Γji = v|Γi j = trace of v|Ki on Γi j.

(In what follows, we shall write 〈v〉 and [v] instead of 〈v〉Γi j and [v]Γi j , respectively.)
The approximate solution of problem (1) is sought in the space Sh of discontinu-

ous piecewise polynomial functions defined by

Sh = Sp,−1(Ω ,Th) = {v;v|K ∈ Pp(K) ∀K ∈Th},
where Pp(K) (p≥ 1) denotes the space of all polynomials on K of degree≤ p.

In order to introduce the space semidiscretization of problem (1) over mesh Th

by the DGFEM, we define the following forms for functions u,ϕ ∈ H2(Ω ,Th):

ãh(u,ϕ) = ∑
i∈I

∫
Ki

ε ∇u ·∇ϕ dx− ε∑
i∈I

∑
j∈s(i)

j<i

∫
Γi j

(
〈∇u〉 ·ni j[ϕ ] dS + 〈∇ϕ〉 ·ni j[u]

)
dS

− ε∑
i∈I

∑
j∈γD(i)

∫
Γi j

(
∇u ·ni j ϕ dS +∇ϕ ·ni j u

)
dS,

J̃σh (u,ϕ) = ∑
i∈I

∑
j∈s(i)

j<i

∫
Γi j

σ [u] [ϕ ] dS +∑
i∈I

∑
j∈γD(i)

∫
Γi j

σ uϕ dS,

�̃h(ϕ)(t) =
∫
Ω

g(t)ϕ dx +∑
i∈I

∑
j∈γN (i)

∫
Γi j

gN(t)ϕ dS

− ∑
i∈I

∑
j∈γD(i)

∫
Γi j

ε ∇ϕ ·ni j uD(t) dS + ε∑
i∈I

∑
j∈γD(i)

∫
Γi j

σ uD(t)ϕ dS,

b̃h(u,ϕ) = −∑
i∈I

∫
K

3

∑
�=1

f�(u)
∂ϕ
∂x�

dx +∑
i∈I

∑
j∈S(i)

∫
Γi j

H
(
u|Γi j ,u|Γji ,ni j

)
ϕ |Γi j dS.

The weight σ in the forms J̃σh and �̃h is defined by

σ |Γi j =
2CW

hKi + hKj

for j ∈ s(i), i ∈ I, σ |Γi j =
CW

hKi

for j ∈ γ(i), i ∈ I, (2)

where CW > 0 is a sufficiently large constant (see [6]). The numerical flux H(u,v,n)
from the definition of the form b̃h we assume to be Lipschitz-continuous with respect
to u,v, consistent and conservative (for definitions of these properties see [7]).

Now we can define an approximate DGFE solution of problem (1) as a function
ũh ∈C1([0,T ];Sh) satisfying the following conditions:
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a)

(
∂ ũh(t)
∂ t

,ϕh

)
+ b̃h(ũh(t),ϕh)+ ãh(ũh(t),ϕh)+ ε J̃σh (ũh(t),ϕh)= �̃h(ϕh)(t)

∀ϕh ∈ Sh ∀t ∈ (0,T ),
b) ũh(0) = ũ0

h.

(3)

By (·, ·) we denote the scalar product in the space L2(Ω), and ũ0
h is the L2(Ω)-

projection Πhu0 of the initial condition u0 on Sh.

2.2 Numerical Integration

In practical computations, integrals appearing in the forms defining ũh are evaluated
with the aid of numerical integration. This means that to integrate a function Φ ∈
C(K) over an element K ∈Th, we use an approximation∫

K
Φ dx ≈ |K|

nK

∑
α=1

ωK
α Φ(xK

α ), (4)

where ωK
α ∈R are integration weights and xK

α ∈K are integration points. To evaluate
an integral over a face Γ ∈ sh, we first divide Γ into kΓ triangles Γ l with mutually
disjoint interiors, Γ =

⋃kΓ
l=1Γ

l . Then forΨ ∈C(Γ ) we use approximations

∫
Γ
Ψ dS =

kΓ

∑
l=1

∫
Γ l
Ψ dS,

∫
Γ l
Ψ dS ≈ |Γ l|

mΓ ,l

∑
α=1

βΓ
α ,lΨ(xΓα ,l) (5)

with integration weights βΓ
α ,l ∈ R and integration points xΓα ,l ∈ Γ l . We assume that

for each i ∈ I, j ∈ s(i) and l ∈ {1, . . . ,kΓi j}, the integration points on Γi j = Γji sat-

isfy the condition x
Γi j
α ,l = x

Γji
α ,l, and that there exist constants ω , β > 0 such that

∑nK
α=1 |ωK

α | ≤ ω , ∑kΓ
l=1∑

mΓ ,l
α=1 |βΓ

α ,l| ≤ β for all K ∈Th, Γ ∈ sh, h ∈ (0,h0).

Using quadrature formulae (4) and (5), we obtain approximations (·, ·)h, ah, Jσh ,
bh, �h of the forms (·, ·), ãh, J̃σh , b̃h, �̃h and we can define the discrete problem with
numerical integration: Find uh ∈C1([0,T ];Sh) such that

a)

(
∂uh(t)
∂ t

,ϕh

)
h
+ bh(uh(t),ϕh)+ ah(uh(t),ϕh)+ εJσh (uh(t),ϕh) = �h(ϕh)(t)

∀ϕh ∈ Sh ∀t ∈ (0,T ),
b) uh(0) = u0

h.

(6)

By u0
h we denote a suitable Sh-approximation of the initial condition u0. In what

follows we shall assume that it is defined either by (u0
h− u0,ϕh)h = 0 ∀ϕh ∈ Sh or

by the Lagrange interpolation of u0 (applied elementwise).



Numerical Integration in the DGFEM for 3D Problems 351

3 Error Estimates for the Method of Lines with Numerical
Integration

In this section we shall suppose that the exact solution u satisfies the regularity
conditions (� = 1,2,3)

u∈L2(0,T ;H p+1(Ω)),
∂u
∂ t
∈L2(0,T ;H p(Ω)), f�(u)∈L2(0,T ;W z+1,∞(Ω)), (7)

where z ≥ p is an integer. We denote the error u− uh of the method by eh, and we
write eh = ẽh + eI , where ẽh = u− ũh and eI = ũh−uh, respectively. First we show
that knowing an estimate of the error ẽh, we can estimate also the error eI . We have:

Theorem 1. Let g ∈ L2(0,T ;Hz̃(Ω)),gN ∈ L2(0,T ;Hz+1(ΓN)), u0 ∈ Hz̃(Ω), uD ∈
L2(0,T ;Hz+2(ΓD)), where z̃ = max{z,2}. Let the quadrature formulae (4) be exact
for polynomials of degree≤max{z̃+ p−1,2p} and let the quadrature formulae (5)
be exact for polynomials of degree≤ z+ p. Then

max
t∈[0,T ]

‖eI(t)‖2
L2(Ω) +

ε
2

∫ T

0

(
|eI(ϑ)|2H1(Ω ,Th) + J̃σh (eI(ϑ),eI(ϑ))

)
dϑ

≤ C
{1
ε
‖ẽh‖2

L2(0,T ;L2(Ω)) +
1
ε

h2(p+1)|u|2L2(0,T ;H p+1(Ω))

+h2z
(
|g|2

L2(0,T ;Hz̃(Ω)) + |gN |2L2(0,T ;Hz+1(ΓN )) + (ε2 + ε)‖uD‖2
L2(0,T ;Hz+2(ΓD))

+|u0|2Hz̃(Ω) + max
�=1,2,3

{| f�(u)|2L2(0,T ;W z+1,∞(Ω))

})}
exp

(
CT
ε

)
with a constant C independent of u, g, gN , uD, u0, T, ε and h ∈ (0,h0).

Proof. From the assumption on the used quadrature formulae and from the fact that
uh(t) ∈ Sh = Sp,−1(Ω ,Th) we conclude that for ϕh ∈ Sh(

∂uh

∂ t
,ϕh

)
h
=
(
∂uh

∂ t
,ϕh

)
, ah(uh,ϕh) = ãh(uh,ϕh), Jσh (uh,ϕh) = J̃σh (uh,ϕh). (8)

Setting ϕh := eI in (8), (3) and (6), we obtain after some manipulations

1
2

d
dt
‖eI‖2

L2(Ω) + ãh(eI ,eI)+ ε J̃σh (eI ,eI)

=
(
�̃h(eI)− �h(eI)

) − (
b̃h(ũh,eI

)−bh(uh,eI)).
(9)

By [4], Corollary 3.10, we have

ãh(eI ,eI)+ J̃σh (eI ,eI)≥ ε
2

(
|eI|2H1(Ω ,Th) + J̃σh (eI ,eI)

)
. (10)

The first term on the right-hand side of (9) may be estimated with the aid of
Lemma 9 from [6]. We obtain
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|�̃h(eI)− �h(eI)| ≤ Cε hz+1/2‖uD‖Hz+2(ΓD)|eI |H1(Ω ,Th)

+C
(

hz̃|g|Hz̃(Ω) + hz+1/2|gN |Hz+1(ΓN ) + εhz+1/2‖uD‖Hz+2(ΓD)

)
‖eI‖L2(Ω).

In order to estimate the second term, we first write

b̃h(ũh,eI)−bh(uh,eI) =
(
b̃h(ũh,eI)− b̃h(u,eI)

)
+
(
b̃h(u,eI)−bh(u,eI)

)
+
(
bh(u,eI)−bh(Πhu,eI)

)
+
(
bh(Πhu,eI)−bh(uh,eI)

)
=ϑ1+ϑ2+ϑ3+ϑ4,

(11)

where Πhu denotes the L2(Ω)-projection of the exact solution u onto the space Sh.
According to the inequalities ‖ũh−Πhu‖L2(Ω)≤‖ũh−u‖L2(Ω) +‖u−Πhu‖L2(Ω),

and ‖Πhu−uh‖L2(Ω) ≤ ‖Πhu − u‖L2(Ω) + ‖u− ũh‖L2(Ω) + ‖ũh−uh‖L2(Ω), the
approximation properties of the operator Πh, (see e.g. [1]), and [6], Lemmas 5–8,

|ϑ1| ≤ C
(
|eI |H1(Ω ,Th) + J̃σh (eI ,eI)1/2

)(
hp+1|u|H p+1(Ω) +‖ẽh‖L2(Ω)

)
,

|ϑ2| ≤ C‖eI‖L2(Ω) hz max
�=1,2,3

{
| f�(u)|Wz+1,∞(Ω)

}
,

|ϑ3| ≤ C
(
|eI |H1(Ω ,Th) + J̃σh (eI ,eI)1/2

)
hp+1|u|H p+1(Ω),

|ϑ4| ≤ C
(
|eI |H1(Ω ,Th) + J̃σh (eI,eI)1/2

)(
hp+1|u|H p+1(Ω)+‖ẽh‖L2(Ω) +‖eI‖L2(Ω)

)
.

These estimates and relations (9), (10), (11) imply that

d
dt
‖eI‖2

L2(Ω) + ε
(
|eI|2H1(Ω ,Th) + J̃σh (eI ,eI)

)
≤ C

(
hz̃|g|Hz̃(Ω) + hz+1/2|gN |Hz+1(ΓN ) + εhz+1/2‖uD‖Hz+2(ΓD)

)
‖eI‖L2(Ω)

+ Cεhz+1/2‖uD‖Hz+2(ΓD)|eI |H1(Ω ,Th)+ C hz max
�=1,2,3

{
| f�(u)|Wz+1,∞(Ω)

}
‖eI‖L2(Ω)

+ C
(
|eI |H1(Ω ,Th) + J̃σh (eI,eI)1/2

)(
hp+1|u|H p+1(Ω) +‖ẽh‖L2(Ω) +‖eI‖L2(Ω)

)
.

With the aid of Young’s inequality and integration with respect to time from 0 to
t ∈ [0,T ], using the relation eI(0) = e0

I = ũ0
h−u0

h, which implies that ‖eI(0)‖L2(Ω) ≤
C hz̃|u0|Hz̃(Ω), and the inequality z≤ z̃, we obtain

‖eI(t)‖2
L2(Ω) +

ε
2

∫ t

0

(
|eI(ϑ)|2H1(Ω ,Th) + J̃σh (eI(ϑ),eI(ϑ))

)
dϑ

≤ C h2z
(
|g|2L2(0,T ;Hz̃(Ω)) + |gN |2L2(0,T ;Hz+1(ΓN )) + (ε2 + ε)‖uD‖2

L2(0,T ;Hz+2(ΓD))

+|u0|2Hz̃(Ω) + max
�=1,2,3

{| f�(u)|2L2(0,T ;W z+1,∞(Ω))

})
+

C
ε
‖ẽh‖2

L2(0,T ;L2(Ω))

+
C
ε

h2(p+1)|u|2L2(0,T ;H p+1(Ω)) +C

(
1 +

1
ε

)∫ t

0
‖eI(ϑ)‖2

L2(Ω)dϑ .
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Finally, the use of Gronwall’s lemma leads to the desired estimate. ��
It was shown in [4] that there exists a positive constant C > 0 (depending on

u, g, gN , uD, u0, T, ε and h0, but independent of h) such that

max
t∈[0,T ]

‖ẽh(t)‖2
L2(Ω) +

ε
2

∫ T

0

(
|ẽh(ϑ)|2H1(Ω ,Th) + J̃σh (ẽh(ϑ), ẽh(ϑ))

)
dϑ ≤Ch2p, (12)

which also means that

‖ẽh(t)‖L2(0,T ;L2(Ω)) ≤
√

TC hp. (13)

Hence, as eh = ẽh + eI , combining the estimate from Theorem 1 with relations (12)
and (13), we immediately obtain the following estimate of the error of the method
of lines with numerical integration:

Theorem 2. Let us assume that the exact solution u of problem (1) satisfies the
regularity conditions (7) with z = p. Moreover, let the quadrature formulae (4)
and (5) be exact for polynomials of degree ≤ 2p. Let g ∈ L2(0,T ;H p̃(Ω)), gN ∈
L2(0,T ;H p+1(ΓN)), uD ∈ L2(0,T ;H p+2(ΓD)), u0 ∈ H p̃(Ω), where p̃ = max{p,2}.
Then for the error eh we have the estimate

max
t∈[0,T ]

‖eh(t)‖2
L2(Ω) +

ε
2

∫ T

0

(
|eh(ϑ)|2H1(Ω ,Th) + J̃σh (eh(ϑ),eh(ϑ))

)
dϑ ≤C1h2p

with a constant C1 depending on u, g, gN , uD, u0, T, ε and h0, but independent of
h ∈ (0,h0).

For the proof of this theorem without the use of the general error estimate from
Theorem 1 see [6], Theorem 2.

The error estimate from Theorem 2 is optimal in the L2(H1)-norm. However, it
is only suboptimal in the L∞(L2)-norm. In order to obtain an estimate optimal also
in L∞(L2)-norm, let us suppose that the domain Ω is convex and that the meshes Th

are conforming, i.e. two different elements K,K′ ∈ Th are either disjoint or K ∩K′
is either their common vertex or edge or (whole triangular) face. Further, let us
consider the following dual problem: Given z ∈ L2(Ω), find ψ such that

−Δψ = z in Ω , ψ |ΓD = 0,
∂ψ
∂n

∣∣∣
ΓN

= 0. (14)

It was shown in [5] that if ψ ∈ H2(Ω) and if there exists a constant CD > 0, inde-
pendent of z, such that

‖ψ‖H2(Ω) ≤CD‖z‖L2(Ω), (15)

then the error ẽh satisfies the estimate

‖ẽh‖L∞(0,T ;L2(Ω)) ≤ Ĉhp+1, (16)
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with a constant Ĉ > 0 independent of h, which also implies that

‖ẽh‖L2(0,T ;L2(Ω)) ≤
√

TĈhp+1. (17)

Now, under the above assumptions, relations (16), (17) and Theorem 1 give the
following L∞(L2)-optimal estimate of the method with numerical integration:

Theorem 3. Let us assume that the exact solution u of problem (1) satisfies the
regularity conditions (7) with z = p + 1 and let the solution of the dual problem
(14) satisfy (15). Moreover, let g ∈ L2(0,T ;H p+1(Ω)), gN ∈ L2(0,T ;H p+2(ΓN)),
uD ∈ L2(0,T ;H p+3(ΓD)) and u0 ∈ H p+1(Ω). Let the quadrature formulae (4) and
(5) be exact for polynomials of degree ≤ 2p and ≤ 2p + 1, respectively. Then the
error eh satisfies the estimate

‖eh‖L∞(0,T ;L2(Ω)) ≤C2hp+1,

where the constant C2 > 0 depends on u, g, gN , uD, u0, T, ε and h0, but is indepen-
dent of h ∈ (0,h0).

Remark 2. Let us mention two open problems. One is the weakening of the rather
strong assumption f�(u) ∈ L2(0,T ;W p+1,∞(Ω)), � = 1,2,3. The other is whether
the assumption of conformity of the meshes Th is necessary for deriving the estimate
(16), and thus for obtaining the assertion of Theorem 3 as well.
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Implicit-Explicit Runge-Kutta Discontinuous
Galerkin Finite Element Method for
Convection-Diffusion Problems

M. Vlasák and V. Dolejšı́

Abstract We deal with a numerical solution of a scalar nonstationary convection-
diffusion equation with a nonlinear convection and a linear diffusion terms. We carry
out the space semi-discretization with the aid of the nonsymmetric interior penalty
Galerkin (NIPG) method and the time discretization by a combination of implicit-
explicit Runge-Kutta method. The resulting scheme is unconditionally stable, has
a high order of accuracy with respect to space and time coordinates and requires
solutions of linear algebraic problems at each time step. We derive a priori error
estimates in the L2-norm.

1 Introduction

We numerically solve a nonstationary nonlinear convection-diffusion equation,
which represents a model problem for the system of the compressible Navier-Stokes
equations. The class of discontinuous Galerkin (DG) methods seems to be one of
the most promising candidates to construct high order accurate schemes for solving
of convection-diffusion problems. For a survey about DG methods, see [1] or [2].
An analysis of DG methods was presented in many papers, see, e.g., [4], [5], [7],
[8].

In [5] we carried out the space semi-discretization of the scalar convection-
diffusion equation with the aid of the discontinuous Galerkin finite element method
and derived a priori error estimates. Within this contribution, we deal with the time
discretization of the resulting system of ordinary differential equations. In contrary
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to [6], where we used the so-called backward difference formulae (BDF) approach,
here we employ a combination of implicit-explicit (IMEX) Runge-Kutta methods.
We present a formulation of the second order IMEX scheme and derive a priori error
estimates.

2 Continuous Problem

Let Ω ⊂ Rd (d = 2 or 3) be a bounded polyhedral domain and T > 0. We set QT =
Ω × (0,T ). By Ω and ∂Ω we denote the closure and boundary of Ω , respectively.
Let us consider the following initial-boundary value problem: Find u : QT → R such
that

∂u
∂ t

+∇ · f(u) = ε Δu + g in QT , (1)

u
∣∣∂Ω×(0,T) = uD, (2)

u(x,0) = u0(x), x ∈Ω . (3)

In (1) – (3), f = ( f1, . . . , fd), fs ∈C2(R), fs(0) = 0, s = 1, . . . ,d represents con-
vective terms, ε > 0 plays a role of viscosity, g∈C([0,T ];L2(Ω)) represents volume
sources. The Dirichlet boundary condition is given over ∂Ω×(0,T ) by uD, which is
the trace of some u∗ ∈C([0,T ];H1(Ω))∩L∞(QT ) on ∂Ω × (0,T ) and u0 ∈ L2(Ω)
is an initial condition. We use the standard notation for Lebesgue, Sobolev and
Bochner function spaces (see, e. g. [9]).

In order to introduce the concept of a weak solution, we define the forms

(u,w) =
∫
Ω

uwdx, u, w ∈ L2(Ω),

a(u,w) = ε
∫
Ω
∇u ·∇wdx, u, w ∈ H1(Ω),

b(u,w) =
∫
Ω
∇ · f(u)wdx, u ∈H1(Ω)∩L∞(Ω), w ∈ L2(Ω),

Definition 1. We say that a function u is a weak solution of (1) – (3) if the following
conditions are satisfied

a) u−u∗ ∈ L2(0,T ;H1
0 (Ω)), u ∈ L∞(QT ), (4)

b)
d
dt

(u(t),w)+ b(u(t),w)+ a(u(t),w) = (g(t),w)

for all w ∈H1
0 (Ω) in the sense of distributions on (0,T ),

c) u(0) = u0 in Ω .

By u(t) we denote the function on Ω such that u(t)(x) = u(x,t), x ∈Ω .
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With the aid of techniques from [10] and [11], it is possible to prove that there ex-
ists a unique weak solution. We shall assume that the weak solution u is sufficiently
regular, namely,

u ∈W 1,∞(0,T ;H p+1(Ω))∩W 2,∞(0,T ;H1(Ω)), uttt ∈ L∞(0,T ;L2(Ω)).

where uttt = ∂ 3u/∂ t3, an integer p ≥ 1 will denote a given degree of polynomial
approximations. Such a solution satisfies problem (1) – (3) pointwise.

3 Space Semi-Discretization

We discretize problem (4) in space with the aid of the discontinuous Galerkin finite
element method with nonsymmetric treatment of stabilization terms and interior and
boundary penalties. This approach is called the NIPG variant of the DGFE method,
see [1]. We derived the space discretization of (1) – (3) by the NIPG variant of the
DGFE method in [5], hence here we present only the final expressions.

Let Th (h > 0) be a partition of the domain Ω into a finite number of closed
d-dimensional mutually disjoint star–shaped elements K i.e., Ω =

⋃
K∈Th

K. By ∂K
we denote the boundary of element K ∈Th and set hK = diam(K), h = maxK∈ThhK .

By Fh, we denote the smallest possible set of all open (d−1)-dimensional faces
of all elements K ∈ Th. Further, we denote by F I

h the set of all Γ ∈ Fh that are
contained in Ω (inner faces) and by FD

h the set of all Γ ∈Fh that Γ ⊂ ∂Ω .
Moreover, for each Γ ∈Fh, we define a unit normal vector nΓ . We assume that

nΓ , Γ ∈FD
h has the same orientation as the outer normal of ∂Ω . For nΓ , Γ ∈F I

h
the orientation is arbitrary but fixed for each edge.

Let s and p be positive integers denoting Sobolev index and polynomial degree
of approximation. Over the triangulation Th we define the so-called broken Sobolev
space corresponding to s

Hs(Ω ,Th)≡ {w;w|K ∈ Hs(K) ∀K ∈Th}. (5)

Furthermore, we define the space of discontinuous piecewise polynomial functions
associated with p by

Shp ≡ {w ∈ L2(Ω); w|K ∈ Pp(K) ∀K ∈Th}, (6)

where Pp(K) denotes the space of all polynomials on K of degree≤ p.
For eachΓ ∈F I

h there exist two elements Kp,Kn ∈Th such thatΓ ⊂Kp∩Kn. We
use a convention that Kn lies in the direction of nΓ and Kp in the opposite direction
of nΓ . Then for v ∈ H1(Ω ,Th), we introduce the following notation:

〈w〉Γ ≡
1
2

(
w|(p)

Γ + w|(n)
Γ

)
, [w]Γ ≡ w|(p)

Γ −w|(n)
Γ , (7)

where w|(p)
Γ and w|(n)

Γ denotes the trace of w|Kp and w|Kn on Γ , respectively.
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For Γ ∈FD
h there exists an element Kp ∈ Th such that Γ ⊂ K p∩∂Ω . Then for

w ∈H1(Ω ,Th), we introduce the following notation:

〈w〉Γ ≡ [w]Γ ≡ w|(p)
Γ , (8)

where w|(p)
Γ denotes the trace of w|Kp on Γ .

In case that [·]Γ and 〈 · 〉Γ are arguments of
∫
Γ . . . dS, Γ ∈Fh we omit the sub-

script Γ and write simply [·] and 〈 · 〉, respectively.
For u,v ∈ H2(Ω ,Th), we define the forms (for more details see [5])

ah(u,w) = ε ∑
K∈Th

∫
K
∇u ·∇wdx− ε ∑

Γ∈Fh

∫
Γ
(〈∇u ·n〉[w]−〈∇w ·n〉[u]) dS, (9)

bh(u,w) = − ∑
K∈Th

∫
K

f(u) ·∇wdx + ∑
Γ∈Fh

∫
Γ

H
(

u|(p)
Γ ,u|(n)

Γ ,nΓ

)
[w]dS, (10)

Jσh (u,w) = ∑
Γ∈Fh

∫
Γ
σ [u] [w]dS, (11)

�h(w)(t) =
∫
Ω

g(t)wdx + ∑
Γ∈Fh

∫
Γ
(∇w ·nuD +σ uD(t)w) dS. (12)

The penalty parameter function σ in (11) and (12) is defined by σ |Γ = ε/diam(Γ ),
Γ ∈ Fh. The function H(·, ·, ·) in the face integrals in (10) is called the numeri-
cal flux, well-known from the finite volume method and it approximates the terms
f(u) ·nΓ on Γ ∈Fh. For simplicity, we put Ah(u,w) ≡ ah(u,w)+ Jσh (u,w) ∀u,w ∈
H2(Ω ,Th). Now, we introduce the discrete problem.

Definition 2. Let u0
h ∈ Shp be the L2(Ω)-projection of the initial condition u0 into

Shp. We say that uh is a DGFE solution of (1) – (3), if

a) uh ∈C1([0,T ];Shp),

b)

(
∂uh(t)
∂ t

,wh

)
+ bh(uh(t),wh)+ Ah(uh(t),wh)=�h(wh)(t)

∀wh ∈ Shp, ∀t ∈ (0,T ),

c) uh(0) = u0
h.

(13)

The (semi)-discrete problem (13) represents a system of ordinary differential equa-
tions (ODEs) which is solved by a suitable solver in the next section.

4 Time Discretization

Since problem (13) is stiff, it is necessary to solve it with a method having a large
stability domain. In [6] we employ the well known backward difference formu-
lae (BDF). Within this contribution, we developed a new approach based on a
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combination of an implicit and an explicit Runge-Kutta methods, where the lin-
ear terms are treated implicitly and the nonlinear ones explicitly. Therefore, the
implicit-explicit (IMEX) Runge-Kutta scheme leads to a sufficiently stable method
which requires a solution of linear algebraic problems at each time step.

Let us consider the following system of ODEs

d
dt

y(t) = F(t,y(t)), (14)

where y(t) : [0,T ]→ Rm, F : [0,T ]×Rm→ Rm, m≥ 1 is an integer. Let ts = sτ, s =
0, . . . ,r represent a equidistant partition of [0,T ] with time step τ . We denote by ys

an approximation of y(ts), s = 0, . . . ,r. Then the q–stages Runge–Kutta method is
given by

ys+1− ys = τ
q

∑
v=1

ωvKv, (15)

where

Kv = F(ts +αvτ,ys + τ
q

∑
j=1

βv, jKj),

and ωv, αv and βv, j are suitable coefficients. For example, when we set q = 1, ω1 =
1, α1 = 1, β1,1 = 1, we obtain the backward Euler method. Since our aim is to have
an implicit and an explicit methods that could be easily combined together, we need
methods having the same coefficients q, ωv and αv. As an example for methods of
the first order with such properties, we can get forward and backward Euler method.

Within this contribution, we consider the following two stages scheme.

Definition 3. We say that the set of functions Us, s = 1, . . . ,r is an approximate so-
lution of problem (13) obtained by the two-stage IMEX Runge-Kutta DGFE scheme
if

(i) Ũs+1, Us+1 ∈ Shp, (16)

(ii) (Ũs+1−Us,w)+ τAh(Ũs+1,w)+ τbh(Us,w) = τ�h(w)(ts+1) ∀w ∈ Shp, (17)

(Us+1−Us,w)+
τ
2

Ah(Us+1 +Us,w)+
τ
2

bh(Ũs+1,w)+
τ
2

bh(Us,w) (18)

=
τ
2

(�h(w)(ts+1)+ �h(w)(ts)) ∀w ∈ Shp,

(iii) U0 = uh(0), (19)

where Us denotes an approximation of uh(ts), s = 0, . . . ,r.

5 Error Estimates

Our goal is to analyse the error estimates of the approximate solution Us, s = 1, . . . ,r
obtained by the method (16) – (19). In the sequel we use the notation us = u(ts),
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ξ s = Us−Πus, ηs = Πus− us and es = Us− us = ξ s +ηs, where Π be the Shp

interpolation described in [12].
Let ε|||w|||2 := Ah(w,w) ∀w ∈H2(Ω ,Th) and ‖ · ‖ := ‖ · ‖L2(Ω).

Lemma 1. Let u be sufficiently regular. Then∣∣∣(us+1−us− τ
2

us+1
t − τ

2
us

t ,w)
∣∣∣ ≤ Cτ3‖w‖ ∀w ∈ Shp,

‖us+1−us− τus+1
t ‖ ≤ Cτ2,

‖us+1−us‖ ≤ Cτ,
|||us+1−us||| ≤ Cτ,

|||us+1− τus+1
t −us||| ≤ Cτ2.

Lemma 2. Let u be sufficiently regular. Then there exists projection Π : L2(Ω)→
Sh, such that

‖ηs‖ ≤ Chp+1,∣∣(ηs+1−ηs,w)
∣∣ ≤ Cτhp+1‖w‖ ∀w ∈ Shp,∣∣(τηs+1

t ,w)
∣∣ ≤ Cτhp+1‖w‖ ∀w ∈ Shp.

Lemma 3. Let u be sufficiently regular. Then it holds that

|Ah(ηs,w)| ≤ Chpε|||w||| ∀w ∈ Shp,

|Ah(v,w)| ≤ Cε|||v||| |||w||| ∀v,w ∈ Shp.

Lemma 4. Let u be sufficiently regular. Then it holds that

|bh(v,w)−bh(v̄,w)| ≤ C(‖v− v̄‖+ |||v− v̄|||) |||w||| ∀v, v̄ ∈ L2(Ω), w ∈ Shp,

|bh(v,w)−bh(v̄,w)| ≤ C(‖v− v̄‖+ |||v− v̄|||)‖w‖
∀v, v̄ ∈H1(Ω)∩L∞(Ω), w ∈ Shp,

|bh(u,w)−bh(Πu,w)| ≤ Chp+1|||w||| ∀w ∈ Shp,

|bh(Πus,w)−bh(Us,v)| ≤ C‖ξ s‖|||w||| ∀w ∈ Shp.

Proof. The proof of Lemma 1 can be done similarly as in [6]. The proof of Lemma 2
can be found in [12, 3, 5]. The proof of Lemmas 3 can be found in [5, 6]. The second
estimate in Lemma 4 results from b(. , .) = bh(. , .) under sufficient regularity of
arguments and direct estimation. The rest of the estimates in Lemma 4 can be found
in [5].

Theorem 1. Let u be the exact solution of problem (4) satisfying (5). Let the meshes
be regular with star–shaped elements and the numerical fluxes H be Lipschitz con-
tinuous, conservative and consistent. Let Us, s = 0, . . . ,r be the approximate solu-
tion defined by (16) – (19). Then

max
s=0,...,r

‖Us−u(ts)‖2 ≤ O(h2p + τ4)eTC(1+1/ε+τ/ε2) (20)
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Proof. Since Us−u(ts) = ξ s +ηs, in virtue of Lemma 2, it is sufficient to estimate
‖ξ s‖ only. Let us multiply (13) by τ

2 for t = ts and t = ts+1 and substract these
equations from (18). Then we have

(ξ s+1− ξ s,w)+
τ
2

Ah(ξ s+1 + ξ s,w) (21)

= −(us+1−us− τ
2

us+1
t − τ

2
us

t ,w)− (ηs+1−ηs,w)− τ
2

Ah(ηs+1 +ηs,w)

+
τ
2

(
bh(us+1,w)+ bh(us,w)−bh(Ũs+1,w)−bh(Us,w)

)
.

Applying Lemmas 1–4 and under the notation ũs+1 := us + τus+1
t , ξ̃ s+1 := Ũs+1−

Π ũs+1, we get

(ξ s+1− ξ s,w)+
τ
2

Ah(ξ s+1 + ξ s,w) (22)

≤ τ
2
‖w‖2 + τ

C
ε

(
‖ξ̃ s+1‖2 +‖ξ s‖2

)
+
τ
2

Ah(w,w)+ τq,

where q = O(h2p + τ4). Putting w := ξ s+1 + ξ s in (22), we have

‖ξ s+1‖2−‖ξ s‖2 ≤ τ‖ξ s+1‖2 + τ‖ξ s‖2 + τ
C
ε

(
‖ξ̃ s+1‖2 +‖ξ s‖2

)
+ τq. (23)

Obviously, ũs+1 satisfies

(ũs+1−us,w)+ τAh(us+1,w)+ τbh(us+1,w) = τl(w)(ts+1) ∀w ∈ Shp. (24)

Substracting (24) from (17) and after some manipulation, we obtain

(ξ̃ s+1− ξ s,w)+ τAh(Ũs+1−us+1,w) (25)

= τ(bh(us+1,w)−bh(Us,w))− (η̃s+1−ηs,w).

After another manipulation we obtain

(ξ̃ s+1− ξ s,w)+ τAh(ξ̃ s+1,w) (26)

= τ(bh(us+1,w)−bh(Us,w))− (τηs+1
t ,w)− τAh(η̃s+1,w)− τAh(ũs+1−us+1,w).

Applying Lemmas 1–4, we have

(ξ̃ s+1− ξ s,w)+ τAh(ξ̃ s+1,w) ≤ 1
8
‖w‖2 +

τ
2
|||w|||2 + τ

C
ε
‖ξ s‖2 + τ q̃, (27)

where q̃ = O(h2p + τ4). We put w = 2ξ̃ s+1 in (27) and immediately obtain

‖ξ̃ s+1‖2−‖ξ s‖2 ≤ 1
2
‖ξ̃ s+1‖2 + τ

C
ε
‖ξ s‖2 + τ q̃. (28)

From (23) and (28), we get
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‖ξ s+1‖2−‖ξ s‖2 ≤ τ‖ξ s+1‖2 + τ
(

1 +
C
ε

+
τC
ε2

)
‖ξ s‖2 + τq. (29)

Summing these inequalities and applying Gronwall’s lemma we obtain

‖ξm‖2 ≤C
(‖ξ 0‖2 + Tq

)
eTC(1+1/ε+τ/ε2), (30)

which proves our theorem, since ‖ξ 0‖ ≤ ‖Πu0−u0‖= ‖η0‖ ≤Chp+1. ��
Remark 1. The estimate (20) cannot be used for ε→ 0+, because it blows up expo-
nentially. The nonlinearity of the convective terms represents a serious obstacle.
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A Domain Decomposition Method Derived from
the Primal Hybrid Formulation for 2nd Order
Elliptic Problems

C. Bernardi, T. Chacón Rebollo, and E. Chacón Vera

Abstract We introduce a framework for FETI methods using ideas from the decom-
position via Lagrange multipliers of H1

0 (Ω) derived by Raviart-Thomas [17] and
complemented with the detailed work on polygonal domains developed by Gris-

vard [11]. We compute the action of the Lagrange multipliers using the natural H1/2
00

scalar product. Our analysis allows to deal with cross points and floating subdo-
mains in a natural manner. We obtain that the condition number for the iteration
matrix is independent of the mesh size and there is no need for preconditioning.
This result improves the standard asymptotic bound for this condition number given
by (1+ log(H/h))2 shown by Mandel-Tezaur in [14]. Numerical results that confirm
our theoretical analysis are presented in [2] or [4].

1 Introduction

The Lagrange multiplier formulation for elliptic Dirichlet boundary value problems
is a classical technique to handle many difficulties such as high-order equations,
the divergence-free constraint or non standard boundary conditions. We are inter-
ested here in its applications to domain decomposition methods, more precisely
to the Finite Element Tearing and Interconnecting (FETI) method hinted by Dihn,
Glowinsky and Periaux [10] in 1983, Dorr [6] in 1988, Roux [18]-[19] in 1989
and further developed by Farhat-Roux and collaborators [7]-[9]-[13]-[14]-[15]. This
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method has been implemented for large scale engineering problems with excellent
results, see for instance [3]-[8]-[20].

In this work we introduce a framework for FETI methods using ideas from the
decomposition via Lagrange multipliers of H1

0 (Ω) derived by Raviart-Thomas [17]
and complemented with the detailed work on polygonal domains developed by Gris-
vard [11]. As a consequence, we obtain a characterization of H1

0 (Ω) more precise
than the one in [17]. Our main ingredient next is the direct computation of the duality

H−1/2
00 −H1/2

00 using the natural H1/2
00 scalar product; therefore no consistency error

appears. Our analysis allows to deal with cross points and floating subdomains in a
natural manner: cross points are dealt with implicitly and the ellipticity on floating
subdomains holds naturally because we restrict our work to a subspace that contains
the solution and where this ellipticity is satisfied. As a byproduct, we obtain that the
condition number for the iteration matrix is independent of the mesh size and does
not need any preconditioning. This result improves the standard asymptotic bound
for this condition number given by (1 + log(H/h))2, where H and h are the charac-
teristic subdomain size and element size respectively, shown by Mandel-Tezaur in
[14]. We refer to [2] or [4] for proofs and the numerical tests.

Standard notation, see Girault and Raviart [12] is used.

2 Motivation of the Method

Our model problem is: Given f ∈ L2(Ω) we look for u ∈ H1
0 (Ω) such that

(∇u,∇v)Ω +(u,v)Ω = ( f ,v)Ω ∀v ∈H1
0 (Ω) (1)

where (ϕ ,ψ)Ω =
∫
Ω ϕ(x)ψ(x)dx is the scalar product in L2(Ω).

Assume now that Ω is a polygonal bounded domain in R2 that admits a decom-
position without overlapping in polygonal subdomains

Ω = ∪R
r=1Ω r and Ωr ∩Ωr′ = /0, 1≤ r < r′ ≤ R. (2)

Then, the solution u of (1) also satisfies that

R

∑
r=1
{(∇ur,∇vr)Ωr +(ur,vr)Ωr} =

R

∑
r=1

( fr,vr)Ωr ∀v ∈H1
0 (Ω) (3)

where the subindex r denotes restriction to Ωr, i.e., for instance ur = u|Ωr
. Next

we assume that the partition (2) of Ω is geometrically conforming in the sense that
all interiors interfaces Γr,s = Ωr ∩Ωs ⊂ Ω are either a common vertex, a common
edge or empty. For simplicity, when Γr,s is an internal common edge we will assume
that is a straight open segment without corners. A general case on this situation,
i.e., Γr,s with corners, could also be handled in the same way but the description
would become more cumbersome. We set Γr,0 = ∂Ωr ∩ ∂Ω and we may allow Γr,0
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polygonal because we impose zero boundary data on ∂Ω . Now we describe ∂Ωr

in terms of its edges via ∂Ωr = Γr,0∪Γr,1∪ ...∪Γr,Jr , where Jr is a positive integer
and Γr,0, which might be empty, satisfies ∂Ω =∪R

r=1Γr,0. We call skeleton of Ω , and
denote it by E , the set of all interfaces in Ω , and by E0 the skeleton of Ω , i.e., the
set of all internal interfaces:

E = ∪I
i=1Γi, E0 = E ∩Ω = ∪I

i=I0+1Γi.

Here Γi = Γi,0 for i = 1, .., I0 ≤ R describe the boundary ∂Ω , and for i ≥ I0 + 1
Γi = Γr, j, for some r, j ≥ 1, are all the internal interfaces. Then, on each Ωr we
consider the restriction of H1

0 (Ω) to Ωr, i.e., the Hilbert space

H1
b (Ωr) = {vr ∈ H1(Ωr);vr = 0 on ∂Ωr ∩∂Ω},

with the classical scalar product (ur,vr)1,Ωr = (ur,vr)Ωr + (∇ur,∇vr)Ωr and on Ω
the Hilbert space X given by

X = {v ∈ L2(Ω);vr = v|Ωr
∈ H1

b (Ωr),r ≤ R, [v]Γi ∈ H1/2
00 (Γi), ∀Γi ∈ E0}

where [v]Γi is the jump across Γi ∈ E0 given by [v]Γi = vr−vs whenΓi = ∂Ωr∩∂Ωs ⊂
Ω . The scalar product on X is given by

(u,v)X =
R

∑
r=1

(ur,vr)1,Ωr +
I

∑
i=I0+1

([u]Γi , [v]Γi)1/2,00,Γi
, ∀ u,v ∈ X

see Grisvard [11] for instance for the definition of the scalar product in H1/2(Γ ).
The norm on X also measures the jumps across the internal interfaces and thanks to
the trace theorems we have the inequality

‖v‖2
X ≤C

R

∑
r=1
‖vr‖2

1,Ωr
, ∀ v ∈ X (4)

that will guarantee the ellipticity of the problems that will be posed later on.
We can identify the space H1

0 (Ω) with the subspace V of elements of X such that
their jumps are zero on the interfaces. Then, the unique solution u of our variational
problem (1) also solves the problem: Find u ∈V such that for all v ∈V

R

∑
r=1

{(∇ur,∇vr)Ωr +(ur,vr)Ωr} =
R

∑
r=1

( f|Ωr
,vr)Ω . (5)

Our purpose now is to get rid of the constrains on the jumps and set (5) on X . This
will be achieved by adding the restriction on the jumps via Lagrangian multipliers
to (5). Therefore we must characterize H1

0 (Ω) in X . To achieve this description
we follow the idea introduced by Raviart-Thomas [17] and study the linear forms
on X that vanish on H1

0 (Ω). We must guarantee that all the jumps across internal
interfaces vanish and we do this via Lagrange multipliers.
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A key ingredient is the Green formula on polygonal domains and the localization
of the boundary integrals on each element Γi ∈ E0 so as to act on the jumps. It is
in this point where we improve the arguments in [17]. As a reward, our analysis
will say that cross points do not matter in the computation of the solution and the
characterization in [17] will be improved.

Let O be a polygonal domain in R2 with edges Γj, 1≤ j ≤ J. The domain of the
divergence operator on O is

H(div;O) =
{

q ∈ L2(O)2; div(q) ∈ L2(O)
}

;

for each j, we also introduce the space

H1
( j)(O) =

{
v ∈H1(O); v = 0on∂O \Γ j

}
.

Let < ·, ·>−1/2,00,Γj
denote the duality H−1/2

00 (Γj)−H1/2
00 (Γj) and let E be the space

E =
{

v ∈ H1(O); Δv ∈ L2(O)
}

then we have the following integrations by parts

Lemma 1. When O ⊂ R2 is a polygonal domain and ∂O = ∪J
j=1Γj, then for each

u ∈ E and any q ∈H(div;O) we have

(Δu,v)O +(∇u,∇v)O =
J

∑
j=1

< ∂n j u,v >−1/2,00,Γj
(6)

(q,∇v)O +(div(q),v)O =
J

∑
j=1

< n j ·q,v >−1/2,00,Γj
(7)

for any v ∈ H1(O) with v|Γj
∈ H1/2

00 (Γj) for j = 1,2, ...,J.

As each Ωr is a polygonal domain, and as a consequence of the above results,
we need to consider the dense subspace Wr of H1

b (Ωr) given by, observe that we
consider only internal interfaces,

Wr = {u ∈ H1
b (Ωr); u|Γr, j

∈ H1/2
00 (Γr, j), j = 1, ...,Jr},

and the dense subspace in X given by

X0 = {v ∈ L2(Ω);vr = v|Ωr
∈Wr,r = 1, ...,R}.

The use of X0 is a key tool in our analysis because the Green’s formula on polygonal
subdomains can be applied on each Ωr. Now, as we are only interested in what
happens on the internal interfaces, we consider

M = {μ ∈
R

∏
r=1

Jr

∏
j=1

H−1/2
00 (Γr, j);μr, j = nr, j ·q, for some q ∈ H(div;Ω).}
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The elements of M will be denoted the Lagrange multipliers on the internal inter-
faces Γi ∈ E0. We have the characterization of H1

0 (Ω) as a subspace of X given by

Lemma 2. Let b : M×X #→ R be defined for v ∈ X and λ ∈M by

b(λ ,v) =
I

∑
i=I0+1

< λi, [v]Γi >−1/2,00,Γi
. (8)

Then H1
0 (Ω) = {v ∈ X ; b(λ ,v) = 0, ∀λ ∈M}.

Define now the bilinear form a : X×X #→ R given by

a(u,v) = (u,v)X =
R

∑
r=1

(ur,vr)1,Ωr =
R

∑
r=1

∫
Ωr

{∇ur ·∇vr + ur vr}dx. (9)

and use the bilinear form b(λ ,v) given in (8). Then, our Dirichlet problem (1) con-
sists in looking for a pair (u,λ ) ∈ X×M such that

a(u,v)+ b(λ ,v) =
R

∑
r=1

( f ,vr)Ωr , ∀v ∈ X (10)

b(μ,u) = 0, ∀μ ∈M. (11)

This formulation is also known as a Lagrange formulation or primal hybrid
formulation because it mixes the primal variable u with the Lagrange multipliers
which weakly enforce continuity. We have the equivalence result

Theorem 1. u ∈H1
0 (Ω) solves the Dirichlet problem (1) if and only if there exists a

unique λ ∈M such that (u,λ ) ∈ X×M solves problem (10)-(11). Moreover, in this
case and for i = I0 + 1, ..., I,

λi =−∂niu ∈ H−1/2
00 (Γi). (12)

The cornerstone now is how to compute the dualities that act on the jumps. This
question has been considered from several points of view already. In our approach
we use Riesz representation and work with the H1/2

00 scalar product that is explicitly
computed.

3 Domain Decomposition Method

Our saddle point problem (10)-(11) can be written as equations in X�×M: find
(u,λ ) ∈ X×M such that

R−1 u + B�λ = F on X�, (13)

Bu = 0 on M, (14)



370 C. Bernardi et al.

where R : X� #→ X is the Riesz isomorphism associated with the bilinear form a(·, ·)
and defined by

< R−1u,v >= a(u,v), ∀u,v ∈ X ,

B is the continuous mapping B : X #→M defined by Bv = ([v]Γi)
I
i=I0+1, i.e., Bv gives

the jumps across the internal interfaces Γi ∈ E0 of v and B� is the transpose operator
to B. Then

b(μ ,v) =
I

∑
i=I0+1

(μi, [v]Γi)1/2,00,Γi
= (μ ,Bv)M ∀v ∈ X .

Finally, we take F : X #→ R given by < F,v >= ∑2
r=1( f ,vr)Ωr = ( f ,v)Ω . We find

that

u = R(F−B�λ )⇒ Bu = BRF−BRB�λ (15)

and using Bu = 0 from here we have the dual problem associated to the saddle
point problem

(BRB�)λ = BRF on M. (16)

Thanks to the inf-sup condition, on the infinite dimensional or finite dimensional set-
ting (using the finite element extension theorems, see for instance Bernardi-Maday-
Rapetti [5]) the operator BRB� is symmetric positive definite with eigenvalues in
the interval [β 2,α2] where β 2,α2 > 0 are independent of the discretization parame-
ter h; it also holds that β 2,α2 are eigenvalues of BRB�, see for instance Bacuta [1].
As a consequence, the condition number of the operator BRB� is bounded indepen-
dently of the discretization parameter,

κ = κ(BRB�)≤ α2

β 2 . (17)

This result improves the estimate given by Mandel-Tezaur [14] where the estimate
on the condition number is expressed asymptotically by

C (1 + log(H/h))2

where H and h are the characteristic subdomain size and element size respectively.
Now the resolution of (16) via the Conjugate Gradient Method is possible.

This is the basics of the standard FETI methods. We also observe that Conjugate
Gradient method does not need any preconditioning.

Recall that (·, ·)1/2,00,Γ is the scalar product on M. Then, the Conjugate gradient
method is:

Take r0 = d0 = BRF− (BRB�)λ0, for m≥ 0 set pm := (BRB�)dm and repeat
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αm =
(dm,rm)1/2,00,Γ

(dm, pm)1/2,00,Γ
, (18)

λm+1 = λm +αm dm, on Γ (19)

rm+1 = rm−αm pm, on Γ (20)

βm =
(pm,rm+1)1/2,00,Γ

(pm,dm)1/2,00,Γ
, (21)

dm+1 = rm+1−βm dm, on Γ . (22)

Using (15) the computation of the residual r0 is made via the computation of u0

u0 = RF− (RB�)λ0⇒ r0 = B u0 (23)

and for the computation of pm := (BRB�)dm we set pm = B wm where wm solve the
auxiliar problem:

R−1 wm = B� dm on X�. (24)

The resolution of (24) is made on each subdomain independently. Following stan-
dard convergence results, see for instance Quarteroni-Sacco-Saleri [16], we have
geometric convergence in a finite number of steps (under exact arithmetic) for this
iterative process. Suppose that N is the size of the matrix BRB�, which amounts to
say that N is the number of degrees of freedom on the interfaces, then

Theorem 2. The method (18)-(22) converges geometrically in at most N steps (un-
der exact arithmetic). For any m < N the error em = λm−λ is orthogonal to the
direction d j for j = 0,1,2, ...,m− 1 and we have the estimate

‖λm−λ‖1/2,00,Γ ≤ 2
√
κ

cm

1 + c2m‖λ0−λ‖1/2,00,Γ

where c = (
√
κ−1)/(

√
κ+1) < 1 and κ = α2/β 2 is the spectral condition number

of BRB� that is independent of the discretization parameter.
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A Posteriori Error Analysis of Penalty Domain
Decomposition Methods for Linear Elliptic
Problems

C. Bernardi, T. Chacón Rebollo, E. Chacón Vera, and D. Franco Coronil

Abstract In this work we introduce a new version of the non-overlapping domain
decomposition method (DDM) method proposed by Chacón and Chacón in [5].
In the new method a H1/2

00 (Γ ) penalty term replaces the L2(Γ ) one in the original
method. We develop a posteriori error analysis, aimed to design strategies for op-
timizing the combined choice of the penalty parameter and the adaptation of the
grid, to reduce the computational cost. We shall discuss the computational benefits

of using H1/2
00 (Γ ) penalty versus L2(Γ ) penalty.

1 The Penalty Problem

Let Ω ⊂Rd (d = 2,3) be a simply connected and bounded domain with a Lipschitz-
continuous boundary ∂Ω . We consider a simple decomposition of Ω into two non-
overlapping subdomains Ω1 and Ω2 and set Γ = ∂Ω1 ∩ ∂Ω2, Γi = ∂Ωi ∩ ∂Ω . We
assume that all of these boundaries are Lipschitz-continuous (d− 1)-dimensional
manifolds with positive (d−1)-dimensional measure.

We shall consider the Poisson problem in Ω as a test problem:
Given f ∈ L2(Ω), find u ∈ H1

0 (Ω) such that

(∇u,∇v)Ω = ( f ,v)Ω , ∀ v ∈ H1
0 (Ω). (1)

Here we introduce a new version of the method studied by T. Chacon and E.

Chacon in [6] that use a H1/2
00 (Γ ) penalty term, then we recall that H1/2

00 (Γ ) is the

C. Bernardi
Laboratoire Jacques-Louis Lions, C.N.R.S. et Université Pierre et Marie Curie. Boite courrier 187,
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subspace of H1/2(Γ ) whose extension by zero to ∂Ω1 (for instance, it could be also

to ∂Ω2) belongs to H1/2(∂Ω1). An intrinsic scalar product on H1/2
00 (Γ ) is defined

as

[[w,v]]Γ =
∫
Γ

w(x)v(x)dx +
∫
Γ

∫
Γ

(w(x)−w(y))(v(x)− v(y))
|x− y|d dxdy (2)

+
∫
Γ

w(x)v(x)
d(x,∂Γ )

dx ,

where the first two summands define the H1/2(Γ ) scalar product (Cf. [1]).
For brevity, we also denote by [[·, ·]]Γ the L2(Γ ) scalar product, and study both

the L2(Γ ) and the H1/2
00 (Γ ) penalties at the same time with the same notation. We

shall distinguish the two cases when this is necessary.
Consider the Sobolev spaces

Xi = H1(Ωi;Γi) = {v ∈ H1(Ωi) such that v|Γi
= 0}, i = 1,2; X = X1×X2.

We define for u = (u1,u2),v = (v1,v2) ∈ X the scalar product and norm on X

((u,v))X =
2

∑
i=1

(∇ui,∇vi)Ωi , ‖u‖2
X = ((u,u))X .

We introduce our penalty problem with H1/2
00 (Γ ) or L2(Γ ) penalties, as

(Pε)

{
Find uε ∈ X such that

((uε ,v))X +
1
ε

[[uε1−uε2,v1− v2]]Γ = F(v), ∀ v = (v1,v2) ∈ X,

with F(v) =
2

∑
i=1

( f ,vi)Ωi , where ε > 0 is a parameter destined to tend to zero. This

problem has a unique solution for any ε > 0 due to Lax–Milgram Lemma.

Remark 1. The original method introduced in [6] only considers a L2(Γ ) penalty
term to enhance the continuity of uε = (uε1,u

ε
2) across Γ . We also consider here a

H1/2
00 (Γ ) penalty term to enhance this continuity in a stronger sense. In both cases,

the method may be interpreted as the variational formulation of a coupled system of
PDEs with the structure⎧⎪⎨⎪⎩

−Δuε1 = f in Ω1,
uε1 = 0 on Γ1,

∂n12uε1 =
1
ε

b(uε1−uε2) on Γ ,

⎧⎪⎨⎪⎩
−Δuε2 = f in Ω2,
uε2 = 0 on Γ2,

∂n21 uε2 =
1
ε

b(uε2−uε1) on Γ ,

(3)

where b is an injective linear bounded boundary operator on Γ , which reduces to
the identity for L2(Γ ) penalty. So, the method ensures the continuity of the normal
fluxes through Γ and forces by penalty the continuity of uε through Γ .
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2 Penalty Error Analysis

The introduction of the H1/2
00 (Γ ) penalty instead of the L2(Γ ) penalty is suggested

by the following a priori penalty error analysis (Cf. [2], [6]):

Theorem 1. For each ε > 0, we have the following estimates for the penalty problem
(Pε):

a) Assume that H1/2
00 (Γ ) penalty is used and that f belongs to L2(Ω), then

e
H

1/2
00

(ε) =
2

∑
i=1
|u−uεi |1,Ωi ≤C‖∂nu‖∗,Γ ε, (4)

b) Assume that L2(Γ ) penalty is used and the solution u of (1) satisfies ∂nu∈ L2(Γ ),
then

eL2(ε) =
2

∑
i=1

|u− uεi |1,Ωi ≤C′ ‖∂nu‖∗,Γ
√
ε . (5)

where C and C′ are constants independent of ε and ‖ · ‖∗,Γ is the dual norm of the
scalar product [[·, ·]]Γ .

Here, we denote by n the outward normal vector to Ω1 on Γ pointing into Ω2.

Remark 2. In [2] we show that the quantity ηP = ‖uε1− uε2‖H1/2
00 (Γ )

is an optimal

indicator of the penalty error for (Pε), as it satisfies that, there exist two constants
C > 0 and C′ > 0 independent of ε such that

CηP ≤
2

∑
i=1

|u− uεi |1,Ωi ≤C′ηP, i = 1,2. (6)

The motivation of introducing the H1/2
00 (Γ ) penalty was to observe this estimate

when analyzing the error of L2(Γ ) penalty.

3 Discretization of the Penalty Problem

To discretize the problem (Pε), we consider a regular family of triangulations
{Tih}{h>0} of each Ω i such that Γ is the union of whole faces or sides of elements
K in each Tih. Denote Th = T1h∪T2h.

We assume that T1h and T2h have the same trace sets on Γ , that we denote by
E Γ

h . Then, {Th}{h>0} is a regular family of triangulations of Ω .
Next we consider a family of finite element subspaces Xih of Xi (i = 1,2), built

on the grids Tih. We set Xh = X1h×X2h.
Then, our penalty discrete problem is the standard finite element Galerkin

approximation uε
h = (uε1h,u

ε
2h) ∈ Xh of uε , solution of
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(Pε,h)

{
Find uε

h ∈Xh such that

((uε
h,vh))X +

1
ε

[[uε1h−uε2h,v1h− v2h]]Γ = F(vh), ∀ vh = (v1h,v2h) ∈ Xh.

This problem admits a unique solution for any ε > 0.
To solve (Pε,h) numerically, we consider the following parallel technique by

successive approximations introduced in [6]:
For n = 0,1,2, ..., un+1

1 = un+1,ε
1h ∈ X1h and un+1

2 = un+1,ε
2h ∈ X2h are computed

from un
1h and un

1h by solving (we drop the exponent ε and index h for simplicity),

(Pn
ε,h)

⎧⎪⎪⎨⎪⎪⎩
(∇un+1

1 ,∇v1h)Ω1 +
1
ε
[[un+1

1 −un
2,v1h]]Γ = ( f ,v1h)Ω1 , ∀ v1h ∈ X1h,

(∇un+1
2 ,∇v2h)Ω2 +

1
ε
[[un+1

2 −un
1,v2h]]Γ = ( f ,v2h)Ω2 , ∀ v2h ∈ X2h.

(7)

For the analysis that we are going to do in the next sections, we assume that each
of the spaces Xih contains the space X∗ih defined

X∗ih = {wh ∈ H1(Ωi) ; wh|K
∈ Pki(K), ∀K ∈Tih, wh|Γi

= 0}, (8)

where Pki(K) denotes the space of restrictions to K of polynomials with d variables
and total degree≤ ki for positive integers ki.

Furthermore we assume that its trace space on Γ is

Wih = {vh : Γ → R continuous : vh|∂Γ = 0, vh|e ∈ Pki(e), ∀e ∈ E Γ
h }. (9)

4 A Posteriori Error Analysis

In this section we develop an a posteriori error analysis of both methods, with the
purpose of study the optimality of independent error indicators for both penalty and
discretization errors that allows to develop strategies to provide relevant error reduc-
tions. Otto and Lube develop in [7] a similar approach to estimate free parameters
in a domain decomposition techniques. These error indicators are the following:

A discretization error indicator : ηD
h =

(
2

∑
i=1

∑
K∈Tih

(
ηK

i

)2

)1/2

; (10)

with ηK
i = hK ‖ fh +Δuεih‖L2(K) + ∑

e∈EK

h1/2
e ‖[∂nK uεih]‖L2(e), for each i = 1,2 and

K ∈Tih, where hK and he stand for for the diameters of K and e, respectively;
nK stands for the unit outward normal to ∂K;
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EK is the set of edges (d = 2) or faces (d = 3) of K that are not contained in Γi;
[∂nK uεih] stands for the jump of ∂nK uεih across e if e is not included in Γ , and for
∂nK uε1h− ∂nK uε2h if e is included in Γ .

A penalty error indicator: ηP
h = ‖uε1h−uε2h‖H1/2

00 (Γ )
. (11)

Our main a posteriori error estimate result, that shows the quasi-optimality of our
error indicators, is the following (Cf. [2]):

Theorem 2. Assume that the trace spaces W1h and W2h defined in (9) coincide. Then,
the solution of the discrete penalty problem (Ph,ε) satisfies the following a posteriori
error estimate

C ηh,ε ≤
2

∑
i=1

|u−uεih|1,Ωi ≤Ch ηh,ε ,

with

ηh,ε = ηP
h +

(
2

∑
i=1

∑
K∈Tih

(
ηK

i

)2
+ h2

K || f − fh||2L2(K)

)1/2

,

where C is a constant independent of h and ε , and Ch � h−1/2 is independent of ε .

Remark 3. This theorem prove the quasi-optimality of our error indicators ηP
h and

ηD
h . The full optimality is obtained if Ch = O(1), but we have found serious technical

difficulties to prove it. However, as we can see in the next Section, the numerical
results confirm this conjecture.

5 Numerical Experiments

In this section we analyze the efficiency of our error indicators, and build strategies
to determine both optimal values for the penalty parameter and optimal grids to
minimize the computational effort.

We work with the Poisson problem as model problem, in dimension d = 2 and
in the case where the discrete spaces are made of piecewise affine functions (k1 =
k2 = 1). All experiments are performed on the finite element code FreeFEM++.

To validate each numerical experiment we consider the L-shaped domain, Ω =
]0,1[2\[ 1

2 ,1]2. It is divided into two sub-domains symmetric with respect to the
straight line x = y. Furthermore, on this domain, we consider a Poisson problem
with homogeneous Dirichlet boundary conditions with a known analytical solution,
non-symmetric with respect to x = y.

Finally, as the scalar product of H1/2
00 (Γ ) defined in 2 is so difficult to compute,

in the numerical experiments we have used instead, a discrete analogue, that it has
been built using quadrature formulas (Cf. [4] for details).
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The Efficiency of the Indicators

To test this efficiency we compare the error indicators ηP
h and ηD

h , with the errors

Eε
h,H1 =

2

∑
i=1
|Ihu− uεih|H1(Ωi) and Eε

h,L2 =
2

∑
i=1
‖Ihu− uεih‖L2(Ωi), where Ihu is the

P1-Lagrange interpolated of the exact solution u.
To verify first the efficiency of the penalty error indicator ηP

h we have realized
some test fixing the mesh, and decreasing ε from 15 to 5×10−3.

Figure 1 shows the test with h = 1/64, in the case of H1/2
00 (Γ ) penalty. We note

that the error indicator ηP
h (in plain line) decreases with ε until the penalization error

(which behaves like cε) is of the same order as the finite element discretization error,
for a critical value εc � 0.2. For ε sufficiently larger than εc, the error indicator
curve ηP

h is parallel to the curves of the errors (Eε
h,L2 in dotted line and Eε

h,H1 in

dotted dashed line). In contrast, the quantity ηD
h (in dashed line) turns out to be fully

independent of ε .
To test now the efficiency of the discrete error indicator ηD

h , we have fixed the
penalty parameter ε and we have taken quasi-uniform meshes with grid size h de-
creasing from 0.25 to 1.5×10−2.

Figure 2 show the test for ε = 0.01 also in the case of H1/2
00 (Γ ) penalty. We note

the same qualitative behavior that in Figure 1, interchanging the roles of ηD
h and ηP

h .
Let us also remark that the behavior of indicators corresponding to L2 penalty is

similar.
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Fig. 1 Efficiency of the penalty error indicator.
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Fig. 2 Efficiency of the discrete error indicator.

Adaptivity Strategy and Penalty Parameter Optimization

Our purpose now is to develop a strategy to jointly determine an optimal value
of the penalty parameter and an optimal adapted grid, to balance the penalty and
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the discretization errors and to set the global error below a given tolerance. These
strategies are based upon the error indicators ηP

h and ηD
h and was introduced by

Bernardi et al. in [3] in a complete different framework.
This strategy is made in three steps. First, we solve the full discrete problem

(Pn
ε,h) with a current penalty error ε and a quasi-uniform mesh, and compute the

error indicators ηP
h and ηD

h .

Step 1: Adaptation of the penalty parameter. If ηP
h > ηD

h , we divide ε by a
constant number of times the ηD

h /ηP
h and go to Step 2.

If NOT, we go directly to Step 2.
Step 2: Adaptation of the mesh. We compute the all the ηK

i and their mean
value ηh. For all K such that ηK

i is larger than ηh, we divide K into smaller
triangles such that the diameters of these new elements behave like hK

i multiplied
by the ratio ηh/ηK

i .
Step 3: Solution of (Pn

ε,h). We iterate the Schwarz procedure to obtain a refined
solution of (Pn

ε,h).
Stop test: If max{ηP

h ,ηD
h } ≤ η , stop.

We have developed some numerical test, where a targeted tolerance η is given
and this strategy is used. Then, we have always achieved values of the errors indica-
tors below this tolerance, for an optimal penalty parameter value and a final adapted
mesh. We note that, with this strategy, the necessary CPU time to get this tolerance
is drastically reduced with respect to the CPU time we need to give the computa-
tion, beginning from the final mesh, the optimal value of ε and an initial solution
u0,ε

h = 0.
Concretely, to get values of the errors indicators below η = 0.003, the CPU time

is divided by approximately 4 to H1/2
00 (Γ ) penalty and 6 to L2(Γ ) penalty. Then, the

adaptivity strategy provides a large saving of computational effort for both H1/2
00 (Γ )

and L2(Γ ) penalties.

Remark 4. If we compare this strategy for the H1/2
00 (Γ ) and L2(Γ ) penalties, to the

same value of η , we observe that the values of the estimators ηP
h and ηD

h and the
number of triangles of the final grids are quite close for both penalties. Also, that

the optimal ε for L2(Γ ) penalty is close to the square of the optimal ε for H1/2
00 (Γ )

penalty. However, we obtain a large saving of CPU time for L2(Γ ) penalty. This is
due to two effects: The faster convergence of the L2(Γ ) penalty, that requires much

less iterations, and the cost due to the computation of the (even discrete) H1/2
00 (Γ )

norm.

Comparison with Other Domain Decomposition Method

We compare our penalty method with the domain decomposition method introduced
by Agoshkov and Lebedev in 1985. In the case of two subdomains, the iteration
procedure is the following (Cf. [8]): Starting from u0

1 = u0
2 = 0, we solve
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−Δun+1/2

1 = f in Ω1,

un+1/2
1 = 0 on Γ1,

∂un+1/2
1
∂n + pnun+1/2

1 = RHS1 on Γ ,

⎧⎪⎪⎨⎪⎪⎩
−Δun+1/2

2 = f in Ω2,

un+1/2
2 = 0 on Γ2,

−qn
∂un+1/2

2
∂n + un+1/2

2 = RHS2 on Γ ,

un+1
1 = un

1 + αn+1(u
n+1/2
1 − un

1) in Ω1; un+1
2 = un

2 + βn+1(u
n+1/2
2 − un

2) in Ω2;

for n = 0,1,2,3, ..., with RHS1 = ∂un
2

∂n + pnun
2 and RHS2 = −qn

∂un+1
1
∂n + un+1

1 . Here
pn ≥ 0, qn ≥ 0, αn+1 and βn+1 are free parameters. This algorithm is a generali-
zation, in a wide sense, of the penalty L2 version of our method to the parameters
ε = qn = 1/pn. To compare the both methods, we have realized some test with the L-
shaped domain fixing the mesh and comparing the results obtained to ε = qn = 1/pn

and the optimal choice of αn+1 and βn+1. We have obtained that, the Agoshkov-
Lebedev method convergence rate is independent of the mesh size with a small
number of iterations, while our penalty method is mesh dependent and we need a
larger number of iterations. However, for the same tests and measures, numerical ex-
periments show that the discretization error obtained for our method is much better
than that obtained for the Agoshkov-Lebedev method.
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BETI-DP Methods in Unbounded Domains

C. Pechstein

Abstract This contribution deals with dual-primal boundary element tearing and
interconnecting methods for Poisson-type problems in unbounded domains. To the
best of our knowledge, no rigorous analysis of the corresponding preconditioners
has been done yet. In the present paper we fill this theoretical gap and generalize the
method to unbounded domains. Furthermore, we discuss implementational issues.

1 Introduction

Finite element tearing and interconnecting (FETI) methods are special non-over-
lapping domain decomposition methods designed for the parallel solution of large-
scale systems of finite element equations. The classical one-level FETI method was
introduced by Farhat and Roux [5]. Here, the finite element subspaces are given on
each subdomain separately and the global continuity of the solution is enforced by
Lagrange multipliers. Introducing a special projection, the original problem can be
solved by a projected (deflated) preconditioned conjugate gradient (PCG) method
in the Lagrange multiplier space. In each step of this PCG iteration one has to solve
Dirichlet and Neumann problems locally on the subdomains. Klawonn and Widlund
[6] proved that the condition number of the preconditioned system is bounded by
C (1 + log(H/h))2, where H is the subdomain diameter, h is the mesh size, and the
constant C is independent of H, h and coefficient jumps. For a detailed description
and for further references we refer to the monograph by Toselli and Widlund [19].

The principle of the FETI methods can be carried over to boundary-element ap-
proximations. The so-called boundary element tearing and interconnecting (BETI)
methods were introduced and analyzed by Langer and Steinbach [10]. The same

Clemens Pechstein
Spezialforschungsbereich F013, Johannes Kepler Universität, Altenberger Straße 69, 4040 Linz,
Austria, e-mail: clemens.pechstein@numa.uni-linz.ac.at
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authors used the tearing and interconnecting principle to couple finite elements and
boundary elements in hybrid domain decomposition methods [11].

One issue of one-level FETI methods is the special projection owing to the fact
that the local Neumann problems for the Laplace operator on floating subdomains
are not uniquely solvable. In linear elasticity, the null spaces of the local Neumann
problems which depend on the boundary conditions are often difficult to character-
ize which complicates the FETI projection. That was one of the main reasons for
the development of the dual-primal FETI (FETI-DP) methods introduced by Farhat
et. al. [3] and analyzed in two dimensions by Mandel and Tezaur [12]. Algorithms
for the three-dimensional case were contributed by Farhat, Lesoinne, and Pierson
[4], see also [15]. Finally, a rigorous analysis was given by Klawonn, Widlund, and
Dryja [7]. See also Brenner and He [2].

The dual-primal BETI (BETI-DP) methods were briefly introduced by Langer,
Pohoaţǎ, and Steinbach [9]. To our knowledge, however, neither any analysis has
been given, nor any efficient implementation has been discussed until now. The aim
of the present contribution is to fill this gap and to generalize the BETI-DP methods
to the case of unbounded domains. In particular, we prove a condition number bound
which is similar to the existing ones for FETI-DP methods. It coincides with the best
bound that we could obtain for one-level BETI methods in unbounded domains, see
our earlier work [14]. In contrast, our BETI-DP bound is completely independent of
the geometric constellation of the subdomains and the Dirichlet boundary.

Let Ω ⊂ Rd (with d = 2 or 3) be an open unbounded domain with its comple-
ment Rd \Ω being bounded. We state more specific assumptions on Ω in Section 2.
The boundary Γ = ∂Ω is composed into a Dirichlet boundary ΓD and a Neumann
boundary ΓN , with Γ = ΓD ∪ΓN and ΓD ∩ΓN = /0. Our model problem reads as fol-
lows: Find u ∈ H1

loc(Ω) such that

−∇ · [α∇u] = 0 in Ω , u = gD on ΓD , α
∂u
∂n

= gN on ΓN , (1)

where α(x) is a piecewise constant coefficient and n(x) is the unit normal vector on
Γ pointing outside of Ω .

In Section 2 we introduce basic notation, domain decomposition, discretization,
and the fundamentals of boundary element methods. Section 3 is devoted to the
formulation of BETI-DP methods. In Section 4 we finally discuss implementational
issues and give the condition number estimate for the BETI-DP preconditioner.

2 Preliminaries

Basic notation. Generically, we denote the dual of a Banach space V by V ∗, and the
duality pairing between V ∗ and V by 〈·, ·〉. We denote the adjoint of a linear operator
T : V →W ∗ by T� : W →V ∗. For a Lipschitz domain D, the Sobolev spaces H1(D),
H1

loc(D), H1/2(∂D), and H−1/2(∂D) are defined as usual, see, e. g., [13, 14].
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Domain decomposition. The domain Ω is decomposed into p + 1 open, non-
overlapping subdomains Ωi such that Ω =

⋃p
i=0Ω i and Ωi ∩Ω j = /0 for i �= j. We

assume that the subdomainΩ0 is unbounded and its complement Rd \Ω0 is bounded
and contractible. The remaining subdomains are assumed to be bounded and con-
tractible. We define the local boundariesΓi := ∂Ωi and the unit normal vectors ni to
Γi which point to the outside of Ωi. In particular, n0 points to the interior of Rd \Ω0.
Furthermore, we set H0 := diam(Rd \Ω0) and Hi := diamΩi for i = 1, . . . , p. Ac-
cording to [19] we define the skeletonΓS :=

⋃p
i=0Γi, the local interfacesΓi j :=Γi∩Γj,

and the interface ΓI :=
⋃p

i, j=0Γi j. The interface ΓI is the union of (topological) sub-
domain vertices V ∈ V , edges E ∈ E and faces F ∈F .

Finally, we assume that the coefficient α(x) is piecewise constant on the subdo-
mains with α|Ωi

= αi = const > 0.

Discretization. We consider a triangulation T (ΓS) of the skeletonΓS into simplical
elements T ∈T (ΓS) and denote its restriction on Γi by T (Γi). The sets of nodes of
these triangulations are denoted by ΓS,h and Γi,h. On ΓS we define the following
spaces of piecewise linear functions,

V h(ΓS) := {v ∈ C (ΓS) : v|T ∈P1(T ) for all T ∈T (ΓS)} ,
V h

D(ΓS) := {v ∈V h(ΓS) : v|ΓD
= 0} .

Throughout the paper, we assume that we can find an extension g̃D ∈ V h(ΓS) with
g̃D|ΓD = gD, and that g̃N ∈H−1/2 defined by extending gN by zero fulfills the condi-
tion gN ∈V h

D(ΓS)∗. In the same manner we define the spaces V h(Γi) and V h
D(Γi).

Boundary integral operators. The fundamental solution of the Laplace equation
is given by U ∗(x, y) = − 1

2π log |x− y| for d = 2 and U ∗(x, y) = 1
2π |x− y|−1 for

d = 3. On each subdomain boundary Γi, for i = 0, . . . , p, we define the single layer
potential operator Vi, the double layer potential operator Ki, and the hypersingular
integral operator Di by

Vi : H−1/2(Γi)→ H1/2(Γi) : (Vi t)(x) := αi

∫
Γi

U ∗(x, y)t(y)dsy,

Ki : H1/2(Γi)→ H1/2(Γi) : (Ki u)(x) := αi

∫
Γi

∂
∂ni,y

U ∗(x, y)u(y)dsy, (2)

Di : H1/2(Γi)→ H−1/2(Γi) : (Di u)(x) :=−αi
∂

∂ni,x

∫
Γi

∂
∂ni,y

U ∗(x, y)u(y)dsy,

where x ∈ Γi. Throughout this work, we assume that in two dimensions Hi < 1 for
all i = 0, . . . , p, which can always be obtained by a simple coordinate scaling of the
domain Ω . This assumption assures that all the single layer potential operators Vi

are elliptic and therefore invertible. For details see, e. g., [18].
Introducing the space of piecewise constant functions

Zh(Γi) := {t ∈H−1/2(Γi) : t|T = const for all T ∈T (Γi)} ,
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we define the following discrete boundary integral operators:

Vi : Zh(Γi)→ Zh(Γi)∗ : 〈Vi t, s〉= 〈Vi t, s〉 ∀t, s ∈ Zh(Γi) ,

Ki : V h(Γi)→ Zh(Γi)∗ : 〈t, Ki v〉= 〈t, Ki v〉 ∀v ∈V h(Γi)∀t ∈ Zh(Γi) ,

Di : V h(Γi)→V h(Γi)∗ : 〈Di v, w〉= 〈Di v, w〉 ∀v, w ∈V h(Γi) ,

Mi : V h(Γi)→ Zh(Γi)∗ : 〈t, Mi v〉= 〈t, v〉 ∀v ∈V h(Γi)∀t ∈ Zh(Γi) .

(3)

Note, that Mi is the identity as an operator. However, its matrix representation is not
diagonal but sparse. The remaining matrices can be represented in data-sparse form
by the usual boundary element compression techniques, such as the fast multipole
method, ACA, HCA, wavelets, etc., see, e. g., [18] and the references therein.

Finally, we define the Steklov-Poincaré operators

S0 := V −1
0 (α0

2 I−K0) , Si := V −1
i (αi

2 I + Ki) for i = 1, . . . , p , (4)

which are the Dirichlet-to-Neumann maps for the Laplace problem on the subdo-
mains Ωi, and their discrete symmetric approximations

Si := Di + K
�
i V−1

i Ki for i = 0, . . . , p , (5)

where K0 := α0
2 M0−K0 and Ki := αi

2 Mi +Ki for i = 1, . . . , p, cf. [10, 17]. Here, the
operators S0 and S0 correspond to the exterior problem in Ω0.

Skeleton variational formulation. As for many non-overlapping domain decom-
position methods we use the following formulation for the model problem (1):

Find u(0)
h ∈V h

D(ΓS) :
p

∑
i=0

〈Si Ri u(0)
h , Ri vh〉=

p

∑
i=0

〈 fi, Ri vh〉 ∀vh ∈V h
D(ΓS) , (6)

with fi = R∗i gN −Si Ri gD, where Ri : V h
D(ΓS)→ V h

D(Γi) and R∗i : V h
D(ΓS)∗ →V h

D(Γi)∗

are suitable restriction operators. Once the solution uh = g̃D + u(0)
h of (6) is known,

the approximate solution of (1) is characterized using the representation formula
involving U ∗(x, y) on each subdomain seperately. For details see [10, 17].

3 Formulation of BETI-DP Methods

We start with the minimization problem

min
u
(0)
h ∈V h

D(ΓS)

p

∑
i=0

[
1
2〈Si Ri u(0)

h , Ri uh〉− 〈 fi, Ri uh〉
]
, (7)

which is equivalent to (6). According to the tearing and interconnecting principle we

introduce new unknowns ui for Ri u(0)
h and write u = [ui]i=0,...,p. We define the spaces



BETI-DP Methods in Unbounded Domains 385

Wi := V h
D(Γi) and W := ∏p

i=0 Wi and regard the local Steklov-Poincaré operators Si

as operators mapping Wi to W ∗i . Furthermore, we define S := diag(Si), such that
S : W →W ∗. In general, the functions in W are discontinuous across the subdomain
interfaces.

As in all dual-primal methods, we work with subspaces W̃ ⊂W for which suf-
ficiently many continuity constraints are enforced such that the block operator S
is SPD on W̃ . Such spaces are constructed as follows. We choose a primal space
ŴΠ ⊂ V h

D(ΓS) and a dual subspace W̃Δ ⊂W such that W̃ = ŴΠ ⊕ W̃Δ . Note, that
for simplicity we identify continuous functions from V h(ΓS) with the corresponding
ones in the product space W . We denote the i-th component of the product space
W̃Δ by W̃Δ , i. Due to space limits, we refer to [19, Algorithms B, C] for particular
choices of W̃Δ and ŴΠ . We only mention that for three-dimensional problems one
has to add at least edge average constraints to ŴΠ to obtain robustness in h.

We are now ready to formulate the BETI-DP algorithms. Depending on the
choice of W̃Δ and ŴΠ , we define the Schur complement S̃ : W̃Δ → W̃ ∗Δ by

S̃ := SΔ −SΔΠ S−1
Π SΠΔ , (8)

where the block operators SΔ : W̃Δ → W̃ ∗Δ , SΠΔ : ŴΠ → W̃ ∗Δ , SΔΠ : W̃Δ → Ŵ ∗Π and
SΠ : ŴΠ → Ŵ ∗Π are the Galerkin projections of S to the corresponding spaces. Note,
that SΠ is SPD and that S̃ fulfills the minimizing property

〈S̃ wΔ , wΔ 〉= min
wΠ∈ŴΠ

〈S(wΔ + wΠ ), wΔ + wΠ 〉

Furthermore, we define the reduced right hand side f̃ := fΔ − SΔΠ S−1
Π fΠ ∈ W̃ ∗Δ ,

where fΔ ∈ W̃Δ and fΠ ∈ ŴΠ are the corresponding projections of f .
In the following, we incorporate the continuity constraints on the interface but—

in contrast to one-level methods—only for the degrees of freedom (dofs) in W̃Δ .
These constraints can be summarized by the equation

BΔuΔ = 0 ,

with the jump operator BΔ : W̃Δ → RM , where each line corresponds to a constraint
of the form ui(x)− u j(x) = 0 for some x ∈ Γi,h ∩Γj,h, at least in the case of nodal
dofs. According to [19], we restrict ourselves to fully redundant constraints and for
the sake of simplicity we set UΔ = rangeBΔ which implies kerB�Δ = {0}. In that
part of our analysis we identify the space (RM)∗ with RM and U∗Δ with UΔ .

With these definitions, we arrive at the minimization problem

min
uΔ∈W̃Δ , BΔ uΔ=0

p

∑
i=0

[
1
2〈S̃ uΔ , uΔ 〉− 〈 f̃ , uΔ 〉

]
, (9)

which is equivalent to (7). Suppose we have the solution uΔ of (9), then the
overall solution u is given by u = uΔ + uΠ with uΠ = S−1

Π ( fΠ − SΠΔuΔ ). Above
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minimization problem is equivalent to the following saddle point problem:

Find uΔ ∈ W̃Δ , λ ∈UΔ :

(
S̃ B�Δ

BΔ 0

)(
uΔ
λ

)
=
(

f̃
0

)
.

As an important observation S̃ is SPD on W̃Δ , and so the inverse S̃−1 exists. With the
definitions F := BΔ S̃−1B�Δ : UΔ →UΔ and d := BΔ S̃−1 f̃ ∈UΔ , above saddle point
problem reduces to

find λ ∈UΔ : F λ = d . (10)

We see that F is SPD on UΔ . Hence, λ can be computed using a PCG method. The
preconditioner M−1 : UΔ →UΔ is chosen as

M−1 := BD,Δ SΔ B�D,Δ , (11)

where BD,Δ : W ∗Δ → UΔ is a scaled jump operator which takes heterogeneous co-
efficients into account, cf. [14, 19]. Instead of SΔ , one can choose the spectrally
equivalent block hypersingular operator DΔ := diag(Di,Δ ).

4 Implementation and Analysis

In the following we discuss some implementational issues.

• For the implementation of three-dimensional methods one needs to handle the
edge and possibly face average constraints. One way is computing with the usual
basis and additional constraints, cf. [16]. In connection with hierarchical matri-
ces, it might be possible to construct the matrix representations of Vi, Ki and Di

directly for a new basis with the edge/face averages incorporated.
• The realization of Si,Δ which is the restriction of Si to Wi,Δ is performed accord-

ing to definition (5) of Si by application of a few boundary element matrices and
solving an equation with the single layer potential operator Vi.

• Realization of S−1
Π : The matrix representing SΠ is sparse and can be assembled

and factorized once in memory.
• For computing vi,Δ = S−1

i,Δgi,Δ we solve instead the local saddle point problem(
Di,Δ K

�
i,Δ

Ki,Δ −Vi

)(
vi,Δ

t

)
=
(

wg,Δ
0

)
. (12)

• Realization of S̃−1: Computing vΔ = S̃−1gΔ is equivalent to solving(
SΔ SΔΠ

SΠΔ SΠ

)(
vΔ
vΠ

)
=
(

gΔ
0

)
. (13)
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We use the block factorization(
SΔ SΔΠ

SΠΔ SΠ

)−1

=
(

IΔ −S−1
Δ SΔΠ

0 IΠ

)(
S−1
Δ 0
0 S̃−1

Π

)(
IΔ 0

−SΠΔS−1
Δ IΠ

)
, (14)

where S̃Π = SΠ − SΠΔS−1
Δ SΔΠ . If S̃Π is assembled (by solving as many local

problems per subdomain as there are primal dofs) and factorized once in memory,
the application of S−1 reduces essentially to the application of S−1

Δ , see above.
• Computing u from λ : We solve (13) with gΔ = f̃ −B�Δ λ and set u = [vΔ , vΠ ].

Lemma 1. If H -matrix techniques are used to approximate the boundary integral
operators Vi, Ki, and Di, and if the H -LU factorization is used to obtain a fast ap-
proximate application of V −1

i and the system matrix in (12), the application of Si,Δ
and S−1

i,Δ can be performed in quasi-optimal complexity. This implies that for each

PCG step the number of arithmetical operations is O(CH (Hi/hi)d−1 log(Hi/hi)) in
a parallel scheme, where CH depends on the rank in the H -matrix approximation.

Remark 1. The algorithm will work well if the number NΠ ,0 of primal dofs on the
exterior subdomain boundary Γ0 stays small. If NΠ ,0 grows, alone assembling the
matrix S̃Π involves NΠ ,0 local solves on Γ0. This exactly happens when the number
of neighboring subdomains of Ω0 becomes large, and it usually means that also
the number of nodal degrees of freedom on Γ0 is large compared to those on the
remaining subdomains Γi, which besides effects the sparsity of SΠ and S̃Π . In that
case a sub-parallelization of the operators acting on Γ0 might be the only way to
regain load balancing in a parallel scheme. We believe, however, that this is only
possible using inexact BETI-DP methods in the spirit of [8], where the solution of
(12) in each PCG step is avoided.

The following theorem states the quasi-optimality of the BETI-DP preconditioner
and relies on a typical subdomain regularity assumption [19, Assumption 4.3].

Theorem 1. First, assume that the partition {Ωi}p
i=1 and the Dirichlet boundaryΓD

fulfill [19, Assumption 4.3]. Secondly, assume that the interior of Γ0 is the image
of a shape regular polygon under a sufficiently smooth map. Finally, let the spaces
ŴΠ and W̃Δ be defined according to [19, Algorithm B or C]. Then the BETI-DP
preconditioner (11) fulfills the following condition number estimate

κ(M−1 F)≤C
p

max
i=1

(1 + log(Hi/hi))2 ,

where the constant C is independent of Hi, hi and the values αi. We point out that
H0 = diam(int(Γ0)) does not enter the estimate.

Proof. The detailed proof can be found in [14]. It follows the line of the proof
given in [7, 19]. In contrast to the theory of one-level BETI methods in unbounded
domains [14] we do not need anything like an extension indicator. The needed tools
are spectral equivalence relations between the boundary element approximations Si,
the Steklov-Poincaré operators Si, and the finite element approximations of them.
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The method described in this contribution can easily be generalized to hybrid
FETI/BETI-DP methods in unbounded domains, cf. [14] and coupled with interface
concentrated FEM approximations, cf. [1].
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Domain Decomposition and Model Reduction of
Systems with Local Nonlinearities

K. Sun, R. Glowinski, M. Heinkenschloss, and D.C. Sorensen

Abstract The goal of this paper is to combine balanced truncation model reduction
and domain decomposition to derive reduced order models with guaranteed error
bounds for systems of discretized partial differential equations (PDEs) with a spa-
tially localized nonlinearities. Domain decomposition techniques are used to divide
the problem into linear subproblems and small nonlinear subproblems. Balanced
truncation is applied to the linear subproblems with inputs and outputs determined
by the original in- and outputs as well as the interface conditions between the sub-
problems. The potential of this approach is demonstrated for a model problem.

1 Introduction

Model reduction seeks to replace a large-scale system of differential equations by
a system of substantially lower dimension that has nearly the same response char-
acteristics. This paper is concerned with model reduction of systems of discretized
partial differential equations (PDEs) with spatially localized nonlinearities. In par-
ticular, we are interested in constructing reduced order models for which the error
between the input-to-output map of the original system and the input-to-output map
of the reduced order model can be controlled.

Balanced truncation is a particular model reduction technique due to [16], which
for linear time invariant systems leads to reduced order models which approximate
the original input-to-output map with a user controlled error [1, 6]. Although ex-
tensions of balanced truncation to nonlinear systems have been proposed, see, e.g.,
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[9, 14], there are no bounds available for the error between the input-to-output map
of the original system and that of the reduced order model. Proper Orthogonal De-
composition (POD) is often used for model reduction of nonlinear systems. Error
bounds are available for the error between the so-called snapshots and the reduced
order model, see, e.g., [11, 13], but no bounds for the error between the input-to-
output map of the original system and that of the reduced order model, unless the
so-called snapshot set reflects all possible inputs.

Our approach uses domain decomposition techniques to divide the problem into
linear subproblems and small nonlinear subproblems. Balanced truncation is applied
only to the linear subproblems with inputs and outputs determined by the original in-
and outputs as well as the interface conditions between the subproblems. We expect
that this combination of domain decomposition and balanced truncation leads to a
substantial reduction of the original problem if the nonlinearities are localized, i.e.,
the nonlinear subproblems are small relative to the other subdomains, and if the
interfaces between the subproblems are relatively small.

To keep our presentation brief, we consider a model problem which couples the
1D Burgers equation to two heat equations. This is motivated by problems in which
one is primarily interested in a nonlinear PDE which is posed on a subdomain and
which is coupled to linear PDEs on surrounding, larger subdomains. The linear PDE
solution on the surrounding subdomains needs to be computed accurately enough
to provide acceptable boundary conditions for the nonlinear problem on the ‘inner’
subdomain. Such situations arise, e.g., in regional air quality models.

Our work is also related to [4], which is an example paper which discusses the
coupling of linear and nonlinear PDEs, but no dimension reduction is applied. Do-
main decomposition and POD model reduction for flow problems with moving
shocks are discussed in [15]. POD model reduction is applied on the subdomains
away from the shock. The paper [18] discusses a different model reduction tech-
nique for second order dynamical systems with localized nonlinearities. The papers
[2, 5] and [20] discuss different model reduction and substructuring techniques for
second order dynamical systems and model reduction of interconnect systems re-
spectively.

2 The Model Problem

Let Ω =
⋃3

k=1Ω k, where Ω1 = (−10,−1), Ω2 = (−1,1) and Ω3 = (1,10) and let
T > 0 be given. Our model problem is given by

ρk
∂yk

∂ t
(x,t)− μk

∂ 2yk

∂x2 (x,t) = Sk(x,t), (x,t) ∈Ωk× (0,T), (1a)

yk(x,0) = yk0(x), x ∈Ωk, k = 1,3, (1b)

∂y1

∂x
(−10,t) = 0,

∂y3

∂x
(10,t) = 0 t ∈ (0,T ), (1c)
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ρ2
∂y2

∂ t
(x,t)− μ2

∂ 2y2

∂x2 + y2
∂y2

∂x
(x,t) = 0, (x,t) ∈Ω2× (0,T ), (1d)

y2(x,0) = y20(x), x ∈Ω2, (1e)

with the following interface conditions

y1(−1,t) = y2(−1,t), y2(1,t) = y3(1,t), t ∈ (0,T ), (2a)

μ1
∂y1

∂x
(−1,t) = μ2

∂y2

∂x
(−1,t), μ2

∂y2

∂x
(1,t) = μ3

∂y3

∂x
(1,t), t ∈ (0,T ). (2b)

We assume that the forcing functions S1, S3 are given by

Sk =
ns

∑
i=1

bik(x)uik(t), k = 1,3. (3)

To obtain the weak form of (1) and (2), we multiply the differential equations
(1a, d) by test functions vi ∈ H1(Ωi), i = 1,2,3, respectively, integrate over Ωi, and
apply integration by parts. Using the boundary conditions (1c, h) this leads to

ρk
d
dt

∫
Ωk

ykvkdx + μk

∫
Ωk

∂yk

∂x
∂vk

∂x
dx− μk

∂yk

∂x
vk

∣∣∣
∂Ωk

=
∫
Ωk

Skvkdx, k = 1,3, (4a)

ρ2
d
dt

∫
Ω2

y2v2dx + μ2

∫
Ω2

∂y2

∂x
∂v2

∂x
dx +

∫
Ω2

∂y2

∂x
y2v2dx− μ2

∂y2

∂x
v2

∣∣∣1−1
= 0. (4b)

If vk ∈ H1(Ωk), k = 1,3, satisfy v1(−1) = 1, v3(1) = 1, then (1c), (4a) imply

μ1
∂y1(−1)

∂x
=−

∫
Ω1

S1v1dx +ρ1
∂
∂ t

∫
Ω1

y1v1dx + μ1

∫
Ω1

∂y1

∂x
∂v1

∂x
dx, (5a)

μ3
∂y3(1)
∂x

=
∫
Ω3

S3v3dx−ρ3
∂
∂ t

∫
Ω3

y3v3dx− μ3

∫
Ω3

∂y3

∂x
∂v3

∂x
dx. (5b)

If v2 ∈ H1(Ω2) satisfies v2(−1) = 1 and v2(1) = 0, then (4b) implies

μ2
∂y2(−1)

∂x
=−ρ2

∂
∂ t

∫
Ω2

y2v2dx− μ2

∫
Ω2

∂y2

∂x
∂v2

∂x
dx−

∫
Ω2

∂y2

∂x
y2v2dx. (5c)

Finally, if v2 ∈ H1(Ω2) satisfies v2(−1) = 0 and v2(1) = 1, then (4b) implies

μ2
∂y2(1)
∂x

= ρ2
∂
∂ t

∫
Ω2

y2v2dx + μ2

∫
Ω2

∂y2

∂x
∂v2

∂x
dx +

∫
Ω2

∂y2

∂x
y2v2dx. (5d)

The identities (5) are used to enforce the interface conditions (2).
We discretize the differential equations in space using piecewise linear functions.

We subdivide Ω j, j = 1,2,3, into subintervals. Let xi denote the subinterval end-
points and let vi be the piecewise linear basis function with vi(xi) = 1 and vi(x j) = 0
or all j �= i. We define the following index sets
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II
1 = {i : xi ∈ [−10,−1)}, II

2 = {i : xi ∈ (−1,1)}, II
3 = {i : xi ∈ (1,10]},

IΓ12 = {i : xi =−1}, IΓ23 = {i : xi = 1}.

Given yi for i ∈ IΓ12∪ IΓ23, we compute functions

yk(t,x) = ∑
i∈II

k

yi(t)vi(x)+ ∑
i∈IΓ

yi(t)vi(x), k = 1,3, (6a)

y2(t,x) = ∑
i∈II

1

yi(t)vi(x)+ ∑
i∈IΓ12

yi(t)vi(x)+ ∑
i∈IΓ23

yi(t)vi(x), (6b)

where in (6a) we use IΓ = IΓ12 if k = 1 and IΓ = IΓ23 if k = 3, as solutions of

ρk
d
dt

∫
Ωk

ykvidx + μk

∫
Ωk

∂
∂x

yk
d
dx

vidx =
∫
Ωk

Skvidx,i ∈ II
k, k = 1,3,

ρ2
d
dt

∫
Ω2

y2vidx + μ2

∫
Ω2

∂
∂x

y2
d
dx

vidx +
∫
Ω2

∂
∂x

y2y2vidx = 0,i ∈ II
2.

If we set yI
k = (yi)i∈II

k
, k = 1,2,3, yΓjk = (yi)i∈IΓjk

, jk ∈ {12,23}, yΓ = (yΓ12,y
Γ
23)

T ,

and uk = (ui)i=1,...,ns , k = 1,3 (cf. (3)), the previous identities can be written as

MII
1

d
dt

yI
1 + AII

1 yI
1 + MIΓ

1
d
dt

yΓ12 + AIΓ
1 yΓ12 = BI

1u1, (7a)

MII
2

d
dt

yI
2 + AII

2 yI
2 + MIΓ

2
d
dt

yΓ + AIΓ
2 yΓ + NI(yI

2,y
Γ ) = 0, (7b)

MII
3

d
dt

yI
3 + AII

3 yI
3 + MIΓ

3
d
dt

yΓ23 + AIΓ
3 yΓ23 = BI

3u3. (7c)

By construction, the functions y j, j = 1,2,3, in (6) satisfy (2a). To enforce (2b)
we insert the identities (5), (6) into (2b). The resulting conditions can be written as

MΓ I
1

d
dt

yI
1 + AΓ I

1 yI
1 +(MΓΓ

1 + MΓΓ
12 )

d
dt

yΓ12 +(AΓΓ
1 + AΓΓ

12 )yΓ12 (8a)

+MΓ I
12

d
dt

yI
2 + AΓ I

12 yI
2 + NΓ

12(y
I
2,y

Γ
12) = BΓ

1 u1, (8b)

MΓ I
3

d
dt

yI
3 + AΓ I

3 yI
3 +(MΓΓ

3 + MΓΓ
23 )

d
dt

yΓ23 +(AΓΓ
3 + AΓΓ

23 )yΓ23 (8c)

+MΓ I
23

d
dt

yI
2 + AΓ I

23 yI
2 + NΓ

23(y
I
2,y

Γ
23) = BΓ

3 u3. (8d)

To summarize, our discretization of (1) and (2) is given by (7) and (8).
As outputs we are interested in the solution of the PDE at the spatial locations

ξ1 = −5,ξ2 = 0,ξ3 = 5. Thus the output equations are yk(t,ξk) = ∑i∈II
k

yi(t)vi(ξk),
k = 1,2,3, which can be written as

zI
k(t) = CI

jy
I
k(t), where CI

k ∈ R1×|II
k |, k = 1,2,3.
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3 Balanced Truncation Model Reduction

Given E ∈Rn×n symmetric positive definite, A ∈Rn×n, B ∈Rn×m, C ∈Rq×n, and
D ∈ Rq×m, we consider linear time invariant systems in state space form

E
d
dt

y(t) = A y(t)+Bu(t), t ∈ (0,T ), y(0) = y0, (9a)

z(t) = C y(t)+Du(t), t ∈ (0,T ). (9b)

Projection methods for model reduction generally produce n× r matrices V ,W
with r$ n and with W T E V = Ir. One obtains a reduced form of equations (9) by
setting y = V ŷ and projecting (imposing a Galerkin condition) so that

W T [E V
d
dt

ŷ(t)−AV ŷ(t)−Bu(t)] = 0, t ∈ (0,T ).

This leads to a reduced system of order r with matrices Ê = W T E V = Ik, Â =
W T AV , B̂ = W T B, Ĉ = CV , and D̂ = D .

Balanced reduction is a particular techniqe for constructing the projecting matri-
ces V and W , see, e.g., [1, 16]. One first solves the controllability and the observ-
ability Lyapunov equation A PE +E PA T +BBT = 0 and A T QE +E QA +
C T C T = 0, respectively. Under the assumptions of stability, controllability and ob-
servability, the matrices P,Q are both symmetric and positive definite. There exist
methods to compute (approximations of) P = UUT and Q = LLT in factored form.
In the large scale setting the factorization is typically a low rank approximation. See,
e.g., [8, 17].

The balancing transformation is constructed by computing the singular value de-
composition UT E L = ZSYT and then setting W = UZr, V = LYr, where Sr =
diag(σ1,σ2, . . . ,σr) is the r× r submatrix of S = Sn. The singular values σ j are
in decreasing order and r is selected to be the smallest positive integer such that
σr+1 < τσ1 where τ > 0 is a prespecified constant. The matrices Zr,Yr consist of
the corresponding leading k columns of Z,Y.

It is well known [6] that Â must be stable and that for any given input u we have

‖z− ẑ‖L2 ≤ 2‖u‖L2(σr+1 + . . .+σn), (10)

where ẑ is the output (response) of the reduced model. Model reduction techniques
for infinite dimensional systems are reviewed in, e.g., [3].

We want to apply balanced truncation model to the linear subsystems 1 and 3 in
(7) and (8). We need to identify the input-output relations for these subsystems in the
context of the coupled system to ensure that balancing techniques applied to these
subsystems leads to a reduced model for the coupled system with error bounds.

To identify the appropriate input-output relations, we focus on subsystem 1. Ex-
amination of (7a,b) and (8a) shows that MIΓ

1
d
dt yΓ12, AIΓ

1 yΓ12 and BI
1u1 are the inputs

into system 1 and CΓ I
1 yI

1, MΓ I
1

d
dt yI

1 + AΓ I
1 yI

1 are the outputs. Hence, if
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MIΓ
1 = 0 and MΓ I

1 = 0, (11)

then we need to apply model reduction to

MII
1

d
dt

yI
1 =−AII

1 yI
1−AIΓ

1 yΓ12 + BI
1u1 (12a)

zI
1 = CI

1yI
1, zΓ1 = AΓ I

1 yI
1. (12b)

The system (12) is exactly of the form (9) and we can apply balanced truncation
model reduction to obtain

M̂II
1

d
dt

ŷI
1 =−ÂII

1 ŷI
1− ÂIΓ

1 yΓ12 + B̂I
1u1 (13a)

ẑI
1 = ĈI

1ŷI
1, ẑΓ1 = ÂΓ I

1 ŷI
1. (13b)

Subsystem 3 can be reduced analogously. The reduced model for the coupled non-
linear system (7) and (8) is now obtained by replacing the subsystem matrices for
subsystems 1 and 3 by their reduced matrices. Wether the balanced truncation er-
ror bound (10) can be used to derive an error bound between the original coupled
problem (7) and (8) and its reduced model is under investigation.

In our finite element discretization we use mass lumping to obtain (11). However
other discretizations, such as spectral elements or discontinuous Galerkin methods
satisfy (11) directly, see [10, 12].

4 Numerical Results

We subdivide Ω j into equidistant subintervals of length hk = 1/Nk, k = 1,2,3, and
we use piecewise linear basis functions.The size of the system (7), (8) is 9(N1 +
N3)+2N2 +1. The parameters in the PDE are ρk = 1, k = 1,2,3, and μ1 = 0.05, μ2 =
0.1, μ1 = 0.2. For subsystem 1 and 3 we compute low-rank approximate solutions of
the controllability and observability Lyapunov equations using the method described
in [8]. We truncate such that σr+1 < τσ1, where τ = 10−4.

The sizes of the full and of the reduced order models for various discretization
parameters are shown in Table 1. The subsystems 1 and 3 reduce substantially and
the size of the subsystem 2 limits the amount of reduction achieved overall. For
example, for N1 = N3 = 20 the subsystems 1 and 3 are each reduced in size from
180 to 11. The size of the coupled system is reduced from 361 + 2N2 to 23 + 2N2.

Next, we compare the system output given forcing functions S1 = u1(t), S3 =
u3(t) (cf., (3)) with u1(t) = 1

2 sin(3t)(1−0.8t/T), u3(t) = sin(2t)(0.3+0.7t/T) on
(0,T ) = (0,15). The full order model (7), (8) and the corresponding reduced order
model are solved using the modified θ -scheme [7, 19] with (macro) time step Δ t =
T/200. Figure 1 shows the outputs, i.e., the approximate solution of the PDE at ξ1 =
−5,ξ2 = 0,ξ3 = 5. The left plot in Figure 2 shows the solution of the reduced order
discretized PDE. The solution of the discretized PDE is visually indistinguishable
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Table 1 Dimension of the full and of the reduced order models for various discretization parame-
ters N1,N2,N3 and τ = 10−4.

N1 = N3 N2 size of full order model size of reduced order model

10 10 201 41
20 20 401 63
40 40 801 107
20 10 381 43
40 20 761 67

Fig. 1 Outputs 1, 2, 3 of
the full order system corre-
sponding to the discretization
N1 = N2 = N3 = 10 are given
by ∗, ◦ and �, respecitively.
Outputs 1, 2, 3 of the reduced
order system are given by
dotted, dashed and solid lines,
respectively. 0 5 10 15

0

2

4

t

Fig. 2 Solution of the reduced order discretized PDE (left) and error between the solution of the
discretized PDE and the reduced order system (right) for discretization N1 = N2 = N3 = 10.

from the solution of the reduced order discretized PDE, as indicated by the size
of the error shown in the right plot in Figure 2. The error is larger in the right
subdomain because the PDE solution is positive and the advection term in (1d)
advects the solution to the right.

Our numerical results indicate that the coupling of balanced truncation reduction
for linear time variant subsystems with spatially localized nonlinear models leads
to a coupled reduced order model with an error in the input-to-output map that
is comparable to the error due to balanced truncation model reduction applied to
the linear subsystems alone. The efficiency of the approach depends on the size of
the interface and on the size of the localized nonlinearity. Investigations for higher
dimensional problems are underway to explore the overall gains in efficiency.
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An Adaptive Discontinuous Galerkin Scheme for
Second Order Problems with an Interface

P. Zunino

Abstract We discuss the derivation of an a-posteriori local error indicator for a dis-
continuous Galerkin (DG) method based on weighted interior penalties applied to
advection-diffusion-reaction equations featuring a diffusivity parameter that may be
discontinuous along a planar interface on a two-dimensional domain. We demon-
strate how the weights incorporate into the scheme some a-priori knowledge of the
exact solution that improves the efficacy of the local error estimator and of the cor-
responding adapted mesh. All the theoretical results are illustrated and discussed by
means of numerical experiments.

1 Introduction and Problem Setting

We aim to approximate u, the solution of the following boundary value problem,

∇·(−ε∇u +βu)+ μu = f in Ω ⊂ R2, u = 0 on ∂Ω , (1)

where Ω is a convex polygonal domain, μ ∈ L∞(Ω) is a positive function and β ∈
[W 1,∞(Ω)]2 is a vector function such that μ + 1

2 (∇ · β ) ≥ μ0 > 0, f ∈ L2(Ω). Let
Γ be a single planar interface subdividing Ω in two subregions Ωi, i = 1,2. For
simplicity, the coefficient ε is defined on each subregion by a positive constant.

Given V := H1
0 (Ω), the weak formulation of problem (1) corresponds to find

u ∈V such that

a(u,v) :=
∫
Ω

(
ε∇u ·∇v−βu ·∇v + μuv

)
= F(v) :=

∫
Ω

f v, ∀v ∈V. (2)

Paolo Zunino
MOX - Department of Mathematics - Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy,
e-mail: paolo.zunino@polimi.it
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A transmission problem for Poisson equation has already been addressed by
means of Nitsche type mortaring in [7, 1], in [5] encompassing a more general ge-
ometrical setting, and in [2] for advection-diffusion-reaction equations. Following
[3], we address here a discontinuous Galerkin method that automatically accounts
for the presence of the interface, provided that it is conforming with the computa-
tional mesh. This approach simplifies the implementation of the scheme with respect
to a multi-domain mortar method, but sensibly increases the number of degrees of
freedom of the discrete problem. In this setting, we develop an a-posteriori local
error indicator that suitably exploits the information on the jump of the coefficient
ε at the interface, leading to an effective refinement of the mesh.

2 Numerical Approximation

For the numerical approximation of problem (2) we consider a shape regular trian-
gulation Th of the domain Ω and we define a totally discontinuous approximation
space,

V p
h := {vh ∈ L2(Ω); ∀K ∈ Th,vh|K ∈ Pp}, with p > 0.

Let e be an edge of the element K ∈ Th, which is a triangle in Ω . Let he be the size of
an edge and hK be the one of an element. We denote with Fi

h and F∂Ω
h the collections

of all the internal edges and of all the edges on ∂Ω respectively. For any interior
edge of the mesh we denote with ne its unit normal vector, and with n the unit normal
vector with respect to ∂Ω . For any function v that is discontinuous on the inter-
element interface e, we define v(x)|±e := limδ→0+ v(x± δne) for a.e. x ∈ e and we
will use the abridged notation v±. The jump over edges is defined as [[v]]e := v−−v+,
while we denote with {v} and {{v}} the arithmetic and the harmonic means of v−
and v+. We also introduce the weighted averages,

{v}w := w−e v−+ w+
e v+, {v}w := w+

e v−+ w−e v+, ∀e ∈ Fi
h,

where the weights necessarily satisfy w−e + w+
e = 1. In order to make the numerical

method to be robust for problems featuring a discontinuous and locally vanishing
diffusivity, it is convenient to choose the weights to be dependent on the coefficients
of the problem, see [3]. To this purpose, we introduce the heterogeneity factor λh :=
1
2

[[ε]]e
{ε} and we set w±e := 1

2 (1±λh). It can be easily seen that this leads to the identity
{ε}w = {{ε}}. Then, we introduce the following bilinear form,
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ah(uh,vh) :=
∫

Th

[(
ε∇uh−βuh

) ·∇vh + μuhvh

]
+
∫

Fi
h

[
{βuh} ·ne[[vh]]e−{ε∇uh}w ·ne[[vh]]e−{ε∇vh}w ·ne[[uh]]e

+
(1

2 |β ·ne|+ ξ{{ε}}{{he}}−1)[[uh]]e[[vh]]e
]

+
∫

F∂Ω
h

[( 1
2βuh− ε∇uh

) ·nvh− ε∇vh ·nuh +
(1

2 |β ·n|+ εξh−1
e

)
uhvh

]
,

where we have applied the abridged notation
∫

Th
:=∑K∈Th

∫
K etc. We notice that the

penalty term into ah(·, ·) is suitably adapted to treat nonconforming meshes where
he may be different on each side of an inter-element interface. The weighted interior
penalty method reads as follows: find uh ∈V p

h such that,

ah(uh,vh) = F(vh), ∀vh ∈V p
h . (3)

The well posedness of the numerical method is a direct consequence of the positivity
of the bilinear form ah(·, ·), we refer to [3] for a proof. Let Hs(Th) be the broken
Sobolev space of order s > 0 on Th. We introduce W := V ∩Hs(Th) with s > 3

2 , such
that for any function u,v∈W the bilinear form ah(u,v) is well defined. Then, we set
W (h) := W ⊕V p

h and we state the following result, remanding to [3] for a proof.

Lemma 1. Assume that u, the solution of (2), satisfies u∈W. Then, ah(u,v) = F(v)
for all v ∈W (h) and ah(u−uh,vh) = 0 for all vh ∈V p

h .

We observe that the regularity of W is compatible with the solution of trans-
mission problems on convex polygons and a single planar interface. Furthermore,
the results presented in [5] suggest that it is possible to generalize Lemma 1
with less restrictive regularity requirements on the space W . In particular, exploit-
ing theorems 1.5.3.10 and 1.5.3.11 of [4], Lemma 1 could be extended to any
u ∈ {v ∈ H1

0 (Ω);
(
∇·(−ε∇v + βv) + μv

) ∈ L2(K),∀K ∈ Th}. In this perspective,
the present work could be generalized to any polygonal domain and any interface
that is resolved by the computational mesh.

3 Duality Based A-Posteriori Error Analysis

In this section we aim to put into evidence some peculiar advantages of the weighted
interior penalty method in the derivation of a local error estimator. For this prelim-
inary study, we opt for the duality based approach because it straightforwardly pre-
serves the robustness of the weighted interior penalty method with respect to locally
vanishing diffusivity and it can be also easily adapted to the case of nonconforming
elements, see for instance [6].

We start defining the dual problem with respect to (2): find z ∈V such that,

a(ϕ ,z) = J(ϕ), ∀ϕ ∈V, (4)
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where J is a linear functional J(·) : V → R for which we aim to control the error.
Then, we consider the discrete dual problem that consists in finding zh ∈ V q

h such
that,

ah(ϕh,zh) = J(ϕh), ∀ ϕh ∈V q
h , (5)

where the discrete dual space V q
h is generally richer than V p

h , i.e. q > p. Finally,
mimicking Lemma 1, we obtain the following result.

Lemma 2. Assume that z, the solution of (4), satisfies z∈W. Then, ah(ϕ ,z) = J(ϕ)
for all ϕ ∈W (h).

Now, let e := u−uh be the error relative to our numerical method, where u ∈W
is the solution of (2) and uh ∈ V p

h satisfies (3). We easily conclude that e ∈W (h).
Lemma 2 allows us to rewrite the error on the output functional, J(e)= J(u)−J(uh),
in terms of the residuals of the numerical method, more precisely we obtain the
following error representation formula in terms of the local residuals.

Lemma 3. Assume that z, the solution of (4), satisfies z ∈W and let uh ∈V p
h be the

solution of (3). Then, for any ζ := (z− vh) ∈W (h),

J(e) =−
∫

Th

R0(uh)W0(ζ )−
∫

F∂Ω
h

(
R4(uh)W4(ζ )+ R5(uh)W5(ζ )

)
−
∫

Fi
h

(
R1(uh)W1(ζ )+ R2(uh)W2(ζ )+ R3(uh)W3(ζ )

)
, (6)

where Ri(·) and Wi(·) are defined as follows,

R0(uh) = ∇ · (−ε∇uh +βuh)+ μuh− f , W0(ζ ) = ζ ,

R1(uh) = [[ε∇uh−βuh]]e ·ne, W1(ζ ) = {ζ}w,

R2(uh) = {{ε}}[[uh]]e, W2(ζ ) = ξ{{he}}−1[[ζ ]]e−{∇ζ} ·ne,

R3(uh) = 1
2

(|β ·ne|−β ·ne(w−e −w+
e )
)
[[uh]]e, W3(ζ ) = [[ζ ]]e,

R4(uh) = εuh, W4(ζ ) = h−1
e ζ −∇ζ ·n,

R5(uh) = 1
2

(|β ·n|−β ·n)uh, W5(ζ ) = ζ ,

Proof. Since e ∈W (h), owing to Lemma 2 with ϕ = e and the Galerkin orthogo-
nality of the primal problem, we get,

J(e) = ah(e,z) = ah(e,ζ ).

Now, starting from the expression of ah(e,ζ ), by means of integration by parts and
suitable manipulations exploiting the identity [[ab]] = {a}w[[b]]+ {b}w[[a]], we ex-
actly obtain (6).�

To develop a local error estimator we start form (6), together with a suitable
strategy for the repartition on each element K ∈ Th of the error indicators lying on
the mesh skeleton Fi

h, namely Ri(uh)Wi(ζ ) with i = 1,2,3. This issue is particularly
relevant in the case of problems with large variations of the diffusivity across the
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interface, where the residual R1(uh) = [[ε∇uh−βuh]]e ·ne is likely to be one of the
leading contributions to determine the error. We will see that different strategies to
split R1(uh)W1(ζ ) over the neighboring elements lead to remarkably different local
error indicators and adapted meshes.

In general, the most common and natural strategy to break up the residuals on
each edge is to equally divide them into the neighboring elements K±. This seems
to be the only possibility to treat R2(uh)W2(ζ ) and R3(uh)W3(ζ ), since W2(ζ ) and
W3(ζ ) are symmetric with respect to K± and no information on the dual solution z is
a-priori available. This is not the case for

∫
e R1(uh)W1(ζ ). Indeed, W1(ζ ) is the only

weighing function that depends on the coefficients of the problem, more precisely
W1(ζ ) = {ζ}w = w−e ζ+ + w+

e ζ−. By consequence, exploiting the information into
w±e , we can conceive different options to separate W1(ζ ) on K±. Let us denote with∫

e R1(uh)W ∗1 (ζ ) the contribution of the error indicator that falls on K−. We consider
the following alternative splitting strategies,

W ∗1 (ζ ) := 1
2W1(ζ ) (a); w−e ζ

+ (b); w+
e ζ
− (c); (7)

where now ± refers to the normal vector of each element, namely nK . Then, we
propose the corresponding local estimators,

η∗K(uh,ζ ) =
∫
∂K\∂Ω

(
|R1(uh)W ∗1 (ζ )|+ 1

2 |R2(uh)W2(ζ )|+ 1
2 |R3(uh)W3(ζ )|

)
+
∫
∂K∩∂Ω

(
|R4(uh)W4(ζ )|+ |R5(uh)W5(ζ )|

)
+
∫

K
|R0(uh)W0(ζ )|.

We observe that the global error estimator, namely ∑K∈Th
η∗K ≥ |J(e)|, is the same

for all the cases (a), (b), (c). What differs from case to case is the distribution of
the error.

In order to build up the local error indicators η∗K we have to provide a precise
definition for the output functional J(e). In the particular case of problems with
discontinuous diffusivity, we aim to control the error along those edges where ε is
discontinuous. For this reason we consider J(ϕ) :=

∫
Fi

h
|λh|ϕ .

Then, we approximate the exact solution of the dual problem (4) by means of
its discretization through the scheme (5). Because of the arbitrariness of vh in the
definition of ζ , it is clear that we have to compute zh with q > p into (6). Let ζh

be any function of the form ζh := zh− vh with zh ∈ V q
h and vh ∈ V p

h . To obtain an
accurate estimator we choose p = 1 and q = 3. Then, our approximate local error
indicator is given by η∗K(uh,ζh) on each element K ∈ Th.

For the set up of a mesh adaptation strategy, we rescale the indicators η∗K with
respect to the estimated global error. By this way, we obtain a piecewise constant
function that quantifies to which extent the error on each element contributes to the
global one. More precisely, we introduce the relative local error indicators, defined
by ρ∗K := η∗K

(
∑K∈Th

η∗K
)−1

. Then, to set up a mesh refinement algorithm we adopt
a fixed error reduction strategy. More precisely, the adaptively refined meshes are
obtained by bisection of the elements whose estimator ρ∗K is greater than 40% of



402 P. Zunino

the maximum. Then, a new local error estimator is computed on the refined mesh
and this procedure is repeated iteratively until a maximal number of iterations is
achieved or a stopping test is satisfied.

4 Numerical Results

To compare the three options (a), (b), (c), we consider a one dimensional problem
in order to reduce the technical difficulties arising in the mesh adaptation strategy.
The numerical method and the a-posteriori error analysis are straightforwardly ap-
plied to this simple case. We split the domain Ω into two subregions, Ω1 = (0, 1

2 ),
Ω2 = ( 1

2 ,1). The diffusivity ε(x) is a discontinuous function across the interface
x = 1

2 . Precisely, we consider a constant ε(x) in each subregion with εh,1 = 5 ·10−3

in Ω1 and εh,2 = 1.0 in Ω2. In the case β = [1,0], μ = 0, f = 0 and the bound-
ary conditions u1(x = 0) = 1, u2(x = 1) = 0, the exact solution of the problem on
each subregion Ω1,Ω2 can be expressed as an exponential function with respect to
x. The global solution u(x) is characterized by means of the value at the interface,
u(x = 1

2 ), that enforces the continuity of the normal fluxes. We refer to [3] for an
explicit formula of u(x).
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Fig. 1 The exact and the computed solution are reported on the left with solid and dotted lines,
respectively. The relative local error estimators ρ∗K are on the right and the cases (a), (b) and (c),
are identified with �, ◦, *, respectively.

From the comparison between the exact and the computed solution, reported in
figure 1 (left), we immediately notice that the element that mostly contribute to
the error is the one on the left of the interface where ε is discontinuous, because
the exact solution of the problem at hand features a very sharp internal layer in
this region. The relative local error indicators ρ∗K are reported in figure 1 (right)
and we observe that they are significantly different on those elements where the
heterogeneity factor is not equal to zero and thus the averaging weights w±e differ
from 1

2 . More precisely, strategy (b) favorably clusters the error on the elements
that lay upwind with respect to the interface, where the internal layer is located,
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while strategy (a) and in particular strategy (c) promote the dispersion of the local
error on both sides. Owing to (7), this is a direct consequence of the definition of
the weights, w±e = 2ε∓/{ε}, while the discrete dual solution does not contribute,
because it is almost continuous across the interface.

(a) N = 18 |J(e)| = 5.61 ·10−2
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(b) N = 15 |J(e)| = 6.43 ·10−2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−9

−8

−7

−6

−5

−4

−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

(c) N = 21 |J(e)| = 2.59 ·10−2
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Fig. 2 The adapted grids after 5 refinement cycles (left) and the corresponding solutions (right) for
the cases (a), (b) and (c) from top to bottom. The mesh size is represented on the left by log2(hK).

The adapted meshes corresponding to the estimators of type (a), (b) and (c) are
reported in figure 2 together with the approximate solutions uh. As expected, the
strategy (b) leads to a strongly upwinded refinement that allows us to capture the
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internal layer induced by the discontinuity of ε without increasing the number of de-
grees of freedom on the region where the diffusion dominates. This is not the case
for the meshes (a) and (c), where the refined region is located on both sides of the
interface x = 1

2 . Figure 2(b) also shows that the weighted interior penalty method
is robust with respect to large variations of the mesh size between neighboring el-
ements. We finally analyze the error functional for the three cases (a), (b) and (c)
and we notice that the strategy (b) provides an accuracy on |J(e)| that is comparable
to (a) and (c), but it exploits less degrees of freedom. This benefit would increase if
it were applied to an internal layer in the multi-dimensional case.

5 Conclusions

We have considered a DG method that extends the standard interior penalty schemes
by means of weighted averages. It is particularly suited for the approximation of
advection-diffusion-reaction problems with a diffusivity coefficient that may be dis-
continuous and locally vanishing. In particular, we have considered the a-posteriori
error analysis of the scheme, putting into evidence that the introduction of weighted
interior penalties also helps to improve the efficacy of a local error estimator, lead-
ing to a more selective refinement. Furthermore, this technique is not restricted to
the case of duality based error estimators, but it could be applied more in general,
for instance also to residual based error estimates.
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Abstract Sensitivity Analysis for Nonlinear
Equations and Applications

A. Chernov

Abstract Let u ∈ Y be a unique solution of a nonlinear equation J(α,u) = 0 for
α ∈ X , where X and Y are suitable Banach spaces. We investigate sensitivity of
u with respect to small perturbations of α = α0 + r. The Implicit Function Theo-
rem postulates that the Fréchet differentiability of u = S(α) w.r.t. α is determined
by the differentiability properties of J. Then S(α0 + r) is approximated by its trun-
cated Taylor series at α0. We derive a sequence of problems, which characterizes
the Fréchet derivative dkS(α0) via the Fréchet derivatives of lower order. This gives
a recursive procedure for computing the Taylor series of S(α0 + r). We illustrate the
above approach on an elliptic PDE, an elliptic integral equation and on an abstract
strongly elliptic problem with small randomly perturbed parameter.

1 Introduction

Many important problems in computational science can be written in an abstract
way as problems of finding u ∈Y solving an implicit possibly nonlinear equation

J(α,u) = 0 in Z. (1)

Here the operator J : X ×Y → Z represents the system behavior, α ∈ X stands for
the problem parameters, e.g. boundary conditions, operator coefficients, shape of the
domain (cf. examples in Section 4), and X ,Y,Z are suitable Banach spaces. Suppose
(1) is uniquely solvable for α ∈U , where U is an open subset of X , i.e. there exists
a solution operator S : U → Y , such that

J(α,S(α)) = 0 ∀α ∈U. (2)

Alexey Chernov,
Seminar for Applied Mathematics, ETH, 8092 Zürich, Switzerland,
e-mail: achernov@math.ethz.ch
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Frequently in practical applications the value of α is not known exactly and compu-
tations are performed for some average α0 ∈ X . The question arises: How sensitive
is the solution u = S(α) of (1) w.r.t. small (in certain sense) perturbations of the
parameters α = α0 + r?

If S(α) is sufficiently smooth in U ⊂ X , S(α0 + r) might be approximated by its
truncated Taylor series at α0. We face the following questions:

(a) Existence and of the truncated Taylor series at α0 and the approximation error
(b) Computation of the Fréchet derivatives dkS(α0)

It turns out that the classical Implicit Function Theorem handles question (a).
After a brief introduction into the differential calculus in Banach spaces in section
2 we investigate (b) and obtain a recursive series of linear problems for comput-
ing dkS(α0). In section 4 we apply the above abstract analysis to an elliptic PDE,
an elliptic integral equation and to an abstract strongly elliptic problem with small
randomly perturbed parameter.

2 Differential Calculus in Banach Spaces

In this section we introduce the main definitions and recall the classical results of
differential calculus in Banach spaces, cf. e.g. [1, 2].

Suppose X ,Y,Z are Banach spaces and U ⊂ X is an open set. We denote by
C(U,Y ) the space of continuous (w.r.t. convergence in norm) maps U → Y , and by
Ln(X ,Y ), n ∈ N the space of n-linear continuous maps ∏n

i=1 X → Y .

Definition 1. Let U be an open subset of X . The mapping F ∈ C(U,Y ) is called
Fréchet differentiable at α ∈U if there exists a linear operator A ∈L1(X ,Y ):

‖F(α + r)−F(α)−A(r)‖Y = o(‖r‖X). (3)

The operator A = dF(α) is uniquely determined and is called the Fréchet derivative
of F at α . F is called Fréchet differentiable in U , if F is differentiable at all α ∈U .

Suppose J(·,u) ∈ C(U,Z) for some fixed u ∈ Y . The partial Fréchet derivative
dαJ(α,u) ∈L1(X ,Z) at (α,u) with respect to α is naturally defined by

‖J(α+ r,u)− J(α,u)−dαJ(α,u)[r]‖Z = o(‖r‖X). (4)

Classical arguments give the following differentiation rule for composite maps.

Lemma 1. (Chain rule) Suppose F : U→Y is differentiable atα ∈U and G : V → Z
is differentiable at u = F(α) ∈V, where U, V are open subsets of X, Y respectively
and F(U)⊂V. Then G◦F : U → Z is differentiable at α and there holds

d(G◦F)(α)[r] = dG(u)[dF(α)[r]], with u = F(α). (5)
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Higher derivatives are defined by induction. For F : X → Y we set

dn+1F(α)[r1, . . . ,rn+1] := d(dnF(α)[r1, . . . ,rn]) [rn+1] ∈L1(X ,Ln(X ,Y )). (6)

Note that L1(X ,Ln(X ,Y )) is isometrically isomorphic to Ln+1(X ,Y ). In the case
ri = r ∈ X for i = 1, . . . ,n, we abbreviate dnF(α)[r]n := dnF(α)[r, . . . ,r].

We write F ∈Cn(U,Y ) if F : U → Y is n times Fréchet differentiable in the open
set U ⊂ X , and dnF(α) ∈C(U,Ln(X ,Y )).

Theorem 1. (Taylor’s Theorem) Suppose F ∈ Cn(U,Y ) for n ≥ 1 and an open set
U ⊂ X. Let α ∈U and r ∈ X such that [α,α + r]⊂U. Then

F(α + r) = Tn(F,α,r)+ Rn(F,α,r), (7)

where

Tn(F,α,r) =
n

∑
k=0

1
k!

dkF(α)[r]k, ‖Rn(F,α,r)‖Y = o(‖r‖n
X). (8)

Suppose X ,Y are Banach spaces. We set

Inv(X ,Y ) := {A ∈L1(X ,Y ) : A is invertible} . (9)

Theorem 2. (Implicit Function Theorem) Let W be an open subset of X×Y and J ∈
Cn(W,Z), n ≥ 1. Suppose (α0,u0) ∈W , J(α0,u0) = 0 and duJ(α0,u0) ∈ Inv(Y,Z).
Then there exist open neighborhoods U ⊂ X of α0 and V ⊂ Y of u0 and a unique
mapping S ∈Cn(U,Y ) such that

i. J(α,S(α)) = 0, ∀α ∈U,
ii. J(α,u) = 0, (α,u) ∈U×V yields u = S(α),
iii.dS(α) =−(duJ(α,S(α)))−1 ◦ dαJ(α,S(α)), for α ∈U.

3 Nonlinear Sensitivity Analysis

In this section we answer questions (a) and (b) from the introduction.
We return back to the notations of section 1. Suppose X ,Y,Z are Banach spaces

and consider an abstract possibly nonlinear equation (1). Assume J ∈Cn(W,Z) for
some W ⊂ X ×Y and n ≥ 1. Suppose (α0,u0) ∈W satisfies (1) and duJ(α0,u0) ∈
Inv(Y,Z). Then the Implicit Function Theorem ensures existence and uniqueness
of the solution operator S ∈ Cn(U,Y ) in some sufficiently small neighborhood U
of α0, such that i.–iii. in Theorem 2 hold true. Hence, the truncated Taylor series
Tn(S,α0,r) exists and

‖S(α+ r)−T(S,α0,r)‖Y = o(‖r‖n
X), (10)

which answers the question (a).
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In what follows we suggest a method for computation of terms in T (S,α0,r) and
answer (b). Define a composite map

F(α) := J(α,S(α)) ∀α ∈U. (11)

Then F(α)≡ 0 in U and hence all derivatives of F exist in U and vanish

dkF(α0)[r]k = 0 if [α0,α0 + r]⊂U. (12)

By assumption J ∈Cn(W,Z) in W ⊂ X ×Y yielding S ∈Cn(U,Y ) and we may use
the chain rule, (11) and (12) to determine dkS(α0):

dkF(α0)[r]k = (dα(·)[r]+ du(·)[dS(α0)[r]])kJ(α0,u0)[r]k

= duJ(α0,u0)[dkS(α0)[r]k]+ QkJ(α0,u0)[r]k,
(13)

where u0 = S(α0) and the differential operator Qk is a linear combination of the
mixed derivatives di

α j ,ui− j J(α0,u0)[r] j[v]i− j, j = 0, . . . i of order i ≤ k and v has the

form dmS(α0)[r]m with m = 1, . . . ,k− 1. In particular

• k = 1
Q1J(α0,u0)[r] = dαJ(α0,u0)[r] (14)

• k = 2
Q2J(α0,u0)[r]2 = d2

α2J(α0,u0)[r]2

+2d2
α ,uJ(α0,u0)[r][dS(α0)[r]]

+d2
u2J(α0,u0)[dS(α0)[r]]2.

(15)

Remark 1. Note that QkJ(α0,u0)[r]k does not depend on dmS(α0)[r]m for m ≥ k.
Thus, dkS(α0)[r]k allows an explicit characterization under assumptions of the Im-
plicit Function Theorem.

Theorem 3. Suppose the assumptions of the Implicit Function Theorem are satis-
fied. Then the kth derivative, k = 1, . . . ,n, of u = S(α) at α0 exists, is continuous and
is given by

dkS(α0)[r]k =−(duJ(α0,u0))−1 ◦QkJ(α0,u0)[r]k, (16)

where QkJ(α0,u0)[r]k is defined in (13).

Remark 2. Note that duJ(α0,u0) ∈L1(Y,Z) is independent of k, thus computation
of dkS(α0)[r]k requires solving a sequence of linear problems (16) with the same
operator and a varying right-hand side.
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4 Applications

In this section we illustrate the abstract analysis from section 3 on an elliptic PDE,
an elliptic integral equation and an abstract strongly elliptic problem with small
randomly perturbed parameter.

4.1 Diffusion Equation with Perturbed Diffusion Coefficient

Let D⊂Rd , d = 2,3 be an open Lipschitz domain and consider a problem of finding
u ∈ H1

0 (D) such that
−div(α∇u) = f in H−1(D). (17)

The problem (17) is uniquely solvable if f ∈ H−1(D) and α ∈ L∞(D) is uniformly
positive. Note that u depends nonlinearly on the diffusion coefficient α . According
to the notations of section 3 we set

X := {α ∈ L∞(D) : 0 < α− ≤ α(x)≤ α+ < ∞},
Y := H1

0 (D), Z := H−1(D), J(α,u) :=−div(α∇u)− f
(18)

and u = S(α), where S : X →Y is the solution operator. The mapping J : X×Y → Z
is bilinear, hence J ∈C∞(X×Y,Z) with the only nonvanishing derivatives

dαJ(α0,u0)[r] =−div(r∇u0), duJ(α0,u0)[v] =−div(α0∇v),

d2
α ,uJ(α0,u0)[r,v] =−div(r∇v).

(19)

Under above assumptions we have duJ(α0,u0) ∈ Inv(Y,Z) and Theorem 3 is appli-
cable. Thus, u = S(α) ∈C∞(X ,Y ) and

QkJ(α0,u0)[r]k = k d2
α ,uJ(α0,u0)[r,dk−1S(α0)[r]k−1]. (20)

The derivatives S(k) := dkS(α0)[r]k ∈ H1
0 (D), k ≥ 1 satisfy the recursive relation

−div(α0∇S(k)) = k div(r∇S(k−1)) in H−1(D). (21)

4.2 Integral Equation on a Perturbed Curve

Suppose D � R2 is an open, simply connected, bounded domain with smooth bound-
ary Γ := ∂D ∈C∞ and an outer normal n. Let BΓ be an open tubular neighborhood
of Γ . Denote by γΓ : Hs+1

loc (BΓ )→ Hs+1/2(Γ ) the Dirichlet trace operator
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γΓ u(x) = lim
y→x

u(y), x ∈ Γ . (22)

Given g ∈Hs+1(BΓ ) for s≥ 0, consider the problem of finding u ∈H−1/2(Γ ) satis-
fying Symm’s integral equation

VΓ u = γΓ g in H1/2(Γ ) (23)

for the single layer operator VΓ

VΓ u(x) :=
∫
Γ

G(x,y)u(y)dsy, x ∈ Γ . (24)

Here the kernel G(x,y) =− 1
2π log‖x−y‖ is the fundamental solution of the Laplace

operator and dsy denotes the curve integration on Γ w.r.t. y. In case Γ ∈ C∞ and
diam(D) < 1 the operator VΓ : Hs−1/2(Γ )→ Hs+1/2(Γ ) is continuous and bijective
for any real s, cf. [6].

Let α ∈C∞(Γ ) be a smooth scalar perturbation field. Define a family of closed
curves

Γα := {(Id + Tα)x : x ∈ Γ }, Tα(x) := α(x)n(x), x ∈ Γ (25)

and identify Γ with Γ0. Note that Γα ∈C∞ if α is sufficiently small e.g. in the sense
‖α‖C4(Γ )$ 1. The perturbed version of Symm’s integral equation (23) reads

VΓα u = γΓα g in H1/2(Γα). (26)

In the setting of section 3 we define for s > 1

X := C4(Γ ), Y := Hs−1/2(Γ ), Z := Hs+1/2(Γ ), J(α,u) := VΓα u− γΓαg. (27)

We set u = S(α), since (26) is uniquely solvable. Our aim is to show S ∈C1(X ,Y )
and to compute dS(α0) at α0 = 0. Theorem 3 requires J ∈C1(W,Z) for W ⊂ X×Y
and duJ(0,u0) ∈ Inv(Y,Z). The last is trivial, since J(α, ·) is linear and

duJ(0,u0) = VΓ ∈ Inv(Y,Z). (28)

We sketch the proof of J(·,u) ∈ C1(X ,Z), cf. [3] for more details. Regularity as-
sumptions on g yield dα(γΓα g)[r] = ∂g

∂n r ∈C(X ,Z). Differentiability of VΓα u w.r.t. α
follows from differentiability of its kernel, cf. [8, Theorem 3.5]. The smooth change
of variables xα = (Id + Tα)x, yα = (Id + Tα)y, dsyα = Fα(yα)dsy yields

dα(VΓ0 u)[r] =
∫
Γ

dαK(x,y,0)[r]dsy, K(x,y,α) := G(xα ,yα)u(y)Fα(yα) (29)

Further, dαG(x,y)[r] = ∂G
∂nx

(x,y)r(x) + ∂G
∂ny

(x,y)r(y), dαF0(y)[r] = r(y)divΓ n(y),
cf. [10, Lemma 2.49, 2.63] for the last summand. Collecting the terms we obtain

dα(VΓ0 u)[r] = (K ′
Γ u)r +KΓ (ur)+VΓ (ur divΓ n), (30)
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where KΓ and K ′
Γ are the double layer operator and its adjoint

KΓ u(x) :=
∫
Γ

∂G
∂ny

(x,y)u(y)dsy, K ′
Γ u(x) :=

∫
Γ

∂G
∂nx

(x,y)u(y)dsy. (31)

Herewith we have shown that assumptions of Theorem 3 are satisfied and in partic-
ular the following corollary holds.

Corollary 1. Let Γ ∈C∞, s > 1 and Γr = (Id + Tr)Γ for r ∈C4(Γ ): ‖r‖C4(Γ )$ 1.

Suppose g∈Hs+1(BΓ ) and u = S(r)∈Hs−1/2(Γr) is a unique solution of (26). Then
S ∈C1(C4(Γ ),Hs−1/2(Γ )) and its first derivative at α0 = 0 satisfies

VΓ dS(0)[r] =
(
∂g
∂n
−K ′

Γ S(0)
)

r−KΓ (S(0)r)−VΓ (S(0)r divΓ n). (32)

4.3 Random Perturbations with Small Amplitude

Let us recall again the setting of section 3 and consider (1) with randomly perturbed
α = α0 + r with an almost sure small perturbation amplitude r(ω), cf. [3, 5]. In
this case the solution u(ω) = S(r(ω)) of (1) and its Fréchet derivatives are random
fields. In what follows we describe, how equation (16) can be used for approximate
computation of the statistical moments of dS(α0)[r]. We consider a class of prob-
lems, where X and Y are separable Hilbert spaces, Z := Y ′ is the dual of Y , and the
derivative duJ(α,u) is a strongly elliptic operator.

Let (Ω ,Σ ,P) be a probability space over X consisting of the space of ”events”
Ω , σ -algebra of its subsets Σ and the probability measure P on Σ . Then for every
fixed ω ∈ Ω the functions r(ω) and u(ω) belong to X and Y respectively. For an
integer k ≥ 1 and a separable Hilbert space X we define a Bochner space Lk(Ω ,X)
of functions r : Ω → X endowed with the norm

‖r‖Lk(Ω ,X) :=
(∫

Ω
‖r(ω)‖k

X dP(ω)
)1/k

.

Further, we define the k-fold tensor product space X (k) :=
⊗k

i=1 X with the induced
norm ‖ · ‖X(k) . Note that r ∈ Lk(Ω ,X) yields (

⊗k
i=1 r) ∈ L1(Ω ,X (k)), cf. [7].

Definition 2. For r ∈ L1(Ω ,X) its mean field is defined by

E[r] :=
∫
Ω

r(ω)dP(ω) ∈ X . (33)

Moreover, if r ∈ Lk(Ω ,X), k≥ 2, its kth moment is defined by

M k[r] :=
∫
Ω

(
k⊗

i=1

r(ω)

)
dP(ω) ∈ X (k). (34)
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Note that M k[r] is well defined, since ‖M k[r]‖X(k) ≤ ‖r‖k
Lk(Ω ,X). Define the tensor

product operators A (k) : Y (k)→ Z(k), B(k) : X (k)→ Z(k)

A (k) :=
k⊗

i=1

(−duJ(α0,u0)), B(k) :=
k⊗

i=1

dαJ(α0,u0). (35)

We tensorize the left- and the right-hand side of (16) and take the mean of the
tensorized equation, yielding

A (k)M (k) [dS(α0)[r(ω)]] = B(k)M (k)[r(ω)]. (36)

In [7] it is proven that A (k) : Y (k) → Z(k) is an invertible operator, thus (36) has a
unique solution.

In [4, 7, 9] the above tensorization technique was applied to linear problems. In
[5] the described method was applied to the Poisson problem in a randomly per-
turbed domain. In this paper a general procedure is given, which is applicable to
an abstract nonlinear equation (1) with strongly elliptic invertible derivative duJ, cf.
also [3].
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Multiscale Analysis for Jump Processes in
Finance

N. Reich

Abstract In this work we illustrate how Finite Element methods can be used for
asset pricing in generic multidimensional models with jumps. We describe the cor-
responding partial integrodifferential equations, discuss the numerical challenges,
and briefly illustrate possible remedies such as sparse tensor products and wavelet
compression.

1 Jump Processes for Asset Pricing

Consider arbitrage-free values u(x,T ) of contingent claims on baskets of s ∈ N as-
sets. The log-returns of the underlying assets are modeled by a Lévy or, more gen-
erally, a Feller process X with state space Rd , s ≤ d, and X0 = x. For example, the
wavelet techniques that we sketch in this work can be applied when X is a Lévy
copula process (then d = s≥ 2, cf. [9]) or the price process of a Barndorff-Nielsen-
Shephard (BNS) stochastic volatility model (then s = 1, d = 2, cf. [1]).

By the fundamental theorem of asset pricing (see [7]), the arbitrage free price u
of an European contingent claim with payoff g(·) is given by the conditional expec-
tation

u(x,t) = E(g(Xt) | X0 = x) ,

under an a-priori chosen martingale measure equivalent to the historical measure
(see e.g. [6, 8] for measure selection criteria).

Deterministic methods to compute u(x,T ) are based on the solution of the corre-
sponding backward Kolmogorov equation

ut +A u = 0, u|t=T = g. (1)
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Here A denotes the infinitesimal generator of X with domain D(A ). For the
Galerkin-based Finite Element implementation, equation (1) is converted into vari-
ational form. Formally, the resulting problem reads: Find u such that

〈 d
dt

u, v〉+ 〈A u, v〉= 0 , for all v ∈D(A ). (2)

In the classical setting of Black-Scholes, X is a geometric Brownian Motion and
A is a diffusion operator so that a closed form solution of (1) and (2) for plain
vanilla contracts is possible in certain cases. For more general Lévy or Feller price
processes X , A is in general a pseudodifferential operator with symbol ψX , i.e.

(A u)(x) = (ψX(x,D)u)(x) =−
∫

Rd
ei〈ξ ,x〉ψX(x,ξ )û(ξ )dξ . (3)

2 Partial Integrodifferential Pricing Equation in High
Dimensions

For the numerical solution of the variational problem (2) we employ Finite Element
methods as developed in [4, 9, 12, 15, 16, 17]. In this section we further illustrate
this approach in case the underlying process X is a Lévy process.

The considerations of this section are based on [9, 21]. Suppose X is a Lévy
process with state space Rd and characteristic exponent

ψX(ξ ) =−i〈γ, ξ 〉+ 1
2
〈ξ , Qξ 〉+

∫
Rd\{0}

(
1− ei〈ξ ,y〉+

i〈ξ ,y〉
1 + |y|2

)
ν(dy), (4)

where γ ∈ Rd is the drift vector, Q ∈ Rd×d is the covariance matrix and ν(dy) is
the Lévy measure. For a detailed overview of Lévy processes we refer to the mono-
graphs [2, 22].

Assume the risk-neutral dynamics of s = d > 1 assets are given by

Si
t = Si

0ert+Xi
t , i = 1, . . . ,d ,

under a risk-neutral measure such that eXi
is a martingale with respect to the canon-

ical filtration F 0
t := σ(Xs, s ≤ t), t ≥ 0, of the multivariate process X . Here r ≥ 0

denotes a fixed, deterministic interest rate.
Consider an European option with maturity T < ∞ and payoff g(S) which is

assumed to be Lipschitz. The price u(t,St) of this option is given by

u(t,S) = E
(

e−r(T−t)g(ST )|St = S
)

, (5)

and, sufficient smoothness provided, it can be computed as the solution of a partial
integrodifferential equation (PIDE).
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Theorem 1. Assume that the function u(t,S) in (5) satisfies

u(t,S) ∈C1,2
(
(0,T )×Rd

>0

)
∩C0

(
[0,T ]×Rd

≥0

)
.

Then, u(t,S) is the solution of the following PIDE:

∂u
∂ t

(t,S)+
1
2

d

∑
i, j=1

SiS jQi j
∂ 2u

∂Si∂S j
+ r

d

∑
i=1

Si
∂u
∂Si

(t,S)− ru(t,S) (6)

+
∫

Rd

(
u(t,Sez)−u(t,S)−

d

∑
i=1

Si (ezi−1)
∂u
∂Si

(t,S)

)
ν(dz) = 0 ,

in (0,T )×Rd
≥0 where u(t,Sez) := u(t,S1ez1 , . . . ,Sdezd ), and the terminal condition

is given by
u(T,S) = g(S) ∀S ∈Rd

≥0 . (7)

Proof. The proof of the PIDE is based on the Itô formulae for multidimensional
Lévy processes and semimartingales [14, Theorem 4.57]. For sake of brevity, we
refer to [21, Theorem 4.2] for full details.

If the marginal Lévy measures νi, i = 1, . . . ,d, of ν , are absolutely continuous and
admit densities νi(dz)= ki(z)dz with constants c > 0, Gi > 0 and Mi > 0, i = 1, . . . ,d,
such that

ki(z)≤
{

ceGiz, for all z < 1,

ce−Miz, for all z > 1,
(8)

then the PIDE (6) can be transformed into a simpler form.

Corollary 1. Suppose the marginal Lévy measures νi, i = 1, . . . ,d, satisfy (8) with
Mi > 1, Gi > 0, i = 1, . . . ,d. Furthermore, let

u(τ,x) = erτV
(

T − τ,ex1+(γ1−r)τ , . . . ,exd+(γd−r)τ
)

,

where

γi =
Qii

2
+
∫

R

(ezi−1− zi)νi(dzi) .

Then, u satisfies the PIDE

∂u
∂τ

+ABS[u]+AJ[u] = 0 , (9)

in (0,T )×Rd with initial condition u(0,x) := u0. The differential operator is defined
for ϕ ∈C2

0(Rd) by

ABS[ϕ ] =−1
2

d

∑
i, j=1

Qi j
∂ 2ϕ
∂xi∂x j

, (10)
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and the integrodifferential operator by

AJ[ϕ ] =−
∫

Rd

(
ϕ(x + z)−ϕ(x)−

d

∑
i=1

zi
∂ϕ
∂xi

(x)

)
ν(dz) . (11)

The initial condition is given by u0 = g(ex) := g(ex1 , . . . ,exd ) .

Proof. See [21, Corollary 4.3].

For u,v ∈C∞
0 (Rd) we associate with ABS the bilinear form

EBS(u,v) =
1
2

d

∑
i, j=1

Qi j

∫
Rd

∂u
∂xi

∂v
∂x j

dx . (12)

To the jump part AJ we associate the so-called canonical bilinear jump form

EJ(u,v) =−
∫

Rd

∫
Rd

(
u(x + z)− u(x)−

d

∑
i=1

zi
∂u
∂xi

(x)

)
v(x)dxν(dz) , (13)

and set
E (u,v) = EBS(u,v)+EJ(u,v) .

Herewith, we can now formulate the realization of the abstract problem (2):

Find u ∈ L2((0,T );D(E ))∩H1((0,T );D(E )∗) such that

〈∂u
∂τ

,v〉D(E )∗,D(E ) +E (u,v) = 0 , τ ∈ (0,T ), ∀v ∈D(E ) , (14)

u(0) = u0 .

Here D(E ) denotes the domain of the Dirichlet form E of X . For the well-posedness
of (14) we refer to [9, 21].

To cast (14) into an implementable form it needs to be localized to a bounded
domain and D(E ) needs to be replaced by finite dimensional subspaces. For the
localization we find, that in Finance the truncation of the original x-domain Rd to
ΩR := [−R,R]d , R > 0, corresponds to approximating the solution u of (6) by the
price uR of a barrier option on ΩR. In log-price uR is given by

uR(t,x) = E
(

g(eXT )1{T<τΩR,t}|Xt = x
)

,

where τΩR,t = inf{s≥ t|Xs /∈ΩR} denotes the first exit time of Xt from ΩR after time
t. In case of semiheavy tails (8), the solution uR of the localized problem converges
pointwise exponentially to the solution u of the original problem (cf. [21]).

Finally, for any function u with support in ΩR we denote by u its extension by
zero to the whole of Rd and define

ER(u,v) = E (u,v) ,
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with
D(ER) = {u | u ∈C∞

0 (ΩR)} ,
where the closure is taken with respect to the natural norm of D(E ). Thus, we
can restate the variational form (14) on the bounded domain ΩR and existence and
uniqueness results for (14) remain valid.

Find uR ∈ L2((0,T );D(ER))∩H1((0,T );D(ER)∗) such that

〈∂uR

∂τ
,v〉+ER(uR,v) = 0 , ∀τ ∈ (0,T ), ∀v ∈D(ER) , (15)

uR(0) = u0|ΩR .

3 Jump Processes from a Wavelet Compression Point of View

Due to the possible non-locality of the integral operator AJ in (11), Finite Element
(FE) discretization of (15) in general leads to linear systems with densely populated
matrices of substantial size.

Even on the tensor product domain [−R,R]d , the straightforward application of
standard numerical schemes fails due to the “curse of dimension”: The number of
degrees of freedom on a tensor product Finite Element (FE) mesh of width h in di-
mension d grows like O(h−d) as h→ 0. The non-locality of the underlying operator
thus implies that the FE stiffness matrix consists of O(h−2d) non-zero entries.

In this Section we give a very brief illustration of how to construct a sparse ten-
sor product-based wavelet compression scheme for infinitesimal generators of cer-
tain multivariate Lévy processes. The scheme preserves the convergence rate and
stability while asymptotically reducing the Finite Element complexity of a multidi-
mensional non-local operator to that of a one-dimensional local one. For a complete
and rigorous treatment we refer to [20, Chapters 3 & 4].

To overcome the “curse of dimension” we choose sparse tensor product Fi-
nite Element spaces V̂J , J > 0, for the discretization of D(ER) – assuming that
V̂J ⊂ D(ER), which for instance is shown in [9] for Lévy copula processes. For
sake of brevity we omit details here but refer to [3, 9, 10, 18, 19] and the references
therein for thorough analysis. This approach yields a stiffness matrix consisting of
only O(h−2| logh|2(d−1)) entries as h→ 0 while at the same time (essentially) pre-
serving the approximation rate. As shown in e.g. [10], these results require greater
smoothness of the approximated function u than the original discretization. As basis
functions in the spaces V̂J we shall employ piecewise polynomial spline wavelets
(cf. [5, 11]).

To further reduce the complexity of the still densely populated sparse tensor prod-
uct matrix we apply the so-called non-radial wavelet compression of [20, Chapter
4]. To define the requirements of the non-radial compression scheme, we need to in-
troduce some notation: Denote the axes in Rd byΛ := {x∈Rd : xi = 0 for some i∈
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{1, . . . ,n}}. Herewith we can define a suitable class of anisotropic symbols and cor-
responding operators.

Definition 1. A function p : Rd→R is called a symbol in class Γ α(Rd), α ∈Rd , if
p ∈C∞(Rd\Λ)∩C(Rd) such that for any τ ∈ Nd

0 there exists some constant cτ ≥ 0
such that∣∣∣∂τ

ξ p(ξ )
∣∣∣≤ cτ · ∏

i∈Iτ

|ξi|αi−τi · ∏
k/∈Iτ

(1 + |ξk|2)
αk
2 , for all ξ ∈ Rd , (16)

where we set Iτ := {i : τi > 0}. The multiindex α is called the (anisotropic) order
of the symbol p and the operator p(D)u(x) =−∫

Rd ei〈x,ξ 〉p(ξ )û(ξ )dξ .

Furthermore, one obtains an integral kernel representation of AJ by writing for
any u ∈S (Rd),

AJu(x) =−
∫

Rd

∫
Rd

ei〈x−y,ξ 〉ψX (x,ξ )u(y)dydξ =
∫

Rd
κ(x,y)u(y)dy, (17)

with
κ(x,y) :=

∫
Rd

ei〈x−y,ξ 〉ψX (x,ξ )dξ , (18)

the inverse Fourier transform (in the sense of oscillatory integrals) of ψX at x− y.

Remark 1. If X is a Lévy process with absolutely continuous Lévy measure then the
following relation holds between κ(·, ·) and the density k(·) of the Lévy measure of
X :

κ(x,y) =
∫

Rd\{0}

∫
Rd

(
ei〈x−y−z,ξ 〉 − ei〈x−y,ξ 〉+

i〈z,ξ 〉
1 + |z|2 ei〈x−y,ξ 〉

)
k(z)dξdz, (19)

in the sense of distributions. By [13, Lemma 2.8], for any ξ ∈Rd , z∈Rd there holds∣∣∣∣e−i〈z,ξ 〉 −1 +
i〈z,ξ 〉
1 + |z|2

∣∣∣∣≤ 7 · |z|
2

1 + |z|2 · (1 + |ξ |2).

Hence, the distributional kernel κ(·, ·) in (19) is indeed well defined, since k(·) is a
Lévy kernel that satisfies ∫

Rd
(|z|2∧1)k(z)dz < ∞.

Finally, suppose the characteristic exponent ψX in (4) of the infinitesimal genera-
tor AJ = ψX(D) in (11) satisfies ψX ∈ Γα(Rd) for some α ∈ Rd

≥0. Then, with the
representation (17) of AJ , one may apply the a-priori compression scheme of [20,
Section 4.4] to reduce the complexity of the sparse tensor product stiffness matrix
without perturbing the sparse tensor product convergence rate. Under the assump-
tion that Q > 0 in (4) this approach yields essentially optimal O(h−1| logh|2(d−1))
non-zero matrix entries.
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For sake of brevity, we refer to [20, Chapter 4] for the explicit description of the
compression scheme as well as consistency and complexity proofs. We conclude by
giving some numerical examples:

To analyze the accuracy of the compression scheme, we consider the following
model problem: Find the numerical solution of the integrodifferential equation

A u = 0, on [0,1]2,

where A denotes the infinitesimal generator of a bivariate Lévy copula process with
tempered stable margins and Clayton-type Lévy copula Fθ as defined in [9].

On level J = 5, Figure 1 presents the accuracy of the compression scheme. In
practice, only the black entries on the right hand side of Figure 1 need to be com-
puted.

Fig. 1 Structure prediction by the compression scheme. Left: Actual sparsified stiffness matrix of
A , 3202 non-zero entries. Right: A-priori structure prediction by the compression scheme.
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Fig. 2 Left: Percentage of the remaining complexity of the sparse tensor product matrix after
compression on levels J = 3, . . . ,12. The dashed line corresponds to wavelet basis functions with 2
vanishing moments, the dotted line describes 4 vanishing moments. Right: Non-zero matrix entries
on each level using the piecewise linear spline wavelets described in [9].

The uncompressed sparse tensor product stiffness matrix in Figure 1 was taken
from [23]. We also refer to this source for further numerical results.
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A Hybrid Numerical Scheme for Aerosol
Dynamics

H. Babovsky

Abstract Aerosol coagulation, i.e. the merging of aerosol particles to larger clus-
ters, is commonly described by the Smoluchowski equation. Of special interest is
the phenomenon of “gelation”, i.e. the formation of “macroparticles”. A useful tool
for the numerical simulation is the application of Monte Carlo schemes. However,
stochastic effects may change qualitative properties, e.g. they may cause the transi-
tion from stable states to metastable ones, for example in combination with spatial
diffusion.

In [5], a deterministic scheme for the space homogeneous system was formulated
and analyzed. It was shown, that the scheme converges monotonically with decreas-
ing discretization parameter. This gives rise to an efficient error control. Moreover,
the scheme is capable of monitoring the gelation process with high precision. It
turns out that the most efficient system is a hybrid code with a stochastic component
for the simulation of higher regions of the state space.

The paper introduces the numerical scheme, discusses its properties in compari-
son to stochastic schemes and presents numerical examples of the gelation process
in diffusive environments.

1 Aerosol Dynamics

Aerosols are suspended particles in fluids. The basic features of aerosol interaction
are coagulation, i.e. the effect that two particles with masses m and n merge to form
one particle with mass m + n, and fragmentation, the opposite effect, where one
particle with mass n may break into two particles with masses i and n− i. This
latter effect will be suppressed in the present paper. Assuming that all particles have
an integer multiple of a unit mass, the (space homogeneous) coagulation dynamics
is described by the discrete Smoluchowski equation for the number density vector

Hans Babovsky
Technical University Ilmenau, D-98684 Ilmenau, Germany, e-mail: hans.babovsky@tu-ilmenau.de
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f = ( fn)n∈lN

∂t fn =
1
2

n−1

∑
i=1

K(i,n− i) fi fn−i− fn

∞

∑
i=1

K(n, i) fi (1)

where K(i, j) is a nonnegative symmetric interaction kernel. An equivalent formu-
lation for the mass density vector g = (gn) = (n fn)n∈lN is easily derived [2] as

∂tgn =
n−1

∑
i=1

K(i,n− i)
n− i

gign−i−gn

∞

∑
i=1

K(n, i)
i

gi (2)

We will make use of this formulation. for the sake of simplicity and clarity we
restrict in this paper to the special kernel

K(i, j) = i j (3)

In this case, the Smoluchowski equation for the mass density reads

∂t gn =
n−1

∑
i=1

igign−i−ngn

∞

∑
i=1

gi. (4)

This model has been studied intensely in literature from a theoretical point of view.
For a review of different coagulation and fragmentation models, see [1, 7].

As long as u(t) = ∑∞
n=1 ngn(t) (first moment of g) is finite, the right hand side of

(4) is absolutely summable, and a straightforward calculation shows that the total
mass (zeroth moment) remains constant, i.e.

ρ(t) =
∞

∑
n=1

gn(t) = const (5)

However, establishing the differential equation for u and rearranging the sums on
the right hand side shows that u satisfies

∂t u = u2 (6)

i.e. u “explodes” after a finite time tgel which is called gelation time. At this time,
ρ(t) starts to decrease monotonically. The reason for this is gelation which means
that mass is leaving the state space lN at ∞. Let us define the gelled mass g∞ by
g∞(0) = 0, and

ρ(t)+ g∞(t) = ρ(0) (7)

In the case of the special kernel (3) there are two ways to continue the Smoluchowski
equation over the gelation time. In the case of of a passive gel, the gelled mass is
simply removed from the system, and the evolution follows again equation (4) which
reads
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∂t gn =
n−1

∑
i=1

igign−i−ngnρ =: Sn[g,g] (8)

with ρ = ρ . In the case of an active gel, we have ρ = ρ+g∞ = ρ(0). In the following
we will restrict to the case of an active gel.

The aim of this paper is to describe a numerical scheme which is capable of
simulating the phase transition to gelation in a space dependent setting, e.g. for the
solution of the partial differential equation for g = g(t,x),

∂t gn = cnΔxgn + Sn[g,g] (9)

describing the aerosol evolution in a diffusive environment.
Major difficulties on the way to this end are near at hand and can be studied

even in the space homogeneous situation. First, equation (8) describes an infinite
ODE system. It seems not useful to restrict to a finite system, since transition to
gelation means that the higher part of state space plays in some sense a dominant
role. Second, (8) is nonlinear, of course. Third, as severe difficulty, (8) is stiff, as
can be seen most clearly from the factor n in the loss term of the equation.

In the next section, we will introduce modifications, which cope with the second
and the third aspect, and we will discuss convergence properties of the modified
system. Section 3 will deal with the first aspect.

2 Modifications

As a first modification, we introduce a small time step Δ t > 0 and replace in the
time interval [kΔ t,(k + 1)Δ t] equation (8) with the linearized system

∂t gn =
n−1

∑
i=1

igihn−i−ngnη (10)

where h(t) = g(kΔ t) and η = ρ(kΔ t)+g∞(kΔ t) (= ρ(0) in the space homogeneous
case). This is the simplest possible linearization. It is only of first order in Δ t and
could be replaced with a more elaborate linear system. However, it turned out in [5]
that this discretization allows for a very clear and concise treatment of convergence,
since it guarantees a certain monotonicity property (see end of section 2).

Let’s consider the evolution of the first moment u = ∑n ngn under this modifica-
tion. Assuming u(kΔ t) finite, we find η = ρ(kΔ t); a rearrangment of the first sum
on the right hand side of (10) yields for t ∈ [kΔ t,(k + 1)Δ t]

∂t u = u(t) ·u(kΔ t) (11)

Thus u stays finite in the whole interval, in contrast to the solution of (6). By induc-
tion, u stays finite for all t > 0 if u(0) < ∞. In particular, since there is no gelation,
it follows that η = ρ(kΔ t).
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Stiffness is an intrinsic property of all systems allowing for gelation (in con-
trast e.g. to the constant kernel K(i, j) = 1). On the other hand, it is an unfavorable
property of numerical schemes. For convenience, we introduce here a second mod-
ification reducing stiffness modestly.

Equation (10) is linear; therefore its solution can be represented in terms of fun-
damental solutions as

g(t) =
∞

∑
r=1

gr(kΔ t) ·ψ(r)(t) (12)

with ψ(r) being the solution of the IVP

∂tψ
(r)
n =

n−1

∑
i=1

iψ(r)
i hn−i−nψ(r)

n η , ψ(r)
n (kΔ t) = δn−r (13)

Since ψ(r)
n (kΔ t) = 0 for n < r, the structure of the differential equation yields

ψ(r)
n (t) = 0 for all t ≥ kΔ t. Thus we reduce (but do not axe) stiffness, if we re-

place in (13) the factors i and n with r. From now on we consider (12) with the
modified sequences ψ(r) given by

∂tψ
(r)
n = r

(
n−1

∑
i=1

ψ(r)
i hn−i−ψ(r)

n η

)
, ψ(r)

n (kΔ t) = δn−r (14)

This modification influences the evolution of the first moment u(.) in a significant

way. Since ∑nψ
(r)
n (t) = 1 for all t, a straightforward calculation yields

u((k + 1)Δ t) = u(kΔ t)+Δ t · (u(kΔ t))2 (15)

which corresponds to the Euler discretization of (6).
From now on we denote for given Δ t as gmod(t) the continuous sequence-valued

functions given piecewise by (12) under the modification (14) – in contrast to g(t),
which is the exact solution of the Smoluchowski equation (4). According to this we
call the corresponding first moments umod and u.

Denote �1 as the space of absolutely summable real-valued sequences and as �1
+

its positive cone. On �1
+ we define the partial ordering “%” by

g% h ⇔
N

∑
n=1

gn ≤
N

∑
n=1

hn for all N ∈ lN (16)

For sequences g,h ∈ �1
+ with equal mass ‖g‖1 = ‖h‖1, the relation g % h implies

intuitively that g is concentrated on higher parts of the state space than h. This
ordering is well-suited to the Smoluchowski system as well as to the above modified
system. Since the coagulation dynamics is directed (mass is flowing from lower to
upper state space only), one verifies quickly, that solutions are decreasing in time,
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g(t2)% g(t1), gmod(t2)% gmod(t1) for t2 > t1 (17)

Moreover, in [5] it was proven that for all t ≥ 0

g(t)% gmod(t) (18)

i.e. as a consequence of the modifications the coagulation process is slowed down.
On the other hand, because of (6), (15) and the convergence of the Euler scheme,
we find for all t < tgel

umod(t)↗ u(t) as Δ t↘ 0 (19)

Exploiting the monotonicity properties and the structure of the Smoluchowski sys-
tem, one can elaborate in detail the convergence properties. Here, we collect some
of the main statements proven in [5].

Theorem 1. (a) For T > 0 there exist cn > 0 such that

sup
t∈[0,T ]

∣∣∣gmod
n (t)−gn(t)

∣∣∣≤ cnΔ t (20)

(b) For t < tgel ,

∞

∑
n=1

gn(t) = lim
N→∞

lim
Δ t↘0

N

∑
n=1

gmod
n (t) = lim

Δ t↘0
lim

N→∞

N

∑
n=1

gmod
n (t) (21)

and for t > tgel ,

∞

∑
n=1

gn(t) = lim
N→∞

lim
Δ t↘0

N

∑
n=1

gmod
n (t) < lim

Δ t↘0
lim

N→∞

N

∑
n=1

gmod
n (t) =

∞

∑
n=1

gn(0) (22)

We want to point out that our main subject is to model the phase transition to
gelation. This requires some thresholding technique, since due to formula (15) there
is no blow-up of the first moment in finite time and thus no mass transfer to ∞ (see
(22)). We will take this aspect into account in section 3.

3 Numerical Methods

Since the phase space is infinite dimensional, the idea is near at hand to use Monte
Carlo methods for the above modified system. Such a scheme for gmod was first
introduced in [3]. Prior to this there have been different attempts to simulate the
space homogeneous Smoluchowski equation via Monte Carlo systems (see [2, 6]
and the literature cited there). As it turns out, such methods indeed may produce
reliable results. However, there is an important restriction to take into account – in
particular with respect to space inhomogeneous simulations. As was observed in [4,
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3], in the presence of sinks and sources for the aerosol system, random fluctuations
may change stable states into metastable ones with the gelated state as a trap. Thus
we have to find ways to reduche stochastic effects.

Let us have a short look on the truncated Smoluchowski system. In the case of
an active gel, equation (8) for gn depends on (g1, . . . ,gn) only. Thus for N ∈ lN and
gN := (g1, . . . ,gN), we may restrict to the finite ODE system

∂t gn = Sn[g,g] =
n−1

∑
i=1

igign−i−ngnρ n = 1, . . . ,N, ρ = const (23)

Performing again the two modifications of section 2, we end up with

gN,mod(t) =
N

∑
r=1

gr(kΔ t) ·ψ(r,N)(t) (24)

whereψ(r,N) is the truncated version ofψ(r) given in (14). In such truncated systems,
the only chance to investigate the passage to the gel phase is to introduce a threshold
level N and to consider all mass passing this threshold as “gelled” mass. This is the
usual way it is done in Monte Carlo simulations like [3]. Here, however, we run
into troubles. A low value of N does not meet high demands on accuracy, as was
demonstrated in [5]. Increasing this value rapidly blows up the calculational effort
– due to the stiffness of the problem.

A promising way out is a hybrid approach coupling the truncated deterministic
system (25) resp. (26) with the Monte Carlo scheme [3] for the upper part of state
space. To this end we introduce two levels N1 < N2. The portion {1, . . . ,N1} of the
state space (“small” particles) are treated by the above truncated system, while the
upper part {N1 + 1, . . . ,N2} (“large” particles) is modelled by the stochastic pro-
cess described in [3]. The particles whose masses pass the level N1 are treated as
a source which feeds the stochastic system. Those which cross the level N2 repre-
sent the gelled mass and drop out of the system. (In the case of an active gel, they
still appear as g∞ in the parameter ρ of (8).) The lower part up to N1 is described
deterministically and contains the main portion of the non-gelated mass, while the
upper part models the transition to gelation. Particles in this section are rapidly
transported to infinity; that’s why random fluctuations do not play a crucial role. As
was analyzed in [5], this modification is numerically efficient and describes the first
approach to the gelation phase with high precision. Thus this version may be taken
as the method of choice for the simulation also of space dependent problems.

4 An Application

The applicability of the above numerical scheme is not restricted to the special case
treated in this paper. In fact, both the Monte Carlo scheme [3] and the truncated
system are readily generalized to the situation of a passive gel as well as to arbitrary
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interaction kernels K(i, j). (The notion of an active gel is useful only for the par-
ticular kernel K(i, j) = i j treated above.) In the following example we are going to
present numerical results on the interaction of spatial diffusion models with coag-
ulation models and their transition to the gel phase. In these calculations, we again
chose the kernel K(i, j) = i j, but compared active and passive gels in combination
with different space evolution models. As specific test case we considered the diffu-
sion coagulation system in [−1,1]× [−1,1] with periodic boundary conditions and
with a monomer point source at x = (0,0) given by

∂t fn = Sn[ f , f ]+ DnΔx fn + s ·δn=1,x=0. (25)

Since we wanted to study the influence of the diffusion model on the gelation pro-
cess, we calculated two cases with different sets of diffusion coefficient Dn,

Case 1: Dn = 1/n
Case 2: Dn = 1.

A quick argument suggests the following for the initial phase. In case 1, large parti-
cles have less mobility and thus should locally accelerate the gelation process. Since
only (the low amount of) small particles move quickly, the spreading of the gelation
area should be restricted compared to case 2.

In our simulations we restricted to a spatial 50×50 grid and replaced the Laplace
operator by the convenient central difference approximation. Results of the simula-
tion runs are illustrated in Figs. 1 and 2. Fig. 1 shows the first moments of g at

Fig. 1 Development of first moment after short time t0 (upper row) and after time 3t0 (lower row).
Left column: active gel, Dn = 1/n; middle column: passive gel, Dn = 1/n, right column: passive
gel, Dn = 1.
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time t0 (78 time steps, upper row) and t1 = 3.6t0 (278 time steps, lower row). The
dark regions in the center indicate the areas where gelation has initiated. The results
confirm the above arguments. Gelation starts earlier in case 1. (At time t0, the dif-
ference between active and passive gel is not yet relevant.) The lower row illustrates
the growth of the gelation area up to time t1. Its circular boundary is clearly visible,
though slightly perturbed from random fluctuations. We recognize that the gelation
area spreads much faster in case 2. For active gel, the evolution of gelation is slow-
est, since the active non-gelled mass is likely to be swallowed by the gel in the area
around the source. This is confirmed by Fig. 2, which presents the total non-gelled
mass at time t1.

As a conclusion, the method is numerically efficient and capable of describing (at
least qualitatively) the spreading of gelation in spatially inhomogeneous situations.

Fig. 2 Development of non-gelled mass (zeroth moment) after time 3t0.
Left column: active gel, Dn = 1/n; middle column: passive gel, Dn = 1/n, right column: passive
gel, Dn = 1.

References

1. Aldous, D. J.: Deterministic and stochastic models for coalescence (aggregation, coagulation):
a review of the mean-field theory for probabilists. Bernoulli 5, 3–48 (1999)

2. Babovsky, H.: On a Monte Carlo scheme for Smoluchowski’s coagulation equation. Monte
Carlo Methods and Applications 5, 1–18 (1999)

3. Babovsky, H.: Gelation of stochastic diffusion-coagulation systems. Physica D 222, 54–62
(2006)

4. Babovsky, H.: The impact of random fluctuations on the gelation process. Bull. Inst. of Math.
Academia Sinica 2, 329–348 (2007)

5. Babovsky, H.: Approximations to the gelation phase of an aerosol. Preprint 11/06, Inst. f. Math.,
TU Ilmenau, submitted (2006)

6. Eibeck, A., Wagner, W.: Stochastic particle approximations for Smoluchowski’s coagulation
equation. Ann. Appl. Probab. 11, 1137–1165 (2001)

7. Wattis, J. A. D.: An introduction to mathematical models of coagulation-fragmentation pro-
cesses: A discrete deterministic mean-field approach. Physica D 222, 1–20 (2006)



Numerical Study of Mixed Finite Element and
Multi Point Flux Approximation of Flow
in Porous Media

M. Bause and J. Hoffmann

Abstract In this paper the numerical performance properties of some locally mass
conservative numerical schemes for simulating flow in a porous medium are studied.
In particular, the accuracy of approximations of flows with discontinuous permeabil-
ity tensors and on irregular grids is analysed. We consider the mixed finite element
approach with the lowest order Raviart-Thomas (RT0) and Brezzi-Douglas-Marini
(BDM1) element and a multi point flux approximation (MPFA) control volume
method. The BDM1 method yields a second order accurate approximation of the
flux whereas the RT0 and MPFA approach are of first order accuracy only. MPFA
methods offer explicit discrete fluxes which is not possible to get from mixed finite
element methods and allows a wider class of applications.

1 Introduction

Accurate and reliable simulations of moisture fluxes through porous media are desir-
able in many areas, in particular, in hydrological and environmental engineering. In
subsurface flow simulation, the geology which includes composite soil formations,
that may be intermittently saturated and drained, and non-orthogonal domains in the
media are a major challenge. From the point of view of physical realism, this results
in a need to use non-orthogonal grids with a full permeability tensor, which may be
discontinuous, in discretizations of the model equations describing the flow.

The mixed finite element method and the multi point flux approximation method
have shown to be suitable for the numerical simulation of flow in such a porous
medium. Both schemes are locally mass conservative and provide a flux approx-
imation as part of the formulation. In environmental studies, for instance, the re-
liable prediction of the water flow field is usually of greater importance than the

M. Bause, J. Hoffmann
Department Mathematics, University of Erlangen-Nuremberg, Martensstr. 3, D-91058 Erlangen,
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approximation of the pressure head, since the flux is responsible for the transport and
availability of chemical species in accompanying contaminant transport processes.
In this work we investigate the application of the mixed finite element method with
lowest order Raviart-Thomas (RT0) and Brezzi-Douglas-Marini (BDM1) elements
and of the multi point flux approximation (MPFA) method to saturated and un-
saturated flow in a composite and heterogeneous porous medium and compare the
accuracy of the pressure and flux approximation in various norms.

A model for flow in a porous medium, taking into account saturated and unsatu-
rated regions, is given by the assumption of mass conservation and Darcy’s law,

∂tΘ(ψ)+∇ ·q = f , q =−Kskrs(ψ)∇(ψ + z) in (0,T )×Ω . (1)

In (1), ψ is the pressure head, Θ is the water content, f is a source or sink, q is the
water flux, Ks is the permeability in the saturated zone, krs is the relative permeabil-
ity of water to air in the unsaturated regime, z is the gravity head and Ω is a bounded
domain. Functional forms ofΘ(·) and krs(·) have been derived in the literature. Eq.
(1) has to be equipped with an inital condition and boundary conditions. In the sat-
urated zone, where Θ(ψ) is a constant, Eq. (1) degenerates to an elliptic equation
describing single phase Darcy flow. For lack of space, we consider fully saturated
and fully unsaturated flow only. For a study of mixed approximations of (1) when
the parabolic-elliptic degenerate case is applicable we refer to [3].

2 Numerical Methods

In this section we briefly describe the numerical schemes to be considered. For
brevity, this is done for single phase Darcy flow as a prototype for the pressure
equation in a simulation of flow in a porous medium. Let p be the pressure, K be
the permeability and u =−K∇p be the Darcy velocity. For Darcy flow it holds that

−∇ · (K(x)∇p) = f in Ω , p = g on ∂Ω . (2)

In terms of p and u problem (2) can be rewritten as

∇ ·u = f in Ω , u =−K(x)∇p in Ω , p = g on ∂Ω . (3)

Let Th = {T} be a finite element decomposition of mesh size h of Ω ⊂ R2 into
closed triangles T . The decompositions are assumed to be face to face. In the mixed
finite element approach (cf. [4]) we form finite dimensional subspaces Wh of L2(Ω)
and Vh of H(div;Ω) and consider solving the discrete variational form of (3):

Find {ph,uh} ∈Wh×Vh such that

〈∇ ·uh,wh〉= 〈 f ,wh〉 , 〈K−1uh,vh〉− 〈ph,∇ ·vh〉=−〈g,vh ·ν〉∂Ω (4)

holds for all {wh,vh} ∈Wh×Vh.
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Here, ν denotes outer normal vector to ∂Ω . Let Pi(T ), with i ∈ N0, denote the set
of all polynomials on T of degree less or equal than i. In the BDM1 mixed finite
element approach the spaces Wh and Vh in the discrete problem (4) are chosen as

Wh = {wh ∈ L2(Ω) | wh |T ∈ P0(T ) ∀T ∈Th} ,
Vh = {vh ∈H(div;Ω) | vh|T ∈ BDM1(T ) ∀T ∈Th} ,

(5)

where BDM1(T ) = (P1(T ))2 denotes the lowest order Brezzi–Douglas–Marini
space; cf. [4]. A RT0 mixed approximation of (2) is defined by solving (4) with

Vh = {vh ∈H(div;Ω) | vh|T ∈RT0(T ) ∀T ∈Th}

and the same Wh as in (5), where RT0(T ) = P0(T )2 + xP0(T ). Problem (4) leads
to an indefinite algebraic system of equations. To solve these equations, we use a
hybridization technique. For further details and an application of the technique to
nonlinear problems we refer to [2, 3].

Multi point flux approximation control volume methods (cf., e.g., [1]) are dis-
cretization techniques that were developed for reservoir simulation and applications
of the oil industry. In this approach more than two pressure values are used in the
flux approximation. From the class of multi point flux approximation schemes (cf.,
e.g., [1]) we use the so-called MPFA O-variant in this work. This is done on triangu-
lar grids. Its basic idea is to divide each cell of a given triangulation into three sub-
cells; cf. Fig. 1. In each subcell Ei half edge fluxes are then determined by Darcy’s
law and the assumption of linear pressure variation in Ei. The method is defined
by assuming continuous fluxes across each half edge of a subcell and a continuity
condition at one point for the pressure across each half edge. The shape of the poly-
lines connecting the involved grid points of the flux molecule form a stylized O (cf.
Fig. 1), which explains the name O-method. Multi point flux approximations offer
explicit discrete fluxes which is useful, for instance, in simulating multi phase flow.

In detail, using the notation of Fig. 1 and assuming a linear pressure approxima-
tion in the subcell Ei, we find by Darcy’s law u = −K∇p that the normal compo-
nents U[xi

2;xi
3] and U[xi

3;xi
4] of the fluxes through the half-edges [xi

2;xi
3] and [xi

3;xi
4],

multiplied with the respective lengths of the half-edges and orientated as the normal
vectors ν [xi

2;xi
3] and ν [xi

3;xi
4] (cf. Fig. 1), are given by

(
U[xi

2;xi
3]

U[xi
3;xi

4]

)
=

1
2F

⎛⎝ν [xi
2;xi

3] ·KTν [xi
4;xi

1] ν [xi
2;xi

3] ·KTν [xi
1;xi

2]

ν [xi
3;xi

4] ·KTν [xi
4;xi

1] ν [xi
3;xi

4] ·KTν [xi
1;xi

2]

⎞⎠(
λxi

2
− pxi

1

λxi
4
− pxi

1

)
. (6)

In (6), it is tacitly assumed that the permeability tensor K(x) is constant in each
triangle T of the decompositon Th and admits the value KT ∈ R2,2. Further, pxi

1
is

the unknown pressure value in the barycenter xi
1 of T , λxi

2
and λxi

4
are the unkown

pressure values in the midpoints xi
2 and xi

4 of the edges, and F is the volume of the
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i
2]

Fig. 1 Interaction region (left) and decomposition of a triangle into subcells with notation (right).

triangle with vertices xi
1, xi

2,x
i
4. Moreover, ν [xi

1;xi
2],ν [xi

2;xi
3],ν [xi

3;xi
4] and ν [xi

4;xi
1] are the

normal vectors to the corresponding edges [xi
k;xi

l] with length ‖xi
k−xi

l‖2; cf. Fig. 1.
By some simple calculations we find that

K Ei

(
U[xi

2;xi
3]

U[xi
3;xi

4]

)
=

(
pxi

1
−λxi

2
pxi

1
−λxi

4

)
,

where K Ei
11 = 2

|T |
(
xi

2− xi
1

) ·K−1
T

(
xi

3− xi
4

)
, K Ei

12 = − 2
|T |
(
xi

2− xi
1

) ·K−1
T

(
xi

3− xi
2

)
,

K Ei
21 = 2

|T |
(
xi

4−xi
1

) ·K−1
T

(
xi

3−xi
4

)
and K Ei

22 =− 2
|T |
(
xi

4−xi
1

) ·K−1
T

(
xi

3−xi
2

)
. The

MPFA O-method on a triangular grid is then defined by the set of equations

K Ei

(
U[xi

2;xi
3]

U[xi
3;xi

4]

)
=

(
pxi

1
−λxi

2

pxi
1
−λxi

4

)
, ∀T ∈Th , Ei ⊂ T ,

∑
Ei⊂T

(
U[xi

2;xi
3]−U[xi

3;xi
4]

)
=
∫

T
f dx , ∀T ∈Th ,

(7)

and by assuming continuity of the half-edge normal fluxes U[xi
2;xi

3], U[xi
3;xi

4] and pres-

sure values λxi
2
λxi

4
between two adjacent triangles. Alternatively, the MPFA method

can be defined by using broken Raviart-Thomas spaces (cf. [6] for quadrilateral el-
ements) which is advantageous for deriving error estimates. Even though this has
not been done yet for triangular elements and is our work for the future, we did not
observe any convergence problems of the MPFA approach (7) on triangular grids.

For our numerical studies we still introduce the mesh dependent error norms

‖p−λh‖2
h = ∑

T∈Th

∑
E⊂T

|T |
3

(p(xE)−λE)2 , ‖p− ph‖2
h = ∑

T∈Th

|T |(p(xT )− pT )2

‖u−uh‖2
h = ∑

T∈Th

∑
E⊂T

|T |
3

(u(xE) ·νT E −uTE)2 ,

where λh is the nonconforming Crouzeix-Raviart approximation of p whose degrees
of freedom are the Lagrange multipliers of the hybrid mixed finite element approach
(cf. [3]) or the edge midpoint pressures of the MPFA method, respectively. In both
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BDM1

Cells ‖p−λh‖h Red. ‖p− ph‖h Red. ‖u−uh‖h Red. ‖u−uh‖L2(Ω) Red.

8 9.7229211e-02 - 4.9882312e-02 - 6.1752249e-01 - 9.4285564e-01 -
32 3.1180040e-02 3.12 1.5683875e-02 3.18 1.9802025e-01 3.12 2.8323114e-01 3.33

128 8.4702128e-03 3.68 4.2995411e-03 3.65 5.5833886e-02 3.55 7.8642384e-02 3.60
512 2.1725776e-03 3.90 1.1118825e-03 3.87 1.5079887e-02 3.70 2.1172670e-02 3.71

2048 5.4732469e-04 3.97 2.8112307e-04 3.96 4.0007441e-03 3.77 5.6155866e-03 3.77
8192 1.3714569e-04 3.99 7.0547673e-05 3.98 1.0515889e-03 3.80 1.4765975e-03 3.80

32768 3.4370923e-05 3.99 1.7777322e-05 3.97 2.7486533e-04 3.83 3.8614412e-04 3.82

RT0

Cells ‖p−λh‖h Red. ‖p− ph‖h Red. ‖u−uh‖h Red. ‖u−uh‖L2(Ω) Red.
8 1.4418195e-01 - 1.1496645e-01 - 1.0212233e+00 - 2.4434378e+00 -

32 6.0908525e-02 2.37 4.0418895e-02 2.84 3.9802766e-01 2.57 1.5110879e+00 1.62
128 1.9139274e-02 3.18 1.2412605e-02 3.26 1.3359828e-01 2.98 8.2889599e-01 1.82
512 5.2366397e-03 3.65 3.4003141e-03 3.65 4.0460505e-02 3.30 4.2920917e-01 1.93

2048 1.3509598e-03 3.87 8.7856169e-04 3.87 1.1608379e-02 3.49 2.1716785e-01 1.98
8192 3.4124114e-04 3.96 2.2208125e-04 3.96 3.2313820e-03 3.59 1.0899513e-01 1.99

32768 8.5575847e-05 3.99 5.5700150e-05 3.99 8.8243636e-04 3.66 5.4560412e-02 2.00

MPFA

Cells ‖p−λh‖h Red. ‖p− ph‖h Red. ‖u−uh‖h Red. ‖u−uh‖L2(Ω) Red.
8 1.4418195e-01 - 1.1496645e-01 - 1.0212233e+00 - 2.4434378e+00 -

32 6.0908525e-02 2.37 4.0418895e-02 2.84 3.9802766e-01 2.57 1.5110879e+00 1.62
128 1.9139273e-02 3.18 1.2412604e-02 3.26 1.3359828e-01 2.98 8.2889599e-01 1.82
512 5.2366397e-03 3.65 3.4003131e-03 3.65 4.0460507e-02 3.30 4.2920917e-01 1.93

2048 1.3509552e-03 3.88 8.7855455e-04 3.87 1.1608380e-02 3.49 2.1716785e-01 1.98
8192 3.4121886e-04 3.96 2.2204723e-04 3.96 3.2313821e-03 3.59 1.0899513e-01 1.99

32768 8.5573544e-05 3.99 5.5696299e-05 3.99 8.8243620e-04 3.66 5.4560412e-02 2.00

Table 1 Calculated errors and reduction factors (Red.) for BDM1, RT0 and MPFA approximation
of fully saturated flow with homogeneous right-hand side term on uniformly refined meshes.

cases, mixed finite element and MPFA, these pressure values in the edge midpoints
are denoted by λE . Further, pT is the discrete pressure value in the barycenter of
triangle T and uTE is the outer normal flux component on edge E with respect to
element T . The vector xE denotes the midpoint of edge E , xT is the barycenter of
the triangle T and νT E is the outer normal to edge E of T . Moreover, L2-norms of
the errors are calculated which is done by a Gaussian quadrature rule of order 7.

3 Numerical Example: Saturated Flow

In our first study of the numerical approximation schemes we prescribe an analytical
solution of (2) with f ≡ 0, Ω = (0,1)2 and K equal to the identity matrix that
is given by u(x,y) = cos(πx)cosh(π(y− 0.5)). Table 1 summarizes the calculated
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Fig. 2 Stochastically distorted meshes of convergence study and corresponding mesh sizes.

errors and reduction factors of the BDM1, RT0 and MPFA approach for a sequence
of uniformly refined grids starting with a 8 cell Cartesian grid, i.e. in each mesh
refinement step each triangle is devided into four congruent triangles. As far as the
RT0 and MPFA approach is concerned, we observe a superconvergence behavior
of ‖p− ph‖h and ‖u−uh‖h. Moreover, the methods lead to identical errors in the
significant digits which seems to be suprising. For problem (2) with homogeneous
right-hand side f and a piecewise constant permeability K this observation can be
verified theoretically; cf. [5]. For the BDM1 method a flux approximation of second
order accuracy in the L2-norm is obtained which makes the scheme superior.

In our second study the previous calculations are repeated on a sequence of suc-
cessively refined and stochastically distorted meshes (cf. Fig. 2) which is done for
the sake of physical realism. Now, the mesh size h = maxT∈Th diam(T ) is not exactly
halved in each refinement step anymore which is due to the stochastic displacement
of the grid nodes after each refinement step. As Table 2 shows, superconvergence of
‖u−uh‖h is no longer observed. Identical errors are obtained for the RT0 and MPFA
approach again, and the BDM1 flux approximation is of higher order accuracy.

4 Numerical Example: Unsaturated Flow

Our next study is devoted to fully unsaturated flow in a layered porous medium.
In (1), we put Ω = (0,1)2, Θ(ψ) = 2ψ and krs(ψ) ≡ 1. The discontinuous perme-
ability tensor K ∈ R2,2 is defined by K(x) = I for 0.25 ≤ x ≤ 0.75, 0 ≤ y ≤ 1 and
K(x) = 10 · I else, where I denotes the identity matrix. We prescribe the solution

ψ(x,y,t) =

{
−(x− t)(1− t− x)(y− 0.25)(0.75− y) ,0.25≤ x≤ 0.75 ,0≤ y≤ 1 ,

−(x− t)(1− t− x)(y− 0.25)(0.75− y)/10 , else .

The corresponding right-hand side function f is calculated by means of (1). For
the temporal discretization the backward Euler method is used. The time step size
is chosen sufficiently small (Δ t = 0.0001) such that the spatial discretization error
dominates the error of the discretization in time. The calculations are done on a
sequence of uniformly refined grids. The layers of the porous medium are resolved
by the grid, i.e., the lines of discontinuity of K match interelement edges, which is
not limiting for our applications in reservoir simulation. The calculated errors are
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BDM1

Cells ‖p−λh‖h Red. ‖p− ph‖h Red. ‖u−uh‖h Red. ‖u−uh‖L2(Ω) Red.

8 9.7027931e-02 - 5.0214314e-02 - 6.1540000e-01 - 9.5579906e-01 -
32 3.2397820e-02 2.99 1.6739760e-02 3.00 1.9992180e-01 3.08 2.9584509e+00 3.23

128 9.2226924e-03 3.51 4.8394301e-03 3.46 5.7660679e-02 3.47 8.4074061e-02 3.52
512 2.4571537e-03 3.75 1.2884092e-03 3.76 1.5719272e-02 3.67 2.2950373e-02 3.66

2048 6.6136415e-03 3.72 3.5390073e-04 3.64 4.2040585e-03 3.74 6.2116904e-03 3.69
8192 1.7448747e-04 3.79 9.4533654e-05 3.74 1.1154094e-03 3.77 1.6578407e-03 3.75

32768 4.6281280e-05 3.77 2.5317323e-05 3.73 2.9380437e-04 3.80 4.4071117e-04 3.76

RT0

Cells ‖p−λh‖h Red. ‖p− ph‖h Red. ‖u−uh‖h Red. ‖u−uh‖L2(Ω) Red.
8 1.3997074e-01 - 1.1493782e-01 - 1.0369437e+00 - 2.4402589e+00 -

32 6.2410025e-02 2.24 4.1202480e-02 2.79 4.1859052e-01 2.48 1.5294330e+00 1.60
128 2.0945396e-02 2.98 1.3430586e-02 3.07 1.4966002e-01 2.80 8.5665154e-01 1.78
512 6.1447028e-03 3.41 4.0827003e-03 3.29 5.4396147e-02 2.75 4.5243222e-01 1.89

2048 1.7140196e-03 3.59 1.1518377e-03 3.54 2.3357060e-02 2.33 2.3533276e-01 1.92
8192 4.6865718e-04 3.66 3.1810376e-04 3.62 1.0766859e-02 2.17 1.2117518e-01 1.94

32768 1.2797010e-04 3.66 8.7631481e-05 3.63 5.2498907e-03 2.05 6.2388483e-02 1.94

MPFA

Cells ‖p−λh‖h Red. ‖p− ph‖h Red. ‖u−uh‖h Red. ‖u−uh‖L2(Ω) Red.
8 1.3997074e-01 - 1.1493782e-01 - 1.0369437e+00 - 2.4402589e+00 -

32 6.2410026e-02 2.24 4.1202480e-02 2.79 4.1859052e-01 2.48 1.5294330e+00 1.59
128 2.0945396e-02 2.98 1.3430586e-02 3.07 1.4966002e-01 2.80 8.5665154e-01 1.79
512 6.1447028e-03 3.41 4.0827003e-03 3.29 5.4396148e-02 2.75 4.5243222e-01 1.89

2048 1.7140188e-03 3.59 1.1518362e-03 3.54 2.3357062e-02 2.33 2.3533276e-01 1.92
8192 4.6865629e-04 3.66 3.1810205e-04 3.62 1.0766860e-02 2.17 1.2117518e-01 1.94

32768 1.2796714e-04 3.66 8.7626674e-05 3.63 5.2498917e-03 2.05 6.2388482e-02 1.94

Table 2 Calculated errors and reduction factors (Red.) for BDM1, RT0 and MPFA approximation
of fully saturated flow with homogeneous right-hand side term on stochastically distorted meshes.

summarized in Table 3. The errors of the RT0 and MPFA approach are no longer
identical (cf. Sec. 3), but they are of similar size. This observation was also made in
further studies of the schemes. Even though the solution ψ itself is nonsmooth, the
BDM1 method leads to smaller flux discretization errors.

5 Conclusion

In our numerical studies we did not observe any significant differences between the
RT0 and MPFA method regarding the accuracy of discrete solutions. Nevertheless,
MPFA methods offer explicit discrete fluxes which is not possible to get from mixed
finite element methods and is advantageous, for instance, in computing multi phase
flow. As long as the flux is smooth, the second order accurate BDM1 approach leads
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BDM1 Δt = 0.0001

Cells ‖ψ −λh‖h Red. ‖ψ−ψh‖L2(Ω) Red. ‖q−qh‖L2(Ω) Red.

32 7.27e-4 - 1.61e-3 - 8.78e-3 -
128 1.98e-4 3.67 8.56e-4 1.89 2.29e-3 3.84
512 5.05e-5 3.92 4.34e-4 1.97 5.80e-4 3.94

2048 1.26e-5 4.00 2.17e-4 1.99 1.46e-4 3.98
8192 3.09e-6 4.16 1.09e-4 2.00 3.62e-5 4.02

32768 7.00e-7 4.41 5.44e-5 2.00 8.79e-6 4.12

RT0 Δt = 0.0001

Cells ‖ψ −λh‖h Red. ‖ψ−ψh‖L2(Ω) Red. ‖q−qh‖L2(Ω) Red.

32 3.11e-4 - 1.64e-3 - 3.78e-2 -
128 1.09e-4 2.87 8.59e-4 1.90 1.96e-2 1.93
512 3.01e-5 3.61 4.34e-4 1.98 9.92e-3 1.98

2048 7.76e-6 3.88 2.18e-4 2.00 4.98e-3 1.99
8192 1.97e-6 3.93 1.09e-4 2.00 2.49e-3 2.00

32768 5.20e-7 3.79 5.44e-5 2.00 1.24e-3 2.00

MPFA Δt = 0.0001

Cells ‖ψ −λh‖h Red. ‖ψ−ψh‖L2(Ω) Red. ‖q−qh‖L2(Ω) Red.

32 2.88e-04 - 1.70e-03 - 3.75e-02 -
128 1.078e-04 2.68 8.69e-04 1.96 1.99e-02 1.89
512 3.01e-05 3.58 4.35e-04 2.00 1.01e-02 1.97

2048 7.81e-06 3.86 2.18e-04 2.00 5.07e-03 1.99
8192 2.00e-06 3.90 1.09e-04 2.00 2.54e-03 2.00

32768 5.40e-07 3.71 5.44e-05 2.00 1.27e-03 2.00

Table 3 Calculated errors and reduction factors (Red.) for BDM1, RT0 and MPFA approximation
of unsaturated flow with discontinuous permeability tensor.

to smaller discretization errors of the flux variable. This holds even for discontinu-
ous permeabilities, as long as the jumps are resolved by the mesh; cf. [3].
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Local Projection Stabilization for the Oseen
System on Anisotropic Cartesian Meshes

M. Braack

Abstract Classical residual-based stabilization techniques, as for instance stream-
line upwind Petrov-Galerkin, as well as the local projection method are optimal on
isotropic meshes. Here we extend the local projection stabilization for the Navier-
Stokes system to anisotropic Cartesian meshes. We describe the new method and
give an a priori error estimate for the two-dimensional case. The method leads on
anisotropic meshes to qualitatively better convergence behavior than other isotropic
stabilization methods. The capability of the method is illustrated by means of a nu-
merical test problem.

1 Introduction

The solution of partial differential equations on anisotropic meshes is of substantial
importance for efficient solutions of problems with interior layers or boundary lay-
ers. For instance, in fluid dynamics at higher Reynolds number anisotropic meshes
are usually used in order to resolve sharp gradients of velocity and pressure perpen-
dicular to the boundary. Stabilized finite elements are well established in compu-
tational fluid dynamics , e.g. streamline upwind Petrov-Galerkin (SUPG), as intro-
duced by Brooks and Hughes [7], or pressure stabilized Petrov-Galerkin (PSPG),
see [14]. For the isotropic case, there is a wide range of methods and their analysis,
as e.g. Lube & Tobiska [20], Hansbo & Szepessy [13], Franca & Frey [12], or the in-
terior penalty method by Burman, Fernandez and Hansbo [8]. Codina [9] introduced
a weighted global projection method for stabilization in the isotropic case.

It is well-known that stabilized finite element schemes must be modified on
anisotropic meshes. Usually, the anisotropic version differs from the isotropic ver-
sion in the way to compute a characteristic mesh size parameter hK on each element

M. Braack
Christan-Albrechts-Universität zu Kiel, Mathematisches Seminar, Ludewig-Meyn-Str. 4, D-24098
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K which enters in the formulation as an important parameter. Taking this as the
cell diameter is not the optimal one as shown by Apel and Lube [16]. Micheletti
at al. [19] propose for convection-diffusion problems and for the Stokes system to
take instead the minimal eigenvalue hK := λK,min of the affine mapping of the refer-
ence triangle to the physical one, see [11]. Linss [15] derived a particular choice of
the stabilization constant for a scalar convection diffusion problems on anisotropic
meshes by comparing with the residual free bubble approach. A numerical study
shows a considerable reduction of the discretization error. Lube et al. give in [17]
an error analysis for SUPG/PSPG on hybrid meshes with a presumed relation of the
mesh sizes in the different coordinate directions based on the diffusion constant μ .

In this work we propose a numerical scheme for fluid dynamics based on local
projection stabilization (LPS) for anisotropic meshes. The first step of formulat-
ing LPS on anisotropic quadrilateral meshes is published in [4] by considering the
Stokes system. In the present work we address the by far more relevant and more
difficult Oseen system where also the convective terms should be stabilized in such
a way that the a priori error analysis remains optimal even when strongly stretched
elements are used. In particular, we give an a priori estimate in the case of the Os-
een system. LPS techniques are already applied with large success to different fields
of computational fluid dynamics, e.g., in 3D incompressible flows [5], compress-
ible flows, reactive flows [6], parameter estimation [1]. An isotropic extension to
arbitrary order and more general projections is derived by Matthies et al. [18].

2 A Priori Estimates for the Oseen System

The Oseen system in the domain Ω ⊂ Rd for velocity v and pressure p consists of
momentum and continuity equation together with appropriate boundary conditions
for v on ∂Ω . We embrace the two variables together in the variable u := {v, p}. For
the analysis we restrict ourself to the case of homogeneous Dirichlet conditions for
the velocities. The natural function space is X := V ×Q with the Sobolev space
of generalized functions with square-integrable derivatives and vanishing traces,
V := [H1

0 (Ω)]d , and the Hilbert space Q := L2,0(Ω) consisting of L2(Ω) functions
with zero mean on Ω ,

∫
Ω p(x)dx = 0 . Test functions are denoted by Greek letters,

for instance φ ∈ V as test function for the momentum equation and ξ ∈ Q as test
function for the continuity equation. Using the notation (·, ·) for the L2(Ω)-scalar
product the corresponding Galerkin formulation reads for f ∈ L2(Ω)

u ∈ X : a(u;φ ,ξ ) = ( f ,φ) ∀{φ ,ξ} ∈ X , (1)

with the bilinear form (σ ≥ 0, μ > 0)

a(u;φ ,ξ ) := (σv,φ)+ ((β ·∇)v,φ)+ (μ∇v,∇φ)− (p,divφ)+ (divv,ξ ) .

The convection field β may vary in space but is solenoidal, divβ = 0. The viscosity
may also vary in space. However, for ease of presentation we assume spatial constant
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μ and σ . We take in mind that the result in this work takes over to the case of varying
coefficients with minor modifications.

Let Q1,h be the space of d-linear finite elements. The discrete pressure space Qh is
its subspace with zero mean and the discrete velocity space Vh is the corresponding
vector-valued space with vanishing traces:

Qh := {ξ ∈ Q1,h : (ξ ,1) = 0} , Vh := {φ ∈ [Q1,h]d : φ
∣∣
∂Ω = 0} .

The bilinear form a(u;φ ,ξ ) is known to be unstable for such an equal-order inter-
polation of V and Q due to the violation of the discrete “inf-sup” condition [14]. A
further instability is due to the dominant advective term. Stabilization is a standard
tool to overcome this short-comings.

Residual-based methods, as for instance SUPG / PSPG, as well as projection-
based schemes allow for equal-order finite elements of polynomial order r. It is well-
known that their convergence order in terms of the mesh size h in the convection-
dominant case is hr+1/2 on quasi-uniform isotropic meshes:

|||u−uh|| ≤ Chr+1/2||u||Hr+1 , (2)

for sufficiently smooth velocities and pressure (Hr+1-regularity). The constant C
may depend on the parameters σ ,β and μ of the problem. The triplenorm ||| · ||| in
(2) depends on the particular finite element scheme but usually involves the energy
norm of the velocities μ1/2||∇v||, and the L2-term σ1/2||v||.

On anisotropic meshes, (2) is suboptimal, because hr+1/2 must be replaced by
the mesh size with respect to the coordinate direction of maximal elongation. For
instance in the case of a boundary layer with large second derivatives in y-direction,
the mesh should be much finer in y-direction, i.e. hy << hx, when hx and hy are the
mesh sizes in x- and y-direction of a Cartesian mesh, respectively. More specifically,
the optimal mesh sizes in the two coordinate directions should be

(hx/hy)2 ≈ ||∂ 2
yyv||/||∂ 2

xxv|| . (3)

Now, in the estimate (2) the mesh size h must be replaced by the maximal one, i.e.
by hx, so that it becomes for (bi-) linear elements:

|||u−uh||| ≤ Ch3/2
x (||∂x∇u||+ ||∂y∇u||) . (4)

Obviously, the second derivatives of u in (4) are not well balanced. In particular,

the term h3/2
x ||∂y∇u|| would be the dominant one when the curvature in y-direction

is much smaller than the one in x-direction and the mesh sizes are designed in the
optimal way (3). Therefore, much more suitable would be an estimate where the
partial mesh sizes hx and hy are multiplied by the corresponding spatial derivatives.
In this work, we will formulate an anisotropic modification of LPS so that we obtain
an a priori estimate which satisfies this property. In comparison to the isotropic
version (4) we derive an estimate which is better by a factor of (hx/hy)3/2. For large
aspect ratios, this is an enormous gain.
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3 Local Projection Stabilization

The mesh Th is supposed to be constructed by patches. A coarser mesh T2h is
obtained by one global coarsening of Th. The correspondence between these two
meshes is as follows: Each cell P ∈T2h is cut into 2d new cells (dividing all lengths
of edges of P by 2) in order to obtain the fine partition Th. Due to this construction
we can associate to each cell K ∈Th an corresponding patch P = P(K) ∈T2h with
K ⊂ P. For the formulation of this projection method, hanging nodes are allowed.
However, in the analysis of this work, we restrict to the case of anisotropic Carte-
sian meshes without such irregular nodes. The space Qdisc

2h consists of patch-wise
constants, but discontinuous across patches P ∈T2h:

Qdisc
2h := {ξ ∈ L2(Ω) : ξ

∣∣
P ≡ const.∀P ∈T2h} .

The projection πh : L2(Ω)→ Qdisc
2h is defined as the patch-wise mean:

πhq
∣∣
P :=

1
|P|

∫
P

q(x)dx ∀P ∈T2h .

The idea of LPS, consists of adding inconsistent stabilization terms sh(uh;φ ,ξ ) to
the Galerkin form involving the difference between the identity I and πh: κh :=
I− πh . The concrete form is specified in the following subsections. The discrete
system becomes: Find uh = {vh, ph} ∈ Xh := Vh×Qh such that

a(uh;φ ,ξ )+ sh(uh;φ ,ξ ) = ( f ,φ) ∀{φ ,ξ} ∈ Xh . (5)

LPS for Oseen for anisotropic meshes aligned with the coordinate axes becomes:

sh(u;φ ,ξ ) :=
d

∑
i=1

((κh(∂xi ph),αi∂xiξ )+ (κh(∂xi vh),δi∂xiφ)) , (6)

with patch-wise constant parameters αxi ,δxi . For the corresponding formulation on
rotated meshes, we refer to [2]. It turns out that the optimal choice of the stabilization
parameters depends on the minimal Peclet number:

Pemin(K) := min
i=1,...,d

(hK,i)||β ||K,∞/μ .

For the isotropic case, this characteristic number is the usual local Peclet number.
The optimal choice of the stabilization parameters will be given by:

αi = h2
K,iμ−1 min(1,Pe−1

min(K)) , δi = ||β ||2K,∞αi . (7)

Remark 1: For residual type stabilization schemes (SUPG, PSPG), the difference
between the isotropic and anisotropic case consists in a different choice of the stabi-
lization parameters, see e.g. Formaggia et al. [10], while the additional terms itself
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remain isotropic. For LPS, the proposed stabilization (6) is anisotropic. In the case
of isotropic meshes, the stabilization terms become αi ∼α j and δi∼ δ j ∼ ||β ||2K,∞αi.

Remark 2: In contrast to residual-based stabilization methods the parameters α
and β are independent of the absorption coefficient σ which can also be interpreted
as the inverse of a time step, i.e. σ ∼ 1/Δ t. This is due to the fact that the stabiliza-
tion does not act on the zero-order term σv in the Oseen system.

4 A Priori Error Estimate

The a priori estimate (2) was shown in [3] for piecewise bilinear(r = 1) and quadratic
(r = 2) elements for the triple norm:

|||u|||l ps :=
(
σ ||v||2 + μ ||∇v||2 + sh(u;u)

)1/2
. (8)

The stability follows immediate after integration by parts keeping in mind that β
is solenoidal. For the analysis we restrict to the two-dimensional case. The mesh is
assumed to be finer in y-direction:

hy < hx .

For ease of presentation, we assume in this section quasi-uniform meshes with re-
spect to each coordinate direction. That means, that hx represents all mesh sizes in
x-directions, and hy the mesh sizes in y-directions:

hx ∼ hK,x and hy ∼ hK,y ∀K ∈Th .

However, all results can also be understood locally. For this we only need the im-
portant interior angle condition for neighbor cells K,L ∈Th:

hK,x ∼ hL,x and hK,y ∼ hL,y .

This condition implies that the mesh sizes with respect to the x-direction of neighbor
cells are of the same order. The same should hold for the y-directions. Although we
allow for varying cells sizes in x-direction (and in y-direction), this change must be
moderate from one cell to the next one. In the following, we use the notation ”a � b”
which stands for an upper bound with a constant C, i.e. a ≤ Cb. This constant is
independent of h and the parameters μ ,σ ,β .

Theorem 1. For the choice (7) of the stabilization parameters we obtain for d = 2:

|||u−uh|||l ps � α1/2
x hx||∂x∇p||+α1/2

y hy||∂y∇p||
+ (σ1/2 +(μ1/2 + δ 1/2

y )h−1
y ) · (h2

x||∂x∇v||+ h2
y||∂y∇v||) .

(9)

The proof can be found in [2]. An easy consequence for the isotropic case is:
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Theorem 2. The a priori estimate becomes in the isotropic case:

|||u−uh|||l ps � α1/2h||∇2 p||+
(
σ1/2h + μ1/2 + ||β ||∞α1/2

)
·h||∇2v|| , (10)

with α = hmin(μ−1h, ||β ||−1
∞ ).

In particular, for Peclet number larger than one, i.e. the convection dominated
case, the right hand side becomes (formally) independent of the viscosity:

|||u−uh|||l ps � h3/2
(
||β ||−1/2

∞ ||∇2 p||+
(
σ1/2h1/2 + ||β ||1/2

∞

)
· ||∇2v||

)
.

5 Numerical Validation: Tube Flow with Boundary Layer

In order to validate the proposed discrete scheme for the computation of convection
dominated flows on anisotropic meshes we consider the Navier-Stokes equations:

(v ·∇v)− μΔv +∇p = f , divv = 0 . (11)

The model problem consists of a flow in a tube length L ≥ 1 and height H = 1,
Ω = (0,L)× (0,H). We have slip conditions for the velocities v = v0 on Γdir , at the
Dirichlet boundary part Γdir ⊂ ∂Ω consisting of the horizonal and the left vertical
part of ∂Ω . The remaining boundary (right vertical boundary part) Γout := {L}×
(0,1) is the natural “outflow” boundary. The boundary values v0 and the forcing
term f of the momentum equation (11) are taken in such a way that we obtain the
following analytical solution:

v1(x,y) =
eγ − eγ(1−y)

eγ −1
, v2(x,y) = ε(1− x/L)2 , p(x,y) = (L− x)xy ,

with ε = 0.01 and γ = μ−1/2. The velocity component in x-direction, v1, exhibits
a boundary layer at the lower boundary y = 0 of thickness γ−1 =

√μ. The vertical
velocity is chosen small but non-zero so that the velocity stabilization in vertical
direction does not vanish for the exact solution and so that v2 is not in the discrete
space Q1,h.

The diffusion coefficient is taken between μ = 10−2 and μ = 10−5. For μ =
10−2, it turns out that up to a certain degree of anisotropy the classical isotropic
local projection stabilization is still convergent. Therefore, we can compare with the
anisotropic version.

In order to see the impact of anisotropy we take the length as L = 50 and L = 100.
The case L = 1 needs not be performed because both methods become identical on
isotropic meshes. The number of grid points are equal for both coordinate direc-
tions and equidistant in x-direction as well as in y-direction. Hence the anisotropy
is uniform in space and equal to a = L/H = L. Since the scaling of the two velocity
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components v1 and v2 as well as their gradients are very different, the error in each
velocity component is listed in the following tables separately.

For aspect ratio a = 50, see Table 1 and 2, the isotropic version shows it deficits:
the linear solver does not convergence on the grid with hy = 1/8. In contrast to
this, the anisotropic version does a very good job and is of order h2 for the L2-error
of each individual component of the solution. The error in the gradient is still of
first order. If we compare this with the isotropic version (at least for the convergent
cases), we observe that the error in the pressure is comparable. Surprisingly, the
pressure is even slightly better with the isotropic version by a very small factor. A
possible explanation is that the pressure does not has a boundary layer. However, the
difference is in the range of 4% and hence is not relevant. The error of the velocity
in x-direction, v1, is improved in the anisotropic version by a factor of up to 4. The
largest improvement is observed for the accuracy of v2: Here we gain a factor of
more than 100 in the L2-norm and about 20 in H1 (except the very first mesh).

For aspect ratio a = 100 and μ = 10−5 convergence is obtained only with
anisotropic LPS, see Table 3. It was not possible to obtain results with the clas-
sical (isotropic) LPS. But with the anisotropic version, we still get second order
behavior of the error in L2 and better than first order in the gradients.

Table 1 Convergence history with isotropic stabilization for μ = 10−2 and aspect ratio a = 50.

hy ||p− ph|| ||∇(p− ph)|| ||v1− v1,h|| ||∇(v1− v1,h)|| ||v2− v2,h|| ||∇(v2− v2,h)||
1/4 455 472 4.47 29.8 35.9 173
1/8 no convergence no convergence no convergence

1/16 13.6 21.6 0.528 6.00 3.35 12.2
1/32 2.46 7.22 0.196 2.78 0.660 2.64
1/64 0.602 3.24 0.0444 1.30 0.125 0.699

1/128 0.163 1.702 7.05e-03 0.627 0.0223 0.219
1/256 0.0447 0.897 9.82e-04 0.300 2.63e-03 0.0498

Table 2 Convergence history with anisotropic stabilization for μ = 10−2 and aspect ratio a = 50.

hy ||p− ph|| ||∇(p− ph)|| ||v1− v1,h|| ||∇(v1− v1,h)|| ||v2− v2,h|| ||∇(v2− v2,h)||
1/4 278. 376. 1.62 12.1 16.9 68.4
1/8 48.1 90.6 1.09 9.91 1.44 6.96

1/16 11.9 25.5 0.306 4.96 0.0982 0.649
1/32 2.97 8.99 0.0490 2.45 6.50e-03 0.0619
1/64 0.743 3.90 0.0112 1.16 4.81e-04 0.0199

1/128 0.186 1.87 2.30e-03 0.508 8.71e-05 9.39e-03
1/256 0.0464 0.924 4.30e-04 0.212 2.16e-05 2.54e-03

Table 3 Convergence history with anisotropic stabilization for μ=10−5 and aspect ratio a=100.

hy ||p− ph|| ||v1− v1,h|| ||∇(v1− v1,h)|| ||v2− v2,h|| ||∇(v2− v2,h)||
1/4 197 9.80e-02 1.04 0.162 0.639
1/8 47.7 0.399 3.09 1.38e-02 6.84e-02

1/16 11.9 1.99e-02 0.425 9.58e-04 6.43e-03
1/32 2.97 2.29e-03 0.139 7.87e-05 7.41e-04
1/64 0.743 5.02e-04 6.66e-02 1.073e-05 1.31e-04

1/128 0.186 1.25e-04 3.32e-02 2.29e-06 3.41e-05
order h2 h2 h h2 h
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Simulations of 3D Dynamics of Microdroplets:
A Comparison of Rectangular and Cylindrical
Channels

C.-H. Bruneau, T. Colin, C. Galusinski, S. Tancogne, and P. Vigneaux

Abstract In this paper, several numerical simulations of diphasic flows in mi-
crochannels are presented. The flow in both cylindrical and rectangular channels is
considered. The aim is to compute the shape of the droplets and the velocity fields
inside and outside the droplets and to quantify the influence of the geometry. The
Level Set method is used to follow the interface between the fluids.

1 Introduction

Diphasic flows in microchannels are governed by the pressure gradient and the sur-
face tension at the interface between the fluids. In experimental configurations, jets
of one fluid into another are usually not stable. This is due to Rayleigh instability.
The jets can break off and therefore can lead to the creation of droplets. The study
of the flow inside these droplets is a difficult task that can be achieved only with a
numerical approach.

From the experimental point of view, once they are created, droplets propagate at
their own speed while the flow between two droplets is essentially a Poiseuille flow,
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as soon as the droplets are ”sufficiently” separated. This implies that some recircu-
lations occurs inside the droplets in order to ensure a non-slip boundary condition
on the boundary of the channels. These movements are not only created by the flow
itself but also by the surface tension forces that are responsible of the shape of the
droplets. From the point of view of the applications these microdroplets can be used
as micromixers and as microreactors in order to achieve reactions with very small
volumes of products. One of the characteristics of microflows is that they are con-
strained by the confinement. Typical size of a microchannel is a section of 10−8m2

with a length of a few centimeters. Typical velocity of the flows is 1cm/s. The flow
rates are around 3000μ l per hour. This confinement determines strongly the stability
of the jets or of the co-flows as well as the shape of the droplets in case of break-
up. The geometry of the channels are also very important for the dynamics of the
droplets. One can build and use cylindrical channels as well as rectangular ones. For
very thin jets, localized in the middle of the channel, the shape of the section of the
channel is not determinant and flows in cylindrical and rectangular channels have
the same behavior. The explanation is that surface tension forces are important at
these scales and the velocity field at the interface is closed to be invariant under ro-
tations. This is observed on the numerical simulations of flows without confinement
whatever the shape of the channel is. For larger structures, the flow undergoes the
effects of confinement and circular and rectangular channels give rise to different
kinds of behavior.

The aim of this note is to present a preliminary comparison of droplets and their
associate flows in both cylindrical and rectangular channels. It is organized as fol-
lows. In the second part, we recall the model and the numerical method used. In
the third part, we try to emphasize the main features of 3D flows in cylindrical and
rectangular channels.

2 Modelling and Simulation of Bifluid Microflows

2.1 Governing Equations

We want to modelize incompressible, viscous and Newtonian bifluid flows with
surface tension in microchannels. This requires to follow carefully the moving in-
terfaces. We adopt a Level Set approach to capture the interface Γ between fluid 1
and fluid 2 (see [7] and [6]). In this context, the interface is given by the zero level
set of a function φ :

Γ (t) = {x ∈Ω / φ(x,t) = 0},∀t ≥ 0 (1)

where Ω is the 3D bounded computational domain occupied by the fluids. Moreover
φ satisfies
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∀t ≥ 0,

⎧⎨⎩φ(x,t) < 0 ∀x ∈ fluid 1
φ(x,t) > 0 ∀x ∈ fluid 2
φ(x,t) = 0 ∀x ∈ Γ (t)

(2)

In the context of microfluidics, the Reynolds number is small and we can neglect
the inertial effects. The velocity is then a solution of the Stokes equation

−∇.(2ηDu)+∇p = σκδ (φ)n ∀(t,x) ∈ R+×Ω , (3)

∇.u = 0 ∀(t,x) ∈ R+×Ω , (4)

where η is the viscosity, p is the pressure and Du = (∇u+∇T u)/2 is the deforma-
tion rate tensor, σ ∈R is the constant surface tension coefficient, n is the unit normal
to the interface, κ is the curvature of the interface and δ is the Dirac function. The
normal and the curvature are computed thanks to the Level Set function :

n =
∇φ
|∇φ |

∣∣∣∣
φ=0

, (5)

κ = ∇.

(
∇φ
|∇φ |

)∣∣∣∣
φ=0

. (6)

In addition, the viscosity is given by

η = η1 +(η2−η1)H(φ), (7)

where η1 (resp. η2) is the viscosity of fluid 1 (resp. 2) and H is the Heaviside func-
tion:

H(φ) =
{

0 if φ ≤ 0,
1 if φ > 0.

(8)

The interface moves at the velocity of the fluid and the function φ is then defined
[8] as the solution of the advection equation :

∂φ
∂ t

+ u.∇φ = 0 ∀(t,x) ∈ R+×Ω . (9)

Finally, two types of geometry are considered, namely rectangular channels and
cylindrical channels, as shown on Figure 1.

2.2 Numerical Resolution Procedure

The numerical algorithm is the following one :

1. Compute an initial value for the Level Set function φ and related η .
2. Compute the unit normal n and the curvature κ .
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Fluid 1

Fluid 2

Fig. 1 Geometry of rectangular (on the left) and cylindrical (on the right) channels.

3. Solve the Stokes equation (3)-(4) for (u, p) with κ and n obtained by step 2.
4. Update φ by solving (9).
5. If needed, apply a redistanciation procedure on φ in order to ensure |∇φ | = 1

(see [6]).
6. Iterate step 2-5 for each time step.

The Stokes system (3)-(4) is discretized on a staggered mesh using a finite vol-
ume scheme. The divergence free condition is ensured by an augmented Lagrangian
algorithm. The transport equation (9) is discretized by a fifth order WENO scheme
[5].

Note that in microfluidics, surface tension is preponderant and a specific stability
condition derived in [2] is used :

Δ t = min

(
c1

Δx
‖u‖∞ ,c2

η
σ
Δx

)
(10)

where Δ t is the time step and Δx is the space step. The constant c1 is linked to
the classical CFL condition and depends only on the scheme used to discretize the
advection equation. The constant c2 is associated to the constraint induced by the
surface tension term that is discretized explicitly. In our microfluidics applications,
c2 = 4 leads to stable computations (see [3]).

We use a penalization method [1] to take into account the spatial structure of the
coaxial cylindrical channels shown on the right of Figure 1. Numerical approach for
this axisymmetric framework is presented in [9].
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3 Numerical Results

3.1 Results in 3D Axisymmetric Channels

The first test case (Fig. 2) concerns the simulation of droplets creation by injecting
a fluid into another, thanks to the “injector” geometry of figure 1 (right) where the
radius of the external capillary is R = 300μm. The internal capillary of length R,
thickness 50μm and centered at r = 75μm is modelled by a penalization term. Two
fluids have a surface tension σ = 33.10−3 N/m. In the internal jet, the viscosity is
η2 = 30.10−2 Pa.s and in the external capillary, the viscosity is η1 = 55.10−3 Pa.s.
Parabolic profiles are used for the injection velocity at the inlet, with a maximum of
u2 = 0.07 m/s in the internal tube and u1 = 0.01 m/s in external tube. The section R
of the computational domain is discretized with 30 cells. The jet breaks up because
of Rayleigh instability.

Fig. 2 Droplet creation with an axisymmetric jet. Time increases from left to right.

In the second case (Fig. 3), we then present two examples of flows that exist
inside a microdroplet by showing the velocity field in the droplet frame of refer-
ence. We use an external capillary which is of radius R = 60μm. The fluid inside the
droplet has a viscosity η2 = 2.10−2 Pa.s and the viscosity of the continuous phase
is η1 = 4.10−2 Pa.s. The injection speed considered is 0.2 m/s and 0.1 m/s respec-
tively for the two numerical simulations. It can be observed that when the velocity
is small, the droplet shape is more spherical and a central recirculation region de-
velops towards the front of the droplet. This is due to the increasing influence of the
surface tension compared to the driving flow.
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Fig. 3 Hydrodynamics in a cylindrical channel : the droplet is propelled with an injection speed of
0.2 m/s on the left and 0.1 m/s on the right.

3.2 Results in 3D Rectangular Channels

We now present comparative simulations in the 3D cartesian geometry of the left
of Figure 1 with Lx = Ly = 150μm. Again, the viscosity is η2 = 2.10−2 Pa.s in the
droplet and η1 = 4.10−2 Pa.s elsewhere and the surface tension between them is
σ = 33.10−3 N/m. Figures 4 and 5 show a droplet with an injection speed of 0.2
m/s and 0.1 m/s, respectively. A bigger droplet is also shown on Figure 6. The
influence of the injection speed is the same as in the axisymmetric case if the global
evolution of the shape and the recirculation zones are taken into account (see Fig.
3 and 4, 5). But differences definitely appear when it comes to compare droplets
shapes and induced streamlines. First, when looking at a cross section (with respect
to the direction of the flow), droplets in a square channel are not spherical – contrary
to the cylindrical case – as it can be seen on the back of droplets of Figures 4 and
5 and even more clearly on the slices numbered 3 and 4 on Figure 7 which are at
the back of the droplet of Figure 6. On the right of Figure 6, the velocity field in a
(x,y) section shows a typical fully 3D behaviour, which is only seen in rectangular
configuration : eight vortexes are present inside the droplet near its boundary that
correspond to the fluid that focuses at the center. It is clearly not an axisymmetric
phenomenon. At the boundary of the channel, the flow is deviated in the direction of
the corners. The conservation of the flow rates implies that the liquid has to escape
in the longitudinal direction through the four corners. This fully 3D effect is due to
the rectangular confinement.
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Fig. 4 Droplet hydrodynamics in a 3D cartesian configuration with an injection speed of 0.2 m/s.

Fig. 5 Droplet hydrodynamics in a 3D cartesian configuration with an injection speed of 0.1 m/s.

Fig. 6 A bigger droplet with an injection speed of 0.2 m/s : velocity field respectively in the
droplet’s frame of reference (slice in plane (x,z) on the left) and in the global one (slice in (x,y) on
the right).

4 Conclusions

In this note, we present various 3D dynamics in microdroplets thanks to a numeri-
cal method designed to handle flows driven by surface tension and pressure gradient
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Fig. 7 Slices numbered from 1 to 4 (from the nose of the droplet to the back) in plane (x,y).

in a microfluidic framework. It appears that cylindrical and rectangular microchan-
nels used in practical applications induced clearly different hydrodynamics mainly
due to effect of rectangular confinement. This will be further studied by comparing
jet stabilities in these two kinds of geometries, as well as mixing in droplets, and
compared with equivalent physical experiments in microchannels [4].
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Incomplete Interior Penalty Galerkin Method
for a Nonlinear Convection-Diffusion Equation

V. Dolejšı́

Abstract We deal with a numerical solution of convection-diffusion problems with
a nonlinear convection and a quasilinear diffusion. We employ the so-called incom-
plete interior penalty Galerkin (IIPG) method which is suitable for a discretization of
quasilinear diffusive terms. We recall a priori hp error estimates in the L2-norm and
the H1-seminorm. We present sets of numerical experiments where the experimen-
tal orders of convergence in dependence on the polynomial degree of approximation
and the regularity of the exact solution are evaluated and discussed.

1 Introduction

We consider the following nonstationary nonlinear convection-diffusion equation,
which represents a model problem for the solution of the system of the compress-
ible Navier-Stokes equations. Let Ω ⊂ IRd , d = 2,3, be a bounded open polygonal
domain with Lipschitz-continuous boundary ∂Ω = ∂ΩD∪∂ΩN , ∂ΩD ∩∂ΩN = /0,
and T > 0. We seek a function u : QT = Ω × (0,T )→ IR such that

a)
∂u
∂ t

+∇ · f(u) = ∇ ·R(u,∇u)+ g in QT ,

b) u
∣∣
∂ΩD×(0,T) = uD, (1)

c) R(u,∇u) ·n∣∣∂ΩN×(0,T) = gN ,

d) u(x,0) = u0(x), x ∈Ω ,

where g : QT → IR, uD : ∂ΩD × (0,T ) → IR, gN : ∂ΩN × (0,T ) → IR and u0 :
Ω → IR are given functions, n = (n1, . . . ,nd) is a unit outer normal to ∂Ω , f =
( f1, . . . , fd) : IR → IRd and R = (R1, . . . ,Rd) : IRd+1 → IRd (i.e., Rs = Rs(ζ ) =
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Rs(ζ0,ζ1, . . . ,ζd), s = 1, . . . ,d) are prescribed functions representing convective and
diffusive fluxes, respectively.

The class of discontinuous Galerkin (DG) methods seems to be one of the most
promising candidates to construct high order accurate schemes for solving partial
differential equations of type (1). For a survey about DG methods, see [1] or [4]. An
application of a DG method to problems with a linear or a non-linear diffusion was
studied in many papers, see, e.g., [7], [8], [10], [11], [12].

The main obstacle in the discetization of the quasilinear diffusive term in (1) is a
nonlinear dependence of R on ∇u. Then, the very popular DG approaches, SIPG
(symmetric interior penalty Galerkin) and NIPG (nonsymmetric interior penalty
Galerkin), can not be directly applied. Therefore, we use the so-called incomplete
interior penalty Galerkin (IIPG) method studied in [5], [13]. We analysed the appli-
cation of the IIPG technique to problem (1) quite recently in [6], where we derived a
priori hp-error estimates. See also [3] where more general quasilinear elliptic prob-
lem was considered.

In this contribution we recall these results and then we present a set of numerical
experiments, where we evaluate the discrete L2-norm and the discrete H1-seminorm.
We set the experimental orders of convergence in dependence on the polynomial
degree of approximation and the regularity of the exact solution. This numerical
study can give some hints how to treat with a hp-adaptation technique based on an
estimation of the regularity of the exact solution.

We assume that the data of problem (1) satisfy the assumptions:

(A1) function f(u) is Lipschitz-continuous, i.e., |f(v)− f(w)| ≤Cf |v−w|, Cf > 0,
(A2) there exists a constant c1 > 0 such that

|Rs(ζ0, . . . ,ζd)| ≤ c1

(
1 +

d

∑
k=0

|ζk|
)

∀ζ ∈ IRd+1, s = 1, . . . ,d, (2)

(A3) there exists a constant c2 > 0 such that∣∣∣∣∂Rs(ζ )
∂ζk

∣∣∣∣≤ c2 ∀ζ ∈ IRd+1, s = 1, . . . ,d, k = 0, . . . ,d, (3)

(A4) there exists a constant c3 > 0 such that

d

∑
s=1
k=0

∂Rs(ζ )
∂ζk

ψsψk ≥ c3

d

∑
k=1

ψ2
k ∀ζ ,ψ ∈ IRd+1. (4)

In what follows, we shall assume that problem (1) has a unique sufficiently regu-
lar solution u. Its regularity, necessary for the theoretical error estimates, will be
specified later in (19).
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2 Dicretization

2.1 Triangulations

Let Th (h > 0) be a family of partitions of the domain Ω into a finite num-
ber of closed d-dimensional mutually disjoint simplexes and/or parallelograms K
i.e., Ω =

⋃
K∈Th

K. By ∂K we denote the boundary of element K ∈ Th and set
hK = diam(K), h = maxK∈ThhK . By ρK we denote the radius of the largest d-
dimensional ball inscribed into K and by |K|we denote the d-dimensional Lebesgue
measure of K. By Fh we denote the smallest possible set of all open (d − 1)-
dimensional faces of all elements K ∈ Th. Further, we denote by F I

h the set of
all Γ ∈Fh that are contained in Ω (inner faces), by FD

h the set of all Γ ∈Fh that
Γ ⊂ ∂ΩD and by FN

h the set of all Γ ∈Fh that Γ ⊂ ∂ΩN . For a shorter notation
we put F ID

h ≡F I
h ∪FD

h and FDN
h ≡FD

h ∪FN
h .

Moreover, for each Γ ∈Fh we define a unit normal vector nΓ . We assume that
nΓ , Γ ∈FD

h ∪FN
h has the same orientation as the outer normal of ∂Ω . For nΓ , Γ ∈

F I
h the orientation is arbitrary but fixed for each edge.
We assume that the triangulation is locally quasi-uniform, i.e., there exists a con-

stant CQ > 0 such that hKi ≤CQ hKj ∀Ki,Kj ∈ Th sharing face Γi j ∈F I
h and shape-

regular, i.e., there exists a constant CS > 0 such that hK ≤CS ρK ∀K ∈Th.

2.2 Discontinuous Finite Element Spaces

To each K ∈ Th, we assign a positive integer sK (local Sobolev index) and positive
integer pK (local polynomial degree) . Then we define the vectors

s≡ {sK ,K ∈Th}, p≡ {pK ,K ∈Th}. (5)

Over the triangulation Th we define the so-called broken Sobolev space corre-
sponding to the vector s

Hs(Ω ,Th)≡ {v;v|K ∈HsK (K) ∀K ∈Th}. (6)

If sK = q ∀K ∈Th, q ∈ IN then we use the notation Hq(Ω ,Th) = Hs(Ω ,Th).
Furthermore, we define the space of discontinuous piecewise polynomial func-

tions associated with the vector p by

Shp ≡ {v; v ∈ L2(Ω), v|K ∈ PpK (K) ∀K ∈Th}, (7)

where PpK(K) denotes the space of all polynomials on K of degree ≤ pK , K ∈ Th.
It means that we use the same polynomial spaces for simplicial as well as parallel-
ogram elements. In order to derive a priori hp error estimates we assume that there
exists a constant CP ≥ 1 such that pK/pK′ ≤CP ∀K,K′ ∈Th sharing a common face.
Moreover, to each K ∈Th we define the parameter d(K)≡ hK/p2

K , K ∈Th.
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For eachΓ ∈F I
h there exist two elements Kp,Kn ∈Th such thatΓ ⊂Kp∩Kn. We

use a convention that Kn lies in the direction of nΓ and Kp in the opposite direction
of nΓ . Then for v ∈ H1(Ω ,Th), we introduce the following notation:

〈v〉Γ ≡ 1
2

(
v|(p)
Γ + v|(n)

Γ

)
, [v]Γ ≡ v|(p)

Γ − v|(n)
Γ , (8)

where v|(p)
Γ and v|(n)

Γ denotes the trace of v|Kp and v|Kn on Γ , respectively. Further,
we put

d(Γ )≡min(d(Kp),d(Kn)), Γ ∈F I
h . (9)

For Γ ∈FDN
h there exists element Kp ∈ Th such that Γ ⊂ K p ∩ ∂Ω . Then for

v ∈ H1(Ω ,Th), we introduce the notation 〈v〉Γ ≡ [v]Γ ≡ v|(p)
Γ , where v|(p)

Γ denotes
the trace of v|Kp on Γ . In virtue of (9), we put

d(Γ )≡ d(Kp), Γ ∈FDN
h . (10)

In case that [·]Γ and 〈·〉Γ are arguments of
∫
Γ . . . dS,Γ ∈Fh we omit the subscript

Γ and write simply [·] and 〈·〉, respectively.

2.3 Discrete Problem

The incomplete interior penalty Galerkin (IIPG) discretization of the problem (1)
reads (for more details see [6])(

∂u
∂ t

,v

)
+ ah(u,v)+ bh(u,v)+ Jh(u,v) = �h(v), (11)

where

ah(u,v) = ∑
K∈Th

∫
K

R(u,∇u) ·∇vdx− ∑
Γ∈F ID

h

∫
Γ
〈R(u,∇u) ·n〉[v]dS, (12)

bh(u,v) = − ∑
K∈Th

∫
K

f(u) ·∇vdx + ∑
Γ∈Fh

∫
Γ

H
(

u|(p)
Γ ,u|(n)

Γ ,nΓ
)

[v]dS, (13)

Jσh (u,v) = ∑
Γ∈F ID

h

∫
Γ
σ [u] [v]dS, (14)

�h(v)(t) =
∫
Ω

g(t)vdx + ∑
Γ∈FN

h

∫
Γ

gN(t)vdS + ∑
Γ∈F ID

h

∫
Γ
σ uD(t)vdS. (15)

The penalty parameter function σ in (14) and (15) is defined by

σ |Γ =
CW

d(Γ )
, Γ ∈F ID

h , (16)
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where d(Γ ) is given either by (9) or (10) and CW > 0 is a suitable constant. We use
the value

CW ≡ 1
4

CCc2(d + 1)
(c3−Cm)(1−Cm)

, (17)

where Cm ≡ min(1,c3)/2, constants c2 and c3 were introduced in assumptions (3)
– (4) and CC ≡CM(1 +CI), where constants CM and CI appear in the multiplicative
trace inequality and the inverse inequality, respectively, for more details see [6]. The
function H(·, ·, ·) in the face integrals in (13) is called the numerical flux well-known
from the finite volume method and it approximates the terms f(u) ·nΓ on Γ ∈Fh.
Now, we introduce the discrete problem.

Definition 1. Let u0
h ∈ Shp be the L2(Ω)-projection of the initial condition u0 into

Shp. We say that uh is a DGFE solution of (1), if

a) uh ∈C1([0,T ];Shp),

b)

(
∂uh(t)
∂ t

,vh

)
+ bh(uh(t),vh)+ ah(uh(t),vh)+ Jσh (uh(t),vh)=�h(vh)(t)

∀vh ∈ Shp, ∀t ∈ (0,T ),
c) uh(0) = u0

h.

(18)

3 A Priori Error Estimates

For v∈Hs(Ω ,Th) we introduce the norm |||v|||2≡ |v|2
H1(Ω ,Th) +Jσh (v,v). We assume

that the exact solution u = u(x,t) of (1) satisfies

∂u
∂ t

∣∣∣
K
∈ L2(0,T ;HsK (K)), u|K ∈ L∞(0,T ;HsK (K)) ∀K ∈Th. (19)

It can be ensured, e.g., by ∂u/∂ t ∈ L2(0,T ;Hs̄(Ω)), u ∈ L∞(0,T ;Hs̄(Ω)), where
s̄ = max{sK , sK ∈ s}. Then it makes sense to define the “element-norm”

‖u‖2
K≡‖u‖2

L2(0,T ;HsK (K))+‖∂u/∂ t‖2
L2(0,T ;HsK (K))+‖u‖2

L∞(0,T ;HsK (K)), K ∈Th. (20)

Theorem 1. Let u be the exact solution of (1) satisfying (19) and Th a partition of
the computational domain. Let uh be the approximate solution given by (18), where
the penalty parameter σ satisfies (16) with (17). Let assumptions (A1) – (A4) be
valid. Then the discetization error eh ≡ uh−u satisfies the estimate

max
t∈[0,T ]

‖eh(t)‖L2(Ω) +Cm

∫ T

0
|||eh(ϑ)|||2 dϑ ≤ Q(T ) ∑

K∈Th

h2μK−2
K

p2sK−3
K

‖u‖2
K, (21)

where μK = min(pK + 1,sK), K ∈ Th and Q(T ) is a function of T independent of
hK , pK , sK , K ∈Th.

Proof. See [6, Theorem 18]. ��
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Remark 1. The term Q(t) diverges for Cm → 0, hence the estimate (21) cannot be
used. The case Cm → 0 corresponds to a vanishing diffusion term R(u,∇u). The
blow up of the estimate is caused by the presence of the nonlinear convective term
and the use of Gronwall’s lemma.

Remark 2. We observe that the error estimate (21) is
i) h-suboptimal in the L∞(0,T,L2(Ω))-norm, namely O(hp),
ii) h-optimal in the L2(0,T,H1(Ω))-seminorm, namely O(hp),
iii) p-suboptimal in the L∞(0,T,L2(Ω))-norm and the L2(0,T,H1(Ω))-semi-

norm, namely O(p−(s−3/2)).
The suboptimality of the h-estimate is caused by the nonsymmetry of the discrete
problem which prevent us to use the well-known Aubin-Nitsche theorem (usually
employed in order to obtain the optimal L2-error estimates). The suboptimaly of
the p-estimate is a consequence of the used multiplicative trace inequality, similar
results was obtained, e.g., in [10].

4 Numerical Examples

In this section, we numerically verify the error estimates (21). We consider the non-
linear convection–diffusion equation

∂u
∂ t

+
2

∑
s=1

u
∂u
∂xs

=
2

∑
s=1

∂
∂xs

(ν(|∇u|)∇u)+ g in Ω × (0,T), (22)

where ν(w) : (0,∞)→ IR is chosen in the form

ν(w) = ν∞ +(ν0−ν∞)(1 + w)−γ , γ > 0. (23)

We set ν0 = 0.15, ν∞ = 0.1, γ = 1/2, Ω = (0,1)2, T = 80, and define the function
g, the initial and boundary conditions in such a way that the exact solution has the
form

u(x1,x2,t) =
(
1− e−10t) û(x1,x2), (24)

where

û(x1,x2) = 2rαx1x2(1− x1)(1− x2) = rα+2 sin(2ϕ)(1− x1)(1− x2),

where (r,ϕ) are the polar coordinates and α ∈ IR is a constant. For t = T = 80 the
solution u differs very little from the “steady state” solution û. The function û is
equal to zero on ∂Ω and its regularity depends on the value of α , namely (cf. [2])

û ∈Hβ (Ω) ∀β ∈ (0, α + 3), (25)

where Hβ (Ω) denotes (in general) the Sobolev-Slobodetskii space of functions with
“non-integer derivatives”. In the presented numerical tests we use the value α =
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−1/2, which gives û ∈ Hβ (Ω), β < 5/2. The inequality (21) implies the error
estimates in ‖ · ‖L2(Ω) and ||| · ||| norms of order

O(hq) with q≤min(3/2, p), (26)

where p denotes the degree of polynomial approximation.
We solved the problem (22) – (23) by method (18) using a piecewise linear (P1),

quadratic (P2), and cubic (P3) approximations on 6 triangular meshes having 128,
288, 512, 1152, 2048 and 4608 elements. The temporal discretization was carried
out by a three-step backward difference formula with a small time step which com-
pletely avoid any influence of the time discretization. Since solution û has a singu-
larity at the origin (x1 = x2 = 0), we evaluate the computational errors not only over
Ω but also over Ω reg ≡Ω \ (0,0.125)2.

Table 1 shows computational errors in the L2(·)-norm and in H1(·)-seminorm
and the corresponding experimental orders of convergence (EOC) at T = 20. We
observe the following:

i) EOC in the | · |H1(Ω)-seminorm perfectly correspond with (26). On the other
hand, EOC in the ‖ · ‖L2(Ω)-norm is better than (26), namely O(hq) with q ≤
min(5/2, p+1). This precisely corresponds to the result from [9], where for any
β ∈ (1,5/2) we get

‖v− Ihv‖L2(Ω) ≤C(β )hmin(β ,p+1)‖v‖Hβ (Ω), v ∈ Hβ (Ω), (27)

where Ihv is a piecewise polynomial Lagrange interpolation to v of degree ≤ p
and C(β ) is a constant independent of h and v.

ii) Since û is regular over Ω reg it follows from (21) that the theoretical error esti-
mates in the | · |H1(Ω reg)-seminorm and ‖ · ‖L2(Ω reg)-norm are of order O(hp). We
observe a very good agreement of EOC in the | · |H1(Ω reg)-seminorm. On the other
hand, errors in the ‖ · ‖L2(Ω reg)-norm do not achieved the expected EOC of order

O(hp+1) following from (27) but are in agreement with the theoretical results.
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8. Dolejšı́, V., Feistauer, M., Sobotı́ková, V.: A discontinuous Galerkin method for nonlinear
convection–diffusion problems. Comput. Methods Appl. Mech. Engrg. 194, 2709–2733
(2005)

9. Feistauer, M.: On the finite element approximation of functions with noninteger derivatives.
Numer. Funct. Anal. and Optimiz. 10(91-110) (1989)
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Numerical Simulations of Incompressible
Laminar Flow for Newtonian and
Non-Newtonian Fluids

R. Keslerová and K. Kozel

Abstract This paper deals with numerical solution of two dimensional and three
dimensional laminar incompressible flows for Newtonian and non-Newtonian flu-
ids through a branching channel. One could describe these problems using Navier-
Stokes equations and continuity equation as a mathematical model using two dif-
ferent viscosities. The unsteady system of Navier-Stokes equations modified by un-
steady term in continuity equation (artificial compressibility method) is solved by
multistage Runge-Kutta finite volume method. Steady state solution is achieved for
t→ ∞ and convergence is followed by steady residual behaviour. For unsteady so-
lution high compressibility coefficient β 2 is considered. The numerical results for
two and three dimensional cases of flows in the branching channel for Newtonian
and non-Newtonian fluids are presented and compared.

1 Introduction

In the human body, plasma and bloody cells form a non-Newtonian fluid whose flow
properties are uniquely adapted to the architecture of the blood vessels. Therefore
study of blood flow in large and medium vessels is a very complex task. In this work
blood flow in cardiovascular system is simply simulated by non-Newtonian model
flow and it is compared with corresponding Newtonian fluids flow.

R. Keslerová and K. Kozel
Department of Technical Mathematics, Faculty of Mechanical Engineering, Czech Technical Uni-
versity, Karlovo nám. 13, 121 35 Praha 2, Czech Republic, e-mail: keslerov@marian.fsik.cvut.cz,
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465



466 R. Keslerová and K. Kozel

2 Mathematical Model

2.1 Non-Newtonian Fluids

Firstly, model of non-Newtonian fluids are considered. A system of generalized
Navier-Stokes equations and continuity equation is the mathematical model. In con-
servative form one can read

R̃Wt + Fx + Gy =
R̃
Re

(Rx + Sy) R̃ = diag(0,1,1), Re =
q∞l
ν

, (1)

where

W = (p,u,v)T , F = (u,u2 + p,uv)T , G = (v,uv,v2 + p)T , (2)

R = (0,g11,g21)T , S = (0,g12,g22)T .

The expression of the right hand side is one of the simplest non-Newtonian mod-
els

gi j = 2 | e |r ei j, ei j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, r ∈ [0,1] (3)

and

| e |=
√

e2
11 + e2

12 + e2
21 + e2

22 =

√
u2

x +
1
2
(uy + vx)2 + v2

y. (4)

The definition of the Reynolds number in two or three dimensional case are given
by the relations

Re =
q∞l
ν

, Re =
q∞4S
νO

(5)

where q∞ is the reference velocity, l is the reference length, S and O represent vol-
ume and circumference of the entrance’s cut, ν is the kinematic viscosity.

2.2 Newtonian Fluids

Now we consider Newtonian fluids. It’s the special form of non-Newtonian fluids
with r = 0 (for more details see [1]). The conservative form of the system of Navier-
Stokes equation is

R̃Wt + Fx + Gy =
R̃

Re
ΔW, (6)

the definitions of matrix R̃ and Reynolds number Re are the same as above. The
wector W and fluxes F,G are given by relations in (2).
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2.3 Boundary Conditions

The Dirichlet boundary conditions for velocity vector (u,v)T are used at the inlet
and other variables are computed by extrapolation from the domain. At the outlet a
pressure value is given and velocity components are computed by the extrapolation
from the domain. The zero Dirichlet boundary conditions for the velocity are used
on the wall. For pressure we used extrapolation from computed domain to boundary
where normal derivative of pressure is zero - Prandtl’s boundary layer relation.

3 Numerical Solution by Finite Volume Method

In this part a steady state solution is considered. In such a case the artificial com-
pressibility method can be applied, i.e. the equation of continuity is completed with
a term 1

β 2 pt [4]. Therefore the system of 2D Navier-Stokes equations for Newtonian
fluids (6) has the form

Wt + F̃x + G̃y = 0 (7)

where

W =
(

p
β 2 ,u,v

)T

, β ∈ℜ, F̃ = F− 1
Re

Fv, G̃ = G− 1
Re

Gv (8)

and F,G are inviscid fluxes defined by equation (2), Fv,Gv are viscous fluxes [2]
Fv = (0,ux,vx)T , Gv = (0,uy,vy)T .

For steady state solution β is equal to 1. This system of equations is solved by
finite volume method in the form of multistage Runge-Kutta method

W n
i j = W (0)

i j

W (r)
i j = W (0)

i j −αrΔ tRW (r−1)
i j (9)

W n+1
i j = W (m)

i j r = 1, . . . ,m,

where m = 3, α1 = α2 = 0.5,α3 = 1.0, RW n
i j = RW n

i j−DW n
i j, and the steady residual

RWi j is defined by

RWi j =
1
μi j

4

∑
k=1

[(
Fk− 1

Re
Fv

k

)
Δyk−

(
Gk− 1

Re
Gv

k

)
Δxk

]
. (10)

The term DWi j presents the artificial viscosity of Jameson’s type and it’s used for
higher Reynolds numbers (for more details see, e.g. [5]).

For the satisfaction of the stability condition the time step is computed from the
formula (see e.g. [1])
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Δ t = min
i, j,k

CFL μi j

ρAΔyk +ρBΔxk + 2
Re

(
(Δxk)2+(Δyk)2

μi j

) , (11)

ρA =| û |+
√

û2 + 1 ρB =| v̂ |+
√

v̂2 + 1,

and | û |, | v̂ | are the maximal values of the components of velocity inside the com-
putational domain, the definition of Δxk,Δyk is shown in Fig. (1). The CFL number
for three-stage Runge-Kutta is equal to 2.

Fig. 1 Finite volume cell Di j

and dual volume cell Dk

Dij D
D

D

D

D D

i−1,j

i,j−1

i+1,j

i,j+1

iji−1,j

k=2

k=4

k=1

Δ
Δy

x2

2

k=3

Dk

k=1

The computation is performed until the value of the L2-norm of residual satisfy
Rez W n

i j ≤ εERR with εERR small enough (MN denotes the number of grid cells in
the computational domain), where

Rez W n
i j =

√√√√ 1
MN ∑i j

(
W n+1

i j −W n
i j

Δ t

)2

. (12)

3.1 Unsteady Flow

For nonstationary case the artificial compressibility constant β is equal to 10 or
sequences βk → ∞ (βk higher) is used. The boundary conditions are the same as
for steady computation except one of the outlet pressure value. Here we prescribe
pressure by the function

pout =
1
4

(
1 +

1
2

sin(ωt)
)

(13)

where ω is the angular velocity ω = 2π f and f is the frequency.

4 Numerical Results

In this section the numerical results of 2D and 3D case for Newtonian and non-
Newtonian fluids flow are presented. The branching channel has one entrance and
two exit parts. First results for non-Newtonian fluids were presented in [3].
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2D results in Fig. 2 and 3 show the velocity magnitude distribution and con-
vergence history for the Newtonian and non-Newtonian fluids. The same shape of
geometry with the different angle between axis x and the branch is presented.

n

re
si

d
ua

l

0 50000 100000 150000 200000

-14

-12

-10

-8

-6

-4

-2

rez p

rez u

rez v

n

re
si

d
ua

l

0 200000 400000 600000

-14

-12

-10

-8

-6

-4

-2

rez p

rez u

rez v

1

1.1

0.8

1.1

1.1

1.1
0.6

1.10.3

0.5 1 1.1 1.1

0.8 0.7

0.3

0.6

0.8

0.2

0.8

0.9

0.4

angle 20

Newtonian

1

1.1

0.8

1.1

1.1

1.1
0.6

1.10.3

0.5
1.1

1.1 1.1

0.8 0.8

0.3

0.6

0.8

0.2

0.8

0.8

0.4

angle 20

nonNewtonian

Fig. 2 Velocity isolines for Newtonian fluids (Re=500) and non-Newtonian fluids (Re=2000) with
the angle 20 degrees
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Fig. 3 Velocity isolines for Newtonian fluids (Re=100) and non-Newtonian fluids (Re=1000) with
the angle 60 degrees

In the Fig. 4 and Fig. 5 the velocity isolines and history of convergence are
shown. The same geometry with two angles is used for the corresponding results
for Newtonian and non-Newtonian fluids.

The three dimensional results are presented in this part of this section. The ge-
ometry of these channels is similar to 2D geometry. As above the velocity mag-
nitude distributions for Newtonian and non-Newtonian fluids are presented. The
history of convergence for residuals is shown for all cases. Fig. 6 and Fig. 8 show
the Newtonian fluids and Fig. 7 and Fig. 9 show the corresponding results for the
non-Newtonian fluids.
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Fig. 4 Velocity isolines for Newtonian fluids (Re=800) and non-Newtonian fluids (Re=2000) with
the angle 30 degrees
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Fig. 5 Velocity isolines for Newtonian fluids (Re=500) and non-Newtonian fluids (Re=1300) with
the angle 90 degrees

Fig. 6 Velocity magnitude distribution for Newtonian fluids (Re=500), cross-section of plane xy
and cuts through the channel

First results for unsteady case are shown in this work. We set pressure outlet
value as a function of time see 3.1, the frequency f is equal to 2Hz. The results are
displayed during one period Fig. 10 and Fig. 11. Corresponding stationary solutions
were shown in the Fig. 2.
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Fig. 7 Velocity magnitude distribution for non-Newtonian fluids (Re=1000), cross-section of plane
xy and cuts through the channel

Fig. 8 Velocity magnitude distribution for Newtonian fluids (Re=500), cross-section of plane xy
and cuts through the main part and small branch of the channel

Fig. 9 Velocity magnitude distribution for non-Newtonian fluids (Re=1000), cross-section of plane
xy and cuts through the main part and small branch of the channel

5 Conclusion

Numerical model for simulation of Newtonian and non-Newtonian fluid flow in a
branching channel for two dimensional and three dimensional cases was developed.
The method was applied for several different types of channel configurations. For
non-Newtonian case the simple model of non-Newtonian flows was used. The pre-
sented results should be useful as a blood flow approximation. Two dimensional and
three dimensional results for Newtonian fluids were compared with non-Newtonian
corresponding results.
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Numerical Solution of 2D and 3D Unsteady
Viscous Flows

K. Kozel, P. Louda, and J. Přı́hoda

Abstract In this work, an artificial compressibility method is used to solve steady
and unsteady flows of viscous incompressible fluid. The method is based on implicit
higher order upwind discretisation of Navier-Stokes equations. The extension for
unsteady simulation is considered by increasing artificial compressibility parameter
or by using dual time stepping. Turbulence is modelled by the eddy-viscosity SST
(Shear Stress Transport) model. Results for unsteady laminar flows around a circular
cylinder and for unsteady turbulent free synthetic jet are presented.

1 Introduction

The work deals with numerical solution of 2D and 3D incompressible viscous
(laminar and turbulent) unsteady flows. Solving viscous incompressible flows mod-
elled by the system of Navier-Stokes equations one can find firstly velocity vec-
tor (u,v,w)n+1 using the numerical solution of momentum equations with p = pn

and then solving a corresponding Poisson equation for pn+1 using new velocity
(u,v,w)n+1 on the right hand side of the Poisson equation. Methods using the Pois-
son equation for pressure instead of continuity equation are generally limited in time
accuracy, especially if they are implicit. On the other hand an implicit discretisation
is needed for application of advanced turbulence models which are integrated up
to the wall and require refined mesh in the boundary layer. The other problem of
this approach is the solution of the Poisson equation itself. In this work, authors use
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structured multiblock non-orthogonal non-regular grids. For such grids the conver-
gence of a Poisson solver could deteriorate compared with orthogonal one block
grid. That is the reason to apply the approach based on the artificial compressibility
in this work. The idea, proposed by Chorin [2], is to complete continuity equation
by a pressure time derivative 1

β 2
∂ p
∂ t and then, because the whole inviscid system

has the form of the system of compressible Euler equations (non-linear hyperbolic
system), one can use a suitable numerical scheme for compressible flow compu-
tation. Using steady boundary conditions and time dependent method to solve the
system of Euler or Navier-Stokes equations the steady solution of the model will
be achieved. An extension for unsteady simulations can be achieved by increasing
artificial compressibility parameter or by introducing dual time.

2 Mathematical Model

In the simplest form of the artificial compressibility method [2], only the continuity
equation is modified by adding pressure time derivative

1
β 2

∂ (p/ρ)
∂ t

+
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= 0, ρ = const (1)

where β is a positive artificial compressibility parameter. The inviscid part of modi-
fied Navier-Stokes equations is now hyperbolic and can be solved by standard meth-
ods for hyperbolic conservation laws. The system including the modified continuity
equation and the momentum equations can be written for a domain of solution Ω in
the following form

Γ
∂W
∂ t

+ Rez(W ) = 0, Γ = diag[β−2,1,1,1], W = col[p/ρ ,u1,u2,u3], (2)

(x1,x2,x3) ∈Ω , t ∈ (0,∞)

where W is vector of unknown kinematic pressure and velocity components, and
steady residual Rez(W ) contains all inviscid and viscous terms. However, the diver-
gence free velocity field is not achieved before steady state, ∂ p/∂ t = 0. In unsteady
case, the velocity divergence error may have negligible impact on relevant flow pa-
rameters if the β 2 is large enough. Other possibility of obtaining unsteady solution
of the system

R
∂W
∂ t

+ Rez(W ) = 0, R = diag[0,1,1,1] (3)

is to use the iterative solution in artificial (dual, iterative) time τ between two time
grid levels (tn,tn+1) described by the following system
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Γ
∂W
∂τ

+Rezuns(W )=0, Rezuns(W )=R
∂W
∂ t

+Rez(W ), R=diag[0,1,1,1], (4)

(x1,x2,x3) ∈Ω , t ∈< tn,tn+1 >, τ ∈ (0,∞)

for τ ∈ (0,∞). The numerical solution in τ is realised iteratively for τ = τ0 =
tn, τ1, τ2, . . . and the iterative process in τ is considered in such a way that for τ→∞
we achieve W n→W n+1. The advantage is that the unsteady residual Rezuns(W ) can
be computed in each grid point t = tn and the convergence to unsteady solution can
be observed in similar way as in steady solution realised by time dependent method.

In order to simulate turbulent flows the Reynolds averaging procedure is used.
For unsteady simulation it can be understood as a phase averaging since simulated
flows have periodic “steady” state. The Reynolds averaged equations formally dif-
fer from the Navier-Stokes (NS) equations by additional momentum transport ex-
pressed by Reynolds stress tensor. In this work, the Reynolds stress is modelled
using the two-equation SST (Shear Stress Transport) turbulence model [4].

3 Numerical Method

The stability limitation of an explicit scheme for 1D inviscid flow requires Δ t ∼
Δx/(|u|+√|u|2 +β 2), where u is flow velocity vector and Δx grid spacing. It be-
comes more severe as the β increases. The choice of β is problem dependent, there
is no general optimum procedure. For robustness it is recommended [7] the β be
constant for the whole solution domain, although in general the choice should de-
pend on local grid and local convergence rate. In authors experience with constant
β , for orthogonal grids the convergence e.g. in L2 norm for pressure is as fast as the
one for other unknowns (velocity components) and the steady residual level easily
is machine zero even for highly refined grids. For non-orthogonal grids the pressure
residual settles on higher steady value than the other residuals. This, however, does
not seem to affect the accuracy of velocity field. The authors choose the β in order of
magnitude of maximum flow velocity in the solution domain for steady simulations.

The time discretisation schemes considered here are implicit both for physical
and artificial time. In the single time method for unsteady simulations, a second
order accurate three-layer scheme is used in the form

Γ
3Wn+1

i, j,k −4Wn
i, j,k +Wn−1

i, j,k

2Δ t
+ Rez(W)n+1

i, j,k = 0. (5)

For the dual time method, the scheme is combination of the backward Euler method
for artificial time (superscript ν) and three-layer scheme for physical time (super-
script n)

Γ
W ν+1

i, j,k −Wν
i, j,k

Δτ
+ R

3Wν+1
i, j,k −4Wn

i, j,k +Wn−1
i, j,k

2Δ t
+ Rez(W)ν+1

i, j,k = 0. (6)
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where physical time step Δ t is chosen according to the solved problem. The Δτ for
explicit scheme is a suitable function of Δ t and spatial grid steps which fulfils the
condition that iterative process in τ is stable. In our case the scheme in τ is implicit
and Δτ is not limited. It is chosen to be very large≈ 107Δ t in order to achieve W n+1

quickly in 8-10 iteration steps.
The steady residuals are computed by a cell-centered finite volume method with

quadrilateral or hexahedral finite volumes in 2D or 3D case respectively. The dis-
cretisation of convective terms uses third order accurate upwind interpolation. Pres-
sure gradient is computed by central approximation. Viscous terms are approxi-
mated using the second order central scheme, with cell face derivatives computed
on a dual grid of finite volumes constructed over each face of primary grid. The
discrete expression for residual is linearized with respect to unknown vector W in
each finite volume from the stencil, by means of the Newton method. The deriva-
tives are computed analytically. Only five (2D) or seven (3D) finite volumes are
retained in the implicit discrete operator. The resulting linear system is thus five or
seven block diagonal. The solution is found by a line relaxation method with di-
rect method for block tri-diagonal matrix inversion. The two equations forming the
turbulence model are solved decoupled from NS equations and the discretisation is
same as for the NS equations. Only the negative part of source terms is linearized
and included into the implicit operator.

4 Numerical Results

4.1 Flows Around Circular Cylinder

Here, the laminar 2D flow around a circular cylinder is simulated. First we con-
sider the flow around a cylinder placed slightly eccentrically inside a channel. The
Reynolds number Re = UD/ν = 100, where U = 2Um/3 is the bulk inlet velocity,
Um maximum inlet velocity and D diameter of the cylinder. At this Reynolds num-
ber, unsteady periodic flow evolves due to the vortex shedding on the cylinder. The
compilation [5] reports results for this case achieved by several numerical methods.
The results of present dual time artificial compressibility method with β = U in the
form of drag and lift coefficients are shown in Fig. 1 and agree well with reference
[5]. The instantaneous flow-field for dual time stepping scheme is shown in Fig. 2.
The single time method however gave unsatisfactory results, see [3].

Next we consider a cylinder in the free stream of constant velocity Um. The cylin-
der is placed in the middle of computational domain 40D(streamwise)×100D. The
results are achieved with dual time method with β = Um,Δ t = 0.06D/Um.

Fig. 3 shows dependency of the Strouhal number (frequency) of vortex shedding
for different Reynolds numbers, in comparison with the empirical corelation. The
vortex shedding starts at Re = 47.5±0.7 [8]. In our computation, the flow is steady
for Re = 30, unsteady but non-periodic for Re = 40 and periodic at Re = 47 (shown
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Fig. 1 Laminar flow around cylinder, dual time stepping. Left: evolution from initial state, right:
zoom of periodic flow

Fig. 2 Instantaneous laminar flow around cylinder, dual time stepping. Isolines of pressure (above)
and velocity (below)

in Fig. 3). However for lower Re the computed shedding frequency is higher than
an empirical correlation St = 0.266− 1.016/

√
Re [8] suggests. It should be noted

that result of Re = 140 was achieved on a finer grid than other results. Original grid
has 116 finite volumes on the cylinder surface, total approx. 16800 finite volumes,
whereas the finer grid has 133 volumes on the cylinder surface, in total approx.
21500 volumes. The thickness of first finite volume on the cylinder surface was
in both cases 2 ·10−3D. On the finer grid, the Strouhal number decreased to 0.1821
from 0.1839 on the original grid. The results are summarized in Tab. 1. The Strouhal
number is more reliable (less sensitive) parameter than force coefficients. The evo-
lution of steady (i.e. in time) and unsteady (i.e. between two time levels, typical for
all time steps) residual is shown in Fig. 4 (Re = 100).

Table 1 Strouhal number, drag and lift coefficients for cylinder in free space

Re 47 50 60 80 100 120 140

St 0.1336 0.1362 0.1438 0.1547 0.1642 0.1733 0.1821
CD (mean) 1.55 1.53 1.50 1.43 1.36 1.34 1.34
CL (ampl.) 0.15 0.18 0.22 0.22 0.23 0.34 0.45
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Fig. 4 Convergence history for dual time method (left: steady residuals, right: unsteady residuals)

4.2 Turbulent Synthetic Free Jet

In this part, authors consider the synthetic jet generated by periodical inflow/outflow
with zero time average value in the circular nozzle [6]. The nozzle diameter D =
8 mm and Reynolds number Re = UmaxD/ν = 13325. The computational domain
of conical shape is shown in Fig. 5. The length of the domain is 60D. The problem
is solved in Cartesian coordinates. The grid is split to several structured blocks in
order to include paraxial zone, see Fig. 5. The boundary conditions are:

• nozzle (x = 0,
√

(y2 + z2)≤ D/2):

u = U sin(2π f t), v = 0.1vNmn, w = 0.1wNmn,

k =

{
3
2 (uTu)2 for u > 0,

kNmn otherwise
ω =

{
k/(5ν) for u > 0,

ωNmn otherwise

where frequency f = 75Hz, streamwise amplitude U = Umax[1− (2r/D)26],
Umax = 27.3 m/s, where 0 ≤ r ≤ D/2 is the radial position. The vNmn, wNmn

are values as obtained using the homogenous Neumann condition and 0.1 is ad
hoc parameter. The turbulence intensity in the nozzle was set to Tu = 0.1.
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• wall (x = 0, 0.5D≤
√

y2 + z2 ≤ 4.95D): u = v = w = 0, k = 0, ω = ωw, where
ωw is value of ω on the wall. A constant value of 2 ·103Umax/D was chosen.

• free boundary: This is the rest of domain boundary. Zero Neumann boundary
condition was used for velocity, k and ω at x = 60D and zero derivative in the
radial direction for these variables on the conical part.

The dual time stepping method with β = Umax, Δ t = 1/72 of forcing period and
Δτ = 107Δ t was used. The Fig. 7 shows time averaged velocity on jet axis. The
computational result agrees well with experiment [6], except for distance from the
nozzle smaller than ≈ 0.4D. The computational results achieved using the FLU-
ENT code with an axisymmetrical formulation [6] are also shown. Inlet boundary
condition in FLUENT differs from the present one and so does the velocity near
nozzle. In FLUENT, the velocity on the axis decreases too fast, which suggests a
higher spreading rate of the jet than in experiment. The present computation seems
satisfactory here, which means that the turbulence model is acceptable. Next Fig. 6
shows velocity on the axis for several phase angles of inlet excitation. The com-
puted instantaneous velocity corresponds to phase averaged velocity of the exper-
iment [6]. In both cases the unsteadiness reaches up to ≈ 18 nozzle diameters far
away. For larger distances, the flow-field corresponds to steady free jet. The Fig. 8
shows self-similarity of velocity profiles, where r0.5 denotes the radial distance from
jet axis, where the velocity reaches half of the axial velocity. The self-similarity is
present except for region near the nozzle. Velocity profiles also agree well with the
empirical correlation U/Umax = exp[− ln(2)(r/r0.5)2] according to [1].

x

y

z

Fig. 5 Computational domain for synthetic jet flow

5 Conclusions

The work presents two variants of an implicit artificial compressibility method for
unsteady simulations. The methods were tested using laminar flows around circular
cylinder and turbulent synthetic free jet flow. The single time method has unsat-
isfactory accuracy. The dual time stepping method is found more reliable and of
sufficient accuracy.
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Local Projection Stabilization of Finite Element
Methods for Incompressible Flows

G. Lube, G. Rapin, and J. Löwe

Abstract A unified analysis for finite element discretizations of linearized incom-
pressible flows using the local projection method with equal-order or inf-sup stable
velocity-pressure pairs together with a critical comparison is given.

1 Introduction

A standard numerical approach to the incompressible Navier-Stokes model

∂tuuu−ν*uuu+(uuu ·∇)uuu+∇p = f̃ff , ∇ ·uuu = 0 in Ω × (0,T ) (1)

for velocity uuu and pressure p is to semi-discretize in time first with an A-stable
implicit scheme and to apply a fixed-point or Newton-type iteration in each time
step. This leads to auxiliary Oseen problems (with σ ≥ 0 from time discretization)

−ν*uuu+(bbb ·∇)uuu+σuuu+∇p = fff , ∇ ·uuu = 0 in Ω . (2)

Residual based stabilization (RBS) methods are the traditional way to cope with
spurious solutions of the Galerkin finite element (FE) approximation of (2) caused
by violation of the discrete inf-sup stability condition and/or dominating advection.
RBS methods are robust and easy to implement, but have severe drawbacks mainly
stemming from the strong velocity-pressure coupling in the stabilisation terms.

The key idea of the variational multiscale (VMS) methods [1] is a separation into
large, small and unresolved scales. The influence of the unresolved scales has to be
modeled. Almost all stabilization methods can be interpreted as VMS methods. In
local projection stabilization (LPS) methods [1, 5] the influence of the unresolved
scales is modeled by an artificial fine-scale diffusion term.

G. Lube, G. Rapin, and J. Löwe
Math. Department, Georg-August-University Göttingen, Lotzestrasse 16-18, D-37083 Göttingen,
Germany, e-mail: lube/grapin@math.uni-goettingen.de
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Mostly, an equal-order interpolation of velocity-pressure is applied. Other au-
thors prefer discrete inf-sup stable pairs as the natural choice from regularity point
of view for fixed ν > 0. Here, a unified theory of LPS methods for equal-order and
inf-sup stable pairs for problem (2) is presented. For full proofs, see [4]. Finally, a
comparison of both variants is given.

2 Variational Formulation and LPS-Discretization

Standard notations for Lebesgue and Sobolev spaces are used. The L2(G) inner
product in G⊂Ω is denoted by (·, ·)G with (·, ·) = (·, ·)Ω . The notation a � b is used
if there exists a constant C > 0 independent of all relevant quantities s.t. a≤Cb.

The weak formulation for the Oseen problem (2) with homogeneous Dirichlet
data reads: Find U = (uuu, p)∈VVV×Q := [H1

0 (Ω)]d×L2
0(Ω), s. t. ∀V = (vvv,q)∈VVV×Q:

A(U,V ) = (ν∇uuu,∇vvv)+ ((bbb ·∇)uuu+σuuu,vvv)− (p,∇ · vvv)+ (q,∇ ·uuu) = ( fff ,vvv). (3)

Let Ω ⊂ Rd ,d ∈ {2,3} be a bounded, polyhedral domain and ν ∈ L∞(Ω) with
ν > 0, fff ∈ [L2(Ω)]d , bbb ∈ [L∞(Ω)∩H1(Ω)]d with ∇ ·bbb = 0 and σ ∈R+. Usually, bbb
is a FE solution of (2) with (∇ ·b,qh) = 0 for some qh and ∇ ·b does not vanish. A
remedy is to write the advective term in skew-symmetric form. The analysis can be
extended to problems resulting from Newton iteration including the term (uuu ·∇)bbb.
Sufficiently small time steps ensure coercivity of A(·, ·).

Let Th be a shape-regular, admissible decomposition of Ω into d-dimensional
simplices or quadrilaterals for d = 2 or hexahedra for d = 3. hT is the diameter of
a cell T ∈Th and h = maxhT . Let T̂ be a reference element of Th and FT : T̂ → T
the standard (affine or bi-/trilinear) reference mapping.

Set Pk,Th := {vh ∈ L2(Ω) | vh|T ◦ FT ∈ Pk(T̂ ),T ∈ Th} with the set Pk(T̂ ) of
complete polynomials of degree k on T̂ and Qk,Th := {vh ∈ L2(Ω) | vh|T ◦ FT ∈
Qk(T̂ ),T ∈ Th} with the set Qk(T̂ ) of all polynomials on T̂ with maximal degree
k in each coordinate direction. The FE space of the velocity is given by Vh,ku =
[Qku,Th ]

d ∩VVV or Vh,ku = [Pku,Th ]
d ∩VVV with scalar components Yh,ku of Vh,ku . For

simplicity, the analysis is restricted to continuous discrete pressure spaces Qh,kp =
Qkp,Th ∩C(Ω) resp. Qh,kp = Pkp,Th ∩C(Ω ). An extension to discontinuous spaces
Qh,kp is given in [6].

The analysis below takes advantage of the inverse inequalities

∃μinv | |vvv|1,T ≤ μinvk2
uh−1

T ‖vvv‖0,T , ∀T ∈Th, ∀vvvh ∈VVV h,ku . (4)

The Scott-Zhang quasi-interpolant obeys the interpolation properties

∃C > 0 | ‖v− Iu
h,ku

v‖m,T ≤Chl−m
T k−(r−m)

u ‖v‖r,ωT , 0≤ m≤ l = min(ku +1,r) (5)
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for v ∈ H1
0 (Ω)∩Ht(Ω), t > 1

2 with v|ωT ∈ Hr(ωT ), r ≥ t, on the patches ωT :=⋃
T ′∩T �= /0 T ′. This property can be extended to the vector-valued case with IIIu

h,ku
: VVV →

VVV h. A similar interpolation operator I p
h,kp

satisfying (5) is defined for the pressure.
In LPS-methods the discrete function spaces are split into small and large scales.

Stabilization terms of diffusion-type acting only on the small scales are added.
A first variant is to find the large scales on a coarse non-overlapping, shape-

regular mesh Mh = {Mi}i∈I . Mh is constructed by coarsening Th s. t. each M ∈Mh

with diameter hM consists of one or more neighboring cells T ∈ Th. Moreover,
suppose that there exists C ≥ 1 s. t. hM ≤ChT for all T ∈Th with T ⊆M ∈Mh.

Following [5] we define the discrete velocity space Du
h as a discontinuous FE

space on Mh. The restriction to M ∈Mh is denoted by Du
h(M) = {vh|M | vh ∈ Du

h}
The local projection πu

M : L2(M) → Du
h(M) defines the global projection πu

h :
L2(Ω) → Du

h by (πu
h v)|M := πu

M(v|M) for all M ∈Mh. Denoting the identity on
L2(Ω) by id, the associated fluctuation operator κu

h : L2(Ω)→ L2(Ω) is defined
by κu

h := id − πu
h . These operators are applied to vector-valued functions in a

component-wise manner.
A discrete space Dp

h and a fluctuation operator κ p
h are defined similarly.

The second choice consists in choosing lower order discontinuous FE discretiza-
tions Du

h×Dp
h on Th or by enriching VVV h,ku ×Qh,kp . The same framework as in the

first approach can be used by setting Mh = Th.
The LPS scheme reads: find Uh = (uuuh, ph) ∈VVV h,ku ×Qh,kp s.t.

A(Uh,Vh)+ Sh(Uh,Vh) = ( fff ,vvvh), ∀Vh = (vh,qh) ∈VVV h,ku ×Qh,kp , (6)

where the additional stabilization term is given by

Sh(Uh,Vh) := ∑
M∈Mh

[
τM(κκκu

h ((bbb ·∇)uuuh) ,κκκu
h ((bbb ·∇)vvvh))M

+ μM(κ p
h (∇ ·uuuh) ,κ

p
h (∇ · vvvh))M +αM (κκκu

h(∇ph),κκκu
h(∇qh))M

]
. (7)

An alternative is to replace the first two terms of Sh by the projection of ∇uuuh.
The constants τM , μM and αM will be determined in Section 3 based on an a

priori estimate. Please note that the stabilization Sh acts solely on the fine scales.
In order to control the consistency error of the κu

h -dependent stabilization terms,
the space Du

h has to be large enough for the approximation property:

Assumption 1 The fluctuation operator κu
h admits for 0≤ l ≤ ku, the property:

∃Cκ > 0 | ‖κu
h q‖0,M ≤Cκhl

Mk−l
u |q|l,M, ∀q ∈ Hl(M), ∀M ∈Mh. (8)

Assumption 1 is valid for the L2-projection πu
h . Due to the consistency of the κ p

h -
dependent term in Sh, thus involving Dp

h , such condition is not needed for Dp
h .

The following property of the symmetric and non-negative term Sh(·, ·) is valid
for all U ∈VVV ×Q, see [4], Lemma 2.1:

Sh(U,U)≤CS|uuu|21 +C2
κ
(

max
M

αM
)|p|21, CS = C2

κ max
M

[
τM‖bbb‖2

(L∞(M))d + μM
]
. (9)
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Following [5], a special interpolant ju
h : H1(Ω)→ Yh for the velocity is con-

structed s.t. the error v− ju
hv is L2-orthogonal to Du

h for all v ∈ H1
0 (Ω). A corre-

sponding result can be proved for the pressure too. In order to conserve the standard
approximation properties, we additionally assume

Assumption 2 Let Yh(M) := {vh|M | vh ∈Yh,vh|Ω\M = 0}. There exists βu,βp s. t.

inf
qh∈Du

h

sup
vh∈Yh(M)

(vh,qh)M

‖vh‖0,M‖qh‖0,M
≥ βu > 0. (10)

inf
qh∈Dp

h

sup
vh∈Qh,kp

(vh,qh)M

‖vh‖0,M‖qh‖0,M
≥ βp > 0 (11)

Remark 1. The space Du
h must not be too rich w.r.t. (10) but rich enough w.r.t. (8).

Lemma 1. ([4], Lemmata 2, 3) Set ωM :=
⋃

T⊂M ωT for M ∈Mh. Under Assump-
tion 2 there are interpolants ju

h : VVV →VVV h,ku s.t. for all v ∈ [Hl(Ω)]d ∩V:

(v− ju
hv,qh) = 0 ∀qh ∈ Du

h, (12)

‖v− ju
hv‖0,M +

hM

k2
u
|v− ju

hv|1,M �
(

1 +
1
βu

)hl
M

kl ‖v‖l,ωM (13)

and an interpolant jp
h : Q→ Qh,kp s.t. for all v ∈ Q∩Hl(Ω):

(v− jp
h v,qh) = 0, ∀qh ∈ Dp

h , (14)

‖v− jp
h v‖0,M +

hM

k2
p
|v− jp

h v|1,M �
(

1 +
1
βp

)hl
M

kl
p
‖v‖l,ωM . (15)

Remark 2. (13), (15) are optimal w.r.t. hM but sub-optimal w.r.t. ku,kp in | · |1,M .

3 A Priori Analysis

The stability of the LPS scheme is given for the mesh-dependent norm

|[V ]|2 := ‖√ν∇vvv‖2
0 +‖√σvvv‖2

0 + Sh(V,V ), V = (vvv,q) ∈VVV ×Q.

Then, a ”post-processing” argument for the pressure is applied.

Lemma 2. ([4], Lemmata 4 and 5) The following a-priori estimate is valid

‖√ν∇uuuh‖2
0 +‖√σuuuh‖2

0 ≤ |[Uh]|2 = (A + Sh)(Uh,Uh)≤ ( fff ,uuuh). (16)

There exists a h-independent constant γ > 0 (depending on the continuous inf-sup
constant β and on degree ku) s. t. (with CS as in (9) and Poincare constant CP)
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‖ph‖0≤ γ
(√

ν∞+
√

CPσ+min
( CP√

ν0
;

1√
σ
)
bbb∞+

√
CS +max

M

hM√
αM

)
|[Uh]|+ ‖ fff‖−1

β

with ν∞ := ‖ν‖L∞(Ω), ν0 := ess infΩν(x), bbb∞ := ‖bbb‖(L∞(Ω))d . This implies unique-
ness and existence of (uuuh, ph) ∈VVV h,ku ×Qh,kp in (6).

In LPS methods the Galerkin orthogonality is not fulfilled and a careful analysis
of the consistency error has to be done. Subtracting (6) from (3) yields

Lemma 3. ([4], Lemma 6) Let U ∈ VVV ×Q and Uh ∈ VVV h,ku ×Qh,kp be the solutions
of (3) and of (6), respectively. Then, there holds

(A + Sh)(U−Uh,Vh) = Sh(U,Vh), ∀Vh ∈VVV h,ku×Qh,kp . (17)

The consistency error can be estimated using the properties of Sh(·, ·).
Lemma 4. ([4], Lemma 7) Let Assumption 1 be fulfilled and (u, p) ∈ VVV ×Q with
(bbb ·∇)uuu ∈ (Hlu(M))d , ∇ ·uuu = 0, p ∈Hlp+1(M) for all M ∈Mh. Then, we obtain for
0≤ lu, lp ≤ ku

|Sh(U,Vh)|�
(
∑

M∈Mh

τM
h2lu

M

k2lu
u
|(bbb ·∇)uuu|2lu,M +αM

h
2lp
M

k
2lp
p

|p|2lp+1,M

) 1
2 |[Vh]|. (18)

A combination of the stability and consistency results yields an a-priori estimate.

Theorem 1. ([4], Thm. 1) Let U = (uuu, p)∈VVV×Q and Uh = (uuuh, ph)∈VVV h,ku×Qh,kp

be the solutions of (3) and of (6). Assume that U = (uuu, p) ∈ VVV ×Q is sufficiently
regular, i.e. p ∈Hlp+1(Ω) and uuu ∈ [Hlu+1(Ω)]d ,(bbb ·∇)uuu ∈ [Hlu(Ω)]d . Furthermore
let the Assumptions 1 and 2 for the coarse velocity space Du

h be satisfied. For the
space Dp

h we assume that (11) is satisfied. Then, there holds

|[U−Uh]|2 � ∑
M∈Mh

(
τM

(hM

ku

)2lu‖(bbb ·∇)uuu‖2
lu,ωM

(19)

+
(
1 +

1
βu

)2
k2

u

(hM

ku

)2luCu
M‖uuu‖2

lu+1,ωM
+
(
1 +

1
βp

)2
k2

p

(hM

kp

)2lpCp
M‖p‖2

lp+1,ωM

)
for 1≤ lu ≤ ku and 1≤ lp ≤min{kp,ku} with

Cu
M := ‖ν‖L∞(M) +

h2
M

k4
u

(σ +
1
τM

+
1
αM

)+μM +‖bbb‖2
[L∞(M)]d τM , Cp

M :=αM +
1
μM

h2
M

k4
p

.

Under the notation of Lemma 2 we obtain

‖p− ph‖0 � γ
(√

ν∞+
√

CPσ+min
( CP√

ν0
;

1√
σ
)
bbb∞+

√
CS

β
+max

M

hM√
αM

)
|[U−Uh]|.

Now we calibrate the stabilization parameters αM,τM and μM w.r.t. hM, ku,kp and
problem data by balancing the terms of the right hand side of error estimate (19).
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First, equilibrating the τM-dependent terms in Cu
M yields τM ∼ hM/(‖bbb‖(L∞(M))d k2

u).
Similarly, equilibration of the terms in Cu

M and Cp
M involving μM and αM yields

μM ∼ h
lp−lu+1
M /klp−lu+2, αM ∼ h

lu−lp+1
M /klu−lp+2 where we used k ∼ ku ∼ kp.

Corollary 1. ([4], Corollary 2) Let the assumptions of Theorem 1 be valid. For
equal-order interpolation k = ku = kp ≥ 1, let l = lu = lp ≤ k and set μM =
μ0hM/k2, αM = α0hM/k2, τM = τ0hM/(‖bbb‖(L∞(M))d k2). Then we obtain

|[U−Uh]|2 � ∑
M∈M

((
1 +

1
βp

)2 h2l+1
M

k2l ‖p‖2
l+1,ωM

+
h2l+1

M

k2l+2 ‖(
bbb

‖bbb‖(L∞(M))d
·∇)uuu‖2

l,ωM

+
(
1 +

1
βu

)2
[
‖ν‖L∞(M) +σ

h2
M

k4 +‖bbb‖(L∞(M))d
hM

k2

] h2l
M

k2l−2 ‖uuu‖2
l+1,ωM

)
.

For inf-sup stable interpolation with ku = kp + 1, we assume lu = lp + 1 = ku and
set αM = α0h2

M/k3
u, μM = μ0/ku, τM = τ0hM/(‖bbb‖(L∞(M))d k2

u). Then we obtain

|[U−Uh]|2 � ∑
M∈M

((
1 +

1
βp

)2 h2lu
M

k2lu+1
u

‖p‖2
lu,ωM

+
h2lu+1

M

k2lu+2
u

‖( bbb
‖bbb‖L∞(M)

·∇)uuu‖2
l,ωM

+
(
1 +

1
βu

)2
[
‖ν‖L∞(M) +σ

h2
M

k4
u

+‖bbb‖[L∞(M)]d
hM

k2
u

+
1
ku

] h2lu
M

k2lu−2
u

‖uuu‖2
l+1,ωM

)
.

• For equal-order pairs Vh,k×Qh,k and Taylor-Hood pairs Vh,k+1×Qh,k, we obtain
the optimal convergence rates k + 1

2 and k + 1, respectively, w.r.t. hM.
• The estimates are not optimal w.r.t. ku, see Remark 2. Assume that in Lemma 1

there holds |v− ju
hv|1,M �

(
1 + 1

βu

)( hM
k

)l−1‖v‖l,ωM and a similar result for the

pressure too. A careful check of the proofs leads to:

– Equal-order pairs with k = ku = kp: μM ∼ αM ∼ hM/k, τM ∼ hM
‖bbb‖[L∞(M)]d ku

– Inf-sup stable pairs with ku = kp + 1: αM ∼ h2
M

k2
u
, μM ∼ 1, τM ∼ hM

‖bbb‖(L∞(M))d ku
.

Then the estimate (19) would be optimal w.r.t. ku and kp too with possible excep-
tion of the factors depending on βu,βp.

Different variants for the choice of the discrete spaces Vh,ku ×Qh,kp and Du
h×Dp

h
using simplicial and hexahedral elements are presented in [5] for two variants: a
two-level variant with Mh = T2h and a one-level variant with Mh = Th, thus hM =
hK , with a proper enrichment of Pku,Th by using bubble functions.

Assumption 1 is valid if the local L2-projection πu
M : L2(M)→ Du

h(M) for the
velocity and similarly for the pressure is applied, see [5]. In the two-level variant,
the constants βu/p in Assumption 2 scale like O(1/

√
ku/p) for simplicial elements

and like O(1) for quadrilateral elements in the affine linear case, see [6].
Please note that the present analysis covers only the case of continuous pressure

approximation. An extension to discontinuous discrete pressure approximation, in
particular to the case of the case of Qk/P−(k−1)-elements, can be found in [6].
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4 Some Numerical Results

A calibration of the LPS parameters requires careful numerical experiments. Some
papers validate the design and the convergence rates for the Oseen problem (2)
in Ω = (0,1)2 with the smooth solution uuu(x1,x2) =

(
sin(πx1),−πx2 cos(πx1)

)
,

p(x1,x2) = sin(πx1)cos(πx2) and data bbb = uuu, σ = 1. A study of the one-level variant
for equal-order pairs with enrichment of the discontinuous velocity space is given
in [7]. The two-level variant is considered in [3] for equal-order and inf-sup stable
pairs, see also [6]. Summarizing, all these experiments confirm the calibration of the
stabilization parameters w.r.t. hM and the theoretical a-priori convergence rates.

Here we present some typical results using either Q2/Q2 and Q2/Q1 pairs for ve-
locity/pressure on unstructured, quasi-uniform meshes for the advection-dominated

case ν = 10−6. The coarse spaces of the two-level variant are defined as Du/p
h :=

{v ∈ [L2(Ω)]d | v|M ∈ P1/1(M)} and Du/p
h := {v ∈ [L2(Ω)]d | v|M ∈ P1/0(M)}.

Table 1 shows comparable results for the best variants of the inf-sup stable Q2/Q1

Table 1 Comparison of different variants of stabilization for problem (2) with ν = 10−6,h = 1/64

Pair τ0 μ0 α0 |uuu−uuuh|1 ‖uuu−uuuh‖0 ‖∇ ·uuuh‖0 ‖p− ph‖0

Q2/Q1 0.0000 0.0000 0.0000 2.56E-1 5.42E-4 2.02E-1 2.31E-4
Q2/Q1 0.0562 0.5623 0.0000 1.91E-3 6.20E-6 1.66E-4 8.06E-5
Q2/Q1 0.0000 0.5623 0.0000 2.61E-3 7.42E-6 1.72E-4 8.05E-5
Q2/Q1 3.1623 0.0000 0.0000 1.87E-2 7.50E-5 1.56E-2 1.08E-4
Q2/Q2 0.0000 0.0000 0.0178 1.65E-2 3.48E-5 9.37E-3 6.96E-6
Q2/Q2 0.0562 1.0000 0.0178 9.30E-4 2.85E-6 2.14E-4 4.31E-6
Q2/Q2 0.0562 0.0000 0.0178 1.77E-3 4.18E-6 1.46E-3 3.25E-6
Q2/Q2 0.0000 5.6234 0.0178 3.26E-3 7.20E-6 2.00E-4 7.56E-6

and the equal-order Q2/Q2 pairs with the exception of the pressure error. Never-
theless, the importance of the stabilization terms is different. The fine-scale SUPG-
and PSPG-type terms are necessary for the equal-order case but not for the inf-sup
stable pair. On the other hand, the divergence-stabilization gives clear improvement
for the inf-sup stable case and some improvement for the other case. Moreover, the
PSPG-type term can be omitted for the inf-sup stable case.

Finally, we apply the LPS stabilization to the lid-driven cavity Navier-Stokes
flow (1) with fff = 000. No-slip data are prescribed with the exception of the upper part
of the cavity where uuu = (1,0)T is given. A quasi-uniform mesh is used together with
the Q2/Q1 and Q2/Q2 pairs using the two-level LPS variant with scaling parameter
τ0 and μ0 according to the Oseen case and α0 = 0.

Fig. 1 shows typical velocity profiles for Re = 5,000. The results for h = 1
64 for

both variants are in excellent agreement with [2] with well resolved boundary layers.
Moreover, the solution for a coarse grid with h = 1

16 is in good agreement with
[2] away from the boundary layers. Similar results are obtained up to Re = 7.500
[3]. The results for this nonlinear problem confirm the previous remarks for the
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Fig. 1 Lid driven-cavity problem with Re = 5,000: Cross-sections of the discrete solutions for
Q2/Q1 pair with τ0 = α0 = 0 and μ0 = 1 and Q2/Q2 pair with τ0 = α0 = μ0 = 1

linear Oseen problem. For the Q2/Q1 element, only the divergence stabilization is
necessary whereas for the Q2/Q2 pair all stabilization terms are relevant.

5 Summary

A unified a-priori analysis of local projection stabilization (LPS) methods is given
for equal-order and inf-sup stable velocity-pressure pairs on isotropic meshes. Nu-
merical results confirm the numerical analysis. Compared to residual-based meth-
ods, the error estimates are comparable, but the parameter design is much sim-
pler. A major difference between equal-order and inf-sup stable pairs is that LPS-
stabilization is always necessary for equal-order pairs. For inf-sup stable pairs, the
necessity of stabilization is much less pronounced. In particular, the grad-div stabi-
lization is much more important than the fine-scale SUPG and PSPG stabilization.
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A Numerical Study of Local Projection
Stabilisations Applied to Oseen Problems

G. Matthies and L. Tobiska

Abstract The local projection method has been proven to be a successful stabili-
sation technique for the Oseen problem. We consider the enrichment approach of
the local projection method. After describing the method, known convergence re-
sults are recalled. Numerical results which confirm the theoretical predictions are
given. Furthermore, the dependence of the results on the choice of the stabilisation
parameters is discussed.

1 Introduction

While discretising the Oseen equations with finite element methods, one is usually
faced with two difficulties. First, the discrete inf-sup (or Babuška–Brezzi) condition
might be violated. This leads to artificial oscillations in the pressure. Second, the
dominating convection causes spurious oscillations in the velocity field. The local
projection method [1, 2, 3, 5, 7] has been proven to be a successful stabilisation
technique for flow problems which overcomes the two mentioned problems.

Compared to residual based stabilisations like the streamline-upwind Petrov–
Galerkin method (SUPG) combined with the pressure-stabilised Petrov–Galerkin
technique (PSPG), the local projection stabilisation needs much less additional
terms to be assembled, in particular for higher order discretisations.

The local projection method was designed for equal-order interpolations. It has
been introduced for the Stokes problem in [1], extended to the transport equation
in [2], and analysed for the Oseen equations in [3, 7]. The stabilising term of the
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local projection method is based on a projection πh : Yh→ Dh of the finite element
space Yh approximating the pressure and each velocity component into a discontin-
uous space Dh. The stabilising effects result from weighted L2-control over fluctua-
tions (id−πh) of the gradients of velocity and pressure.

Originally, the local projection technique was proposed as a two-level method
where the projection space Dh is defined on a coarser grid. The drawback of this
approach is an increased discretisation stencil. The general approach given in [5, 7]
allows to construct local projection methods such that the discretisation stencil is
not increased since approximation space Yh and projection space Dh are defined on
the same mesh. In this case, the approximation space Yh is enriched compared to
standard finite element spaces. We will concentrate in this paper on the enrichment
approach of the local projection method.

This paper is organised as follows. Sect. 2 describes the local projection method
applied to the Oseen equations. The convergence results are recalled in Sect. 3.
Finally, Sect. 4 presents some numerical results. In particular, the choice of the
stabilisation parameters is discussed.

Notation. Throughout this paper, C will denote a generic positive constant which
is independent of the mesh. We will write shortly α ∼ β if there are positive con-
stants C and C such that Cβ ≤α ≤Cβ holds. The Oseen problem will be considered
in the domain Ω ⊂ Rd , d = 2,3, which is assumed to be a polygonal or polyhedral
domain with boundary ∂Ω . For a measurable d-dimensional subset G of Ω , the
usual Sobolev spaces Hm(G) with norm ‖ ·‖m,G and semi-norm | · |m,G are used. The
L2-inner product on G is denoted by (·, ·)G. Note that the index G will be omitted
for G = Ω . This notation of norms, semi-norms, and inner products is also used for
the vector-valued and tensor-valued case.

2 Local Projection Stabilisation

2.1 Weak Formulation of the Oseen Equations

We consider the Oseen problem

−ν*u +(b ·∇)u +σu +∇p = f in Ω , div u = 0 in Ω , u = 0 on ∂Ω , (1)

where ν is a small positive parameter and σ > 0. Furthermore, we assume that
b ∈ (W 1,∞(Ω)

)d with div b = 0.

Let V :=
(
H1

0 (Ω)
)d

and Q := L2
0(Ω) := {q ∈ L2(Ω) : (q,1) = 0}. We introduce

on the product space V ×Q the bilinear form A as

A
(
(v,q);(w,r)

)
:= ν(∇v,∇w)+

(
(b ·∇)v,w

)
+σ(v,w)− (q,div w)+ (r,div v) .

A weak formulation of (1) reads:
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Find (u, p) ∈V ×Q such that for all (v,q) ∈V ×Q:

A
(
(u, p);(v,q)

)
= ( f ,v) . (2)

Due to
(
(b ·∇)v,v

)
= 0 for all v ∈ V , the Lax–Milgram lemma applied in the sub-

space of divergence-free functions guarantees that (2) has a unique velocity solu-
tion u. The existence and uniqueness of the pressure solution p follows from the
Babuška –Brezzi condition for the pair (V,Q).

2.2 Discrete Problem and Stabilised Formulation

We are given a family {Th} of shape-regular decompositions of Ω into d-simplices.
The diameter of a cell K is denoted by hK . The mesh parameter h describes the
maximum diameter of all cells K ∈Th.

Let Yh be a scalar finite element space of continuous, piecewise polynomials
functions over Th. The spaces for approximating the velocity and the pressure are
given by Vh := Y d

h ∩V and Qh := Yh∩Q, respectively.
The standard Galerkin discretisation of (1) reads:

Find (uh, ph) ∈Vh×Qh such that for all (vh,qh) ∈Vh×Qh:

A
(
(uh, ph);(vh,qh)

)
= ( fh,vh) .

This discrete problem suffers in general from two shortcomings, the discrete ver-
sion of the Babuška–Brezzi condition

∃β0 > 0 : ∀h > 0 : inf
qh∈Qh

sup
vh∈Vh

(qh,div vh)
‖qh‖0 |vh|1 ≥ β0

is violated and the convection dominates in the case ν $ 1. We will use the local
projection stabilisation to handle both difficulties.

Let Dh(K) denote a finite dimensional space on K ∈Th and πK : L2(K)→Dh(K)
the L2-projection into Dh(K). Furthermore, we set

Dh :=
⊕

K∈Th

Dh(K)

and define πh : L2(Ω)→ Dh by (πhq)|K = πK(q|K). The fluctuation operator κh :
L2(Ω)→ L2(Ω) is given as κh := id−πh where id : L2(Ω)→ L2(Ω) is the identity
mapping on L2(Ω). Note that all operators are applied component-wise to vectors
and tensors. We introduce the stabilisation terms

Sa
h(vh,wh) := ∑

K∈Th

[
τK
(
κh(b ·∇)vh,κh(b ·∇)wh

)
K + μK

(
κh(div vh),κh(div wh)

)
K

]
and
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Sb
h(vh,wh) := ∑

K∈Th

δK
(
κh(∇vh),κh(∇wh)

)
K

where τK , μK , and δK are user-chosen parameters. The stabilised discrete problem
reads:

Find (uh, ph) ∈Vh×Qh such that for all (vh,qh) ∈Vh×Qh:

A
(
(uh, ph);(vh,qh)

)
+ Sh(uh,vh)+ ∑

K∈Th

αK
(
κh(∇ph),κh(∇qh)

)
K = ( f ,vh) (3)

where Sh is either Sa
h or Sb

h and αK are further user-chosen parameters. Note that
Sb

h consists only of one term while Sa
h contains two terms. The divergence term

in Sa
h introduces a coupling between different velocity components. Numerically,

both stabilisation terms give similar results. We will use in our analysis the mesh-
dependent norm

|||(v,q)||| :=
(
ν|v|21 +σ‖v‖2

0 + Sh(v,v)+ ∑
K∈Th

αK‖∇q‖2
0,K

)1/2

.

We will make in the following two assumptions.

Assumption 1. There exist interpolation operators Jh : H1(Ω) → Yh and jh :
Hr+1(Ω) → Yh which satisfy Jhv ∈ H1

0 (Ω) for all v ∈ H1
0 (Ω) and jhv ∈ H1

0 (Ω)
for all v ∈ H1

0 (Ω)∩Hr+1(Ω). They provide the orthogonality properties

(v− Jhv,qh) = 0, (w− jhw,qh) = 0 ∀qh ∈Dh, ∀v ∈ H1(Ω), ∀w ∈ Hr+1(Ω)

and the approximation properties

‖v− Jhv‖0,K + hK|v− Jhv|1,K ≤C hK ‖v‖1,ω(K) ∀v ∈ H1(ω(K))

‖w− jhw‖0,K + hK|w− jhw|1,K ≤C hr+1
K ‖w‖r+1,K ∀w ∈Hr+1(K),

where ω(K) denotes a certain neighbourhood of K which appears in the definition
of interpolation operators for non-smooth functions, see [4, 8].

In [7], it was shown that interpolation operators fulfilling Assumption 1 can be
constructed from interpolation operators with standard approximation properties
provided an inf-sup condition between the approximation space Yh and the projec-
tion space Dh holds.

Assumption 2. The fluctuation operator κh fulfils

‖κhq‖0,K ≤C h�|q|�,K ∀q ∈H�(K) , K ∈Th , 0≤ �≤ r .

Note that Assumption 2 is satisfied if Pr−1(K)⊂Dh(K) holds true for all K ∈Th.
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2.3 Approximation and Projection Spaces

Approximation and projection spaces satisfying Assumption 1 and Assumption 2
are given in [7]. Here, we recall simplicial elements.

Let K̂ denote the reference d-simplex with barycentric coordinates λ̂0, . . . , λ̂d . We
define

b̂(x̂) := (d + 1)d+1
d

∏
i=0

λ̂i(x̂)

as bubble function on K̂ which takes the value 1 in the barycentre of K̂. Furthermore,
let

Pbubble
r (K̂) := Pr(K̂)+ b̂ ·Pr−1(K̂) .

The pair Yh/Dh = Pbubble
r,h /Pdisc

r−1,h with

Pbubble
r,h := {v ∈ H1(Ω) : v|K ◦FK ∈ Pbubble

r (K̂) ∀K ∈Th} ,

Pdisc
r−1,h := {v ∈ L2(Ω) : v|K ◦FK ∈ Pr−1(K̂) ∀K ∈Th}

fulfils both assumptions, see [7, Sect. 4.1]. Note that FK : K̂→ K is the affine refer-
ence mapping.

3 Convergence Results

The properties of the interpolation operator Jh in Assumption 1 together with
max(ν,σ ,τK ,μK ,δK ,h2

K/αK)≤C guarantees that the stabilised discrete problem (3)
has a unique solution, see [7] where Lemma 2.6 deals with Sh = Sa

h and Corol-
lary 2.14 handles Sh = Sb

h.

Theorem 1. Let Assumption 1 and Assumption 2 be fulfilled. Let (u, p) ∈ (H1
0 (Ω)∩

Hr+1(Ω)
)d× (L2

0(Ω)∩Hr+1(Ω)
)

be the solution of (2) and (uh, ph) ∈Vh×Qh be
the solution of the stabilised discrete problem (3). We choose either Sh = Sa

h with
τK ∼ hK, μK ∼ hK, αK ∼ hK or Sh = Sb

h with δK ∼ hK, αK ∼ hK. Then, there exists
a positive constant C independent of ν and h such that

|||(u−uh, p− ph)||| ≤C

(
∑

K∈Th

(ν + hK)h2r
K

(
‖u‖2

r+1,K +‖p‖2
r+1,K

))1/2

holds true.

Proof. Follow the proof of Theorem 2.12 and Corollary 2.14 in [7] and use the
properties of the interpolation operator jh in Assumption 1. ��
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4 Numerical Results

This section presents some numerical results which were obtained by applying the
enrichment approach of the local projection method to the Oseen problem. All cal-
culations were performed with the code MooNMD [6] on a Linux PC (Pentium IV,
2.8 GHz).

Let Ω = (0,1)2. We consider the Oseen equations (1) where the right-hand side
f and the Dirichlet boundary conditions are chosen such that

u(x,y) =
(

sin(πx),−πycos(πx)
)T

, p(x,y) = sin(πx)cos(πy)

is the solution for the case ν = 10−8, σ = 1/100, and b = u.
First, we consider calculations which were carried out for the enriched linear

pair Yh/Dh = Pbubble
1,h /Pdisc

0,h on triangles. Fig. 1 shows the convergence rates for the
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Fig. 1 Convergence order in different norm for the stabilisation terms Sa
h (left) and Sb

h (right).

solution of the stabilised discrete problem (3) where either Sa
h (left) or Sb

h (right) was
used as stabilising term Sh. We have chosen the following stabilisation parameters

αK = 0.1hK , μK = hK , τK = hK , δK = hK .

The convergence rate O(h3/2) in the local projection norm, as predicted by The-
orem 1 for both stabilising terms, can be clearly seen in Fig. 1. Furthermore, the
results for both stabilising terms differ only slightly. The L2-norms of pressure and
velocity converge with second order while the H1-semi norm of the velocity shows
first order convergence. These convergence rates are optimal with respect to the
interpolation error.

The theory gives only the asymptotic choice for the stabilisation parameters, their
optimal size is not known. Fig. 2 shows for the stabilisation term Sb

h the dependence
of the L2-norm of velocity (upper left), the H1-semi norm of velocity (upper right),
the L2-norm of pressure (lower left), and the local projection norm (lower right)
on the stabilisation parameters. Since δK and αK should be chosen proportional
to hK , compare Theorem 1, we have performed calculations with αK = α0 hK and
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Fig. 2 Dependence of different norms on the stabilisation parameters αK = α0 hK , δK = δ0 hK for
the stabilisation term Sb

h applied to enriched first order elements.

δK = δ0 hK where the constants δ0 and α0 are varied in the range 10−6 up to 104.
Note that the scales for α0 and δ0 are logarithmic. Instead of the errors theirselves,
their logarithms are shown. It is clearly to see from Fig. 2 that vanishing pressure
stabilisation results in large pressure errors while vanishing velocity stabilisation
gives large velocity errors. Furthermore, there seems to be no interaction between
the velocity stabilisation due to Sb

h and the pressure stabilisation since the pressure
error is almost independent of the size of the velocity stabilisation and the velocity
error is not influenced by the size of the pressure stabilisation. The behaviour of
the local projection norm is different. If the size of the stabilising parameters is too
large then the error in the local projection norm increases since the stabilisation
terms which depend on the parameters are included in the local projection norm.
To be precise, the increase of the error in the local projection norm along the line
A in the lower right picture of Fig. 2 is caused only by the increased stabilisation
parameter α0 since the other parts of the local projection norm are almost constant
in that region.

Finally, we present the results of our calculations for the enriched third order
pair Yh/Dh = Pbubble

3,h /Pdisc
2,h on triangles. Fig. 3 shows the dependence of the differ-

ent norms on the coefficients α0 and δ0 of the stabilisation parameters αK = α0 hK

and δK = δ0 hK . We see from Fig. 3 that stabilisation is needed. Compared to the
enriched linear elements, the situation is more complex since there seems to be an
interaction between pressure and velocity stabilisation terms.



496 G. Matthies and L. Tobiska

Fig. 3 Dependence of different norms on the stabilisation parameters αK = α0 hK , δK = δ0 hK for
the stabilisation term Sb

h applied to enriched third order elements.
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Involutive Completion to Avoid LBB Condition

B. Mohammadi and J. Tuomela

Abstract We propose to use the involutive form of a system of PDEs in numerical
computations. We illustrate our approach by applying it to the Stokes system. As in
the case of the solution of differential algebraic equations our approach takes explic-
itly into account the integrability conditions of the system which are only implicitly
present in the original formulation. The extra calculation cost is negligible while the
discrete form becomes much simpler to handle. One interesting consequence is that
the discrete formulation needs not to satisfy the classical LBB compatibility condi-
tion. The approach is very general and can be useful for a wide variety of systems
not as well known as fluid flow equations.

1 Introduction

Since various systems of PDEs have very different properties, it may seem hope-
less to try to say something meaningful about arbitrary systems of PDEs. However,
the formal theory of PDEs [4, 16, 18] provides tools for analysing general systems
of PDEs. The modern formulation of the theory is differential geometric, and hence
quite abstract, yet some of the consequences of the theory lead to constructive meth-
ods which can be used to analyse a given system of PDEs.

One consequence of the formal theory is the emergence of an important concept,
the involutive form of the given system. It is important because it turns out that
determining the properties of a given system is in general possible only if the system
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is involutive. For example some systems may not be elliptic/parabolic initially, but
their completed forms are elliptic/parabolic [9, 11].

In this article we will argue that the involutive form is also important from the
point of view of numerical computations. In fact the framework of formal theory
has already been used in the numerical solution of ODE and DAE systems [19, 20,
21]. The approach by formal theory is helpful especially in situations where the
physical models have constraints or conserved quantities which make the system
essentially overdetermined. However, usually in numerical computations one uses
square models (as many equations as unknowns). But then if one “forces” the system
to be square by dropping some relevant equations/constraints one may encounter
great difficulties in designing appropriate numerical methods.

One of the main issues we would like to insist on is that our numerical model
will be solvable with simpler and more generic numerical methods than the original
system. Indeed, complex numerical methods are often required to recover what is
missed by not considering the right continuous system. Hence our approach allows
the use of generic commercial software tools now widely available.

2 Preliminaries

2.1 Involutive Systems

The important concept of involutivity is unfortunately quite difficult to define pre-
cisely so we refer to [4, 16, 18] for a rigorous definition. However, for our purposes
it is sufficient to explain the idea in concrete terms and indicate how to work with
this notion constructively. We will be rather brief because our previous article [14]
already discusses this approach.

Let us consider the system ∇× y + y = 0. Taking the divergence we see that if
y is a solution, then it must also satisfy ∇ · y = 0. This new equation is called a
differential consequence or integrability condition of the initial system. Hence we
have two systems:

S : { ∇× y + y = 0}, S ′ : { ∇× y + y = 0, ∇ · y = 0} . (1)

We say that S ′ is the involutive form of S because no more new first order dif-
ferential consequences can be found. So informally we may define involutivity as
follows:

A system is involutive, if it contains all its differential consequences (up to given
order).

There are many tricky issues involved when one actually tries to compute the involu-
tive form for a given system. Anyway, the important point is that these constructions
can be in fact carried out, hence the approach we are proposing here is potentially
useful for solving quite general systems of PDE.
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Note that in general it is necessary to find the involutive form of the given system
before one can analyse any properties of the system. Our simple example above (1)
illustrates this point: S is not elliptic while S ′ is elliptic.

Now, it turns out that for the purposes of numerical computation it is sometimes
convenient to use not the “full” involutive form of the system, but to add just some
of the integrability conditions to the original system. Hence we will use the term
completed system to indicate that we may not use the full involutive system. We will
argue below that it will be useful to use involutive or completed form in numerical
computations.

2.2 Augmented Systems

Let us consider our problem in a general form

A0y = f , (2)

and let us suppose that A0 is already in completed form. For definiteness let us also
suppose that A0 is an elliptic operator. We refer to [4, 9, 10] for more information on
overdetermined elliptic operators as well as relevant boundary conditions for them.

Now, since A0 is in general overdetermined, there are typically no solutions for
arbitrary f ; hence there are some compatibility conditions for f . These conditions
are given by an operator A1 such that A1A0 = 0 and (2) has a solution only if A1 f = 0.
Such an operator A1 is called the compatibility operator; for more technical defini-
tion we refer to [4].

Let us now introduce some function spaces Vi such that Ai : Vi → Vi+1. It is
convenient to represent these spaces and operators with the help of some diagrams.
Let us consider a sequence of such operators:

. . . �� Vi
Ai �� Vi+1

Ai+1 �� Vi+2 �� . . . .

Such a sequence is a complex, if Ai+1Ai = 0 for all i. The complex is exact at Vi+1, if
image

(
Ai
)
= ker

(
Ai+1

)
. It is exact, if it is exact at all Vi. For example, the exactness

of the complexes

0 �� VA
A �� WA , VB

B �� WB �� 0 ,

means that A is injective and B is surjective.
Let us now suppose that the following complex is exact:

0 �� V0
A0 �� V1

A1 �� V2 �� 0 .

This suggests that we can decompose V1 as follows:
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image
(
A0)⊕ image

(
AT

1 )�V1 ,

where AT
1 is the formal transpose of A1. Of course, to be able to write equality

instead of � we should specify carefully the relevant vector spaces. However, this
decomposition is obviously valid if Vi are finite dimensional vector spaces and Ai

are linear maps. Anyway, proceeding formally, this decomposition suggests that it is
indeed possible to find some functional framework such that the combined operator
(A0,AT

1 ) would be bijective or Fredholm. Hence, reasonable discretizations of these
operators should yield a well-posed numerical problem.

So instead of trying to solve the original system (2) in some least square sense,
we introduce an auxiliary variable z and solve

A0y + AT
1 z = f . (3)

We call this system the augmented system. This formulation is reasonable because
the augmented system is square, hence standard software tools are readily available.
Also all the relevant information about the original system is contained in the com-
pleted operator A0 which means that the results will be reliable. The drawback is
that we have introduced an extra variable z which increases the computational cost.
However, we can use z in error control as shown below; hence the work done for
computing z will not be in vain.

In case of our example (1) the augmented system is

S ′′ : {∇× y + y−∇z = 0, ∇ · y− z = 0} .

This system is elliptic, and could be solved in a straightforward manner. On the other
hand, a proper discretization of the original system S would be difficult because
the principal part of the operator has an infinite dimensional kernel. Hence, in the
numerical solution there may appear components which are approximately in this
kernel; these are called spurious solutions [8].

Remark 1. For the augmented Stokes system (7) below space V0 (resp. V1 and V2) is
the function space for u and p (resp. f and z). In the same way, for the completed
Stokes system (7) in discrete form with any finite element discretization for variables
(u, p,z) the space V0 (resp. V1 and V2) will be generated by the corresponding finite
element basis for u and p (resp. f and z) on the chosen mesh.

3 Systems from Fluid Mechanics

There is an enormous literature on the numerical solution of Stokes system [6, 15,
17]. We will illustrate our method using these classical models, but our approach can
also be applied to the solution of flows in porous media, several biological fluids and
microfluids [13].
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3.1 Stokes System

Let us consider the Stokes problem:

αu−Δu + ∇p = f , ∇ ·u = 0 , (4)

where u is the velocity field, p is the pressure and α ≥ 0. Usually we have two
boundary conditions for u and no condition for p as no natural condition on p is
available. By taking the divergence of the first equation we obtain −Δ p = −∇ · f .
Putting y = (u, p) we can write the whole system as

A0y =

⎛⎝αu−Δu + ∇p
−Δ p
−∇ ·u

⎞⎠ =

⎛⎝ f
−∇ · f

0

⎞⎠ .

The compatibility operator is now given by A1 =
(
∇·,1,αI−Δ

)
. Hence, the aug-

mented system can be written as

A0y + AT
1 z =

⎛⎝αu−Δu + ∇p−∇z
−Δ p + z

−∇ ·u +(αI−Δ)

⎞⎠=

⎛⎝ f
−∇ · f

0

⎞⎠ . (5)

This is elliptic and we need 4 boundary conditions. For u we use of course the
original boundary conditions, and for z a natural choice is z = 0 on the boundary.
However, we still need something for p.

The difficulty with boundary conditions for the pressure also arises when solving
stabilized form of the Stokes system [15, 17]:{

−Δu + ∇p = f ,

−εΔ p + ∇ ·u = 0 where ε ∼ h2.
(6)

where implicitly some Neumann boundary condition is assumed for p.
In what follows we consider for simplicity only the stationary Stokes equation,

and hence take α = 0. In instationary problems α is the inverse of the time step.
However, everything that follows is also applicable to the case α > 0. Proceeding
as for the stabilized system (6) we write our system as⎧⎪⎨⎪⎩

−Δu + ∇p−∇z = f ,

−εΔ p = Δ p− z−∇ · f , ε ∼ 10−10,

−∇ ·u−Δz = 0.

(7)

with the boundary conditions

u as in the original system (4),
∂ p
∂n

= 0, z = 0 . (8)
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We solved the system (5) with finite elements for all variables on triangular
meshes. Now one of the issues in the numerical solution of the Stokes problem
is that the relevant finite element spaces should satisfy the inf-sup or LBB condition
[1, 2, 7, 5, 12, 15, 17]. In particular it is not possible to use equal order discretization
for u and p when solving the system (4). This is unnecessary when solving (6) or
better (7). In fact, with (7) one can consider even P1 elements for velocity and P2

elements for the pressure (see Fig. 1).

3.2 Cavity Flow

To illustrate the behavior of the new system, we consider the well-known flow in a
(0,1)× (0,1) square cavity. The boundary condition for the velocity u = (u1,u2) is
given by u1 = 4x(1−x), u2 = 0 on the upper boundary and u1 and u2 are zero on all
other boundaries. The numerical results in Fig. 1 show that using our formulation (5)
we get the same results with P1/P1, P2/P1 and P1/P2 discretizations for velocity
and pressure. z was always discretized with P1 elements; trials with other finite
elements gave essentially same results.

Fig. 1 Stokes flow in a square cavity. Upper row: velocity and pressure for the augmented Stokes
system (5) with different discretizations for u, p and z. Lower row: corresponding z iso-contours.
The maximum absolute value of z is less than 10−5 for all calculations. The same 5000 elements
triangular finite element mesh has been used for all cases.
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3.3 Flow under Body Forces

Another interesting example is a steady flow subject to a body force. This force
may result from a coupling to other systems as in magnetohydrodynamics (MHD).
When this force is the gradient of a potential and if no slip boundary conditions are
applied, the fluid should remain at rest. This is not realized when equal order finite
elements are used for the velocity and pressure in a stabilized approach such as (6)
or even when finite elements obey the LBB condition. With the original system, one
also needs the divergence of any discrete velocity function to belong to the pressure
space. We show below the case of a flow submitted to f = ∇φ with φ = 500(x2−
y2) solved using (6) and (5) both with equal order discretizations for velocity and
pressure on the same mesh. The augmented system better realizes the flow at rest
solution, see Fig. 2. In fact, the norm of the velocity in the augmented system is of
2 orders of magnitude smaller than in the standard formulation.

Fig. 2 Stokes flow under potential body force. Left: velocity and pressure for the stabilized Stokes
system (6) using equal order linear finite elements for u and p. Right: same but solving augmented
Stokes system (5).

4 Concluding Remarks

We have shown how to use involutivity, or more precisely the completed and aug-
mented systems in numerical computations. However, we have not actually dis-
cussed how to find the involutive form of the system or how to construct the com-
patibility operator. There exist in fact tools of computational algebra which can be
used for this purpose. However, this is a large topic by itself so it is not possible
to present an account of it here. Let us simply mention that Gröbner bases play an
important role in these constructions. We refer to [3] for a general introduction to
Gröbner bases and in [18] one can find more details and references about applying
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symbolic methods to PDE systems. An important fact about our formulation is that
it is more robust than the original system; indeed we did not need to worry about the
LBB condition in the solution of Stokes system. This suggests that the involution
approach is especially interesting when one would like to solve a new constrained
PDE system where, unlike for the Stokes system, few things are known on the ade-
quate numerics.
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Numerical Computation of Unsteady
Compressible Flows with Very Low Mach
Numbers

P. Punčochářová, K. Kozel, J. Horáček, and J. Fürst

Abstract This study deals with the numerical solution of 2D unsteady flows of a
compressible viscous fluid in two types of channels (unsymmetric, symmetric) for
a low inlet airflow velocity. The unsteadiness of the flow is caused by a prescribed
periodic motion of a part of the channel wall with large amplitudes. The numerical
solution is realized by a finite volume method and an explicit predictor-corrector
MacCormack scheme with Jameson artificial viscosity using a grid of quadrilateral
cells. The moved grid of quadrilateral cells is considered in the form of conserva-
tion laws using an Arbitrary Lagrangian-Eulerian method. Numerical results of the
unsteady flows in the channels are presented for inlet Mach number M∞ ≈ 10−2,
Reynolds number Re ∈ (5×103, 1.1×104) and for a frequency of the wall motion
20 Hz and 100 Hz.

1 Mathematical Model

The 2D system of Navier-Stokes equations in conservative non-dimensional form
has been used as mathematical model to describe the unsteady laminar flow of the
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(a) Domain D1, the unsymmetric
channel.

(b) Domain D2, the symmetric channel.

Fig. 1 Computational domains D1 and D2.

compressible viscous fluid in a domain [1]:

∂W
∂ t

+
∂F
∂x

+
∂G
∂y

=
1

Re

(
∂R
∂x

+
∂S
∂y

)
, (1)

where W = [ρ ,ρu,ρv,e]T is the vector of conservative variables, F and G are
the vectors of inviscid fluxes, R and S are the vectors of viscous fluxes, Re =
(H ′ρ ′∞u′∞)/η ′∞ is the Reynolds number given by the inflow variables marked by
infinity subscript (dimensional variables are marked by the prime), ρ denotes the
density, u and v are the components of the velocity vector and e is the total energy
per unit volume, see [1]. The static pressure is expressed by the equation of state:

p = (κ−1)
[

e− 1
2

ρ
(
u2 + v2)] . (2)

2 Mathematical Formulation

Fig. 1 shows two bounded computational domains which are used for the numerical
solution of the system (1).

The domain D1 in Fig. 1(a) is an unsymmetric channel where the upper boundary
is a straight rigid wall, and the lower boundary is a curved wall, oscillating between
the points A and B. The shape of this part is described by a simple harmonic func-
tion.

The computational domain D2 is shown in Fig. 1(b). It is a scaled model of the
symmetric channel whose shape is inspired by a shape of the vocal folds and supra-
glottal spaces. The computational domain is only the lower half of the symmetric
channel. The upper boundary is the axis of symmetry, the lower boundary is the
channel wall, where the part between the points A and B is changing the shape ac-
cording to a given harmonic function of time and axial coordinates w(x,t). The gap g
between the point C and the channel axis is g = (d +h)−w(xC,t), g∈ (0.01, 0.07).
The points are given by A = [1.75, 0.4], B = [2.4, 0.4], C = [2.3, w(xC,t)], and
further non-dimensional parameters of the channel geometry are: L = 8, h = 0.4,
d = 0.4. The boundary conditions are considered in the following formulation:
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1. Upstream conditions: u∞ = M∞cos(α), v∞ = M∞sin(α), ρ∞ = const., p∞ is ex-
trapolated from the domain D and α is the angle of the incoming flow.

2. Downstream conditions: p2 = const., (ρ ,ρu,ρv) are extrapolated from D.
3. Flow on the wall: (u,v) = (0,vwall) and ∂T

∂n = 0.
4. Flow on the axis of symmetry: (u,v) ·n = 0.

3 Numerical Solution

The numerical solution is based on a finite volume method (FVM) in cell centred
form on a grid of quadrilateral cells.

The bounded domain D is divided into mutually disjoint sub-domains Di, j (e.g.
quadrilateral cells). The system (1) is then integrated over the sub-domains Di, j

and reformulated by using Greens formula and the mean value theorem. Due to
the unsteady domain the integral form of FVM is derived by using the Arbitrary
Lagrangian-Eulerian (ALE) formulation. The ALE method defines a homeomorphic
mapping of the reference domain Dt=0 at the initial time t = 0 to a domain Dt at t > 0
[2].

An explicit predictor-corrector MacCormack (MC) scheme (3) in the domain
with a moving grid of quadrilateral cells is used for the numerical solution of the
system (1). The scheme is of 2nd order accuracy in time and space [1]:

Wn+1/2
i, j =

μn
i, j

μn+1
i, j

Wn
i, j−

Δ t

μn+1
i, j

4

∑
k=1

[(
F̃n

k− s1kWn
k−

1
Re

R̃n
k

)
Δyk

−
(

G̃n
k− s2kWn

k−
1

Re
S̃n

k

)
Δxk

]
,

W
n+1
i, j =
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i, j

μn+1
i, j

1
2

(
Wn

i, j + Wn+1/2
i, j

)
− Δ t

2μn+1
i, j

4

∑
k=1

[(
F̃n+1/2

k − s1kWn+1/2
k − 1

Re
R̃n+1/2

k

)
Δyk

−
(

G̃n+1/2
k − s2kWn+1/2

k − 1
Re

S̃n+1/2
k

)
Δxk

]
, (3)

where Δ t = tn+1− tn is the time step, μi, j =
∫ ∫

Di, j
dxdy is the volume of the cell

Di, j, Δx and Δy are the mesh sizes of the grid in x and y directions, and the vector
sk = (s1, s2)k represents the speed of the edge k (see Fig. 2). The physical fluxes
F, G, R, S on the edge k of the cell Di, j are replaced by the numerical fluxes
(marked with tilde) F̃, G̃, R̃, S̃ which are approximations of the physical fluxes.

The approximations of the convective terms sWk and of the numerical viscous
fluxes R̃k, S̃k on the edge k are central. The higher order partial derivatives of the
velocity and of the temperature in R̃k, S̃k are approximated by using dual volumes
V ′k (see [1]) as shown in Fig. 2. The inviscid numerical fluxes are approximated by
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Fig. 2 Finite volume Di, j and
the dual volume V ′k .

the physical fluxes as follows:

F̃n
1 = Fn

i, j, F̃n+1/2
1 = Fn+1/2

i+1, j , F̃n
3 = Fn

i−1, j, F̃
n+1/2
3 = Fn+1/2

i, j ,

G̃n
2 = Gn

i, j, G̃n+1/2
2 = Gn+1/2

i, j+1 , G̃n
4 = Gn

i, j−1,G̃
n+1/2
4 = Fn+1/2

i, j , etc. (4)

The last term used in the MC scheme is the Jameson artificial dissipation [3, 4]:

AD(Wi, j)n = C1γ1
(
Wn

i+1, j−2Wn
i, j + Wn

i−1, j

)
+C2γ2

(
Wn

i, j+1−2Wn
i, j + Wn

i, j−1

)
,

(5)
C1,C2 ∈ R are constants, in our case C1 = 1.7, C2 = 1.5, and the variables γ1, γ2

have the form

γ1 =
|pn

i+1, j−2pn
i, j + pn

i−1, j|
|pn

i+1, j|+ 2|pn
i, j|+ |pn

i−1, j|
, γ2 =

|pn
i, j+1−2pn

i, j + pn
i, j−1|

|pn
i, j+1|+ 2|pn

i, j|+ |pn
i, j−1|

. (6)

The term of artificial dissipation has third order accuracy and therefore the original
scheme is of second order accuracy. Then the vector of the conservative variables
W can be computed at a new time level tn+1:

Wn+1
i, j = W

n+1
i, j + AD(Wi, j)n. (7)

The stability condition of the scheme (on a regular orthogonal grid) limits the time
step reads

Δ t ≤CFL

[ |umax|+ c
Δxmin

+
|vmax|+ c

Δymin
+

2
Re

(
1

Δx2
min

+
1

Δy2
min

)]−1

, (8)

where c denotes the local speed of sound, umax and vmax are the maximum velocities
in the domain, and 0 < CFL < 1 for the non-linear equations. Note that the grid
of the channels is successively refined near the wall. The minimum cell size in y
direction is Δymin ≈ 1/

√
Re to resolve boundary layer effects.

Remark 1. We prefer to use a model of compressible Navier-Stokes equations of
parabolic type since there is no need to use preconditioning for low Mach number
as for a inviscid hyperbolic (Euler) system. The maximal velocity is limited in the
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narrow part of the channel, and for higher M∞ the flow is chocked. These properties
are not valid when considering the incompressible Navier-Stokes equations.

4 Numerical Results

The computation of the unsteady solution was carried out in two stages. First, the
steady solution is realized, when the channel between the points A and B has a rigid
wall in a middle position of the gap. Then, the steady solution is used as initial
condition for the unsteady simulations.

4.1 Airflow in the Unsymmetric Channel

The numerical results were obtained for the following input data: Mach num-
ber M∞ = 0.02 (u′∞ = 6.86 ms−1), Re=10900, atmospheric pressure p2 = 1/κ
(p′2 = 102942 Pa) at the outlet, and frequency of the wall oscillation f ′=20 Hz.
The computational domain contains 400× 50 cells for L=8 and H=0.5.

Fig. 3(a) shows the steady numerical solution. The maximum of the Mach num-
ber computed in the domain is Mmax=0.050. Fig. 3(b) shows the convergence to the
steady state solution computed by using the L2 norm of momentum residuals (ρu).
The convergence seems to be good.

(a) Mmax = 0.050, g = 0.26. (b) Convergence to the steady
state solution.

Fig. 3 The steady numerical solution in D1 - M∞ = 0.02, Re=10900, p2 = 1/κ , 400×50 cells.

The unsteady solution in the third period of the wall oscillation at several time layers
is shown in Fig. 4. The highest maximum Mach number was achieved at x = 2.58
in instant, when the gap is minimal (t = 9/2π). The flow becomes periodical after
the second period of the oscillations.
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(a) t = 4π , g = 0.26, Mmax = 0.048.

(b) t = 9/2π , g = 0.14, Mmax = 0.088.

(c) t = 5π , g = 0.26, Mmax = 0.050.

(d) t = 11/2π , g = 0.38, Mmax = 0.033.

(e) t = 6π , g = 0.26, Mmax = 0.048.

Fig. 4 The unsteady numerical solution of airflow in D1 for wall motion: f ’=20 Hz, M∞ = 0.02,
Re=10900, p2 = 1/κ , 400× 50 cells. Results are mapped by iso-lines of Mach number and by
velocity vectors.

4.2 Airflow in the Symmetric Channel

The numerical results were obtained for the following input data: Mach num-
ber M∞ = 0.012 (u′∞ = 4.11 ms−1), Re=5237, atmospheric pressure p2 = 1/κ
(p′2 = 102942 Pa) at the outlet, and frequency of the wall oscillation f ′=100 Hz.
The computational domain contains 450× 50 cells for h=0.4 and L=8, H = 2h.

Fig. 5(a) shows the steady numerical solution. The maximum of Mach number
computed in the domain is Mmax = 0.173 at x = 2.317 on the axis. Fig. 5(b) shows
the convergence to the steady state solution computed by using the L2 norm of
momentum residuals (ρu). The convergence seems to be satisfactory for this case.

(a) Mmax = 0.173 at x = 2.317, g = 0.04. (b) Convergence to the steady
state solution.

Fig. 5 The steady numerical solution in D2 - M∞ = 0.012, Re=5237, p2 = 1/κ , 450×50 cells.
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The unsteady solution in the fourth period of the wall oscillation is shown in Fig. 6
at several time layers. The highest maximum of Mach number Mmax = 0.535 was
achieved in instant when the glottal width is opening after the minimum of the gap
is exceeded (see Fig. 7(a)) in time t = 6π + 0.84π .

(a) t = 6π , g = 0.04, Mmax = 0.154 at x =
2.309.

(b) t = 13/2π , g = 0.01, Mmax = 0.238 at x =
2.294.

(c) t = 7π , g = 0.04, Mmax = 0.361 at x =
2.309.

(d) t = 15/2π , g = 0.07, Mmax = 0.119 at x =
5.516.

(e) t = 8π , g = 0.04, Mmax = 0.154 at x =
2.309.

Fig. 6 The unsteady numerical solution of airflow in D2 for wall motion: f ’=100 Hz, M∞ = 0.012,
Re=5237, p2 = 1/κ , 450×50 cells. Results are mapped by iso-lines of Mach number, by stream-
lines (lower part of the channel), and by velocity vectors (upper part of the channel).

Fig. 7(a) shows the Mach number along the axis of symmetry of the channel in
several time instants during the oscillation period. Behind the narrowest channel
cross-section (x = xC) a second peak of the Mach number is forming which travels
as a dying wave to the outlet. Fig. 7(b) shows the changes of the gap g, Mach number
and the pressure in real time at the distance x = 2.3 on the channel axis. The phase
shifts between the minimum glottal gap g and the maximum of Mach number, and
pressure fluctuations are about 1.7×10−3 s and 7.8×10−4 s, respectively. It can be
also seen, that the flow becomes periodical after the first period of the oscillations.

5 Summary

A numerical method and a special program code for solving the 2D unsteady Navier-
Stokes equations for viscous compressible fluids has been developed. The method
has been used for the numerical solution of the airflow in a unsymmetric channel
and in a simplified model of the human vocal tract geometry. It is used for the
description of the flow field behaviour in these cases because experimental data are
not known.
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(a) Mach number along the channel axis in several
time instants.

(b) Dimensionless gap g, Mach number and
pressure at xC = 2.3 on the channel axis in real
time.

Fig. 7 Data computed during the fourth oscillation period- f ′ = 100 Hz, M∞ = 0.012, Re=5237,
p2 = 1/κ , 450×50 cells.

Even if no complete closure of the glottis is modelled (in reality, the airflow coming
from the lungs causes the vocal folds self-oscillations, and the glottis is completely
closing in normal phonation regimes generating acoustic pressure fluctuations), the
numerical simulation of the airflow field in the glottis is complex, and relatively
close to reality. When the glottis is closing, the airflow velocity is becoming much
higher in the narrowest part of the airways, where also the viscous forces play an
important role. Therefore, for a correct modelling of a real flow in the glottis, the
compressible, viscous and unsteady fluid-flow model should be considered.
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A Mixed Hybrid Finite Element Discretization
Scheme for Reactive Transport in Porous Media

F.A. Radu, M. Bause, A. Prechtel, and S. Attinger

Abstract We present a model to describe the simultaneous reactive transport in
porous media of an arbitrary number of mobile and immobile species. The model
includes the effects of advection, dispersion, sorption and degradation catalysed
by microbial populations. The locally mass-conservative mixed hybrid finite ele-
ment method (MHFEM) to discretize this system of coupled convection-diffusion-
reaction equations and the algorithmic solution of the resulting nonlinear algebraic
equations are described in detail. Further, new ideas regarding the discretization of
the convective term are discussed. Finally a comparative numerical study (MHFEM
versus conforming FEM) is presented.

1 Introduction

Environmental pollution of soils and groundwater e.g. by organic compounds is
nowadays a serious and widespread problem not only in industrial countries. As an
alternative to conventional remediation, which is often not feasible, natural attenu-
ation has been recognized as a promising approach. However, the decision to rely
on intrinsic bioremediation at a specific site depends essentially on the trustworthy
prediction of the fate of the contaminant over long time periods by mathematical
models using experimental data. The complexity of the models makes the numer-
ical approach as important as challenging. “Things should be made as simple as
possible, but not simpler”- a citation from Albert Einstein, that perfectly applies to
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mathematical modeling. The interaction of the relevant components (species) via
sensitive, highly nonlinear reactive processes stresses the need for very accurate
numerical schemes. Artificial numerical diffusion leads to erroneous reactive pro-
cesses and thus to false predictions of the contaminant fate by overestimating the
availability of the reactants. This has been noted by several authors; cf., e.g., [4].
The need of an adequate approximation of the fluid flow by Mixed Finite Element
Methods (MFEM) has been recognized in the water resources literature since sev-
eral decades, see, e.g., [7, 1, 9, 10]. These methods offer the advantage of local mass
conservation and continuous flux approximations over the element faces. However,
for associated solute transport problems normally conventional methods are applied,
e.g. conforming Finite Element Method (FEM) or Finite Volume (FVM).

As in our opinion in particular in the context of reactive nonlinear multicompo-
nent models, which are highly sensitive to numerical errors, the need for high accu-
racy is evident, we apply the Mixed Hybrid FEM (MHFEM) to the multicomponent
transport equations. Such a formulation has to our knowledge not been presented
for that type of problem up to date. Thus we introduce this novel formulation of
a coupled reactive multicomponent transport model together with a description of
water flow in the vadose and saturated zone by the Richards equation in the mixed
hybrid finite element setting.

2 Mathematical Model

In the following a mathematical model for subsurface flow and simultaneous reac-
tive multicomponent transport including biodegradation is presented. Let Ω be a
bounded domain in IRd , d = 1,2, or 3, with sufficiently smooth boundary ∂Ω and
let J = (0,T ] be some finite interval with T denoting the final time.

The groundwater flow, taking into account the saturated and the vadose zone is
described by the mass conservation principle and Darcy’s law:

∂tΘ(ψ)+ ∇ ·q = 0 , q =−K(ψ)∇(ψ + z) in J×Ω . (1)

In (1), ψ is the pressure head, Θ is the water content, q is the water flux, K is the
hydraulic conductivity, and z is the gravity head. For the soil-water retention curve
Θ(ψ) and the unsaturated hydraulic conductivity function K(ψ) different functional
forms have been derived in the literature (cf. e.g., [8]).

The transport and reaction of NS species including the effects of advection, dis-
persion, sorption and degradation is described by the set of equations

∂t(Θci)+ ρb∂t si−∇ · (Di∇ci−qci) =−ΘRi in J×Ω , (2)

with i ∈ {1, . . . ,NS}, where ci, si denote the concentration of the dissolved and the
adsorbed species, respectively, Di is the diffusion-dispersion coefficient, ρb [ML−3]
is the bulk density and Ri denotes the reaction rate of the ith species. For the sake
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of simplicity we consider only homogeneous Dirichlet boundary conditions in the
sequel. For other types of boundary conditions we refer to [8].

Additionally we formulate a mass balance for the ith microbial or other immobile
species, i ∈ {NS + 1, . . . ,NS + M}, that are only subject to reactions:

∂tci + kdici = Ri . (3)

Here kdi denotes the decay rate of species i. Equations (2) and (3) have to be sup-
plemented with initial conditions ci(x,0) = ci0(x) for x ∈Ω , i ∈ {1, . . . ,NS + M}.

In this work, sorption is considered to be of kinetic type

∂t si = ki(φ(ci)− si) , (4)

with φ being an arbitrary sorption isotherm and ki a rate parameter. The isotherm φ
can be linear, of Freundlich, Langmuir or Freundlich-Langmuir type or a form free
function resulting from an experimental study or a parameter identification process.

3 Discretization

To discretize the flow problem (1) and transport system (2)–(4) in time, we use the
backward Euler method. For the spatial discretization of the equations we use the
lowest order Raviart-Thomas mixed finite element method. The approximation of
the Richards equation is described elsewhere (cf. [3, 8]) and is not considered here.
In the sequel we only present the mixed approximation of (2)–(4). In each time
step, we then solve first the discretized Richards equation by a damped version of
Newton’s method. This yields approximations of the water flux and content. Subse-
quently, we solve the fully coupled species equations again by Newton’s method.

To describe the mixed approximation of (2)–(4), let Th be a regular decom-
position of Ω into closed d-simplices, d = 1,2 or 3, with h denoting the mesh-
size. Let 0 = t0 < t1 < ... < tN = T be a partition of the time interval [0,T ]
and Δ tn = tn − tn−1, n ∈ {1, . . . ,N}. Let W = L2(Ω) be the space of all mea-
surable and square integrable functions on Ω and V = H(div;Ω) the space of
all d-dimensional vector functions with all components and divergence in L2(Ω).
We denote by Sh = S I

h ∪S D
h the set of all faces of Th, where S I

h are interior
faces and S D

h are faces on the boundary. The discrete subspaces Wh ⊂ W and
Vh ⊂ V are defined as Wh = {p ∈W | p is constant on each element T ∈ Th} and
Vh = {q ∈ V |q|T = a + bx,a ∈ IRd ,b ∈ IR for all T ∈Th}. Wh denotes the space of
all piecewise constant functions, whereas Vh is refered to as the RT0 space (cf. [5]).

First, a mixed formulation of the transport equations (2) is obtained by introduc-
ing the flux variables qi, i ∈ {1, . . . ,NS} as additional unknowns:

∂t(Θci)+ ρb∂t si + ∇ ·qi =−Ri, qi =−Di∇ci + qci in J×Ω . (5)
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The fully discrete mixed approximation of (5) then reads as follows: For all n =
1, . . . ,N and i ∈ {1, . . . ,P} find (cn

i,h,q
n
i,h) ∈Wh×Vh such that there holds

〈Θ n
h cn

i,h−Θ n−1
h cn−1

i,h ,wh〉+ρb〈sn
i,h− sn−1

i,h ,wh〉+Δ tn〈∇ ·qn
i,h,wh〉=−Δ tn〈Θ n

h Rn
i ,wh〉 ,

〈Di
−1qn

i,h,vh〉− 〈Di
−1qn

h cn
i,h,vh〉− 〈cn

i,h,∇ ·vh〉= 0
(6)

for all wh ∈Wh and vh ∈Vh.
Unfortunately, the resulting nonlinear algebraic system (6) leads after lineariza-

tion to a linear system of equations with an indefinite matrix such that standard
iterative solvers cannot be applied. To overcome this difficulty, we use a hybridiza-
tion technique; cf. [5]. Its basic idea is to relax firstly the continuity constraint of
the normal components of the fluxes over interelement faces that is implied by
v ∈ H(div;Ω); cf. [5]. The continuity constraint is then ensured by means of an
additional variational equation involving Lagrange multipliers. Precisely, the space
Vh is replaced by Ṽh := {q ∈ L2(Ω)|q|T = a + bx,a ∈ IRd ,b ∈ IR for all T ∈ Th}.
The discrete space for the Lagrange multiplier is defined by Λh,0 = {λ ∈ L2(Sh) |
λ|E ∈ P0(E) ∀E ∈ Sh and λ|E = 0 ∀E ∈ S D

h }. The fully-discrete mixed hybrid
variational formulation of the overall system (2)–(4) then reads as follows: For
n = 1, . . .N, i ∈ {1, . . . ,NS} and j ∈ {NS + 1, . . . ,NS + M} find (cn

i,h,s
n
i,h,λ

n
i,h,q

n
i,h) ∈

Wh×Wh×Λh,0× Ṽh and cn
j,h ∈Wh such that there holds

〈Θ n
h cn

i,h−Θ n−1
h cn−1

i,h ,wh〉+ρb〈sn
i,h−sn−1

i,h ,wh〉+Δ tn〈∇·qn
i,h,wh〉=−Δ tn〈Θ n

h Rn
i ,wh〉 ,

〈Di
−1qn

i,h,vh〉− 〈Di
−1qn

h cn
i,h,vh〉− 〈cn

i,h,∇ ·vh〉+ ∑
T∈Th

〈λ n
i,h,vh ·n〉∂T = 0 , (7)

∑
T∈Th

〈μh,q
n
i,h ·n〉∂T = 0

for all wh ∈Wh, vh ∈ Ṽh, μh ∈Λh,0 and

〈sn
i,h− sn−1

i,h ,wh〉= Δ tn〈ki(φ(cn
i,h)− sn

i,h),wh〉 , (8)

〈cn
j,h− cn−1

j,h ,wh〉+ Δ tn〈kd jc
n
i,h,wh〉= Δ tn〈Rn

j ,wh〉 (9)

for all wh ∈Wh. In (7), n denotes the outer normal.
The hybridization increases the complexity of the nonlinear systems. But we can

eliminate now internal degrees of freedom. Moreover, the Lagrange multipliers can
be used to construct a second order accurate approximation of the primary variables;
cf. [5]. This approximation can then also be used to obtain a reliable a posteriori
error indicator without almost any computational extra costs; cf. [3].

Let now Θ n
T denote the water content on the element T , cn

i,T denote the (con-
stant) component of the concentration of species i on the element T , {qn

i,TS}S⊂T ,
{Qn

TS}S⊂T the components of the flux of species i and water, respectively, in the lo-

cal Raviart-Thomas space basis {wTS}S⊂T (cf. [5, 3, 8]), Bi,T SS′ :=
∫

T
(Di
−1wT S′) ·



MHFEM for Reactive Transport in Porous Media 517

wT S dx, and λ n
i,S be the constant Lagrange multiplier on the face S. From (8) we get

that

sn
i,T − sn−1

i,T =
Δ tnki

1 + Δ tnki
φ(cn

i,T )− Δ tnki

1 + Δ tnki
sn−1

i,T . (10)

Using (10), we obtain from (7)–(9) the following system of nonlinear equations:

Mass conservation equation for the mobile species i ∈ {1, . . . ,NS}:

Θ n
T cn

i,T −Θ n−1
T cn−1

i,T + ρb
Δ tnki

1 + Δ tnki
φ(cn

i,T )−ρb
Δ tnki

1 + Δ tnki
sn−1

i,T

+
Δ tn

|T | ∑
S⊂T

qn
i,TS =−Δ tnΘ n

T Rn
i ∀ T ∈Th ,

sn
i,h− sn−1

i,h =
Δ tnki

1 + Δ tnki
φ(cn

i,h)−
Δ tnki

1 + Δ tnki
sn−1

i,h ∀ T ∈Th .

(11)

Equations for the flux of the mobile species i ∈ {1, . . . ,NS}:

∑
S′⊂T

Bi,T SS′q
n
i,T S′ = ∑

S′⊂T

Bi,T SS′Q
n
T S′c

n
i,T + cn

i,T −λ n
i,S ∀ T ∈Th,S ⊂ T . (12)

Continuity of the fluxes of the mobile species i ∈ {1, . . . ,NS} over faces:

∑
T⊃S

qn
i,T S = 0 ∀ S ∈S I

h . (13)

The local equations for the immobile species, completing the systems, read as

cn
i,T + Δ tnkdic

n
i,T = Δ tnRn

i + cn−1
i,T ∀ i ∈ {NS + 1, . . . ,NS + M} . (14)

Thus we have to solve locally NS + M coupled equations for the concentrations,
(d + 1)NS for the fluxes and NS global equations corresponding to the continuity
of the fluxes. Therefore we eliminate internal degrees of freedom, also known as
static condensation; cf. [8]. Briefly, within each time step, we use (12) to locally
eliminate the fluxes. Then we solve on each element the nonlinear system (11), (14)
for the concentrations by Newton’s method. Afterwards, we compute the fluxes and
solve the global system of fully coupled, nonlinear equations (13) for the Lagrange
multipliers by Newton’s method. By the thus determined multipliers we again solve
the local system (11), (14) for the concentrations. We iterate this procedure until a
given tolerance is reached. In detail we get from (12) that

qn
i,T S = Qn

T Scn
i,T + ∑

S′⊂T

B−1
i,TSS′(c

n
i,T −λ n

i,S′) ∀T ∈Th,S⊂ T, (15)

where B−1
i = {B−1

i,TSS′ }S,S′⊂T
is the inverse matrix of Bi := {Bi,TSS′ }S,S′⊂T . Let now

Si,T := ∑S,S′⊂T B−1
i,T SS′ and bi,S = ∑S′⊂T B−1

i,T S′S. Eliminating the flux variable yields
on each element T for each species concentration cn

i,T , i ∈ {1, . . . ,NS}
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Θ n
T cn

i,T + ρb
Δ tnki

1 + Δ tnki
φ(cn

i,T )+
Δ tn

|T | ∑
S⊂T

Qn
T Scn

i,T +
Δ tn

|T | Si,T cn
i,T

+Δ tnΘ n
T Rn

i =
Δ tn

|T | ∑
S⊂T

bi,Sλ n
i,S +Θ n−1

T cn−1
i,T + ρb

Δ tnki

1 + Δ tnki
sn−1

i,T .
(16)

This nonlinear system of NS + M equations given by (14) and (16) for the NS + M
unknowns {cn

i,T}i∈{1,...,NS+M} is solved by Newton’s method. The residual and the
local Jacobian matrix at iteration step k are computed by means of

residualk+1[i] = Θ n
T cn,k

i,T + ρb
Δ tnki

1 + Δ tnki
φ(cn,k

i,T )+
Δ tn

|T | ∑
S⊂T

Qn
T Scn,k

i,T

+
Δ tn

|T | Si,T cn,k
i,T + Δ tnΘ n

T Rn,k
i −

Δ tn

|T | ∑
S⊂T

bi,Sλ n
i,S−Θ n−1

T cn−1
i,T −ρb

Δ tnki

1 + Δ tnki
sn−1

i,T ,

residualk+1[ j] = (1 + Δ tnkd j)c
n,k
j,T −Δ tnRn,k

j − cn−1
j,T

for all i ∈ {1, . . . ,NS}, j ∈ {NS + 1, . . . ,NS + M} and

jac lock+1[i][ j] =

(
Θ n

T + ρb
Δ tnki

1 + Δ tnki
φ ′(cn,k

i,T )+
Δ tn

|T | ∑
S⊂T

Qn
T S +

Δ tn

|T | Si,T

)
δi j

+Δ tnΘ n
T

∂Rn,k
i

∂c j
∀(i, j) ∈ {1, . . . ,NS}×{1, . . . ,NS + M} ,

jac lock+1[i][ j] =

[
(1 + Δ tnkdi)+ Δ tn Rn,k

i

cimax

]
δi j−Δ tn

(
1− cn,k

i,T

cimax

)
∂Rn,k

i

∂c j

∀(i, j) ∈ {NS + 1, . . . ,NS + M}×{1, . . .,NS + M} .

Here δi j denotes the Kronecker symbol. Before calculating the overall global system
we still have to recompute the concentration of the adsorbed substances sn

i,T by using
(10). Finally, the global system reads

∑
T⊃S

{QT Scn
i,T + ∑

S′⊂T

B−1
i,TSS′(c

n
i,T −λ n

i,S′)} = 0 ∀S ∈S I
h , i ∈ {1, . . . ,NS}. (17)

The system (17) is solved by Newton’s method. The difficulty here is that we have
to determine the derivatives of the concentrations with respect to the Lagrange mul-
tipliers. We use (14) to obtain that ∂cn

i,T /∂λ j,S = (Δ tn/|T |)inv loc[i][ j]b j,S, where
inv loc ∈ IRNS+M,NS+M denotes the inverse of the local Jacobian matrix jac loc on
element T . The local contributions to the global Jacobian matrix are then given by

jacS,S′
i, j = ∑

T⊃S∩T⊃S′

(
QT S

∂cn
i,T

∂λ j,S′
+ ∑

S′′⊂T

Bi,TSS′′

( ∂cn
i,T

∂λ j,S′
− ∂λi,S′′

∂λ j,S′

))

= ∑
T⊃S∩T⊃S′

(
QT S

∂cn
i,T

∂λ j,S′
−B−1

i,TSS′δi j + ∑
S′′⊂T

B−1
i,TSS′′

∂cn
i,T

∂λ j,S′

)
(18)
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with i, j ∈ {1, . . . ,NS} and S,S′ ∈ {1, . . . ,d + 1}.
The scheme was implemented in the UG toolbox; cf. [2]. The linear system of

the Newton iteration is solved by a multigrid method.

Remark 1. A new mixed hybrid FE scheme is obtained by using the Lagrange mul-
tipliers, instead of the piecewise constant concentrations, for discretizing the con-
vective term in (1). Instead of (15), this yields

∑
S′⊂T

Bi,T SS′q
n
i,T S′ = ∑

S′⊂T

Bi,T SS′Q
n
T S′λ

n
i,S + cn

i,T −λ n
i,S ∀ T ∈Th,S ⊂ T. (19)

The analysis of this scheme is an ongoing work. Numerical tests that are not shown
here have indicated an increase in stability for convection dominated problems.

Remark 2. To obtain a discrete maximum principle, the mass matrix should be com-
puted by a quadrature formula (cf., e.g. [6]), which has also been implemented.

4 Numerical Example

The described mixed finite element approximation of the reactive system (2)–(4) is
compared numerically to standard linear and quadratic conforming finite element
approximations. This is done for an artificial example of two mixing, reacting sub-
stances; cf. [4]. In particular, we analyse whether accuracy is gained by the algorith-
mically more complex but locally mass conservative mixed approach.

Let Ω =(0,2)×(0,3), q = (0,−1)�, Θ = 1.0, DD = DA = 0.1 ·I with the identity
matrix I, αD = 1.0, αA = 2.0. The final fime is T = 1. We solve the model system

∂t(Θci)−∇ · (Di∇ci−qci) =−ΘRi + fi , Ri = αiCDC2
A , i = D,A . (20)

The rate Ri implies that degradation of the species CD and CA only occurs where
both species are available. Numerical diffusion may lead to an artifical mixing
of the substances and, thereby, to an overestimation of the degradation process;
cf. [4]. For our comparative study of the finite element approaches we prescribe
the analytical solution cD(x,y,t) = x(2.0− x)y3exp(−0.1t)/27 and cA(x,y,t) =
(x− 1.0)2y2exp(−0.1t)/9. We determine the corresponding right-hand side func-
tions fD and fA by (20), then we compute the finite element approximations of cD

and cA for the thus obtained right-hand sides and, finally, we compare the computed
approximations to the analytical solution.

Table 1 contains the calculated L2-errors of the finite element approximations
of cD and cA for a sequence of successively refined meshes and the time step size
Δ t = 0.001. Here, CMFEM

i is the nonconforming Crouzeix-Raviart approximation
of ci whose degrees of freedom are the Lagrange multipliers of the hybrid mixed
finite element approach; cf. [5]. The scheme based on (19) is used. In the quadratic
conforming case the temporal discretization error dominates the spatial error after
the first refinement step such that no further error reduction is observed. For smaller
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h ‖cD−CMFEM
D ‖ ‖cD−CP1

D ‖ ‖cD−CP2
D ‖ ‖cA−CMFEM

A ‖ ‖cA−CP1
A ‖ ‖cA−CP2

A ‖
2.00e-1 3.30e-3 2.70e-3 4.46e-5 2.67e-3 2.90e-3 6.48e-5
1.00e-1 8.36e-4 6.61e-4 4.25e-6 6.85e-4 7.09e-4 5.46e-6
5.00e-2 1.90e-4 1.63e-5 1.99e-6 1.56e-4 1.76e-4 6.95e-7
2.50e-2 4.73e-5 3.96e-5 1.95e-6 3.96e-5 4.42e-5 6.79e-7
1.25e-2 1.11e-5 8.85e-6 1.95e-6 1.01e-5 1.14e-5 6.85e-7

Table 1 Calculated L2-errors for the mixed (CMFEM
i ), linear conforming (CP1

i ) and quadratic con-
forming (CP2

i ) finite element approximation of ci, i = D,A with CMFEM
i denoting the nonconforming

Crouzeix-Raviart approximation with the Lagrange multipliers as degrees of freedom.

time step sizes convergence of order three is in fact obtained which is not shown
here. In Table 1 we do not observe any significant differences between the mixed
and the linear conforming approach. The calculated errors are of almost equal size.
Thus, in the considered test problem of two mixing reactive species loss of mass and
numerical diffusion, the weak points of the linear conforming approach, is no object.
The properties of the mixed approach in comparison to conforming approaches will
be further analysed in forthcoming studies and for more refined and sophisticated
test problems.
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Applying Local Projection Stabilization
to inf-sup Stable Elements

G. Rapin, G. Lube, and J. Löwe

Abstract In this paper a priori estimates for finite element discretizations of Os-
een type problems using local projection stabilization are presented. In contrast to
existing papers [5, 1] inf-sup stable velocity-pressure pairs are used. Asymptotic
parameter choices are derived and verified by numerical experiments.

1 Introduction

The computation of the non-stationary, incompressible Navier-Stokes equations

∂tu−ν*u+(u ·∇)u+ ∇p = f̃, ∇ ·u = 0 in Ω

for velocity u and pressure p is still a challenge. Here, Ω ⊂ Rd , d = 2,3, is a
bounded polyhedral domain and f̃ is a given source term. A common approach is
to semi-discretize in time first using any A-stable implicit scheme, cf. [3]. Then, the
resulting stationary problems can be solved by a fixed-point or Newton-type scheme
in each time step. We end up with auxiliary Oseen problems of the following type:

−ν*u+(b ·∇)u+C u+ ∇p = f, ∇ ·u = 0 in Ω (1)

with new right hand side f ∈ [L2(Ω)]d and coefficients C ∈ [L2(Ω)]d×d , b ∈
[L∞(Ω)∩H1(Ω)]d with ∇ ·b = 0. Assuming sufficient small time steps we can as-
sume that the term C u is positive, i.e. there exists a c0 > 0 such that ytC y≥ c0yty for
all y ∈ Rd . Moreover, let ν ∈ L∞(Ω) be strictly positive, i.e. ν0 := infx∈Ω ν(x) > 0.
In contrast to most papers about the Oseen problem we consider the case of a matrix-
valued coefficient C since the Newton linearization contains terms like (u ·∇)b.

G. Rapin, G. Lube, and J. Löwe
Math. Dep., University of Göttingen, Germany; e-mail: grapin/lube@math.uni-goettingen.de
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It is well known that basic Galerkin approximations of (1) may suffer from
two problems: violation of the discrete inf-sup (or Babuška-Brezzi) stability con-
dition and dominating advection, i.e. ν $ ‖b‖[L∞(Ω)]d . The traditional way to deal
with both aspects in a common framework is the combination of the Streamline-
Upwind/Petrov-Galerkin method (SUPG) and the Pressure-Stabilization/ Petrov-
Galerkin method (PSPG), cf. [4]. The residual based methods have been quite pop-
ular in the last twenty years. Unfortunately they have several drawbacks:

• Due to the additional stabilization terms the assembling is expensive. Especially,
the discretization of the Laplacian is costly for higher order elements.

• The additional coupling of velocity and pressure destroys the saddle point struc-
ture. Thus, standard saddle point preconditioners cannot be applied.

Therefore, other stabilization techniques have become popular. Almost all ap-
proaches can be included in the framework of variational multiscale (VMS) meth-
ods [2]. The key idea of VMS methods consists in a separating of scales. Mainly, the
underlying function spaces are split into different scales: large scales, small scales
and unresolved scales. The influence of unresolved scales on other scales has to be
modeled. In local projection methods [1, 5] the influence of the unresolved scales
on the fine scales is modeled by an artificial diffusion term for the fine scales.

Here, we extend the papers [5, 1] to inf-sup stable elements. In Section 2 the
stabilized scheme is introduced. Then, we outline the analysis of [6] and describe
the choice of the stabilization parameters (Section 3). Finally, the theoretical results
are validated by numerical experiments and some conclusions are given.

2 Stabilization by Local Projection

Throughout this paper standard notations for Lebesgue and Sobolev spaces are used.
The L2 inner product resp. norm in a domain G is denoted by (·, ·)G resp. ‖ · ‖G. If
G = Ω we simply write (·, ·) resp. ‖ · ‖.

The weak formulation for the Oseen problem (1) with homogeneous Dirichlet
data is given as follows: Find U = (u, p) ∈V×Q := [H1

0 (Ω)]d×L2
0(Ω), such that

A(U,W ) := (ν∇u,∇w)+ ((b ·∇)u+C u,w)− (∇ ·w, p)+ (∇ ·u,q) = (f,w) (2)

for all W = (w,q) ∈ V×Q. Let Th denote a shape regular mesh of simplices or
hexahedra. For each T ∈Th and reference element T̂ there exists an affine mapping
FT : T̂ → T . The finite element spaces Vh,ku ⊂ V and Qh,kp ⊂ Q are based on

Pk,Th := {vh ∈ L2(Ω) | vh|T ◦FT ∈ Pk(T̂ ) ,T ∈Th},
Qk,Th := {vh ∈ L2(Ω) | vh|T ◦FT ∈Qk(T̂ ) ,T ∈Th}.

Pk(T̂ ) is the space of complete polynomials of degree k on T̂ and Qk(T̂ ) is the space
of polynomials on T̂ whose degree does not exceed k in each coordinate direction.
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Now, we define the finite element space of the velocity by Vh,ku = [Qku,Th ]
d ∩V

or Vh,ku = [Pku,Th ]
d∩V. The scalar components of Vh,ku will be denoted as Yh,ku . The

discrete space Qh,kp for the pressure is defined as Qh,kp = Qkp,Th resp. Qh,kp = Pkp,Th .
Then, the Scott-Zhang quasi-interpolant operator Iu

h,ku
satisfies for v ∈ H1

0 (Ω) ∩
Ht(Ω), t > 1

2 with v|ωT ∈ Hr(ωT ), r ≥ t, on the patches ωT :=
⋃

T ′∩T �= /0 T ′

‖v− Iu
h,ku

v‖m,T � hl−m
T km−l

u ‖v‖l,ωT , 0≤ m≤ l = min(ku + 1,r). (3)

a � b means a ≤Cb with constant C independent of important sizes like mesh size
or polynomial order. We assume the discrete Babuška-Brezzi condition

∃β0 > 0 | inf
qh∈Qh,kp

sup
vh∈Vh,ku

(qh,∇ ·vh)
‖qh‖0|vh|1 ≥ β0. (A1)

The idea of LPS-methods is to split the discrete function spaces into small and
large scales. Then, a diffusion-type term is added acting solely on the small scales.
Here, the large scales are defined on a coarse mesh Mh = {Mi}i∈I .

The mesh Mh = {Mi}i∈I is constructed by coarsening Th in the sense of [5].
Each macro element M ∈Mh is the union of one or more neighboring cells T ∈Th.
We assume that the interior cells are of the same size than the macro cells:

∃C > 0 | hM ≤ChT , ∀T ∈Th,M ∈Mh with T ⊂M. (4)

Following the approach in [5] we define the discrete space Du
h for the velocity as a

discontinuous finite element space defined on the macro partition Mh. The restric-
tion on a macro-element M ∈Mh is denoted by Du

h(M) := {vh|M | vh ∈ Du
h}.

The next ingredient is a local projection πu
M : L2(M)→Du

h(M) which defines the
global projection πu

h : L2(Ω)→ Du
h by (πhw)|M := πM(w|M) for all M ∈Mh. The

associated fluctuation operator κu
h : L2(Ω)→ L2(Ω) is defined by κu

h := id−πu
h .

These operators are applied to vector-valued functions in a component-wise
manner using the same notation, e.g. πππu

h : [L2(Ω)]d → [Du
h]

d and κκκu
h : [L2(Ω)]d →

[L2(Ω)]d . Please note that the theory covers the case Mh = Th. Analogously a dis-
crete space Dp

h and a fluctuation operator κ p
h can be defined.

Now, we define the stabilized formulation: find Uh = (uh, ph) ∈Vh,ku×Qh,kp s.t.

A(Uh,Vh)+ Sh(Uh,Vh) = (f,vh), ∀Vh = (vh,qh) ∈ Vh,ku ×Qh,kp (5)

where the additional stabilization term is given by

Sh(Uh,Vh) := ∑
M∈Mh

[
τM(κκκuuu

hhh ((b ·∇)uh) ,κκκu
h ((b ·∇)vh) )M

+μM(κ p
h (∇ ·uh) ,κ

p
h (∇ ·vh))M + αM (κκκu

h(∇ph),κκκu
h(∇qh))M

]
. (6)

τM , μM and αM will be determined later with the help of an a priori estimation. The
stabilization Sh(·, ·) acts solely on fine scales. Other variants can be found in [5, 1].



524 G. Rapin et al.

Since the additional stabilization terms are not consistent, i.e.

A(U−Uh,Vh) = Sh(Uh,Vh), ∀Vh ∈Vh×Qh (7)

we have to ensure that the consistency error can be controlled. Therefore, we have
to require that the space Du

h is large enough. Precisely, we assume for 0≤ l ≤ ku

∃Cκ > 0 | ‖κu
h q‖ ≤Cκ hl

Mk−l
u |q|l,M, ∀q ∈ Hl(M), ∀M ∈Mh. (A2)

Due to the consistency of the stabilization term μM(κ p
h (∇ ·uh) ,κ p

h (∇ ·vh))M a con-
dition like (A2) is not needed for Dp

h .

3 Analysis and Choice of the Parameters

In this section we outline the analysis of [6]. We show stability of the scheme and
give an a priori estimation which is used to determine the stabilization parameters.

We start with the stability of the scheme. We define the mesh-dependent norm

‖|V |‖ :=
(|[V ]|2 + δ‖q‖2

0

) 1
2 , |[V ]|2 := ‖ν 1

2 ∇v‖2
0 + c0‖v‖2

0 + Sh(V,V )

for V = (v,q) ∈V×Q and suitable δ > 0. The following stability result is valid for
arbitrary μM,τM ,αM ≥ 0 and shows the existence and uniqueness of solutions.

Lemma 1. ([6], Lemma 2) There holds

inf
Vh=(vh,qh)∈Vh,ku×Qh,kp

sup
Wh=(wh,rh)∈Vh,ku×Qh,kp

(A + Sh)(Vh,Wh)
‖|Vh‖|‖|Wh|‖ ≥ γ > 0. (8)

Defining νmax := ‖ν‖L∞(Ω) the constants are given by

γ ∼ 1/(1 +
1
β0

(νmax + c0 + 1)
1
2 ), δ ∼ β 2

0 /(min{ 1
c0

,
1
ν0
}+ νmax + 1).

The constants γ , δ are independent of the mesh size, but we loose control of the
pressure in the case of small coefficients c0 and ν0.

The a priori estimate is based on a special interpolant ju
h : H1(Ω)→ Yh,ku for the

velocity, introduced in [5], such that the error w− ju
hw is L2-orthogonal to Du

h for all
w ∈H1

0 (Ω). In order to conserve the standard approximation properties, we assume
for Yh(M) := {vh|M | vh ∈ Yh,ku ,vh = 0 on Ω \M} the existence of a constant βu s.t.

inf
qh∈Du

h

sup
vh∈Yh(M)

(vh,qh)M

‖vh‖0,M‖qh‖0,M
≥ βu > 0. (A3)

Later on, we will present several function spaces Du
h satisfying (A3).

Using the inverse inequality
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∃μinv | |v|1,T ≤ μinvk2
uh−1

T ‖v‖0,T , ∀T ∈Th, ∀vh ∈ Vh,ku (9)

one can prove ([6], Lemma 3)

Lemma 2. Assume assumption (A3). There exists an operator ju
h : V→ Vh,ku with

(v− ju
hv,qh) = 0, ∀qh ∈ [Du

h]
d , ∀v ∈V, (10)

‖v− ju
hv‖0,M +

hM

k2
u
|v− ju

hv|1,M � (1 +
1
βu

)
hl

M

kl
u
‖v‖l,ωM ,∀v ∈ [Hl(Ω)]d ∩V(11)

for all T ∈Th and 1≤ l ≤ ku + 1. ωM :=
⋃

T⊂M ωT is a neighborhood of M ∈Mh.

The estimate (11) is optimal with respect to the mesh size hM, but sub-optimal with
respect to the polynomial order. This is caused by the inverse inequality (9).

Using the approximated Galerkin orthogonality (7) and splitting the error into

U−Uh = (u−uh, p− ph) = (u− ju
hu, p− jp

h p)+ (ju
hu−uh, jp

h p− ph)

the following a priori estimation can be proven ([6], Theorem 1)

Theorem 1. Let U = (u, p) ∈ V×Q be solution of (2) and Uh = (uh, ph) ∈ Vh,ku ×
Qh,kp of (5). Let be p∈Hlp+1(Ω) and u∈ [Hlk+1(Ω)]d ,(b ·∇)u ∈ [Hlu(Ω)]d. More-
over, assume (A2), (A3) for the coarse space Du

h and

inf
qh∈Dp

h

sup
vh∈Qh,kp

(vh,qh)M

‖vh‖0,M‖qh‖0,M
≥ βp (A4)

for Dp
h . Then, there holds for 1≤ lu ≤ ku and 1≤ lp ≤min{kp,ku}

‖|U−Uh|‖2 � 1
γ ∑

M∈Mh

(
τM

h2lu
M

k2lu
u
‖(b ·∇)u‖2

lu,ωM
(12)

+
(

1 +
1
βu

)2 h2lu
M

k2lu−2
u

Cu
M‖u‖2

lu+1,ωM
+
(

1 +
1

βp

)2 h
2lp
M

k
2lp−2
p

Cp
M‖p‖2

lp+1,ωM

)
.

with cmax := supv∈(L2(Ω))d
‖C v‖
‖v‖ , Cp

M := αM +(δ + μ−1
M )h2

M/k4
p and

Cu
M := νmax +

h2
M

k4
u

(c0 +
c2

max

c0
+ τ−1

M )+ μM +‖b‖2
[L∞(M)]d τM + δ−1.

Remark 1. In the case of continuous pressure we can improve the constant Cu
M:

Cu
M = νmax +

h2
M

k4
u

(c0 +
c2

max

c0
+ τ−1

M )+ μM +‖b‖2
[L∞(M)]d τM + min{α−1

M
h2

M

k4
u

,δ−1}.

Thus, the error can even be controlled for small viscosity ν and C = 0.
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Let us briefly discuss several choices of the discrete spaces Vh,ku ×Qh,kp and
Du

h×Dp
h using simplicial and hexahedral elements. The popular choices Qk/Qk−1,

Pk/Pk−1 and Qk/P−(k−1) satisfy the assumptions (A2), (A3), (A4) of Theorem 1, if

one chooses Du/p
h = Qku/p−1,Mh/Pku/p−1,Mh . The constants βu/p scales like O( 1√

ku/p
)

for simplicial elements and like O(1) for quadriliteral elements, cf. [6].
Now we calibrate the stabilization parameters αM,τM and μM with respect to

the local mesh size hM, the polynomial degrees ku and kp and problem data. We
minimize and balance the terms of the right hand side of the a priori error estimation.
First, equilibrating the τM-dependent terms in Cu

M yields τM ∼ hM/(‖b‖[L∞(M)]d k2
u).

Similarly, equilibration of the terms in Cu
M and Cp

M yields for continuous pressure

spaces μM ∼ h
lp−lu+1
M /(klp−lu+2), αM ∼ h

lu−lp+1
M /(klu−lp+2) where we used k∼ ku∼

kp. For Taylor-Hood pairs with ku = kp + 1, assume lu = lp + 1 = ku and set

αM = α0h2
M/k3

u, μM = μ0/ku, τM = τ0hM/(‖b‖[L∞(M)]d k2
u). (13)

We obtain under the assumptions of Theorem 1

|[U−Uh]|2 � ∑
M∈M

((
1 +

1
βp

)2 h2lu
M

k2l+1
u
‖p‖2

lu,ωM
+

h2lu+1
M

k2l+2
u ‖b‖[L∞(M)]d

‖(b ·∇)u‖2
l,ωM

+
(
1 +

1
βu

)2
[
‖ν‖L∞(M) + (c0 +

c2
max

c0
)

h2
M

k4
u

+‖b‖[L∞(M)]d
hM

k2
u

+
1
ku

]
h2lu

M

k2lu−2
u

‖u‖2
l+1,ωM

)
.

For Taylor-Hood pairs Vh,ku = [Qk+1,Th ]
d ∩V, Qh,kp = Qk,Th ∩C(Ω)∩Q we get

optimal convergence rates O(hk+1
M ) w.r.t. hM. Due to non-optimal interpolation op-

erators ju
h, jp

h these estimates are presumably not optimal w.r.t. ku.

4 Numerical Results

In this Section we validate convergence rates of the a priori estimation and control
the parameter design. As test problem we consider the unit square Ω = (0,1)2 with
Dirirchlet boundary data. The data is chosen such that p(x,y) = sin(πx)cos(πy),
u(x,y) = (sin(πx),−πycos(πx))t is the solution of (1) with b = u and C u = u.
We use Taylor-Hood elements Qk/Qk−1 on unstructured, isotropic meshes Th. The
coarse spaces are defined by Du

h = Qk−1,Mh , Dp
h = {0}.

First, the parameter design is considered. Because of Remark 1 stabilization with
αT > 0 is only necessary for small viscosity and small reaction. And indeed in
Figure 1 (left) it can be observed for a typical configuration with a small diffusion
coefficient ν that the scheme is very robust with respect to the choice of αM = α0h2

M.
Therefore, for all further computations the pressure stabilization is neglected.

Next, we consider the remaining parameters τM = τ0hM and μM = μ0. In Figure 1
(right) four contour plots are presented for the error w.r.t. the parameters τ0 and μ0.
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Fig. 1 Parameter choice for Q2/Q1 elements: left: Error w.r.t α0 for αM = α0h2
M , ν = 10−6, μM =

10−1/4, τM = 10−3/4hM , h = 1
32 , 1

69 , right: Contour plot for τ0, μ0 (h = 1/32, ν = 10−6).

In the upper plots for the velocity errors there exists an optimal value for the
parameter pair (τ0,μ0). As an approximation we use the cross at (10−1/4,10−3/4).

Our (not presented) numerical experiments show that the scheme is quite ro-
bust w.r.t. the choice of τM . Therefore we concentrate on the parameter μM . In Fig-
ure 2 (left) the parameter design w.r.t. the mesh size h is validated (h ≈ 1

16 , 1
32 , 1

69 ).
Obviously, the predicted dependency of μM on the mesh size is correct.
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Fig. 2 Errors w.r.t μ0 for ν = 10−6: left: Q2/Q1 (h = 1
32 , 1

69 ), right: Qk/Qk−1 (h = 1
16 ).

Next, the dependency of μM on the polynomial degree k is considered. In Figure 2
(right) the error of the velocity component is plotted for Qk/Qk−1-elements, k =
2, . . . ,5. One observes the dependency of μ0 on the polynomial order k.

The predicted convergence orders can be seen for the advection dominated case
in Figure 3. As expected the convergence order of the scheme is 2 for the stabilized
norm. The same results hold also for higher order elements, cf. Figure 3 and Table 1.
The results are in agreement with the expected convergence rates in Table 1.
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Fig. 3 Convergence for Q2/Q1-elements (left) and Q3/Q2-elements (right) (ν = 10−6).

ν 1 1e−6
Element ‖u−uh‖0 ‖∇ ·uh‖0 ‖p− ph‖0 ‖u−uh‖0 ‖∇ ·uh‖0 ‖p− ph‖0

Q2Q1 3.0201 2.0994 1.9736 2.5645 2.1369 1.9777
Q3Q2 4.1158 3.0887 3.0044 3.6300 3.0271 2.9874
Q4Q3 4.9377 4.0820 4.0830 4.5310 4.0212 3.9910

Table 1 Convergence orders for different Qk/Qk−1-pairs.

5 Conclusion

In this paper it is shown how the approach for equal-order elements can be extended
to inf-sup stable finite elements. A complete stability and a priori analysis is pre-
sented. Moreover, various stabilization parameters are specified.

The numerical experiments show that the analysis is sharp with respect to the
mesh size. The a priori estimate is sub-optimal with respect to the polynomial order.
This is caused by non-optimal interpolation properties of the interpolation operator,
which were used for the a priori estimate.
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Calibration of Model and Discretization
Parameters for Turbulent Channel Flow

X.Q. Zhang, T. Knopp, and G. Lube

Abstract The simulation of turbulent incompressible flow in a plane channel is ad-
dressed. For Reτ = 395, discretization and model parameters of LES and DES mod-
els are calibrated using a DNS data basis. For higher Reτ , a non-zonal hybrid method
combines the calibrated LES model with wall functions as a near-wall model.

1 Basic Mathematical Model and Discretization

Consider the non-stationary, incompressible Navier-Stokes model

∂tu−∇ · (2νS(u))+ ∇ · (u⊗u)+ ∇p = f in Ω × (0,T ] (1)

∇ ·u = 0 in Ω × (0,T ] (2)

for velocity u and pressure p in a bounded, polyhedral domain Ω ⊂R3 together with
boundary and initial conditions. S(u) = 1

2 (∇u+ ∇uT ) is the rate of strain tensor.
For the numerical simulation of (1)-(2), the DLR Theta code is used. The spa-

tial discretization is based on a finite volume scheme on unstructured collocated
grids. Different upwind schemes (linear upwind scheme (LUDS), quadratic upwind
scheme (QUDS)) and the central differencing scheme (CDS) are implemented for
the approximation of the convective fluxes. Diffusive fluxes are discretized with the
CDS. The interpolation scheme by Rhie and Chow [8] is applied in order to avoid
spurious pressure oscillations. The time discretization is performed using the A-
stable BDF(2) scheme. The incremental variant of the projection method is used to
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split the calculation of velocity and pressure within each time step. For a review of
semidiscrete error estimates for the time-dependent Stokes problem see [3].

Of special interest here is the wall treatment. In the code, the wall node is shifted
to the center of the control volume adjacent to the wall. Denote Γw the wall and Γδ an
artificial inner boundary containing the shifted nodes at wall distance yδ . Then, as a
boundary condition on Γw, the wall-shear stress τw is prescribed instead of no-slip

u ·n = 0, (I−n⊗n)2νS(u)n =−τwut,δ on Γw . (3)

with I− n⊗ n being the projection operator onto the tangential space of Γw, unit
velocity vector in wall-parallel direction ut,δ = vt,δ /|vt,δ | and

τw = ν∇uδ ·n , where uδ = |vt,δ | , vt,δ = (I−n⊗n)u|Γδ . (4)

2 Turbulence Modeling Using LES Type Models

In LES, a scale separation operator subdivides the scales into filtered scales and
unresolved scales. Only the filtered scales are solved and the unresolved scales are
modeled by a sub-grid stress term of the so-called eddy-viscosity νt.

Smagorinsky model: In this classical LES model, the eddy-viscosity is given by
νt = (CSΔ)2|S| with |S| = (2S : S)1/2. The model constant to be calibrated is CS.
The filter width is Δ = nhc, n = 1,2, . . ., with hc = (ΔxΔyΔz)1/3, where Δx,Δy,Δz
denote the grid spacing in x-, y-, and z-direction respectively.

Near solid walls, the turbulent viscosity νt is multiplied with the van Driest
damping function D(y+). For x ∈ Ω , denote xw = xw(x) ∈ Γw the corresponding
nearest wall point with distance d from x. Then D(y+) = (1−exp(−y+/A+))2 with
A+ = 26 where y+ = yuτ/ν is the wall-distance of x from xw in viscous units with
y = dist(x,xw(x))≡ d and uτ = uτ |xw =

√
τw.

Due to its non-local character the van Driest damping is not very suitable for
unstructured methods or if parallelization is used A modified definition of Δ by [11]
uses Δ = min(max(Cwd,CwΔmax,Δwn), Δmax) where Δmax = max{Δx,Δy,Δz} with
Δwn denoting the spacing in wall-normal direction. Cw is a calibration parameter.

Detached-eddy simulation model: Detached-eddy simulation (DES) is a single
non-zonal hybrid RANS-LES method [10] based on the one-equation RANS model
by Spalart & Allmaras [9] which computes the eddy viscosity νt = fv1ν̃ from the
auxiliary viscosity ν̃ using a near-wall damping function fv1 = χ3/(χ3 + c3

v1) with
χ = ν̃/ν which involves only local variables. Here ν̃ solves the transport equation

∂t ν̃ + u ·∇ν̃−∇ ·
(ν + ν̃

σ
∇ν̃

)
− cb2

σ
(∇ν̃)2 = cb1S̃ν̃− cw1 fw(

ν̃
d

)2

with S̃ = |Ω |+ ν̃/(κ2d2) fv2, |Ω |= (2Ω(u):Ω(u))1/2, and Ω(u)= (∇u−(∇u)�)/2.
The functions fw and fv2 and constants σ , cb2, cb1, cw1 are given in [9].
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In the SA-DES model, d is replaced with d̃ = min( d , CDESΔmax). The model
constant to be calibrated is CDES.

Near-wall treatment for LES: Wall-functions are used to bridge the near-wall
region at high Reynolds numbers. The wall shear stress τw can be computed from
(4) only if y+

δ < 3. For larger y+
δ , τw = u2

τ is computed from friction velocity uτ : The
universal velocity profile of RANS-type by Reichardt is matched at the shifted node
yδ with the instantaneous LES solution uδ

uδ
uτ

= F
(yδ uτ

ν

)
, F(y+)≡ ln(1 + 0.4y+)

κ
+ 7.8

(
1− e−

y+
11.0 − y+

11.0
e−

y+
3.0

)
. (5)

Equation (5) is solved for uτ with Newton’s method.
We remark that (5) is an approximative solution of the boundary layer equation

in wall-normal direction neglecting convective term and pressure gradient: For each
xw ∈ Γw and given uδ seek the wall-parallel velocity uRANS(y) such that

∂y

(
(ν + νRANS

t )∂yuRANS
)

= 0 in { xw− yn | y ∈ (0,yδ )} (6)

uRANS(0) = 0 , uRANS(yδ ) = uδ . (7)

3 Calibration for Decaying Isotropic Turbulence

Framework: It is desirable to treat the calibration problem of basic turbulence mod-
els within the framework of optimization problems. Consider the abstract equation

A(q,u) = f in Ω . (8)

(here: quasi-stationary turbulent Navier-Stokes model) for the state variable u (here:
velocity/pressure) in a Hilbert space V ⊆ [H1(Ω)]3 × L2(Ω) with the parameter
vector q (here: model and grid parameter) in the control space Q := Rnp . Let C :
V → Z be a linear observation operator mapping u into the space of measurements
Z := Rnm with nm ≥ np. Then q is calculated from the constrained optimization
problem

Minimize J(q,u) := ‖C(u)− Ĉ‖2
Z/2 (9)

with the cost functional J : Q×V →R under constraint (8) and using measurements
Ĉ ∈ Z. Assume the existence of a unique solution to (8)-(9) and of an open set
Q0⊂Q containing the optimal solution. Using the solution operator S : Q0→V , one
defines via u = S(q) the reduced cost functional j : Q0→R by j(q)= J(q,S(q)). The
reduced observation operator c(q) := C(S(q)) leads to an unconstrained problem

Minimize j(q) = ‖c(q)− Ĉ‖2
Z/2, q ∈ Q0. (10)

An efficient framework to the solution of the necessary optimality condition
j′(q) = 0 of (10) provides the adjoint approach, see [4] for a review. The approach
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can be generalized to time-dependent problems. This makes the optimization prob-
lem and solution techniques much more expensive, although sophisticated tools
such as a-posteriori based optimization can reduce the costs, e.g. [1].

Seemingly, this approach has not been applied to parameter identification for
turbulent flows yet. Main problems occur from the nonlinearity of turbulence models
and the simulation over long time intervals to reach a statistically steady solution.
Hence, a simpler approach to (10) is applied. As a basic step, a series of numerical
simulations for a given flow provide look-up tables for the cost functional depending
on relevant parameters as a basis for further systematic considering. In some cases,
a Newton type method is feasible to determine optimized parameters.

Application to DIT: The problem of decaying isotropic turbulence (DIT) mimics
the experiment by [2] at Taylor microscale Reynolds number Reλ ∼ 150. We choose
a cubic box domain Ω = (0,2π)3 and an equidistant mesh with N3 nodes. As initial
condition, we use a divergence-free velocity field with energy spectrum E(k)|t=0

(k = |k|, 1≤ k≤M, M = N/2− 1) given by data in [2] which can be computed as

u(x)|t=0 =
M

∑
k1=0

M

∑
k2,k3=−M
|k|≤kmax

(E(k)|t=0

Sk

)1/2
2
(
I− k⊗k
|k|2

)
γ(k)cos(k ·x+Θ(k)). (11)

The components of γ(k) are real random numbers with Gaussian distribution in
[0,1], Sk is the number of wave-vectors k with k−1/2≤ |k| ≤ k + 1/2 and Θ(k) is
a random phase with uniform distribution in 0≤Θ ≤ 2π .

The second-order statistics of interest is the energy spectrum

E(k,t) = ∑
k−1/2<|q|≤k+1/2

1
2

û(q,t) · û∗(q,t), k = 1,2, . . . ,M, (12)

where û∗ is the complex conjugated of û. û is the discrete Fourier transform of u

û(k) =
1

N3

( N−1

∑
x1,x2,x3=0

u(x)cos(−k ·x)+ i
N−1

∑
x1,x2,x3=0

u(x)sin(−k ·x)
)
. (13)

Then we consider the error functional

J(C) =
( M

∑
i=1

[(
E(ki,C)−Eexp(ki)

)2
t=0.87 +

(
E(ki,C)−Eexp(ki)

)2
t=2.0

] )1/2
.

The results in [12] for the spatial discretizations show that CDS is suitable to re-
solve the large wave-number part of the spectrum, whereas the upwind schemes
produce excessive damping at high wave-numbers. Combining QUDS with a skew-
symmetric formulation (QUDS sk) for the convective fluxes gives some improve-
ment. Fig. 1 (left) shows the dependence of the cost functional on the constant CS

for the Smagorinsky model (SMG) and N = 64. A Newton-type method (based
on numerical differentiation) delivers a minimum with CS = 0.094 for CDS and
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Fig. 1 Left: Calibration of Smagorinsky constant CS for DIT. Right: Energy spectrum with opti-
mized model constants of Smagorinsky model and of SA-DES model for CDS scheme.

CS = 0.123 for QUDS sk. For the SA-DES model, a similar Newton-type approach
yields a minimum of J(C) for CDES = 0.67. In Fig. 1 (right), the corresponding
energy spectra for CDS with optimized constants for SMG and SA-DES are shown.

4 Parameter Calibration for Channel Flow

Consider now the benchmark problem of fully developed turbulent channel flow in
the domain Ω = (0,2π)× (0,2)× (0,π). Periodic boundary conditions in stream-
wise x-direction, a no-slip condition for the walls in y-direction and symmetry
planes in the spanwise z-direction are imposed. We consider a moderate Reynolds
number Reτ = uτH/ν = 395 with channel half width H = 1, for which DNS data
are available [6]. In order to achieve a constant mass flux, the streamwise forcing
term is adjusted dynamically by taking into account the time step size δ tn and the
bulk velocity from the DNS data and the bulk velocity at the present time tn

f = τwex + (δ tn)−1(Ubulk,DNS−Ubulk(tn))ex , Ubulk = H−1
∫ H

0
u(y)dy (14)

where ex denotes the unit-vector in x-direction. As initial condition we use a ran-
domly perturbed velocity field u|t=0 = uτF(yuτ/ν)ex +0.1Ubulkψ where F is given
by (5) and each component of ψ is a random number in (−1,1). The spatial dis-
cretization uses Nx×Ny×Nz = 64× 64× 64 nodes. The equidistant spacing in x-
and z direction corresponds to Δx+ = Δxuτ/ν = 38.8 and Δz+ = Δzuτ/ν = 19.4
respectively. The grid in wall-normal direction is stretched using a hyperbolic tan-
gent function y( j)/H = tanh[γ(2 j/Ny− 1)]/ tanh(γ)+ 1.0, j = 0,1, . . . ,Ny− 1
where y( j) is the coordinate of the jth grid point in y direction providing thus an
anisotropic, layer-adapted mesh, see [5]. The parameter γ allows to move the posi-
tion y+(1) of the shifted wall node. The time step is chosen as δ t+ ≡ δ tu2

τ/ν = 0.4.
After reaching a statistically steady solution, first-order and second order statis-

tics are computed. Denote 〈·〉 the averaging operator over the two homogeneous
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Fig. 2 Cost functionals for channel flow Reτ = 395, Left: mean velocity. Right: kinetic energy.

directions and in time. The quantities of interest are the mean velocity U = 〈u〉, the
turbulent kinetic energy k = 1

2〈(u−〈u〉)2〉 and its normalized variants U+ = U
uτ

and

k+ = k
u2
τ
. The L2-error functional of the LES results compared to the DNS data is

Ju(y+(1),C) =
( Ny

∑
i=0

(Ui(y+(1),C)−Ui,DNS)2Δyi

)1/2
(15)

for the mean velocity (and similarly for kinetic energy Jk) with φi = φ(y(i)) and the
spacing Δyi in y-direction of cell i.

In Fig. 2, the dependence of the cost functionals Ju and Jk on CS and y+(1) is
shown for the Smagorinsky model. The result is robustness w.r.t. CS ∈ [0,0.12] and
y+(1)∈ [0.5,1.5]. This means that a Newton-type approach to parameter calibration
will not find local minima. In particular, the DIT-optimized value of CS but also
CS = 0 (i.e., no turbulence model) are reasonable. The latter simulation can be seen
as underresolved DNS on a layer-adapted mesh.

Reasonable results for the first and second order statistics are presented in Fig. 3
for the calibrated modified Smagorinsky model and the SA-DES model. The SA-
DES model gives even better results and allows to avoid a damping of νt .

Channel flow at higher Reτ : Now, the goal is to simulate turbulent channel flow
at higher Reynolds number Reτ = 4800 using the calibrated model constants. A
resolution of the wall layer regions (as for Reτ = 395) with a standard LES model
is not feasible (on a single processor) due to the much finer mesh in all spatial
directions and in time.

As DES-type approaches are still relatively expensive, the modified Smagorin-
sky LES model (WSMAG) and the SA-DES model (WSADES) are used with wall
functions. This reduces the computing time by an order of magnitude due to the
saving in grid points in wall-normal direction and due to the much larger time steps.

The results for the WSADES approach are given in Fig. 4. The original DES
concept for coupling the RANS and LES regions gives two logarithmic layers, see
[7]. The lower layer is the modeled log layer of the RANS model, while the upper
layer is the resolved log-layer of the LES model. This causes a significant error in
uτ . This is subject to present and future research and will be presented elsewhere.
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5 Summary and Conclusions

A strategy for calibration of model and discretization parameters of LES and DES
within the framework of optimization techniques was presented. We use the DLR
Theta code, which is an industrial RANS solver. Precurser studies on the benchmark
problems of decaying isotropic turbulence and of turbulent channel flow at Reτ =
395 show that the central difference scheme (CDS) for the convective term is clearly
superior to upwind schemes. Moreover it can be seen that second order accurate
time discretization is necessary for proper calculation of second order statistics for
turbulent channel flow.
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A calibration of model and grid parameters was performed based on least-squares
cost functionals for first and second order flow statistics. Best results for channel
flow at Reτ = 395 are found for the calibrated SA-DES model which also avoids van
Driest damping. Finally the optimized parameters are used for a simulation of tur-
bulent channel flow at Reτ = 4800. A proper near-wall resolution is very expensive
at such Reynolds numbers. Therefore LES and DES in combination with near-wall
modeling based on wall functions are used and reasonable results are obtained.

Future work will be on turbulent channel flow at high Reynolds numbers with
focus on more sophisticated methods for coupling hybrid wall-functions with LES.
Another task will be on continuation of the wall-resolved LES for the flow over a
backward facing step.
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Numerical Solution of Transonic and Supersonic
2D and 3D Fluid–Elastic Structure Interaction
Problems

J. Dobeš, J. Fürst, H. Deconinck, and J. Fořt

Abstract We solve the system of Euler or Navier-Stokes equations in conserva-
tive ALE formulation, possibly supplemented by a suitable turbulence model. The
structural dynamics is described by the equations of anisotropic elastic continuum
with large or small displacements. The problem is closed by suitable interface con-
ditions. We present a cell centered finite volume method with linear least square
reconstruction with nonlinear WENO type weights, a cell centered finite volume
method with linear reconstruction and Barth’s limiter and a residual distribution
scheme to solve the CFD sub-problem. To allow a large time step, all the considered
methods use implicit time stepping formulated in dual time. The elastic problem and
the mesh motion is solved by a simple finite element method. The whole problem is
formulated in dual time and solved by a simple sub-iteration procedure. We present
several numerical tests documenting the behavior of the methods. These include 2D
transonic turbulent flow past a forced oscillatory pitching NACA0012 airfoil, 2D in-
viscid supersonic panel flutter and 3D inviscid flow past the elastic AGARD 445.6
wing.

1 Introduction

Consideration of problems of interaction between fluids and structural bodies is an
important part of the design process. Despite a large progress in the improvement of
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the computational methods [6], there is still a need for highly accurate and efficient
numerical methods.

We will focus on a partitioned approach, i.e. we use distinct methods for compu-
tational fluid dynamics (CFD) and computational structural mechanics (CSM) cou-
pled via interface conditions. This allows to use finly tuned methods for each sub-
problem what is especially important in transonic CFD. In this article, we present
several variants of finite volume and residual distribution methods for solving CFD
problems. For CSM, we use a simple finite element method. The coupled problem
is solved by a sub-iteration approach.

2 Formulation of the Problem

Three sub-problems are considered: the fluid flow-field, the elastic dynamics and the
motion of the fluid mesh. The sub-problems are connected via interface conditions.

First, we define a sufficiently smooth ALE mapping in d spatial dimensions

At :Ω0 ⊂ Rd →Ωt ⊂ Rd , x(y,t) = At(y). (1)

with Jacobian

JAt = det(
∂x
∂y

). (2)

The domain velocity w is defined as

w(x,t) =
∂x
∂ t

∣∣∣∣
y
(y(x,t),t). (3)

with the following equivalence

∇x ·w≡ 1
JAt

∂JAt

∂ t

∣∣∣∣
y
. (4)

We consider a system of compressible Navier-Stokes equations in ALE formulation

1
JAt

∂JAtU
∂ t

∣∣∣∣
y
+∇x · [F(U)−S(U,∇U)−Uw] = 0, (5)

where U = (ρ ,ρu,e) : Rd+1 → Rq are unknowns, F : Rq → Rd×q is the vector of
inviscid flux functions and S is a vector of viscous flux functions, q being the num-
ber of unknowns. The system is supplemented by equations for turbulent variables
in a similar form. Suitable initial and boundary conditions are prescribed. As a sim-
plification, we also consider a system of Euler equations.

The elastic equations are formulated in Lagrange system of coordinates (denoted
by ·̃) with unknown displacement ũi = x̃′i− x̃i. Dynamic equation for the continuum
is given by
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ρ
∂ 2ũi

∂ t2 =
∂σi j

∂ x̃ j
+ fi, (6)

where the stress tensor is given by generalized Hooke’s law

σi j = ci jklεkl , (7)

with ci jkl a given elastic tensor: constant of material. Tensor of deformation is de-
fined as

εi j =
1
2

(
∂ ũi

∂ x̃ j
+
∂ ũ j

∂ x̃i
+
∂ ũk

∂ x̃i

∂ ũk

∂ x̃ j

)
. (8)

The quadratic term is insignificant for small displacements and it is some times
neglected.

The tensor of forces acting to the elastic body is equal to the tensor resulting
from the fluid flow. Displacement of the fluid boundary is equal to the displacement
of elastic boundary, what gives a condition for the ALE mapping At .

The full problem reads: find a solution of CFD problem U :Ωt,fluid× [0,Tmax]→
Rq, a solution of CSM problem ũ :Ωelastic× [0,Tmax]→ Rd and the solution of the
fluid mesh motion problem At : Ω0,fluid× [0,Tmax]→ Ωt,fluid such that all the sub–
problems and the interface conditions are simultaneously satisfied.

3 Numerical Methods

3.1 Finite Volume Method

We have developed two variants of finite volume methods. Both work on general
unstructured (hybrid) meshes, both are in cell centered settings, and use the three
points backward implicit integration method (2BDF) formulated in dual time. The
first method (Method I) uses AUSM type of splitting and the linear least square
reconstruction with nonlinear weights (WLSQR), see e.g. [7]. The viscous terms
are discretized centrally on the dual mesh. The second method (Method II) uses
linear least square reconstruction with Barth’s limiter [1]. The numerical flux is
approximated by the Roe’s Riemann solver. The moving mesh terms are treated
for both methods following the approach of [8], the time derivative of Jacobian is
approximated by the time derivative of the element volume and the velocity of the
faces is approximated as

(w ·n)h,n+1 ≈ 1
Δ t

∫ tn+1

tn
(x ·n)dt. (9)

The integral is discretized in one Gauss point in two dimensions or two Gauss points
three dimensions to ensure a satisfaction of the discrete geometric conservation law.
It states that a constant solution is exactly preserved on a deforming grid.
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3.2 Residual Distribution Method

The class of residual distribution (RD) schemes has emerged as an appealing alter-
native to better known finite volume and finite element schemes. A fist extension
of the first order N RD scheme to the moving meshes has been published in [9].
An improved version of the N scheme satisfying the discrete maximum principle
for scalar case is given in [3]. The extension of the second order LDA scheme was
published in [4]. Both the schemes can be combined into nonlinear Bx scheme. See
[4] and references therein.

For the LDA scheme we use equivalency of the scalar linearity preserving RD
schemes with the Petrov-Galerkin FEM formulation [2]. The solution and the mesh
velocity are approximated by the linear Galerkin shape functionsψi from the current
domain configuration. The Petrov–Galerkin test function is given on each element
E by ϕE

i = ψi +βi−1/(d + 1), where βi is the RD distribution coefficient (matrix)
for the node i. For the mesh velocity term we use∇x ·(Uw) =U∇x ·w+∇xU ·w and
the identity (4). This terms have to be treated carefully to retain conservativity of the
scheme [9]. This formulation gives us the (semi-discrete) element contribution

φE,LDA
i =

1

Jh
At

∑
j∈E

∂Jh
At

u j

∂ t

∣∣∣∣
y
mE

i j +φ
E,sLDA
i − 1

Jh
At

∂Jh
At

∂ t

∣∣∣∣
y

(
∑
j∈E

u jm
E
i j

)
, (10)

where mE
i j =

∫
E ϕiψ j dx is the element contribution to the mass matrix and φE,sLDA

i
is the well known nodal contribution from the steady version of the LDA scheme
[11]. The 2BDF time discretization formula is used, i.e. the ALE time derivative is
approximated by

1

Jh
At

∂Jh
At

u j

∂ t

∣∣∣∣
y
=
αn+1μ(En+1)un+1

j +αnμ(En)un
j +αn−1μ(En−1)un−1

j

tn+1− tn (11)

with coefficients

αn+1 =
1 + 2τ
1 + τ

, αn =−1− τ, αn−1 =
τ2

1 + τ
, τ =

tn+1− tn

tn− tn−1 . (12)

The measure (volume) of the element is denoted by μ(E). All the terms in (10) are
evaluated at time level n + 1.

The N scheme is formulated with diagonally lumped mass matrix, the geometric
source term is divided into the convective part and the velocity divergence term,
the latter treated by the point-vise discretization on dual grid [3]. The 2BDF time
discretization is again used.

φE,N
i =

αn+1μ(En+1)un+1
i +αnμ(En)un

i +αn−1μ(En−1)un−1
i

d + 1
+φE,sN

i
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−∑ j∈E un+1
j

d + 1
αn+1μ(En+1)+αnμ(En)+αn−1μ(En−1)

d + 1
. (13)

Here φE,sN
i is the well known nodal contribution from the steady version of the N

scheme [11].
Both the schemes are blended using blending coefficient θ = min(1,sc2 h),

sc = ( ∂ p
∂ t +∇x p · v)+/δpv, where v is the velocity vector of the flow, p is the static

pressure, h the diameter of the element and δpv is a product of the characteristic pres-
sure and velocity in the domain. Finally, sum of the element contributions to each
node is driven towards zero using a dual-time approach. The Bx scheme respects
the discrete geometric conservation law.

3.3 Numerical Method for Structural Dynamics

The governing equations are solved by means of a standard finite element method
with bi-quadratic Lagrangian elements. Newmark method is used for the time dis-
cretization. The similar method is used for the mesh movement and a simple sub-
iteration approach couples the problems together. The interface conditions are de-
rived from the virtual works considerations [2].

4 Numerical Results
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Fig. 1 NACA 0012. Method I. Lift and moment coefficients, inviscid and turbulent calculations.

The first test case involves the NACA 0012 airfoil, which is sinusoidally pitching
around its a quarter chord (test case AGARD CT 5, see e.g. [3]). The free stream
Mach number is 0.755. The airfoil performs a pitching motion
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α = 2.51◦ sin(2kt)+ 0.016◦, k =
ωc
2u∞

= 0.0814, (14)

where c is the chord, u∞ is the free-stream velocity and ω the frequency. The
Reynolds number is Re = 5.5 · 106. Results given by the inviscid calculations are
present in Fig. 1. Relatively good agreement with experimental data can be ob-
served. We present also results of turbulent computations. Two equation Kok’s k–ω
turbulence model was used. Unfortunately, overall agreement with the experimen-
tal data is worse than for the inviscid calculation. This is especially true for the
moment coefficient. We expect that the differences are given mainly by the inappro-
priate choice of the turbulence model for unsteady calculation. Future investigation
is needed.
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Fig. 2 Panel flutter problem. Dependence of the integral of deflection on time for different numer-
ical schemes. Ma∞ = 2.2.

As the second test, the supersonic panel flutter is considered [10]. An elastic
panel with infinite aspect ratio is clamped on both edges. Its upper side is exposed
to the supersonic air-stream, while the lower side resides in the still air with the same
pressure as in the upper side. The panel has length L = 0.5 m, a uniform thickness
h = 1.25 ·10−3 m, Young modulus E = 7.728 ·1010 N/m2, Poisson ration ν = 0.33
and the density ρs = 2710kg/m3. The plane strain assumption was used. The flow
conditions are given by p∞ = 25714Pa and ρ∞ = 0.4kg/m3. The critical Mach num-
ber Macr

∞ that is, the lowest free stream Mach number for which an unstable aero-
elastic mode of the panel appears, is given in the reference [10]. Using theoretical
method the authors get Macr

∞ ≈ 2.27 and using their numerical scheme Macr
∞ ≈ 2.23,

what they consider an “excellent agreement”.
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The elastic panel is discretized with 60×2 elements. The computational domain
is formed by a half-circle of diameter R = 5. The mesh consists of 3451 nodes and
6722 triangular elements, giving 50 elements along the panel. One more computa-
tion is performed on a regular quadrilateral mesh of 300× 100 elements with 100
elements along the panel (referred as “fine”). The integral of the deflection of the
panel for Ma = 2.2 is plotted in Figure 2. The neutral response was correctly repro-
duced. Although the LDA scheme is only linearly stable, it is able to capture weak
shock waves in the non-oscillating manner. The nonlinear Bx scheme gives similar
results as the LDA scheme, which are very different from the first order N scheme.

Finally, the transonic flutter of the AGARD 455.6 wing (“solid model”) is con-
sidered [5]. The elastic wing was discretized using 350 tri-quadratic elements. The
elastic constants are uncertain and we have set it as for the green Honduras ma-
hogany [12]. The CFD mesh consists of 22k nodes and 118k tetrahedral elements.
The neutral response regime was chosen, which is characterized by the flutter speed
index of 0.5214 and the free stream Mach number Ma∞ = 0.92 with flow medium
Freon-12. One period was divided to 120 time-steps. The integral of the wing ve-
locity is plotted in Fig. 3. For the FV scheme, a small negative damping is observed,
while by the LDA scheme the neutral response was correctly reproduced. The dif-
ference between the measured oscillation period and the computed period is less
than 3 %, see Tab. 1. Considering uncertainty of the elastic constants we judge this
result more accurate than one can expect.
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Fig. 3 AGARD 445.6 wing. Time dependence of the volume integral of the wing velocity for the
measured neutral response regime.

Method Period T Error
Measured 0.036508
LDA (BC1) 0.036265 0.66 %
FV 0.035746 2.08 %
LDA (BC2) 0.035436 2.93 %

Table 1 AGARD 445.6 wing. Oscillation period computed from fist 3 cycles
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5 Conclusions

We have presented a method for calculation of the fluid/structure interaction in tran-
sonic and supersonic flow regions. We use three field formulation. We have es-
pecially focused on the development of the numerical method for fluid flow. We
present three alternative methods, two finite volume and one of residual distribution
type. The results documenting the behavior of the methods are included.
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Numerical Simulations of Flow Induced
Vibrations of a Profile

R. Honzátko, J. Horáček, and K. Kozel

Abstract The work deals with a numerical solution of the interaction of two-
dimensional inviscid incompressible flow and a vibrating profile with two degrees
of freedom. The profile can oscillate around an elastic axis and in the vertical di-
rection. The mathematical model is represented by the system of incompressible
unsteady Euler equations. Numerical schemes in the form of finite volume method
are applied on a structured quadrilateral C-mesh. Two strategies, an artificial com-
pressibility approach and a dual-time stepping method, are employed for numerical
solution of governing equations. The motion of the profile is described by a system
of two linear ordinary differential equations that are transformed to the system of
first order ordinary differential equations and solved numerically using multistage
four-order Runge-Kutta method. Deformations of the computational domain due
to the profile motion are treated using the Arbitrary Lagrangian-Eulerian method.
Numerical schemes used satisfy the geometric conservation law. Numerical simula-
tions of flow-induced vibrations are performed for different upstream flow velocities
past the profile NACA 0012 and the results are presented for translation and rota-
tion of the profile in time domain. Moreover, pressure and velocity fields around the
profile are shown at several time levels. The two numerical strategies are compared
respectively.
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1 Mathematical Model

The governing equations are two-dimensional incompressible Euler equations in
dimensionless conservative form:

DWt + Fx1 + Gx2 = 0, (1)

where W =
(

p,u1,u2
)T

, F =
(
u1,u2

1 + p,u1u2
)T

, G =
(
u2,u1u2,u2

2 + p
)T

and D =
diag

(
0,1,1

)
. Here, W is the vector of conservative variables, F , G are inviscid phys-

ical fluxes and D is a diagonal matrix. Space coordinates are denoted x1,x2. Symbols
u = (u1,u2) and p stand for velocity vector and pressure, respectively.

The method of artificial compressibility [3] and a time marching method are
used for steady state computations. The artificial compressibility method consist in
modifying governing equations by adding of the time derivative of pressure to the
continuity equation. It is represented by substitution of the matrix D by the diagonal
matrix

Dβ = diag
(

1
β 2 ,1,1

)
(2)

in Eq. (1), where β ∈ R+ is a parameter.
Upstream conditions are prescribed values of the vector u, i. e. u = u∞, pressure

is extrapolated from the flow field. The downstream condition is a given value of p
at the outlet boundary, i. e. p = pout. The other values of the vector of conservative
variables at the outlet boundary Wout are extrapolated. Wall conditions are nonper-
meability conditions, i. e. (u,v)n = 0 (normal component of velocity vector is equal
to zero).

In the case of an unsteady flow two approaches, an artificial compressibility and a
dual-time stepping method, are applied. In the first case, the mathematical model is
modified according to the original one by the use of the identical matrix Dβ instead
of D in Eq. (1) as for the artificial compressibility method in steady state simulations.
To eliminate the distinction of this mathematical model from the original one, the
parameter β has to be a big positive number. Ideally, β → ∞. The profit of this
approach is that it allows to apply time-marching algorithms. In the second case,
the mathematical model is reformulated [5, 2, 1] to be handled by a time-marching
steady-state solver. This approach requires the addition of derivatives with respect
to a fictious pseudo time τ to each of the three equations to give

DβWτ +DWt + Fx1 + Gx2 = 0. (3)

A steady-state solution in pseudo time (∂ p/∂τ, ∂u1/∂τ, ∂u2/∂τ→ 0) corre-
sponds to an instantaneous unsteady solution in real time t. The unsteady flow calcu-
lation has thus been transformed into a series of steady-state calculations in pseudo
time τ . It provides a possibility to develop a time-accurate time-marching scheme
for unsteady incompressible flows.
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2 The Arbitrary Lagrangian-Eulerian Method

Since, unsteady flow simulations are performed in a deforming domain due to the
profile motion the Arbitrary Lagrangian-Eulerian (ALE) method is employed to the
simulations. It is based on an ALE mapping

At :Ωref→Ωt , ξ → x(ξ ,t) = At(ξ ) (4)

of the reference configurationΩref ≡Ω0 onto the current configurationΩt , with the
ALE velocity w = ∂At/∂ t(ξ ), where ξ = A −1

t (x). Then, Eq. (1) can be written in
the ALE form as

(JW )t |ξ + J
(
F̃x1(W,w1)+ G̃x2(W,w2)

)
= 0 , (5)

where J = det(dx/dξ ) is the Jacobian of the ALE mapping ξ → x, (JW )t |ξ repre-
sents the ALE time derivative [4] of JW , F̃ = F(W )−w1DW , G̃ = G(W )−w2DW
and w = (w1,w2).

Wall conditions on moving boundaries are given by (u,v)n = wn, where wn is a
normal component of the ALE velocity to the boundary. It is assumed that the ALE
velocity at each point on the surface of the moving boundary is equal to the velocity
of its motion.

2.1 The Finite Volume Method in ALE Formulation

The finite volume method relies on a discretization of a computational domain into
control volumes, usually called cells, Ci with boundaries denoted by ∂Ci. In the
ALE formulation, these cells move and deform in time. Eq. (5) can be integrated
over these control cells. At first, the integration is carried out over a reference cell
Ci(0) in the ξ space as follows∫

Ci(0)
(JW )t |ξ dΩξ +

∫
Ci(0)

J
(
F̃x1(W,w1)+ G̃x2(W,w2)

)
dΩξ = 0. (6)

Since the partial time derivative in Eq. (6) is evaluated at a constant ξ , the order of
the derivation and integration can be changed. Hence

d
dt

∫
Ci(0)

WJ dΩξ +
∫

Ci(0)

(
F̃x1(W,w1)+ G̃x2(W,w2)

)
J dΩξ = 0. (7)

The inverse transformation to the time varying cells in Eq. (7) results in

d
dt

∫
Ci(t)

W dΩx +
∫

Ci(t)

(
F̃x1(W,w1)+ G̃x2(W,w2)

)
dΩx = 0. (8)
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Finally, integrating by parts the second integral yields the governing integral equa-
tion

d
dt

∫
Ci(t)

W dΩx +
∮
∂Ci(t)

(
F̃(W,w1)dx2− G̃(W,w2)dx1

)
= 0 . (9)

Note that for the artificial compressibility approach, the matrix D in F̃ and G̃ is
substituted by the matrix Dβ .

3 Description of the Profile Motion

It is supposed that the vibrating profile has two degrees of freedom. The profile
can oscillate in the vertical direction and in the angular direction around a so-called
elastic axis EA (see Fig. 1). The vertical and torsional motion with small vibration
amplitudes is described by the system of two ordinary differential equations:

mḧ+ Sϕϕ̈+ khhh + dhhḣ = −L(t) ,
Sϕ ḧ+ Iϕϕ̈+ kϕϕϕ+ dϕϕϕ̇ = M(t) , (10)

where, h is vertical displacement of the elastic axis (downwards positive) [m], ϕ is
rotation angle around the elastic axis (clockwise positive) [rad], m is mass of the
profile [kg], Sϕ is static moment around the elastic axis [kg m], khh is bending stiff-
ness [N/m], Iϕ is inertia moment around the elastic axis [kg m2] and kϕϕ is torsional
stiffness [N m/rad]. The coefficients of the proportional damping are considered in
the form dhh = εkhh and dϕϕ = εkϕϕ , where ε ∈ R is a small parameter. For more
details on equations of airfoil motion, see, e.g., [9].

The aerodynamic lift force L [N] acting in the vertical direction (upwards posi-
tive) and the torsional moment M [N m] (clockwise positive) in the case of inviscid
flow are defined as

L(t) = d
∮
Γw(t)

pn2 dl, (11)

M(t) = d
∮
Γw(t)

p(−n2r1 + n1r2)dl, (12)

Fig. 1 Vertical and rotational
motion of a profile.

EA
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Fig. 2 Airfoil segment.

d

r
nEA

where p is pressure [Pa], d is airfoil depth [m] (see Fig. 2), n = (n1,n2) is unit
inner normal to the profile surface Γw(t), r = (r1,r2) = (x1− xEA

1 ,x2− xEA
2 ) [m],

dl = (−n2,n1)dl [m], (x1,x2) is a point on the profile surface and (xEA
1 ,xEA

2 ) are
coordinates of the elastic axis (inside of the profile). Eqs. (11) and (12) together with
the boundary conditions for velocity on moving boundaries represent the coupling
of the fluid with the structure.

The system of Eqs. (10) is completed with the initial conditions prescribing val-
ues h(0), ϕ(0), ḣ(0), ϕ̇(0). Furthermore, it is transformed to the system of first-order
ordinary differential equations and solved numerically by the fourth-order Runge-
Kutta method.

4 Numerical Scheme

The artificial compressibility approach is applied to the cell-centered explicit Lax-
Wendroff (Richtmyer form) scheme (LWR) in a form of predictor-corrector with
an added artificial viscosity (see, e.g., [6]). In the case of the dual-time stepping
method (DTSM), the derivatives with respect to the real time are discretized using a
three-point backward formula, which results in an implicit scheme of second-order
of accuracy in time

Wτ =−3Wn+1−4Wn +Wn−1

2Δ t
−R

(
W n+1)=−R̃

(
W n+1) , (13)

where
R(W ) = D−1

β Fx1 +D−1
β Gx2 . (14)

The fluxes in Eq. (14) are discretized centrally in the finite volume method and an
artificial dissipation term is added. The four-stage Runge-Kutta scheme is used for
marching in pseudo time τ .

In the ALE formulation the inviscid fluxes are evaluated on the mesh configu-
ration and with grid velocities such that a geometric conservation law (see, e.g.,
[8, 7]):
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Si(xn+1)−Si(xn) =
∫ tn+1

tn

∮
∂Ci(x)

wndl dt

is verified. Here, Si(xn) =
∫

Ci(tn) dΩx and n denotes an outer normal vector to the
cell boundaries. The superscript n is associated with the real time and x represents
the domain configuration at time tn.

5 Numerical Results

Numerical results of flow induced vibrations are presented for the profile NACA
0012. A structured quadrilateral C-mesh is used in numerical simulations. The fol-
lowing input quantities were considered [9]: m = 0.086622 kg, Sϕ =−0.000779673
kg m, Iϕ = 0.000487291 kg m2, khh = 105.109 N/m, kϕϕ = 3.695582 N m/rad, d =
0.05 m, ρ = 1.225 kg/m3, profile chord c = 0.3 m. The position of the elastic axis of
the profile measured along the chord from the leading edge is xEA = 0.4c = 0.12 m.
The far-field flow velocities U∞ = ‖u∞‖ = 5,10,15,20,25,30,35,40,41 m/s were
considered.

At time t = 0, the profile is released with the initial values h(0) = −0.05 m,
ḣ(0) = 0, ϕ(0) = 6◦, ϕ̇(0) = 0.

First, the results obtained using the dual-time stepping method are presented.
Fig. 3 shows the angle of rotation ϕ [◦] (left panel) and the vertical displacement
h [mm] (right panel) of the profile in dependence on time t [s]. The results refer to
the upstream flow velocities U∞ = 5,25 and 41 m/s. For the velocity U∞ = 5 m/s and
U∞= 25 m/s, the system is stable and the free vibrations are damped by aerodynamic
forces. For U∞ = 41 m/s an unstable behaviour can be seen and a divergence type of
instability is observed.

Further, numerical results achieved by the two strategies used for unsteady flows
are compared in Fig. 4 showing comparison of the angle of rotationϕ [◦] and vertical
displacement h [mm] of the profile in dependence on time t [s] for the upstream
velocity U∞ = 10 m/s. Full lines concern the artificial compressibility approach,
while dash-dot lines concern the dual-time stepping method. Good agreement of the
results can be observed.

6 Conclusion

The numerical solver using finite volume method for simulations of interaction of
inviscid incompressible flows and a vibrating profile with two degrees of freedom
has been developed. The numerical calculations performed with the smaller far-field
velocities give expected results for angle and vertical displacements of the profile
in time domain, i.e., the increasing damping with increasing the flow velocity. The
instability of the system was observed for the far-field velocities above the critical
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Fig. 3 Angle of rotation ϕ [◦] and vertical displacement h [mm] in dependence on time t [s] for
upstream flow velocities U∞ = 5,25,41 m/s.

(here for U∞ = 41 m/s). The solutions are in agreement with the numerical results
presented in [9].

Two distinct approaches for numerical simulations of unsteady governing equa-
tions have been applied and the results for the smaller flow velocities (U∞ ≤ 10 m/s)
are in a good agreement. For higher flow velocities, the DTSM scheme is faster then
the LWR one as far as the computational time is concerned. It is mainly due to the
time step limitation in the case of the LWR scheme.
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A Semi-Implicit Algorithm Based on the
Augmented Lagrangian Method for
Fluid-Structure Interaction

C.M. Murea

Abstract The paper presents a semi-implicit algorithm based on the Augmented
Lagrangian Method for solving an unsteady fluid-structure interaction. At each time
step, the position of the interface is determined in an explicit way. Then, the Aug-
mented Lagrangian Method is employed for solving a fluid-structure coupled prob-
lem, such that the continuity of the velocity as well as the continuity of the stress
hold on the interface. During the augmented lagrangian iterations, the fluid mesh
does not move, which reduces the computational effort. Numerical results are pre-
sented.

1 Governing Equations

Let us denote by Ω S the undeformed structure domain. We shall assume that its
boundary admits decomposition ∂Ω S = ΓD ∪ΓN ∪Γ0. On ΓD the displacement will
be prescribed and on ΓN the stress is known. The initial fluid domainΩF

0 is bounded
by: Σ1 the inflow section, Σ2 the bottom boundary, Σ3 the outflow section and Γ0

the top boundary. The boundaryΓ0 is common of both domains and it represents the
initial position of the fluid-structure interface. An example of initial configuration is
represented in Figure 1 at the left, whereΓD = [AB]∪ [CD], ΓN = [DA] andΓ0 = [BC].

Under the action of the fluid stress, the structure will be deformed. At the time
instant t, the fluid occupies the domain ΩF

t bounded by the moving interface Γt and
by the rigid boundary Σ = Σ1∪Σ2∪Σ3 (see Figure 1 at the right).

We have assumed that the structure is governed by the linear elasticity equations,
while Navier-Stokes model have been employed for the fluid flow.
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des Frères Lumière, 68093 Mulhouse, France,
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Fig. 1 Initial (left) and intermediate (right) geometrical configurations

Linear elasticity equations
Find the displacement u = (u1,u2)

T :Ω S× [0,T ]→R2 of the structure such that

ρS ∂ 2u
∂ t2 −∇ ·σS = fS, in Ω S× (0,T ) (1)

σS = λ S (∇ ·u)I2 + 2μSε (u) (2)

ε (u) =
1
2

(
∇u+(∇u)T

)
(3)

u = 0, on ΓD× (0,T) (4)

σSnS = 0, on ΓN× (0,T ) (5)

where ρS > 0 is the mass density of the structure, λ S > 0 and μS > 0 are the Lamé
parameters, fS is the applied volume force, nS is the unit outer normal vector along
the boundary ∂Ω S.
Navier-Stokes equations

Find the velocity v and the pressure p of the fluid such that

ρF
(
∂v
∂ t

+(v ·∇)v
)
−∇ ·σF = fF , ∀t ∈ (0,T ),∀x ∈ΩF

t (6)

∇ ·v = 0, ∀t ∈ (0,T ),∀x ∈ΩF
t (7)

σF = −pI2 + 2μFε (v) (8)

σF nF = hin, on Σ1× (0,T ) (9)

σF nF = hout , on Σ3× (0,T ) (10)

v ·nF = 0, on Σ2× (0,T ) (11)

τττF · (σF nF) = 0, on Σ2× (0,T ) (12)

where ρF > 0 and μF > 0 are the mass density and the viscosity of the fluid, fF are
the applied volume forces, hin and hout are prescribed boundary stress, nF and τττF

are the unit outer normal and tangential vectors along the boundary ∂ΩF
t .

The interface Γt is the image of the boundary Γ0 by the map
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T(X) = X+ u(X,t) .

Interface conditions

v(X+ u(X,t) ,t) =
∂u
∂ t

(X,t) , ∀(X,t) ∈ Γ0× (0,T ) (13)(
σF nF)

(X+u(X,t),t)ω (X,t) = −(σSnS)
(X,t) , ∀(X,t) ∈ Γ0× (0,T ) (14)

where ω (X,t) =
∥∥cof(∇T)nS

∥∥
R2 . The equations (13) and (14) represent the conti-

nuity of velocity and of stress at the interface, respectively.
Initial conditions

u(X,t = 0) = u0 (X) , in Ω S (15)

∂u
∂ t

(X,t = 0) = u̇0 (X) , in Ω S (16)

v(X,t = 0) = v0 (X) , in ΩF
0 (17)

The governing equations for fluid-structure interaction are (1)–(17).

2 Weak Formulation with Lagrangian Multiplier

Multiplying equation (1) by wS = 0 on ΓD and from the Green formula, we obtain∫
ΩS
ρS ∂ 2u
∂ t2 ·wS +aS

(
u,wS)=

∫
ΩS

fS ·wS+
∫
Γ0

(
σSnS) ·wS, ∀wS = 0 on ΓD (18)

where
aS
(
u,wS) =

∫
ΩS
λ S (∇ ·u)

(
∇ ·wS)+

∫
ΩS

2μSε (u) : ε
(
wS) .

Arbitrary Lagrangian Eulerian (ALE) framework for fluid equations
Let Ω̂F be a reference fixed domain. Let At , t ∈ [0,T ] be a family of trans-

formations such that A t (x̂) = x̂, ∀x̂ ∈ Σ1∪Σ2∪Σ3, A t (Γ0) = Γt , A t

(
Ω̂F

)
=ΩF

t ,

where x̂ = (x̂1, x̂2)
T ∈ Ω̂F represent the ALE coordinates and x = (x1,x2)

T = A t (x̂)
the Eulerian coordinates. Let v be the velocity of the fluid in the Eulerian coordi-
nates. The corresponding function in the ALE framework v̂ : Ω̂F × [0,T ]→ R2 is
defined by v̂(x̂,t) = v(A t (x̂) ,t) = v(x,t). We denote the ALE time derivative by
∂v
∂ t

∣∣∣
x̂
(x,t) = ∂ v̂

∂ t (x̂,t) and the domain velocity by ϑϑϑ(x,t) = ∂A t
∂ t (x̂).

The Navier-Stokes equations in the ALE framework give: find the velocity v and
the pressure p of the fluid such that
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ρF
(
∂v
∂ t

∣∣∣∣
x̂
+((v−ϑϑϑ) ·∇)v

)
− 2μF∇ · ε (v)+∇p = fF , ∀t ∈ (0,T ),∀x ∈ΩF

t ,

∇ ·v = 0, ∀t ∈ (0,T ),∀x ∈ΩF
t .

Multiplying the above equations by wF and q respectively and using the Green
formula, we have∫

ΩF
t

ρF ∂v
∂ t

∣∣∣∣
x̂
·wF +

∫
ΩF

t

ρF (((v−ϑϑϑ) ·∇)v) ·wF + aF
(
v,wF)+ bF

(
wF , p

)
=
∫
ΩF

t

fF ·wF +
∫
Σ1

hin ·wF +
∫
Σ3

hout ·wF+
∫
Γt

(
σF nF) ·wF ,∀wF ·nF = 0 on Σ2,

bF (v,q) = 0, ∀q,

where

aF
(
v,wF)=

∫
ΩF

t

2μFε (v) : ε
(
wF) and bF

(
wF ,q

)
=−

∫
ΩF

t

(
∇ ·wF)q.

Now, we focus on the treatment of the interface conditions. The continuity of the
velocity on the interface (13) will be replaced by∫

Γ0

ζζζ ·
(

v̂− ∂u
∂ t

)
ω = 0, ∀ζζζ : Γ0→ R2.

Denoting by ηηη = σF nF : Γt → R2, we have∫
Γt

(
σFnF) ·wF =

∫
Γt

ηηη ·wF =
∫
Γ0

η̂ηη · ŵFω .

If ŵF = wS on Γ0 and the continuity of the stress on the interface holds (14), then∫
Γ0

η̂ηη · ŵFω =
∫
Γ0

η̂ηη ·wSω =−
∫
Γ0

(
σSnS) ·wS.

Partitioned procedures by lagrange multiplier
Find u = 0 on ΓD, v ·nF = 0 on Σ2, p and ηηη such that∫
ΩS
ρS ∂ 2u
∂ t2 ·wS + aS

(
u,wS)−∫

Γ0

η̂ηη ·wSω =
∫
ΩS

fS ·wS, ∀wS = 0 on ΓD, (19)

∫
ΩF

t

ρF ∂v
∂ t

∣∣∣∣
x̂
·wF +

∫
ΩF

t

ρF (((v−ϑϑϑ) ·∇)v) ·wF + aF
(
v,wF)+ bF

(
wF , p

)
+
∫
Γt

ηηη ·wF =
∫
ΩF

t

fF ·wF +
∫
Σ1

hin ·wF +
∫
Σ3

hout ·wF ,∀wF ·nF = 0 on Σ2,

(20)
bF (v,q) = 0, ∀q, (21)
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Γ0

ζζζ ·
(

v̂− ∂u
∂ t

)
ω = 0, ∀ζζζ . (22)

The solution of the problem (19)–(22) verifies the boundary condition (14)
weakly.

3 Time Integration Schema

Let us denote by Δ t > 0 the time step, tn+1 = (n + 1)Δ t, and un+1, u̇n+1, ün+1 are

approximations of u(·,tn+1), ∂u
∂ t (·,tn+1) ∂

2u
∂ t2 (·,tn+1) respectively.

The Newmark algorithm for structure equations gives: find un+1, u̇n+1, ün+1 such
that∫
ΩS
ρSün+1 ·wS + aS

(
un+1,wS)−∫

Γ0

η̂ηηn+1 ·wSω =
∫
ΩS

fS ·wS, ∀wS = 0 on ΓD,

(23)

u̇n+1 = u̇n +Δ t
(
(1− δ ) ün + δ ün+1) , (24)

un+1 = un +Δ t u̇n +(Δ t)2
((

1
2
−θ

)
ün +θ ün+1

)
, (25)

where δ ∈ [0,1] and θ ∈ [0, 1
2 ] are two parameters. This schema is of first order if

δ �= 1
2 and of second order if δ = 1

2 . If δ ≥ 1
2 and 2θ ≥ δ , the Newmark algorithm

is unconditional stable.

Implementation of Newmark algorithm: the v-form
If δ �= 0, from the equation (24), it follows

ün+1 =
1
Δ t δ

(
u̇n+1− u̇n−Δ t (1− δ ) ün) .

We replace the above expression in (25) and we get

un+1 = un +Δ t u̇n +(Δ t)2
((

1
2
−θ

)
ün +

θ
Δ t δ

(
u̇n+1− u̇n−Δ t (1− δ ) ün))

= un +Δ t

(
1− θ

δ

)
u̇n +(Δ t)2

(
1
2
− θ
δ

)
ün +Δ t

θ
δ

u̇n+1.

Next, we inject ün+1 and un+1 into the equation (23) and we obtain the problem:
find u̇n+1 such that

AS
(
u̇n+1,wS)= LS

(
wS)+

∫
Γ0

η̂ηηn+1 ·wSω , ∀wS = 0 on ΓD

where
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AS
(
u̇n+1,wS) =

∫
ΩS
ρS 1

(Δ t)δ
ün+1 ·wS + aS

(
Δ t
θ
δ

u̇n+1,wS
)

,

LS
(
wS) =

∫
ΩS

fS ·wS +
∫
ΩS
ρS

(
1

(Δ t)δ
u̇n +

1− δ
δ

ün
)
·wS

− aS

(
un +Δ t

(
1− θ

δ

)
u̇n +(Δ t)2

(
1
2
− θ
δ

)
ün,wS

)
.

For approximation of fluid equations, we employ a time integration algorithm
based on the backward Euler schema and a semi-implicit treatment of the convection
term: find vn+1 and pn+1 such that∫

ΩF
tn+1

ρF
(

vn+1−Vn

Δ t

)
·wF +

∫
ΩF

tn+1

ρF
(((

Vn−ϑϑϑ n+1
)
·∇

)
vn+1

)
·wF

+aF
(
vn+1,wF)+ bF

(
wF , pn+1) =

∫
ΩF

tn+1

fF ·wF

+
∫
Σ1

hn+1
in ·wF +

∫
Σ3

hn+1
out ·wF −

∫
Γtn+1

ηηηn+1 ·wF , ∀wF ·nF = 0 on Σ2

bF
(
vn+1,q

)
= 0, ∀q

where Vn(x) = vn
(
Atn ◦A −1

tn+1
(x)

)
and ϑϑϑ n+1 (x) =

Atn+1 (x̂)−Atn(x̂)
Δ t =

x−Atn◦A −1
tn+1

(x)
Δ t .

Equivalently, we can write the before equations in a concise form: find vn+1 and
pn+1 such that

AF
(
vn+1,wF)+ bF

(
wF , pn+1) = LF

(
wF)−∫

Γtn+1

ηηηn+1 ·wF ,∀wF ·nF = 0 on Σ2,

bF
(
vn+1,q

)
= 0, ∀q.

Semi-implicit time advancing scheme
The term “semi-implicit” used for the fully algorithm means that the interface

position is computed explicitly, while the displacement of the structure, velocity
and the pressure of the fluid are computed implicitly. This kind of algorithm was in-
troduced in [1]. Our algorithm propose a different strategy based on the Augmented
Lagrangian Method in order to get the continuity of the velocity and of the stress on
the fluid-structure interface.

Let ρ and r be two positive real parameters.
From n to n + 1 do

Step 1. Explicit prediction ũn+1 = un +Δ t u̇n + (Δ t)2

2 ün

Step 2. Harmonic extension Δ d̃n+1 = 0, d̃n+1 = ũn+1 on Γ0, d̃n+1 = 0 on Σ1∪
Σ2∪Σ3

Step 3. Build mesh T̃ n+1
h = T

(
T̂h

)
, where T(x̂) = x̂+ d̃n+1(x̂)

Step 4. Mesh velocity ϑ̃ϑϑ
n+1

(x) = d̃n+1(x̂)−d̃n(x̂)
Δ t



A Semi-Implicit Algorithm for Fluid-Structure Interaction 561

Step 5. vS
old = u̇n, λ̂λλ = η̂ηηn

Step 6. Solve fluid-structure problem by the Augmented Lagrangian Method
in the fixed mesh T̃ n+1

h as follows
Step 6.1. Solve fluid problem: find vF and pF such that

AF
(
vF ,wF)+ bF

(
wF , pF) = LF

(
wF)−∫

Γ̃u

λλλ ·wF − r
∫
Γ̃u

(
vF −vS

old

) ·wF ,

bF
(
vF ,q

)
= 0,

Step 6.2. Solve structure problem: find v̂S such that

AS
(
v̂S,wS) = LS

(
wS)+

∫
Γ0

λ̂λλ ·wSω+ r
∫
Γ0

(
v̂F − v̂S) ·wSω

Step 6.3. If
∥∥v̂F − v̂S

∥∥
Γ0

< tol then break

else λ̂λλ = λ̂λλ +ρ
(
v̂F − v̂S

)
; vS

old = v̂S; goto Step 6.1.

Step 7. Update
vn+1 = vF , pn+1 = pF , η̂ηηn+1 = λ̂λλ , u̇n+1 = v̂S,
ün+1 = ün+1 = 1

Δ t δ
(
u̇n+1− u̇n−Δ t (1− δ ) ün

)
,

un+1 = un +Δ t
(
1− θ

δ
)

u̇n +(Δ t)2 ( 1
2 − θ

δ
)

ün +Δ t θδ u̇n+1.

The major advantage of this implementation consists in using a fixed mesh during
the iterations 6.1, 6.2, 6.3. The continuity of the velocity on the interface holds in
the sence

∥∥v̂F − v̂S
∥∥
Γ0

< tol.

4 Numerical Results

The physical and numerical parameters used for the numerical simulations are intro-
duced bellow. The length of the fluid domain is L = 6 cm, the inflow Σ1 and outflow
Σ3 sections are segments of length 1. The viscosity of the fluid is μ = 0.035 g

cm·s ,
the volume force in fluid is fF = (0,0)T , the outflow traction hout = (0,0)T and the

inflow traction hin(t) =
(
2000

(
1− cos( 2πt

0.025)
)
,0
)T

if 0 ≤ t ≤ 0.025 and hin(t) =
(0,0)T if t > 0.025.

We set the thickness of elastic wall h = 0.1 cm, the Young’s modulus E = 0.75 ·
106 g

cm·s2 , the Poisson’s ratio ν = 0.3 and the mass density ρS = 1.1 g
cm3 .

We have employed in Newmark algorithm the parameters: δ = 0.5, θ = 0.25. The
time step is Δ t = 5 · 10−5, the number of time steps is N = 1000 which gives the
final time T = 0.05. In augmented lagrangian algorithm, the penalization parameters
r = ρ = 104 have been used.
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Triangular finite elements have been employed: P1+bubble for fluid velocity and
P1 for fluid pressure. For the structure, triangular P1 was used. The fluid and struc-
ture meshes are not necessary compatible on the interface.
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Fig. 2 Time history of the computed
∥∥v̂F − v̂S

∥∥
Γ0

when r = ρ = 104 (left) and r = ρ = 2 · 104

(right)

At each time step, 20 iterations are performed during the augmented lagrangian
algorithm (steps 6.1, 6.2, 6.3). We recall that the fluid and structure matrices do not
change during these iterations.

When the penalization parameters r = ρ increase, the difference between fluid
and structure velocity on the interface diminishes (see Figure 2). Unfortunately, in
the case r = ρ = 2 · 104, oscillations appear after the time instant t = 0.04. Conse-
quently, we can not use very large penalization parameters.

5 Concluding Remarks

A numerical procedure for solving a fluid-structure interaction problem was pre-
sented. At each time step, the position of the interface fluid-structure is determined
in an explicit way. Then, the Augmented Lagrangian Method is employed for solv-
ing a fluid-structure coupled problem, such that the continuity of the velocity as
well as the continuity of the stress hold on the interface. During the augmented la-
grangian iterations, the fluid mesh does not move, which reduces the computational
effort.
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Automated Multi-Level Substructuring for a
Fluid-Solid Vibration Problem

M. Stammberger and H. Voss

Abstract The Automated Multi-Level Substructuring (AMLS) method has been de-
veloped to reduce the computational demands of frequency response analysis and
has recently been proposed as an alternative to iterative projection methods like
Lanczos or Jacobi–Davidson for computing a large number of eigenvalues for huge
symmetric eigenvalue problems. Based on Schur complements and modal approxi-
mations of submatrices on several levels AMLS constructs a projected eigenproblem
which yields good approximations of eigenvalues at the lower end of the spectrum.
In this paper we discuss a structure preserving AMLS variant for nonsymmetric
eigenproblems governing free vibrations of fluid–solid structures.

1 Introduction

Over the last few years, a new method for huge linear eigenvalue problems

Kx = λMx (1)

where K ∈Cn×n and M ∈Cn×n are Hermitian and positive definite, known as Auto-
mated Multi–Level Substructuring (AMLS), has been developed by Bennighof and
co-authors, and has been applied to frequency response analysis of complex struc-
tures [1, 2]. Here the large finite element model is recursively divided into very many
substructures on several levels based on the sparsity structure of the system matrices.
A relatively small number of eigenmodes associated with the resulting subdomains
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and separating interfaces are used to represent approximately the global modes of
the entire structure, thereby reducing the size of the finite element model substan-
tially yet yielding satisfactory accuracy over a wide frequency range of interest.

Recent studies ([7, 10], e.g.) in vibro-acoustic analysis of passenger car bodies,
where very large FE models with more than six million degrees of freedom appear
and several hundreds of eigenfrequencies and eigenmodes are needed, have shown
that for this type of problems AMLS is considerably faster than Lanczos type ap-
proaches.

On each level of the hierarchical substructuring AMLS consists of two steps.
First for every substructure of the current level a congruence transformation is ap-
plied to the matrix pencil to decouple in the stiffness matrix the substructure from
the degrees of freedom of higher levels. Secondly, the dimension of the problem
is reduced by modal truncation of the corresponding diagonal blocks discarding
eigenmodes according to eigenfrequencies which exceed a predetermined cut-off
frequency. Hence, AMLS is nothing else but a projection method where the large
problem under consideration is projected to a search space spanned by a smaller
number of eigenmodes of clamped substructures on several levels.

Nonsymmetric eigenproblems governing free vibrations of fluid-solid structures
are covered in the following way [7, 10]: one first solves the symmetric eigenprob-
lems governing free vibrations of the fluid and the structure independently, and the
original problem is then projected to the space spanned by these eigenmodes. So,
the coupling is not considered when constructing the search space, but only in the
projected problem. In this paper we propose an AMLS variant which incorporates
the coupling already into the reduction process.

The paper is organized as follows. Section 2 summarizes the automated multi-
level substructuring method for linear eigenvalue problems. Section 3 introduces
the nonsymmetric eigenvalue problem governing free vibrations of a fluid-solid
structure and presents the usual approach for solving it, and Section 4 proposes the
structure preserving variant of AMLS. The paper closes with a numerical example
demonstrating the improvement by the new approach.

2 Automated Multi-Level Substructuring

In this section we summarize the Automated Multi-Level Substructuring (AMLS)
method for the linear eigenvalue problem

Kx = λMx (2)

which was developed by Bennighof and co-workers [1, 2] over the last few years,
who applied it to solve frequency response problems involving large and complex
models. Here, K is the stiffness matrix and M the mass matrix of a finite element
model of a structure. Both matrices are assumed to be large and sparse, and are
symmetric and positive definite.
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We first consider the component mode synthesis method (CMS method) which
is the essential building block of the AMLS method. Assume that the graph of the
matrix |K|+ |M| is partitioned into substructures. We distinguish only between local
(i.e. interior) and interface degrees of freedom. Then K and M (after reordering)
have the following form:

K =
(

K�� K�i

Ki� Kii

)
and M =

(
M�� M�i

Mi� Mii

)
(3)

where K�� and M�� are block diagonal.
Annihilating K�i by block Gaussian elimination and transforming the local coor-

dinates to modal degrees of freedom one obtains the equivalent pencil

(PT KP,PT MP) =
((
Ω 0
0 K̃ii

)
,

(
I M̂�i

M̂i� M̃ii

))
with P =

(
Φ −K−1

�� K�i

0 I

)
. (4)

Here Ω is a diagonal matrix containing the substructure eigenvalues, i.e. K��Φ =
M��ΦΩ , ΦT M��Φ = I, and Φ contains in its columns the corresponding eigenvec-
tors. Notice that K�� and M�� are block diagonal, and therefore it is quite inexpensive
to eliminate K�i and to solve the interior eigenproblems.

In structural dynamics (4) is called Craig–Bampton form of the eigenvalue prob-
lem (2) corresponding to the partitioning (3).

Selecting some eigenmodes of problem (4) and dropping the rows and columns
in (4) corresponding to the other modes one arrives at the component mode syn-
thesis method (CMS) introduced by Hurty [6] and Craig and Bampton [4]. Usually,
the modes associated with eigenvalues not exceeding a cut off threshold are kept.
However, in a recent paper Lia, Bai and Gao [8] suggested a different choice based
on a moment–matching analysis.

If the diagonal matrix Ω̃ contains on its diagonal the kept eigenvalues, and M̃�i

and M̃i� the retained rows and columns of M̂�i and M̂i�, respectively, then the CMS
approximations to the eigenpairs of (2) are obtained from the reduced eigenvalue
problem (

Ω̃ 0
0 K̃ii

)
y = λ

(
I M̃�i

M̃i� M̃ii

)
y (5)

AMLS generalizes CMS in the following way. Again the graph of |K|+ |M|
is partitioned into a small number of subgraphs, but more generally than in CMS
these subgraphs in turn are substructured on a number p of levels. This induces
the following partitioning of the index set I = {1, . . . ,n} of degrees of freedom. I1

is the set of indices corresponding to interface degrees of freedom on the coarsest
level, and for j = 2, . . . , p define I j to be the set of indices of interface degrees of
freedom on the j-th level which are not contained in I j−1. Finally, let Ip+1 be the set
of interior degrees of freedom on the finest level.

With these notations the first step of AMLS is CMS with cut-off frequency γ ap-
plied to the finest substructuring. After j steps, 1≤ j ≤ p−1, one derives a reduced
pencil
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⎛⎜⎝Ωp O O

O K( j)
�� K( j)

�i

O K( j)
i� K( j)

ii

⎞⎟⎠ ,

⎛⎜⎝M( j)
pp M( j)

p� M( j)
pi

M( j)
�p M( j)

�� M( j)
�i

M( j)
ip M( j)

i� M( j)
ii

⎞⎟⎠
⎞⎟⎠ . (6)

where p denotes the degrees of freedom obtained in the spectral reduction in the
previous steps, � collects the indices in Ip+1− j, and i corresponds to the index set
∪p− j

k=1Ik of interface degrees of freedom on levels which are not yet treated. Applying
the CMS method to the south–east 2×2 blocks of the matrices, i.e. annihilating the

off–diagonal block K( j)
�i by block Gaussian elimination, and reducing the set of �–

indices by spectral truncation with cut-off frequency γ one arrives at the next level.
After p CMS steps and a final spectral truncation of the lower–right blocks one
obtains the reduction of problem (2) by AMLS.

3 Fluid-Solid Vibrations

Vibrations of fluid-solid structures are governed by the linear eigenvalue problem(
Ks C
0 Kf

)(
us

p f

)
= λ

(
Ms 0
−ρCT Mf

)(
us

p f

)
(7)

where Ks and Kf are the stiffness matrices, and Ms and Mf are the mass matrices of
the structure and the fluid, respectively. us is the structure displacement vector, p f

the fluid pressure vector, C is the coupling matrix between fluid and structure, and
ρ is the fluid density.

Problem (7) is known to have real eigenvalues [9], but since it is not symmetric
AMLS as introduced in Section 2 is not applicable.

Kropp et al. [7, 10] suggested to solve the eigenvalue problems Ksφs = ωsMsφs

for the structure and Kf φ f = ω f Mfφ f for the fluid by symmetric AMLS indepen-

dently, and to project problem (7) to the subspace spanned by

(
Φs

0

)
and

(
0
Φ f

)
,

where the columns of Φs and Φ f are the eigenmodes of the structure and fluid
eigenproblem, respectively, which do not exceed a given cut off frequency. Thus
they obtain a projected eigenproblem(

Ωs ΦT
s CΦ f

0 Ω f

)(
ũs

p̃ f

)
= λ

(
ΦT

s MsΦs 0
−ρΦT

f CTΦs ΦT
f MfΦ f

)(
ũs

p̃ f

)
(8)

of the same structure as the original problem (7), but of much smaller dimension.
Note, that the coupling is not taken into consideration in the reduction process but
only in the projection of the eigenproblem.

A different approach was considered in [5]. Eliminating p f in (7) one obtains the
rational eigenvalue problem
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Ksus = λMsus +λρC(Kf −λMf )−1CT us. (9)

Applying AMLS to the symmetric matrix pencil (Ks,Ms) and applying all trans-
formations and projections to the coupling matrix C as well one obtains a rational
eigenvalue problem of the same structure as (9) of much smaller dimension. This
approach suffers the same weakness as the approach above that the coupling is not
included into the reduction process.

4 A Structure Preserving Version of AMLS

In this section we propose a modified AMLS algorithm for solving the fluid-solid
vibration problem (7) in order to capture the interaction of fluid and solid in a more
appropriate way.

Similar to the AMLS method for symmetric problem the joint graph of K :=(
Ks C
0 Kf

)
and M :=

(
Ms 0
−ρCT Mf

)
is substructured recursively on several levels,

but differently from the approach of Kropp and Heiserer the coupling matrix is
incorporated into the substructuring process. Hence, any substructure may consist
solely of degrees of freedom from the fluid or from the solid, or caused by the
coupling matrix it may contain degrees of freedom of both types.

The crucial point is to modify the AMLS algorithm such that the structure of (7)
is preserved for the reduced problem, and all eigenvalues are still real.

Pure fluid or solid substructures obviously can be treated in the same way as in
the symmetric AMLS method, i.e. they can be decoupled in the stiffness matrix by
Gaussian elimination and reduced by modal truncation. We now describe a typical
general reduction step.

After a couple of reduction steps for problem (7) one arrives at the following
matrices where the unknowns have been reordered appropriately, and ρ has been set
to 1 to save some space⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Kpp 0 K f
p� 0 K f

pi 0 K f
p j

Ks
�p Ks

�� C� Ks
�i C�i Ks

� j C� j

0 0 K f
�� 0 K f

�i 0 K f
� j

Ks
ip Ks

i� Ci� Ks
ii Ci Ks

i j Ci j

0 0 K f
i� 0 K f

ii 0 K f
i j

Ks
jp Ks

j� Cj� Ks
ji Cji Ks

j j Cj

0 0 K f
j� 0 K f

ji 0 K f
j j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Kpp Ms
p� M f

p� Ms
pi M f

pi Ms
p j M f

p j

Ms
�p Ms

�� 0 Ms
�i 0 Ms

� j 0

M f
�p −CT

� M f
�� −CT

i� M f
�i −CT

j� M f
� j

Ms
ip Ms

i� 0 Ms
ii 0 Ms

i j 0

M f
ip −CT

�i M f
i� −CT

i M f
ii −CT

ji M f
i j

Ms
jp Ms

j� 0 Ms
ji 0 Ms

j j 0

M f
jp −CT

� j M f
j� −CT

i j M f
ji −CT

j M f
j j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

Here p denotes the degrees of freedom obtained in the reduction steps on previous
levels, � collects the degrees of freedom to be handled in the current step, i corre-
sponds to the index set of parent substructures, and j denotes interface variables of
even coarser levels. A superscript s denotes the structure part, and f the fluid part
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of the model. Notice that the K and M part of the lower-right 6× 6 block (i.e. the
part which is obtained if the C blocks are replaced by 0) are symmetric and positive
definite.

Annihilating Ks
�k and K f

�k, k ∈ {i, j} by symmetric block Gaussian elimination
one obtains⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Kpp 0 K f
p� 0 K̃ f

pi 0 K̃ f
p j

Ks
�p Ks

�� C� 0 C̃�i 0 C̃� j

0 0 K f
�� 0 0 0 0

K̃s
ip 0 C̃i� K̃s

ii C̃i K̃s
i j C̃i j

0 0 0 0 K̃ f
ii 0 K̃ f

i j
K̃s

jp 0 C̃j� K̃s
ji C̃ ji K̃s

j j C̃ j

0 0 0 0 K̃ f
ji 0 K̃ f

j j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Kpp Ms
p� M f

p� M̃s
pi M̃ f

pi M̃s
p j M̃ f

p j

Ms
�p Ms

�� 0 M̃s
�i 0 M̃s

� j 0

M f
�p −CT

� M f
�� −C̃T

i� M̃ f
�i −C̃T

j� M̃ f
� j

M̃s
ip M̃s

i� 0 M̃s
ii 0 M̃s

i j 0

M̃ f
ip −C̃T

�i M̃ f
i� −C̃T

i M̃ f
ii −C̃T

ji M̃ f
i j

M̃s
jp M̃s

j� 0 M̃s
ji 0 M̃s

j j 0

M̃ f
jp −C̃T

� j M̃ f
j� −C̃T

i j M̃ f
ji −C̃T

j M̃ f
j j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

where a tilde indicates that the associated matrix that has been modified in the elim-
ination.

The next step is to solve the substructure eigenvalue problem(
Ks

�� C�

0 K f
��

)(
φ
ψ

)
= ω

(
Ms

�� 0
−CT

� M f
��

)(
φ
ψ

)
. (12)

which has real eigenvalues and eigenvectors due to the matrix structure described
above.

If
(
φT ,ψT

)T
is a right eigenvector of (12) corresponding to the positive eigen-

value ω , then it is easily seen that
(
φT , 1

ωψ
T
)T

is a left eigenvector corresponding
to ω .

We assume that the eigenvectors are normalized such that(
φT

i , 1
ωi
ψT

i

)( Ms
�� 0

−CT
� M f

��

)(
φ j

ψ j

)
= δi j (13)

As in standard AMLS for symmetric problems we neglect eigenvectors corre-
sponding to eigenvalues exceeding a given cut-off-frequency. Let the columns ofΦ�

andΨ� be the structure and fluid part of the kept eigenvectors, respectively, and let
the diagonal matrix Ω contain the according eigenvalues. Multiplying the matrices
in (11) by ⎛⎜⎜⎝

I 0 0 0 0
0 ΦT

� Ω
−1ΨT

� 0 0
0 0 0 I 0
0 0 0 0 I

⎞⎟⎟⎠ and

⎛⎜⎜⎜⎜⎝
I 0 0 0
0 Φ� 0 0
0 Ψ� 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎠ (14)

from the left and right, respectively, one finally ends up with the reduced matrices
in step �
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Kpp K̃p� 0 K̃ f
pi 0 K̃ f

p j
K̃�p Ω 0 C̃�i 0 C̃� j

K̃s
ip K̃i� K̃s

ii C̃i K̃s
i j C̃i j

0 0 0 K̃ f
ii 0 K̃ f

i j
K̃s

jp K̃ j� K̃s
ji C̃ ji K̃s

j j C̃ j

0 0 0 K̃ f
ji 0 K̃ f

j j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mpp M̃p� M̃s
pi M̃ f

pi M̃s
p j M̃ f

p j

M̃�p I M̃s
�i M̃ f

�i M̃s
� j M̃ f

� j
M̃s

ip M̃s
i� M̃s

ii 0 M̃s
i j 0

M̃ f
ip M̃ f

i� −C̃T
i M̃ f

ii −C̃T
ji M̃ f

i j
M̃s

jp M̃s
j� M̃s

ji 0 M̃s
j j 0

M̃ f
jp M̃ f

j� −C̃T
i j M̃ f

ji −C̃T
j M̃ f

j j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

Obviously the lower right 4× 4 block of these matrices has the same structure as
the lower right 6× 6 block of the matrices in (10) demonstrating that the structure
of the matrices is preserved in the AMLS reduction. Decoupling and reducing all
coarser substructures in the same way one finally arrives at the projected eigenvalue
problem.

5 Numerical Results

To evaluate the performance of the AMLS method above we consider the free vi-
brations of a tube bundle immersed in a fluid (cf. [3]). Discretizing by linear La-
grangian elements one obtains an eigenvalue problem (7) with 143082 degrees of
freedom which has already been examined with a variant of AMLS for the rational
eigenproblem (9) in [5]. The problem was partitioned into 2045 substructures on 11
levels.

In this problem the structure and the fluid are coupled very strongly, i.e. the
resonance frequencies of the uncoupled problems do not approximate the resonance
frequencies of the coupled problem well. For instance, there are 12 eigenfrequencies
of the fluid which are less than the smallest structure eigenvalue ωs whereas the
coupled system has 18 eigenvalues not exceeding ωs.

Applying AMLS for symmetric definite problems, it is usually sufficient to
choose the cut-off-frequency as a small multiple of the maximum desired eigen-
value. For coupled problems, this cut-off-frequency has to be increased to get
acceptable relative errors of the eigenvalue approximation. In our example we de-
termined all eigenvalues less than 3.5, and performed the calculation with a cut-off-
frequency of ωc = 100.

Figure 1 shows the relative errors of the eigenvalues obtained by AMLS incor-
porating the coupling into the reduction process (crosses) as compared to relative
errors achieved by the AMLS approach in [7] where the coupling is included only
into the projected problem (circles). Taking into account the coupling of the sub-
structures in the reduction process diminishes the relative errors for all considered
eigenvalues. In particular the ones with large relative errors in the ordinary AMLS
method are improved considerably.

Differently from the original AMLS method the new method requires to solve
non-symmetric eigenproblems, but this concerns only a small number of substruc-
tures on the finest level containing degrees of freedom on the interface between the
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fluid and the structure and there dimension is very small. Hence, the overall cost is
increased only marginally.
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Fig. 1 Relative error for the eigenvalue approximations received from the method described above
(crosses) and the method described in [7] (circles)
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On Numerical Approximation of
Fluid-Structure Interaction Problems

P. Sváček

Abstract In this paper the problem of mutual interaction fluid flow over an airfoil
with control section is addressed. The numerical approximation of turbulent incom-
pressible viscous flow modelled by Reynolds Averaged Navier-Stokes equations is
described. The application of the method on an aeroelastic problem is shown.

1 Introduction

Nonlinear fluid/structure interaction problems arise in many engineering and sci-
entific applications. During the last years, significant advances have been made in
the development and use of computational methods for fluid flows with structural
interactions. The more efficient computational techniques were reached with the
increasing computational power, see for example [1]. As the valuable information
coming from fluid-structure interaction analysis need to be performed in many fields
of industry (automobile, airplane) as well as in biomedicine, the analysis of fluid-
structure interaction problems become more effective and more general. Since there
is a need for effective fluid-structure interaction analysis procedures, various ap-
proaches have been proposed. In current simulations, arbitrary Lagrangian-Eulerian
(ALE) formulations are now widely used. The ALE method is straightforward; how-
ever there is a number of important computational issues, cf. [5].

In the present study, attention is paid to the following aspects: second order
time discretization and space finite element discretization of the Reynolds Averaged
Navier-Stokes equations, Galerkin Least Squares (GLS) stabilization of the FEM,
the choice of stabilization parameters, discretization of the structural model, numer-
ical realization of the nonlinear discrete problem including the coupling of the fluid
flow and airfoil motion. The developed sufficiently accurate and robust method is
applied to a technically relevant case of flow-induced airfoil vibrations.

P. Sváček
Czech Technical University Prague, Faculty of Mechanical Engineering, Karlovo nám. 13, 121 35
Praha 2, Czech Republic, e-mail: Petr.Svacek@fs.cvut.cz
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2 Fluid Model

In order to describe the mathematical model of the relevant technical problem we
start with the two-dimensional Reynolds Averaged Navier-Stokes equations, where
the Reynolds stresses are approximated with the aid of a Boussinesq approxima-
tion, see, e.g. , [10]. The moving domain is taken into account by the Arbitrary
Lagrangian-Eulerian method.

Fig. 1 Computational domain for the channel flow over DCA profile. Figure shows the Dirichlet
part of boundary ΓD, the moving part of boundary ΓWt and the outlet ΓO.

2.1 Reynolds Equations

In order to take into account the turbulent flow we consider the fluid flow to be
modelled by the system of Reynolds equations

DA v
Dt
−∇ ·

(
(ν+νT )

(
∇v +(∇v)T

))
+((v−wD) ·∇)v +∇p = 0, in Ωt (1)

∇ ·v = 0,

where v denotes the vector of mean part of the velocity, p denotes the mean part
of the kinematic pressure, ν denotes the kinematic viscosity, and νT denotes the

turbulent viscosity, [10]. In equation (1) we denote by DA

Dt the ALE derivative and by
wD the domain velocity, cf. [9], [4]. The system is equipped with an initial condition
and suitable boundary conditions, see Fig. 1.

2.2 Time Discretization

We consider a partition 0 = t0 < t1 < · · · < T, tk = kτ , with a time step τ > 0, of
the time interval [0,T ] and approximate the solution v(·,tn) and p(·,tn) (defined in
Ωtn) at time tn by vn and pn, respectively. For the time discretization we employ
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a second-order two-step scheme using the computed approximate solution vn−1 in
Ωtn−1 and vn in Ωtn for the calculation of vn+1 in the domain Ωtn+1 =Ωn+1.

We define for a fixed time t = tn+1 the finite element spaces W ,X by

W = H1(Ωtn+1), X =
{

z ∈W : z = 0 on ΓD∪ΓWtn+1

}
, Q = L2(Ωtn+1).

We approximate the ALE velocity w(tn+1) by wn+1 and set v̂i = vi ◦Ati ◦A −1
tn+1

(the symbol ◦ denotes the composite function). The vector-valued functions v̂i are
defined in the domainΩtn+1 .

Then, on each time level tn+1, the second-order two-step ALE time discretiza-
tion yields the problem of finding unknown functions vn+1 : Ωtn+1 → R2 and
pn+1 :Ωtn+1 →� satisfying the equations

3vn+1−4v̂n + v̂n−1

2τ
+(w̃ ·∇)vn+1−∇ ·

(
(ν+νT )

(
∇v +(∇v)T

))
+∇pn+1 = 0,

∇ · vn+1 = 0, (2)

in Ωtn+1 and the boundary conditions. Here, w̃ stands for the local transport velocity
w̃ = vn+1−wn+1. The problem (2) is then weakly formulated in the standard form.

Problem 1 (Weak formulation of Navier-Stokes in ALE form). Find U = (v, p)
such that

a(U ;U,V) = f (V ), for all V = (z,q) ∈X ×Q, (3)

and appropriate Dirichlet boundary conditions are satisfied. The forms are defined
by

a(U∗;U,V ) =
(

3v
2τ

,z
)
Ω

+ c(w̃;v,z)+
∫
ΓO

1
2
(v ·n)v · z dS,+

∫
Ω

1
2
(∇ ·wn+1)v · zdx

+
(
(ν+νT )

(
∇v +(∇v)T) ,∇z

)
Ω − (p,∇ · z)Ω +(∇ ·v,q)Ω

f (V ) =
∫
Ω

4v̂n− v̂n−1

2τ
· zdx−

∫
ΓO

prefz ·ndS,

where Ω =Ωn+1, w̃ = v∗−wn+1 and where the trilinear skew-symmetric form c is
defined by the relation c(u;v,w) =

∫
Ωn+1

[ 1
2 (u ·∇)v ·w− 1

2 (u ·∇)w ·v] dx.

2.3 Stabilized Finite Element Method

In order to apply the Galerkin FEM, we approximate the spaces W , X , Q from the
weak formulation by finite dimensional subspaces W�, X�, Q�, �∈ (0,�0), �0 >
0, X� = {v� ∈W�;v�|ΓD∩ΓWt = 0}. In practical computations we assume that the
domain Ωn+1 is a polygonal approximation of the region occupied by the fluid at
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time tn+1 and the spaces W�, X�, Q� are defined over a triangulation T� of the
domain Ωn+1, formed by a finite number of closed triangles K ∈ T�. We use the
standard assumptions on the system of triangulation. Here � denotes the size of
the mesh T�. The spaces W�, X� and Q� are formed by piecewise polynomial
functions, i.e. non-conforming equal order finite elements are used.

The standard Galerkin approximation of the weak formulation may suffer from
two sources of instabilities. One instability is caused by the possible incompatibility
of the pressure and velocity pairs of finite elements. It can be overcome by the use of
pressure stabilizing terms. Further, the dominating convection requires to introduce
some stabilization of the finite element scheme, as, e.g. upwinding or streamline-
diffusion method. In order to overcome both difficulties, a modified Galerkin Least
Squares method is applied, cf. ([6]).

We start with the definition of two parts Ra
K and R f

K of the local element residual
on the element K ∈T�

Ra
K(w̃;v, p) =

3v
2τ
−∇ · ((ν+νT )

(
∇v +(∇v)T))+(w̃ ·∇)v +∇p, (4)

R f
K(v̂n, v̂n−1) =

1
2τ

(4v̂n− v̂n−1).

The function w̃ = v∗ −wn+1 stands for the transport velocity. Further, the GLS sta-
bilizing terms are introduced:

L (U∗�;U�,V�) = ∑
K∈T�

δK

(
Ra

K(w̃;v, p),(w̃ ·∇)z +∇q
)

K
,

F (V�) = ∑
K∈T�

δK

(
R f

K(v̂n, v̂n−1),(w̃ ·∇)z +∇q
)

K
, (5)

and the grad-div stabilization terms are defined by

P�(U,V ) = ∑
K∈T�

τK(∇ ·v,∇ · z)K. (6)

Problem 2. GLS stabilized problem Find U� = (v, p) ∈W�×Q� such that v satis-
fies approximately the Dirichlet boundary conditions and the equation

a(U�;U�,V�)+L (U�;U�,V�)+P�(U�,V�) (7)

= f (V�)+F (V�),

holds for all V� = (z,q) ∈XΔ ×Q�.

The following choice of parameters is used

τK = νK

(
1 + Reloc +

h2
K

νK τ

)
, δK =

h2
K

τK
,
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where νK = |ν+νT |0,2,K, hK denotes the local element size and the local Reynolds

number Reloc is defined as Reloc = h‖v‖K
2νK

.

3 Spalart-Allmaras Turbulence Model

In the addressed technical problem the high Reynolds numbers means, that the
flow becomes turbulent. In order to capture the turbulence phenomena, a turbulence
model shall be employed. The system of equations (1) is coupled with a nonlinear
partial differential equation for an additional quantity ν̃ . The Spalart-Allmaras one
equation turbulence model is employed:

∂ ν̃
∂ t

+ v ·∇ν̃ =
1
β

[
2

∑
i=1

∂
∂xi

(
(ν+ ν̃)

∂ ν̃
∂xi

)
+ cb2 (∇ν̃)2

]
+ G(ν̃)−Y(ν̃), (8)

where G(ν̃) and Y (ν̃) are functions of the tensor of rotation of the mean velocity
(ωi j)i j and of the wall distance y. Here, the components of the rotation tensor are

defined by ωi j = 1
2

(
∂Vj
∂x j
− ∂Vj
∂xi

)
. The turbulent viscosity νT is defined by

νT = ν̃
χ3

χ3 + c3
v
, χ =

ν̃
ν

. (9)

Furthermore we use the following relations (see also [11])

G(ν̃) = cb1 S̃ν̃, Y (ν̃) = cw1

ν̃2

y2

(
1 + c6

w3

1 + c6
w3

/g6

) 1
6

, S̃ =
(

S +
ν̃
κ2y2 fv2

)
,

fv2 = 1− χ
1 + χ fv1

, g = r + cw2(r
6− r), r =

ν̃
S̃κ2y2

, S =
√

2∑
i, j

ω2
i j,

and y denotes the distance from a wall. The following choice of constants is used
cb1 = 0.1355, cb2 = 0.622, β = 2

3 , cv = 7.1, cw2 = 0.3, cw3 = 2.0, κ = 0.41, cw1 =
cb1/κ

2 +(1 + cb2)/β .
The equation (8) is time discretized with the aid of the backward Euler scheme.

The numerical solution of the Spalart-Allmaras problem is performed with the aid
of finite element method. The Galerkin approximations are known to be unstable
for large mesh Péclet numbers. The convection-diffusion character of the problem
requires to apply a stabilization procedure as streamline upwind/Petrov-Galerkin
(SUPG). The use of the standard SUPG stabilization does not avoid local oscil-
lations near sharp layers. In the FEM context the discontinuity capturing tech-
niques (or shock capturing techniques) are usually employed. These stabilization
techniques introduce additional dissipation in crosswind direction, cf. [8], [2]. In
practical computations we follow the stabilization procedure from cf. [7].



576 P. Sváček

4 Structure Model

As a structure model we consider an airfoil within the control section as shown in
Fig. 2. The elastic axis is denoted by EO, the trailing edge flap is hinged at point EF
at distance Δ̃ after the elastic axis. By h, α and β the plunging of the elastic axis,
pitching of the airfoil and rotation of the flap is denoted, respectively (see Fig. 2).

AEFEO

xh

α

A’

β

Δ̂

w

u

n
r

r ort

Γ

rortEF

Γ
Ft

Bt

EO

EF

Fig. 2 The airfoil consisting from the front section with the surface ΓBt and the control section
with the surface ΓFt .

The fluid motion generates an aerodynamic lift L = L(t), an aerodynamic mo-
ment M = M(t) and an hinge moment Mβ = Mβ (t). By kh, kα and kβ the spring
constant of the wing bending, the wing torsional stiffness and the flap hinge mo-
ment are denoted, respectively. The mass matrix M of the structural system is de-
fined with the aid of the entire airfoil mass m, the moment of inertia Iα of the airfoil
around the elastic axis and the flap moment of inertia Iβ of the flap around the hinge.
The equations of the motion for a flexible supported rigid airfoil with flap, cf. [3],
read

M η̈+Bη̇+Kη = f, (10)

where

M =

⎛⎝ m Sα Sβ
Sα Iα (cβ − e)bSβ + Iβ
Sβ (cβ − e)bSβ + Iβ Iβ

⎞⎠ ,K = diag(khh,kαα ,kββ )

and D = diag(dhh,dαα ,dββ ), η = (h,α,β )T , f =
(−L,M,Mβ

)T
.

4.1 Aerodynamical Forces

In order to evaluate the aerodynamical forces we define the airfoil boundaryΓWt (the
airfoil boundary moves in time) divided into the control section part ΓFt ⊂ ΓWt and
into the front part ΓBt , where ΓWt = ΓFt ∪ΓBt and ΓFt ∩ΓBt = /0, see Fig. 2.
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Then, the aerodynamical lift force L acting in the vertical direction, the torsional
moment M, the drag force D and the aerodynamical moment Mβ acting on the con-
trol section part are defined by

L =− l
∫
ΓWt

2

∑
j=1

τ2 jn j dS, M = l
∫
ΓWt

2

∑
i, j=1

τi jn jr
ort
i dS, Mβ (t)= l

∫
ΓFt

2

∑
i, j=1

τi jn jr
ortEF
i dS,

(11)

where

τi j = ρ
[
−pδi j +ν

(
∂ui

∂x j
+
∂u j

∂xi

)]
, (12)

and rort, rortEF, n, xEO, xEF are shown in Fig. 2.

5 Numerical Results

The numerical method was applied on a problem of a channel flow over a DCA
profile. The comparison of the pressure distribution over the surface is presented in
Fig. 3.
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0.88
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0.92
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experiment
FEM (channel)

Fig. 3 Numerical approximation pressure around and on the DCA profile. The comparison with
the experimental data is shown on the right-hand side.

The aeroelastic simulation for the airfoil with the flap section is shown in
Fig. 4, where we set m = 0.08662 kg, Sα = −0.7796 · 10−3 kg m Sβ = 0 kg m
Iα = 4.87291 · 10−4 kg m2 Δ̃ = 0.12 m, Iβ = 10−6 kg m2 khh = 105.109 N m−1,
kαα = 3.695582Nm rad−1 and kβ = 0.025N m rad−1.
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Agency of the Czech Republic and under the Research Plan MSM 6840770003 of the Ministry
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U∞ = 12m s−1
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U∞ = 32m s−1
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Fig. 4 The aeroelastic response for the airfoil with three degrees of freedom for far field velocity
12m / s and 32m / s
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Fishways Design: An Application of the
Optimal Control Theory

L.J. Alvarez-Vázquez, A. Martı́nez, M.E. Vázquez-Méndez, and M.A. Vilar

Abstract The main objective of this work is to present an application of mathe-
matical modelling and optimal control theory to an ecological engineering problem
related to preserve and enhance natural stocks of salmon and other fish which mi-
grate between saltwater to freshwater. Particularly, we study the design (first) and
the management (second) of a hydraulic structure (fishway) that enable fish to over-
come stream obstructions as a dam or a weir. The problems are formulated within
the framework of the optimal control of partial differential equations. They are ap-
proximated by discrete unconstrained optimization problems and then, solved by
using a gradient free method (the Nelder-Mead algorithm). Finally, numerical re-
sults are showed for a standard real-world situation.

1 Introduction

Many types of fish undertake migrations on a regular basis, on time scales ranging
from daily to annual, and with distances ranging from a few meters to thousands
of kilometers. In this work we take attention on diadromous fish which migrate
between salt and fresh water. The best known diadromous fish is salmon, which is
capable of going hundreds of kilometers upriver. When man makes a barrier in a
river (for example, a dam or a weir) he must install a fishway to allow salmon (and
other fish) to overcome it.

Fishways are hydraulic structures placed on or around man-made barriers to as-
sist the natural migration of diadromous fish. There are several types of fishways,
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0,97 m

1,5 m 1,213 m

12,13 m

0,6065 m

Fig. 1 Ground plant (domain ω) and elevation of the fishway under study.

but the more generally adopted for upstream passage of fish in stream obstructions
is the vertical slot fishway. It consists of a rectangular channel with a sloping floor
that is divided into a number of pools (see Fig. 1). Water runs downstream in this
channel, through a series of vertical slots from one pool to the next one below. The
water flow forms a jet at the slot, and the energy is dissipated by mixing in the pool.
Fish ascends, using its burst speed, to get past the slot, then it rests in the pool till
the next slot is tried. As said above, the objective of a fishway is enabling fish to
overcome obstructions. In order to get it, water velocity in the fishway must be con-
trolled. In the zone of the channel near the slots, the velocity must be close to a
desired velocity suitable for fish leaping and swimming capabilities. In the remain-
ing of the fishway, the velocity must be close to zero for making possible the rest of
the fish. Moreover, in all the channel, flow turbulence must be minimized.

If a new fishway is going to be built, water velocity can be controlled through the
location and length of the baffles separating the pools. On the opposite, if the fishway
is already built, it only can be controlled by determining the flux of inflow water. In
this work we are going to use mathematical modelling and optimal control theory
to study these two situations: first related to the optimal design of a new fishway,
and second related to the optimal management of a fishway already built. So, in
(section 2) we present a mathematical model (shallow water equations) to simulate
the water velocity in a fishway, and give a mathematical expression to evaluate the
quality of that velocity field. Section 3 studies the problem related to the optimal
design of a fishway to be built: we describe the problem, formulate it as a shape
optimization problem, and approximate it by a discrete unconstrained optimization
problem. Section 4 is devoted to the second problem, related to the management of
a fishway already built. Finally, in section 5 we give numerical results for a standard
fishway.

2 Numerical Simulation of Water Velocity in a Fishway

Let ω ⊂ R2 be the ground plant of a standard fishway consisting of a rectangular
channel divided into ten pools with baffles and sloping floor, and two transition
pools, one at the beginning and other at the end of the channel, without baffles and
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flat floor. A scheme of the fishway can be seen in Fig. 1: water enters by the left side
and runs downstream to the right side, and fish ascend in the opposite direction.

Water flow in the domain ω along the time interval (0,T ) is governed by:

∂H
∂ t

+∇.Q = 0 in ω× (0,T )

∂Q
∂ t

+∇.(
Q
H
⊗Q)+ gH∇(H−η) = f in ω× (0,T )

⎫⎪⎬⎪⎭ (1)

where

• H(x,y,t) is the height of water at point (x,y) ∈ ω at time t ∈ (0,T ),
• u(x,y,t) = (u,v) is the averaged horizontal velocity of water,
• Q(x,y,t) = uH is the areal flow per unit depth,
• g is the gravity acceleration,
• η(x,y) represents the bottom geometry of the fishway,
• f collects all the effects of bottom friction, atmospheric pressure, and so on.

Shallow water equations (1) must be completed with a set of initial and boundary
conditions. We define three different parts in the boundary of ω : the lateral bound-
ary of the channel, γ0, the inflow boundary, γ1, and the outflow boundary, γ2. We
consider n the unit outer normal vector to boundary γ0 ∪ γ1 ∪ γ2. Thus, we assume
the normal flux to be null on the lateral walls of the fishway, we impose an inflow
flux in the normal direction, and we fix the height of water on the outflow boundary,
i.e.

H(0) = H0, Q(0) = Q0 in ω
Q.n = 0 on γ0× (0,T )
Q = qn on γ1× (0,T )
H = H2 on γ2× (0,T )

⎫⎪⎪⎬⎪⎪⎭ (2)

By using this notation we can give a mathematical expression to evaluate the
quality of water velocity in the fishway. We have two objectives:

1. In the zone of the channel near the slots (say the lower third) the velocity must
be as close as possible to a typical horizontal velocity c suitable for fish leaping
and swimming capabilities, and in the remaining of the fishway the velocity must
be close to zero for making possible the rest of the fish. That is, water velocity
u = Q

H must be close to the following target velocity:

v(x1,x2) =
{

(c,0), if x2 ≤ 1
3 W,

(0,0), otherwise,
(3)

where W is the width of the channel (in our case, W = 0.97m).
2. Flow turbulence must be minimized in all the channel.

According to this, for a weight parameter ξ ≥ 0, we define the objective function

J =
1
2

∫ T

0

∫
ω
‖Q

H
−v‖2 +

ξ
2

∫ T

0

∫
ω
|curl(

Q
H

)|2 (4)
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Fig. 2 Scheme of the first
pool.
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In order to evaluate J, firstly we have to solve the shallow water equations (1) with
initial and boundary conditions (2). In this work we use an implicit discretization in
time, upwinding the convective term by the method of characteristics, and Raviart-
Thomas finite elements for the space discretization (the whole details of the numer-
ical scheme can be seen in [3]). So, for the time interval (0,T ) we choose a natural
number N, consider the time step Δ t = T

N > 0 and define the discrete times tk = kΔ t
for k = 0, . . . ,N. We also consider a Lagrange-Galerkin finite element triangula-
tion τh of the domain ω . Thus, the numerical scheme provides us, for each discrete
time tk, with an approximated flux Qk

h and an approximated height Hk
h , which are

piecewise-linear polynomials and discontinuous piecewise-constant functions, re-
spectively. With these approximated fields we can compute the approximated veloc-

ity uk
h = Qk

h
Hk

h
, and approach the value of J by

JΔ t
h =

Δ t
2

N

∑
k=1
∑

E∈τh
[
∫

E
‖uk

h−v‖2 + ξ
∫

E
|curl(uk

h)|2] (5)

3 First Problem: Design of a Fishway to Be Built

In this section we are going to study the optimal design of a new fishway: we will
control the water velocity through the location and length of the baffles in the pools.
For the channel described in previous section, we assume that the structure of the
ten pools is the same (the shape of the complete fishway is determined by the shape
of the first pool), and we take the two midpoints corresponding to the end of the
baffles in the first pool (points a = (s1,s2) and b = (s3,s4) in Fig. 2) as design
variables. We are looking for points a and b which provide the best velocity for fish
(minimizing the function J given by (4)), but, previously, we must impose several
design constraints on these points: first, we assume that points a and b are inside the
dashed rectangle of Fig. 2, that is, the following eight relations must be satisfied:
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1
4

1.213≤ s1,s3 ≤ 3
4

1.213, 0≤ s2,s4 ≤ 1
4

0.97. (6)

The second type of constraints are related to the fact that the vertical slot must be
large enough so that fish can pass comfortably through it. This translates into:

Δ1 = s3− s1 ≥ 0.1, Δ2 = s2− s4 ≥ 0.05. (7)

Then, the first optimization problem can be formulated as follows:
Problem (P1): Find ω , that is, s = (a,b) = (s1,s2,s3,s4) ∈R4 verifying constraints
(6) and (7), in such a way that Q and H, given by the solution of the state system
(1)-(2) on the fishway ω = ω(s), minimize the cost function J ≡ J(s) given by (4).

A mathematical analysis of problem (P1) can be found in [1]. For its numerical
resolution we propose a penalty method. Particularly, for a large enough parameter
α1 > 0, we approximate (P1) by the discrete unconstrained optimization problem

min Φ1(s) (8)

where, for s∈R4, the value ofΦ1(s) can be computed from the following algorithm:
Step 1. Consider the corresponding domain ω(s) and generate its new mesh τh(s).
Step 2. Solve the state system (1)-(2) onω(s) as proposed in section 2, and compute
JΔ t

h ≡ JΔ t
h (s) given by (5).

Step 3. Define Φ̃1(s) in such a way that Φ̃1(s)≤ 0⇔ s verifies (6) and (7), that is,

Φ̃1(s) = max{ 1
4 1.213− s1,

1
4 1.213− s3,s1− 3

4 1.213,s3− 3
4 1.213,−s2,

−s4,s2− 1
4 0.97,s4− 1

4 0.97,0.1− s3 + s1,0.05− s2 + s4}
(9)

Step 4. Compute the value of the discrete penalty function

Φ1(s) = JΔ t
h (s)+α1 max

{
Φ̃1(s),0

}
. (10)

To solve the problem (8) we use a gradient free method, the Nelder-Mead al-
gorithm [5], which merely compares function values. Although the Nelder-Mead
algorithm is not guaranteed to converge in the general case, it has good convergence
properties in low dimensions. Moreover, to prevent stagnation at a non-optimal
point, we use the oriented restarting recently proposed by Kelley [4].

4 Second Problem: Management of a Fishway Already Built

The second problem consists of the optimal management of a fishway already built.
We consider an existing fishway (the domain ω ∈ R2 is known and fixed) and we
look for the flux across the inflow boundary providing a suitable water velocity in the
fishway. Here, in the state system (1)-(2) the domain ω is a datum, and the control
variable is the function q(t), inflow flux for the time interval (0,T ). For this problem,
we also have constraints on the control: since we need to inject water through γ1,
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Fig. 3 Problem (P1): Initial (left) and optimal (right) velocities in the central pool at t = 300s.

q must be negative and - due technological reasons - bounded. Thus, we are led to
consider only the admissible fluxes in the set Uad = {l ∈ L2(0,T ) : −B≤ l ≤ 0} ,
with B > 0 a technological bound for water inflow.

Then, the optimal management of the fishway is formulated as:
Problem (P2): Find the inflow flux q ∈ Uad such that, verifying the state system
(1)− (2), minimizes the cost function J ≡ J(q) given by (4).

From a mathematical point of view, (P2) is very different from (P1) (a math-
ematical analysis of (P2) can be seen in [2]), however its numerical resolution
can be done in a similar way. In effect, due to technological reasons (flow con-
trol mechanisms cannot act upon water flow in a continuous way, but discontin-
uously at short time periods) we seek the control among the piecewise-constant
functions. So, for the time interval [0,T ] we choose a number M ∈ N, we con-
sider the time step Δτ = T

M > 0 and we define the discrete times τm = mΔτ for
m = 0,1, . . . ,M. Thus, a function q ∈ L2(0,T ) which is constant at each subinter-
val determined by the grid {τ0,τ1, . . . ,τM} is completely fixed by the set of values
qΔτ = (q0,q1, . . . ,qM−1) ∈ RM, where qm = q(τm), m = 0, . . . ,M− 1. For a given
qΔτ , the shallow water equations can be solved as proposed in section 2, and we can
compute the value of JΔ t

h ≡ JΔ t
h (qΔτ) given by (5). Then, for a large enough penalty

parameter α2 > 0, the problem (P2) can be approximated by

min Φ2(qΔτ) (11)

where, for qΔτ ∈RM , the value of Φ2(qΔτ) is computed from the following steps:
Step 1. Solve the state system (1)-(2) with a boundary condition qΔτ on γ1, and
compute JΔ t

h ≡ JΔ t
h (qΔτ) given by (5).

Step 2. Compute the value of the discrete penalty function

Φ2(qΔτ) = JΔ t
h (qΔτ)+α2

M−1

∑
m=0

max{qm,−B−qm,0} (12)

For small M, problem (11) can be also solved by using the Nelder-Mead method.
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5 Numerical Results

We present here numerical results for a fishway as given in Fig. 1. Both initial and
boundary conditions have been taken as constant: Q0 = (0,0)m2s−1, H0 = H2 =
0.5m. The time interval was T = 300s. For second member f consider the bot-
tom friction stress with a Chezy coefficient of 57.36m0.5s−1. For the cost function
we have taken a target velocity c = 0.8ms−1 and ξ = 0. Finally, for the time dis-
cretization we have taken N = 3000. Although we have developed many numerical
experiences, we only present here one example for each problem.

5.1 Optimal Design: Problem (P1)

We have taken a constant inflow flux q = − 0.065
0.97 m2s−1, α1 = 500 and for the dif-

ferent space discretizations we have tried several regular triangulations of about
9500 elements. Thus, applying the Nelder-Mead algorithm, we have passed, after
76 function evaluations, from an initial cost Φ1 = 1046.74 for a random shape,
to the minimum cost Φ1 = 239.44, corresponding to the optimal design variables
a = (0.577,0.147), b = (0.818,0.054). Fig. 3 shows the water velocity at final time
of the simulation in the central pool, corresponding to the initial random configura-
tion (left), and to the optimal configuration given by a and b (right). It can be seen
how, in the controlled case, the optimal velocity is close to the target velocity v, and
the two large recirculation regions at both sides of the slot are highly reduced.

5.2 Optimal Management: Problem (P2)

In this case we have taken a fixed fishway given by a = (0.525,0.121), b =
(0.660,0610), a regular triangulation of 10492 elements, α2 = 104, B = 0.12m2s−1

and M = 4. We have passed, after 66 function evaluations, from an initial cost
Φ2 = 612.37 to the minimum cost Φ2 = 431.27, corresponding to the optimal flux
q0 =−0.114, q1 =−0.085, q2 =−0.066, q3 =−0.116. Fig. 4 shows water veloc-
ities at t = 200s and t = 300s in the middle of the fishway, corresponding to the
initial random flux (left), and to the optimal flux (right).

6 Conclusions

Optimization and optimal control, joined to mathematical modelling, have shown
to be a powerful tool for hydraulic engineering problems. Particularly, two realistic
problems have been formulated and solved: a shape optimization problem arising in
the building of a new fishway, and a boundary optimal control problem related to
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Fig. 4 Problem (P2): Initial (left) and optimal (right) velocities in the middle of the fishway at
times t = 200s and t = 300s.

the management of a fishway already built. From numerical experiences we observe
that (a) controlling the water velocity in fishways is necessary, if we want them to
fulfil their task, and (b) controlling the flux of inflow water in a vertical slot fishway
can be useful, but a good shape design is vital to guarantee a correct performance.

Acknowledgements The research contained in this work was supported by Project MTM2006-
01177 of Ministerio de Educación y Ciencia (Spain).
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Moving Domain by Galerkin-Level Set Strategy:
Application to Shape Geodesics

L. Blanchard and J.P. Zolésio

Abstract In this paper, we use the concept of connecting tubes introduced in [7][5]
and we consider the geodesic tube construction between two sets according to the
tube shape metric. The first section is devoted to the tube analysis and formula-
tion associated to the Galerkin-Level Set strategy. This new variational formulation
consists in parameterizing the level set function in a finite vector space. Conse-
quently, the aim of a Galerkin-Level Set method is more focused on topology that
on high accuracy for the boundary approximation. However, the main advantage of
this method, over the traditional level set formulation, concerns the standard partial
differential equation (PDE) evolution for the level set function that, in the Galerkin-
Level Set method turns into a system of ordinary differential equations and we avoid
any ”usual” instability. The second section concerns a shape identification problem
associated to an Hilbert space metric using the Galerkin-Level Set method. In the
last section, the geodesic tube construction is made by a optimization process based
on a shape gradient calculus. Finally, a geodesic tube construction between two sets
is validated by numerical experiments in 3D.

1 Tube Connection by Galerkin-Level Set Strategy

Large evolutions of smooth domains and geometries are nicely modeled by level-
sets in the form : Ω(t) =

{
x ∈D | Φ(t,x) > 0

}
, where D is a smooth bounded

domain in Rn, and where the feasible set for the level set function is : Φ ∈ {Φ ∈
C1(Ī× D̄) , ∀x ∈ ∂D ,Φ(t,x) = −1}. Consequently Ω(t) is an open subset in D
verifying Ω̄(t)⊂ D.
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The shape evolution analysis consists in the modeling of dynamical systems for
the vector field V(t,x) see [3], so that the flow mapping Tt(V) which maps Ω0

ontoΩ(t) furnishes the dynamic of the boundariesΓt = ∂Ω(t) through the equation
Ω(t) = Tt(V)(Ω0). According to the velocity (speed) method from [3], we know
that the domain Ω(t) evolves with the speed

V(t,x) =
−∂tΦ(t,x)
‖∇Φ(t,x)‖ ∇Φ(t,x). (1)

1.1 Tube Metric and Geodesic Tube Formulation

We introduce the concept of tubes by the product space I×D where I = [0,1] is
the time interval. We consider the set Q =

⋃
0≤t≤1{t}×Ω(t) defined up to a n + 1

dimensional measure set and we denote ζ to be the characteristic function of the
tube: ζ (t,x) = χΩ(t)(x) with ζ 2 = ζ . From now, let us consider two open sets Ω0

and Ω1, we focus on the construction of an admissible tube connecting the initial
domain Ω0 to the final domain Ω1. Following [6], we consider the set of tubes
connectingΩ0 and Ω1, two given domains in D:

T (Ω0,Ω1) =
{
ζ ∈ L∞(I×D) and piecewise C1,
ζ 2 = ζ ,

[
ζ (0) = χΩ0 ,
ζ (1) = χΩ1 .

}
(2)

Then, we focus on the construction of an optimal tube between the given domains
Ω0 and Ω1, that is to say a geodesic tube. The classification of admissible tubes
betweenΩ0 andΩ1 (see Fig. 1) is done by the choice of a criteria called tube metric
function defined as follows:

Fig. 1 Example of different connecting tubes between Ω0 and Ω1.

Definition 1. In order to evaluate the minimal tubes path between two open domains
Ω0 and Ω1, we define the tube metric function dc described as follows :

dc(Ω0,Ω1) = inf
ζ∈T (Ω0,Ω1)

‖∂tζ‖L1
(

I,M1(D)
) (3)
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where T (Ω0,Ω1) is defined by (2) and M1(D) is the bounded Banach space with
measure.

Proposition 1. The tube metric function dc is equivalent to:

dc(Ω0,Ω1) = inf
ζ∈T (Ω0,Ω1)

∫ 1

0

∫
Γt

|v(t,x)| dΓ dt (4)

where v is the normal component of the velocity on the boundary Γt = ∂Ω(t).

Proof. We consider the geodesic tube characterization through the convection of a
measurable set by a vector field V. Using [6], the bounded measure norm of ζ turns
into

‖∂tζ‖M1(D) =
∫
Γt

|v(t,x)|dΓ . �� (5)

Proposition 2. In the case of smooth domains the function dc(Ω0,Ω1) is a metric
and this metric is conjectured to be the “Courant metric” developped in [3].

1.2 Connecting Tubes Using a Galerkin-Level Set Strategy

The Galerkin approach consists in limiting the Level-Set analysis to a finite dimen-
sional subspace : E ⊂C1(D̄), where E is spanned by linear independent functions
El defined over D . Thus, according to a parametrization of the level set function Φ
in the finite basis of functions El , the moving domain Ω(t) is defined by

Ω(t) =
{

x ∈ D | Φ(t,x) =
m

∑
l=1

λl(t) El(x) > 0
}

. (6)

The metric dc turns to be the infimum of∫ 1

0

∫
Γt=Φ−1

t (0)

|∂tΦ(t,x)|
‖∇Φ(t,x)‖ dΓ dt. (7)

The infimum is taken over the family of the connecting admissible continuous vec-
tors Λ(t) =

(
λ1(t), . . . ,λm(t)

)
. The admissibility means the connecting property

Ω(0) =Ω0 and Ω(1) =Ω1. This admissibility condition turns in fact into a condi-
tion on the vectorΛ(t). The determination of admissibleΛ0 andΛ1 will be described
in the next section. Finally, using the Galerkin-Level Set formulation the function
dc defined by (4), as an infimum over characteristic functions ζ ∈ T (Ω0,Ω1), can
be reformulated as an infimum over parameters Λ ∈ TΛ (Ω0,Ω1) where the set of
connecting tubes between Ω0 and Ω1 becomes

TΛ (Ω0,Ω1) =
{
Λ(t) =

(
λ1(t), . . . ,λm(t)

) ∈ (C0(I)
)m

,

[
Λ(0) =Λ0,
Λ(1) =Λ1.

}
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Consequently, the construction of a geodesic tube between Ω0 and Ω1 can be done
through an iterative process, starting from an admissible set, which has to reduce
the criterion dc using an optimization method based on shape gradient calculus. In
general, the initialization of an admissible set is difficult but in our case, the initial
tube can be choosen as a convex combination of λ0 and λ1 :Λ(t) = Λ0 (1− t) + λ1 t
(see Fig 2).

Fig. 2 Example of a connecting tube betweenΩ0 andΩ1 with parametersΛ(t) = Λ0 (1−t) + λ1 t .

2 Determination of Parameters Λ0 and Λ1

This parameter identification (done through the calculus of the parameters in the
Galerkin-Level Set expansion of the Level-Set function Φ) is performed by min-
imising the distance between the given domain Ωi and the domain Ω(i), for
i ∈ {0,1}. Indeed, we propose a metric associated to the Hilbert space Hs. Then,
for a smooth domain Ω , we have χΩ ∈ Hs(D) , 0 ≤ s < 1

2 . Thus we consider the
metric associated to that regularity noted δs(Ωi,Ω(i)) and defined as follows (see
[2]):

∀s ∈ [0,
1
2
[ , δs

(
Ωi,Ω(i)

)
= ‖χΩi − χΩ(i) ‖L2(D) + ‖χΩi − χΩ(i) ‖s (8)

where

‖χΩ‖2
s =

∫
D

∫
D

|χΩ (x)− χΩ (y)|2
|x− y|−(n+2s) dxdy .

The parameter identification problem is: ∀i ∈ {0,1} min
Λ(i)∈

(
C0(I)

)m
δs
(
Ωi,Ω(i)

)2.
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2.1 Gradient Method for Parameters Identification

Proposition 3. The funtional J(Ω) = δs
(
Ωi,Ω

)2
is shape differentiable. For pertur-

bation vector fields V ∈C1
0(D,Rn), the Eulerian derivative is expressed as follows

d J
(
Ω ;V

)
=

∫
Γ

F(x)〈V(x),n(x)〉Rn dΓ (9)

where : F(x) = 1−2χΩi(x) + 2
∫

D

1−2χΩ(y) + 2
[
χΩi(y)− χΩi(x)

]
|x− y|−(n+2s) dy,

and where 〈., .〉Rn denotes the inner product on Rn, n is the external normal vector
on the boundary Γ and dΓ is the arclength measure on Γ .

Proof. The proof uses the structure theorem [3] (see [2] for details) . ��
For i ∈ {0,1}, we search Λ(i) by an iterative gradient method. The initialization

is done by the choice of a starting estimate Λ0(i) =
(
λ 0

1 (i), . . . ,λ 0
m(i)

)
. Then, the

update is performed by the iteration step : Λ k+1(i) =Λ k(i)−ρ gk(i) , ρ > 0, where
gk(i) is the gradient of the functional j

(
Λ k(i)

)
= J

(
ΩΛ k(i)

)
with respect to Λ k(i).

Then, to calculate the gradient g, we introduce the following notation:

∀γ = (γ1, . . . ,γm) ∈ Rm , Ωγ =
{

x ∈ D |Φγ (x) =
m

∑
l=1

γl El(x) > 0
}

.

Proposition 4. The functional j(Λ) = J(Ωλ ) is Gateaux differentiable. Moreover,
by chain rule the Gateaux derivative is given by j′(Λ ,μ) = d J(ΩΛ ;VΛ ,μ) where
the vector fields VΛ ,μ ∈C1

0(D,Rn) satisfy

VΛ ,μ(x) =
−Φμ(x)
‖∇ΦΛ (x)‖2 ∇ΦΛ (x). (10)

Using equations (9), (10) and the following equation : n(x) = −∇ΦΛ (x)
‖∇ΦΛ (x)‖ , we get:

j′(Λ ,μ) =
∂ j
(
Λ + εμ

)
∂ε

∣∣∣
ε=0

=
∫
ΓΛ=∂ΩΛ

F(x)
Φμ(x)
‖∇ΦΛ (x)‖ dΓ = 〈μ , g〉Rm (11)

where g, the gradient of the functional j(Λ) with respect to Λ , verify:

g =
( ∫

ΓΛ
F(x)

E1(x)
‖∇ΦΛ (x)‖ dΓ , . . . ,

∫
ΓΛ

F(x)
Em(x)
‖∇ΦΛ (x)‖ dΓ

)
. (12)
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2.2 Numerical Experiments

We present a 2D shape identification problem using the Galerkin-Level Set strategy.
The given domain Ω0 which we want to identify is a Chinese sinogram (shuō).
We consider a Galerkin-Level Set expansion of the function Φ in Fourier series of
dimension m = 400. We start with a smooth initial domain Ωt=0 corresponding to
the lower frequency of the Fourier series :Λ0(0) =

(
1,0, . . . ,0

)
(left picture in Fig. 3

and Fig 4). In the right graph of Fig. 3 we show the evolution ofΩ(t). The algorithm
detects the contour of the given domain Ω0 after 15 iterations. That illustrates the
efficiency of the method.

Fig. 3 Evolution of the moving domain Ω(t) using a Galerkin-Level Set strategy.

Fig. 4 Evolution of the Level Set function Φ(t, .) using a Galerkin-Level Set strategy.

3 Geodesic Tube Construction Using the Federer Theorem

In this section we describe an optimization method based on a shape gradient cal-
culus to construct a geodesic tube. For numerical calculus, the tube metric function
dc defined by (4) is approximated by an integral on the domain Ω(t) using the fol-
lowing Federer measure decomposition theorem (see [4]):

Theorem 1. Federer measure decomposition theorem: Let us consider a regular

function g∈ L1(D) and ∀h > 0 the domain Uh(Γt) =
{

x ∈D | ‖Φ(t,x)‖ < h
}

, we

have: ∫
Uh(Γ )

g(x)dx =
∫ +h

−h

(∫
Φ−1(z)

g(x)
‖∇Φ(x)‖ dΓ

)
dz . (13)
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Corollary 1. Assuming the mapping : z ∈ [−h, +h]→
∫
Φ−1(z)

F(x)
‖∇Φ(x)‖ dΓ to be

continuous, we obtain :
∫
Γ

F(x)
‖∇Φ(x)‖ dΓ =

1
2h

∫
Uh(Γ )

F(x)dx + o(1) for h→ 0. In

this approximation, the main advantage is that the denominator term ‖∇Φ(x)‖ has
been eliminated.

Moreover, to reduce the complexity of the tube metric function (3), we consider
a polynomial decomposition of the parameters Λ(t) = Pα(t)Λ1 +

(
1−Pα(t)

)
Λ0

with Pα(t) = ∑M
i=1 αi ei(t) where {ei(t)}1≤i≤M is a polynomial basis of degree M,

and where the new parameters α = (α1, . . . ,αM) ∈ RM in the optimization process
do not depend on time. Then, using the Federer theorem (13) and the Galerkin-
Level Set strategy in the determination of parameters Λ0 and Λ1, we consider an
approximation of the integral in time of the measure norm of ζ defined by (5)

J̃h(α) =
∫ 1

0

1
2h

∫
Uh(Γt)

|∂tΦ(t,x)|dxdt =
∫ 1

0

|Ṗα(t)|
2h

∫
Uh(Γt)

|Φ1(x) −Φ0(x)|dx dt

(14)

where ∀ i ∈ {0,1} , Λi = (λi1, . . . ,λim) and Φi(x) =
m

∑
l=1

λil El(x).

Consequently, we consider the problem (P̃) : min
α∈K(Ω0,Ω1)

J̃h(α).

where the set of connecting tubes is K(Ω0,Ω1) =
{
α ∈ RM ,

[
Pα(0) = 0
Pα(1) = 1

}
.

The geodesic tube construction is done by an iterative gradient method. The initial-
ization consists in the construction of an initial tube through the choice of starting
parameters α0 = (α0

1 , . . . ,α0
m) such that α0 ∈ K(Ω0,Ω1). Then, the update is per-

formed by the iteration step : αk+1 = αk −ρ g̃k , ρ > 0, where g̃k is the gradient
of the functional J̃h(αk) with respect to αk. Then, to calculate the gradient g̃, we
introduce the following notation: ∀γ = (γ1, . . . ,γM) ∈ RM

Φγ(t,x) = Pγ(t)Φ1(x)+
(
1−Pγ(t)

)
Φ0(x) , Ψγ(t,x) = Pγ(t)

[
Φ1(x)−Φ0(x)

]
.

Proposition 5. The functional J̃h is Gateaux differentiable. There exists a vector
field W ∈C1

0(D,Rn) such that

J̃′h(α,β ) =
∂ J̃h

(
α+ εβ

)
∂ε

∣∣∣
ε=0

=
1

2h

∫ 1

0

∫
Uh(Γt )

[
∂ε
(|∂tΦα+εβ (t,x)|

)∣∣∣
ε=0

+ div
(|∂tΦα (t,x)|Wα ,β (t,x)

)]
dx dt

(15)

where W depends linearly on β as follows : Wα ,β (t,x) =
−Ψβ (t,x)
‖∇Φα(t,x)‖2 ∇Φα (t,x).

Consequently, we get J̃′h(α,β ) = 〈β , g̃〉
RM where g̃ is the gradient of the functional

J̃h(α) with respect to α (see [1] for more details).
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3.1 Numerical Experiment for Geodesic Tube Construction

We present a 3D tube optimization corresponding to the problem (P̃). The bottom
left figure in Fig 5 shows the geodesic tube obtained after 7 iterations in the gradient
method described previously. Comparing the distribution on time of the functional
J̃h, for different iterations using the bottom right figure in Fig. 5, we conclude that
the geodesic tube is a smoother tube than the initial tube with a more homogeneous
distribution.

Fig. 5 Tube evolution and evolution of the distribution on time of the functional : J̃h.
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Numerical Analysis of a Control and State
Constrained Elliptic Control Problem with
Piecewise Constant Control Approximations

K. Deckelnick and M. Hinze

Abstract We consider an elliptic optimal control problem with control and point-
wise state constraints. The cost functional is approximated by a sequence of func-
tionals which are obtained by discretizing the state equation with the help of linear
finite elements and enforcing the state constraints in the nodes of the triangulation.
Controls are discretized piecewise constant on every simplex of the triangulation.
Error bounds for control and state are obtained both in two and three space dimen-
sions.

1 Introduction

Let Ω ⊂ Rd (d = 2,3) be a bounded domain with a smooth boundary ∂Ω and
consider the differential operator

Ay :=−
d

∑
i, j=1

∂x j

(
ai jyxi

)
+

d

∑
i=1

biyxi + cy,

where for simplicity the coefficients ai j,bi and c are supposed to be smooth func-
tions on Ω̄ . Furthermore, the operator A is assumed to be uniformly elliptic. We
associate with A the bilinear form

a(y,z) :=
∫
Ω

( d

∑
i, j=1

ai j(x)yxi zx j +
d

∑
i=1

bi(x)yxi z+ c(x)yz
)
dx, y,z ∈ H1(Ω)
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and suppose that this form is coercive on H1(Ω) with constant c1 > 0. From the
above assumptions it follows that for a given f ∈ (H1(Ω))′ the elliptic boundary
value problem

Ay = f in Ω
∑d

i, j=1 ai jyxiμ j = 0 on ∂Ω (1)

has a unique weak solution y∈H1(Ω) which we denote by y = G ( f ). Here, μ is the
unit outward normal to ∂Ω . Furthermore, if f ∈ L2(Ω), then the solution y belongs
to H2(Ω) and satisfies

‖y‖H2 ≤C‖ f‖. (2)

In the above, ‖ ·‖= ‖ ·‖L2 and ‖ ·‖Hm = ‖ ·‖Wm,2 , where ‖ ·‖Lp and ‖ ·‖Wm,p denote
the norms in Lp(Ω) and W m,p(Ω) respectively.

We are interested in the following control problem

min
u∈Uad

J(u) =
1
2

∫
Ω
|y− y0|2 +

α
2

∫
Ω
|u|2

subject to y = G (u) and y(x)≤ b(x) in Ω .
(3)

Here, Uad := {v ∈ L2(Ω) |al ≤ v ≤ au a.e. in Ω} ⊆ L2(Ω) denotes the set of ad-
missible controls, where α > 0 and al < au are given constants. Furthermore, we
suppose that y0 ∈H1(Ω) and b ∈W 2,∞(Ω) are given functions.

For the case without control constraints the finite element analysis of problem
(3) is carried out in [6]. In the present work we extend the analysis to the case of
control and pointwise state constraints using techniques which are applicable to a
wider class of control problems.

From here onwards we impose the following assumption which is frequently
referred to as Slater condition or interior point condition.

Assumption 1 ∃ũ ∈Uad with G (ũ) < b in Ω̄ .

Since the state constraints form a convex set and the set of admissible controls is
closed and convex it is not difficult to establish the existence of a unique solution
u∈Uad to this problem. In order to characterize this solution we introduce the space
M (Ω̄) of Radon measures which is defined as the dual space of C0(Ω̄) and en-
dowed with the norm ‖λ‖M (Ω̄) = sup f∈C0(Ω̄ ),| f |≤1

∫
Ω̄ f dλ . Using [3, Theorem 5.2]

we then infer (compare also [2, Theorem 2]):

Theorem 1. Let u ∈ Uad denote the unique solution of (3). Then there exist λ ∈
M (Ω̄) and p ∈ L2(Ω) such that with y = G (Bu) there holds

∫
Ω

pAv =
∫
Ω

(y− y0)v +
∫
Ω̄

vdλ ∀v ∈ H2(Ω) with
d

∑
i, j=1

ai jvxiμ j = 0 on ∂Ω , (4)

∫
Ω

(p +αu)(v−u)≥ 0 ∀v ∈Uad, (5)

λ ≥ 0, y(x)≤ b(x) in Ω and
∫
Ω̄

(b− y)dλ = 0. (6)
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Our aim is to develop and analyze a finite element approximation of problem
(3). We start by approximating the cost functional J by a sequence of functionals Jh

where h is a mesh parameter related to a sequence of triangulations. The definition
of Jh involves the approximation of the state equation by linear finite elements. The
controls are discretized by piecewise constant functions which satisfy the constraints
elementwise. Denoting by uh the corresponding minimum of Jh with associate state
yh we shall prove the following error bounds,

‖u−uh‖L2 , ‖y− yh‖H1 ≤
{

Ch| logh|, if d = 2,

C
√

h, if d = 3.

For a detailed discussion of the related contributions [4, 5, 9] we refer the reader
to [6, 7, 8], where also numerical examples are presented, and also constraints on
the gradient of the state are considered..

2 Finite Element Discretization

Let Th be a triangulation of Ω with maximum mesh size h := maxT∈Th diam(T )
and vertices x1, . . . ,xm. We suppose that Ω̄ is the union of the elements of Th so
that element edges lying on the boundary are curved. In addition, we assume that
the triangulation is quasi-uniform in the sense that there exists a constant κ > 0
(independent of h) such that each T ∈ Th is contained in a ball of radius κ−1h and
contains a ball of radius κh. Let us define the space of linear finite elements

Xh := {vh ∈C0(Ω̄ ) |vh is a linear polynomial on each T ∈Th}

as well as the space of piecewise constant functions

Yh := {vh ∈ L2(Ω) |vh is constant on each T ∈Th}.

Let Qh : L2(Ω)→ Yh be the orthogonal projection onto Yh so that

(Qhv)(x) :=−
∫

T
v, x ∈ T,T ∈Th,

where −
∫

T v denotes the average of v over T . In what follows it is convenient to
introduce a discrete approximation of the operator G . For a given function v∈ L2(Ω)
we denote by zh = Gh(v) ∈ Xh the solution of the discrete Neumann problem

a(zh,vh) =
∫
Ω

vvh for all vh ∈ Xh.

It is well–known that for all v ∈ L2(Ω)

‖G (v)−Gh(v)‖ ≤Ch2‖v‖. (7)
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The corresponding estimate in L∞ will be crucial for our analysis.

Lemma 1. There exists a constant C which only depends on the data such that

‖G (v)−Gh(v)‖L∞ ≤Ch2| logh|2 for all v ∈Uad.

Proof. Let v ∈ Uad ,z = G (v), zh = Gh(v). Since Uad ⊂ L∞(Ω) with ‖v‖L∞ ≤
max(|al|, |au|), elliptic regularity theory implies that z ∈W 2,q(Ω) for all 1 < q <∞.
In addition, it is well–known that one has

‖z‖W2,q ≤Cq‖v‖Lq (C independent of q)

by tracking the constants in the analysis. As a result we have

‖z‖W2,q ≤Cq for all v ∈Uad. (8)

Using Theorem 2.2 and the following Remark in [10] we have

‖z− zh‖L∞ ≤C| logh| inf
χ∈Xh
‖z− χ‖L∞, (9)

which, combined with a well–known interpolation estimate and (8), yields

‖z− zh‖L∞ ≤Ch2− d
q | logh|‖z‖W2,q ≤Cqh2− d

q | logh|

for all v ∈Uad . Choosing q = | logh| gives the result. ��
In order to approximate (3) we introduce a discrete counterpart of Uad ,

Uh
ad := {vh ∈ Yh |al ≤ vh ≤ au in Ω}.

Note that Uh
ad ⊂Uad and that Qhv ∈Uh

ad for v ∈Uad . Since Qhv→ v in L2(Ω) as
h→ 0 we infer from (2), the continuous embedding H2(Ω) ↪→C0(Ω̄) and Lemma
1 that

Gh(Qhv)→ G (v) in L∞(Ω) for all v ∈Uad . (10)

Problem (3) is approximated by the following sequence of control problems de-
pending on the mesh parameter h:

min
u∈Uh

ad

Jh(u) :=
1
2

∫
Ω
|yh− y0|2 +

α
2

∫
Ω
|u|2

subject to yh = Gh(u) and yh(x j)≤ b(x j) for j = 1, . . . ,m.

(11)

Problem (11) represents a convex finite-dimensional optimization problem of
similar structure as problem (3), but with only finitely many equality and inequality
constraints for state and control, which form a convex admissible set. Again we can
apply [3, Theorem 5.2] which together with [2, Corollary 1] yields (compare also
the analysis of problem (P) in [4])

Lemma 2. Problem (11) has a unique solution uh ∈Uh
ad. There exist λ1, . . . ,λm ∈R

and ph ∈ Xh such that with yh = Gh(uh) and λh = ∑m
j=1λ jδx j we have
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a(vh, ph) =
∫
Ω

(yh− y0)vh +
∫
Ω̄

vhdλh ∀vh ∈ Xh, (12)∫
Ω

(ph +αuh)(vh−uh)≥ 0 ∀vh ∈Uh
ad , (13)

λ j ≥ 0, yh(x j)≤ b(x j), j = 1, . . . ,m and
∫
Ω̄

(
Ihb− yh

)
dλh = 0. (14)

Here, δx denotes the Dirac measure concentrated at x and Ih is the usual Lagrange
interpolation operator.

As a first result for (11) we prove bounds on the discrete states and the discrete
multipliers.

Lemma 3. Let uh ∈ Uh
ad be the optimal solution of (11) with corresponding state

yh ∈ Xh and adjoint variables ph ∈ Xh and λh ∈M (Ω̄). Then there exists h̄ > 0
such that

‖yh‖, ‖λh‖M (Ω̄) ≤C, ‖ph‖H1 ≤Cγ(d,h) for all 0 < h≤ h̄,

where γ(2,h) =
√| logh| and γ(3,h) = h−

1
2 .

Proof. Since G (ũ) ∈C0(Ω̄), Assumption 1 implies that there exists δ > 0 such that

G (ũ)≤ b− δ in Ω̄ . (15)

It follows from (10) that there is h̄ > 0 with

Gh(Qhũ)≤ b− δ
2

in Ω̄ for all 0 < h≤ h̄. (16)

Since Qhũ ∈Uh
ad , (13), (12) and (16) imply

0 ≤
∫
Ω

(ph +αuh)(Qhũ−uh) =
∫
Ω

ph(Qhũ−uh)+α
∫
Ω

uh(Qhũ−uh)

= a(Gh(Qhũ)− yh, ph)+α
∫
Ω

uh(Qhũ−uh)

=
∫
Ω

(Gh(Qhũ)− yh)(yh− y0)+
∫
Ω̄

(Gh(Qhũ)− yh)dλh +α
∫
Ω

uh(Qhũ−uh)

≤ C− 1
2
‖yh‖2 +

m

∑
j=1

λ j
(
b(x j)− δ2 − yh(x j)

)
= C− 1

2
‖yh‖2− δ

2

m

∑
j=1

λ j

where the last equality is a consequence of (14). It follows that ‖yh‖,‖λh‖M (Ω̄)≤C.
In order to bound ‖ph‖H1 we insert vh = ph into (12) and deduce with the help of
the coercivity of A, a well–known inverse estimate and the bounds we have already
obtained that

c1‖ph‖2
H1 ≤ a(ph, ph) =

∫
Ω

(yh− y0)ph +
∫
Ω̄

phdλh

≤ ‖yh− y0‖‖ph‖+‖ph‖L∞‖λh‖M (Ω̄) ≤C‖ph‖+Cγ(d,h)‖ph‖H1 .
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Hence ‖ph‖H1 ≤Cγ(d,h) and the lemma is proved. ��

3 Error Analysis

An important ingredient in our analysis is an error bound for a solution of a Neu-
mann problem with a measure valued right hand side. Let A be as above and consider

A∗q = λ̃�Ω in Ω
∑d

i=1

(
∑d

j=1 ai jqx j + biq
)
μi = λ̃�∂Ω on ∂Ω .

(17)

Theorem 2. Let λ̃ ∈M (Ω̄). Then there exists a unique weak solution q ∈ L2(Ω)
of (17), i.e.

∫
Ω

qAv =
∫
Ω̄

vdλ̃ ∀v ∈ H2(Ω) with
d

∑
i, j=1

ai jvxiμ j = 0 on ∂Ω .

Furthermore, q belongs to W 1,s(Ω) for all s ∈ (1, d
d−1). For the finite element ap-

proximation qh ∈ Xh of q defined by

a(vh,qh) =
∫
Ω̄

vhdλ̃ for all vh ∈ Xh

the following error estimate holds:

‖q− qh‖ ≤Ch2− d
2 ‖λ̃‖M (Ω̄). (18)

Proof. A corresponding result is proved in [1] for the case of an operator A with-
out transport term subject to Dirichlet conditions, but the arguments can be adapted
to our situation. We omit the details. ��

We are now prepared to prove our main result.

Theorem 3. Let u and uh be the solutions of (3) and (11) respectively. Then we have
for 0 < h≤ h̄

‖u−uh‖+‖y− yh‖H1 ≤
{

Ch| logh|, if d = 2,

C
√

h, if d = 3.

Proof. We test (5) with uh, (13) with Qhu and add the resulting inequalities. Keeping
in mind that u−Qhu⊥ Yh we obtain∫

Ω

(
p− ph +α(u−uh)

)
(uh−u)

≥
∫
Ω

(
ph +αuh

)
(u−Qhu) =

∫
Ω

(ph−Qh ph)(u−Qhu).

As a consequence,
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α‖u−uh‖2 ≤
∫
Ω

(uh−u)(p− ph)−
∫
Ω

(ph−Qh ph)(u−Qhu)≡ I + II. (19)

Let yh := Gh(u) ∈ Xh and denote by ph ∈ Xh the unique solution of

a(wh, ph) =
∫
Ω

(y− y0)wh +
∫
Ω̄

whdλ for all wh ∈ Xh.

Applying Theorem 2 with λ̃ = (y− y0)dx +λ we infer

‖p− ph‖ ≤Ch2− d
2
(‖y− y0‖+‖λ‖M (Ω̄)

)
. (20)

Recalling that yh = Gh(uh),yh = Gh(u) and observing (12) as well as the definition
of ph we can rewrite the first term in (19)

I =
∫
Ω

(uh−u)(p− ph)−‖y− yh‖2 +
∫
Ω

(y− yh)(y− yh)+

+
∫
Ω̄

(yh− yh)dλ +
∫
Ω̄

(yh− yh)dλh.

Applying Young’s inequality we deduce

|I| ≤ α
4
‖u−uh‖2− 1

2
‖y− yh‖2 +C

(‖p− ph‖2 +‖y− yh‖2)
+
∫
Ω̄

(yh− yh)dλ +
∫
Ω̄

(yh− yh)dλh. (21)

Let us estimate the integrals involving the measures λ and λh. Since yh − yh ≤
(Ihb−b)+(b− y)+(y− yh) in Ω̄ we deduce with the help of (6), Lemma 1 and an
interpolation estimate∫

Ω̄
(yh− yh)dλ ≤ ‖λ‖M (Ω̄)

(
‖Ihb−b‖∞+‖y− yh‖∞

)
≤Ch2| logh|2.

On the other hand yh− yh ≤ (yh− y)+(b− Ihb)+(Ihb− yh), so that (14), Lemma 1
and Lemma 3 yield∫

Ω̄

(yh− yh)dλh ≤ ‖λh‖M (Ω̄)

(
‖b− Ihb‖∞+‖y− yh‖∞

)
≤Ch2| logh|2.

Inserting these estimates into (21) and recalling (7) as well as (18) we obtain

|I| ≤ α
4
‖u−uh‖2− 1

2
‖y− yh‖2 +Ch4−d +Ch2| logh|2. (22)

Let us next examine the second term in (19). Since uh = Qhuh and Qh is stable in
L2(Ω) we have
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|II| ≤ 2‖u−uh‖‖ph−Qh ph‖ ≤ α
4
‖u−uh‖2 +Ch2‖ph‖2

H1

using an interpolation estimate for Qh. Combining this estimate with (22), Lemma
3 and (19) we finally obtain

‖u−uh‖2 +‖y− yh‖2 ≤Ch4−d +Ch2| logh|2 +Ch2γ(d,h)2

which implies the estimate on ‖u− uh‖. The bound on ‖y− yh‖H1 is derived with
standard finite element techniques and the bound on ‖u−uh‖. ��
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Globalization of Nonsmooth Newton Methods
for Optimal Control Problems

C. Gräser

Abstract We present a new approach for the globalization of the primal-dual ac-
tive set or equivalently the nonsmooth Newton method applied to an optimal control
problem. The basic result is the equivalence of this method to a nonsmooth New-
ton method applied to the nonlinear Schur complement of the optimality system.
Our approach does not require the construction of an additional merit function or
additional descent direction. The nonsmooth Newton directions are naturally appro-
priate descent directions for a smooth dual energy and guarantee global convergence
if standard damping methods are applied.

1 Introduction

We consider the optimal control problem of minimizing the functional

J (y,u) =
1
2
‖y− yd‖2

0 +
α
2
‖u‖2

0

subject to the constraints

u≤ ψ and −Δy = u

where the state y and the control u are from suitable function spaces on the domain
Ω and ‖ · ‖0 denotes the L2(Ω)-norm.

It turned out that semismooth or nonsmooth Newton methods and interior point
methods are amongst the most efficient techniques to deal with this kind of problem.
Interior point methods (e.g., [2, 9]) regularize the problem by a sequence of barrier
functions to overcome the nonsmoothness inherited by the inequality constraints.

Carsten Gräser
Freie Universität Berlin, Institut für Mathematik, Arnimallee 6, D - 14195 Berlin, Germany,
e-mail: graeser@math.fu-berlin.de
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Nonsmooth Newton methods introduced in [7, 8] solve such problems directly by
certain linearizations of nonsmooth operators. These methods have the advantage
that no regularization parameter has to be controlled. They differ in the nonsmooth
operator used to incorporate the inequality constraints and in the concept of differen-
tiability and semismoothness used to obtain linearizations and convergence results.
There are finite dimensional (e.g., [1, 5, 6]) as well as infinite dimensional (e.g.,
[6, 10]) approaches. The convergence results are in general only local and global-
ization is tackled by the construction of merit functions and descent directions for
these functions if the Newton directions fail to be suitable.

The approach used in [6] is shown to be equivalent to the primal-dual active set
method and a global convergence result is obtained. However, this only holds under
restrictive assumptions on α and if the linear subproblems are solved exactly. In [5]
the nonsmooth Newton idea is applied to a discrete nonlinear Schur complement
such that the nonsmooth Newton directions are natural descent directions for a dual
minimization problem. Global convergence is achieved by damping based on the
dual energy.

The present paper shows that the primal-dual active set method and the Schur
complement nonsmooth Newton method basically coincide. Hence the dual ap-
proach of [5] offers a natural way to globalize the method of [6].

The paper is organized as follows. In Section 2 various reformulations of the
problem are presented. Section 3 recalls the methods in [6] and [5]. Finally the
equivalence of both methods is shown in Section 4.

2 An Optimal Control Problem

Using Green’s formula and appropriate Sobolev spaces the above problem can be
formulated in weak form as

(M )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find (y,u) ∈H1

0 (Ω)×L2(Ω) such that

J (y,u)≤J (w,v)

s.t. u ∈K , (∇y,∇v) = (u,v) ∀v ∈ H1
0 (Ω)

with the convex set K = {v ∈ L2(Ω) : v≤ ψ a.e in Ω}. Since the presented results
only hold in the finite dimensional case we restrict our considerations to a corre-
sponding discrete problem. Only the solution of the arising algebraic problem and
not the discretization itself will be discussed. Therefore this problem is formulated
in terms of vectors and matrices instead of discrete function spaces. Furthermore, to
simplify notation we use y ∈ Rm and u,ψ ∈ Rn as well for the discrete approxima-
tions of the state, the control and the obstacle respectively. The discrete analogue of
(M ) then reads:
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(M)

⎧⎪⎪⎨⎪⎪⎩
Find (y,u) ∈Rm×Rn such that

J(y,u)≤ J(w,v)

s.t. u ∈ K, Ly = Iu

with the discrete convex set K = {v ∈ Rn : v≤ ψ} and the discrete convex energy

J(y,u) =
1
2
〈D1y,y〉+ α

2
〈D2u,u〉− 〈b,y〉.

b ∈ Rm is a discrete approximation of the linear functional (yd , ·). The vectors y
and u may have different dimensions since they will in general come from different
discrete spaces. In the following we assume that D1 and D2 are symmetric and
positive definite and L is assumed to be invertible. This is the case e.g. if (M ) is
discretized by piecewise linear finite elements. Notice that D1,D2 and I are discrete
analogues of the identity operator. For a finite element discretization they represent
discrete L2 inner products coupling functions from possibly different finite element
spaces. Hence the matrices might differ in general.

Using the subdifferential ∂χK of the indicator functional χK of K the optimality
system of (M) is given by

(S)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find (y,u,w) ∈ Rm×Rn×Rm such that⎛⎝D1 0 LT

0 αD2 + ∂χK −IT

L −I 0

⎞⎠⎛⎝y
u
w

⎞⎠ '
⎛⎝b

0
0

⎞⎠ .

The elimination of the state y(u) = L−1Iu leads to a reduced problem

u ∈ K : J̃(u)≤ J̃(v) ∀v ∈ K

with the energy J̃(u) := J(L−1Iu,u). Its optimality system is given by

(PD)

⎧⎪⎪⎨⎪⎪⎩
Find (u,λ ) ∈ Rn×Rn such that

Au +λ = f

u≤ ψ , λ ≥ 0,λ (u−ψ) = 0

with A = (L−1I)T D1(L−1I)+αD2 and f = (L−1I)T b. Notice that analogue formu-
lations can also be derived in the infinite dimensional case.

3 Primal-Dual Active Set and Schur Nonsmooth Newton Method

The primal-dual active set method for the discrete problem is based on the primal-
dual formulation (PD). For given u0,λ 0 ∈Rn and fixed parameter c > 0 it reads:
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Algorithm 3.1 (Primal-Dual Active Set Method)

1. Set Ak = {i : λ k
i + c(uk

i −ψi) > 0} and Ik = {1, . . . ,n} \Ak

2. Solve
Auk+1 +λ k+1 = f ,

uk+1
i = ψi for i ∈Ak, λ k+1

i = 0 for i ∈Ik.

In [6] it is shown that the method can be interpreted as semismooth Newton method
and that the following convergence results hold.

Theorem 1 (cf. [6]). The sequence (uk,λ k) generated by Alg. 3.1 converges super-
linearly to the solution (u∗,λ ∗) of (PD) if ‖(u0,λ 0)− (u,λ )‖ is sufficiently small.
Furthermore, it converges for arbitrary (u0,λ 0) if A is the sum of an M-matrix and a
sufficiently small perturbation matrix. For the case of a discretized control problem
the latter is the case if α is small enough.

Unfortunately global convergence is in general not preserved if α is too small or
if the linear systems are solved inexactly. A similar result also holds in the infinite
dimensional case (cf. [6]).

Another approach for the solution of the discrete algebraic problem, introduced
in [5], is based on the elimination of the primal unknowns in (S) by(

y(w)
u(w)

)
:=

(
D1 0
0 αD2 + ∂χK

)−1(
b−LT w

IT w

)
(1)

where (αD2 +∂χK)−1(z) is the single-valued preimage of z. Similar to linear saddle
point problems (S) can be equivalently formulated as an unconstrained minimiza-
tion problem

(M∗)

{
Find w ∈ Rn such that

h(w)≤ h(v) ∀v ∈ Rn.

with the energy
h(w) =−L (y(w),u(w),w) (2)

where L : Rm×Rn×Rm is the Lagrange functional associated with the saddle point
problem (S) given by

L (y,u,w) = J(y,u)+ χK(u)+ 〈Ly− Iu,w〉 .

Proposition 1 (cf. [5]). The energy h defined by (2) is strictly convex, coercive, and
continuously differentiable. Its gradient is given by the Lipschitz continuous opera-
tor

∇h(w) =−(Ly(w)− Iu(w)).

This operator is also denoted the nonlinear Schur complement operator of (S).

Using these properties descent algorithms of the form
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wk+1 = wk +ρkdk (3)

with appropriate descent directions dk and step sizes ρk can be applied to solve
(M∗). Choosing dk =−∇h(wk) leads to the gradient method which is equivalent to
a nonlinear Uzawa method (cf., e.g., [3, 4]) applied to (S). Since ∇h is Lipschitz
continuous a nonsmooth Newton approach is used to obtain linearizations Sk of ∇h
at wk leading to the (damped) nonsmooth Newton method:

Algorithm 3.2 (Schur Nonsmooth Newton Method)

1. Solve dk =−S−1
k ∇h(wk)

2. Set wk+1 = wk +ρkdk

The linearizations Sk of the Schur complement∇h at wk are given by

Sk = LD−1
1 LT + ID̂2(wk)IT

where D̂2(wk) is the linearization of (αD2 + ∂χK)−1 constructed by

D̂2(wk) = TA k

(
I−TA k

+ TA k
αD2TA k

)−1

TA k

using the projection TA k
associated with the active set A k given by

(TA k
)i j =

{
1 if i = j and i /∈A k

0 else
, A k = {i : u(wk)i = ψi}.

It is easy to see that these directions are descent directions, i.e. 〈dk,∇h(wk)〉 < 0 if
∇h(wk) �= 0. The selected step sizes should guarantee sufficient descent. This can
be achieved by selecting them using the Armijo rule or bisection such that they are
efficient, i.e. they satisfy

∃C > 0∀k : h(wk +ρkdk)≤ h(wk)−C

(〈∇h(wk),dk〉
‖dk‖

)2

. (4)

Having the descent property the following convergence result can be obtained.

Theorem 2 (cf. [5]). Assume that the stepsizes ρk are efficient. Then the sequence
generated by Alg. 3.2 converges to the solution w∗ of (M∗) for arbitrary w0.

This convergence result is preserved if inexact evaluation of S−1
k is considered:

Algorithm 3.3 (Inexact Schur Nonsmooth Newton Method)

1. Solve d̃k =−S−1
k ∇h(wk)+ εk

2. Set wk+1 = wk +ρkd̃k

Theorem 3 (cf. [5]). Assume that the step sizes ρk are efficient, that the vectors d̃k

are descent directions, and that ‖εk‖/‖d̃k‖ → 0. Then the sequence generated by
Alg. 3.3 converges to the solution w∗ of (M∗) for arbitrary initial iterates w0.
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It is easy to see that these convergence results also hold if the Sk are replaced by
preconditioners Sk defined analogously using the smaller active sets

A k =
{

i : (αD2u(wk))i �= (IT wk)i
}⊂A k.

Remark 1. Each damping strategy requires possibly multiple evaluation of either h
or ∇h. These evaluations incorporate the solution of the nonlinear convex problem
in (1). However, solving this problem is in general very cheap since D2 represents
the L2 inner product or the identity and not a differential operator. Thus a nonlinear
Gauß-Seidel method will converge to machine accuracy in a few steps.

Remark 2. It is easy to see that Alg. 3.2 terminates with the exact solution in one step
in a sufficiently small neighborhood of the solution. Thus a superlinear convergence
result within an unknown neighborhood would not provide further insight.

4 Globalization of the Primal-Dual Active Set Method

Now we analyze the relation between the presented methods. In the following let
(uk,λ k) be the sequence generated by Alg. 3.1. Defining the sequences

yk = L−1Iuk, wk = L−T b−L−T D1L−1Iuk

the multiplier is given by

λ k+1 = IT wk+1−αD2uk+1 (5)

and the linear system in Alg. 3.1 is equivalent to⎛⎝D1 0 LT

0 TIk + TAkαD2 −TAk IT

L −I 0

⎞⎠⎛⎝yk+1

uk+1

wk+1

⎞⎠=

⎛⎝ b
TIkψ

0

⎞⎠ . (6)

A simple computation shows that the constant c in the definition of the active set
drops out after the first iteration. More precisely using (5) we have

Lemma 1. Let k > 0 then the sets Ak can for arbitrary ci > 0 be written as

Ak = {i : (IT wk−αD2uk)i + ci(uk
i −ψi) > 0}.

Proof. Since k > 0 each index i is either in Ak−1 or in Ik−1. Hence (uk
i −ψi) or

(IT wk−αD2uk)i = λ k
i must be zero. Therefore the sum is positive iff one of these

expressions is positive. Having c,ci > 0 it is clear that

c(uk
i −ψi) > 0⇔ (uk

i −ψi) > 0⇔ ci(uk
i −ψi) > 0. ��
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The definition of Ak is closely related to the Euclidean projection which differs
from the projection with respect to D2 if it is not diagonal. However, we need this
projection in the following since it is the proper discrete analogue of the continuous
L2-projection. Therefore we assume

(A) D2 is a diagonal matrix.

This is not very restrictive since (A) holds if u is discretized by finite differences,
by piecewise constant finite elements, or by piecewise linear finite elements using
mass lumping for D2.

Using (A) and lemma 1 with ci = (αD2)ii we get

Lemma 2. Let k > 0 then

Ak = {i : (αD2u(wk))i �= (IT wk)i}. ��

By this representation u(wk) can be expressed by a linear equation depending on the
active set Ak. Thus from (6) we get⎛⎝D1 0 LT

0 TIk + TAkαD2TAk −TAk IT

L −ITAk 0

⎞⎠⎛⎝yk+1− y(wk)
uk+1−u(wk)

wk+1−wk

⎞⎠=

⎛⎝ 0
0

∇h(wk)

⎞⎠ . (7)

Here we used the fact that uk+1−u(wk) = TAk(u
k+1−u(wk)). By this representation

we instantly get the main result:

Theorem 4. Assume that assumption (A) holds. For k > 0 Alg. 3.1 is equivalent to
the iteration

wk+1 = wk−S
−1
k ∇h(wk)︸ ︷︷ ︸

dk

(8)

with the symmetric, positive definite preconditioner

Sk = LD−1
1 LT + ITAk

(
TIk + TAkαD2TAk

)−1

TAk IT

in the sense that (yk,uk) is computed from wk using (6). Thus global convergence of
this descent method can be achieved by introducing appropriate damping parame-
ters ρk in (8) even in the case of inexact evaluation in the sense of theorem 3.

Proof. Equivalence follows from (7) by elimination of the state and control vari-
ables. The convergence results are direct consequences of theorems 2 and 3 since

we have TIk = I−TAk and Ak = A k. ��
Remark 3. Theorem 4 shows that the primal-dual active set method and the (un-
damped) Schur complement nonsmooth Newton method applied to control prob-
lems basically coincide. The interpretation as descent method provides a natural
way to globalize the method using damping even in the case of inexact solution of
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the linear systems. Notice that no artificial merit function and descent directions
have to be constructed if this approach is used.

Remark 4. The above result does not carry over to the continuous problem. Since
the natural embedding I : H1

0 (Ω)→ H1
0 (Ω)′ is not invertible the elimination of

the state used in (1) is in general only possible in a suitable subspace. In this sub-
space Alg. 3.3 can also be defined in the infinite dimensional case. However, the
convergence theory given in [5] is no longer applicable.

This might suggest that the convergence
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Fig. 1 Mesh dependence for α = 10−8

gets slower for larger discrete problems. The
numerical results in [5] seem to contradict
this even in the case that damping is applied.
Fig. 1 (taken from [5]) shows the number
of interation steps for the solution to round-
off errors over refinement levels for bilateral
constraints, picewise constant yd and α =
10−8 where damping is essential. The exten-
sion of the ideas to the infinite dimensional
case is the topic of current research.
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An Inexact Trust-Region SQP Method with
Applications to PDE-Constrained Optimization

M. Heinkenschloss and D. Ridzal

Abstract We present a trust-region sequential quadratic programming (SQP)
method with iterative linear system solves, for the solution of smooth nonlinear
equality-constrained optimization problems. Stopping criteria for iterative solvers
are selected by the optimization algorithm, based on its overall progress. Global
convergence is ensured and unnecessary oversolving of linear systems is eliminated.
The algorithm is applied to several PDE-constrained optimization problems.

1 Introduction

Sequential quadratic programming (SQP) methods are used successfully for the so-
lution of smooth nonlinear programming problems (NLPs). SQP methods compute
an approximate solution of the NLP by solving a sequence of quadratic subprob-
lems, which are built from a quadratic model of the Lagrangian and a linear Taylor
approximation of the constraints. The solution of these subproblems requires the
solution of linear systems in which the system operator involves the constraint Ja-
cobian or its adjoint. For PDE-constrained problems, the solution of such linear
systems is often performed using iterative solvers, which require carefully selected
stopping criteria. These must be chosen based on the overall progress of the opti-
mization algorithm, in order to ensure global convergence and avoid unnecessary
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oversolving of linear systems. This paper gives a brief sketch of a trust-region
SQP algorithm with iterative (i.e. inexact) linear system solves, for the solution of
equality-constrained NLPs of the type

min f (x) (1a)

s.t. c(x) = 0, (1b)

where f : X → RI and c : X → C for some Hilbert spaces X and C . We identify
the dual X ∗ of X with X . The description of the algorithm is followed by its
application to a collection of PDE-constrained optimization problems.

For a detailed overview of the treatment of inexact linear system solves in con-
strained optimization see [7, 8, 10]. Trust-region SQP methods with inexact linear
system solves are presented in [8, 11]. The methods in [8, 11] are formulated in the
reduced space, i.e. in part rely on a decomposition of optimization variables into a
basic and a nonbasic set. This splitting is not always convenient and prohibits the
use of many efficient solvers for linear systems of the KKT type.

An inexact line-search SQP method for convex problems was recently introduced
in [4]. Nonconvex problems are addressed in [3]; it is required that the Hessian in the
quadratic subproblem is modified to exhibit certain positive definiteness properties.

Our trust-region SQP method builds on [8]. The control of inexactness in linear
system solves is guided by the progress of the optimization algorithm. The derived
stopping conditions for iterative solvers can be easily implemented and require little
computational overhead. In contrast to [8, 11], our algorithm is formulated in the
full space and can take advantage of preconditioners for KKT systems. In contrast
to [3], our trust-region approach does not require a modification of the Hessian in
the quadratic subproblem, even in the presence of nonconvexity.

2 Composite-Step Trust-Region SQP Algorithm with Iterative
Augmented System Solves

Only a basic outline of the overall algorithm is included, with an emphasis on the
choice of stopping conditions for linear system solves. For more details, see [7, 10].

Let L : X ×C → RI , L (x,λ ) = f (x)+ 〈λ ,c(x)〉C be the Lagrangian functional
for (1) and let Hk = H(xk,λk) be the Hessian of the Lagrangian ∇xxL (xk,λk) or a
replacement thereof. Trust-region SQP methods compute an approximate solution
of (1) by approximately solving a sequence of subproblems derived from

min
1
2
〈Hksk,sk〉X + 〈∇xL (xk,λk),sk〉X +L (xk,λk) (2a)

s.t. cx(xk)sk + c(xk) = 0, ‖sk‖X ≤ Δk. (2b)

To deal with the possible incompatibility of the constraints (2b) we apply a Byrd-
Omojokun-like composite step approach. See [5, Sec. 15.4.2] for an overview.
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The trial step sk is split into a quasi-normal step nk and a tangential step tk. The
role of the quasi-normal step nk is to improve feasibility, by approximately solving

min ‖cx(xk)n + c(xk)‖2
C (3a)

s.t ‖n‖X ≤ ζΔk, (3b)

where ζ ∈ (0,1) is a fixed constant. Once the quasi-normal step nk is computed, the
tangential step tk is computed as an approximate solution of the subproblem

min
1
2
〈Hk(t + nk),t + nk〉X + 〈∇xL (xk,λk),t + nk〉X +L (xk,λk) (4a)

s.t. cx(xk)t = 0, ‖t + nk‖X ≤ Δk. (4b)

The trial step sk = nk +tk is accepted or rejected based on the augmented Lagrangian
merit function φ(x,λ ;ρ) = L (x,λ )+ρ‖c(x)‖2

C and the related quantities ared and
pred, the actual and predicted reduction, see [7, 10]. One step of the composite-step
trust-region SQP algorithm involves the following tasks.

Algorithm 1 (One step of the Composite-Step Trust-Region SQP Algorithm)

1. Compute quasi–normal step nk.
2. Compute tangential step tk.
3. Compute new Lagrange multiplier estimate λk+1.
4. Update penalty parameter ρk; based on aredk/predk, accept or reject new iterate

xk+1 = xk + sk and update Δk+1 from Δk.

Linear systems are solved in Steps 1–3 of Alg. 1. If iterative solvers are used, the
stopping criteria must be carefully selected to ensure global convergence of the op-
timization algorithm and to avoid unnecessary oversolving of linear systems. We
discuss the selection of stopping criteria below. One difficulty in devising them is
that the (approximate) solution of one linear system feeds into subsequent linear
systems. A global convergence theory for Alg. 1 with the choices of iterative linear
system solves specified below is given in [7, 10].

Computation of the Quasi-Normal Step We use a dogleg method to compute
an approximate solution of (3), see, e.g., [5, Sec. 7.5.3]. Let ncp

k be the Cauchy
point, i.e., the solution of min

{‖cx(xk)n + c(xk)‖2
C : n =−αcx(xk)∗c(xk),α ≥ 0

}
.

The minimizerαcp satisfies αcp = ‖cx(xk)∗c(xk)‖2
X /‖cx(xk)cx(xk)∗c(xk)‖2

C , i.e. the
computation of ncp

k requires no linear system solves. If ‖ncp
k ‖X ≥ ζΔk, we set the

quasi-normal step to nk = ζΔkncp
k /‖ncp

k ‖X .
If ‖ncp

k ‖X < ζΔk, we compute an approximate minimum norm solution nN
k of

min‖cx(xk)n + c(xk)‖2
C and compute the quasi-normal step by moving from ncp

k as
far as possible toward nN

k while staying within the trust region of radius ζΔk. The
minimum norm solution nN

k can be computed by solving the augmented system(
I cx(xk)∗

cx(xk) 0

)(
nN

k
y

)
=
(

0
−c(xk)

)
, (5)
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see [1, p. 7]. If this system is to be solved iteratively, we solve for δnk = nN
k − ncp

k
rather than nN

k . In particular, we solve(
I cx(xk)∗

cx(xk) 0

)(
δnk

y

)
=
( −ncp

k + e1
k

−cx(xk)n
cp
k − c(xk)+ e2

k

)
, (6)

where we allow nonzero residuals e1
k and e2

k . Given a fixed constant Cqn ∈ (0,1), the
residual size is restricted via the stopping criterion

‖e1
k‖X +‖e2

k‖C ≤ Cqn ‖cx(xk)n
cp
k + c(xk)‖C . (7)

Computation of the Tangential Step We approximately solve (4) using a variant
of the Steihaug-Toint (ST) truncated conjugate gradient (CG) method [5, Sec. 7.5.1],
where cx(xk)t = 0 is enforced using null-space projections. Every iteration i of the
ST-CG algorithm requires a projection of the type zi = Pri, computed by solving(

I cx(xk)∗
cx(xk) 0

)(
zi

yi

)
=
(

ri

0

)
. (8)

If the augmented system (8) is solved inexactly, several subtle but important modi-
fications to the ST-CG algorithm are necessary, see [7, 10] for details. Here we only
address the stopping criterion for the iterative solution of the augmented system.

Let k be the current SQP iteration, let gk = Hknk +∇xL (xk,λk), let i = 0,1, ... be
the ST-CG iteration counter, let z0 be the first projection [7, 10], and let j = 0,1, ...
be the running index of the linear solver for (8). At every solver iteration j, we have
the relationship (

I cx(xk)∗
cx(xk) 0

)(
z j

y j

)
=
(

ri + e1
j

0 + e2
j

)
, (9)

where e1
j ,e

2
j are nonzero residuals. Given a fixed constant Ct > 0, the linear solver

is stopped with (zi yi) = (z j y j), for i≥ 1, when

‖e1
j‖X +‖e2

j‖C ≤min

{ ‖z0‖X
‖gk‖X ,

Δk

max{1,‖gk‖X } ,C
t
}
‖z j‖X . (10)

Lagrange Multiplier Update The Lagrange multiplier estimate λk+1 is typically
computed as an approximate solution of min‖∇x f (xk)+ cx(xk)∗λ‖X . The corre-
sponding least-squares estimate can be obtained by solving the augmented system(

I cx(xk)∗
cx(xk) 0

)(
z

λk+1

)
=
(−∇x f (xk)

0

)
. (11)

If iterative solvers are used, it is advantageous to solve for δλk = λk+1−λk rather
than λk+1 directly. In particular, we solve(

I cx(xk)∗
cx(xk) 0

)(
z
δλk

)
=
(−∇x f (xk)− cx(xk)∗λk + e1

k
e2

k

)
. (12)
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Given constants Cλ ,abs > 0 and Cλ ,rel ∈ (0,1), we stop the linear solver iteration if

‖e1
k‖X +‖e2

k‖C ≤min
{

Cλ ,rel‖∇x f (xk)+ cx(xk)∗λk‖X , Cλ ,abs
}

. (13)

Remark 1. Stopping criteria (7), (13) are easily imposed in practice, as all quantities
on the right-hand sides of (7), (13) are known prior to calling the linear solver.
Stopping criterion (10), on the other hand, is tied to the size of the linear solver
iterate z j, and thus requires a more sophisticated implementation.

3 Numerical Results

We report on the application of the inexact trust-region SQP algorithm to three op-
timal control problems. In all cases the algorithm is applied to the discretized prob-
lem. In particular, the spaces X and C are chosen to be RI n and RI m. In all examples,
augmented systems (6), (9), (12) are solved using a preconditioned GMRES algo-
rithm, with the stopping criteria given by (7), (10), (13) respectively. To analyze the
benefits of inexactness control, we compare the inexact SQP algorithm to a similar
trust-region SQP algorithm in which the direct solves of the augmented systems (5),
(8), (11) are replaced by preconditioned GMRES solves with a fixed relative toler-
ance τ . This is what one may do if one is forced to use iterative linear system solvers
in an existing NLP code. We refer to this algorithm as the fixed-tolerance SQP algo-
rithm. In order to make the comparison more balanced, we add iterative refinement
[6] to null-space projections in the ST-CG component of the fixed-tolerance SQP
algorithm. This correction procedure helps to reduce the number of ST-CG itera-
tions and aids convergence of the optimization algorithm. Iterative refinement is not
needed in the inexact SQP algorithm.

Optimal Control of the Poisson–Boltzmann Equation We consider a distributed
control problem related to the design of semiconductor devices. In such applications,
a common objective is to match the current measured at an Ohmic contact Γo of
the device to a prescribed value, by modifying a reference doping profile û. For
a mathematical treatment of the semiconductor equations we refer to [9]. Related
optimization problems have been studied in, e.g. [2].

We consider a simplified model problem, governed by the Poisson–Boltzmann
potential equation. We solve

min
α
2

∫
Γo

(∇y(x) ·ν−∇ŷ(x) ·ν)2ds+
β
2

∫
Ω

(u(x)− û(x))2dx +
γ
2

∫
Ω
|∇u(x)|2dx

(14a)

s.t. −∇ · (k(x)∇y(x)) = exp(y(x))− exp(−y(x))−u(x) in Ω , (14b)

y(x) = 0 on ΓD, (14c)

(k(x)∇y(x)) ·ν = 0 on ΓN , (14d)
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where α,β ,γ > 0, k∈ L∞(Ω) with k≥ κ > 0 a.e. inΩ , ν is the outward unit normal,
y is the potential, and u is the doping.

Our computational domain is Ω = (0,12)× (0,6). We let ΓD = ((0,2)∪ (5,7)∪
(10,12))×{6} (source, gate, drain, see Fig. 1), ΓN = ∂Ω \ΓD, and Γo = (10,12)×
{6} (drain). The permittivity is set to k = 1. We attempt to match the flux ∇ŷ ·ν = 0
on Γo. It is shown in, e.g., [9, L. 3.2.1,Thm. 3.3.1] that for every u ∈ L∞(Ω), the
differential equation (14b-d) has a unique solution y ∈ H2(Ω). Standard techniques
can be used to show the well-posedness of the infinite-dimensional problem (14)
with states y ∈H2(Ω) and controls u ∈ H1(Ω).

The problem is discretized using piecewise linear finite elements on a regular
mesh with 4096 triangles. We solve (14) for several target doping profiles û, charac-
terized by two positive numbers a and b. A target doping (a,b) means that û(x) = a
for x ∈ ([0,2]× [3,6])∪([10,12]× [3,6]), and û(x) = b elsewhere, see Fig. 1, result-
ing in optimization problems with varied difficulty levels. Cost functional parame-
ters are α = b, β = b ·10, and γ = b ·10−5.

Fig. 1 Sketch of a MESFET
semiconductor device and the
corresponding doping profile
(a,b).

SOURCE DRAINGATE

aa

b

The performance of the inexact SQP algorithm is compared to that of the fixed-
tolerance SQP algorithm. We terminate both algorithms when ‖c(xk)‖C < 10−6 and
‖∇xL (xk,λk)‖X < 10−6. The ST-CG iteration is stopped with a relative residual
tolerance of 10−2. The GMRES solver is preconditioned with an ILU factorization.
In the inexact SQP algorithm we set Cλ ,abs = 104 and use three sets of parameters
(Ct ,Cqn,Cλ ,rel), denoted by inxS for (1,10−1,10−2), inxM for (10−1,10−2,10−3),
and inxF for (10−2,10−3,10−4), generating different local convergence behaviors of
the SQP algorithm. We run the fixed-tolerance SQP algorithm with several choices
of a fixed relative GMRES tolerance τ for all augmented system solves.

Table 1 Number of SQP / GMRES iterations. Inexact (inxF) vs. fixed-tolerance SQP algorithm.

doping (a,b) inxF τ = 10−10 τ = 10−8 τ = 10−6 τ = 10−4 τ = 10−2

(1,1) 4 / 683 4 / 3105 4 / 2564 F F F
(101,10−1) 8 / 534 8 / 3058 8 / 2417 F F F
(102,10−2) 10 / 845 11 / 3574 11 / 2753 F F F
(103,10−3) 19 / 1384 20 / 7847 20 / 6177 F F F
(104,10−4) 23 / 2687 24 / 9107 24 / 6988 F F F
(105,10−5) 26 / 2113 29 / 9542 29 / 7564 F F F

F indicates failure: exceeded 50 SQP iterations or violated minimal trust–region radius of 10−8.
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We make several observations. First, from Table 1 it is evident that the fixed-
tolerance SQP algorithm fails to converge for a relative GMRES stopping tolerance
of and above 10−6, regardless of the difficulty of the optimization problem. The
inexact SQP algorithm, on the other hand, shows robust behavior, confirming the
theoretical results of [7, 10]. Second, the inexact SQP algorithm uses on average
four times less GMRES iterations compared to the best fixed-tolerance guess. This
is due to the fact that the inexact SQP algorithm allows very loose GMRES stopping
tolerances, based on its overall progress, see Fig. 2. Tolerances of 10−1 are not
uncommon. Third, Table 2 indicates that our inexact SQP algorithm provides an
effective mechanism for reducing the average number of linear solver iterations (per
linear solver call) at the expense of a slower rate of convergence. This feature is, for
example, desired in applications for which efficient iterative linear system solvers
are not available.

0 50 100 150 200 250 300 350 400 450
10

−6

10
−4

10
−2

10
0

Fig. 2 Relative GMRES stopping tolerances for the inexact SQP algorithm with parameters inxS.
Here �,∗,◦ denote GMRES stopping tolerances for augmented solves in the quasi-normal step,
tangential step, and Lagrange multiplier computation, respectively.

Table 2 Number of SQP iterations, total number of GMRES iterations, and avg. number of GM-
RES iterations per call to GMRES. The target doping profile is (103,10−3).

inxS inxM inxF τ = 10−10 τ = 10−8 τ = 10−6 τ = 10−4

sqp iter’s 42 24 19 20 20 F F
gmres iter’s 1605 1633 1384 7847 6177 F F
avg./call 3.5 5.7 6.7 16.6 13.1 F F

Optimal Control of Navier–Stokes and Burgers’ Equations We apply the inex-
act SQP algorithm to a boundary control problem governed by the Navier–Stokes
equations, and to a distributed control problem governed by Burgers’ equation. De-
tailed problem descriptions and mathematical formulations are given in [10, Ch.5].
Numerical experiments are set up as for the Poisson-Boltzmann problem. Tables 3
and 4 fully confirm our previous observations. The inexact algorithm yields signif-
icant savings in the total number of GMRES iterations. In addition, SQP iterations
can be traded for cheaper linear system solves.
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Table 3 Number of SQP iterations, total number of GMRES iterations, and avg. number of GM-
RES iterations per call to GMRES. Navier-Stokes problem.

inxS inxM inxF τ = 10−10 τ = 10−8 τ = 10−6 τ = 10−4

sqp iter’s 22 9 8 8 8 F F
gmres iter’s 4424 2891 3449 12627 11706 F F
avg./call 10.1 13.7 18.5 27.2 25.2 F F

Table 4 Number of SQP iterations, total number of GMRES iterations, and avg. number of GM-
RES iterations per call to GMRES. Burgers’ problem.

inxS inxM inxF τ = 10−11 τ = 10−9 τ = 10−7 τ = 10−5

sqp iter’s 61 26 17 15 15 15 15
gmres iter’s 6473 5761 2574 13682 13523 15340 23774
avg./call 12.2 14.1 14.7 19.2 17.7 16.4 14.4
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Semi–Monotonic Augmented Lagrangians for
Optimal Control and Parameter Identification

D. Lukáš and Z. Dostál

Abstract Optimization and inverse problems governed by partial differential equa-
tions are often formulated as constrained nonlinear programming problems via the
Lagrange formalism. The nonlinearity is treated using the sequential quadratic pro-
gramming. A numerical solution then hinges on an efficient iterative method for
the resulting saddle–point systems. In this paper we apply a semi–monotonic aug-
mented Lagrangians method, recently proposed and analyzed by the second au-
thor, for equality and simple–bound constrained quadratic programming subprob-
lems arising from optimal control and parameter identification. Provided multigrid
preconditioning of primal and dual space inner products and of the Hessian the
algorithm converges at O(1) matrix–vector multiplications. Numerical results are
given for applications in image segmentation and 2–dimensional magnetostatics dis-
cretized using lowest–order Lagrange finite elements.

1 Introduction

Many engineering problems involve a solution to partial differential equations
(PDE), which describe a physical field under consideration, and a design of some
parameters that influence data of the PDE so that the solution has required prop-
erties. A typical example is optimal control, where the design parameters control
forcing terms in the PDE. Another example is parameter identification, where the
design parameters are material coefficients of the PDE operator such that the corre-
sponing solution fits best a given (measured) field. The latter problem is rather close
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to an optimal topology design, in which we additionally require the coefficients to
be discrete–valued.

In either case we consider the following optimization problem:

min
u∈Uad

I (u,y) s.t. B(u,y) = G on Y ′, (1)

where Uad := {u∈U : u≤ u≤ u} for u,u ∈U , u < u, where U denotes a Hilbert
space, typically U ⊂ L2(Ω) as in Section 3, of design parameters, y ∈ Y with Y
being another Hilbert space of state PDE solutions, where I : U ×Y → IR denotes
a twice continuously differentiable objective functional, U ′ and Y ′ denote the re-
lated dual spaces, where further B : U ×Y → Y ′ is an elliptic linear or bilinear
PDE operator in case of optimal control or parameter identification, respectively,
and where G ∈Y ′ in either case. Finally, we consider the quadratic approximations

min
v∈Vad

hi(v) s.t. Bi(v) = gi, i = 0,1,2, . . . (2)

at iteration points vi := (ui,yi) ∈Vad, where hi(v) := (1/2)〈Aiv,v〉V −〈 f i,v〉V , Ai :=
J ′′(vi), f i := −J ′(vi), Bi := B′(vi), gi := G −B(vi), V := U ×Y and Vad :=
Uad×Y . For details and analysis of some SQP schemes we refer to [1].

The concern of our paper is an efficient solution to problems (2). We base our
exposition on a Semi–Monotonic Augmented Lagrangian method for Bound and
Equality constrained qp–problems (SMALBE), which has been recently proposed
and analyzed by the second author in [2]. Note that we have recently applied a simi-
lar method to the Stokes problem, see [5]. The method relies on uniformly bounded
spectra of Hessians Ai, which we can often assure via a geometric multigrid precon-
ditioning. Then, the algorithm is proven to converge at O(1) matrix–vector multi-
plications provided we have an optimal convergence method for the inner simple–
bound constrained quadratic programming subproblems. Such a method was pro-
posed and analyzed in [3], it is based on conjugate gradients and we call it Mod-
ified Proportioning with Reduced Gradient Projections (MPRGP). The rest of the
paper is organized as follows: In Section 2 we describe the algorithms SMALBE
and MPRGP preconditioned with multigrid and we refer to the main theoretical re-
sult on the optimal convergence. Finally, In Section 3 we present two benchmarks,
namely an optimal control for image segmentation and a parameter identification for
2–dimensional magnetostatics, and give numerical results in terms of convergence.

2 The Algorithm SMALBE

Let us consider the problem (2) and from now on skip the index i. Denote by Q := Y
the space of Lagrange multipliers. Let IV and IQ denote the inner product (Riesz iso-
morphism) operators on the Hilbert spaces V and Q, respectively, let g ∈ Range(B),
Range(B) be closed, and let VBE := {v ∈ Vad : Bv = g} be nonempty. Denote by
BT : Q→ V ′ the adjoint operator to B. We assume that there exists ρ > 0 such that
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the operator A +ρBT I−1
Q B is elliptic with the constant λ > 0. For arbitrary v ∈Vad,

q∈Q and ρ ≥ ρ the augmented Lagrange functional related to (2) reads as follows:

L(v,q,ρ) := h(v)+ 〈Bv− g,q〉Q + (ρ/2)‖Bv− g‖2
Q′, the related Fréchet derivative

is F(v,q,ρ) := L′v(v,q,ρ) = Av− f + BT q +ρBTI−1
Q (Bv−g). Note that evaluations

of dual norms are due to the Riesz theorem, e.g. ‖ϕ‖V ′ =
√
〈ϕ , I−1

V ϕ〉V . Then, the

problem (2) is equivalent to the saddle–point problem: min
v∈Vad

max
q∈Q

L(v,q,ρ) and it has

a unique and stable solution v∗ ∈ Vad, while a related Lagrange multiplier q∗ ∈ Q
need not be unique.

For numerical solution we will make use of the classical augmented Lagrangian
algorithm, where in outer iterations we maximize over Q, increase the penalty ρ and
solve the following simple–bound constrained inner qp–subproblems:

min
v∈Vad

L(v,q,ρ), (3)

where q ∈ Q and ρ ≥ ρ are fixed. We present Algorithm 1, which is a modification
of the classical augmented Lagrangian algorithm such that we additionally employ
an adaptive precision control for solution to the simple–bound constrained subprob-
lems (5), and a special update rule for ρ assuring a monotonic increase of L. The
evaluation of ‖FP‖V (v(k+1))∗ is described in Section 2.1. For details we refer to [2].

Algorithm 1 Semi–monotonic augmented Lagrangians with adaptive prec. control

Given η > 0, β > 1, ν > 0, ρ (0) ≥ ρ , q(0) ∈ Q, precision ε > 0, feasibility precision εfeas > 0
for k := 0,1,2, . . . do

Find v(k+1) ∈Vad : ‖FP(v(k+1),q(k),ρ (k))‖V (v(k+1))∗ ≤min
{
ν‖Bv(k+1)−g‖Q′ ,η

}
if ‖FP(v(k+1),q(k),ρ (k))‖V (v(k+1))∗ ≤ ε and ‖Bv(k+1)−g‖Q′ ≤ εfeas then

break
end if
q(k+1) := q(k) +ρ (k)I−1

Q Bv(k+1)

if k > 0 and L(v(k+1),q(k+1),ρ (k)) < L(v(k),q(k),ρ (k−1))+ ρ(k)

2 ‖Bv(k+1)−g‖2
Q′ then

ρ (k+1) := βρ (k)

else
ρ (k+1) := ρ (k)

end if
end for
v(k+1), q(k+1) is the solution.

2.1 Inner Iterations: MPRGP

Let us give a precise meaning of FP. Let Vad be convex nonempty and closed. Then
(3) is equivalent to the following variational inequality:
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Find v∗ ∈Vad such that 〈F(v∗,q,ρ),v− v∗〉V ≥ 0 ∀v ∈Vad. (4)

For v∈Vad by M(v) := {w∈V | ∃t > 0 ∀t ∈ [−t, t] : v+tw∈Vad}we denote a vector
subspace of feasible full–directions, by N(v) := M(v)⊥ its orthogonal complement,
by N+(v) := {w ∈ N(v) | ∃t > 0 ∀t ∈ (0, t] : v + tw ∈Vad} a half–space of feasible
half–directions, and by N−(v) :=−N+(v) the other half–space of nonfeasible half–
directions. Then, we can equivalently translate the variational inequality (4) into the
following nonsmooth equality:

[FP(v∗,q,ρ)](w) = 0 ∀w ∈V or ‖FP(v∗,q,ρ)‖V(v)∗ = 0, (5)

where for any v∈Vad, w∈V , decomposed into w = wM +w+
N +w−N with wM ∈M(v),

w+
N ∈ N+(v), and w−N ∈ N−(v), we define the following projection of F(v,q,ρ):

[FP(v,q,ρ)](w) = 〈F(v,q,ρ),wM〉V + min
{〈F(v,q,ρ),w+

N 〉V ,0
}

,

where the additive terms are applications of the so–called free and chopped gradient,
respectively, and where

‖FP(v,q,ρ)‖2
V(v)∗ := ‖F(v,z,ρ)‖2

M(v)′ +‖FP(v,z,ρ)‖2
N(v)∗ ,

‖FP(v,z,ρ)‖N(v)∗ := sup
w+

N∈N+(v)

∣∣[FP(v,q,ρ)](w+
N )
∣∣/‖w+

N‖V .

In the inner iterations, i.e. the first line in the for–cycle of Algorithm 1, we shall
approximately solve the auxiliary subproblems (5), for which we recommend to use
Algorithm 2. It is based on the conjugate gradient method with proportioning and
reduced gradient projections. We denote by ‖A‖V := sup

‖w‖V =1
‖Aw‖V ′ the norm of the

linear continuous mapping. For more details we refer to [3].

2.2 Analysis: Linear Complexity, Multigrid Preconditioning

Now we refer to the main theoretical result given in [2, Theorem 5]. It indicates that
Algorithm 1 works optimally provided a uniformly bounded spectra of all the Hes-
sians independently of the discretization level. Thus, we can construct a multigrid
preconditioner for A denoted by Â, and substitute each occurence of v by Â−1/2v̂,
which will guarantee boundeness of the Hessian spectra as well as linear complexity
of number of the inner CG–iterations. However, under this substitution we would
change the simple–bound constraint to a linear inequality constraint, which might
be more tricky to handle. Therefore, we recommend to use a diagonal precondi-
tioner for A only. Note that the optimal convergence theory was proven only in
finite dimension, but we believe that a generalization to Sobolev spaces will be as
straightforward as it has recently turned up in case of equality constrained quadratic
programming, see [5].
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Algorithm 2 Modified proportioning with reduced gradient projections

Given Γ > 0, α ∈ (0,2‖A‖−1
V ], η > 0, ν > 0, v(0) ∈Vad, q ∈ Q, ρ ≥ ρ, prec. ε > 0, εfeas > 0

for l := 0,1,2, . . . do

if ‖FP(v(l),q,ρ)‖V (v(l))∗ ≤ min
{
ν‖Bv(l)−g‖Q′ ,η

}
or

(‖FP(v(l),q,ρ)‖V (v(l))∗ ≤ ε and

‖Bv(l)−g‖Q′ ≤ εfeas
)

then
break

end if
if ‖FP(v(l),q,ρ)‖N(v)∗ < Γ ‖F(v(l),q,ρ)‖M(v)′ then

Generate v(l+1) by the conjugate gradient step
if v(l+1) �∈Vad then

Generate v(l+1/2) by the maximal feasible conjugate gradient step
Generate v(l+1) as a feasible (α) addition of the free gradient and project onto Vad
Restart conjugate gradients with the free gradient

end if
else

Restart conjugate gradients with the chopped gradient
Generate v(l+1) by the conjugate gradient step

end if
end for
v(l+1) is the solution.

Additionally, for proper measurements of dual norms we need applications of
inverses of IV and IQ to be of the linear complexity too. Thus, we can replace ap-

plications of I−1
V and I−1

Q by approximate inverse applications ÎV
−1

and ÎQ
−1

using
multigrid again.

3 Numerical Results

We present numerical results for two benchmark problems. First, we consider an
optimal control problem for image segmentation, see [4] for an introduction of a
similar formulation. Given Ω := (0,1)2, a noisy colour (red, green, blue compo-

nents) image data yd ∈ [L2(Ω)
]3

and a regularization parameter μ > 0, we look for

sources u ∈ [L2(Ω)
]3

that produced homogeneous colour segments in the image.
This leads to the following optimal control problem:

min
(u,y)∈Uad×Y

{
1
2
‖y(x)− yd(x)‖2

[L2(Ω)]3 +
μ
2
‖u(x)‖2

[L2(Ω)]3

}
s.t. −*y = u on Y ′,

where Uad := {u ∈ [L2(Ω)]3 | 0≤ u(x)≤ 1 a.e. inΩ} and Y :=
[
H1

0 (Ω)
]3

.
By numerical experiments we realized that it is enough to proceed with an SQP

method, where we neglect the simple–bound constraint and solve the following un-
constrained saddle–point system and then project the resulting ui onto Uad:
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0 μIL2 sym.
−* −IL2→H1 0

⎞⎠⎛⎝ yi
j

ui
j

qi
j

⎞⎠=

⎛⎝ IL2yd
j

0
0

⎞⎠ for j = 1,2,3,

where IL2 stands for the identity (inner product) operator on L2(Ω) and IL2→H1

stands for the orthogonal projection from L2(Ω) to H1(Ω). We use a finite element
method and employ linear nodal Lagrange elements for both U and Q = Y . We
construct geometric multigrid preconditioners for IQ = −* and IV = I[L2(Ω)]3 so
that a point diagonal smoother with 3 symmetric smoothing iterations is applied for
the latter. For IQ =−* we test a point additive smoother as well as a block Gauss–
Seidel smoother with 3 symmetric smoothing iterations again. Since we have ne-
glected the bound constraint, we use the preconditioned conjugate gradients (PCG)
method instead of MPRGP. Numerical results for the first SQP iteration and for the
red component with μ := 10−4 and relative precisions ε = εfeas = 10−5 are depicted
in Fig. 1 and Table 1. The results are similar for the other colour components. Note
that the number of iterations holds about a constant. Yet we have to improve our
implementation in Matlab in order to get large–scale simulations in a reasonable
time. Note that a similar problem was solved in [6] by an indefinite multigrid pre-
conditioner within the conjugate gradients method with less computational effort.
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Fig. 1 Image segmentation: original noisy image yd and the reconstructed smooth segments u1

Second, we consider a parameter identification problem for 2–dimensional mag-
netostatics. Given a rectangular domain Ω ⊂ IR2, a measured magnetic field distri-
bution Bg = curl(yg), where yg ∈ H1

0 (Ω), a forcing electric current term g ∈ L2(Ω)
such that div(g) = 0, reluctivity of the air ν0 := 4π10−7, a minimal reluctivity of
ferromagnetic components ν1 = ν0/5000 and a regularization parameter μ > 0, we
search for a distribution u ∈ L2(Ω) of the magnetic reluctivity that has caused the
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Table 1 Numerical experiments for optimal control in image segmentation

point additive smoother block Gauss–Seidel smoother
level l dim(Ql) SMALBE/PCG total PCG SMALE/PCG total PCG

iterations iterations iterations iterations
1 336 5/7,6,9,7,9 38 5/7,6,9,7,9 38
2 1271 5/9,10,10,11,13 53 5/7,6,9,9,9 40
3 4941 5/9,11,11,12,12 55 5/7,9,8,6,9 39
4 19481 5/8,11,12,13,13 57 out of time
5 77361 5/9,11,11,12,13 56 out of time

measured magnetic field Bg. This leads to the following problem:

min
(u,y)∈Uad×Y

{
1
2
‖∇y(x)−∇yg(x)‖2

L2(Ω) +
μ
2
‖u(x)‖2

L2(Ω)

}
s.t. −div((ν0 +(ν1−ν0)u)∇y) = g on Y ′,

where Uad := {u ∈ L2(Ω) | 0≤ u(x)≤ 1 a.e. inΩ} and Y := H1
0 (Ω)3.

SQP approximations now lead to simple–bound and equality constrained qp–
subproblems with the following Hessian:⎛⎝ −* 0 sym.

0 μIL2 sym.
−div(qi∇·) −div(·∇yi) 0

⎞⎠ .

However, it turned out by numerical experiments that at some SQP iterations the de-
sign search set V i

BE is empty. As a remedy we relax the upper bound constraint such
that 0≤ u(x)≤ γ i, where γ i→ 1+. For approximation we use linear Lagrange finite
elements (fe) for Y = Q and elementwise constant basis for U . We build a geo-
metric multigrid preconditioner for−* with 3 symmetric Gauss–Seidel smoothing
steps. The inner product on U can be inverted directly, since the fe–approximations
of IU are diagonal matrices. Therefore, we can also use the tensor–product pre-
conditioner for the Hessians without changing the simple–bound constraint into a
linear constraint, and we can make use of MPRGP. Numerical results for the first
and second SQP iteration with μ := 10−4 and relative precisions ε = εfeas = 10−4

are depicted in Fig. 2 and Table 2. While the number of SMALBE iterations seems
to be about constant, yet we have to improve preconditioning of A +ρBT I−1

Q B, see
the increasing numbers of CG–iterations as well as expansion steps in Table 2.
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Fig. 2 Parameter identification in 2–dimensional magnetostatics: original and reconstructed ferro-
magnetics distribution u

Table 2 Numerical experiments for parameter identification in 2–dimensional magnetostatics

level 1st SQP iteration 2nd SQP iteration
primal / dual DOFs SMALBE / total inner steps SMALBE / total inner steps

(y’s + u’s) / (q’s) PCG + exp. + prop. steps PCG + expansion + proportioning steps
1 7 / 15+0+0 5 / 78+16+1

91+187 / 91 1, 3, 2, 2, 3, 2, 2 15+13+0, 26+2+1, 12+1+0, 16+0+0, 9+0+0
2 7 / 17+0+0 5 / 152+18+3

373+784 / 373 2, 3, 2, 3, 3, 2, 2 20+11+0, 27+6+1, 35+1+1, 37+0+0, 33+0+1
3 8 / 22+0+0 4 / 185+52+3

1574+2992 / 1574 2, 3, 3, 3, 3, 3, 3, 2 19+30+0, 73+19+2, 46+3+0, 47+0+1
4 8 / 30+0+0 5 / 377+176+5

6292+11968 / 6292 3, 4, 4, 4, 4, 4, 4, 3 26+80+0, 160+87+4, 76+7+1, 73+2+0, 42+0+0
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An Optimal Control Problem for Stochastic
Linear PDE’s Driven by a Gaussian White Noise

H. Manouzi and S. Hou

Abstract A computationally efficient technique for the numerical solution of con-
strained optimal control problems governed by linear stochastic partial differential
equations (SPDEs) is considered in this paper. Using the Wiener-Itô chaos expan-
sion of the solution and the control, the stochastic problem is reformulated to a
set of deterministic equations. To obtain these chaos coefficients, we use the usual
Galerkin finite element method using standard techniques. Once this representation
is computed, the statistics of the numerical solution can be easily evaluated. To illus-
trate our ideas we consider an optimal control problem of a linear elliptic equation
with a quadratic cost functional and a distributed stochastic control which lies in the
Hida distribution spaces.

1 Introduction

In the recent years, there has been an increased interest in applications of stochas-
tic partial differential equations. Stochastic partial differential equation (SPDEs) are
known to be an effective tool in modeling complex physical and engineering phe-
nomena.

The mathematical treatment of SPDEs is more involved than deterministic PDEs.
In the literature, various stochastic Galerkin methods have been applied to various
linear and nonlinear problems, e.g. [1, 3, 8].

We shall use the approach of white noise analysis where both the Hida space and
the more general Kondratiev space of distributions are to our disposal and where
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generalized solutions say u(x,ω) are treated in the sense that ω −→ u(x,ω) is a
stochastic distribution for a.a. x, e.g. [5, 6, 7]. An advantage of this approach is that
one can establish a theory of nonlinear operations on distributions in order to handle
a wide class of optimal control for nonlinear SPDEs .

In this paper we consider optimal control problems for linear stochastic par-
tial differential equations (SPDEs) with quadratic cost functionals and distributed
stochastic controls. We shall use the Wiener-Itô chaos expansion which represents
a stochastic function u(x,ω) = ∑α∈I uα(x)Hα (ω) as formal series with respect to
an orthonormal basis Hα . This decomposition separates the deterministic effects,
described by the coefficients uα , from the randomness that is covered by the basis
functions Hα . The orthogonality of Hα enable us to reduce linear SPDEs to a system
of decoupled deterministic equations for the coefficients uα(x). Standard determin-
istic numerical methods can be applied to solve it sufficiently accurately. The main
statistics, such as mean, covariance and higher order statistical moments can be cal-
culated by simple formulas involving only these deterministic coefficients. More-
over, in the procedure described above, there is no randomness directly involved in
the simulations. One does not have to deal with the selection of random number gen-
erators, and there is no need to solve the SPDE equations realization by realization.
Instead, coefficient equations are solved once and for all.

An outline of the paper is as follows. In section 2 we review notation and in-
troduce some function spaces. In section 3, we shall first give the existence and
uniqueness of stochastic elliptic PDEs and then show that there is a unique optimal
solution for a minimization problem constrained by stochastic elliptic equations. Fi-
nally we will derive a system of deterministic equations that the optimal solutions
must satisfy and show how one can reconstruct particular realizations of the solution
directly from Wiener-Itô chaos expansions once the coefficients are available.

2 A Review of Some Stochastic Sobolev Spaces

2.1 White Noise Space

Let S (IRd) be the Schwartz space of smooth, rapidly decreasing functions on IRd ,
and let S ′(IRd) be the dual space of tempered distributions. By the Bochner-Minlos
theorem [7], there exists a unique probability measure μ , called the white noise
probability measure, on the Borel σ -algebra on S ′ with characteristic functional

Eμ [ei〈·,η〉] :=
∫

S ′
ei〈ω,η〉dμ(ω) = e

− 1
2 ‖η‖2

L2(IRd ) , η ∈S (IRd). (1)

The random variable 〈·,η〉S ′,S defined on the probability spaceΩ = (S ′,B(S ′),μ)
thus follows a Gaussian distribution with mean zero and variance ‖η‖2

L2(IRd)
, and

can be interpreted as the stochastic integral w.r.t a Brownian motion Bx defined on
IRd , i.e.
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〈ω ,η〉S ′,S =
∫

IRd
η(t,x)dBx(ω), ω ∈S ′,η ∈S

2.2 Chaos Decomposition

A chaos decomposition is an orthonormal expansion in the Hilbert space L2(S ′) of
quadratic integrable functions defined on (S ′,B(S ′),μ).

For n∈ IN0,x∈ IR, define the Hermite polynomial hn(x)= (−1)nex2/2 dn

dxn (e−x2/2)
and for n ∈ IN define the Hermite functions

ξn(x) = π−1/4((n−1)!)−1/2e−x2/2hn−1(
√

2x)

It is well-known that ξn ∈ S (IR), ‖ξn‖∞ ≤ 1 (n ∈ IN), and that {ξn : n ∈ IN}
constitutes an orthonormal basis in L2(IR,dx). We let {η j} j∈IN ⊂ S (IRd) de-
note the orthonormal basis for L2(IRd ,dx) constructed by taking tensor-products
of Hermite functions: η j(x) = ξ

δ ( j)
1

(x1)ξδ ( j)
1

(x2) · · ·ξδ ( j)
d

(xd) , j = 1,2, · · · , where

δ ( j) = (δ ( j)
1 ,δ ( j)

2 , · · · ,δ ( j)
d ) is the jth multi-index number in some fixed ordering

of all d-dimensional multi-indices δ = (δ1, · · · ,δd). It follows that {η j} is an or-
thonormal basis for L2(IRd). Let I denote the set of multi-indices α = (α1,α2, · · ·)
where all αi ∈ IN and only finitely many αi �= 0 and let Hα denote the stochastic
variables Hα(ω) =Π∞

j=1hα j(〈ω ,η j〉).
The family {Hα : α ∈ I} constitutes an orthogonal basis for L2(S ′,B(S ′),μ)

and it holds E[HαHβ ] = α!δαβ [4].
Thus, any f in L2(S ′) has a unique representation f =∑α∈I fαHα where fα ∈ IR

and || f ||2
L2(μ) = ∑α∈I f 2

αα!.
Next, we introduce a family of stochastic Banach spaces needed for variational

problems. This type of spaces are often used for the Hilbert space treatment of
SPDEs of Wick type, other references include [2, 9, 10, 11, 13, 14].

2.3 Stochastic Sobolev Spaces

We shall use the notation (2IN)α :=
∞

∏
j=1

(2d δ ( j)
1 · · ·δ ( j)

d )α j where (δ ( j)
1 · · ·δ ( j)

d ) is

related to the basis {η j} by

η j(x) = ξ
δ ( j)

1
(x1)ξδ ( j)

1
(x2) · · ·ξδ ( j)

d
(xd) , j = 1,2, · · ·

We have the following result [12]:
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Lemma 1. We have that

∑
α∈I

ep(2IN)α < ∞

if and only if p < 0.

Definition 1. Let −1 ≤ ρ ≤ 1 and k ∈ IR and let V be a Banach space. We define
the stochastic Banach spaces (S )ρ ,k,V as the set of all formal sums

(S )ρ ,k,V :=

{
v = ∑

α∈I
vαHα : vα ∈V and ‖v‖ρ ,k,V < ∞

}
where ‖ · ‖ρ ,k,V denote the norm

‖u‖ρ ,k,V :=

(
∑
α∈I

(α!)1+ρ‖uα‖2
V ek(2IN)α

) 1
2

Lemma 2. If V is a separable Hilbert space, then the space (S )ρ ,k,V with the inner
product

(u,v)ρ ,k,V := ∑
α∈I

(uα ,vα)V (α!)1+ρek(2IN)α

is a separable Hilbert space. Moreover, if k′ ≤ k then S ρ ,k,V ↪→S ρ ,k′,V .

3 An Elliptic Distributed Stochastic Control Problem

Let D denote an open, bounded spatial domain in IRd with a boundary ∂D and
k, l ∈ IR such that k < l and let λ > 0. As a prototype example of boundary control
problems for SPDEs we will consider in the paper the minimization of the quadratic
cost functional

J (u,g) =
1
2
‖u− u‖2

−1,k,H1
0 (D) +

λ
2
‖g‖2

−1, l,L2(D) (2)

subject to the elliptic SPDE for the state u and the stochastic control g:

−Δu(x,ω) = f (x,ω)+ g(x,ω) , in D ×Ω (3)

u(x,ω) = 0 , on ∂D ×Ω (4)

where u(x,ω) = ∑α∈I uα(x)Hα(ω) ∈ (S )−1,k,H1
0 (D) is a desired state.

Here, f (x,ω) = ∑α∈I fα (x)Hα(ω) ∈ (S )−1,k,L2(D) is the stochastic forcing
term, g = ∑α∈I gα(x)Hα(ω) ∈ (S )−1,l,L2(D) is the control term.

For this control problem we will give the existence and uniqueness of an optimal
solution. We will derive an optimality system of equations that the optimal solutions
must satisfy and discuss the chain of optimality systems.
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3.1 Existence and Uniqueness of an Optimal Solution

We give a variational formulation of (3)–(4) and show that a solution is unique.
Formally, assuming enough regularity on the data and the solution, we may write

(−Δu,v)−1,k,L2(D) = ( f ,v)−1,k,L2(D) + (g,v)−1,k,L2(D), ∀v ∈ (S )−1,k,H1
0 (D) (5)

Integrating the left-hand side of (5) gives the bilinear form

(−Δu,v)−1,k,L2(D) = (∇u,∇v)−1,k,L2(D)

For a given pair (k, l) ∈ IR2 with k < l the variational formulation of (3)-(4) is:
Find u ∈ (S )−1,k,H1

0 (D) such that

(∇u,∇v)−1,k,L2(D) = ( f ,v)−1,k,L2(D) + (g,v)−1,k,L2(D), ∀v ∈ (S )−1,k,H1
0 (D) (6)

Theorem 1. For every k, l ∈ IR with k < l, f ∈ (S )−1,k,L2(D) and g ∈ (S )−1,l,L2(D)

the problem (6) has a unique solution u ∈ (S )−1,k,H1
0 (D) and it holds

‖u‖−1,k,H1
0 (D) ≤C{‖ f‖−1,k,L2(D) +‖g‖−1,l,L2(D)} (7)

for a suitable positive constant C.

Proof. It clear that the bilinear form (∇u,∇v)−1,k,H1
0 (D) is symmetric, continuous

and coercive in (S )−1,k,H1
0 (D). To apply the Lax-Milgram Theorem it suffices to

show that the linear form ( f ,v)−1,k,L2(D) + (g,v)−1,k,L2(D) is continuous. Using the

definition of the inner product in (S )−1,k,L2(D) we may write

(g,v)−1,k,L2(D) = ∑α∈I(gα ,vα)L2(D)e
k(2IN)α

≤ ∑α∈I ‖gα‖L2(D)e
l
2 (2IN)α ‖vα‖L2(D)e

k
2 (2IN)α e( k

2− l
2 )(2IN)α

≤ ‖g‖−1,l,L2(D)‖v‖−1,k,L2(D)∑
α∈I

e( k
2− l

2 )(2IN)α

≤C‖g‖−1,l,L2(D)‖v‖−1,k,H1
0 (D)

where ∑
α∈I

e( k
2− l

2 )(2IN)α < ∞, since k−l
2 < 0. ��

Theorem 2. The optimal control problem (2)-(4) admits a unique solution (u,g) ∈
(S )−1,k,H1

0 (D)× (S )−1, l,L2(D).

Proof. The proof follows standard arguments for proving existence of an optimal
solution for deterministic optimal control problems. We provide the proof here for
completeness. Set

Uad≡{(u,g)∈ (S )−1,k,H1
0 (D)×(S )−1,l,L2(D) : (u,g) satisfies (3)-(4),J (u,g)<∞}
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Uad is obviously nonempty. Let {(u(n),g(n))} ⊂ Uad be a minimizing sequence of
J (u,g), i.e., {(u(n),g(n))} satisfy

lim
n→∞J (u(n),g(n)) = inf

(u,g)∈Uad

J (u,g) (8)

A convergent sequence is bounded and this implies

‖g(n)‖
(S )−1,l,L2(D) ≤C1.

This estimate and Theorem 1 in turn yields

‖u(n)‖
(S )−1,k,H1

0 (D) ≤C{‖ f‖−1,k,L2(D) +C1} .

Hence we have the weak convergence

u(n) ⇀ û in (S )−1,k,H1
0 (D) and g(n) ⇀ ĝ in (S )−1,l,L2(D)

for some û ∈ (S )−1,k,H1
0 (D) and ĝ ∈ (S )−1,l,L2(D). Passing to the limit in the weak

form of (3)-(4) we can see that (û, ĝ) satisfies (3)-(4), i.e., (û, ĝ) ∈Uad.
Using the sequential weak lower semicontinuity of the functional J we have

J (û, ĝ)≤ liminf
n→0

J (u(n),g(n)) = inf
(u,g)∈Uad

J (u,g)

Hence, we conclude that J (û, ĝ) = inf(u,g)∈Uad
J (u,g) so that J (û, ĝ) is an

optimal solution.
The uniqueness follows from the abstract uniqueness result for the minimization

of quadratic functionals with linear constraints. ��

3.2 The Chain of Optimality Systems

Let (u,g) be the optimal solution of the elliptic optimal control problem (2)-(4).
Defining the functional

F(g) = J (u(g),g), where u(g)is the solution of the state equation

Using classical necessary optimality conditions we can prove:

Theorem 3. If (ũ, g̃) is the solution of (2)-(4), then g̃ =− 1
λ p where p is the solution

of the problem {−Δ p = ũ− u , in D ×Ω
p = 0 , on ∂D ×Ω

Conversely, if a pair (ũ, p̃)) obeys the systems
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λ p̃ , in D×Ω

−Δ p̃ = ũ− u , in D×Ω
ũ, p̃ = 0 , on ∂D ×Ω

then the pair (ũ,− 1
λ p̃) is the solution of (2)-(4).

Using the orthogonality of Hα and if ũ = ∑
α∈I

uαHα , g̃ = ∑
α∈I

gαHα solves (2)-(4),

then the chaos coefficients of the solution must solve the following set of determin-
istic problems: for each α ∈ I{−Δuα = fα − 1

λ pα , in D
uα = 0 , on ∂D{−Δ pα = uα −uα , in D
pα = 0 , on ∂D

gα =− 1
λ

pα

3.3 The Finite Element Approximation

Since the stochastic control problem are recasted in deterministic manner, their nu-
merical solutions can be obtained using standard method widely used for PDEs. A
finite element discretization of the optimality system can be defined in the usual
manner.

For N,K ∈ IN, we define the cutting IN,K ⊂ I by

IN,K = {0}∪
N⋃

n=1

K⋃
k=1

{
α ∈ INk

0 : |α|= n and αk �= 0
}

Assume that the approximated chaos coefficients (uh,α , ph,α), ∀α ∈ IN,K are com-
puted by solving the deterministic optimality system, then the first two statistical
moments of u are given by

Eμ [uh(x,y,ω)] = uh,0(x,y), Eμ [u2
h(x,y,ω)] = ∑

α∈IN,K

| uh,α(x,y) |2 .

In practice, stochastic simulations of the solution can be carried out as follows: First,
generate K independent standard Gaussian variables X(ω) = (Xi(ω)) (i = 1, . . . ,K)
using some random number generator, and then form the sums

uh(x,y,ω) = ∑
α∈IN,K

uh,α(x,y)Hα(X(ω)), ph(x,y,ω) = ∑
α∈IN,K

ph,α(x,y)Hα(X(ω)),

(9)
where
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Hα(X(ω)) :=
K

∏
j=1

hα j(Xj(ω)).

The advantage of this approach is that it enables us to generate random samples
easily and fast. For example, in situations where one is interested in repeated simu-
lations, one may compute the chaos coefficients in advance, store them, and produce
the simulations whenever they are needed.
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A Priori Error Analysis for the Finite Element
Approximation of Elliptic Dirichlet Boundary
Control Problems

S. May, R. Rannacher, and B. Vexler

Abstract This article presents recent results of an a priori error analysis for the finite
element approximation of Dirichlet boundary control problems governed by ellip-
tic partial differential equations. For a standard model problem error estimates are
proven for the primal variable, the control, as well as the associated adjoint vari-
able. These estimates are of optimal order with respect to the solution’s regularity
to be expected on polygonal domains. The proofs rely on the Euler-Lagrange for-
mulation of the optimal control problem and employ standard duality techniques
and optimal-order Lp error estimates for the finite element Ritz projection. These
estimates improve corresponding results in the literature and are supported by com-
putational experiments. The details are contained in [9].

1 Dirichlet Boundary Control

On a convex polygonal domain Ω ⊂R2 , we consider the following elliptic Dirichlet
boundary control problem:

J(u,q) := 1
2‖u−ud‖2

L2(Ω) +
α
2 ‖q‖2

L2(∂Ω) → min! (1)

such that −Δu = f in Ω , u = q on ∂Ω . (2)

Here, ud and f are given sufficiently smooth functions, and α > 0 . The difficulty
with this problem is that the natural “control space” Q := L2(∂Ω) does not fit the
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“state space” H1(Ω) since the trace mapping γ : H1(Ω)→ L2(∂Ω) is not surjec-
tive. We therefore use the following “very weak” formulation of the state equation
(see Lions/Magenes [8], and also Berggren [1] for the corresponding finite element
analysis): For given q ∈ L2(∂Ω) find u ∈ L2(Ω) such that

−(u,Δφ)+ 〈q,∂nφ〉= ( f ,φ) ∀φ ∈ H1
0 (Ω)∩H2(Ω). (3)

Here, (·, ·) = (·, ·)L2(Ω) denotes the L2 inner product on the domain Ω and 〈·, ·〉 =
〈·, ·〉L2(∂Ω) that on its boundary ∂Ω . The corresponding norms will be denoted by
‖ · ‖ = ‖ · ‖L2(Ω) and | · | = | · |L2(∂Ω) , respectively. By the results in [1] (see also
[9]) there exists a uniquely determined solution to problem (3). For an overview of
formulations of Dirichlet boundary control problems, see Kunisch/Vexler [7].

With the “solution operator” S : L2(∂Ω)→ L2(Ω) defined by

−(Sq,Δφ)+ 〈q,∂nφ〉 = ( f ,φ) ∀φ ∈H1
0 (Ω)∩H2(Ω), (4)

the optimal control problem (1), (2) can be written in the reduced form

j(q) := J(Sq,q)→min! q ∈ L2(∂Ω). (5)

The first directional derivative of j(·) at some point q ∈ L2(∂Ω) is given by

j′(q)(χ) = α〈q,χ〉− 〈∂nz,χ〉, χ ∈ L2(∂Ω), (6)

where z = z(q) ∈ H1
0 (Ω)∩H2(Ω) is the associated “adjoint state” determined by

the equation

−(ψ ,Δz) = (Sq− ud,ψ) ∀ψ ∈ L2(Ω). (7)

The resulting first-order necessary optimality condition for the optimal solution q̂
and the corresponding adjoint state ẑ ,

j′(q̂)(χ) = α〈q̂,χ〉− 〈∂nẑ,χ〉= 0 ∀χ ∈ L2(∂Ω), (8)

implies a coupling between the regularity of ẑ and that of q̂ :

ẑ ∈W 2,p(Ω) ⇒ q̂ ∈W 1− 1
p ,p(∂Ω).

This in turn involves û ∈ H1(Ω) because of (3). On the other hand equation (8)
states that unavoidable corner singularities in the adjoint state ẑ carry over to the
optimal control q̂ . This problem-inherent difficulty causes a reduction in the orders
of convergence to be expected for the finite element approximation of problem (1),
(2).
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2 Finite Element Discretization and Statement of Results

The finite element discretization of the optimization problem (1), (2) uses a standard
weak formulation of the state equation which is possible due to higher regularity of
the actual solution pair {û, q̂} :

J(uh,qh)→min! on Vh×V ∂
h , (9)

such that (∇uh,∇φh) = ( f ,φh) ∀φh ∈Vh,0, uh|∂Ω = qh . (10)

Here, Vh ⊂ H1(Ω) is the standard space of “linear” finite elements, Vh,0 ⊂ Vh its
subspace of functions vanishing along ∂Ω , and V ∂

h the corresponding space of
traces at ∂Ω of elements from Vh . For the solutions {ûh, q̂h} ∈ Vh×V ∂

h of these
approximate problems the suboptimal error estimate

|q̂− q̂h|+‖û− ûh‖= O(h1− 1
p ) (11)

is among the results in Casas/Raymond [3] for a problem with (possible) additional
control constraints. Our contributions are the L2 error estimates

‖û− ûh‖= O(h
3
2− 1

p ), ‖ẑ− ẑh‖= O(h2− 2
p ), (12)

and the negative-norm estimate

|q̂− q̂h|H−1(∂Ω) +‖û− ûh‖
H−

1
2 (Ω)

= O(h2− 2
p ), (13)

in the absence of control constraints. Here, the value of p ∈ [2, p∗) is limited by
p∗ = ωmax(ωmax− π

2 )−1 , where ωmax ∈ (π2 ,π) is the maximum inner angle of the
polygonal domain Ω (see Grisvard [5] and Jakovlev [6]).

3 Numerical Results

The orders of convergence stated in (11), (12), and (13) are partially confirmed by
computational tests. Here, two test configurations are considered:

• regular domain (unit square) and known analytic solution: The results shown in
Table 1 and Table 2 indicate optimal-order convergence with respect to suffi-
ciently weak negative Sobolev norms.

• more general domain with ωmax = 5
6π and unknown solution: The results shown

in Table 3 indicate the sharpness of the estimates (11) and (12) with respect to
the critical parameter p∗ = 5

2 .

For details and other test settings we refer to [9]. The computations have been done
using the software packages GASCOIGNE [4] and RoDoBo [10].
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Remark. In the case of the unit square with known analytical solution and uniform
cartesian meshes, a “superapproximation” effect occurs. This leads to full second-
order convergence in L2 of all three quantities. Further, the order of convergence
observed in Table 3 for the adjoint state ẑ seems to correspond rather to O(h2−1/p)
(rate ≈ 1.6) than to O(h2−2/p) (rate ≈ 1.2), which we are currently able to prove.

Table 1 Test case with known analytic solution: convergence rates for a sequence of tensor-
product meshes with 10% random shift of interior nodal points after each uniform refinement step

|q̂− q̂h| ‖û− ûh‖ ‖ẑ− ẑh‖
# cells error rate error rate error rate

256 1.30e-01 1.92 1.30e-02 1.82 8.19e-05 2.18
1 024 4.53e-02 1.52 4.46e-03 1.54 2.00e-05 2.03
4 096 2.69e-02 0.75 1.98e-03 1.17 4.98e-06 2.01

16 384 1.74e-02 0.63 8.89e-04 1.16 1.24e-06 2.01
65 536 9.65e-03 0.85 3.48e-04 1.35 3.11e-07 1.99

expected 1.00 1.50 2.00

Table 2 Test case with known analytical solution: convergence rates for a sequence of perturbed
tensor-product meshes with 10% random shift of interior nodal points after each uniform refine-
ment step

〈q̂− q̂h,1〉 (û− ûh,1)
# cells error rate error rate

256 -6.54e-01 2.02 6.54e-03 2.02
1 024 -1.65e-01 1.99 1.65e-03 1.99
4 096 -4.10e-02 2.01 4.11e-04 2.01

16 384 -1.02e-02 2.00 1.02e-04 2.01
65 536 -2.51e-03 2.03 2.46e-05 2.05

expected 2.00 2.00

Table 3 Test case on nonrectangular domain with angle ωmax = 5
6π and unknown solution:

|q̂− q̂h| ‖û− ûh‖ ‖ẑ− ẑh‖
# cells error rate error rate error rate

256 2.42e-02 0.87 4.04e-03 1.31 6.95e-04 1.75
1 024 1.47e-02 0.72 1.72e-03 1.23 2.43e-04 1.52
4 096 8.43e-03 0.80 7.25e-04 1.25 7.21e-05 1.75

16 384 5.35e-03 0.65 3.26e-04 1.15 2.21e-05 1.71
65 536 3.40e-03 0.65 1.47e-04 1.15 6.76e-06 1.71

expected 0.60 1.10 1.20
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4 Ideas of Proof

The usual approach to error estimation for the approximation (9), (10) is based on
the coercivity property of the second derivative of the reduced functional j(·) :

j′′(q)(χ ,ξ ) = α〈χ ,ξ 〉+(B̃χ , B̃ξ ), χ ,ξ ∈ L2(∂Ω), (14)

where B̃ : L2(∂Ω)→ L2(Ω) is an arbitrary extension operator. Then, the estimate

j′′(q̂)(ξ ,ξ )≥ α〈ξ ,ξ 〉, ξ ∈ L2(∂Ω), (15)

and some argument using Galerkin orthogonality leads to the basic error estimate

|q̂− q̂h| ≤ c(1 +α−1︸ ︷︷ ︸
=: cα

)h1− 1
p
{‖q̂‖

H
1− 1

p (∂Ω)
+‖ f‖+‖ẑ‖W 2,p(Ω)︸ ︷︷ ︸
=: Σp

}
. (16)

The quantity Σp will be used in the following estimates to specify the regularity
requirement for the optimal solution. For later use, we introduce the harmonic ex-
tension operator B : H

1
2 (∂Ω)→ H1(Ω) , which is defined by

(∇Bq,∇ψ) = 0 ∀ψ ∈ H1
0 (Ω), Bq|∂Ω = q, (17)

and its discrete analogue Bh : V ∂
h →Vh defined by

(∇Bhqh,∇ψh) = 0 ∀ψh ∈Vh,0, Bhqh|∂Ω = qh. (18)

Since v̂h := ûh−Bhq̂h is the Ritz projection of v̂ := û−Bq̂ , we have ‖v̂− v̂h‖ ≤
ch2‖ f‖ . Consequently,

‖û− ûh‖ ≤ ‖v̂− v̂h‖+‖B(q̂− q̂h)‖+‖(B−Bh)q̂h‖
≤ ‖v̂− v̂h‖︸ ︷︷ ︸

= O(h2)

+‖q̂− q̂h‖
H−

1
2 (∂Ω)︸ ︷︷ ︸

= O(h1− 1
p +?)

+‖(B−Bh)q̂h‖︸ ︷︷ ︸
= O(h

3
2− 1

p )

.
(19)

Hence to obtain optimal-order error estimates for û− ûh , we have to derive error
estimates in “negative” Sobolev norms such as

‖q̂− q̂h‖H−1(∂Ω) = sup
ξ∈H1(∂Ω)

〈q̂− q̂h,ξ 〉
‖ξ‖H1(∂Ω)

. (20)

As usual, this is done via “duality arguments”. This requires comparable variational
formulations for characterizing the optimal solutions {û, q̂, ẑ} and {ûh, q̂h, ẑh} and
the use of “Galerkin orthogonality”.
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5 The Karush-Kuhn-Tucker (KKT) Systems and the Duality
Argument

The solution of the optimization problem is characterized by the set of equations

−(û,Δφ)+ 〈q̂,∂nφ〉= ( f ,φ) ∀φ ∈ H1
0 (Ω)∩H2(Ω), (21)

α〈q̂,χ〉− 〈∂nẑ,χ〉= 0 ∀χ ∈ L2(∂Ω), (22)

−(Δ ẑ,ψ)− (û,ψ) =−(ud,ψ) ∀ψ ∈ L2(Ω). (23)

Due to the higher regularity of the optimal solution, we can rewrite the optimality
system. With the function v̂ := û−Bq̂ ∈ H1

0 (Ω) , the triplet {v̂, q̂, ẑ} ∈ H1
0 (Ω)×

H
1
2 (∂Ω)×H1

0 (Ω) satisfies the equations

(∇v̂,∇φ) = ( f ,φ) ∀φ ∈H1
0 (Ω), (24)

α〈q̂,χ〉+(v̂+ Bq̂,Bχ) = (ud ,Bχ) ∀χ ∈ H
1
2 (∂Ω), (25)

(∇ẑ,∇ψ)− (v̂+ Bq̂,ψ) =−(ud ,ψ) ∀ψ ∈ H1
0 (Ω). (26)

Analogously the solution of the discrete optimization problem is characterized by
the set of equations

ûh|∂Ω = q̂h, (∇ûh,∇φh) = ( f ,φh) ∀φh ∈Vh,0, (27)

α〈q̂h,χh〉+(ûh,Bhχh) = (ud ,Bhχh) ∀χ ∈V ∂
h , (28)

(∇ẑh,∇ψh)− (ûh,ψh) =−(ud,ψh) ∀ψh ∈Vh,0. (29)

With the function v̂h := ûh−Bhq̂h ∈ Vh,0 the triplet {v̂h, q̂h, ẑh} ∈ Vh,0×V ∂
h ×Vh,0

satisfies the equations

(∇v̂h,∇φh) = ( f ,φh) ∀φh ∈Vh,0, (30)

α〈q̂h,χh〉+(v̂h + Bhq̂h,Bhχh) = (ud,Bhχh) ∀χh ∈V ∂
h , (31)

(∇ẑh,∇ψh)− (v̂h + Bhq̂h,ψh) =−(ud,ψh) ∀ψh ∈Vh,0. (32)

Combining the continuous and discrete optimality conditions, we obtain the follow-
ing perturbed Galerkin orthogonality relation for the errors {ev,eq,ez} :

(∇ev,∇φh) = 0 ∀φh ∈Vh,0, (33)

α〈eq,χh〉=−(v̂+ Bq̂−ud,Bχh)+ (v̂h + Bhq̂h−ud,Bhχh) ∀χh ∈V ∂
h , (34)

(∇ez,∇ψh) = (ev + Bq̂−Bhq̂h,ψh) ∀ψh ∈Vh,0. (35)

Now, we have provided the bases for the duality argument announced above for
estimating the control error in negative Sobolev norms such as (20).

For given ξ ∈H1(∂Ω) , we introduce the reduced dual problem: Find {wz,wq}∈
H1

0 (Ω)×H
1
2 (∂Ω) , such that
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(∇ψ ,∇wz)+ (ψ ,Bwq) = 0 ∀ψ ∈ H1
0 (Ω), (36)

α〈χ ,wq〉+(Bχ ,Bwq) = 〈χ ,ξ 〉 ∀χ ∈ H
1
2 (∂Ω). (37)

Taking χ := eq as test function and using (33) - (35) gives us

〈eq,ξ 〉= α〈eq,w
q−P∂h wq〉+(Beq,B(wq−P∂h wq))

+ (Beq,(B−Bh)P∂h wq)− (ev,BhP∂h wq)

− ((B−Bh)q̂h,BhP∂h wq)+ (∇ẑ,∇(B−Bh)P∂h wq)︸ ︷︷ ︸
difficult term

,

where P∂h : L2(∂Ω) → V ∂
h is the L2 projection onto V ∂

h . The first terms on the

right-hand side can be bounded by ch2− 2
pΣp , which requires lengthy but standard

estimates mainly for the error of the L2 projection, I−P∂h , and the harmonic exten-
sions, B−Bh .

For estimating the difficult last term, we set qh := P∂h wq and use the “Neumann
projection” RN

h : H1(Ω)→Vh to get rid of Bhqh �∈Vh,0 :

(∇ẑ,∇(B−Bh)qh) = (∇(ẑ−RN
h ẑ),∇Bqh)︸ ︷︷ ︸

=:Λ1(estimated in a standard way)

+(∇RN
h ẑ,∇(B−Bh)qh)︸ ︷︷ ︸

=:Λ2 (difficult term)

.

Let ai denote the nodal points of the finite element mesh and φ i
h ∈ Vh the corre-

sponding “nodal basis functions” satisfying ‖∇φ i
h‖ ≤ c . The critical term Λ2 is

then treated as follows:

Λ2 = (∇RN
h ẑ,∇(B−Bh)qh)

= ∑
ai∈Ω̄

RN
h ẑ(ai)(∇φ i

h,∇(B−Bh)qh)

= ∑
ai∈∂Ω

RN
h ẑ(ai)(∇φ i

h,∇(B−Bh)qh)

≤ ∑
ai∈∂Ω

|RN
h ẑ(ai)|‖∇φ i

h‖L2(supp(φ i
h))‖∇(B−Bh)qh‖L2(supp(φ i

h))

≤ ch−
1
2

(
∑

ai∈∂Ω
h|RN

h ẑ(ai)|2
) 1

2 ‖∇(B−Bh)qh‖

≤ ch−
1
2 |RN

h ẑ− ẑ|‖∇(B−Bh)qh‖
≤ ch2− 1

p ‖ẑ‖W2,p(Ω)|qh|H1(∂Ω)

≤ ch2− 1
p ‖ẑ‖W2,p(Ω)|wq|

H
1− 1

p (∂Ω)

≤ ch2− 2
pΣp|ξ |Lp(∂Ω).

Here, the trace estimate
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‖v‖Lp(∂Ω) ≤ ε‖∇v‖Lp(Ω) + cpε−
1

p−1 ‖v‖Lp(Ω), 0 < ε ≤ 1, (38)

and the optimal order Lp error estimate

‖RN
h ẑ− ẑ‖Lp(Ω) + h‖∇(RN

h ẑ− ẑ)‖Lp(Ω) ≤ ch2‖ẑ‖W2,p(Ω) (39)

for the Neumann projection are used. The latter can be derived, for 2≤ p≤ p∗<∞ ,
by the techniques developed in [11]. This gives us

‖q̂− q̂h‖H−1(∂Ω) ≤ c2
αh2− 2

pΣp, (40)

where cα ≈ 1 +α−1 , and then also the estimate

‖û− ûh‖
H−

1
2 (Ω)

+‖ẑ− ẑh‖ ≤ c2
αh2− 2

pΣp. (41)

For the details of the lengthy proof, we refer to [9].
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A Priori Error Analysis for Space-Time Finite
Element Discretization of Parabolic Optimal
Control Problems

D. Meidner and B. Vexler

Abstract In this article we discuss a priori error estimates for Galerkin finite ele-
ment discretizations of optimal control problems governed by linear parabolic equa-
tions and subject to inequality control constraints. The space discretization of the
state variable is done using usual conforming finite elements, whereas the time
discretization is based on discontinuous Galerkin methods. For different types of
control discretizations we provide error estimates of optimal order with respect to
both space and time discretization parameters taking into account the spatial and
the temporal regularity of the optimal solution. For the treatment of the control dis-
cretization we discuss different approaches extending techniques known from the
elliptic case. For detailed proofs and numerical results we refer to [18, 19].

1 Introduction

A priori error analysis for finite element discretizations of optimization problems
governed by partial differential equations is an active area of research. While many
publications are concerned with elliptic problems, see, e.g., [1, 7, 11, 12, 13, 20],
there are only few published results on this topic for parabolic problems, see [14, 16,
17, 21, 23]. In this paper we consider an optimal control problem governed by the
heat equation. For the discretization of the state equation we employ a space-time
finite element discretization and discuss different approaches for the discretization
of the control variable. Extending techniques for treating inequality constraints on
the control variable known for elliptic problems, we derive a priori error estimates
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taking into account spatial and temporal regularity of the solutions. The detailed
proofs and numerical results illustrating our considerations are presented in [18, 19].

For a convex, polygonal spatial domain Ω ⊂ Rn (n = 2,3) and a time interval
I = (0,T ) we consider the state space X and the control space Q given as

X :=
{

v
∣∣ v ∈ L2(I,V ) and ∂t v ∈ L2(I,V ∗)

}
, V = H1

0 (Ω), Q = L2(I,L2(Ω)).

The inner product of L2(Ω) and the corresponding norm are denoted by (·, ·) and
‖·‖. The inner product and the norm of Q are denoted by (·, ·)I and ‖·‖I. The state
equation in a weak form for the state variable u = u(q) ∈ X , the control variable
q ∈ Q and the initial condition u0 ∈V reads:

(∂t u,ϕ)I +(∇u,∇ϕ)I +(u(0),ϕ(0)) = ( f + q,ϕ)I +(u0,ϕ(0)) ∀ϕ ∈ X . (1)

The optimal control problem under consideration is formulated as follows:

Minimize J(q,u) :=
1
2
‖u− û‖2

I +
α
2
‖q‖2

I subject to (1) and (q,u) ∈Qad×X , (2)

where û ∈ L2(I,L2(Ω)) is a given desired state and α > 0 is the regularization pa-
rameter. The admissible set Qad describes box constraints on the control variable:

Qad := {q ∈ Q | qa ≤ q(t,x)≤ qb a.e. in I×Ω } .

Throughout we consider two situations: the problem without control constraints,
i.e., qa = −∞, qb = +∞, Qad = Q, and the problem with control constraints, i.e.,
qa,qb ∈ R with qa < qb. In both cases the optimal control problem (2) is known to
possess a unique solution (q̄, ū), see, e.g., [15]. This solution is characterized by the
optimality system involving an adjoint equation for the adjoint variable z = z(q)∈ X
satisfying

−(ϕ ,∂t z)I +(∇ϕ ,∇z)I +(z(T ),ϕ(T )) = (ϕ ,u(q)− û)I ∀ϕ ∈ X . (3)

The optimal solution (q̄, ū) and the corresponding adjoint state z̄ = z(q̄) exhibit for
any p < ∞ when n = 2 and p ≤ 6 when n = 3 the following regularity properties
(see [19, Proposition 2.3]):

ū, z̄ ∈ L2(I,H2(Ω)∩H1(I,L2(Ω)),

q̄ ∈ L2(I,W 1,p(Ω))∩H1(I,L2(Ω)).

For the time discretization we use the lowest order discontinuous Galerkin
method dG(0), see [9, 10], which is a variant of the implicit Euler scheme. We
exploit a time partitioning

0 = t0 < t1 < · · ·< tM−1 < tM = T



Finite Elements for Parabolic Optimal Control 647

with corresponding time intervals Im := (tm−1,tm] of length km and a semidiscrete
space

X0
k :=

{
vk ∈ L2(I,V )

∣∣∣ vk
∣∣
Im
∈P0(Im,V ), m = 1,2, . . . ,M

}
.

Here, the discretization parameter k is defined as the maximum of all step sizes km.
The dG(0) semidiscretization of the state equation (1) for given control q∈Q reads:
Find a state uk = uk(q) ∈ X0

k such that

B(uk,ϕ) = ( f + q,ϕ)I +(u0,ϕ+
0 ) ∀ϕ ∈ X0

k , (4)

where the bilinear form B(·, ·) is defined as

B(uk,ϕ) :=
M

∑
m=1

(∂t uk,ϕ)Im +(∇uk,∇ϕ)I +
M

∑
m=2

([uk]m−1,ϕ+
m−1)+ (u+

k,0,ϕ
+
0 )

with [uk]m denoting the jump of the function uk at tm. The semidiscrete optimization
problem for the dG(0) time discretization has the form:

Minimize J(qk,uk) subject to (4) and (qk,uk) ∈ Qad×X0
k . (5)

The unique solution of this problem is denoted by (q̄k, ūk) and is characterized using
a semidiscrete adjoint solution zk = zk(q) ∈ X0

k determined by:

B(ϕ ,zk) = (ϕ ,uk(q)− û)I ∀ϕ ∈ X0
k . (6)

By stability estimates (see [18, Theorems 4.1, 4.3, Corollaries 4.2, 4.5]) we deduce
that the semidiscrete optimal state ūk and adjoint state z̄k = zk(q̄) have the regularity

ūk
∣∣
Im

, z̄k
∣∣
Im
∈ L2(Im,H2(Ω))∩H1(Im,L2(Ω)), m = 1,2, . . . ,M

uniformly in k.
For the spatial discretization we use a usual conforming finite element space Vh⊂

V consisting of cellwise (bi-/tri-)linear functions over a quasi-uniform mesh Th, see,
e.g., [3] for standard definitions. Then, the so called cG(1)dG(0) discretization of the
state equation for given control q ∈Q has the form: Find a state ukh = ukh(q) ∈ X0,1

k,h
such that

B(ukh,ϕ) = ( f + q,ϕ)I +(u0,ϕ+
0 ) ∀ϕ ∈ X0,1

k,h , (7)

where X0,1
k,h is defined similar to the semidiscrete space X0

k as

X0,1
k,h :=

{
vkh ∈ L2(I,Vh)

∣∣∣ vkh
∣∣
Im
∈P0(Im,Vh), m = 1,2, . . . ,M

}
⊂ X0

k .

The corresponding optimal control problem is given as

Minimize J(qkh,ukh) subject to (7) and (qkh,ukh) ∈Qad×X0,1
k,h . (8)
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As above, the unique solution of this problem is denoted by (q̄kh, ūkh) and can be
characterized using the corresponding adjoint solution zkh = zkh(q) ∈ X0,1

k,h deter-
mined by

B(ϕ ,zkh) = (ϕ ,ukh(q)− û)I ∀ϕ ∈ X0,1
k,h . (9)

To obtain a fully discrete optimal control problem we consider a subspace Qd ⊂
Q of the control space and come up with the following problem:

Minimize J(qσ ,uσ ) subject to (7) and (qσ ,uσ ) ∈Qd,ad×X0,1
k,h , (10)

where Qd,ad = Qd ∩Qad. The solution of this problem is denoted by (q̄σ , ūσ ) where
the discretization parameter σ consists of all discretization parameters, i.e., σ =
(k,h,d). In the following sections we will consider different choices of the discrete
control space Q and provide error estimates for the error ‖q̄− q̄σ‖I .

2 Error Analysis for Problems without Control Constraints

In this section, we investigate the optimal control problem (2) in the situation when
no constraints are imposed on the control, i.e., in the case of Qad = Q. The con-
trol space Q is discretized in time as the state space X , i.e., by piecewise constant
polynomials on the subintervals Im. The space discretization of Q is done either by
piecewise (bi-/tri-)linear finite elements (as employed also for discretizing the state
space) or by cellwise constant polynomials.

For this combination of state and control discretizations, the following estimate
for the error in the control variable holds (cf. [18, Theorem 6.1]):

Theorem 1. The error between the the solution q̄∈Q of the continuous optimization
problem (2) and the solution q̄σ ∈Qd of the discrete optimization problem (10) can
be estimated as

‖q̄− q̄σ‖I ≤ C
α

k
{‖∂t u(q̄)‖I +‖∂tz(q̄)‖I

}
+

C
α

h2{‖∇2uk(q̄)‖I +‖∇2zk(q̄)‖I
}

+
(

2 +
C
α

)
inf

pd∈Qd
‖q̄− pd‖I .

The constants C are independent of the mesh size h, the size of the time steps k, and
the choice of the discrete control space Qd ⊂ Q.

By applying standard interpolation estimates to the infimum term we obtain the
optimal asymptotic orders of convergence of ‖q̄− q̄σ‖I = O(k + h2) for the piece-
wise (bi-/tri-)linear space discretization of the control space Q and ‖q̄− q̄σ‖I =
O(k + h) for the cellwise constant space discretization of the controls.
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3 Error Analysis for Problems with Control Constraints

In this section, we provide estimates of the error in terms of the control variable for
the constrained optimal control problem (2) with different choices of the discrete
control space Qd .

3.1 Cellwise Constant Discretization

Like in the unconstrained case, the controls are discretized with respect to time by
piecewise constant polynomials. The space discretization is done here by cellwise
constant polynomials. For proving the desired error estimate, we extend the tech-
niques presented in [8] for elliptic problems to the case of parabolic optimal control
problems. This demands the introduction of the solution q̄d of the purely control
discretized problem:

Minimize J(qd ,ud) subject to (1) and (qd ,ud) ∈Qd,ad×X . (11)

By means of this problem, the following estimate for the error in the control
variable can be proven (cf. [19, Corollary 5.3]):

Theorem 2. Let q̄ ∈ Qad be the solution of the optimal control problem (2), q̄σ ∈
Qd,ad be the solution of the discretized problem (10), where the cellwise constant
discretization for the control variable is employed. Let moreover q̄d ∈ Qd,ad be the
solution of the purely control discretized problem (11). Then the following estimate
holds:

‖q̄− q̄σ‖I ≤ C
α

k{‖∂t q̄‖I +‖∂tu(q̄d)‖I +‖∂t z(q̄d)‖I}

+
C
α

h
{‖∇q̄‖I +‖∇z(q̄d)‖I + h

(‖∇2uk(q̄d)‖I +‖∇2zk(q̄d)‖I
)}

= O(k + h).

We note, that all terms in the above estimate which depend on discretization param-
eters k and d are uniformly bounded with respect to these parameters. Therefore
the constant in O(k+h) is independent of all discretization parameters and depends
only on problem data.

3.2 Cellwise Linear Discretization

A better convergence result for the error can be achieved by discretizing the controls
with piecewise (bi-/tri-)linear finite elements in space instead of using only piece-
wise constant trial functions. In this section, we treat this discretization combined
with the already known time discretization by piecewise constant polynomials.
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The desired estimate is obtained by adapting the techniques described in [4, 6] to
parabolic problems.

The analysis for this configuration is based on an assumption on the structure
of the active sets. For each time interval Im we group the cells K of the mesh Th

depending on the value of q̄k on K into three sets Th = T 1
h,m ∪T 2

h,m ∪T 3
h,m with

T i
h,m∩T j

h,m = /0 for i �= j. The sets are chosen as follows:

T 1
h,m := {K ∈Th | q̄k(tm,x) = qa or q̄k(tm,x) = qb for all x ∈ K }

T 2
h,m := {K ∈Th | qa < q̄k(tm,x) < qb for all x ∈ K }

T 3
h,m := Th \ (T 1

h,m∪T 2
h,m)

Hence, the set T 3
h,m consists of the cells which contain the free boundary between

the active and the inactive sets for the time interval Im.

Assumption 1. We assume that there exists a positive constant C independent of k,
h, and m such that

∑
K∈T 3

h,m

|K| ≤Ch.

We note, that this assumption is fulfilled, if the boundary of active sets consists
of a finite number of rectifiable curves. Similar assumptions are used in [2, 20].

Under this assumption, the following estimate for the error in the control variable
can be proven (cf. [19, Corollary 5.8]):

Theorem 3. Let q̄∈Qad be the solution of the optimal control problem (2) and q̄σ ∈
Qd,ad be the solution of the discrete problem (10), where the cellwise (bi-/tri-)linear
discretization for the control variable is employed. Then, if Assumption 1 is fulfilled,
the following estimate holds for n < p≤ ∞ provided zk(q̄k) ∈ L2(I,W 1,p(Ω)):

‖q̄− q̄σ‖I ≤ C
α

k
{‖∂t u(q̄)‖I +‖∂tz(q̄)‖I

}
+

C
α

(
1 +

1
α

){
h2‖∇2uk(q̄k)‖I

+ h2‖∇2zk(q̄k)‖I + h
3
2− 1

p ‖∇zk(q̄k)‖L2(I,Lp(Ω))
}

= O(k + h
3
2− 1

p ).

For elliptic optimal control problems and cellwise (bi-/tri-)linear discretization of
the control space, the convergence order O(h

3
2 ) can be obtained, see [2, 5, 22].

Especially in two space dimensions a corresponding estimate follows from the
above theorem for the parabolic problem. In this case a uniform bound for zk(q̄k) ∈
L2(I,W 1,p(Ω)) for all p <∞ can be obtained leading to O(k+h

3
2−ε) for each ε > 0.

3.3 Variational Approach

In this section we prove an estimate for the error ‖q̄− q̄σ‖I in the case of no control
discretization, cf. [13]. In this case we choose Qd = Q and thus, Qd,ad = Qad. This
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implies q̄σ = q̄kh. However, q̄kh is in general not a finite element function corre-
sponding to the spatial mesh Th. This fact requires more care for the computation
of q̄kh, see [13] for details. On the other hand, this approach provides the optimal
order of convergence (cf. [19, Corollary 5.11]):

Theorem 4. Let q̄ ∈ Qad be the solution of optimization problem (2) and q̄kh ∈ Qad

be the solution of the discretized problem (8). Then the following estimate holds:

‖q̄− q̄kh‖I ≤ C
α

k
{‖∂tu(q̄)‖I +‖∂t z(q̄)‖I

}
+

C
α

h2{‖∇2uk(q̄)‖I +‖∇2zk(q̄)‖I
}

= O(k + h2).

3.4 Post-Processing Strategy

In this section, we extend the post-processing techniques initially proposed in [20]
to the parabolic case. We discretize the control by piecewise constants in time and
space as in Subsection 3.1. To improve the quality of the approximation, we addi-
tionally employ the post-processing step

q̃σ := PQad

(
− 1
α

zkh(q̄σ )
)

, (12)

which makes use of the projection

PQad : Q→ Qad, PQad(r)(t,x) = max(qa,min(qb,r(t,x))).

We obtain the following error estimate (cf. [19, Corollary 5.17]):

Theorem 5. Let q̄∈Qad be the solution of the optimal control problem (2) and q̃σ ∈
Qad be given by means of (12) employing the adjoint state zkh(q̄σ ) related to the
solution q̄σ of the discrete problem (10), where the cellwise constant discretization
for the control variable is employed. Let, moreover, Assumption 1 be fulfilled and
n < p≤ ∞. Then, it holds

‖q̄− q̃σ‖I ≤ C
α

(
1 +

1
α

)
k
{‖∂tu(q̄)‖I +‖∂t z(q̄)‖I

}
+

C
α

(
1 +

1
α

)
h2{‖∇2uk(q̄k)‖I +

1
α
‖∇zk(q̄k)‖I +

(
1 +

1
α

)
‖∇2zk(q̄k)‖I

}
+

C
α2

(
1 +

1
α

)
h2− 1

p ‖∇zk(q̄k)‖L2(I,Lp(Ω)) = O
(
k + h2− 1

p
)

provided that zk(q̄k) ∈ L2(I,W 1,p(Ω)).
Since in two space dimensions the adjoint solution zk(q̄k) is uniformly bounded

in L2(I,W 1,p(Ω)) with respect to k for all p <∞, the presented estimate leads to the
almost optimal order of convergence O(k + h2−ε) for each ε > 0.
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Multigrid Methods for Linear Elliptic Optimal
Control Problems

M. Vallejos and A. Borzı̀

Abstract Multigrid optimization schemes that solve linear elliptic optimal con-
trol problems are discussed. For the solution of these problems, a comparison is
made between the multigrid for optimization (MGOPT) method and the collective
smoothing multigrid (CSMG) method.

Examples are given to illustrate and validate both techniques.

1 Introduction

Although the multigrid strategy was first introduced to design solvers for elliptic
boundary value problems, it is now considered as one of the most promising ap-
proaches for the development of efficient optimization schemes. Some recent de-
velopments include the application of one-shot multigrid schemes to optimality
systems [2, 5], to unconstrained optimization problems [7, 8, 9], and to inverse prob-
lems [10, 11]. Moreover, finite element multigrid methods applied to optimal control
problems use different approaches on the smoothing procedure [1, 12, 13, 14].

The purpose of this paper is to investigate two representative multigrid methods
for optimization: the collective smoothing multigrid method (CSMG) and the multi-
grid for optimization method (MGOPT). In our investigation we consider the appli-
cation of these methods for solving linear elliptic optimal control problems. While
both schemes are based on the well known full approximation storage (FAS) scheme
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[6], they represent different approaches to the solution of optimization problems.
The CSMG scheme solves optimal control problems by solving the corresponding
PDE optimality system in one shot treating all optimization variables collectively.
As typical in multigrid development, this approach needs to customize the collec-
tive smoothing and intergrid transfer operators for each individual problem, i.e. the
CSMG cannot be used as a black-box solver for all optimization problems. On the
other hand, an appropriate design of the CSMG multigrid components results in
a robust algorithm with typical multigrid efficiency. This fact is proved in [5] for
linear control problems.

The motivation for investigating the MGOPT scheme [8, 9] is that it can be for-
mulated in a way that is not problem specific and therefore it appears to have much
larger applicability. In the MGOPT scheme the multigrid solution process represents
the outer loop where the control function is considered as the unique dependent
variable. The inner loop in this scheme consists of a classical one-grid optimization
scheme and the other MGOPT components are chosen as those typical of a geomet-
ric multigrid approach. The essential condition for a ‘successful’ application of the
MGOPT scheme is that the reduced Hessian, that is the Hessian of the optimization
problem in the space of the control function, be positive definite. This is a much
less restrictive requirement than ellipticity of the optimality system and the related
smoothing and coarsening properties, which are required in the CSMG method. In
this paper, we consider the MGOPT method for linear optimal control problems,
comparing its numerical performance with that of the CSMG method.

2 Optimal Control Framework

An optimal control problem is formulated as follows

min
u∈U

J(y,u)

c(y,u) = 0
(1)

where c(y,u) = 0 is a partial differential equation (PDE) that represents the equality
constraint. This equation is defined in Ω ⊂ ℜd . The state and control variables of
the constraint c are denoted by y and u, respectively. We consider a cost functional
of the tracking type given by J(y,u) = h(y)+ νg(u), where ν > 0 is the weight of
the cost of the control. The functions g and h are required to be twice continuously
differentiable, bounded from below and g(u)→ ∞ as ‖u‖→ ∞.

Given an optimization problem, the optimality system represents the first-order
necessary conditions for a minimum. In order to derive these conditions, let c :
Y×U→ Z for appropriate Hilbert spaces Y,U and Z, and consider the following La-
grange functional L(y,u, p) = J(y,u)+〈c(y,u), p〉Z,Z∗ , where p is the Lagrange mul-
tiplier, also known as the adjoint variable. By equating to zero the Fréchet derivatives
of L with respect to the triple (y,u, p), we have the optimality system
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c(y,u) = 0,
h′(y)+ cy(y,u)∗p = 0,

νg′(u)+ cu(y,u)∗p = 0.
(2)

(∗ means adjoint.) The first differential equation in (2) is called the state equation
and the second one is the adjoint equation. The last equation yields the optimality
condition.

To better understand the importance of the last equation we introduce the reduced
cost functional Ĵ(u) = J(y(u),u), where y(u) denotes the unique solution of the state
equation for a given u. One can show that the gradient of Ĵ(u) with respect to u is
given by

∇Ĵ(u) = νg′(u)+ cu(y,u)∗p(u), (3)

where p(u) solves the adjoint equation for a given u.
In a convex setting where the optimal control solution is unique, solving the op-

timality system is equivalent to solving the optimal control problem. However, in
general, c(y,u) = 0 may be locally non convex wherein problem (1) may have mul-
tiple extremals. Therefore additional conditions must be satisfied to guarantee that
the solution is a minimizer. For the second-order optimality conditions, we assume
that (y,u, p) satisfy the optimality system (2) and the following

Lzz(y,u, p)(v,v)≥ c1‖v‖2, c1 > 0 ∀ v ∈N (c′(y,u)), (4)

where z = (y,u) and c′(y,u) represents the linearized constraint. We assume that the
null space N (c′(y,u)) can be represented by N (c′(y,u)) = T (y,u)U , where U is

the space where the control is defined and T (y,u) =
[−c−1

y cu

Iu

]
, such that cy and cu

are evaluated at (y(u),u). Therefore, we can write condition (4) as

∇2Ĵ(u)(w,w) ≥ c2‖w‖2 c2 > 0 ∀ w ∈U. (5)

The operator ∇2Ĵ(u) = T ∗(y,u)Lzz(y,u, p)T (y,u) is the reduced Hessian where y
and p solve the state and the adjoint equations for a given u. Hence, ∇2Ĵ(u) is given
by

∇2Ĵ = Luu +C∗Lyy C−LuyC−C∗Lyu (6)

where C = C(y,u) = c−1
y (y,u)cu(y,u). The reduced Hessian matrix ∇2Ĵ is symmet-

ric. Thus, condition (5) requires that the smallest eigenvalue of the reduced Hessian
be positive.

3 Linear Elliptic Optimal Control Problems

In this section, we discuss linear elliptic optimal control problems. The correspond-
ing optimality systems are presented and the multigrid solutions will be detailed in
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the next section. We assume that Ω is an open, bounded and convex subset ofℜ2 or
its boundary ∂Ω is C1,1 smooth.

We focus on the following linear elliptic optimal control problem

min
u∈U

J(y,u) : = 1
2‖y− z‖2

L2(Ω) +
ν
2 ‖u‖2

L2(Ω),

−Δy−u = f in Ω ,
y = 0 on ∂Ω ,

(7)

where z ∈ L2(Ω) is the target function, f ∈ L2(Ω) and U = L2(Ω). This choice of
cost functional J corresponds to h(y) = 1

2‖y− z‖2
L2(Ω) and g(u) = 1

2‖u‖2
L2(Ω). In this

case, u is a distributed control over Ω . The solution of problem (7) is characterized
by the following optimality system

−Δy−u = f in Ω , y = 0 on ∂Ω ,
−Δ p + y = z in Ω , p = 0 on ∂Ω ,
νu− p = 0 in Ω .

(8)

From Eqs. (3) and (6), the reduced gradient and the reduced Hessian are given by
∇Ĵ(u) = νu− p and ∇2Ĵ(u) = νI+Δ−2. Since ∇2Ĵ(u) is strictly positive, the solu-
tion to the optimality system (8) is guaranteed to be a minimizer. However, smaller
ν correspond to more flat minima and more stiff optimality systems.

4 Discretization Scheme and Collective Smoothing

Our discussion on multigrid methods for optimization requires to define a hierarchy
of problems Akuk = fk in Ωk, indexed by k = 1,2, . . . ,L. Here Ωk denotes the set of
grid points with uniform grid spacing hk for the finite difference discretization in Ω
taken as a square domain. We have h1 > h2 > · · ·> hL > 0, so that hk−1 = 2hk. The
number of interior grid points will be nk, Ak is a nk×nk matrix, and any function in
Ωk is a vector of size nk. We denote this vector space with Vk. In the space Vk, we
introduce the inner product (·, ·)k with the corresponding norm ‖u‖k =

√
(u,u)k.

For multigrid purpose we define a restriction operator Ik−1
k : Vk → Vk−1 and a

prolongation operator Ik
k−1 : Vk−1→Vk. We require that they satisfy (Ik−1

k u,v)k−1 =
(u, Ik

k−1v)k for all u ∈Vk and v ∈Vk−1. That is, the restriction operator is the adjoint
of the interpolation operator.

Now we consider the discrete version of the optimality system (8). We have

−Δkyk−uk = fk,
−Δk pk + yk = zk,
νuk− pk = 0.

(9)

Let x ∈ Ωk where x = (ihk, jhk) and i, j are the index of the grid points arranged
lexicographically. We use the standard five point stencil for the Laplacian. We first
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set Ai, j = −(yi−1, j + yi+1, j + yi, j−1 + yi, j+1)−h2 fi, j, and Bi, j =−(pi−1, j + pi+1, j +
pi, j−1 + pi, j+1)−h2zi, j. The values Ai, j and Bi, j are considered constant during the
update of the variables at i j. Hence, we have the following system of equations of
three variables yi, j, ui, j and pi, j

Ai, j + 4yi, j−h2ui, j = 0,
Bi, j + 4pi, j + h2yi, j = 0,

νui, j− pi, j = 0.
(10)

Let wk = (yk,uk, pk). A collective smoothing step on w updates the values yi, j, ui, j,
and pi, j such that the resulting residuals of the state and adjoint equations at that
point are zero. Since (10) is a linear system, we can compute the updates for the
variables yi, j, and pi, j in the following way

yi, j(ui, j) = 1
4(h2ui, j−Ai, j),

pi, j(ui, j) = 1
16(−h4ui, j + h2Ai, j−4Bi, j).

(11)

To obtain an update ui, j, we require that it satisfies the optimality condition∇Ĵ(u) =
νu− p(u) = 0. Hence, we have ui, j = 1

16ν+h4 (h2Ai, j− 4Bi, j). With this ui, j we use
(11) to update the values of the state and adjoint variable at the i, j grid point. A
sweep of this smoothing scheme consists in an ordered sequential update of yi, j, ui, j

and pi, j on all grid points.

5 The Multigrid Method

In this section we present the two multigrid schemes for solving elliptic optimal
control problems, the CSMG and the MGOPT method.

The CSMG scheme is based on the nonlinear multigrid full approximation stor-
age (FAS) method applied to the optimality system with a collective smoothing.
This method shows mesh independence due to its robustness with respect to the
value of the weight of the control. Some recent applications of the CSMG method
to linear control problems with state and control constraints are presented in [3, 4].

The multigrid for optimization (MGOPT) method, is very similar to the CSMG
scheme. The MGOPT method was first introduced by Nash [9] and Lewis and Nash
[7, 8] as an extension of the multigrid scheme to optimization problems.

To illustrate both methods we consider a discrete problem

Akwk = fk (12)

where Ak represents a discrete linear operator onΩk. The MGOPT method is applied
to solve min

uk

(
Ĵk(uk)− ( fk,uk)k

)
. Hence in this case, w := u and Akuk = ∇Ĵk(uk). In

the CSMG case, we solve (9) and define w := (y,u, p).
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Let the smoothing iteration be given by Sk such that we get an update wl
k =

Sk(wl−1
k , fk). Starting with an initial approximation w0

k , we apply γ1 times the
smoothing scheme and obtain wγ1k . Now, the desired solution wk can be written as
wk = wγ1k +ek for some error ek. Therefore, (12) can be written as Ak(w

γ1
k +ek) = fk

or equivalently as
Ak(w

γ1
k + ek)−Akwγ1k = fk−Akwγ1k . (13)

Next, we will represent (13) on a coarser gridΩk−1. Define wk−1 := Ik−1
k wγ1k +ek−1.

Here, wk−1 represents a coarse-grid approximation to wk. On the left hand side of
(13), we represent Ak by Ak−1 and wγ1k by Ik−1

k wγ1k . On the other side, we apply the
restriction operator Ik−1

k and we get Ik−1
k ( fk−Akwγ1k ). Hence, we have the following

equation
Ak−1wk−1 = Ik−1

k ( fk−Akwγ1k )+ Ak−1(Ik−1
k wγ1k ). (14)

We define τk−1 = Ak−1(Ik−1
k wγ1k )− Ik−1

k Akwγ1k then (14) can be written as

Ak−1wk−1 = Ik−1
k fk + τk−1. (15)

The term τk−1 is called the fine-to-coarse residual/gradient correction. The solution
of (14) gives the error ek−1 := wk−1− Ik−1

k wγ1k . Therefore, we have a correction to

the fine grid approximation as wγ1+1
k = wγ1k +αkIk

k−1(wk−1− Ik−1
k wγ1k ). For CSMG,

αk = 1, and for MGOPT, αk is the step length obtained after a line search procedure
in the direction given by Ik

k−1(wk−1− Ik−1
k wγ1k ). Finally, we apply γ2 iterations of the

smoothing algorithm to damp possible high frequency errors that may arise from
the coarse grid correction process. The following algorithm presents the method
described above.

Algorithm (MG Algorithm)
Initialize w0

k to be an initial approximation at resolution k. If k = 1, solve Akwk = fk

and return. Else if k > 1,

1. Apply γ1 iterations of a smoothing algorithm. wl
k = Sk(wl−1

k , fk), l = 1,2, . . . ,γ1

2. Restrict the solution of (1). wγ1k−1 = Ik−1
k wγ1k

3. Compute the fine-to-coarse correction. τk−1 = Ak−1wγ1k−1− Ik−1
k Akwγ1k

4. Compute the right hand side. fk−1 = Ik−1
k fk + τk−1

5. Apply γ cycles of MG (γ1,γ2) to the coarse grid problem Ak−1wk−1 = fk−1.
6. Prolongate the error. ek = Ik

k−1(wk−1−wγ1k−1)
7. Coarse grid correction. wγ1+1

k = wγ1k +αkek

8. Apply γ2 iterations of a smoothing algorithm. wl
k = Sk(wl−1

k , fk), l = γ1 +
2, . . . ,γ1 + γ2 + 1
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6 Numerical Results

In this section, we present the results of the experiments on the computational per-
formance of the proposed multigrid schemes as solvers for distributed elliptic opti-
mal control problems. Using different values of the cost of the control, we gathered
the CPU time (in seconds) until a stopping tolerance of 10−8 is satisfied. For all
computations, we use γ1 = γ2 = 2 pre and post smoothing steps. This means that
one iteration of the CSMG and the MGOPT method uses γ1 + γ2 = 4 iterations of
the gradient method (GM) on the finest grid. We consider problem (7) with the zero
function as an initial guess, Ω = (0,1)× (0,1) and f ,z ∈ L2(Ω) given by

f (x,y) = 1,

z(x,y) =
{

2, on (0.25,0.75)× (0.25,0.75)
1, otherwise

.

Notice that z is not attainable because of the boundary condition. The numerical
results are shown in Table 1. We can see that for CSMG using different parame-
ters ν , the method converges within fifteen seconds. We obtain independence on
the parameter ν and on the mesh size. For the one grid optimization scheme using
gradient method (GM) and nonlinear conjugate gradient (NCG), we have a constant
increase in the number of iterations as the parameter ν decreases. This property is
also inherited by the MGOPT method using both GM and NCG as smoothing algo-
rithms. Note that the step length α in this problem is inversely proportional to the
weight of the control ν , i.e., α ∝ 1

ν . The collective smoothing discussed in Sect. 5 is
robust with respect to the changes of the value of the weight of the control ν . This
fact makes the CSMG algorithm a useful tool in solving problems in the limit case
of bang-bang control [3, 5].

While it is shown that in this case, the CSMG scheme is superior to the MGOPT
scheme, we see that the MGOPT scheme provides a framework to accelerate classi-
cal optimization schemes and because of its modularity it can be easily applied to a
large class of PDE-based optimization problems.

7 Conclusion

We presented two multigrid schemes for solving linear elliptic optimal control prob-
lems, the CSMG and the MGOPT methods. The numerical results show that CSMG
is faster compared to the MGOPT method. It is also mesh independent and param-
eter independent. MGOPT on the other hand does not exhibit similar properties as
CSMG. However, they are more easier to implement since any optimization algo-
rithm can be used as a smoothing iteration, unlike the smoothing iteration for CSMG
which is only useful for particular problems being solved. Faster optimization al-
gorithm for the MGOPT method results to a faster convergence of the MGOPT
scheme.
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Table 1 Results using CSMG, onegrid gradient method (GM) and nonlinear conjugate gradient
(NCG), and MGOPT with GM and NCG

ν mesh Ĵ CSMG GM MGOPT1 NCG MGOPT2

65×65 0.846 1 1 1 1 1
10−1 129×129 0.827 3 5 4 4 3

257×257 0.817 15 23 17 18 17
65×65 0.718 1 2 2 1 1

10−2 129×129 0.701 3 11 9 5 4
257×257 0.692 15 57 40 23 21
65×65 0.348 1 12 8 1 1

10−3 129×129 0.337 3 63 22 7 5
257×257 0.331 15 312 97 34 26
65×65 0.163 1 28 23 5 4

10−4 129×129 0.154 3 144 74 26 23
257×257 0.151 15 723 345 132 89

1 MGOPT with GM
2 MGOPT with NCG
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An Active Curve Approach for Tomographic
Reconstruction of Binary Radially Symmetric
Objects

I. Abraham, R. Abraham, and M. Bergounioux

Abstract This paper deals with tomographic reconstruction of radially symmetric
objects from a single radiograph, in order to study the behavior of shocked material.
Usual tomographic reconstruction algorithms (such as generalized inverse or filtered
back-projection) cannot be applied here. To improve the reconstruction, we assume
that the object is binary so that it may be described by curves that separate the
two materials. We present a BV-model that leads to a non local Hamilton-Jacobi
equation, via a level set strategy.

1 Introduction

We are interested here in a very specific application of tomographic reconstruction
for a physical experiment which goal is to study the behavior of a material under
a shock. During the deformation of the object, we obtain an X-ray radiography by
high speed image capture. We suppose that the object is radially symmetric, so that
one radiograph is enough to reconstruct the 3D object.

Physicists are looking for the shape of the interior at some fixed interest time.
At that time, the interior may be composed of several holes which also may be
very irregular. We deal here with a synthetic object that contains all the standard
difficulties that may appear (see Fig. 1). These difficulties are characterized by:

• Several disconnected holes.
• A small hole located on the symmetry axis (which is the area where the details

are difficult to recover).
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• Smaller and smaller details on the boundary of the top hole in order to determine
a lower bound detection.

Our framework is completely different from the usual tomographic point of view,
and usual techniques (such as filtered back-projection) are not adapted to our case.

2 A Continuous Model in BV Space

Let us explicit the projection operator involved in the tomography process. This
operator, denoted by H, is given, for every function f ∈ L∞(R+×R) with compact
support, by

∀(u,v) ∈R×R, H f (u,v) = 2
∫ +∞

|u|
f (r,v)

r√
r2−u2

dr. (1)

For more details one can refer to [1]. Similarly the adjoint operator H∗ of H is

∀(r,z) ∈ R×R, H∗g(r,z) = 2
∫ |r|

0
g(u,z)

|r|√
r2−u2

du. (2)

Thanks to the symmetry, this operator characterizes the Radon transform of the
object and so is invertible. However, the operator H−1 is not continuous with respect
to the suitable topologies. Consequently, a small variation on the measure g leads
to significant errors on the reconstruction. As radiographs are strongly perturbed,
applying H−1 to data leads to a poor reconstruction. Due to the experimental setup
there are two main perturbations:

• A blur, due to the detector response and the X-ray source spot size. We denote
by F the effect of blurs and consider the simplified case where F is supposed to
be linear.

• A noise which is supposed for simplicity to be an additive Gaussian white noise
of mean 0, denoted by ε .

Consequently, the projection of the object f will be g = F(H f )+ ε. The com-
parison between the theoretical projection H f and the perturbed one is shown in
Fig. 1. The reconstruction using the inverse operator H−1 applied to g is given by
Fig. 2. It is clear from Fig. 2 that the use of the inverse operator is not suitable.
In what follows, we will call “experimental data ” the image which corresponds to
the blurred projection of a “fictive” object of density 0 with some holes of known
“density” λ > 0. Consequently, the space of admissible objects will be the set F of
functions f that take values in {0,λ}. Such functions f ∈F are defined on R2 and
have compact support included in some open bounded subset of R2, say Ω . Note
that F is a subspace of the bounded variation functions space

BV (Ω) = {u ∈ L1(Ω) | J(u) < +∞}
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Fig. 1 Synthetic object, theoretical projection H f , real projection with noise and blur.

Fig. 2 Comparison between the real object on the left-hand side and the reconstruction computed
with H−1 applied to the real projection on the right-hand side.

where J(u) stands for the total variation of u (see [3] for example). Furthermore, a
function f of F is characterized by the knowledge of the curves that limit the two
areas where f is equal to λ and to 0. Indeed, as the support of the function f is
bounded, these curves are disjoint Jordan curves and the inside density λ whereas
the outside one is 0. We use here a standard technique for image reconstruction: we
introduce an energy functional that is a function of γ f where γ f is a set of disjoint
Jordan curves. We may split this energy in two terms:

• The first one is a matching term. It is the usual L2-norm between F(H f ) and the
data g (where H is given by (1)), so that E1(γ f ) = 1

2‖F(H f )− g‖2
2. Here ‖ · ‖2

stands for the L2(Ω)- norm and g ∈ L2(Ω).
• The second term is a regularization term: E2(γ f ) = �(γ f ) where �(γ f ) denotes

the length of the curve γ f .This penalization term may be also viewed as the total
variation J( f ) (up to a multiplicative constant) of the function f because of the
binarity.

Hence the total energy functional is

E(γ f ) =
1
2
‖F(H f )− g‖2

2 +α�(γ f ) (3)

which is an adaptation of the well-known Mumford-Shah energy functional intro-
duced in [4]. The “optimal” value of α > 0 may depend on the data.
Therefore, we consider the following minimization problem

(P) min { E(γ f ) | f ∈ BV (Ω), f (x) ∈ {0,λ} a.e. on Ω},
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and we first get an existence result:

Theorem 1. Problem (P) admits at least one solution.

Proof. See Theorem 1 of [2] ��

3 Computation of the Energy Derivative

Now, we are interested in optimality conditions. In what follows, for mathematical
reasons, we have to add an extra assumption: the curves γ f are C 1 so that the normal
vector of the curves is well-defined (as an orthogonal vector to the tangent one).
Unfortunately, with this assumption, we cannot compute easily the derivative of the
energy in the BV (Ω) framework. Indeed we need regular curves and we do not know
if the BV(Ω) minimizer provides a curve with the required regularity. Moreover, the
set of constraints is not convex and it is not easy to compute the Gateaux derivative
(no admissible test functions).

So we have few hope to get classical optimality conditions and we rather compute
minimizing sequences. We focus on those that are given via the gradient descent
method inspired by [4]. Formally, we look for a family of curves (γt)t ≥ 0 such

that
∂E
∂γ

(γt)≤ 0 that is: E(γt) decreases as t → +∞. Let us compute the energy

variation when we operate a small deformation on the curves γ . In other words, we
will compute the energy Gâteau derivative for a small deformation δγ:

∂E
∂γ

(γ) ·δγ = lim
t→0

E(γ+ tδγ)−E(γ)
t

·

We first focus on local deformations δγ . Let (r0,z0) be a point P of γ . We con-
sider a local reference system which center is P and axis are given by the tangent
and normal vectors at P. We denote (ξ ,η) the new generic coordinates in this refer-
ence system and still denote f (ξ ,η) = f (r,z) for convenience. We apply the implicit
functions theorem to parametrize the curve: there exist a neighborhood U of P and
a C 1 function h such that, for every (ξ ,η) ∈U ,

(ξ ,η) ∈ γ ⇐⇒ η = h(ξ ).

Eventually, we get a neighborhoodU of P, a neighborhood I of ξ0 and a C 1 function
h such that

γ ∩U =
{

(ξ ,η) ∈ R2
∣∣ η = h(ξ ), ξ ∈ I

}
.

The local parametrization is oriented along the outward normal n to the curve γ at
point P. More precisely, we define the local coordinate system (τ ,n) where τ is the
usual tangent vector, n is the direct orthonormal vector; we set the curve orientation
so that n is the outward normal. The function f if then defined on U by
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f (ξ ,η) =
{
λ if η < h(ξ ) ,
0 if η ≥ h(ξ ) .

We then consider a local (limited to U) deformation δγ along the normal vector.
This is equivalent to handling a C 1 function δh whose support is included in I. The
new curve γt obtained after the deformation tδγ is then parametrized by

η =
{

h(ξ )+ tδh(ξ ) for (ξ ,η) ∈U ,
γ otherwise.

This defines a new function ft :

ft (ξ ,η) =

⎧⎨⎩
f (ξ ,η) if (ξ ,η) �∈U ,
λ if (ξ ,η) ∈U ∩{η < h(ξ )+ tδh(ξ )} ,
0 if (ξ ,η) ∈U ∩{η ≥ h(ξ )+ tδh(ξ )} .

(4)

We will also set δ ft = ft − f . This deformation is described in Fig. 3.

Fig. 3 Description of a local deformation of the initial curve γ . P is the current point, U is the
neighborhood of P in which the deformation is restricted to and γ + tδγ is the new curve after
deformation. The interior of the curve is the set where f = λ .

The energy E2 Gâteau derivative has already been computed in [4] and is

∂E2

∂γ
(γ)δγ =−

∫
γ

curv(γ)
(
ξ ,h(ξ )

)
δh(ξ )dξ ,

where curv denotes the curvature of the curve and δh is the parametrization of δγ .
It remains to compute the derivative of E1 . We first estimate δ ft : a simple compu-
tation shows that

δ ft (ξ ,η) =
{

0 if η ≥ h(ξ )+ tδh(ξ ) or η(ξ )≤ h(ξ ) ,
λ if h(ξ )≤ η ≤ h(ξ )+ tδh(ξ ) ,

in case δh≥ 0 ,

and
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δ ft (ξ ,η) =
{

0 if η ≤ h(ξ )+ tδh(ξ ) or η(ξ )≥ h(ξ ) ,
−λ if h(ξ )≥ η ≥ h(ξ )+ tδh(ξ ) ,

in case δh≤ 0 .

Now we compute E1(γt)−E1(γ) where γ (resp. γt ) is the curve associated to the
function f (resp. ft ):

E1(γt)−E1(γ)

=
1
2

∫
R

∫
R

(
(g−FH ft)2− (g−FH f )2) (u,v)dudv

=
1
2

∫
R

∫
R

(
(g−FH f −FHδ ft)2− (g−FH f )2) (u,v)dudv

=−
∫

R

∫
R

(g−FH f )(u,v)FHδ ft (u,v)dudv +
1
2

∫
R

∫
R

(FHδ ft)2(u,v)dudv︸ ︷︷ ︸
=o(t)

=−〈(g−FH f ),FHδ ft 〉L2 + o(t)
=−〈H∗F∗(g−FH f ),δ ft 〉L2 + o(t).

To simplify the notations, we denote by A f := (H∗Fg−H∗FFH f ) so that we
need to compute

lim
t→0

1
t
〈A f ,δ ft 〉L2 .

As δ ft is zero out of the neighbourhood U , we have

〈A f ,δ ft 〉L2 =
∫

U
A f (ξ ,η)δ ft (ξ ,η)dξ dη .

In the case δh≥ 0, we have,

〈A f ,δ ft 〉L2 = λ
∫
ξ∈γ

∫ η=h(ξ )+tδh(ξ )

η=h(ξ )
A f (ξ ,η)dξ dη .

As the function A f is continuous (and thus bounded on U), we may pass to the
limit by dominated convergence and get

lim
t→0

1
t
〈A f ,δ ft 〉L2 = λ

∫
γ
A f

(
ξ ,h(ξ )

)
δh(ξ )dξ .

In the case δh < 0, we have

〈A f ,δ ft 〉L2 =
∫

(−λ )
∫
ξ∈γ

∫ η=h(ξ )

η=h(ξ )+tδh(ξ )
A f (ξ ,η)dξ dη

and we obtain the same limit as in the non negative case. Finally, the energy deriva-
tive is

∂E
∂γ

(γt) ·δγt =−
∫
γ
(λA f +αcurv(γt )(ξ ,h(ξ )))δh(ξ )dξ . (5)
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As δh = 〈δγt ,n〉 formula (5) may be written

∂E
∂γ

(γt ) ·δγt =−
∫
γ
λ (λA f +αcurv(γt)(s)) 〈δγt ,n〉ds (6)

where n denotes the outward pointing normal unit vector of the curve γ , 〈·, ·〉 denotes
the usual scalar product in R2 and c(s) is a positive coefficient that depends on the
curvilinear abscissa s.

The latter expression is linear and continuous in δγ , this formula is also true for
a non local deformation (which can be achieved by summing local deformations).

4 Front Propagation and Level Set Method

Now we consider a family of curves (γt)t≥0 that converges toward a local minimum
of the energy functional. From equation (6), it is clear that if the curves (γt) evolve
according to the differential equation

∂γ
∂ t

= (λA f +αcurv(γ f ))n, (7)

the total energy will decrease.
The level set method consists in viewing the curves γ as the 0-level set of a

smooth real function φ defined on R2 (see [5]). The function f that we are looking
for is then given by

f (x) = λ1φ(x)>0.

Let us write the evolution PDE for functions φt = φ(t, ·) that correspond to the
curves γt . Let x(t) be a point of the curve γt and let us follow that point during the
evolution. We know that this point evolves according to equation (7)

x′(t) =
(
λA f +α curv(γ f )

)
(x(t))n.

We can rewrite this equation in terms of the function φ recognizing that

n =
∇φ
|∇φ | and curv(γ) = div

(
∇φ
|∇φ |

)
where ∇ stands for the gradient of φ with respect to x, | · | denotes the Euclidean
norm. The evolution equation becomes

x′(t) =
(
λ 2A

(
1φ(t,·)>0

)
+α div

(
∇φ
|∇φ |

))
∇φ
|∇φ | (t,x(t)).

Then, as the point x(t) remains on the curve γt , it satisfies φt(x(t)) = φ(t,x(t)) = 0.
By differentiating this expression, we obtain
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∂φ
∂ t

+
〈
∇φ ,x′(t)

〉
= 0

which leads to the following evolution equation for φ :

∂φ
∂ t

+ |∇xφ |
(
λ 2A

(
1φ(t,·)>0

)
+α div

(
∇φ
|∇φ |

))
= 0 ,

that is

∂φ
∂ t

= |∇φ |
(
λ 2H∗FFH

(
1φ(t,·)>0

)−α div

(
∇φ
|∇φ |

)
−λH∗Fg

)
. (8)

The above equation is an Hamilton-Jacobi equation which involves a non local
term (through H and F). Such equations are difficult to handle especially when it
is not monotone (which is the case here). In particular, existence and/or uniqueness
of solutions (even in the viscosity sense) are not clear. Nevertheless, some numer-
ical experiments have been carried out using excplicit schemes based on Sethian’s
techniques for level-set methods and give interesting results.

Fig. 4 Synthetic object, H−1 applied to the real projection , computed solution.
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A Single-Pass Scheme for the Mean Curvature
Motion of Convex Curves

E. Carlini

Abstract A new algorithm to solve the stationary level set equation describing the
Mean Curvature Motion of convex curve is presented. This algorithm is a single
pass scheme obtained by coupling the min-max type discrete operator for the MCM
equation with the fast marching level set for the Eikonal equation. An adaption of
the step, approximating the characteristics, is required to obtain an accurate method.
Here an adaptive strategy is proposed.

1 Introduction

The scope of the paper is to develop a fast scheme for the stationary equation mod-
elling the Mean Curvature Motion (MCM):{

div
(

DT (x)
|DT (x)|

)
|DT (x)|+ 1 = 0 x ∈Ω

T (x) = 0 x ∈ ∂Ω ,
(1)

where Ω is a bounded convex set of R2. The level set Γt = {x ∈ R2 : T (x) = t}
represents a curve propagating by the mean curvature flow, see [4].
The present framework follows a single step scheme, known as the Fast March-
ing Method (FMM), proposed by Tsitsiklis and Sethian in [8, 6], for first order
Eikonal equations modelling front propagation. Starting from these pioneering pa-
pers there has been quite a big effort to generalize the method to handle more
complicated motions. Interesting extensions have been obtained for positive time-
dependent anisotropic speed, see [7], and for time-dependent changing sign speed,
see [2]. But so far, to our knowledge, no fast marching scheme has been developed
for the mean curvature flow. The explanation is quite simple, to do that one has to

Dipartimento di Matematica, Università Sapienza di Roma, P.le Aldo Moro 2, Roma, e-mail: car-
lini@mat.uniroma1.it

671
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face the degeneracy of the second order operator, which implies that the generalized
characteristics are orthogonal to the gradient. This is the main difficulty of develop-
ing a single-pass scheme for (1).
In the paper [5], the authors look at (1) as a deterministic control game and they
prove that the minimum exit time T ε satisfies the following dynamic programming
principle

T ε (x) = min
a∈S1

max
{

T ε
(

x−
√

2 εa
)

,T ε
(

x +
√

2 εa
)}

+ ε2, (2)

with S1 = {a ∈R2, |a|= 1}, they also prove that T ε is uniformly approximating the
solution of (1), when Ω is strictly convex bounded and smooth.
In [3], we have analyzed the fully discrete version of (2), developing an iterative
min-max type scheme. It is then natural to develop a method that can solve the min-
max scheme in a single pass. The key idea is to build the FMM for the Eikonal
equation such that the upwind difference structure of the scheme, used to solve the
equation, makes the information propagating one way, namely the direction orthog-
onal to the curve. We borrow this idea, even if the present situation is rather more
complicated, since the informations are propagating in direction tangential to the
curve. This means, that only in a very few cases one can choose a feasible step Δ
to make the scheme work for all the evolutions. In more general cases we have to
adapt the step Δ.
In Sect. 2 we present the scheme for Δ fixed, in Sect. 3 the adapted version and
finally in Sect. 4 some numerical tests.

The presentation of the algorithm and the numerical tests are in two dimensions
for simplicity of the presentation, but the scheme can be generalised to any number
of dimensions.

2 The Algorithm

We will describe the algorithm to built the single-pass scheme approximating (1)
modelling a convex domain in R2 collapsing by MCM.
We introduce a space step Δx and consider a uniform lattice L = {(xi, j)= (iΔx, jΔx),
(i, j) ∈ Z2}.
We extend the solution at zero outside the domainΩ and we define χ as the follow-
ing discrete function :

χi, j =
{

1 if xi, j ∈ Z2 \Ω
−1 if xi, j ∈Ω .

(3)

The nodes (i, j) such that χi, j = 1 are points where the solution is known, this means
that its value will not be computed. We call the set {x ∈ R2 : I[χ ](x) = 1} the ac-
cepted domain, where I(·) denotes the linear interpolation of a discrete function
defined on the lattice L.
The idea of the scheme is the same as the standard FMM : the curve is propagated
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considering a narrow band around the front containing the candidate times. Then as
in the standard FMM we call the neighborhood of the node (i, j) ∈ Z2 the set

V (i, j)≡ {(k,m) ∈ Z2 : |(k,m)− (i, j)| ≤ 1}

and Narrow Band the following set:

NB(χ)≡ {(i, j) ∈ Z2 : χi, j =−1 and χk,m = 1 ∃(k,m) ∈V (i, j)}.

The values are computed using the operator described in [3]:

T n+1
i, j = min

a∈S1
max

b=−1,1
Hi, j[T n](a,b) (4)

with

Hi, j[T n] =
{

I[T n](xi, j +
√

2Δab)+Δ if xi, j +
√

2Δab ∈Ω
Δ̃ else

(5)

where Δ̃ is such that xi, j +
√

2Δ̃ab ∈ ∂Ω .
At each iteration of the algorithm the nodes with the minimun value are removed

from the Narrow Band and moved to the accepted points (then their values will not
be recomputed again).

Initialization

1. Initialization of the matrix χ and of the time T :
χ0

i, j = χi, j (i, j) ∈ Z2

T 0
i, j =

{
0 if xi, j ∈ Z2 \Ω
∞ if xi, j ∈Ω

2. Initialization of the values T on the Narrow Band:
compute T 1

i, j using (4) on each (i, j) ∈ NB(χ0)

3. n = 1

Main cycle

4. T̂ n = min
{

T n
i, j, (i, j) ∈ NB(χn−1)

}
5. Definition of the new Accepted Points: NAn = {(i, j) ∈ NB(χn−1) : T n

i, j = T̂ n}

6. Update of χn: χn
i, j = 1 if (i, j) ∈ NAn

7. if NB(χn) is empty stop

8. compute T n+1
i, j using (4), for all (i, j) ∈ V (l,m) such that χn

l,m =−1 and (l,m) ∈
NAn
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9. set T n+1 = T n, χn+1 = χn and go to step 4

Boundary conditions
To avoid spurious oscillations coming from the use of interpolation of points near
the boundary, we do not perform interpolation in a narrow band close to the bound-
ary and we use special boundary conditions as it has been described in [3].
Complexity
Let us suppose M the number of nodes inside the domain Ω , considering that at
each stage at least one node is accepted, the algorithm terminates at the most af-
ter M iterations. Let us assume that M is a constant and let us consider the cost of
computing T n

i, j. The optimization problem can be solved by several methods, but the
cost is always independent of the dimension M, thus we can estimate it to be O(1).
Since at each iteration only the values of nodes in the neighbourhood of the accepted
points are recomputed and once a point is accepted its value is not computed again,
the cost of each stage is given by the minimization in step 4. We can implement
the algorithm using an binary heap and then obtain each iteration in O(logM) time.
Finally the total complexity is estimate by O(MlogM).
How to choose Δ
This is an important point: to make the algorithm work we have to guarantee that
the characteristics directions a∗, solving the min-max operator in (4), are tracking
information from the accepted domain.
We have proved in [3] that the consistency error for (4) using a linear interpolation
is given by

LΔ,Δx = O(Δ1/2)+ O(Δx2/Δ), (6)

and the scheme results monotone independently of the choice of the ratio between
step Δ and Δx. In principle we are allowed to choose even a very large Δ and still
obtain convergence. This observation is what makes our algorithm work, since we
can use a step Δ large enough, to be able to reach the part of the domain where the
solution has been computed, and still be consistent.
Now, how to choose such a Δ? The easiest case is when the curvature is nearly
the same for every point of the curve. In this case one can fix a Δ satisfying the
requirement at the beginning of the algorithm and keep the same step for all the
iterations. See the numerical test 1 in the last section.
For more general curves, the space Δ have to be correctly chosen, depending on the
curve. This observation motivates the next section.

3 The Adaptive Algorithm

To be able to treat more general curves, i.e. non smooth and non strictly convex
curves, we need to adapt the step Δ such that the scheme is always tracking the in-
formation in an up-wind fashion.
This is an important issue for accuracy reasons, as it has been remarked in [1]. The
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technique we use here is quite different. Points on the curve with higher curvature
need smaller steps to maintain accuracy, on the contrary one is allowed to increase
the step Δ on points with low curvature, the latter case corresponds to the situation
where the points need larger Δ to reach the accepted domain. We do not need error
estimators to decide when to modify Δ, instead we check if the difference between
the candidate time T̂ n

i, j and highest value accepted is greater than a fixed threshold.
If so, we need to increase Δ.
We only allow the step Δ to increase, since once the points with higher curvature
have been smoothed, these type of points will not appear anymore. This is a conse-
quence of the fact, that convex domains become asymptotically circular and shrink
to a point under the MCM.
The difference between the adapted algorithm and the previous is in the main cycle:
the below step 4b should be added to the previous algorithm after step 4 and the new
variable Min should be initialized at zero in the Initialization steps.

4b. Adaption step Δ

1. while T̂ n−Min > c1Δx do:

a.
√
Δ= c2

√
Δ

b. Compute T n
i, j using (4) on each (i, j) ∈ NB(χn−1)

c. T̂ n = min
{

T n
i, j, (i, j) ∈ NB(χn−1)

}
2. if T̂ n > Min then Min = T̂ n

How to choose c1,c2?
We do not have a satisfactory answer to do this, obviously we want c1 > 0 and
c2 > 1; in the experiments we have chosen c1 = 1 and c2 = 1.5.
Adaptive phase
The new step 4b is devoted to adapt the step if necessary. The necessary situa-
tions are when the selected candidate time has an increase too large with respect to
the highest accepted value. This is the situation, when the characteristics have not
reached the accepted domain. We then need to lengthen the step and recompute the
candidate time on each node of the Narrow Band.
Since we are changing the step Δ it could happen, that the sequence of time T̂ n is
not increasing. Therefore we need to update the value Min only if it is smaller than
the last accepted value. Thereafter the condition to adapt Δ is checked on the great-
est value accepted.
Complexity
This version of the algorithm is more expensive than the previous, since we need
to recompute the solution on each node of the Narrow Band at the iterations where
we need to change the step Δ. Supposing that this step is required only a constant
number of times we again obtain the solution in O(M logM) operations.
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4 Numerical Tests

We investigate the performance of the scheme in three typical situations: a smooth
curve for which we know the exact solution and therefore can compute the numeri-
cal errors, a smooth curve and a non smooth and non strictly convex curve for which
an adaptation of the step Δ is necessary to obtain an accurate approximation.

Collapse of a Circle
We consider as initial set Ω a circle of ray one centered in the origin of the nu-
merical domain [−1.5,1.5]× [−1.5,1.5]. We can compute the errors, comparing the
approximated solution with the exact solution T (x,y) = (1− x2− y2)/2.
Fig.1 shows the approximated solution (T n

i, j)i, j obtained with Δx = 0.015 and its

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 1 Numerical solution T n (on the left) and its level sets (on the right)

Table 1 L∞ errors and rate for Test 1

Δx Δ E∞ rate

0.12 0.1 2.33×10−2

0.06 0.05 1.23×10−2 0.92
0.03 0.025 6.96×10−3 0.82
0.015 0.0125 3.56×10−3 0.96

level set Γtm with tm = 0.05 ∗m and m = 1, ...,9.
To compute the numerical solution T n we have used the algorithm described in
Sect. 2. The errors are computed in the discrete L∞ norm:

E∞ = max
i, j
|T (xi,y j)−T n

i, j|.
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In Table 1, we represent the errors computed running the code with the space step
and the step Δ satisfying the ratio relation Δx/Δ= 1.2. The obtained numerical order
of convergence is always higher than the theoretical 1/2 given by (6).

Collapse of a Square
We consider as initial setΩ a square with side 2. This case is definitely more difficult
than the previous one. The starting curve is not strictly convex and there are points
where the curvature is infinite: the corners, and where it is zero: the sides of the
square.
This is the typical case where we need to adapt the step Δ.
In Fig. 2 we compare the level set 0,0.01,0.05 and 0.1 ∗m with m = 1, ...6 of T n

obtained by the algorithm given in Sect.2 with the algorithm given in Sect.3. We
have used Δx = 0.03 and Δ = Δx for the non adapted scheme and a starting step
Δ= (2∗Δx)2 for the adapted scheme. The picture clearly show the advantage using
the second one: the corners are the first point collapsing, these points are solved with
very small Δ and good accuracy is achieved.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 2 Contour levels for test 2 obtained with algorithm of Sect.2 (on the left) and with algorithm
of Sect.3 (on the right)

Collapse of an Ellipse
We consider as initial set Ω an ellipse with axis a =

√
0.5 and b =

√
2 centered in

the origin . This is another case where we need to adapt the step Δ.
In Fig. 3 we show the level set Γtm with tm = 0.1 ∗m and m = 1, ..,5 of T n obtained
by the adaptive algorithm in Sect.3. We have used Δx = 0.025 and a starting step
Δ= (2∗Δx)2.

Conclusions and Observations

We have proposed a single-pass scheme for convex curves collapsing by the MCM
and an adaption of the method to handle non strictly convex and non smooth curves.
Here, we have not investigated an efficient method to evaluate the min-max operator,
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Fig. 3 Contour levels for test
3 obtained with algorithm of
Sect.3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

we are aware that to gain the denomination of fast we need to be able to propose a
method that can solve the min-max operator with very few iterations. We defer the
study of this problem as well of convergence and its generalization to non convex
curves to a future paper.
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valuable advise.
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A Semi-Lagrangian Approximation
of Min–Max Type
for the Stationary Mean Curvature Equation

E. Carlini and R. Ferretti

Abstract We propose a technique to treat degenerate elliptic equations, focusing
on the model problem of the stationary Mean Curvature Motion equation in two
space dimensions. This technique may be interpreted as a stationary, fully discrete
version of the schemes proposed in slightly different forms by Catté et al. and by
Kohn and Serfaty. We study consistency and monotonicity of the scheme and a
correct implementation of Dirichlet boundary conditions. Numerical tests are also
presented.

1 Introduction

Given a convex open domainΩ ⊂R2, we consider the stationary Partial Differential
Equation (PDE) {

div
(

DT (x)
|DT (x)|

)
|DT (x)|+ 1 = 0 x ∈Ω ,

T (x) = 0 x ∈ ∂Ω .
(1)

It has been shown in [4] that the evolutive PDE{
vt(x,t) = div

(
Dv(x,t)
|Dv(x,t)|

)
|Dv(x,t)| (x,t) ∈ R2× [0,∞).

v(x,0) = v0(x), x ∈R2.
(2)
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is related to (1) since v(x,t) = T (x)− t for x ∈Ω and t > 0 when v(x,0) = T (x).
In general v0(x) can be any continuous function such that v0(x) ≡ 0 if x ∈ ∂Ω , and
it is positive outside Ω and negative inside. It is well known that (2) describes the
Mean Curvature Motion (MCM) of the initial curve Γ0 = ∂Ω in the framework of
level set techniques. More precisely, the (generalized) MCM of Γ0 at time t, denoted
by Γt , is the zero level set of the solution v(x,t). In some sense, solving (2) gives
a redundant information since any level set of v moves by Mean Curvature. On the
other hand, if Ω is convex, by solving (1) instead of (2), one can compute the Mean
Curvature flow of Γ0 until it collapses by

Γt =
{

x ∈ R2 : T (x) = t
}

. (3)

In other words, the function T (x) represents the time at which the point x is reached
by the front Γt .

A number of approximation schemes has been proposed for (2) and (1), but we
will focus here on variable stencil (or large time-step) techniques. In addition to the
space discretization step, in this class of schemes a second parameter adjusts the
diameter of the stencil in the difference formula (this diameter is typically O(

√
Δ t)

in time-dependent situations). In order to have a consistent scheme, the stencil must
be oriented orthogonally with respect to the gradient of the solution.

As fare as we are aware of, the first scheme in this streamline has been proposed
by Catté, Dibos and Koepfler [3] for the case of (2). In [3] the correct orientation of
the stencil is the result of a min–max operation. More recently, Falcone and Ferretti
[5] have proposed a similar scheme for (2) in which the stencil is oriented according
to some finite-difference estimate of the gradient.

In the stationary case (1), a recent paper by Kohn and Serfaty (see [6]) defines a
semi-discrete approximation of T (x) via a differential games approach by means of
the following semi-continuous function:

T ε(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x ∈ R2\Ω
ε2 if ∃a ∈ S1 : x±√2 εa ∈ R2\Ω , x ∈Ω
kε2 if ∃a ∈ S1 : max

(
T ε

(
x +
√

2 εa
)

,T ε
(

x−√2 εa
))

= (k−1)ε2,

x ∈Ω , ∀k ≥ 1,
(4)

which in turn satisfies the dynamic programming principle:

T ε (x) = min
a∈S1

max
{

T ε
(

x−
√

2 εa
)

,T ε
(

x +
√

2 εa
)}

+ ε2, (5)

where S1 = {a ∈ R2, |a| = 1}. They prove that, under the assumption that Ω is
smooth, bounded and strictly convex, T ε is an approximation of the solution of (1):

‖T ε (x)−T(x)‖L∞(Ω) ≤Cε (6)

where C depends only on the C3 norm of T ; in the paper they also prove that for
convex domains, T is actually C3.
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The approximation scheme proposed here stems from this approach, but in ob-
taining a fully discrete scheme we will rather use continuous reconstructions, which
may take advantage of the smoothness of the solution.

The outline of the paper is the following. In the next section we will present the
construction of the scheme. Next the issues of consistency and monotonicity will be
addressed, and in the last section we will present some numerical tests.

2 The Scheme

Using Δ =
√
ε in (5) as a first discretization parameter, but still keeping the variable

x continuous (this would correspond to a time-discretization of (2) with time step
Δ t = Δ ), we start by giving a semi-discrete version of (1):{

UΔ (x) = mina∈S1 max
{

UΔ
(

x−√2Δ a
)

,UΔ
(

x +
√

2Δ a
)}

+Δ x ∈Ω
UΔ (x) = 0 x ∈ ∂Ω .

(7)
Then, we introduce an orthogonal space grid of step Δx: GΔx = {x j = jΔx, j ∈Z2}.
We define by ΩΔ = { j : x j ∈ Ω ∩GΔx}, denote by u = (u j) j∈Z2 , where u j is the

numerical approximation of T (x)at the node x j ∈ΩΔ and u j = 0 if j ∈ Z2\ΩΔ . We
also denote by I[u](x) an interpolation of u computed at x ∈ R2. In the sequel, we
will assume that this interpolation is monotone (e.g. piecewise bilinear).
Since we have extended by zero the discrete approximation u outsideΩ , performing
a plain interpolation at points close to the boundary ofΩ could lead to an undesired
numerical dissipation. For this reason we define:{

Δ j(a) = max
{

h : 0≤ h≤ Δ : x j +
√

2h a ∈Ω
}

j ∈ΩΔ ,a ∈ S1

Δ ∗j = mina∈S1 max
{
Δ j(a),Δ j(−a)

}
j ∈ΩΔ ,

(8)

and give the following “boundary conditions” at nodes close to ∂Ω where Δ∗j < Δ :{
u j = Δ∗j Δ∗j < Δ , j ∈ΩΔ

u j = 0 Z2\ΩΔ .
(9)

Note that Δ is adjusted in order to bring the points x±
√

2Δ∗j a precisely on the

boundary. This makes it useless to perform an interpolation since the boundary value
is known.

Projecting the semi-discrete approximation (7) on the grid GΔx and performing
an interpolation whenever the points x j±

√
2Δ a are not grid nodes, we obtain:

u j = min
a∈S1

max
{

I[u]
(

x j−
√

2Δ a
)

, I[u]
(

x j +
√

2Δ a
)}

+Δ j ∈ΩΔ . (10)
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We solve (10) by the fixed point iteration:

un+1
j = min

a∈S1
max

{
I[un]

(
x j−
√

2Δ a
)

, I[un]
(

x j +
√

2Δ a
)}

+Δ j ∈ΩΔ .

(11)
As we will remark later, this amounts to seeking the solution of the stationary prob-
lem as the limit solution of a suitable evolutive problem. This allows to give an
upper bound on the number of iterations.

Denoting the scheme (11) by the compact notation un+1
j = S j(un), and using (8)

into (11), we obtain ⎧⎪⎨⎪⎩
un+1

j = S j(un) Δ∗j > Δ , j ∈ΩΔ

u j = Δ∗j Δ∗j ≤ Δ , j ∈ΩΔ

u j = 0 j ∈ Z2\ΩΔ
(12)

where Δ∗j is defined in (8) for any j ∈ΩΔ .

3 Convergence of the Scheme

We split this section in two subsections dealing with respectively consistency and
monotonicity. Convergence of the scheme then follows by the Barles – Souganidis
theorem (see [1]). In fact, (12) may be interpreted as a scheme for the evolutive
equation

vt = div

(
Dv
|Dv|

)
|Dv|+ 1 (13)

in which we are interested in the solution up to the extinction time of the curve (this
is a consequence of the comparison principle, see [4]).

3.1 Consistency

First, we note that, as it has been proved in [7], we can write

F(Du,D2u) = div

(
Du(x)
|Du(x)|

)
|Du(x)|= min

a∈S1,a·Du=0

{
aT D2u(x)a

}
, (14)

and that in turn, the right-hand side of (14) can be rewritten as

min
a∈S1,a·Du=0

{
aT D2u(x)a

}
= min

a∈S1
max

{
aT D2u(x)a−a ·Du,aTD2u(x)a + a ·Du

}
= ã(x)T D2u(x)ã(x), (15)
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where we have denoted by ã(x) the minimizer (note that since a ∈ S1, the choice of
the sign is irrelevant). Here and in the sequel, we make use of the fact that if two
functions f1(a) and f2(a) depend continuously on a and span the same set, their max
is minimized when they attain the same value. We assume that the interpolation error
of I[·] is O(Δxr) on smooth functions; a typical situation in which interpolation is
also monotone (as required in the following subsection) is P1 or Q1 interpolation
for which r = 2.

Let w be a vector containing the samples of a smooth solution, so that wj = u(x j).
Once written the scheme as u j = S j(w), the consistency error LΔx,Δ of the scheme
is defined by the equality

u(x j) = S j(w)+Δ LΔx,Δ (x j). (16)

Now, at internal nodes S j is defined by:

S j(w) = min
a∈S1

max
{

I[w]
(

x j +
√

2Δ a
)

, I[w]
(

x j−
√

2Δ a
)}

+Δ (17)

and therefore, denoting by ā j the minimizer in (17),

S j(w) = I[w]
(

x j +
√

2Δ ā j

)
+Δ . (18)

The values within the max can be expressed as

I[w]
(

x j±
√

2Δ a
)

= u
(

x j±
√

2Δ a
)

+ O(Δxr)

= u(x j)±
√

2Δ Du(x j) ·a +ΔaTD2u(x j)a

+O
(
Δ3/2

)
+ O(Δxr). (19)

The max of I[w](x j±
√

2Δ a) is minimized when they coincide, so that

u(x j)+
√

2Δ Du(x j) · ā j +Δ āT
j D2u(x j)ā j + O

(
Δ3/2

)
+ O(Δxr)

= u(x j)−
√

2Δ Du(x j) · ā j +Δ āT
j D2u(x j)ā j + O

(
Δ3/2

)
+ O(Δxr) (20)

and therefore √
2Δ Du(x j) · ā j = O

(
Δ3/2

)
+ O(Δxr). (21)

Note that (21) shows that the min–max operation basically selects the direction or-
thogonal to the gradient. Using (18), (19) and (21), (17) gives

S j(w) = u(x j)+Δ āT
j D2u(x j)ā j + O

(
Δ3/2

)
+ O(Δxr)+Δ . (22)

Using now (14), (15) and (21), we obtain
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F
(
Du(x j),D2u(x j)

)
= ã(x j)T D2u(x j)ã(x j)

≤ max
{

āT
j D2u(x j)ā j−ā j ·Du(x j), āT

j D2u(x j)ā j+ā j ·Du(x j)
}

= āT
j D2u(x j)ā j + O(Δ)+ O

(
Δxr

Δ1/2

)
. (23)

Neglecting irrelevant error terms, equations (22) and (23) imply

u(x j)−S j(w)+Δ
(
F
(
Du(x j),D2u(x j)

)
+ 1

)≤ O
(
Δ3/2

)
+ O(Δxr), (24)

and taking into account that u(x) satisfies (1), we can bound the truncation error
from one side as

LΔx,Δ (x j)≤ O
(
Δ1/2

)
+ O

(
Δxr

Δ

)
. (25)

By interchanging the roles of the minimizers ã and ā we can obtain the reverse
inequality, so that at last

|LΔx,Δ (x j)| ≤ O(Δ1/2)+ O

(
Δxr

Δ

)
. (26)

Lastly, note that this estimate has been obtained for internal points, but it also holds
a fortiori at nodes where Δ∗j < Δ , since in this case the term related to interpolation
disappears.

3.2 Monotonicity

We start from two vectors v, w such that v ≥ w and prove that S(v) ≥ S(w) (the
inequalities being intended component by component). Denoting by a∗j the direction
achieving the minmax in S j(v), we can write S j(v) as

S j(v) = min
a∈S1

{
max

(
I[v]

(
x j +
√

2Δ a
)

, I[v]
(

x j−
√

2Δ a
))}

+Δ

= I[v]
(

x j +
√

2Δ a∗j
)

+Δ . (27)

An analogous computation for w gives

S j(w) = min
a∈S1

{
max

(
I[w]

(
x j +
√

2Δ a
)

, I[w]
(

x j−
√

2Δ a
))}

+Δ

= I[w]
(

x j +
√

2Δ ā j

)
+Δ

≤ max
{

I[w]
(

x j−
√

2Δ a∗j
)

, I[w]
(

x j +
√

2Δ a∗j
)}

+Δ

= I[w]
(

x j +
√

2Δ a∗j
)

+Δ , (28)
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in which the inequality is implied by the optimality of ā j in S j(w), and the sign is
arbitrarily chosen since both a∗ and −a∗ are minimizers. Taking into account that
I[v](x)≥ I[w](x) by the monotonicity of I[·], we finally obtain

S j(w)≤ I[w]
(

x j +
√

2Δ a∗j
)

+Δ ≤ I[v]
(

x j +
√

2Δ a∗j
)

+Δ = S j(v). (29)

Again, it is easy to check that monotonicity also holds at nodes close to the
boundary, at which Δ∗j < Δ .

4 Numerical Tests

We show in this section the behaviour of the scheme on two classical tests of curve
propagation, the circle and the square. In the first test the exact solution is smooth
and its explicit expression is known so that numerical errors can be computed, in
the second the initial curve is nonsmooth and we are interested in capturing the
geometry of solutions near the corners. The exact collapse time is T ∗ = 0.5 for the
first test and 0.5 < T ∗ <

√
2/2 for the second test. Multiplying Δ by the number of

iterations, we get a time of the same order of magnitude as T ∗.

Test 1. In the case the initial curve is a circle with radius R centered in the origin,
and the exact solution is T (x) = (R2−|x|2)/2.
We compute the errors in the discrete norm,

|E|L∞ = max
j∈ΩΔ
|un

j −T(x j)|, (30)

for a circle with radius R = 1. The results are shown in Table 1; for each test we re-
port the space step Δx, the step Δ , the error, the number of iteration needed to reach
the fixed point and the rate of convergence. The test shows a good performance with

Table 1 Errors and convergence rates for test 1

Δx Δ |E|L∞ iterations rate

0.12 0.5 2.15 ·10−2 2
0.06 0.1 1.30 ·10−2 8 0.7
0.03 0.05 7.08 ·10−3 14 0.9
0.015 0.025 3.11 ·10−3 25 1.2

a CFL relationship Δ t/Δx = 1.7 (typical of first order PDEs) and the convergence
order goes beyond the theoretical value of 1/2. This is partly due to the smoothness
of the solution, as well as to the fact that in this case the min–max operator selects a
direction exactly orthogonal to the gradient, so that the first (and lower order) term
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in the consistency error would disappear. In Fig. 1 (left) we plot the contour levels
of T (x) at 0, 0.1, 0.2, 0.3, 0.4, 0.5 representing the collapse of the circle.
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Fig. 1 Level curves of T (x) at 0, 0.1, 0.2, 0.3, 0.4, 0.5 for the circle (left) and at 0, 0.01, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5 for the square (right)

Test 2. In this test we follow the evolution of a nonsmooth initial boundary (a
square). Here a parabolic CFL condition is generally required to follow properly
the evolution of the corners. The ability of the scheme in resolving small structures
is discussed in [2], where we also propose an adaptive (with respect to Δ ) technique
to overcome the problem. We show in Fig. 1 (right) the behaviour of the scheme on
a suitable set of level curves, with Δx = 0.06 and Δ t = 0.0036, i.e. with a parabolic
relationship. It has taken 208 iterations for the scheme to reach the fixed point.
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Topological Derivative Based Methods for
Non–Destructive Testing

A. Carpio and M.–L. Rapún

Abstract We propose a numerical strategy to reconstruct scatterers buried in a
medium when the incident radiation (electromagnetic, thermal, acoustic) is gov-
erned by Helmholtz transmission problems. The scattering problem is recast as a
shape optimization problem with the Helmholtz equation as a constraint and the
scatterer as a design variable. Our method is based on the (successive) computation
of topological derivatives of the associated shape functional for updated guesses of
the scatterer. We present an efficient scheme to compute the required topological
derivatives at each step. The scheme combines explicit expressions for the topo-
logical derivatives in terms of the solutions of forward and adjoint transmission
problems with BEM–FEM approximations. Our technique applies in either spatially
homogeneous or inhomogeneous media. Finally, a two dimensional numerical test
illustrates the ability of the method to reconstruct buried shapes.

1 The Inverse and Forward Scattering Problems

We consider a medium R where some unknown objects are buried. The union of all
of them will be denoted by Ω . To simplify, the surrounding medium R is taken to
be the whole plane or space.

The configuration is illuminated by an incident wave, which interacts with the
medium and the obstacles, generating transmitted and reflected waves. The total
wave field (formed by incident, transmitted and reflected waves) solves a transmis-
sion boundary problem, the so–called forward problem.
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The total wave field is then measured on a sampling surface Γmeas. In practice,
the total field is known on a finite set of receptors located at Γmeas for several inci-
dent waves. The inverse problem consists in finding the shape and structure of the
obstacles such that the solutions of the forward problems agree with the measured
values at the receptors.

A variational approach is used to find an approximate solution for the inverse
problem. Instead of looking for the domainΩ such that u = umeas on Γmeas, we seek
a domain minimizing the functional

J(R \Ω) :=
∫
Γmeas

|u−umeas|2, (1)

u being the solution of the corresponding forward problem in R \Ω and umeas the
total field on Γmeas.

In this work we assume that the incident radiation is a plane wave uinc(x)= eıκed·x
in the direction d and the original forward problem for the total field is a Helmholtz
transmission problem⎧⎪⎪⎨⎪⎪⎩

Δu + k2
e(x)u = 0, in Ωe := Rd \Ω ,

Δu + k2
i (x)u = 0, in Ω ,

u− = u+, ∂−n u = ∂+
n u, on Γ ,

r(d−1)/2 (∂r(u−uinc)− ıκe(u−uinc))→ 0, as r := |x| → ∞.

(2)

The wave–numbers ke, ki are assumed to be known, depend smoothly on the posi-
tion and satisfy ke(x) ≥ ke,0 > 0, ki(x) ≥ ki,0 > 0, ∀x ∈ Rd , and ke(x) = κe, |x| >
R > 0. The symbols ± are employed to denote traces and normal derivatives from
each side of the boundary Γ . The normal vector points inside Ω . The transmission
conditions represent the continuity of the solution and the normal derivative across
the interface. They are used when the obstacle is ’penetrable’ by the radiation. Neu-
mann (sound–hard obstacles) or Dirichlet (sound–soft obstacles) conditions can be
handled with similar techniques. The last condition in (2) is the standard Sommer-
feld radiation condition, which implies that only outgoing waves are allowed.

From the physical point of view, assuming that the properties of the inclusion Ω
are known beforehand may not be realistic. The tools developed in this paper are the
basis of a method to reconstruct both the obstacles and their properties. This will be
done in a forthcoming paper [3].

2 Topological Derivatives

Topological derivative methods are a powerful tool to solve inverse scattering prob-
lems associated with shape reconstruction. They have the ability of providing good
initial guesses of the scatterers without any a priori information about their shape
or location. Moreover, iterative schemes based on the computation of topological
derivatives allow for topological changes in the updated guesses and seem to be
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faster than methods inspired in level–sets [11]. Recent work on topological deriva-
tives focuses on problems with constant parameters [1, 5, 7, 10]. However, spatial
inhomogeneities [4, 8] occur in many important applications such as tomography or
photothermal reconstruction. Spatial variations are incorporated in [3].

The topological derivative (TD in the sequel) of a shape functional J(R) is a way
to measure its sensitivity when infinitesimal balls are removed from the region R at
each point x. The formal definition is [12]

DT (x,R) = lim
ε→0

J(R)− J(R \Bε(x))
Volume(Bε(x))

, x ∈R.

Regions where the TD takes large negative values indicate locations where an object
should be placed. The definition can be generalized to other shapes than balls, but
this is not relevant in our study.

For our particular shape functional (1), we use a procedure that relates topolog-
ical and shape derivatives, and allows for the computation of the TD as a limit of
shape derivatives in domains with vanishing inclusions (see [5] for details). The
shape derivatives involve the solutions of forward and adjoint problems in such
domains. One can perform asymptotic expansions of the solutions of Helmholtz
equations with vanishing inclusions to compute the limit. In problems with variable
coefficients, these expansions are made directly on the partial differential equation
(and not on integral expressions in terms of Green functions, as in [7]). For the sake
of brevity, we write below the resulting expressions omitting the proofs. A rigorous
justification will appear in [3].

When we do not have any a priori information about the location of the obstacles,
we study the functional in the whole plane or space, that is, R = Rd , d = 2,3. In
this case, we have the following result.

Theorem 1. For any x ∈ Rd, the TD of the cost functional (1) is

DT (x,Rd) = Re
[
(k2

i (x)− k2
e(x))u(x)w(x)

]
, (3)

where u is the solution to the forward problem (2) with Ω = /0, i.e.,{
Δu + k2

e(x)u = 0, in Rd ,

r(d−1)/2 (∂r(u−uinc)− ıκe(u−uinc))→ 0, as r→ ∞,
(4)

and w solves the adjoint problem{
Δw+ k2

e(x)w = (umeas−u)δΓmeas , in Rd ,

r(d−1)/2 (∂rw+ ıκew)→ 0, as r→ ∞,
(5)

δΓmeas being the Dirac delta function on Γmeas.

Notice that the true scatterer enters the TD through the measured data umeas influ-
encing the adjoint field. For constant parameters, formula (3) was already obtained
in [7].
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When an initial guess Ωap is available, we compute the TD in R = Rd \Ω ap.
Formally, the resulting expression for the TD is the same as before, but now u and
w solve forward and adjoint problems with obstacle Ωap.

Theorem 2. For any x ∈ Rd \Ωap, the TD of the cost functional (1) is

DT (x,Rd \Ωap) = Re
[
(k2

i (x)− k2
e(x))u(x)w(x)

]
,

where u is the solution to the forward problem (2) with Ω =Ωap and w solves⎧⎪⎪⎨⎪⎪⎩
Δw+ k2

e(x)w = (umeas−u)δΓmeas , in Rd \Ωap,
Δw+ k2

i (x)w = 0, in Ωap,
w− = w+, ∂nw− = ∂nw+, on ∂Ωap

r(d−1)/2 (∂rw+ ıκew)→ 0, as r := |x| → ∞.

(6)

In some applications, Helmholtz operators in the forward problem are replaced
by div(αs(x)∇u) + k2

s (x)u, s = e, i, and the continuity condition on the normal
derivatives across the interface is replaced by αi(x)∂nu− = αe(x)∂nu+. The topo-
logical derivative of (1) is

Re

[
2αe(x)(αe(x)−αi(x))

αe(x)+αi(x)
∇u(x)∇w(x)+ (k2

i (x)− k2
e(x))u(x)w(x)

]
, (7)

where the forward and adjoint fields solve modified versions of (2) and (6) with
second order operators in divergence form and generalized transmission conditions.

3 Iterative Scheme

Let us assume first that ke is constant, that is, ke = κe and ki ≡ ki(x). We describe
afterwards how to tackle the case ke ≡ ke(x).

Initialization

To compute a first approximation of the scatterer, we calculate the TD of (1) when
Ω = /0 using Theorem 1. Since ke is constant, the solution to the forward problem
is the incident wave, u(x) = eıκe d·x. The conjugate of the solution w to the adjoint
problem is

w =
∫
Γmeas

Φκe(| · −y|)(umeas−u)(y)d�y, (8)

Φκe being the outgoing fundamental solution of the operator Δ +κ2
e , i.e., Φκe(r) :=

(ı/4)H(1)
0 (κer) when d = 2 and Φκe(r) := exp(ıκer)/(4πr) when d = 3.

We use these formulas to evaluate the TD on a grid. Then, we choose

Ω1 = {x ∈ Rd , DT (x,Rd)≤−C1}, C1 > 0. (9)
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Iteration

A nested sequence Ω j ⊂Ω j+1 is constructed in such a way that

Ω j+1 =Ω j ∪{x ∈ Rd \Ω j, DT (x,Rd \Ω j)≤−Cj+1}, Cj+1 > 0.

A similar idea was suggested in [6], imposing a volume constraint on Cj+1 and
Ω j+1. Our approach is more empirical. We select Cj+1 examining the values of
DT (x,Rd \Ω j). The proposed value is accepted if DT (x,Rd \Ω j+1) does not
present a sudden increase near ∂Ω j+1, which would indicate that spurious points
have been included in the approximation.

At each step DT (x,Rd \Ω j) is computed using Theorem 2. When Ω = Ω j,
the adjoint and forward fields are calculated adapting the mixed FEM–BEM for-
mulation of (2) proposed in [9]. Our strategy follows the classical treatment of
mixed problems for Laplace or Helmholtz equations in which both the scalar field
and the flux must be calculated, see [2]. We consider two unknowns defined in
Ω , the solution itself u ∈ L2(Ω) and its gradient a := ∇u ∈ H(div,Ω) := {b ∈
(L2(Ω))2 |∇ ·b ∈ L2(Ω)}, together with a couple of unknowns defined on Γ , the
interior trace ξ := u− ∈ H1/2(Γ ) and a exterior density ϕ ∈ H−1/2(Γ ) such that

u = uinc +
∫
Γ
Φκe(| · −y|)ϕ(y)d�y, in Ωe. (10)

The regularity assumptions on u and ∇u imply that u ∈H1(Ω) and the traces make
sense in these spaces. In terms of the new four unknowns, we write the forward
problem (2) as ⎧⎨⎩a−∇u = 0, ∇ ·a + k2

i u = 0, in Ω ,
u−− ξ = 0, ξ −Vκeϕ = uinc, on Γ ,
a ·n+( 1

2 I− Jκe)ϕ = ∂nuinc, on Γ ,
(11)

where the boundary operators V κe and Jκe are defined on Γ by

V κeϕ :=
∫
Γ
Φκe(| · −y|)ϕ(y)d�y, Jκeϕ :=

∫
Γ
∂n(y)Φκe(| · −y|)ϕ(y)d�y.

If the solution u of the original forward problem (2) belongs to H1(Ω)∩H1
loc(Ωe)

(as it happens when Γ is C 2), then we have a solution to (11). Reciprocally, if u
solves (11), then u ∈ H1(Ω), u defined by (10) belongs to H1

loc(Ωe) and together
solve problem (2). Once we have established the equivalence of both formulations,
we work with (11) and treat u and a as independent unkowns. In variational form,
this problem is also equivalent to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
Ω a ·bdz +

∫
Ω u(∇ ·b)dz− ∫

Γ ξ (b ·n)d� = 0, ∀b ∈ H(div,Ω),∫
Ω (∇ ·a)vdz +

∫
Ω k2

i uvdz = 0, ∀v ∈ L2(Ω),∫
Γ (a ·n)η d�+

∫
Γ ( 1

2 I− Jκe)ϕ η d� =
∫
Γ ∂nuincη d�, ∀η ∈ H1/2(Γ ),∫

Γ ξψ d�− ∫
Γ V κeϕψ d� =

∫
Γ uincψ d�, ∀ψ ∈ H−1/2(Γ ).
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This formulation makes it easier to select finite elements ensuring continuity of
u and a · n across Γ . We can extend it to operators in divergence form, allowing
for a fast evaluation of the gradients when computing the topological derivative (7).
Another advantage is the simple far field representation (10), which in addition does
not depend on how far is Γmeas from the obstacles. We use then a FE approximation
in Ω and a BE approximation in Ωe.

For the numerical solution in 2D, we combine finite elements on a triangular
grid (with spaces of piecewise constant functions for the scalar field and the lowest
order Raviart–Thomas elements for the flux) with a conforming approximation of
the boundary unknowns using periodic piecewise constant functions and continuous
piecewise linear functions defined on uniform staggered grids. The choice of ade-
quate spaces in 3D is also feasible. Coding difficulties arise due to the non–matching
grids of the FEM and BEM routines. For further details we refer to [9].

If Γmeas is far form the obstacles, pure FEM methods involve big computational
domains, resulting in systems with huge matrices. Combining FEM and BEM, we
reduce the number of unknowns. The systems to be solved are much smaller. Their
matrices are mostly sparse (except for small blocks which are rather full) and have
a useful block structure. Both facts can be exploited to store conveniently the matrix
entries and choose adequate solvers, see [9].

To solve the adjoint problem, we split w = w1 + w2. The first term w1 is defined
by (8) in Ωe and vanishes in Ω . The second term w2 solves⎧⎪⎪⎨⎪⎪⎩

Δw2 +κ2
e w2 = 0, in Rd \Ω ,

Δw2 + k2
i (x)w2 = 0, in Ω ,

w−2 −w+
2 = w+

1 , ∂−n w2− ∂+
n w2 = ∂nw+

1 , on Γ ,

r(d−1)/2 (∂rw2− ıκew2)→ 0, as r→ ∞.

Then, the BEM–FEM formulation proposed for the forward problem applies. The
only difference with respect to the forward problem is the right hand side. To com-
pute numerically the TD, we assemble one matrix and solve two problems with
different right hand sides.

Spatially Dependent ke

Let us consider now the general case ke = ke(x). When Ω = /0, the solution of the
forward problem is not the incident wave. However, ke(x) = κe when |x|> R. Then,
we decompose u = uinc + v in R2 \BR and u = v in BR, v being the solution to⎧⎪⎪⎨⎪⎪⎩

Δv +κ2
e v = 0, in R2 \BR,

Δv + k2
e(x)v = 0, in BR,

v−− v+ = uinc, ∂nv−− ∂nv+ = ∂nuinc, on ΓR,

r(d−1)/2 (∂rv− ıκev)→ 0, as r→ ∞.

(12)

We can use the BEM–FEM formulation proposed above (now BR plays the role of
Ω and ke the role of ki). The solution of the corresponding adjoint problem is again
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(a) (b)

Fig. 1 Topological derivative: (a) Ωap = /0, (b) Ωap =Ω1.

decomposed as w = w1 +w2, where w1 is defined as in (8) and w2 solves a problem
similar to (12) with w+

1 and ∂nw+
1 in the right hand side instead of uinc and ∂nuinc.

Again, the BEM–FEM formulation can be applied here and both, the forward and
the adjoint problems will share the same matrix. Finally, when Ω �= /0, the same
ideas are easily adapted, since in this case the conditions on Γ are directly imposed
in the variational formulation.

4 Numerical Experiments

We present a test in a simple geometry with three objects. Their location is rep-
resented by white lines in all plots in Fig. 1 and 2. The surrounding medium is
assumed to be homogeneous, with wave–number ke = 2. The wave–number for the
buried objects is the space dependent function ki(x,y) = 1 + y/4. This choice does
not correspond to any real physical problem, but illustrates the performance of the
method (see also [8] for similar tests in elasticity problems).

The total wave–field was measured on a set of 30 uniformly distributed sam-
pling points on the circle of radius 4 and center (2,2) for 25 planar incident waves
(cosθ j,sinθ j) with angles uniformly distributed in [0,2π).

Since we do not have any a priori information about the number, size or location
of the obstacles, we have computed first the TD using Theorem 1. The computed
values are shown in Fig. 1(a). The presence of the object at the bottom is clearly
detected and the smallest one is completely ignored. The TD also seems to detect
the third object. Notice that, although the inclusions at the top and at the bottom
have exactly the same size and shape, there is a bigger difference between the wave
number inside the object at the bottom and the surrounding media than between the
object at the top and the exterior media. This justifies the better reconstruction of
the object at the bottom. We have been very cautious when selecting the threshold
C1 in (9) to characterize the obstacles in order to avoid spurious points. Only the
approximation of the object denoted by Ω1 in Fig. 1(b) has been trusted.
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Fig. 2 Topological derivative when Ωap =Ω2, Ω3,Ω4.

Once a first guess in known, we compute the TD using Theorem 2. The obtained
values are shown in Fig. 1(b). The lowest values of the updated TD indicate the lo-
cation and approximated size of a new object. The smallest one remains undetected.

Finally, in Fig. 2 we represent the next three iterations of the scheme. The itera-
tion converges very fast. A few steps provide satisfactory reconstructions. Further-
more, the small object, ignored in the first trials, is captured.
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A Characteristics Driven Fast Marching Method
for the Eikonal Equation

E. Cristiani and M. Falcone

Abstract We introduce a new Fast Marching method for the eikonal equation. The
method is based on the informations driven by characteristics and it is an improve-
ment with respect to the standard Fast Marching method since it accepts more than
one node at every iteration using a dynamic condition. We analyze the method and
present several tests on fronts evolving in the normal direction with variable veloci-
ties including cases where a change in topology occurs.

1 Introduction

The success of the level set method in the analysis and in the simulation of com-
plex interface problems is mainly due to its capability to handle the changes in
topology of the interfaces. The price to pay is the fact that we look for a function
u : IRn× [0,T ]→ IR and we locate the front Γt at time t just considering the 0-level
set of u(x,t), so we add one extra dimension to the original problem which lives in
IRn.

The Fast Marching (FM) method has been proposed to cut down the computa-
tional complexity of the level set method (see [7, 9] for the origin of the method and
[1, 2, 8] for some recent developments). It was developed for the time-independent
eikonal equation {

c(x)|∇T (x)|= 1, x ∈ IRn\Ω0

T (x) = 0, x ∈ Γ0 = ∂Ω0
(1)

where Ω0 is a closed bounded set and c(x) is Lipschitz continuous and strictly pos-
itive. The front is recovered as the t-level set of the minimal time function T (x)
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Maurizio Falcone
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which is the unique viscosity solution of (1). Note that the solution u of the level set
method can be written as u(x,t) = T (x)− t, so (1) is related both to the evolution of
a front with velocity c(x) in the normal direction and to the minimum time problem
(see [3, 6]).

The FM method sets-up the computation in a narrow band near the front and
updates the narrow band in order to follow the evolution of the front at every time.
In this way it eliminates the extra dimension introduced by the model since at every
iteration the computation is performed in a neighborhood of the front, i.e. we work
on O(

√
N) nodes if the grid has N nodes. Once a node exits the narrow band it is

accepted, i.e. it is no more computed in the following iterations. The FM method
accepts only one node at every iteration (the node with the minimal value T ) to
guarantee that the evolution of the front is tracked correctly. However, in several sit-
uations one has the impression that the FM method can be improved and that it is not
needed to accept just one point at every iteration. For example, this is the case when
the initial configuration Ω0 is convex so that in the normal evolution of the front
there are neither a merging nor a crossing of characteristics. The main contribution
here is to modify the FM method based on the semi-Lagrangian approximation (see
[2, 3] for details) developing a new algorithm which accepts several points provided
some local conditions are satisfied (see Section 2). In this way we drop the search
for the minimum value at every iteration via a Min-Heap structure. We note that an-
other Group Marching algorithm has been proposed by Kim in [5] to speed up the
standard FM method based on the finite difference scheme. Our algorithm is differ-
ent in two respects. The first is that we use a different local rule for the computation
whereas the second is related to the condition which allows our method to accept
more nodes.

2 The Characteristics Fast Marching Method

In this section we present the algorithm and some considerations about its compu-
tational cost. Note that the basic algorithm is developed in order to deal with the
evolution of a single front although it works often for several merging fronts. An
extension to the case of general merging front is also given. Via the Kružkov tran-
form v(x) = 1− e−T(x) the equation (1) can be rewritten in the fixed point form
v(x) = F [v(x)] := mina∈B(0,1){c(x)a ·∇v(x)}+ 1 where B(0,1) is the unit ball cen-
tered in 0. Let us just recall the basic semi-Lagrangian scheme we will use as local
rule for the computation. The value of v at the node xi will be denoted by vi.{

vi = min
a∈B(0,1)

{e−hv(xi−hc(xi)a)+ 1− e−h, xi ∈ IRn\Ω0

vi = 0, xi ∈ ∂Ω0

(2)

We chose a variable (fictitious) time step h = hi such that c(xi)hi = Δx and we use a
linear interpolation to compute v(xi−hic(xi)a).
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2.1 Main Idea

In several situations the accept-the-node-with-minimum-value condition of FM
method appears to be too restrictive, particularly when c(x) ≡ c0 and Ω0 is a small
ball. In fact, in this case one can accept almost all the nodes in the narrow band at
the same time without loosing informations.

In the Characteristics Fast Marching (CFM) method the point of view is reversed
with respect to the FM method. Instead of declaring accepted the node with the
minimum value in the narrow band (i.e. the first node which will be reached by the
front in the next iteration), we look for the node in the narrow band with the maximal
velocity cmax, i.e. the node from which we can cover the distance Δx and enter the
accepted zone in the minimum time. Once we have cmax we can compute the time
step Δ t = Δx

cmax
for that iteration which is the time needed by the fastest node to

reach the accepted zone. While all the nodes with the maximal velocity cmax reach
the accepted zone the other nodes in the narrow band come closer to the accepted
zone without touching it. In order to take into account this displacement (which is
smaller than Δx), we introduce the local time tloc

i . The local time is set to 0 when the
node i enters the narrow band and it is increased at each iteration by the (variable)
increment Δ t until the node is accepted. At each iteration we label as accepted all
the nodes having a local time tloc

i large enough to safisfy two conditions: they reach
the accepted zone moving at speed c(xi) and they are computed by (2) just using
nodes in the accepted region.

2.2 The CFM Algorithm for a Single Front

Let us introduce the algorithm. In the following, the set of the nodes belonging to
the narrow band will be denoted by NB.

Initialization

1. The nodes belonging to the initial front Γ0 are located and labeled as accepted.
They form the set Γ̃0. The value of v of these nodes is set to 0.

2. NB is defined as the set of the neighbors of Γ̃0, external to Γ0.
3. Set tloc

i := 0 for any i ∈ NB.
4. The remaining nodes are labeled as far, their value is set to 1 (corresponding to

T = +∞).

Main Cycle

1. Compute cmax = max{ci : i ∈ NB} and set Δ t := Δx/cmax.
2. For any i ∈ NB:

a. Update the local time: tloc
i := tloc

i +Δ t.
b. If tloc

i · ci ≥ Δx then
i. Compute vi by the scheme (2).
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ii. Check if vi is computed using only accepted nodes. If yes, set flag=true,
else set flag=false.

iii. If flag=true, then
- Label i as accepted and remove i from NB.
- Define FN as the set of the far neighbors of i. Include FN in NB and set
t loc
k := 0 for any k ∈ FN.

3. If not all nodes are accepted go back to 1.

2.3 Front Merging

Let us extend the previous algorithm to the more interesting situation when more
fronts are merging together. This a delicate point because we risk to accept too
many points before they reach the correct value. One of the main differences with
respect to the FM method is that the narrow band does not follow exactly the level
sets of the solution. For example, if c(x) is constant, the narrow band of a rectangular
front evolves without smoothing corners contrary to the real level sets of the exact
solution. In computing the evolution of a single front this is not a major difficulty,
since the correctness of the solution is guaranteed by the fact that we accept only
those nodes computed by other already accepted nodes. However, the evolution of m
fronts merging together can be difficult to follow in some cases (but not in all cases).
In fact, a single node can be reached first by the narrow band corresponding to one
on those fronts and it is accepted according to these informations whereas it should
be accepted according to the informations driven by another front. In Fig. 1 we can

Fig. 1 The merging zone in
the case the CFM method fails
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see a front merging where this situation occurs and produces a wrong solution in
the merging zone. Note that this difficulty can not be solved reducing the space step
Δx and it seems that there is no way to solve the problem without making some
important changes to the algorithm.

In order to deal with m merging fronts we start considering we can compute by
CFM method the m value functions v(k), k = 1, . . . ,m corresponding to the evo-
lutions of the m fronts on m copies of the domain and than take the minimum
v := min{v(1), . . . ,v(m)} as final solution. Of course this choice leads to multiply
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by m the time required for computation (we do not consider here problems related
to memory) and then it is not efficient. To overcome this problem we use the follow-

ing strategy. When the k-th CFM method accepts the node i with value v(k)
i , it checks

if another CFM method has already computed a value ṽi < v(k)
i for the same node.

If this is the case, the k-th CFM method avoids to enlarge the narrow band from the
node i. This procedure leads to a very small overlapping zone between fronts and a
CPU time comparable with the CFM method for a single front (see Fig. 2).
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Fig. 2 Merging via two applications of CFM method

Computational cost
The computational cost of the CFM method is more complicated to determine with
respect to the FM method. This is mainly due to the fact that it is very difficult to
say a priori how many times the flag remains fixed to false for each node. By the
experiments it seems that this happens when the velocity field c(x) increases along
characteristics.

Searching for the maximal velocity cmax in the narrow band costs O(lnNnb)
where Nnb is the number of nodes in the narrow band (bounded by N but expected
to be of order

√
N).

When the velocity is constant all the nodes of the narrow band are accepted at
the same time, then the number of times we need to search for cmax in the narrow
band is divided by a factor Nnb with respect to the FM method and this is surely the
most powerful feature of the CFM method.

In conclusion, for a constant velocity c(x)≡ c0 we expect the computational cost
to be of order O((N lnNnb)/Nnb) = O(

√
N ln
√

N).

3 Numerical Results

In this section we present some numerical tests in order to compare the CFM method
with the standard iterative semi-Lagrangian (SL) scheme and the FM method
based on the semi-Lagrangian scheme (FM-SL) introduced in [2]. The domain
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of computation is [−2,2]2. We used MATLAB 7.0 on a Processor Intel dual core
2x2.80 GHz with 1 GB RAM.

Test 1: constant velocity. Γ0 = (0,0). c(x,y)≡ 1. Solution: T (x,y) =
√

x2 + y2.

Test 2: velocity depending on x. Γ0 = (0,0). c(x,y) = x + 3.

Test 3: velocity depending on x and y. Γ0 = (0,0). c(x,y) = |x + y|.

Test 4: merging of two fronts. Γ0 = a rectangle and a circle. c(x,y)≡ 1.

Table 1 Errors and CPU time for Test 1

method Δx L∞ error L1 error CPU time (sec)

CFM 0.08 0.0329 0.3757 0.27
FM-SL 0.08 0.0329 0.3757 0.58
SL (46 it) 0.08 0.0329 0.3757 9.7

CFM 0.04 0.0204 0.2340 1.14
FM-SL 0.04 0.0204 0.2340 2.44
SL (86 it) 0.04 0.0204 0.2340 70.95

CFM 0.02 0.0122 0.1406 4.9
FM-SL 0.02 0.0122 0.1406 10.56
SL (162 it) 0.02 0.0122 0.1406 530.56

Fig. 3 Numerical result for
Test 2
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Comments
By Test 1 we can see that the semi-Lagrangian iterative method is much slower
than both Fast Marching methods although all methods compute exactly the same
approximation of the viscosity solution of equation (1).
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Table 2 CPU time for Test 2

method Δx CPU time (sec)

CFM 0.04 1.19
FM-SL 0.04 2.34

CFM 0.02 5.20
FM-SL 0.02 10.44

Fig. 4 Numerical result for
Test 3

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

grid= 101x101  SL−CFM

Table 3 CPU time for Test 3

method Δx CPU time (sec)

CFM 0.04 3.5
FM-SL 0.04 2.5

CFM 0.02 16.73
FM-SL 0.02 11.59

Fig. 5 Numerical result for
Test 4
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Table 4 CPU time for Test 4

method Δx CPU time (sec)

CFM 0.04 1.05
FM-SL 0.04 2.12

CFM 0.02 5.08
FM-SL 0.02 9.53

As expected, the CPU time for CFM method is smaller than that of FM method
when the velocity field is constant or have relatively small variations in the domain
(Test 1 and 2).

When the function c(x) is increasing along characteristics (Test 3) the CFM
method is slower than the FM method, this is due to the fact that the flag is often
false after the step (ii) of the algorithm so that a lot of nodes in the narrow band are
computed but only few of them are accepted. Note that in the FM method not all the
nodes in the narrow band are computed at each iterations but only the new entries.
In Test 4 the evolution of two merging fronts is computed without any modification
of the basic algorithm and again the CPU time for the CFM method is about the half
of the time needed by the FM method.
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Hierarchical Model Reduction for
Advection-Diffusion-Reaction Problems

A. Ern, S. Perotto, and A. Veneziani

Abstract Some engineering problems ranging from blood flow to river flow, from
internal combustion engines to electronic devices have been recently modelled
by coupling problems with different space dimensions (geometrical multiscale
method). In this paper we focus on a new approch, where different levels of detail
of the problem at hand stem from a different selection of the dimension of a suitable
function space. The coarse and fine models are thus identified in a straightforward
way. Moreover this approach lends itself to an automatic model adaptive strategy.
The approach is addressed on a 2D linear advection-diffusion reaction problem.

1 Motivations

Many engineering problems of practical interest, even though formulated in 3D,
exhibit a spatial dimension predominant over the others. This is the case, for in-
stance, of river dynamics, blood flow problems or internal combustion engines. In
these cases, it is sometimes possible to resort to downscaled models where only the
dominant space dependence is considered (e.g., the Euler equations come from a
1D approximation of blood flows). Nevertheless the simplifying assumptions at the
basis of these models can fail locally, essentially where “transversal” dynamics are
relevant (e.g., a lake in a river network, an aneurysm in a blood vessel). Ideally, in
correspondence with these configurations, one would like to locally enhance the 1D
approximation via a proper higher-dimensional enrichment. In the so-called geo-
metrical multiscale approach these enrichments consist of 2D or 3D models. Here
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we follow a different strategy. We simplify the reference problem (the full model)
by tackling in a different manner the dependence of the solution on the leading di-
rection and on the transverse ones. The former is spanned by a classical piecewise
polynomial basis. The latter are expanded into a modal basis. We end up with a real
hierarchy of simplified models (the reduced models), distinguishing one another for
the different number of modal transversal functions. From a computational view-
point, independently of the dimension of the full problem, the reduced formulation
leads us to a system of 1D problems (associated with the leading direction), coupled
by the transversal information. In this work we present preliminary results of this
approach applied to a 2D elliptic framework.

A similar approach can be found in [1, 2, 4, 5], though confined to a thin domain
setting. Our proposal is potentially more effective than these approaches, as our
reduced model is a system of 1D (rather than 2D) problems, also for a 3D full
problem.

2 The Full Problem

Let us consider a linear advection diffusion reaction (ADR) problem. For the sake of
simplicity we assume the computational domain Ω in IR2 and homogeneous Dirich-
let boundary conditions.

Let μ ∈ L∞(Ω), with μ ≥ μ0 > 0, the diffusivity coefficient, b = (b1,b2)T ∈
[L∞(Ω)]2 the convective field and σ ∈ L∞(Ω) the reaction coefficient. We assume
∇ ·b ∈ L∞(Ω). Moreover for the well-posedness of the problem we assume − 1

2∇ ·
b +σ ≥ 0 a.e. in Ω . Finally, let f ∈ L2(Ω) be the forcing term. Standard notation
for the Sobolev spaces as well as for the spaces of functions bounded a.e. in Ω is
adopted.

The weak formulation of the problem reads: find u ∈V = H1
0 (Ω) s.t.∫

Ω
μ∇u ·∇vdxdy +

∫
Ω

(
b ·∇u +σu

)
vdxdy =

∫
Ω

f vdxdy ∀v ∈V. (1)

Furthermore we assume that the domainΩ can be represented as a 2D fiber bundle,
i.e.

Ω =
⋃

x∈Ω1D

γx, (2)

whereΩ1D is a supporting one-dimensional domain, while γx ⊂ IR represents the 1D
(transversal) fiber associated with x∈Ω1D. In practice we distinguish inΩ a leading
direction, associated with Ω1D, and a secondary transversal direction, represented
by the fibers γx. This choice finds its justification in the hydrodynamic as well as
haemodynamic applications we are interested in, where the dominant direction is
provided by the blood or the water main stream, respectively (see Fig. 1, left).

We map domain Ω into a reference domain Ω̂ , where the analysis is easier. For
this purpose, for any x∈Ω1D, we introduce the mapψx : γx→ γ̂1 between the generic
fiber γx ⊂ IR and a 1D reference fiber γ̂1. The domain Ω̂ is identified as the rectangle
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Ω1D

x

Ω

z = (x,y)

ψx

Ω̂

γ̂1

ẑ = (x̂, ŷ)

γx

Ω1D

main stream

x̂

Fig. 1 The map ψx

with sides of length |Ω1D| and |γ̂1|. The map ψx thus simply acts on the fiber length
(see Fig. 1). Throughout the paper we denote with z = (x,y) and ẑ = (x̂, ŷ) the
generic point in Ω and the corresponding point in Ω̂ via the map ψx, respectively,
where x≡ x̂ ∈Ω1D while ŷ = ψx(y) ∈ γ̂1, with y ∈ γx.

A predominant role in the applications of our interest is played by the so-called
affine map, given by ŷ = ψx(y) = L(x)−1

[
y− g

]
, where L(x) = |γx| is the length

fiber while g is a suitable shift factor. In particular when L(x) = L = constant, the
physical domain Ω itself coincides with a rectangle.

3 The Reduced Setting

The fiber structure introduced on the domain Ω is the starting point in defining the
dimensional reduction. We resort to different function spaces along the supporting
fiber Ω1D rather than the transversal ones γx, in the spirit of a model anisotropy.
In more detail, we associate with Ω1D the function space V1D ≡ H1

0 (Ω1D), whose
functions account for the homogeneous Dirichlet boundary conditions on ∂Ω1D. On
the transversal reference fiber we introduce a modal basis {ϕk}, with k ∈ IN, where
ϕk : γ̂1 → IR and {ϕk} is assumed L2(γ̂1)-orthonormal. The functions ϕk take into
account the boundary conditions on ∂Ωγ =

⋃
x∈Ω1D

∂γx. The transversal function
space is therefore given by Vγ̂1 = span{ϕk}.

Different choices can be pursued for the modal functions ϕk (see [3], Remark 1).
Here we adopt trigonometric functions, according to a classical Fourier expansion.

By properly combining the space V1D with the modal basis {ϕk}k, we define the
reduced space, for any fixed a priori m ∈ IN,

Vm =
{

vm(x,y) =
m

∑
k=0

ϕk(ψx(y)) ṽk(x), with ṽk ∈V1D

}
. (3)

The L2(γ̂1)-orthogonality of the modal functions implies that the frequency coeffi-
cients ṽk in (3) are
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ṽk(x) =
∫
γ̂1

vm(x,ψ−1
x (ŷ))ϕk(ŷ)dŷ, with k = 0, . . . ,m. (4)

Convergence of an approximation um to (1) stems essentially from the following as-
sumptions: i) the conformity of the reduced space Vm in V , i.e. that Vm ⊂V , ∀m∈ IN;

ii) the spectral approximability of Vm in V , namely that lim
m→+∞

(
inf

vm∈Vm
‖v− vm‖V

)
=

0, for any v∈V . These two requirements basically lead to proper regularity assump-
tions on the mapψx as well as on the spaces V1D and Vγ̂1 (for further details, see [3]).
Throughout the paper we assume that these two hypotheses are fulfilled.

3.1 The ADR Reduced Form

The reduced formulation of the ADR equation (1) entails solving such a problem on
the subspace Vm of V in (3).

Thus, for any m ∈ IN, we can state the so-called ADR reduced problem: find
um ∈Vm such that∫

Ω
μ∇um ·∇vm dxdy +

∫
Ω

(
b ·∇um +σum

)
vm dxdy =

∫
Ω

f vm dxdy ∀vm ∈Vm.

(5)
The well-posedness as well as the strong consistency of this formulation are guar-
anteed by assumption i) above.

Actually the reduced formulation (5) amounts to solving a system of (m + 1)
coupled 1D problems, with coefficients computed on the reference fiber γ̂1. For
this purpose we introduce the Jacobian J (ŷ) =

(
∂ψx(y)/∂y

)|y=ψ−1
x (ŷ) associated

with the map ψx. Moreover we define D(ŷ) =
(
∂ψx(y)/∂x

)|y=ψ−1
x (ŷ), representing

a deformation index of the current domain Ω with respect to the reference one.
Let us exploit in (5) the representation um(x,y) = ∑m

j=0 ũ j(x)ϕ j(ψx(y)) of um as
a function of Vm and identify the test function vm with vm(x,y) = ϑ(x)ϕk(ψx(y)),
for any ϑ ∈V1D and any k = 0, . . . ,m, to get

m

∑
j=0

[ ∫
Ω
μ(x,y)∇

(
ũ j(x)ϕ j(ψx(y))

) ·∇(ϑ(x)ϕk(ψx(y))
)

dxdy (6)

+
∫
Ω

(
b(x,y) ·∇(ũ j(x)ϕ j(ψx(y))

)
+σ(x,y)ũ j(x)ϕ j(ψx(y))

)
ϑ(x)ϕk(ψx(y))dxdy

]
=

∫
Ω

f (x,y)ϑ(x)ϕk(ψx(y))dxdy.

We analyze separately the different terms. Moving from the gradient expansion

∇
(
w(x)ϕs(ψx(y))

)
= ϕs(ψx(y))

[
dw(x)

dx

0

]
+ w(x)ϕ ′s(ψx(y))

⎡⎣ ∂ψx(y)
∂x

∂ψx(y)
∂y

⎤⎦ , (7)



Hierarchical Model Reduction for Advection-Diffusion-Reaction Problems 707

with ϕ ′s(ψx(y)) = dϕs(ψx(y))/dψx(y), for s = 0, . . . ,m, and w ∈V1D, we rewrite the
diffusive contribution in (6) as the sum of 1D diffusive-, convective-, and reactive-
terms with respect to the unknowns ũ j, since∫
Ω1D

{( ∫
γx
μ(x,y)ϕ j(ψx(y))ϕk(ψx(y)) dy

) dũ j(x)
dx

dϑ(x)
dx

(8)

+
( ∫

γx
μ(x,y)ϕ j(ψx(y))ϕ ′k(ψx(y))

∂ψx(y)
∂x

dy
) dũ j(x)

dx
ϑ(x)

+
( ∫

γx
μ(x,y)ϕ ′j(ψx(y))ϕk(ψx(y))

∂ψx(y)
∂x

dy
)

ũ j(x)
dϑ(x)

dx

+
( ∫

γx
μ(x,y)ϕ ′j(ψx(y))ϕ ′k(ψx(y))

{[∂ψx(y)
∂x

]2
+
[∂ψx(y)

∂y

]2}
dy
)

ũ j(x)ϑ(x)
}

dx.

Similarly, we recast the convective term in (6) as the sum of a 1D convective and a
1D reactive term:∫
Ω1D

{( ∫
γx

b1(x,y)ϕ j(ψx(y))ϕk(ψx(y))dy
) dũ j(x)

dx
ϑ(x) (9)

+
(∫

γx
ϕ ′j(ψx(y))ϕk(ψx(y))

[
b1(x,y)

∂ψx(y)
∂x

+ b2(x,y)
∂ψx(y)
∂y

]
dy
)

ũ j(x)ϑ(x)
}

dx.

Finally the reactive contribution in (6) leads to a reactive term with respect to the
ũ j’s: ∫

Ω1D

( ∫
γx
σ(x,y)ϕ j(ψx(y))ϕk(ψx(y))dy

)
ũ j(x)ϑ(x)dx. (10)

In practice all the integrals above on γx, as well as the forcing term in (6), are com-
puted on the reference fiber γ̂1, by properly exploiting the map ψx (i.e. both the
Jacobian J (ŷ) and the deformation index D(ŷ)). A straightforward arrangement
of the terms in (8), (9) and (10) allows us to reformulate problem (5) as follows: for
j = 0, . . . ,m, find ũ j ∈V1D such that, ∀ϑ ∈V1D,

m

∑
j=0

{ ∫
Ω1D

[
r̂ 1,1

k j (x)
dũ j(x)

dx
dϑ(x)

dx︸ ︷︷ ︸
(I)

+ r̂ 1,0
k j (x)

dũ j(x)
dx

ϑ(x)+ r̂ 0,1
k j (x) ũ j(x)

dϑ(x)
dx︸ ︷︷ ︸

(II)

+ r̂ 0,0
k j (x) ũ j(x)ϑ(x)︸ ︷︷ ︸

(III)

]
dx
}

=
∫
Ω1D

[∫
γ̂1

f (x,ψ−1
x (ŷ))ϕk(ŷ)

∣∣J −1(ŷ)
∣∣dŷ

]
ϑ(x)dx,

(11)

with k = 0, . . . ,m, where

r̂ s,t
k j (x) =

∫
γ̂1

r s,t
k j (x, ŷ)

∣∣J −1(ŷ)
∣∣dŷ, for s,t = 0,1, (12)

and
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r1,1
k j (x, ŷ) = μ

(
x,ψ−1

x (ŷ)
)
ϕ j(ŷ)ϕk(ŷ),

r0,1
k j (x, ŷ) = μ

(
x,ψ−1

x (ŷ)
)
ϕ ′j(ŷ)ϕk(ŷ)D(ŷ),

r1,0
k j (x, ŷ) = μ

(
x,ψ−1

x (ŷ)
)
ϕ j(ŷ)ϕ ′k(ŷ)D(ŷ)+ b1

(
x,ψ−1

x (ŷ)
)
ϕ j(ŷ)ϕk(ŷ),

r0,0
k j (x, ŷ) = μ

(
x,ψ−1

x (ŷ)
)
ϕ ′j(ŷ)ϕ

′
k(ŷ)

{[
D(ŷ)

]2 +
[
J (ŷ)

]2
}

+

σ
(
x,ψ−1

x (ŷ)
)
ϕ j(ŷ)ϕk(ŷ)+ϕ ′j(ŷ)ϕk(ŷ)

{
b1
(
x,ψ−1

x (ŷ)
)
D(ŷ)+ b2

(
x,ψ−1

x (ŷ)
)
J (ŷ)

}
.

Notice that in (11) the dependence of the reduced solution um on the main stream and
on the transversal directions is split: coefficients r̂ s,t

k j essentially collect the transver-
sal contribution to the domainΩ1D. We still recognize in (11) an ADR problem, the
terms (I), (II) and (III) representing the diffusive, convective and reactive contribu-
tion, respectively.

From (8), (9) and (10) it is easy to see that the conversion from the full to the
reduced framework is not one to one. Indeed a purely diffusive (advective) full term
also yields reduced advective-reactive (reactive) contributions. The possible self-
adjointness of the full problem is thus usually lost in the reduced framework. This
property can be preserved in a few cases by a proper choice of the map ψx and of
the reduced space Vm (see [3]).

From a computational viewpoint, solving (11) requires dealing with a small num-
ber of coupled 1D problems, provided that the modal index m is small enough. This
is likely more convenient than solving the full problem (1).

Finally we point out that the computation of the r̂ s,t
k j ’s in (12) simplifies consid-

erably under particular assumptions on the data, e.g. for constant coefficients μ , b,
σ , or when the map ψx is affine (see [3] for the details).

4 Finite Element Approximation of the Reduced Problem

Formulation (11) can be understood as a model semidiscretization of the full prob-
lem (1), the transversal direction being discretized via the modal basis {ϕk}.

With a view to a full discretization of (1), we introduce a partition Th of Ω1D

into sub-intervals Kj = (x j−1,x j) of width h j = x j− x j−1, and set h = max j h j. We
associate with Th a finite element space V h

1D ⊂ V1D, with dim(V h
1D) = Nh, such that

a standard density hypothesis of V h
1D in V1D is guaranteed.

The discrete reduced formulation is thus represented by system (11) solved on
the subspace V h

1D of V1D, the test function ϑ coinciding now with the generic basis
functionϑl of the finite element space, for l = 1, . . . ,Nh. Moreover, by expanding the
unknown coefficients ũh

j in terms of the basis {ϑi}Nh
i=1 itself and by properly varying

the indices k and l, we get a linear system with a (m+1)Nh×(m+1)Nh block matrix
A. All the Nh×Nh-blocks share the sparsity pattern proper of the adopted 1D finite
element approximation, with the consequent benefits both in storing and solving the
associated algebraic system.
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Fig. 2 Full solution u and reduced solutions u2, u4, u6, u8, u9 (top-bottom, left-right)

5 Numerical Assessment

We look for a reliable and sufficiently accurate approximation of the full solution
u to (1) by properly selecting the reduced space Vm in (3), namely the modal index
m. The choice of m represents a crucial issue. It should be a trade-off between the
needs to capture the main features of u and to contain the computational cost.

We adopt here a heuristic strategy where we first fix the index m = 0 and then we
gradually increase such a value, while keeping it constant along the whole domain
Ω1D.

Let us focus on a purely diffusive differential problem exhibiting a hetero-
geneity in the corresponding source term. We solve the Poisson problem on the
domain Ω = (0,2)× (0,1), completed with homogeneous Dirichlet boundary con-
ditions. The forcing term is localized in 3 circular regions of Ω , the function f
in (1) coinciding with the characteristic function χD1∪D2∪D3 , with D1 =

{
(x,y) :

(x−1.5)2 +(y−0.5)2≤ 0.01
}

, D2 =
{
(x,y) : (x−0.5)2 +(y−0.25)2≤ 0.01

}
and

D3 =
{
(x,y) : (x−0.5)2 +(y−0.75)2≤ 0.01

}
. The associated full solution exhibits

a peak in correspondence with each of the areas Di, for i = 1,2,3 (see Fig. 2, top-
left). Figure 2 gathers the reduced solutions corresponding to different choices for
the modal index m. In particular it is evident the expected failure of the reduced solu-
tion u2 (Fig. 2, top-right) to detect the two peaks of u along the straight line x = 0.5.
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On the contrary u2 already matches the exact value in correspondence with the peak
in D1 (notice the different scales). Nevertheless the reliability of um increases as m
gets larger (Fig. 2, middle and bottom row).

These preliminary results confirm the convergence expected from classical
Galerkin theory with the fulfillment of the assumptions i) and ii) in Sect. 3. It is
worth pointing out that, even if a purely diffusive full model leads to an advective-
diffusive-reactive reduced problem, the latter does not seem to suffer from convec-
tive or reactive numerical instabilities if D(ŷ) is small enough, since the convective-
reactive terms are weighted by the diffusive coefficient μ itself (see [3]).

6 Conclusions and Future Developments

The preliminary numerical results in Sect. 5 suggest that the proposed dimensional
reduction could be a reasonable approach for containing computational costs, in
particular when both the domain and the problem at hand exhibit a “main stream di-
rection”. Many aspects deserve to be investigated. First of all the extension of the re-
duced approach to more complex problems (e.g., Oseen, Navier-Stokes equations).
A second issue is the set-up of a mathematically sound procedure for selecting the
proper modal index m. A possible approach could be based on the comparison be-
tween um and um+ , with m+ > m. We investigate extensively this issue in [3]. An
alternative solution is based on a domain decomposition approach, where different
values of m are used in different parts of Ω ([3]): for instance, in the example of
Fig. 2, a smaller value of m could suffice on the right half of the domain but not in
the left half. In perspective this approach is suited to being coupled with a proper a
posteriori modeling error analysis to get an automatic tool able to detect the most
appropriate value m in the different parts of the domain in the spirit of a model
dimension adaptivity.
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A Semi-Lagrangian Scheme for the Open Table
Problem in Granular Matter Theory

M. Falcone and S. Finzi Vita

Abstract We introduce and analyze a new scheme for the approximation of the
two-layer model proposed in [10] for growing sandpiles over an open flat table. The
method is based on a semi-Lagrangian approximation of the nonlinear terms which
allows to obtain more accurate results with respect to the standard finite difference
approximation. We present several features of the scheme and give some hints on its
implementation. Finally we show some tests where it is compared with a previously
studied finite difference approach.

1 Introduction

Mathematical models for the dynamics of granular materials have recently been
studied in several papers (see e.g. [1]), since a complete and realistic description
of many phenomena in this field is far from being achieved. In this paper we re-
strict ourselves to the rather simple case of growing sandpiles over a flat bounded
open table under the action of a given vertical source, neglecting wind effects and
avalanches. For this phenomenon two main differential models have been proposed.
The first one is the variational model of Prigozhin [11], where the surface flow
of sand is supposed to exist only at critical slope, that is the maximal admissible
slope α for any stationary configuration of sand (here for simplicity it is assumed
α = 1). For that model there are a sufficiently developed theory and efficient nu-
merical schemes which use duality arguments (see [2]). The second approach has
been introduced by Hadeler and Kuttler [10] as an extension of the known BCRE
model [3] (see also [4]). In their model the pile is obtained summing two distinct
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layers: the standing layer u and the rolling layer v. The two layers interact during
the growth process, the exchange term between u and the v being described by the
nonlinear term in the following system of partial differential equations:⎧⎨⎩

ut = (1−|Du|)v in Ω × (0,T )
vt = div(vDu)− (1−|Du|)v + f in Ω × (0,T )
u(·,0) = v(·,0) = 0 in Ω , u = 0 on Γ × (0,T ) .

(1)

In (1) f represents the source, the table is assumed initially empty, and no bound-
ary condition is needed on v (the characteristic lines for the second equation are all
directed towards the interior of Ω ). Note that this model allows for the movement
of rolling grains even at sub-critical slope. It also seems to be better suited for the
description of fast processes or small details over the surface (see [12] for a detailed
comparison between the two models). However, the mathematical theory for the
two-layer model is still incomplete (even a general result of existence for its solu-
tions is lacking). It is interesting to note that the two distinct models have essentially
the same set of admissible stationary solutions (u,v) and that a characterization of
such equilibria has been given, using the theory of viscosity solutions, in [5]: the
maximal equilibrium u is given by the function d(x) measuring at any point x ∈ Ω
its distance to the boundary, and an integral representation is proved for v along of
the transport rays of sand.

Anyway, as it was observed in [8], only in particular cases the asymptotic behav-
ior is the same (and then u(x) = d(x)). In general, the effective stationary standing
solution u for the model (1) is not explicitly known. It is also for such a reason that
in [8] we proposed a finite difference scheme which preserves the properties of the
model at the discrete level, and which is able to give a numerical characterization of
stationary solutions for every general source support in a square open table. A dis-
advantage of this approach is that finite difference schemes on a regular structured
grid restrict the numerical discrete flow essentially to the axis directions, breaking
the homogeneous character of the real phenomenon (cones of sand are in general
approximated by pyramids oriented along the grid axes). This numerical anisotropy
is typical of finite difference (FD) schemes and trying to eliminate it is particularly
important in view of the extension of schemes to the so-called partially-open table
problem, that is when high vertical walls bound portions of the table boundary. In
fact, in such a problem an infinite number of transport rays can meet at certains
points on the boundary, yielding a discontinuous and even unbounded rolling layer
v ∈ L1(Ω) at the equilibrium, and strong numerical difficulties in its description
(see [6]). This has motivated the development of a semi-Lagrangian (SL) approach
which will be discussed in this paper. By construction, the SL approach mimics
the method of characteristics in order to follow in a more accurate way the real di-
rection of sand flow. We introduce the scheme and its properties in Section 2, and
in Section 3 we present first numerical tests in the regular case of the open table
problem, showing a slight but clear improvement in the accuracy with respect to the
standard FD approach. These results let us conjecture that in the partially-open table
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problem the SL approach could be of interest, despite of its time-consuming feature.
Experiments in this direction are actually under consideration.

A detailed presentation of SL methods for evolutive nonlinear partial differential
equations of the first order can be found in [7]; see also [9] for a convergence result
of a first order SL scheme to the viscosity solution.

2 The Semi-Lagrangian Scheme and its Properties

Let us start from the first equation in (1) and observe that it can be equivalently
written in one dimension as

ut = v(1−|ux|) = v

(
1 + min

a∈B(0,1)
aux

)
, (2)

where B(0,1) denotes the closed unit ball of IR, that is the interval [−1,1]. In this
way the nonlinear term |ux| is written as the minimum over the directional deriva-
tives of u and is actually computed comparing the values for a = 1, a = −1 and
a = 0. Note that in two dimensions we can use exactly the same formula to compute
|∇u|. At the discrete level, if we introduce in Ω = (α,β ) a uniform grid of points
G = {xi : xi = α+ iΔx, i = 0, ..,N}, (2) can be written as

un+1
i = un

i +Δ tvn
i

(
1 + min

a∈{−1,0,1}
un(xi + aΔ t)−un

i

Δ t

)
, (3)

where, as usual, un
i denotes the approximate value for u(xi,nΔ t). If Δ t �= Δx and

a �= 0, then the point zi(a)≡ xi +aΔ t is not a node of the grid G and the value of un

in it has to be computed, for example, by linear interpolation. For the equation in v,
we have also second order terms. In fact,

vt = vxux + vuxx− v(1−|ux|)+ f ; (4)

let us use the standard second order central difference D2un
i to approximate uxx(xi)

whereas ux at any node is replaced by the maximal (in absolute value) finite differ-
ence in the left and right directions, Dun

i . A simple trick is to replace the nonlinear
term at the node xi by the previously computed difference (un+1

i − un
i ). Finally, for

vx we use the discrete directional derivative in the direction of ux. After a simplifi-
cation, we finally obtain the following discretization of (4)

vn+1
i = vn(xi +Δ tDun

i )− (un+1
i −un

i )+Δ t(vn
i D2un

i + fi) . (5)

Of course, also the term vn(xi +Δ tDun
i ) requires a local reconstruction by interpola-

tion. In order to complete the scheme we need to add initial and boundary conditions

u0
i = v0

i = 0 ∀i ; un
0 = un

N = 0 ∀n . (6)
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The extension of this approach to IR2 is straightforward.We assume for simplicity
thatΩ = (0,1)×(0,1), that is the unit square table, and we introduce a uniform grid
of points G = {xi, j = (iΔx, jΔx), i, j = 0, ..,N}, where Δx = 1/N is again the space
discretization step. Then the analogue of (3)-(5) and (6) is⎧⎪⎪⎨⎪⎪⎩

un+1
i, j = un

i, j +Δ tvn
i, j

(
1 +

1
Δ t

min
a∈B(0,1)

(un(xi, j + aΔ t)−un
i, j)

)
,

vn+1
i, j = vn(xi, j +Δ tDun

i, j)− (un+1
i, j −un

i, j)+Δ t(vn
i, jD

2un
i, j + fi, j) ,

u0
i, j = v0

i, j = 0 ∀i, j ; un
i, j = 0 ∀n, if xi, j ∈ ∂Ω ,

(7)

where un
i, j denotes the approximate value for u(xi, j,nΔ t). In order to compute the

value of un(xi, j + aΔ t) we use now a bilinear interpolation with respect to the four
vertices of the cell containing xi, j + aΔ t. The same local reconstruction is required
for the term vn(xi, j +Δ tDun

i, j). The minimum term in (7) is approximated by com-
paring the values of un on a finite set of directions (for example the eight directions
θk = kπ/4, k = 1, ..,8, plus the origin, that is the node under consideration). D2un

i, j
denotes the standard five-points second order difference which replaces Δu(xi, j).

2.1 Properties of the SL Scheme

Here we present some features of the above scheme, showing that it preserves the
physical properties of the continuous model. At the moment we are able to give a
complete proof of that only in the one-dimensional case, but these properties are
confirmed by all the 2D experiments. Further details and complete proofs will be
presented in a forthcoming paper.

Theorem 1. Let f ≥ 0 in Ω and

Δ t
Δx
≤min

(
1
2
,

1
C‖ f‖∞

)
, (8)

where C is a positive constant. Then, the sequences un and vn defined in (3)-(5)-(6)
satisfy the following properties for any n:

1. positivity and monotonicity in u: 0≤ un ≤ un+1 ;
2. positivity in v: vn ≥ 0 ;
3. sub-critical slope in u: |Dun| ≤ 1 .

Proof. The structure of the proof is the same of that of Theorem 3.1 of [8]. The
above properties are proved by induction. Here we only discuss some details which
are characteristic of the semi-Lagrangian scheme. In particular, for the nonlinear
term in (3) we remark that

−1≤ min
a∈{−1,0,1}

un(xi + aΔ t)−un
i

Δ t
≤ 0 , ∀n, i ; (9)
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moreover, since the intermediate values are computed in this case by linear interpo-
lation and Δ t ≤ Δx, we have for example that

un(xi +Δ t)−un
i

Δ t
=

un
i+1−un

i

Δx
. (10)

At the same time, if for example Dun
i > 0, we can rewrite

vn(xi +Δ tDun
i ) = vn

i +
Δ t
Δx

(vn
i+1− vn

i )Dun
i , (11)

and the proof of positivity for vn follows the same arguments used for the FD scheme
in [8], yielding the bound 2Δ t ≤ Δx.

The stronger stability bound (8) has to be assumed in order to achieve the gra-
dient constraint in every interval [xi,xi+1]. An accurate discussion on admissible
configurations allows to rewrite the different quotient in (9) always in terms of the
slope of un inside the interval under consideration. Then, considering the difference
(un

i+1− un
i ) as defined by (3), one gets sub-criticality if (Δ t vn

i ) ≤ Δx, which holds
for the uniform boundedness of vn in terms of the source f . ��

3 Numerical Results

In this section we present some numerical tests in two dimensions to compare the
SL method with the old FD method. For computation we used MATLAB 7.0 on a
Processor Intel Pentium M740, 1.73GHz with 80Gb RAM.

Test 1: Constant Source on all of Ω

We assume f ≡ 0.5 in all the domain Ω = (0,1)× (0,1). In this case the ridge
set S (the set where d is singular) is given by the two diagonals of the square and,
following [5], the stationary solutions are given by u(x) = d(x) and

v(x) = 0 on S, v(x) =
∫ τ(x)

0
f (x + tDu(x)) dt in Ω \S, (12)

where τ(x) denotes the distance of x from the set S along the transport ray through
x. In Fig. 1 we show the computed solutions u and v for Δx = 0.02, Δ t = 0.01 (the
stopping criterion for the equilibrium was: ‖un+1−un‖∞ ≤ 10−6).

We show in Table 1 the results of the two schemes at the same final time when
Δ t/Δx=0.4, comparing the L∞ and L1 norms of the error for u. It can be seen that
the two methods are both approximately of first order. Nevertheless, the SL scheme
is slightly more accurate in the L∞ (+12%) and the L1 (+30%) norms respectively.
Naturally, it is also much more expensive due to the minimum term computation at
any iteration.
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Fig. 1 Test 1: Numerical results for u and v

Table 1 Errors for Test 1 at CFL=0.4

method Δx L∞ error L1 error

FD 0.05 0.01718 0.03812
SL 0.05 0.01499 0.02692

FD 0.025 0.00878 0.02027
SL 0.025 0.00770 0.01406

FD 0.0125 0.00457 0.01043
SL 0.0125 0.00404 0.00718

Test 2: Constant Source on a Connected Subdomain of Ω

Assume now that the constant source is concentrated in a small square inside Ω
(see Fig. 2), and it is zero elsewhere. An explicit formula for u is not known in this
case (with some efforts v could be still computed by formula (12)), and Fig. 2 shows
the stationary solution u as computed by the SL algorithm. In Fig. 3 the level lines
found for u are compared with those found by the FD scheme.

Fig. 2 Test 2: The source support and the computed standing layer u
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Fig. 3 Test 2: Level curves for u with the SL and the FD schemes

Test 3: Constant Source on a Disconnected Subdomain of Ω

Assume now that the constant source is concentrated in two distinct small squares
inside Ω , and it is zero elsewhere. Fig. 4 shows this source support together with
the stationary solution u as computed by the SL algorithm. In Fig. 5 the level lines
found for u by the two algorithms are compared.

Fig. 4 Test 3: The source support and the computed standing layer u

Conclusions

The above results seem to show the SL scheme, although enough expensive, can be
more accurate than the corresponding FD scheme in the description of singularity
regions for the solution. This can be seen by comparing the higher level sets of the
two numerical solutions, those corresponding to the crests of the piles. This feature
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Fig. 5 Test 3: Level curves for u with the SL and the FD schemes

can be very important for more complicated problems and geometries, like for the
wall and the silos problems, where hardest singularities can arise (see [6]).

Acknowledgements We thank Alessia Pacella for the numerical experiments.
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On a Variational Approximation of the Effective
Hamiltonian

M. Falcone and M. Rorro

Abstract The approximation of the effective Hamiltonian is a challenging prob-
lem with a strong impact on many applications e.g. to the study of dynamical sys-
tems, weak KAM theory, homogenization, mass transfer problems. In this paper
we present a numerical approximation of the variational approach proposed by C.
Evans in [4], discuss its consistency and give some hints regarding its implemen-
tation. Finally, we compare this approach to the numerical implementation of the
min-max formula proposed by Gomes and Oberman [6].

1 Introduction

The cell problem, as originally introduced circa in 1988 by [7], corresponds to the
following equation

H(x,Du + P) = λ on TN (1)

where TN is the unit flat torus, P ∈ RN is a fixed vector and the unknown is the pair
(u,λ ). Let us assume that H is Lipschitz continuous, coercive and convex in the
second variable. Then, it is well known (see [7], [3] for details) that for each fixed
P ∈ RN there exists a unique real number λ such that (1) has a periodic Lipschitz
continuous viscosity solution. Such unique value, as a function of P, is the so called
the effective Hamiltonian related to H and it is usually denoted by H(P). The major
difficulty is to determine the function H : RN → R, a rather difficult and heavy
computation even for low dimensional problems.
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Since the effective Hamiltonian verifies the following identity

H(P) = inf
u∈C1(TN)

sup
x∈TN

H(x,Du + P) (2)

usually indicated as the min-max formula (see [2] and [6]) one can think that the
above characterization can lead to an algorithm. In fact, a direct discretization has
been proposed in [6] and some examples have been computed using that formula.
The main idea in that approach is to discretize C1(TN) by piecewise linear functions
(the P1 approximation of finite elements) and then apply a min-max search to the
discrete formula using MATLAB. Here we try to improve the performances of the
above method using the FFSQP library [10] which has been conceived to solve non-
linear min-max problems. Although this code has a better performance with respect
to the MATLAB minimax function used in [6], the method is still too expensive in
terms of CPU times and seems to be inadequate to compute H(P) with a reasonable
accuracy (see the last section for details). This experience has motivated further ef-
forts to find new ways to compute the effective Hamiltonian. We note that one of
the main difficulties in both problems (1) and (2) is that, even if the value of H(P)
is unique for each fixed P, the solution of (1) or the minimizer of (2) is in general
not unique. In [9] and [8] different regularizations of (1) are considered (see [1] for
some a priori estimates). Here we follow a different variational approach based on a
regularization of the min-max formula (2) that was proposed in [4]. This approach
is in principle less accurate than the direct discretization of the min-max formula
because we have replaced the original problem by a regularized problem introduc-
ing an additional error. However, as we will explain in the sequel, this approach is
simpler and more efficient from a computational point of view. The numerical re-
sults presented in Section 3 show that the CPU times are drastically reduced by this
method. We note that for this approach a strict convexity of the Hamiltonian in the
second variable is required.

2 A Variational Approximation

As we said in the introduction, our starting point is the approximation of the effective
Hamiltonian proposed by Evans in [4]. This is defined by

Hk(P) :=
1
k

log

(∫
Tn

ekH(x,Duk+P)dx

)
, (3)

where k ∈ N and uk ∈C1(TN) is a minimizer of the functional

Ik[uk] =
∫

Tn
ekH(x,Duk+P)dx

subject to the normalization
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TN

ukdx = 0.

Theorem 1 ([4]). Suppose H(x, p) is strictly convex in p. Then:

H(P) = lim
k→+∞

Hk(P). (4)

Moreover, the following estimates hold true:

Hk(P)≤ H(P)≤ Hk(P)+C
logk

k
(5)

for any k ∈ N. Let us introduce the new variable vk = uk + Px and observe that it
satisfies the Euler–Lagrange equation

div
(

ekH(x,Dvk)DpH(x,Dvk)
)

= 0. (6)

The idea of the approximation is then to construct a finite difference approximation
of (6) to compute vk. For simplicity, let us fix the dimension to N = 1 and assume
that the grid G is a standard lattice G = {xi : xi = iΔx}. Using a standard second
order finite difference approximation for vx and a central approximation for vxx

vx =
vi+1− vi−1

2Δx
and vxx =

vi+1−2vi + vi−1

Δx2 (7)

we end up with a sparse nonlinear system of n equations in the n unknown v1, . . . ,vn

(n is the number of nodes). Since the term vi is contained only in the discretization
of the second derivative, it is easier to solve the i-th equation with respect to vi,
vi = Fi(vi+1,vi−1), by the iterative scheme

vm+1
i = Fi(vm

i+1,v
m
i−1) for i = 1, . . . ,n. (8)

Once a minimizer is obtained, we compute Hk(P) by a normalization of formula
(3), that we get by adding and subtracting maxx∈TN H(x,Dvk), to obtain

Hk(P) = max
x∈TN

H(x,Dvk)+
1
k

log

⎛⎝∫
Tn

e
k

(
H(x,Dvk)−max

x∈TN
H(x,Dvk)

)
dx

⎞⎠ . (9)

It is easy to verify that these formulae are equivalent. Formula (9) is more convenient
from a numerical point of view. In fact, by this formula we can avoid the overflow
error due to the computation of the exponential under the integral. Let us explain this
procedure by an example in one dimension. Consider the following Hamiltonian

H(x,Du) =
1
2
|Du|2− f (x).

The Euler–Lagrange equation for the functional Ik[vk] is
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div
(

ek( 1
2 |Dvk|2− f (x))Dvk

)
= 0.

We can write it in the equivalent form

k (vxvxx− fx(x))vx + vxx =−k fx(x)vx +
(
kv2

x + 1
)

vxx = 0,

which by finite differences (7) becomes

−k fx(x)
(

vi+1− vi−1

2Δx

)
+

(
k

(
vi+1− vi−1

2Δx

)2

+ 1

)(
vi+1−2vi + vi−1

Δx2

)
= 0.

(10)
Finally, we can write (10) in a fixed point form

vi = Fi(vi+1,vi−1) :=
vi+1 + vi−1

2
−Δx3 k fx(x)(vi+1− vi−1)

k(vi+1−ui−1)2 + 4Δx2 .

In higher dimension, the Euler–Lagrange equation and its finite difference approxi-
mation have been computed and solved respect to vi, using the symbolic computa-
tion software MAPLE. The fixed point scheme has been implemented thorough the
software HJPACK [5], exploiting the structure and the parallelism already defined
in that software.

3 The Gomes-Oberman Discretization Revisited

The approximated effective Hamiltonian, H
Δx

, proposed in [6], from a direct dis-
cretization of the min-max formula (2), is

H
Δx(P) = inf

u∈W1
esssup

x∈TN
H(x,Du + P)

where W 1 ≡ {
w : TN → R : w ∈C(TN) and Dw(x) = c j ∀x ∈ Tj, ∀ j

}
, Tj is a fam-

ily of simplices such that TN =
⋃

j Tj and Δx≡max j diam(Tj).

Proposition 1 ([6]). Suppose H(x, p) is convex in p. Then H
Δx(P) is convex,

H(P) = lim
Δx→0

H
Δx(P) (11)

and
H(P)≤ H

Δx(P) (12)

It is interesting to note that some a priori error estimates are also available for this
approximation scheme. More precisely, when u is Lipschitz continuous (which is
the case when H(x, p) is strictly convex in p), we have

H
Δx(P)≤ H(P)+ O(Δx1/2). (13)
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and when u ∈C2(TN), the above estimate can be improved to

H
Δx(P)≤ H(P)+ O(Δx). (14)

It is natural to discretize the spatial variable by computing the supremum only on
the nodes of the triangulation xi, i = 1, . . . ,n. So the fully discrete min-max problem
is

min
u∈W1

max
xi

H (xi,Du(xi)+ P) . (15)

The spatial approximation introduces an additional error of O(Δx), which is propor-
tional to the Lipschitz constant (in the x variable) of H. The min-max problem (15)
is a finite dimensional nonlinear optimization problem

min
Du

F(Du) (16)

where the map F : RNn→ RNn with N the dimension and n the number of nodes is
defined by maxi Fi(Du) = maxi H(xi,Du+P). We note that the map F is still convex
as long as H is convex. In [6] a discretization of Du by finite difference is used
setting Du(xi) = (ui+1−ui)/Δx which can be solved by using standard optimization
routines. The periodicity of u is automatically verified imposing

un+1−un

Δx
=

u1−un

Δx
. (17)

Instead of introducing a discretization of Du(xi), we consider it as an independent
variable, ci, and so we consider the linear constrained optimization problem

min
ci

max
i

H(xi,ci + P) subject to ∑
i

ci = 0. (18)

The linear constraint is equivalent to impose u to be periodic. Although the linear
constraint makes the problem harder, it improves the accuracy of the solution as
H /∈C1. We note that the min-max problem can be rewritten, with the addition of a
new variable y, as a nonlinear constrained optimization problem

min
ci ,y
{y : H(xi,ci + P)≤ y} . (19)

In [6], the fminimax function, contained in the MATLAB Optimization Toolbox,
is used to solve the problem. Here instead we use the optimization routine ffsqp
[10]. Both the algorithms are based on Sequential Quadratic Programming. ffsqp
tackles the problem directly, without using the equivalent form (19). It also provides
two kinds of line search (monotone and nonmonotone). We use the nonmonotone
line search, which forces a decrease of the objective function within at most four
iterations, since the monotone line search (of Armijo type) does not work in some
experiments where H is not strictly convex. We use ffsqp providing the gradient
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of the linear constraint and let it compute the gradient of the objective function. It
uses a forward finite differences approximation.

4 Numerical Results

An implicit solution for H if N = 1 and H(x, p) = 1
2 (Du+P)2− f (x) with f periodic

of period one is (see [7] for details)

H(P) =
{−min f if |P|< ∫ 1

0

√
2[ f (x)−min f ]dx

c : |P|= ∫ 1
0

√
2[ f (x)+ c]dx otherwise.

(20)

We use this result in the following experiment to validate the schemes.

The one dimensional pendulum

The Hamiltonian of the one dimensional pendulum is H1(x,Du)= 1
2 |Du|2 +cos2πx

From (20) we get that H 1(P) = 1 if |P|< 4π−1. Let us define

e(P) =

⎧⎪⎪⎨⎪⎪⎩
1−H

Δ
1 (P) if |P|< 4π−1

|P|−quad

(√
2(cos(2πx)+H

Δ
1 (P)

)
otherwise.

where H
Δ
1 is the computed effective Hamiltonian and quad is a MATLAB function

we use to compute the integral in (20) with c = H
Δ
1 and with a tolerance of 10−12.

In the following tables we show the L1 and L∞ norm of e

‖e‖1 =∑
i

|e(Pi)| ‖e‖∞ = max
i
|e(Pi)| (21)

and the numerical order of convergence, i.e.

log(
∥∥eΔx1

∥∥/
∥∥eΔx2

∥∥)
log(Δx1/Δx2)

where Δx1 = n−1 refers to the previous approximation and H Δ
1 has been computed

over a grid on [0,2π ] with ΔP = (4π)−1. We note that the L1 and L∞ error for the
min-max approximation (Table 1) are almost the same. In fact most of the error is
concentrated at P = 4/π where H 1 is not differentiable.

In the variational approximation one would like to fix k as big as possible, or
better, if |Hk−H

Δ
k | ≤C(Δx)p and k = C(Δx)−q, since
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Table 1 L1 and L∞ norm of e and deduced order by the min-max approximation

n L1 L∞ L1-order L∞-order

10 3.7×10−3 3.2×10−3

50 1.0×10−4 1.0×10−4 2.2 2.1
100 2.4×10−5 2.4×10−5 2.1 2.1
200 5.5×10−6 5.5×10−6 2.1 2.1
400 1.3×10−6 1.3×10−6 2.0 2.0

|H−H
Δ
k | ≤ |H−Hk|+ |Hk−H

Δ
k | ≤C

(
logk

k
+(Δx)p

)
≤C

(
(Δx)q log

(
(Δx)−q)+(Δx)p)

= C(Δx)p ((Δx)q−p log
(
(Δx)−q)+ 1

) (22)

one would like to choose q = p+1. Unfortunately the scheme shows some instabil-
ity if k is too big respect to n, above all if P belongs to the flat part of H, in this case
(−4/π ,4/π). So we fix k = 2n/5 (q = 1) and the stopping criterion ε = n−3/10.
Hence the predominant part of the error is logn/n, as confirmed also from the de-
duced order in Table 2. We note that most of the error is concentrated in flat part of
H, which causes the increase of the L1 error.

Table 2 L1 and L∞ norm of e and deduced order by the variational approximation.

n L1 L∞ L1-order L∞-order

10 5.8 3.9×10−1

50 1.9 1.2×10−1 0.7 0.7
100 1.1 6.9×10−2 0.8 0.8
200 6.3×10−1 3.9×10−2 0.8 0.8
400 3.5×10−1 2.2×10−2 0.8 0.8

Two uncoupled penduli

Consider the Hamiltonian H2(x,Du) = 1
2 |Du|2 + cos2πx + cos2πy. In this case

H 2(P) = H 1(P1)+H 1(P2)

where P = (P1,P2). The error behaves like in the one dimensional case, but the
computational cost, that can be neglected in the one dimensional case, here begins
to be relevant, as shown in Table 3 and 4 where it is shown the CPU time needed
to compute just one value of H on an IBM power5 at 1.9GHz. Although the direct
discretization of the min-max formula is more accurate, its computational cost is too
high.
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Table 3 e(P) at P = (4π−1,4π−1) and CPU time for the min-max method

n e(P) order seconds

10 6.1×10−3 6s
20 1.4×10−3 2.1 1183s

Table 4 e(P) at P = (4π−1,4π−1) and CPU time for the variational method

n e(P) order seconds

10 6.5×10−2 0s
20 5.3×10−2 0.3 0s
50 3.1×10−2 0.6 0s
100 1.9×10−2 0.7 4s
200 1.2×10−2 0.7 67s
400 6.9×10−3 0.8 591s
800 4.0×10−3 0.8 23910s
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Estimation of Diffusion Coefficients in a Scalar
Ginzburg-Landau Equation by Using Model
Reduction

M. Kahlbacher and S. Volkwein

Abstract Proper orthogonal decomposition (POD) is a powerful technique for
model reduction of linear and non-linear systems. It is based on a Galerkin type dis-
cretization with basis elements created from the system itself. In this work POD is
applied to estimate scalar parameters in a scalar non-linear Ginzburg-Landau equa-
tion. The parameter estimation is formulated in terms of an optimal control prob-
lem that is solved by an augmented Lagrangian method combined with a sequential
quadratic programming algorithm. A numerical example illustrates the efficiency of
the proposed solution method.

1 Introduction

Proper orthogonal decomposition (POD) is a method to derive low order models
for systems of differential equations. It is based on projecting the system onto sub-
spaces consisting of basis elements that contain characteristics of the expected solu-
tion. This is in contrast to, e.g., finite element techniques, where the elements of the
subspaces are uncorrelated to the physical properties of the system that they approx-
imate. It is successfully used in different fields including signal analysis and pattern
recognition (see, e.g., [4]), fluid dynamics and coherent structures (see, e.g., [7, 17])
and more recently in control theory (see, e.g., [13]). The relationship between POD
and balancing is considered in [12, 16, 20]. In contrast to POD approximations,
reduced-basis element methods for parameter dependent elliptic are investigated in
[1, 14, 15], for instance.
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In this work we continue our research in [10] and apply a POD Galerkin approx-
imation to estimate diffusion coefficients in a scalar, non-linear Ginzburg-Landau
equation. The corresponding parameter identification problem is formulated as an
optimal control problem with inequality constraints for the parameters. To solve this
optimization problem with a scalar inequality constraint we apply an augmented La-
grangian method (see, e.g., [2, 3]) combined with a globalized sequential quadratic
programming (SQP) algorithm as described in [6]. In [9] error estimates for POD
Galerkin schemes for linear and certain semi-linear elliptic, parameter dependent
systems are proved. The resulting error bounds depend on the number of POD basis
functions and on the parameter grid that is used to generate the snapshots and to
compute the POD basis.

The paper is organized in the following manner: In Section 2 we introduce the
parameter identification problem and review some pre-requisites. The POD approx-
imation is explained shortly in Section 3 and numerical examples are carried out in
Section 4.

2 Identification Problem

Let Ω ⊂ Rr, r = 2 or 3, be a bounded open domain and let Γ = ∂Ω denote the
boundary of Ω . We suppose that Ω is split into m measurable disjunct subdomains
Ωi, i.e.,

Ω =
m⋃

i=1

Ωi and Ωi∩Ω j = /0 for i �= j.

We consider a scalar Ginzburg-Landau equation

−∇ · (c∇u
)
+ qu + u3 = f in Ω , (1a)

c
∂u
∂n

+σu = g on Γ , (1b)

where q ∈ L∞(Ω) with q(x) ≥ qa > 0 for almost all (f.a.a.) x ∈ Ω , f ∈ L2(Ω),
σ ∈ L∞(Γ ) with σ(s)≥ 0 f.a.a. s ∈ Γ and g ∈ L2(Γ ). Furthermore, c is supposed to
be constant on the subdomainsΩi:

c(x) = ci f.a.a. x ∈Ωi∪
(
Ω i∩Γ

)
, 1≤ i≤ m,

with positive ci’s. Problem (1) is a simplified model of the full Ginzburg-Landau
equations of superconductivity valid in the absence of internal fields [18].

A function u ∈H1(Ω) is called a weak solution to (1) if

m

∑
i=1

∫
Ωi

ci∇u ·∇ϕ+
(
qu + u3− f

)
ϕ dx +

∫
Γ

(
σu−g

)
ϕ ds = 0 ∀ϕ ∈ H1(Ω). (2)
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By standard Galerkin procedure it follows that (2) admits a unique solution u ∈
H1(Ω). IfΩ is convex with a Lipschitz-continuous boundary or ifΩ has a boundary
of class C2 we derive u ∈ H2(Ω) from regularity results for elliptic equations.

Remark 1. Note that for c ≡ 1, q ≡ −1, f ≡ 0, g ≡ 0, σ ≡ 0 problem (1) has the
form

−Δu−u + u3 = 0 in Ω and
∂u
∂n

= 0 on Γ . (3)

Then, the constant functions u≡ 0, u≡−1, and u≡ 1 solve (3). Hence, the assump-
tion q≥ qa > 0 almost everywhere in Ω is essential to prove uniqueness. �

The goal of the identification problem is to identify the diffusion coefficient c,
i.e., the ci’s, from (perturbed) measurement ud for the solution u to (1) on Γ . There-
fore, we introduce the quadratic cost functional J : H1(Ω)×Rm→ [0,∞) by

J(u,c) =
α
2

∫
Γ

∣∣u−ud
∣∣2 dx +

1
2

m

∑
i=1

κi
∣∣ci
∣∣2 (4)

for u ∈ H1(Ω) and c = (c1, . . . ,cm) ∈ Rm. The optimal control problem is of the
form

minJ(u,c) subject to (s.t.) (u,c) ∈H1(Ω)×Cad solves (2), (P)

where the set of admissible diffusion coefficients is given by

Cad =
{

c = (c1, . . . ,cm) ∈ Rm |ci ≥ ca for i = 1, . . . ,m
}

with a positive scalar ca.
Using standard arguments it can be proven that (P) possesses a (local) solution

x∗=(u∗,c∗)∈H1(Ω)×Cad . To characterize an optimal solution of (P) we introduce
the Lagrange function L : H1(Ω)×Rm×H1(Ω)→ R by

L(u,c, p) = J(u,c)+
m

∑
i=1

∫
Ωi

ci∇u ·∇p +
(
qu + u3− f

)
pdx +

∫
Γ

(
σu−g

)
pds

for (u,c, p) ∈ H1(Ω)×Rm×H1(Ω). Existence of a Lagrange multiplier (or dual
state) p∗ associated with x∗ = (u∗,c∗) is shown in [5, Theorem 3.3], where p∗ satis-
fies the dual system (here written in its strong form)

−∇ · (c∗∇p∗
)
+ qp∗+ 3(u∗)2 p∗ = 0 in Ω , c

∂ p∗
∂n

+σ p∗ = ud−u∗ on Γ

and the variational inequality

m

∑
i=1

(
κic

i
∗+

∫
Ωi

∇u∗ ·∇p∗dx
)(

ci− ci
∗
)≥ 0 for all c = (c1, . . . ,cm) ∈Cad .

To solve (3) we continue our earlier work [9, 10] and apply an augmented La-
grangian method combined with an globalized SQP algorithm. The discretization
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of the state and the dual equations is carried out by a POD Galerkin approximation.
We refer the reader to [8, 10], where a scalar potential parameter is identified in a
linear elliptic partial differential equation.

3 POD Approximation

In this section we introduce briefly the POD method. Suppose that for points c j =
(c1

j , . . . ,c
m
j ) ∈Cad , j = 1, . . . ,n, we know (at least approximately) the solution u j to

(1), e.g., by utilizing a finite element or finite difference discretization. We set

V = span
{

u1, . . . ,un
}⊂ H1(Ω)

with d = dimV ≤ n. Then the POD basis of rank �≤ d is given by the solution to

min
ψ1,...,ψ�

n

∑
j=1

∥∥∥u j−
�

∑
i=1

〈u j,ψi〉H1(Ω)ψi

∥∥∥2

H1(Ω)
s.t. 〈ψi,ψ j〉H1(Ω) = δi j. (5)

The solution to (5) is characterized by the eigenvalue problem

Rψi = λiψi, 1≤ i≤ �,

where λ1 ≥ λ2 ≥ . . . ≥ λ� ≥ . . . ≥ λd > 0 denote the eigenvalues of the linear,
bounded, self-adjoint, and non-negative operator R : H1(Ω)→ V defined by

Rz =
n

∑
j=1

〈u j,z〉H1(Ω) u j for z ∈H1(Ω);

see [7, 11, 19]. Suppose that we have determined a POD basis {ψi}�i=1. We set

V � = span
{
ψ1, . . . ,ψ�

}⊂ V ⊂ H1(Ω).

Then the following relation holds

n

∑
j=1

∥∥∥u j−
�

∑
i=1
〈u j,ψi〉H1(Ω)ψi

∥∥∥2

H1(Ω)
=

d

∑
i=�+1

λi.

Next we introduce the POD Galerkin scheme for (2). The function u� =∑�
i=1 u�

iψi ∈
V � solves

m

∑
j=1

∫
Ω j

c j∇u� ·∇ψ dx +
∫
Ω

(
qu� +(u�)3)ψ dx +

∫
Γ
σu�ψ ds

=
∫
Ω

fψ dx +
∫
Γ

gψ ds ∀ψ ∈V �.

(6)
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Problem (6) is a non-linear system for the � unknown modal coefficients u�
1, . . . ,u

�
� ∈

R. If

E (�) = ∑�
i=1λi

∑d
i=1λi

≈ 1 for �$ d,

holds, (6) is called a low-dimensional model for (2).

4 Numerical Example

In this section we present a numerical example for the identification problem. The
numerical test is executed on a standard 3.0 GHz desktop PC. We are using the
MATLAB 7.1 package together with FEMLAB 3.1.

Run 1 Let Ω = {x = (x1,x2) |x2
1 + x2

2 < 1} be the open unit cirle in R2 and the
subdomainsΩ1, Ω2 be given as

Ω1 =Ω \Ω2, Ω2 =
{

x = (x1,x2) ∈Ω | x2
1

a2 + (x2−0.5)2

b2 < 1
}

with a = 0.75 and b = 0.45; see Figure 1 (left plot). Thus, the diffusion coeffi-

Fig. 1 Domain Ω and subdomains Ω1, Ω2 (left plot); FE solution (right plot).
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Ω
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Ω
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cient is given by c = (c1,c2). In (1) we choose q ≡ 10, f ≡ 3, σ ≡ 2, g(x) =
10+ cos(πx1/2) ·cos(πx2/2) for x = (x1,x2) ∈ Γ . For c̄ = (0.7,1.4) we calculate a
finite element (FE) solution ūh = ūh(c̄) ∈H1(Ω) using standard piecewise linear FE
ansatz functions on a triangular mesh with 1147 degrees of freedom. The CPU time
for the FE solve is 13.5 seconds. The FE solution is plotted in Figure 1 (right plot).
To derive a POD basis we choose the diffusion values c j = (ηk,ηl)∈R2

+, 1≤ j≤ n,
with

j = 5(k−1)+ l for 1≤ k, l ≤ 5, ηk = 0.5 +
k− 1

4
for k = 1, . . . ,5
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and compute the corresponding FE solutions uh
j = uh(c j) ∈ H1(Ω) to (1), i.e., we

have n = 25 snapshots {uh
j}n

j=1. The computation of the snapshots requires 341
seconds. Next we compute the POD basis of rank � as described in Section 3. The
decay of the largest normalized eigenvalues λi/∑d

j=1λ j, 1 ≤ i ≤ 9, is plotted in
Figure 2.

2 4 6 8

10
−6

10
−4

10
−2

10
0

Decay of the first eigenvalues

Fig. 2 Decay of the largest 9 normalized eigenvalues λi/∑d
j=1 λ j.

For the POD Galerkin approximation we choose � = 7 POD basis functions. The
computation of the POD solution ū� = ū�(c̄) for the diffusion parameter c̄ requires
0.1 second. The relative error in the H1-norm between the FE state ūh and the POD
state u�(c̄) is 0.25%. Furthermore, the relative errors between the FE state and the
POD state decreases with increasing number � of POD basis functions (see Table 1).
Let us mention that in [9] error estimates for POD Galerkin schemes are derived.

Table 1 Relative errors between the FE state and the POD state for different numbers � of POD
basis functions applying in the POD Galerkin approximation for (1).

� = 4 � = 5 � = 6 � = 7 � = 8

‖ūh−ū�‖H1(Ω )
‖ūh‖H1(Ω )

0.01160 0.00291 0.00289 0.00247 0.00246

Next turn to the identification problem. We set ca = 0.01 in the definition of the
admissible set Cad of diffusion coefficients. Moreover, we choose the weights α =
100 and κ = 10−5 for the cost functional. For c̄ we have already computed the FE
solution ūh to (1). Let for any x∈Ω the term ε(x)∈ [−1,1] denote a random variable
and let δ ≥ 0 be a given perturbation. In (4) we set ud = uh

d|Γ for the desired state,
where uh

d = (1+δε)ūh. The goal of the identification problem is to recover cideal = c̄
from the perturbed measurement ud for uh

ideal = ūh on the boundaryΓ . We choose the
perturbation δ = 0.05 (i.e., 5% noise) and apply the augmented Lagrangian method
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combined with a globalized SQP method to determine a numerical solution (u�∗,c�∗)
with c�∗ = (0.7041,1.4018). This gives the relative error

|c�∗ − cideal|2
|cideal|2 ≈ 0.0029 = 0.29%,

in the diffusion parameter, where | · |2 denotes the Euclidean norm in R2. Moreover,
the relative errors in the state variable to the ideal data uideal and to the noisy data
(1 + δε)ūh are presented in Table 2.

Table 2 Relative errors of the POD state u�∗ compared to the ideal data uideal and to the noisy data
ud with 5% noise.

‖u�∗−u‖H1(Ω )
‖u‖H1(Ω )

‖u�∗−u‖L2(Ω )
‖u‖L2(Ω )

‖u�∗−u‖L2(Γ )
‖u‖L2(Γ )

u = uh
ideal 0.0061 0.0018 0.0014

u = ud 0.3406 0.0215 0.0235

Notice that the optimization algorithm only needs 1.6 seconds CPU time, whereas
the FE based augmented Lagrangian method combined with a globalized SQP
solver stops after 286 seconds. However, the CPU time for the computation of the
snapshots is larger that the CPU time for the FE optimization method. The advan-
tage of POD regarding computing times appears significantly when the identifica-
tion problem has to be solved several times (e.g., for different data ud) so that the
already computed POD basis can be utilized again. For instance, if we take the per-
turbation δ = 0.03 for the measurement data ud and solve the optimal control prolem
again we obtain an optimal solution after 2.2 seconds with c�∗ = (0.7019,1.3996)
that leads to the relative error

|c�∗ − cideal|2
|cideal|2 ≈ 0.0012 = 0.12%.

The relative errors in the state variable are presented in Table 3.

Table 3 Relative errors of the POD state u�∗ compared to the ideal data uideal and to the noisy data
ud with 3% noise.

‖u�∗−u‖H1(Ω )
‖u‖H1(Ω )

‖u�∗−u‖L2(Ω )
‖u‖L2(Ω )

‖u�∗−u‖L2(Γ )
‖u‖L2(Γ )

u = uh
ideal 0.0041 0.0014 0.0007

u = ud 0.2122 0.0129 0.0141
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Reduced Order Models (POD) for Calibration
Problems in Finance

E.W. Sachs and M. Schu

Abstract In this paper we consider the calibration of mathematical models for op-
tion pricing to observed data on the market. As a model for the underlying stock
prices we use a jump diffusion process which results for the price of a call option in
a partial integro-differential equation. We employ the dual - Dupire-type - version
of it in order to improve the efficiency of the original calibration problem. To reduce
the complexity of the problem even further, we use a reduced order model technique
based on proper orthogonal decomposition techniques to obtain a model for the op-
tion price which is considerably smaller in size, but still copies the original model at
a surprising accuracy. In the second half of the paper, we present numerical results
which support these findings.

1 Introduction

The pricing of options in the financial markets has become a mathematically chal-
lenging problem in various areas of mathematics. Here we address some issues in
the calibration of pricing models.

The basic model for the price of a call option was given by Black and Scholes
[4] in form of a parabolic partial differential equation. If S∈ [0,∞) denotes the stock
price and t ∈ [0,T ] the time variable, then the price of a European call option with
strike price K and expiration date T is given by C(t,S), where S is the current stock
price at current time t. C(·, ·) is a solution of
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−Ct =
1
2
σ2S2CSS + rSCS− rC (t,S) ∈ [0,T ]× [0,∞) (1)

with a final condition C(T,S) = max{S−K,0} and boundary condition C(t,0) = 0.
The parameter r represents the riskfree interest rate and σ is the volatility of the
underlying asset.

A major improvement of the original Black-Scholes model represents the local
volatility model, where the volatility σ is no longer constant, but depends ’locally’
on time and stock price, i.e. σ(t,S).

Often, one can find many options traded on the market for the same asset with
different expiration times Ti and strike prices Ki and we denote the observed market
prices of these options by Cobs

i , i = 1, ...,n. Given σ(t,S) we have for each pair
(Ti,Ki) a model price Ci(t,S), i = 1, ...,n defined through the solution of (1) with
T = Ti and K = Ki. The calibration problem at a time t0 with observed stock price
St0 is a nonlinear least squares problem

min
σ(·,·)

n

∑
i=1

(Ci(t0,St0 ;σ)−Cobs
i )2. (2)

However, note that the use of the local volatility model in calibration, causes a single
function evaluation to require the solution of n partial differential equations.

For this problem there is an alternative approach, i.e. one can use a very efficient
approach for the calibration problem by using the Dupire equation [6] and [3] in-
stead. Consider a solution D(T,K) depending on the expiration time T and the strike
price K of the following partial differential equation, Dupire’s equation,

DT =
1
2
σ(T,K)2K2DKK + rKDK (T,K) ∈ [t0,∞]× [0,∞) (3)

with D(t0,K) = max{St0−K,0} as initial and D(T,0) = St0 as boundary condition.
Note that we can consider the original call price C(t,S) not only in dependence

of time t and stock price S, but also in dependence on the ’initial conditions’, the
duration T and the strike price K by C(t,S;T,K). Then it can be shown, that the
following identity holds

Ci(t,S) = C(t,S;Ti,Ki) = D(Ti,Ki), i = 1, ...,n. (4)

Hence the nonlinear least squares problem (2) can be rewritten as

min
σ(·,·)

n

∑
i=1

(D(Ti,Ki;σ)−Cobs
i )2. (5)

This requires in contrast to the previous formulation for each function evaluation
not n, but only one solution of a partial differential equation.

The goal of this contribution is to set up the calibration problem for option
price models using Lévy processes and to apply Dupire’s framework. Having for-
mulated this problem as an optimization problem with partial integro-differential
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equations (PIDE), we derive from the proper orthogonal decomposition (POD)
framework a reduced order model. The main issue and original aspect in this paper
is to apply the POD framework to a PIDE and present numerical results in this case.
They support the statement that this is a reasonable approach to obtain reduced order
models for this particular application in finance.

2 Partial Integro-Differential Equation

In the past decade several extensions of the Black-Scholes model for the pricing
of options have been developed. In this paper we consider a jump diffusion model
based on Lévy processes. Here f is the probability density for the distribution of
jumps sizes and λ a parameter which regulates the frequency of the jumps. The
pricing process is given by a PIDE, see [5]. Recently, [1] and [14] derived a Dupire-
like PIDE for the original PIDE, similar to the Black-Scholes framework. The price
D(T,K) of an option with expiration time T and the strike price K is given by the
following PIDE:

D̄T + 1
2σ

2(T,K)K2D̄KK +(r−λζ )KD̄K +λ (1 + ζ )D̄

−λ
∫ ∞

−∞
D̄(T,Ke−y)ey f (y) dy = 0, (T,K) ∈ [t0,Tmax]× [0,∞)

(6)

with an initial condition D̄(t0,K) = max{St0 −K,0} depending on the current time
t0 and the current stock price St0 and boundary condition D̄(T,0) = St0 .

For the density function we use Merton’s model and define f as

f (y) =
1√

2πσJ
e
− (y−μJ )2

2σ2
J

with μJ the expected value and σJ the standard deviation of the normally distributed

jump sizes and ζ = exp{σ2
J

2 + μJ}−1.
One can consider various calibration problems, here we look as in the Black-

Scholes case at the volatility σ for calibration. In other papers, see e.g. [5], [8], [11],
the distribution function f is parametrized and used for calibration. This will be the
subject of future research in the POD context.

For numerical reasons we apply a variable transformation x = ln(K/St0). We
obtain a PIDE defined on [t0,Tmax]× (−∞,∞):

DT + 1
2σ

2(T,x)Dxx +
(
r + 1

2σ
2(T,x)−λζ)Dx +λ (1 + ζ )D

−λ
+∞∫
−∞

D(T,x− y)ey f (y) dy = 0

(7)
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with initial condition D(t0,x) = max{St0 − St0ex,0}. We restrict the solution inter-
val for D to [xmin,xmax] with boundary conditions D(T,x) = St0 for x ≤ xmin and
D(T,x) = 0 for x≥ xmax.

The weak formulation of the PIDE with a given set of basis functions w1, ...,wn

on [xmin,xmax] is given by∫ xmax

xmin

DT (T,x)wj(x)dx = a(T ;D(T, ·),wj), j = 1, ...,n (8)

with a bilinear form

a(T ;v,w) =−
∫ xmax

xmin

σ2(T,x)
2

vx(x)wx(x)dx

−
∫ xmax

xmin

(
r +

σ2(T,x)
2

−λζ +σ(T,x)σx(T,x)
)

vx(x)w(x)dx

−λ (1 + ζ )
∫ xmax

xmin

v(x)w(x)dx +λ
∫ xmax

xmin

∫ +∞

−∞
v(x− y)w(x) f (y)eydy dx.

(9)

If we approximate the solution D(T,x) by ∑n
i=1αi(T )wi(x) then the following sys-

tem of ODEs needs to be solved

n

∑
i=1

α̇i(T )〈wi,wj〉L2 =
n

∑
i=1

αi(T )a(T ;wi,wj), j = 1, ...,n, T ∈ [t0,Tmax]. (10)

For the numerical solution, we use a fully implicit Euler scheme for m = 0, ...,N

n

∑
i=1
αi(Tm+1)

(
〈wi,wj〉L2 −ΔT a(Tm+1;wi,wj)

)
=

n

∑
i=1
αi(Tm)〈wi,wj〉L2 .

For an efficient numerical solution there are several approaches known, see e.g.[2],
[12], [10], [15].

3 Reduced Order Model by Proper Orthogonal Decomposition

The calibration of the PIDE model requires many function evaluations during the
optimization phase. Each function evaluation itself needs a new numerical solution
of the PIDE. In order to save computing time, one could use a less complex model
to approximate the PIDE solver.

There is an abundant amount of literature on POD, a recent reference is [9] and
its citations.

In [13] an approach using the reduced basis approach is applied to a calibration
problem of fitting option prices for a local volatility model.

The calibration problem using the PIDE (7) is given in the following form, where
Dn is the solution of the Galerkin approximation (10).
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min
σ(·,·)

n

∑
i=1

(Dn(Ti,xi;σ)−Cobs
i )2 where Dn(T,x) =

n

∑
i=1
αi(T ;σ)wi(x). (11)

In the Proper Orthogonal Decomposition one computes for a given choice of σ
a solution of the PIDE (10) and stores the solution values over time Dn(Tm,x), so
called snapshots, in a long matrix for the coefficients αi(Tm)

Y = [α(T0), ...,α(TN)] α(Tm) = (α1(Tm), ...,αn(Tm))T .

Then one applies a Singular Value Decomposition to the matrix Ȳ = M1/2YD1/2

(where M is the mass matrix of the basis functions wi and D is a diagonal weighting
matrix) and looks at the decay of the singular values. With L$ N only the first
L vectors ψ0, ...ψL are stored, which correspond to the L largest singular values of
Ȳ . Based on these vectors one can compute a new set of basis function v1, ...,vL

which can be used instead of w1, ...,wN in a Galerkin approximation. Hence the
approximating solution of the PIDE by Dn(T,x) =∑n

i=1αi(T ;σ)wi(x) is replaced by
Dpod(T,x) = ∑L

k=1βk(T ;σ)vk(x). This results, in contrast to (10) in a small system
of ODEs of size L

L

∑
k=1

β̇k(T )〈vk,v j〉L2 =
L

∑
k=1

βk(T )a(T ;vk,v j), j = 1, ...,L, T ∈ [t0,Tmax] (12)

which might not exhibit the sparsity pattern as for a finite element basis, but its
dimension is small.

The calibration problem (11) is replaced by

min
σ(·,·)

n

∑
i=1

(Dpod(Ti,xi;σ)−Cobs
i )2 where Dpod(T,x) =

L

∑
k=1

βk(T ;σ)vk(x). (13)

The big advantage is that a function evaluation for this POD-function is by far faster
than for the original function. During the course of an optimization iteration the
parameter value σ might move away from the one, which the POD model is based
on. In this case, one has to reboot the process, i.e. compute a new POD basis for the
modified value of σ , see e.g. [7].

4 Numerical Results

We give some numerical results to illustrate the computational savings by using a
reduced order model.

First, we demonstrate the accuracy of the solution of the POD model. Since the
Black-Scholes model is a diffusion equation with a convective term, which in fi-
nance often is not too large, it is no surprise that a POD approximation works well
also for this case. However, it is not clear, if the same holds also for the PIDE which
also includes an integral term in addition to the convection term.
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We use the parameters λ = 0.5, μJ = 0, σJ = 0.5. Furthermore Tmax = 0.5 and
discretization parameters are 500 steps in x-direction and 150 steps in T -direction.

We compare the Finite Element solution and the POD solution of the PDE or
PIDE. The deviation is measured as 1

151 ∑
150
i=0‖D(Ti, ·)−DPOD(Ti, ·)‖2

L2 with Ti the
grid points in T -direction. The results are shown in Table 1.

Table 1 Accuracy of POD approximations, PIDE model

POD Basis El. Deviation smallest sing. val.

3 8.36e-001 1.63e+003
4 1.36e-001 1.76e+002
5 2.17e-002 2.28e+001
6 3.31e-003 3.11e+000
7 4.86e-004 4.25e-001
8 6.82e-005 5.71e-002
9 9.17e-006 7.46e-003

10 1.18e-006 9.46e-004

One can see that the results in Table 1 show a fast decay in the value of the
smallest singular values. Hence it is expected that deviation of the POD model from
the FEM model is decaying rapidly too.

In the following tables we use a matlab subroutine ’fminunc’ to solve the cali-
bration problem for σ in the Black-Scholes case and also for the PIDE.

Let L denote the number of POD basis elements used in DPOD, σopt the calculated
solution, fpod(σopt) the optimal value of the objective function in (13) and time is
the time needed to solve the optimization problem.

We first look at the special case of a constant volatility. The optimal value is
σ = .30, the starting value always σ = .25 and the POD basis is calculated only
once for the starting value. Table 2 shows the results of the calibrating problem
without jumps λ = 0, this means the Black-Scholes case in the first four columns.

Table 2 Optimal Parameters for POD Approximations

Black-Scholes model PIDE model
L σopt fpod(σopt) time σopt fpod(σopt) time

4 0.3007 0.2610 0.6410 0.2806 0.1525 22.78
5 0.2991 0.0701 0.6870 0.2827 0.0904 22.67
6 0.2981 0.0338 0.6560 0.2845 0.0691 22.73
7 0.2977 0.0254 0.6250 0.2861 0.0549 22.58
8 0.2974 0.0238 0.6250 0.2874 0.0426 22.55
9 0.2974 0.0237 0.7340 0.2884 0.0333 22.91
10 0.2974 0.0239 0.9840 0.2892 0.0272 22.69

500 0.3000 0.0000 2.1090 0.3000 0.0000 340.58
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The last line in Table 2 denotes the optimization with the full evaluation of D, in
other words the optimization using the common finite element method with 500 dis-
cretization points in x-direction in every function evaluation. We see good approxi-
mations to the optimal solution and a remarkable time savings of the POD-method
even in the simple case of only one parameter.

In the case of the PIDE model with λ = 0.5 the results are in the last three
columns in Table 2. Here the computations are more expensive than in the Black-
Scholes model due to the integral term. This causes a double-integral in the bilinear
form which destroys the sparse-structure of the stiffness matrix and makes the solu-
tion of one finite element problem far more expensive.

Therefore, a reduced order model approach should work well in this case - and
this can be confirmed from the quality of the results, which is as good as in the
Black-Scholes case. The speedup for the PIDE case is significantly higher than in
the Black-Scholes case - it ranges around a factor of 15.

In Table 3 we study the case of a time (maturity) dependent volatily σ(T ). The
components of the solution vector σopt = (0.30,0.28,0.32) represent the size of the
piecewise linear modelled volatility at three different grid points. L again denotes the
number of POD basis functions and fpod(σL

opt) is the optimal value of the objective
function. Start value always was σstart = (0.25,0.25,0.25).

Table 3 POD Approximation, 3 Parameters, Black-Scholes model

L σL
opt fpod(σL

opt)

4 (0.3085, 0.2594, 0.3289) 0.0486
5 (0.3014, 0.2716, 0.3210) 0.0320
6 (0.2995, 0.2753, 0.3180) 0.0248
7 (0.2989, 0.2768, 0.3168) 0.0240
8 (0.2986, 0.2775, 0.3164) 0.0236

500 (0.3000, 0.2800, 0.3200) 0.0000

Table 4 POD Approximation, 8 Parameters, PIDE model

L ‖σL
opt −σopt‖ fpod(σL

opt) grid

4 0.1123 0.1399 250
0.0428 0.0147 500

5 0.0958 0.0743 250
0.0361 0.0096 500

The last Table 4 shows the PIDE case (λ = 0.5) with maturity dependent volatil-
ity with 8 discretization points. Here we use a kind of nested iteration. Starting with
a constant volatility σstart we try to get closer to the solution by optimizing first
on a coarse grid and then use this solution to calculate a new POD basis when we
optimize on the finer grid. The finest grid has 500 steps in K-direction.
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5 Conclusion

Models for the evaluation of option prices reach higher levels of sophistication. If
one uses jump processes in the stochastic description, this leads to parabolic differ-
ential equations which - in addition to the convection term - also include an integral
term. The latter one is known to require special numerical techniques for an efficient
solution of the partial integro-differential equation. We use this model to calibrate
it to given data. We reformulate it using a Dupire-like approach to make it more
amenable to calibration problems. After that we apply a model reduction technique,
here proper orthogonal decomposition, to obtain a model of smaller size. The nu-
merical results show that this is a promising approach in reducing the computing
time substantially.
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A Collocation Method for Quadratic Control
Problems Governed by Ordinary Elliptic
Differential Equations

W. Alt, N. Bräutigam, and D. Karolewski

Abstract We investigate discretizations for a class of quadratic optimal control
problems governed by one-dimensional elliptic differential equations. In contrast
to the papers [3] dealing with finite element approximations and [2, 1] dealing with
finite difference approximation, the dicretizations considered here are based on a
collocation method using quadratic splines for the state equation. Under the assump-
tion that the optimal control has bounded variation we prove discrete and continuous
quadratic convergence of approximating controls.

1 Introduction

In this paper we consider the one-dimensional elliptic optimal control problem

(CP1) minJ(z,u) =
1
2

∫ T

0

(
|z(t)− zd(t)|2 +ν |u(t)|2

)
dt

s.t. −z̈(t)+ Az(t) = Bu(t)+ e(t) for a.a. t ∈ [0,T ] ,
z(0) = z(T ) = 0 ,

a≤ u(t)≤ b for a.a. t ∈ [0,T ] ,

where u ∈ L2(0,T ;Rm), z,zd ∈W 2
2 (0,T ;Rn), ė ∈ BV (0,T ;Rn), A ∈ Rn×n is sym-

metric and positive semidefinite, B ∈ Rn×m and a,b ∈ Rm, a < b. The symbol T
denotes the total length of the interval and ν > 0 is a regularizing parameter. By | · |
we denote the Euclidian norm in Rn resp. Rm.
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In our previous paper [3] we investigated finite element approximations of Prob-
lem (CP1), while the papers [2, 1] deal with finite difference approximation. In the
present paper we derive error estimates for a discretization of (CP1) based on col-
location splines. This requires a complete new analysis of the adjoint equation and
their discretization. As a consequence, some changes in the analysis of the con-
vergence of the discrete controls are also necessary. The analysis of this method
is based on error estimates for elliptic differential equations in Sendov/Popov [13].
As in Alt/Bräutigam [1] we assume that the derivative of the optimal control has
bounded variation and derive an error estimate of order h2 in a discrete norm. Then,
according to Meyer/Rösch [11] (see also Alt et al. [3], Alt/Bräutigam [1]) we con-
struct a new control for which we prove a continuous error estimate of order h2.

Related results can found in Grossmann/Roos [7], Tröltzsch [14], Dontchev et
al. [6]), Arada et al. [4], Casas/Tröltzsch [5], Malanowski [10], Hinze [8], and
Rösch [12]. For a more detailed discussion we refer to [3].

The following notations are used. By X(0,T ;Rn) we denote a space of functions
on [0,T ] with values in Rn. We refer to L2(0,T ;Rn) as the Hilbert space of square-
integrable functions with the usual scalar product (·, ·) and the corresponding norm
‖ · ‖2. By L∞(0,T ;Rn) we denote the space of essentially bounded functions with
norm ‖·‖∞, and for k≥ 1, p∈ {2,∞} by W k

p (0,T ;Rn) the usual Sobolev spaces. The
linear space of functions z ∈W k

p (0,T ;Rn) for p > 1 satisfying the boundary condi-
tions z(0) = z(T ) = 0 is denoted by W k

p,0(0,T ;Rn), and we refer to the linear space

of functions with bounded total variation by BV(0,T ;Rn). Finally, Vb
aw denotes the

total variation of the function w on [a,b]. Throughout the paper c is a generic con-
stant that has different values in different relations and which is independent of the
mesh spacing h.

An outline of our paper follows. After a short short discussion of optimality con-
ditions for the continuous problem in the subsequent section we introduce quadratic
splines and the collocation method for ordinary elliptic differential equations in Sec-
tion 3. The main result is the error estimate for the numerical solution of the state
equation. In Section 4 we investigate the discrete control problem and derive an dis-
crete error estimate of order two for the discrete optimal controls. Afterwards we
construct a new discrete control for which we derive continuous error estimates of
quadratic order. Finally, we discuss a numerical example.

2 Optimality Conditions

It is a well-known fact that the mapping y #→ z where

−z̈(t)+ Az(t) = y(t) for a.a. t ∈ [0,T ] , z(0) = z(T ) = 0 , (1)

defines a continuous linear operator S : L2(0,T ;Rn)→W 2
2,0(0,T ;Rn) which assigns

to each y ∈ L2(0,T ;Rn) the unique solution z = S(y). Making use of the solution
operator S, Problem (CP1) can be equivalently written in the form
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(CP2) minF(u) = J(S(Bu + e),u), s.t. u ∈U ad,

where U ad = {u∈ L2(0,T ;Rm) | a≤ u(t)≤ b for a.a. t ∈ [0,T ]}. Problem (CP2) has
a unique solution ū which is characterized by the pointwise variational inequality(

BT p̄(t)+ν ū(t)
)T

(u− ū(t))≥ 0 ∀u ∈U (2)

for a.a. t ∈ [0,T ], where U = {u ∈ Rm | a ≤ u ≤ b} and p̄ = S∗(S(Bu + e)− zd) is
the adjoint state, i.e., the unique solution of

− p̈(t)+ Ap(t) = (S(Bū+ e))(t)− zd(t) for a.a. t ∈ [0,T ], p(0) = p(T ) = 0 .
(3)

The optimality condition (2) implies that ū(t) is the projection of − 1
νBT p̄(t) onto

[a,b], i.e.,

ū =Π[a,b]

(
− 1
ν

BT p̄
)
, (4)

(cf. Malanowski [10]). This further implies ū∈W 1
∞(0,T ;Rm), especially the optimal

control ū is a Lipschitz continuous function so that (2) holds true for all t ∈ [0,T ].

3 Discretization of the State Equation

Consider the uniform grid G = {ti = ih | i = 0, . . . ,N} with mesh size h = T/N,
N ≥ 2. By B2,i, i = −1, . . . ,n + 1, we denote the B-splines of order 2 (see e.g.
Sendov [13], Section 4.3), and by Wh(0,T ;Rn) we denote the finite-dimensional
linear space of quadratic splines which is the span of {B2,−1, . . . ,B2,N+1}. The sub-
space of functions with vanishing boundary values wh(0) = wh(T ) = 0 is denoted
by Wh,0(0,T ;Rn). Further, we denote by Vh(0,T ;Rn) the finite-dimensional lin-
ear space of continuous and piecewise linear functions on the grid G. A function
vh ∈Vh(0,T ;Rn) is uniquely defined by its values v0, . . . ,vN at the grid points.

The state equation (1), resp. the operator S, is then discretized by the operator Sh,
where Sh(y)∈Wh,0(0,T ;Rn) is the unique quadratic spline satisfying the collocation
and boundary conditions

−(S̈hy)(ti)+ A(Shy)(ti) = y(ti), i = 0, . . . ,N ,
(Shy)(0) = (Shy)(T ) = 0 .

(5)

This discretization is stable as shown in the following theorem.

Theorem 1. Let y∈W 1
∞(0,T ;Rn) with ẏ∈BV (0,T ;Rn). Then for sufficiently small h

(i.e., h <
√

8‖A‖∞) we have

‖Shy‖∞ ≤ c̃‖y‖∞ (6)

with a constant c̃ independent of y and h.
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Proof. The proof is similar to the proof in the single valued case. For this we refer
to Theorem 7.3 in Sendov [13] and for more details to Karolewski [9]. ��
Next we define on Vh(0,T ;Rn) the scalar product

〈 f ,g〉h = h
N

∑
i=0

f (ti)Tg(ti)

with the associated norm ‖ f‖h =
√〈 f , f 〉h . By S∗h we denote the discretization of

the adjoint operator S∗. The two discrete operators have an adjoint like property with
respect to this scalar product, i.e.,

〈Shvh,wh〉h = 〈vh,S
∗
hwh〉h + 2h2g(vh,wh) ∀vh,wh ∈Vh(0,T ;Rn) (7)

with g(vh,wh) = |vh(0)|+ |vh(T )|+ |wh(0)|+ |wh(T )|. The proof of this equality
uses the linear systems for the coefficients together with a transformation into a sys-
tem with zero boundary coefficients. The correction term stems from this step and
is unnecessary for vanishing boundary values of vh,wh. On the space Vh,0(0,T ;Rn)
the operator Sh is therefore selfadjoint, i.e., Sh = S∗h.

Estimates for the discretization error Sy− Shy play a crucial role in the proof of
error estimates for discretizations of the control problem (CP2).

Theorem 2. Let y∈W 1
∞(0,T ;Rn) with ẏ∈BV (0,T ;Rn). Then for sufficiently small h

we have the error estimates

‖Sy−Shy‖∞ ≤ γ (‖y‖∞+VT
0 ẏ)h2, (8)

‖(S∗(Sy− zd)−S∗h(Shy− zd)‖∞ ≤ γ̃ (‖y‖1,∞+VT
0 ẏ +‖zd‖2,2)h2, (9)

with constants γ , γ̃ independent of y and h.

Proof. By Theorem 7.4 and Corollary 7.7 of Sendov [13] we obtain with z = Sy

‖Sy−Shy‖∞ ≤ γ1
(
VT

0
...
z +‖z‖∞+‖y‖∞

)
h2 (10)

with a constant γ1 independent of h. Since z = Sy we have
...
z = Aż− ẏ, and therefore

VT
0

...
z ≤ ‖A‖VT

0 ż+VT
0 ẏ≤ T‖A‖‖z̈‖∞+VT

0 ẏ≤ T‖A‖2‖ż‖∞+ T‖A‖‖z‖∞+VT
0 ẏ.

Using the fact that max{‖z‖∞,‖ż‖∞}= ‖z‖1,∞≤ γ2 ‖y‖∞ with a constant γ2 indepen-
dent of y we get

VT
0

...
z ≤ γ3‖y‖∞+VT

0 ẏ

with a constant γ3 independent of y. Together with (10) this shows (8). ��
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4 Discretization of the Control Problem

By Ph : C(0,T ;Rn) → Vh(0,T ;Rn) we denote the interpolation operator defined
by (Phu)(ti) = u(ti) for i = 0, . . . ,N. Using the operators Sh, Ph and the space
Vh(0,T ;Rm) we discretize problem (CP2) in the following way:

(CP)h min
1
2
‖Sh(Buh + e)−Phzd‖2

h +
ν
2
‖uh‖2

h

s.t. uh ∈U ad
h = U ad∩Vh(0,T ;Rm).

Problem (CP)h has a unique solution ūh ∈ Vh(0,T ;Rm) which is characterized by
the optimality conditions

〈BT ph(ūh)−ν ūh,ζh− ūh〉h ≥ 0 ∀ζh ∈U ad
h , (11)

where ph(ūh) = S∗h(Sh(Būh + e)−Phzd) is the discrete adjoint state for ūh.
At the end of Section 2 we have shown that the solution ū of (CP2) belongs

to the space W 1
∞(0,T ;Rm). Some of the results of the previous section, which are

used here, are formulated in terms of the variation of ẏ. Therefore, in the sequel we
require additional regularity of ū. As in Alt et al. [3] and Dontchev et al. [6] we
assume that the derivative of ū has bounded variation.

First we derive a result on discrete quadratic convergence for the solutions ūh ∈
Vh(0,T ;Rm) of the problems (CP)h.

Theorem 3. Let ū be the solution of (CP2) with the assumption ˙̄u ∈ BV (0,T ;Rm)
and let ūh ∈Vh(0,T ;Rm) be the solution of the discrete problem (CP)h. Then

‖Phū− ūh‖h ≤ ch2 (12)

holds true with a constant c independent of h.

Proof. Since ūh is feasible for problem (CP2), we have by (2)(
BT(Ph p̄)(ti)+ν (Phū)(ti)

)T(
ūh(ti)− (Phū)(ti)

)≥ 0, i = 0, . . . ,N,

because ū(ti)= (Phū)(ti). Summing up all inequalities and adding (11) with ζh = Phū

〈BT(Ph p̄− ph(ūh))+ν (Phū− ūh), ūh−Phū〉h ≥ 0,

which is equivalent to

ν ‖ūh−Phū‖2
h ≤ 〈Ph p̄− ph(ūh),B(ūh−Phū)〉h

= 〈Ph p̄− ph(ū),B(ūh−Phū)〉h + 〈ph(Phū)− ph(ūh),B(ūh−Phū)〉h,

where the last equality follows from ph(Phū) = ph(ū). For the second term we obtain
by (7)
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〈ph(Phū)− ph(ūh),B(ūh−Phū)〉h = 〈S∗hShB(Phū− ūh),B(ūh−Phū)〉h
= 〈ShB(Phū− ūh),ShB(ūh−Phū)〉h
= −‖ShB(Phū− ūh)‖2

h ≤ 0.

Note that in case of a < 0 < b the solution of (CP2) and its discretization vanish at
the boundary, because the adjoint state is defined with this property and by virtue
of (4). For the first term we have

〈p̄− ph(Phū),B(ūh−Phū)〉h ≤ ‖Ph p̄− ph(ū)‖h‖B‖‖Phū− ūh‖h

≤ c‖Ph p̄− ph(ū)‖∞ ‖Phū−uh‖h ≤ ch2 ‖Phū− ūh‖h.

where the last inequality follows from (9). Dividing by ‖Phū− ūh‖h, we obtain (12).
��

Theorem 3 shows only discrete convergence for the solutions ūh ∈ Vh(0,T ;Rm)
of the problems (CP)h. Interpolation error estimates imply that the continuous error
‖ū− ūh‖2 is only of order 3/2. Therefore, we adopt the idea of Meyer/Rösch [11]
to construct, based on (4), a new feasible control by

ũh =Π[a,b]

(
BTph(ūh)

)
, (13)

for which we can prove continuous convergence of order 2.

Theorem 4. Let ū be the solution of problem (CP2) with ˙̄u ∈ BV (0,T ;Rm) and ūh ∈
Vh(0,T ;Rm) being the solution of the discrete problem (CP)h. Then for the control
ũh defined by (13) we have the continuous error estimate

‖ū− ũh‖∞ ≤ ch2

with a constant c independent of h.

Proof. The projection operator Π[a,b] is Lipschitz continuous. Therefore we have

‖ū− ũh‖∞ ≤ c‖p(ū)− ph(ūh)‖∞ ≤ c‖p(ū)− ph(ū)‖∞+ c‖ph(ū)− ph(ūh)‖∞.

For the first term we use (9) and by (6) and Theorem 3 we get for the second term

‖ph(ū)− ph(ūh)‖∞ = ‖S∗hShB(Phū− ūh)‖∞ ≤ c‖Phū− ūh‖h ≤ ch2,

which implies the assertion. ��

5 Numerical Example

In order to illustrate the result of Theorem 4, we consider the same problem as in
Hinze [8], Section 4.2, for which the optimal solution is known. We choose the
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parameters T = 1, zd ≡ 2, ν = 0.1, a =−∞, b = 2.5(
√

2−1) and e(t) =−2 + t2−
t−min{− 1

ν (t2− t),b}. The optimal control is then given by

ū(t) = min{− 1
ν

(t2− t),b},

Figure 1 shows the discrete and the exact solution, which cannot be distinguished
from the control ũh in the picture.
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Fig. 1 In the left picture we see the discrete (thick line) and the exact control (thin line). In the
right picture the error ‖ū− ũh‖∞ is sketched against the mesh size h.

Table 1 shows the errors for the discrete optimal control ūh and the control ũh

obtained in the postprocessing step. For comparison the results of the finite element
discretization from [3] and for the finite difference discretization from [2] are listed
in Table 2. In all three cases the order of continuous convergence for the solutions of
the discretized problems is only linear. After the post-processing step (13) the order
is improved to quadratic order.

Table 1 Errors for collocation method in dependence of mesh size h.

h ‖ū− ūh‖∞ ‖ū− ūh‖∞/h ‖ū− ũh‖∞ ‖ū− ũh‖∞/h2

1/3 0.4889 1.467 0.2447 2.202
1/4 0.4241 1.696 0.1502 2.401
1/6 0.2548 1.529 0.0674 2.428
1/10 0.1317 1.317 0.0245 2.447
1/20 0.0923 1.846 0.0062 2.472
1/50 0.0245 1.225 9.953 ·10−4 2.488
1/100 0.0150 1.500 2.494 ·10−4 2.494
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Table 2 Errors from [3] (left columns) and [2] (right columns).

h ‖ū− ūh‖∞ ‖ū− ũ‖∞ ‖ū− ūh‖∞ ‖ū− ũ‖∞
1/3 1.0355 0.2532 0.6696 0.2531
1/4 0.9382 0.1550 0.5485 0.1556
1/6 0.6952 0.0686 0.3062 0.0694
1/10 0.4502 0.0248 0.1111 0.0250
1/20 0.2375 0.0062 0.0870 0.0063
1/50 0.0980 9.9840 ·10−4 0.0179 0.0010
1/100 0.0495 2.4985 ·10−4 0.0145 2.5 ·10−4
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A Road Traffic Model with Overtaking:
Continuation of the Oscillatory Patterns

L. Buřič and V. Janovský

Abstract We investigate microscopic models of the road traffic. In particular, we
consider car-following models for a single-line traffic flow on a circular road. The
classical differentiable models break down at the time instant when two cars collide.
Nevertheless, the natural action of a driver would be to overtake the slower car. In
our previous work, we proposed a model which simulates an overtaking. The model
implicitly defines a maneuver consisting of deceleration/acceleration just shortly
before/after the overtaking. We observed a large variety of oscillatory solutions (os-
cillatory patterns) of the model. In case N = 3 (three cars on the route), we can
supply a finite classification list of these patterns. In the present contribution, we
stick to N = 3, and formulate our model as a particular Filippov system i.e., ODE
with discontinuous righthand sides. We define oscillatory patterns as invariant ob-
jects of this Filippov system. We use the standard software (AUTO97) to continue
these patterns with respect to a parameter.

1 Introduction

In order to understand dynamics of traffic flows, mathematical models are in current
use, see e.g. [9] for a recent review. Microscopic modelling of vehicular traffic is
usually based on the so called Follow-the-Leader models, see [8].

Consider the system

x′i = yi , y′i =
1
τ

[V (xi+1− xi)− yi] , xN+1 = x1 + L , i = 1, . . . ,N . (1)

Lubor Buřič
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It models N cars on a circular road of the length L. The pairs (xi,yi) are interpreted
as the position xi and the velocity yi of the car number i. The acceleration y′i of each
car depends on the difference between the car velocity yi and the optimal velocity
function V = V (xi+1− xi). We assume that this function r #→ V (r), with domain
r ≥ 0, satisfies the following assumptions: V is positive valued and monotonically
increasing, V (0) = 0, V (r)→V max > 0 as r→ ∞, there exists a positive constant
b such that V ′′(r) > 0 (V ′′(r) < 0) if r < b (r > b), see [1, 2]. Reciprocal value of
the parameter τ is called sensitivity, [1]. In all forthcoming computations we will
consider the hyperbolic optimal velocity function defined as

V (r) = V max tanh(a(r−1))+ tanh(a)
1 + tanh(a)

, (2)

where V max and a are positive constants, see [2]. The choice of V imposes a driving
law and we assume that this law is the same for all N drivers. The difference

hi ≡ xi+1− xi , i = 1, . . . ,N , (3)

is called headway (of the i-th car). Given an initial condition [x0,y0] ∈RN×RN , the
system (1) defines a flow on RN ×RN . Without loss of generality, we assume

s≤ x0
1 ≤ x0

2 ≤ ·· · ≤ x0
N−1 ≤ x0

N ≤ L+ s , (4)

y0 = (y0
1, . . . ,y

0
N) , y0

i > 0 , i = 1, . . . ,N , (5)

where s ∈ R is an arbitrary phase shift.
The smallest instant of time tE > 0 is called an event provided that there exists

i ∈ {1, . . . ,N} such that the relevant headway component of the flow vanishes at tE ,
i.e., hi(tE)≡ xi+1(tE)−xi(tE) = 0. In the traditional interpretation, the cars No i and
No i+ 1 collide at tE and the classical model breaks down. In [3, 6] we proposed a
different interpretation: At tE , the car No i overtakes the car No i+1. We suggested
an algorithm how to proceed for t > tE . By induction, the Overtaking Algorithm
generate a flow [x(t),y(t)] = Π(t, [x0,y0]) on any finite interval 0 ≤ t ≤ Tmax. The
phase curve [x(t),y(t)]0≤t≤Tmax is continuous and piecewise smooth. The algorithm
generates a finite set tE = {tE(s)}Z

s=1 called event sequence. The time tE(s) is related
to an event of the overtaking: a car number is overtakes a car number js. Symboli-
cally, [is→ js]. Each event tE(s) is related to a transposition of cars on the route.

2 The Overtaking Model as a Filippov System

For the sake of simplicity, let us consider N = 3. There are only two possible car
orderings along the route, ”123” and ”132”. The ordering is related to the sign of
permutation of the cars. In order to measure the distance between the cars No i and
No j we introduce a new variable which we call the gap:



A Road Traffic Model with Overtaking: Continuation of the Oscillatory Patterns 755

hi, j = x j− xi , i < j , hi, j = L−h j,i , i > j . (6)

The idea is to define the flow Π in different state variables namely, the velocity
y ∈ R3 and the gap components h1,2, h2,3 and h3,1.

To that end we modify the optimal velocity function to be L-periodic and discon-
tinuous: We define Ṽ = Ṽ (r) via the formula (2) on the interval [0,L), and extend
the function Ṽ = Ṽ (r) periodically on the whole R.

The relevant system possesses the first integral. In fact, we can eliminate one gap
variable, say h3,1,

h3,1 = L− h1,2−h2,3 . (7)

For details, see [5]. The resulting system reads as follows:

h′1,2 = y2− y1 , h′2,3 = y3− y2 , (8a)

y′1 =
1
τ
[
Ṽ (h1,2)− y1

]
, y′2 =

1
τ
[
Ṽ (h2,3)− y2

]
, (8b)

y′3 =
1
τ
[
Ṽ (L− h1,2−h2,3)− y3

]
, (8c)

for lL < h1,2 < (1+ l)L, mL < h2,3 < (1+m)L, nL < h3,1 < (1+n)L, where l,m,n∈
Z and l + m+ n is even, and

h′1,2 = y2− y1 , h′2,3 = y3− y2 , (9a)

y′1 =
1
τ
[
Ṽ (h1,2 + h2,3)− y1

]
, (9b)

y′2 =
1
τ
[
Ṽ (L−h1,2)− y2

]
, y′3 =

1
τ
[
Ṽ (L−h2,3)− y3

]
, (9c)

for lL < h1,2 < (1+ l)L, mL < h2,3 < (1+m)L, nL < h3,1 < (1+n)L, where l,m,n∈
Z and l + m+ n is odd.

The righthand sides of (8) and (9) are related to particular values l,m,n ∈Z. Do-
mains of equations (8) and (9) are voxels, which are referred to by triples {l,m,n}.
The voxels are ”colored” as the even/odd ones. The complement of voxels are the
hyperplanes

hi, j = kL , k ∈ Z . (10)

They play the role of switches between the systems (8) and (9).
Both (8)&(9) define a Filippov system i.e., the system of five ODE’s with discon-

tinuous righthand sides, see [7]. Given an initial condition [y0,h0]∈R3×R3, so that
y0 > 0, h0 = (h0

1,2,h
0
2,3,h

0
3,1) satisfies (7), and h0 is inside of a voxel, then we solve

the initial value problem for (8)&(9). Let [h(t),y(t)] ≡Θ(t, [h0,y0]) be its solution
at t ≥ 0. As an example, consider

h0 = [1.7628, 0.5425, 0.1947], y0 = [2.6305, 3.7393, 2.1614] , (11)

L = 2.5, a = 2, Vmax = 7, τ = 1. The trajectory of flowΘ for 0 ≤ t ≤ 40, projected
to the scaled gap space, is shown on Fig. 1 (on the left). The points on the phase
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curve which are marked by the filled squares belong to the hyperplanes (10) and
hence they are related to the overtaking. Recording of the relevant time generates
the event sequence tE . It is apparent that the phase curve evolves into an invariant
pattern. It is related to an oscillatory solution of the system (8)&(9).

Fig. 1 On the left: Transition to an invariant object. On the right: Zoom of the invariant object
called rotating wave of class 2, the period T = 7.9481

3 Continuation of the Oscillatory Patterns

In [6], we observed five classes of oscillatory patterns which are limit sets of the flow
Π : two classes of rotating waves and three types of patterns, which are nicknamed
as the three-legged dog patterns (essentially, phase-shifted reflectionally symmetric
oscillations of two cars while the third car oscillates differently). We introduced the
notion of a periodic event map. The particular patterns were classified by spatial and
temporal symmetries of the relevant event maps. We will refer to these patterns as
wave-1, wave-2, 3dog, 3dog-1 and 3dog-2. Hence, on Fig. 1 (on the right) there is
wave-2 projected on the gap space. Remaining patterns projected on the gap space
can be found in [4].

Wave-2 corresponds to the event map

GE = {[1→ 2] , [3→ 2] , [2→ 3] , [1→ 3] , [3→ 1] , [2→ 1] , etc.} . (12)

Since there are six events in one period, the event map period pE , see [6] for the
notion, equals to pE = 6. Similarly, the event map for wave-1 is

GE = {[1→ 2] , [3→ 2] , [3→ 1] , [2→ 1] , [2→ 3] , [1→ 3] , etc.} . (13)

It means that pE = 6. The 3dog pattern is related to the event map

GE = {[1→ 2] , [2→ 1] , etc.} , (14)
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while 3dog-1 corresponds to

GE = {[1→ 3] , [2→ 3] , etc.} . (15)

The event maps of both 3dog and 3dog-1 patterns are two-periodic, i.e. pE = 2.
Finally, 3dog-2 pattern produces the event map

GE = {[3→ 1] , [3→ 2] , [1→ 2] , [3→ 2] , [3→ 1] , [2→ 1] , etc.} , (16)

with pE = 6.
The main advantage of the Filippov formulation (8)&(9) is that it allows to con-

tinue an invariant object with respect to a parameter. We are able to continue all
patterns. Each pattern is defined as a boundary value problem on R5pE with special
boundary value conditions. Defining equations are rather complicated and hence
we have to give them elsewhere. The continuation is performed using the package
AUTO97. We review selected numerical results.

We considered five branches of particular patterns, see Fig. 2. Continuation of
each branch collapsed at two points referred to as Lmin and Lmax, according to the
appropriate L coordinate. The continuation collapse refers to an event which is de-
generated in the sense that transmission of the trajectory is not transversal at that
point: the particular trajectory touches/crosses a hyperplane (10) in a tangent direc-
tion. We observe the former scenario in case of wave-2, see Fig. 3. Note that the
trajectory touches the boundary h1,2 = −L. A similar observation can be made for
both 3dog, see Fig. 5, and 3dog-2 patterns, see Fig. 7. As far as the latter scenario
is concerned, in Fig. 4 the trajectory crosses the hyperplane h1,2 = 0 in a tangent
direction. The case is manifested as a cusp in projection on the (h1,2,y1)-plane.
Similar behavior can be observed for 3dog-1 pattern, see Fig. 6. Note that, in gen-
eral, solid/dashed lines refer to trajectories related to the ”123”/ ”132” ordering.
The analysis of the extremal cases Lmin and Lmax anticipates a qualitative change (a
bifurcation) of the patterns.

Finally, we briefly mention stability of the branches on Fig. 2: Two folds on the
branch wave-1 suggest that, say for L = 3.1, three wave-1 patterns coexist, see Fig. 8
(on the left). Dynamical simulation indicates that the solid cycle is stable while the
dashed ones are unstable. For example, unstable cycle labeled as U1 evolves into
3dog pattern, see Fig. 8 (on the right).
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of the Ministry of Education, Youth and Sports, Czech Republic. The second author was supported
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A Second Order Scheme for Solving
Optimization-Constrained Differential
Equations with Discontinuities

A. Caboussat and C. Landry

Abstract A numerical method for the resolution of a system of ordinary differen-
tial equations coupled with a mixed constrained minimization problem is presented.
This coupling induces discontinuities of some time-dependent variables when in-
equality constraints are activated or deactivated. The ordinary differential equations
are discretized in time and combined with the first order optimality conditions of the
optimization problem. We use a second order multistep method based on a predictor-
corrector Adams scheme to detect the discontinuities by extrapolation of the trajec-
tories. Optimization features, namely a sensitivity analysis, are exploited to compute
the derivatives of the optimization variables and track the discontinuity points. The
main difficulty consists in the impossibility of defining an explicit event function to
characterize the activation or deactivation of a constraint. The order of convergence
of our method is proved when inequality constraints are activated and numerical
results for atmospheric organic particles are presented.

1 Introduction

Dynamic optimization problems arise when coupling an optimization problem with
ordinary differential equations. They appear for instance in computational chem-
istry. We present here a mathematical model and a numerical method for the sim-
ulation of dynamic phase transition for a single atmospheric aerosol particle that
exchanges mass with the surrounding gas [1]. The mass transfer is described by
ordinary differential equations while a mixed constrained minimization problem
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determines the thermodynamic equilibrium of the particle, i.e. the partitioning of
organics between different liquid phases.

Let (0,T ) be the interval of integration with T > 0. Let us denote by b(t) the
concentration-vector of the s chemical components present in the particle at time
t ∈ (0,T ). The dynamic optimization problem consists in finding b(t),xα(t),yα (t)
satisfying

d
dt

b(t) = f(b(t),xα(t)), a.e. t ∈ (0,T ), b(0) = b0,

(yα(t),xα(t)) = arg min
ỹα ,x̃α

p

∑
α=1

ỹα g(x̃α) (1)

s.t. eT x̃α = 1, x̃α > 0, ỹα ≥ 0, α = 1, . . . , p,
p

∑
α=1

ỹα x̃α = b(t),

where p is the number of possible liquid phases present in the aerosol, ỹα is the
total number of moles in phase α , x̃α is the mole-fraction concentration vector in
phase α , e is the vector (1, . . . ,1)T , g is the Gibbs free energy and f is the mass flux
between the aerosol and the surrounding media.

In the following sections we consider a model problem with linear equal-
ity constraints. Let f : R×Rs×Rm → Rs be Lipschitz continuous and bounded,
g ∈ C∞(Rm) and A ∈ Rs×m, with s < m. The problem reads: Find b : (0,T )→ Rs

and z : (0,T )→ Rm satisfying

d
dt

b(t) = f(t,b(t),z(t)), a.e. t ∈ (0,T ), b(0) = b0, (2)

z(t) = argmin
z̃

g(z̃) s.t. Az̃ = b(t), z̃≥ 0.

The loss of regularity of the variable z occurs when one of the inequality constraints
zi(t) ≥ 0, i = 1, . . . ,m is activated or deactivated. In this paper we only discuss the
activation of constraints. The main difference between problems arising in control
systems theory [10] and the present problem resides in the fact that the underlying
energy g is minimized for a.e. t ∈ (0,T ) along the trajectory, and not only at the final
time T .

The numerical scheme to solve (2) is introduced in the next section in the case
without activation or deactivation of constraints. Then the algorithm for the detec-
tion of the discontinuities is presented. A theoretical result is given in a particular
case and numerical results for the system (1) finally show the accuracy and effi-
ciency of our method.

2 Numerical Algorithm without Tracking of Discontinuities

In order to solve the system (2), we opt for a splitting algorithm between differential
and optimization operators (see [1] for another approach). Hence we fully exploit
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the characteristics of the minimization problem to ensure the admissibility of the
solution.

The differential equations are solved with the Crank-Nicolson scheme. Let h > 0
be a fixed time step, tn = nh, n = 0, . . . ,N, the discretization of (0,T ) with tN =
T , and bn and zn denote respectively the approximations of b(tn) and z(tn). The
differential equations discretized in time consist in finding bn+1 ∈Rs and zn+1 ∈Rm

at each time step that satisfy

1
h

(bn+1−bn) =
1
2

f(tn,bn,zn)+
1
2

f(tn+1,bn+1,zn+1). (3)

We solve this equation with a fixed-point method. At each time step, a sequence
of fixed-point iterates (bn+1,�,zn+1,�) is computed as follows:

(i) setting bn+1,0 = bn and zn+1,0 = zn,
(ii) for � = 0, . . . ,r

(a) solve the equation for bn+1,�+1 with a Newton method

1
h

(bn+1,�+1−bn) =
1
2

f(tn,bn,zn)+
1
2

f(tn+1,bn+1,�+1,zn+1,�),

(b) solve the optimization problem in (2) with bn+1,�+1 to obtain zn+1,�+1,
(c) if ‖bn+1,�+1−bn+1,�‖2 ≤ tol · ‖bn+1,�+1‖2 then return,

(iii) set bn+1 = bn+1,�+1 and zn+1 = zn+1,�+1,

where r is a given maximal number of iterations and tol is a given tolerance.
Hence, at each iteration of the fixed-point method we have to solve the optimiza-

tion problem to determine zn+1,�+1. The resolution of the optimization problem is
based on a primal-dual interior-point method detailed in [2]. The main principle
consists in relaxing the inequality constraint z̃≥ 0 by adding a slack variable w̃ that
is incorporated into a logarithmic barrier term in the objective function. Let ν > 0 be
a given parameter. The minimization problem written as in the system (2) becomes

min g(z̃)−ν
m

∑
i=1

ln(w̃i)

s.t. Az̃ = b, z̃i− w̃i = 0, w̃i > 0, i = 1, . . . ,m. (4)

The objective function and the constraints of (2) being continuous, the solution of
(4) converges to the solution of the initial problem (2) as ν tends to zero [6].

We write the first order optimality conditions corresponding to (4) in the fixed-
point algorithm. After elimination of the slack variables, we obtain

∇g(zn+1,�+1)+ ATλλλ n+1,�+1−θθθ n+1,�+1 = 0,

Azn+1,�+1 = bn+1,�+1, (5)

zn+1,�+1
i θ n+1,�+1

i −ν = 0, i = 1, . . . ,m,

zn+1,�+1
i , θ n+1,�+1

i > 0, i = 1, . . . ,m,
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where λλλ n+1,�+1 and θθθ n+1,�+1 are dual (Kuhn-Tucker) multipliers.
Starting with an interior-point parameter ν0, the above nonlinear system is solved

by applying one Newton iteration, then decreasing the parameter νk = ξνk−1, ξ ∈
(0,1), and repeating the process until convergence is reached [2, 6].

The interior-point method does allow constraints to be deactivated, since the so-
lution of the relaxed minimization problem converges to the one of the original
problem when ν → 0 [6]. From the numerical viewpoint, at each step of the algo-
rithm, if j ∈ {1, . . . ,m} such that |zn+1,�+1

j | < ε exists (where ε is a given bound),

then the jth constraint is activated in the interval [tn,tn+1[.

3 Tracking of Discontinuities

When an inequality constraint is activated or deactivated, the variable z loses its
regularity. In order to preserve the order of our numerical method, the discontinu-
ity point has to be detected with enough accuracy [5, 7, 8]. An arising difficulty
here is the absence of a function expressing explicitly the time when a constraint is
activated, the variable z being the result of a minimization problem for given b.

The principle of our tracking method is an extrapolation method inspired by [4].
Let us assume that the jth constraint z j(t) > 0 activates and that the activation occurs
during the interval [tn,tn+1[. We are looking for a fractional time step τ such that
z j(tn + τ) = 0. A Taylor expansion gives

0 = z j(tn + τ) = z j(tn)+ τ
dz j

dt
(tn)+O(τ2).

Hence, the time when the discontinuity occurs is estimated by

τ ≈ −z j(tn)/
dz j

dt
(tn). (6)

The value z j(tn) is already approximated by zn
j , but the derivative

dz j
dt (tn) remains to

be estimated. Starting from the chain rule

dz j

dt
(tn) =

s

∑
i=1

∂ z j

∂bi
(b(tn)) · d

dt
bi(tn), (7)

the approximation of the derivatives
∂ z j
∂bi

(b(tn)) is derived with a sensitivity analysis
[6]. The differentiation of the first order optimality conditions (5) with ν = 0, rela-
tive to dbi, i = 1, . . . ,s, leads to the linear systems for the variations of the solutions
z,λλλ due to a variation of the data bi.(

∇2g(z) AT

A 0

)(
dz
dbi
dλλλ
dbi

)
=
(

0
ei

)
, (8)
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where ei is the usual unit vector defined by (ei)k = δik for k = 1, . . . ,s. The deriva-

tives
∂ z j
∂bi

(b(tn)) are approximated by

∂ z j

∂bi
(b(tn))≈ dz j

dbi
(bn), for i = 1, . . . ,m. (9)

The derivatives dbi/dt in (7) are approximated with the 2-steps Adams-Bashforth
method with non-constant time step:

d
dt

b(tn)≈ f(tn,bn,zn)+
τ
2h

(
f(tn,bn,zn)− f(tn−1,bn−1,zn−1)

)
. (10)

Combining (6), (9) and (10) we obtain the following equation of second order in τ

0 = z j + τ
s

∑
i=1

dz j

dbi
fi(tn,bn,zn)+

τ2

2h

s

∑
i=1

dz j

dbi

(
fi(tn,bn,zn)− fi(tn−1,bn−1,zn−1)

)
,

that admits a unique positive root τ for a time step h sufficiently small.
Once the fractional time step τ is computed, a predictor-corrector method based

on two-steps Adams-Bashforth and Adams-Moulton schemes is used to approxi-
mate b at tn + τ , namely:

bn+1
pred = bn + τ

[(
1 +

τ
2h

)
f(tn,bn,zn)− τ

2h
f(tn−1,bn−1,zn−1)

]
(predictor),

bn+1 = bn +
τ
2

[
f(tn + τ,bn+1

pred ,z
n+1
pred)+ f(tn,bn,zn)

]
(corrector),

where zn+1
pred is obtained by solving the optimization problem as in (2) with bn+1

pred .
This method has a low computation cost, since all the terms in the above equations
are already known before the tracking of the discontinuity except zn+1

pred in the cor-
rector’s equation, that has to be computed in addition.

4 Theoretical Results

Error estimates for the approximations of the location and time when a discontinuity
occurs are obtained in a simplified case by using nonlinear techniques presented in
[3, 9]. We assume that (i) z(0) > 0 and the jth inequality constraint is the first to be
activated in the time interval (0,T ) and (ii) the optimization algorithm [2] gives an
exact solution.

Let us denote by t� the first time when the event z j(t) = 0 occurs and consider
the particular case when the event is geometrically defined by the intersection of
the trajectory b(t) with a given hyperplane of Rs. We describe this plane by the
parametric equations OC+∑s−1

i=1 βidi, where O is the origin of our axes, C is a point
in the hyperplane, di, i = 1, . . . ,s− 1, are direction vectors and βi, i = 1, . . . ,s− 1,
are the unknown variables.
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Let us define the function F : R×Rs−1→Rs by F(t,β1, . . . ,βs−1) = b(t)−OC−
∑s−1

i=1 βidi, which vanishes at the intersection point denoted by (t�,β �
1 , . . . ,β �

s−1).
Let bh be the linear spline interpolation of bn, n = 0, . . . ,N. We define the nu-

merical approximation Fh : R×Rs−1→ Rs by Fh(t,β1, . . . ,βs−1) = bh(t)−OC−
∑s−1

i=1 βidi. The function Fh vanishes at the approximated intersection point denoted
by (t�h ,β �

1,h, . . . ,β
�
s−1,h).

As in the previous section we assume that there exists n = n(h) ≤ N − 1 such
that t� ∈ [tn,tn+1[ (note that, when h becomes smaller, the index n = n(h) becomes
larger). We can establish the theorem (a priori error estimates):

Theorem 1. Assume that the functions F and Fh admit zeros in (0,T ), denoted
by (t�,β �

1 , . . . ,β �
s−1) and (t�h ,β �

1,h, . . . ,β
�
s−1,h) resp. Furthermore assume that b can

be extended in a C3 manner in the neighborhood of the discontinuity point, and
DF(t�,β �

1 , . . . ,β �
s−1) is regular. Then:

(i) there exists h1 > 0 and a constant C1 > 0 such that

‖Fh(t�,β �
1 , . . . ,β �

s−1)‖∞ ≤C1h2, ∀h < h1; (11)

(ii) there exist h2 > 0, δ > 0 and a ball centered in (t�,β �
1 , . . . ,β �

s−1) with radius
δ , denoted by B((t�,β �

1 , . . . ,β �
s−1),δ ), such that for all h < h2 there exists a unique

(t�h ,β �
1,h, . . . ,β

�
s−1,h)∈B((t�,β �

1 , . . . ,β �
s−1),δ ) satisfying Fh(t�h ,β �

1,h, . . . ,β
�
s−1,h) = 0.

Moreover there exists a constant C independent of h < h2 such that the following a
priori error estimates holds

‖(t�,β �
1 , . . . ,β �

s−1)− (t�h ,β �
1,h, . . . ,β

�
s−1,h)‖∞ ≤C‖Fh(t�,β �

1 , . . . ,β �
s−1)‖∞. (12)

The proof follows [3, 9]. Relationships (11) and (12) allow to conclude:

∃ h0 > 0, C0 > 0 s.t. |t∗ − t∗h | +‖b(t∗)−bh(t∗h )‖2 ≤ C0 h2, ∀h < h0.

5 Numerical Results

Numerical results for the detection of discontinuities are presented for the phase
equilibrium problem (1) described in the introduction.

If the aerosol is a mixture of three chemical components, the solution b of (1)
and its numerical approximation can be represented on a two-dimensional phase
diagram [2]. The phase diagram for a system composed by hexacosanol, pinic acid
and water is illustrated in Figure 1 (a) where the digits (1,2,3) represent the number
of deactivated constraints in each area.

In the particular case when all yα(t) are strictly positive, the exact solution b and
the exact time of activation t� when the third inequality constraint is activated are
known. Starting from an initial aerosol composition of 20% of hexacosanol, 20%
of pinic acid and 60% of water, and with a time step equals to 0.01s, we apply
the algorithm of resolution with the tracking of the discontinuity. The numerical
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Fig. 1 (a) Numerical approximation of the trajectory of b on the phase diagram of hexacosanol-
pinic acid-water. (b) Zoomed-in view near the discontinuity point.

approximation of b is depicted in Figure 1 (a). The grey circles refer to the approxi-
mation bn when the three constraints are deactivated, whereas the black squares re-
fer to bn with only two deactivated constraints. The number of activated constraints,
and the discontinuity point located on the boundary between the areas with 3 and 2
activated constraints are accurately computed.

At each time step, the fixed-point algorithm stops in less than 3 iterations (for
tol = 10−5), while the interior-point method requires less than 25 iterations (for a
tolerance of 10−13 on the increments in the infinity-norm), leading to a CPU time of
0.0028s per time step with an Intel processor of 2.40GHz.

Figure 1 (b) is a zoom of the trajectory of the numerical solution bn, n = 0, . . . ,N,
near the discontinuity point. The exact solution b is represented, as well as the corre-
sponding discontinuity point b(t�), and the approximated trajectory of the numerical
solutions with and without the tracking of the discontinuity. The discontinuity point
obtained numerically is very close to the one obtained analytically and the trajectory
with tracking is nearly superimposed with the exact trajectory, as opposed to the one
without tracking.

Figure 2 (a) shows the evolution of the variables yα(t), α = 1, . . . ,3. The solid
lines are the exact solutions y1, y2, and y3, whereas the markers �, � and • represent
respectively the numerical values yn

1, yn
2 and yn

3 for n = 0, . . . ,N. The approximation
of the time of the discontinuity is efficiently computed and markers are located at
the point where the curves y1, y2 and y3 are not continuously differentiable.

Finally, Figure 2 (b) shows the convergence order for the error |t�− (tn + τ)| on
the approximation of the time of the constraint activation t�. This result numerically
confirms that the method is convergent to the second order.
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Fig. 2 (a) Plot of the exact solutions y1, y2 and y3. The markers �, � and • are respectively the
computed values yn
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Optimal Load Changes for a Molten Carbonate
Fuel Cell Model

K. Chudej, K. Sternberg, and H.J. Pesch

Abstract Molten carbonate fuel cells are a promising technology for future sta-
tionary power plants. In order to enhance service life a more detailed understanding
of the dynamical behavior is needed. This is enabled by a hierarchy of mathemati-
cal models based on chemical and physical laws. These mathematical models allow
numerical simulation and optimal control of load changes. Mathematically speak-
ing, we solve an optimal control problem subject to a degenerated partial differen-
tial equation system coupled with an integro differential-algebraic equation system.
New numerical results are presented.

1 Introduction

Several types of fuel cells exist which are suited for different applications due to
their different behavior [7]. Stacks of molten carbonate fuel cells are used for sta-
tionary power and heat supply [6]. Due to the high operation temperature an internal
reforming, i.e. production of H2 from CH4 (or other fuel gases) in the fuel cell, is
possible. Moreover clean exhaust gases are produced. In order to enhance service
life, hot spots and high temperature gradients inside the fuel cell have to be avoided.
Recently a hierarchy of mathematical models for a single (averaged) MCFC has
been developed in order to describe the dynamical behavior of important physical
and chemical variables [2, 6]. We will demonstrate, how one of these models can
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be used for simulation and optimal control of load changes during electrical power
production.

Mathematically speaking, we have to compute optimal boundary control func-
tions for an optimal control problem subject to a partial differential-algebraic equa-
tion system coupled with an integro differential-algebraic equation system. Due
to the continual model updates during the project time, we chose the approach
“first discretize, then optimize”. We present recent numerical results for faster load
changes [4].

2 Mathematical Model of MCFC

The following 2D crossflow model of a single molten carbonate fuel cell is based
on [2, 3], see also [4]. The important mathematical variables are depicted in Fig. 1,
which describe the gas flow through the anode gas channel, the catalytic combustor,
the reversal chamber, the cathode gas channel and the cathode recycle.

(ref1,2)

(ox1,2)

(red)

�

� �

�

win(t), γin(t)

Rback(t)
wm(t), γm(t)

�

�
�����

Icell(t)
Ucell(t)

anode

cathode

�

�

anode gas channel

wa(z, t), γa(z, t)

ϕa(z, t), ΦL
a (z, t)

solid ϑs(z, t)

ϕc(z, t), ΦL
c (z, t)

wc(z, t), γc(z, t)

cathode gas channel

λair(t)
ϑair(t)

catalytic
combustor

reversal
chamber

�

�

� �

�

�

�z10 1

�
z2 1 0

(ref1) CH4 +H2O 	 CO+3H2 (ref2) CO+H2O 	 CO2 +H2

(ox1) H2 +CO2−
3 	H2O+CO2 +2e− (ox2) CO+CO2−

3 	 2CO2 +2e−

(red) 1
2 O2 + CO2 + 2e− 	 CO2−

3

Fig. 1 2D crossflow model of a molten carbonate fuel cell with mathematical variables w = (χ ,ϑ ),
χ =vector of molar fractions, ϑ = temperature, ϕ =vector of partial pressures, Φ =electrical
potential, Ucell =cell voltage, Icell =cell current

The spatial domain and boundaries are given in Fig. 2. All variables are dimen-
sionless. One unit of the dimensionless time t equals 12.5 seconds. The index set



Optimal Load Changes for a Molten Carbonate Fuel Cell Model 771

�

�

0 1

0

1

z1

z2
����

��
�� anode gas flow

cathode gas flow

∂Ωc,in

∂Ωc,out

∂Ωa,in ∂Ωa,out
Ω

Fig. 2 2D cross flow model: (spatial) domain, boundaries (∂Ω = ∂Ωa,in ∪ ∂Ωa,out ∪ ∂Ωc,in ∪
∂Ωc,out), gas flow directions

I := {CH4,H2O,H2,CO,CO2,O2,N2} is used for molar fractions and partial pres-
sures. In the following there always holds i ∈I , j ∈ {a,c}.

States, prescribed by PDEs, PDAEs and DAEs:

• In the anode gas channel ( j =a) resp. the cathode gas channel ( j =c): molar frac-
tions χi, j(z,t), gas temperatures ϑ j(z,t), and molar flow densities γ j(z,t). Near
the electrodes: partial pressures ϕi, j(z,t). Only a subset of chemical substances
is needed during the numerical solution of the mathematical model.
Abbreviation: wj(z,t) = ((χi, j)i∈I ,ϑ j), wa/c = (wa,wc).

• In the solid (electrolyte): temperature ϑs(z,t).
• At the entry of the cathode gas channel: molar fractions χi,m(t), temperatures
ϑm(t), and molar flow density γm(t).
Abbreviation: wm(t) = ((χi,m)i∈I ,ϑm)

• Potentials ΦL
a (z,t), ΦL

c (z,t), cell voltage Ucell(t).
Abbreviation:ΦL

a/c = (ΦL
a ,ΦL

c ).

Variables, which may serve as components of the boundary control u(t):

• At the entry of the anode gas channel: molar fractions χi,in(t), gas temperature
ϑin(t), and molar flow density γin(t).
Abbreviation: win(t) = ((χi,in)i∈I ,ϑin)

• At the entry of the catalytic combustor: Gas temperature ϑair(t), air number
λair(t).

• Switch for cathode recycle: Rback(t) ∈ [0,1].

Variables, which are prescribed:

• The cell current Icell(t) is prescribed, and usually either constant or a step function
for a load change from one constant level to another constant level.

Partial differential-algebraic equations with boundary conditions:



772 K. Chudej et al.

∂ϑs

∂ t
= μ1

∂ 2ϑs

∂ z2
1

+ μ2
∂ 2ϑs

∂ z2
2

+ψ1(ϑs,wa/c,ϕa/c,ΦL
a/c,Ucell),

∂ϑs

∂n
|∂Ω = 0, (1)

∂wa

∂ t
= −γaϑa

∂wa

∂ z1
+ψ2(ϑs,wa,ϕa,ΦL

a ), wa|∂Ωa,in
= win(t), (2)

∂wc

∂ t
= −γcϑc

∂wc

∂ z2
+ψ3(ϑs,wc,ϕc,ΦL

c ,Ucell), wc|∂Ωc,in
= wm(t), (3)

0 = −∂ (γaϑa)
∂ z1

+ψ4(ϑs,wa,ϕa,ΦL
a ), γa|∂Ωa,in

= γin(t), (4)

0 = −∂ (γcϑc)
∂ z2

+ψ5(ϑs,wc,ϕc,ΦL
c ,Ucell), γc|∂Ωc,in

= γm(t), (5)

0 = ψ6(ϑs,χa,ϕa,ΦL
a ), 0 = ψ7(ϑs,χc,ϕc,ΦL

c ,Ucell), (6)

∂ΦL
a/c

∂ t
= ψ8(ϑs,ϕa/c,ΦL

a/c,Ucell, Ia/e/c; Icell). (7)

Integro differential-algebraic equations:

dUcell

dt
= ψ9(Ia/e/c; Icell), Ia(t) =

∫
Ω

ia(ϑs,wa,ϕa,ΦL
a )dz, (8)

Ic(t) =
∫
Ω

ic(ϑs,wc,ϕc,ΦL
c ,Ucell)dz, Ie(t) =

∫
Ω

ie(ΦL
a/c)dz, (9)

dwm

dt
= ψ10(wm,

∫
∂Ωa,out

wa dz2,

∫
∂Ωa,out

γa dz2,

∫
∂Ωc,out

wc dz1,

∫
∂Ωc,out

γc dz1,λair,ϑair,Rback), (10)

γm(t) = ψ11(wm,

∫
∂Ωa,out

wa dz2,

∫
∂Ωa,out

γa dz2,

∫
∂Ωc,out

wc dz1,

∫
∂Ωc,out

γc dz1,λair,ϑair,Rback). (11)

Initial conditions:

ϑs|t=0 = ϑ0,s(z), wa|t=0 = w0,a(z), wc|t=0 = w0,c(z), wm|t=0 = w0,m,

ΦL
a |t=0 =ΦL

0,a(z), ΦL
c |t=0 =ΦL

0,c(z), Ucell|t=0 = U0,cell (12)

The PDAE system consists of a parabolic heat equation (1), hyperbolic trans-
port equations (2–3) with given wind direction (because it is known a priori that
γa/c,ϑa/c are positive), and partial differential-algebraic equations (4–7). A detailed
index analysis of (1–12) yields differential time index νt = 1 (see [5], some small
modifications have to be made in order to allow a switched on cathode recycle).
Therefore consistent initial conditions are given by (12), no initial conditions can be
prescribed for the algebraic variables γa/c/m, ϕa/c, Ia/c/e.

An obvious engineering approach is to use the method of lines (MOL) by dis-
cretizing the spatial partial derivatives. This is simplified by the a priori knowledge
of the wind direction of the hyperbolic equations. A five-point star for the (scaled)
Laplacian and suitable upwind formulas are used for the spatial partial derivatives
and quadrature formulas for the spatial integrals. This yields a very large semi-
explicit DAE of index ν = 1.
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Mẋ(t) = g(x(t),u(t)), M[x(0)− x0] = 0, M = diag(I,O) (13)

3 Optimization Scenarios and Numerical Results

One drawback of molten carbonate fuel cells is the slow system reaction for a load
change (i.e. a change in the cell current Icell during the operation of the MCFC). The
potentials ΦL

a/c, Ucell react very fast, whereas the molar quantities and especially
the solid temperature ϑs react only slowly. Fast load changes induce temperature
changes, which have to be compensated especially for increasing cell current.

The goal of the optimal control is therefore to control the system after a load
change as fast as possible into the new stationary state. A good indicator for the
stationary state is the cell voltage Ucell, which reacts very fast and significantly on a
sudden load change of the cell current and moreover reacts also on changes of the
slowest variable, the solid temperature ϑs.

The following technologically interesting scenario is analyzed [4]: The system
input cell current is prescribed as a discontinuous step function

Icell(t) =
{

Icell,1 = 0.7 if t ≤ t�

Icell,2 = 0.6 if t > t�
. (14)

Initial conditions (12) at t = 0≤ t� are the stationary solution for constant Icell,1.
Find optimal boundary control functions u : [0,tf]→ IR6, such that the functional

J[u] =
∫ tf

t�
Ldt with L =

[
Ucell(t)−Ucell,2,stat

]2
, Ucell,2,stat = 30.788 (15)

is minimized s.t. PDAE/integro-DAE (1–12) and control constraints u(t) ∈U .
In the discretized version the PDAE/integro-DAE constraint (1–12) is replaced

by the semi-explicit DAE (13) and then solved by the software package NUDOC-
CCS (Büskens [1]) which transforms this problem into a nonlinear programming
problem which is finally solved by a SQP algorithm.

Since this surrogate problem is still too time consuming, a slightly modified prob-
lem is solved. A sequence of optimal control problems(

min
∫ tk+1

tk
Ldt s.t. (13) and u(t) ∈U

)
k=1,...,5

(16)

is solved. A logarithmic type grid t1 = t� = 0, t2 = 0.1, t3 = 1.1, t4 = 11.1, t5 = 111.1,
t6 = tf = 1111.1 is used, due to the different time scales of the variables. Initial
conditions for the first optimal control problem are the stationary solution for Icell,1.
Initial conditions for the k-th optimal control problem are the free final conditions of
the (k−1)-th optimal control problem. In each time interval [tk,tk+1] an equidistant
control grid of 21 points is used. Spatial discretization is 3×3.
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Fig. 3 Simulated and (sub)optimal controlled cell voltage Ucell

Numerical solutions are presented for seven different admissible control sets

U (0) def= {u ∈ IR6 | ui ≤ ui ≤ ui, i = 1, . . . ,6}, U (p) def= U (0)∩{u ∈ IR6 | ui = ui,ref, i �=
p}, p = 1, . . . ,6, see Table 1 and Figure 3 and 5. The other molar fractions at the
anode inlet fulfill χH2O,in = 1− χCH4,in, χk,in = 0, k �∈ {CH4,H2O}. Computational
time for the (sub)optimal control with a 6-dimensional control vector u(t) ∈U (0) is
about 3 days, for the other scenarios with a scalar control about 2 hours. Fig. 3 and 5

Table 1 Control constraints and reference values

ui ui,ref ui

u1 = χCH4,in 0.25 1.0/3.5 0.4
u2 = γin 0.85 1.0 1.5
u3 = ϑin 2.8 3.0 3.2
u4 = λair 1.5 2.2 2.5
u5 = ϑair 1.0 1.5 2.5
u6 = Rback 0.4 0.5 0.6

present the cell voltage Ucell(t) on the five time intervals [tk,tk+1].
A fast increase of the cell voltage can be seen in the simulation until t ≈ 0.005.

This is the immediate consequence of the very fast change of the electrical variables.
A moderate increase until t ≈ 0.015 is due to the fast change of the molar quanti-
ties. The final stationary value is reached only after about t ≈ 1000 (over 3 hours),
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due to the slow changes in the solid temperature ϑs. The oscillating behavior while
reaching the new stationary cell voltage has undesirable effects on the cell power
Pcell = IcellUcell and should be avoided.

The new stationary cell voltage is reached significantly earlier in the optimal
control scenarios. For the 6-dimensional control function the cell voltage is in a
0.1%-tube around the new stationary solution after t ≈ 0.03.

The following scenarios examine, whether the technological expensive control
of all input variables is really needed. Especially the scalar control of the molar
fraction χCH4,in or of the molar flow density γin give promising results, see Fig. 3.
Most favorable seems the scalar control of the molar flow density γin: the excess cell
voltage in the second time interval is lower. Moreover this approach can be easily
realized in practice. The scalar optimal control γin is given in Fig. 4. Fig. 5 presents
the less efficient other scalar optimal control scenarios for reference purposes.
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Fig. 4 Scalar (sub)optimal control γin

4 Conclusion and Outlook

Several suboptimal boundary control strategies were numerically computed and
compared for a complicated partial differential algebraic equation system modelling
realistically the dynamical behavior of a molten carbonate fuel cell. Although tech-
nologically relevant optimal control results could be computed, the huge computa-
tional time needed demands model reduction techniques, which are currently under
development.
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Differential DAE Index for Reactive Euler
Equations

A. Hmaidi and P. Rentrop

Abstract For the numerical simulation of a reacting gas flow, we extend the Eu-
ler equations to take into account the interaction of the chemical species. Moreover
we describe the thermodynamic properties of the gas such as pressure, internal en-
ergy and temperature using appropriate closure equations. The system obtained by
the combination of the Euler equations and the closure equations is a differential-
algebraic system. After modeling the chemical source terms, we focus on the closure
relations that complete the Euler equations for an ideal gas and for a real gas mix-
ture. By investigating the DAE-index of such systems for ideal gases, we show the
DAE-index for the time integration is 1, whereas this must not be true for real gases.

1 Introduction

Due to environmental and economical reasons, the development and the improve-
ment of gas turbines by increasing the efficiency and reducing fuel consumption
and pollutant formation has become more essential than ever before. The numerical
study of reactive flows is a very important step towards reaching these goals in mod-
ern power plants. The modeling of the gas flow is based on conservation principles.
The three fundamental principles in fluid dynamics are the conservation of mass,
momentum and energy. For one-dimensional inviscid flows we obtain the 1D-Euler
gas equations ⎛⎝ ρ

ρu
ρE

⎞⎠
t

+

⎛⎝ ρu
ρu2 + p

(ρE + p)u

⎞⎠
x

= 0 (1)

Ayoub Hmaidi and Peter Rentrop
Chair of Numerical Analysis M2, Munich University of Technology
Boltzmannstrasse 3, D-85748 Garching, e-mail: {hmaidi, toth-pinter}@ma.tum.de
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which form a system of partial differential equations of first order for the four un-
known states ρ , u, p and E .
The conservation principles are also valid in the case of chemically reacting gas flow.
The closure conditions - relations between pressure, density and internal energy-
complete the system. It is the initial resp. boundary conditions and the closure equa-
tions, i.e. pressure and internal energy laws, that are different from one application
to the other. Although in many cases (like high pressure or low temperature) not ap-
propriate [9], the ideal gas law is often preferred to the real gas law for its simplicity.
In our investigation, we consider a reactive multispecies flow with ideal gas or real
gas closure equations and study the influence, the analytical properties and the nu-
merical consequences due to the DAE-index of such choices.

2 Euler Equations for Multispecies Reacting Gas

For a 1-d reactive gas flow [4] consisting of Ns species undergoing Nr reactions the
Euler gas equations are extended by the conservation of mass for each chemical
component, which yields a system of Ns + 2 partial differential equations.⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρ1

ρ2
...
ρNs

ρu
ρE

⎞⎟⎟⎟⎟⎟⎟⎟⎠
t

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρ1u
ρ2u

...
ρNs u
ρu2 + p

(ρE + p)u

⎞⎟⎟⎟⎟⎟⎟⎟⎠
x

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

W1ω̇1

W2ω̇2
...

WNs ω̇Ns

0
Q̇c

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2)

ρs(t,x) density of species Xs Ws molecular weight of species Xs

ρ(t,x) mixture density of gas p(t,x) mixture pressure
u(t,x) mixture velocity E(t,x) total non-chemical energy
ω̇s production rate of species Xs Q̇c chemical heat release

Remark: For an Ndim-dimensional flow we get (Ns + Ndim + 1) equations: one has
to replace the scalar velocity u by the vector u and apply the adequate divergence
operator ∇· instead of the spatial derivative ∂x.

In contrast to the standard flow equations, for a multispecies flow [4] we need fur-
ther conditions: one for each partial pressure ps and one involving the temperature
T . These additional conditions are called closure equations and represent constraints
which force the solution to lie on a manifold.

With the operator F standing for a spatial semidiscretization of the convection
and the chemical source term and G representing the algebraic constraints due to
the closure relations, we write the system of the Euler and the closure equations as

U̇ = F (U,V), (3)

0 = G (U,V). (4)
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U = (ρ1,ρ2, ..,ρNs ,ρu,ρE) represents the vector of the differential variables and
V = (p1, p2, .., pNs ,T ) the vector of algebraic variables (pressure and temperature).
Taking the total time derivative of the algebraic constraints equation

0 =
∂G

∂U
U̇+

∂G

∂V
V̇ (5)

enables us to write the system in the form(
I 0
K J

)(
U̇
V̇

)
=
(

F (U,V)
0

)
(6)

with submatrices K := ∂G
∂U and J := ∂G

∂V .

3 The Differential Index

After semidiscretization in space, the complete set of conservations laws and closure
conditions form a large time-dependent system of differential algebraic equations
(DAE system). DAEs arise in many contexts in science and engineering [5, 7]. They
refer to combinations of differential equations and algebraic (eventually nonlinear)
equations. This coupled system of equations forces the solution to lie on a manifold,
which may cause new theoretical and numerical problems [3].
To classify these difficulties the index was introduced. Roughly speaking, the index
is a measure for the additional effort required to solve a DAE in comparison to an
ODE. The larger the index, the worse the analytical and numerical problems get. In
the following we restrict to the standard differential index for the time integration.
For analytical investigation it is sufficient to study the semi-explicit system

ẏ = f (y,z), y ∈ IRny , (7)

0 = g(y,z), z ∈ IRnz . (8)

In order to remind of the index concept we introduce the linear algebra index.
Given the implicit linear system

Aẋ+ Bx = f (t) (9)

with A, B being (n×n) matrices, x, f ∈ IRn, A is allowed to be singular. If the matrix
B is not regular, then we require the matrix pencil A−σB to be regular (except for
a finite number of generalized eigenvalues σ ).

The index of (9) corresponds to the nilpotency of the eigenvalue λ = 0 of the ma-
trix pencil (Aλ + B). Index-0 means that there exists a complete set of eigenvalues
for λ = 0 and that no algebraic relation needs to be satisfied.

In the index-1 case we may solve (8) locally for z due to the implicit function
theorem : z = G(y). Inserting z into (7), we obtain ẏ = f (y,G(y)), the so-called state
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space form. The DAE system is called an index-1 problem, since only one differen-
tiation of (8) is needed to achieve ż =−g−1

z gy f .
Index-k means that we have to apply k differentiations of the constraint (8) in

order to get an explicit form for the variable z.
An inherent problem is that we have to satisfy the underlying manifolds result-

ing from each differentiation. Moreover we have to choose consistent initial val-
ues. Standard numerical schemes like Rosenbrock-Wanner, BDF’s or Radau [6] can
solve up to index-2 problems reliably. In the case of higher indices [1], projection
techniques or a reformulation of the problem [2] are necessary.

4 Chemical Source Terms

We consider a multicomponent mixture [4] of Ns species in which Nr chemical
reactions take place

Ns

∑
s=1
ν f

srXs 	
Ns

∑
s=1
νb

srXs, r = 1,2, · · · ,Nr.

ν f
sr and νb

sr are the stoichiometric coefficients for the r-th forward and backward
reaction of species Xs. The net reaction rate Ω̇r of the r-th reaction is given by

Ω̇r = kr
f

Ns

∏
s=1

[Xs]ν
f
sr − kr

b

Ns

∏
s=1

[Xs]ν
b
sr (10)

where [Xs] denotes the concentration of the species Xs and reads [Xs] = ρs
Ws

.
k f and kb are the Arrhenius rate coefficients for the forward and backward reactions.
The chemical production rate of species Xi is obtained through

ω̇i =
Nr

∑
r=1

(νb
ir−ν f

ir)Ω̇r. (11)

Further, the chemical heat release [8] of all reactions reads Q̇c = −∑Ns
s=1 Wsh0

s ω̇s,
where h0

s denotes the heat of formation of species Xs. The chemical heat release
couples the chemical reactions to the flow internal energy via the energy equation.

5 Closure Conditions for Ideal Gases

The ideal gas law provides a relationship between pressure, density and temperature

ps = ρs
RT
Ws

, for all species Xs, s = 1, ..,Ns. (12)
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Since the temperature is related to the internal properties of the system, we need
equations which relate the internal energy or enthalpy to the other variables such as
density, pressure and temperature [4, 8].

The internal energy of an ideal gas Xs varies according to

des =
∂es

∂T
|vdT = cv,sdT (13)

where cv denotes the specific heat at constant volume. With the specific heat at
constant pressure cp, we get an equivalent expression for the internal enthalpy hs

dhs =
∂hs

∂T
|pdT = cp,sdT. (14)

Lemma 1. For ideal gases, the DAE system has index 1.

Proof. According to Dalton’s law, the total pressure of a mixture of ideal gases is

p =
Ns

∑
s=1

ps =
Ns

∑
s=1
ρs

RT
Ws

= ρ
RT
W

(15)

where the mixture molecular weight W is defined through

ρ
W

=
Ns

∑
s=1

ρs

Ws
. (16)

Furthermore, the following relations are valid for an ideal gas mixture

ρd =∑
s
ρsds for d ∈ {e,cv,h,cp,

1
W
}. (17)

Using the closure equations for the partial pressures ps and the internal energy e, we
get the matrices K and J

K =

⎛⎜⎜⎜⎜⎝
−RT

W1
. . .
−RT
WNs

p
ρ2 .. p

ρ2
u
ρ
−1
ρ

⎞⎟⎟⎟⎟⎠ , J =

⎛⎜⎜⎜⎜⎝
1 −R ρ1

W1
. . .

...
1 −R

ρNs
WNs

− 1
ρ .. − 1

ρ cp

⎞⎟⎟⎟⎟⎠ . (18)

With the thermodynamic relation

p
ρ

=
R

W
T = (cp− cv)T (19)

we simplify the last line of the matrices and obtain
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K =

⎛⎜⎜⎜⎜⎝
−RT

W1
. . .
−RT
WNs

0 .. 0 u
ρ − 1

ρ

⎞⎟⎟⎟⎟⎠ , J =

⎛⎜⎜⎜⎝
1 −R ρ1

W1
. . .

...
1 −R

ρNs
WNs

cv

⎞⎟⎟⎟⎠ . (20)

Since cv > 0, J is always invertible and thus the system has index 1. ��

6 Closure Conditions for Real Gases

The behaviour of real gas usually agrees with ideal gas properties within a 5% range
at normal pressure and temperature. However at high pressure or low temperature,
the thermodynamic properties of a real gas deviate significantly from those expected
from an ideal gas. Therefore the closure conditions must be reformulated.
Since Dalton’s law is not valid for real gases, the total pressure of the mixture is
given through a general algebraic relation

p = π(ρ1, ..,ρNs , p1, .., pNs ,T ). (21)

Furthermore the pressure law for species Xs is modified to take the form

ps = ρs
RT
Ws

Zs. (22)

Zs is the compressibility factor of species Xs. It is obvious that for ideal gases Zs

equals 1. To take real gas effects into account, the compressibility factor is usually
modelled as a multivariable function of pressure, molar volume, temperature, etc.
A class of these models [9] consists in a polynomial representation of Zs in either the
inverse of the molar volume vs or the pressure ps considering temperature-dependent
coefficients. A standard model for the compressibility factor is:

Z(
1
v
,T ) = 1 +∑

i

αi(T )
vi , (23)

where the molar volume v is defined as 1
v := ρ

W .
We complete the system with closure equations for the internal energy : the in-

ternal energy equation of species Xs is extended with real gas effects and takes the
form

des =
∂es

∂T
|vdT +

∂es

∂v
|T dv (24)

= cv,sdT +
(

T
∂ ps

∂T
|v− ps

)
dv (25)

= cv,sdT −RT 2 ∂Zs

∂T
|ρ dρs

ρs
. (26)
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Finally we define the mixture internal energy by a general algebraic law

e = ε(ρ1, ..,ρNs ,e1, ..,eNs ,T ) (27)

Lemma 2. Depending on ∂ε
∂T , the system has an index of 1 or higher.

Proof. The vector of constraints G is given by the following closure equations for
the internal pressures ps{s=1,..,Ns}

0 = gs(ρs, ps,T ) = ps− ρs

Ws
RT Zs = ps− ρs

Ws
RT

[
1 +∑αs,i(T )

(
ρs

Ws

)i
]

(28)

and the closure equation for the internal energy

0 = ge(ρ1, ..,ρNs ,ρv,ρE,T ) = e +
1
2

u2−E = ε(ρ1, ..,ρNs ,e1, ..,eNs ,T )+
1
2

u2−E.

(29)
We obtain the matrices K and J with the following structure

K =

⎛⎜⎜⎜⎜⎜⎝
∂g1
∂ρ1

. . .
∂gNs
∂ρNs

∂ge
∂ρ1

.. ∂ge
∂ρNs

∂ge
∂ (ρu)

∂ge
∂ (ρE)

⎞⎟⎟⎟⎟⎟⎠ , J =

⎛⎜⎜⎜⎜⎝
1 ∂g1

∂T
. . .

...

1 ∂gNs
∂T
∂ge
∂T

⎞⎟⎟⎟⎟⎠ . (30)

It is then obvious that the index of the system depends on ∂ge
∂T , i.e. ∂ε∂T . ��

7 Results of Numerical Simulations

To show the influence of ideal or real gas closure conditions we run numerical sim-
ulations. To separate effects of convection from those of the closure equations, we
decided to consider a continuous stirred-tank reactor so that chemical reactions take
place at spatially-constant temperature, pressure and density. With this assumption,
the convective part of the Euler equations vanishes and we can model the reactor by
an ODE system in addition to the appropriate set of closure equations.

As a benchmark, we consider a reactor containing four chemical species denoted
A, B, C and D undergoing the following reactions

A + B 	 C + D (31)

A + D 	 B +C. (32)

For the same set of initial conditions, we study the reaction kinetics using either the
ideal or the real gas closure equations. We used the multistep solver ode15s of MAT-
LAB which can solve index-1 DAE. The qualitative evolution of the concentrations
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is quite similar. However, within a relatively short time span, the mass fractions
obtained in both cases clearly deviate from one another as shown in Fig. 1.
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Fig. 1 Reaction kinetics for ideal (dots) and real gas (line) for the 4 reactants A to D
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Application of a First Order Asymptotic Method
for Modeling Singularly Perturbed BVPs

N. Parumasur, P. Singh, and V. Singh

Abstract We present a modified numerical algorithm based on a first order asymp-
totic procedure for solving singularly perturbed second-order boundary-value prob-
lems (BVPs). We outline the derivation of the asymptotic procedure and show how
the method may be adapted for solving BVPs. The algorithm is similar to the shoot-
ing method. We present some test cases, including the Fisher equation of mathemat-
ical biology, and the results indicate that the method would be useful for solving
BVPs.

1 Introduction

In this paper we are concerned with boundary value problems exhibiting one or
more transition layers near the boundary. In regular perturbation theory there are
methods that give solutions that are valid for finite intervals of time and also for all
time. In this paper we study equations in which the order drops when the bifurca-
tion parameter is set to zero and in these kinds of problems the solutions undergo
rapid transition as one moves from one boundary point to the other and this makes
it difficult to find solutions that are even valid in small intervals. We present a mod-
ified numerical algorithm based on a first order asymptotic procedure for solving
singularly perturbed second-order boundary-value problems (BVPs). We follow the
algorithm of the asymptotic expansion for solving singularly perturbed systems of
ordinary differential equations [5, 6]. The present article deals with BVPs and serves
as an extension of the work considered in the article presented in ENUMATH 2005
[2]. A similar approach for solving singularly perturbed initial value problems and
evolution equations has been proposed in [1, 4, 8]. In that context the method is
referred to as the diffusion approximation. The asymptotic procedure has also been

N. Parumasur, P. Singh, and V. Singh
University of KwaZulu-Natal, School of Mathematical Sciences, Private Bag X54001, Durban,
4000, South Africa, e-mail: [parumasurn1,singhp,singhvs]@ukzn.ac.za
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applied in kinetic theory and the method referred to as the prompt-jump approxima-
tion [3].

We consider the boundary value problem

ε
d2x
dt2 + A

dx
dt

+ f (x) = 0

x(0) = α (1)

x(1) = β

where x(t), f (x), α,β ∈R and ε is a small perturbation parameter. The eigenvalues
of the matrix A have all positive real parts, hence A is invertible.

We convert the boundary value problem (1) to the initial value problem by drop-
ping the second boundary condition x(1) = β and replacing it by the initial condition

x′(0) = s. (2)

The initial-value problem has a uniquely determined solution x(t) = x(t,s) which
depends on the choice of the initial value s for x′(0). To determine the value of s
consistent with the right-hand boundary condition we must find a zero s = s̄ of the
function F(s) = x(1,s)−β . Assuming that F(s) ∈C2(0,1), one can use the secant
method to determine s̄. Starting with an initial approximation s0, one then has to
iteratively compute values si according to

si+1 = si− F(si)*si

F(si +*si)−F(si)
(3)

where
F(si +*si)−F(si)

*si ≈ F ′(si)

and F(si) is determined by solving an initial-value problem

ε
d2x
dt2 + A

dx
dt

+ f (x) = 0

x(0) = α (4)

x′(0) = s(i)

up to t = 1.
In this paper instead of applying the ”shooting method” to the stiff second order

system of equations (1), we first apply the first order asymptotic procedure to the
system and then adapt the ”shooting method” to the resulting non-stiff first order
system. We briefly discuss the procedure.

In section 2 we outline the derivation of the asymptotic procedure and show
how the method may be adapted for solving BVPs. In section 3 we provide some
test cases, including the Fisher equation of mathematical biology, and present the
numerical results.
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2 Outline of the Asymptotic Procedure

The second order system (1) is converted to the first order system

ε
dz
dt

=−Az− f (x)

dx
dt

= z

x(0) = α
z(0) = s

(5)

We truncate expansions to first order in ε in order to derive the first order version of
the steady state approximation. The functions x and z in (5) are each decomposed
into a bulk solution depending on t and an initial layer solution depending on τ =
t/ε . Hence

z(t) = z̄(t)+ z̃(τ)+ O(ε2)

x(t) = w(t)+ x̃(τ)+ O(ε2)
(6)

where

z̄(t) = z̄0(t)+ ε z̄1(t)
z̃(τ) = z̃0(τ)+ ε z̃1(τ) (7)

x̃(τ) = x̃0(τ)+ ε x̃1(τ).

We note that the bulk solution w for the slow variable x remains unexpanded. Sub-
stituting (6) into (5) we obtain upon equating functions of t and τ separately

ε
dz̄
dt

= −Az̄− f (w), (8)

dw
dt

= z̄, (9)

dx̃
dτ

= ε z̃, (10)

dz̃
dτ

= −Az̃+ f (w(ετ))− f (w(ετ)+ x̃). (11)

Since the original system is autonomous, we can replace z̄(t) by

z̄(t) = φ0(w(t))+ εφ1(w(t)) (12)

where z̄0(t) = φ0(w(t)) and z̄1(t) = φ1(w(t)) are functions of w(t). Substituting (12)
into (8) we obtain

ε
[

dφ0

dw
dw
dt

+ ε
dφ1

dw
dw
dt

]
=−A(φ0 + εφ1)− f (w). (13)
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Substituting (12) into (13) because of (9) and equating coefficients of powers of ε
we obtain

φ0(w) = −A−1 f (w), (14)
dφ0

dw
φ0(w) = −Aφ1(w). (15)

which is solved for φ1(w), yielding

φ1(w) =−A−2 d f (w)
dw

A−1 f (w). (16)

Hence, from (9) we obtain w(t) as the solution of the first order system

dw
dt

=−A−1
[

I + εA−1 d f (w)
dw

A−1
]

f (w). (17)

In order to obtain the initial condition w(0) for (17) we substitute (7) into (10) and
equate powers of ε to obtain the initial layer functions

x̃0(τ) = 0. (18)

x̃1(τ) = −A−1e−Aτ(s+ A−1 f (w(0))). (19)

Using the original initial conditions together with (18) and (19) we obtain

w(0) := w(0,s) = α+ εA−1[s+ A−1 f (α)]. (20)

Now taking t = 1 in equation (6) and (19) it can be shown that

w(1) := w(1,s) = β + εA−1e−A/ε [s+ A−1 f (w(0,s))]. (21)

We solve the first order system

dw
dt

=−A−1
[

I + εA−1 d f (w)
dw

A−1
]

f (w)

w(0) = w(0,s).
(22)

numerically and denote the solution at t = 1 by ŵ(1,s).
It remains to provide a suitable value for s. This is obtained by defining F(s) =

ŵ(1,s)−w(1,s) and iteratively solving (3). A convenient starting value for the it-
eration is obtained by setting ε = 0 in equation (1) and we obtain s0 = −A−1 f (α).
We are essentially trying to find an optimal s such that both w(0,s) and w(1,s) lie
on the solution curve w(t) of equation (17).

Alternatively, the problem may be cast in the fixed point form

si+1 = G(si) (23)
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where

G(s) =
1
ε

eA/εA[(ŵ(1,s)−β )−A−1 f (w(0,s))].

3 Numerical Modeling

We consider several examples to demonstrate the performance of the proposed
method. The numerical results are obtained with Mathematica Version 6.0 on a Dell
PC.

Example 1.

ε
d2x
dt2 +

dx
dt
−1 = 0

x(0) = 0

x(1) = 0

We choose ε = 0.01. Figures 1 and 2 shows a plot of the solution profiles x(t) (nu-
merical solution) and w(t) (asymptotic solution), corresponding to different values
of s in (3). It is seen that the solution profiles are almost identical (in the bulk region)
after the first iteration.

Fig. 1 Numerical solution
x(t) (dotted) versus first order
asymptotic solution w(t)
(solid) (s = s0).

0.2 0.4 0.6 0.8 1.0
t

�0.5

0.5

1.0

sol

w�t�

x�t�

Example 2.

ε
d2x
dt2 + 2

dx
dt

+ exp(x) = 0

x(0) = 0

x(1) = 0

We choose ε = 0.001. Figures 3, 4 and 5 shows a plot of the solution profiles
x(t) (numerical solution) and w(t) (asymptotic solution), corresponding to different
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Fig. 2 Numerical solution
x(t) (dotted) versus first order
asymptotic solution w(t)
(solid) after first Newton
iteration (s = s1).

0.2 0.4 0.6 0.8 1.0
t

�1.0

�0.8

�0.6

�0.4

�0.2

sol
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values of s in (3). It is seen that the solution profiles are almost identical (in the bulk
region) after the second iteration.

Fig. 3 Numerical solution
x(t) (dotted) versus first order
asymptotic solution w(t)
(solid) (s = s0).
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Fig. 4 Numerical solution
x(t) (dotted) versus first order
asymptotic solution w(t)
(solid) after first Newton
iteration (s = s1).
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Fig. 5 Numerical solution
x(t) (dotted) versus first order
asymptotic solution w(t)
(solid) after second Newton
iteration (s = s2).
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Example 3. We consider the Fisher equation from mathematical biology[7]

ε
d2x
dt2 +

dx
dt

+ x(1− x) = 0

x(−∞) = 1, x(∞) = 0

0 < ε ≤ 0.25

Using standard perturbation analysis it can be shown that the first order asymptotic
solution is given by

x(t) = (1 + et)−1 + εet(1 + et)−2 ln
[
4et(1 + et)−2] . (24)

Hence, we use x(0) = α and x(1) = β from this solution and apply the present
algorithm.

We use ε = 0.1. Figures 6 and 7 depicts the absolute error (|x(t)−w(t)|). It is
seen that the error smoothes out uniformly after the first iteration.

Fig. 6 Absolute Error: Nu-
merical solution x(t) and first
order asymptotic solution
w(t) (s = s0). 0.2 0.4 0.6 0.8 1.0

t

1.�10�6

2.�10�6

3.�10�6

4.�10�6

5.�10�6

6.�10�6

Error

The perturbation parameter ε varies between 0.0001 and 0.1 representing both
small and large values. The preceding numerical examples demonstrate fine con-
vergence of the bulk solution w(t). Furthermore the computation time to obtain the
asymptotic solution w(t) was superior to that of solving the original system for x(t)
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Fig. 7 Absolute Error: Nu-
merical solution x(t) and first
order asymptotic solution
w(t) after first Newton itera-
tion (s = s1).
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in Mathematica. In Example 2 the solution of w(t) was obtained in under 1 second
whilst the solution of x(t) took roughly 14 seconds. The extension to multidimen-
sional case is the subject of the expanded version of the present exposition [9].
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proposed method to BVPs.
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Newton-Like Solver for Elastoplastic Problems
with Hardening and its Local Super-Linear
Convergence

P.G. Gruber and J. Valdman

Abstract We discuss a solution algorithm for quasi-static elastoplastic problems
with hardening. Such problems can be described by a time dependent variational
inequality, where the displacement and the plastic strain fields serve as primal vari-
ables. After discretization in time, one variational inequality of the second kind is
obtained per time step and can be reformulated as each one minimization problem
with a convex energy functional which depends smoothly on the displacement and
non-smoothly on the plastic strain. There exists an explicit formula how to minimize
the energy functional with respect to the plastic strain for a given displacement. By
substitution, the energy functional can be written as a functional depending only on
the displacement. The theorem of Moreau from convex analysis states that this en-
ergy functional is differentiable with an explicitly computable first derivative. The
second derivative of the energy functional does not exist, hence the plastic strain
minimizer is not differentiable on the elastoplastic interface, which separates the
continuum in elastically and plastically deformed parts. A Newton-like method ex-
ploiting slanting functions of the energy functional’s first derivative instead of the
nonexistent second derivative is applied.

1 Introduction

We consider a quasi-static initial-boundary value problem for small strain elasto-
plasticity with hardening. Throughout the paper, the linear isotropic hardening law
is considered. Several interesting computational techniques for solving the elasto-
plastic problem with various kinds of hardening can be found in [8, 10, 1].

After discretizing in time we consider only one time step, which is described as
a minimization problem for an unknown displacement u and plastic strain field p,

Peter G. Gruber and Jan Valdman
SFB F013 ’Numerical and Symbolic Scientific Computing’, Johannes Kepler University Linz,
4040 Linz, Austria e-mail: {peter.gruber, jan.valdman}@sfb013.uni-linz.ac.at
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see [2]. There, it has been already shown that a method of alternating minimization
convergences globally and linearly. The minimization with respect to the plastic
strain can be calculated locally by using an explicitly known dependence [1] of
the plastic strain on the total strain, i.e., p = p̃(ε(u)). Thus, an equivalent energy
minimization problem for the displacement u only,

J(u) := J̄(u, p̃(ε(u)))→min ,

can be defined. Since the dependencies of the energy functional on the second
argument, and of the minimizer p̃ on the total strain ε(u) are not smooth, the
Fréchet derivative DJ(u) seems not to exist. However, a damped generalized New-
ton method introduced in [1] converges globally and linearly. The super-linear con-
vergence is discussed but not proved there.

The main theoretical contribution of this paper is the extension of the analy-
sis done in [1]. We show that the structure of the energy functional J(u) satisfies
the assumptions of Moreau’s theorem from convex analysis and therefore the en-
ergy functional J(u) is Fréchet differentiable with an explicitly computable Fréchet
derivative DJ(u). The second derivative of the energy functional, D 2J(u), does not
exist. This is due to the non-differentiability of the plastic strain minimizer p̃ on the
elastoplastic interface, which separates the deformed continuum in elastically and
plastically deformed parts.

By the concept of slant differentiability [3] we define a Newton-like method us-
ing slanting functions instead of the usual derivative. We call such method a slant
Newton method for short. One of the main results in [3] is, that a slant Newton
method converges locally super-linear under the same assumptions as the classi-
cal Newton method. The main task is to find slanting functions for the mapping
max{0, ·}, which occurs within the formula of the plastic minimizer p̃ and causes
its non-differentiability. Such slanting functions are easy to find in the spatial dis-
crete case (e.g. after the FEM discretization). This explains the local super-linear
convergence, which was originally conjectured in Remark 7.5 of [1].

The spatially continuous case is more complicated and requires some extra reg-
ularity assumptions for the trial stress in each slant Newton step. To the best knowl-
edge of the authors, there are no theoretical results yet known, which would guaran-
tee the required regularity properties. Thus, our work may serve as a starting point
for more regularity analysis concerning elastoplastic problems.

2 Problem Description

We consider an elastoplastic one time step minimization problem with isotropic
hardening as described in [2]. Let tk for k ∈ {1, . . . ,N} denote the kth time step,
Ω ⊂ R3 be a bounded domain with Lipschitz continuous boundary ∂Ω , split into
two parts ΓN and ΓD. We define V :=

[
H1(Ω)

]3
, V0 := {v ∈V | v = 0 on ΓD}, VD :=

{v∈V | v = uD on ΓD} for uD ∈
[
H1/2(ΓD)

]3
, Q := [L2(Ω)]3×3, and R := R∪{+∞}.



Newton-Like Solver for Elastoplastic Problems 797

Moreover, we consider the body force fk ∈ [L2(Ω)]3, the traction gk ∈ [L2(ΓN)]3, the
previous time step approximation of the plastic strain pk−1 ∈ Q and the hardening
parameter αk−1 ∈ L2(Ω) to be given such that αk−1 ≥ 0 almost everywhere.

Then the elastoplastic energy functional J̄k : VD×Q→ R is defined by

J̄k(v,q) :=
1
2
‖ε(v)−q‖2

C +ψk(q)− lk(v) , (1)

where

〈A,B〉F :=∑
i, j

ai jbi j , ‖A‖F := 〈A,A〉1/2
F , (2)

〈q1,q2〉C :=
∫
Ω
〈Cq1(x) , q2(x)〉F dx , ‖q‖C := 〈q,q〉1/2

C
, (3)

α̃k(q) := αk−1 +σyH‖q− pk−1‖F , (4)

ψk(q) :=
{∫

Ω
(

1
2 α̃k(q)2 +σy‖q− pk−1‖F

)
dx if trq = tr pk−1 ,

+∞ else ,
(5)

lk(v) :=
∫
Ω

fk · v dx +
∫
ΓN

gk · v ds . (6)

Here, σy > 0 and H > 0 denote the material constants yield stress and modulus of
hardening, respectively, and C denotes the elastic stiffness tensor, which uses the
Lamé constants λ > 0 and μ > 0.

The convex functional J̄k expresses the mechanical energy of the deformed sys-
tem at the kth time step. Notice, that J̄k is smooth with respect to the displacements
v, but not with respect to the plastic strains q. The goal is to find a displacement uk

and a plastic strain pk such that the energy J̄k is minimized:

Problem 1. Find (uk, pk) ∈VD×Q which satisfy J̄k(uk, pk) = inf(v,q)∈VD×Q J̄k(v,q).

A short summary on the mathematical modeling of this minimization problem start-
ing from the classical formulation can be found in [7].

3 New Contribution

In [2] a method of an alternate minimization regarding the displacement v and the
plastic strain q was investigated to solve Problem 1. The global linear convergence
of the resulting method was shown and a local super-linear convergence was con-
jectured. Another interesting technique is to reduce Problem 1 to a minimization
problem with respect to the displacements v only. This can be achieved by substi-
tuting the explicit minimizer of Jk with respect to the plastic strain field for some
given displacement v, q = p̃k(ε(v)). We will observe that such reduced minimization
problem is smooth with respect to the displacements v and its derivative is explicitly
computable.
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The following theorem is formulated for functionals mapping from a Hilbert

space H provided with the scalar product 〈◦,1〉H and the norm ‖·‖H := 〈·, ·〉1/2
H

.
If a function F is Fréchet differentiable, we shall denote its derivative in a point x by
DF(x) and its Gâteaux differential in the direction y by DF(x ; y). We refer to [4]
concerning the definitions of convex, proper, lower semi continuous, and coercive.

Theorem 1. Let the function f : H×H→R be defined

f (x,y) =
1
2
‖x− y‖2

H +ψ(x) (7)

where ψ is a convex, proper, lower semi continuous, and coercive function of H
into R. Then F(y) := infx∈H f (x,y) maps into R, and there exists a unique function
x̃ : H→H such that F(y) = f (x̃(y),y) for all y ∈H. Moreover, there holds:

1. F is strictly convex and continuous in H.
2. F is Fréchet differentiable with the Fréchet derivative

DF(y) = 〈y− x̃(y) , ·〉H for all y ∈H . (8)

Proof. See [9, 7.d. Proposition].

We apply Theorem 1 to Problem 1 and obtain the following proposition.

Proposition 1. Let k ∈ {1, . . . ,N} denote the time step, and let J̄k be defined as in
(1). Then there exists a unique mapping p̃k : Q→ Q satisfying

J̄k (v, p̃k (ε (v))) = inf
q∈Q

J̄k (v,q) ∀v ∈VD . (9)

Let Jk be a mapping of VD into R defined as

Jk(v) := J̄k(v, p̃k(ε(v))) ∀v ∈VD . (10)

Then, Jk is strictly convex and Fréchet differentiable. The associated Gâteaux dif-
ferential reads

DJk(v ; w) = 〈ε(v)− p̃k(ε(v)) , ε(w)〉C− lk(w) ∀w ∈V0 (11)

with the scalar product 〈◦,1〉C defined in (3) and lk defined in (6).

Proof. Recall, that the functional J̄k : V ×Q → R defined in (1) using (3), (5),
and (6) can be decomposed as J̄k(v,q) = fk(ε(v),q)− lk(v), where the functional
fk : Q×Q→ R reads fk(s,q) := 1

2‖q− s‖2
C
+ψk(q). Theorem 1 states an existence

of a unique minimizer p̃k : Q→Q which satisfies the condition fk(ε(v), p̃k(ε(v))) =
infq∈Q fk(ε(v),q), where the functional Fk(ε(v)) := fk(ε(v), p̃k(ε(v))) is strictly
convex and differentiable with respect to ε(v) ∈ Q. Since ε : v→ ε(v) is a Fréchet
differentiable, linear and injective mapping of VD into Q, the compound functional
Fk(ε(v)) is Fréchet differentiable and strictly convex with respect to v ∈ VD. Con-
sidering the Fréchet differentiability and linearity of lk with respect to v ∈ VD, we
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conclude the strict convexity and Fréchet differentiability of the functional Jk de-
fined in (10). The explicit form of the Gâteaux differential DJk(v ; w) in (11) re-
sults from the linearity of the two mappings lk and ε , and the Fréchet derivative
DFk(ε(v) ; ·) = 〈ε(v)− p̃k(ε(v)) , ·〉C as in (8), combined with the chain rule.

The minimizer p̃k can be calculated by hand (see [1, 5]) and it exactly recovers
the classical return mapping algorithm [10]. Let the trial stress σ̃k : Q→Q at the kth
time step and the yield function φk−1 : Q→ R at the k−1st time step be defined by

σ̃k(q) := C(q− pk−1) and φk−1(σ) := ‖devσ‖F −σy(1 + Hαk−1) , (12)

where devA := A− A:I
I:I I denotes the deviator of a matrix A, and where I denotes the

identity matrix. Then, the minimizer p̃k reads

p̃k(ε(v)) =
1

2μ+σ2
y H2 max{0,φk−1(σ̃k(ε(v)))} devσ̃k(ε(v))

‖devσ̃k(ε(v))‖F
+ pk−1 . (13)

We obtain a smooth minimization problem by using Jk as in (10) with p̃k as in (13):

Problem 2. Find uk ∈VD such that Jk(uk) = infv∈VD Jk(v).

To solve this smooth minimization problem one could apply Newton’s Method
v j+1 = v j− (D 2Jk(v j))−1 DJk(v j), but unfortunately the second derivative does not
exist, since the max–function in (13) is not differentiable. Therefore, we apply a
Newton-like method which uses slanting functions (see [3]) instead of the second
derivative. We shall call such method a Slant Newton Method. Henceforth, let X and
Y be Banach spaces, and L (X ,Y ) denote the set of all linear mappings of X into Y .

Definition 1. Let U ⊆ X be an open subset and x ∈U . A function F : U → Y is said
to be slantly differentiable at x if there exists a mapping Fo : U →L (X ,Y ) which
is uniformly bounded in an open neighborhood of x, and a mapping r : X → Y with
limh→0

‖r(h)‖Y
‖h‖X

= 0 such, that F(x+h)= F(x)+Fo(x+h)h+r(h) holds for all h∈X

satisfying (x + h) ∈U . We say, Fo(x) is a slanting function for F at x. F is called
slantly differentiable in U if there exists Fo : U→L (X ,Y ) such that Fo is a slanting
function for F for all x ∈U . Fo is then called a slanting function for F in U .

Theorem 2. Let U ⊆ X be an open subset, and F : U→Y be a slantly differentiable
function with a slanting function Fo : U →L (X ,Y ). We suppose, that x∗ ∈U is a
solution to the nonlinear problem F(x) = 0. If Fo(x) is non-singular for all x ∈U
and {‖Fo(x)−1‖L (Y,X) : x ∈U} is bounded, then the Newton-like iteration

x j+1 = x j−Fo(x j)−1F(x j) (14)

converges super-linearly to x∗, provided that ‖x0− x∗‖X is sufficiently small.

Proof. See [3, Theorem 3.4] or [6, Theorem 1.1].

We apply the Slant Newton Method (14) to elastoplasticity by choosing F = DJk

as in (11). Due to [6, Proposition 4.1], the max-function is slantly differentiable as
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a mapping of Lp(Ω) into Lq(Ω) if p > q but not if p ≤ q. Therefore, if there holds
φk−1(σ̃k(ε(v))) ∈ L2+δ (Ω) for some δ > 0, then DJk (cf. (11),(13)) has a slanting
function which reads

(DJk)
o (v;w, w̄) := 〈ε(w)− p̃o

k(ε(v);ε(w)) , ε(w̄)〉C (15)

with a slanting function for p̃k, e. g.,

p̃k
o(ε(v) ; q) :=

{
0 if βk ≤ 0 ,

ξ
(
βk devq +(1−βk)

〈devσ̃k ,devq〉F
‖devσ̃k‖2

F
devσ̃k

)
else ,

(16)

where the abbreviations ξ := 2μ
2μ+σ2

y H2 , σ̃k := σ̃k(ε(v)) and βk := φk−1(σ̃k)
‖devσ̃k‖F

with φk−1

and σ̃k defined in (12) are used (see [5, Corollary 2]). (DJk)
o in Equation (15) is

commonly known as the consistent tangent, see [10]. For fixed v ∈ VD, the bilinear
form (DJk)

o (v; ·, ·) in (15) is elliptic and bounded in V0 (see [5, Lemma 2]).

Corollary 1. Let k ∈ {1, . . . ,N} and δ > 0 be fixed and tk denote the kth time step.
Let the mapping DJk : VD → V0

∗ be defined DJk(v) := DJk(v ; ◦) as in (11), and
(DJk)

o : VD→L (V0,V0
∗) be defined (DJk)

o (v) := (DJk)
o (v ; 1,◦) as in (15). Then,

the Slant Newton iteration

v j+1 = v j− [(DJk)
o (v j)

]−1
DJk(v j)

converges super-linearly to the solution uk of Problem 2, provided that ‖v0− uk‖V
is sufficiently small, and that φk−1(σ̃k(ε(v))) as in (12) is in L2+δ (Ω) for all v∈VD.

Proof. We check the assumptions of Theorem 2 for the choice F = DJk. Let v ∈VD

be arbitrarily fixed. The mapping (DJk)
o (v) : V0 → V0

∗ serves as a slanting func-
tion for DJk at v, since φk−1(σ̃k(ε(v))) is in L2+δ (Ω) everywhere in VD. Moreover,
(DJk)

o (v) : V0→V0
∗ is bijective if and only if there exists a unique element w in V0

such, that for arbitrary but fixed f ∈V0
∗ there holds

(DJk)
o (v ; w, w̄) = f (w̄) ∀w̄ ∈V0 . (17)

Since the bilinear form (DJk)
o (v) is elliptic and bounded, we apply the Lax-

Milgram Theorem to ensure the existence of a unique solution to (17). Finally, with
κ1 denoting the v-independent ellipticity constant for (DJk)

o (v;1,◦), the uniform
boundedness of [(DJk)

o (·)]−1 : VD→L (V0
∗,V0) follows from the estimate

‖[(DJk)
o (v)]−1‖= sup

w∗∈V0
∗

‖[(DJk)
o (v)]−1 w∗‖
‖w∗‖V0

∗
= sup

w∈V0

‖w‖V
‖(DJk)

o (v ; w, ·)‖V0
∗

= sup
w∈V0

inf
w̄∈V0

‖w‖V ‖w̄‖V
|(DJk)

o (v ; w, w̄)| ≤ sup
w∈V0

‖w‖2
V

|(DJk)
o (v ; w,w)| ≤

1
κ1

.
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Remark 1. Notice the required assumption on the integrability of φk−1. It is still an
open question, under which extra conditions this property can be satisfied. The local
super linear convergence in the spatially discrete case (after FE-discretization) can
be shown without any additional assumption, see [5, Proposition 3].

4 Numerical Example

Fig. 1 Problem setup.

This example simulates the deformation of a screw-wrench under pressure. The
problem geometry is shown in Figure 1: A screw-wrench sticks on a screw (ho-
mogeneous Dirichlet boundary condition) and a surface load g is applied to a part
of the wrench’s handhold in interior normal direction. The material parameters are
set E = 2e8 , ν = 0.3 , σY = 2e6 , H = 0.001 , and the traction intensity amounts
|g|= 6e4. Figure 2 shows the yield function (right) and the elastoplastic zones (left),
where purely elastic zones are light, and plastic zones are dark. The displacement
of the domain is multiplied by factor 10. Table 1 reports on the super linear conver-
gence of the Newton-like method for graded uniform meshes.

Level 1 . . . 4 5 6 7 8
DOF 202 . . . 10590 41662 165246 658174 2627070
step 1 3.61e-03 . . . 1.09e-01 1.31e-01 1.48e-01 1.58e-01 1.63e-01
step 2 2.35e-06 . . . 3.70e-02 5.69e-02 6.93e-02 7.96e-02 8.83e-02
step 3 1.53e-11 . . . 4.38e-03 7.58e-03 1.32e-02 2.99e-02 4.16e-02
step 4 4.57e-15 . . . 1.10e-04 4.03e-04 2.43e-03 3.56e-03 4.97e-03
step 5 . . . 2.92e-08 5.96e-06 2.18e-04 1.20e-04 2.11e-04
step 6 4.16e-14 2.94e-10 1.50e-05 1.03e-05 2.06e-05
step 7 7.86e-14 3.89e-09 1.16e-09 1.39e-06
step 8 1.55e-13 2.99e-13 6.77e-09
step 9 5.93e-13

Table 1 The relative error in displacements |v j− v j−1|ε/
(|v j|ε + |v j−1|ε

)
is displayed for graded

uniform meshes, where |v|ε := (
∫
Ω 〈ε(v) , ε(v)〉F dx)1/2. DOF denotes degrees of freedom.
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Fig. 2 Elastoplastic zones (left) and yield function (right) of the deformed wrench geometry. The
displacement is magnified by a factor 10 for visualization reasons.
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On a Fictitious Domain Method for Unilateral
Problems

J. Haslinger, T. Kozubek, and R. Kučera

Abstract Two variants of the fictitious domain method are compared. The first one
enforces unilateral conditions by Langrange multipliers defined on the boundary γ
of the original domain ω so that the computed solution has a singularity on γ that
can result in an intrinsic error. The second one uses an auxiliary boundaryΓ located
outside of ω on which a new control variable is introduced in order to satisfy the
conditions on γ . Therefore the singularity is moved away from ω so that the com-
puted solution is smoother in ω . It is experimentally shown that the discretization
error is significantly smaller in this case.

1 Introduction

This contribution deals with numerical realization of elliptic boundary value prob-
lems with unilateral boundary conditions using a fictitious domain method. Any
fictitious domain formulation [2] extends the original problem defined in a domain
ω to a new (fictitious) domainΩ with a simple geometry (e.g. a box) which contains
ω . The main advantage consists in possibility to use a uniform mesh in Ω leading
to a structured stiffness matrix. This enables us to apply highly efficient multiplying
procedures [6].

Fictitious domain formulations of problems with the classical Dirichlet or Neu-
mann boundary conditions lead after a finite element discretization typically to al-
gebraic saddle-point systems. For their solution one can use the algorithm studied
in [4] that combines the Schur complement reduction with the null-space method.
The situation is not so easy for unilateral problems since their weak formulation
contains a non-differentiable projection operator. Fortunately, a resulting algebraic
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representation is described by a system that is semi-smooth in the sense of [1] so
that a generalized Newton method can be applied. This method has been already
used in [5] for solving complementarity problems. In our case each Newton step
relates to a mixed Dirichlet-Neumann problem and therefore the algorithm from [4]
can be used for solving inner linear systems. Due to the superlinear convergence
rate of the Newton iteration [1], the computations are only slightly more expensive
than the solution of pure Dirichlet or Neumann problems.

In this paper we compare two variants of the fictitious domain method. The first
one enforces unilateral conditions by Langrange multipliers defined on the boundary
γ of the original domainω . Therefore the fictitious domain solution has a singularity
on γ that can result in an intrinsic error of the computed solution. The second one
uses an auxiliary boundary Γ located outside of ω on which we introduce a new
control variable in order to satisfy the conditions on γ . In the second approach the
singularity is moved away from ω so that the computed solution is smoother in ω .
We shall experimentally show that the discretization error is significantly smaller in
this case. Both approaches are theoretically justified on the level of continuous set-
ting [3]. On the other hand some theoretical issues remain still open for the discrete
problem. For more details we refer to [3, 4].

2 Setting of the Problem

We shall consider the following unilateral problem in a bounded domain ω ⊂ R2

with the Lipschitz boundary γ:

−Δu + u = f in ω ,u≥ g,
∂u
∂nγ
≥ 0,

∂u
∂nγ

(u−g) = 0 on γ, (1)

where f ∈ L2
loc(R

2), g ∈ H1/2(γ) are given functions and ∂
∂nγ

stands for the normal

derivative of a function on γ . We denote by (· , ·)k,S the scalar product in Hk(S), k≥ 0
integer (H0(S) := L2(S)).

The weak form of (1) reads as follows:

Find u ∈ H1(ω) such that

(u,v)1,ω = ( f ,v)0,ω + 〈 ∂u
∂nγ

,v〉γ ∀v ∈H1(ω),

∂u
∂nγ
∈ H−1/2

+ (γ), 〈μ− ∂u
∂nγ

,u−g〉γ ≥ 0 ∀μ ∈ H−1/2
+ (γ),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2)

where 〈·, ·〉γ denotes the duality pairing between H−1/2(γ) and H1/2(γ). It is well-
known that this problem has a unique solution.

Next, we shall suppose that ∂u
∂nγ
∈ L2

+(γ). Thus the duality pairing in (2) is repre-

sented by the L2(γ)-scalar product and the inequality in (2) is equivalent to
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∂u
∂nγ

= P(
∂u
∂nγ
−ρ(u−g)), (3)

where P denotes the projection of L2(γ) onto L2
+(γ) and ρ > 0 is arbitrary but fixed.

We shall present two variants of a fictitious domain formulation. To this end we
choose a bounded domain Ω having a simple shape such that ω ⊂ Ω and construct
a closed curveΓ ⊂Ω surroundingω . We shall distinguish two cases concerning the
mutual positions of γ and Γ :

(i) γ ≡ Γ , (non-smooth variant); (ii) dist(γ,Γ ) > 0, (smooth variant).

Instead of (2), we propose to solve the extended problem inΩ called the fictitious
domain formulation of (1):

Find (û,λ ) ∈ H1
0 (Ω)×H−1/2(Γ ) such that

(û,v)1,Ω = ( f ,v)0,Ω + 〈λ ,v〉Γ ∀v ∈ H1
0 (Ω),

∂ û|ω
∂nγ

= P(
∂ û|ω
∂nγ
−ρ(û|ω −g)),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4)

where 〈·, ·〉Γ stands for the duality pairing between H−1/2(Γ ) and H1/2(Γ ). It is
readily seen that û|ω solves (2), where û is the first component of the solution to (4).
An existence analysis for this problem is discussed in [3].

3 Discretization

Let us consider finite dimensional subspaces Vh⊂H1
0 (Ω),ΛH(γ)⊂ L2(γ),ΛH(Γ )⊂

L2(Γ ) such that dimVh = n, dimΛH(γ) = dimΛH(Γ ) = m. By a discretization of
(4) we mean the following problem:

Find (ûh,λH) ∈Vh×ΛH(Γ ) such that

(ûh,vh)1,Ω = ( f ,vh)0,Ω +(λH ,vh)0,Γ ∀vh ∈Vh,

δHûh = P(δHûh−ρ(τHûh−gH)),

⎫⎪⎪⎬⎪⎪⎭ (5)

where δHûh, τHûh and gH are appropriate approximations of
∂ ûh|ω
∂nγ

, ûh|γ and g, re-

spectively, in ΛH(γ) [3]. The algebraic representation of (5) can be written in the
form

F(ȳ) = 0 (6)

with F : Rn+m #→ Rn+m defined by

F(ȳ) :=

(
Aū−B�Γ λ̄ − f̄

G(ū)

)
, ȳ :=

(
ū

λ̄

)
, (7)
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where G(ū) :=Cγ ū−max{0,Cγ ū−ρ(Bγ ū− ḡ)} and the max-function is understood
componentwisely. Here, A ∈ Rn×n denotes the standard stiffness matrix, Bγ ,BΓ ∈
Rm×n are the Dirichlet trace matrices related to γ, Γ , respectively, Cγ ∈Rm×n is the
Neumann trace matrix on γ and f̄ ∈ Rn, ḡ ∈ Rm.

The equation (6) is nonsmooth due to the presence of the max-function. For-
tunately, it is semismooth in the sense of [1] so that a semismooth variant of the
Newton method can be used.

4 Algorithm

The concept of semismoothness uses slant differentiability of a function. Here, we
recall basic results of [1] related to our problem.

Let Y , Z be Banach spaces and L (Y,Z) denote the set of all bounded linear
mappings of Y into Z. Let U ⊆ Y be an open subset and F : U #→ Z a function.

Definition 1. (i) The function F is called slantly differentiable at y ∈ U if there
exists a mapping Fo : U #→L (Y,Z) such that {Fo(y + h)} are uniformly bounded
for sufficiently small h ∈ Y and

lim
h→0

1
‖h‖‖F(y + h)−F(y)−Fo(y + h)h‖= 0.

The function Fo is called a slanting function for F at y.
(ii) The function F is called slantly differentiable in U if there exists Fo : U #→
L (Y,Z) such that Fo is a slanting function for F at every point y ∈U . The function
Fo is called a slanting function for F in U .

Theorem 1. Let F be slantly differentiable in U with a slanting function Fo. Suppose
that y∗ ∈U is a solution to the nonlinear equation F(y) = 0. If Fo(y) is non-singular
for all y ∈U and {‖Fo(y)−1‖ : y ∈U} is bounded, then the Newton method

yk+1 = yk−Fo(yk)−1F(yk)

converges superlinearly to y∗, provided that ‖y0− y∗‖ is sufficiently small.

Let us focus on the max-function ψ(y) = max{0,y} with Y = Z = R. This func-
tion is slantly differentiable and

ψo(y) =

⎧⎨⎩
1, y > 0,
σ , y = 0,
0, y < 0,

is the slanting function in R for an arbitrary (but fixed) real number σ . Since the
convergence rate of the Newton method does not depend on the choice of a slanting
function, we shall use ψo(0) = 0 below.

The function F defined by (7) is slantly differentiable in Rn+m with
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Fo(ȳ) =
(

A −B�Γ
Go(ū) 0

)
,

where Go(ū) = (Go
1(ū), . . . ,Go

m(ū))� with

Go
i (ū) = Cγ,i−ψo(Cγ,iū−ρ(Bγ,iū−gi))(Cγ,i−ρBγ,i), i = 1, . . . ,m,

and the subscript i denotes the i-th row of the corresponding matrix. A more conve-
nient setting of Fo uses an active set terminology.

Let M := {1,2, . . . ,m}. We define the sets of inactive and active indices at ȳ =
(ū�, λ̄�)� ∈ Rn+m by

I (ū) := {i ∈M : Cγ,iū−ρ(Bγ,iū−gi)≤ 0},
A (ū) := {i ∈M : Cγ,iū−ρ(Bγ,iū−gi) > 0}.

It is easily seen that

Go
i (ū) =

{
Cγ,i, i ∈I (ū),

ρBγ,i, i ∈A (ū),

therefore
Go(ū) = D(I (ū))Cγ +ρD(A (ū))Bγ ,

where D(S ) denotes the diagonal matrix for S ⊆M defined by

D(S ) = diag(s1, . . . ,sm) with si =

{
1, i ∈S ,

0, i /∈S .

The Newton method leads to the following active-set type algorithm.

Algorithm ASM (Active-Set Method)

(0) Set k := 0 and choose ρ > 0, εu > 0 (εu = 10−5).
Initialize ū0 ∈ Rn and λ̄ 0 ∈ Rm.

(1) Define the inactive and active sets by: I k := I (ūk), A k := A (ūk).
(2) Solve:(

A −B�Γ
D(I k)Cγ +ρD(A k)Bγ 0

)(
ūk+1

λ̄ k+1

)
=

(
f̄

ρD(A k)ḡ

)
.

(3) Set err(k) := ‖ūk+1− ūk‖/‖ūk+1‖. If err(k) ≤ εu, return ū := ūk+1.
(4) Set k := k + 1 and go to step (1).

Remark 1. The algorithm has the finite terminating property provided that all possi-
ble matrices in the step (2) are non-singular. This follows directly from the fact that
the number of the active sets is finite so that the active set corresponding to the so-
lution, and hence the solution itself, must be found in a finite number of the Newton



808 J. Haslinger et al.

iterations. Unfortunately the non-singularity of the matrices is guaranteed in some
special cases only [3]. But in general, this question remains still open.

Remark 2. It is readily seen that ρ can be discarded from the linear systems in the
step (2). Indeed, if k ≥ 1 then ρ does not play any role in the definitions of I k

and A k since always either Cγ,iūk = 0 or Bγ,iūk−gi = 0. Moreover, an appropriate
choice of the initial iterate ū0 (e.g related to the Dirichlet problem) makes it possible
to omit ρ completely from the algorithm.

The finite terminating property mentioned in Remark 1 assumes the exact so-
lution of the linear systems in the step (2). Numerical experiments however show
that the inexact implementation is more efficient. In order to maintain the finite ter-
minating property, we drive the precision control in solving inner linear systems
adaptively. Our main idea consists in respecting err(k−1) achieved in the previous
Newton iteration and, if the progress is not sufficiently large then the precision of
the inner loop is increased independently of err(k− 1). Denoting δ (k) the upper
bound for the relative residual terminating iterations of the inner solver [4] in the
k-th Newton step, we can express our strategy by

δ (k) := min{εmin× err(k− 1),cfact× δ (k−1)}

with 0 < εmin < 1, 0 < cfact < 1, err(0) = 2 and δ (0) = εmin/cfact (typically εmin =
10−2 and cfact = 0.2).

5 Numerical Experiments

We illustrate the efficiency of the presented method on the model problem (1),
in which ω = {(x,y) ∈ R2|(x− 0.5)2/0.42 + (y− 0.5)2/0.22 < 1}, f ≡ −10 and
g(x,y) = 5sin(2ϕ)(r2 +r(cosϕ+sinϕ)+0.5)1/2−1.5 on γ , where (ϕ ,r) is the po-
lar coordinate of (x−0.5,y−0.5). In the fictitious domain formulation (4) we take
Ω = (0,1)× (0,1). Moreover we replace H1

0 (Ω) by H1
per(Ω) (periodic functions on

Ω ) that enables us to apply multiplying procedures based on circulant matrices [6].
In the discretized problem (5) we consider Vh formed by piecewise bilinear func-
tions on a uniform rectangulation of Ω with a stepsize h andΛH(γ), ΛH(Γ ) defined
by piecewise constant functions on partitions of polygonal approximations of γ , Γ ,
respectively. The curve Γ is constructed by shifting γ three h units in the direction
of the outward normal vector nγ and H/h = 5; see Figure 1. The definition of δHûh

in (5) uses averaging of gradients.
Figure 2 shows the solution ûh for h = 1/256. In Tables 1, 2 we report the number

of primal variables (n), the number of active (mA = |A |) and inactive (mI = |I |)
control variables, the number of outer (Newton) iterations, the total number of in-
ner (BiCGSTAB) iterations, the computational time and the errors of approximate
solutions in the indicated norms (the comparisons are done with respect to the ref-
erence solution computed on the fine mesh with h = 1/2048). From the errors, we
determine the convergence rate of fictitious domain approaches.
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Fig. 1 Geometry of the problem.
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Table 1 Non-smooth fictitious domain formulation (γ ≡ Γ ).

Step h n/mA /mI out./∑inn.its. C.time[s] ErrL2(ω) ErrH1(ω) ErrL2(γ)
1/128 16641/6/44 11/48 0.81 4.0280e-003 1.7229e-001 1.5350e-002
1/256 66049/13/87 11/62 3.50 2.3784e-003 1.0700e-001 6.3671e-003
1/512 263169/23/175 12/76 31.31 1.9782e-003 1.1129e-001 4.5262e-003
1/1024 1050625/45/351 11/118 185.32 1.0554e-003 8.3205e-002 2.3919e-003

Convergence rates: 0.6063 0.3094 0.8538

Table 2 Smooth fictitious domain formulation (γ �≡ Γ ).

Step h n/mA /mI out./∑inn.its. C.time[s] ErrL2(ω) ErrH1(ω) ErrL2(γ)
1/128 16641/6/44 10/41 0.6875 5.6320e-003 2.6868e-001 2.2502e-002
1/256 66049/13/87 9/73 3.891 1.9606e-003 1.2138e-001 7.3177e-003
1/512 263169/23/175 9/90 34.11 2.8203e-004 2.4997e-002 1.2019e-003
1/1024 1050625/45/351 9/104 161 2.2655e-005 5.5767e-003 1.4466e-004

Convergence rates: 2.6670 1.9051 2.4450

In Table 3 we compare efficiency of the inexact and exact (with δ (k) ≡ 10−12)
implementations of Algorithm ASM. When the active and inactive sets correspond-
ing to the solution are recognized then the exact implementation finds immediately
the solution. The inexact implementation divides computations of the solution into
several Newton iterations, the total cost is however considerably smaller.

The last experiment in Table 4 documents a convergence property of Algorithm
ASM. To this end we compute ratio(k) := ‖uk− ū‖/‖uk−1− ū‖ which tends to zero
proving the superlinear convergence. Let us note that the exact implementation is
used in this test.

Acknowledgements This research is supported by the grant GAČR 201/07/0294 and by the re-
search project MSM0021620839. The second author also acknowledges the support of the grant
IAA1075402.
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Table 3 Iteration history for h = 1/256 and various implementations.

Exact Inexact, cfact = 0.01 Inexact, cfact = 0.5
k inn.its. mA k /mI k inn.its. mA k /mI k inn.its. mA k /mI k

0 65 33/67 1 33/67 2 33/67
1 84 26/74 2 25/75 1 21/79
2 70 20/80 13 16/84 5 16/84
3 69 16/84 23 14/86 8 19/81
4 54 14/86 34 13/87 10 16/84
5 51 13/87 13 13/87 9 13/87
6 0 13/87 4 13/87
7 6 13/87
8 6 13/87
9 6 13/87

10 3 13/87
11 6 13/87
12 4 13/87

∑inn.its. 393 86 70

Table 4 Convergence of Algorithm ASM for γ ≡ Γ and h = 1/512.

k err(k) ratio(k) mA k /mI k

0 1 - 66/132
1 0.2957 0.2632 49/149
2 0.1083 0.3412 39/159
3 0.0387 0.3387 33/165
4 0.0174 0.4019 29/169
5 0.0068 0.3802 26/172
6 0.0024 0.3321 24/174
7 0.0004 0.1556 23/175
8 0 0 23/175
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Bifurcations in Contact Problems with Local
Coulomb Friction

J. Haslinger, R. Kučera, and O. Vlach

Abstract This contribution illustrates the bifurcation behaviour of solutions to con-
tact problems with local Coulomb friction. The bifurcation character of solutions
is well-known for models with a low number of degrees of freedom. Our aim is
to show that a similar phenomen occurs when a finite element approximation with
a high number of degrees of freedom is used. We experimentally find a critical value
of the coefficient of friction in which one branch of solutions splits into two.

1 Introduction

Contact problems with local Coulomb friction belong to challenging mathemati-
cal problems which remained unsolved for a long time. Recent results on the exis-
tence of solutions to this class of problems can be found in [1]. On the other hand,
a complete description of the structure of solutions is still missing in a general case.
For discrete problems the situation is slightly better. Systems with a very small
number of degrees of freedom can be solved ”by hand“ so that all solutions are
available: see for ex. [5] where the system was parametrized by applied loads P and
[4] where the parametrization by a coefficient of friction F is used. Nevertheless it
is not still clear if and how these results can be extended to finite element models
with a very high number of dof. which are already close to a continuous model.
In this contribution we focus on the parametrization by F . To our knowledge there
are only few results valid for any finite number of dof., namely (a) the existence
of locally lipschitz continuous branches of solutions (see [4]) (b) the existence of
a solution for any coefficient of friction and uniqueness of the solution if F is be-
low a critical value which (unfortunately) depends on a discretization parameter of
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Radek Kučera and Oldřich Vlach
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a finite element model (see [2]). In practice this means that for a given finite element
partition one may have a different number of solutions depending on the value of
F . The aim of this paper is to document this phenomenon experimentally for “real”
discretizations: one branch of the solutions splits into (at least) two ones for F pass-
ing a critical value. As a model of friction we use Coulomb’s law with a coefficient
which depends on a solution.

2 Setting of the Problem

Let us consider an elastic body represented by a bounded domainΩ ⊂Rd (d = 2,3)
with the Lipschitz boundary ∂Ω = Γ u ∩Γ p∩Γ c where Γu, Γp, Γc are non–empty,
disjoint parts of ∂Ω . On each part different boundary conditions are prescribed:
Ω is fixed along Γu, while surface tractions of density P act on Γp. The body is
unilaterally supported by a rigid foundation S alongΓc. For the sake of simplicity we
shall suppose that S is either a half-plane (d = 2) or a half-space (d = 3) and there
is no gap between Ω and S in the undeformed state. Finally, Ω is subject to body
forces of density F . Our aim is to find an equilibrium state of Ω taking into account
friction between Ω and S which obeys the classical Coulomb law with a coefficient
of friction F depending on a solution. An equilibrium state is characterized by
a displacement vector u :Ω #→Rd which satisfies the equilibrium equations of linear
elasticity in Ω , the classical boundary conditions on Γu and Γp and the following
unilateral and friction conditions on Γc:

Tn := T (u) ·n≤ 0, un := u ·n≤ 0, Tnun = 0 on Γc (1)

||Tt(u)|| ≤ −F (||ut ||)Tn(u) on Γc

ut(x) �= 0⇒ Tt(u)(x) = F (||ut ||)Tn(u) ut
||ut || (x), x ∈ Γc

}
(2)

where Tn(u),Tt(u) := T (u)−Tn(u)n is the normal, tangential component of a stress
vector T (u), respectively which corresponds to u; un, ut := u− unn is the normal,
tangential component of a displacement vector u, respectively. The symbol || || in
(2) stands for the absolute value of a scalar (d = 2) or the Euclidean norm of a vector
(d = 3). Finally, F is a coefficient of friction whose value depends on the magnitude
of ut on Γc.

Assuming thatΩ is made of a linear elastic material which obeys a linear Hooke
law characterized by elasticity coefficients ci jkl ∈ L∞(Ω), the weak form of our
problem is given by the following implicit variational inequality:

Find u ∈ K such that
a(u,v− u)+ j(u,u,v)− j(u,u,u)≥ L(v−u) ∀v ∈ K

}
(P)

The meaning of symbols is as follows (the summation convention is adopted):
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V = {v ∈ (H1(Ω))d | v = 0 on Γu}
K = {v ∈ V| vn ≤ 0 on Γc}

a(u,v) :=
∫
Ω

ci jklεkl(u)εi j(v)dx , εkl(u) =
1
2
(
∂uk

∂xl
+
∂ul

∂xk
)

L(v) :=
∫
Ω

Fivi dx +
∫
Γp

Pivi ds , F ∈ (L2(Ω))d , P ∈ (L2(Γp))d

j(u,v,w) :=−〈F (||ut ||)Tn(v), ||wt ||〉 ,

where 〈 , 〉 is the duality pairing between Xn (the space of vn|Γc , v ∈ V) and its dual
X ′n. The cone of non–negative elements from X ′n will be denoted by X ′n+. Finally, let
X+

t = {ϕ ∈ L2(Γc) |∃v ∈ V : ϕ = ||vt || on Γc}.
The existence of solutions to (P) under appropriate assumptions on data, and

in particular on F has been established in [1]. The numerical realization of (P)
is based on an equivalent fixed–point formulation. For (ϕ ,g) ∈ X+

t ×X ′n+ fixed let
us consider the following contact problem with given friction and the coefficient
Fϕ := F (ϕ):

Find u := u(ϕ ,g) ∈ K such that
a(u,v−u)+ j(ϕ ,g,v)− j(ϕ ,g,u)≥ L(v−u) ∀v ∈ K

}
(P(ϕ ,g))

and define the mapping Φ : X+
t ×X ′n+ #→ X+

t ×X ′n+ by

Φ(ϕ ,g) = (||ut |Γc ||,−Tn(u)) (3)

where u ∈ K is the unique solution of (P(ϕ ,g)). Comparing the definitions of (P)
and (P(ϕ ,g)) we see that u∈K solves problem (P) if and only if it solves problem
P(||ut |Γc ||,−Tn(u)) or equivalently, (||ut |Γc ||,−Tn(u)) is a fixed point of Φ .

3 Discretization of (P), Properties of the Discrete Model

Let Ω be a polygonal (d = 2) or a polyhedral (d = 3) domain and Th be a partition
of Ω into triangles (d = 2) or tetrahedra (d = 3) such that diamT ≤ h ∀T ∈ Th.
With any Th we associate the spaces Vh, Vh :

Vh = {vh ∈C(Ω )| vh|T ∈ P1(T ) ∀T ∈Th, vh = 0 on Γu} , Vh = (Vh)d .

By Vh = Vh|Γc we denote the space of restrictions on Γc of functions from Vh while
V +

h stands for the set of non–negative elements of Vh. Further, let TH be a partition
of Γ c into segments SH , diamSH ≤H ∀SH ∈TH . On any TH we construct the space
LH of piecewise constant functions:

LH = {μH ∈ L2(Γc) | μH |SH
∈ P0(SH) ∀SH ∈TH}
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and its subset ΛH of all non–negative functions. For any (ϕh,gH) ∈ V +
h ×ΛH given

we define the following auxiliary problem:

Find (uh,λH) ∈ Vh×ΛH such that
a(uh,vh−uh)+ j(ϕh,gH ,vh)− j(ϕh,gH ,uh)≥

L(vh−uh)− (λH ,vhn−uhn)0,Γc ∀vh ∈ Vh

(μH −λH ,uhn)0,Γc ≤ 0 ∀μH ∈ΛH

⎫⎪⎪⎬⎪⎪⎭ (P(ϕh,gH))H
h

(P(ϕh,gH))H
h is a mixed formulation of the contact problem with given friction and

the coefficient Fϕh := F ◦ϕh which uses the dualization of the unilateral constraint
uhn ≤ 0 on Γc. Next we shall suppose that Vh and ΛH are such that the following
condition guaranteeing the uniqueness of a solution to (P(ϕh,gH))H

h is satisfied:

(μH ,vhn)0,Γc = 0 ∀vh ∈ Vh ⇒ μH = 0 . (4)

This enables us to define the mappingΦhH : V +
h ×ΛH #→ V +

h ×ΛH by

ΦhH(ϕh,gH) = (rh||uht |Γc ||,λH) ,

where (uh,λH) is the solution of (P(ϕh,gH))H
h and rh : C(Γ c) #→ Vh is a linear

approximation operator preserving the monotonicity property: v≥ 0 on Γ c⇒ rhv ∈
V +

h (the Lagrange interpolation operator, e.g.). Since−λH can be interpreted as the
discrete normal stress on Γc, the mapping ΦhH can be viewed to be a discretization
of Φ defined by (3).

Definition 1. By a discrete solution of the contact problem with Coulomb friction
and the coefficient depending on a solution we call any function uh ∈ Vh such that
(uh,λH) is a solution of (P(rh||uht |Γc ||,λH))H

h , i.e. (rh||uht |Γc ||,λH) is a fixed point
of ΦhH .

Let us recall main results concerning the existence and uniqueness of the fixed
point of ΦhH . Proofs for 2D problems can be found in [3] but their adaptation to the
3D case is easy.

Theorem 1. It holds:

(a) if F ∈C(R1
+), 0≤F (t)≤Fmax ∀t ∈R1

+, where Fmax is given then there exists
at least one fixed point of ΦhH;

(b) if, in addition to (a), F is Lipschitz continuous in R1
+:

|F (t1)−F (t2)| ≤ l|t1− t2| ∀t1,t2 ∈ R1
+

so ΦhH is in V +
h ×ΛH: ∃q > 0 such that

||ΦhH(ϕh,gH)−ΦhH(ϕh,gH)|| ≤ q||(ϕh,gH)− (ϕh,gH)|| (5)

holds for every (ϕh,gH),(ϕh,gH) ∈ V +
h ×ΛH, where
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||(ϕh,gH)|| := ||ϕh||0,Γc + ||gH ||h , ||gH ||h := sup
Vh

(gh,vhn)0,Γc

||vh||1,Ω
.

The constant q in (5) depends on Ω ,h,H,Fmax and l in such a way that for Ω ,h,H
fixed, q→ 0+ if Fmax, l→ 0+.

Remark 1. There exist F > 0, l > 0 both depending on Ω ,h and H such that if
Fmax ≤F and l ≤ l the mapping ΦhH is contractive in V +

h ×ΛH so that ΦhH has
a unique fixed point and the method of successive approximations converges.

Remark 2. If the following Babuška–Brezzi condition and the inverse inequality are
satisfied, i.e.

||μH ||h ≥ β ||μH ||X ′n , ||μH ||0,Γc ≤ βH−1/2||μH ||X ′n , ∀μH ∈ LH

where β ,β > 0 do not depend on h,H > 0 then the bounds F , l guaranteeing
the uniqueness of the solution are bounded from above by

√
hH, i.e. are mesh–

dependent ([3]).

Let us comment on the previous results. Unlike to the continuous setting in which
the existence of a solution has been shown for F small enough, a solution to the
discrete model exists for any F satisfying (a) of Theorem 1 regardless of the shape
of Ω ,Fmax, l and the applied forces F and P. Moreover, if Fmax and l are small
enough, the solution to the discrete model is unique. Unfortunately, this uniqueness
result depends on the mesh norms h,H as follows from Remark 2. One of ways
how a possible non–uniqueness comes to light is that the method of successive ap-
proximations used for finding fixed points of ΦhH depends on the choice of initial
approximations. In the next section we illustrate this phenomenon on model exam-
ples in 2D and 3D: starting from two different initial approximations we find two
different fixed points for a particular coefficient of friction F . Then taking the same
examples (with the same Th and TH) but replacing F by ξF , where ξ → 0+
we find (accordingly to our theoretical results) a critical value ξ > 0 for which
originally two different fixed points will coincide for ξ < ξ using the same initial
approximations as before.

4 Examples with Branching Solutions

We start with a 2D problem. The body represented by Ω = (0,10)× (0,1) [m] is
made of an elastic material characterized by the Young modulus E = 21.19e10 [Pa]
and Poisson’s ratio σ = 0.277. The partition of ∂Ω into Γu, Γp = Γp1 ∪Γp2 and
Γc is seen from Fig. 1. The surface tractions P are linearly distributed along Γp1

and Γp2 starting from the following values: P|Γp1
(0,1) = (0,1.e6) [N], P|Γp1

(10,1) =

(0,−8.e6) [N], P|Γp2
(10,1)= (−10.e6,10.e6) [N] and P|Γp2

(10,0)= (−10.e6,−3.e6)
[N]. The body forces are neglected. The graph of the coefficient of friction F is
shown in Fig. 2.
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Fig. 3 Tangential displacements on Γc
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Fig. 4 Friction force Tt(u) on Γc

The numerical realization of each iterative step of the method of successive ap-
proximations is based on its dual formulation (for details see [3]). The used parti-
tions ofΩ and Γ c give 26640 primal variables and 720 dual variables (discrete con-

tact stresses). Two different initial approximations were used, namely (ϕ(0)
h ,g(0)

H ) =
(0,0) corresponding to a contact problem without friction and (ϕ (0)

h ,g(0)
H )= (0,1.e8)
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(a contact problem with a high slip bound). Starting from them, two different fixed
points of ΦhH were obtained. Since the most significant differences are in the tan-
gential direction we focus on it. One of these solutions is such that a slip occurs
along the whole Γc (solution1) while both stick and slip zone are present for the
second one (solution2). Now instead of F we take ξF . If ξ = 0.98581 then again
two solutions with the same character as for ξ = 1 appear. On the other hand if
ξ = 0.9858 both solutions meet together and only one solution with a slip along the
whole Γc is obtained (see Figs. 3 and 4).

Now we switch to 3D problems. Let the body be represented by Ω = (0,10)×
(0,1)× (0,1) [m]. The decomposition of the boundary ∂Ω into Γu, Γp and Γc, as
well as the applied surface tractions P are seen from Fig. 5. The Young modulus E ,
Poisson’s ratio σ and the coefficient of friction F are the same as in the 2D case.
The body forces are neglected again. Discretizations of Ω and Γ c are such that the
total number of the primal, dual variables is 30000 and 12700, respectively. The
initial approximations for the method of successive approximations are the same
as before. Denote Fξ := ξF . For ξ = 1.37689 we get two different solutions: the
one sliding along the whole Γc, the other one with a stick and slip zone as shown in
Fig. 6. The norm of Tt(u) on Γc is depicted in Fig. 7 and the distribution of Tn(u)
and un on Γc are shown in Figs. 8 and 9 for (solution 2). Setting ξ = 1.37688 both
solutions joint together. The obtained solution slides along the whole Γc, i.e. it has
the character of (solution 1).

Ω

S

Γu
Γc

Γp1

Γp2

Fig. 5 Geometry of the problem
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Point Load on a Shell

A.H. Niemi, H. Hakula, and J. Pitkäranta

Abstract We study the fundamental (normal point load) solution for shallow shells.
The solution is expressed as a Fourier series and its properties are analyzed both
at the asymptotic limit of zero shell thickness and when the thickness has a small
positive value. Some results of benchmark computations using both high- and low-
order finite elements are also presented.

1 Introduction

According to the two-dimensional models of linear shell theory, the deformation of
the middle surface of a thin shell under a given load is obtained by minimizing a
quadratic energy functional of the form

F (u) = Am(u,u)+As(u,u)+ t2Ab(u,u)−2Q(u), (1)

where t is the thickness of the shell and Am, As, t2Ab and Q correspond to the de-
formation energy due to stretching, deformation energy due to transverse shearing,
deformation energy due to bending and the external load functional, respectively.
Further, u = (u,v,w,θ ,ψ) is a vector field on the middle surface Γ of the shell that
defines the tangential displacements u,v and normal deflection w of the middle sur-
face as well as the rotations θ ,ψ of its normal.

We consider here the problem of shell deformation under a normal point load so
that the load functional is assumed to have the form

Q(u) = F〈δP,w〉= Fw(P), (2)
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where P ∈ Γ is a point at the middle surface. The relevance of this problem is unde-
niable, as the solution is the fundamental solution, or Green’s function, for normal
loads and so it has been studied widely in classical shell theory, see e.g. [1] and the
references therein. Anyway, it seems that closed form solutions have been obtained
only for spherical shells and that the detailed behavior of the solution near point P is
still an open problem when the thickness t is small — especially in hyperbolic and
parabolic shell geometries.

Our aim here is to give some solutions to this problem and to find out how accu-
rately these solutions can be approximated with finite elements. Our starting point is
a ‘shallow’ version of the classical shell model where certain geometrical simplifi-
cations are assumed, see [6]. Within this simplified model, we analyze fundamental
solutions that can be expressed as Fourier series and focus first on the asymptotic
limit solution at t = 0. In model cases this can be expressed explicitly in the sense
of distributions. We conclude that the transverse deflection w of the asymptotic so-
lution has a term of the form w ∼ FδP in all geometries. The remaining part of w
is smooth when the shell is elliptic, but in hyperbolic and parabolic shell geome-
tries there arises additional line δ -distributions along the characteristic lines of the
middle surface.

Concerning the more realistic situation where the thickness t has a small positive
value, we conclude as follows:

1. In all shell geometries the asymptotic term w∼ FδP is spread into a ‘hot spot’ of
width ∼√Rt around P, where R is the curvature length scale of the shell.

2. The line δ -distributions in the hyperbolic and parabolic cases are spread to
‘ridges’ of width ∼ n

√
Rn−1t, where n = 3 in the hyperbolic case and n = 4 in

the parabolic case.

We support these conclusions also by numerical experiments based on truncated
Fourier series and finite element computations using both high- and low-order ele-
ments.

2 Classical Shell Theory

For a shell consisting of homogeneous isotropic material with Poisson ratio ν , the
energy functionals in (1) are given by

Am(u,u) =
∫
Γ

[
ν(β11 +β22)2 +(1−ν)(β 2

11 + 2β 2
12 +β 2

22)
]

dΓ,

As(u,u) =
1−ν

2

∫
Γ

(
ρ2

1 +ρ2
2

)
dΓ,

Ab(u,u) =
1

12

∫
Γ

[
ν(κ11 +κ22)2 +(1−ν)(κ2

11 + 2κ2
12 +κ2

22)
]

dΓ.

(3)
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In a general geometry, the strains βi j, ρi and κi j, i, j = 1,2 are related linearly to the
displacement components u,v,w,θ ,ψ via variable coefficients that depend locally
on the fundamental forms of Γ , see e.g. [1].

We assume here that the middle surface of the shell, in the neighborhood of point
P, is represented in the form

z(x,y) =
1
2

ax2 + cxy +
1
2

by2, (4)

where x and y are Cartesian coordinates in the tangent plane Ω with origin P. The
leading terms of the strain expressions at P may then be written as

β11 =
∂u
∂x

+ aw, β22 =
∂v
∂y

+ bw, β12 =
1
2

(
∂u
∂y

+
∂v
∂x

)
+ cw,

ρ1 = θ − ∂w
∂x

, ρ2 = ψ− ∂w
∂y

,

κ11 =
∂θ
∂x

, κ22 =
∂ψ
∂y

, κ12 =
1
2

(
∂θ
∂y

+
∂ψ
∂x

)
.

(5)

The use of these expressions may be justified (formally, see [6]) also in a neighbor-
hood of P, in which the middle surfaceΓ is shallow with respect to the tangent plane
Ω , i.e. r =

√
x2 + y2 is small compared with R. One may then as well set Γ ↪→ Ω

and dΓ ↪→ dxdy when evaluating the strain energy functionals (3).
The above model can be simplified further by neglecting transverse shear energy

which usually is small. This can be accomplished by eliminating the rotations θ ,ψ
from the classical Kirchhoff-Love constraints

ρ1 = θ − ∂w
∂x

= 0, ρ2 = ψ− ∂w
∂y

= 0. (6)

The strain energy takes then the form

F (u) = Am(u,u)+ t2Ab(u,u)−2Q(u), (7)

where now u = (u,v,w) and the bending strains are given by

κ11 =
∂ 2w
∂x2 , κ22 =

∂ 2w
∂y2 , κ12 =

∂ 2w
∂x∂y

.

The minimizer of (7) satisfies the Euler equations
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0 =−∂β11

∂x
−ν ∂β22

∂x
− (1−ν)

∂β12

∂y
,

0 =−ν ∂β11

∂y
− ∂β22

∂y
− (1−ν)

∂β12

∂x
,

FδP = (a +νb)β11 +(νa + b)β22 + 2(1−ν)cβ12 +
t2

12
Δ2w,

(8)

where Δ = ∂ 2

∂x2 + ∂ 2

∂y2 is the usual two-dimensional Laplacian. These equations to-
gether constitute a system of total order eight and they can be expressed equivalently
as the fundamental shell equation

t2

12
Δ4w+(1−ν2)Δ2

mw = FΔ2δP, (9)

where Δm is a second order partial differential operator which represents membrane
forces and is defined as

Δm = a
∂ 2

∂y2 + b
∂ 2

∂x2 −2c
∂ 2

∂x∂y
.

In view of (4) and the usual classification of differential operators, the operator Δm

is called elliptic/hyperbolic/parabolic in accordance with the geometric nature of
the middle surface at P. Note also that when a = b = c = 0, Eq. (9) reduces to the
well known biharmonic equation representing the bending of a flat plate under a
concentrated load.

To get an understanding of the curvature effects that couple membrane and bend-
ing action in shell deformations, we analyze solutions of (9) that can be expanded
as Fourier series of the form

w(x,y) =
∞

∑
m,n=1

Wmn cos
(
(m− 1

2 )πx
)

cos
(
(n− 1

2 )πy
)
. (10)

Actually, this form was used already in [5], where we introduced a set of benchmark
problems for the numerical evaluation of finite element algorithms.

Assume now that P = (0,0) so that

FδP(x,y) = F
∞

∑
m,n=1

cos
(
(m− 1

2)πx
)

cos
(
(n− 1

2 )πy
)
.

By using the shorthand notation M = (m− 1
2 )π and N = (n− 1

2 )π , we may write
formally Δ =−M2−N2 and Δm =−aN2−bM2−2cMN in (9); hence, the Fourier
coefficients of the transverse deflection are given by

Wmn =
12F(M2 + N2)2

t2(M2 + N2)4 + 12(1−ν2)(aN2 + bM2 + 2cMN)2 . (11)
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We consider three model cases where the curvature parameters a,b,c are chosen
as follows

1. a = b = 1/R & c = 0 (Elliptic shell)
2. c = 1/R & a = b = 0 (Hyperbolic shell, characteristic lines x = 0 & y = 0)
3. b = 1/R & a = c = 0 (Parabolic shell, characteristic line x = 0)

Let us study first the asymptotic limit solutions at t = 0. In the classical shell-
membrane theory one usually sets t = 0 in (8) and then solves the system of equa-
tions by carefully relaxing the boundary and regularity conditions on u. Here we do
nicely by expanding the Fourier coefficients (11) at t = 0 as follows:

1. Wmn = FR2

1−ν2

2. Wmn = FR2

1−ν2

(
1
2 + 1

4
M2

N2 + 1
4

N2

M2

)
3. Wmn = FR2

1−ν2

(
1 + 2 N2

M2 + N4

M4

)
In Ω = (−1,1)× (−1,1) these correspond to explicit solutions of the form

1. w(x,y) = FR2

1−ν2 δP(x,y)

2. w(x,y) = FR2

1−ν2

( 1
2δP(x,y)+ 1

16 (|y|−1)δ ′′(y)+ 1
16(|x|−1)δ ′′(x)

)
3. w(x,y) = FR2

1−ν2

(
δP(x,y)+ 1

2(|x|−1)δ ′′(y)+ 1
12(|x|3−3x2 + 2)δ ′′′′(y)

)
Assume next that t = 1

1000 . We show in Figs. 1 and 2 contour plots of the deflec-
tion w in the hyperbolic and parabolic cases with the parameter values set as R = 1,
ν = 1

3 and F =−1. These results have been obtained by truncating the Fourier series
(10), (11) at m = n = 1000. We observe that in different shell geometries the main
features of the deformations are rather similar close to P, but highly different away
from P.

This behavior can be anticipated also from the Fourier coefficients (11). Namely,
the curvature effects do not interact significantly with Fourier modes that vary in
length scales $√Rt � 0.03, but come into play when M2 + N2 ∼ 1

Rt basically in
the same way in any shell geometry. Concerning longer length scales, i.e. Fourier
modes with M,N < 1√

Rt
, we may reason as follows. In the hyperbolic case one finds

that

Wmn ∼ 12FM2

t2M6 + 48(1−ν2)R−4 ,

when N ∼ R−1 so that Wmn grows with M until M ∼ 3
√

R−2t−1 and the same holds
when the roles of M and N are exchanged. These properties are reflected in Fig. 1
as line layers decaying in the length scale L ∼ 3

√
R2t � 0.10 from the characteristic

lines. In the parabolic case we have

Wmn ∼ 12FN4

t2N8 + 12(1−ν2)R−6

when M ∼ R−1 so that here Wmn grows with N until N ∼ 4
√

R−3t−1 in accordance
with the line layer decaying in the length scale L∼ 4

√
R3t � 0.18 in Fig. 2.
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Fig. 1 Hyperbolic shell:
Transverse deflection w at
t = 1

1000 due to the point
load at P = (0,0). Largest
displacements take place
within a ‘hot spot’ of width
∼ √Rt � 0.03 around P. In
addition, the deformation
features ‘ridges’ of width
∼ 3
√

R2t � 0.10 along the
characteristic lines x = 0 and
y = 0.

Fig. 2 Parabolic shell: Trans-
verse deflection w at t = 1

1000
due to the point load at
P = (0,0). Largest displace-
ments take place within a ‘hot
spot’ of width ∼ √Rt � 0.03
around P. In addition, the de-
formation features a ‘ridge’ of
width ∼ 4

√
R3t � 0.18 along

the characteristic line x = 0.

3 Benchmark Computations: h–FEM versus p–FEM

In this section, we construct finite element approximations to the fundamental solu-
tions in the hyperbolic and parabolic cases. Since the imposition of the Kirchhoff-
Love constraints (6) in a finite element space is rather complicated, we take the
5-field model (1)–(5) as our starting point here. We approximate each displacement
component separately in the same way by using a standard scalar finite element
space Vh,p ⊂ H1(Ω) associated to subdivision of Ω = (−1,1)× (−1,1) into rect-
angular elements with side length at most h and shape functions spanning all poly-
nomials of given degree p, p ≥ 1. On the boundary ∂Ω , we impose as kinematic
constraints the symmetry/antisymmetry conditions corresponding to (10), cf. [5].

We start by setting up two rectangular ‘macroelement’ meshes onΩ based on the
specific structure of the solution in hyperbolic and parabolic cases, see Fig. 3. Our
goal is to find out which is more efficient way to increase the accuracy of the approx-
imation: raising the polynomial degree p within each macroelement or decreasing h
in the lowest-order case (p = 1) by refining the mesh.
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Fig. 3 Macroelement meshes
for hyperbolic and parabolic
shells at t = 1

1000 .

In the latter approach involving bilinear shape functions, we modify the trans-
verse shear strains as

ρ1 ↪→Πxρ1, ρ2 ↪→Πyρ2,

where Πx and Πy are defined elementwise as averaging operators in the coordinate
direction indicated by the subscript so as to avoid shear locking. Among the possible
numerical tricks aiming at avoiding membrane locking, we choose the one where the
membrane strains are computed using the plane elastic strains onΩ :

β11 ↪→Πxβ11 + cRyw, β22 ↪→Πyβ22 + cRxw,

β12 ↪→ 1
2

(
∂u
∂y + ∂v

∂x + cΠxw+ cΠyw+ aRxw+ bRyw
)

.

Here Rx,Ry are certain difference operators, see [2, 3, 4] for more details on this
formulation and its relation to current engineering practice.

We compare the above strategies by setting p = 12 in the ‘p-version’ and by
subdividing each macroelement uniformly into 64 rectangles in the ‘h-version’ so
that we have approximately 12000 degrees of freedom in both cases. The results of
benchmark computations are reported in Figs. 4–6 showing the transverse deflection
along the line x = 1

2 as well as along the characteristic line y = 0 in hyperbolic
and parabolic shell geometries. The results show that the ‘h-version’ is here clearly
inferior to the ‘p-version’ — especially in resolving the line layer in hyperbolic
geometry. In view of the theoretical predictions in [4], this is not so surprising.
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6. Pitkäranta, J., Matache, A.M., Schwab, C.: Fourier mode analysis of layers in shallow shell

deformations. Comput. Methods Appl. Mech. Engrg. 190, 2943–2975 (2001)


	Contents
	Plenary Lectures
	The Worst Scenario Method: A Red Thread Running Through Various Approaches to Problems with Uncertain Input Data
	Boundary and Finite Element Domain Decomposition Methods
	Discontinuous Galerkin Elements for Reissner-Mindlin Plates

	Contributed Lectures
	A Posteriori Error Estimation and Adaptive Methods
	Functional Type A Posteriori Error Estimates forMaxwell's Equations
	Space&#8211;Time Adaption for Advection-Diffusion-Reaction Problems on Anisotropic Meshes
	A Posteriori Error Analysis for Kirchhoff Plate Elements
	Adaptive Finite Element Simulation of Relaxed Models for Liquid-Solid Phase Transition

	Biomedical Applications
	A Numerical Study of the Interaction of Blood Flow and Drug Release from Cardiovascular Stents
	Numerical Modelling of Epidermal Wound Healing
	Model of Multiple Lexicographical Programming Applied in Cervical Cancer Screening
	A Finite Element Model for Bone Ingrowth into a Prosthesis

	Computational Electromagnetism
	Space and Time Adaptive Calculation of Transient 3D Magnetic Fields
	A Boundary Integral Formulation for Nonlocal Electrostatics

	Computational Methods, Preconditioners, Solvers
	Efficient Solution of Algebraic Bernoulli Equations Using H -Matrix Arithmetic
	A Purely Algebraic Approach to Preconditioning Based on Hierarchical LU Factorizations
	Additive Schwarz Preconditioners for Degenerate Problems with Isotropic Coefficients
	Performance Analysis of Parallel Algebraic Preconditioners for Solving the RANS Equations Using Fluctuation Splitting Schemes
	On Least-Squares Approximate Inverse-Based Preconditioners
	On the Construction of Stable B-Spline Wavelet Bases
	The Performance of a Multigrid Algorithm for the Acoustic Single Layer Equation
	Constraints Coefficients in hp-FEM
	A Boundary Element Algorithm for the Dirichlet Eigenvalue Problem of the Laplace Operator
	On Efficient Solution of Linear Systems Arising in hp-FEM

	Convection, Diffusion, Conservation, and Hyperbolic Systems
	Coupling Two Scalar Conservation Laws via Dafermos' Self-Similar Regularization
	A Sharp Interface and Fully Conservative Scheme for Computing Nonclassical Shocks
	A Numerical Descent Method for an Inverse Problem of a Scalar Conservation Law Modelling Sedimentation
	PSI Solution of Convection-Diffusion Equations with Data in L[sup(1)]
	High Order Two Dimensional Numerical Schemes for the Coupling of Transport Equations and Shallow Water Equations
	Well-Balanced High-Order MUSTA Schemes for Non-Conservative Hyperbolic Systems
	Local Time Stepping for Implicit-Explicit Methods on Time Varying Grids
	A 'TVD-like' Scheme for Conservation Laws with Source Terms
	Application of the WAF Method to Shallow Water Equations with Pollutant and Non-Constant Bottom
	A Third Order Method for Convection-Diffusion Equations with a Delay Term
	A Third Order WLSQR Scheme on Unstructured Meshes with Curvilinear Boundaries
	On the Choice of Parameters in Stabilization Methods for Convection&#8211;Diffusion Equations
	On Path-Conservative Numerical Schemes for Hyperbolic Systems of Balance Laws

	Discontinuous Galerkin Methods
	An Augmented DG Scheme for Porous Media Equations
	A Remark to the DGFEM for Nonlinear Convection-Diffusion Problems Applied on Nonconforming Meshes
	BDF-DGFE Method for the Compressible Navier-Stokes Equations
	Discontinuous Galerkin Method for the Numerical Solution of Inviscid and Viscous Compressible Flow
	Numerical Integration in the Discontinuous Galerkin Method for Nonlinear Convection-Diffusion Problems in 3D
	Implicit-Explicit Runge-Kutta Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems

	Domain Decomposition Methods
	A Domain Decomposition Method Derived from the Primal Hybrid Formulation for 2nd Order Elliptic Problems
	A Posteriori Error Analysis of Penalty Domain Decomposition Methods for Linear Elliptic Problems
	BETI-DP Methods in Unbounded Domains
	Domain Decomposition and Model Reduction of Systems with Local Nonlinearities
	An Adaptive Discontinuous Galerkin Scheme for Second Order Problems with an Interface

	Finance, Stochastic Applications
	Abstract Sensitivity Analysis for Nonlinear Equations and Applications
	Multiscale Analysis for Jump Processes in Finance

	Fluid Mechanics
	A Hybrid Numerical Scheme for Aerosol Dynamics
	Numerical Study of Mixed Finite Element and Multi Point Flux Approximation of Flow in Porous Media
	Local Projection Stabilization for the Oseen System on Anisotropic Cartesian Meshes
	Simulations of 3D Dynamics of Microdroplets: A Comparison of Rectangular and Cylindrical Channels
	Incomplete Interior Penalty Galerkin Method for a Nonlinear Convection-Diffusion Equation
	Numerical Simulations of Incompressible Laminar Flow for Newtonian and Non-Newtonian Fluids
	Numerical Solution of 2D and 3D Unsteady Viscous Flows
	Local Projection Stabilization of Finite Element Methods for Incompressible Flows
	A Numerical Study of Local Projection Stabilisations Applied to Oseen Problems
	Involutive Completion to Avoid LBB Condition
	Numerical Computation of Unsteady Compressible Flows with Very Low Mach Numbers
	A Mixed Hybrid Finite Element Discretization Scheme for Reactive Transport in Porous Media
	Applying Local Projection Stabilization to inf-sup Stable Elements
	Calibration of Model and Discretization Parameters for Turbulent Channel Flow

	Fluid-Structure Interaction
	Numerical Solution of Transonic and Supersonic 2D and 3D Fluid&#8211;Elastic Structure Interaction Problems
	Numerical Simulations of Flow Induced Vibrations of a Profile
	A Semi-Implicit Algorithm Based on the Augmented Lagrangian Method for Fluid-Structure Interaction
	Automated Multi-Level Substructuring for a Fluid-Solid Vibration Problem
	On Numerical Approximation of Fluid-Structure Interaction Problems

	Optimal Control Problems
	Fishways Design: An Application of the Optimal Control Theory
	Moving Domain by Galerkin-Level Set Strategy: Application to Shape Geodesics
	Numerical Analysis of a Control and State Constrained Elliptic Control Problem with Piecewise Constant Control Approximations
	Globalization of Nonsmooth Newton Methods for Optimal Control Problems
	An Inexact Trust-Region SQP Method with Applications to PDE-Constrained Optimization
	Semi&#8211;Monotonic Augmented Lagrangians for Optimal Control and Parameter Identification
	An Optimal Control Problem for Stochastic Linear PDE's Driven by a Gaussian White Noise
	A Priori Error Analysis for the Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems
	A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems
	Multigrid Methods for Linear Elliptic Optimal Control Problems

	Optimization, Inverse Problems
	An Active Curve Approach for Tomographic Reconstruction of Binary Radially Symmetric Objects
	A Single-Pass Scheme for the Mean Curvature Motion of Convex Curves
	A Semi-Lagrangian Approximation ofMin&#8211;Max Type for the Stationary Mean Curvature Equation
	Topological Derivative Based Methods for Non&#8211;Destructive Testing
	A Characteristics Driven Fast Marching Method for the Eikonal Equation
	Hierarchical Model Reduction for Advection-Diffusion-Reaction Problems
	A Semi-Lagrangian Scheme for the Open Table Problem in Granular Matter Theory
	On a Variational Approximation of the Effective Hamiltonian
	Estimation of Diffusion Coefficients in a Scalar Ginzburg-Landau Equation by Using Model Reduction
	Reduced Order Models (POD) for Calibration Problems in Finance

	Ordinary Differential Equations
	A Collocation Method for Quadratic Control Problems Governed by Ordinary Elliptic Differential Equations
	A Road Traffic Model with Overtaking: Continuation of the Oscillatory Patterns
	A Second Order Scheme for Solving Optimization-Constrained Differential Equations with Discontinuities
	Optimal Load Changes for a Molten Carbonate Fuel Cell Model
	Differential DAE Index for Reactive Euler Equations
	Application of a First Order Asymptotic Method for Modeling Singularly Perturbed BVPs

	Solid Mechanics
	Newton-Like Solver for Elastoplastic Problems with Hardening and its Local Super-Linear Convergence
	On a Fictitious Domain Method for Unilateral Problems
	Bifurcations in Contact Problems with Local Coulomb Friction
	Point Load on a Shell


